UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A two-phase anaerobic digestion process (UASB-UASB) for simulated sewage sludge Fongsatitkul, Prayoon 1992

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
ubc_1992_spring_fongstatitkul_prayoon.pdf [ 8.48MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0050478.json
JSON-LD: 1.0050478+ld.json
RDF/XML (Pretty): 1.0050478.xml
RDF/JSON: 1.0050478+rdf.json
Turtle: 1.0050478+rdf-turtle.txt
N-Triples: 1.0050478+rdf-ntriples.txt
Original Record: 1.0050478 +original-record.json
Full Text
1.0050478.txt
Citation
1.0050478.ris

Full Text

ATWO-PHASEANAEROBICDIGESTIONPROCESS(UASB-UASB)FORSIMULATEDSEWAGESLUDGEbyPRAYOONFONGSATITKULB.Sc.(Sanitation),MahidolUniversity,1975M.Sc.(EnvironmentalTechnologyandManagement),AsianInstituteofTechnology,1978ATHESISSUBMITTEDINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOFDOCTOROFPHILOSOPHYinTHEFACULTYOFGRADUATESTUDIES(DepartmentofCivilEngineering)WeacceptthisthesisasconformingtotherequiredstandardTHEUNIVERTYOFBRITISHCOLUMBIAApril1992©PRAYOONFONGSATITKUL,1992InpresentingthisthesisinpartialfulfilmentoftherequirementsforanadvanceddegreeattheUniversityofBritishColumbia,IagreethattheLibraryshallmakeitfreelyavailableforreferenceandstudy.Ifurtheragreethatpermissionforextensivecopyingofthisthesisforscholarlypurposesmaybegrantedbytheheadofmydepartmentorbyhisorherrepresentatives.Itisunderstoodthatcopyingorpublicationofthisthesisforfinancialgainshallnotbeallowedwithoutmywrittenpermission.DepartmentofCivilEngineeringTheUniversityofBritishColumbiaVancouver,CanadaDate/DE-6(2188)ABSTRACTTheobjectivesofthisresearchprogramweretodemonstratethefeasibilityandeffectivenessofa“two-phase”anaerobicsewagesludgestabilization(UASB-UASB)process.Abench-scaleexperiment,consistingoftwocompletelymixedsealedupflowanaerobic(A-UASBandM-UASB)reactors,designedtooperateinsideawalk-intemperaturecontrolledroomat350C,wasemployed.Thesystemwasfirstseededandacclimatized,andthenusedinaseriesofdifferentexperimentalruns,emphasizingtheeffectsofinfluentSludgeRatio(SR)ofprimarytosecondarysludgesandRecycleRatio(RR)offluidizedsludgefromsludgeblanketportionofthereactor,onprocessperformance.Thevicinityof“bestknown”runningconditionwaslocatedbyanapplicationof2by2factorialdesignandResponseSurfaceMethod(RSM).Maximumsystemloadingcapacity,optimumoperatingconditions,andsystemfailure/recoveryprocesswerefurtherinvestigated.Theresultsofthisresearchstudyshowedthatatwo-phaseUASB-UASBprocessappearedtobefeasibleandeffectiveinstabilizingsewagesludgeathighorganicloadingrates,whilemaintaininganacceptablelevelofsupernatantqualityandCH4gasproduction.Thesystemhadahighpotentialtorecovereffectively,afteraseriousfailure,byapplyingastep-loadingreductionandinternalrecirculation(RR)approach.The“Two-phase”concepthasprovedtobesuccessfulintreatingsewagesludge.HydrolysisacidificationpredominatedintheA-UASB,whileacetogenesis-methanogenesis11dominatedintheM-UASB.Mostofthereactionsoccurredatthelowerparts(sludgeblanketandbed)ofbothreactors.AcombinationofsystemhydraulicandorganicoverloadingintheM-UASBreactorwasamajorcauseofprocessfailure.ThiswasindicatedbyawashoutofMLVSS,anincreaseinthetotalVFAconcentration,areductioninthesystemremovalefficiency,acessationofCH4gasproduction,adropofpH,andanincreaseintotalVFA/alkalinityratio.Applyingatwo-stepapproachtoincreasetheHRToftheM-UASBby1.5and5.8timesthatoftheprocessfailureHRT(M-UASB),thesystemCOD(sol)removalefficiencyrecoveredexponentiallywithanincreaseinHRT,whiletheCH4gasproductionrecoveredlogarithmically(r2=O.81-O.99).TheoptimumoperatingHRTsfortheMUASB,regardingCOD(sol)removalefficiencyandCH4gasproduction,were2and2.7daysduringthemaximizationandrecoveryperiod,respectively.Fordesignpurposes,theoptimumoperatingHRTsof1and2daysaswellasRRof2and3timesthatoftheintluentflowratearerecommendedfortheA-andM-UASBreactors,respectively.Areactordiametertoheightratioof1:8to1:10,andanorganicloadingrateof19kgCOD(total)/m3-dat35°C,withthefeedsludgeratioof4to1(80/20)arealsorecommended.Modifieddesigncriteria,start-upandacclimatizationprocesses,andsystemoperation,forthetwo-phaseanaerobicdigestionofsewagesludge(UASBUASB),werefinallydeveloped.111•VII•xli•x•xvii.1.1.2.6.6.9•11•21•21•26•28•3333333535363939394146TABLEOFCONTENTSABSTRACTiiTABLEOFCONTENTSivLISTOFTABLESLISTOFFIGURESACKNOWLEDGEMENTSLISTOFABBREVIATIONS1.INTRODUCTION1.1ResearchNeedsandBackground1.2ResearchObjectivesandApproach2.BACKGROUNDANDBRIEFLITERATUREREVIEW2.1AnaerobicSludgeDigestion2.2OperatingParametersandResponses2.3AnaerobicProcessDevelopment3.SYSTEMSET-UPANDOPERATION3.1RationaleandDesignCriteria3.2ExperimentalApparatusandOperation3.3SyntheticSludgePreparation4.EXPERIMENTALPROGRAMS4.1AcclimatizationProcess4.1.1SystemSeedingandStartupLoading4.1.2SystemOperatingConditions4.2ExperimentalDesign4.2.1Optimum“Bestknown”OperatingConditions4.2.2MaximumLoadingRateandRecoveryPeriods4.2.3SamplingProgramandAnalyticalTechniques4.2.3.1SamplingProgram4.2.3.2AnalyticalTechniques4.2.4DataandStatisticalAnalysisiv5.2.2.35.2.2.44747474849505658606061666979808383919394991041111226.CONCLUSIONSANDRECOMMENDATIONS1336.1Conclusions6.2RecommendationsREFERENCES139APPENDIXA147SyntheticSludgePreparationandSystemSet-up1475.RESULTSANDDISCUSSION5.1Acclimatizationprocess5.1.1DevelopmentoftheAcclimatizationProcess5.1.1.1BehaviourandResponse5.1.1.2AcclimatizationAlternatives(a)WashoutPhenomenon(b)SystemPerformance5.1.2Conclusions5.2ExperimentalDesign5.2.1Optimum“bestknown”OperatingCondition5.2.1.1EffectsandInteractionofSludgeRatio(SR)andRecycleRatio(RR)5.2.1.2“BestKnown”RunningCondition5.2.1.3Two-phaseSeparation(UASB-UASB)5.2.1.4Conclusions5.2.2MaximumLoadingCapacityandRecoveryProcess5.2.2.1MaximumLoadingCapacity(a)ProcessFailure(b)MaximumLoadingRate5.2.2.2RecoveryProcess(a)RecoveryPeriod(b)SystemRecoveryBasicExperimentalKineticsOptimumLoadingCapacity(a)Case1:OverallSystemLoadingCapacity(b)Case2:OptimumLoadingCapacityofAM-UASBs5.2.2.5Conclusions111and1161185.2.3DevelopmentofSystemDesignCriteria5.2.3.1OptimumSystemPerformanceandFeasibility1225.2.3.2ModificationofDesignCriteriaandOperation125133136VAPPENDIXB.160AcclimatizationProcess160APPENDIXC182Optimum“bestknown”OperatingCondition182APPENDIXD264MaximumLoadingCapacityandRecoveryProcess264viLISTOFTABLESTablePage3.1ComparativeCharacteristicsofPreparedSyntheticSludgeAndActualPrimaryandSecondarySludges314.1CharacteristicsofAnaerobicSludgeUsedinSeedingtheSystem(AnaerobicSludgeDigestor/Lion’sGateTreatmentPlant)344.2ExperimentalRunningConditionsDuringtheOptimum“Bestknown”OperatingCondition,MaximumLoadingCapacityandRecoveryPeriod..375.1SummaryofEffects(SRandRR)/Interaction(SR*RR)ChangeinmeanDuringSequence1,2,and3Experiments635.2SummaryofAverageResponsesUnderPseudoSteady-stateoftheDifferentDesignedRunningConditions(Sequence1,2,and3Experiments)705.3PerformanceofATwo-phaseAnaerobicSludgeDigestion(UASB-UASB)Process725.4StatisticalConstantsandKineticsDuringtheMaximizationandRecoveryPeriod1105.5SummaryofAverageResponsesattheOptimumSystemOperatingConditionUnderPseudoSteady-StateConditions1235.6RecommendedDesignCriteria/Start-upandAcclimatization/SystemOperationoftheTwo-phaseUASB-UASBProcess130A1.1SummaryofResearchProblems/RemedialActions/ScopeandApproachviiModifications.148A2.1:SystemSeedingandLoadingRate150A2.2:FinalConstituentsofPrimaryandSecondarySyntheticSludgesandChemicalAnalysisofDogFoods150A3.1DetailedSizingofAcid-andMethane-PhaseReactors(UASB-UASB)...151A3.2:Spread-sheetforSizingoftheAcid-andMethane-PhaseReactors(UASB-UASB)152A4.1DevelopmentofASmall-Scale(1-Litre)SyntheticSludgePreparation...153A4.2:DevelopmentofAScale-Up(30-Litre)SyntheticSludgePreparation....154A5.1:MonitoringtheCharacteristicsofPrimarySyntheticSludgePreparedThroughouttheExperiment156A5.2:MonitoringtheCharacteristicsofSecondarySyntheticSludgePreparedThroughouttheExperiment158B1.1:AverageSystemEffluentQualityandRemovalEfficiencyatPseudoSteady-stateUnderDifferentAlternativesDuringtheAcclimatization...161B2.1ResponseDataoftheSamplingPointNumbered1UnderDifferentAcclimatizationAlternatives164B2.2ResponseDataoftheSamplingPointNumbered2UnderDifferentAcclimatizationAlternatives166B2.3:ResponseDataoftheSamplingPointNumbered3UnderDifferentAcclimatizationAlternatives168B2.4:ResponseDataoftheSamplingPointNumbered4UnderDifferentviiiAcclimatizationAlternatives.B2.5ResponseDataoftheSamplingPointNumberedAcclimatizationAlternativesB2.6:ResponseDataoftheSamplingPointNumberedAcclimatizationAlternativesB2.7:ResponseDataoftheSamplingPointNumberedAcclimatizationAlternativesB2.8:ResponseDataoftheSamplingPointNumberedAcclimatizationAlternativesC1.1:ResponseDataoftheSamplingPointNumberedRunningConditionsDuringtheSequence1,2,and3C1.2:ResponseDataoftheSamplingPointNumberedRunningConditionsDuringtheSequence1,2,and3C1.3:ResponseDataoftheSamplingPointNumberedRunningConditionsDuringtheSequence1,2,and3C1.4:ResponseDataoftheSamplingPointNumberedRunningConditionsDuringtheSequence1,2,and3C1.5:ResponseDataoftheSamplingPointNumberedRunningConditionsDuringtheSequence1,2,and3C1.6:ResponseDataoftheSamplingPointNumbered6UnderDifferentRunningConditionsDuringtheSequence1,2,and3ExperimentC1.7:ResponseDataoftheSamplingPointNumbered7UnderDifferentix5UnderDifferent6UnderDifferent7UnderDifferent8UnderDifferent1UnderDifferentExperiment2UnderDifferentExperiment3UnderDifferentExperiment4UnderDifferentExperiment5UnderDifferentExperiment170•172174176•178•183•188•193198•203208RunningConditionsDuringtheSequence1,2,and3Experiment213C1.8:ResponseDataoftheSamplingPointNumbered8UnderDifferentRunningConditionsDuringtheSequence1,2,and3Experiment218C2.1Calculationoftheeffects(SRandRR),Interaction,Phasemeans,Changeinmeans,ontheResponseParametersduringtheAcclimatization(Sequence1and2Experiments)223C3.1:pHofA-andM-UASBsDuringtheSequence2and3ExperimentsaswellastheMaximizationandRecoveryPeriod260C3.2:NaOH(0.1N)AdditionDuringtheSequence1Experiment262D1.1SummaryofAverageSystemPerformanceandRemovalEfficiencyatPseudoSteady-stateDuringtheMaximizationandRecoveryPeriod264D2.1:ResponseDataoftheSamplingPointNumbered1DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod266D2.2:ResponseDataoftheSamplingPointNumbered2DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod268D2.3:ResponseDataoftheSamplingPointNumbered3DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod270D2.4:ResponseDataoftheSamplingPointNumbered4DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod272D2.5:ResponseDataoftheSamplingPointNumbered5DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod274D2.6:ResponseDataoftheSamplingPointNumbered6DifferentRunningxConditionsDuringtheMaximizationandRecoveryPeriod276D2.7:ResponseDataoftheSamplingPointNumbered7DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod278D2.8:ResponseDataoftheSamplingPointNumbered8DifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod280D2.9:AverageResponseDataoftheSamplingPointNumbered1through8atPseudoSteady-stateUnderDifferentRunningConditionsDuringtheDuringtheMaximizationandRecoveryPeriod282D3.1:CalculationoftheTheoreticalCH4Production287D4.1:AM-UASBsSystemRecoveryatPseudoSteady-stateUnderDifferentRunningConditions(CH,m3/m3-d)288D4.2:AM-UASBsSystemRecoveryatPseudoSteady-stateUnderDifferentRunningConditions(COD(sol.)RemovalEfficiency,%)288D5.1:ResponseDataofGascomposition,Production,LoadingRate(A-andM-UASBs)DuringtheAcclimatizationProcess289D5.2:ResponseDataofGascomposition,Production,LoadingRate(A-andM-UASBs)DuringSequence1,2,and3Experiments291D5.3:ResponseDataofGascomposition,Production,LoadingRate(AUASB)DuringtheMaximizationandRecoveryPeriod295D5.4ResponseDataofGascomposition,Production,LoadingRate(MUASB)DuringtheMaximizationandRecoveryPeriod297xiLISTOFFIGURESFigurepage1.1ResearchStrategyandApproach42.1PathwayofAnaerobicBiodegradationtosimplecompoundsandorganicacids73.1SchematicFlowDiagramofATwo-phaseAnaerobicSludgeDigestion(UASB-UASB)Process243.2DetailedDimensionsofUASBReactorsUsedintheExperiment243.3PhotographsofABenchScaleTwo-phaseAnaerobicSludgeDigestion(UASB-UASB)Process253.4CharacteristicsofPrimarySyntheticSludge303.5CharacteristicsofSecondarySynthetic303.6CharacteristicsofPrimarySyntheticSludgeMonitoredThroughouttheExperimentalProgram323.7CharacteristicsofSecondarySyntheticSludgeMonitoredThroughouttheExperimentalProgram324.1ASchematicFlowDiagramofExperimentalDesigns364.2SamplingProgram:ResponseParameters,SamplingPoint,andFrequency,PreservationandStorage385.1AnAcclimatizationWashoutPhenomenon525.2SystemRemovalEfficiencyDuringAcclimatization52xii5.3VFARemovalEfficiencyoftheM-UASB545.4EffluentVFAsoftheM-UASB545.5SurfaceResponsesofSequence1Experiment655.6NaOH(0.1N)AdditionDuringtheSequence1Experiment675.7SystemResponsesandPerformanceofSequence1Experiment685.8COD(soluble)ProfilesAlongtheReactorHeightUnderDifferentRunningConditions765.9TotalVFAProfilesAlongtheReactorHeightUnderDifferentRunningConditions775.10MLVSSProfilesAlongtheReactorHeightUnderDifferentRunningConditions785.11AM-UASBStep-loadingandRemovalEfficiencyDuringtheSystemMaximization865.12AciddogenicPhaseofGlucoseFormationunderLowandHighH2PartialPressuretoformAceticAcids,PropionicAcids,H,Gas,andCO2875.13AM-UASBSystemEffluentQualitiesDuringtheSystemMaximization885.14AM-UASBNutrientsandMLVSSDuringtheSystemMaximization895.15SystemOptimumOperatingRegionandMaximumCapacity925.16AM-UASBStep-loadingandRemovalEfficiencyDuringtheSystemRecovery965.17AM-UASBSystemRecoveryProcess975.18AM-UASBNutrientsandMLVSSDuringtheSystemRecovery98xiii5.19AM-UASBSystemRecoveryatPseudoSteady-stateCOD(soluble)removalefficiency1015.20AM-UASBSystemRecoveryatPseudoSteady-state(CH4GasProduction)1025.21APredictedM-UASBSystemRecoveryWithDifferentRunningConditions1035.22AnEstimationofExperimentalKineticsDuringtheMaximizationandRecoveryPeriod1085.23APredictedOptimumOperatingHRTDuringtheMaximizationandRecoveryPeriod1125.24ANA-UASBSystemEffluentQualitiesDuringtheMaximizationandRecoveryPeriod1175.25ComparisonofTotalVFAAlongtheHeightofM-UASBDuringtheAcclimatization1275.26COD(sol.)ProfileofaTwo-phaseUASB-UASBProcessDuringMaximizationandRecoveryPeriod1295.27pHVariationofA-UASBandM-UASBDuringtheSequence2/3ExperimentsandMaximizationandRecoveryPeriod132B1.1:EffluentQualitiesoftheM-UASB(COD,MLVSS,PO4-P,TKNITP)UnderDifferentRunningConditionsDuringtheAcclimatization180B2.1:SystemGasProductionandLoadingRateUnderDifferentRunningConditionDuringtheAcclimatization181xivD1.1:AnA-UASBStep-loadingandRemovalEfficiency(COD,P04-P)UnderDifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod299D2.1:AnA-UASBSystemNutrientsandMLVSSUnderDifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod300xvACKNOWLEDGEMENTSIwishtotakethisopportunitytoexpressmysincerethanksforthemorale,encouragement,andunderstandingreceivedfrommywife,Laddaandmyparentsthroughoutthecompletionofmyresearch.Ialsowouldliketoextendmyappreciationtothefollowing,whoenthusiasticallysupportedandencouragedmeinonewayoranotherDr.D.S.Mavinic,myadvisorandHeadoftheEnvironmentalEngineeringGroup,U.B.C.andDr.V.Lo,Co-advisorandHeadoftheBio-ResourceEngineering,U.B.C.fortheircriticaltechnicaladviceandfaithfulsupportthroughoutthecompletionoftheresearch.Dr.W.K.Oldham,HeadoftheCivilEngineeringDepartmentandDr.K.Hall,WastewaterResearchCentrefortheirinvaluablecommentsandadviceduringthepreparationoftheresearchproposalandthesis.SusanLiptak,ManageroftheEnvironmentalEngineeringLaboratory,U.B.C.,PaulaParkinsonandRomyLofortheirunderstanding,assistance,andguidanceofallanalysisinvolvedintheresearch.xviGuyKirsch,CivilEngineeringWorkshopTechnician,forhissuggestionandassistanceinbuildingandfixingallthecomponentsoftheexperimentalsystemreactors.Panagiotis(Takis)Elefsiniotis,Ph.DcandidateintheEnvironmentalEngineeringGroup,U.B.C.forhistruefriendship,encouragement,andtechnicalassistance.Finally,Iwouldliketosincerelythankmysponsorship,CanadianInternationalDevelopmentAgency(CIDA)andmyemployer,ThailandNationalEnvironmentalBoard(NEB).Withoutthesesponsors,thisresearchwouldnothavebeenpossible.xviiLISTOFABBREVIATIONSUASB-UASBATwo-phaseUpflowAnaerobicSludgeBlanketProcessA-UASBAcid-phaseUpflowAnaerobicSludgeBlanketReactorM-UASBMethane-phaseUpflowAnaerobicSludgeBlanketReactorRRInternalRecycleRatioSRFeedSludgeRatioHRT/€HydraulicRetentionTimeSRTSolidsRetentionTimeRSMResponseSurfaceMethodMLGHMultipleLinearRegressionHypothesisInNaturallogarithmCODChemicalOxygenDemandMLVSSMixedLiqueurVolatileSuspendedSolidsTSTotalSolidsTVSTotalVolatileSolidsTSSTotalSuspendedSolidsTVSSTotalVolatileSuspendedSolidsTPTotalPhosphorusxviiiTKNTotalKjeldahlNitrogenP04-POrtho-PhosphorusNH4-NAmmoniaNitrogenVFAVolatileFattyAcidHAcAceticacidHPrPropionicacidHBuButyricacidHVrValericacidmg/LPartpermillionhrs.Hoursmlvfil1i—litreLidLitreperdayOHPAObligateHydrogenProducingAcetogensRhHydrolysisrateKhFirst-orderhydrolysisconstantFEffluentParticulateCODconcentration,mass/vol.FoInfluentParticulateCODconcentration,mass/vol.kMaximumrateofsubstrateutilizationperunitweightofmicroorganisms,time1KsHalfvelocitycoefficient,mass/vol,equaltosubstrateconcentrationwhenBL/St=(1/2)kLInfluentSubstratemassconcentration,mass/vol.xixLeEffluentSubstratemassconcentration,mass/vol.6S/6tNetgrowthrateofmicroorganisms,mass/vol-timeaGrowthyieldcoefficient,mass/mass6L/6tSubstrateutilizationrate,mass/vol-timebMicroorganismsdecaycoefficient,time1SMicrobialmassconcentration,mass/vol.VReactorVolumeQFlowrateRCODSystemCOD(sol.)removalefficiency,%SystemP04-Premovalefficiency,%RCH4CH4gasproduction,m31m3-dHRTAUBHydraulicretentiontimeofA-UASBHRTMUASBHydraulicretentiontimeofM-UASBHRTSY,ICA1HydraulicretentiontimeofsystemxxCHAPTERONEINTRODUCTIONLiRESEARCHNEEDSANDBACKGROUNDManywastewatertreatmentprocesses,whetherprimaryorsecondary,yieldlargequantitiesofwastematerialsintheformofadilutesolidmixture,knownassludge;thissludgeusuallycontainsasignificantamountoforganicwastes.Treatmentanddisposalofthissludgeisrecognizedasoneofthemostcriticalareasofwaterpollutioncontrol,andaccountsforalmost40-50%ofthetotalcapitalandoperatingcostsatamunicipalsewagetreatmentplant.(U.S.EPA1979;Gloyna,1982;Benefield,1980).Anaerobicsludgestabilizationisoneofthemostsuccessfulandpromisingtreatmentprocesses,exhibitingseveralsignificantadvantagesoveraerobicstabilization:reductionofpathogenicorganismsandsludgeproduction,savingonairsupply,preventionofnuisance-odourconditionsafterdigestion,andformationofhighmethanecontentinthegasproduction(Pohland,1975).Withanincreaseinworldwideenergycostsduringthelast20years,theadvantageofproducinghighlyrecoverablemethane(servingasanadditionalenergysource)hasattractedagreatdealofresearcheffort,mainlytoincreasetheabilityandreliabilityofthisprocess.However,manyunansweredproblemsstillexistinstabilizingsewagesludgeanaerobically,especiallyusingconventional,two-stage,completely-mixeddigesters.Theseincludepoorsupernatantquality,whichgenerallyrequiresfurthertreatment,andtherelativelylowlevelofmethaneproductionpossibleunderthisconventionaltwo-stagetreatment.Tohelpsolvetheseproblems,twobroadapproachescanbeemployed:(i)2increasebacterialactivitybycreatingoptimumdigesteroperatingconditionsandensuringanadequatesupplyofallknownessentialnutrients;(ii)increasethedensityofbacterialpopulationsinthedigesters(Callander,1983).Theformerapproachincorporatesthebasicmechanismofanaerobicsludgestabilization,whichis,infact,adi-phasicprocess-acidogenesisandmethanogenesis.Therefore,providinganoptimalenvironmentalconditions(adequatesupplyofnutrients)foreachpredominantgroupofbacteriainthetwo-phasesystemisexpectedtoenhanceboththemethaneyieldandincreasetheprocessperformanceandreliability(PohiandandGhosh,1971a;Massey,1978;Cohen,1979;andBull,1984).Thesecondapproachaimsatmaintainingorincreasingthehiomassandretainingitwithinthedigesterforalongerperiodoftime,whileundergoingstabilization.Thiscanbeachievedbyacarefuldesignofthefloe-baseddigesterwithanappropriatesludgerecycleratio(RR).TheUpflowAnaerobicSludgeBlanket(UASB)processisoneofthemostpromisingprocessesofthefloe-basedsystemdigesters.Withcarefuldesign,itcanretainandincreasebiomasswithinthedigester,withoutanyadditionalmixingrequirements.Thepurposeofthisresearchwastoinitiateafeasibilitystudyforenhancingtheefficiencyofanaerobicsludgestabilizationandincreasethequalitylevelofthefinalsupernatantthroughdevelopmentofamodifieddesigncriteria,start-upprocess,andoperationofatwo-phase,upflowanaerobicsludgestabilization(UASB-UASB)process.1.2RESEARCHOBJECTIVESAN])APPROACHTheprinciplegoalsweretoevaluatethefeasibility,effectiveness,andsuitability3ofthistwo-phase,UASB-UASBprocessforanaerobicsludgestabilization.Theprimaryobjectivesweretoachievesuperiorsupernatantqualityandtomaximize%methanecontentandproduction,throughatwo-phaseseparation(UASB-UASB)process.Secondaryobjectivesincludedidentifyingtheoptimumoperatingconditions,examiningtheeffectsofinfluentSludgeRatio(SR)ofprimarytosecondarysludgesandRecycleRatio(RR)offluidizedsludgefromsludgeblanketportionofthereactoronprocessperformanceandgasproduction,andinvestigatingthemaximumacceptableloadingrateandassociatedsystemrecovery.Timepermitting,otherobjectivesincludeddevelopingasetofsystemdesigncriteriaanddeterminingeffectiveandreliableparametersforindicatingprocessfailureandsystemsteadystateconditions.Itisgenerallyrecognizedthataresearchapproachmustbedevelopedinthecontextofaparticularsituation.A”point-in-timestatement“withacontinuousflowofinformation(datasetsofresponseparameters)asshowninFigure1.1,representsaspecificdiscreteworkeffort,whichmustbeachievedpriortopermittingcontinuanceoffurtherworktasks.AsshowninFigure1.1,emphasiswasinitiallyplacedonthepreparationofarealisticresearchproposal.Itcoveredthewholerangeofproblemidentification,rationale,researchobjectivesandapproach,experimentalprogram,aswellasworkscheduleandcostestimation.Afterapprovaloftheresearchproposal,twomajortasks-syntheticsludgepreparationandsystemdesignandconstruction,werecarriedoutsimultaneously;thiswasfollowedbysystemseedingandacclimatizationrequiringatleast40-60daystoreachsteady-stateconditions.ThesamplingprogramandresponseparameterswereundertakenasshowninFigure4.2.Alongwitheachsequenceofthe• . .0. .oKJ..c:•::•::•:::::•s... o• ...c -v ••-••£2.11CD-‘CDCDCr)CDC)CI)-ICDCDD0-o0C)• x...:..:. .....:•0...•‘<•gN.0...cD..:....:. ..D:::CD0• .• ..Cd)-G12:::•::m::::::•175experimentalrun,dataanalysisandresultsinterpretationweremade,usingaspreadsheetsoftwareprogram(SymphonyVersion1.2),ResponseSurfaceMethod(RSM)andYate’sAlgorithmMethod.Thebestknownoptimumoperatingconditionthatgeneratedthemaximum%methanecontentandproduction,withsuperiorsupernatantquality,wasthenidentified;whereas,systemmaximumloadingcapacityandtherecoveryprocesswerecarriedoutafterward.Finally,thefeasibilityandeffectivenessofthistwo-phaseUASB-UASBprocess,tostabilizethesludgeanaerobically,togetherwiththedifficultiesandproblemsfacedthroughouttheexperimentandtheirremedialactions(showninTableA1.1ofappendixA),wereconclusivelyevaluatedandreportedon.ThedetailsofeachtaskarediscussedinChapter4.6CHAPTERTWOBACKGROUNDANDBRIEFLITERATUREREVIEWThepurposeofthischapteristobrieflyoverviewandupdatetheoreticalconceptsonanaerobicsludgedigestionandprocessdevelopment.Thereviewwillbeusedasbackgroundtoformulateaframeworkforfurtherinvestigationandtheexperimentalprogram.Incaseofanyparticularreferencesthatarecloselyrelatedtotheresultoftheresearch,theywillbediscussedseparatelyinthemaintextofChapter5-ResultsandDiscussion.2.1ANAEROBICSLUDGEDIGESTION(BiochemistryandRateLiniitirigStep)Theoverallanaerobicconversionofbiodegradableorganicsolidstotheendproductsofcarbondioxide(C02)andmethane(CH4)isinitiallybelievedtoinvolve3processeswhichoccursimultaneously:hydrolysisofinsolublebiodegradablepolymers;theproductionoffattyacidsfromsmallersolubleorganicmolecules;andCH4generation(Stronach,1986).ButGujerandZehnder(1983)proposedasix-stepsystemintheanaerobicconversionofhighmolecularweightdegradableorganicstoCH4andCO2asshowninFigure2.1.Twogroupsofbacteria,acid-andmethane-producingbacteria,are,inprinciple,responsiblefortheoverallanaerobicconversionofbiodegradableorganics.Acid-producingbacteriaareresponsibleforconvertingheterogeneoussubstrateintofattyacids.Theprimaryacidsproducedduringacidfermentationareacetic,propionic,and7PROTEINSCARBOHYDRATESLIPIDS1AlB1CAMINOACIDSHIGHERFATTYSUGARSALCOHOLS23INTERMEDIARYPRODUCTSPROPIONATEBUTYRATEETC4ACETATEHYDROGENrMETHANE61.Hydrolysis2.Fermentation3.Anaerobic(3)Oxidation4.AnaerobicOxidation5.DecarboxylationofAcetateCH3COO+H2O—+CH4+HCO36.HydrogenOxidationCO+4H—+CH4+2HzOFigure2.1PathwayofanaerobicbiodegradationSource:AfterGujeraridZehnder,19838butyric;however,smallerquantitiesofformic,valeric,iso-valeric,andcaproicacidsarealsofrequentlyfound(Malina,1980).Theseacidsaresubsequentlydecomposedbymethane-producingbacteria,resultingintheproductionofmethane.Approximately85%oftheCH4resultsfromthefermentationofaceticandpropionicacidswiththeremaindergeneratedfromprimarilybutyricandformicacids,aswellasthereductionofCO2byH2;someCH4isgeneratedfromthefermentationoflong-chainfattyacidsviaanaerobic(j3)oxidation(Stronach,1986).ThepathwaysfortheformulationofCR4aremostlydependentonthenatureofinfluentsubstancesandfallintothreesubgroups:lowerfattyacids(C1-C6,ie.formic,acetic,propionic,butyricetc.);normaloriso-alcohols(C1-C5,ie.methanol,ethanol,propanol,butanoletc.);andinorganiccompounds(ie.H2,CO,C02).Thebiochemistryofthesebasicreactionscanbesummarizedasfollows:(1)Biochemicaldecompositionoflowerfattyacids:(1.1)AceticaciddecompositionCH3COOH—CH4+CO2(1)(1.2)PropionicaciddecompositionTwo-steprequirement:4CH3CH2COOH+2H20——4CH3COOH+CO2+3CH4(2)4CH3COOH4CR4+4C02(3)Overall:4CH3CH2COOH+2H205CO2+7CR4(4)(1.3)ButyricaciddecompositionTwo-steprequirement:92CH3CH2CH2COOH+2H20+CO2-——b4CH3COOH+CR4.(5)4CH3COOH—4CR4+4C02(6)Overall:2CH3CH2CH2COOH+2H20—b3CO+5CR4(7)(1.4)MicrobialreductionofCO2formedfromreductionCO+H20—CO2+H2(8)CO2+4H2CH4+2H20(9)CO+2H2—CR4+H2O(10)4C2H5COOH+8H2O—b4CH3COOH+4CO2+24H(11)3CO2+24H——-p3CH4+6H20(12)4C2H5COOH+2R2O-—---*4CH3COOH+CO2+3CH4(13)CH3COOH—.CH+CO,(14)Conversionofvolatilefattyacids(VFAs)totheproductionofCH4isconsideredtobearate-limitingstepforsolubleorganicmatter,whereashydrolysisofinsolubleorganicsisbelievedtobearate-limitingstepforparticulatematter(Eastman,1981;Cohen,1983;andPavlostathis,1986).2.2OPERATINGPARAMETERSANDRESPONSESAnaerobicstabilizationisrecognizedasasequential,di-phasicprocess:hydrolysisandacidogenesis,followedbymethanogenesis.Phaseseparationisthenalogicalchoicetostimulatethegrowthofthesetwogroupsofbacteria.Acid-andmethane-producingbacteriaarestrictanaerobesandextremelysensitivetochangesintemperatureandpH.10Thesebacteriaareactiveintwotemperaturezones:mesophilicrange(30-35C)andthermophilicrange(50-600C).TheoptimumpHrangeformethane-producingbacteriais6.4-7.2,whereasitis5.5foracid-producingbacteria.AbovepH8orbelow6,thegrowthofmethaneformersfallsrapidly.Asuddenchangeinenvironmentalconditionsand/oranintroductionoftoxicsubstancesintothesystem,maycausetheimbalancedgrowthrateofthesetwogroupsofbacteria.Oncethebalanceisupset,intermediateorganicacidsaccumulateandthepHdrops.Asaresult,themethanogensarefurtherinhibitedandtheprocesseventuallyfails,unlesscorrectivemeasuresaretaken.Thisimba’ancecanbeindicatedbyvariousparameters:anincreasein%CO2contentofthegasproducedandacorrespondingdecreasein%CH4content;adecreaseinthepHandtotaldailyquantityofgasproduced;anincreaseintheconcentrationofVFAs;anoveralldecreaseintheefficiencyofwastestabilization;andtheratioofvolatileacids/alkalinity>0.5(GraefandAndrews,1974a/b;US.EPA,1979).Toxicmaterialsandothermatterscanalsoupsetthesystem;theseincludeoxygen,volatileacids(2,000mg/L),totalNH3-N(1,500-3,000mg/LatpH7.4-7.6or>3,000mg/LatanypHvalues),andsolublemetalseg.3mg/LCr,2mg/LNi,1mg/LZn,and0.5mg/LCu.However,ifsufficienttimeisavailable,methane-producingbacteriacanacclimatizetothetoxicmaterials(Stronach,1986;Malina,1980;Capri,1975;Ziekefoose,1976;Kujelman,1981;Graef,1974;Cortinovis,1984;US.EPA,1979;Chiu-yue,1986).Inatypicalanaerobicsludgedigester,approximately72%ofthemethaneproducedevolvesthroughacetatesplitting,andtheremaindercomesfromthereductionofCO,withH2(JerisandMcCarty,1965).Hydrogenisthenanimportantintermediate11inmethanogenesisandabuildupofhydrogenmayaltertheelectronflowduringfermentationofcarbohydratesandotherpolymers.Accumulationofhydrogenfurtherinhibitsotherimportantintermediatesbeingformedduringanaerobicsludgedigestion,suchaspropionateandbutyrate(ScheifingerandWolin,1972;Chung,1976;KasperandWuhrmann,1978).Therefore,Mosey,(1983a)hassuggestedthathydrogengasmightbeasimplerandmoreeffectiveprimeindicatorformonitoringtheanaerobicdigestionprocess.However,Hickey,(1987)concludedthatthereappearedtobesomelimitationsonthepotentialofusinghydrogenasaprimeindicatorofprocessupset,resultingfromtheapplicationoforganictoxicants.Hefoundthatsevereinhibitionofmethaneproductionoccurredathighorganicloadingrates,resultinginanaccumulationofhydrogenandVFA’s;however,atlowerloadingrates,inhibitionwaslesssevereandhydrogenaccumulationwasslightlyabovecontrols.Hefinallyrecommendedmonitoringhydrogen,inconsertwithotherconventionalprocessindicators,wouldprovideaneffectiveindicationofprocessupsetduetotoxicshocks.2.3ANAEROBICPROCESSDEVELOPMENT(Stability/Performance/Kinetics)Anaerobicprocessdevelopmenthasrecentlyadvancedintwodirections:improvementofthegasyieldandsatisfactorysubstrateremovalefficiency,while,atthesametime,minimizingthesystemcapitalandoperatingcosts.Athoroughinvestigationofthebest“systemoperatingcondition”isnecessarytoachievethegoalsofprocessdevelopment.12Arapidescalationenergyshortagesandheightenedenvironmentalawarenesshaveincreasedthepressuretoimproveanaerobicdigestionperformancewhereapplicableandfeasible.Twobroadapproachesaregenerallyemployed-oneprovidingpreferablyoptimumenvironmentalconditionsforeachgroupofbacteriaandtheotherconcernedwithincreasingbacteriapopulationdensityandretainingitwithinthedigester.Theformerapproachcanbeachievedthroughtheuseoftwo-phaseanaerobicdigestion,withanadequatesupplyofnutrients.ThelatteronecanalsobeaccomplishedthroughanincreaseinthesystemSRTbymeansofsolid-liquidseparationandappropriatesludgerecycle.Eitherfloc-based(suspension)oranattached-fixedfilmsystemcanincreasedigestionperformanceandprovidespromisingresults(Callander,1983).Two-phaseanaerobicstabilizationiscapableofprovidingtheoptimumconditionsforthegrowthofbothacid-andmethane-formers,thelatterpreferringwidelydifferentenvironmentalconditionsfromtheformer.ThemeritsofthisprocessareanincreaseintheproductionrateofCH4,maximumloadingratesforthemethane-phasereactor,adecreaseinrecoverytimeaftershockloading,andenhancementofprocessefficiencyandreliability(PohiandandGhosh,1971;Cohen,1979;Masseyetal.,1978).Althoughatwophasestabilizationprocessseemsbestsuitedforthetreatmentofsoluble-typewastewatersproducingahighpotentialforvolatileacidsaccumulation(Pipynetal.,1979;Ghoshetal.,1981;Ghoshetal.,1983a),superiorperformancehasalsobeendemonstratedforparticulate-typesubstratessuchassewagesludgeandagriculturalwastes(Ghosh,1983b;Keenan,1976;Normann,1977;Rijkens,1981;Datta,1981;Colleran,1983).13Thelimitingstepinanaerobicstabilizationofcomplexorganicmacromolecules,suchascontainedinsewagesludge,ishydrolysis-acidification,whereasforstabilizationofshorterchainsolubleorganicswastewater,itismethanogenesis.Phase-separateddigestion(hydrolysis-acidificationindependentofmethanogenesis)hasdemonstratedseveralpracticaladvantages:betterstabilizationofthesludgeandagreaterquantityofgas,reduceddigestiontimeandreducedreactorsize(Ghosh,1987;Dichtl,1987).Perot,(1989)concludedthattwo“optimized”stepshadseveraladvantagesoverasingle-phasedigester:start-upperiodwasnotaslong(45daysinsteadof75forasingle-stepprocess);highervolatilematterdegradationyield(60%insteadof40%);andtheHRTcouldbehalfofthatofthesingle-stepprocess,withoutriskingthesystemgasproductionandperformance.Healsoindicatedthatgasproductionwaslinkedprimarilytothequantityofbiodegradableorganicmatter.Anotherpromisingapproachtoenhancetheanaerobicsludgestabilizationprocessistoincreasethedensityofbacteriainthesystemandretainitwithinthedigester,withadequatesupplyofnutrients.Thiscanbedonebyanappropriatedesignandselectionofaproperanaerobicstabilizationprocessandrecycleratio.Oneofthemaincriticismsofanaerobicwastetreatmentisthedifficultyofretainingasufficientamountofactiveanaerobicsludgeunderhighloadingconditions,usingthepresentanaerobictreatmenttechnology.Recently,thisdifficultyhasbeenaddressedthroughthedevelopmentoftheUpflowAnaerobicSludgeBlanket(UASB)process(Holsoff-Poletal.,1986).UpflowAnaerobicSludgeBlanket(UASB)technologyiscreditedasaneffectiveprocessinstabilizingsolubleorganicwaste,aswellasproducingsuperiorsupematant14qualitywithoutanymixingrequirements.Italsoprovidestheadvantageofdevelopingandretainingahighlysettleablebiomasswithinthedigesterknownas“sludgeblanket”;thisisagranularsludgemedia,withhighsettleabilityandmethanogenicactivity.ThisbiomassdecomposestheVFA’sgeneratedfromhydrolysis-acidogenesisfortheproductionofCH4,C02,andsmallamountsofN2,H2,etc.Therisinggasesandinfluentflowratearesignificantfactorsinmaintainingbiomassgranulesandflocsinmore-or-lessfluidizedstates,andtheresultingturbulencealsoaidsindetachinggasbubblesfromflocsintheupperpartofthedigester.Thebiogasisremovedbyathree-phase,gas/liquids/solidsseparator(GSS-device)atthetopofthereactor(Figures3.1-3.2),whosemainfunctionsaretoretainahighlysettleablebiomasswithindigesterandalsotoprovideaneffectiveseparationofthegasproducedduringstabilizationaswellastoreturnthedispersedsludgebacktothesludgebedsituatedbelowtheGSS-device(withthehelpof50wallofthesettler).Agas-freezoneabovethecollectorallowsforthesettlingoffinely-dispersedsolidstothereactorbottom,whileclarifiedeffluentexitsfromthetop.Asimplebafflearrangementcanassistinretainingbiomasswithinthedigester,throughthecreationofaquiescentregion;assuch,entrainedflocsseparatefromtheliquidbeforeitleavesthedigesterviaanumberofweirs.(Lettinga,1980).Todate,itisnotknownwhichfactorstriggerthegrowthanddevelopmentofgranularsludge,includinghowandwhenthisbiomasswilldevelop.Dolfing,(1986)suggestedthatacetoclasticMethanothrix-likeorganismsplayanimportantroleindeterminingwhichtypeofsludgewoulddevelopundermethanogenicconditions.Healsosuggestedthatextracellularmaterialundoubtedlyplayedamajorroleasamatrix,which15keptthecelltogether.PhosphorusandsodiummayalsoinfluencethefilamentlengthofMethanothrix-likeorganismsastheyhaveonthefilamentlengthofMethanospirillumhungatei(Patel,1979).Thesludgegranulationprocessgenerallyinvolves3sequentialprocesses:start-up,saywithaloadingrateupto5kgCOD/m3-d;thengranulationsludgeappearanceandfloc-formedsludgewashoutprocess;andfinallycontinuedformationofgranulesunderavolumetricloadingrateupto16kgCOD/m3-d(Lettinga,1986;Wu,1985).Cultivationofthegranularsludgecanbeobtainedthroughacarefulselectionoforganics,withanoptimumCOD:Nratioofbetween30to55:1.AdditionsofNi,Co,Mo,andZnSO4intothedigesteralsoyieldedpositiveeffects(Hulsoff-Pol,1986;Wu,1985).ThegranularsludgebeginstoappearataCODloadingrateofapproximately0.6kgCOD/kgVSS-dorhigher,afterwhichthegranulationprocessdevelopsveryquickly.Theoptimumconditionsforcultivationcanbeachievedunderelevatedmesophilicconditions(30-50CC),apHinexcessof6.5-7.2,sufficientbufferingcapacity,andtheabsenceofinhibitoryandtoxicsubstancessuchasNa,K,andNH3-N;thesesubstancesshouldbelowerthan3,500,2,500,and1,700mg/Lrespectively(Wu,1985).Wiegant(1985)alsostressedthatasuperficialbiogasloadingrate(biogasvelocity,m/hr)wasanimportantfactorinthegranulationandselectionprocess.Appropriatestart-uploadingratesplustheadditionofCa+havealsoproventobebeneficialtothesludgeflocculationandthickeningprocess.CailandBarford(1986)statedthatthepresenceofCaintherangeofupto150mg/Lstimulatedsludgegranuleformationandthickening.Also,Mahoney(1987)foundthatthesludgegranulesformedinsidethereactorwithcalciumaddition,settled3-4timesfasterthanthatwithout16calciumaddition.Ahighrateofbiomassaccumulationwasalsoevidentinthecalcium-positivereactor.Anoptimumstart-upprocess,involvingfavourableconditionsfortheflocculation/growth/highsettleabilityandspecificactivityofthebiomasssludge,arethemainprerequisitesinachievingsuccessfultreatmentwithhighloadingratesintheUASBprocess.TheloadingpotentialofaUASBcanbemaximizedthroughacarefulconsiderationofanappropriatedesignforuniformfeedinlets,a500angleinclined-wallsettler,withasurfaceloadingvelocityoflessthan0.7m/hr,andanaverageflowthroughtheaperturebetweengascollectorsbelow2.0rn/hr(Lettinga,1983c;Schwartz,1982).Alsorecommendedisperiodicwastingofsmallamountsofsludge,tomaintainaconstantlevelofbiomasssludgewithinthereactor(Lettinga,1979b).However,conventionalseparationcanbeinadequateforthebuoyant,flocculantsludge.Itissometimesreplacedbyalternativeslikesurfaceclarification(Hamoda,1984),ultrafiltration(Choate,1982),andcoagulants(Cail,1986).DLAInc.(Olthof,1982)haveplacedthebiofiltermediaintheupperzoneofthereactorofaconventionalUASBprocess,toincreasethesystemSRTandtodampentheshortcircuiting;thisprocedurehasalsoimprovedgas/solids/liquidseparation,aswellasprovidedasurfacefortheattachmentofbiomass.Thissystemhasworkedverywellandismarketedunderthetradename“Anhybrid”.Further,Oleszkiewicz(1988)hasdemonstratedthatareactor,withrandommediaintheupper40%ofthevolume,showedbetterCODremovalefficiencyandgasgeneration,aswellaslesswashoutoftheflocculantsludgethroughshortcircuiting,thanthosereactorswithmediaorientedverticallyand/ornomedia.Developmentofanaerobicreactorsusingattachedbiomass,suchasthefluidized17bedandtheanaerobicfilter,hasresultedintheabilitytoincreasetheloadingratefrom20to50kgCODIm3-dandfrom10to30kgCOD/m3-drespectively.However,problemswithattachedbiomasssystemsincludecloggingandhighoperatingcosts,duetoexternalenergyrequirements(Maat,1987).HealsofoundthattheUASBovercamemanyoftheselimitationsbyintroducinggranulatedsuspendedbiomassandtheGSS-device.Thissystemcouldachieve75-94%removalefficiency,withasludgeconcentrationof8-13%drysolidsattemperaturesrangingfrom20-400C(evenifthereactorloadingis30kgCOD/m3-dorhigher).TheUASBreactorhasbeensuccessfullycommercializedastheBIOPAQwastewatertreatmentsystem.ThedesignloadingforseveralBIOPAQinstallationsisabout10kgCOD/ni3-d,whileactualcapacitylimitsforvolumetricloadinghaveexceeded20-30kgCOD/m3-d(Maat,1987).CurrentdesignpracticesforUASBreactors,areeffectiveforseveraltypesofwastewaters,regardlessofwhetheritissewageorindustrialwastewaters(witheitherdiluteorconcentratedwastes).TherearethreebasicconsiderationsforthedesignoftheUASBreactor:volumetricorganicloadapplied,liquidvelocityonthesettlersurface,andreactorheight.BasedonaspecificstudyofatypicalUASBprocess,Souza(1986)recommendedthatmaximumsafedesignvaluesbeabout15-20kgCOD/m3-d,1.2-1.5m/hr,andaheightoflessthan6.0metres,respectively.Minimumandmaximumsuperficialgasreleaserateswererecommendedtobe1and3-5m3gas/m2-hr,respectively.Itwasalsosuggestedthatthefeedinletdistributionareabe7-10m2/inlet.Lettingaetal.(1983and1986)attemptedtoincreasethesuperficialliquidvelocityupto5-15m/hr,byincreasingthesludgeloadingrateandrecyclingtheeffluentbacktothesystemusingtheexpandedgranularsludgebedreactors(EGSB).The18attemptappearedtobefeasible.SludgerecirculationhelpsinoculatethefreshsludgeinsidethedigesterandalsoincreasethesystemSRT.Finally,Dold(1987)usedaUASBtotreatapplejuicewaste,atthetemperaturelessthanoptimum(25and30°C)andamaximumloadingof12-16kgCOD/m3-d.HeconcludedthattheUASBsystemworkedverywell,evenatalowtemperatureof25Candthemaximumloadingrateemployed.Anapplicationoftwo-phaseseparation,totreatparticulatematerials(suchascropresiduals,manure,andmunicipalrefuse)whereinhydrolysisistherate-limitingstep,isalsoshowingpromise.Avarietyofapproacheshasbeenproposed,suchasusingtheUASBasamodifiedacidreactor(Zoetemeijeretal.,1982;Therkelsen,1979),toacceleratetherateofhydrolysisandacidogenesis.However,forslurrieslikesewagesludgeandslaughter-housewastewater,theapplicationofphaseseparation,usingUASBisstillquestionableintermofrealbenefits,whencomparedtoasingle-UASBprocess(Lettinga,1983a).Ghosh,(1984),however,reportedthatatwo-phaseUASBprocesswasveryeffectiveinstabilizingsewagesludge.Themethaneyieldwasnearly77%oftheoreticalvaluesatanHRTof5.5and5.9days,inthesequentialreactors;theoptimumHRT’sfortheacid-andmethane-phasereactorswere0.9-1.5and4.0-5.0days,respectively.Severalmodelshasbeeninitiatedtoexplainandpredictthemechanismandperformanceofanaerobicdigestion.Arbitrarily,themodelscanbeclassifiedinto4groups:Monod,substrateinhibitionkinetics,first-orderkinetics,andContois-derivedkinetics.ConceptualcomparisonsamongthesemodelsiswelldocumentedwithMonodkineticsbeingthemostpopularandacceptedamongresearchers,toexplainthe19anaerobicdigestionprocess(Mosey,1983b;Ripley,1983).Forexample,Monodkineticsarefrequentlyusedtoexplainthemechanismofanaerobicdigestionofsewagesludgeandparticulatematerials(Pavlostathis,1986;Massey,1987).Inaddition,amathematicalmodelfortheUASB,servingasmethane-phasereactoronly,iswellestablished.Theprincipleelementofthemodelinvolvesdynamicbehaviouranddistributionofthefluidpattern,anaerobicsludgeinthereactor,kineticconversionoforganicwastes,andformulationofbacterialendproductsandCH4.Theuseofamassbalanceforsubstrate,CH4,andbacterialendproductsinthesystem,iscarefullymadeinformulatingamathematicalmodelfortheUASBprocess(Buijis,1981;Buijis,1982;Heertjes,1978/1982;andVanDerMeer,1983).Anindepthreviewofthesekineticmodelsisbeyondthescopeofthisprojectandthereaderisreferredtotheliteratureascitedabove.Fromthisbriefliteraturereview,itisapparentthattherehavebeenseveralmajorstudiescompleted,withthebasicgoalofenhancingtheefficiencyofanaerobicsludgedigestionusingthetwo-phaseseparationand/ortheUASBprocess.However,veryfewhavetakenfulladvantageofcombiningthesetwoconcepts,toenhancetheoveralleffectivenessofanaerobicstabilization.Tomaximizethebenefits,itappearedlogicaltoevaluatethefeasibilityandeffectivenessofusingatwo-phaseUASB-UASBprocess,onewithaninternalrecycleoffluidizedsludgeknownassludgeblanketinordertoenhancetheefficiencyofanaerobicsludgestabilization.Thebasicideawastotakeadvantageofthedi-phasicphenomenonofanaerobicstabilizationbyusingphaseseparationtoprovideapreferredenvironmentforgrowthstimulationofthetwodifferentgroupsofbacteria.20ByusingtheUASBprocessandinternalsludgeblanketrecycleconcepts,itwashopedtoincreasethecontactbetweenmicoorganismsandsubstratesaswellastoincreasethesystembufferringcapacity.Thusthesystemcanretainthegranularbiomasswithinthedigester,withoutanymixingrequirementsandprovideapromisingsystemperformanceandstability.Theresearchprogramwasinitiatedandformulatedalongtheselines.21CHAPTERTHREESYSTEMSET-UPANDOPERATION3.1RATIONALEANDDESIGNCRiTERIATheprinciplegoalsofthisresearchweretoevaluatethefeasibility,effectiveness,andsuitabilityofusingatwo-phase,UASB-UASBprocesstoenhancetheefficiencyofanaerobicsludgestabilization.Toachievethesegoals,aschematicflowdiagramofexperimentaldesignswasdelineatedasshowninFigure4.1.Therationaleanddesigncriteriawerethenconceptuallyformulated.Toenhancetheefficiencyofanaerobicstabilization,twobroadapproachesaregenerallyemployed-oneprovidingpreferablyoptimumenvironmentalconditionsforeachgroupofbacteriaandtheotherconcernedwithincreasingbacteriapopulationdensityandretainingitwithinthedigester.Theformerapproachcanbeachievedthroughtheuseoftwo-phaseanaerobicdigestion,withanadequatesupplyofnutrients.Atwo-phaseUASB-UASBprocesswasselectedtotreatasyntheticsludge,underthespecificcontroloftemperatureat35°CandpH’sof5and7fortheacid-phase(A-UASB)andmethane-phase(M-UASB)reactorsrespectively.BycontrollingthetemperatureandpH,aswellasseparatingtheirenvironments,theacidogensandmethanogenswereexpectedtodominatethemixedculturesofbacteriawithintheA-UASBandM-UASBunits,respectively;itwasalsoexpectedthattherewouldbearapidutilizationoforganicmatter,aneffectiveproductionofvolatilefattyacids(VFAs)andfinallymethaneproduction.Toenhancethe22stabilizationprocessandmethanegasformation,nutrientrequirementsmustbesufficient.Variationinfeedsludgeratio(SR)ofprimarytosecondarysyntheticsludges,meansasignificantdifferenceinfeedsludgecharacteristics(COD/VSS,TKN,TP,etc.asshowninTable3.1).Sinceitisknownthatprimarysludgecontainsmostlyorganicswhilesecondarysludgecontainsorganics,nutrients(NandP)andbacterialcells.Thiswouldstronglyaffectthesystemperformancesandmethaneformation.Acarefulcombinationofthesetwosludges,withanoptimumSR,couldresultinamaximizationofCH4gasproductionandremovalefficiency.Thiswouldbeofparticularinteresttothosewastetreatmentplantsthatproducebothaprimaryandsecondarywastesludgerequiringfurtherstabilization.ThelatterapproachcanbeaccomplishedthroughanappropriatedesignofUASBsystemconfigurationtohelpkeepthebiomassinsidethereactorwiththeoptimulrecycleratio(RR).Newtechnologieshaveincorporatedchanges,whichallowSRTandHRTtobevariedindependently.Typically,thesolidsinthereactoreffluentareallowedtosettleandrecyclebacktothereactorinfluentinordertoincreasetheratioofSRTIHRT(Christensen,1984).Severalotherfactors(feedcharacteristics,seedsludgeandstart-upprocess,operatingcondition(SR,RR,mixing,wasting,etc.),andprocessconfiguration)arealsoseparatelyconsideredtoimprovethesystemperformancesinthisexperiment.Inprinciple,UASBcomposesof3maincomponents(sludgebed,sludgeblanket,andsettler).Averyconcentratedsludgebeddevelopsnearthebottomofthereactor.Theblanketvariesfromverydenseandgranularparticleswithhighsettlingvelocitiesnearthebottom,tothelighter,morediffuseparticlesathigherleveloftheblanket.Mostof23thereactionsoccursthroughouttheentiresludgebedandblanketzones.Thesystemismixedbyhydraulicupflowandrisinggasbubbles.ThepotentialofUASBreactor,aremainlydictatedbytheamountofsludgethatcanberetainedinthereactor.Intheinternalsettler,aquiescentzoneiscreatedtoenablethesludgeparticlereleasedfromtheblankettosettleratherthanbeingwashedout.Sludgeseparatedbysettlingisrecirculatedintothereactorandthusbeingretainedinthesystem.Tohelpincreasethissludgeretainingability,internalrecyclingratio(RR)ofthisfluidizedsludgeknownassludgeblanketbacktothereactorinfluentcansignificantlyenhancethesystemperformance.IncreasingtheRRmeansanincreaseinnotonlythecontactbetweenmicroorganismsandsubstratesbutalsothesystembufferringcapacity,whichfinallycanleadtotheimprovementofsystemstabilityandremovalefficiency;however;toohighanRRcanbreakdownthesludgebedandseriouslydamagethesystemperformance.Thesuccessofsystemperformancedependsnotonlyontheoptimallevelofoperatingconditionssuchasloadingrate,RR,andSR,butalsoonthesystemconfiguration.SincetheUASB-UASBprocessisquitenew,detailedmicrobialandkineticdataarenotyetavailable.Conceptualandpreliminarydesignsofthistwo-phaseconfigurationhavetobemadethroughamodificationofexistingdesigncriteriaofUASBprocessandtheoreticalconceptualideas.OverallschematicdiagramsofthesystemconfigurationareshowninFigures3.1and3.2,respectively.ThedetailedsizingofthesystemcomponentsisshowninTableA3.1ofAppendixA.AsshowninFigure3.1,thediameterofthesettlingsectionisdoublethatofthesludgebedandblanketsections,and4°Crn1j-iEEi___A-UASBIM-UASBLegends:(1)Sludgeblender(2)Mers(3)AcId-phasereactorNote:Uquidflow(4)Storagetank(5)Methane-phasereactor(6)Gastrap(water)GasfiowWetgashowmeters(8)Pumpcontrollers(9)pHcontrollers(0)TImerSolidsflowFigure3.2DetailedDimensionsofUASBReactorsusedintheexperimentAIF-B-H-I—5—HVNote:50degreeInclInedwallMixer@A-UASB1.27cms.Indla.@In&outletA-UASBM-UAS__AFigure3.1SchematicFlowDiagramofaModifiedTwo-phaseAnaerobicSludgeDigestion(UASB-UASB)Process24Vgas35LegendA-UASBM-UASB(ems)(ems)A2025B1015C2030D5050E5050(A,B)=Diameter,cms(C,D,E)=Height,ems(b)26hasa500inclined-wall;itwasdesignedtoreducetheupflowvelocityandhelpsettlethesolidsbacktothelowerparts.Thisalsoreducessignificantlytheamountofsupernatantsolids,especiallyintheA-UASBreactor.Toohighaconcentration(>500mg/LSS),canaffecttheM-UASBperformanceadversely(Christen,1984).Toensureahomogeneousfeedsludgeandalsotopreventthepotentialstabilizationoftheinfluentfeedbeforeenteringthesystem,mixedprimaryandsecondarysludgesweremixedcontinuously(at60rpm)insidea30-litre,plexi-glassstoragevessel,installedinawalk-intemperaturecontrolledroom,at4-60C.Inaddition,maximumsystemloadingcapacityandsystemfailureandrecoveryarealsoworthinvestigated.Accidentalshockload(and/oroverloading)and/ortemporarysystemcessation(stoppage)mayreducethesystemperformanceorevenbeamajorcauseofacompletesystemfailure.Appropriateprimeindicatorsofsystemfailuremustbeidentifiedandquantifiedandthensystemrecoveryalternativescanbeformulated.Theseadditionalinformationandresultswillbeusedasapartofafinalrecommendationonsystemdesignandoperationofthetwo-phaseanaerobicdigestionprocess(UASB-UASB)forsewagesludge.3.2EXPERIMENTALAPPARATUSANDOPERATIONAsalabscaleexperiment,twocompletelysealedupflowanaerobic(A-UASBandM-UASB)reactorsweredesignedtooperateinsideawalk-intemperaturecontrolledroomat35C.Theirheightandcapacitywere1.3meters,with20and25litresforA-27UASB,andM-UASB,respectively,asshowninFigure3.2.WheneverthemeasuredpHwasunderthesetpointvaluesof5and7fortheA-andM-UASBreactors,asignalwassenttothecontroller,whichsubsequentlydirectedthediaphragmpumptostartpumpinga0.1-0.2NNaOHsolutionintothedigestertomaintainthepHatthesetvalues.AsshowninFigures3.1and3.2,theinfluentsyntheticprimaryandsecondarysludgesweremixedwithina30-litrestoragevessellocatedinawalk-intemperaturecontrolledroomof4-60C;themixturewassubsequentlypumpedtothebottomoftheA-UASBreactorbyaperistalticpump.Theliquidpassedthroughsludgebed,blanket,andsettler,andfinallyleftthereactorviatheweir.TheeffluentfromtheA-UASBreactorwasthenpumpedtotheM-UASBreactor,viaperistalticpumps.TheliquidthenfollowedasimilarpatterntothatofA-UASBanditeventuallyoverflowedasthesystemfinaleffluent.Concurrently,thefluidizedsludgeblanketofbothreactorswasrecycledbackintothedigester.Thegasproducedfrombothreactorswasentrainedinagascapturefacilityattatchedtotheupperpartofeachreactor.Thegaswasthenmonitoredbytwowetgasflowmetersviawatertrapflasks.Toensurethattherewasnoleakageofgasand/orfluid,rubber0-ringsandone-inchboltswereplacedaroundthedigestercovers.A1.27cm(ID)foodandbeveragetube,withstraightconnectersandmetalclamps,wasused,wherenecessary,throughoutthesystemtopreventcloggingand/orfluidspillage.Also,atwo-weekscheduleoftighteningtheclampswasimplemented.Afterthecompletionofthesystemsetup,atestrunwithtapwaterwasmadetocheckthepossibilityofanyliquidleakingand/orimproperoperatingequipment.Agasleakingtest,usingnitrogengasat2-3psiandfoamingagents,wasalso28carriedoutseveraltimestoensurethattherewasnogasleakagesfromwithinthedigester.3.3SYNTHETICSLUDGEPREPARATIONToavoidpotentialproblemsoftoxicityfromactualwastewatersludgeandsupplyreliabilityforbothprimaryandsecondarysludges,asyntheticsludgemixturewasused.Theinitialconstituentsofsyntheticprimarysludgewerepartlybasedonthosereportedintheliterature(Therkelsen,1979).Themainconstituents,basedonpercentagebyweightoftotaldrysolids(%bywtofdrysolids),werecomposedofdogfood(76%),soap(4%),cornoil(6%),CaCO3(2%),andMgCO3(2%).Thechemicalanalysisofdogfood(“NoName”-Special-dinnerforDogs)usedinthepreparationofbothprimaryandsecondarysyntheticsludges,isshowninTableA2.2(b)oftheAppendixA.Theproportionoftheseingredientswasfurthermodifiedbyusingnumeroustrial-and-errortechniquestoensurethatthecharacteristicsofpreparedsyntheticsludgewereinthetypicalrangeofactualprimaryandsecondarysludges,respectively.ThefinalmodifiedconstituentsofprimaryandsecondarysyntheticsludgesareshowninTableA2.2(a)ofAppendixA.Theamountofeachingredientwascalculatedbasedonitsproportion,totalliquidvolume(30and24litres),andtotaldrysolids(4and2%byweight)forprimaryandsecondarysyntheticsludges,respectively.Toensuresufficientmixingandsolubilityofthepreparedmixtureaswellasconsistencyofthepreparedsludgecharacteristics,severaldesignedpreparation29techniquesweredevelopedandmodified.Thesyntheticsludgewaspreparedinsidea60-litreplexi-glassreactorwithamechanicalmixer.Thefine-ground,dogfood,togetherwithallotheringredients,wasdissolvedwithtapwatertomakethetotalvolumeof12litresandwasmixedcontinuouslyat90-95rpmfor2hours;itwasthenleftovernightinsidethewalk-intemperaturecontrolledroomat4C.Afterthat,thepreparedsludgewastransferredtoseveral1.4-litrebeakersandwarmedupto65-70Cinsideawaterbathfor1.5hours;itwasthenmixedat90-95rpmforafurther1hourandsettledfor10minutes.Aftersettling,aportionofthesettledsolidswaswasted,toensurethattheremainingsolidslevelwereattheassignedlevelofPandSforprimaryandsecondarysyntheticsludges,respectively;andfinally,thevolumesweremadeupto30and24litres,forprimaryandsecondarysyntheticsludges,respectively.Aseriesofsmallscale(1-litre)andscaleup(30-litre)experimentalevaluationswascarriedout,todeterminethecharacteristicsofthepreparedsludge,andtocomparewiththoseofactualdomesticwastewatersludge.AsshowninFigure3.4and3.5,aseriesofrun-and-compareexperimentswereundertakenformorethanthreemonths,beforethecharacteristicsofthesyntheticsludgecorrespondedreasonablytothoseofactualsanitarywastesludges.Duringthescale-upexperiment,anadditionofureaandNa2HPO4wasnecessarytoincreasetheconcentrationofTKNandTPuptotheactualrangeforsecondarysludge.Numeroustrial-and-erroreffortswerespentonwastingofsettledsolids,insuchawaythattheCOD/VSSratioofbothprimaryandsecondarysludgeswasinthetypicalrangeforactualsludge.Acomparativesummaryofthebasiccharacteristicsofsyntheticandtypical“actual”domesticsludgesisillustratedinTable3.1.RA11O%TS%TSII%TSIII-‘—-.40-C)-‘4Co(DC)C)’00000C30(1).1IIIliiiIIIICnRATIOOR%TS%TS%TSCD%TS0-C.)