UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A two-phase anaerobic digestion process (UASB-UASB) for simulated sewage sludge Fongsatitkul, Prayoon 1992

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
[if-you-see-this-DO-NOT-CLICK]
ubc_1992_spring_fongstatitkul_prayoon.pdf [ 8.48MB ]
Metadata
JSON: 1.0050478.json
JSON-LD: 1.0050478+ld.json
RDF/XML (Pretty): 1.0050478.xml
RDF/JSON: 1.0050478+rdf.json
Turtle: 1.0050478+rdf-turtle.txt
N-Triples: 1.0050478+rdf-ntriples.txt
Original Record: 1.0050478 +original-record.json
Full Text
1.0050478.txt
Citation
1.0050478.ris

Full Text

A TWO-PHASE ANAEROBIC DIGESTION PROCESS (UASB-UASB) FOR SIMULATED SEWAGE SLUDGE  by PRAYOON FONGSATITKUL B.Sc.(Sanitation), Mahidol University, 1975 M.Sc.(Environmental Technology and Management), Asian Institute of Technology, 1978  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Civil Engineering)  We accept this thesis as conforming to the required standard  THE UNIVER TY OF BRITISH COLUMBIA April 1992 ©  PRAYOON FONGSATITKUL, 1992  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department  or  by  his  or  her  representatives.  It  is  understood  that  copying  or  publication of this thesis for financial gain shall not be allowed without my written permission.  Department of  Civil Engineering  The University of British Columbia Vancouver, Canada Date  DE-6 (2188)  /  ABSTRACT  The objectives of this research program were to demonstrate the feasibility and effectiveness of a “two-phase” anaerobic sewage sludge stabilization (UASB-UASB) process. A bench-scale experiment, consisting of two completely mixed sealed upflow anaerobic (A-UASB and M-UASB) reactors, designed to operate inside a walk-in temperature controlled room at  350  C, was employed. The system was first seeded and  acclimatized, and then used in a series of different experimental runs, emphasizing the effects of influent Sludge Ratio (SR) of primary to secondary sludges and Recycle Ratio (RR) of fluidized sludge from sludge blanket portion of the reactor, on process performance. The vicinity of “best known” running condition was located by an application of 2 by 2 factorial design and Response Surface Method (RSM). Maximum system loading capacity, optimum operating conditions, and system failure/recovery process were further investigated.  The results of this research study showed that a two-phase UASB-UASB process appeared to be feasible and effective in stabilizing sewage sludge at high organic loading rates, while maintaining an acceptable level of supernatant quality and CH 4 gas production. The system had a high potential to recover effectively, after a serious failure, by applying a step-loading reduction and internal recirculation (RR) approach. The “Two-phase” concept has proved to be successful in treating sewage sludge. Hydrolysis acidification predominated in the A-UASB, while 11  acetogenesis-methanogenesis  dominated in the M-UASB. Most of the reactions occurred at the lower parts (sludge blanket and bed) of both reactors.  A combination of system hydraulic and organic overloading in the M-UASB reactor was a major cause of process failure. This was indicated by a washout of MLVSS, an increase in the total VFA concentration, a reduction in the system removal efficiency, a cessation of CH 4 gas production, a drop of pH, and an increase in total VFA/alkalinity ratio. Applying a two-step approach to increase the HRT of the M-UASB by 1.5 and 5.8 times that of the process failure HRT (M-UASB), the system COD (sol) removal efficiency recovered exponentially with an increase in HRT, while the CH 4 gas production recovered logarithmically 2 (r = O.81-O.99). The optimum operating HRTs for the M UASB, regarding COD (sol) removal efficiency and CH 4 gas production, were 2 and 2.7 days during the maximization and recovery period, respectively. For design purposes, the optimum operating HRTs of 1 and 2 days as well as RR of 2 and 3 times that of the intluent flow rate are recommended for the A- and M-UASB reactors, respectively. A reactor diameter to height ratio of 1:8 to 1:10, and an organic loading rate of 19 kg COD(total)/m 3 d at 35 C, with the feed sludge ratio of 4 to 1 (80/20) are also °  recommended. Modified design criteria, start-up and acclimatization processes, and system operation, for the two-phase anaerobic digestion of sewage sludge (UASB UASB), were finally developed.  