(J,-.r’.)C.)O(D0000000000111111—‘IIIICoY(LJ-:rz.G)CmC)0-UcI)8cCl)(I)C)z—Im—IC)C,)1CEJG)m0.a’-1m.Co0)a)-•11C/)>Ia)Co0FrnI-Ummz00-1m0Co//-UI10/\-uCo/z‘z\0ICo-U,,x0CCo2z,r—.‘——i—i——G)Cmc)—I0CO0>cm‘iidc,)z-na-a0COCOCozHm-10C,)ICC)mI’)(0(3)1LFIC.)-UICzI-Cl)Z0-I0m-4ACTUALNORMALRANGE,RATIOOR%DRYDRYSOIJDS-‘-0)0-...cna)-1.t..C00)C.).r)-‘ACTUALNORMALRANGE,RATIOOR%DRYDRYSOLIDS31Table31ComparativeCharacteristicsofPreparedSyntheticSludgeandActualPrimaryandSecondarySludgesCharact.US.EPA(1979)SyntheticSludgesTypicalRange#PrimarySecondaryPrimarySecondarymgILwgt%ofTSmgILwgt%ofTSCOD3290025470TS[3—7][1—2]333703.35199801.99VSS173000.50117800.59VS[64—93][59—88]3033091.001760088.14COD/VSS11.2—1.6]2.171.90‘2.16TKN[1.5—4.01[2.4—6.7]3.955.84TP[0.35—1.2][1.3—1.6]1.101.52PROTEIN[20—30][32—41]25.0036.55CARBO.[17—26]20.0026.49TOC[17—44141.0033.44NOTE:#=SelectedParameters,percentbyweightofdrysolids(%TS)Throughouttheexperimentalprogram,monitoringofkeyparametersofthepreparedsludgewasundertakenatleastonceamonth;thismonitoringshowedthattheconstituentsandcharacteristicsofthesludgeusedintheexperimentweremaintainedwithin10-15%variation.AsshowninFigure3.6and3.7,throughouttheSludgemonitoringperiodof620days,thecharacteristicsofthepreparedsludgewereveryconsistentandfellintothetypicalrangeofbothactualprimaryandsecondarysludges.32100.0080.00:60,00—40.00:20.00:0.00Co6.00—0)E4.00—0)-93.00-64.00Co30.00—20.004.000C:I1.20--8859-41—32:::I1.601.3014.6000,CCo3.500CCo2.17<100.0080.0060.0040.00Co20.00I0.0004.003.00—2.00—1.00—0.001.80—.21.50-1.20-0.90—0.60—0.30—0.00Ta-..‘.j..1rteia.......-——zPfflO....YSzzzz:Y_—JLiiJJJJJJiIkI-----TKN——TP‘,EESTKNXXTP-ACODNSS-ç49126203308371448497561618Time,daysFigure3.6CharacteristicsofPrimarySyntheticSludgemonitoredthroughouttheexperimentalprogram:(a)Protein,VS;(b)TKN,TP;(c)CODIVSSNPNP(b)cc-C/N——Cc)\\cc-—---CODNSSCd)0CO2.00—0.00-12.00:8.00-4.000.002.401.60-0.80-0.00149126203308371448497561618Time,daysFigure3.7CharacteristicsofSecondarySyntheticSludgemonitoredthroughouttheexperimentalprogram:(a)Protein,VS;(b)TKN,TP;(c)C/N;(d)CODNSS33CHAPTERFOUREXPERIMENTALPROGRAMSThischapterpresentsdetailsofsystemseedingandacclimatization,followedbyaseriesofexperimentaldesignsemphasizingtheeffectsofinfluentfeedsludgeratio(SR)andrecycleratio(RR)ontheprocessperformance.Maximumsystemloadingcapacityandtherecoveryprocessafteracompletefailure,arefurtherinvestigated.Anoverviewofthesamplingprogram,analyticaltechniques,anddataIstatisticalanalysiscompletethechapter.4.1ACCLIMATIZATIONPROCESSAcclimatizationisanimportantstepindeterminingthesuccessorfailureoftheprocess.Acarefulseedingandstartupofthesystemisrequired.4.1.1SystemSeedingandStartupLoadingInApril1988,sludgetakenfromtheanaerobicprimarysludgedigesteroftheLion’sGatetreatmentplant(whosecharacteristicsareshowninTable4.1)inNorthVancouver,B.C.,wasusedtoseedbothreactorswitharatioof1:1forseedsludgeandtapwater.Followingtheseeding,thesystemwasfedinitiallyataflowrateof2litres/day,witharatioofprimaryandsecondarysyntheticsludgesofabout80:20(byvolume);thiswasapproximatelyequivalenttoasludgeloadingrateof0.1gCOD/gVSS/danda34Table4.1CharacteristicsofAnaerobicSludgeusedinSeedingtheSystem[Anaerobicsludgedigester/Lion’sGatetreatmentplant]CharacteristicsConcentrationmg/L%DsolidspH7.2TotalAlkalinity,2740mg/LasCaCo3CODTotalCOD12490SolubleCOD3150SolidsTS9300TVS690074SS8100VSS610075NitrogensNH4—N600NOX0.25TKN8005PhosphorusP04-P65TP802.5VolatileacidsHAc45volumetricloadingrateof1.2gCOD/L/d,asrecommendedbyZeeuw,(1980).‘ThecalculationsofseedsludgevolumeandstartingloadingrateareshowninTableA2.1ofAppendixA.Theloadingratewasnotincreasedunlessmorethan80%oftheinfluentsolubleCODwasdigested.Afterthesystemstabilized,theflowratewasincreasedto5L/dayandloadingoptimizationwasstarted.354.1.2SystemOperatingConditionsDuringtheacclimatizationprocess,thesystemwasoperatedatpHvaluesof5and7fortheA-UASBandM-UASBreactors,respectively.TheA-UASBreactorwasequippedwithamechanicalmixer,runningforonlythefirsttwoweeksofacclimatizationattherateof20rpm,toensuresufficientcontactbetweenbacteriaandincomingfeed;thesettledsludgeofthesludgebedwaswasteddailyat5-10%oftheinfluentflowrate,tomaintainsufficientactivevolumeinthereactor.However,nosludgewastingwasnecessaryfortheM-UASBreactor.Also,thefluidizedsludgeblanketeffluentwasrecycledcontinuouslybacktothesludgebed(RR)attherateof4and7timesoftheinfluentflowratefortheA-UASBandM-UASBreactors,respectively.4.2EXPERIMENTALDESIGNThedesignaimedtoaccomplishtheresearchobjectivesasmentionedearlier.TherelationshipsofeachcomponentintheexperimentaldesignareillustratedinFigure4.1.Theprocesseffectivenesscanbeevaluatedmainlyintermsoftheprocessperformance,atdifferent2by2factorialdesignrunningconditions(SRandRR)andoptimaloperatingcondition;whereas,theprocesssuitabilitycanalsobeascertainedthroughthemaximumsystemloadingcapacityandrecoveryprocessafteraseverefailure.Theprocessfeasibilityanddesigncriteriaarefinallyinitiated.Itwasassumedthatthesystemreachedapseudosteady-stateconditionwhenthegasproduction,%CH4content,andeffluentCODreachedappropriately36steadyvalues,withlessthan10%variation(about2-3systemHRT).FIgute4.iAShernatIcF!owPlagrarn:ol:ExPerImefltaI:DeSigflS:.:ISystemset-upISyntheticsludgeLAcclimatizationLExperimentalRunsOptlmaioperatingconditionJMax.load/RecoveryEffectivenessFeasibilitySuitabilityDesignCriteriarn4.2.1Optimum“Bestknown”OperatingConditionsA2by2factorialdesignwasappliedtooptimizethefeedSRandRRwithintheA-UASBandM-UASBreactors.Aftertheacclimatizationprocessappearedtoreachapseudosteady-stateatabout40-50days,anumberofdifferentrunningconditionswascommenced(asshowninTable4.2),tomaximizethegasproduction,%CH,andalsotoachieveareasonablesupernatantquality.SamplesweretakenandanalyzedtwiceaweekforCOD,TKN,TP,TS,TVSS,‘TSS,TVSS,NH4,P04,WA,and%gascomponents.Theinfluentflowrateandgasproductionwererecordeddaily.TheactualsamplingprogramandschedulesareshowninFigure4.2.Eachrunningconditionwasnotchanged,unlesspseudosteady-state,withaminimum2-3systemHRTand/ormorethan80%solubleCODremovalefficiency(10-15%variationineffluentsolubleCOD)wasachieved.Forthefirststepinloading37Table4.2ExperimentalRunningConditionsDuringtheOptimalOperatingConditionandMaximumLoadingCapacityandRecoveryPeriodExperimentalRunsJSludgeFeedRatioRecycleRatioFlawRatè,lJd•(SR)(RR)(FR)Phase1:ReferenceCondition(Acclimatization)080/204/75-6180/202/45—6280/206/105-6350/506/105—64501502145-6Phase2:Bestknowncondition570/303/65-6670/305/85—6760/405/85—6860/403/65—6980/205/85—6Phase3:AdditionalRuns—1080/204/75-61190/105/85—61290/103/65—6MaximumLoadingcapacity:SR=RatioofPrimary/SecondarySludgesHRT.days9.0,4.5,3.0,2.25,1.5RR=RatioofQr/QinRecoveryPeriods:whereQr,Qin=recycleandinfluentflowrateHRT,days@1.5,2.25,3.0,4.5,9.0ie.4/7,Qr=4*QinintheA-UASBandQr=7*QinintheM-UASB‘optimization,anarbitraryreferencerunningcondition(SR8O/20andRR4/7),usedintheacclimatizationprocess,wasadoptedasaninitialrunningconditionforthedesignoftheexperimentalruns.Thefirstfourrunningconditionsfollowedandtheresponseparametersforeachonewasmonitoredandanalyzedcontinuously,untilapseudosteady-statewasobtained.Figure4.2SamplingPrograms:ResponseParameters/SamplingPointsandFrequency/PreservationandStorageResponsePreservation/SamplingPointsandFrequencyParametersStorage01123456789101.SolidsTSNo————————VSNo———————SSNo::=:=VSSNo2.OrganicsTotalCODNo**————————FilterCODNo**————————3.lnorganicsNH4-NYes**————————P04-PYes**————————TKNYes**————————TPYes**————————4.VolatileAddsHAcYes**————————HPrYes**————————lso-HBrYes**————————HBrYes**————————A-HVrYes**————————lso-HVrYes**————————HVrYes**————————HHeYes**————————5.GasCompositionNo——ProductionNo——YieldsNo——35CLegend:)SampIingPointLegends:*=OnpeamonthforPrimary/SecondarySyntheticSludges(01,02)—=Iwiceand/orthreetimesaweekGo39Theaverageresponsevaluesofeachrunningconditionwerecalculatedintermsofmaineffectsandinteractionofeachparameter,phasemean,referencemean,andchangeinmeanresponsebyanapplicationofYate’salgorithm.Withtheseresults,coupledwith2SE(standarderrors)foreachindividualaverageandanapplicationofResponseSurfaceMethod(RSM),identificationofthe“bestknown”runningconditionthatgeneratedthemaximummethanegasproductionandgoodsupernatantqualitywasachievedandtheeffectsofSRandRRwerealsocalculated.Thisbestknownconditionwasthenreassignedasanarbitraryreferencerunningconditionforthenextfourruns.4.2.2MaxiniumLoadingRateandRecoveryPeriodsTheloadingrateincreasedgradually,step-by-stepuntilthesystemwasoverloaded,causingVFA’stoaccumulatewithinthesystem.ThepHdroppedfromthedesiredrange,resultinginanimbalanceofacid-andmethane-formingpopulation;thissubsequentlyledtoasystemupset.Byincreasingtheloadingratefromtheoptimumconditionsobtainedfromthepreviousexperiment,themaximumloadingratewasdetermined.Inaddition,theloadingratewasdesignedtoincreasegraduallystep-by-step,whilethepHcontrollerwasoff,untilthesystemcrashed.ThentheloadingratewasdecreasedgraduallyinordertorecoverthesystemasshowninTable4.2.4.2.3SamplingProgramandAnalyticalTechniques4.2.3.1SamplingProgramThesamplingprogram,analyticaltechniques,anddatainterpretationwere40carefullydesignedtoensurereliableandaccurateresults,forevaluationoftheprocessperformance.Anextensivesamplingprogramwassetuptocharacterizeandmonitorthesyntheticsludgeandsystemperformance,asshowninFigure4.2.Theproposedprogramwasstrictlyfollowedduringtheacclimatizationprocessandthefirstfourrunningconditions(Sequence1),however;thesamplingprogramwasmodifiedslightlyto“suitthefacts”obtainedduringthefirstfourrunningconditions.Theresultsofthefirstfourrunsindicatedthatthesystemcouldreachapseudosteady-stateconditionwithin2-3HRT’sandthattherewasverylittlechangeintheresponseparametersduringthefirstfewweeksofeachrunningcondition.Itwasthenfeltjustifiedtoreducethesamplingfrequencyofthenextfourrunningconditions,toonceaweek,forthefirstfewweeksafterchangingtherunningconditionandtwiceaweekafterward,untilthesystemreachedapseudosteady-statecondition(morethan80%removalefficiency,2-3HRTs,and/or5-10%variationoftheeffluentquality).However,monitoringofthegasproduction,influentflowrate,andgascontentwereundertakenasscheduled,sothattheycouldbeusedasindicatorstopredictthepseudosteady-stateconditionofeachrun.Thesamplingprogramfunctionedintwomajorparts;thatforacclimatizationperiods,andthatforexperimentalperiods.LiquidsamplesweretakenfromeightdifferentpointsalongtheheightoftheA-UASBandM-UASBreactors.Twogassamplingrigswereused.Ingeneral,aliquidsampleof250mlwascollected,preserved,andanalyzedforvariousresponseparameterstwiceaweek.Inaddition,systemmaintenance,tighteningofallclampsandreactor’scover,changingofalltubinglinesandpumpheads,andcheckingofthewaterlevelandtubingofthegasflowmeters,etc.,41werecarriedoutregularly,toensurethatpropersystemoperationwasmaintainedandtopreventanyincidentsofleakingand/orspillagewhichmightoccurduringtheexperimentalruns.4.2.3.2AnalyticalTechniquesAnalyticalmethodsforallresponseparameterswereinaccordancewithStandardMethods(i6thedition,1985),unlessspecificallydescribedseparately.Forsolublesampleanalysis,samplepreservationandstoragewererequiredpriortoanyfurtheranalysis.Asampleof150mlcollectedfromeachsamplingpointwascentrifugedat2,500rpm.forabout15minutes,inanInternationalEquipmentCompanyModeCSCentrifugeandthesupernatantwasthenfilteredthroughano.4Whatmanfilter.AfiltratealiquotwasanalyzedforsolubleCODandtheremainderwaspreservedandstored,asshowninFigure4.2,forfurtheranalysis.Analyticalmethodsforeachresponseparametercanbesummarizedasfollows:ChemicalOxygenDemand(COD)Samplesizesof0.1-0.5and1.0-2.0mlwereusedtoanalyzefortotalandsolubleCODusingthedichromateoxidationrefluxmethodasoutlinedintheStandardMethods.SolidsAsampleof30-60mlofeachsamplingpointwasusedfortheanalysisofsolidscontentasfollows:42TS/TVS-Asampleof10-30mlcollectedfromthesamplingpointnumber1,2,3,and6waspouredseparatelyintotheknownweightofevaporatingdish,whichwasheatedfor2hoursat550°Cinsidethemufflefurnaceandthenweighedaftercooling.SampleswerethendriedovernightinaFisherisotempoven(Model350)at104°C.Aftercoolingthesamplesinsideavacuumdesiccator,thesampleswerethenweighedandburntforabout2hours,forvolatilesolids,inaLinbergmuffleovenat550°C.Thesampleswerefinallycooledinsideavacuumdesiccatorandweighedagain.TSSITVSS-Asampleof10-20mlcollectedfromthesamplingpointsnumbered1-8,wastreatedsimilarlytothatofTS/TVS,exceptthata934-AHWhatmanglassmicrofiberwasusedtofilterthesampleinsteadofusingtheevaporatingdish.CalculationoftheweightandconcentrationofsolidswasmadeaccordingtoStandardMethods.TotalOrganicCarbon(TOC)ThefilteredsampleswerepreservedasdescribedintheCODsection,andanalyzedinanautomaticShimadzuTotalOrganicCarbonAnalyzer,TOC-500,usingthecombustion-infraredmethod(TOC-500InstructionManual,ShimadzuScientificInstruments,Inc.).ProteinsThecrudeproteincontentofthesamplescanbedeterminedfromtheTKNvalue43bymultiplyingitwithafactorof6.25.Thisisbasedontheassumptionsthatallthenitrogenoftheorganicmatterisduetoprotein,andthatproteincontains16percentnitrogenonaverage(100/16=6.25).CarbohydratesThetotalsolublecarbohydratesweredeterminedbytheferricyanidemethodasoutlinedintheHandbookofMicromethodsfortheBiologicalScience(1974).Inorganic/AcidsAsolublesample,afterbeingpreservedandstoredforuptoaweek,wasanalyzedforNH4-N,P04-P,TKNR’P,andVFAsasfollows:NH4-N-Aliquotsofsolublesamplescollectedfromthesamplingpointsnumbered1-8wereanalyzedforNH4-N,usingtheAutomatedPhenateMethod(A.P.H.A.,1980).Appropriatedilutionsrangingfrom1/50-1/100weremadepriortodeterminingtheintensityofthesamplecoloursusingaTechniconAutoAnalyzerIIandthencomparedwiththoseofpreparedNH4-Nstandards,rangingfrom1.0-3.0mg/LinordertoestimatetheconcentrationofNH4-Ninthesample.P04-P-Theautomatedascorbicacidreductionmethod(TechniconIndustrialSystem,1973)wasusedtoanalyzeP04-P.Inanacidmedium,ammoniummolybdateandpotassiumantimonyltartratereactwithP04-Ptoformanantimony-44phosphomolybdatecomplex;thisisfurtherreducedwithascorbicacid,yieldinganintensebluecolour.TheintensityofthesamplecolourwasdeterminedbyaTechniconAutoAnalyzerII.CalculationofP04-PconcentrationwasmadebycomparingthesampleresponseswiththoseofpreparedstandardsofP04-P.TKNITP-AseriesofknownTKN/TPstandards,solublesamples,anddriedsolidssamples(afterbeingdriedat104C)weredigestedintheTechniconBlockDigester40withconcentratedH2S04andK2S04ThisprocedureliberatedallboundorganicnitrogenandparticulateTPtoNH4-NandP04-P,respectively.TheTKN/TPconcentrationsofthesamplesandstandardsweremeasuredcolorimetrically,usingtheTechniconAutoAnalyzerIIandcalculatedbycomparingtheresponsesofbothsamplesandstandards.Volatilefattyacids(VFA)Samplestakenfromsamplingpointsnumbered1-8werefilteredusingno.4Whatmanfiltersandfrozeninsealedplasticpipets.Afterthetimeofanalysis,thesampleswerethawedatroomtemperatureanddiluted1:10withdistilledwater.A1.01 tdsample,afterbeingacidifiedbyadropof1%solutionofphosphoricacidtobringthepHbelow3.0,wasinjectedintoacomputer-controlledHewlettPackard5880Agaschromatographequippedwithaflameionizationdetector(FID),usingheliumasthecarriergas.Toachieveaccurateandreliableresults,microsyringes(HamiltonModel70iN,10Ll)andaHewlettPackardauto-sampler(Model7672A)wereused.Theglass45column(0.91mlongwitha6.0mm(OD)and2.0mm(ID))packedwith0.3%Carbowax/0.1%H3P04onSupelcoCarbopakC(suppliedbySupelcoInc.),wasconditionedaccordingtotheprocedureoutlinedintheSupelcoBulletin751E(1981).Theoperatingconditionsforthechromatographweremaintainedasfollows:Injectionporttemperature=150oCDetectionporttemperature=200°CIsothermaloventemperature120°CFlowrateofcarriergas(helium)=20mi/mmTheresponsepeaksofeachsamplewerequantifiedbycomparingwithexternalstandardmethods,usingreagentgradestandards.GascontentGassampleswereextractedfromsamplingpoints9and10(SeeFigure4.2)usinga1-mIHamiltonSyringe.Theinjectionsyringewasflushedtwice,beforetheinjectionsamplewastaken.TheplungerwasdepressedtoexpeltheexcessgaspriortoinsertingthesyringeneedlethroughthediaphragmofthesampleinjectionportoftheFisherModel29GasPartitioner.Thesamplewasthenrapidlyinjectedandamixtureofgaswassweptthroughtwochromatographiccolumns,packedwithaliquidphaseisonasolidsupportknownasDEHSand42-60meshMolecularSieveforcolumn1and2respectively,byacontinuousflowoftheheliumcarriergas.Thegascomponentswereseparatedandelutedfromthesystematdifferentretentiontimes.Athermalconductivitydetectorthensensedthedifferencesinconductivityoftheseparatedcomponents,which46wasamplifiedandintegratedforquantification.Theretentiontimeelapsedfromthepointofinjectiontotheemergenceofapeakischaracteristicofaparticulargas.Theareaofapeakisalsoproportionaltotheconcentrationofthegas.Calculationofthegasconcentrationwasmadebycomparingthepeakareasofmeasurablesamplesandthestandard.4.2.4DataandStatisticalAnalysisAlldatainthisresearchwereanalyzedandplottedbyusinganintegratedsoftwareprogram,Symphonyversion1.2andLotusversion2.2withanadd-inprogram(Aliways).SomeofthegraphicswereimportedintotheFreelancesoftwareprogram,version3.0,forfurthermodifications.Forthereportpreparationandstatisticalanalysis,aWordPerfect5.1programandSystat/Sygraphprogramswereused.47CHAPTERFIVERESULTSANDDISCUSSIONThischapterdealswithtwomainsections:(i)theacclimatizationmode;and(ii)theexperimentalmode.ThedevelopmentoftheacclimatizationprocessandacomparisonofdifferentacclimatizationalternativesisfollowedbytheeffectsandinteractionofSludgeRatio(SR)andRecycleRatio(RR)ontheresponsesandprocessperformance,maximumloadingcapacity,andsystemrecoveryprocess.Systemfeasibility,designcriteria,andeffectiveandreliablesystemindicatorsarealsodiscussed.5.1ACCLIMATIZATIONPROCESSIthaslongbeenrecognizedthattheacclimatizationprocesshasagreatimpactonthesuccessorfailureofsystemoperation.Understandingtheconceptualdevelopmentoftheprocessandacclimatizingthesystemproperlyareextremelyimportant,inordertoachievethedesiredlevelofthesystemperformance.5.1.1DevelopmentoftheAcclimatizationProcessOneofthemaindifficultiesinthetreatmentofsewagesludgeappearstobeinthedevelopmentofsuitableandefficientmixturesofmicrobialculturestotreatthisparticulartypeofwasteinthistypicalreactor.Toalleviatethisproblem,itisnecessary48tounderstandtheprinciple/behaviour/responseoftheUASBprocessunderdifferentoperatingconditions.5.1.1.1BehaviourandResponseTheUASBisasuspended-growthbiomasssystemcomposedofthreemainportions:(i)sludgebed;(ii)sludgeblanket;and(iii)settler.Mostofthereactionsoccurinthelowerpartofthesystem(sludgebedandblanket).Inthetwo-phaseUASB-UASBprocess,complexinfluentsubstratessuchascarbohydrates,proteins,andlipidsarefirsthydrolysedandacidifiedinsidetheA-UASBreactorbyapredominantlyacidogenicbacteriapopulation;thisproducessimplecompoundssuchasvolatilefattyacids(VFAs).TheseVFAsthenpassthroughtheM-UASBreactor,wheretheyaresubsequentlyconvertedtoCH4andCO2gasesbypredominantlymethanogenicbacteria.SmallamountsofN 2gasandotherby-productsarealsoproduced.Usingastep-loadingapproachratherthancontinuous(constant)loadingforsystemstart-up,thesystemwascarefullyacclimatizedwithanincreaseininfluentloadingtokeeppace,ascloseaspossible,withanincreaseinsystembiomass(Bulletal.,1983).Theinfluentsubstratewas,therefore,startedandmaintainedinitiallyatalowloadingrate(sub-cruciallevel)toensuregreaterconversionandbiomassgrowthratesthanwashoutone.Thesystemloadingratewasnotincreaseduntilmorethan80%removalefficiencyofthesysteminfluentCODhadbeenachieved.Over-or-underhydraulicand/ororganicloadingaUASBcanadverselyaffectthestartupprocess.Over-loadingtendsto49produceexcessivegas,causingagas-liftinthereactor,floatationofthesludgesolids,andfinally,asystemwashoutprocess.Under-loadingresultsintheformationofamassivecompactedsludge,thusreducingtheefficiencyofthesystemsignificantly(Hulsoff-Poletal.,1983).Initially,thestartupofnon-attachedbiomassprocesses,likeUASB,relyingheavilyonsuspendedbiomassandattachedmicroflora,appearstoinducea“washoutphenomenon.LargequantitiesoftheUASBbiomasswerewashedoutofthesystemduringthefirstcoupleofweeksofthisresearch,followedbydevelopmentofsmallgranulesorpellets.Then,theremainingbiomassshowedbettersettleabilityandservedasasurfacemediumforactivemicrobialmassgrowth.Minimizationofbiomasswashoutis,therefore,crucialtoreactoractivityduringthestartupprocess.Asuitabletypeofseedsludge,seedingratioandacclimatization,seemtobeeffectiveincompensatingforthesolidswashoutphenomena.PrecipitationofsaltsofCaCO3andP0;3insidethereactorisalsocreditedforanincreaseinsludgesettleability,asthesesaltsweighdownthepellets,andincreasethesettlingcapacity(Klapwijketal.,1981).Consideringallthesepointsandbehaviours,acarefulsystemseedingandstartupoftheUASB-UASBprocesswasselectedasoutlinedinChapter3.5.1.1.2AcclimatizationAlternativesTodevelopaneffectivestartupandacclimatizationprocess,thesystemwasseededwithahighratioofseedsludgetotapwater(1:1byvolume),tocompensatefor50thesolidswashoutproblem.Inaddition,threeacclimatizationalternativeswereinvestigatedindetail;samplesweretakenregularlyandanalyzedforseveralparameters,asshowninFigure4.2.Thesealternativeswere:(A)SeedingbothA-andM-UASBswithsludgefromtheLion’sGatetreatmentplantanaerobicsludgedigesterandusingastep-loadingapproach;(B)Seedingbothreactorswithacclimatizedsyntheticseedsludgeandusingaconstant-loadingapproach;(C)SeedingtheA-UASBwithacclimatizedsyntheticseedsludge,buttheM-UASBwithsludgefromtheLion‘sGateanaerobicsludgedigester,usingastep-loadingapproach.Theresultsofthisinvestigationaresummarizedasfollows:(a)WashoutPhenomenonInsuspended-growthbiomasssystemslikeUASB,wherethetreatmentpotentialisdictatedbythedualparametersofthebiomassqualityretainableinthesystemandthespecificactivityofbiomass(suchasmethaneproductionandsettleability),aninoculationofabout30-50%reactorvolumeofactivesludgeisrequired.Start-upandacclimatizationofUASBreactorsrequiresabout4-8weekstodevelopanactivemicrobialmasssludge(Lettinga,1979;Zeeuw,1980).Start-up,therefore,isdependentuponanequilibriumbetweenloadingandwashoutaswellastheselectionofasuitableseedsludge,wastewatercharacteristics,andcarefulmanagement.Initially,largeportionsofbiomassarewashedoutofthesystem;later,themicrostructuralgranulesorpalletsaredevelopedwiththehelpofprecipitatedsaltsofcarbonateandphosphate.These51weighdownthepellets,increasingthesedimentationcapacity.AsshowninFigure5.1,thesystemwiththesteploadingrateof0.10-0.21m3/m3-d,demonstratesthewashoutphenomenonoftheMLVSS(points1,2,and3)atday23-45,1-15and1-7foralternativesA,B,andC,respectively.Activebiomasssettlesatthesludgeblanket(samplingpointno.6,50emsfromthebottom)oftheM-UASB,thenstartstobuilduptoaconcentrationof5750,1265,and2580mg/LofMLVSSforalternativesA,B,C,respectively.Itisbelievedthatdevelopmentofgranulesludgeandpelletizationdooccuratthesludgebed.Accidentally,therewasacaseofsludgespillageduetoclogginginsidetherecyclelineduringtheexperimentalprogram.Fortunately,therewasstillsufficientbiomassremainingatthebottomofthereactor;thiswascharacterizedbyveryhardanddensepellets.Also,Jing-QingYan(1991)studiedasludgeconcentrationprofilealongtheheightofUASBandindicatedthattherewere2distinctlayersofsludgeconcentrationprofiles.Theseincludedadensesludgebed(from0-30cms.)with18-58g/LVSSandasludgeblanket(above37cms.)with2-10g/LVSS.Theauthoralsomentionedthatsystemstart-upprocesswithasludgeloadingrateoflessthan0.2kgCOD/kgVSS-dwascrucialforasuccessfuldevelopmentofpelletization.Asmentionedearlier,thestart-upsludgeloadingrateinthepresentcase(UASB-UASB)wasabout0.1kgCOD/kgVSS-dandtheconcentrationofMLVSSatsludgeblanketlevel(50cms.height)wasintherangeof1300-5800mg/L.Sincesimilarpatternsofstart-upprocessandMLVSSconcentrationrangewereobservedinthepresentstudy,itisbelievedthatdevelopmentofsludgeconcentrationprofile(pelletizatioon)didoccurinthesystem.Itisquiteclearthatacidogenicandmethanogenicbacteriaplayanimportantrole52(a)(b)(C)5I4-EffluentMLVSS.ReactorMLVSS43IIIII__________________020406002040600204060lime,daysFigure5.1AnAcclimatizationWashoutPhenomenonUnderdifferentrunningcondftlons(a,b,andc),Mentionedinsection5.1.1.2AcclimatIzationAlternatives40\Y/(a)(b)(C)30—+coo+SoLCOD04-P20II..,—I—IIIIIIIIII020406002040600204060Time,daysFigure5.2SystemRemovalEfficiencyDuringAcclimatization:Underdifferentrunningconditions(a,b,andc),Mentionedinsection5.1.1.2AcclimatIzationAlternatives53intheinitialwashoutphenomenon.AsshowninalternativeA,Figures5.1,ittookapproximately23daystodevelopactiveandsufficientamountsofacidogenicandmethanogenicbacteriatodominatewithinA-andM-UASBreactors,respectively.Asaresult,influentsubstrateishydrolysedandacidifiedintheA-UASB,producinglowtomediummolecularweightVFA’ssuchasHVr,HBu,HPr,HAcetc.;thesearefurtherbrokendowntoCH4,C02,andH2bymethanogenicbacteriaintheM-UASB.Figures5.3-5.4showedadecreaseofinfluenttotalVFAfrom4,070to1,120mg/LwithanHAcIHPrconcentrationratioof1:40,correspondingtoanincreaseofVFAremovalefficiencyoftheM-UASBupto71%.Theproducedgas(CH4,C02,H2,andetc.)thencausedagas-lift,solidssludgefloatation,andfinally,asystemwashoutphenomenonintheM-UASBreactoratpoint(1)oftheFigure5.1.Conversely,alternativesBandCdemonstratedthewashoutphenomenonimmediatelyafterday1(points2and3,respectively),andittookonlyaweekforalternativeCtostartup,comparedtotwoweeksforalternativeB;however,theacclimatizationprocesswascompletedwithin4weeksforbothalternatives.Lettinga(1978)foundasimilarresultwhereby,whenheacclimatizedaUASBat30Cwith1250mg/LHAcand1000mg/LHBu,adistinctgranulationappeared5weeksafterthestart-upoftheprocess.Thetimereduction,comparedwithalternativeA,mayresultfromtheeffectivenessofwellacclimatizedsyntheticsludgeseededinA-UASBs,generatingsufficientvolumeofVFASreadyformethanogenesistoproceedfurtherintheM-UASB.ComparingalternativesBandCatday20-30(samerangeofloadingrateinbothalternativesasshowninFigureB2.1ofAppendixB),itisinterestingtopointoutthat5420>.C.)a)C)C)0-60(a)4C)IhLM110060/(a)(b)(c)—II—II—-100-1405020406002040600204060Time,daysFigure5.3VFARemovalEfficiencyoftheM-UASB:Duringtheacclimatizationunderdifferentrunningconditions(a,b,andc),Mentionedinsection5.1.1.2AcclimatizationAfternatives(b)I11111LI5(C)43-J-.-C,):IIIIIIII0204060204060204060Time,daysFiciure5.4EfluentVFAsoftheM-UASB:DuringtJTeacclimatizationunderdifferentrunningconditions(a,b,andc),Mentionedinsection5.1.1.2AcclimatizationAlternatives55alternativeChadbetterperformancesthanthoseofalternativeBintermsofsystemandVFAremovalefficienciesandeffluentVFAasshowninFigures5.2-5.4.Thismaybecausedbyamorediversifiedstructureofbacterialcommunityduetothestep-loadingapproach(startingfromlowloadingratewithseedsludgefromLion’sGateanaerobicdigesterusedinalternativeC,comparedwithaconstantloadingscheme(highloadingrate)andacclimatizedseedsludgeinalternativeB.Pavoni(1972)andEncina(1987)indicatedduringthestart-upprocessthatalowF/MratiooftheinfluenthelpedpromotebcformationandalsoinducethegreatestwashoutrateinatypicalUASB.Thereasonisthatflocandgranulescanbeformedeffectivelyifsubstratefeedratesarekeptascloseaspossibletothatofbacterialgrowthrates.However,thereappearedtobeasuddenincreaseintotaleffluentVFAofA-UASB(samplingpointno.5)beyondday30,rangingfrom4,950-5,150to5,200-6,200mg/LasHAcasshowninTableB2.5ofAppendixB.ThissuddenincreaseasashockloadtotheM-UASBresultedinadecreaseinsystemperformancesasillustratedinFigures5.1-5.4.Combinationofadifficultyincontrollingthesystemloadingratebeyondday30andanattempttomaintainthepHofM-UASBwhichdestroyedthesludgebedandblanket,wasresponsibleforthisparticularsituation.Thiswashoutphenomenonduringthestart-upprocesswasalsomentionedbyseveralotherresearchers.Zeeuw(1980)concludedthattheacclimationprocessofanUASBreactorincludedroughly3stagesofadaptation:(a)adaptationofsludgetothesubstratecomposition-aninitialloadingrateshouldbekeptclosetothemaximumpotentialofseedsludge(0.04kgCOD/kgVSSIday)inordertopreventaninhibitionofthebreakdownofHPr;(b)increasingofthespecificactivityofthesludgeasaresultof56bacterialgrowth,retentiontimeandwashoutprocesswhichoccurredinthefirstweekofoperation;(c)sludgepelletization-appearedapproximately6-7weeksafterthestartupandthesludgebedconcentrationincreasedfrom7to18kgVSS/m3.(b)SystemPerformanceInaccordancewiththestart-upofdifferentacclimatizationprocedures,asshowninFigures5.1-5.4,theresultsindicatedthatawell-adaptedsludgecouldformwithinaperiodof4-5weeks.Theorganicloadingupto1.0-3.4and0.56-1.8kgCOD.m31d,equivalenttoahydraulicloadingupto0.10-0.24and0.06-0.13m3”m3-doranorganicloadingof0.36-0.60and0.20-0.33kgCOD/kgVSS-dfortheM-UASBandtheentiresystemrespectively,couldbesuccessfullyaccommodatedat350C.ThisresultshaveagreedwiththestudiescarriedoutbyHulsoff-Polet.al(1983)ontheeffectofsludgeloadingrateongranulationintheUASBsystem.Hefoundthatpelletsformedonlyatloadingratesinexcessof0.6kgCOD/kgVSS-d,whileat0.3kgCOD/kgVSS-d,bulkingandwashoutoccurred.Duringacclimatization,itwasinterestingtonotethattherewasalagperiodofabout2weeksforalternativeA,beforethesystemstartedtobreakdownthesubstrate,whereasnolagperiodappearedineitheralternativeBorC(asshowninFigure5.2-5.4).Thereasonsexplainingthislagperiodhavealreadybeennotedearlier.Thesystemappearedtotakeabout52,35,and30-52daysforalternativeA,B,andCtoreachpseudosteady-state,ataremovalefficiencyof86-91%solubleCODand94-100%VFA57(asshowninFigure5.2and5.3),respectively.TheacclimatizationperiodforalternativeCtookalmosttwomonths(approximately30-52days),longerthanexpected.Thepossiblemajorcausesofthisparticularsituationareasuddenincreaseinsystemloadingand/oradisturbanceofsludgebedandblanketasmentionedearlier.ArapidincreaseintheHPr/HAcratio,asshowninFigure5.4,indicatedthatthesystemwasinterruptedand/orunderstress,causingtheaccumulationofHPr(becauseH2-utilizingbacteria,toformCH4,areinhibited).Assuch,theexcessofreductionequivalentsisdivertedintolessfavourablebiochemicalroutes(usingorganicacidsasanelectronsink)resultingintheaccumulationofHPr(Zoetemeijer,1982).However,ittookonlyacoupleofweeksforthesystemtorecoverbyitself,naturally.Despitethisproblem,alternativeC(betweendays20-30)seemstobeslightlybetterthanalternativesAandB,intermsofaveragesystemremovalefficiencyandeffluentqualityasshowninTableB1.1ofAppendixB.ApossibleexplanationisthattheA-UASBofthealternativeCwasproperlyacclimatizedandloadedstep-wise,withwelladaptedseedsludge.ThishelpedtogeneratesufficientvolumeofreadilybiodegradableVFA’sformethanogenesisintheM-UASB;whichwasseededwithsludgefromtheanaerobicdigesterofLion’sGatetreatmentplant.Withgreatervarietiesofacetogensandmethanogensinthistypeofdigestersludge,coupledwithaproperstart-upoftheA-UASB,alternativeCappearstoacclimatizethesystemmoreeffectivelyandefficientlythaneitheralternativeAorB.Intermsofnutrientrequirements,itappearsthateffluentlevelsandremovalefficiencyofP04-PtendtofollowthepatternsofbothCODand58VFAeffluentlevelsandremovalefficiency;however,TKNseemedtohavenorelationshipatallwiththesystemremovalefficiency,asshowninFigureB1.1ofAppendixB.Thesummaryofaveragesystemperformanceduringtheacclimatizationprocess,underdifferentrunningconditionswasillustratedinTableBL1ofAppendixB.5.1.2ConclusionsSystemacclimatizationisoneofthemostcrucialstepstosecureareliablesystemperformance.Carefulandpropersystemstart-upandacclimatizationresultsintheproductionofanactiveandeffectivegranularbiomasssludge(pellets),whichsubsequentlycreatesaneffectivesystemremovalefficiencyandgeneratessignificantamountsofCH4gas.Accordingtotheresultsobtainedduringtheacclimatizationprocess,thefollowingconclusionscanbemade:(1)Astep-loadingscheme,startingatasludgeloadingrateof1.2gCODIL-dwithaseedsludgeratioof1:1(byvolume),appearstobeaneffectivemeasuretoacclimatizethesystem.SaltsofCa2andP043seemtoplayamajorpartintheincreaseofthesludgesettleability.(2)The“washoutphenomenon”occurswithin2weeksoftheprocessacclimatization,atasludgeloadingoflessthan1.2gCOD/L-dor0.36kgCOD/kgVSS-d.(3)AcclimatizationalternativeC,seedingtheA-UASBwithacclimatizedsyntheticseedsludgeandtheM-UASBwithsludgefromtheLion’sGateanaerobicsludgedigester,isthemosteffectiveandpracticalmethodtoacceleratetheacclimatization59process,sinceanaerobicdigesterseedsludgeisalreadyavailableatsufficientvolumesforatypicalfullscaleUASBprocess.ThesystemstartstowashouttheMLVSSimmediatelyafteracclimatizationandcompletestheprocesswithin4-5weeks,with86-91%COD(sol.)and94-100%totalVFAremovalefficiencies.605.2EXPERIMENTALDESIGNThissectiondescribeswithasearchforanoptimum“bestknown”operatingconditionbydeterminingtheeffectsandinteractionofSRandRRontheresponsesandprocessperformanceunderdifferentrunningconditions.Theresultsarethenusedtolocatethe“bestknown”runningcondition,whichprovidessuperiorsupernatantqualityandreasonablemethanegasproduction,byanapplicationofYate’salgorithmandResponseSurfaceMethod(RSM)(Box,1969).Theseapplicationtechniquesofexperimentaldesignsareinitiallyusedasmajortoolstohelpdirectthenextappropriateandeffectivemovesoftheexperimentaldesigntowardtheoptimal“bestknown”operatingcondition.Theeffectivenessofatwo-phaseanaerobicdigestion(UASB-UASB)systemtostabilizetheparticulatesubstrateunderdifferentrunningconditionsisthenevaluated.Step-loadingrateexperimentsarefurtherundertakentolocatetheoptimumandmaximumsystemhydraulicand/ororganicloadingcapacities.Furthermore,theexperimentsshouldprovideinformationontherequiredrecoveryperiod,afteraseriouswashoutoftheactivebiomasshasoccurred.Evaluationofbasickineticsisalsomade.Thefeasibilityofthistwo-phase(UASB-UASB)processcanthenbeevaluatedintermsofsystemeffectiveness(acclimatizationandperformance)andsystemsuitability(maximumandoptimumhydraulicand/ororganicloadingcapacityandsystemrecovery).Modificationstodesigncriteriaandoperationproceduresareproposedattheendofthissection.5.2.1Optimum“bestknown”OperatingCondition61Theterm“bestknownt’inthisparticularsituation,isdefinedasarunningconditionthatprovidesthemaximumsystemCODremovalefficiencyandCH4gasproductionunderacertainregimeofpH,temperature,andinfluentflowrate.Tolocatetheoptimum“bestknown”operatingcondition,regardingSRandRR,apreviouslysuccessfulrunningcondition,duringtheacclimatizationprocess,wasusedasastartingcondition;also,anothersetofrunningconditions,asshowninTable4.2ofSection4.2.1,wasalsoimplemented.TheresponsesandefficiencyofeachrunningconditionwereusedtoevaluatetheeffectsofSR/RRonsystemperformance,theeffectivenessofthetwo-phase(UASB-UASB)concept,andthelocationofthe“bestknown”runningcondition.5.2.1.1EffectsandInteractionofSludgeRatio(SR)andRecycleRatio(RR)ToohighanRRcandestroythesludgebedandwashouttheactivebiomassfromthesystem,buttoolowanRRcanalsoreducethesystemremovalefficiencybyreducingthechancesofbettercontactbetweenmicroorganismsandsubstratesanddecreasingthesystembufferingcapacity.Equallyimportant,too-highand-lowanSRcansignificantlyaffectthesystemperformance,sincetheprimaryandsecondarysludgesarecomposedofextremelydifferentnutrientconcentrations,thusaffectingorganicloadingcapacity.TheeffectsandinteractionofbothRRandSR,aswellastheinitialoptimumrangeofthesetwoinfluentialcontrolparameters,mustbeanalyzedandidentifiedpriortoproceedinganyfurthertowardoptimumandmaximumloadingcapacityoftheUASB62UASBsystem.Inthisparticularsituationthatonlytheacclimatizationrunningconditionisknown,an“EvolutionaryOperationProcess(EOP)”usingYate’salgorithmswith2standarderrors(S.E.)isaneffectivetechniquetoleadtheexperimentaldesigntowardtheoptimal“bestknown”runningconditionprovidingsuperiorsupematantqualityandreasonablesystemremovalefficiency.AteachstepofEOP,areferencerunning(bestknown)conditionwithanotherfourappropriaterunningconditionsisdesignedandimplemented.Calculationsofeffect,interaction,phasemean,andchangeinmeanofthesedataaremadeandanalyzedwithanapplicationofSteepestAscenttechnique.Ifnecessary,anothersetofexperimentaldesign(bestknownrunningconditionoftheprevioussetplusanotherfourdesignedrunningconditions)hastobesetupifmagnitudesofeffectandchangeinmeanaresignificant,comparedwith2S.E..Ontheotherhand,ifthesemagnitudesarenotsignificantcomparedwith2S.E.,itmeansthereferencebestknownconditionisclosedtothevicinityoftheoptimalsystemoperatingcondition.ByapplyingaYate’salgorithmwithtwostandarderrors(Box,1969)ontheselectedparametersofSequence1and2experiments,theeffect,interaction,phasemean,andchangeinmeanwerecalculatedandsummarizedinTable5.1.Adetailedcalculationoftheabovestatisticalparameters,basedonthereplicatedvaluesatpseudosteady-stateconditionofeachrunningconditioninSequence1and2experiments,isdemonstratedinTableC2.1ofAppendixC.FromTable5.1,itisapparent,apartfromtheeffectof2standarderrors,thatSRandRRhaveasignificanteffectontheeffluentJale:5.1SI.irT1uT1ar’f..èfféits(SR.aiiill/changeinmeanduringthesequence1and2experiments.Rsponse.:parameters•lntéra-tion:.•::PhaSe:Sequence1Effluent,mgILormgiLasHAcC0D(sol.)1454-346048632072357186/167VFA(tot.)1262-1196-802196517341441/1288P04-P85-213-814212272.33/64.64SystemRem.,%C0D(soL)-24.4659.75-1.452.93-30.566.42/5.75P04-P-51.5281.2816.9924.28-60.3121.76/19.44CH4gas%CH4-7.495.31-5.3167.916.32.79/2.5Yields0.77-0.610.041.770.061.05/.95Sequence2Effluent,mgILormg/I.asHAcCOD(sol.)-36-15-84430-146173/155VFA(tot.)-13.563.5-13.583-205197/176P04-P-43.5-78.540.5393338.49/34.4SystemRem.,%COD(sol.)1.01-0.831.1593.812.462.07/1.85P04-P10.3129.21-8.5483.83-10.211.27/10.07CH4gas%CH4-3.09-0.38-1.8172.6200.98/0.88Yields0.27-0.34-0.531.940.10.29/0.27Note:1.=2standardØftoof.éfféct,ihtéräction.phãsemear2#=2standarderrorsofchangeinmeanNegative(—ye)responsemagnitude,ifsignificant,comparedwith2SEmeanbetterperformancecanbeachievedbydecreasingSR,RR,andloracombinationofbothDetailedcalculationwasillustratedinTableC21ofAppendixC6364andremovalefficiencyofCOD(sol.)andP04-PintheSequence1experiment.However,theeffectofSRappearstobeofagreatermagnitudethanthatofRRandonlytheinteraction(SR*RR)ofeffluentCODissignificant.ThismaysuggestthatthesystemCODremovalefficiencyisprobablygovernedbytheanaerobicstabilizationprocessesanddependslargelyontheSRandRRfactorstoincreasethecontactbetweenmicroorganismsandsubstrates,bufferringcapacity,andnutrientrequirements;whereas,theremovalofP04-P,withoutanyinteraction,ismostlyachemicalreaction,affectedstronglybytheinfluentTPinthefeedSR,thusresultingintheprecipitationofCa2andP043saltsinsidethereactor.Thelargerelativemagnitudesofthemaineffect,interaction,andchangeinmeansonmostoftheresponsesintheeffluentandremovalefficiency,comparedwith2SE.intheSequence1experiment,indicatedthattheoptimum“bestknown”runningconditionwasstillnotreached.Anadditionalsequenceofrunningconditionswasneededtomovetowardtheoptimumcondition.Underthesecircumstances,a“steepascent”methodisthemosteffectivepreliminaryproceduretodirectthenextappropriatemoveoftheexperimentaloperationandthusapproachestheoptimumrunningcondition.Oncethelineareffectbecomessmall,furtherapplicationofthemethodisunprofitable(Boxeta],1969).Agraphicalcontourplot,usingdatafromeachpseudosteady-stateoftheSequence1experiment,wasmade,asshowninFigure5.5.Thesequence2experimentaloperationwasthenmadebyassigningthe“bestknown”conditioninsequence1experimentasareferencerunningcondition,plusanother4differentrunningconditionsYMAX.81.565Io.86Io3101z(a)240032o0r000VMIN.48.5VMAX..81.58773D552zxCb)727256VM(N-48.5Figure5.5SurfaceResponsesofPhaseIExperiment:(a)EffluentCOD(sol.);(b)CODRemovalEfficiencAtPseudoSteady-stateunderDifferentRunningConca’ionsNote:x=RecycleRatio(RR);y=SludgeRatio(SR)66asshowninTable4.2.Thedetailsofthis“bestknown”conditionwillbediscussedinthenextsection.ComparingthephasemeansofbothSequence1and2experiments,thesystemperformedmuchbetterintermsofeffluentquality,CODremovalefficiency,andCH4gascontentandyield,intheSequence2experiment(asshowninTable5.1).TherewasalsonosignificanteffectofSRandRRonalltheresponses,whencomparedwith2S.E..Thesecombinationsindicatedthatthesystemwasnowinthevicinityoftheoptimum“bestknown”conditionprovidingthemaximumCODremovalefficiency.However,therewerestillsomeeffectsofSRonthecontentandremovalefficiencyofP04-PandtheeffectofRRandinteraction(SR*RR)ontheCH4gascontent.Anadditionalrun(Sequence3experimentasshowninTable4.2)wasthencarriedouttoensurethatthesystemreallyreachedtheoptimum‘bestknown”runningcondition.5.2.1.2‘EestKnown”RunningConditionByapplyingthesteepascenttechniqueasmentionedearlier,aresponsesurfaceoftheSequence1experimentalrunsasshowninTable4.2,withrespecttoeffluentCOD(sol.)andCODremovalefficiency,isillustratedinFigure5.5.Asshown,thecontourlinesofbothCODremovalefficiencyandeffluentCODtendtomovetowardsthebestknownrunningcondition(experimentalrunno.0:SR8O/20andRR4/7),where86.09%COD(sol.)removalefficiencyand861mg/LofeffluentCOD(so!.)wereobtained.ItisquiteinterestingtonotethattherunningconditionofSR5O/50andRR2/4wastheworst674-3.5-m—():.3-RunningConditionsSRRR(a)80/202/4E2.5-(b)80/206/10(C)50/506/106°2-(d)50/50214I1.5-ILHIA-UASB+M-UASB-0.5-110192837465564738291100Time,days-Figure5.6NaOH(0.1N)AdditionDuringtheSequence1ExperimentscenariointheSequence1experiment,with8.81%CODremovalefficiencyandtheeffluent(so!.)CODof5950mg/L.Thismayhavebeentheresultofalargevolumeof0.1NNaOHautomaticallypumpedintothereactortoneutralizeandmaintainthepH‘at7.0-7.2(asshowninFigure5.6),thusdestroyingthesludgebedanddiminishingtheCH4gasproductionandthesystemremovalefficiency(asshowninFigure5.7).ItisspeculatedthatamalfunctionofthepHsensorintheM-UASBmighthaveplayedamajorroleinthisunusualsituation.Althoughresultsoftheworstrunningconditionweresuspectedandevenwithoutconsideringthem,theoverallpictureofsequence1Figure5.7SystemResponsesandPerformanceofSequence1Experiment:(a)CODRemovalEffidency;(b)EffluentCOD;(c)CH4Content;(d)CH4GasProduction0080-70-80-50-40-30iiiJf/J}%705030108040II.IIE4?roa.N04•.L•ie3847Tbn.,d.y69experimentstillremainedmovingtowardtheacclimatizationrunningcondition(SR80/20andRR4/7).ReseedingandrepeatingtheacclimatizationprocessoftheM-UASB,usinganewpHsensor,weremadebeforestartingtheexperimentsinSequences2and3,asdetailedinTable4.2.Asummaryofaverageresponsesandsystemperformanceunderdifferentrunningconditions(Sequence1-3)isshowninTable5.2.Asalsoshown,runningconditionno.7(SR6O/40andRR5/8)appearedtoperformbetterintermsofbettereffluentqualityandhigherCH4gasproductivitythanthoseofrunningconditionno.10(SR8O/20andRR4/7);however;conditionno.10providedabetterP04-Premovalefficiency.Finally,asshowninTable5.2,thechoiceofrunningconditionno.9(SR8O/20andRR5/8)wastheoptimum“Bestknown”conditionwithrespecttoP04-Premovalefficiency,specificCR4gasproductivity,andCH4gasproduction,comparedtoallotherrunningconditions.Asummaryofaverageresponsesandperformanceofthe“bestknown”runningconditionisillustratedinTable5.3.Underthis“bestknown”condition,thesystemappearstoprovideapromisingperformancewith95,99,and90%removalefficienciesofsolubleCOD,totalCOD,andP04-P,respectively.AlowlevelofsolubleeffluentCODof308mg/Lisalsoindicated.5.2.1.3Two-phaseSeparation(UASB-UASB)Toavoidconfusionbetweenaconventional,completelymixed“two-stage”Table52SummaryofAverageResponsesUnderPseudoSteady—stateoftheDifferentDesignediunningConditions(Sequence1,2,and3Experiments)::ExperimentalRUAingConditionaAverageResponsesSequence1Sequence2SequenceS11213145161718911011112LoadingRatecu.m/cu.m—d0.100.140.100.120.120.120.080.120.090.110.090.10KgCOD(Sol)Icu.m—d0.630.970.620.760.750.780.630.910.690.590.590.62KgCOD(Total)Icu.m—d5.706.004.506.355.604.803.954.704.304.254.253.85EffluentQualitySolids,mgILTS714065003480544031303600235526352610260026602600VS4030420013002645900143081511751050620930880TSS270580190280210200230730300300340230TVSS18033016026065100100430155140120100COD,mg!LCOD(Total)2780338051356480490400420445470400425400COD(Sol)2755305548706030460325355350300305280290Inorganics,mg/LNH4—N270360425405455400525515510410390425TKN300385435466459420492483489387557420TP60124230364176747685913214027P04—P209123034096347420231111TotalVFA,mg/LHAG146020501780350780500000020SystemRemovalEfficiencySolids,%TS858091829189939191919392VS918096909795979596979797TSS999899999999999699999999TVSS9999999910010099989999100100COD,%COD(Total)959289839999999999999999COD(Sol)54572349395959596949695Inorganics,%TP6631—6—661463655750764083P04—P854033—949597815891889492MethaneGasFlow,l/dTotalGas5380353095911071261208785.0083CH4Gas34461410605862.207169505449CH4ProductivitylId344614106058627169505449cu.m/cu.m—d0.751.000.300.201.351.301.381.601.551.101.201.10cu.m/cu.m—d@SC0.700.900.250.201.201.151.251.401.400.901.000.95cu.m/kgCOD(Total)added@SC0.120.150.050.030.200.250.300.300.320.250.250.25NoteExperimentalRunningConditionsSR=SludgeRatio(PrimaryandSecondarySludges)SRRRSRRRRR=RecycleRatio(RecycleandInfluentflow)180/202/4760/405I8operated©walk—incontrolledroomtemperatureat35o280/206/10860/403/6andpHof5.0—5.3and7.0—7.3forA—andM—UASBs350/506/10980/205/8Intluentfeed©4—5oC450/502/41080/20417570/303/61190/105/8670I305/812901103/6:Thble53PeifôrinanceofA:Twó-phaseAnaéróbkS!udgeDigestion:(UASB-UASB)PróoessOperatingConditionsIPertormanceUASB-UASBRunningHRT,days9-10Loadingrate,kgCOD(total)Icu.m-d5.00kgVS/cu.m-d2.00Supernatantquality,Solids,mgIlTS2600VS,(%TS)1050(40)SS300VSS,(%TS)155(58)Organics,mgIl(Total)COD470(Fil.)COD310lnorganics,mg/INH4-N510P04-P20TKN490TP90Volatileacids,mg/lHAcnilHPrnillso-HBrnilHBrnilA-HVrnillso-HVrnilHVrnilHHenilTotalVFA,mg/1asHAcnil:TabieS3Perñiaheof:AT*d’phaseAraèröblc:SiLdgeOistion:(UASBUA$B):process:at35degreeC/9dayHRT/SR80/20/fiR5/8(cont’dOperatingConditionsIPerformanceUASB-UASBMethanegasCH4yieldscu.m/kgVSremoved0.90cu.m/kgCOD(Total)added0.32CH4productionratecu.m/d75vol/culturevol-d1.70%theoreticalCH495Gascomposition,mol%C0227N21.00CH472RemovalEfficiency,%Organics(Total)COD99(Fil)COD97SolidsTSS98InorganicsP04-P87TP56VFA10074anaerobicdigestionprocessanda“two-phaset’anaerobicdigestionprocess,itisappropriatetoclearlydistinguishthesetwoconcepts.The“two-stage”processconsistsoftwocompletelymixedreactorsconnectedinseries.Thefirstreactorservesasafermenterwhilethesecondoneactsmainlyasasettlerand/orareservedfermenter,incaseofemergencyorfailureofthefirstone.Often,theseconddigesterperformspoorlyasathickener,producingdilutesludgeandahighsolidssupernatant.Thismaybetheresultofahighproportionoffine-sizedparticlesinthefirstdigester.Theyareproducedgenerallybymixingandnaturalbreakdownofparticlesizethroughbiologicaldecomposition,andbecomesaturatedwithdigestergas.Whenthegasistransferredintotheseconddigester,itwillcomeOutofthesolution,formingsmallbubbles;thesebecomeattachedtosludgeparticlesandcreateabuoyantforcethathinderssettling.The“two-phase”concept,ontheotherhand,isanattempttotakeadvantageofthedi-phasicphenomenonoftheanaerobicdigestionprocess,bykeepingthereactorsseparatedphysicallyandprovidingtheoptimumenvironmentalconditionstostimulateand/orpromotethehydrolysis-acidificationandacetogenesis-methanogenesisinthefirstandsecondreactorsrespectively.Inshort,“Phase”shouldbeusedforprocesseswhendifferentreactionsoccurindifferentreactorsand“Stage”shouldbeappliedforthesamereaction/processoccurringinthetwoconsecutivereactors.Itisalsoappropriatetoavoidtheuseoftheword“Steps”,sinceitisusuallyusedtodescribevarioustypesofreactionsie.mechanismsofchemicalreaction.Todeterminewhetheratwo-phase(UASB-UASB)processdoesoccur,3-dimensionalplotsofeffluentprofilesobtainedalongtheheightofbothA-UASBandM75UASBunderdifferentrunningconditions,weremade.AsshowninFigure5.8(a),itisclearthathydrolysis-acidificationpredominatesintheA-UASB;theaveragelowconcentrationofinfluentsolubleCODincreasesgraduallyfromthebottomuptothetopofthereactorunderalltestedrunningconditionsduring145daysoftheSequence2experiment.Incontrast,theaveragehighCODconcentrationoftheeffluentfromA-UASB,fedatthebottomofM-UASB,decreasesrapidlyasitentersthesludgebedandblanket,beforeleavingthesystematthetopofthereactor(asshowninFigure5.8(b)).Thismeansthatacetogenesis-methanogenesisdominatesintheM-UASBandmostofthereactionsoccursatthelowerpartofthereactor.ThisresultalsoagreeswiththeworkpresentedbyGhosh(1984).Figures5.9and5.26reconfirmasimilarsituationof3-dimensionalplotsofeffluenttotalVFAandCOD(sol)profiles,indicatingafeasibilityoftwo-phase(UASB-UASB)processphenomenonduringboth“bestknown”operatingconditionandmaximizationandrecoveryperiodexperiments,respectively.Inaddition,Figure5.10showsasignificantdifferenceofMLVSSconcentrationatthesludgebedandblanketlevels,comparedwiththoseofsettlingandeffluentlevels.InfluentMLVSSconcentrationincreasedsignificantlyatthesludgebedandblanketlevelsandthenremainedalmostconstantattheeffluentlevelofA-UASB.Incontrast,thesehigheffluentVSSconcentrationsofA-UASBdecreasedsharplyafterthesludgebedandblanketlevelsandremainedalmostunchangedintheeffluentofM-UASB.Alltheseresultsappeartoindicatethefeasibilityandeffectivenessofthetwo-phaseanaerobicstabilization(UASBUASB)process,inwhichmostofthereactionsoccurredatthelowerpart(sludgebed76Sampllripointno.—Sp.1So.3Sp.4Sp.2ISamplingpointno.Sp.8Sp.7Sp.650.5(b)Lperimsntatrunningccnditicnsj[Exper:men1aPenods-jSRRRDays70/303/61-2970/305/835.7160/405/878-1(c)60/403/6107-145Figure5.8COD(soluble)ProfilesAlongtheReactorHeight:Underdifferentrunninqconditions(a)A-UASB;(b)M-UASB;(cYRunningConditionsNote:AllsamplinglocationsareillustratedinFig.4.1ElfluentCOO.mgJlllhousan)0—II1816222529435057547175359299102106113120130134141146Time,daysEffluentCOO.mg/I(thousand)(a)A1816222529435057547175869299102106113120130134141146Time,days77r:L1115254357718599106120134145(a)LUTime,days6gg 0000017(6)ooL7oooccfioooc/c20115145(b)LUT’rne,days_________________Lntedos1SRRRDays70/303/61-2970/305/836-7160/405/878-106(c)60/403/6107-145Figure5.9TotalVFAProfilesAlongtheReactorHeight:UnderDifferentRunningConditions(a)A-UASB;(b)M-UASB;(c)RunningConditionsNote:AllsamplinglocationsareIllustratedInFIg.4.1780i115254357718599106120134145(a)Time,days(7).J2OOOOOOOOCCU/8)f15254357718599106120134145Time,days(b[iiri.nringconditions.[€xperimentatP.erlàdsjSRRRDays70/303/61-2970/305/835-7160/405/878-106Cc)60/403/8107-145Figure5.10MLVSSProfilesAlongtheReactorHeight:UnderDifferentRunningConditions(a)A-UASB;(b)M-UASB;(c)RunningConditionsNote:AllsamplinglocationsareIllustratedinFig.4.179andblanketlevels)ofbothA-UASBandM-UASB.Asinari(1981)andHarper(1986)reportedasimilarsituationwherebytheconstantproductionofHPrand/orHBuacidsinthefirstreactorwasbeneficialforthemethanogenicreactor,sinceitenabledthedevelopmentofahealthypopulationofobligatehydrogenproducingacetogenic,(OHPA),bacteriaandtheassociatedhydrogen-oxidizingmethanogens;thisensuredtherapidassimilationoftheseacidsinthesecondreactor.5.2.1.4ConclusionsWithanapplicationofa2by2factorialdesignexperimentandResponseSurfaceMethod(RSM),theeffectandinteractionofSRandRRonthesystemresponsesandperformancewerecalculated.Anoptimum“bestknown”runningconditionwaslocated,withaninterpretationoftheeffectandinteractionofSRandRRontheresponseparametersatdifferentsequencesoftheexperiment.Theresultsofthisinvestigationcanbesummarizedasfollows:(1)Asteepascenttechnique,oneofthemostpromisingRSMapproaches,appearstobeaneffectivemeasureindirectinganappropriatestepoftheexperimentaldesigntowardtheoptimum“bestknown”runningcondition,incaseswheretheseconditionsarefairlyremoteorunknown,(likethoseoftheSequence1experiment).(2)TheeffectofSRontheeffluentCODandP04-PwasgreaterthanthatofRRandonlytheinteractionofSRandRRontheeffluentCODwassignificantinthe80Sequence1experiments.However,therewerenosignificanteffectsandinteractionsofSRandRRanyoftheresponseparametersintheSequence2experiments,withtheexceptionofSRontheeffluentandremovalefficiencyofP04-P,andRRonthe%CH 4content(whereaslighteffectwasdetected).(3)Theoptimum“bestknown”runningconditionwasSR80120andRR5/8,withrespecttoP04-Premovalefficiency,specificCH 4gasproductivity,andCH 4gasproduction.(4)Thefeasibilityoftwo-phaseseparationofanaerobicdigestionofsewagesludgewasconfirmed.Hydrolysis-acidificationandacetogenesis-methanogenesisdominateintheA-andM-UASBs,respectively.Inaddition,itisquiteprobablethatmostofthereactionsinsidetheM-UASBoccurredatthelowerpartofthereactor(sludgebedandblanket).5.2.2MaximumLoadingCapacityandRecoveryProcessTheconventionalanaerobicdigestionprocesshas,untilrecently,beenconsideredtobeunpopularandnotfeasiblefortreatmentofahigh-strengthorganicwaste(suchassewagesludge)undershortretentiontimes,sinceitistoosensitivetovariousextraneousfactorsandunabletoretainasignificantamountofviablesludgeunderhighloadingconditions.However,itisnowpossibleandfeasibletoinstallwell-functioning,full-scaleanaerobicfacilitiesoperatingathighloadingrates.Allmodern“highrate”anaerobic81processesarebasedontheprinciplesofhighviablebiomassretentionandsludgeimmobilization(ie.fixation).Atleasttwomechanismsareinvolvedhere:(i)theformationofhighlysettleablesludgeaggregates,combinedwithearlygasseparationandsludgesettling;and(ii)attachmentandentrapmentofbacteriaandsludgeaggregatestoahighdensityparticulatecarrier,orpackingmaterial,suppliedtothereactor(Lettinga,1983a).TheUASBisconsideredtobeoneofthemostsuccessfulandpromisingprocessesofthemodernhigh-rateanaerobicdigestionconcept.IthaslongbeenrecognizedthattheUASBprocesshassuperiorflocculationandsettlingabilities,aswellasbeingabletomaintainahighsolidsretentiontime,underahighorganicloadingrate.Lettinga(1979b)suggestedthathighsettleabilityandspecificactivityoftheanaerobicsludgewerethemainprerequisitesinachievinghighloadingrates.Toaccomplishthistarget,atleast3conditionsmustbeapplied:(a)carefulstart-upoftheprocess;(b)maintenanceoffavourableconditionsforflocculationandgrowth;and(3)promotionofthickening.Undertheserequirements,thesystemwasloadedstep-wisely,bykeepingthebestknownrunningcondition(SR8O/20andRR5/8)fromtheprevioussectionasastartingpoint.Thesystemloadingratewasnotsteppedupuntilthesystemwasoperatedaslongas2-3systemHRTand/or80%removalefficiencywasachieved.Priortodiscussingtheresultsofmaximizationandrecoveryperiod,thefollowingtermsandapproachesusedinthisparticularexperiment,shouldbeclearlydefined:(a)Maximumloadingcapacity-isthepointwheretherewasnosystemremovalatall,withtheinfluentandeffluentCODconcentrationsbeingequal.82(b)Recoveryprocess-istheapproachtorecoverthesystembyreducingtheorganicloadingrate,step-by-step,andanalyzingthepercentageofsystemrecoveryateachstepofloadingreductionafteracompletesystemfailure.(c)Optimumoperatingcondition-istheoptimumpointofSRandRRwheretheoptimizationofsystemCODremovalefficiencyandmethanegasproductionwereachieved.Theresultsofsystemmaximization,processfailure,recoveryperiod,systemrecovery,andoptimumoperatingconditionsarediscussedinthefollowingsections.835.2.2.1MaximumLoadingCapacityAstheorganicloadingrateincreasesstep-by-stepandfinallyoverloadsthesystem,itisimportanttomonitorwhetherthesystemreachesthepointofcompletefailure.Severalfactorshavetobeconsidered,includinghowtoidentifywhetherthesystemisclosetothecriticalpoint;whatparametersshouldbemeasured;whatoptionsareavailable;andhowtocontrolthem.Ingeneral,feedstoppage,influentloadingreduction,effluentrecycle,andalkalineadditionarerecommendedforrecoveringthesystemafteraseriousshockloadand/orfailure.Acombinationofstep-loadingreductionandrecyclewasselectedasapracticalandeffectiveapproachtothisparticularcase.(a)ProcessFailureAlthoughthistwo-phaseUASB-UASBprocessisdesignedtoprovideoptimumconditionstostimulatethegrowthofacidogensandmethanogensintheA-andMUASBsrespectively,processfailurecanstilloccur,ifthesystemiscontinuouslyandconstantlyoverloaded.ThiscanslowlyturntheM-UASBintoasingle-stagedigester,wherebothacidogensandmethanogenscompeteforsubstrateutilizationandgrowth.Ifoverloadingcontinueswithoutanyeffectiveremedialactionstaken,thesystemwilleventuallyfail.Betterunderstandingofmicrobiologicalandbiochemicalreactionshasleadtostabilityimprovementoftheanaerobicdigestionprocess.ItisnowknownthatVFAsand84hydrogencanbeformedmorerapidlythantheyareremoved,underhighloadingrateand/orasuddenincreaseinorganicloading(Zoetemeijer,1982).Underthiscondition,acetogens(especiallyObligateHydrogenProducingAcetogens,OHPA),responsibleforconvertingI-IPrandotherhigherVFAsintoHAc,C02,andH 2.areinhibitedifthehydrogenconcentrationexceeds0.01%.Asaresult,theexcessofreductionequivalentsisdivertedintolessfavourablebiochemicalroutes,resultinginaccumulationofHProrhigherVFAproducts(Zoetemeijer,1982).Thisobservationcanpartlyexplainthefeasibilityofusingthetwo-phaseconcepttostabilizeinfluentsubstrateanaerobically.However,ifsystemoverloadingstillcontinues,highconcentrationofVFAswilldestroytheM-UASBbufferingcapacity,resultinginadropinthedigesterpHanddiscouragingthegrowthofmethanogens.Thissituationcombinedwithhighloadingandhighrecycleratescanleadtoawashoutofthemethanogensfromthesystem.IftheHRTexceedsthemaximumbacterialgrowthrate,cessationofCH4productionandfinallyprocessfailuremayresult.Differentapproachesandmethodshavebeenproposedtopredictwhetherthesystemhasfailedornot.GraefandAndrew(1974aand1974b)suggestedthatcessationofCH4productionrate,suddenincreaseinVFAconcentration,aincreasein%CO2contentindrygas,andadropinpH,asindicatorsofprocessfailure.Moreover,Bergman(1966)proposedthattheratioofVFAlalkalinityexceeding0.3-0.4wasasignalforprocessfailure.85AsshowninFigure5.11andFigure5.13-5.14,thesystem(M-UASB),duringthemaximizationsequence,indicatedsomesignsoffailureastheloadingrateincreased,byshorteningtheHRTfrom3.40to1.20days;itfailedcompletelyatanHRToflessthan1.0day(0.98),equivalenttoasystemhydraulicloadingof1.0m3/m3-d.COD(sol.)andVFAremovalefficienciesdeclinedfrom90%downtolessthan10%,attheHRTof1day,withaccumulationofP04-Pinsidethesystem(asshowninFigure5.11).Figure5.13confirmsthissituation,wherebythetotalVFAconcentrationroseinthereactoratday37,atasystemhydraulicloadingrateof0.35m3/m3-d.Initially,theconcentrationofbothHAcandHPrincreasedrapidlyto930mg/Land340mg/Latday40;approximately3-4dayslater,the1-lAcdisappearedandtotalVFAconcentrationroseto1800mg/LasHAc,byday42.Also,thepresenceofHBuandotherhigherVFASwasnoted,furtherincreasingtheconcentrationoftotalVFAupto2815mg/LasHAcatanHRTof1day(orprocessfailure).ItisinterestingtonotethatthereisanaccumulationofHPratanHRToflessthanoneday.Underthestressofahighorganicloadingrate,theremaybeashiftinthemetabolicpathwaytoalessfavourableone,insidethereactor.AstheMUASBwasloadedupstep-by-step,therewasashiftintheratioofVFAproducers(acidogensandacetogens)andconsumers(methanogens,SRB,andNRB)insidethereactor.ThisleadstotheproductionofsignificantamountsofCO2andH2.Asaresult,thepartialpressureofH2insidethesystemincreasesuptocertainlevel(higherthan10atm)causingashiftinthemetabolicpathwayandaccumulationofHPr,asshowninFigure5.12.AsalsoshowninFigure5.13(a),theeffluentsolubleCODandVFAconcentrationsincreasedgraduallytoday51,withanincreaseinloadingrate,after86Figure5.11ATwo-phase(UASB-UASB)Step-loadingAndM-UASBRemovalEfficiencyDuringthesystemmaximization(a)HRT,KgCOD/cum-d;(b)Removalefficiency24-20-16-12-8-KgCOD!cu.m-d25476a102]1ME,daysa8I40100806040200-2051—III—‘III’I.181115222733374247liMEdays-_\\,4/’•COD(RI.)+P04-P-40--60--80161115222733374247lime,days5187(1)C92NA&+2ADP+2p—2CHOOOH+2NADH+2ATPPynMcadd(2)2NADH—2NAD.2H2(2)CHOCOOH+2NADH+ADP+P(3)2CHSOCOOH+2NAD—CCI-COOH+2NAD+ATP+2CKoA+2C+2NACH(3)CHOCOOH+NAD(4)2CHoA+2ADP+2P—CCoA+O2+NADH2CHOOH+2ATP(4)CHoA+NADHCOOH+H+NAD(I)Gft.jcose(1Glucose;NA1;7.r_aLa,I___2’I2*0.(SI•I)2*?’(3g..IMPc32PYR2PYR(.32:Ic2>CA)2AcCoAtAcC0A!‘H?r-HO(5’..3)12NAc‘HAcIc.toc.CAç•r;CSIc;.Ste;.SIc;.1cr1ictpr.ssur.();ç;-I‘4ac’aIr•S%if•Overail:C2&.2H2+4ADP+4P%J+3AOP+3P2CHOOH+2CO+4H2+4ATPCCCOOH+CCOOH+c++3ATPFigure5/2Aciaogenicphaseofglucosefermentationunderlowandh:ghH2partidpressurestoformaceticacidpropionicacid‘‘2gasandCO2.(Abbreviations:EM?-Embden-Meyerhofpathway;PYR-pyruvicacid;AcCoA—acetylcoenzymeA;I-fPr—propionicacid;HAc—acetic(Source:ModifiedafterPALNSet.aI,1987)14768102—/1Time,days11122334251TIme,days—1-0.8-0.4-0.2088•CH4,Vd÷%C02COD(a)I260240220200180160-140-120-100-80-60-40-2007---..-I’llI”II10-9—6-85-•4j2—i04-3.5-32.50.5Ma2dn,nloadsU>4-3.5-3-2.5-2-1.5-1—0.5-0.-1.8-1.41.2254766Time,daysDVFNALK•Tot.VFA—HAC102(b)0.816111522273337424751TIme,daysFigure5.13AM-UASBSystemEffluentQualities:Duringtheprocessmaximization(a)CH4productlon,%C02,Eff.COD;(b)TotalVFA,HAc/HPr,VFA/AlkallnIty8910.ooyp.flod9IEffluentMLV+MLVSS(M.UASB)87A12547:68102lime,days(a)0•I16111522273337424751lime,daysT1<N(M-IJAS8)Uidnitm,toad’R.oo.tyoedod0.9_____TP(M-UASB)-(b)1I0.6lime,daysitfttaftftftrlime,daysFigure5.14AM-UASBNutrientsandMLVSS:DuringtheSystemMaximization(a)EffluentMLVSS,MLVSS(M-UASB);(b)TKNJP90shorteningtheHRT(M-UASB)to1.20days.TheCO2contentintheoffgasincreasedfromapproximately31.03(day37)to51%(day51),astheloadingrateincreased,whileCH4gasproductionincreasedalmostlinearlywithadecreaseinHRT(M-UASB)downto1.55days;however,beyondthat,theCH4productionratedecreasedwithadecreaseinHRT.TheVFA/alkalinityratioalsoshowedevidenceofsystemfailureatanHRTlowerthan1.55days.TheratioseemstoincreaselinearlywithadecreasingHRTandisabovethecriticallevelof0.3-0.4recommendedbyBergman(1966).Thewashoutphenomenon(asshowninFigure5.14),leadingtosystemfailure,correspondedtoanincreaseineffluentVSSfromthesystem.TheconcentrationprofileofMLVSSintheM-UASB,asshowninFigure5.14,issimilartothatofCR4gasproduction,illustratedinFigure5.13.Asshown,thesystembegantowashouttheMLVSSandtheconcentrationofMLVSSinthereactordeclinedsharplyafterreachinganHRT(M-UASB)of1.55days;however,theMLVSSconcentrationdidrecoverslightlyafterabout4days,atahydraulicloadingrateof1.80m3/m3-d(HRTof1.0day).Thissituationmayhaveresultedfromtoohighaloadingratecreatinganunsettledsituationandsevereturbulenceinthelowerpartofthereactor,thuspartlydestroyingthesludgebed.Becausethesamplesweretakeninthemiddleofthereactor(Samplingpointno.6),itispossiblethatahigherconcentrationofMLVSS,resultingfromthisturbulenceinthisparticularcase,couldoccur.Itisinterestingatthispointtonotethatthemaincausesofprocessfailurewerethecombinationofhydraulicoverloading,thusexceedingthegrowthrateofboth91acidogensandmethanogens(washoutphenomenon),andthedestructionofthedynamicbalanceofacetogensandmethanogensinsidetheM-UASB.ThesystemdemonstratedanincreaseinVFAconcentrationand%CO2content,butadecreasein%CH4contentandproduction,asdiscussedearlier.Thisobservationalsoconfirmedthatthefailurewasnotcausedbyatoxiceffect,sincetherewasnosignofadecreaseinVFAconcentrationcorrespondingtoadecreasein%CH4content.Intermofnutrientrequirementsduringtheprocessfailure,onlytheconcentrationofTPinsidethereactorandeffluentincreasedsignificantly;TKNincreasedonlyslightly.(b)MaximumLoadingRateThesystemcompletelyfailedastheloadingratewasincreasedandtheHRTwasshortened,instepwisefashion.AsshowninFigure5.15,thesolubleCODremovalefficiencydeclinedlinearly,astheHRTdecreasedbeyond1.5days.Topredictthemaximumloadingrateprecisely,asimplelinearregressionwasapplied,usingtheaveragevaluesofeachsteploadingrate,atpseudosteady-stateconditionsasfollows:Y=129.281-3.214X(15)whereY=%COD(soluble)removalefficiencyX=Influentflowrate,Lid0.8892100-90-80-70-60-50-40-30-20-100(a)Y=129.281-3.214Xy=%CODRemovalEfficiencyx=InfluentFlowRate,l/dr2=0.88Max.SystemCapacity=40l/dOperatingConditions;SR80/20,RR5/8Temp.3’CNopHControl+%CODRem.Eff.•InfluentFlow,l/dCriticalHRTsys,d=3.0HRTm-uasb=1.5-100-90-80-70-60•50L.-40-30-20-100a)C.)Ea)0C)C0D-o00.IC)0a)-C01009080706050403020100—IIIIII—0.51.52.53.54.5M-UASBHRT,days(b)./SystemHRT%TheoCH4Prod[..:‘:...:...‘.:.1.7736.47I...::.:...::.:.2.1860.11/2.8073.21I..::...-...:::.:4.8097.99I6.0783.70L_JOptimalOperatingRegion—IIII1234567SystemHRT,daysFigure5.15SystemOptimumOperatingRegionandMaximumCapacity:(a)OptimalOperatingRegion;(b)TheoreticalCH4Production93Basedonthissimplemodel,themaximumloadingrate(definedasnoCODremovalefficiency)asshowninFigure5.15,wasabout40LId;thiswasequivalenttoasystemhydraulicloadingof1.80m3/m3-d,atasystemHRTof1.125days(0.625dayforM-UASB).TheCH4gasproductionatthispointofcompletefailurewasabout50%ofthetheoreticalvalue,whichisacombinationofCH4gasproductionfrombothA-andM-UASBs.DetailsofcalculatingthetheoreticalCH4gasproduction(basedontheassumptionthattheinfluentsubstrateis100%glucose),areshowninTableD3.1ofAppendixD.Atthis“failureloading”,theeffluentCOD(sol.)wasinexcessof9540mg/L,totalVFAswereabove3,750mg/LasHAc,theCO2contentwasmorethan45%,andtheVFAlalkalinityratiowasover1.55.Oleszkiewicz(1988)indicatedthatthe“failureloadingrate”forabiofilterusingaUASBreactortostabilizesyntheticwastewater,was20kgCOD/m3-d,whichisequivalentto50LIdatanHRTof5.8hrs.Moreover,Bergman(1966)pointedoutthathissystem,beingusedtotreatsewagesludge,failedatanHRTof2.20days,apHof4.60,andaHAc:HPr:HBuratioof2.0:2.5:1.0,withHProver9,000mg/L.Althoughtheseresultsarenotdirectlycomparable,thereissomesimilarityinthedatabasesfromtheseUASB-UASBstudies,withrecognizablepatternsandnumericalindicesinthesamegeneralrange.5.2.2.2RecoveryProcessInanaerobictreatmentprocesses,shorttermhydraulicoverloadingisaproblemdifficulttoavoidandoperationalfailureisfrequentlytheoutcome.Anextendedreactor94recoveiyperiodisusuallynecessary.Theproblemofhydraulicoverloadingisaggravatedwherenorecyclefacilityisavailable,topreventthelossoftheslowgrowingmethanogensfromthesystem.Thefollowingsectionsdealwiththebehaviourandresponseofthissystemaftercompletefailureandtherecoverytoinitialnormality.Priortoadetaileddiscussion,however,someclarificationsshouldbemade.Theterm“processfailure”canbeeithertemporary(ie.asuddenorganicshockloading)orrelativelyprolonged(ie.atoxicshockloadorhydraulicoverloading-completewashoutoftheactivebiomass).Severalstudieshavedealtwithtemporaryfailures,butrarelywithapermanentone,especiallythatofhydraulicoverloading.Thefollowingsectionsdealwithsystemrecoverybacktotheinitialstage,usingacombinationofRRandstep-downloadingapproaches.(a)RecoveryPeriodTheworstscenarioinrecoveringasystemaftercompletefailureistheneedtore-seedandre-acclimatizethesystem.However,thisoptioniscostlyandnotpracticalintermsofafull-scaleoperation:time-consumingprocessesandhigh-skilledmanpowerarerequired.Acombinationofstep-downloadingrateandRRisrelativelysimpleandquitepractical,comparedwiththeoptionofreseedingandacclimatization(step-uploading).However,somequestionsstillexistastowhetherthisapproachismoreeffectivethanthatofre-acclimatization,andwhatchangesthesystemundergoesduringtherecoveryprocess,comparedwiththatoftheinitialnormalstage.95AsshowninFigure5.16-5.18,thesystemappearedtobeginrecoveringfromtheseriousfailureafter19daysofdecreasingthehydraulicloadingfrom0.40to0.25m31m3-d;thiswasaccomplishedbyprolongingtheHRT(M-UASB)from1.20dayupto2.00days.ThesystemdemonstratedCODandVFAremovalefficiencies(M-UASB)of43and45%respectively,with6,580mg/LeffluentCOD,47%CO2content,68LIdofCH4gasproduction,andaVFAlalkalinityratioof1.40.Thereafter,thesystemseemedtorecoverlinearlywithtimeandrecoveredcompletelytotheinitiallevelofoperationatapproximatelyday43,therebyshowing97%VFAand92%solubleCODremovalefficiencies.TheeffluentCOD(soluble)waslessthan1,000(880)mg/LandthetotalVFAwas125mg/LasHAc,with32%CO2content,62LIdofCH4gasproduction,andVFAlalkalinityratiooflessthan0.1(0.05).Thesystemthenfolloweda“dimensionaltimeframe”,definedastheratiooftherecoverytimetotheHRT;thiswasequaltoapproximately5.60and10forthesystemandtheM-UASB,respectively.Thiscomparedwelltoaratioof5-10foranexpandedbedanaerobicreactor(UASBwitheffluentrecycle),operatedatahighorganicloadingrateinnon-steadystateconditionsreportedelsewhere(Encina,1987).Byday30,theactivebiomass(MLVSS)ofthesludgeblanket,inthemiddleofthereactor,recoveredandreachedapeakatday40.Thismayhavebeentheresultofthesystembeginningtorecoverandproducingsmallgasbubbles,thuscreatingflocculationatthesludgeblanketlevel,(therewasevidenceofincreasingCH4gasproductionatday30,asillustratedinFigure5.17(a)).Forthenext10days(day38-43),itisspeculatedthatthegranulationprocessplayedamajorroleinassistingsubstratestabilizationandsystemrecovery;therewasasharpincreaseinCODandVFA9622-20-18-E-18-0-C.,___________________________14-12)10:8642Ti’i’iii’I1510151926384551liME,days2:-10-30--50--70/VMa)*n,.,nloadsRecowtyp.iod1254768102lime,days‘4-lime,days(a)•HRT+KgCOD/cum-d110193851lime,daysFigure5.16ATwo-phase(UASB-UASB)Step-loadingAndM-UASBRemovalEfficiencyDuringthesystemrecovery(a)HRT,KgCOD/cu.m-d;(b)Removalefficiency9719—190-MaximumLoadsRecovefyPeriod(a)•CH,COD%CO2254768102E11—j110Tlme,days-..___.10_____:flme,days68-\Aecwyp.1od(b)VFNALK•Tot.VFA35::HAc13Z2HPr125Time,days320Time,daysFigure5.17AM-UASBSystemRecoveryProcess:(a)CH4production,%C02,Eff.COD;(b)TotalVFA,HAc/HPr,VFNAkalinity988-(a)Msjd,mailoadsEffluentMLVSS:MLVSS(M.IJASB)171TIME,daysTime,days1.2(b)1.1TKN(M-UASB)MadmumloadsPocoverypotod1TP(M-UASB)•EffluentTKNi-EffluentTP0.90.812547681020.7TIME,daysE0.80.50.40.30.20.10II110193851liME,daysFigure5.18ASystemNutrientsandMLVSS:Duringtherecoveryprocess(a)EffluentMLVSS,MLVSS(M-UASB);(b)TKN,TP99removalefficiencies,approximately91-97%,aVFA/alkalinityratiolessthan0.5,andasharpbuildupinbiomass(MLVSS)inthesludgeblanket,upto1,700mg/L.Nutrientrequirements,measuredasCOD(total):TKN:TPinsidethereactoratthesludgeblanketlevel(samplingpointno.6),wasintheratioof36:4:1.(b)SystemRecoveryAlthoughthesystemreturnedtotheinitiallevelofoperationbyday40,itisquiteinterestingtonotethatanaccumulationofHPrandanincreaseintotalVFAoftheMUASBoccurred,asshowninFigure17(b);thisisinagreementwithresultsreportedbyZoetemeijeretal,(1982).Thismightsuggestthatthesystemmetabolicpathwaysshiftedtoalessfavourableroute;however,thepathwaysdidshiftbacktomorefavourableonesafteralmost20daysofloadingreduction,asanincreaseinCH4gasproduction,%CHcontent,andalinearreductionofTotalVFAandHPrconcentrationwereobtained.Rinzema(1988)indicatedthatasystemusingtheUASBprocess,inoculatedwithgranularsludgetostabilizeVFAinthepresenceofH2Sconcentrationover100mg/LS,hadasharpdropofVFAremovalefficiency,butrecoveredwithin3-4weeks.Todemonstratehowwellthesystemrecoveredateachstepofloadingreduction,comparedwiththesameloadingrateduringthemaximizationprocess,somemodificationandfurtheranalysisoftheexperimentalresultsweremade,asshowninFigure5.19and5.20.COD(sol.)removalefficiencyandCH4gasproductionwereselectedasmainresponseparametersforthisinvestigation,sincesuperiorsupernatantqualityand100reasonableCH4gasproductionarethetwomainobjectivesoftheanaerobicstabilizationprocess.Figures5.19(c)and5.19(d)showtherelationshipbetweentheactualrunningHRTand%solubleCODremovalefficiencyduringthemaximumloadingandrecoveryperiod.Basedontheserelationships,CODremovalefficiencyateachdiscreteHRTstartingfrom1,1.5,...4.5dayscanbeestimatedduringthemaximizationandrecoveryperiod.Systemrecoveryefficiency,definedasapercentageofCODremovedduringtherecoveryperiodoverthatofmaximizationatthesameHRT,canthenbecalculatedandgraphed,asshowninFigures5.19(a)and5.19(b).Similarly,systemrecoveryefficiencyintermsofCH4gasproductionateachspecificHRTduringthemaximizationandrecoveryperiodcanalsobeexpressed,asshowninFigures5.20(a)-5.20(d).Predictivemodelsforthissystemrecovery,withahighcorrelation(r2=O.81-0.99),asshowninFigure5.21,areformulatedasfollows:Y=25.37e°(16)whereY=%COD(sol.)removalefficiencyXHRT(M-UASB),daysFortheCH4gasproduction,thepredictivemodelisasfollows:Yl=9.25+64.01lnXl(20)whereYl=CH4gasproduction,Lid80>0Ea:400C)0020I__i—___j:::::IIII.7—80.4)0:—:IIIIII.7,•.600O1rrrPI404)02000--flecovetyPeriod0041.rr,Ir..-.U00lOt)204)0044)05.00IUF.tloysFigure5.19AM-UASBSystemRecoveryatPseudoSteady-stateWithdifferentrunningconditions%COD(FIL)removal100(a)(b)IIRT.days%000(11.)removalMax.LoadsHecoveryPeriod%Hecover1.0221801.58837412.09540422.59750523.09760623.59871724.098°81834.598.90924.798.9698Note°Estimatedvalues100/801’.60f‘%Recovery40RecoveryPeriod20/•MadmurnLoadsaIIIII01.01.52.02.53.03.54.4.54.7FIIT.days100001--’”---r—:(c)160001:60.00:I!•IIILi..•40.00:IMaximumLoadso•IlIo:IIII2O.OoI::IIIIII0.0004)00044)4)450204)2.0100350IIRI.JIlys(d)220•2.00C-)1.80Figure5.20AM-UASBSystemRecoveryatPseudoSteady-stateWithdifferentrunningconditionsCH4,cu.m/cu.m-d54.5•0E3.5,E,2.5C)21sI.(a)•MaximtznLoads100C?%Recovery80604.4...:+RecoveryPeriod152.02:53.5HRT,days2.6014.00—II:1(C)II!Eh1:MaximumLoadsioIIIIIIIIIIIIIIIIII‘.00,.nm’j.,...,,,.I3.000.501.00502.002.503003.0HRT.days(b)IJT.days.CH4,cu.m/cu.m.dMaxLoadsRecoveryPeriod%Recoveq12.452.4601.53.982.25572.03.651.88522.53.251.78553.02.551.76693.51.701.74102IIIIIIIIIIIIIIIIIII————4,::cij\RecoveryPeriodI40.‘,Irr,rf..I.-.--,-.-j-,-..II,.3.oO1.002.003.C04.005.00HRT.das240103Figure5.21APredictedM-UASBSystemRecoveryLUnderDifferentRunningConditions120—%COD(Eli.)removal100CH4,cm/cu.m-d/80-(2)/G)>0C.)60-.40,.(1)20-O.29X(1)Y=25.37e(r2=O.99)(2)Y=9.25+64.01(mx)(r 20.81)0-III012345HRT,days104Xl=HRT(M-UASB),daysTomeettheobjectivesofbothpollutioncontrolandmaximumCH4gasproduction,theoptimumsystemHRTof7.65daysand4.25daysfortheM-UASB(equivalentto43daysofrecoveryperiodaftercompletesystemfailure)wereinitiatedinordertoprovide92and100%recoveryofCODremovalefficiencyandCH4gasproduction,respectively.ItisalsointerestingtopointoutthatthebreakthroughofsystemrecoveryispredictedatanHRTMUASBof1.5-1.7days,resultinginmorethan40%recoveryofbothCODremovalefficiencyandCH4gasproduction,(asshowninFigure5.21).ThesystemthenrecoveredbacktotheinitiallevelatanHRTof4.25days.Thisobservationleadstotheconclusionthatatwo-stepincreaseinHRTby1.50and5.80timesthatofthefailurevalueHRTMUASBof0.625days,isamosteffectivemeasureforcompleterecovery.5.2.2.3BasicExperimentalKineticsSincetheanaerobicstabilizationprocessisconsideredtobebi-phasicinnature,thusrequiringabalancebetweenacidproductionandutilization,processstabilizationandcontrolmaybepossiblyenhancedbyphysicalseparationofthesetwophases.Figure5.8confirmedthefeasibilityofthephaseseparationconcept,asdiscussedearlier.Althoughthesystemachievedpromisingresults,itwouldbeinterestingtoknowhowthemixedcultureofbacteriarespondedduringboththemaximizationandrecoveryperiods.105Onewaytoachievethisistopredictthekineticresponsegoverningtheacid-andmethane-phasereactors(A-UASBandM-UASB),underthesesituations.Thispredictionandestimationwerebasedontheexperimentaldataobtainedatpseudosteady-stateconditions,withacontinuousstep-loadingrateduringthemaximizationandrecoveryperiods.Itisimportantatthispointtomentionthatthiskineticestimationissystemdependent:processdesignandconfiguration,runningconditions,feedcharacteristics,seedsludgeandstart-upprocedure,andevaluationprocess.Acomparisonofthesekineticvalueswithothersmustindeedtakethisdependencyintoaccount.Thebasickineticresponsespredictedhereareexpectedtobehigherthanthosecitedintheliterature,sincesyntheticsubstrateandcontinuousfeeding(insteadofbatchfeeding)wereused,alongwithaprolongedperiodofacclimatizationandexperimentalrunningofawell-adaptedmixedcultureofbacteria.Becausereactorkineticsgoverningtheacidphaseandmethanephasearequitedifferent,asabi-phasicphenomenon,anestimationofthekineticsmustbemadeaccordingly.Therate-limitingstepintheA-UASBreactoristhehydrolysisofparticulatefeedtosolublesubstrates,whilemethanogenesisisthepredominantprocessintheMUASB.Thefirst-orderhydrolysisconstant(Kh)andpercentageofparticulatehydrolysisoftheA-UASB,theyieldcoefficient(a),decaycoefficient(b),maximumspecificsubstrateutilizationrate(K),andhalf-velocitycoefficient(Ks)oftheM-UASBwereestimated,inordertoprovideabroadviewofmicrobialresponseunderdifferentstresses.Thehydrolysisrate(Rh)followsanapproximatefirstorderreaction,withrespect106totheconcentrationofdegradableparticulateCOD(Pavlostathis,1986).Rh=Kh*F(17)whereRh=hydrolysisrateKh=first-orderhydrolysisconstantF=particulateCODconcentrationAMassbalancearoundA-UASBatsteady-stateconditionsyields:Q(FoF)V*Kh*F=0(18)where0=FlowrateFo=InfluentparticulateCODconcentrationVReactorvolumeDividingequation(22)byQandrearrangingyields:0=Fo/(F/0)-1/Kh(18)where0=HRT=V/Q,F=Fo-F,andF*Kh=Byplotting0against0/SF,theinterceptofthislineisequaltolIKh,as107illustratedinFigure5.22(c);thevalueofKhisequalto1.67day1(r 2=0.88)duringthemaximizationprocess,comparedwith3.0day1reportedbyEastman(1981).Rajan(1989)alsoreportedthatthepercentageofparticulatehydrolysiswasabout45%,definedasthepercentageofeffluentsolubleCODovertotalCOD.However,inthisevaluation,thedifferencebetweentheeffluentandinfluentsolubleCODwasusedtocalculatethepercentageofparticulatehydrolysisunderdifferentloadingconditions,asshowninFigure5.22(d).TherelationshipbetweentherateofmicrobialutilizationofthesubstrateandtherateofbacterialgrowthcanbeexpressedintermsofamathematicalmodeldevelopedbyLawrenceandMcCarty(1970):6S/&=a6L/6t-bS(19)where6S/6t=netgrowthrateofmicroorganisms,mass/vol-timea=growthyieldcoefficient,mass/mass6L/6t=substrateutilizationrate,mass/vol-timeb=microorganismsdecaycoefficient,time’S=microbialmassconcentration,mass/vol.Dividingequation(24)bySandrearrangingyields:(6L/6t)/S=a(6S/6t)/S-b(20)3.5151.41.31.20.70.50.40.30.20.18Maxlmizallonr—RecoveyPeriodK=1.37day-i/K0.50day-1Ks=400mgIL/Ks=io,55omgLAI,j•ppIIIIIII012S4567S910iiObau.4EHMaximizationReccNelyPeriod10—.-.....Note:AllninningconditionsareIllustrated.lnFlguro5.22(c)CII45810a1.50.5RecoveryPerioda=3.52b=-0.93day-ir=0.844..020.40.60.61(61.161)13,day-i1.21.41.632.50.5(c)00=1.67day-i020.40.50.611.21.41.61.8202OlAFExpeiimentalRunningconditionsFigure5.22AnEstimationofExperimentalKineticsDuringmaximizationandrecoveryperiod(a)aandb;(b)KandKs;(C)Kh;(d)ParticulateCODHydrolysis109Byplotting(cLI5t)/Sagainst(6S/6t)/S,aandbcanbeobtainedastheslopeandtheinterceptoftheline,respectively,asshowninFigure5.22(a).Thesubstrateutilizationratecanalsoberelatedtosubstrateandmicroorganismsconcentrations:8L/6t=(kLeS)/(Ks+Le)(21)wherek=maximumrateofsubstrateutilizationperunitweightofmicroorganisms,time’Ks=halfvelocitycoefficient,mass/vol,equaltosubstrateconcentrationwhen8LI5t=(1/2)kLe=effluentsubstratemassconcentration,mass/vol.L=influentsubstratemassconcentration,mass/vol.Rearrangingequation(26):(6L/6t)/S=(kLe)/(Ks+Le)Byapplyingtheclassicplot(Monodtype)between(6L/6t)/SagainstLe,thekandKsvaluescanbeobtained,asshowninFigure5.22(b).InTable5.4andFigure5.22(a),thedatashowonlyamoderatecorrelationwiththeline(r 2=0.66-0.71)obtainedbyregressionanalysis,with“a”and“b”valuesparticularlysuspect.However,despitetheseshortcomings,oneofthekineticcoefficients,inparticular,doesshowsomeevidenceof110whatmaybehappeninginsidetheM-UASBduringmaximizationandrecoveryperiods.Duringmaximization,astheloadingrateincreasesstep-by-step,thekvalueisabout1.4day’,comparedwith0.50day’duringtherecoveryperiod.Table5.4StatisticalConstantsandKineticsDuringtheMaximizationandRecoveryTable5.4StatisticalConstantsandKineticsLDuringmaximizationandrecoveryperiodKineticsCoefficients‘A-LJASBMUASBandconstants....MaximizationRecoveryperiodMaximizationRecoveryperiodn45.004.00r0.950.800.85Kh1.706x0.751.70a(1.80)3.50b2.65(0.95)K1.400.50Ks40010,550%Par.CODHydrolysi14-293-26Note:n=numberofdatapointthistendencyseemstoreverseitselfduringtherecoveryperiod,astheloadingrateisdecreasedstep-by-step,(asshowninFigure5.22(b)).ThisresultisinagreementwiththosereportedbyChen(1978)wherekwaspracticallyconstantatlowinfluentloadings‘butitincreasedrapidlyathighloadingrates.Unfortunately,noneoftheothercoefficientslendthemselvestodetinitiveconclusionsatthistimeandamoredetailed“kineticstudy”wouldbeneededtoadvanceanyhypothesesfurther.Suchanin-depthanalysiscouldnotbejustifiedinthisstudy.1115.2.2.4OptimumIoadmgCapacitySincethisprocessisatwo-phaseUASB-UASBsystem,optimumloadingcapacityshouldbeconsideredseparatelyasA-UASBandM-UASB.However,ifthesystemisconsideredasawhole,theoptimumloadingcapacityoftheM-UASBisreallythesystemloadingcapacity,becausethemaximumspaceloadingcapacityofM-UASBistherate-limitingstepofthewholesystem.However,theoptimumloadingcapacityoftheMUASBisnotnecessarilytheoptimumonefortheA-UASB.Infact,thelattercanhandleahigherloadingratebecausethegrowthrateofacidogensispredominantandsignificantlygreaterthanmethanogens.TooptimizethesystemloadingcapacitywithrespecttopollutioncontrolandCH4gasproduction,thefollowingtwoparticularcasesarepresented:(a)Case1:OverallSystemLoadingCapacitySystemloadingcapacityisdependentlargelyonsystemconfigurationandoperationalconditions.Differencesintheconfigurationandoperatingconditionscanaffecttheoptimumsystemloadingcapacity.Figure5.23showstheoptimumoperatingconditionat2and2.7daysHRTsfortheM-UASB,resultingfromtwopredictivemodelsofCODremovalefficiencyandCH4gasproductionduringthesystemmaximizationandrecoveryperiods,respectively.ThesemodelsareformulatedbasedontheCOD(sol.)removalefficiencyandCH4gasproductionrelativetotheHRTofM-UASBas:>0Ea)IU00Cu>0EG)00HRT,days-3.51?EC.)E-2.5I02.52EDC.)SC.)1.5I0I//112-4.5-4—3(a)A%COD(F.)removalCH4,cu.i/cu.m-dAV(2)A(1)V=88.13+7.27InX(r 2 =0.74>(2)V=5.29-2.59InX(r0.90)120100806040200100806040200012345—2—1.53%COD(FH.)removalCH4,Cu//,//9/Z()Q—.....---..-D\I/f4(3)V=1.278+19.91X(r 2 =0.99)‘‘-0.304(4)Y=2.44X(r=0.93)/0123451Figure5.23APredictedOptimalOperatingHRT(a)MaximizationProcess;(b)RecoveryPeriod113Duringthemaximizationprocess:Y2=88.13+7.27inX2(23)whereY2=%solubleCODremovalefficiencyX2HRT(M-UASB),days0.74ForCH 4gasproduction,thepredictivemodelisasfollows:Y3=5.29-2.59InX3(24)whereY3=CH 4gasproduction,LidX3HRT(M-UASB),daysr 2=0.90Duringtherecoveryperiod:Y4=2.44X4° 304(25)whereY4=%solubleCODremovalefficiencyX4=HRT(M-UASB),daysr 2=0.93ForCH 4gasproduction,thepredictivemodelisasfollows:Y5=1.278+19.91X5(26)114whereY5=CH4gasproduction,LidX5=HRT(M-UASB),daysr 2=0.99AsshowninFigure5.23,theoveralloptimumsystemoperatingconditionispredictedatanHRTof2.0days,with90%COD(sol.)removalefficiencyand3.6m3/m3-dofCH4gasproduction.ThisoptimumHRTcorrespondstotheoptimumpointobtainedfromtheCO2andVFAjalkalinityratiodataatHRTsfrom1.5-2.25days,asshowninFigure5.13and5.14.Figure5.15indicatesanoptimumflowrateof16.10Lid,equivalenttoanHRTof1.55dayswith95%CODremovalefficiencyandapproximately75-80%ofthetheoreticalCH4gasproduction.TheoptimumRR’sarethencalculatedas1.6and2.5.Ghosh(1984)suggestedthatHRTsof0.9-1.5and4.0-5.0daysareoptimumforA-andM-UASBsreactorsrespectively,andChangetal.(1989)reportedthatanHRTof2dayswastheoptimumfortheA-UASB.Approximately77%ofthetheoreticalCH4gasproduction(0.48m3/kgVSaddedatstandardtemperatureandpressure)wasachievedthroughtheuseofatwo-phaseUASB-UASBprocessatHRTsof5.5and5.9daysrespectively(Ghosh,1984).Inprinciple,theminimumSRTformethanogensisintherangeof2.5-4.0days(Eastman,1981;Andrews,1965;Torpey,1955;Bergman,1966;andAnderson,1978).US.EPA(1979),recommendsthattheoptimumSRTisequaltotheminimumSRTplusasafetyfactorof2.5.ApplyingtheEPArecommendationtothisparticularcase,assumingthattheminimumSRT(zeroremovalefficiency)isequivalenttothemaximumHRT,theoptimumHRTisthenequalto115approximately1.6days,correspondingtoamaximumfailureflowrateof40.22LId,considerablyhigherthanfoundinthisstudy.(Asummaryofaverageresponsesandperformanceateachpseudosteady-state,underdifferentrunningconditions,isshowninTableD1.1ofAppendixD).ConsideringtheoptimumHRTobtainedfromthisexperimentalresearch(1.5-2.25daysasmentionedearlier),theoptimumHRTscitedinseveralpublications,aswellastheonecalculatedbasedontheUS.EPArecommendation,itisreasonableandsafetosuggestthattheoptimumoperatingHRT’sfortheM-UASBandtheoverallsystem,are2.0and4.0daysrespectively.This2-dayHRTisaslightlylowerthantheminimumrangeof2.5-4.0daySRTrecommendedformethanogensmentionedabove;however,inthiscase,itisreasonablesincethedesignedsystemisatwo-phaseone,providingtheoptimumenvironmenttostimulatethegrowthofmethanogens.Itisalsoequippedwitharecyclefacilitytoincreasethecontactbetweenmicroorganismsandsubstrateaswellastoincreasethesystembufferringcapacity.Moreover,itisinterestingtonotethatthisoptimumHRTof2days,predictedfromtheexperimentalresultsduringthemaximizationprocess,isshorterthanthatof2.7daysHRTobtainedattherecoveryperiod,asshowninFigure5.23.Thismaybetheresultofashiftinthemicrobialstructure(achangeinpredominantbacterialcommunitiesandtheirmicroenvironment,andadifferenceinbiochemicalpathways)oftheacetogenicandmethanogenicbacterialcommunityinsidetheM-UASB.116(b)Case2:OptimumLoadingCapacityofA-andM-UASBsTheoptimum2-dayHRToftheM-UASB,recommendedearlierincase(a),equivalenttoaflowrateofabout16LId,isnotnecessarilytheoptimumonefortheAUASB,sincethegrowthrateofacidogensispredominantintheA-UASB.FromFigure5.24andTableD1.1ofAppendixD,itcanbeconcludedthatrunningconditionno.4,atanA-UASBHRTof1.0(0.97)daysandequivalenttoaflowrateof20LId,istheoptimumloadingcapacity.Thisisinagreementwiththeoptimumrangeof0.9-1.5dayHRTforacidogenicreactorsreportedbyGhosh(1984).Atthisoptimumrunningconditionduringthemaximizationperiod,theA-UASBgeneratedthehighestVFA/alkalinityratioof7.5atday40,witheffluentCOD(sol.)of11,055mg/LandtotalVFAproductionof5,300mg/LasHAc.TheMLVSSconcentrationoftheA-UASBalsoincreasedsignificantlyupto42,150mg/L,buttherewasonlyasmallchangeintheeffluentTKNandTPconcentrations,asshowninFigureD1.1andD2.1ofAppendixD.ItisinterestingtonotethatthetotalVFAandtheVFAlalkalinityratiooftheA-UASBincreasedsignificantlyduringtherecoveryperiod,asshowninFigure5.24(b).ThismaybetheresultoftheabilityoftheA-UASBtotolerateshock-loads,andtostimulatethereactor’sactivity(Lettinga,1979a).TheoptimumHRTratiosbetweenA-andM-UASBs,andalsobetweenA-UASBandtheoverallsystem,areabout0.60and0.40,respectively(DetailsinTableD1.1ofAppendixD).Dinopoulou(1989)reportedthattheoptimumvolumeoftheacidogenicreactorwasintherangeof12-25%oftheoverallactive11720—i200180-+CH4,l/d‘%C02:;CODo120-Time,days14-’013-i100-:TIme,days6-HAcHPrlime,days/\-6P::Iift[1JIittflZTime,daysFigure5.24AnA-UASBSystemEffluentQualities:Duringtheprocessmaximization(a)CH4production,%C02,Eff.COD;(b)TotalVFA,HAc/HPr,VFA’Alkalinity118volumeinastudy,usingatwo-phaseanaerobicdigestionsystemwithCSTRacidogenicreactorandamethanogenicfluidizedbedreactortostabilizeasyntheticwastewater.ThedifferenceintheHRTsratiosinthiscasemayresultfromalongerhydrolysisrateoftheparticulatesyntheticsludgetakingplaceintheUASB-UASBprocess,comparedwiththeshorterhydrolysisrateforthesyntheticwastewater.5.2.2.5ConclusionsFrombothsystemperformanceandkineticconsiderations,itappearsthattheUASB-UASBsystemcanrecovertoitsoriginalperformancebyapplyingastep-downloadingapproach.Althoughtheperformance,intermsof%CODremovalefficiencyand%CHcontent,recoveredtotheoriginalvalues,thetotalCH 4gasproductionwasreducedandtheoptimumoperatingpointbetweenCODremovalefficiencyandgasproductionwasmovedalittlefurther.ThismeansthattherewasatotalshiftofthespeciesratioamongthemixedcultureofacetogensandmethanogensinsidetheMUASBaftertherecoveryprocess.Basedontheresultsofthesestudies,thefollowingconclusionscanbedrawn:(1)AcombinationofhydraulicandorganicoverloadingoftheM-UASBreactorwasamajorcauseofprocessfailure;thiscanresultinMLVSSwashout,increaseintotalVFAconcentration,reductionofthesystemremovalefficiency,andcessationofCH 4gasproduction.119(2)AdropinpHandanincreaseintotalVFA/alkalinityratio,areductionofCH 4gasproduction,andanincreaseintheeffluenttotalVFA,werealsoindicatorsoftheprocessfailure.(3)Themaximumhydraulicloadingrateswere1.6and0.90m31m3-d,equivalenttoHRTsoflessthan1.125and0.625days,fortheM-UASBandthewholesystem,respectively.TheCH 4gasproductionwasreducedtolessthan50%ofthetheoreticalvalue,witheffluentCODandtotalVFAof9,540mg/Land3,750mgfLasHAc,respectively.(4)TheM-UASBrecoveredexponentiallywithanincreaseinHRT(loadingreduction)intermofCODremovalefficiency,butlogarithmicallywithrespecttoCH 4gasproduction,asfollows:Y=25.37eo. 29 xYl=9.25+64.01InXlwhereY=%solubleCODremovalefficiencyX=HRT(M-UASB),daysYl=CH 4gasproduction,LidXl=HRT(M-UASB),daysThesystemdidrecoverbacktoitsinitialstageofoperationbyapplyingatwo-stepincreaseoftheHRTM.UASBat1.5and5.8timesthefailureHRT,withadimensionaltimeof5.60and10fortheM-UASBandtheoverallsystem,respectively.120(5)TheshockloadsappearedtostimulatetheA-UASB’sactivityduringsystemrecovery,butitappearedtohavenoeffectatallontheM-UASB,whenthesystemfailedcompletely.Therecoveryapproach,employingthestep-loadingreductionandtheinternalRR,seemedtohavenosignificantbeneficialeffect,comparedwiththereacclimatizationintermoftimerequirement(bothneeded4-5weekstocompletetheprocesses).However,itdidprovidesomeadvantagesintermsofeaseofoperationandamorepracticalapproachforapotentialfull-scaleoperation.(6)ThehydrolysisrategoverningtheA-UASBwasabout1.70days.Thespecificvelocitykduringthemaximizationandrecoveryperiods,was1.40and0.50day 1,respectively.Thecorrespondingsubstratesaturationcoefficient(halfvelocityconstant,Ks)wasfoundtobe400and10,550mg/Lduringthemaximizationandrecoveryperiod,respectively.(7)TheoptimumHRTfortheA-UASBwas1.0(0.97)days,whereas,thosefortheM-UASB,withrespecttoCODremovalefficiencyandCH 4gasproduction,duringthemaximizationandrecoveryperiod,were2.0and2.7days,respectively.ThisseemstoimplytherewasarestructuringofthebacterialcommunityinsidetheM-UASB,duringtherecoveryperiod.Fordesignpurposes,theoptimumoperatingHRT’sof1and2days,aswellastheRRof1.6and2.5timestheinfluentflowrate,arerecommendedforAandM-UASBs,respectively,withaconservativeorganicloadingrateof19kgCOD(total)/m3-d(equivalentto0.55m3/m3-d).121(8)TheoptimumHRTAUHRTMUBratiowasabout0.60andtheHRTA.upsi/HRTsystemwas0.40,asappliedtothetwo-phaseanaerobicdigestionofsewagesludge(UASB-UASB).1225.2.3DevelopmentofSystemDesignCriteriaThemainresearchgoalwastoevaluatethefeasibilityofthetwo-phaseanaerobicdigestion(UASB-UASB)concept,tostabilizeaparticulatesubstrate.Thefollowingsections,dealwiththesystemeffectiveness(orperformance),systemsuitability(orloadingcapacity),andsystemfeasibility,followedbyamodificationofdesigncriteriaandoperationprocedures.Finally,majorsystemcontrolparametersareevaluatedanddiscussed.5.2.3.1OptimumSystemPerformanceandFeasibilityTheoptimumsystemHRTof2.80(1.24+1.55)daysequatestoahydraulicloadingrateof0.40m 3 /m 3 -d.TheoverallsolubleandtotalCODremovalefficiencieswere90.76and98%,respectively,with69%CH 4contentand179LIdofCH 4gasproduction(/equivalentto73%ofthetheoreticalvalue).Averagepseudosteady-statesystemperformanceandeffluentquality,attheoptimumrunningcondition,aresummarizedinTable5.5.ItisinterestingtopointoutthattherewasactuallysomeP0 4 -P(and/orTP)removal,butrarelyNH 4 -N(and/orTKN)removalasshowninFigure5.14.ThismaybeduetochemicalreactionsformingprecipitatingsaltsofCaand/orMgphosphate.However,therewasasmallchangeinNH 4 -N(and/orTKN).concentration,sinceNH 4 -Ncanbeusedasarelease-and-apprehendiontomaintainthebalanceofbuffercapacity123Table55SummaryofAverageResponsesattheOptimalSystemOperating.sedoSAverageResponsesExperimentalRunningConditionProcesses2—phase(UASB—UASB)RunningPeriod,days36SludgeFeedRatio(SR)80/20RecycleRatio(RR)2/3InfluentFlow,l/d16.10HRT,daysA-UASB1.25M-UASB1.55System2.80LoadingRatecu.m/cu.m—d0.35KgCOD(sol.)/cu.m—d2.15EffluentQualitySolids,mgILTS2850VS1230TSS185TVSS110COD,mgILTotalCOD680COD(sol.)550Inorganics,mg/LNH4-N300TKN400TP85P04-P15VFA,mg/LHAc40HPr65lso—HBr0HBr5A-HVr0lso—HVr0HVr0HHe0TotalVFAmg/LasHAc95124Table55SummaryofAverageResponsesattheOptimalSystemOperatingLJnder.I?SeUdoSIeádyStàteQnAverageResponsesExperimentalRunningConditionProcesses2—phase(UASB—UASB)Alkalinity,mg/LasCaCO3A-UASB960M-UASB2520TotalVFA/AlkA-UASB4.90M-UASB0.05SystemRemovalEfficiencySolids,%TSS99.00COD,%COD(sol.)91.00TotalCOD98.00Inorganics,%P04—P88.00TP39.00MethaneGasFlow,l/dTotalGas310.00CH4Gas180.00CH4ProductivitylId180.00cu.mlcu.m—d4.00cu.mlcu.m—d@SC3.50cu.m/kgCOD(Total)added@SC0.25%oftheoreticalCH4Production73.00%CH4content69.00125oftheM-UASB,aswellasabasicgrowthnutrient.Itisdifficulttocomparetheperformanceofdifferentprocesses,sinceeachprocesshasitsownuniquecharacteristics,configuration,andoperatingconditions.However,theoptimumsystemperformanceandeffluentqualitycanbeusedasguidelinestoevaluatebotheffectivenessandsuitability,possiblyleadingtoanevaluationofsystemfeasibility.AsshowninTable5.5,itisclearthatthetwo-phaseUASB-UASBconcept,atanextremelylowoperatingHRT(2.8days),performsreasonablywellwithCH4gasproductionofabout73%theoreticalCH4value,effluentCODof550mg/L,andvolatileacidsof95mg/L.TheinternalRRappearstoplayamajorroleincontrollingandmaintainingthesystemperformancebyincreasingthecontactbetweenmicroorganismsandsubstrates,reducingtheeffectofshockloading,andincreasingthesystembufferingcapacity.CombininginfluentloadingratecontrolandappropriateRRs,itisthuspossibletomaintainagoodsystemperformanceortoassistinrecoveringthesystem,incaseofaninterruptionand/orfailure.5.2.3.2ModificationofDesignCriteriaandOperationDevelopmentofanaerobicdigestionsystemdesignhasrecentlymovedtowards“highrate”digestionsystems.Eachsystemhasitsownmerits,limitations,andpotential,anddependslargelyonthelocalsituation,characteristicsofthewastestobetreated,and126theperformanceandspecificexperienceofeachsystemdesignerineachtypeofsystemconfiguration.Althoughthetwo-phaseanaerobicdigestionconceptworksexceptionallywell,comparedwithasinglestageone,thereisstillnouniversal,two-phasedigestionconfigurationthatisoptimumforallsituations.Thechoiceofthefermentertypedependslargelyonthephysical,chemicalandbiologicalcharacteristicsofthefeedandtheobjectiveoftreatment,ie.,whetheritispollutioncontrolormaximizationofCH4gasproduction.Thedesignofthetwo-phaseUASB-UASBprocessmustensureauniformdistributionofinfluentfeedatthelowerpartofthereactor,asufficientcross-sectiontopreventbiomassentrainment,andaneffectiveseparationofgas,biomass,andliquid.Thekeystothesuccessfulanaerobicstabilizationprocessesaretoincreasethecontactbetweenmicroorganismsandsubstratesaswellastoincreasethesystembufferringcapacity.Sludgerecyclingalsoplaysamajorroleintheseaspects,whichsubsequentlyimprovestheprocessperformanceandstability.Basedontheresultsofthisstudy,optimumdesignHRT’sforA-andM-UASB’sreactorsareabout1and2days,withRRs2and3timestheinfluentflowrate,respectively.Mostofthereactionsseemtooccuratthelowerpartofthereactors(sludgebedandblanketportion).AsshowninFigure5.25,thereisnodifferenceintheeffluentVFAconcentrationprofilefromthebottomtotheupperpartoftheM-UASBreactor.Possiblereasonsforthisphenomenonmaybeduetohighconcentrationsofactiveanaerobicsludgeinthelowerpartofthereactor,theeffectivemixingcreatedbytheincomingflowrate,theupwardescapeoftheproducedgas,andtherecycleoftheeffluentfromthesludgeblanket.Allthesefactors127Figure5.25ComparisonofTotalVFAAlongtheHeightofM-UASB:DuringtheAcclimatizationProcessSludgeblanketVFA1.6MAcHPr21.2-0.8I--0.40IiIi0III020406080lime,days128contributetoincreasetheremovalefficiencyatthelowerpartofthereactor.Christensen(1984)foundthatCODremovaloccurredthroughoutthesludgebedandblanketofanUASBreactor.AsshowninFigure5.25and5.26,therewassmallchangeineffluentCOD(sol.)profilesofbothA-andM-UASBs,afterthesludgeblanketportion(samplingpointno.3and6asshowninFigure4.2)duringtheacclimatizationandmaximization/recoveryperiod.Theseresultsleadtotheconclusionthatthereactorheightcouldhavebeenreducedto50cmswithoutanyeffectsontheprocessperformance.Theratioofreactordiametertoheightcouldthenbeaslowas1:4(12.5/50).However,fordesignpurposes,thisratioshouldbecloserto1:8to1:10(dependingonsafetyfactorchosen),toensurethatextraspaceisprovidedfortemporarygasaccumulationandforscumformation.Itisalsoimportantthatpeakhydraulicloadingbetakenintoaccountforthedesignofdigestervolume.Thedesignsystemhydraulicloadingrateisconservativelysetintherangeof0.55m31m3-dequivalentto19kgCOD(total)/m3-d,at350CwithanSR8O/20andRR1.6/2.5.Sincemostmunicipalwastewatertreatmentprocessesproduceasludgeratio(SR)ofabout60/40(byweight),theoptimumratioofthisstudy(80/20)canbemodifiedtocompensatefortheexcessamountofwasteactivatedsludge(WAS)produced.ThiscanbedonebyeitherincreasingtheratioofWASportionorusingtheexcessamount,whichisfullofnutrients(NandP),forsoilconditioningand/orcomposting.Asummaryofrecommendeddesigncriteria/start-upandacclimatization/andoperationforthetwo-phaseanaerobicdigestionofsewagesludge(UASB-UASB)processisillustratedinTable5.6.fSamplingPointno.LSp.1Sp.3Sp.4Sp.5129SamphngPointno.Sp.8Sp.7Sp.6Sp.5Figure5.26COD(soluble)ProfilesofaTwo-phaseUASB-UASBProcess:DuringMaximizationandRecoveryPeriod(a)A-UASB;(b)M-UASB;(c)RunningConditionsNote:AllsamplinglocationsareillustratedinFig.4.2COO(soluble).mg/L(Tholisanc;)IIIIII.6ii162227333742475158816570758498102107Time,days(a)COD(soluble),mg/L(Thousands)I6111622273337424751586166Time,days70758496102107(b)[xpeairunningconditionsExperimentalPerlodsitMaximizationSystemHRT,days5.65-6.844.65-5.162.76-3.162.13-2.201.55-1.822.30-2.772.71-3.21363-3.95732-9.00Days1-15(c)VARecover’,’PeriodV20-2933-3740-4447-5154-5861-6568-7275-107130Table5..6RecOmmendeddesigncandoperationofatwo—phaseanaerobicdigestionofsewagesludge(UASB-UASB)processDesigncriteriaValuesOptimumHRT,daysA-UASB1.00M-UASB2.00RR,QrIQin(Lower1/3ofthereactorheight)A-UASB2.00M-UASB3.00Reactordiameter/heightratio1:10Gascollectionaperture,m3/m2—d0.70(Midofthereactorheightwith50degreeinclinedwall)OrganicLoadingRate,kgCOD(total)/m3—d19.00Start-upandacclimatizationSystemseedingratio1:1Start—uploadingrate,kgCOD/kgVSS—d0.10Step—uploadingrateif:COD(soL)removalefficiency,%>80HRT,days2—3pHcontrol,0.1N,NaOHA-UASB5.0-5.3M-UASB7.0-7.3Temperature,oC35.00SR80/20(a)RR4/7(a)SystemOperationHydraulicloadingrate,m3/m3—d0.35pHvaluesA-UASB5.0-5.3M-UASB7.0-7.3Temperature,oC35.00SR80/20(a)RR2/3(a)RecoveryProcess2—stepincreasingHRT1.5Q15.8Q(a)(whereQ=FailureHRT)Note:(a)=nlIn2,whereni=A—UASBandn2=M—UASB131Tooperatethesystemsuccessfullyandeffectively,properstart-upandacclimatizationareveryimportantsteps;also,closemonitoringofseveralmajorcontrolparametersisabsolutelynecessarytomaintainanacceptableperformance.pHisoneofthemostsensitiveandpracticalcontrolparametersusedtomonitortheanaerobicstabilizationprocess(asshowninFigure5.27).AsignificantdropandriseinpHduringtheprocessfailureandrecoveryperioddemonstratestheeffectivenessofthiscontrolparameter.ItisalsointerestingtopointoutthatthepHvaluesofA-andM-UASBsarepracticallyconstantat5.0-5.3and7.0-7.3respectively,indicatingthatbothreactorsarenaturallybufferedbythemselves.ThismayresultfromabalancebetweentheNH4-ions,cationsreleasedfromthefattyacidsalts,andHCO3-ionsformedbyC02,contributedpartlybytherecyclingprocessinbothreactorsandhelpingtoincreaseandstabilizethebuffercapacity(Trudell,1985).Remedialactionsshouldbequicklymadeiftherearesignificantchangesinsystemcontrolparametersthatareprovidinganoverallpictureofwhathappensinsidethereactorunderdifferentcircumstances.Hydraulicloadingreductionandrecyclingfacilityareeffectivemeasuresinrecoveringthesystem,byincreasingthesystembufferingcapacityandprovidingthemethanogensabetteropportunitytocontactwithsubstratesandsurviveunderthisstressconditions.pHadjustmentwithanalkalineadditionisanotherpromisingmeasuretoalleviatetheproblem.Therefore,acombinationofthesemeasuresmaybenecessaryifthesystemisseverelydamaged.Allofthesemeasuresaredesignedtoavoidasystemwashout,ifatallpossible.6.86.66.4zE6.2065.85.65.45.254.8Figure5.27rHVariationinA-UASBandM-UASB:(a)Sequenceand3Experiments;(b)MaximizationandRecoveryPeriod7.47.27‘1Hill1111lU132rf—I(a)Phase2ExperimentPhase3Experimentf---—---—-IA-UASB+M4JASB—--4-,.T.ill“‘ii•o-T——-r—,%r‘-JII21416181101121141161181201221241261281Time,days-__.-—IC)(b)7.276.86.66.46.265.85.65.45.254.84.64MaxImization--J”_-LIA-UASB+M-IJASB-__—HCfWAFV-..,roIIuJp295315335355375395TIme,days133CHAPTERSIXCONCLUSIONSANDRECOMMENDATIONS6.1CONCLUSIONSModificationandimprovementofaprocessconfiguration,start-upandacclimatization,andsystemoperationofatwo-phaseUASB-UASBprocesshavebeenstudied.Thesystemappearstobefeasible,effective,andsuitableforstabilizingsewagesludge,withpromisingresults.Basedontheresultsofthisresearchprogram,thefollowingmajorconclusionscanbemade:(1).Atwo-phaseUASB-UASBprocessappearstobefeasibleandeffectiveforstabilizingsewagesludge,withahighorganicloadingrate,whilemaintaininganacceptablelevelofsupernatantqualityandCH 4gasproduction.Thesystemalsohasahighpotentialtorecovereffectivelyafteraseriousfailure,usingastep-loadingreductionandinternalrecirculation(RR)approach.The“Two-phase”concepthasthusproventobesuccessfulintreatingsewagesludge.HydrolysisandacidificationpredominateintheA-UASB,whileacetogenesisandmethanogenesisdominateintheM-UASB.Mostofthereactionsoccuratthelowerpartofbothreactors(Sludgeblanketandbed).