111  TABLE OF CONTENTS ABSTRACT  ii  TABLE OF CONTENTS  iv  LIST OF TABLES  •  LIST OF FIGURES  VII  • xli  ACKNOWLEDGEMENTS  •  LIST OF ABBREVIATIONS  •  1.INTRODUCTION  x xvii  .1  1.1 Research Needs and Background 1.2 Research Objectives and Approach 2.BACKGROUND AND BRIEF LITERATURE REVIEW 2.1 Anaerobic Sludge Digestion 2.2 Operating Parameters and Responses 2.3 Anaerobic Process Development 3.SYSTEM SET-UP AND OPERATION  .1 .2 .6 .6 .9 • 11 • 21  3.1 Rationale and Design Criteria 3.2 Experimental Apparatus and Operation 3.3 Synthetic Sludge Preparation 4.EXPERIMENTAL PROGRAMS  • 21 • 26 • 28 • 33  4.1 Acclimatization Process 4.1.1 System Seeding and Start up Loading 4.1.2 System Operating Conditions 4.2 Experimental Design 4.2.1 Optimum “Best known” Operating Conditions 4.2.2 Maximum Loading Rate and Recovery Periods 4.2.3 Sampling Program and Analytical Techniques 4.2.3.1 Sampling Program 4.2.3.2 Analytical Techniques 4.2.4 Data and Statistical Analysis iv  33 33 35 35 36 39 39 39 41 46  5.RESULTS AND DISCUSSION  47  5.1 Acclimatization process 5.1.1 Development of the Acclimatization Process 5.1.1.1 Behaviour and Response 5.1.1.2 Acclimatization Alternatives (a) Washout Phenomenon (b) System Performance 5.1.2 Conclusions 5.2 Experimental Design 5.2.1 Optimum “best known” Operating Condition 5.2.1.1 Effects and Interaction of Sludge Ratio (SR) and Recycle Ratio (RR) 5.2.1.2 “Best Known” Running Condition 5.2.1.3 Two-phase Separation (UASB-UASB) 5.2.1.4 Conclusions 5.2.2 Maximum Loading Capacity and Recovery Process 5.2.2.1 Maximum Loading Capacity (a) Process Failure (b) Maximum Loading Rate 5.2.2.2 Recovery Process (a) Recovery Period (b) System Recovery 5.2.2.3 Basic Experimental Kinetics 5.2.2.4 Optimum Loading Capacity (a) Case 1: Overall System Loading Capacity (b) Case 2: Optimum Loading Capacity of A and M-UASBs 5.2.2.5 Conclusions 5.2.3 Development of System Design Criteria 5.2.3.1 Optimum System Performance and Feasibility 5.2.3.2 Modification of Design Criteria and Operation  6.CONCLUSIONS AND RECOMMENDATIONS 6.1 Conclusions 6.2 Recommendations  47 47 48 49 50 56 58 60 60  61 66 69 79 80 83 83 91 93 94 99 104 111 111 116 118 122 122 125 133 133 136  REFERENCES  139  APPENDIX A Synthetic Sludge Preparation and System Set-up  147 147  V  APPENDIX B Acclimatization Process  160 160  APPENDIX C Optimum “best known” Operating Condition  182 182  APPENDIX D Maximum Loading Capacity and Recovery Process  264 264  .  vi  LIST OF TABLES Table  Page  3.1 Comparative Characteristics of Prepared Synthetic Sludge And Actual Primary and Secondary Sludges  31  4.1 Characteristics of Anaerobic Sludge Used in Seeding the System (Anaerobic Sludge Digestor/Lion’s Gate Treatment Plant)  34  4.2 Experimental Running Conditions During the Optimum “Best known” Operating Condition, Maximum Loading Capacity and Recovery Period  .  .  37  5.1 Summary of Effects (SR and RR) /Interaction (SR*RR) Change in mean During Sequence 1, 2, and 3 Experiments  63  5.2 Summary of Average Responses Under Pseudo Steady-state of the Different Designed Running Conditions (Sequence 1, 2, and 3 Experiments)  70  5.3 Performance of A Two-phase Anaerobic Sludge Digestion (UASB-UASB)  Process  72  5.4 Statistical Constants and Kinetics During the Maximization and Recovery Period  110  5.5 Summary of Average Responses at the Optimum System Operating Condition  Under Pseudo Steady-State Conditions  123  5.6 Recommended Design Criteria/Start-up and Acclimatization/System Operation of the Two-phase UASB-UASB Process A1.1 Summary of Research Problems/Remedial Actions/Scope and Approach  vii  130  Modifications  .  