(2).Themosteffectiveandpracticalapproachtoacceleratetheacclimatizationprocessistoprovideacontinuous,step-uporganicloadingrate,tomatchthebacterialgrowth.134Thestart-uploadingraterecommendedis1.2gCOD/L-d,withaseedsludgetakenfromananaerobicdigesterfortheM-UASB,andanacclimatizedseedsludgefortheAUASB,attheratioof1:1(byvolume).Thewashoutprocessoccurredaftertwoweeksofacclimatizationatasludgeloadingof0.40kgCOD/kgVSS-d.Theacclimatizationprocessreachedapseudosteady-statewithin4-5weeks,with91and100%COD(sol.)andVFAremovalefficiencies,respectively.(3).Underspecificcontroloftemperatureat35°C,aninfluentflowrateof5-6LId,andapHat5.0-5.3and7.0-7.3fortheA-UASBandM-UASBrespectively,theoptimum“BestKnown”runningconditionisatsludgeratio(SR)80/20andrecycleratio(RR)5/8;thisachievedmorethan95and90%COD(sol.)andP04-Premovalefficiencies,witheffluentCOD(sol.)of300mg/L.Inaddition,this“BestKnown”conditionproducedahighvolumeofCH4gas,about1.55m3/m3-d,equivalenttoaspecificCH4productionof0.32m3/kgCOD(Total)added,at72%CH4content.Internalrecirculation(RR)seemstobeanimportantfeatureofthetwo-phasesystem;notonlydoesitincreasethecontactbetweenmicroorganismsandsubstrates,butalsohelpstorecoverthesystemfromaseriousfailureandstabilizes,naturally,thebufferingcapacityinbothA-andM-UASBs.(4).AcombinationofhydraulicandorganicoverloadingoftheM-UASBwasamajorcauseforprocessfailure,asindicatedbyMLVSSwashout,anincreaseinthetotalVFAconcentration,areductioninsystemremovalefficiency,acessationinCH4gasproduction,adropinpH,andanincreaseintotalVFA/alkalinityratio.135(5).Maximumhydraulicloadingratesfoundwere1.6and0.90m 3 1m 3 d,equivalenttoHRTsoflessthan1.125and0.625daysfortheM-UASBandthesystem,respectively.TheCH 4gasproductionwasreducedtolessthan50%ofthetheoreticalvalue,witheffluentCODandtotalVFAlevelsof9,535mg/Land3,750mgfLasHAc,respectively.(6).TheM-UASBrecoveredexponentiallyafterfailure,withanincreaseinHRT(loadingreduction),intermsofCODremovalefficiency,butlogarithmicallywithrespecttoCH 4gasproductionasfollows:Y=25.37e°Yl=9.25+64.01InXlwhereY=%solubleCODremovalefficiencyX=HRT(M-UASB),daysYl=CH 4gasproduction,LidXl=HRT(M-UASB),daysThesystemreturnedtoitsinitialstageofoperationbyatwo-stepincreaseintheHRTMUASB,by1.5and5.8timesthatofthefailureHRTvalue(withadimensionaltimeof5.60and10fortheM-UASBandtheoverallsystem,respectively).Shock-loadsseemedtostimulatetheA-UASB’sactivityduringthesystemrecovery;however,therewasnoapparenteffectontheM-UASB,afterithasfailedcompletely.Therecoveryapproach,employingstep-loadingreductionandinternalRR,appearstobecomparabletore-acclimatization,intermsoftimerequirements(bothneed4-5weekstocomplete136theprocesses)forrecovery.However,therecoveryapproachhassomeadvantages,intermsofsimplicityofoperationandpracticality,asappliedtoafull-scaleplant.(7).TheoptimumHRTforA-UASBwas1.0(0.97)days,whereastheHRTfortheMUASBwithrespecttoCODremovalefficiencyandCH 4gasproductionduringthemaximizationandrecoveryperiodwas2.0and2.7days,respectively.ThisseemstoimplyarestructuringofbacterialcommunityinsidetheM-UASB,duringtherecoveryperiod.Fordesignpurposes,optimumoperatingHRTsof1and2days,aswellasRRof1.6and2.5timestheinfluentflowrate,arerecommendedforA-andM-UASBreactors,respectively.(8)TheoptimumHRTAUASB/HRTMUASBratiowasabout0.60whiletheHRTAUASB/’H”Tsystemwas0.40,appliedtothetwo-phaseanaerobicdigestionofsewagesludge(UASB-UASB).Thereactordiametertoheightratioisrecommendedat1:8to1:10,withahydraulicloadingrateof0.55m3/m3-d(equivalentto19kgCOD(total)/m3-dat35CandtheSR8O/20andRR2/3).6.2RECOMMENDATIONSFutureresearchneedsarerecommendedinthefollowingareas:(1).Rebuildingabench-scale,two-phaseUASB-UASBprocessaccordingtothemodified137designedcriteria,ishighlyrecommended.Evaluationofsystemfeasibilityandeffectivenesswithactualsludge,operatingattheoptimumconditionisalsonecessary.(2).Organicshockloadingandtoxicspikingofthesystemshouldbeinvestigated;thiscanprovideadditionalinformationinunderstandinghowthesystemrespondsundersuchcircumstancesandthedegreeofsusceptibility.(3).InvestigatingthetemperatureeffectsontheprocessperformancebykeepingthetemperatureoftheA-UASBandM-UASBat20and35°Crespectively,isaninterestingareaoffurtherresearch.Thismayhelpreducethecostofreactorheating.(4).RecirculationofthewastedsludgefromtheA-UASB,asawholeorpart,intotheM-UASBisworthinvestigating;itmayreducetheamountofsludgetobedisposedof.However,itcouldalsoreducetheefficiencyoftheM-UASB.(5).TheeffectoftheinternalRRandstep-loadingreductionontheoptimum“bestKnown”runningconditionforsystemrecoveryfromfailure,shouldbere-evaluatedbyemployinga2by2factorialdesignexperiment.(6).Treatingthedomesticwastewaterdirectlybyusingthismodifiedprocessconfigurationishighlyrecommended.Theideaistoevaluatethefeasibilityandeffectivenessofthesystem,astowhetherornotitcantemporarilyserveasamain138streamtreatmentfacility,incaseofaprocessinterruptionorfailure.Ifsuccessful,thenaby-passoftheinfluentwastewatercouldthenbetemporarilyre-directedthroughthetwo-phasesystem.(7)Evaluatingtheeffectofsludgerecyclingontheprocessperformance.Thismayindicatewhetherthereisanynegativeimpactonsystemperformancerelatedtosolidsrecyclingornot.139REFERENCESAnderson,G.K.,Donnelly,T.,(1978)“AnaerobicContactDigestionforTreatingHigh-StrengthSolubleWastes”,In:Mattock,G.(ed.)Newprocessesofwastewatertreatmentandrecovery,EllisHorwood,Chichester,p.75.Andrew,J.W.,(1968)“AMathematicalModelfortheContinuousCultureofMicroorganismsUtilizingInhibitorySubstances”,Biotech.Bioeng.,jQ,707-723.Andrew,J.F.,andPearson,E.A.,(1965)“KineticsandCharacteristicsofVolatileAcidProductioninAnaerobicFermentationProcesses”,Intl.Jour.AirandWaterPoll.(G.B.),9,439.AsinariDiSanMargano,CM,(1981)“VolatileFattyAcids,AnImportantStateParameterfortheControloftheReliabilityandtheProductivitiesofMethaneAnaerobicDigestions”,Biomass,1,47-59Bergman,R.D.,(1966)“AnaerobicSludgeDigestion-MOP16”,J.WPCF,38,717-721.Barrette,O.J.,(1952)“ReportontheOperationandMaintenanceoftheWaterlySewageTreatmentPlant-Cleveland,Ohio”,SewageandIndustrialWastes,4,1427.Benefield,L.D.,andC.W.Randall,(1980)“BiologicalProcessDesignforWastewaterProcessTreatment”,Practice-Hall,Inc.,N.J.,526pp.Box,G.E.P.,(1969)“EvolutionaryOperation”,JohnWiley&Sons,Inc.,N.Y.,U.S.A.Bruce,A.,(1984)“SewageSludgeStabilizationandDisinfection”,EllisHorwoodLimited,Chichester,England.Buijis,J.W.,(1981)“ModellingandScale-upofAnaerobicConversionofDissolvedFattyAcids”,AdvanceinBiotechnology,I.M.Moo-YoungandRobinson,C.W.,Pergamon,N.Y.,529pp.Buijis,C.,(1982)“DistributionandBehavoirofsludgeinUpflowReactorforAnaerobicTreatmentofWastewater”,Biotech.Bioeng.,4,1975.Bull,M.A.,(1984)“AnEvaluationofSingle-andSeparate-PhaseAnaerobicmd.WasteTreatmentinFluidizedBedReactor”,Biotech.Bioeng.,26,1054.Cail,R.G.,andetal.,(1986)“TheDevelopmentofGranulationinanUpflowFlocDigesterandanUASBTreatingCaneJuiceStillage”BiotechnologyLetters,7,493-498.140Callender,I.J.,etal.,(1983)“RecentAdvanceinAnaerobicDigestionTechnology”,ProcessBiochem.,18(4),24-37.Capri,M.G.,(1975)“pHadjustmentinAnaerobicDigestion”,Wat.Res.,,307-313.Chang,T.C.,Wu,Y.C.,andet.al,(1989)“AnaerobicSludgeDigestionUsingThermophilicPhaseSeparation”,J.Chem.Tech.Biotechnol.,45,335-337.Chen,Y.R.,Hashimoto,A.G.,(1978)“KineticsofMethaneFermentation”,BiotechnologyBioengineeringSvmp.,,269-282.Chiu-Yue,Lin,(1986)“MethanogenicDigestionUsingMixedSubstrateofAcetic,Propionic,andButyricAcids”,Wat.Res.,(3),385-394.Choate,W.T.,andetal.,(1982)“Membrane-EnhancedAnaerobicDigesters”Proc.37thIndustrialWasteConfer.,PurdueUniv.,Indiana,661-666.Christensen,D.R.,Gerick,J.A.,(1984)“DesignandOperationofanUpflowAnaerobicSludgeBlanketReactor”,WPCF,56(9),1059-1062.Chung,K.T.,(1976)“InhibitoryEffectsofH 2ongrowthofClostridiumcellobioparum”Appi.envir.Microbiol.,31,342-348.Cohen,A.,etal.,(1979)“InfluenceofPhaseSeparationontheAnaerobicDigestionofGlucose-I:MaximumCODTurnoverRateduringContinuousOperation”,Wat.j,571.Cohen,A.,et.al,(1983)“Two-PhaseDigestionofLiquidandSolidwastes”,Proc.3rdInter.Svmp.onAnaero.Digest.,Boston,USA,123-138.Colleran,E.,andetal.,(1983)“OneandTwo-StageAnaerobicdigestionofAgriculturalWastes”Proc.ofthe3rdInternationalSymposiumonAnaerobicDigestion,Boston,USA.Cortinovis,D.,(1984)“ControllingWastewaterTreatmentProcesses”,RidgeLinePress,California,U.S.A.Datta,R.K.,(1981)“AcidogenicFermentationofCornStover”Biotech.Bioeng.,23,61,Dichtl,N.J.,(1987)“TwoStageSludgeStabilization”Wat.Sci.Technol.,j(7),1247-1250.Dinopoulou,G,andLester,J.N.,(1989)“OptimizationofaTwo-phaseAnaerobicDigestionSystemTreatingaComplexWastewater”,Env.Tech.Lett.jQ,799-814.141Dolfing,J.,1986,“GranulationinUASBReactor”Wat.Sci.Tech.,j(12),15-25.Eastman,J.A.,andFerguson,J.F.,(1981)“SolubilizationofParticulateOrganicCarbonduringtheAcidPhaseofAnaerobicDigestion”,J.WPCF,(3),352-365.Enema,P.A.G.,Polanco,F.F.,(1987)“Behaviourofanaerobicexpandedbedreactorinnon-steadystateconditions”,Wat.Res.(11),1329-1334.Fannin,K.F.et.al,(1981-1983)“AnaerobicProcess”,J.WPCFLiteratureReviewIssue,,53-55.Fisher,A.J.,(1934)“DigestorOverflowLiquor:ItsCharacterandEffectonPlantOperation”,SewageWorks,6,934.Fongsatitkul,P.,(1986)“APreliminaryReport:AnAssessmentofWastewaterTreatmentSystemPracticallyUsedinThailand”,CIDAHomeAttachmentProgram.Ghosh,S.,andHenry,M.P.,(1981)“StabilizationandGasificationofSoftDrinkManufacturingWastebyConventionalandTwo-PhaseAnaerobicDigestion”Proc.ofthe36thPurdueIndustrialWasteConference,Lafayette,IN,292.Ghosh,S.,andetal.,(1983a)“MethaneProductionfromIndustrialWastesbyTwo-PhaseAnaerobicDigestion”Proc.ofthe6thSymposiumonBiomassandWastes,Orlando,FL.,USA.Ghosh,S.,andeta!,(1983b)“Two-stageUpflowAnaerobicDigestionofConcentratedSludge”Proc.ofthe5thSmposiumonBiotechnologyforFuelsandChemicals,Gatlinburg,TN.Ghosh,S.,(1984)“AdvanceTwo-PhaseDigestionofSewageSludge”,Symp.onEnergyfromBiomassandWasteVIII,LakeBuena,Vista,Florida,USA,,835-874pp.Ghosh,S.,(1987)“ImprovedSludgeGasificationbyTwo-PhaseAnaerobicDigestion”J.Envir.Eng.Div.,113(6),1265-1284.Gloyna,E.F.,(1982)“AnAnalysisofresearchNeedsconcerningtheTreatment,Utilization,andDisposalofWastewatertreatmentPlantSludge”,WPCFHighlights,.12(7).Graef,S.P.andAndrew,J.F.,(1974a)“StabilityandControlofAnaerobicDigestion”,j.WPCF,46,666-683.Graef,S.P.,andAndrew,J.F.,(1974b)“MathematicalModelandControlofAnaerobicDigestion”AIChESymposiumSeries,70,(136),101-131.142Gujer,W.,andZehnder,A.J.B.,(1983)“PathwayofAnaerobicDigestion”,Wat.Sci.Tech.,,127.Hamoda,M.F.,andetal.,(1984)“EffectofSettlingonPerformanceoftheUpflowAnaerobicSludgeBedReactors”Wat.Res.,12,1561-1567.Harper,S.R.,andetal,(1986)“BiotechnologyReport:RecentDevelopmentsinHydrogenManagementDuringAnaerobicBiologicalWastewaterTreatment”,Biotech.Bioeng.,(4),585-602.Heertjes,P.M.,(1978)“DynamicofLiquidFlowinanUpflowReactorusedforAnaerobicTreatmentofWastewater”,Biotech.Bioeng.,Q,1577.Heertjes,P.M.,(1982)“FluidFlowinUpflowReactorforAnaerobicTreatmentofBeetSugarFactoryWastewater”,Biotech.Bioeng.,24,443.Hickey,R.F.,Vanderwielen,J.,andSwtzenbaum,M.S.,(1987)“TheEffectsofOrganicToxicantsonMethaneProductionandHydrogenGaslevelsduringtheAnaerobicDigestionofWasteActivatedSludge”Wat.Res.,21(11),1417-1427.Hulsoff-Pol,L.W.,deZeeuw.W.J.,et.al,(1983)“GranulationinUASB-reactors”,Wat.Sci.Technol,15,291.Hulsoff-Pol,L.W.,etal,(1986)“NewTechnologiesforAnaerobicWastewaterTreatment”,Wat.Sci.Tech.,18,(12),41-53.Jame,R.W.,(1976)“SewageSludgeTreatmentandDisposal”,NoyesDataCorporation,NewJerseyUSA,339pp.Jeris,J.S.,andMcCarty,P.L.,(1965)“TheBiochemistryofmethanefermentationusingC’ 4tracers”J.WPCF,7,178-192.Kasper,H.F.,andWuhrmann,K.,(1978)“KineticParametersandRelativeTurnoversomeImportantCatabolicReactionsinDigestingsludge”Appl.envir.Microbiol,1-7.Keenan,J.D.,(1976)“MultipleStagedRecoveryfromSolidWastes”J.Environ.Sci.Health,All(8/9),525.Keleti,G.,etal,(1974)“HandbookofMicromethodsfortheBiologicalScience”,VanNostrandReinholdInc.,N.Y.,USA.Klapwijk,A.,etal,(1981)“Denitrificationofdomesticwastewaterinanupflowsludgeblanketreactorwithoutcarriermaterialforthebiomass”In:CooperPF,Atkinson143B(eds)Fluidisedbedtreatmentofwaterandwastewater.EllisHorwood,Chichester,p.2O5.Kugelman,I.J.andJeris,J.S.,(1981)“SludgeTreatmentAnaerobicDigestion”,Marcel.Dekker,Inc.,N.Y.,591pp.Lawrence,A.W.,andMcCArty,P.L.,(1970)“KineticsofMethaneFermentationinAnaerobicTreatment”,J.WPCF,41,R1-R16Lettinga,G.,(1978)“TheProspectsofAnaerobicWastewaterTreatment”,4thEuropeanSewageandRefuseSymp.,EAS,Munich.,226.Lettinga,G.,VanDerGust,A.Th,(1979a)“AnaerobicTreatmentofMethanolicWaste”,Wat.Res.,13,725.Lettinga,G.VanVelsen,andet.al,(1979b)“FeasibilityoftheUpflowAnaerobicSludgeBlanket(UASB)-Process”,Proc.Nat.Conf.onEnviron.Eng.,ASCE,SanFrancisco,USA,35-45.Lettinga,G.etal,(1980)“UseofUpflowSludgeBlanket(USB)ReactorConceptforBiologicalWastewaterTreatment,EspeciallyforAnaerobicTreatment”,Biotech.Bioeng.,22,699-734.Lettinga,G.,Hobma,S.W.,andet.al,(1983a)“Design,operation,andeconomyofanaerobictreatment”,Wat.Sci.Tech.,15,177-195.Lettinga,G.,Roersma,R.,andGrin,P.,(1983b)“AnaerobicTreatmentofRawDomesticSewageatambienttemperatureusingagranularbedUASBReactor”Biotech.Bioeng.,,25,1701-1723.Lettinga,G.,Huishoff,Pol,etal,(1983c)“UpflowSludgeBlanketProcess”,Proc.3rdInter.Symp.onAnaerobicDigestion,Boston,USA,139-158.Lettinga,G.,Huishoff,Pol,etal,(1986)“AdvancedReactorDesign,OperationandEconomy”,Wat.Sci.Tech.,18(12),99-108.Maat,D.Z.,andHarbets,L.H.A.,(1987)“TheUpflowAnaerobicSludgeBlanketWastewaterTreatmentSystem:ATechnologyReview”,PuIp&PaperCanada,(11).Mahoney,E.M.,Varangu,L.K.,Cairns,W.L.,(1987)“TheEffectofCalciumonMicrobialAggregationduringUASBReactorStart-Up“Wat.Sci.Tech.,19,249-260.144Malina,J.F.,(1980)“AnaerobicWasteTreatment”,LectureNote,Univ.ofTexas(Austin).Massey,M.C.andPohiandF.G.,(1978)“PhaseSeparationofAnaerobicStabilizationbyKineticControls”,J.WPCF,50,2204.McCarty,P.L.,(1971)“EnergyandKineticsofAnaerobicTreatment”,AnaerobicBio.Treat.,Proc.Amer.Chem.Society,AdvanceinChemistrySeries,91-107.Montgomery,C.D.,(1984)“DesignandAnalysisofExperiments”,JohnWileyandSons,2ndEdition.Mosey,F.E.,(1983a)“MathematicalModellingofAnaerobicDigestionProcess:RegulatoryMechanismsfortheFormationofShort-ChainVolatileAcidsfromGlucose”WaterSci.Technol.,15,209-232.Mosey,F.E.,(1983b)“KineticDescriptionsofAnaerobicDigestion”,Proc.3rdInter.symp.onAnaerobicDigestion,Boston,USA,37-52.Normann,J.,andFrostell,B.,(1977)“AnaerobicWastewaterTreatmentinaTwo-StageReactorofaNewDesign”Proc.ofthe32thPurdueIndustrialWasteConference,387.Oleszkiewicz,J.A.,Thadani,V.J.,(1988)“EffectsofBiofilterMediaonthePerformanceofAnaerobicHybridReactors”,Env.Tech.Lett,9,89-100.Olthof,M.,(1982)“AnaerobicTreatmentofIndustrialWastewaters”ChemicalEngineering,(23),121-126.PALNSSam-soon,etal,(1987)“HypothesisforPelletizationintheUpflowAnaerobicSludgeBedReactor”,WaterSAVol.13,No.2,69-80.Patel,G.B.,Roth,L.A.,andSprott,G.D.,(1979)“FactorsInfluencingFilamentLengthofMethanospirillumhungatii”J.Gen.Microbiol.,112,411-415.Pavlostathis,S.G.,andGossett,J.M.,(1986)“AKineticModelforAnaerobicDigestionofBiologicalSludge”,Biotech.Bioeng.,,1519-1530.Pavoni,J.L.,Tenney,M.W.,etal,(1972)“BacterialExocellularPolymersandBiologicalFlocculation”,J.WPCF44(3),415.Perot,C.,(1989)“OptimizationofSludgeAnaerobicDigestionbySeparationofHydrolysis-AcidificationandMethanogenesis”Envir.Technol.Letter.,jQ,633-644.145Pipyn,P.,andetal.,(1979)“APilot-scaleAnaerobicUpflowReactorTreatingDistilleryWastewaters”,Biotechnol.Lett.,1,495.Pohland,F.G.,andGhosh,S.,(1971)“DevelopmentinAnaerobicTreatmentProcesses”,Biotech.Bioeng.Symp.,,85-106.Pohland,F.G.andGhosh,S.,(1971a)“DevelopmentinAnaerobicStabilizationofOrganicWaste-TheTwo-PhaseConcept”,Env.Letters,.1(4).Pohiand,F.G.andMassey,M.L.,(1975)“AnApplicationofProcessKineticsforPhaseSeparationoftheAnaerobicStabilizationProcess”,ProgressinWat.Tech.,7(1),173-189.Rajan,R.V.,LinJih-Gaw,Ray,B.T.,(1989)“Low-levelchemicalpretreatmentforenhancedsludgesolubilization“,J.WPCF,j,1678-1683.Rijkens,B.A.,(1981)“ANovelTwo-StepProcessfortheAnaerobicDigestionofSolidWastes”Proc.ofthe5thSymposiumonEnergyfromBiomassandWastes,Orlando,FL,USA,463-475.Rinzema,A.,Lettinga,G.,(1988)“TheEffectofSuiphideontheAnaerobicDegradationofPropionate”,Env.Tech.Lett.,9,83-88.Ripley,L.E.,andBoyle,W.C.,(1983),“AnaerobicDigestionModels:Implicationforthedesignengineer,Proc.3rdInter.Symp.onAnaerobicDigestion,Boston,USA,451-463.Scheifinger,C.C.,Linehan,B.,andWolin,M.J.,(1972)“H 2productionbySelenomonasruminantiumintheabsenceandpresenceofmethanogenicbacteria”Appl.Microbiol.,29,480-483.Schwartz,L.J.,(1982)“AnaerobicDigestionandHeatPumps:PotentialforEnergyRecoveryinaWasteStream”,Biotech.Bioeng.Symp.,11,463.Souza,M.E.,(1986)“CriteriafortheUtilization,DesignandOperationofUASBReactor”Wat.Sci.Tech.,,18(12),55-69.Stronach,L.J.,et.al,(1986),inIndustrialWastewaterTreatment”,Springer-Verlag,tI183ppTavery,M.A.etal,(1979)“PhaseSeparationTreatment:Surfactant-FoamingProblems;Solid-LiquidSeparation”,WaterandWasteEngineering,j(2),47.Therkensen,H.H.,(1979)“ThermopholicDigestionofaStrongComplexSubstrate”,j146WPCF,51,1949-1964.Torpey,W.N.,(1955)“LoadingtoFailureofaPilotHigh-RateDigestor”,Sew,andmd.Wastes.27,121.Trudell,M.,VanderBerg,L.,andet.al,(1985)“AnaerobicTreatmentofHigh-StrengthAcidicOrganicWastewatersUtilizingtheUpflowSludgeBlanketTreatmentProcess”,WaterPoll.Res.Journal(CANADA),20(1),25-41.US.EPA,(1978),“ProcessDesignManualforMunicipalSludgeLandfill”,EPA625/1-78-010.Tech.Transf.US.EPA,(1979)“ProcessDesignManualforSludgeTreatmentandDisposal”,EPA625/1-79-011,Tech.Transf.VanDerMeer,R.R.,(1983)“MathematicalDescriptionofAnaerobicTreatmentofWastewaterinUpflowreactor”,Biotech.Bioeng.,,2531-2556.Vesilind,P.A.,(1980)“TreatmentandDisposalofWastewaterSludge”,AnnArborSci.,Michigan,323pp.Wiegant,W.W.,andetal.,(1985)“GranulationofBiomassinThermophilicUpflowAnaerobicSludgeBlanketReactorsTreatingAcidifiedWastewaters”Biotech.Bioeng.,,718-727.Wu.Wei-min,et.al,(1985)“PropertiesofGranularSludgeinUpflowAnaerobicSludgeBlanketReactoranditsFormation”,Proc.4thInter.Symp.onAnaerobicDigestion.Guangzhou,China.Yan,Jing-Qing,(1991)“AnaerobicDigestionofCheeseWheyinAnUpflowAnaerobicSludgeBlanketReactor”Ph.dThesis,Univ.ofBritishColumbia,Canada.Zeeuw.DeWillem,(1980)“AcclimatizationofDigestedSewageSludgeDuringStart-UPofAnUpflowAnaerobicSludgeBlanket(UASB)Reactor”,Proc.35thPurdue.Ind.WasteConference,39-47.Ziekefoose,C.,(1976)“OperationsManual-AnaerobicSludgeDigestion”,EPA430/g-76-001,US.EPA,Washington,D.C.,U.S.A.Zoetemeijer,R.J.,(1982)“AcidogenesisofSolubleCarbohydrate-ContainingWastewater,Ph.DThesis,Univ.ofAmsterdam,TheNetherlands.Zoetemeijer,R.J.et.al,(1982)“pHInfluenceonAcidogenicDissimilationofGlucoseinanAnaerobicDigestion”,Wat.Res.16,303-311.147APPENDIXASyntheticSludgePreparationandSystemSet-upALl:SummaryofResearchProblems/RemedialActions/ScopeandApproachModificationsA2.1:SystemSeedingandLoadingRateA2.2:FinalConstituentsofPrimaryandSecondarySyntheticSludgesandChemicalAnalysisofDogfoodsA3.1:DetailedSizingofAcid-andMethane-PhaseReactors(UASB-UASB)A3.2:Spread-sheetforSizingoftheAcid-andMethane-PhaseReactors(UASB-UASB)A4.1:DevelopmentofASmall-Scale(1-Litre)SyntheticSludgePreparationA4.2:DevelopmentofAScale-Up(30-Litre)SyntheticSludgePreparationA5.1:MonitoringtheCharacteristicsofPrimarySyntheticSludgePreparedThroughouttheExperimentA5.2:MonitoringtheCharacteristicsofSecondarySyntheticSludgePreparedThroughouttheExperimentLiable11SummaryofResearchProblems/RemedialActions/ScopeancippfoachsMoiifcatIonPhase/durationResearchproblemsandconceptualideasRemedialactionsandmodificationsoftheoriginalproposaloftheresearchworks*IProposalprepazahonCompoferliteraturesearchon:sewagesludge;AgreewiththeapproachTwo-phaseanaerobicdigcshori;UASSOplineebothobicdrresintermsoil:Anaerobicdigestionobicctaes:SystemremovalclliciencyPofutioncontrolCH4contentandproductionEnergyrecoveryControltcm@35degreeCandProblemareas:pH@517brA-andM-UASBsPoorsupcmataritqualityReplicalo-BuildmoreUASBandrunparalelyLowCH4contentandproductionBid.costproblemsHydrolysisratelimitingstepOptionally.comparisonofactualC114productionFlowandIcedisscns.livctoLIASOintermsof%theorcliealCH4productionEttedoftemperatureandpt1(>0.4-OK)Approaches:Syntheticskidge-asoidloiiieunavailabilityHRTIRR/SRMixingStratI-scaledwithnjbbcr!o-nngMicingspeedoperateunderwalerlevelSuscwplibildylrccoveryperiodSummarizeproblemareaslapproachTwo-phaseIJASB-UASBequipmentrcqdkostostitnalionKineticsinthetonnofresearchproposalSpCciliccontrololpllftcnrp.ZProposaiDefenseSpeciecontrolofpelifemp.2-3considerableparameterssheukibeenoughOptimaloperatingconditions:Firstslopvarinblcscoukintremain222tactorixidesign:constantappliedtosecondstepFWSIslop-FWSRimixingspeed77Y.theoreticalC1l41??Secondstep-RRlwaslinaJmriiriglime(Or.Olciham)Overalprocesspertormancos:AnalyticalmethodforsludgecarbohydrateRerunopl.nmngcorwi.(Dr.KJlaFeeddirectlyfromPnandSec.sludgesTimecorretraudfnostudyonmodellingMax.toadiogrccovcryperiodRevisionofexperimentaldesignsBestknownnwvwigcoral.(Seedetailelaterincap.runs)Recoveryalernalees:IncreaseScc.skrilgeratioSloptecdingperiodicallyAlkalineadditionCombination-222lactorialdesignNote:*Discussion/agreementamongresearchersupervisnrandCo-supervisorhavebeenreachedpriortoanymodificationstobetakenCoSummaryofresearchproblems/remedialactions/scopeandapproachmodifications(corttd)149Phase/durationResearchproblemsandconcepeialdRemedialactionsaridmodificationsoftheoriginalproposaloftheresearchworks’3.Espeflrnentiprogram3.1SynthetIcaluogeToohighCODNSSandTOSlenddogfoodwithwater.2hrl/teIVeovernightwarm@65-70degree0.1.5hrs/n,lhrSaute/drainportionofthesolidsoutToolowN/PMdurea/NeJ1P043.2SystemsetupLeakipHprobeir.aof.moovellDoubleO..lngaroundtheprobes/moreboltsLeakdMebnwithoanIrrgIuid/N2gas3.3A1lJnItlZatlonFwn.ntazlonmadetheblendelMovetheblendertotheColdroom(44degreeC)Clogginginsid,thetubeoonn.odngLevelingtileeffluentnefromtheblender10th,blenderendM.IASBiMUertheA4IASBainishir,olaceallpieslidtub.,withthethiokarone,usedforfood/bevaragWConnedthesofttubesbelweeflthehardones/aqueeregulrlyNogaspassingthroughthetgasflowmetersMakeU4ubetilleffluentlineofbothreadtera/PlecesealeritOutsidethe0-ilogberw.encoveraridreadersSludgespillageSlmpl6y/stiortenrecucethetubinglinearidandConfleaervmpiacecon.4hap.connederswatttheetratqntonesaridpstidd,mpswithtIlemetalone,Runningcondltlone:ReviserunningConditions:35degreeC/pH5/7Sameasproooaea.exceptFR54F10,SR8020,RA4/7(Spiliage/ttrneCecys)Mbca’20rpm3.4ExperImentalruns3.4.1Opt.oparatlngCond.SameasthosementionedIn2.0ConsidenngoontmentS/tlrneConstraints,Revisnorthewproacnwasas:UseSurtacerasoons.method(SRM)I22tador,Lcesigninsteadof2r2fedoraldesignPseudo-eteacystate:2-3HRT1S-10%variationofallresponsesPhase/durationResearchproblemsandconcepeialIdeasRemedialactionsandmodificationsoftheoriginalproposaloftheresearchworks*PhaseI:Referencecohdtlon(Acdlmnaliion)RunsSRPRFR0&204175-813C.C2.145422OSf105-6350/505/103-64802O2145-6Phase2:5estImownconditionRunsSRPRFR080(204/75-6170/3035-62X/1031.8$4370/30515-8490(103/85-8Phase3:AdditIonalruneRunsSRRPFRI80/403/85-6280/403/85-6380/205/85-6Nor.pIt.for.eU’runtoceleiedeateradionCajtelaelfecnfintaraCtionbasedoflr.p&steofSRandRRwthtImaJrspIsa’cemerpt.(ailristIon)Comoare3.0.a’centerpt.wEllth0a’saulrunningconditionNoacnmntulngeintheirisiorriepons.perssirersChecicML/SSa’eadirunningconditionofeeulrunnelgcondafon3.4.2UIX.IoadingfSameastb,.mentionedIn2.0UmeatIonofSludgepr,parstbnllltneConstralntsRecoveryperiodApproaulwastweedas:MaadaHRT.d96.54.53.02.251.51.13ReCovery,HRT-d2.253.04.59.0MGLH.all’Llneeddtlufl7777150Volum.ofs..dsludg.r.quir.dforacid-phas.r.act.r:•0.520Utr.—10Iltr.•10lltr.tapwat.rVolum.ofs..dsludg.r.quir.dform.than.—phas.r.aet.r:O.525iltr.•12.5Itt.•12.5Iltr•tapwat.r.comm.nd.dstart—uploading:1.2gCOD/i/d10.1gCOO/gVSS/d@58-hrHRTIand/or5.0KgCOD/cu.m-dto.1-0.2KgCOD/KgTS/dICh.ckloadingrat.:Itpri.sI:s.c.sI•8020Th.n,mix.dliquidaludg.conc.ntration:Clvi.C2V2CVC[VSSI=tt0.8V17293H0.2*117721]/V•16,189Mg/ISimilarly,CtTSJ•[tO.8333691•[0.2199733.1/V=30,890Mg/ICECODI-U0.8328721•t0.2254671]/V•31391Mg/ISludg.loadingrat.•ttCOO/VSSIFLOWJ/V•0.I9COD/9VSS/d=([31391/i6t891/451f1owTh.n,Flow2.32l/dOKVolum.tricloadingrat.:•t[31391/[45*1000J]*flow•1.2gCOD/i/dTh.n,Flow•1.72l/dOK(a)(b)ConstituentsSyntheticSludges(%)ConstituentsAnalysis(%)PrimarySecondary‘NoName’SpecialDinnerfoeDogsDogFood86.5093.00Proteins22(mm)Soap3.000.25Fat7(mlri)0113.002.00Carbohydrate54(mm)CaC2.00Fibre5(max)NaHOI’H01.503.25MoIsture12(max)Paper2.00MgCp2.00tires1.50151:.:Tae::A3;1:::D:etai!ed::Si(1).DesignCriteria1.1)SystemSurfaceLoadingRate(Sys-SLR)•1-1,5m3/m2.hr1.2)SettlerSurfaceLoadingRateLessThan0.7m3/m2.hr1.3)GasCollectionAperture(GCA)LessThan2.0m3/m2.hr1.4)50oInclinedWalls1.5)DesIgnedHRT:2hrs..9days1.6)ActIveSludgeBlanket/Bed(ASB)andSettlerRatio—7:31.7)ProperBaffleArrangementBeneathGasCollector(2).ReactorVolumeSya-SLR—1.0-1.5m3/m2.hr(1.0m31m2.hr)Dia.ofrequiredarea—12.5cms.Arearequired(22/7)*d214—0.0123m2Max.Flow(0)•Ar’SL—0.0123m2*1m3/m2.hr0.0123m3/hrw295l/dCriticalHRT—2hrs:ReacterVol.—HRT’Q2hrs.’0.0123m3/hrs=0.0246m325litreMmFlow((0,0246m3)/(9days))*(1000L/m3)=2.73L/d(3).ReactorHeight(RH)Approx.,RH—Vol/Areareq’d—(0.0246m3)/(0.0123m2)—1.99w2.OOmSettlerVol.—0.325.00—7.5lItre0.0075m3Doublingsettlersdiameter—12.5*2—25.00cm.Areareq’d—0.0491m2SettlerH—(0.0075m3)/(0.0491m2)—15.27cm15cmConnectV—5lItreASV•25-7.5-5.0•12.5DtreASH(0.0125m3)/(0,0123m21.00m(4).QasCollectionApparatusGCA=2.00m3/m2.hrAreaReqd—FIow/QCA—(0.0123m3/hr)/(2.00m3/m2/hr)0.0062m2Dia.ofGCA—((0.0062m2)*((4)/(2217))1/2=0.0885m.w8.85cm(5).AddItionalSettlerArrangementDoublingthesettler’sdIameter(12.5cm.*2w25cm)toslowdowntheliquidvelocitypassingthroughtheeffluentwelr.CHECK:Set-SLRa0.7m3/m2.hrSettlerarea—(22/7)(d214)•(/7)’((025)2/4))ActualSLR•(0.0064m3/hr)/((22/7)’((025m)214))—0.25m3/m2.hrOKTohelpsettlesolidsbacktotheASB,aproperbafflearrangmentbeneaththegascollectorand500Inclinedwall@theconnectionbetweensettlerandASBIncludingthegascollectorwerecreated..A.3.2.cii.zirlgcf.1.—a.ri’i[1]DesignCriteriaI.!SystemSurfaceLoadingRate(Sys—SLR)=1.0—1.5m3!m2.hr1.2SettlerSurfaceLoadingRate(Set—SLR)<or=0.7m3/m2.hr1.3GasCollectionApparatus(GCA)<or=2.0m3/m2.hr1.450oInclinedWalls1.5DesignedHRT=2hrs—9days1.6ActiveSludgeBlanket/Bed(ASB)andSettlerRatio=7:31.7ProperBaffleArrangementBeneathGCA[2]ReactorVolume[RV][3]ReactorHeight[RID[41GasCollecttonApparatusDia.SLRAreaMax.Crit.React.Mm.ApprS.Set.AreaSet-.Conn.Act.Sl.Act.S1TotalGCAAreaGCACheckreq’flowHRTvol.flowvol.dia.req’Highvol.vol.HighRHreq’Dia.SLRcm.m3/ni2.hrm2L/dhrs.lit.L/dm3cmm2cmlitASV,m3ASH,mmm3!m2.hrm2cm0.7m3/m2h10.0010.00791892161.750.0047200.0314152.130.00891.131.3420.00397.070.2510.5010.00872082171.930.0052210.0347152.130.01001.151.3620.00437.420.2511.0010.00952282192.110.0057220.0380152.130.01121.181.3920.00487.780.2511.5010.01042492212.310.0062230.0416152.130.01241.191.4020.00528.130.2512.0010.01132722232.510.0068240.0453152.130.01371.211.4220.00578.490.2512.5010.01232952252.730.0074250.0491152.130.01511.231.4420.00618.840.2513.0010.01333192272.950.0080260.0531152.130.01651.241.4520.00669.190.2514.0010.01543702313.420.0092280.0616152.130.01941.261.4720.00779.900.25I-’TableA41Developmentofasmallscale(1—litre)SyntheticSludgePreparation.F23toNór.1O,1ExperimentalCharacteristics,%TSRunsPrimarySyntheticSludgeCOONSSTDSTDTSSTDSTDVSSTDSTDTPSTDSTDPROT.STDSTDTOCTKNSTDSTDGARBSTDSTD(1)3.001.21.63.82379264930.830.351.220.8320303.31.5415.001726(2)1.421.21.62.90379364930.790.351.220.82203029.63.31.5415.801726(av)2.211.21.63.36379364930.810.351.220.73203029.63.31.5415.401726SecondarySyntheticSludgeCODNSSTOCINSTOSTOTSSTOSTDVSSTO$70TKNSTO570TPSTOSTOROT.STOSTOGARBTOCSTDSTD(1)2.902.173.514.64.11292.259883.602.46.70.901.31.822.50324112.501744(2)2.432.178.03.514.62.41291.669883.732.46.71.081.31.823.30324126.6738.31744{3flh)2.352.1718.13.514.62.11289.759883.592.46.71.801.31.622.50324127.9065.01744(2)3.102.1714.73.514.61.71287.659883.902.46.71.501.31.624.70324119.8957.31744(3)3.752.1713.53.514.61.81288.059884.102.46.71.801.31.625.60324126.8455.51744(4)2.752.1714.83.514.82.01289.359883.702.46.71.401.31.623.30324120.3154.7174415)2.412.1715.93.514.62.41287.959883.782.46.71.501.31.623.65324127.1060.31744(6)3.102.1715.23.514.62.31289.559883.982.46.71.591.31.624.90324120.9060.81744(7)2.842.1715.13.514.62.41290.059884.002.46.71.651.31.625.00324132.1060.21744(812.362.1713.83.514.62.81290.759883.802.46.71.491.31.623.80324121.1052.71744(912.672.1715.83.514.63.31290.559883.892.46.71.421.31.624.36324124.6081.31744(1012.902.1718.63.514.83.01289.559883.662.46.71.431.31.622.89324122.2068.01744(11)2.612.1718.43.514.62.81290.059883.642.46.71.451.31.622.78324117.0067.01744(12)2.612.1719.63.514.63.21291.059883.752.46.71.331.31.623.41324120.8073.71744lay)2.792.1716.13.514.62.51289.559883.822.46.71.511.31.623.91324123.3861.41744(4)(i)4.532.46.71.711.31.6(2)4.722.46.71.431.31.6(3)7.962.46.71.391.31.6(4)10.552.46.71.061.3i.e(av)6.942.46.71.401.31.6Note:12CombinationOptionsofFeedsolids(%T)S,Settlingtime(ST),Warmingtime.(Wi)(1)=OCT23,1987(1)=5%WT.(51=6%TRWT.(9)=7%TWT.(2)=NOV2,1987(2)=5%WT.(6)=6%TRWT.(10)=7%TWT.(3)=NOVIO,1987(3)=5%WT.(7)=6%TRWT.(11)=7%TWT.(4)=DEC15,1987(4)=5%WT.(8)=6%TRWT.(12)=7%TWT.STO=TypicalnormalrangesofactualprimarysludgecharacteristicsU’TableA42DevelopmentofaScale-Up(30-hire)SyntheticSludgePreparationBetweenNovember1710December30,1987PrimarySyntheticSludgeExperimentalCharacteristics,%TSRunsCODNSSTDSmTSSTDSTDVSSTDSmTKNSTDSTDTPSTDSTOPROTSWSTDCARBOSWSmTOC(1)2.271.21.62.33788.864933.11.540.980.31.219.2203035.7172642.72.461.21.62.13788.164933.11.540.940.31.219.5203028.6172634.42.511.21.61.93787.264933.11.540.940.31.219.5203027.2172627.9[avl2.411.21.62.13788.064933.11.540.950.31.219.4203030.5172635.02.301.21.62.13787.764932.91.540.930.31.217.5203021.5172635.62.211.21.62.33788.964932.81.540.890.31.217.7203017.7172629.6(2)2.291.21.62.33787.864932.91.540.830.31.218.1203017.8172649.21.941.21.62.93789.764933.11.540.810.31.219.3203017.7172628.3[avj2.191.21.62.43788.564932.91.540.870.31.218.2203018.7172635.71.541.21.63.03790.364933.51.540.920.31.221.8203023.1172631.51.691.21.62.63789.264933.61.540.890.31.222.3203022.0172632.2(3)1.301.21.62.43788.864933.61.540.940.31.222.3203013.5172652.01.831.21.62.23788.564933.51.540.910.31.222.1203023.1172649.8[avj1.591.21.62.53789.264933.61.540.920.31.222.1203020.4172641.41.581.21.63.23790.964933.91.541.050.31.225.520301.891.21.63.63791.064933.91.541.050.31.225.52030{4)2.091.21.63.33791.064933.91.541.080.31.225.420302.071.21.63.33790.864934.11.541.070.31.225.92030[avj1.911.21.63.43790.964933.91.541.060.31.225.62030•.:.•Note::(1)=NOV17,1987(2)=NOV25.1987(3)=DEC1,1987(4)=DEC30,1987.:.STD=Typicalnormalrangesofactualprimarysludgecharacteristics.V•C,’TabI&A42DeIópmeAt&a..Scálé—Up(3O-litre)SynthéticSiudgèPreparationBetweenNovember1710December30,1987(cont’d)SecondarySyntheticSludgeExp.Characteristics,%TSRunsCODNSSSTDTSSTDSTDVSSTDSTDTKNSTDSTDTPSTDSTDPROT.STDSTDCARBO.TOCSTDSTDCINSTDSTD{1)2.652.21.71.0287.459883.22.46.71.71.31.619.8324122.930.117449.43.514.62.502.21.71.0287.159883.02.46.71.61.31.618.4324130.332.5174411.03.514.63.072.21.91.0287.559883.12.46.71.51.31.619.0324132.047.6174415.63.514.62.382.21.81.0287.959883.12.46.71.51.31.619.0324125.942.8174414.03.514.6lay]2.652.21.81.0287.559883.12.46.71.61.31.619.1324127.838.3174412.53.514.62.322.22.31.0289.159883.72.46.71.51.31.623.0324119.845.4174412.43.514.61.922.22.41.0289.559883.72.46.71.41.31.622.3324118.032.417448.93.514.6(2)2.192.22.21.0289.459883.62.46.71.51.31.622.5324118.734.317449.53.514.62.262.22.21.0288.859883.42.46.71.41.31.622.2324124.136.5174410.73.514.6[avj2.172.22.31.0289.259883.62.46.71.41.31.622.5324120.237.2174410.43.514.62.032.22.11.0288.159885.62.46.71.31.31.635.1324130.434.017446.13.514.62.192.22.01.0288.259885.82.46.71.61.31.636.4324125.532.717445.63.514.6(3)2.202.21.91.0288.859886.42.46.71.81.31.640.0324125.034.117445.33.514.62.212.22.01.0288.559885.52.46.71.31.31.634.7324125.133.017446.03.514.6(av]2.162.22.01.0288.459885.82.46.71.51.31.636.6324126.533.417445.73.514.6Note{1}NOV25,1987{2}=DEC11987(3)=DEC231987STD=TypicalnormalrangesofactualprimarysludgecharacteristicsC,’C,’TabliA5.1SumniäMotoringonthePrimarySyntheticSludgesUsedThroUghOuttheExpérimentalPrógram:.:c::BetweenApril13,1988toDecember21,1989••:DateDaysCharacteristics,%TSCOD,mILVSSCOD!SThSTDTSSTDSTDVSSTDSTDTKNSTDSTDTPSTDSTDPROT.STDSTDTotalSol.mgILVSS04/13/881375057084245501.531.21.62.103.007.0089.1564933.851.54.000.910.351.2024.08203005/10/8828379594549243201.561.21.63.303.007.0091.9464933.521.54.000.800.351.2022.00203005/31/8849436625191254801.711.21.63.263.007.0092.6864934.061.54.000.870.351.2025.37203007/12/8891279075349204801.361.21.62.163.007.0087.7964933.851.54.000.860.351.2024.06203008/16/88126239525509168801.421.21.62.843.007.0088.8064933.241.54.000.990.351.2020.25203009/30/88171305157340248001.231.21.63.413.007.0089.2564933.571.54.000.920.351.2022.31203011/01/88203238106587179601.331.21.63.643.007.0089.1264933.591.54.000.650.351.2022.44203012/09/88241304005440212801.431.21.62.873.007.0088.9984933.521.54.000.920.351.2022.00203002/14/89308259844724235861.101.21.62.563.007.0087.6564934.061.54.001.090.351.2025.37203003/14/89336488985371259501.881.21.62.663.007.0086.8464933.951.54.000.930.351.2024.69203004/18189371394375956238501.651.21.63.553.007.0084.2564933.431.54.000.990.351.2021.44203005/30/89413226126706.172301.311.21.62.473.007.0087.2164933.261.54.000.800.351.2020.38203007/04/89448272194930150601.811.21.62.473.007.0089.7064934.231.54.001.130.351.2026.44203008/01/89476229635147218101.051.21.63.753.007.0089.9664933.901.54.000.900.351.2024.38203008/22/89497244924525209501.171.21.63.073.007.0088.1584934.231.54.000.970.351.2028.44203010/03/89539260185041150901.721.21.62.283.007.0086.2684935.421.54.000.990.351.2033.88203010/25/89561285456373230201.241.21.63.033.007.0087.0464933.521.54.000.990.351.2022.00203011/21/89588357855567187801.911.21.62.653.007.0089.1964933.651.54.000.910.351.2022.81203012/21/89618264235854178501.481.21.62.503.007.0086.0164933.681.54.000.890.351.2023.002030Average307415644209951.471.21.62.863.007.0088.4164933.821.54.000.920.351.2023.862030STDTypicalnormalrangesofactualprimarysludgecharacteristicsC”a,TableA51SummaryofDataMonitoringonthePrimarySyntheticSludgesUsedThroughouttheExperimentalProgramBetweenApril13,1988toDecember21,1989DayDaysVFA,mgILTot.VFANH4-NP04-PHAcHPrIso-HBrHBrA-HVrIso-HVrHVrHHemgILHAc04/1318812311551353110105/10/88281813451439014705/31/8849238046453410007/12/88919958591122518308/16/88126459082911116509/30/8817134127110119584527311/01/8820332138984585192121091882411475120457520802/14/8930838171162821223703/14/893361610675211610304/18/89371331149798311920905/30/89413351205391293016407/04/894483812945107778221908/01/894762612348110575720008/22I894971113456324511310/03!89539156436672410710/25189561141226357481915311/21I89588716659562712312I21I8961810139455518102Average23118735911247254158163c,1TableA52SummaryofDataMonitoredontheSecondarySyntheticSludgesUsedThroughouttheExperimentalProgramf..:.:..BéieeApriI13,1988toDecebei211989.DateDaysCharacteristics,%TSCOD,mg!LVSSCOD!SThTSSTDSTDVSSTDSTDTKNSmSTDTPSTDSmPROTSTDSTDSol.NGINSThSTDTotalSol.mg!LVSS04/13/881475057084163002.912.172.171.002.0089.7459884.952.406.701.361.301.603132417859.0241505/10/8828416327008188002.212.172.231.002.0086.8459885.092.406.701.511.301.603232418018.7541505/31/8849265417123157801.682.172.381.002.0093.8659885.612.406.701.411.301.6035324154613.0541507/12/8891255816357110852.312.172.161.002.0087.7959884.952.406.701.321.301.603132416859.2841508/16/88126305157340150102.032.172.531.002.0089.3259884.802.406.700.891.301.6030324165811.1641509/30/88171280166190157801.782.172.541.002.0088.9859884.942.406.700.861.301.603132417568.1941511/01/88203272006080138701.962.172.551.002.0086.2559884.572.406.701.431.301.602932417647.9641512/09/88241296227008161601.832.172.481.002.0092.7459884.902.406.701.501.301.603132417419.4841502/14/89308367686970157602.332.172.231.002.0089.9959884.112.406.701.111.301.602632417579.2141503/14/89336256516092155601.652.172.231.002.0088.5459883.592.406.700.951.301.6022324150112.1641504/18/89371297797324141602.102.172.461.002.0081.8859884.502.406.701.231.301.6028324171610.2341505/30/89413382077407150602.542.171.851.002.0086.0559884.062.408.701.361.301.6025324173110.1341507/04/89448437386839224101.952.173.111.002.0087.4959886.742.406.701.541.301.604232416969.8341508/01/89476251855074136901.842.171.941.002.0086.5359886.002.406.701.361.301.603832416308.0541508/22/89497266396827158101.682.172.561.002.0088.6859884.262.406.700.971.301.602732418018.5241510/03/89539239676281115002.082.172.001.002.0087.3959885.472.406.701.211.301.603432418087.7741510/25/89561285126289147101.942.172.731.002.0089.0359885.182.406.700.831.301.6032324159810.5241511/21/89588282317318161601.752.172.561.002.0087.2059885.272.406.701.321.301.6033324165811.1241512/21/89618260167236160301.622.172.581.002.0088.7759885.122.406.701.121.301.603232417859.22415Average310166729154542.012.172.381.002.0088.2759884.952.406.701.231.31.63132417069.664155ThTypicalnormalrangesofactualprimarysludgecharacteristicsI-’0100TableA52SummaryofMonitoringDataontheSecondarySyntheticSludgesUsedThroughoutV:...::c::.thi:ExperimentalProgramBeenApril1,19881oDateDaysNH4-NP04-PHAcHPrIso-HBrA-HVriso-HVrHHeTot.VFAHBrHVrmgILHAc04/13/8812311555454312105110/88281813441653710705/31/8849238052417307112/8891995291019808/16/881264590106871281527309/30/8817134127180811025211/01/882033213814554819412/0918824114751345691219302114189308381711461033025003114/89336161064110911504/18/8937133114222205/30/894133512025143607/04/8944838129171208/01!8947626123161108/22/8949711134975010/03i8953915642332510I25/8956114122351154711/21!895887166473212/21/89618101394581100Average231187256452169106C,’CD160APPENDIXBAcclimatizationProcessTableB1.1:AverageSystemEffluentQualityandRemovalEfficiencyatPseudoSteady-stateUnderDifferentAlternativesDuringtheAcclimatizationTableB2.1-B2.8:ResponseDataoftheSamplingPointNumbered1to8UnderDifferentRunningConditionsDuringtheAcclimatization.FigureB1.1:EffluentQualitiesoftheM-UASB(COD,MLVSS,P04-P,TKNIT’P)UnderDifferentRunningConditionsDuringtheAcclimatizationFigureB2.1:SystemGasProductionandLoadingRateUnderDifferentRunningConditionDuringtheAcclimatizationNote:AllsamplinglocationsareillustratedinFigure4.2AcclimatizationAlternatives:(a)SeedingbothA-UASBandM-UASBwithsludgefromtheLion’sGateanaerobicsludgedigesterandusingastep-loadingapproach;(b)SeedingbothA-UASBandM-UASBwithacclimatizedsyntheticseedsludgeandusingaconstant-loadingapproach;(c)SeedingtheA-UASBwithacclimatizedsyntheticseedsludge,buttheM-UASBwithsludgefromtheLion’sGateanaerobicsludgedigester,usingastep-loadingapproach.C,wC,.-Ei.1.00(iCr)znnznX0c-)OCO0T1Cl)(Q00.(TI00.00.c,‘i—w.()()C)C)C)()5)———.G-cia.c.cLa_u.ôh00c000)JCl)U).—a’U)—V.)O‘000WU)))O00——C)V.V.—OU).a’c0OO0O4V.—V.V.0—0’0U)1’3U)0000—0Cl.000.V.0000Cl.QsV.500000V.00U)V.‘3U)00—U)0’I’)NV.0—a—os)—V.)U)0O——0’—J—OU)..V..000—J0—-JU)-.J‘0‘0.V.C)Osa’4—Osa’———2t’3‘OsU)U)0.0050a’0.Os—0003.—V.Os‘0.‘0‘0IsOCl.‘0SM-——J1-0U)0’s0—U)V10IsJO—OU)—4U)OOOIsOIsOO\0—OU.V.V.00-J—U).1-.)U)0000IsO0—.J—soV.—IsOU)01-.)—V.IsO-———U)-CDa’IsO1-0—Os1-0001-0—-.2‘0‘0—U)V.Os0000).4w—cJ—_,GO.icnllI•..Q’0C,,>1(DOOOC)flOfl<OOflOOOOfl1flOOOCflflOi_.CCTh<CO1OOI.PPPCCCCCCCCCCCCC)CCQCCCIIIIO00000000000000000000000000000000000000000000-.()fl(fl<<<<nnnr)<<<OOOO<<<9BB0000c.Cciu00000°00CCn0000“‘c”iijiii‘0--•ow0-0.C0-0.0-0.0-.-0--SD_90-0-B0--0-U)U)Cl)aa00a@a‘U)Cl)1WO1WO1WCl)C)C)C)-‘0pp0pppp00000000——00Va‘0-1.31-31.3U-.-0000W-‘000————00000%————UI—00I-.)‘00%1-3-.3—SOUI001.31.3.V)I’)-.31.3t..)—.10’1-30’1.3f..)00-—00000000——J-0±00000000—00•ft-3031.31.31.3..30%00-.0%%O00013—U0000Qs-.‘00a.3Wi.3.l..31.3‘0U1-.)OsUI—01J‘00%00VI‘0‘013OsUI-0%1.)0—1.3——-—000000——1.31.31.31-.)()0)00000—-a-1-3000%UIIQ-.VU..50‘0—0‘0—1-.).1.31.30000—I..3SO—1-3I.)Vi001-301.3000%1..)——01-31.3.‘01.30l.A-0’.c.3V..-.31-.)—UIUI‘00—IIIIIIIIIIIIIIIIIIIIIIIIIIII163TableB1.1AverageSystemEffluentQualityandRemovalEfficiencyAtPseudoSteady-StateUnderDifferentAlternativesDuringtheAcclimatization(cont’d)Runningconditions[a][b][c]Runningtiine,days482250SyemeffluentSolidsTS,mg/L—490353273262VS,mg/L274018971101TSS,mglL837165277TVSS,mg/L527105141TS.%0.490.530.33VS,%drysolids54.8838.5133.59TSS,%0.090.020.03TVSS,%drysolids62.9462.9750.40COD,_mg/LTotalCOD1692975820Sol.COD758861648Inorganics,_mg/LNH4—N290271386TKN303296423TP747973P04—P14239VFA,mg/LHAc11211645HPr105207231Iso—HBr0014HBr000A-HVr000HVr000Iso—HVr000HHe000TotalVFA,mg/LasHAc(M-UASB)197284235TotalVFA,mgfLasHAc(A-UASB)516444945667SyemremovalefficiencyCOD_Removal,_%TotalCOD949898Sol.COD868791TSSRemoval,%979999TotalVFARemoval,%(M-UASB969496TPRemoval,%545564P04-PRemoval,%898495Note:[a]SeedingbothA-UASBandM-UASBwithsludgefromtheLion’sGateanaerobicsludgedigesterandusingastep—loadingapproach[b]SeedingbothA-UASBandM-UASBwithacclimatizedsyntheticseedsludgeusingaconstant-loadingapproachtc]SeedingA-UASBwithacclimatizedsyntheticseedsludge,butM-IJASBwithsludgefromtheLion’sGateanaerobicsludgedigester,usingastep—loadingapproach164TableB2.IResponseDataoftheSamplingPointNumberedIUnderDifferentAcclimatizationAlternativesAcclim.DateDaysSolids,mg/LSolids.%or%TSCOD.mg/LAlter.TSVSTSSTVSS[%][%TS][%][%TS]Totalsoluble(1)03/28/881306602717029640270303.0688.622.9691.1956161553404/04/888523004724052610484605.2390.335.2692.1162400572004/08/8812284702548024090223602.8589.502.4192.8278920607404/12/8816356203192018450171203.5689.591.8592.8033336600004/15/8819324802893021220196903.2589.072.1292.7950742524504/19/8823453904093027630255604.5490.172.7692.5151524563904/23/8827313202854022290225303.1391.122.2392.1096604508404/26/8830499604516032740301704.9990.393.2792.1559514530404/30/8834476004261030420281904.7689.52‘3.0492.6735482596705/03/8837422003783028980271804.2289.642.8993.7924998500005/07/8841332502994020190191503.3290.002.0294.8530204498005/10/8844263002322035410325402.6388.293.5491.8933197569705/14/8848310702768024730229303.1189.092.4792.7224747547705/17/8851455004079029710277704.5589.652.9793.47321935312(2)05/31/881334503066022520220203.3591.662.2597.7832727796006/07/888409403671033650311104.0989.673.3692.4255936720306/14/8815401003714034120333804.0192.623.4197.8345545819806/21/8822419003870033190315314.1992.363.3295.0049600576006/28/8829335103068025240242253.3591.552.5295.98292685285(3)11/15/881264152246522030195202.6485.052.2088.6129249513811/18/884292502546528150251102.9387.062.8289.2044444507911/22/888237202046021340196602.3786.262.1392.1354475568111/25/8811291802558028970264002.9287.662.9091.1332258540311/29/8815321802919025360243803.2290.712.5496.1432800600012/02/8818291602636029690282402.9290.402.9795.1233198534412/06/8822368653347035660340203.6990.793.5795.4026721518212/09/8825376653459532650312403.7791.853.2795.6845669653512/13/8829358003268034040329003.5891.283.4096.6530709519612/16/8832320452876024130229203.2089.752.4194.9933006707312/20/8836293402625522180210902.9389.492.2295.0936292599612/23/8839333353037028970275803.3391.1!2.9095.2033735634512/27/8843352603200530830293403.5390.773.0895:1750400688012/30/8846380203481025480244503.8091.562.5595.9636508761901/03/8950325152961026710251903.2591.072.6794.3140396697001/06/8953255802284028850272102.5689.292.8994.32286855976(4)342903056329950277473.4389.012.9992.69300465495(5)385033550730850297123.8592.183.0896.27414716414(6)320382908727013256173.2090.642.7094.86351966855TableB2.1ResponseDataoftheSamplingPointNumberedIUnderDifferentAcclimatizationAlternatives(cont’d)Acci.DateDayInorganics,mgILVFA,mg/LTot.VFAAlter.NH4-NTKNTICN.XiSTP,%TSTI’P04-PHAcHPrIso-HBrHBrA-HVrlio-HVrHVrHHcmg/I..HAc(1)03/28/88I26.401473.781002.001305203855104/04/88837.502501.521701.8099401263944904/08/881245.863862.071481.761274253110122465104/12)881630.564501.591422.0319632442116184545(‘4115/881928.761663.661520.90124127335218904/19/882328.761963.931581.1812822811315742704/231882729.872973.252060.751212821631237354104/26/883040.642423.151520.96133535404218390124104/30/883437.772494.161830.9113544029317232598605/03/883718.073183.651591.0612430719311624368605/07/884123.002393.691570.9711935727113227282705/10/884423.002663.581661.1312231724812525075005/14/884821.002573.011420.821222362111002543064205/17/885128.002433.001700.741424794771243521157(2)05/31188I86.003264.862781.8926870760777297142606/07/88844.003124.051841.0216784213736242111706/14/881529.002624.551900.8815797913369462139906/21/882224.003044.141680.811365464924072706/28/882922.002804.271690.81124556136119251895(3)11/15/88113.152633.431811.6414175370211698145911/18/88428.342863.411372.02106463377627085211/22/88874.003294.942011.7014989079615854167511/25/88ii72.003395.072011.751621198111219927225111/29/881595.004224.852051.8614997584014830177512)02/881843.003424.071531.351325824244595212/06/882230.003504.351591.36143504640157-113012)091882526.003433.952330.931787551077273l81412/13/88299003024.131740.92141559893153138712/16/883218.003624.201721.05118508788ItS122512)20/883618.003454.181541.22130376498631483112/23/883957.223384.041920.961415496644223949128512)27/894357.223044.501720.971608691419106238223212)30/884672.604194.612161.0317188214151620090221101/03/895018.003454.141871.0216010281620106204253401/06/895330.003945.102131.072207881295591821985(4)24.002553.201590.90129344312116250254191850(5)25.002824.321760.83139694106119692464621007(6)40.203864.622051.041848991443602001592243No1e:(4),(5),aod(6)areaveragere.ponaeaatpacudoateady-ate(6-14to6-28,1988;5—10to5-17,1988;12-30to01-06,1989)foralter.I.2,ad3respcctivclyv1166TableB2.2ResponseDataofSamplingPointNo.2UnderDifferentAcclimatizationAlternativesAcdlim.DateDaysSolids,mgfL,mg/LInorganics.mgfLAlter.TSSTVSS[%]%TSJTotalSol.NH4-NTKNTKN1?TPP04—P[%TSJ[%TSj(1)03/28/88146670438804.6794.02100606110712773981.191902.7620204/04/88837640353203.7693.847760099202881503.321102.3218404/08/881241400389104.1493.988801293802505451.741620.8718304/12/881640700386504.0794.9669172108342704461.711540.9120204/15/881941250385604.1293.4878884103622422425.971720.6720904/19/882341470392104.1593.9467792101692352125.451680.6318704/23/882746690439904.6794.2276677103452752825.971830.5720504/2H883058540551705.8594.2411377696762162755.521830.5817904!30,’883454530517005.4594.81116122101612763485.751930.8218605/03/883754150513605.4294.8510563891932593666.071830.9318305/07/884152500497905.2594.848979593883043366.211910.5919005/10/884450660479605.0794.67108608104512803635.842130.5518305/14/884850990484405.1094.9995335108322533395.892070.6019305/17/885150990486005.1095.3112072494162453295.811920.60195(2)05/31/88I45330429904.5394.848929387684553686.822020.8219506/07/88855030512805.5093.198008095373273966.152140.8520706/14/881551280488105.1395.1810574386732923506.121821.0517806/21/882253790501325.3893.2011120088002242686.241740.8117106/28/882953600513905.3695.881275257480891087.541950.9471(3)11/15/88156560541305.6695.7074310107512993686.572040.8420311/18/88460880579906.0995.259841397622663535.891920.8118211/22/88850100481605.0196.1371595103502973887.451950.6619011/25/881155730535005.5796.00108065104842844708.1123406820011/29/881552950505105.3095.3910560096002934177.851990.7618212/02/881840190383004.0295.308502089072873426.501730.8216612/06/882259840573705.9895.878664094742302786.271650.8116612/09/882550720484805.0795.5896063103151933026.082010.8117812/13/882938590366003.8694.846378082681332245.071440.6714112/16/883251420492605.1495.80117092102952162995.82050.6918712/20/883649930480504.9996.23107298111242603545.952050.7418312/23/883948640467304.8696.0762651106832683305.621980.6819012/27/884364220618906.4296.3780800111202873566.211920.7819012/30/884645960441104.6095.9784921101593194285.641990.8117901/03/895049020469304.9095.7490297104552873365.981760.9818301/06/895342990412304.3095.916454297212933945.841910.72182(4)50880483335.0994.99108222102332593445.852040.58190(5)52890501115.2994.7511482383182022426.631840.93140(6)45990440904.6095.877992010l123003865.821890.84181167Table82.2ResponseDataofSamplingPointNo.2UnderDifferentAcclimatizationAlternativesAcci.DateDaysVFA,mg/LTot.VFAAlter.HAcHPriso-HBrA-HVrIso—HVrHHemg/LHAcHBrHVr(1)03/28/88125061765401490498004/04/88822461740361521782517804/08/881215441185251173582366404/12/881618101587311426724451604/15/881914591471241226601385804/19/882315111606281276661409104/23/882721282364371204183969488537804/26/88302080249831113116356323530104/30/88341751203442118926526964469705/03/88371648182432115418386224433605/07/88411663199843122026556984460405/10/88441710179336117320446654441805/14/88481982208940131623527925511305/17/885117541798361266224774954583(2)05/31/88113821565499293166747106386906/07/888131317424910433061947695444006/14/8815104916014910512956860212376306/21/882216821690279901737765153430706/28/882980279438018279481904(3)11/15/881212521824510271959590110507511/18/8842065202341987185557499483811/22/88820581853491022245764795476811/25/8811220419584710152054587490411/29/88152261206053864225854682496712/02/88182142205852879245858092488212/06/882223342025271011503498012/091882523952070962481501212/13/882918251724756432399212/16/883223212304931506512212/20/8836242024682610806913584584583612/23/8839228122953010325912977680547412/27/8843264325473111074977096601512/30/884623212236369389973082532801/03/895025352664348719470269581601/06/8953220124313485418100663695273(4)18151893371252224873544705(5)117813623880723376351383325(6)23522444358881898698735472Note:(4),(5),and(6)areaverageresponsesatpseudosteady—state(6—14to6—28,1988;5—10to5—17,1912—30to01—06,1989)foralternatives1,2,and3respectively.Table82.3ResponseDataofSamplingPointNo.3UnderDifferentAcclimatizationAtternaLiiesAcclim.DateDaysSolids,mg/LSolids,%or%TSCOD,mg/IIriorganics,mg/IAlter.TSVSTSSTVSSTot.sol.NH4—NTKNThNTPTPP04-Pf%Jf%TSJ[%JI%TSI1%TSJI%TSJ(1)03/28/88173204870224020300.7366.530.2290.831515297582494305.782001.8618704/04/88866104500180015900.6668.080.1888.3314720129752831654.521602.0717704108188127330515028002554)0.7370.260.2891.071681198752574246.171422.0918804112/881664204500231020700.6470.090.2389.6116835104182324365.651602.0820004115/881978605670272025800.7972.140.2794.8523823107882402365.151803.1020704/19/882376905410292025500.7770.350.2987.3317965102542232324.671662.4520304/23/882783605980308027400.8471.530.3188.961712192912352864.961652.0218504/26/8830105208090748066901.0578.900.7589.4432254100002132645,081831.2917904/30/883499607350461041800.9973.800.4690.6739254106442302825.141941.8219305/03/8837100007410419038801.0074.100.4292.892177399992353485.001931.9419005/071884182805930303028400.8272.500.3093.731251796332553084.891972.4418805/10/884487306290368032900.8772.050.3789.401926297132452924.721852.2516905/14/884894806890418038000.9572.680.4290.9018797117242433294.702072.3619005/17/885199307430499045100.9974.820.5090.382253595772413084.971972.13197(2)05/31/88184406980469046100.8482.460.4796.1615111747542817406/07/88882705440413031000.8365.780.4175.0615855696238619806/14/881566404980206019600.6675.000.2190.301338692283423884.492043.1719906/21/88221289310627650059931.2882.420.6592.202464088802643085.691921.4617808/281882993306875397037200.9373.690.4093.701918790242342495.031692.48178(3)11/15/881216001807015405144852.1683.661.5494.0332411107513273684.612041.6320511/181884631305823559850567508.3192.255.9795.14109524107943253656.212060.7520011/221888357703225031800302103.5890.163.1895.005758887943304317.182140.7120311/25/8811489304469040000384404.8991.334.0098.1073387108453213978.422051.1520211/29/8815423803842046580442904.2490.864.6895.089200099203124317.562120.9819012/02/8818407003719040710389404.0791.384.0795.658178196363043466.161850.8217912/08/8822405103640028410271104.0589.852.8495.425508193932523506.532070.8916812/09/8825375703401034640329503.7690.523.4695.127718596062333106.801930.8117812113/8829393903553036410342003.9490.203.6493.938346595282152775.831820.6918412118/8832410103693030480290704.1090.053.0595.4458939104522452915.961910.691851212018836395803600034720334403.9690.963.4796.3159172112032853246.211910.761901212318839457204215033700324004.5792.193.3796.1481847131732803386.112000.7818612/27/8843425303879038060366104.2591.213.8196.1965600108003193826.212020.7618612/30/8846390403484034690332903.90‘89.243.4795.9663492107943313916.361990.9719001/03/8950351703183038120365703.5290.503.8195.9366535102182993915.082040.8318301/06/8953410303737041690398904.1091.084.1795.6837450109963304796.292470.90205(4)93806870428338670.9473.180.4390.2320198103382433104.801962.25185(5)96217494417738910.9677.040.4292.071907190442803155.071882.37184(6)384133468038167365833.8490.273.8295.8655828106693204205.912170.90193I-’0)90Table82.3ResponseDataoftheSamplingPo4ntNumbered3UnderDifferentAcclimatizationAlternatives(cont’d)Acci.DateDaysVFA.mg/LTotVFAAlter.HAcHPrleo-HBrH&A.-HVro-HVrHVrHHemg/I..HAcNote:(4).(5),and(6)areaverageresponsesatpseudosteady-state(6—14to6—28,1988:5—10to5—17.1988:12—30to01—06,1989)foralternatives1,2,and3respectively.169(1)03/28/881166811792993832820410418882090164434142974446404/08/881213491017221053512320804/12/881612861155201124547332404/15/881915401579231334669413904)19/882315711634241333674421804123/882719202169281090112682593487804/26/88301799215728953113053375459204/30/88341956238430121215426293512505/03188371822207930119018426303474605/07188411959211835136020517394510405/10/88441766182433120718486644452205/14/88482110224339145922558505549805/17/885119632037361340215478255060(2)05/31/8811459141040855255567793370606/07/8881074130038746234584114308706/14/8815104018005411623384985247409306121/8822143017753510302146854176422806/28/88291887204327101617407711444816(3)11/15/8812130234552108766639128528811/18/884218322134910561865621113520311/22/888242423655412382673690121574811/25/8811245422858111723073711107568211/29)8815237821045710002767817101527312/02/881822692006488892255545490012106/882223092121941505496712/09/882522562091884474483312/13/882922902281897516505512116/88322496252034954558554012/20/8836234924453010048914081670567612/23/8839222922482299156131784530212/27/884323352311309666113374483548312/30/8846241423363698810176989556401/031895023052429327749563664528701/06/8953248027673995121109726705938(4)19462035361335205276555026(5)1452187339108924508701894379(6)240025113690421102710745596170TableB2.4ResponseDataofSamplingPointNumbered4UnderDifferentAcclimatizationAlternativesAcclim.DateDaysScUds,mg/ICOD.mg/Ilnorgamcs,mg/IAlter.TSSTVSS[%)[%TSJTotalSolubleNl-14-NTKNTPP04-P(1)03/28/881120010500.1287.5011353884827337916020004/04/8888607400.0986.051104090402982807019304/08/881211209800.1187.501194079326544014419704/12/88169808400.0985.57128341092824745412620904/15/88199708900.0991.75122381002022024016220004/19/88239008100.0990.0012287999923022015619904/23/8827131010400.1379.39119689615.24334020620104/26/883010208200.1080.3912591983824530420820304/30/8834124010900.1287.90130641120925031820720505/03/8837133012400.1393.23129021032223937818919005/07/884110509100.1186.6712653873525029919419005/10/88449507500.1078.9512664995926730618817805/14/8848140013400.1495.7113753993924831520118605/17/8851134011300.1384.33131199829243305196187(2)05/31/881326031500.3396.6712000610137042814614106/07188818809400.1950.0010825841040741520219806/14/88156005500.0655.0010891835632941221219206/21/88226305050.0680.209920784025728427417806/28/88298157050.0886.50106508943247295195192(3)11/15/88111008750.1179.55120951067234542120220311/18/88411038830.1180.05115871071432538020820011/22188810249660.1094.34128401089532241720320511/25/88119709400.1096.91126611096832142223221311/29/88158948460.0994.63116801008034548923619212/02/88189558930.1093.5111012955531735418518612/06/88229388880.0994.6710850906926529015717312/09/8825128311900.1392.7511575889824030217816412/13/8829121811380.1293.4311181858321023615216012/16/8832115010660.1292.7011081982323128718517812/20/8836190318030.1994.75137281072929935820719012/23/8839230021830.2394.91136551012029334320019012/27/8843187817680.1994.14130401000031233419119012/30/8846146313880.1594.8711984873034442820618301/03/8950139312850.1492.2510931922740235019618301/06/8953140313000.1492.661251010518320444213194(4)123010730.1286.33131799909253309195184(5)6825870.0773.90104878380278330227187(6)142013240.1493.26118089492355407205187171TableB4ResponseDataoftheSamplingPointNumbered4UnderDIfferentAcclimatizationAlternativesAcclim.DateDaysVFA.mg/I..TotVFAAlter.HAcHPrlso-HBrHBrA-HVrlso-HVrHVrHHemg/I.HAc(1)03/28/88176732722189117604104188818591456311265660431104/08/881221491667371624840512704/121881616071450281381690414904/15/881914111434211229601378004/19/882316491785281420724450904/23/88271905216229113112286103483204/26/88302044245330106914325823515304/30/88341999244432123017426513526005/03/88371676200530115416366243450905/07/88411596197334121319426974449305/10/88441717191235124120447084459305/14/88481795219940139123518455509705/17/885116201887341196124872354452(2)05/31/88110351118386282551500266287206107/88810491536498713059768188352306/14/881581817215610143466959264370206/21/882211071654378182245816184364606/28/88291681217931101118438451624775(3)11/15/88119382247539522477550110488511/18/884209522434910402369590111511511/22)88819852102571080296868995497611/25/8811233923586412263174760108569511/29/881519762011579702865638102479012/02)881820401719418531845501437512106/88221993213931891554468212109/88251961204730835507450912/13/882917302003695454409512116/88322223875561326212120/883622212614379717414083089568812123/883919802361339265912978077•515712/27/884320102433378737175885513512/30/8846212024483990510478692532001/03/895019582447397069864683493101/06/8953210027214081423110693715411(4)17111999371276184875944714(5)120218514194825518732034041(6)205925393980823104708825220Note:(4),(5),and(6)areaverageresponsesatpseudosteady—state(6—14to6—28,1988;5—10to5—17,1988:12—30to01—08,1989)foralternatives1,2.and3respectively.TableB2.5ResponseDataofSamplingPointNo.5UnderDifferentAcclimatizationAlternativesAcclim.DateDaysSolids,mgILSolids,%v%TSCOD,mgILInoiganics.rnglLPJter.TSVSTSSTVSSTotalaol.NH4-NTKNTPPO4-PI%1I%TSI1%]l%TS)(1)03/28/881559033005204800.5659.030.0580.00118791058627738020116004/04/888478026708206900.4855.860.0884.15104801053729044017517004/08/8812511031405004800.5161.450.0596.001152894822684361901340411218816492030007205900.4960.980.0781.94118681116827549222716004/1518819567027005905400.5747.620.0691.5310873507426728220914904/19/8823474039406504500.4783.120.0769.23112701016923235120319204/23/8827565035708907100.5763.180.0979.7812455969624528223220104/26/8830515031008704900.5260.190.0773.13117811040524334023220504/30/8834519029305604400.5256.450.0678.57120151120928530714020105/03/8837527031505504200.5359.770.0678.36118541040325240420220205/0718841517030505103800.5258.990.0574.5111592979628731620019905/10/8844541030204603300.5435.820.0571.74115171086128033320618605/14/8848572033806805700.5759.090.0783.82125381083224532520819305/17/8851343013908905900.3440.520.0785.511199210463281291188199(2)05/31/88119701940166014200.2098.480.1782.547232505131938519611106/07/8885240274013804900.5252.290.1435.519376873239439621020006/14/881544202830120420.4464030.0135.2010653930733741220820806/2118822612542055203940.6188.650.0575.8010240872028930419417806/28/8829711542408907900.7159.590.0988.76114639837264299199188(3)11/15/8817430453710337800.7461.080.1075.51129841177936544321721311/18/884678739279005760.6857.860.0964.00122221095233539520219511/22/888720845205204960.7262.710.0595.38117511058431944121219811/25/8811631036464634350.8357.780.0593.95110481104831745523021011)29/881571734373121311530.7260.960.1295.0512160960032142219918712/02/881844832303•5574930.4551.370.0888.5110283971731332217117912/06/8822698544155384830.7063.210.0589.7810688931227431417716812/09/8825648336535535080.6556.350.0691.86103941007924530218617612113/8829735745006986430.7461.170.0792.1211181960621526117417112/16/8832873740676005630.8760.370.0693.83117091013824028718718012/20/88367700523310039430.7787.980.1094.02133331136130437021119412/23/883978405107150314050.7666.850.1593.48134941084365141222219812/27/88437737518010389680.7766.950.1093.26129601096033139020219012/30/8846686342908005530.6962.510.0692.17119841063535144219918601/03/8950846039308838180.6580.840.0790.4811089986335135416317901/06/895381775615157414630.8268.670.1692.951410411394343474222201(4)48485325978104970.4845.140.0680.361201510719269318200193(5)22588737585104090.5964.090.0566.59107859288290338200191(8)50716748129528780.7264.000.1091.871239210564348423195189-3t’3173Table82.5ResponseDataofSamplingPointNo.5UnderDifferentAcclimatizationAlternativesAcci.DateDaysVFA.mg/LTot.VFAAlter.HAcHPriso-HBrA-HVriso-HVrHHemgILHAcHBrHVr(1)03/28/881105151228346172104104188820591602341371696472504/08/881218371407311433724440204/121881620671833331706871525104/15/881914231291311270656374304/19/882315601626241323660418504/23/88271932215128111012262992489104/26/883020762461301072143259377523804130188342046242031122616376423527505/03/88371894219332124717396633496805/07/88411777185632119018396443452905/10/88441961203238137221487554505705/14/88482073219139141422498174536405/17/885119702049371336224878055070(2)05/31/88186491132531214439955228806/07/88811251404428052550692151337006/14/881593517715411363265960241392906/21/8822138018233710652247874179425706/28/88292037226232113519468621625296(3)11/15/881206924026811123291643130533911/18/884206822955910932881625111520311/221888209422105311322574637111518411/25/8811225623316511912977724105554511/29/88152101196657964276562291485812/02/88182205206652933246057184498012106/88222210213338958531493112109188252339221936.966540513912/13/882922472243893512497612116/883223222404916544521612120/8836253626933810927614686282617012123/8839223125724910747515485592576712/27/8843241824903910465613379892580512/30/8846232323244096610575487544401/03/8950218625135188011472983539701/06/8953250829204899529120760786162(4)4820012091381374224878445164(5)221451195241111224538991944494(6)50233925864694729113748835667Note(4)(5)and(6)areaverageresponsesatpseudosteady-state(6-14to6-2819885-10to5-17198812-30to01-06.1989)foralternatives1,2,and3respectively.Table82.6ResponseDataofSamplingPointNo.6UnderDifferentAcclimatizationAlternativesstchm.DateDaysSolids,mgILSOlids.mgILCOD.mgIL.Inorganics.mg/IAlter.TSVSTSSWSTotalSolubleNH4—NTKNTKNTPTPP04—P%Jl%TSII%1I%TSIl%TSIl%TSI(1)03128/881457028606004700.4658.210.0678.33424239192772795.791131.023204/04/88880605000193014000.8162.030.1972.54776072312832673.891191.038504/08/881274204230175012700.7457.010.1872.57747956812292823.961560.918004/1218818649037409306600.6557.630.0970.971075149172352964.111500.919604/15188196570393011607500.6659.820.1264.86558638802552572.851341.215904/19/882363403780186012800.6359.620.1968.82542328812282572.831271.885204/23/882763503810219015700.6456.860.2271.69523428802702862.742051.953604/261883060203170172012000.6052.660.1769.77506121462782863.321381.9835041301883478204610344025200.7660.500.3473.26717731452413072.472112.985305/031883789104030288021700.6958.320.2975.35572523392702582.851292.874305107/884178604770425031300.7960.690.4373.6557968982652793.621172.613005/10/884481304790513037100.8158.920.5172.32876211062823033.511292.7610051141884894705900837046500.9562.300.6472.9963498952792843.88282.882305/1718851107106750786057501.0763.020.7973.1598199252862914.06502.449(2)05/31/88153903850192016500.5471.430.1985.94400031922772906/07/8884340204013103300.4347.000.1325.19261618912854706/14/88153570185010903280.3651.820.1130.10170310692993121.78803.554206/21/88225830368011906050.5863.120.1250.80280016002923161.54922.003706/28/882957952920214012850.5850.390.2159.11292711382492532.19864.5514(3)11/15(881388521408304770.3955.080.0857.47490144274285673.441254.322411(18/884524029409975870.5256.110.1058.88619047824184702.081313.112911/22/8885185311010877700.5259.980.1172.16575943583934892.741383.084711125/881159003425248018100.5958.050.2572.98524128234025043.00.1202.822211/29/881583703620311021700.6456.830.3169.77560028403734892.851183.122712102/881893255630369022900.9360.380.3762.08489610533783502.63313.161412/06/882259832937320019900.6049.250.3262.1936448913653422.91905.022712)091882571003610418023700.7150.850.4256.7043318683263633.021024.87612113/882968053130379022500.6846.000.3859.3738587872963263.281486.432912116/883255502625263017400.5647.300.2886.1629869432803032.521328.064312/20/883662503480284020500.6355.680.2872.18512823673243242.971304.007712/23/883961053410294020300.6155.860.2969.05530126513573692.991293.45512)27/884369553910346024800.7056.220.3571.68616023203763383.301083.791512/30)884667653720311022400.6854.990.3172.0351598734083913.531003.574401/03/895064303505382025400.6454.510.3866.49467315054144373.541044.422501/06(895380853375389025800.6155.460.3769.9241435583664794.35415.628(4)94375813645347030.9461.410.6572.8276439752822933.82692.6314(5)5065281714737330.5155.110.1546.87247712692802941.84793.3731(6)84273533354024530.6464.990.3569.4846589793964363.81824.5426I-’175TableB6ResponseDataofSamplingPointNo.6UnderDifferentAcclimatizationAlternatives(contd)Acci.DateDaysVFA,mg/LTC.VFAAlter.HAcHPrleo-HBrA-HVrleo-HVrHHemg/I..HAcHBrHVr(1)03/28/88117801172251029344904/04/8882062105355496315347704/08/8812147991244329222260304/12188161065114455241225232704/151881934510033980125131304/19/882392142441127504/23188271721359321014131104/26/883069166432615145304/30/88342551466251124149205/03/8837277105821924117005/07I884113127735605/10/8844218178360051141884821622740005117/8851193186344(2)05/31I88141554032155182518827113006/07/83839844712172779306/14/8815893511706/21/88222364841651765106/28/882935936117662(3)11/15/881819811442781831241150311/18/884886962562592856335212711/22/888123680733067190126211/25/881140797856306334131311/29/881525258457984125514146912/02/88181221461124712/06/882219816112/09/882513310812/13/882926621612)16/883210415523012)20/883696114.3195911781118712123188391011396191634127512/27/88439513011348137126812130/884692819122310083701/03/89502014.37102917468401/0618953631232164(4)208197368(5)22829318517477(8)11946082923137562Note:(4),(5),and(6)areaverageresponsesatpseudosteady—state(8—14to8—28,1988:5—10to5—17.198812—30to01—06,1989)foralternatives1,2.and3respectively.176TableB2.7ResponseDataofSamplingPointNo.7UnderDifferentAcclimatizationAlternativesAcclim.DateDaysSolids,mg/ICOD.mg/Ilno.ganics,mg/IAlter.TSSVSS(%j%TS)TotalSd.NH4-NTKNTP04-P(1)03128/8819006900.0976.67440427882772861132504/04/8889206100.9266.30608055202903201165604/08/88125303600.0567.92475255782422402526604/12/88167305200.0771.23583450002353124005904/15/88198406100.0872.62456241362451561504504/19/88238505700.0967.06415233052451561504704/23/882710006700.1067.00377332Q52702781383804/26/88307704600.0859.74376530362722861384404/30/883410708100.1175.70443530643033191394705/03/88377506300.0884.00322622582782921464405/07/8841124012200.1298.3920418162752961293005/10/88448705400.0962.07192610042943131322205/141884811208500.1175.892150832279298763205/17/88519403700.0969.1517307242842844613(2)05/31/881312025900.3183.0145662222290349543606/07188815303900.1525.4926161891288329764506/14/88155001600.0532.001386990282332883306/21/88226504060.0762.5020001120287316903306/28/88295953500.0658.82170711382372617028(3)11/15/8818935680.0963.61529641904515751163411/18/8847453700.0749.66428634924644771182411/2218882051900.0292.68365835804385671334911/25188114783230.0567.57282323394025231243811/29/88158605230.0960.81296019203924941051512102188186774170.0761.601619971387410661412/06/88227804830.0861.921377729365362902212109/88259305600.0960.2215751024326339841212113/88298754750.0954.29118110243003261262012116/88328574900.0957.1813756682752871122312120/88368105000.0861.73228817752943291202712123/88397404400.0759.46269112853383381172612/27/884310807200.1166.6727602160312377112912/30/88466905300.0776.81115175437637797501/03/89507854900.0862.421228950338359176901/06/89533702070.0455.95916398171459754(4)9775870.106919358532862988522(5)5823050.0651169810832693038331(6)6154090.066510987012953981166177TableB2.7ResponseDataofSamplingPointNo7UnderDifferentAcclimatizationAlternatives(cont’d)Acclim.DateDaysVFA,mg/ITot.VFAAlter.HAcHPriso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr(1)031281881698284154103304/04/888161569238305170251004/08/8812177591447284186285104/121881690495546208171195204/15/881938110634283135140804/19/882390150244133804/23/88271181652392818151304/26/883076145929511128804/30188341691379233920134105/0318837204969193519103805/07/8841103297734905/10/88441741462530905/14/88481301561026305/17/885111511410214(2)05/31/8812872955511126961806/07/888464518213019193396106/14/881572298272334606/21/882213636243006/28/88292543022622530(3)11/15/881587290341261225139103511/18/884820572461051841160151611/22/88899676954274860173611/25/881156070054195714121711/29/881558553312020111112/02/8818186561023712106/8822604912/09/8825685512/13/88291041892827612/16/8832784811712/20/88364485313875282612/23/88391341259163552122012/27/8843858247264280012/30/88465665073861001/03/895011821941814339501/06/8953534690(4)14013915262(5)1543212723435(6)7630561891365Note:(4),(5).and(6)areaverageresponsesatpseudosteady—state(6—14to6—28.1988;5—10to5—17.1988:12—30to01—06,19foralternatIves1,2,and3respectively.TableBZ8ResponseDataofSamplingPointNo.8UnderDifferentAcclimatizationAlternatives(contd)Acci.DateDaysVFA.mg/ITot.VFAAlter.HACHPriso.-HBr-HVriso-HVrHHemg/IHAcHBrHBr178(1)03128/8812051141704/04/888210888304/08/88122229113504/12/8816977107204/15/88191182135304/19/882333130404/23/882775165904/261883088137104/30/883410595505/03)883710771305/07/88419721405/10/88441229605/14/884812413605117188519083(2)05/31)88123517406/07/88820024406)14/88155714606/21/88229523506/28)8829195241)(3)11115/8814126811/18/88483518811/22/88883468911/25/881142381311/29/881530866612)021881814221112106/88220012/09/88250012)13188290012/16/88320012/20/88364489512123/883957120712)27/884359104512130)88464857101/03/8950509901/06/895.33623(4)48112105(5)22116207(6)50452314071324335542137328011171457120090269427020023415711382398175286390542875146599086531900000000810112296352113055197284235Note:(4),(5),and(6)areaverageresponsesatpseudosteady—state(6—14to8—28.1988;5—10to5—17.1988;12—30to01—06,1989)foralternatIves1,2,and3respectwely.291249503662312316133023523552208193193251013499499394016288158123126262515693829123060512150435324175513144815100000000000000000000013925362511515791414Table82.8ResponseDataofSamplingPointNo.8UnderDifferentAcclimatizationAlternativesAcclim.DateDaysSolids,mg/I..Solids.%or%TSCOD.mg/I.Inorganic..mg/I.Alter.TSVSTSSTVSSTotalSd.NH4—NTKNTPP04—PI%1(%TSI(%J(%TS(1)03/28/881358022806603600.3663.690.0754.55.272728692583981905804/04/888522026404002300.5250.570.0457.50536049802802711085804/08/8812835034202601900.8453.860.0373.0855785351229236150660411218816610036504302900.8159.840.0487.4450844917237294154700411518819606035108704100.8057.920.0781.19430725372352321604504/19/8823502028705303800.5057.170.0571.69398330082351501523804/23188275520296010907400.5553.620.1167.89385428602642971302404/26/883060303420213015400.6056.720.2172.30506l25302642751303204/30/883446702290205316040.4849.030.0672.73322524192722891244305/03/883776004460377028700.7658.680.3878.13604817742652291143505/07/884148302740174013600.4856.730.1778.1823677352873091042205/1018844461022907804900.4649.870.0882.8217827992943261171605/14/8848384020108605400.3852.340.0962.791744791284298541905/17/8851626039208705500.6382.620.0983.221589684291286508(2)05/31/88141303220130012900.4177.970.1399.2327071515306356503606/07/8884010185012803000.4048.130.1323.4420521268282318703606114/881527901230120600.2844.090.0150.00911851274296722806121/8822398016122601690.4040.500.0365.0011209202843129023061281882992102850115850.9230.940.0173.918948132542807817(3)11/1518813260187010105800.3357.360.1057.43395326884716121004711/18/884322518557203200.3251.320.0744.44309525404385181043411/22/888344219163221700.3455.870.0352.80350224124385531224211/25/8811391520953401900.3953.510.0355.8824192258392533.1181211/29/8815359617834702700.3649.580.0557.4523201920364485922712/02/8818316713002631380.3241.050.0352.471053891374370551212)06/8822324312633931970.3238.950.0450.13574486357378881212/09/8825334513353731880.3339.910.0450.40866709322351841212/13/8829335511604372000.3434.580.0445.777095512963351161412/18/8832340310373171570.3430.470.0349.537075892802871031412/20/8836377714904272100.3839.450.0449.18193318543044621462612/23/8839390918573801930.3942.390.0450.7922891847274330102512/27/8843391717173501130.3943.830.0432.292040204035133880512/30/8848350713002571770.3537.070.0368.8713091032370400781501/03/8950326010703701770.3332.820.0447.8471355439539170501/06/89533020933203700.3030.890.0234.48438359394479737(4)490327408375270.4954880.0962.9416927582903037414(5)532718971651050.5338.510.0262.979758612712967923(6)326211012771410.3333.590.0350.408208483864237393(ocoo>.cEa‘I0a-U)U)Ox:0b2.62.21.81.410.60.28070-60-50-40-3020-10-0-EaI—1121927344)48115Ti,no(lilys29411182532394653FigureBi.1EffluentQualityoftheM-UASB:Duringthencclimatizationunderdifferentrunningconditions:(a)A-UASBandM-UASBseededwithUonGatesludge;(b)M-UASBseededwithacclimatizedsludge;(c)M-UASBseededwithLionGatesludge0000EI0FigureB2.1SystemGasProductionandLoadingRateDuringacclimatizationunderdifferentrunningconditions:(a)A-UASI3andM-UASBseededwithLionGatesludge;(b)M-UASBseededwithacclimatizedsludge;(c)M-UASBseededwithLionGatesludge8060402097.--5-3-C00I.0.(3/-----4-—A-UAS1-M-UASO(a)—-“‘--(Li)”’‘“‘‘-(c)—-—-—-v-_.\_____-_____-__--—-_-_zr-—-----r-/\—Cu.mkgVSromov9dCu.m/kgCOD:__1—87—6—5—C4--32—1—0-121927344148KgCOofror)lcu.m-dKgVS)cu.m-d1529411182532394653Timo,(laysCo182APPENDIXCOptimum‘bestknown”OperatingConditionTableC1.1-C1.8:ResponseDataoftheSamplingPointNumbered1to8UnderDifferentRunningConditionsDuringtheSequence1,2,and3Experiments.TableC2.1Calculationoftheeffects(SRandRR),Interaction,Phasemeans,Changeinmeans,ontheResponseParametersduringtheAcclimatization(Sequence1,2,and3Experiments).TableC3.l:pHofA-andM-UASBsDuringtheSequence2and3ExperimentsaswellastheMaximizationandRecoveryPeriodTableC3.2:NaOH(0.1N)AdditionDuringtheSequence1ExperimentNote:AllsamplinglocationsareillustratedinFigure4.2TABLECLIRESPONSEDATA(SAMPLINGPOINTNUMBERED1)UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG!LorELSENUMBERSTSVSTSSTVSS[%][%TSJ[%J%TS]TOTALSOL.NH4—TKN[%TSITP(%TSIP04-P[1].F5,SR8O/20,107/12/88485334442745500433004.8591.544.5595.16758645149182764.061711.06169RR214807/19/88439804045538250364204.4091.983.8395.22872304951202453.751580.91110II07/22/88502554638048180460805.0392.294.8295.64471954487182674.041650.88136[2].F5,SR8O/20,1507/26/88467604304042510407604.6892.044.2595.88434618450182584.621851.21168RR6/I02208/02/8833655293f27260250603.3787.242.7391.93317277430502704.271671.15134[07/30/88]2908/09/88410953655031520286704.1188.943.1590.96444888645522964.271361.311123208/12/88279152493022180210902.7989.312.2295.09628007800502824.561681.241403608/16/88360003297027270263203.6091.582.7396.52510986786302273.961510.891283908/19/88328103006526580257003.2891.632.6696.69413527157232694.081550.991314308/23/88346203159525724249783.4691.262.5797.10457596233182924.231750.971364608/26/88350503212528130274903.5191.652.8197.72385096501322774.081750.85147[31.F5,SRSO/50,4908/29/88281192562533620328002.8191.133.3697.56462178793422814.361860.89173RR6/105309/02/88284752583518960187702.8590.731.9099.00387637256393784.692180.63189[08/31/88]5709/06/88170801544716310160801.7190.441.6398.59302667689314294.532220.941916009/09/883534.03213527790266803.5390.932.7896.01421497107414644.782311.441806509/14/88495454521034140326804.9591.253.4195.72477377654214724.312141.261786809/17/88378253475529570286103.7891.882.9696.75344268115504774,432441.231937109/20/88304302723020580199303.0489.482.0696.84383676449424434.322041.101697409/23/88292952627528350269902.9389.692.8495.20406505935594853.451921.121617809/27/88420453842034390332404.2091.383.4496.66522096827684623.622450.861898109/30/88450254075551830490504.5090.525.1894.64476196270394803,.332200.83177[4J.F5,SRSO/50,8510104/88326002902026400251903.2689.022.6495.42339396426344733.741941.08163RR2/49510/14/88324952933024250231303.2590.262.4395.38411076324234944.522301.50181[10/03/88]9910/18/88284002516519930189802.8488.611.9995.23384006250285015.292171.6917810210/21/88287452564033960319702.8789.203.4094.14376006320145214.692121.56166[5].F5,SR7O/30,I01/17/89256852256021470201202.5787.832.1593.71357777801534345.042251.81182RR3/6801/24/89271902396019800184602.7288.l21.9893.23373246761546226.122522.59247[14/01/88]1501/31/89337703068028300271603.3890.852.8395.97353315931414584.701741.261542202/07/89360653273531090295703.6190.773.1195.11402176087774164.431971.281582502/10/89374003371530240285603.7490.153.0294.44626026179564674.572021.271652902/14/89365253314029920286303.6590.732.9995.69258066532824093.792170.96182I-’TABLECI.1RESPONSEDATA(SAMPLINGPOINTNUMBERED1)UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTEXPER.RUNDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS[%][%TSI[%][%TS]TOTALSOL.NH4-NTKN%TS]TP%TSIP04-P[6].F5,SR7O/30,4301/14/00260252324520450194002.6089.322.0594.87370816469574444.951741.33149RRS/85001/21/00402653658531140300503.0290.483.1196.50509097354674784.852571.48198[02/20/89]5701/28/00301852731023350225004.0390.862.3496.36514297184444134.771971.481596402/04/00264202399525400244503.0290.482.5496.26433736667264404.611991.181677102/11/003627533310328903)0402.6490.823.2994.38373336578253853.542000.92185[7].F5,SR6O/40,7802/18/00224701972023260219403.6391.832.3394.33409846967254774.382021.40175RR5/88502/25/00324052921029010277402.2587.762.9095.62381347789214234.242331.30218[03/29/89]9203/03/00263052336522550218103.2490.142.2696.72297797082254963.872181.321959903/10/00282402544023840229702.6388.822.3896.35308918951105614.922331.7218210203/13/00256952290524350232302.8290.082.4495.40378336918124064.251831.1917310603/17/00328803027823760223402.5789.142.3894.02504938126214174.942091.20182[8].F5,SR6O/40,11303/24/00371653376033290314703.2992.093.3394.53360787216195015.7225)1.47210RR3/612003/31/00310)02810027410262303.7290.842.7495.70506937446285075.122260.87194[05/09/89]13004/10/00200451754513390128903.1090.621.3496.27408647151205425.142271.2318513404/14/0034)353138533230320202.0087.533.3296.3639766764!245233.592350.9517513704/17/0028)302546520040194103.4191.942.0096.86308887490154455.301791.0818014104/21/00280502527518610180702.8)90.531.8697.10362237245105)05.052183.22167[9].F5,SR8O/20,106/13/89297552689521470209202.8)90.112.1597.44363616679173655.441640.98146RRS/8806/20/89316102856518270178202.9890.391.8397.54464737137123165.241501.05141[06/10/89]1506/27/89290002594522770214203.1690.372.2894.07607297935104)45.382090.98164[10].F5,SR8O/202207/04/89322502879538230365502.9089.473.8295.6131014675983535.091950.76161RRS/82907/11/89397303618033740321903.2389.293.3795.41590827425273665.122001.04163[07/02/89]3607/18/89319352881028170266603.9791.062.8294.64509806902433453.991920.81160Reacclimatizatio4307/25/89255552283025090241103.1990.212.5196.09560006080453304.771670.961324607/28/89258752289524150229702.5689.342.4295.11370375778232784.241520.861305008/01/89297652667028050263302.5988.482.8193.87382354926292175.1)1101.1310)5308/04/89275402456531490294802.9889.603.1593.62390855073392654.941471.21121TABLECI.)RESPONSEDATA(SAMPLINGPOINTNUMBEREDI)UNDERDIFFERENTRUNNINGCONDITiONSDURINGPHASE1,2,AND3EXPERIMENTEXPER.RUNDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS.MG/LorELSENUMBERSTSVSTSSTVSS[%][%TSI[%][%TS1TOTALSOL.N114—TKN%TSJTP%TSJP04-P5650392415.831560.751315447333374.882961.071215656243434.732900.781035944345474.242261.041236800245213.882370.941606270242764.361510.941235992182554.551411.041386705242834.371770.851655691542624.461371.001425971502814.061640.661426504392783.521770.741566033242784.321511.23135NOTE1,212AREAVERAGERESPONSESATPSEUDO—STEADYSTATEFOREXPERIMENTALRUNNINGCONDITIONSNUMBEREDITO12RESPEC[11].F5,SR9O/10,5708/08/89380153474533450318902.7589.203.3595.3450224RRS/86408/15/893046026955,25430237903.8091.402.5493.5532340[08/05/89]7108/22/89468004194539560372203.0588.493.9694.08483617808/29/89399103624037820359504.6889.633.7895.06248998109/01/89348453153032710308703.9990.803.2794.37464008509/05/89327102930534620330803.4890.493.4695.5548413[12].F5.SR9O/I0,9209112/89301952704524550234303.2789.592.4695.4435020RR3/69909/19/89352153203036350348103.0289.573.6495.7659345[09/06/89]10609/26/89323202917531330298703.5290.963.1395.344248510909/29/89302952738529520281303.2390.272.9595.295153411310/03/89342653135232240315603.0390.393.2297.893139811610/06/89320902807033720310203.4391.503.3791.99413221469984329242980410874.7092.114.3095.58592955963192574.141691.001382325962978229158284233.2691.352.9297.46434957176312834.221790.901523387883515038190364273.8890.533.8295.50468266344554763.472190.941764298802671226047246932.9989.362.6094.92390366298225054.832201.581755366633319730417289203.6790.553.0495.0842875626672431.4.262051.171686313482865329145277452.8390.652.9195.32403536623264134.082001.051767319132898127133256802.8990.442.7194.65414687420174414.972141.161808280902537019325187403.1191.231.9396.98335567368134785.181992.151749303052725520520196203.0790.382.0595.80536017536II3655.311801.3120710277272471027897262602.7189.142.7994.20381195259302534.761361.52189Ii358223235835050333004.0590.313.5194.99399046338274484.162051.4617812322172893631827302373.2390.723.1895.06414186169382793.971640.88144I-’dorn186TABLECI.1RESPONSEDATA(SAMPLINGPOINTNUMBERED1)UNDERDIFFERENTRUNN1NCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RTJNDAYDATEVFA.MG/LTOT.VFANUMBERSHAcHPriso-HBrA-HVrIso—HVrHHemgILHAcHBrHVr[1].F5,SR8O/20.107/1218842614389603RR2/4807/19/885122941178301107/22/88580371117961[2].F5,SR8O/20,1507/26/88131821752853276RR6/102208/02/8859447222717762176[07/30/88]2908/09/882972315598810033208/12/88579302721698883608/16/88551531411767943908/19/8862186811608404308/23/885612616023314610364608/26/88612321732091045[3j.F5,SR5O/50,4908/29/888415561373391585RR6/105309/02/88728495973371394[08/31/8815709/06/8870928812431812146009/09/88448151114190177706509/14/8838810188365516809/17/885512251602533410117109/20/8826198533143727409/23/88222101123117809/27/8862239131482210018109/30/88350213206715585[41.F5,SRSO/50,8510/04/882481452512387RR2/49510/14/88483383515524875[10/03/88]9910/18/883682283234960010210/21/883402003117533[5].F5,SR7O/30,101/17/8985415271661272280RR3/6801/24/895799181531941542[14/01/88]1501/31/89510777629.511882202/07/898661275834419822502/10/897361304613018532902/14/899971607126492415[6].F5,SR70130,4302/28/89551808471238RRS/85003/07/8911221732112452629[02/20/89]5703/14/897611253758018756403/21/89568905651313547103/28/8910591470132392364[7].F5,SR6O/40.7804/04/8945577667491159RRS/88504/11/893493755422703[03/29/89]9204/18/896311135764116279904/25/894368536750120310204/28/89350555504185810605/02/8941667458481030187TABLEC1.1RESPONSEDATA(SAMPLINGPOINTNUMBERED1)UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2.AND3EXPERIMENTSEXPER.RUNDAYDATEVFA,MG/I.TOT.VFANUMBERSHAcHPrIso—HRr-HVrIso-HVrHHeg/LHAcHBrHVr[8].F5,SR6O/40,11305/09/896341272113621779RR3/612005/16/896501356120851881[05/09/89]13005/26/894636247283106713405/30/89480332466982113706/02/892891595045214106/06/8924083307[9].F5,SR8O/20,106/13/89444394187891RRS/8806/20/89403528224984[06/10/89]1506/27/8974913933911022205[10].F5,SRSO/20,2207/04/897401563326992288RRS/82907/11/896831432234812051[07/02/89]3607/18/8979216812731182411Reacclimatization4307/25/89721138518321720964607/28/8963213411808718935008/01/8955911441558616435308/04/895661211165931715[11].F5,SR9OI1O,5708/08/8965013321931121927RRS/86408/15/895671116261851700[08/05/89]7108/22J8949399827851617957808/29/89572128033311019028109/01/8975915053584822528509/05/89547972216741526[12].F5,SR9O/l0,9209/12/895881224254561787RR3/69909/19/897661449291742183[09/06/89]10609/26/8953391418236141910909/29/8949789617837136711310/03/89712129024161195811610/06/89508787144291261NOTE:1,2,....,12AREAVERAGERESPONSESATPSEUDO-STEADYSTATE(EXPERIMENTALRUNNINGCONDITIONSNO.1TO12RESPECTIVELY)1803947173168926713799026014612223398235265816632439727038451766958661395904120836814118899261859775711231004417618265121503809490755653211651053499472461415113937045946103012572991188421529TABLEC1.2RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED2UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNDAYDATESOlIDS,MG/LorELSECOD,MGILINORGANICS,MG/INUMBERSTSSTVSS[%][%TSITotalSol.NH4—NTKN(%TSITP[%TS1P04-P[1].F5,SRSO/20,107/12/8860290583606.0396.80127525109312802727.061990.75193RR2/4807/19/8863550611406.3696.2117288888801722236.071680.781631107/22/8849120474504.9196.607272792072082606.101750.93169[2].F5,SR8O/20,1507/26/8869990675507.0096.51121529108652313025.491850.71182RR6/I02208/02/8862360574906.2492.1913132596792663585.571870.76171[07/30/88]2908/09/8859560574105.9696.3910984287012393686.061820.671663208/12/8867430652806.7496.81122800100402342926.001790.591783608/16/88580105614.05.8096.7811896292612572955.781850.781803908/19/8864460623606.4596.7411212794632322695.601660.871724308/23/8861830599006.1896.8811913293892363126.331830.731754608/26/8850030485905.0097.129234096482462966.231730.74187[3}.F5,SR5O/50,4908/29/8867100652606.7197.2696155113292563246.222020.79192RR6/105309/0218860580589606.0697.33113814112163533505.982100.89268[08/31/88]5709/06/8866750649206.6897.26109611100614034375.802220.822246009/0918859720582005.9797.4598347108263704485.792430.852276509/14/8856410550605.6497.6112098892183664375.772260.762166809/17/8854010525305.4097.2610000098363634505.662480.762367109/2018847780465904.7897.519632697143584275.852300.872197409/23/8855470538305.5597.0410487896753824446.522350.672257809/27/8847620461804.7696.98102008109244305075.932650.522398109/30/8856660550205.6797.11107143110324174806.09.2490.65247[4].F5,SR.50/50,8510/04/8874640721807.4696.70147071106673674375.842400.64238RR2/49510/14/8859150573305.9296.92154150107514015O56.632530.77242[10/03/88]9910/18/8860600580706.0695.8312160098403934786.392420.7823510210/21/8849760483204.9897.119600096003765026.012580.07235[5].F5,SR7O/30,I01/17/8950460482705.0595.6693255104403205045.882200.99189RR3/6801/24/8945330436004.5496.1083803118314485805.642851.09243[14/01/88]1501/31/8941950405204.2096.5963092107263635146.442521.002192202/07/8949780478004.9896.02103261109783044556.142080.892012502/10/8951480491805.1595.5360163113013204186.082200.952152902/14/8958590560505.8695.6698387114523624405.782170.75208I-h0000TABLECI.2RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED2UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LNUMBERSTSSTVSS[%][%TS]TotalSol.NH4-NTKN[%TSITP[%TSJP04-P[6J.F5,SR7O/30,1401/14/0038000362803.8095.473629296253064275.851911.20184RRS/82101/21/0041570399604.1696.1367879113133624785.882290.94216[02/20/89]2801/2810044980435304.5096.7863673126533514405.502231.011993502/04/0052210503405.2296.4284337111653644515.292190.692084202/11/0052390504405.2496.2869010106023864815.442330.74217(7].F5,SR6O/40,4902/18/0054290522305.4396.2194202116394444594.762140.69231RR5/85602/25/0052310505605.2396.6579513101424784925.972310.82237[03/29/89]6303/03/0061000587906.1096.38107847108654344035.281900.932337003/10/0065370626806.5495.8887129106144634694.912090.822337303/13/0070330677307.0396.3097018106565134325.712281.002407703/17/0064740617506.4795.38116765102565044626.572430.95231181.F5,SR6O/40,11305/09/8951400486705.1494.696980498045176576.982781.14240RR3/612005/16/8978950738107.9093.49123564102975315897.042491.0124505/09/89}13005/26/8997800962509.7898.422356781735115426.532231.9522713405/30/8925140231902.5192.243976678754695103.312331.5622713706/02/8916420151401.6492.204324080314655205.922381.5023714106/06/8916460160901.6597.751772683244694776.382221.39242[9].F5,SR8O/20,106/13/8936450344903.6594.625008583493984187.352051.28198RR5/8806/20/89I864Q177901.8695.444730394613794246.092091.11208[06/10/8911506(27/8952080489805.2194.057773397174115037.282341.09221[l0].F5,SR8O/20,2207/04/8954490509105.4593.435089563625506586.152220.89212RR5/82907/11/8937000332403.7089.8457485102993815266.092241.25203[07/02/8913607/18/8951020478605.1093.81105098107453354775.552180.81193Reacclimatizdtion4307/25/8954530516105.4594.658960092003134226.451811.031704607/28/8963200592006.3293.6712148287413344616.462011.011665008/01/8967020623106.7092.978750090443024175.951761.011645308/04/8955410515505.5493.037817082332863576.651661.0715800CDTABLEC1.ZRESPONSEDATAOFTHESAMPLINGPOINTNUMBERED2UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LNUMBERSTSSTVSS!%1[%TS]TotalSot.NH4-NTKN(%TSITP[%TS1P04-P[II].F5,SR9O/t0,5708/08/8963650592406.3793.078988686102353296521691.50158RR5/86408/15/8963040590506.3093.677404381702603086.231451.50124[08/05/8917108/22/8958850557105.8994.6673770107382501626.731890.991607808/29/8974000701507.4094.809477996392705536.041791.791628109/01/8981410776408.1495.37176000132003015215.952370.932038509/05/8965780626006.5895.17166667110322833904.942080.80191[12].F5,SR9O/10,9209/12/8974950714507.5095.33122178101173003806.041931.11131RR3!69909/19/8972380694207.2495.91168786119463003795.252010.82207[09/06/89]10609/26/8960450579206.0595.8111302695392683404.311661.0617410909/29/8971100680307.1195.6814314998983573565.501870.8418311310/03/8977030738607.7095.8895122105692683376.001980.8519211610/06/8978780752207.8895.48134711109092703325.081860.69197CD0191TABLEC1.2RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED2UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso-HBrHBrA-HVrIso-HVrHVrHHemg/LHAc[1].F5,SR8O/20,107/12/882214228230109019447505306RR2/4807/19/881920178722879143261611544321107/22/88198419452888520416501214664[2].F5,SR8O/20.1507/26/88250728593195323487341216032RR6/102208/02/8818921918329811517384661[07/30/88]2908/09/881948185829110410761312147133208/12/88221619493013242352313951133608/16/8821271685351389158051816349093908/19/88209516943012921848014847694308/23/8819371662311034125547612943974608/26/881870169832102514364881314352[3].F5,SR5O/50,4908/29/882308227837127615436931605575RR6/105309/02/881977196538110518766381504858[08/31/88]5709/06/8820931947351110217461915349516009/09/8821172078331199134263415151256509/14/88200820653911016758912349096809/17/8819341908301145155756112447197109/20/88190819112890917235188444687409/23/882001196126976162353046097809/27/882385231332108320306199954658109/30/88224122543210742129571935236[4].F5,SR5O/50,8510/04/88212223112810751726569875153RR2/49510/14/88223923693010212028577925292[10/03/88]9910/18/8822722049288721826520101493110210/21/88287818672576415234771085289[5].F5,SR7O/30,101/17/8923532324358691592705845375RR3/6801/24/89284328823610691595760906491[14/01/88]1501/31/8927082518329758.2325856758392202/07/8927652735309468.57877361542502/10/89254626482791587569557932902/14/892938295836100112568626590[6].F5,SR7O/30,4302/28/89231521152996210487205163RR5/85003/07/8928242963429281545656776349[02/20/89]5703/14/892702298438117514526798064286403/21/892742286342104717546198362557103/28/89236328093784616776395673[7].F5,SR6O/40,7804/04/8922712592419682349603555486RRS/88504/11/8918002552376812247565504758[03/29/89]9204/18/89222730424288823496185757639904/25/891220218040740224652046388910204/28/891036249247731275457236399010605/02/896142306466042953497443290192TABLECI.2RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED2UNDERDIFFERENTRUNNINGCONDiTIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNDAYDATEVFA,MGILTOT.VFANUMBERSHAcHPrTho-HBrA-HVrIso—HVrHHemgfLHAcHBrHVr[8].F5,SR6O/40,11305/09/894082685597743968747623687RR31612005/16/896502891747135184831864143[05/09/89]13005/26/89359227464532406967057309713405/30/89493201850738315580974323113706/02/894061735649244863950269914106/06/893992148557883264698583212[9].F5,SR8O/20.106/13/895671841437342149581543000RR5/8806/20/895802073498893191742593439[06/10/89]1506/27/897652306498243494766673790[10].F5,SR80120,2207/04/897911370413521656282680RR5/82907/11/89147221096502777656534100[07/02/89]3607/18/89170821957222370614524423Reacelimatization4307/25/89943214360125726065935344607/28/89750208054424675405132055008/01/8987023984662234815965137145308/04/8987720985743073496413343[11].F5,SR9O/10,5708/08/89108722615862768525393705RRS/86408/15/89101318586002463525523315[08/05/89]7108/22/891674218787326686317645087808/29/891480208578523615756941298109/01/892591268438123424567818161838509/05/8920242399419412758727955165[121.F5,SR9OIIO,9209/12/8916542096367522451638714347RR3/69909/19/8922642651409612557800875660[09/06/89]10609/26/891692215837789245166766447610909/29/891691218737812245270769453911310/03/891975229132905214669262495011610/06/8918582411399382555731714993TABLEC1.3RESPONSEDATAOFTH[SAMPLINGPOINTNUMBERED3UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS1%][%TSI[%][%TS]OTALSOL.H4-NTKN(%TS]TP[%TSJP04-P[1].F5,SR8O/20.107/12/881312710240548052401.3178.010.5595.6222178114062443144.992111.94211RR2/4807/19/881476511695556052251.4879.210.5693.9722947106882362854.752021.92199II07/22/881338510435675064751.3477.960.6895.9323830102902633185.401991.73193[2].F5,SR8O/20,1507/26/88107958160392537801.0875.590.3996.3121569105432612944.421832.18182RR6/102208/02/881136085201178053251.1475.001.1845.2022731110443293854.761961.96191[07/30/88]2908/09/88446754129039645382654.4792.423.9696.526870194092673116.101770.621783208/12/88441604049034920339304.4291.693.4997.I66660090002222826.141740.671663608/16/88499204622540930396804.9992.604.0996.957523587822442636.071660.961733908/19/88439254056541280399504.3992.354.1396.788469294632532905.811870.881794308/23/88476454441541056395864.7693.224.1196.428560290732563436.412000.641704608/26/88614055776056210546706.1494.065.6297.268260999792633206.081860.57190[3].F5.SR.50/50,4908/29/88489604501043450423104.9091.934.3597.3871575101842546206.184580.66244RR6/105309/02/88480154438542130410204.8092.444.2197.3775763117943824025.952310.63217[08/31/88]5709/06/88348572545045240442103.4973.014.5297.7267894105524034566.022310.642316009/09/88510304769544230431105.1093.464.4297.47100826101654094255.972240.672206509/14/88347553172530510297303.4891.283.0597.445596798773614296.072160.732166809/17/88258152298521250206902.5889.042.1397.364508296724424426.072310.872277109/20/88181451547512000116501.8185.291.2097.0825306102043964596.122351.192297409/23/88174351489010720103801.7485.401.0796.832764298374254576.142371.252467809/27/88319552878026160253203.2090.062.6296.7964257110044444956.212610.812138109/30/88454854191539830385004.5592.153.9896.667222211190437480.5.762511.36247[4].F5,SR5O/50,8510/04/88456504174542080406604.5791.454.2196.6367071116363974445.392400.66238RR2/49510/14/88449954164039690384604.5092.543.9796.909652104354065056.892590.86244[10/03/8819910/18/88531404968054680532005.3193.495.4797.2986400104004314506.272300.7424210210/21/88495854606547100456004.9692.904.7196.8290400106404385216.742580.74240[5].F5,SR7O/30,101/17/89543404944043750419405.4390.984.3895.8691495111443434394.812180.83198RR3/6801/24/89343803438031260301303.44100.003.1396.3975352116904485906.222631.25238[14/01/88]1501/31/89337803049026200254503.3890.262.6297.1450473112304265906.282651.092282202/07/89406003669031140297804.0690.373.1195.6359783113043464405,672170.922082502/10/89338602923032410307603.3986.333.2494.9158537117073674716.392451.132152902/14/89414503669029900285404.1588.522.9995.4554032108873783776.011960.88201TABLECL.3RESPONSEDATAOFTILESAMPLINGPOINTNUMBERED3UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/IINORGANICS,MG/IorELSENUMBERSTSVSTSSTVSS[%][%TSI[%1[%TS]OTALSOL.114—NTKN[%TSJTP[%TS]P04-P[6].F5,SR7O/30,4302/28/89241102074017750168502.4186.021.7894.933818593893063985.011930.89181RR5/85003/07/89406503712044510428804.0791.324.4596.3481212114753924956.072271.05211[02/20/8915703114/89334703026028780278203.3590.412.8896.6657959122453824475.712231.612046403/21/89417703816037040358404.1891.363.7096.7655422109243914516.232191.042047103/28/89451004204043370417804.5193.224.3496.3384323113944244885.092350.83210[7].F5,SR6O/40,7804/04/89392503591033260321803.9391.493.3396.7571311111484735215.242520.82228RRSI88504/11/89275502461020580197802.7689.332.0696.1148682104674834885.982400.98247[03/29/8919204/18/89104108120619060201.0478.000.6297.2521328109464835196.412362.442439904/25/89107108530710068701.0779.650.7196.7611089113274885005.852262.2223810204/28/89123809870864083601.2479.730.8696.7625050110545044925.432572.1424010605/02/891468011920886083501.4781.200.8994.242919196254854327.342281.89221[8].F5,SR6O/40,11305/09/89217601845013140121102.1884.791.3192.162862798045125897.052662.04247RR3/612005/16/89119009480947088901.1979.660.9593.882217889515225586.702512.12245[05/09/89]13005/26/8957003870391035900.5767.890.3991.821218177014695426.462353.8621913405/30/8989206970609054900.8978.140.6190.151286683434694983.212332.5422713706/02/8983606260606055400.8474.880.6191.421351481084604455.472203.2823414106/06/8969105140370035700.6974.380.3796.491618587094604295.482187.32237[91.F5,SR8O/20,106/13/8990306920582056800.9076.630.5897.591935586533883815.891992.43200RRS/8806/20/89103608350584056901.0480.600.5897.432116289633693495.551831.82198[06/10/89]1506/27/89126509560681058901.2775.570.6886.492064897174154756.862302.36200[l0].F5,SR8O/20,2207/04/8956703600276023500.5763.490.2885.14874838974915444,531382.98147RR5/82907/11/8966504150348026500.6762.410.3576.151453192614014898.082162.51193[07/02/89]3607/18/8973205160374031100.7370.490.3783.1617098111373g64565.242162.41198Reacclimatization4307/25/8998307530426041900.9876.600.4398.361760092003814264.601902.801704607/28/8995506960484044200.9672.880.4891.321525985193393916.061792.131645008/01/8990506830511046600.9175.470.5191.191661877213293085.771452.121555308/04/8999007410557045700.9974.850.5682.051613379003143456.441662.16153CDTABLEC13RESPONSEDATAOFTIlESAMPLINGPOINTNUMBERED3UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2.AND3I-aCDv1EXPER.RUNSDAYDATENUMBERS[11].F5,SR9O/l0.RR5/8[08/05/89]SOLIDS,MG/LorELSECOD,MG/LINORGANICS.MGILorELSETSVSTSSTVSSI%I[%TSI1%]L%TS]OTALSOL.114-NTKNF%TSITPI%TSJP04-P[12].F5,SR9OI10,RR3/6[09/06/8915708/08/897250486034706408/15/8910370722059707108/22/899850716044307808/29/8911690882059908109/01/899810748035408509/05/899340661057609209/12/8911375852554209909/19/89123309520589010609/26/8935790324503112010909/29/891274010430742011310/03/894800040560681011610/06/891456011000805031300.7367.030.3590.2012915744454101.0469.620.6090.6215830791539800.9972.690.4489.8420656877053101.1775.450.6088.6519598899630900.9876.250.3587.29201601088052400.9370.770.5890.97184131119052001.1474.950.5495.94180551081756001.2377.210.5995.082080910559297303.5890.673.1195.5353707978070301.2781.870.7494.7424376965264104.8084.500.6894.13237401016376701.4675.550.8195.2824793105793143252292792403492815472915013113433163753113403213233043342863372933695.314.806.275.834.165.275.245.545.144.605.336.221682332772372332102031851621751932052.653.332.013.582.402.301.971.940.871.321.571.55153I19132155185198189200190185187197196215681224.51814255781928567431607629857511121608610948012815201358479185156214567192061713431006311458618424793851118255371926569213058121315892132649223154525367022029524221137681310676913918451183771054674135567910365541965812165565418565852063577255256426525732042505204151029616423059617745628124552814553641365483482412848351164894140438015949431354464145500714953581775582158510914049401144435123468179463692495495527791530310458279051681296129121492490603793655864385626644660626947669472937762117759686458775454776246124147943742444857473933TABLECI.3RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED3UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2.AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[1].F5,SR8O/20,RR2/4[2].F5,SR8O/20,RR6/10[07/30/881[3].F5,SRSO/50,RR6/10[08/31/88][4].F5,SRSO/50,RR2/4[10/03/88][5}.F5,SR70130,RR3/6[14/01/88][6].F5,SR7O/30,RR5/8[02/20/89][7].F5,SR60140.RR5/8[03/29/89]107/12/8823032436341123807/19/88223423803411061107/22/88213723573810041507/26/8821752560379542208/02/8819412096359052908/09/88201519163211483208/12/88204418763111913608/16/88184415273012543908/19/88211217753313594308/23/88192517383410464608/26/88213020114011344908/29/88218922013612005309/02/88229722634512625709/06/88213720383911096009/09/88202820303511206509/14/8818361888369946809/17/88195419403510917109/20/8820051972329227409/23/8821312111329987809/27/88229922623410278109/30/88230622623310518510/04/88241726303411559510/14/8821842345349709910/18/882737259439109510210/21/882319200531819101/17/892649262745952801/24/89285429454310501501/31/89291827654110152202/07/8926952700359052502/10/8928483007331C312902/14/8927262763369264302/28/8921382002288765003/07/89324233455110695703/14/89263028724111126403/21/8926162743429857103/28/8924522911458987804/04/8922622631439508504/11/8916012549417359204/18/8918812501377419904/25/89128720283666010204/28/89138829445287010605/02/89747272651735197TABLECI.3RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED3UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso—HVrHHemg/LHAcHBrHVr[81.F5,SR6O/40,11305/09/894532946628524071796664032RR3/612005/16/895852429526143458680703499[05/09/89]13005/26/89498226149584295272952326613405/30/89454215350786315684273335413706/02/893651788684245066053274014106/06/894182030487812555644543083[9].F5,SR8O/20,106/13/8946316817221946547512705RP.S/8806/20/896152160469783192803663643[06/10/89]IS06/27/896202334479293396827683775[10].F5,SR8O/20,2207/04/8955569421542761429RRS/82907/11/89170521317112573615344355[07/02/8913607/18/89161920666862473609464201Reacclimatization4307/25/89874223066829826866636414607/28/89528216460327766286131555008/01/89568208555630755334530365308/04/8964320946013276539463155[11].F5,SR9O/I0,5708/08/8972120765522971508413159RRS/86408/15/89102818736252462569543386[08/05/89]7108/22/891289184868919545025636247808/29/89836125844316453804124398109/01/89182122123685924505986346538509/05/89206926254210012760741805437[12].F5,SR9O/10,9209/12/8918882455438762860754815042RR3/69