A2.1 : System Seeding and Loading Rate  148 150  A2.2 : Final Constituents of Primary and Secondary Synthetic Sludges and Chemical Analysis of Dog Foods A3.1  150  Detailed Sizing of Acid- and Methane-Phase Reactors (UASB-UASB)  ...  151  A3.2 : Spread-sheet for Sizing of the Acid- and Methane-Phase Reactors (UASB-UASB) A4.1  152  Development of A Small-Scale (1-Litre) Synthetic Sludge Preparation  A4.2: Development of A Scale-Up (30-Litre) Synthetic Sludge Preparation  ...  ..  ..  153  154  A5.1 : Monitoring the Characteristics of Primary Synthetic Sludge Prepared Throughout the Experiment  156  A5.2: Monitoring the Characteristics of Secondary Synthetic Sludge Prepared Throughout the Experiment B1.1  158  : Average System Effluent Quality and Removal Efficiency at Pseudo Steady- state Under Different Alternatives During the Acclimatization  B2.1  .  .  161  Response Data of the Sampling Point Numbered 1 Under Different Acclimatization Alternatives  B2.2  .  164  Response Data of the Sampling Point Numbered 2 Under Different Acclimatization Alternatives  166  B2.3 : Response Data of the Sampling Point Numbered 3 Under Different Acclimatization Alternatives  168  B2.4 : Response Data of the Sampling Point Numbered 4 Under Different viii  Acclimatization Alternatives B2.5  .  170  Response Data of the Sampling Point Numbered 5 Under Different Acclimatization Alternatives  • 172  B2.6 : Response Data of the Sampling Point Numbered 6 Under Different Acclimatization Alternatives  174  B2.7 : Response Data of the Sampling Point Numbered 7 Under Different Acclimatization Alternatives  176  B2.8 : Response Data of the Sampling Point Numbered 8 Under Different Acclimatization Alternatives  • 178  C1.1 : Response Data of the Sampling Point Numbered 1 Under Different  Running Conditions During the Sequence 1, 2, and 3 Experiment  • 183  C1.2 : Response Data of the Sampling Point Numbered 2 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment  • 188  C1.3 : Response Data of the Sampling Point Numbered 3 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment  • 193  C1.4 : Response Data of the Sampling Point Numbered 4 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment  198  C1.5 : Response Data of the Sampling Point Numbered 5 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment  • 203  C1.6 : Response Data of the Sampling Point Numbered 6 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment C1.7 : Response Data of the Sampling Point Numbered 7 Under Different  ix  208  Running Conditions During the Sequence 1, 2, and 3 Experiment  213  C1.8 : Response Data of the Sampling Point Numbered 8 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiment  218  C2.1 Calculation of the effects (SR and RR), Interaction, Phase means, Change in means, on the Response Parameters during the Acclimatization (Sequence 1 and 2 Experiments)  223  C3. 1: pH of A-and M-UASBs During the Sequence 2 and 3 Experiments as well as the Maximization and Recovery Period  C3.2: NaOH (0.1 N) Addition During the Sequence 1 Experiment D1.1  260 262  Summary of Average System Performance and Removal Efficiency at Pseudo Steady-state During the Maximization and Recovery Period  264  D2. 1 : Response Data of the Sampling Point Numbered 1 Different Running Conditions During the Maximization and Recovery Period  266  D2.2 : Response Data of the Sampling Point Numbered 2 Different Running Conditions During the Maximization and Recovery Period  268  D2.3 : Response Data of the Sampling Point Numbered 3 Different Running Conditions During the Maximization and Recovery Period  270  D2.4 : Response Data of the Sampling Point Numbered 4 Different Running Conditions During the Maximization and Recovery Period  272  D2.5 : Response Data of the Sampling Point Numbered 5 Different Running Conditions During the Maximization and Recovery Period D2.6 : Response Data of the Sampling Point Numbered 6 Different Running x  274  Conditions During the Maximization and