909/19/8919792480418512658730775117[09/06/89]10609/26/891765235042849275873374479710909/29/891660223939799255468161452511310/03/891871232238873245473871489211610/06/8917862545489403167780745078TABLECI.4RESPONSEbATAOFTHESAMPLiNGPOINTNUMBERED4UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE12AND3EXPERIMENTSEXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LNUMBERSTSSTVSS[%1[%TSITotalSol.H4-NTKNTPP04-P[I].F5.SR80/20,107/12/889408800.0993.62114069109248307195193RR2/4807/19/8810259700.1094.631257494302422891871841107/22/888828180.0992.74114519981261304197211[2].F5,SR8O/20,1507/26/886176000.0697.241770610543270306191197RR6/102208/02188150313600.1590.491377510562347429200197[07/30/8812908/09/88139013230.1495.181303188583043581791753208/12/88,156315100.1696.611372098002593111831833608/16/88156014870.1695,321245591822843161811873908/19/88165015800.1795.761288394632863101791894308/23/88156715270.1697.451262389942863271831844608/26/88141713830.1497.60131269317275347194190[3].F5,SR5O/50,4908/29/88145314470.1599.591353810020265324190232RR6/105309/02/88156015290.1698.011435111216353421226126[08/31/88]5709/06/88175717230.1898.061415195714204762292176009/09/88183017570.1896.011462899173854792432256509/14/88112711230.1199.651234696304094682312116809/17/887106890.0797.041163998364004382312367109/20/885475160.0594.331199999594004432342317409/23/886035700.0694.531130197564114652332227809/27/889929120.1091.9412851104424305072572348109/30/88145913830.1594.791404810317422484255247[4].F5,SR5O/50,8510/04/88192018260.1995.10153531107139T491249242RR2/49510/14/88158415040.1694.951328110119431490242249[10/03/8819910/18/88149214320.1595.9812960968043547023423910210/21188147414160.1596.07127499820397490296369[5].F5,SR7O/30,101/17/89140513480.1495.941249310029339389182189RR3/6801/24/891025098201.0395.802816910704421552246216[14/01/88]1501/31/89765573650.7796.211186199684535762482232202/07/891038098051.0494.4628043103263994712152152502/10/89260023300.2689.6214959108133834132152082902114/89941089150.9494.74258061104838342222021500TABLEC1,4RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED4UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASEI,2,AND3EXPERIMENTSEXPER.RUNSDAYDATESOLIDS,MG/LotELSECOD,MG/LINORGAN1CS,MG/LNUMBERSTSSTVSS[%][%TS]TotalSol.NH4-NTKNTPP04-P[6].F5,SR7O/30,1401/14/0010709800.1191.59233539467342436206186RRS/82101/21/008558500.0999.421244411152392491229211[02/20/89]2801/28/00110511000.1199.5514204123273824472052043502/04/00151014700.1597.3514056110044314852252134202/11/00225520950.2392.901528910562454496231224[71.F5,SR6O/40,4902/18/00166515400.1792.491524611230478470221245RR5/85602/25/00150514300.1595.021363110548502531249249[03/29/89]6303/03/00151514450.1595.3813843108654735112362437003/10/00249523300.2593.3914178106145135542422407303/13/00276526100.2894.3915905111335045732412407703/17/00316528850.3291.15151489941518529227235[S).F5,SR6O/40,11305/09/89446540750.4591.271662710275549652282247RR3/612005/16/89298027600.3092.62151299030531553241238[05/09/89]13005/26/89137512300.1489.459430730847956020621713405/30/8911259800.1187.119669810947947921922713706/02/89120510800.1289.639498795448851523423914106/06/898207900.0896.3497888478460628296242[9].F5,SR8O/20,106/13/899957460.1074.97107028577417332203174RRS/8806/20/8911458020.1170.04111208797388332200174[06/10/89]1506/27/89166010700.1764.46110939393415516221Ill[101.F5,SR8O/20,2207/04/899907750.1078.2863623658496646142142RRS/82907/11/89221517100.2277.20110988942422460196191[07/02/89]3607/18/8911758450.1271.91120789961396460209191Reacclimatization4307/25/89134012250.1391.421152084003713741611594607/28/89156513750.1687.861096387413604612031685008/01/89121010850.1289.67985377213714391901615308/04/89134012150.1390.6799797734342369171158TABLECl.4RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED4UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASEI.2,AND3EXPEMENTS00EXPER.RUNSDAYDATENUMBERSSOLiDS,MG/LorELSECOD,MG/LINORGANICS,MG/LTSSTVSS[%)L%TSITotilSol.NH4-NTKNTPP04-P[11].F5,SR9O/10,5708/08/8910559250.1187.68120187085RR5/86408/15/8910209050.1088.7390217915[08/05/89]7108/22/89132511550.1387.171082084507808/29/8911009100.1182.731028188358109/01/898557400.0986.5512800104808509/05/89134011350.1384.701238110873[12).F5,SR9O/10,9209/12/899108550.0993.961260710039RR3/69909/19/897807150.0891.671202310019[09/06/89)10609/26/89129512050.1393.0511703937910909/29/89109010500.1196.3311452981611310/03/89128511550.1389.8811544943111610/06/89134013250.1398.881355410000302341171263460144260285131311462205311481222322375210333385200333362197304405179425498198339337189323405208155134141160180196189196181190187197201TABLECIARESPONSEDATAOFTHESAMPLINGPOINTNUMBERED4UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA.MGILTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[1].F5,SR8O/20,107/12/88177921773387821517201064686RR2/4807/19/88161320713494524.5073711944981107/22/88183323353899427578301435041[2].F5,SR8O/20,1507/26/881908264443100331648241435380RR6/102208/02/881933241743982181085951185077(07/30/8812908/09/88167419724211161814073245863208/12/8819342072361235138456612749363608/16/8818451991431492199257917950043908/19/8818371834371331165849815946754308/23/8816981792391038209053514643404608/26/881678188838103817595541434387[31.F5,SRSO/50,4908/29/881857215939104217596481504848RR6/I05309/02/8818712238461108777481745048(08/31/88]5709/06/881793209144951585991645626009/09/881805215738999177666514747836509/14/881759212142937325646912545396809/17/8818741943351041188956212246407109/20/881917202531913192655345547409/23/88202121273098720275919948667809/27/88196022503496822305899948968109/30/8819132173329312129571934745[4J.F5,SRSO/50,8510/04/882036248134103121326311045230R.R2/49510/14/8818012363368212434472834656[10/03/88]9910/18/881922210132800222952497458110210/21/8811471751373012532368533075[51.F5,SR7O/30,101/17/89221126224780419109641745408RR3/6801/24/89235227814882216107662895708[14/01/88]1501/31/892286262942780148670554522202/07/892460303345848169374360292502/10/892354274534869108073056782902/14/89225428254083215847805656[6].F5,SR7O/30,4302/28/8923022132308871124553665036RRS/85003/07/89311231894910971954786987035[02/20/89]5703/14/892900304743112017587058766676403/21/89249127084488419475097356957103/28/8923222851458732262539625658[7].F5,SR6O/40,7804/04/8921722692439332551602515445RR5/88504/11/8916952672437722753642614873[03/29/89]9204/18/89175725794077022465554747919904/25/891502261948849285660252466810204/28/891232281851831285961346455410605/02/897182677507253059602583853202TABLEC1.4RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED4UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[8].F5,SR6O/40,11305/09/894272993658094273810734032RR3/612005/16/895692699616003967707883732[05/09/89]13005/26/89329216448474285260142286213405/30/89330182243586284662656267713706/02/89340200249673305869553294414106/06/894162334587923569699583390[9].F5,SR8O/20,106/13/895372076547493266605513208RR5/8806/20/895261978467873493685533203[06/10/89]1506/27/895552321508423698763663607[10].F5,SR8O/20,2207/04/894796851848633661417RRS/82907/11/89154220416412672578304047[07/02/89]3607/18/89153221516642673618474175Reaccljmatjzatjon4307/25/89701198854227755515330944607/28/89506234358930806295932735008/01/8952222534353833795204431395308/04/8955721035453276500403012[11].F5,SR9O/I0,5708/08/8963420134942970468352955RRS/86408/15/8998119906082868566553427[08/05/89]7108/22/891434224875528705826142037808/29/891406234776731756087242898109/01/89186924294089627566406949388509/05/8919632590429732759733755276[121F5,SR9O/10,9209/12/8916792364427952859728804687RR3/69909/19/8917842455427852859698784841[09/06/89]10609/26/891504224441743275765667432810909/29/891613234242787275873570459611310/03/891730232740814255568369468411610/06/8915902381458603063737704662TABLECl5RESPONSEDATAOFTHESAMPLANGPOINTNOSUNDERDIFFERENTRUNNINGCONDITIONSDUAUNGPHASEI2AND3EXPER.RUNSDAYDATESOLIDS,MG!LorELSECOD,MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS[%I[%TS][%][%TS]TOTALSOL.NH4-NTKNTPP04-P[l].F5,5R80/20,107/12/887358469358053503463.780.0692.2412673110892703I8209208RR2/4807/19/88837454945405200.8465.6I0.0596.3012416102952382931901841107/22/88733345585374800.7362.160.0589.391168310058274318187184[2].F5,SR8O/20,1507/26/88731047004374200.7364300.0496.111207211509283338207194RR6/102208/02/88640438247536600.6459.710.0887.651329310884310385187191[07/30/88]2908/09/8899127208406739100.9972.720.4196.141957694092823441851833208/12/88701244324334110.7063.210.0494.921188090002373151791663608/16/88843858284974830.8469.070.0597.181165798203313261921903908/19/88636041238638470.6464.830.0998.1512565100202903992171964308/23/88688046135805580.6967.050.0696.211262391522753201791774608/26/886470409015806330.6563.210.1640.06130439979273398196192[3].F5.SRSO/50,4908/29/8882305640217721600.8268.530.2299.221607410593275363210190RR6/l05309/02/8878135157219321430.7866.010.2297.721616512041382385231217[08/31/88]5709/06/8895855970152315130.9662.280.1599.3415215108794414922412386009/09/8878505410332732600.7968.920.3397.9918926109924094872472326509/14/884700251718185040.4753.550.1827.7215870101233804602312256809/17/88462024004003930.4651.950.0498.251123099184294582372317109/20/88467023372982880.4750.040.0396.6411265102863964632452347409/23/88448721603122660.4548.140.0385.261097698374154982552347809/27/88494724504143620.4949.520.0487.4412129109234.445072612448109/30/88492724304744360.4949.320.0591.981214311270468512260256[41.F5,SR5O/50,8510/04/8871104263150814260.7159.960.1594.561575811394412420227240RR2!49510/14/88501726375925600.5052.560.0694.5910356I05’14435517259251[10/03/88]9910/18/8865004090182217520.6562.920.1896.16165601040043553325524610210/21/8855172707358634520.5549.070.3696.261532011210397421314369[5].F5,SR7O!30,101/17/89743344674774630.7460.100.0597.061155410792325429209191RR3/6801/24/89708041539008790.7158.660.0997.671373211831430547261197[14/01/88]1501/31/8960403500147014650.6057.950.1599.6614385114834436372852402202/07/8970574053156514730.7157.430.1694.1214022111963574822192082502/10/8974074667136311730.7463.010.1486.0614228121143884622372152902/14/898463‘4923138513250.8558.170.1495.67141131185542044421721507ABLECL.5RESPONSEDATAOTHESAMPLINGPOINTNO.5UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS[%][%TSJ[%1[%TSJTOTALSOL.H4—NTKNTPP04-P[6].F5.SR70130,4302/28/89496327176855300.5054.750.0777.371112410178372419204198RRS/85003/07/89651338705305100.6559.420.0596.231204011071413406206208[02/20/89]5703/14/89699738935054850.7055.640.0596.0412816120003914472232046403/21/89624039577407000.6263.410.0794.5912691116474264962332187103/28/89591737738057300.5963.770.0890.681212111572459477227228[7].F5,SR6O/40,7804/04/8972534810282527050.7366.320.2895.751827912049502562254238RRS/88504/11/89487326278007360.4953.910.0892.001273810467507531255249[03/29/89]9204/18/89540032277357300.5459.760.0799.3211590108654783341742469904/25/895953376010109850.6063.160.1097.52125151077251339618524310204/28/89107508420763573301.0878.330.7696.01262431097450845523924310605/02/8985536327509047850.8673.970.5194.01195669625485440230233[8].F5.SR6O/40,11305/09/8995537153558551800.9674.880.5692.751992210275587657284250RR3/612005/16/8983535429364533160.8464.990.3690.97185639347526610263238[05/09/89]13005/26/8954273403231021150.5462.700.2391.5611002762347947221221913405/30/8987506600551549300.8875.430.5589.3910292810949756021222913706/02/8954203440174515600.5463.470.1789.4018224888048847723922614106/06/8997277453583054150.9776.620.5892.88201938786479504249234[9J.F5,SR8O/20,I06/13/8962l04037623557990.6265.010.6293.01265659108407408203210RR5/8806/20/8976455122687065500.7667.000.6995.342473010041498434205229[06/10/89]1506/27/8951853578589737740.5269.010.5964.00360329879505548236200[10].F5,SR8O/20.2207/04/8946752770151011020.4759.250.1572.98604436584965l128137RRSI82907/11/8954153005178013750.5455.490.1877.25100609501427485211193[07/02/89]3607/18/895750250140010300.5856.520.1473.571160810353370444211196Reacclimatization4307/25/8980055645348033200.8070.520.3595.401616092003764652051724607/28/8976805460342730930.7771.090.3490.251466787413504441981665008/01/8971354830361027700.7167.690.3676.731367677213504091791595308/04/8982305920461039600.8271.930.4685.901646677343593771711580•:TABLE.CL.5RESPONSEDATAOTHESAMPLINGPOINTNO.SUNDERDIFFERENTRUNNINGCQNDIT1ONIDURINGPHASE1,2,AND3.EXPER.RUNSDAYDATESOLIDS,MGJLorELSECOD.MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS[%I[%TS][%j[%TS]TOTALSOL.H4-NTKNTPP04-P[11].F5,SR90110,5708/08/8974004945321029000.7466.820.3290.34150677534330345171155RRS/86408/15/8986556035445040300.8769.730.4590.56148067660229238144121[08105/89]7108/22/89122709335737065901.2376.080.7489.422688589342503722961017808/29/8998557200463041000.9973.060.4688.551799285943114752111608109/01/8978105195717045600.7866.520.7263.6016000109603734552141808509/05/89104957640269023001.0572.800.2785.501873011032342406220198[12].F5,SR9O/10,9209/12/8995976870539049350.9671.580.5491.562023310195328385196189RR3/69909/19/8974854975207019400.7566.470.2193.72144899557328375189191[09/06/89]10609/26/8971204925210019500.7169.170.2192.8612986937933939218319210909/29/8970854870284025800.7168.740.2890.8513742940733945319819411310/03/8958304695749068910.5880.530.7592.00178861048841148220520811610/06/89112708135509047601.1372.180.5193.522281010496422496226206NOTE:1.2.,12AREAVERAGERESPONSESATPSEUDO-STEADYSTATEFOREXPERIMENTALRUNNINGCONDITIONSNUMBEREDITO12RESPEC1767249175054730.7764.020.0593.931205710621265316195187271934781144611170.7266.260.1478.501391399082743601951863478723474003550.4848.990.0488.231174910677442506259245456783145200019210.5754.850.2095.671407910708422490276289576424548143813240.7659.540.1491.9514121117223884632242136607938657737150.6163.590.0892.64124.0611610443.487230223796197300610357650.9675.730.6194.252191010291527517251242875745447378834880.7670.050.3891.14192098833484491ERR244964154350638451620.6468.000.6479.673038199605024912212151076825403388232740.7770.240.3984.301493680653534101831611193876678483036530.9470.790.4879.2217574101953424452151791280625900514047440.8173.820.5192.1218146101303914772102030v1206TABLECl.5RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED5UNDERD[FFERENTRUNNINGCONDiTIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MGILTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[1].F5,SR8O/20,107/121882203244038111825577731395544RR2/4807/19/8820162232341044245175713251181107/22/88192623144197331627711415075[21.F5,SRSO/20,1507/26/88208625194196131617611305381RR6/102208/02/8821772439421049705721215339[07/30/88]2908/09/88203619493611771112260714049513208/12/88201319163311621282’52511848063608/16/8820811797381472138754017150323908/19/8821021908411407188853316150954308/23/88190718414010921710163214846894608/26/881932194240107516805991434750[3].F5,SR5O/50,4908/29/882089226143119420837391525340RR6/105309/021882174227249120961917501715493[08/31/88]5709/06/8820432128451102237868716250986009/09/8819462179431096217576149936509/14/8819051937371001187148812045856809/17/88201519013610836154912447427109/20/88204320273292619265468947337409/23/88215221073096519265539349397809/27/882351234934105822316089354378109/30/88237623663510872232613995503[4].F5,SRSO/50,8510/04/882415261235114222346531015805RR2/49510/14/8820732371389612635559945090[10/03/88]9910/18/8821652177329182130542101497910210/21/8812181742373022533380523146[5].F5,SR7O/30,101/17/89259125934193919104734855910RR3/6801/24/892917294545102714106780946614[14/01/88]1501/31/892920283842986148984564802202/07/8928122950431007166374764062502/10/892985324939110138683462702902/14/892633283345961874717605533[6].F5,SR7O/30,4302/28/8924332237339371237608665329RR5/85003/07/8927322775459101747663816103[02/20/89]5703/14/89296831464511541765799264796403/21/89255027924790321495197358467103/28/8927433227569982658592756515[7].F5,SR6O/40,7804/04/8922212758469552755612535575RRS/88504/11/8917802655447852755654654964[03/29/89]9204/18/89182225453976621455364548129904/25/891425239344770255050743428510204/28/891330289353850296063244473810605/021896582680537143361608513793207TABLEC1.5RESPONSEDATAOFTHESAMPLINGPOINTNUMBERED5UNDERDIFFERENTRUNNINGDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso—HBrA-HVrIso-HVrHHemgJLHAcHBrHVr[8].F5.SR6O/40,11305/09/893482575567293763698583470RR3/612005/16/8960228596672344.74812844049[05/09/89]13005/26/89359223649571295468254307313405/30/89398217554776345885175332113706/02/89329194250714305974860294814106/06/894062148557853265675573204[9].F5,SR8O/20,106/13/895372227578883167710613494RRS/8806/20/8948125928082750101759683771[06/10/89]1506/27/895462526698744291739703786[10].F5,SR8O/20,2207/04/8947260618542641247RP.S/82907/11/89167721066952469578314269[07/02/89]3607/18/89190324388072878713544940Reacclimatization4307/25/8989323974371630827226938804607/28/89521233865529796756533575008/01/8954624004862337876105234085308/04/895292244516034088566463226[11].F5,SR9O/10,5708/08/897112278436003377564463417RRS/86408/15/8999019546322666590563435[08/05/8917108/22/891276202872325655556038247808/29/89138023384577233806517743228109/01/89196926384797832667097953228509/05/8919882717489953268763835453[121.F5,SR9O/10,9209/12/8916882395468073064724774732RR3/69909/19/8915972376487353267682734555[09/06/89]10609/26/891453240652755357172771448110909/29/891622233545806296272369461011310/03/8916462524808295511274371488411610/06/89159525527386151104757734875NOTE:I,2.12AREAVERAGERESPONSESATPSEUDO-STEADYSTATE(EXPERIMENTALRUNNINGCONDITIONSNOITO12RESPECTIVELY)120092355399932958763134519121976201541112018886574926322932274331037213059195529341819209736727243349482440552810301142404167476660607062647301052951245455674618072482299351977275760264400183682045537503162712593076918012600427762450595553779101624246942768234852244333111137826434981027555704450321216212470668324593741714790ABLECl6RESPONSEDATAOFSAMPLINGPOINTNO6UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE12ANDSEXPERIMENTSEXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MGILINORGANICS,MGILorELSENUMBERSTSVSTSSTVSS[%JI%TSJ1%][%TS]TOT.SOL.NH4-NTKN[%TSITP[%TSIP04-P[1].F5,SR8O/20,107/12/88784045938954950.7858.580.0955.31308926932612760.71522.2524RR2/4807/19/881029567357053951.0365.420.0756.03416532222742930.53702.16351107/22/889130586518159250.9164.240.1850.96425530172782890.93553.3820[2J.F5,SR8O/20,1507/26/88727544756103400.7361.510.0655.74321928972983060.74653.157RR6(102208/02/888370415014206150.8449.580.1443.31558241373103890.94853.0953[07/30/8812908/09/881123075809254951.1267.500.0953.51633962603763630.84762.85233208/12/88114656880272312231.1560.010.2744.91716053203763631.051175.131023608/16/88146609295299012901.4763.400.3043.14622847113313210.93905.21343908/19/8899655895273711471.0059.160.2741.91620342943513891.371416.62424308/23/8892105975301512420.9264.880.3041.19449733133693631.621329.401374608/26/8893805205341313800.9455.490.3440.43559031883653941.231348.4684[31.F5,SRSO/50,4908/29/88107955780519018971.0853.540.5236.55576736403654061.561557.3085RR6/105309/02/8892354595446716470.9249.760.4536.87478428873994111.6616410.6357[08/31/88]5709/06/8866352715334712400.6640.920.3337.05368119634204211.6214910.221106009/09/8878102550473017000.7832.650.4735.94338817363994251.4020910.03296509/14/8881552550317011230.8231.270.3235.43353919753614022.1933211.221576809/17/8864702340297411670.6536.170.3039.24450824594044263.4123111.581767109120/88352011606574000.3532.950.0760.88424535923884312.8422410.292107409/23/884360173014677270.4439.680.1549.56505442464064652.872486.382327809/27/884545170517208270.4537.510.1748.08682754624394662.881976.272018109/30/885075198518938870.5139.110.1946.86682556354684873.842367.39233[4].F5,SR5O/50,8510/04/88473019905303470.4742.070.0565.4767886060432444.3.462957.89301RR2/49510/14/88499022605334200.5045.290.0578.80735266403843994.633606.90.345[10/03/8819910/18/8863903275148611630.6451.250.1578.26776062404064985.514177.0940310210/21/88544529256405800.5453.720.0690.63720058403974904.462606.57355[5].F5,SR7O/30.101/17/8957953170296023200.5854.700.3078.3838124113804894.58913.378RR3!6801/24/8962403085256019100.6249.440.2674.6138033524214444.62723.164[14/01/8811501/31/8960703070360025000.6150.580.3669.44454311364976325.111184.81282202/07/8955302735237016000.5549.460.2467.5133705434254224.742204.2582502/10/8963602985297019000.6446.930.3063.9742288134734945.47494.57112902/14/8962553155319022300.6350.440.3269.9137908874734444.731125.80200TABLEC1.6RESPONSEDATAOFSAMPLINGPOINTNO.6uNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG!LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS(%JL%TS11%][%TSITOT.SOt.NH4—NTKN1%TSITPI%TSIP04-P[6J.F5,SR7O/30.4302/28/8952702940280020700.5355.790.2873.9341037103874824.951514.512.64RR5/85003/07/8954903035292024600.5555.280.2984.25468711314334324.781473.4713.76[02/20/89]5703/14/8965253765301023800.6557.700.3079.07546916334484474.681154.046.146403/21/8955503160266019900.5656.940.2774.8132138034444434.991113.819.217103/28/8957203390332024100.5759.270.3372.59438010264294144.581154.346[7].F5,SR60140,7804/04/8944752455272020100.4554.860.2773.9034436564935105.52984.2592RR5/88504/11/8950552820298022500.5155.790.3075.5037324875175076.18974.3620[03/29/8919204/18/8956553455361028600.5761.100.3679.2236223225224885.04844.35269904/25/8958503450369027200.5958.970.3773.71499016635594735.14975.124410204/28/8957553685433034000.5864.030.4378.5250104775414325.38935.272310605/02/8957703260331024500.5856.500.3374.0252074735224176.79906.1359[8].F5,SR6O/4.0,11305/09/8953853150342024200.5458.500.3470.7638433535876105.901516.3440RR3/612005/16/8953302895365026600.5354.320.3772.8837323175876626.691496.26109[05/(39/89]13005/26/8943452270292019400.4352.240.2966.4423582365114795.80937.136913405/30/8948652830357022700.4958.170.3663.5939775464605294.101966.7119813706/02/8955203270419027800.5559.240.4266.3531664215)14935.781076.886114106/06/8949452830274020700.4957.230.2775.55362238552945)5.721252.61110[9].F5,SR8O/20,106/13/8961653825389029500.6262.040.3975.8458443805604836.161356.8742RRS/8806/20/8953453200246020100.5359.870.2581.7134854155314995.991045.3918[06/10/89]1506/27/8942152080249013900.4249.350.2555.8222671624915244.661037.6618[10].F5,SR8O/202207/04/892635100516009800.2638.140.1661.251034318447467365874.8928RR5/82907/11/893480149012705600.3542.820.1344.0918363994985343.48926.5024[07/02/89]3607/18/8949052740300019800.4955.860.3066.0032943924735143.55793.3528Reacclirnatizatio4307/25/8940602035171014600.4150.120.1785.3821603204504485.56704.5464607/28/893975202515901)700.4050.940.1673.5819263704233914.71994.7585008/01/8937351385147010000.3737.080.1568.0319123684294265.24845.22365308/04/8933951)9513708800.3435.200.1464.2314142493983975.89396.07150TABLECt6RESPONSEDATAOFSAMPLINGPOINTNO6UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE12AND3EXPERiMENTSEXPER.RUNSDAYDATENUMBERS[111.F5,SR9OIIO,RR.5/8[08/05189]SOLIDS,MGILorELSECOD,MGILINORGANICS,MGILorELSE-TSVSTSSTVSS[%j[%TSI[%][%TS]TOT.SOLNH4-NTKN1%TSJTP(%TS)P04-P5708/08/896408/15/897108/22/897808/29/898109/01/898509/05/899209/12/899909/19/8910609/26/8910909/29/8911310/03/8911610/06/89[12].F5,SR9O/I0,RR3/6[09/06/89]4030IHO3870980353516454285205039202120432021554255188031901365353015753410171540552020419519451750187015001930215015101550970118016801710126012100.4027.540.1812400.3925.320.198600.3546.530.1511900.4347.840.1915300.3954.080.2210100.4349.880.1511300.4344.180.165200.3242.790.107900.3544.620.1210420.3450.290.1710800.4149.820.178800.4246.360.1369.14179435966.31178734057.33163932861.66224952271.16216040066.89301647672.90203346753.61107930866.95144324062.02163640963.16178940769.8414883313813423223933814043833944114114114283574073315275274174224494234314194055.49804.70815.812735.04903.831963.36613.25543.41593.33573.31584.11123.02476.456.465.726.4.02.933.102.796.925.204.857.685.248344661815IS4922S0211TABLECi.6RESPONSEDATAOFTIlESAMPLINGPOINTNUMBERED6tiNDERDIFFERENT::RUGCOND1ONSDURINGPHE1,2,AND3EERTSEXPER.RUNSDAYDATEVFA,MG/LTOTVFANUMBERSHAcHPriso—HBrA-HVrIso-HVrHHcmg/LHAcHBrHVr[1].F5,SR8O/20,107/12/88654779253818141561439RR2/4807/19/888461028394340308718281107/22/88792102139223425491725[2].F5,SR8O/20,1507/26/88629799371523281342RR6/102208/02/881464905501677335318043562[07/30/88]2908/09/8823828367832363849276044453208/12/8824978827929012724947939673608/16/8821707577121410922335133803908/19/881845752671839121939530404308/23/88129062963936521434222724608/26/88141458564106311222952268[3].F5,SR5O/50,4908/29/88132469063126781973442376RR6/105309/02188966418545021144)2671628[08/31/88]5709/06/88498347323010761229446009/09/8836833020601162749206509/14/88241365188213332107566809/17/8837046929153362373010507109/20/8827460229145262423210477409/23/8843511883980313330516967809/27/8822616374227132383765320568109/30/881261836512423847409592136[4].F5,SRSO/50,8510/04/883111745443303139390582281RR2/49510/14/884231840393922834385512498[10/03/88]9910/18/88452184440355273538659251010210/21/884801647393102449452562391[5].F5,SR7O/30,101/17/897261121RR3/6801/24/89116843186[14/01/88]1501/31/8914812292532202/0718921611853182502/10/89218125573282902/14/891871136283[6].F5,SR7O/30,4302128/8939310261480RRS/85003/07/8956212488674[02/20/89]5703/14/89818193131259946403/21/892876433417103/28/89352149824495[7].F5,SR60140,7804/04/8910234130RRS/88504/11/89551970[03/29/89]9204/18/894415569904/25/8958288110204/28/8939195410605/02/894143680212TABLEC1.6RESPONSEDATAOPTHESAMPLINGPOINT:NUMBERED6UNDER;...RUNNINGCONDITIONSDURINGPHASE1,2,ANDEXPER.RUNSDAYDATEVFA,MGILTOT.VFANUMBERSMAcHPrIso—HBrA-HVriso-HVrHHemg/LHAcHBrHVr[8].F5,SR6O/40,11305/09/89332352RR3/612005/16/89292146[05/09/89]13005/26/8922173613405/30/89393913706/02/895614106/06/890[9].F5,SR8O/20,106/13/890RRS/8806/20/890[06/10/89]1506/27/890[10].F5,SR8O/20,2207/04/890RR5/82907/11/890[07/02/89]3607/18/890Reaccliinatization4307/25/8904607/28/8905008/01/8905308/04/890[I1].F5,SR9O/10,5708/08/890RRS/86408/15/890[08/05/89]7108/22/8907808/29/8908109/01/893724568509/05/8944446989[12].F5,SR9O/10,9209/12189342151RR3/69909/19/892919246[09/06/89]10609/26/8930204610909)29/89342845911310/03/89524068911610/06/894435374TABLECl7RESPONSEDATAOFTHESAMPLiNGPOINTNO7UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASEI2AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LNUMBERS•TSSTVSS[%][%TS]TotalSol,NH4-NTKNTPP04-P[1].F5,SR8O/20,107/12/886053650.0660.33277222972552615019RR2/4807/19/885003200.0564.003694306525928570471107/22/886383520.0655.17332730952742825122[2].F5,SR8O/20,1507/26/885273200.0560.72305824952873026519RR6/I02208/02/885002670.0553.40437842173663818239[07/30/88]2908/09/886603730.0756.526260515735435879443208/12/884372900.0466.3659715320376387125443608/16/886103500.0657.3849504471346347III693908/19/886803770.0755.4447714374366373138914308/23/8810405270.1050.67394533143763941441364608/26/887704370.0856.753685318834840220469[3].F5,SRSO/50,4908/29/8810435030.1048.2340493558365429161136RR6/105309/02/887834130.0852.7534522804369406128136[08/31/88]5709/06/8810204670.1045.78220917184204411551146009/09/887933930.0849.5619831488409456167306509/14/8811536030.1252.30222215643904183243086809/17/885604000.0671.43270518853924102241867109/20/883162560.0381.01367433473924072132177409/23/883062260.0373.86447239843824402392207809/27/883322320.0369.88586370684064912332088109/30/882571850.0371.9857945476457491.246242[4].F5,SRSO/50,8510/04/883642920.0480.2263035980427466299299RR2!49510/14/884624060.0587.8867986403372446379349[10/03/8819910/18/883243160.0397.536480608038439537934610210/21/883002780.0392.67124009600430502262244[5].F5,SR7O/30.101/17/898406600.0878.579383523804748217RR3/6801/24/896003700.0661.6784570442152976II[14/01/88]1501/31/895604150.0674.111136568511693107132202/07/894752650.0555.79103343547349084152502/10/895001900.0538.001016813462413346_______2902/14/895103400.0566.678474034784717311TABLECL7RESPONSEDATAOFTHESAMPLINGPOINTNO7UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE12AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MG/LINORGANICS,MG/LNUMBERSTSSTVSS[%][%TS]TotalSol,NH4-NTKNTPP04-P[6].F5,SR7O/30,4302/28/897604650.0861.181065828408411674RR5185003/07/898455850.0869.2313746874235121538[02/20/89]5703/14/895704700.0682.46167310204444629926403/21/897755450.0870.3213654824444558597103/28/897455100.0768.4611474123664037810[7].F5,SR60140,7804/04/895103100.0560.788203694494407683RR5/88504/11/895353300.0561.687303655075178618[03/29/89]9204/18/895854200.0671.7972420149651246159904/25/896654400.0766.17792673528558934010204/28/896204900.0679.031909318417532722210605/02/896903900.0756.5219728284405598261[8].F5,SR6O/40,11305/09/896203550.0657.269023145685589538RR3/612005/16/898556000.0970.181188317615693191103[05/09/89]13005/26/897355100.0769.3910223145525421337913405/30/896203500.0656.4585839047454213112613706/02/897364250.0757.74734232397506656814106/06/896004500.0675.001040462472520175105[9].F5,SR80120,106(13/898205650.0868.90113941753155013554RR5/8806/20/899908050.1081.3111627475105179833[06/10/8911506/27/899304900.0952.698912434965248330[10].F5,SR8O!20,2207/04/896752650.0739.26994358460479.9525RR5182907/11/899855450.1055.339984795035679025[07/02/89]3607/18/898804050.0946.029024314784936637Reacelimatization4307/25/895854950.0684.6284028043944850104607/28/895253650.0569.5274137032144448125008/01/8.96703500.0752.2488229438741866375308/04/895203350.0564.427482913924094416I-’TABLECI7RESPONSEDATAOFTHESAMPLINGPOINTNO7UNDERD1FIERENTRUNNINGCONDITIONSDURINGPHASE12AND3EXPER.RUNSDAYDATESOLIDS,MG/LorELSECOD,MGILINORGANICS,MG/LNUMBERSTSSTVSS[%][%TS]TotalSol,NH4-NTKNTPP04—P[l1].F5,SR9O/10,5708/08/896303350.0653.17807404364365729RR5/86408/15/896954450.0764.038142983593659545[08/05/89]7108/22/896153050.0649.5982036935240211127808/29/895352650.0549.5368324038154713358109/01/895102700.0552.9468032039354713338509/05/895002500.0550.007943974144242027[12].F5,SR9OIIO,9209/12/895954300.0672.278563503993904623RR3/69909/19/896003800.0663.337713084384832423[09/06/89]10609/26/897305050.0769.1896228139342757410909/29/895053750.0574.2677740944649648611310/03/895903500.0659.32813407446455522211610/06/893802550.0467.116612894465144991216TABLEC1.7RESPONSEDATAOFTHESAMPLINGPOINTNO.7UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,ZAND3EXPERIMENTSEXPER.RUNSDAYDATEVFA,MGILTOT.VFANUMBERSHAcHPriso-HBr-HVrIso-HVrHHemgfLHAcHBrHVr[1].F5,SR8O/20,107/12188563676222221281170RR2/4807/19/88787973364237278117141107/22/88800101540363326531741[2].F5,SR8O/20,1507/26/8858677737102114181279RR6/102208/02/881363816481516644767043245[07/30/88]2908/09/8822797487529359245269J41573208/12/8824848037826912424045338523608/1618821697017118325228933334253908/19/8819677517118741135246034714308/23/88138961864935216731223094608/26/8813864805970451692982164[3].F5,SRSO/50,4908/29/8813946016198491633052294RR6/105309/02/8899933149328211371[08/31/88]5709/06/88528292294462248656009/09/883392211720475716509/14/8828930616731932170726809/17/882943312610130992408667109/20/883336663218030292673912297409/23/884131062374931322813515537809/27/8816215554223933383625118958109/30/881491706482443543380572030[4].F5,SR5O/50.8510/04/883301807463243341402512354RR2/49510/14/883811804393592633376552399[10/03/88]9910/18/88446167136327253135853231910210/21/88255220383071819285001085092[5].F5,SR7O/30,101/17/89472366RR3/6801/24/891211052373265[14/01/88]1501/31/896022782202/07/89131451672502/10/89116381472902/14/89752293[6].F5,SR7O/30,4302/28/8924488285337RR5/85003/07/8927125291[02120/89]5703/14/894286454836403/21/89178241977103/28/8911329137[7].F5,SR6O/40,7804/04/894747RRS/88504/11/892020[03/29/89]9204/18/8921219904/25/8930164310204/28/89202010605/02/89--21--2440217TABLECL7RESPONSEDATAOFTHESAMPLINGPOINTNO.7UNDERPWFERBNTRTJNNU’G:CONDITIONSDURINGPHASE12ANDSEXPERTh4ENTSEXPER.RUNSDAYDATEVFA,MGILTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso—HVrHHemgfLHAcHBrHVr[8].F5,SR6O/40,11305/09/89171529RR3/612005/16/891411[05/09/89]13005/26/89013405/30/89191913706/02/89014106/06/890[9].F5,SR80120,1061131890RRS/8806/20/8996281243[06/10/89]1506/27/890[10].F5,SR8O/20,2207/04/890RRS/82907/11/890[07/02189]3607/18/890Reacclimatization4307/25/8904607/28/8905008/01/8905308/04/890[li].F5,SR9O/10,5708/08/890RRS/86408/15/890[08/05/89]7108/22/8907808/29/8908109/01/891913308509/05/892320341[12].F5,SR9O/10,9209/12/8919132936RR3/69909/19/89201230[09/06/89]10609/26/89201323210909/29/89221733811310/03/8928184311610/06/893226456TABLECI8RESPONSEDATAOFTHESAMPLINGPOINTNO8UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2.AND3EXPER.RUNSDAYDATESOLIDS.MG/LorELSECOD.MG/LINORGANICS,MG/LorELSENUMBERSTSVSTSSTVSS[%][%TS][%][%TS]TOTALSOL.NH4-NTKNTPP04-P[1].F5,SR80120,107/12/88641534203201850.6453.310.0357.81229721782632955022RR2/4807/19/88796846703502300.8058.610.0465.71330030652592785828II07/22/88723841482601470.7257.310.0356.54278528242683074825[2].F5,SR80/20.1507/26/88622432721931530.6252.570.0279.27225423742893226710RR6/102208/02/88640425802231030.6440.290.0246.19389639163553667237[07/30/88]2908/09/88955661111831200.9663.950.0265.5748435689361377fl333208/12/88876553682001600.8861.240.0280.005480514036936385573608/16/881053267974232601.0564.540.0461.474471415233633181373908/19/88738744773572000.7460610.0456.0241353817334368Lii724308/23/88712747877704200.7167.170.0854.55331331163583671161164608/26/88642339903202070.6462.120.0364.693354304334839812092[3].F5,SRSOI5O,4908/29/88595038176503700.6064.150.0756.923476300636539013664RR6/105309/02/88514331302732100.5160.860.0376.922804230937438513138[08/31/88]5709/06/88533520456303170.5338.330.0650.3216361391391398124866009/09/88324011973071700.3236.940.0355.3719011405385429123196509/14/88390010637274370.3927.260.0760.11148112353854332411366809/17/88361011332001970.3631.390.0298.50237718854214382442237109/20/8832239871551300.3230.620.0283.87359234294044312322237409/23/88333312801901520.3338.400.0280.00422839433964362442377809/27188332311501951690.3334.610.0286.67562254224444372292328109/30/8837.7714671761500.3838.840.0285.2355555238.437434222231(4].F5,SR5O/50,8510/04/88465020072922280.4743.160.0378.0863845899412444306303RR2/49510/14/88541725472862720.5447.020.0395.1066406090380458379370[10/03/8819910/18/88539326833243000.5449.750.0392.596240616040143445541010210/21/88551726072372170.5547.250.0291.5665705850434506258240[5].F5,SR7O/30,I01/17/893067947170970.3130.880.0257.063522933663945720RR3/6801/24/8934739532931600.3527.440.0354.61282528403547837[14/01/8811501/31/8928006402161260.2822.860.0258.3363156851162296II2202/07/892913767230430.2926.330.0218.704894894254047762502/10/8933701040213730.3430.860.0234.2756948846251675102902/14/893110907193800.3129.160.0241.4540340347347170IITABLEC1.8RESPONSEDATAOFTHESAMPLINGPOINTNO.8UNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASE1,2,AND3EXPER.RUNSDAYDATESOLIDS.MG/LorELSECOD,MG/LINORGANICS,MGILorELSENUMBERSTSVSTSSTVSS[%JL%TSI[%I[%TSITOTALSOL.NH4-NTKNTPP04-P[6].F5,SR70130,4302/28/8925536433031370.2625.190.0345.21394394362394313RRS/85003107/89295310602631500.3035.900.0357,03606525372457356[02/20/89]5703/14/8931109472401670.3130.450.0269.589808163954283736403/21/8948751995170930.4940.920.0254714823614394518597103/28/8923178672401070.2337.420.0244.58331291361388632[7].F5,SR6O/40,7804/04/892027603160600.2029.750.0237.506563284494.446767RRS/88504/11/892247593190730.2226.390.0238.424063655174617510[03/29/8919204/18/8923408372071130.2335.770.0254.5936216149347782199904/25/8922108801531200.2239.820.0278.43396594533457733710204/28/8923838971871200.2437.640.0264.1747731853241777810605/0218923007832851150.2334.040.0340.353943945134407250[8].F5,SR6O/40.11305/09/892385765217730.2432.080.0233.643923535316207845RR3/612005/16/892113•6673571500.2131.570.0442.02515317591558120102[05/09/89]13005/26/8919105472171030.1928.640.0247.474323145155481106613405/3018921657652771100.2235.330.0339.7154242947955517116713706/02/893005147512007130.3049.080.1259.42386309515461575814106/06/8922678732631500.2338.510.0357.0350138551550411389[9].F5,SR80120,106/13/8922938572001530.2337.370.0276.5049330455547712341RR5/8806/20/8923939701901530.2440.530.0280.535393735314618818[06/10/89]1506/27/89282311334231570.2840.130.0437.124052434915169321[101.F5.SR8O/20,2207/04/8921936473631370.2229.500.0437.744373984604678330RRS/82907/11/8922536633871200.2329.430.0431.01519399478563757[07/02/89]3607/18/8926579435802600.2735.490.0644.837454314835105815Reacelimatization4307/25/8923006901431330.2330.000.0193.014402404345265564607/28/8927581013220900.2836.730.0240.9122233343940055115008/01/8927005903932070.2721.850.0452.6751529439238324245308/04/8923372672771330.2311.420.0348.014572913983771818l.ATAJLECl8RESPONSEDATAOITHESAMPLINGPOINTNO8LNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASEI2AND3EXPER.RUNSDAYDATESOLIDS,MG/LotELSECOD,MG/LINORGANICS,MO/LorELSENUMBERSISVSTSSTVSS[%][%TSI[%][%TS]TOTALSOL.NH4-NTKNTPP04-P[II].F5,SR9O/I0,5708/08/8923071853501130.238.020.0432.294483l4375365767RR5/8U08/15/8924231453631400.245.980.0438.574262133364481414[08/05/89]7108/22/892436700260570.2428.740.0321.923282873632389747808/29/8925878074671240.2631.190.0526.5544224137355310988109/01/892640.10333131600.2639.130.0351.1232032041456017188509/05/892743943247830.2734.380.0233.605162783813902018[12].F5,SR9O/l0,9209/12/892423657140600.2427.120.0142.86389272421427487RR3/69909/19/89268710102071100.2737.590.0253.143472704274404713[09/06/89110609/26/8924709901831270.2540.080.0269.4044128141142349510909/29/89251711101801030.2544.100.0257.2236836844643542511310/03/89339511052331000.3432.550.0242.92407285411401192011610/06/8928471053123600.2836.990.0148.784962484224232190221TABLECISRESPONSEDATAOFTHESAMPUNOPOINTNOSUNDERDIFFERENTRUNNINGCONDITIONSDURINGPHASEI2,AND3EXPERIMENTS..EXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso—HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[1].F5,SR8O/20,107/12/88586673231420181179RR2/4807/19/88756887283455.342510416381107/22/8871688137123020191504[2].F5,SR8O/20,1507/26/88572734362617231233RR6/102208/02/881366779471397034997373265[07/30/88]2908/09/8822727017625962847069241223208/12/8824477437922555643756741743608/16/8821296457115910122738332273908/19/881721607641198921836227314308/23/88133457662983411124421394608/26/8813153995452231002411925[3].F5,SRSO/50,4908/29/8813455286178301372032086RR6/105309/02/889092564523131561262[08/31/88]5709/06/884471722410916636009/09/8834920815462937236126509/14/88231721011263196809/17/88402221288325462528477109/20/883265563315031292533711057409/23/88380951333829292522813967809/27/8818916614426333403715420348109/30/881031640472113542366521896[4].F5,SRSO/50,8510/04/882611661443013239386562141RR2/49510/14/883781824393822634380572432(10/03/88]9910/18/88415183341353283638659246510210/21/88293221433179920285111145623[5].F5,SR7O/30,101/17/89261841RR3/6801/24/895048728110[14/01/88]1501/31/8932.5332202/07/8991341192502/10/897515872902114/893535[6].F5,SR7O/30,4302/28/8912432150,RR5/85003/07/8918013191[02/20/89]5703/14/893033043306403/21/8953537103/28/894646[7].F5,SR6O/40,7804/04/891717RRSI88504/11/8900[03/29/89]9204/18/89009904/25/890010204/28/8900__________________10605/02/8900222TABLECI.8RESPONSEDATAOFTIlESAMPLINGPOINTNO.8UNDERDIFFERENTRUNN1NGCONDRUNNINGCONDITIONSDURINGPHASE1.ZAND3EXPERIMENTS..EXPER.RUNSDAYDATEVFA,MG/LTOT.VFANUMBERSHAcHPrIso-HBrA-HVrIso-HVrHHemg/LHAcHBrHVr[81.F5,SR6O/40,11305/09/8900RR3/612005/16/890.0[05/09/89]13005/26/890013405/30/890013706/02/890014106/06/8900[9].F5,SR8O/20,106/13/8900RR5/8806/20/8900[06/10/89]1506/27/8900[10].F5,SR8O/20,2207/04/8900RR5/82907/11/8900[07/02/89]3607/18/8900Reacclimatization4307/25/89004607/28/89005008/01/89005308/04/8900[11].F5,SR9O/10,5708/08/8900RRS/86408/15/8900[08/05/89]7108/22/89007808/29/89008109/01/891510238509/05/89131122[12].F5,SR9O/10,9209/12/891010RR3/69909/19/891010[09/06/89]10609/26/890010909/29/89121122211310/03/8913122311610/06/891616;•:::::....:::::NoTE:1,2,.,12AREAVERAGERESPONSESATPSEUDO-STEADYSTATE.(EXPERIMENTALRUNNINGCONDITIONSNUMBEREDITO12RESPECTIVELY)168183434243427-2210414592133150159762911622920503224141741171323733045177641242193337511253342677350756725806505070080090010001191115121412220223C2.1Calculationoftheeffects(SRandRR),Interaction,Phasemeans,Changeinmeans,ontheResponseParametersduringtheAcclimatization(Sequence1and2Experiments).Tableoflultip1ying)aclorsIJASB—IJASDI12345678910]f.0.300.350.370.380.39OAO0.100.100.413/n1.000.500.330.250.200.170.140120.110.101/(n—1)1.000.500.330.250.200.110140.120l2/v’i2.001.41115J.OO.90.3?0.760.710.670.C31.79/%1T1.791.261.U3O.iO0730.630.630.57Source:Reference(Hontgoiaery,1984)t3.0222Fac(oria!withaddedreferencecondirio,iCYCLE)i—ResponsetFlL.COD_(ig/L)PtOjectPhaseDatc...CalculationAveragesCalculationofStandardDeviationOperatingconditions(0)(1)(2)(3)(4)Priorestimateofa=2,3250)PreviouscyclesumPrevioussums=(ii)PreviouscycleavcragPreviousaverages=(iii)Newobservations8514,8483,0436,1601,054News=rangexf,,=(iv)Differences(ii)less(iii)Range(v)Nowsums8514,8183,0436,1601,054Newsums=newsums(vi)Nwaverages:y8514,8483,0436,1601,054Newaverages==CalculationofEfiectsCalculationof2S.E.LimitsPhasemean{(o++52+Y3+Y4)3,191(A)RReect4(5’2+Y3——Y)1,651Fornewaverages:±s=(B)=+(2+Y4——3,456Fornewegects:4,650(AB)-Interactionon._effcci.+(5i+Y2—Y3—Y4)339Forchangeinmean:4,162.(SnHll)..Changeinmeaneffectphasenai—=2,340-.22Fac(orial‘idiciddedreferenceco;dirionCYCLE712Resporie.FIL.C0l)(mg/L)3—CalculationofAveragesProject•S8—UPhaseIDatt_____________CalculationofStandardDeviationOperatingConditions(0)1(1)(2)(3)(4)Priorestimateofa=2,325(i)Previouscylèsum8514,8483,0436,1601,054Previoussums(ii)Pieiouscycleaverage8514,8483,0436,1601,054Previousaverages(iii)Newobservations9205,2383,0885,7201,095News=rangeXf5249(iv)Differences(ii)less(iii)6939045—44041Range—=830(v)Newsums1,77110,0866,13111,8802,149Newsums=249newsums(vi)Newaverages:5’8865,0433,0665,9401,075Newaverages=—.-=249CalculationofEffectsCalculationof2S.E.LimitsPhasemean+Y2+Y3+)4)=3,2022Fornewaverages:±—s=351(A)RReffect(h+Y3—Yi—Y4)1,440.2±351(B)=C2+)4)1—3)=—3,421Forneweffects:±—s=..1.795±314(AB)Interactionon.effcct+i+5’2——547Forchangeinmean:±—.(SRIt.R).Changeinmeaneffect=phasemean—5o=2,316-TableofJ1ultiplyingFaciorsn2345678910f..0.300.350.370.380.390.400.400.400.41I/n1.000.500.330.250.200.170.140.120.110.10l/(n—1)1.00(‘.00.330.250.J00.170.140.120i2/v’.2.001.411.151.000.E)0.S20.760.710.670(31.79/c1.791.261.030.9O1O0.730.C0.630600.7Source:flçferencc(Nontgoiaery,1984)t’3.C,’ProjcctIJASB—ULSI3PhaseDate.01222Fac(orialwiz’haddedrefrvencecoridiiio,iCYCL.E3Response:FILCOD(ing/L)CalculationofAveragesCalculationofStandardDeviation•Operatingconditions(0)(1)(2)(3)(4)Priorestimateofo2325(I)PreviouscyclesUm-1,77110,0866,13111,88()2,149Previoussums249(ii)Previouscycleaverage8865,0*133,0665,9401,057Previousaverages249(iii)NewobserationsV8135,0403,0066,0801,136News=rangexf5=(iv)Differences(ii)less(iii)73360—140—79Range213(v)Nesums1,69910,0836,07212,0202,193Newsums=324newsum=162(vi)Newaverages‘j8505,0423,0366,0101,097Newaverages—CalculationofEffectsCalculationof2S.E.Limits•Phasemean(o+i+2+Y3Y4)=3,207V2VFornewaverages:±—s=±.186(A)—RReffect=(.p2f)‘3—)‘j)‘4)1,454V2+186V(j)SRVeffect+O+.4—)‘3)460Forneweffects:—s—VV01.795=(AB)InteractionotL_effect+CP+Y2—Y4)486Forchangeinmean:.—•i67(suiw)V—VChrigeinmeaneffect=phasemeai—Yo2,357Tableofl1ultip1yingFactos,12345679iOf5.n.V0.300.350.370.30.390.400.400.400.411/n1.000.500.330.25V0.200.170.140.120.110.101J(ii—)1.000.500.330.250.200.170.140.120.112/v’2.001.411.151.00.0.290.220.360.710.670.63l.79//1.791.261.030.290.200.730.630.630.600.57Source:Heference(Montgoaery,1984)22Fac(orialwii’JiaddedreferencecondiiionProjecthASH—UASBPhaseiiDate.A—CYCLE77=1Rcsponsej1L.COD(nig/L).CalculationoCalculationofStandardDeviationOpea1ingconditions(0)(1)(2)(3)(4)Prioreimateof-=266IeviouscyclesumPrevioussums=(ii)PreviouscycleayeragePreviousaveragex=(iii)NewobservationsI,032429361594489News=rangexf,,=(iv)Differences(ii)less(iii)Range(v)NewsumsNewsum.=•-newsums(vi)Nc.waverages:y•1,032429361594489Newaverages=CalculationofEtectsCalculationof2S.2.Limitsriiasemean=C0+5i1.+-+5)=581(A)1Reffect+Y3————283Fornewaverage:=±532(B)SReffcct=+h—=-ForneweWects:±s=±532(AB)iiteraction_effect=CP+)‘2——Y4)—147Forchangeinmean:-12.=±476.(siitn)‘vl_Changeinmeaneffect=phasemean—=—451-TableofMultiplyingFactors,2345678910f..‘0.300.350.370.30.390.400)100)100.41i/n1.000.500.330.250.200.1?0.140.120.]]010l/(n—1)1.000.330.25(1200.170.140.120.112/f1.2.G)1.411.15I.0090.?0.760.710.670,31.79/JT1.791.2SI.030‘‘.‘0.0.730.680630co0.O?—Source:fleference(Hontgomery,1984).0..02ProjectUASB—UASEIPhase11Datet322Facz’orialwithaddedreferenceconditionCYcLE772Response:F1L.COLI(mg/L)CalculationofAveragesCalculationofStaridardDeviation1‘‘I——Operatingconditions(0)(1)I(2)()(‘i)Priorestimateofj266(i)Previouscycksum1,032142931594489Previoussums(ii)Previouscycleaverage1,0321429361594489Previousaverages=(iii)N.wobservations5541309291318488News=ran,eXf143(iv)Diirercnces(ii)less(iii)478120702761Range477(v)e.wsums1,56I738652912977Newsums=143newsums(vi)Ncwaverages:793369326456489Newavcraes==143n—ICalculationofEffectsCalculationof2S.E.LimitsPhasemean=+Oo+5+Y+Y3+Y4)=4872.Fornewaverages:±—=*202(A)=4-c2+Y3—Y’I—Y)—38.2()SR=(j2+-—-——Forneweffects:±—s*2021.79s=(AB)InterationOneffeCt4j+Y2——5’.)—125Furchangeinmean:±—180Changeinmeane1ftphasewa——306Tableof1.lultiplyingFactors,iI234567910fr,,0.300.350:370.3d0.390.400.400.400.411/n1.000.500.330.250.200170.140.120.110.101/(n—1)1,000.500.330.250.200.170.140.12.0)12/’i2.00IAI1.151.00.390.220.760.710.670.63I.79/—jT1.791.261.030.0.-:u0.730.630,630.600.57Source:Reference(Montgomery,1984)2—AProjectUASB-—hADPhaIICalcu)aionolAvcIa)c5(l.ul.LticJIotiLi.liid1)cittiiiOpcrtingconditions(0)(1)(?)(3)o)iwtniiatcuf2660)Previouscyclesum1,586738652912977Fic.iousums—.143(ii)Previouscycleaverage793369326456489Pjcviouavcitges143(iii)Newçbservations359385326394403News=r.mcXJ,,158(iv)Differences(ii)less(iii)434—16062—86Range450(v)1kwsums1,152754652850892Newsums=301.—newsums(vi)Nwaverages:y,576377326425446Newa’cracs==151..CalculationofEffectsCalculauonof2S.E.Limits.Pl,asemc.an+(ü++2+3+4)430(A)R1effect=4(2±Y3——54)—36Fornewaverages:±s=±173(B)SReffect=(2+Y4——3)=—15Forneweffects:s*173(AB)Interactiononeffect+——y4)—84Fuicliangcinitican:±±155.(sR9rn)Changeinmeaneffectphaseuiea——146Tableof}1ultii1yir;gFactoisn1234567$9101f.0.300.350.370.30.30.400.100.40OA11/n1.000.500.330.250.200.170.140.120.11Ql01/(n—1)1.000.500.330.250.200.170.1’0.i20i2/v’i2XYJ1.411.151.000.)0.220.760.710670.631.79/4T1.791.21.03(0U10.6S0.63u.:iSource:Reference(Montgomery,1984)t322FocorialwithaddedreferenceconditionCYCLE77ResponseFIL.COD(mg/L)Datts.CIculationo1AyeracsCalculationocstandardDeviation•Oer-atingconditions(0)(1)(2)(3)(4).Priorestimateof39.38(i)Previouscyclesum1ieviusums(ii)Previouscyc1eaveragcPre’’iousaverages(iii)Newobservations80.6232.7053.19—5.4885.40News=rangeXf5,Uv)Dt1crenccs()(iii)Range(v)PkwsumsNewsums=(vi)Nc.waverages:5’89.6232.7653.19—5.4885.40Newaveragessums-n—ICalculationofEfrectsCalculationof2SE.LimitsPhasemean=(5o+.jf)‘+)‘+Y4)=5109(4)—flitcfrcct=—-—35.23Fürnewaverages:=±78.76.SReftect=(5’+——=55.66Fornewcects:s±78.76(48)Interactianoiieffect=+Y——y4)=3.01Forclancinmuan:L72S±70.49.(suiuuChangeinmeaneffect=phase—Yo=38.53n12345689iolf340.300.350.3/0.30.390.400.400.400.411/n1.000.500.330.250.200.170.140.120.110.10I/(n—1)1.000.500.330.250.200.170.140.120112/i.2.001.411.151.000.)0,220.760.710670.6)1.79/JT1.791.261.030.)O.0.73OCX0.630(00.57.012—A21Fac(orialhuhaddedreferencec.oiidii’ionCYCLE77=1Response:!nEATHENT_EFF1CIENCY(%)—F1L.CODProjectPhaseDate.IJASB—UASD1__Tableof11uIti.plyinFactorsSource:Iteference(Montgomery,1984)02—A’ProjecthASH—UASI3Phase1Date_____________22Fac(orialwithaddedieferencecOi,dii’ionc’ci...tn=2ResponseTiftATHbNT_EFF1CIkiSCY(%)-F’1L.COD•CculationofAveragesCalculationofStandardDeviation—Operatingconditions(0)(1)(2)(3)(4)Priorestimateof=39.38(i)PreviouscycleSumPrevioussumsm.cycleaverage89.6232.7653.19—5.4885.40Previousaverages(iii)Newçbscrvtions81.0316.4661.878.1988.66Newsrangey7.49(iv)Dillerences(ii)less(iii)5.5916.30—8.68—3.19—3.26Range24.98(v)NeWSUS173.6549.22115.062.71174.06Nwsums=7.49(vi)Nc.wavetagcs:,86.8324.6157.531.3687.03Newaverage=flCVSumsI-__CalculationofEectsCalculaiionof2S.E.LimitsPhasemean+Y2±h+Y4)=51.47(M(2+Y3——Y’)—26.38Fornewaverages:±s=±10.56(B)SR59.30Fornewelfects:•±s±W.56(AB)Interactiononeffect+U1+.P2——Y’.)—3.13Forchangeinwean:±L!2±9.44•(sn’iw)Changeinmeaneffect=phasem—Yo—35.36TableofMuluplytugFactorsii1234567$910f•0.300.350.370.380.390.400.400.400.411/n1.000.300.330.250.200.170.140120.110.10l/(n—1)1.000.500.330.250.200.170110.120112./v’12.001.411.151.000.90320.760.710.67063I.79f-.J1.791.2I.o:(i:-i0‘o.7aOlS0.630(00.57Source:Reference(Montgomery.1984)2ProjectUAS13—UASBPhaseDate3—A—22Fc(orialwithaddedreferenceconditionCYCLET73ResponseTREATM1.NT_EFFICIENCY(%)-FJL.CODCIculationofAveacs-—CalculationofStandardDeviationOperatingconditions-(0)(1)—(2)(3)(i)Prioreuiteof=(i)PreviouscyclesumjPrevioussums=(ii)Previouscycleaverage86.8324.6157.531.3687.03Previousaverages7.49(iii)Newobservations84.6228.14j65.815.3088.03News=iangeXf=3.67(iv)Differences(ii)less(iii)2.21j—3.53I—8.28—3.94—1.00RanEe=10.49(v)F’kwsums171.45j52.75123.346.66175.06Newsums=11.16newsums(vi)Newaverages:y85.7326.38161.673.3387.53Ncwavcrages5.58.n—ICalculationofEffectsCalculationof2S.E.LimitsPhasemean(i’o+Yi-1-.Y2+Y3+Y4)—52.932•Fornewaverage.s:±—s=+6.42(4)RUeffect4c2+Y3—.P—j)—24.46.2()SRefTct=4-(2+—-—p)Fornewcllects:±—p-S±6.421.79s=(,4B)1nterctiononeffect=-CP1+J——Y4)—1.40Forchangeinmean:—5.75•(sn•iu)Changeinmeaneffect=phasemcan—o—30.56TableofliultiplyingFactors,i234567910f.0.300.350.370.30.390.400.100.400.41i),i1.000.500.330.250200.170.140.120.110.101/Qi—1)1.000.500.330.250.200.170.140.12Oh2//i2.001.411.151.0J0290.S20.60.710.(.70.63I,79/1.79J.2I.0302)0.0U730(20.630.600.57Source:flcterence(Hontgoiiery,1984)ProjectUAS—UASDPhase-IIDate_____________1222fac(c’ria!withaddedreferencecoi,diüonCYCLE71—1Rcsponse:RF.ATH1NT_£FFICIENCY(%)—FIL.CODCa)culationolAveragesCalculationofStandardDeviationOperitingconditions(0)(1)(2)(3)(4)Priorestimateofu3•35(I)F’reviouscyclesumPrevioussums=(ii)PcviouscycleaveragePreviousaverages(iii)Nwobservations86.4594.3994.5993.3691.97NewsrangeXft,,=(iv)DitTercnces(ii)less(iii)Range=(v)NcwsumsNewsums.-newsums(vi)Ne.waverages:yj,.86.4594.3994.5993.3691.97Newavcrac’es—=CalculationofEffectsCalculationof2S.E.LimitsPhasemean(Yo+Yj+Y2+)‘3f.Y4)=92.15(A)rneffect=(‘+——J)0.80Fornewaverages:±s=±6.70()SRcfTcct=4c2+——.p3)=—0.60Forneweffects:‘s±6.70(AB)Interactiononeffcct+(Yi+Y2Y3—Y4)183Forchangenmean:±6.00.(su’i)ChangeinmeaneffectphaseU1C8J—Yo5.7Tableof)Iultip1ying]:acrsn1,234567$9l0:0.300.350.370.30.390.400.400.400.411/n1.000.500.330.250200.170.140.120.110.101/(n—1)1.000.500.330.750.200.170.140.120.112/v’.2.001.411.151.000)0.S20.760.710.670.63l.79/_1T1.791.21.0.0.90.Ei30.730.CS0.C0C)0.57Source:Ueference(Montgomery,1984)22.Foc(orialviihaddedreferenceconditionCYCLE77—2ResponseTiEATHLNT_EFF1CILNCY(%)-FIL.CODCalculationofAveragesCalculationofStandardDeviation-.IOpe’ratingconditions(0)(1)i(2)(3)(4)Priorestimateofo=3.35(i)PreviouscycleSumPrevioussums(ii)Previouscyclaverage86.4594.3’.)I94.5993.3691.97Previousaverages(iii)Newobservations92.0595.8795.5895.4092.10News=rangeXJ,,=1.98(iv)D1lferences(ii)less(iii)—5.60—1.48—0.99—2.04—0.13Range=6.59(v)}‘k’sums178.50190.26190.17188.76184.07INewsums—1.98newsums(vi)Ncwaverages:892595.1395.0993.3892.04Newaverages—1.98aCalculationofEffectsCalculationof2S.E.LimitsPhasemean+(+Yi+Y2+Y3+Y4)=93.182orne/aerages±—s±2.79V(4)HReffect=(2——y4)•F‘.‘:2(B)SR=+Q2+4——5)=—1.19Forneweffects:±—s±2.79VV=(AB)Interactiononeffect4-c1+Y2—.—Y4)1.90Furchingeinmew—±2.49.(snun)VChangeinmeanefftctphasemeir—Table.ofliultip1ymg1-actorsn123456910f•,,V0.300.350.37OV30.390.400.100400.411/n1.000.500.330.250.200.170.140.120.110.101/(n—1)1.000.500.330.250.200.170140)20112/v’i2.001.4I1.151.000)0.0760.710670611.79/J7T1.791.261.0(V:J0V’u./30.630.630(00.—A—‘-ProjectUASIi—PhaseIIDate.___________Source:Reference(Montgomery,1984)93.81_elTcct(92-I-y3——1.01_cITcct=2+Y45—5)—0.83(Al?)Thtetiononeffect4-(;’+Y2—Y3—Y4)1.15(si’iLI)Changeinmeaneffectphaseiiien—=2.46TableofMultiplyingFactorsn1234567910f’,,.0.300.350.370.30.390.400.400.400.411/n1.000.500.330.250.200.170.140.120.110101/(n—1).1.00(iSO0.330.50.200.170.140.120,)2/v’s.2.001.411.15J.Oi(i.0.S20.760.710670.631.79/JT1.791.2I.0300.‘(;7i0(30.630.C0.717211322Fac(oritilvithaddedreferencecondüionCYCLE71=3ResponseTREATI1ENT_EFFICIENCY(%)—FIL.CODProjectPhaseDate.UASU—UASI3‘ICalculationofAverages.CalculationofStandardDeviation-Operatingconditions(0)1(I)—(2)(3)(4)Priorestimateofu(i)PreviouscyclesmPrevioussumS(ii)Previouscycleaverage89.2595.1395.0994.3892.04Previousaverages1.98(iii)NevobserS’ations93.4494.6995.0995.1593.83News=raiweX/=1.62(iv)Differcnces(ii)les(iii)4.190.440.00—0.77—1.79Range=4.63(v)4ewsums182.69189.82100.18189.53185.87Newsurns3.60newsumS(vi)Ncwaveragcs:191.3594.9195.0994.7792.94Newaverages=1.80j.n—ICalculationofEffects.Calculationof2S.E.LimitsPhasemeanIG’(A)(B)—SRFornewavetages:Forneweffects:ForchangeInmean:221.79.s=2.07=±2.O7±1.85Source:Reference(Montgoiery,1984).222Fac(orialwithaddedreferencecondition3—A—‘-CYCLE17—1ResponseGASPROTI0N(CH4)ProjectPhaseDate.LJAS8—UASBI.CalculationofAveragcsCalculationofStandardDeviationOpcraingconditions(0)(1)(2)(3)—(4)Priorestimateof=0.43(i)previouscyclesumPrevioussums=(ii)PreviouscycleaveragePreviousa’ciages(iiiNewobservations1.351.051.750.631.46News=rangexf,,(iv)Differences(ii)less(iii)Range=(v)NewsumsNewsumsnewsums(vi)Newaverages:5,1.351.051.750.631.46Ncwaverages==‘n—I.CalculationofEffectsCalculationof2S.E.LimitsPhasemean=Oo+Yi+Y2+Y3+Y4)1.25•2Fornewaverages:±S•0.86(A)=4-(22—I-Y3—.P1—5)—0.07—2()SReffect=+(92+Y4—)‘t—Y3)0.77Forneweffects:—s+0.861.79s(48)Interactiononeffect4(Yi+Y2——Y4)=0.36Forchangeinmean:—0.77(sn9m)‘Changeinmeaneffectphase—Yo0.io-11•TLleofbiulti1yngFactors234567910If5,,0.300.350.370.30.390.4000.40‘Source:ileference(Montgoiaery,1984)I/u1.000.500.330.250.200.170.140.120.110.10l/(n—1)1.000.500.330.250.200.170.140.120.112/v’2.001A11.151.000.90.20.760.710.670.63.I.79/’T1.791.261.030.90.)0730.C(JXJ30.CO0.572PrcjectUASB—UASBPhase1Datc.____________—A—‘--322Fac(orialwihaddedrefre,icecondiio;iCYCLE712ResponseA5_PRODUCTiON(CA4).CalculationofAveragesCalculationofStandardDeviationOpetingconditions(4)Priorestimateof=0.43Previoussums()PreviouscyElesum1.46Previousaverages=(ii)Pieviouscycleaverage1(vi)Nwaverages:0.82News=rangexf5=0.83(iii)NewobservationsJ2.lll.Gll.4—(iv)Differences(ii)less(iii)0.64Range=2.752.28Newsurns=0.83(v)1’kwsumsnewsums1.14Ncwavcrages=0.83CalculationofEflectsCalculationof2S.E.LimitsPhasemean=-c0+5’-FY2+5’)+y4)=.1.562Fornewaverages:—s=±1.17(A)RReffect-CP2-j-5——j)—0.12•:2(B)Siteffect=+Y4—Y3)=—0.39Forneweftecis:±—s1.171.79s(.4B)Interactiononeffect+.P2—Y3—Y4)0.59ForcliarigeinmeaI—±1.04.(slt•im)Chnseinmeaneffectphasencn—0.04TableofMultij.4yinglactors,1234567S9If)-f0.300.350.370.30.390.400.100.400.411/n1.000.500.330.2$0.200.170.140.120.110.101/(n—1).1.000.500.330.250.200.170.140.120)12/v’i.2.00L41u.S1.000)0520.760110.Ci0631.79/.J;791.261(“30.9000.730.650.63O.1COZISource:Iteference(Montgoiaery,1984)1s3C.)—1ProjectUASI3—UASDPhaseIDate____________22Fac(orialwithaddedreferenceconditio,CYCLEfl=3ResponseLGASPRODtJCT1ON(Cl14)CalculationofAveragesCalculationofStandardDeviationOperatingconditions(0)1(1)(2)(3)—-(4)Priorestimateofu(i)PiviousCyclesumPrevioussums=(.U)Previouscycl&averagc1.522.111.611.411.14Previousaverages0.83(iii)Newobservations1.901.332.143.491.01NewsrangeXf,,1.00(iv)DifierencesOi)less(iii)0.380.78—0.53—2.080.13Range2.86(v)Hewsums3.423.44•‘4.902.15Newsums=,1.83newsums(vi)Newaverages:1.711.721.882.451.08Newaverages=—=0.92VCalculationofElTectsCalculationof2S.E.LimisPhasemean&o+Yi+Y2+Y3+Y4)—1.772Fornewaverages:±—s=±1.05(A)HReffect=4-(2+Y3—5’!—J’)0.772•1.05(B)SReffect=+(5’2+Y4——=—0.61Forneweftc.cts:±—s.1.79s(AB)oneffect=-(5+Y—Y3—Y4)=0.04Forchangeii)mean:—±0.95.(sR1u)Chnseinmeaneffectphase‘mean—=0.06TableofMultiplyingFaclois12345678910f3V0.300.350.37O.3d0.390.400.400.400.411/nV1.000.500.330.250.200.170.140.120110.10i/(ii—1)1.000.500.330,250.200.1’!0.140.120.112/-/2.001.411.151.00090.S20.760.710610.631.79/.JT1.791.261.03(;.000.730.6S0.630CC;0.57Source:]efererice(Montgomery,1984)00ProjectUASB—UASBPhaseXIDate____________.01222Fc(ori!ihaddedr,ferencecoiidkio,iCYCLE77IResponseGASPRODVCT1ON(d114)CalculationofAverages—-CalculationofStandardDeviationOperatingconditions(0)(1)(2)(3)—(4)Priorestimateofu=0.53(i)PreviouscyclesumPievioussums=(ii)PreviouscycleaveragePreviousaverages(iii)Nwobservations2.231.811.582.921.79News=rangeXf=(iv)Differences(ii)less(iii)VRange=(v)Newsums&wsums=newsumS(vi)Nc.waverages:2.231.811.582.921.79NewavcraQcs==n—ICalculationofEffectsCalculationof2S.E.LimitsPhasemcari(Yo+Yi+Y2±Y3+Y4)2.07.2•1.06.Fornewaverages±—s—(A)=4(+Y3——Y4)=-0.45-2(B)=2+Y4—=—0.68Forneweffects:±—s±1.06(AB)InteractiGnoeffcct+(+Y2—Y3—Y4)0.66Forchangcnmean:1.79±0.95.(suim)Chttngeinmeaneffect=phasemii—Yo—0.iTableof1ultipyirigFactorsa-i12345678910f3V0.300.350.370.3d0.3)0.400.400.400.41i/nV1.000.500.330.250.200.170.140.120.110.101/(’z—I).1.000.500.330.250.200.170.140.120.112/v’i.2.001.411.151.000.320.760.710.670.6)i.79/41.791.21.030.-’90Jo.7:0.630.63(.C(0.5?Source:fleference(Montgoiaery,1984)t’30.02322Fac(orialwithaddedreferenceconditionCYCLE77=2ResponseGAS.PROL)UCTJON(d114)ProjectUASB—UASUPhaseII0atc.:C1cu1ationofAveragesCalculationofStandardDeviationOperatingconditions(0)(I)(2)(3)(‘I)Priorestimateof=(i)PrevouscyclesumPrevioussums=(ii)Previouscycleaverage2.231.811.592.921.79Previousaveraèes(iii)Newobservations1.741.521.742.172.19News=rany.e0.35(iv)Df[ercnces(ii)less(iii)0.490.29—0.150.75—0.40Range=1.15(v)Newsums4.003.333.335.093.98Newsums=0.35•newsums(vi)Nc.waverages:)‘2.001.671.672.551.99Newaverages==0.35I-11—1..IIIVCalculationofEffects.Calculationof2S.E.LimitsPhasemean(Yo+YiVY2+Y3+Y4)=1.98(A)=(2+——5’)1.83Fornewaverages:±s=0.49(B)VSiteffect=+(2+Y4——)=—0.28Forneweffects:±±0.49(AB)InteractiononeffectC’1+.P2—Y3—Y)=—0.60Forchangeinmean:±0.44-(sumt)•Changeinmeaneffect—phascmari--—0.02—TableofMultiplyingFaclors,1234567910fV0.300.350.370.30.390.400.400.400.411/n1.000.500.330.250.200.170.140.120.110101/(n—1)V1.000.500.330.250200.170.140.120.112/-/ñ2.001.411.151.000i0V2OV’lG0.110.670.631.79/s1.791.261.030.0VV)V730.C0.30(00.7jSource:Teference(Montgomery,1984)TableofMultiplyingFactorsProjectUASB—UAMJPhaseiiDate.-li123456789101J0.300.350.370.30.390.400.100.400.411/n1.000.500.330.250.200.170.140.120.110.101/(’i—1)1.000.500.333.250.200.170140.120.112/-1712.001.413.151.000i.90.2.0.76011067063I.79/.1T3.791.201.030.0.00.730.(’.0.6,0.600.57Source:Reference(Montgomery,1984).021322Fac(orialvI(haddedreference.coiidiiionCYCLEn—.3Response_GASPRODUCTiON(CH4)CalculationoFAveragesCalculationofStandardDeviationOperaiinconditions.(0)(1)(2)(3)(4).Priorestimateofa=(i)PreviouscyclesumPrevioussum(ii)Previouscycleaverage2.001.671.672.551.99Previousaverages=0.35.(iii)14ewobservations1.671.811.662.511.87New.c=rangex=0.16(iv)Differences(ii))css(iiO0.33—0.140.010.040.12Range=0.47(v)Newsums3.673.483.335.063.86Newsums=0.51newsums(vi)Newaverages:y,1.841.741.672.531.93Nwaverages—=0.26.CalculationofEffects.Calculationof2S.E.LimitsPhasemean=o+5’+2+Y3+Y4)1.942Fornewaverages:±—s=±0.29.(,4)=4(5’2-1-——y4)0.272(B)SRelicci+i——Y3)—0.34Forneweffects:±—s±0.29-%/1.79s(AB)Interactiono_effcct+C1+.P2———0.53Forchange-inmean:—±0.27(s1im).Chuigeinmeaneffectphasemean—Yo0.10•—AProjectUASB—LJASBPhastDate.—TableofMultiplyingFactors.12345679It)15.’,0.300.330.370.330.390.400.400.40O.1I1/n1.000.500.330.250.200.170.140.120.110.101/(n—1)1.000.500.330.250.200,170.140.120.112/i.2.00)A11.151.000.)0.820.760.710670.C31.79/T119i.261.030.,)0.:30.730.680.630(00.57Source:Thference(Montgoaaery,1984)t’322Fac(orialwithaddedreferc’ncecondianCYCLE71=.1Response.j_cH4CONTENT(%)..CalculationolAveracsCalculationofStanJardDeviationOperatingconditions(0)1(I)(2)(3)(.1).Prioretirnteof=15.83(i)PreviouscyclesumPrevioussums=(ii)Pcviouscycle’averagePreviousaverage.s(iii)NewoI.servations87.2452.3070.5355.1583.12News=range>(f(iv)Differences(ii)less(iii).Range=(v)NewsumsNewsums=newsums(vi)Newaverages:87.2452.3070.5355.1583.12Newaverages=,n—ICalculationofEffectsCalculationof2S.E.LimitsPhasemean=o+YtY+Y3+Y4)69.67-._____________2(4)RReffect=(2+—y)—4.87Forne.’averages:±s±31.66(B)—..SReffect=+(52+Y4——3)=23.10Forneweffects:±31.66(48)Interactiononcffcct+h—y3—y)—7.72Forchangenmean:±12$±28.34.(SRk)‘Chnseinmeaneffect=phasemean—Yo—17.57Project$1l.JASDPh_____________1)a(.2A22FactorialwIthaddedreferencecondlrionCYCLE712Response:CI14C0NTE1T(%)-CalulationofAveragesCalculationofStandardDev.tionS14.22OperatingconditionsI(0)(1)(2)(3)I(4)Priorestimateof(I)PreviouscyclesumPrevwussum(ii)Preiouscycleaverage87.2452.3070.5355.1563.12Previousaverages=(iii)Newobservations80.3856.2066.6153.1579.64Newsrangexf=3.23(iv)Differences(ii)less(iii)6.86—3.903.922.003.48Range=10.76(v)ewsuins167.62108.50137.14108.30162.76Newsurns=3.23newsumS(v)Nwaverages:5i,83.8154.2568.5754.1581.38Newaverages3.23:in—ICatculatonofEfkctsCalculationof2S.E.LimitsPhasemean=(Yo+Y’i+Y2Y3+Y4)68.43(A)cect(92+93—j—94)—6.46Forncwaverages:$±4.55(B)SReffect(9+94•91—o•7Forneweects:±-±4.55(AD)InteractinnonefjectCl+h—Y3Y4)=—6.36Forchangeinmean:±±4.03(skill).Changeinmeaneffectphasemcai——15.38-TableofI1ulLiplying1-actors,i123456789100.300.350.370.30.390.400.400.400.411/n1.000.500.33(X250.200.1?0.140.120.11OW]/(‘z—1)1.000.500.330.250.200.170.lt0.120Ii2//2.001.411.15J.OCJO.)O.20.76(i’ll0.670.63I.79/-.JT1.791.21.030.20O*730.63060O.?_—Source:fleferenceO4ontgomery,1984)2VCalculationofAveragesVICalculationofStandardDeviation8=14.64Operatingconitions(0)(1)(2)(3)F(.1)Priorestimateof(i)PreviouscyclesumPrevioussums=(ii)Previouscycleaverage83.8154.2568.5754.1581.38Previousa’,’craes3.23(iii)Newobservations84.5854.5767.2750.3080.06News=rangeXf1.62(iv)Differences(ii)less(iii)—0.77—0.321.303.85132Range=4.62(v)Newsums168.39108.82135.84104.45161.44Newsurns=4.85newsumS(vi)Newaverages:‘84.2054.4167.9252.2380.72jNewaveragesI=2.43.CalculationofEffectsCalculationof2S.E.LimitsPhasemean+Y3+Y4)=67.902—s=±2.79(4)rneffect=-(2-fY3—4)—Fornewaverages:±2±2.79(B)SReffectCP2+514——3)=5.31Forneweffects:—s=-/(/iB)Interactiononeffect+Y——Y4)=—5.31VForchangeinmean:1•79s=±2.50.(swim)Chneinmeaneffect=phascTncan=—16.30-n2345676910J.0.300.350.370.3’d0.390.40OAO0.400.41i/n1.000.500.330.250.200.170.140.120.110.10l/(n—1)1.00USC)0.330250200.170140.120.1i2/’Ji2.00I’ll1.151.000.)0S20.760.710670.63l.79/-T1.791.21.030.90.0.730.680.630.600.573122Fac(oria!wizladdedreferencecondiiionCYCLE77=3Response:C114C0NTEN(%)ProjectPhaseDateUASL3—UAt1IT;L1coflullip1yingFactorsSource:liçference(Hontgowcry,1984)4.-22Fac(orialwIthaddedreferenceconditioniJ_JCYCLE=iProjectLJASI3—UASDPhace.IIResponse;CII4CONTINT(%)Datc-CalculaUonofAveragesCalculationofStandardDeviationS1.89Operatingconditions(C))(I)(2)(3)(4)Priorestimateof(i)PreviouscyclesumPrevioussums(ii)Previouscyclea’eragePreviousaverage.s=(iii)Newobservations70.5974.0369.9372.1574.00News=rangeXf,,=(iv)DiITCIcnces(ii)less(iii)VRange=(v)HewsumsNewsumS=newsum$(vi)Newaverages:70.5974.0369.9372.1574.00Ncwaverages=fl—ICalculationofEffectsCalculationof2S.E.LimitsVPhasemeanYi+Y2+Y3+Y4)—V72.14V2(4)Emeffect=(52+Y3——5)—2.98Fornewaverages:s—37SRcflct=+(2+Y4—Yi—3)—1.13Fornewcf1cct:±3.78V(AR)Iitçtiononeffect=4-Cf’1+.P2—5’.P.4)—1.10ForchangHnmean;±.3.38•(Su1m)Changeinmeaneffectphaseinca—Yo1.55--Tableof)lultiplying_Facior23:15679101V0300.350.370.30.390.400.400.400.41Source:U9ference(Montgoacry,1984)1/n1.000.500.330.250.200170.140.120.11J.10—1)1.000.500.330.250200.170140.120iV2//2.001.41L51.000V;flV)0Z10.710670.3Ii.79/-1c1.791.201.030.7flV00730.60630.60O.J22Fac(orialwithaddedreferenceconditionCalculationo1AvcracsCalculationofStandardDeviation-OperatingcOndiLiOflS(0)(1)(2)(3)Qi)Priorestinmteofu=(I)PreviouscyclesumPrevioussums=(ii)Previouscycleaverage70.5974.0369.9372.1574.00Previousavcrngs(iii)Newobservations73.0173.7270.0372.3073.99News=rangeXf50.77(iv)Diifercncs(ii)less(iii)—2.420.31—0.10—0.150.01Range2.57(v)Nc.wsums143.60147.75139.96144.45147.99Newsums=0.77(vi)N.waverages:y71.8073.8869.9872.23NewaveragesnewsureS0.77n—ICalculationofEffectsCalculationof2S.E.LimitsPhasemeano+Yt+Y2+Y)+Y4)=72.37(A)(Y’2——j,.)—2.86Fornewaverages:±=±1.09(B)SReffect=+(h+Y4—3)—i.ioFornewcftecs:.±s—1.09(AB)Interaction_neffect+(;+Y2—Y3—Y4)=—1.21Forchangeinmean:.0.97(suiw)•Changeinmeaneffectpha5cmean—0.58n1234567910fsn0.300.30.3?0.30.390.400.400.100.411.000.500.330.250:200.170.140.120.11o:io1/(n—1)1.000.500.330.250.200.170.140.12.Oh2//2.001,411.151.00(i9OS?0.760.7)0.670.631.79/.T3.79.2’S1.030.59(‘00.710(50.630.600.37CYCLE‘i=2ProjcctUASIJ—UASDPhaseIiResponse:CH4CONTENT(%)DateTableofMultiplyingFactoisSource:Th?ference(itontgomery,1984)0)1222Fac(ori’alrvihaddedreferencecôiiditionCYCLETI3Responsej.JilN.ffeNT(%)ProjectUASB—UAPhase-IICalculationofAvera1esCalculationofStandardDeviationS=1.80Opertingcouditions(0)(1)(2)(3)(4)Priorestimateof=(i)PreviouscyclesumPrevioussums(ii)Previou.scycleaverage71.8073.8869.9872.273.99Previousavcraes0.77(iii)Ncwobservations73.4373.0169.9872.1(75.77NewsraitgX=0.93(iv)DiiThrcrices(ii)less(iii)—1.630.870.000.1—1.78Range=2.65(v)Nc’ysums145.23146.89139.96144.33149.76Newsurns=1.70newsums72.6273.45I69.9872.1774.88Ncwaverages==0.85n—I(vi)Nwaverages:CalculationofEffectsCalculationof2S.E.LimitsPhasemean0+Yj+Y2+Y3+Y4)72.622•Fornewaverages:±—£±0.98(A)BReffect=-I-Y——5)—3.09.2(B)=+(2+Y4y—.P)=—3.38Forneweffects:±—s±0.981.79s=(AB)Interactiononeffect+CPI+Y—Y3—5A.i)=—1.81Forchangeinnean:±—=±0.88.(SRut)Vn•Chnseinmeiineffectphasemai—=0.00TableofJ1uItiplyingFactorsin12345678910fVV0.300.350.370.30.390.100.100.100.41I/n1.000.500.330.250.200.170.140.120.110101/(n—1)1.000.500.330.250,200.170140.120.32/v’i2.003.113.151.00090.S20.760.710.670.631.79/-1T1.791.261.030.90.P.00.730.680.630.600.57Source:Uçfcrence(Montgoncry,1984)t’32ProjectUASU—UASBPhaseDate3—A—‘22Fc(oria!wirhaddedreferencecondirio,CYCLEn1ResponseLPO4-Pjg/L).Calcu)tionoIA.veragcsCaIcuI:tionofStandardDevationOLiingconditions(0)(I)(2)(3)(4)Priorestimateof=162.63(i)FeviouscyccsumPrevioussums=(ii)Previouscyc1averagePreviousaverages(iii)Newobservations2323211641028News=ran’eX=(iv)Difrercties(ii)less(iii)Range(v)NewsumsNewsums=.newsums(vi)Newaverages:y2323211641028Newaverages==.I.—In—ICalculationofE[[ects-Calculationof2SE.LimitsPhasemean=+(Po+Y+Y2+Y3+Y4)=161.802(A)RReffect4-(.P2+Y3YjY4)237.50Fornewaverages:±=±325.26(B)=+(2+Y4——Y3)=—249.00Forneweffects:s325.26(AB)1ntction_o_ef[ect+——Y)—45.00Forchangeinmean:±291.11.(suim).Chanseinmeneffec.t=phiscari138.80-1L1cofIlllyingiacoLSii12345678910f5-,10.300.350.370.30.390.400.100.400.411/n1.000.500.330.250.200.170.140.120.110.101/(n—1)1.000.500.330.250.200.170.140.120112/./i2.001.411.151.000.90.220.760.710.670.631.79/-JT1.791.261.030.)0..uu.730.630.630600.5Source;Uference(Montgomery,1984)222Fac(orialwithaddedreferenceconditionCYCLE77=2Response:P04—P(IEilL)3A—‘ProjectIJASB—UASBI1)ate.CalculationofAveragesCalculationofStandardDeviationOperatingconditions(0)(1)(2)1(3)(4)Priorestimateo=162.63(i)PrcouscycleumPrevioussum(ii)Previouscycleaverage2323211641028Previousaverages=(iii)Newobservations172319224025Nev1’s=rangex=51.30(iv)Differences(ii)less(iii)61241703Range=171.00(v)Ncwsums4046320865053sums=51.30newsums(vi)Newaverages:j2023210432527Newaverages=—51.30CalculationofEllectsCalculationof2S.E.LimitsPhasemean=-o+Y’i+Y+Y3j.Y4)—141.60.2Fornewaverages:—=±72.33(4)R1effect4(5’2+Y3—)‘I—4)85.00...J2(B)SReflect=2+y——5)—213.00Fortieweftects:—s±72.33.1.79s=(AB)Interaction_cffcct+Y2—Y3—5.i)8.00Forchangenmean:—64.64(SRHR)•Chanseinmeaneffect=phasemean121.60-TableofMultiplyingiactorsn123456789101V0.300.350.370.380.390.400.100.400.411/n1.000.500.330.25(3:200.170.140.120.110:10J/(n—1)1.000.500.330.250.200.17(t.)4o.i:0.112//ii2.001.411.151.0OH0.2?0.760.710.670.63i.79/.JT1.791.261.(‘UHu‘U70.6X(,.60,’0.?Source:19ference(Montgoiacry,1984)23—A—--’-OperatingconditionsPreviouscyclesirnPreviouscycleaverageNewobservations(iv)Differences(ii)less(iii’(v)Newsums(vi)Nc.wavtages:,22Fac(orialwithaddedreferenceóndiionCYCLET71Response:P04—P(‘!g/L)CalculaUonofAverages(i)(ii)(iii)ProjectASB—IJASBPhase—IIDate-CalculationofStandardDeviationPriorestimateofa=69.5Ptevioussums=Previousaverages=NewsrangeXf,,=Range=Newsum.s=newsumsNewaverac’eS==n—i.CalculationofEffectsCalculationof2S.F.LimitsPhasemean+2+Y3+4)=44.80.2(A)RReffect4Q+——J)——63.50Fornewaverages:±s=±.139.16(B)Siteffect+Y4-—3)=—94.50Foreweffects:±139.16(AB)Interactiononeffect+(i+i—Y3—Y)=66.50ForC1I:LngCiniflcui:±•124.55.(Sli9tR).-‘./;7—Changeinmeaneffect=phasemean=39.80Tab1eoflviultiplyingFactorsri123.456-)910f..0.300.350.37O.3OJ)0.400.100.400.41l/,1.000.500.330.250.200170.l’l0.120110.101/(n—1)1.000.500.330.250.200.170.140.120Ii2/-/2.001.411.151.Vj0:90.220.60.710.6i0.63i.79//1.791.2I.o:0:-’C;)*70.CS0.C30.Cu.57Source:Rçference(Montgomcry,1984)ciCProjectUASB—USDPhaseIIDate._____________.02322Fac(orialwithaddedreferenceco,di(jo,zCYCLE712Rsporise:P0—P(sng/L).CalculationofAveragesCalculationofStandardDeviationOperatingconditions(0)(1)(2)(3)(4)Priorestimateofa=52.49Ci)PreviouscyclesumPrevioussums=(ii)Previouscycleaverage51679376Previousaverape.s(iii)Ncwobscrvatiors789250iiNews=rangeX=27.30(iv)Dffercnces(ii)less(iii)—2787—135Range=91.00(v)Newsums12256Ii8717Newsums=27.30newsums(vi)Nc.waverages:y,6128-6449Newavcrages==27.30.u—I—II.CalculationofEffectsCalculationof2Si.LimitsPhasemean=(5+i++Y3-t-y4)=38.60‘2ornewaveraLes—s=±38.49(4)FU—43.50F:2(B)SReffect1(+Y4——3)=—78.50Forneweffects:—s±38.49.l.79s=.(AB)Iiiteractiononeffect+—5)40.50Forchangeinmean:±—.±34.40(SitItlt)•Changeinmeaneffectphasemcan—32.60Tableofblultiplyinglactorsui12345678910.0.300.350.370.30.390.100.100.400.’HI/n1.000.500.330.250.200.170.140.120.110.101/(n—1)1.000.500.330.250.200.170.140.12.0.112/-/2.001.411.15i.oc0.90.20.760.710670.631,79/%/T1.791.261.0300lu0.73o.6:0.630(00.5?Source:urerence(Montgouery,1984)C,’I-’ProjecthASH—UASDPhaseIDate.____________.02—A—22Fac(orialwi(haddedreferenceco,ididoiiCYCLEn—IResponse:_TREATHfTFF1CIENCY(%)-P04-PCalculationofAvragcs—(lcu1aUonofStandardDeviationOperatingconditions(0)(1)(2)I(3)(4)Piiorestmiatcofa=75.72(1)PicviCuScyclesumPrevioussumi=(ii)PicviouscycleaveragePreviousaverages(iii)Newobservations83.096.5333.71109.663.29News=rangex=(iy)Differences(ii)lesS(iii)Range(v)NewsumsNewsums=•-newsumS(vi)Newaverages:y;83.096.5333.71—109.6163.29Newaverages=•1IIIC1cu1ationofEffects1Calculationof2S.E.LimitsPhasemean-(Yo+Y-+Y+Y3+Y4)15.39.2(A)RUciTect(2j——5’)—72.90Fornewaverages:±s=151.44(B)+(Y2+Y4——5)=101.84Fortieweffects:s=±151.44(AB)Interactiononeffect=(j+Yz—5’.)43.32Forcliangcinmean:±!12S±135.54.(sI1i)Changeinmeaneffectphasemean—Yo—67.70TableofMultiplyingFactorsn12345678910f0.300.350.370.30.390.40OAU0.400.111/n1.000.500.330250.700.170.140120.110.101/(’i—1)1.000.500.330.250.200.170.140.12012/v’i2.001‘111.151.000.0.?0.760.710.6?0i.i.79/4T1.791.261.03090073.0.3°,7JSource:Dçference(Hontgoiiery,1984)C,’ProjectIJASUPhase.-IDate.-,.o_‘\__.‘,_CalculanonofAveracs22Fac(orial‘ithaddedreferencecoiiditionCYCLE772VRespons_TRF.ATHENjEFF1C1ENCY(%)-P04-PCalculationofStandardDeviationOpcratngconditions0)(1)(2)(3)—(4)Priorestimateofa=59.36(i)PreviouscyclesrnPrevioussums(i)Previouscycieavecage83.096.5333.71—109.6863.29Previousaverages=(ii)Newobservations86.090.9131.4321.7070.91Newsrangexf=15.43(iv)Differences(ii)less’(iii)—3.007.442.28—43.99—7.62Range=51.43(v)Ncwsums169.185.6265.14-.131.38134.20Newsums=15.43newsums(v)Newaverages:84.592.8132.57—65.6967.10Newaverages=15.43.V..—.I11—1.CalculationofEffectsCalculationof2S.E.LimitsPhasemeanU+i++j+)24.282.Fornewaverages:—.s21.76(A)HR‘eTect(P2+3—i—5.)——51.52V’2±21.76t:SReffect=4-(+J’-,—.P3)=81.28Forneweffects:—s(AB)Interactiononeffect—4-(;+Y2——>4)=16.99Forchangeinmean±1.79±19.44.(S1tuR)Changeinmeneffectphasewcai——60.31Tableof11ultiplyingFactorsn1234569It)fs,0.300.350.370.30.390.400.400.400.411/n1.000.500.330.250.2.00.1?0.140.120.110.101/(n—1)1.000.500.330.2.50.200.170.140.12.0112/-s/i‘2.001.411.151.0000,220.260.710,670.6)I.79/.1T1.791.261Ui0.590.UUTi0.680.630.600.52Source:flference(Montgomery,1984)Q1Ccu)ationofAveragesCalculationofStar1dardDeviationOperatingconditions(0)(1)(2)(3)—(4)Prioreslimateof=12.02(i)PreviouscyclesumPrevioussums=(ii)PreviouscycleaveragePreviousaverages(iii)Newobservations91.2367.7894.6179.6796.20New$=rangeXf=(iv)Difrerccces(ii)less(iii)Range—(v)NwsumsNewsums=newsums(vi)Newaverages:91.2367.7894.6179.67I96.20Newaverages=.n—ICalculationofEffectsCalculationof2SE.LimitsPhasemcan=-CPo+5i+2+Y3+Y4)85.90.2Fornewaverages:±(4)lUtcffcct(2-j-3—51—54)5.15=24.04.2+24.04(B)SRefYcct=+2+Y41—•)=21.68Fornewcifects:—s—..‘Q/;;I.79s(AB)Interactiononeffect1CP+2——y4)6.74Forchangeinmean:—21.52(sJ9mJ.•Chargeinmeanefiect=phasemean—SoITableofllultip1yirigFactorsn123456789101fs.0.300.350.370.30.390.400.100.400.411/’1.000.500,330.250.200.170.140.120.110.0l/(n—1)1.000.500.330,250.200.170.140.12Dli2/./’i‘2.00I’ll1.151.(i0)0.220.760110.670.31.79/.AT.791.261.030)000730.630.630.60051Source:1çLerence(Montgomery1984)01—A—-’--22Fac(orialwit/iaddedreferencecoidiiionCYCLEfl1Response:TREATMENTEFFICIENCY(X)-P04-PF,ojectPhaseDateUASIJ—UASI3112‘13ProjectIJAS1I—IJASBPhastII1)ate.TableofMultiplyingFactors,i1234567891015!70.300.350.370.3d0.390.400.400.400,411/n1.000.500.330.250.200.170.140.120.110.10l/(n—1)1.000.500.330.750.200.170.140.120112/v’i2.001.411.151.030.90.320.760.710.670.13I.79/J1.791.261.030.90i0.730,630.630.600.5?Source:R9fcrence(Montgomery,1984)C,’C,’22Fac(oriaiwithaddedreferenceconditionCYCLE772Response:TRAThETEFFICIENCY(%)—P04—PVCalculationof1’e’ragesVCalculationofStandardDeviationOperatingconditions(0)(I)I(2)I(3),(‘1)PrioresOrnateofci=12.02(i)PreviDuscyclesumjI—Previoussums=(ii)Pieviouscycleaverage91.23I67.7894.6179.6796.20Previousaverages=(iii)Newobservations96.8246.7198.9272.5393.96News=ramexfs=(iv)Differences(ii)less(lit)—5.59I21.07I—4.317.142.24Range26.66(\)Newsums188.05114.49193.53152.20190.16Newsums=7.99newsums7•9994.03I57.25I96.77I76.1095.00Newaverages==(vi)Nwaverages:y’—VVCalculationofEffectsCalculationof2S.E.LimitsPhasemean=4-c0+.++3+4)=83.832.Fornewaverages:±—11.27’(A)—effect=-F.P—5’—5’.)10.31VV2i1.27(B)—SR=+(+Y4—5)=29.21Forneweftects:±—s1.79::(AB)Interactiononeffect+(y+Y2Y3—)4)—8.54Forchangeinmean:±—±10.07.(g•ult)—‘InChangeinmeanetTectphasemean——10.20ProjectLJAStS—UASDPhaseIDate_____________•it..._J2Ii3A22Fac(orialwithaddedreferenceondionCYCLE771Response:VFA(mizJ1)ASHAcCalculatiünofA/cLagesCalculationofStandardDeviationOperainco:1ditions(0)(1)1(2)(3)(.1)Priorestimateof=889.85(i)PreviouscyclesumPrevioussums=(ii)PreviouscycleaveragePreviousaverages(iii)Newobservations1752,0342,1382,4321,638News=rarweX=(iv)Differences()less(iii)Range(v)Ncwsums1”kwSnewsums(vi)Newaverages:1752,0342,1382,4321.638Newaverages=—=CalculationofEffectsCalculationof2S.F.LimitsPhasemean+Co+5i+Y2+Y3+Y4)1,683.2‘ef1LS±—s1779.70(A)RHeffect=(P2+Y3——)Fornewa’•‘:2±1779.70(B)—.SR—345FornewefTeçts:j—s1.795=CAB)InteractionOfleffeCt+Ci+Y2—Y3—Y4)51Forchangeinmean:—±1592.83.‘Vfl.Ch&ngeinmeaneffectphasemean—1,508TableofMultiplyingFactors234567910—.‘0.300.350.370.30.390.400.400.400.41)),1.000.500.330.250.200.170.140.120.110.101/(ii—1)1.000.500.330.250.200.170.140.120.112/-/2.001.411.151.000.90.220.760.710.670.631.79/.JT1.791.2’11.03090,0.710.GS0i30(00.57Source:Thference(Montgomery,1984)01a)ProjectUAS)—VAPhaseDatefI’—A—-22Fac(orialwit’haddedreferencecOnditionCYCLE71—2Response:VFA(wg/L).ASIlAcCalculationofAverages-FatcuiationofStandardDeviationOperatingconditions(0)(I)(2)(3)(4)Priorestimateofa=889.85(i)PieviouscyclesumPrevioussums=(ii)Pieviouscycleavcage1752,0342,1382,4321,Q38Previousaverages(iii)Newobservations2861,8961,9245,6231,504News=rangexf,,=1,022(iv)Differences(ii)less(iii)—Ill138214—•3,191134Range=3,405(v)1’kwsums4613,9304,0628,0553,142Newsun)s=1,022(vi)Newaverages:2311,9652,0314,0281,571Newaveragesnewsums1,022.I-Iu—ICalculationofEffectsCalculationof2S.E.LimitsPhasemean-(++.Y+S’3--4)1,9652•Fornewaverages:±—s=±1,441(A)HReffect=4-(2-j-5——5)—1,2622(B)SReffect=+(2+—3)—1,196Fornewcliects:±—s±1,441.v’1.79s=(AB)Interactionoi_cffect+5’2———802Forchangeinmtari:—±1,288.(ntit)Chanseinmeaneffectphasemean—.Po=1,734Tableof11ultipyingFactorsn12345678910f5.‘.0.300.350.370.380.390.400/iO0.100.411/n1.000.500.330.250200.170.140.120.110.101/(n—1)1.000.500330.2’(i.00.170.1i0.120Ii2/v’2.001.411.151(v0;9(?0.36(Lu0670.63).79/_/T1.791.1.ü3(.-,0.CC7.(•(.;(,630.(,u0.)iSource:Rçference(Hontgojiery,1984)t’3cuTableof1.ilti.dyng)-actoisProjectPhaseDatez72ii.322Ficuria/ii’flhiui1/cdrcfcr’nccco,iIi(ii_’,sCYCL.E771Response:VFA(wg/L)ASilAcCc•utationofAveragesUASIi—VAbU11CaLculatiotofStandardDcvjatioriOperatingconditions‘(0)(1)(2)(3)(4)Priorestimateofa=219(i)Pcci.1ascyclesu,mVPrevioussums=(ii)Pre.vous.cyc1eaveragePreviousaverageS(iii)NewobservationsV5210530119Newsrangexf3,=(iv)Differences(ii)less(iii)VRange(v)NewsumsNewsums=newsums(vi)Newaverages:5210530119Newaverages==.n-IVVCalculationofEffectsCalculationof2S.E.LimitsPhasemean=Y+Y2±Y3+5’)=138.602Fornewaverages:±—s=438(A)HReffect=4C2-fy3—5;.).—33.00VV2()SReffect=+(5;2+y-.—=86.00Forneweffects:—s=4381.79S=(AB)Interactionoi_effLzct+U+Y2—Y3—5;.i)=—33.00Forchangeinmean:±—p-392(j’j)V—“IllVChangeinmeaneffectphasemean—..Po=—382.40?123VV678VV_V10VV0.300.350.370.30.390.40Jf,1.000.500.330.250.200.1)0.141/(n—1)1.000.0033(1.250200.172/1i2.(Yi1.4II.15I.o:j1::ionI.?9/..,J’1.7$i.o:or.’UVV’(I,0.400.400.41ISource:Rçference(Montgomery.1984)V0120.110.100.140120.1V‘3u.(‘7)()(j(I00.012•11.A22Tac(orialvithaddedreferencecoi,dkionCYCLEii2Response:VFA(gJL)ASHAcC’alculaionofAveragesProjectPhaseDateUASI3—IJASDIICalculationofStandardDeviationOperatingconditions(0)(1)(2)(3)(4)Priorestimateofu=(I)Previouscycle,sumPrevioussums=(ii)Previouscycleaverage5210530119Previousaverages=(iii)Newobservations5504035New£=rangeXf=139.80(iv)Diffei’cnces(ii)less(iii)46607084ke.466.00(v)Newsums5760990154Newsum£=139.80.flewsums(vi)Newaverages:288050077Newaverages==139.80-n—ICalculationofEffects—Calculationof2S.E.LimitsPhasemean=-Y2+Y3+Y4)=83.00.2(A)RReffect=-j(52+y3—1_54)=—13.50Forncwavcrages:±—=$=,197-(B)SReffect+Y——)63.50Forneweffects:s±197(AB)Interactiononeffect(5+——y4)=—13.50Forchangeinmean:±176.(Sk1it)Changeinmeaneffect=phascnean——205.00TribleofMultiplyingFactorsI234‘5671910f.0.300.350.370.360.390.400,400.400.41l)n‘1.000.500.330.250.200.170.140.120.110.10l/(n—1)1.000.500.330.250.2()0.170.140.120.112/v’i2.001.411.151.0:)0390.320.760.’lJ0,670.631.79//.7S1.261.030.90.00.730.630.630.600.7Source:Rçference(Montgomery,1984)C,’CDTableC3.1pHofA-UASBandM—UASBduringthePhase2and3experimentsincludingmaximizationandrecoveryperiodDayspH(LJAS8)DayspH(UASB)DayspH(UAS8)DayspH(UAS8)DayspH(UASB)A-U-A-U-A-U-A-U-A-U-26015.047.04414.947.39814.987.101215.097.091615.707.0825.087.00425.087.35825.087.131225.127.091625.727.0735.047.00435.087.35834.977.061235.097.101635.687.0745.118.99445.057.37845.057.101245.107.101645.627.0855.037.02455.007.28854.977.101255.187.131655.597.0765.067.04464.987.27865.157.131265.217.121665.627.0775.047.06474.937.28875.067.141275.23%7.131875.597.0885.057.11485.147.25885.077.191285.227.131685.617.0895.046.70495.057.24895.087.191295.297.131695.537.08105.086.70504.977.25905.077.161305.357.131705.487.08115.066.70514.967.25915.047.171315.387.131715.457.09125.128.70524.947.25924.957.171325.377.131725.397.09135.096.70535.027.24934.977.131335.397.131735.417.09145.116.70545.017.23345.027.321345.347.131745.417.08155.016.70555.287.26955.027.021355.347.131755.417.08164.986.70565.127.27964.957.021385.357.121765.357.06174.988.70575.067.28975.027.001375.467.121775.357.09184.986.70584.967.28985.007.011385.467.121785.357.09194.936.70594.967.28994.977.011395.507.121795.367.09204.946.70604.937.271004.987.011405.547.121805.357.09215.016.70615.057.261014.957.061415.487.121815.367.09225.006.70625.237.311024.967.041425.497.121825.337.10234.976.70635.057.311034.987.051435.577.121835.307.11244.946.70644.937.221044.927.061445.627.121845.337.12254.926.70654.987.181054.967.071455.567.121855.327.12264.907.22664.957.151064.967.091465.607.121865.317.11275.247.24674.967.131075.047.091475.607.121875.377.11285.067.27684.967.111085.027.101485.537.131885.377.10294.957.27694.957.091095.077.121495.497.131895.447.10305.137.30705.407.051105.077.121505.457.131905.477.09315.047.33715.107.061115.107.111515.477.131915.437.08324.987.39725.067.091125.107.121525.517.131925.347.08334.967.39735.057.091135.087.121535.577.121935.337.08345.017.37745.067.071145.107.13154-5.547.111945.407.05355.077.36754.947.021155.077.121555.537.101955.257.02365.067.37764.947.021164.997.101565.897.101965.167.04375.427.34775.257.071175.067.101575.687.091975.147.02385.227.37785.067.081185.027.091585.687.09198.5.097.03395.127.38794.967.101195.067.091595.707.081995.077.04405.007.36804.987.071205.087.081605.687.082005.067.06Ncte:(1)ThePhaseIand2ExperimentsStart@dayIand170respectivelywhereas,theMaximizationandRecoveryPeriodSt0day295and364,respectively;and(2)A-andU-representA-UASBandU-UASB,respectively261TableC31p11ofA-UASBandM-IJASBduringthePhase2and3experimentsincludingmaximizatonandrecoveryperiod(cont’d)DayspH(UASB)DayspH(IJASS)DayspH(UASB)DayspH(UASB)DayspH(UASB)DayspH(UASB)A-M-A-U-Pr-U-A-U-A-U-A-U-2015.097.072415.027.102815.047.143215.027.023614.796.564015.496.912025.057.082425.247.112825.107.143225.167.03362.4.8,36.564025.476.912035.007.092435.077.122835.047.143235.177.033634.886.604035.446.912045.007.112445.047.142845.067.143245.157.043644.926.684045.216.922055.007.132455.077.142855.087.153255.157.043854.856.702065.017.142465.147.152864.987.143265.257.043664.906.712075.017.112475.137.162875.017.133275.367.023674.46.742085.037.102485.157.152885.077.143285.407.013684.966.762095.047.102495.107.152895.077.143295.167.003694.918.772105.197.112505.097.162905.117.143304.996.983704.896.762115.207.132515.187.152915.137.143315.006.993714.916.792125.217.142525.047.152925.167.143324.987.003724.946.802135.197.152535.017.162935.057.123335.096.993734.996.892145.247.152544.997.162945.097.103345.087.003745.026.892155.277.132555.027.162965117.093354.977.033754.996.902165.297.132565.027.172985.167.083364.947.033764.978.922175.287.122575.027.162975.147.073374.927.023774.998.972185.257.102584.987.182985.127.073384.937.003785.016.962195.237.102594.987.182995.147.063394.936.933795.026.942205.237.092805.007.163005.127.053404.958.933805.026.942215.287.092815.107.163015.127.053414.998.863815.076.942225.247.092625.097.153025.157.053425.026.723825.056.942235.337.092835.087.173035.157.043435.018.673835.066.942245.307.082845.087.173045.197.043444.986.593845.106.942255.217.082855.047.183055.157.053454.986.593855.116.952265.287.082665.057.173065.147.043484.936.473865.158.962275.247.082675.087.173075.127.053474.908.343875.126.952285.347.072885.087.163085.127.043484.958.303885.118.962295.337.072695.027.173095.127.033494.946.223895.148.962305.227.072704.997.173105.087.033504.956.423905.188.962315.227.072715.087.183115.077.033514.926.423915.206.962325.247.072725.017.153125.077.033524.896.393925.286.952335.277.072735.027.153135.107.033534.868.303935.248.952345.217.072745.047.143145.11-7.023544.906.303945.226.942355.217.072755.047.143155.087.023554.908.293955.258.942365.177.072765.097.143185.077.023564.896.393965.256.932375.107.072775.117.143175.067.023574.868.473975.316.922385.127.082785.027.143185.067.023584.866.513985.356.922395.027.082795.077.143195.037.033594.846.543995.386.912405.047.102805.017.143205.067.013604.848.564005.466.91Note:(1)ThePhaseIand2ExperimentsStart0day1and170respectively;whereas,theMaximizationandRecoveryPeriodStart0day295and364,respectively;and(2)A-andU-representA-UASBandU-LJAS8.respectivelyTable03.2Alkaline(0.1N,NaOH)AdditionDuringthePhase1ExperIment:..i...RunningConditionsDateDaysNaOHUse,mildRunningConditionsDateDaysNaOHUse,mild‘A-UASBM-UASBA—UASBM-UASB(1).F5.SR8O/20,071091881400760[2).F5,SR8O/20,071301882263981RR21407/10/88201178RR6I1007/31/88230109407/111883882725(07130/88J08/01/88240125207/12/8840110008/02/8825076007/13/885110060008103/88260125407)14/8860135008/04/88270117607115/887065908105/8828074407/16/888065308/06/88290128607/17/88920975108107/8830032007/18/881090040008/08/88310170007/19/88111768138908109/8832087707/20/88120112008/10/8833111469107121/88136161308111)8834085307/22)8814066708/12/8835068807/23/8815035308/13/8836077207/24/8816046908/14/88370123707/25/8817040008115/8838037207/261881849733108/16/8839020007)27/8819053308117/8840020007/2818820066008/1818841036007/29/8821086408/19/8842032608/20/8843•00TableC3.2Alkaline(0.1N,NaOH)AdditionDuringthePhase1Experiment(cont’d)RunningConditionsDateDaysNaOHUse,mildRunningConditionsDateDaysNaOHUse,mildA-UASBM-UASBA-UASBM-UASB[3J.F5,SR50150,08/31/885400[4J.F5,SR50I50,10)031888701136RR6/1009/01/885500RR2/410/04/888840460[08131188)09/02)885600[10l03/88]10/05/888920231209/03188574177610/06188900009/04/88580126610/07/88910352709/05/8859039210/08/88920170009/06/8860074010/09188930102009/07/8861058410110188940179509/0818862064710111188950248009/09/88630105410/12188960171609/10/8864070410/13/8897015709/11/8865059510114188980009/12/8866046910/15/88990250809113/88670118610/16/8810043145109/14/88680109110/17/88101094009/15/88690116410118/881020176009/16188700109710/19/881030174009/17/88710127310/20/881040120009118/8872082310/211881050131809/19/8873090010/2218810601043264APPENDIXDMaximumLoadingCapacityandRecoveryProcessTableDL1:SummaryofAverageSystemPerformanceandRemovalEfficiencyatPseudoSteady-stateDuringtheMaximizationandRecoveryPeriod.TableD2.1-D2.8:ResponseDataoftheSamplingPointNumbered1to8UnderDifferentRunningConditionsDuringtheDuringtheMaximizationandRecoveryPeriod.TableD2.9:AverageResponseDataoftheSamplingPointNumbered1through8atPseudoSteady-stateUnderDifferentRunningConditionsDuringtheDuringtheMaximizationandRecoveryPeriod.TableD3.1:CalculationoftheTheoreticalCH4ProductionTableD4.1:A-andM-UASBsSystemRecoveryatPseudoSteady-stateUnderDifferentRunningConditions(CH4,m3/m3-d)TableD4.2:A-andM-UASBsSystemRecoveryatPseudoSteady-stateUnderDifferentRunningConditions(COD(sol.)RemovalEfficiency,%)TableD5.1:ResponseDataofGasComposition,Production,andLoadingRate(A-andM-UASBs)DuringtheAcclimatizationProcess.TableD5.2:ResponseDataofGasComposition,Production,andLoadingRate(A-andM-UASBs)DuringSequence1,2,and3Experiments.TableD5.3:ResponseDataofGasComposition,Production,andLoadingRate(AUASB)DuringtheMaximizationandRecoveryPeriod.TableD5.4:ResponseDataofGasComposition,Production,andLoadingRate(MUASB)DuringtheMaximizationandRecoveryPeriod.FigureD1.1:AnA-UASBStep-loadingandRemovalEfficiency(COD,P04-P)UnderDifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod.FigureD2.1:AnA-UASBSystemNutrientsandMLVSSUnderDifferentRunningConditionsDuringtheMaximizationandRecoveryPeriod.Note:AllsamplinglocationsareillustratedinFigure4.2Allexperimentalrunningconditionsnumbered1through9areshowninFigure5.26(c).D1.1SummaryofAverageSystemPerformanceandRemovalEfficiencyatPseudoSteady-stateDuringtheMaximizationandRecoveryPeriod.264ATableDl1SimunazyofAverageSystemPerformanceandRemovalEfficiencyatPseudoSteady-stateDuringtheMaximizationandRecoveryPeriodExperimentalRimmngCànditiàns123456789RunningPeriod,days1327364350576471106InfluentFlow,lid7.439.3716.1020.6925.4917.8915.3011.955.34HRT,daysA—UASB2.692.131.240.970.781.121.311.673.75M—UASB3.362.671.551.210.981.401.632.094.69System6.064.802.802.171.772.522.943.778.43LoadingRate4cu.mlcu.m—d0.170.210.360.460.570.400.340.270.12KgCOD(sol.)icu.m—d1.021.282.142.893.462.782.371.720.97EffluenLQualitySolids,mg/LTS239728282854571293658389682062402163VS9621125123234925920547441333829790TSS20118418511691572303017691813157TVSS31145108685120923221397152073CODmgILTotalCOD3184696775147112001107794838562682COD(sol.)20733155440899015750778626573424Inorganics,mg/LNH4—N377394301362332261302387345TKN407460404424496337406505371TP577184121370176196161103P04—P113415712961931699934VFA,mg/LHAc1104073106955503350HPr906785817381837236526410Iso—HEr00077535368840HBr6551351421678477780A-HVr000149342631440Iso—HVr000178555266890HVr0004286375977353550HHe00007048134970TotalVFAmg/LasHAc19196164828773096339629220Alkalinity,mg/LasCaCO3A—UASB118812679636697195577008821438M—UASB262126592519251319881607181321322225TotalVFA/A1kA—UASB3.633.424.846.264.239.918.715.632.38M-UASE0.010.010.060.510.712.171.831.350.01265TableDl1SnmmaryofAverageSystemPerformanceandRemovalEfficicacyatPseudoSteady-stateDuringtheMaimii.tio1andRecoveryPeriod(cciWd):RnnflCondftks1234567$9SycmRemovalEfficiencySolids,%TSS99.2499.3399.0996.0166.9990.1595.2393.2699.21COD,%COD(sol.)96.6694.6490.7634.43-48.19—7.30—13.99—1.4194.88TotalCOD99.1598.8198.2987.3773.5069.8384.3.578.1298.71Inorganics,%P04—P92.3473.1687.7145.11—130.89—37.41—26.4622.3580.88TP68.2957.6339.2118.14—151.89—19.81—35.96—5.1637.76MethaneGasFlow,lidTotalGas153.38244.51311.00359.33311.89248.55249.41193.58135.63CH4Gas87.76139.50179.4.0177.01110.94103.5898.8180.4875.97CH4Productivityl/d87.76139.50179.4.0177.01110.94103.5898.8180.4875.97cu.mlcu.m—d1.953.103.993.932.472.302.201.791.69cu.m/cu.m-d@SC1.732.753.533.492.192.041.951.591.50%oftheo.CH4Prod.83.7097.9973.2160.1136.4759.9232.8058.6874.41SpecificCH4GasProd.cu.mlkgCODadded1.912.421.861.350.710.850.931.041.76cu.m/kgCODrem.1.972.562.054.57—1.593367—10.254.571.85cu.m/kgCODadded@S1.692.151.651.200.630.750.830.921.56cu.mikgCODrem.@SC1.752.271.824.05—1.412984—9.084.051.64%CH4content69.6768.6169.2962.6950.66542651.3151.8869.82NoteExperimentalrunningconditions(I9)035degreeCpHs5O-5.3and70-73forA-andM-UASBsunderdifferentHRTsmentionedabovedAllCODsusedincalculatloaofqecCU4gasproduCtionaresolubleCOD266TABLED2.1RESPONSEDATAOFSAMPLINGPOINTNo.1UNDERDIFFERENTRUNNINGDURINGTHEMAXIMIZATIONANDRECOVERYPERIOD:..EXP.DAYDATESOLIDS,MG/LSOLIDS,%or%TSCOD,MGILNo.TSVSTSSTVSS[%][%TSJ[%][%TS]TOTALSOL.I110/13/89181651550014060135601.8285.331.4196.44454555455410/16/89236352075020300193902.3687.792.0395.52358025844610/18/89221601930522070216702.2287.122.2198.19409095868810/20/89275652456521870209302.7689.122.1995.703168765841110/23/89267402365526920253702.6788.462.6994.244335461351310/25/89306002734527870259803.0689.362.7993.223060862051510/27/89313452803025070230803.1389.422.5192.0638333625022011/01/89312352776527400257603.1288.892.7494.016601365972211/03/89394103573521695201853.9490.672.1793.044335462172511/06/89359003238029360281103.5990.192.9495.744979663672711/08/89333402781026070244403.3383.412.6193.753716159292911/10/89289102526528080260602.8987.392.8192.8134999616733311/14/89341553071029050280703.4289.912.9196.635145269713511/16/89277252478522440214002.7789.402.2495.374958362503711/18/89234902034518220166602.3586.611.8291.4433131573744011/21/89280802486517840166702.8188.551.7893.444015960444211/23/89300752697033100312203.0189.683.3194.324980265614411/25/89266852350525260235502.6788.082.5393.2336104602454711/28/89333952947026240249203.3488.252.6294.973538854874911/30/89350903160035230331003.5190.053.5293.954164963055112/02/89277952460032030296502.7888.513.2092.5742828589965412/05/89319002830026040245503.1988.712.6094.283326569825612/07/89334752969532480303503.3588.713.2593.443696166535812/09/89285252488028940268602.8587.222.8992.8136475729576112/12/89350753140533970320403.5189.543.4094.323696159416312114/89429703872539320368004.3090.123.9393.596153873686512116/8931144)2780531120291403.1189.293.1193.6459635649186812/19/89271302388520980197202.7188.042.1093.993562863977012121/89259702282025950240202.6087.872.6092.564065063417212/23/89337203010030500283803.3789.263.0593.05372476644)97512/26/89376503380533020315103.7789.793.3095.434064471637912/30/89265602355525130234302.6688.692.5193.243724761548401/04/90292202610524980239502.9289.342.5095.883782778079101/11/90282602524524900237202.8389.332.4995.264161687279601/16/90303902736531980304403.0490.053.2095.183607274559801/18/90338453080033720320303.3891.003.3794.9948907842910201/22/90309702802032070305803.1090.473.2195.3545679749010401/24/90348603156027740265903.4990.532.7795.8540974738310701/27/90380103494033700321503.8091.923.3795.40629038952287TABLED2;IRESPONSEDATAOFSAMPLINGPOINTNo.1UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATEINORGANICS•MG/LVFA,MGILTOT.VFANo.NH4-NTKN%TSTP%TSP04-PHAcHPrHBrIso-HVrHHcmg/iHAcHVr110/13/89242995.261290.8411944840110862883410/16/89183204.811321.1111735724613076690610/18/89183455.321561.2213135425615588719810/20/89303165.351751.061495795334167313381110/23/89243644.011851.10140380343235338381310/25/89183784.331710.901403983632358531510/27/89183984.511811.14138237417232373522011/01/89163814.171951.0514240877534912742211/03/89II3903.181760.8012732176429311402511/06/89113383.961720.85145510109936516502711/08/89114213.111610.651211264271445702911/10/89164165.021731.13125391963292137133311/14/8923454.431650.91145586133736319183511/16/8923723.951490.82118451106031215233711/18/89103523.761261.0511819333811054244011/21/8983522.671300.66114171225107284434211/23/8923714.041491.0112339867627211324411/25/8923583.811470.69131424725271119754711/28/8933763.901490.731352535562698874911/30/8983944.281590.991353564562042428805112/02/8983433.231370.85123285621192392165412/05/8934264.121580.97135385485312442410315612/07/8953353.871390.751394034002879235812/09/8933543.651540.6314137445336599076112/12)8983714.351501.1412428969881174746312/14/89113302.481371.19136343911642036486512/16/8923752.361501.321323588025659786812/19/8943593.611431.02130288892655417012/21/8914043.801570.991323451063336587212/23/8953724.251491.1112031810525357697512)26/8954403.902310.991733991695088827912/30/8993353.711520.911063461862786868401/04/9053134.622010.9414762238460918914609101/11/90233504.361940.8814365349259110915199601/16/90233174.111520.8613152241545811719801/18/90303044.681960.89137672652664178175810201/22/90193475.041790.87144581535459132810401/24/90193164.011600.86137523464377137123710701/27/90273944.002030.871647148196771761943268TABLED22RESPONSEDATAOFSAMPLINGPOINTNO2UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATESOLIDSMG/LSOLIDS,%OR%TCOD,MGILNOs.TSVSTSSTVSS[%]%TS][%]%TSJOTALSOL.H4-NP04-P1110/13/8995707200531050600.9675.240.5395.29180178430270167410/16/89113508730722069301.1476.920.7295.98.207419218270172610/18/89118209060587054501.1876.650.5992.84178518926293186810/20/89110808720817075501.1178.700.8292.412304595473232031110/23/891272010110858078301.2779.480.8691.262454097342762101310/25/89122509800879080101.2380.000.8891.132364898953752061510/27/89140101119094.0085901.4079.870.9491.38226671041729321222011/01/89179601503012410115701.8083.691.2493.2332067103552992002211/03/89363703263035450333903.6489.723.55941930561105522682122511/06/891337011140997096901.3483.321.0097.1928571104492862062711/08/89210461880312670121602.1089.341.2795.9731733106052931982911/10/89106308080696065501.0676.010.7094.1120833991725618833311/14/891390011450831079001.3982.370.8395.072074785481801573511/16/89107508460654062401.0878.700.6595.4117917103331921533711/18/8915250126001009096401.5382.621.0195.5427879993924215944011/21/89446404146044030421504.4692.884.4095.7376740100201621634211/23/89713606700067180643507.1493.896.7295.79125692116211801844411/25/89663406251071010682006.6394.237.1096.041100401068316218454711/28/89783007331074480715807.8393.637.4596.1111610397811471954911/30/89708606653069980668407.0993.897.0095.51103918114641301595112/02/89779907339075220717307.8094.107.5295.361438381026311318965412/05/89584005428052950505605.8492.955.3095.496735197741531725612/07/89672206273063550607106.7293.326.3695.53123203117451702185812/09/89672106253059560566806.7293.045.9695.16934431155728920376112/12/89611805697057530554406.1293.125.7596.37112526110881752146312/14/89686806395069540668406.8793.116.9596.12106883118221632206512/16/89658606145067120644306.5993.306.7195.991306291168414521686812/19/89627605835059780575906.2892.975.9896.3497166121462112187012/21/89744406939058560564607.4493.225.8696.4191870112202352127212/23/89685406441068810662606.8593.976.8896.291044531028316318097512/26/89723006775078410754907.2393.717.8496.28117505123142702477912/30/8915740127601053099501.5781.071.0594.4939406115793042248401/04/90103807930557053801.0476.400.5696.5927632108652592019101/11/90607205686017990172706.0793.641.8096.00120404102632701999601/16/90375503403024840237103.7690.632.4895.4554509101002771859801/18/901231010040837078001.2381.560.8493.19270381057719718310201/22/9099807850614055901.0078.660.6191.0416872872424317410401/24/9076205550415038300.7672.830.4292.2916227876324817110701/27/9064304890365034200.6476.050.3793.70262108952288188269TABLED22RESPONSEDATAOFSAMPLINGPOINTNO2UNDERDIFFERENTRUNNINGCONDITIONS:DURINGTHEMAXIMIZATIONANDRECOVERYPEXP.DAYDATEINORGANICSMG/LVFA,MG/LTOT.VFANOs.TKN%TSTP%TSHAcHPrIso-HErA-HVrIso—HVrHHemgfLHAcHBrHVr1110/13/893168.551682.1513971842357852350664683918410/16/892757.541792.1015261838369392350680754163610/18/893337.281802.02150917813710522453697844194810/20/893547.192041.791471170440115527576809641661110/23/893985.572161.3915751713461355306365610044111310/25/894465.552421.531620170547142430656319944841510/27/893676.352261.6817251780431471244545876455022011/01/893545.602201.351631192745155624705237246852211/03/893906.532411.13162621434916732611071650392511/06/893736.292041.451360217448154526664916545852711/08/894257.742301.711202239950156729745117846512911/10/894156.002251.808462139471423276646768394733311/14/893104.431710.918862334351099208864339933511/16/893235.441831.5116332693311153108575151213711/18/893375.471791.2118012571339431396778507344011/21/893256.011920.83189530136399375629914211/23/893264.962100.7421292145341628129480855394411/25/893316.222010.8619981936341559124854450503554711/28/892335.741910.57177731167598969030684911/30/893945.332030.5919263520419355705233655112/02/892425.281950.55159628171526578283865412/05/892665.351670.87321567103059414635612/07/S92935.892110.9319972001291569345467050865812/09/893126.212121.80185719072514783353549478776112/12/892856.612052.71691177145982455714232116312/14/893028.642300.8423222316301758385734057996512116/892856.962170.73213723192916683552030551636812/19/893517.002240.6721592388421698535213156357012/21/893856.622350.7420552132461669554823752887212123/892656.541810.7716981525331426363458415897512/26/894476.042750.802149184558211420595052554827912/30/894405.372431.592142194170184826694915253958401/04/903635.632093.342057194261148428655385950879101/11/903756.612040.621987228061150528697836354549601/16/903426.741820.751193213959139726668335844949801/18/903427.021881.219162389661579286995468462810201/22/903596.421811.891612026621261316281730325710401/24/903476.021812.341092047631195326488855323410701/27/903985.871982.69209223567136335701026603692270TABLED23RESPONSEDATAOFTHESAMPLINGPOINTNa3UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXI?4IZATIONANDRECôVERYPERIOD...J.:.EXP.DAYDATESOLIDS,MGILSOLIDS,%OR%TSCODMG/LNOs.TSVSTSSTVSS(%J[%TSJ[%][%TS]TOTALSOL.H4-NP04-P1110/13/8995707200531050600.9675.240.5395.29180178430270167410116/89113508730722069301.1476.920.7295.98207419218270172610/18/89118209060587054501.1876.650.5992.84178518926293186810/20/89110808720817075501.1178.700.8292.412304595473232031110/23/891272010110858078301.2779.480.8691.262454097342762101310/25/89122509800879080101.2380.000.8891.13264898953752061510/27/891401011190940085901.4079.870.9491.38226671041729321222011/01/89179601503012410115701.8083.691.2493.2332067103552992002211/03/89363703263035450333903.6489.723.5594.1930561105522682122511/06/891337011140997096901.3483.321.0097.1928571104492862062711/08/89210461880312670121602.1089.341.2795.9731733106052931982911/10/89106308080696065501.0676.010.7094.1120833991725618833311/14/891390011450831079001.3982.370.8395.072074785481801573511/16/89107508460654062401.0878.700.6595.4117917103331921533711/18/8915250126001009096401.5382.621.0195.5427879993924215944011/21/89446404146044030421504.4692.884.4095.7376740100201621634211/23/89713606700067180643507.1493.896.7295.79125692116211801844411/25/89663406251071010682006.6394.237.1096.041100401068316218454711/28/89783007331074480715807.8393.637.4596.1111610397811471954911/30/89708606653069980668407.0993.897.0095.51103918114641301595112/02/89779907339075220717307.8094.107.5295.361438381026311318965412/05/89584005423052950505605.8492.955.3095.496735197741531725612/07/89672206273063550607106.7293.326.3695.53123203117451702185812/09/89672106253059560566806.7293.045.9695.16934431155728920376112/12/89611805697057530554406.1293.125.7596.37112526110881752146312/14/89686806395069540668406.8793.116.9596.12106883118221632206512/16/89658606145067120644306.5993.306.7195.991306291168414521686812/19/89627605835059780575906.2892.975.9896.3497166121462112187012/21/89744.406939058560564607.4493.225.8696.4191870112202352127212/23/89685406441068810662606.8593.976.8896.291044531028316318097512/26/89723006775078410754907.2393.717.8496.28117505123142702477912/30/8915740127601053099501.5781.071.0594.4939406115793042248401/04/90103807930557053801.0476.400.5696.5927632108652592019101/11/90607205686017990172706.0793.641.8096.00120404102632701999601/16/90375503403024840237103.7690.632.4895.4554509101002771859801/18/901231010040837078001.2381.560.8493.19270381057719718310201/22/9099807850614055901.0078.660.6191.0416872872424317410401/24/9076205550415038300.7672.830.4292.2916227876324817110701/27/9064304890365034200.6476.050.3793.70262108952288188271TABLED23RESPONSEDATAOFTHESAMPLINGPOINTNo3UNDERDIFFERENTRUNNINGCONDDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXY.DAYDATEINORGANICS,MGILVFA•MG/LTOT.VFANOs.TKN%TSTP%TSHAcHPrIso-HBrA-HVrIso—HVrHHemg/LHAcHBrHVr1110/13/893168.551682.1513971842357852350664683918410/16/892757.541792.1