Recovery Period  276  D2.7 : Response Data of the Sampling Point Numbered 7 Different Running Conditions During the Maximization and Recovery Period  278  D2.8 : Response Data of the Sampling Point Numbered 8 Different Running Conditions During the Maximization and Recovery Period  280  D2.9 : Average Response Data of the Sampling Point Numbered 1 through 8 at Pseudo Steady-state Under Different Running Conditions During the During the Maximization and Recovery Period  282  D3.1 : Calculation of the Theoretical CH 4 Production  287  D4.1 : A M-UASBs System Recovery at Pseudo Steady-state Under Different Running Conditions  (  CH, /m 3 m d)  288  D4.2 : A M-UASBs System Recovery at Pseudo Steady-state Under Different Running Conditions  (  COD (sol.) Removal Efficiency,  %)  288  D5.1 : Response Data of Gas composition, Production, Loading Rate (A- and M-UASBs) During the Acclimatization Process  289  D5.2 : Response Data of Gas composition, Production, Loading Rate (A- and M-UASBs) During Sequence 1, 2, and 3 Experiments D5.3  : Response Data of Gas composition, Production, Loading Rate (A UASB) During the Maximization and Recovery Period  D5.4  291  295  Response Data of Gas composition, Production, Loading Rate (M UASB) During the Maximization and Recovery Period  xi  297  LIST OF FIGURES  Figure  page  1.1 Research Strategy and Approach  4  2.1 Pathway of Anaerobic Biodegradation to simple compounds and organic  acids  7  3.1 Schematic Flow Diagram of A Two-phase Anaerobic Sludge Digestion (UASB-UASB) Process  24  3.2 Detailed Dimensions of UASB Reactors Used in the Experiment  24  3.3 Photographs of A Bench Scale Two-phase Anaerobic Sludge Digestion (UASB-UASB) Process  25  3.4 Characteristics of Primary Synthetic Sludge  30  3.5 Characteristics of Secondary Synthetic  30  3.6 Characteristics of Primary Synthetic Sludge Monitored Throughout the Experimental Program  32  3.7 Characteristics of Secondary Synthetic Sludge Monitored Throughout the Experimental Program  32  4.1 A Schematic Flow Diagram of Experimental Designs  36  4.2 Sampling Program: Response Parameters, Sampling Point, and Frequency, Preservation and Storage  38  5.1 An Acclimatization Washout Phenomenon  52  5.2 System Removal Efficiency During Acclimatization  52  xii  5.3 VFA Removal Efficiency of the M-UASB  54  5.4 Effluent VFAs of the M-UASB  54  5.5 Surface Responses of Sequence 1 Experiment  65  5.6 NaOH (0.1 N) Addition During the Sequence 1 Experiment  67  5.7 System Responses and Performance of Sequence 1 Experiment  68  5.8 COD (soluble) Profiles Along the Reactor Height Under Different Running Conditions  76  5.9 Total VFA Profiles Along the Reactor Height Under Different Running Conditions  77  5.10 MLVSS Profiles Along the Reactor Height Under Different Running Conditions  78  5.11 A M-UASB Step-loading and Removal Efficiency During the System Maximization  86  5.12 Aciddogenic Phase of Glucose Formation under Low and High H 2 Partial Pressure to form Acetic Acids, Propionic Acids, H, Gas, and CO 2  87  5.13 A M-UASB System Effluent Qualities During the System Maximization  88  5.14 A M-UASB Nutrients and MLVSS During the System Maximization  89  5.15 System Optimum Operating Region and Maximum Capacity  92  5.16 A M-UASB Step-loading and Removal Efficiency During the System Recovery  96  5.17 A M-UASB System Recovery Process  97  5.18 A M-UASB Nutrients and MLVSS During the System Recovery  98  xiii  5.19 A M-UASB System Recovery at Pseudo Steady-state COD (soluble) removal efficiency  101  5.20 A M-UASB System Recovery at Pseudo Steady-state  4 Gas (CH  Production) 5.21  102  A Predicted M-UASB System Recovery With Different Running Conditions  103  5.22 An Estimation of Experimental Kinetics During the Maximization and  Recovery Period  108  5.23 A Predicted Optimum Operating HRT During the Maximization and Recovery Period  112  5.24 AN A-UASB System Effluent Qualities During the Maximization and  Recovery Period  117  5.25 Comparison of Total VFA Along the Height of M-UASB During the  Acclimatization  127  5.26 COD (sol.) Profile of a Two-phase UASB-UASB Process During Maximization and Recovery Period  129  5.27 pH Variation of A-UASB and M-UASB During the Sequence 2/3  Experiments and Maximization and Recovery Period  132  B1.1 : Effluent Qualities of the M-UASB (COD, MLVSS, 4 PO P, TKNITP) Under Different Running Conditions During the Acclimatization  180  B2.1 : System Gas Production and Loading Rate Under Different Running Condition During the Acclimatization xiv  181  D1.1 : An A-UASB Step-loading and Removal Efficiency 4 (COD,P0 P) Under Different Running Conditions During the Maximization and Recovery Period  299  D2.1 : An A-UASB System Nutrients and MLVSS Under Different Running Conditions During the Maximization and Recovery Period  xv  300  ACKNOWLEDGEMENTS  I wish to take this opportunity to express my sincere thanks for the morale, encouragement, and understanding received from my wife, Ladda and my parents throughout the completion of my research.  I also would like to extend my appreciation to the following, who enthusiastically supported and encouraged me in one way or another  Dr.D.S.Mavinic, my advisor and Head of the Environmental Engineering Group, U.B.C.and Dr.V. Lo, Co-advisor and Head of the Bio-Resource Engineering, U.B.C. for their critical technical advice and faithful support throughout the completion of the research.  Dr.W.K.Oldham, Head of the Civil Engineering Department and Dr.K.Hall, Wastewater Research Centre for their invaluable comments and advice during the preparation of the research proposal and thesis.  Susan Liptak, Manager of the Environmental Engineering Laboratory, U.B.C., Paula Parkinson and Romy Lo for their understanding, assistance, and guidance of all analysis involved in the research.  xvi  Guy Kirsch, Civil Engineering Workshop Technician, for his suggestion and assistance in building and fixing all the components of the experimental system reactors.  Panagiotis (Takis) Elefsiniotis, Ph.D candidate in the Environmental Engineering Group, U.B.C. for his true friendship, encouragement, and technical assistance.  Finally, I would like to sincerely thank my sponsorship, Canadian International Development Agency (CIDA) and my employer, Thailand National Environmental Board (NEB). Without these sponsors, this research would not have been possible.  xvii  LIST OF ABBREVIATIONS  UASB-UASB  A  Two-phase  Upflow  Anaerobic  Sludge  Blanket  Process A-UASB  Acid-phase  Upflow  Anaerobic  Sludge  Blanket  Reactor M-UASB  Methane-phase  Upflow  Anaerobic  Reactor RR  Internal Recycle Ratio  SR  Feed Sludge Ratio  HRT/€  Hydraulic Retention Time  SRT  Solids Retention Time  RSM  Response Surface Method  MLGH  Multiple Linear Regression Hypothesis  In  Natural logarithm  COD  Chemical Oxygen Demand  MLVSS  Mixed Liqueur Volatile Suspended Solids  TS  Total Solids  TVS  Total Volatile Solids  TSS  Total Suspended Solids  TVSS  Total Volatile Suspended Solids  TP  Total Phosphorus xviii  Sludge  Blanket  TKN  Total Kjeldahl Nitrogen  P0 4 P  Ortho-Phosphorus  NH 4 N  Ammonia Nitrogen  VFA  Volatile Fatty Acid  HAc  Acetic acid  HPr  Propionic acid  HBu  Butyric acid  HVr  Valeric acid  mg/L  Part per million  hrs.  Hours  ml  vfil1i—litre  Lid  Litre per day  OHPA  Obligate Hydrogen Producing Acetogens  Rh  Hydrolysis rate  Kh  First-order hydrolysis constant  F  Effluent Particulate COD concentration, mass/vol.  Fo  Influent Particulate COD concentration, mass/vol.  k  Maximum rate of substrate utilization per unit weight of microorganisms, time 1  Ks  Half  velocity  coefficient,  substrate concentration when BL/St L  mass/vol, =  (1/2)k  Influent Substrate mass concentration, mass/vol. xix  equal  to  Le  Effluent Substrate mass concentration, mass/vol.  6S/6t  Net growth rate of microorganisms, mass/vol-time  a  Growth yield coefficient, mass/mass  6L/6t  Substrate utilization rate, mass/vol-time  b  Microorganisms decay coefficient, time 1  S  Microbial mass concentration, mass/vol.  