015261838369392350680754163610/18/893337.281802.02150917813710522453697844194810/20/893547.192041.791471170440115527576809641661110/23/893985.572161.3915751713461355306365610044111310/25/894465.552421.531620170547142430656319944841510/27/893676.352261.6817251780431471244545876455022011/01/893545.602201.35163119274515562470523724.6852211/03/893906.532411.13162621434916732611071650392511/06/893736.292041.451360217448154526664916545852711/08/894257.742301.711202239950156729745117846512911/10/894156.002251.808462139471423276646768394733311/14/893104.431710.918862334351099208864339933511/16/893235.441831.5116332693311153108575151213711/18/893375.471791.2118012571339431396778507344011/21/893256.011920.83189530136399375629914211/23/893264.962100.7421292145341628129480855394411/25/893316.222010.8619981936341559124854450503554711/28/892335.741910.57177731167598969030684911/30/893945.332030.5919263520419355705233655112/02/892425.281950.55159628171526578283865412/05/892665.351670.87321567103059414635612/07/892935.892110.9319972001291569345467050865812/09/893126.212121.80185719072514783353549478776112/121892856.612052.71691177145982455714232116312/14/893028.642300.8423222316301758385734057996512/16/892856.962170.73213723192916683552030551686812/19/893517.002240.6721392388421698535213156357012/21/893856.622350.7420552132461669554823752887212/23/892656.541810.7716981525331426363458415897512/26/894476.042750.802149184558211420595052554827912/30/894405.372431.592142194170184826694915253958401/04/903635.632093.342057194261148428655385950879101/11/903756.612040.621987228061150528697836354549601/16/903426.741820.751193213959139726668335844949801/18/903427.021881.219162389661579286995468462810201/22/903596.421811.891612026621261316281730325710401/24/903476.021812.341092047631195326488855323410701/27/903985.871982.69209223567136335701026603692272TABLED24RESPONSEDATAOFSAMPLINGPOINTNO4UNDERDIFFERENTRUNNINGCOND.DURING..ThEMAXIMIZATIONANDR.ECOVERYPERIOD..EXP.DAYDATESOLIDS.MGILORELSECOD,MGILNOs.TSSTVSS[%J[%TS]TOTALSOL.NH4-NP04-P1110/13/89110010900.1199.09105798347311168410/16/89134013250.1398.8820741701282165610/18/8910859850.1190.78107448595299170810/20/89141512950.1491.521168788893291941110/23/89196016650.2084.951341590803172121310/25/89226519800.2387.421341796442762121510/27/89250022150.2588.60143331025030522322011/01/89323030450.3294.271654391022741942211/03/89489046000.4994.0717669106343112182511/06/89472045150.4795.661698097963112182711/08/89556053650.5696.491904097702861982911/10/89458043000.4693.8916999983328019233311/14/89302528650.3094.711344484652291743511/16/89173516150.1793.0813000101671991453711/18/89143013250.1492.6612283913122916344011/21/89393037000.3994.1516382101791861744211/23/89418539700.4294.8617233105931921924411/25/89548051550.5594.07189561004018018654711/28/893584.0340603.5895.033578595421471994911/30/8913190126651.3296.0238652117111352095112/02/8918790179301.8895.42412121050513519965412/05/89496047700.5096.1717522108422891895612/07/8939350262103.9466.6117248119921812185812/09/89305028000.3191.80163931213118121276112/12/89454043500.4595.8119986113351932206312/14/89488046700.4995.7017814120651812286512/16/89582055000.5894.50232591249515722686812/19/89452543900.4597.0225641119032232317012/21/89420040600.4296.6718157108132422127212/23/89347033500.3596.54183541085018119797512/26/89360035300.3698.0618243123142812477912/30/89277026100.2894.2215924120653492408401/04/90212019700.2192.9215292107852931999101/11/90208018900.2190.8713737104243152089601/16/90242022000.2490.9113894105813172019801/18/90223019700.2288.34151091002027118610201/22/90322029200.3290.6815638963026517610401/24/90282026700.2894.6813523835726518610701/27/90261024000.2691.95142478548205203273TABLED24RESPONSEDATAOFSAMPLINGPOINTNO4UNDERDIFFERENTRUNNINGCONDONSDURINGTHEMAXIMIZATIONANDRECOVERYpERJoD.::.:.::..:EXP.DAYDATEINORGANICS,MGILVFA,MG!LTOTNFANOs.TKNTPHAcHPriso—HBrA-HVrIso—HVrHHemg/LHAcHBrHVr1110/13/8932817412821983407602655649713901410/16/8932017813721780368491450664733885610/18/893201841407175237101525•52695844042810/20/893671971368168340110827566789440121110/23/894172221380170046117831636189840621310/25/8940721415071710481318316664410143131510/27/8940723016391810451409266354281451122011/01/893672241444185244136225604537042572211/03/894342611510212349152727645037146922511/06/894392361307229252147328674687345742711/08/894612261062231249136628654557542632911/10/894522288332345521388306846269408133311/14/89403216777232140938259259437443511/16/8934519415212682321079158466049003711/18/8934517314962307308241282715442544011/21/8930620918122046341291128773648664211/23/892861922148371534168781533534411/25/89322193179618933614121787724480554711/28/89279222188734154911334555929334911/30/892932361666291757395154629185112102/89302218175833182284058951309165412105/89281171178534156011295615629175612/07/8931922220802198321670406045054275812/09/89323209209822593217273963244554676112/12/8936724220062098341554435964451886312/14/8931821722392412351755426234658306512/16/89338238220724573217684056534580086812/19/8935423720362488451598565725155697012/21/8934720118652197471529555114550777212/23/89372229186818604415934744230479597512/26/8923625820982011632012256454711155757912/30/894892692087201774188829725215454548401/04/903702112015202866152829685545751599101/11/904052091710218462143629707536450369601/16/903881961183118766149530729026638349801/18/903751947602219631441276388456418710201/22/903751791482160691264336587044340010401/24/903791831002075651126336490121319210701/27/9031120618921556512073466978563467274TABLED25RESPONSEDATAOFSAMPUNGPOINTNO5UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATESOLIDS,MG/LSOLIDS,%OR%TCOD,MGILNOs.TSVSTSSTVSS[%]%TS[%]%TSOTALSOL.H4-NP04-P110/13/8976255185229022100.7668.000.2396.51123978430293167410/16/8957753625230021900.5862.770.2395.22.110299300282153610/18/8973305015275025000.7368.420.2890.91142158760305177810/20/8971004730240021000.7166.620.2487.501497988074281911110/23/891512512275973089001.5181.160.9791.472683091622991991310/25/8981355790353029000.8171.170.3582.151626899792882101510/27/891296510330818074701.3079.680.8291.3224171033332319322011/01/891361510930728067101.3680.280.7392.1724885102712992022211/03/891334010600768071901.3379.460.7793.6226102109613172122511/06/891384011300847082201.3881.650.8597.0528408101222741982711/08/8982957075970091350.8385.290.9794.1831619106893111862911/10/8985457325785172560.8585.720.7992.42256481025025618833311/14/8971755040257024100.7270.240.2693.771394284652051613511/16/8970154810211020200.7068.570.2195.7313667105832051663711/18/8970854785215020900.7167.540.2297.2112768897021115544011/21/891431011635908080801.4381.310.9188.9928151110542231724211/23/89107708365599056601.0877.670.6094.4920237112251861864411/25/89170851429011640111101.7183.641.1695.45319681020116217454711/28/891654513455965091801.6581.320.9795.1329105930413018549l1/30/89187451576012750121701.8784.081.2895.4532330116291982075112/02/89247152159019090181802.4787.361.9195.23366331042411819765412/05/8981855880277026200.8271.840.2894.5817248104311531785612/07/8997307115316030000.9773.120.3294.9419165122381702245812109/89109158155499047101.0974.710.5094.39210381188518119776112/12189126109775628059701.2677.520.6395.0626831119101932206312114/891341510380728069301.3477.380.7395.192321212146I452206512/16/891404511155888084501.4079.420.8995.16259631233314522486812/19/89108558095557053901.0974.570.5696.7719433122272482317012121/89108558120563053801.0974.800.5695.5620325113822352167212/23/898505693010720101900.8581.481.0795.06267211101219919997512/26/89105207665503048201.0572.860.5095.8319048123942762407912130/891301010420727068301.3080.090.7393.9522942119033722338401/04/9058303660174015700.5862.780.1790.2314219109462982059101/11/9071054610200018000.7164.880.2090.0015084107472872059601/16/9060854035372034000.6166.310.3791.4012558105012991829801/18/9091856805409036600.9274.090.4189.49174951057729418810201/2219086856570538048600.8775.650.5490.3316735872425416910401/24/901253010050934086201.2580.210.9392.2922177860027118610701/27/90106808380597054501.0778.460.6091.29180118952305198275TABLED2.5RESPONSEDATAOFSAMPUNGPOINTNO.5UNDERDIFFERENTRUNNINGCONDrT1ONSDURINGThEMAXIMIZATIONANDRECOVERY.PERIoD..EXP.DAYDATEINORGANICSMG/LVFA,MGILTOT.VFANOs.TKNTPHAcHPrIso-HBrA-HVrIso-HVrHHcmg/LHAcHBrHVr1110/13/89328170138818554078226.56674713934410/16/8929019915091833389302453682764141610/18/89354175127518964710043264702864043810/20/893581941360165142108929596539039521110/23/894032101443166947127332656289441711310/25/894032101603171449141732676339944741510/27/8933121416771779451442276853274454022011/01/893982391596194948153927665237346582211/03/8940323214452189571594335553447112511/06/893952241324213349151327664876844952711/08/894212171144249359157635594818146602911/10/89415226910227750151425106689430533311/14)893231838022243371050229062837973511/16/8936719615772664341141158674150333711/18/8931316415392205288061181690435544011/21/8941520120292147411425189579553034211/23/8933521402100351604128679233444411/25/8933120101915351553133349941297754711/28/892461870164529156492748927294911/30/8931621201930441936199677834405112/02/8926920801731321874829628309465412/05/892741710030155087774015635612/07/8931222217561743139748344065812109/893272092141219130170138596547176112/12/8931022119481816291449375113947716312)14/8931422124092370331819415894659886512116/89334238216723573117083753638562086812119/8943224622592469501726625554458587012/21/8939122720982195471691555004454127212123189353229209118814517814944637517197512/26/894052492289199263-2232645385058497912/30/894822512238204483193037865395656868401/04/903632152129202666152328695385452579101/11/903292251960222163146830737606453459601/16/903631791272227966150232759086648209801/18/903671949142403701571297395266463510201/22/903551791522041641255306482057327310401/24/903711881032109681199357389955329810701/27/904182011842190711285--377697756-3554276TABLED26RESPONSEDATAOFSAMPLINGPOINTNO6UNDERDIFFERENTRUNNINGCOND1TLONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATESOLIDS,MG/LSOLIDS,%OR%TCOD,MG/LNOs.TSVSTSSTVSS[%]%TS[%]%TSTOTALSOL.NH4-NP04-P1110/13/8946852465201013000.4752.610.2064.68256257935824410/16/8939151850156010400.3947.250.1666.67164641237521610/18/8941301895171010200.4145.880.1759.65.17362483585810/20/8987002090222013800.8724.020.2262.16230549436891110/23/8939651970236012500.4049.680.2452.972209491364151310/25/8941702015209010100.4248.320.2148.332096252375231510/27/8942402205239013300.4252.000.2455.652334173643522011/01/8962403565374024700.6257.130.3766.044426501377152211/03/8963553575466030400.6456.250.4765.24531765431742511/06/8964953785473031800.6558.280.4767.234816490396132711/08/8968653930482032700.6957.250.4867.845929585402332911/10/8959153225328022100.5954520.3367.3834173333847533311/14/8983054900709048800.8359.000.7168.837552664272433511/16/8989405300743048900.8959.280.7465.8185001083279153711/18/89104356420735049961.0461.520.7467.89856610513032344011/21/8995056100700048500.9564.180.7069.29104171909297254211/23/8994055885622041500.9462.570.6266.7290914585346624411/25/8978054990289020800.7863.930.2971.978835538232216654711/28/8979254995137011300.7963.030.1482.481009980323183364911/30/89100406625354027501.0065.990.3577.6815050108042783695112/02189126558910496040701.2770.410.5082.06171311082824935465412/05/8986655780284.022900.8766.710.2880,631199286241922935612/07/8999106725499035800.9967.860.5071.7413799100212213125812/09/8987405590332025600.8763.960.3377.1113852109022383167611211218975154665186015200.7562.080.1981.721191097742782856312/14/8980104980235017600.8062.170.2474.891109389882782586512116/8970304105164014500.7058.390.1688.4111521933123527686812/19/8965754070195016700.6661.900.2085.641012184213322187012121/8963803750133012000.6458.780.1390.23967580492961997212/23/8950602880107010000.5156.920.1193.468664704534416497512/26/89513029109007900.5156.730.0987.7883707002389997912/30/89499028659506600.5057.410.1069.4772875830503228401/04/904570268011307700.4658.640.1168.1449093783486349101/11/9041052270195010400.4155.300.2053.3335562101457159601/16/9047252605301017100.4755.130.3056.8141681260396419801/18/9047252490278516000.4752.700.2857.4536588754422410201/22/9046202100292015700.4645.450.2953.7732926583563710401/24/9042001815239012700.4243.210.2453.1425968113513210701/27/904305199014207900.4346.230.1455.63379096834549277TABLED26RESPONSEDATAOPSAMPLINGPOINTNO6UNDERDIFFERENTRUNNINGCONDITIONSDURING.THEMAXIMIZATIONANDRECOVERY.PERIODEXP.DAYDATEINORGANICS,MGILVFA•MG/LTOT.VFANOs.TKN%TSTP%TSHAcHPrIso—HBrA-HVriso-HVrHHemgfLHAcHBrHVr110/13/89345410/16/89371610/18/89333810/20/894341110/23/893201310125/893881510/27/8942522011/01/894342211/03/893982511/06/894172711/08/894872911/10/8945633311/14/894473511/16/894213711/18/8937644011/21/893524211/23/894304411/25/8942154711/28/894354911/30/894355112102/8941265412/05/893045612/07/893655812/09/8936976112112/893636312/14/893836512/16/8936786812/19/894047012/21/894987212/23/8943597512126/895247912130/896518401/04/905249101/11/905059601/16/904979801/18/9044210201/22/9039810401/24/9037910701/27/904183.90593.01803.60763.90804.33644.31735.10543.94964.40875.22814.57904.88854.581144.741105.07944.82985.111663.541912.783543.073763.223823.252803.563403.213184.882735.322644.712693.021953.002193.72.1832.921972.781912.441542.171133.401153.181092.871203.031143.0713353317721055322311694434645546939555962353636153152344578496593956820546855571835776973886628398448340784065086153315621382421051311051019462100113115824103208327844233115162239288231631232409645105403468340623697368233173014262216631082460195121113113121183.63145877126.08674086.277851106.41684077.85643896.15623386.83333076.03515577.21546597.34556696.32394687.6265.83456765.9089136135.94159194125.2044034731446.391110986712193.561107742783.911508518823.3817455114573.2018074817802.864012343.02117719314113573.12122022184714941.17219720683216461.288642164113211321.1777224525410843.736012599725763.876352655794844.566922326784043.927231989753934.535432185871154.483521519415.415156566.682222946.32941247.3759777.7955727.585572676464566647541441381381.3210498278TABLED7RESPONSEDATAOFSAMPLINGPOINTNO7UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATESOLIDSMG/I.ORELSECODMG/I.NOs.TSSTVSS[%][%TSJTOTALSOL.NH4-NP04-P1110/13/896103800.0662.307855793999410/161894252950.0469.4157653538719610/18/893952000.0450.634132073756810/20/893101750.0356.4557632935881110/23/896002400.0640.00573327405101310/25/895201850.0535.58461210387181510/27/893151200.0338.106252503702622011/01/896303700.0658.73752418‘390222211/03/894253100.0472.94695409390282511/06/894654050.0587.10776490402232711/08/894253250.0476.47752459408262911/10/895604250.0675.897502923967233311/14/896604200.0763.641037456322393511/16/897105100.0771.831250792297503711/18/896353900.0661.4212126872972044011/21/89185012250.1966.2234591789323224211/23/89162510900.1667.0845853439334464411/25/8913509350.1469.266225489937112854711/28/89152010450.1568.75815177143412244911/30/89180013800.1876.67965088663413485112/02/89138010900.1478.9911879993930635665412/05/8911358800.1177.53862460782322235612/07/89210519700.2193.591026782962492545812109/8911659650.1282.8311066909825525076112/12/89170514050.1782.40911778853322006312/14/89131511000.1383.65825977733081706512/16/89149512800.1585.629412827630821686812/19/89146013600.1593.15793572873681017012/21/899909350.1094.44804969114231287212/23/8911709400.1280.34736863973329797512/26/896806100.0789.716197-5312412367912/30/897005700.0781.4354255020543578401/04/908005200.0865.0044273461469689101/11/907804850.0862.1821821455497229601/16/907454250.0757.051603802453439801/18/907304250.0758.2212726764023910201/22/9084.04450.0852.9812354113744610401/24/906653750.0756.399744873564610701/27/903952350.0459.4972642436254279TABLED2.7RESPONSEDATAOFSAMPLINGPOINTNO7UNDERDIFFERENTRUNNINGH.:CONDITIONSDURINGTEEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATEINORGANICS.MG1LVFA,MG/LTOT.VFANOs.TKNTPHAcHPrIso-HBrA-HVrIso-HVrHHemg/I..HAcHBrHVr1l10/13/894096265662220145410/16/89405743522657610/18/89379783826865810/20/894467329197491110/23/894277725143381310/25/893986629165451510/27/89376361151422011/01/894218122255462211/0318943469216252511/06/894617921276472711/08/8949681167212911/10/89487830033311/14/8948710023468663511/16/89461110678761423711/18/893886866111916244011/21/8941110538332732353316697634211/23/89371287026411312316537210784411/25/89453170103283178168177494150854711/28/8947728713914874055484266220084911/30/8948638461106258596067112285112/02/89454370601469365872574156365412/05/892972145198726395235510825612/07/893652599211840481009475584935155812/09/8938125683718434510054757146343576112/12/89428217535215065593266369013932576312/14/89359184550211864552276367912932066512/16/8939621150624086355563747134342686812/19/89368198341248270178337258312229907012/21/89523173348263981135398445810830337212/23/89498163391234976143397929395273697512126/8947514832822058065448317723947912/30/896011593942166863749819623678401/04/905381522971368273814449101/11/90555492985017049601/16/90493103741071619801/18/90455100444438110201/22/90438116161610401/24/9042612315273710701/27/904221230280TABLEDl8RESPONSEDATAOFSAMPLINGPOINTNO8UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXTh4IZATIONAN..RECOVERY.PERIODEXP.DAYDATESOLIDS,MGILSOLIDS,%OR%TCOD,MGILNOs.TSVSTSSVSS[%1%TS[%J%TSTOT.OL.NH4-NP04-P1110/13/89259011371631230.2643.900.0275.4628928938719410/16/8925279073752100.2535.890.0456.0024724738115610/18/8921877471971130.2234.160.0257.3620720736415810/20/892357773123600.2432.800.0148.78329288428151110/23/8923771030197200.2443.330.0210.15368204387101310/25/892363860180300.2436.390.0216.67252168381111510/27/892450997227430.2540.690.0218.94332503641122011/01/89248710801971300.2543.430.0265.9945920936532211/03/89282712673872730.2844.820.0470.54695286341112511/06/8922178931501370.2240.280.0291.33449367371222711/08/89355513002031370.3636.570.0267.49501292408212911/10/89271311832001600.2743.600.0280.004583334026033311/14/8923509102901200.2438.720.0341.38539373340203511/16/89266711732031180.2743.980.0258.13667583322233711/18/8930401290167970.3042.430.0258.08687525279644011/21/89353718235973330.3551.540.0655.7821471829352204211/23/895147304713608200.5159.200.1460.2942693399377284411/25/89627739379775500.6362.720.1056.296024477934611454711/28/89722746106675100.7263.790.0776.46759468393521484911/30/8997006040226316730.9762.270.2373.931052084953692595112/02/89903058008807450.9064.230.0984.6611879953529533265412/05/8961203933126010000.6164.260.1379.37813160782211815612/07/8984705780329026400.8568.240.3380.241100666532551735812/09/8983075167277020030.8362.200.2872.3111148836126721276112/12/8992536010413730270.9364.950.4173.171166378853202076312/14/8976034733272520400.7662.250.2774.86979877733201416512/16/89603735338137530.6058.520.0892.629168795128419786812/19/8963734013126510800.6462.970.1385.38850273683561287012/21/8972174520277522950.7262.630.2882.70983768294111177212/23/89526331378507450.5359.600.0987.65728763163628097512/26/89493029107405670.4959.030.0776.6261174990395617912/30/89498330077906400.5060.350.0881.0164784696-537558401/04/90305715875773000.3151.910.0651.9937023139463389101/11/904023216310906970.4053.770.1163.9425861374474209601/16/90250011035733200.2544.120.0655.851122882408279801/18/90258711873901830.2645.880.0446.928355573961510201/2219019705805002170.2029.440.0543.406584123561510401/24/9018305803101200.1831.690.0338.716094063562410701/27/902163790157730.2236.520.0246.5068242434534281TABLE1)2.8RESPONSEDATAOFSAMPLINGPOINTNG.8UNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATEINORGANICS,MGILVFA,MG/LTOT.VFANOs.TKNTPHAcHPrIso—HBrA-HVrIso-HVrHHemgfLHAcHBrHVr1110/13/89358232113334410/16/89375611411426610/18/89311591613429810/20/89354681815634Ii10/23/8939362125161310/25/894076015137301510/27/894214865922011/01/8943975532211/03/8943973752511/06/8943468002711/08/8948774532911/10/89458720033311/14/89509104003511/16/894529635555833711/18/8935672457810844011/21/8941987930341333634176813244211/23/89462997317037010213017536618134411/25/89385143101284167167180489148354711/28/8946330514786555195624616920184911/30/89514360176850151535555947029395112/02/894773801708561327335467970281565412/05/89251160169848592263652721605612/07/89323167673167851573525174328165812/09/89350184717199555782265167652337576112/12/89420223555218967530296268612732606312/14/89379178574227070492326672013233476512/16/894322135252459664613065750136344686812119/89441164346256673132377656911830297012/21/8951116932926978294438843510630247212123/8949815334025848562459027487282197512126/8943313833923138443-8914824407912130/8959415735220397847716821688401/04/90517114231119712029101/11/90497242554406129601/16/9049310059801249801/18/9048898010201/22/9039890010401/24/90430118010701/27/903711030282TABLE029AVERAGERESPONSEDATAOFSAMPLINGPOINTNO1,2,3,and6UNDERDIFFERENtgRUNNIN0CONDITIONSDURINGEMAXIMIZATIONANDRICÔVERYPERIODEXP.DAYSOUDS,MGILSCUDS,%or%TSOD•MGILNOs.TSVSTSSTVSS[%](%TSI[%][%TSITOTALSOL.NH4-N.SAl4]IJNQPOINEREDI113295622634326620248102.9689.082.6693.1737432619720227327172848527837262033.2787.002.7894.1040652615413336256082256520330190302.5688.002.0393.404135759946443283802523829180273852.8488.882.9293.784295362932550314432810033630313753.1489,283.3693.264223961028657310002728830710286053.1087.963.0793.133671869744764370553326535220329703.7189.713.5293.616058769307871298452646028225262002.9888.572.8292.8138949649139106364353325030720293703.6491.233.0795.6351939816823SAMPLINGPOINTNUMBERED21131299310367892381431.3079.780.8991.2623618100153152271501512674986794671.5082.890.9995.762704610324278336130001053083157941)1.3080.660.8395.482289810136217443688506475569095662756.8994.066.9195.9211786611152171550744256996072600692857.4494.007.2695.4412387810864122657672156263061555586956.7293.186.1695.3510832311651230764672706270068330656356.7393.216.8396.0511875611753154871714906690063685613607.1593.606.3796.359816210752199910670255220390036250.7074.440.3992.99212198858268SAMPLINGPOINTNUMBERED31131299310367892381431.3079.780.8991.2623618100153152271501512674986794671.5082.890.9995.7627046103242783361300010530831579401.3080.660.8395.482289810136217443688506475569095662756.8994.066.9195.9211786611152171550744256996072600692857.4494.007.2695.4412387810864122657672156263061555586956.7293.186.1695.3510832311651230764672706270068330656356.7393.216.8396.0511875611753154871714906690063685613607.1593.606.3796.359816210752199910670255220390036250.7074.440.3992.99212198858268SAMPLINGPOINTNUMBERED611341252063228011970.4150.000.2352.31221338736822764253647427728870.6456.680.4367.48472146939433696885860739049400.9760.400.7466.858533106729144386055438455531150.8663.250.4669.3589634984334550113487768425034101.1368.200.4379.87160911081626465793256158415530700.9365.910.4274.43138261046223076475204543199516050.7560.280.2081.6511307916025787157203315120011000.5757.850.1291.8491707547320910642531903190510300.4344.720.1954.393193890348283TABLED2.9AVERAGERESPONSEDATAOFSAMPLINGPOINTNO1,23,and6UNDERDIFFERENTRUNNING(OJDfrIOrS.XJRIrG111E.MA)(IqTIOfJANDRECOVER..Y.PERIODEXP.DAYINORGANICS,MG/I.VFA•MG/LTOT.VF)NO.lEN%TSIP%TSP04-PHAcHPriso-HBA-HVriso-HVrHHemgllHAcHBrHVr113227336443550657764871910611322733644355065776487191063804.283924.033623.863653.933693.763453.763532.423884.033554.014045.824046.683305.463295.593185.313036.052947.803256.583735.95001808080000119700001033000011640243090100009570020306230000617001570159028585829244822769490704395129176505097127167650528793157452310103454160493703754735565804641423472334679575834632858582924482276949070439512917650509712716765052879315745231010345416049370375473556580464142347233467957583463SAMPLINGPOINTNUMBEREDI1791.0513933837402341690.8813034283002671380.9411832269902111480.8512741170102721480.9212932153901981470.6914038942703261441.261343518602101531.0512633210602931820.871516196420527SAMPLINGPOINTNUMBERED22281.53209164017334514172201.65197113622374815121811.36156171726323210482060.80184206420413415941990.57174017613218782121.37211192719542715242240.79218223023183017132080.76196187718294015481902.521801592141651279POIN•NUMBERED320916401733451417197113622374815121561717263232104818420642041341594174017613218782111927195427152421822302318301713196187718294015481801592141651279SAMPUNGPOINNUMBERED6.2453340840475608191241650131141110104773249362017765016193141199207544142626781823085931108182664249179444415572002281.532201.651811.362060.801990.572121.372240.792080.761902.521134045.822274046.683363305.464433295.595503185.316573036.057642947.808713256.5891063735.951133784.58‘2274534.893363994.914434264.335504243.156573673.397643755.028714673.3691063993.05646.94857.091025.921794.983793.293293.072671.232014.221247.6900511131020390000000000743290546166447619575570214185556118000866726819243023430343733500113TABLE1)29AVERAGERESPONSEDATAOFSAMPLINGPOINTNOs5ANDSATPSEUDOSTEADY-STATEUNDERDIFFERENTRUNNINGCONDITIONSDURINGTHhMAXIMIZATIONANDRECOVERYPERIOD(coatd)EXP.DAYSOLIDS,MG/i.SOLIDS•%OR%TSCOD•MG/UINORGANICS,MG/UNOs.TSVSTSSTVSS1%][%TSI[%J[%TSJTOTALSOL.NH4-NTKN1?P04-P•SAMPLINGPINTNUBERED113120759465714764231.2177.340.7188.31224229825303379211201227102278567867482041.0284220.8794.55285581035428041022219133670504798213020550.7168.050.2196.471321897772083401801614431392811328881583851.3980.660.8894.972610310713174333208180550217301867515920151752.1785.721.5995.343448211027158293210202657103237635407538551.0373.920.4194.6620102120621763202162117641373010768808076901.3778.400.8195.17245881224014532423022287196807525817577850.9778.140.8295.3123523111972173722282089106116059215765570351.1679.340.7791.79200948776288395195192:pJ,4pj1).NtERED81132397962201310.2440.140.0215.253182073774075711227282811251841450.2840.150.0279.614693313944607134336285412321851080.2943.210.0258.1167755430140484154435712349211696850.5760.960.1258.29514740893624241217155093655920157212090.9463.250.1679.2911200901533249637029665783895474303023220.8465.220.3076.2811077750726133717619376468204133176913970.6860.390.1883.749483786230240619616987162403829181315200.6261.120.1885.17856265733875051619991062163790157730.2236.520.0246.5068242434537110334cc285ABLED2AAERESPóös*ifPLnóPóiNNö,ANbSTATEUNDERDWFERENTRUNNINGCONDiTIONSDURINGTEEMAXIMIZATION.NRECORYPOD(ccW4).VVV.V:::V.•.:EXP.DAYVFA,MG/LTOT.VFANOs.HAHPrIso-HBrA-HVrlao—HVrffi1emg/LHAcHBrHVrSAMPLINGPOINTNUMBERED511315741721471377306759889439522711262301531534297755275448733615582435319741384716046944430200835157913606441316055001831381905146370303267657194919673015490385400493876422882364321764039563425804871209520384617360524734152929106144215070124236759385634261131190600001922700050000133640670500009644373185877135149178428016485500173853142134556377028776576951837536782652597483096764550236568477316673513433968713352641847844893559729229106000000000TABLED29AVERAGERESPONSEDATAOFTHESAMPLINGPOINTNOs,4AND7ATPSEUDOSTEADY-STATEUNDERDIFFERENTRUNNINGCONDITIONSDURINGTHEMAXIMIZATIONANDRECOVERYPERIOD(coatd)EXP.DAYSOLIDS•MGILORELSECOD•MOILINORGANICS•MGILVFA,MGILTOT.VFANOS.TSSTVSSL%1%TSTOT.SOL.NH4-NTKNTPP04-PHAcHPrko-HBrA--HVrIso-HVrHHcn*g/LHAcHBrHVrSAMPLINGPOINTNUMBERED4113224219530.2286.99137229658299410222216150917404613022964601934295227495347270.5095.35176739800292451230203106723165114092967462724306336158314700.1692.871264296492143451841541509249531952148368804662443483345630.4894.4718095103171863041931891796202137147317877700407955015990152981.6095.7239932111081352982272040171231179084055249300565721200145052.1279.21168211206218132121621520892229321699040618475487764535050850.5495.10205371228016932822822722232435341762041594405815871383537050.3896.601825610832212360215205186720294615610514773849369106271525350.2793.3213885845323534519519514521156511673465940393330SAMPLINGPOINTNUMBERED71134781820.0537.8955326238740060182215040000332274833850.0579.8275941440248181401227070000233366734500.0766.62123174029742589356799080000152443148810130.1568.1754054169353412998708677414614617143301293550159012350.1677.83107659403324470377352006112664759666731395657163514680.1688.211066786972523732582528791842471007047565483475764140511900.1484.638836802530837819819352822636455l2763713132331687110809380.1187.39770966543785111681133702494791393982376102288491065303050.0557.948504563594241235015270000001800Table03‘1CalculationoftheCH4Production1AccordingtoSymons&Busweli(J.*mer.Chem.Soc.55:2028)CnHaCb÷[n.a/4.b/2]H20[n/2+aj8-b/4H4+(n/2.a/8tb/4]C02Ic.C6H1206----iCO2+3CH43CH4+6023C02+6H2048192kgCH448/180=0.25kgCOD192/180V(0.25)(1000glkg)(1mol/16g)(22.4Illmol)(cu.m/1000I)CH4=0.35cu.mCH4@Std.cond.(P=760mml-lg,t=0CIntheotherwords,Vcu.mlkgCODremoved=0.35CH4Similarly,amaIho,1983“Intro,toWastewaterTreatmentProcessCH4produced/gmCODremoved=0.35ligm.CODremovedOr,=0.35I/gm454g11b*cu.ftJ28.32I=5.61cu.ftCH4I1bCOD2.AccordirigtoL.awrerice&McCarthyG5.6118.34Of(Sf.Se)1.42XviWhereG=cu.ftCH4Std.Cond.8.34Cf(St•Se)TotalCODremoval,Ib/dOfMGD,Sf&So=mg/ICOD1.42Xv=IbidCODremoval,whichisconvertedtoblomassartdXvIbidbiomassyieldsOr.Xv=Y(Sf.Se)Of-KdXyV(Ramalho,p.237)WhereY(SfSe)Of=IbidMLVSSproducedKdXvVIb/dMLVSSlossEndogeneousrespraUonY=0.06mgVSS/mgBOD,Kd=0.03(1/day)-Metcalf&Eddy.p.459287IfaveragemolecularformularforblomassIsC5H7N02C5H7N02+502—4C02+NH3+2H201135*32=160160/1131.42IbO2Ilbbiomassproduced3.TotalCH4gas@T.PTotalCH4,cu.ftT,P=G•(760/F)*(7/273)WhereP=mmHg,T=273÷C288TableD41AM-UASBSystemRecoveryatPseudoSteady-stateConditionUnderDifferentRunningConditions(CHLm31m3-d)HRT,daysCH4,cu.mlcu.m-dMax.LoadsRecoveryPeriod%Recovery1.02.452.4601.53.982.25572.03.651.88522.53.251.78553.02.551.76693.51.701.74102TableD4.2AMUSBS.ern.RecoveryäteSteLdy.5tateCohdition.UnderDifferentRunningConditions(COD(RI)removal,%)HRT,daysCOD(Fil.)removal,%Max.Loads_RecoveryPeriod%_Recovery1.0221801.58837412.09540422.59750523.09760623.59871724.09881834.59890924.7989698TABLED5IRESPONSEDATAOGASCOMPOSITIONIPRODUCIONILOADINGRATEDURINGTHEACCLIMATIZATIONPROCESS—ACCL.DAYDATEPLOW,KgCODCH4OASPRODUCTIONSPECIFICC114PRODUCTIONALTER.LIDADDED/DAYliDM31M3-DM3/M3-D@SCM3IKgCOD(ADD)M3IKgCOD(REM.)M3IKgCOD(ADD@SC)M3/KgCI)D(RLSC)103/28/882.50.0143.170.070.060.230.480.200.42804/04/882.380.0147.280.160.140.544.030.473.571204/08/882.950.01810.230.230.200.574.790.514.251604/12/883.670.02232.440.720.641.478.161.317.241904/15/883.550.01932.270.720.641.733.361.542.982304/19/883.680.02127.090.600.531.312.801.162.482704/23/883.530.01829.430.650.581.643.751.453.323004/26/884.310.02327.670.610.551.212.311.072.053404/30/883.950.02437.550.830.741.592.681.412.373705/03/883.680.01838.680.860.762.103.261.862.894105/07/883.480.01732.710.730.641.892.211.671.964405/10/883.680.02134.550.770.681.651.921.461.704805/141883.550.01933.420.740.661.722.011.521.785105/17/883.720.02034.640.770.681.752.011.551.782105/31/882.390.0195.930.130.120.310.380.280.34806/07/882.450.01817.080.380.340.971.170.861.041506/14/882.210.01819.410.430.381.071.200.951.062206/21/884.560.02637.640.840.741.431.711.271.512906/28/884.590.0244.0.330.900.791.661.961.471.743111/15/882.390.0127.080.160.140.581.210.511.07411/18/881.660.0089.590.210.191.142.281.012.02811/22/881.940.01112.640.280.251.151.991.021.771111/25/882.040.01130.170.670.592.744.702.434.171511/29/883.720.02238.450.850.761.722.531.532.251812/02/883.40.01837.310.830.732.052.461.822.182212/06/883.220.01745.141.000.892.712.992.402.652512/09/884.020.02646.241.030.911.761.971.561.752912/13/882.890.01538.340.850.762.552.862.262.533212/16/885.880.04237.490.830.740.900.980.800.873612/20/885.340.03246.531.030.92l.452.101.291.863912/23/886.020.03850.651.131.001.331.871.181.664312/27/885.060.03550.741.131.001.462.071.291.844612/30/883.940.03058.301.301.151.942.251.721.995001/03/895.610.03962.711.391.241.601.741.421.545301/06/895.990.03657.551.281.131.611.711.421.5200TABLEp51RESPONSEDATAOFGASCOMPOSITIONIPRODUCTION/LOADINGRATEDURINGTHEACCLIMATIZATIONPROCESS(ca.Wd)AcCL.DAYDATEPLOW•liDLOADINGRATE(lASCOMPOSmON,MOLE%(A-ANDM-UAS&.RPC11VELY)ALTER.GASCH4M31M3-DKgCOD(SOL)1M3-DKgCODIM3-D(rOl’)KgVSIM3-DC02N2CH402C02N2CH402103/28/8810.803.170.060.313.121.5155.4721.1820.003.3519.2625.9854350.41804/04/8814.587.280.050.303.302.5062.3813.6222.701.3012.5910.4976.921204/08/8818.3410.230.070.405.171.6769.353.1627.4913.793.4582.761604/12/8851.1232.440.080.492.722.6070.219.8119.590.3921.261.0777.671904/15/8852.0732.270.080.414.002.2875.432.9821.6025.720.7873.502304/19/8844.4027.090.080.464.213.3573.703.6522.6427.780.8971.332704/23/8850.9029.430.080.407.582.2471.643.8424.5027.381.0071.623004/26/8847.5027.670.100.515.704.3373.495.3020.660.5428.550.6368.283404/30/8861.1137.550.090.523.113.7476.543.1220.3428.800.7570.453705/03/8862.3538.680.080.412.043.0976.592.9420.4929.370.6469.974105/07/8853.0032.710.080.392.342.3277.382.3620.640.2928.201.4070.400.294405/10/8857.7534.550.080.472.711.9073.193.4323.3830.520.6068.884805/14/8855.0233.420.080.431.952.1874.222.5123.2530.270.6669.085105/17/8857.4334.640.080.442.663.3772.802.9224.2829.821.1769.032105/31/8813.435.930.050.421.741.6371.923.1424.9430.480.6968.83806/07/8831.3717.080.050.393.052.0069.561.8328.6118.231.4080.381506/14/8833.2519.410.050402.241.8266.301.3032.4018.231.4080.382206/21/8862.7037.640.100.585.033.9265.531.7532.7217.681.1681.172906/28/8861.6840.330.100.542.993.1365.992.0531.9614.450.9884.583111/15/8813.707.080.050.271.551.1958.032.3739.6029.8270.18411/18/8817.649.590.040.191.640.9457.863.3838.7420.9412.2366.83811/22/8820.8412.640.040.242.350.8861.642.5035.8618.861.8579.281111/25/8843.3430.170.050.241.461.1659.472.1738.3519.250.6980.081511/29/8858.9238.450.080.502.712.4161.942.4735.6124.070.5175.431812/02/8856.4937.310.080.402.511.9964.582.2633.1522.920.4676.622212/06/8868.8945.140.070.371.912.3964.202.9932.8025.170.6574.182512/09/8872.5546.240.090.584.083.0966.841.8131.3725.590.4673.942912/13/8863.0538.340.060.331.972.1068.162.1329.7132.080.4667.453212/16/8867.2437.490.130.924.313.7665.633.0131.3534.130.5665.313612/20/8877.2046.530.120.714.313.1270.113.1626.7329.080.5070.423912/23/8886.4850.650.130.854.514.0667.396.9325.6729.440.4870.074312/27/8881.1050.740.110.775.673.6066.353.5633.0929.670.4869.874612/30/8890.8558.300.090.673.203.0564.982.7332.3128.900.5170.595001/03/8994.5362.710.120.875.043.6961.501.2637.2426.650.3273.015301/06/8989.2457.550.130.803.823.0468.131.4630.4026.220.3673.43CD0TABLE1)52RESPONSEDATAOFGASCOMPOSITIONIPRODUCTIONILOADINORATE(A-ANDM-IJASBs)DURINGPHASE1,2,AND3EXPERIMENTSEXPER.RUNDAYDATEINF.FLOW.FLOW,IJDLOADINGRATECH4PRODUCTIVITYSPECIFICCH4PRODUCTIONNUMBERSLIDGASCH4M3/M3-DKgCODIM3—DliDM3!M3—DM3IM3-DM3IKgCODADDM3IK8CODADDSYSTEM(SOLUBLE)@SCID(SOLUBLE)(SOLUBLE)@SCI07/121886.0262.6535.580.130.6935.580.790.701.151.02807/19/885.0351.1731.480.110.5531.480.700.621.261.121107/22/884.7053.3435.520.100.4735.520.790.701.681.4921507/26/884.4454.2035.950.100.8335.950.800.710.960.852208/02/884.6939.9023.810.100.7723.810.530.470.680.612908/09/885.5937.4621.300.121.0721.300.470.420.440.393208/12/885.1546.3328.570.110.8928.570.630.560.710.633608/16/886.4358.9036.480.140.9736.480.810.720.840.743908/19/886.1772.8143.660.140.9843.660.970.860.990.884308/23/885.0976.2544.800.110.7144.801.000.881.411.254608/26/887.0874.6442.830.161.0242.830.950.840.930.8234908/29/886.1190.2448.960.141.1948.961.090.960.910.815309/02/885.1296.3459.830.110.8359.831.331.181.611.435709/06/885.2297.8558.120.120.8958.121.291.141.451.286009/09/885.4692.6652.410.120.8652.411.161.031.351.206509/14/884.4752.2526.360.100.7626.360.590.520.770.686809/17/884.7745.3019.170.110.8619.110.430.380.500.447109/20/885.57404415.710.120.8015.710.350.310.440.397409/23/884.8339.5614.420.110.6414.420.320.280.500.457809/27/884.0731.6612.870.090.6212.870.290.250.460.418109/30/884.2033.8613.720.090.5913.720.300.270.520.4648510/04/885.2242.3514.960.120.7514.960.330.290.450.409510/14/884.8326.168.280.110.688.280.180.16.0.270.249910/18/886.0025.407.770.130.837.770.170.150.210.1810210/21/885.1522.696.500.110.726.500.140.130.200.185101/17/894.1576.0449.170.090.7249.171.090.971.521.35801/24/895.5984.6652.310.120.8452.311.161.031.381.231501/31/896.5694.7859.850.150.8659.851.331.181.541.362202/07/895.9696.1059.800.130.8159.801.331.181.651.462502/10/894.8694.0960.400.110.6760.401.341.192.011.782902/14/894.5977.4452.820.100.6752.821.171.041.761.5664302/28/893.9082.8949.600.090.5649.601.100.981.971.745003/07/893.9476.5045.770.090.6445.771.020.901.581.405703/14/894.0992.9458.490.090.6558.491.301.151.991.76TABLE052RPOSEDATAOFGASCOMFOSrflO*4IPRODUCUON(L.OADINGRATE(A-ANDM-UASB.)DURINGPHASE12.AND3PERIh4ENTSEXPELRUNDAYDATEINP.FLOW.PLOW.LIDWADINGRATECH4PRODUCTIVITYSPECIFICCH4PRODUCI1ONNUMBERSL/DGASCH4M3/M3-DK800D/M3-DliDM31M3-DM31M3-DM3(KgCODADDM3IKIOODADDSYSTEM(SOLUBLE)@SCID(SOLUBLE)(SOLUBLE)SC6403121/895.1189.1557.030.110.7657.031.271.121.671.487103/28/895.4593.1859.780.120.8059.781.331.181.671.4877804/04/894.5771.9043.870.100.7143.870.970.861.381.228504/111894.4369.9543.330.100.7743.330.960.851.261.119204/18/893.8486.3052.970.090.6052.971.181.041.951.739904/25/892.75104.7161.120.060.5561.121.361.202.482.2010204/28/894.47110.9663.860.100.6963.861.421.262.071.8310605/021893.13104.0060.540.070.5760.541.351.192.382.11811305/09/893.99114.0765.730.090.6465.731.461.292.282.0212005116/894.76108.7664.430.110.7964.431.431.271.821.61130051261896.4098.6751.000.141.0251.001.131.001.110.9913405/301894.57105.9659.350.100.7859.351.321.171.701.5113706/021895.76121.6867.830.130.9667.831.511.341.571.3914106/06/895.40129.7474.670.120.8774.671.661.471.911.69914806/13/895.41127.2071.650.120.8071.651.591.411.981.7615506/20/894.82114.2063.540.110.7663.541.411.251.851.64162061271893.40126.1275.140.080.6075.141.671.482.792.471016907/04/894.5929.9617.010.100.6917.010.380.340.550.4917607/11/893.7266.8139.570.080.6139.570.880.781.431.2718307/18/893.5354.4635.630.080.5435.630.790.701.461.3019007125/894.2498.8460.830.090.5760.831.351.202.362.0919307/28/895.4290.0154.900.120.7054.901.221.081.751.5519708/01/894.5799.1654.490.100.5054.491.211.072.422.1520008/04/895.0371.3640.190.110.5740.190.890.791.581.401120408/08/893.5175.3144.230.080.4444.230.980.872.231.9821108/15/894.8779.2549.920.110.5949.921.110d981.881.6721808/22/893.3370.0042.080.070.4242.080.940.832.231.9822508/291893.2976.1647.510.070.4347.511.060.942.432.1522809/01/895.0892.9158.290.110.7758.291.301.151.691.5023209/05/894.2085.9455.660.090.5955.661.241.102.111.871223909/12/895.9377.0347.540.130.7947.541.060.941.341.1924609/19/894.7775.7047.510.110.7147.511.060.941.491.3225309/26/894.3369.1040.290.100.5540.290.900.791.641.4525609/29/893.9574.4544.130.090.5244.130.980.871.871.6626010/03/894.4592.9353.380.100.6453.381.191.051.841.6326310/06/894.7480.2949.160.110.6449.161.090.971.721.52TABLED52RESPONSEDATAOFGASCOMPOSITIONIPRODUCTIONIL.OADINGRATE(A-ANDM-IJASBi)DURINGPHASE12.ANDEXPERIMENTSEXPER.RUNDAYDATECH4PRODUCTIONGASCOMPOSITION.MOLE%NUMBERSPHASEA—UASBM-UASBA-UASBM-UASBSYST.C02N2CH402C02N2CH4I07/12/888.2627.3235.5866.255.6426.861.2510.153.4685.63807/19/886.4325.0431.4869.331.8528.8212.270.9286.811107/22/887.7027.8235.5261.412.7035.500.3910.821.2787.9321507126/886.6429.3035.9559.824.4435.060.6816.100.7583.132208/02/885.1918.6223.8165.483.1731.3419.081.1779.752908/09/885.5515.7621.3068.312.4029.2913.681.2485.083208/12/884.7223.8528.5768.662.1729.1919.871.0679.073608/16/886.2130.2736.4867.322.0930.5920.011.3878.413008/19/885.7837.8843.6669.821.7828.4226.401.39fl.214308/231885.5239.2844.8066.154.6828.310.8730.230.5469.214608/26/886.9535.8942.8368.352.4229.2428.880.5770.5334908/29/885.6943.2749668.458.8222.160.5532.350.6167.025309/02/886.5653.2759.8367.751.8630.3728.290.4471.275709/06/887.4150.7158.1267.661.6130.7531.250.0068.766009/09/887.1245.2952.4167.841.4030.7634.850.0065.156509/14/883.2923.0726.3672.872.7424.4038.481.9959.536809)17/883.7915.3819.1775.531.6722.7945.291.0253.687109120/883.5712.1315.7176.661.7321.6048.001.2350.777409/23/884.2410.1714.4276.771.3321.9047.502.0950.417809/27/883.369.5112.8775.651.7122.6642.081.4756.458109/30/883.1510.5713.7276.922.1520.9342.201.6056.2048510/04/884.0010.9614.9680.781.0418.1744.161.9953.859510/141884.683.608.2874.122.0923.7940.533.9455.539910/18/885.841.937.7769.124.2326.6539.655.2055.1510210/21/885.630.866.5069.004.2426.7839.028.5552.425101/17/893.3345.8549.1770.442.5427.0227.540.5071.94801/24/895.2547.0652.3174.651.4023.9624.610.4074.991501131/896.6839.5746.2566.832.2830.9124.820.3774.812202/07/896.8252.9859.8070.781.3727.8325.620.3874.002502/10/896.7353.6760.4065.323.4431.2425.740.2773.992902/14/893.9848.8452.8264.454.8530.6823.900.3575.7764302/28/893.9345.6749.6073.012.8024.1931.000.4768.525003/07/893.0247.6250.6370.455.4024.1327.991.3170.705703/14/893.7154.7958.4975.590.9923.4128.9771.05TABLE1)52RESPONSEDATAOFGASCOMPOSITION/PRODUCTION/LOADINGRATE(A-ANDM-UASB.)DURINGPhASE12AND3EXPERIMENTSEXPER.RUNDAYDATECH4PRODUCTIONGASCOMPOSITION.MOLE%NUMBERSPHASEA—UASBM-UASBA-UASBM-UASBSYST.C02N2C11402C02N2CH464031211894.9546.9151.8564.035.0630.9128.8071.207103/28/894.8054.9959.7865.062.2332.7129.9670.0377804/04/895.3738.5043.8766.133.2130.6429.1970.818504/111897.8435.9243.7661.480.9437.5828.0371.989204/18/897.8445.1352.9765.550.6233.8128.5071.509904/25/8914.0752.8766.9463.5436.4627.8472.1510204/28/8920.1643.7163.8660.0939.9127.7272.3010605/02/8920.0940.4560.5458.0441.9527.9072.10811305109/8920.4545.2865.7359.3840.6228.9471.0612005/16/8915.8046.8562.6558.422.3539.2327.7572.2413005/26/8917.4833.5651.0358.468.3633.1826.080.9672.9513405/30/8919.9339.4359.3556.355.8437.8125.9774.0313706/02/8923.5539.4062.9655.405.6738.9326.2873.7214106/06/892.5.8441.2767.1155.415.1139.4826.9573.04914806/13/8922.9348.7271.6560.620.9738.4I27.8272.1815506/20/8922.0341.5163.5460.7639.2428.4971.5116206/27/8919.3455.8075.1460.7839.2226.780.5672.651016907/04/892.5314.4817.0174.7525.2526.341.0272.6417607/11/898.0531.5239.5764.122.0133.8725.950.8473.2218307118/892.7432.8835.6365.822.1432.0327.650.7071.6519007/25/8915.7345.1060.8357.5942.4126.9773.0319307/28/8913.3741.5354.9059.0240.9727.6272.3819708/01/8919.4435.0654.4960.7639.2427.931.4370.6420008/04/8913.2526.9440.1961.2038.8127.6272.391120408/08)8914.3129.9244.2357.7942.2327.7572.2321108/15/8910.9838.9449.9258.960.7540.2925.1274.8821808/22/898.5833.5042.0861.681.0237.2926.122.6071.2822508/29/899.5637.9647.5160.231.1238.6525.340.8673.8022809/01/899.0849.2158.2963.961.2234.8225.510.8573.6423209/05/897.2548.4155.6662.781.4335.7825.580.7073.721223909/12/897.9939.5547.5464.641.2634.1026.2273.7824609/19/899.0338.4847.5158.971.5239.5326.280.8972.8125309126/898.5731.7340.2963.462.9533.5926.061.1772.7725609/29/899.8234.3144.1362.590.9436.4826.134.6772.1926010/03/8912.5640.8153.3864.271.8133.9425.941.0373.0026310/06/8916.7032.4649.1651.851.6546.5125.801.0873.14295TABLE.D5.3RESPONSEDATAOFGASpRoDucnoN/coMosrnoNfLoADNoRA1u.::DURINGTHEMAXIMIZATIONANDRECOVERYPERIOD.:.EXPER.DAYDATESPECIFICGASPRODUCTION[CH4JC0MPOSITIONS,%NO..M3IKCOD(SOL)M3IECOD(SOL)0)2N2CN4ADDEDADDEDeSCI110/13/890.210.1970.5229.49410/16/890.320.2867.752.3629.89610/18/890.290.2566.552.4830.97810/20/890.320.2864.332.2833.491110/23/890.330.2966.830.8432.301310/25/890.410.3667.3632.641510/27/890.350.3167.6732.3522011/01/890.360.3266.260.8432.902211/03/890.560.5063.150.8735.992511/06/890.520.4662.390.8336.762711/08/890.620.5561.170.6438.202911/10/890.660.5961.9938.0133311/14/890.400.3662.720.3336.953511/16/890.270.2467.590.8931.523711/18/890.280.2572.300.4127.3944011/21/890.290.2571.871.7726.364211/23/890.260.2372.762.0125.224411/25/890.270.2471.880.9727.1654711/28/890.290.2674.010.6225.354911/30/890.300.2675.021.0023.985112/02/890.310.2872.9127.0965412/05/890.270.2469.971.1728.865612/07/890.230.2176.210.3923.405812/09/890.140.1276.471.5222.0276112/12/890.270.2473.980.6725.356312/14/890.170.1577.741.9220.366512/16/890.160.1481.490.1618.3586812119/890.140.1381.250.2218.537012/21/890.160.1479.120.3120.577212/23/890.230.2076.4023.6197512126/890.190.1775.481.7022.827912/30/890.180.1675.141.3523.498401/04/900.130.1271.131.9526.939101/11/900.220.1967.161.4531.399601/16/900.440.3962.451.1836.139801/18/900.510.4559.091.8039.1110201/221900.610.5458.242.2039.5610401/24/900.630.5558.871.5039.6210701/27/900.540.4858.181.1740.65296TABLE1)5.3RESPONSEDATAOFGASpRoDucnoN,coMsmoN/LoADNaRmE(AuAsa):..:DURINGTHEMAXIMIZATIONANDRECOVERYPERIODEXP.DAYDATEINF.FLOW(SYSTEMLOADINGRATEHRT,CH4PRODUCTiVITYNOa.FLOWGASCH4M3!M3-DgCOD(SOL)DAYSL/DM3/M3-D3/M3—D@SCLiDLi!)LIDM3-DAY1110/13/896.6725.967.660.150.813.007.660.170.15410/16/896.6641.1412.300.150.863.0012.300.270.24610/18/897.0038.0011.770.160.912.8611.770.260.23810/20/896.5841.2413.810.150.963.0413.810.310.271110/23/897.2244.6314.420.160.982.7714.420.320.281310/25/897.9761.7120.140.181.102.5120.140.450.401510/27/897.1047.5715.390.160.992.82*.15.390.340.3022011/01/898.7363.0020.730.191.282.2920.730.460.412211/03/898.9687.4431.470.201.242.2331.470.700.622511/06/899.3283.6030.730.211.322.1530.730.680.612711/08/899.6792.5035.340.211.272.0735.340.790.702911/10/899.1398.0237.260.201.252.1937.260.830.7333311/14/8914.23107.5839.750.322.201.4139.750.880.783511/16/8916.2987.0027.420.362.261.2327.420.610.543711/18/8915.9093.9625.740.352.031.2625.740.570.5144.011/21/8921.12138.6136.540.472.840.9536.540.810.724211/23/8920.90143.0036.060.463.050.9636.060.800.714411/25/8920.48120.4432.710.462.740.9832.710.730.6454711/28/8929.13185.5447.030.653.550.6947.031.050.934911/30/3926.18204.2948.990.583.670.7648.991.090.965112/02/8924.80168.0945.540.553.250.8145.541.010.9065412/05/8918.22118.1634.100.402.831.1034.100.760.675612107/8916.22108.2525.330.362.401.2325.330.560.505812/09/8919.5690.5919.950.433.171.0219.950.440.3976112/1218915.6598.6525.010.352.071.2825.010.560.496312/14/8916.60103.8421.140.372.721.2021.140.470.426512/16/8914.0079.9814.680.312.021.4314.680.330.2986812/19/8911.3855.7710.330.251.621.7610.330.230.207012/21/8912.4160.7312.490.281.751.6112.490.280.257212123/8911.4873.6717.390.261.691.7417.390.390.3497512/26/896.1537.368.530.140.983.258.530.190.177912/30/895.6026.466.220.120.773.576.220.140.128401/04/905.0019.155.160.110.874.005.160.110.109101/11/905.2231.309.830.121.013.839.830.220.199601/16/905.8853.3919.290.130.973.4019.290.430.389801/18/905.2457.3122.410.120.983.8222.410.500.4410201/22/905.7266.2526.210.130.953.5026.210.580.5210401/24/905.3862.6924.840.120.883.7224.840.550.4910701/27/905.2963.4525.790.121.053.7825.790.570.51297TABLED54RESPONSEDATAOFGASPRODUCrIONICOMPOSITIONILOADINGRATE(M-UASB).DURINGTHEMAXIAflONANDRECOVERYPERIOPEXP.DAYDATEINF.FLOW,liDWADINGRATECH4PRODUCTIVITYNOs.FLOWGASCH4M3/M3-DK8COD(SOL)L/DM31M3-DM31M3-DLIDSYSTEMM3-DAY@SC1110/13/896.67101.2072.070.15.1.2572.071.601.42410/16/896.6682.7858.840.151.3858.841.311.16610/18/897.0092.5065.240.161.3665.241.451.29810/20/896.5894.7166.690.151.2966.691.481.311110/23/897.2298.5268.820.161.4768.821.531.361310/25/897.97102.5371.490.181.7771.491.591.411510/27/897.10105.1773.010.161.6373.011.621.4422011/01/898.73160.85110.650.191.99110.652.462.182211/03/898.96158.21108.260.202.18108.262.412.132511/06/899.32155.30106.020.212.10106.022.362.092711/08/899.67155.17106.030.212.30106.032.362.092911/10/899.13148.94103.130.202.08103.132.292.0333311/14/8914.23196.07139.540.322.68139.543.102.753511/16/8916.29223.60157.030.363.83157.033.493.093711/18/8915.90217.43148.610.353.17148.613.302.9344011/21/8921.12269.60175.590.475.19175.593.903.464211/23/8920.90257.45160.780.465.21160.783.573.174411/25/8920.48197.77124.460.464.64124.462.772.4554711/28/8929.13145.8980.170.656.0280.171.781.584911/30/8926.18125.8264.620.586.7764.621.441.275112/02/8924.80125.5862.730.555.7462.731.391.2465412/05/8918.22139.1577.850.404.2277.851.731.535612/07/8916.22150.5083.960.364.4183.961.871.655812/09/8919.56147.7677.910.435.1777.911.731.5376112/12/8915.65159.0086.720.354.1486.721.931.716312/14/8916.60160.7087.320.374.4887.321.941.726512/16/8914.00154.2974.480.313.8474.481.661.4786812/19/8911.38135.1369.200.253.0969.201.541.367012/21/8912.41129.2666.170.283.1466.171.471.307212/23/8911.48123.5064.910.262.8164.911.441.2897512/26/896.15112.0866.990.141.6966.991.491.327912/30/895.6086.9654.550.121.4854.551.211.078401/04/905.0084.7555.670.111.2255.671.241.109101/11/905.2291.8361.260.121.2561.261.361.219601/16/905.8891.3561.480.131.3761.481.371.219801/18/905.2472.5449.910.121.2349.911.110.9810201/22/905.7273.5050.810.13-1.1150.811.131.0010401/24/905.3871.7650.150.121.0350.151.110.9910701/27/905.2973.3651.170.121.0551.171.141.01298TABLED54RESPONSEDATAOFGASPR0DUCUON1C0MPOSmONILOADINGRATE(M-UASR)DURINGTHEMAXIMIZATION:ANDRECOVERYPERIOD(óoa’cf)EXP.DAYDATESPECIFICGASPRODUCTION[CH4]GASANALYSISNO..M3/K 8 COD(SOL)M3/KgCOD(SOL)COMPOSITIONS,%ADDEDADDED@SCC02N2CH41110/13/891.281.1428.7871.22410/16/890.950.8428.9271.08610/18/891.060.9429.4670.53810/20/891.151.0229.5970.421110/23/891.040.9229.370.7769.851310/25/890.900.8030.2769.731510/27/891.000.8830.5669.4222011/01/891.231.0931.2168.792211/03/891.100.9831.5568.432511/06/891.121.0031.7068.272711/08/891.030.9130.521.1268.332911/10/891.100.9830.7469.2433311/14/891.161.0327.571.2771.173511/16/890.910.8129.7570.233711/18/891.040.9231.030.6568.3544011/21/890.750.6734.8765.134211/23/890.690.6137.5362.454411/25/890.600.5337.0762.9354711/28/890.300.2643.101.9654.954911/30/890.210.1946.921.7251.365112/02/890.240.2250.0549.9565412/05/890.410.3643.050.9855.955612/07/890.420.3743.101.0855.795812/09/890.340.3047.2852.7376112/12/890.470.4145.4354.546312/14/890.430.3845.6954.346512/16/890.430.3851.7348.2786812/19/890.500.4448.7951.217012/21/890.470.4248.040.7751.197212/23/890.510.4646.740.7052.5697512/26/890.880.78402259.777912/30/890.820.7336.520.75-62.738401/04/901.020.9033.430.8865.699101/11/901.090.9732.340.9566.719601/16/901.000.8831.661.0467.309801/18/900.900.8030.700.5068.8010201/22/901.020.9030.110.7669.1310401/24/901.080.9629.320.7869.8810701/27/901.080.9629.430.8169.750-20-4040-80.100-120.140-160-180-200-220-240-260(a)•HRTe-KgCOD/cu.m-dStep-loadingandRemovalEfficiency:Duringthesystemmaximization(a)HRT,KgCOD/cum-d;(b)Removalefficiency299II2420’161284.0107 0TiME,daysIII‘Q1020304050TiME,days.:•COD(FL)+P04-P.,Recoveryperiod.Maximumloads0TIME,days107100FigureDl.1AnA-UASB2030This.days40501020304050lime,days800MaximumLeadsRecoveryP.rled700W-UASB)•EffluIntThN+EffiuentTP600l1ME,days1075004O0300200100lime,daysFigureD2.1AnA-UASBSystemNutrientsandMLVSS:Duringtheprocessmaximization(a)EffluentMLVSS,MLVSS(A-IJASB);(b)TKNITP8070-60-50-300liME,days107•EffluentMLVSS+MLVSS(A-UASB)/J40-:3020-100001020304050

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 27 0
China 4 0
Czech Republic 2 0
Ukraine 1 1
France 1 0
Peru 1 0
Canada 1 0
Turkey 1 0
City Views Downloads
Troy 23 0
Beijing 4 0
Ashburn 2 0
Teplice 2 0
Unknown 2 6
Mountain View 2 0
Ottawa 1 0
Lima 1 0
Kiev 1 1

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050478/manifest

Comment

Related Items