V  Reactor Volume  Q  Flow rate  RCOD  System COD (sol.) removal efficiency, % System 4 P0 P removal efficiency, %  4 RCH  4 gas production, 3 CH 3d m 1  HRTAUB  Hydraulic retention time of A-UASB  HRTMUASB  Hydraulic retention time of M-UASB  1 HRTSY,ICA  Hydraulic retention time of system  xx  CHAPTER ONE  INTRODUCTION  Li RESEARCH NEEDS AND BACKGROUND Many wastewater treatment processes, whether primary or secondary, yield large quantities of waste materials in the form of a dilute solid mixture, known as sludge; this sludge usually contains a significant amount of organic wastes. Treatment and disposal of this sludge is recognized as one of the most critical areas of water pollution control,  and accounts for almost 40-50 % of the total capital and operating costs at a municipal sewage treatment plant. (U.S. EPA 1979; Gloyna, 1982; Benefield, 1980). Anaerobic sludge stabilization is one of the most successful and promising treatment processes, exhibiting several significant advantages over aerobic stabilization: reduction of pathogenic organisms and sludge production, saving on air supply, prevention of nuisance-odour conditions after digestion, and formation of high methane content in the gas production (Pohland, 1975). With an increase in worldwide energy costs during the last 20 years, the advantage of producing highly recoverable methane (serving as an additional energy source) has attracted a great deal of research effort, mainly to increase the ability and reliability of this process. However, many unanswered problems still exist in stabilizing sewage sludge anaerobically, especially using conventional, two-stage, completely-mixed digesters. These include poor supernatant quality, which generally requires further treatment, and the relatively low level of methane production possible under this conventional two-stage treatment. To help solve these problems, two broad approaches can be employed : (i)  2 increase bacterial activity by creating optimum digester operating conditions and ensuring an adequate supply of all known essential nutrients; (ii) increase the density of bacterial populations in the digesters  ( Callander,  1983  ). The former approach incorporates the  basic mechanism of anaerobic sludge stabilization, which is, in fact, a di-phasic process  -  acidogenesis and methanogenesis. Therefore, providing an optimal environmental conditions ( adequate supply of nutrients ) for each predominant group of bacteria in the two-phase system is expected to enhance both the methane yield and increase the process performance and reliability (Pohiand and Ghosh, 1971a; Massey, 1978; Cohen, 1979; and Bull, 1984). The second approach aims at maintaining or increasing the hiomass and retaining it within the digester for a longer period of time, while undergoing stabilization. This can be achieved by a careful design of the floe-based digester with an appropriate sludge recycle ratio (RR). The Upflow Anaerobic Sludge Blanket (UASB) process is one of the most promising processes of the floe-based system digesters. With careful design, it can retain and increase biomass within the digester, without any additional mixing requirements. The purpose of this research was to initiate a feasibility study for enhancing the efficiency of anaerobic sludge stabilization and increase the quality level of the final supernatant through development of a modified design criteria, start-up process, and operation of a two-phase, upflow anaerobic sludge stabilization (UASB-UASB) process.  1.2 RESEARCH OBJECTIVES AN]) APPROACH The principle goals were to evaluate the feasibility, effectiveness, and suitability  3 of this two-phase, UASB-UASB process for anaerobic sludge stabilization. The primary objectives were to achieve superior supernatant quality and to maximize % methane content and production, through a two-phase separation (UASB-UASB) process. Secondary objectives included identifying the optimum operating conditions, examining the effects of influent Sludge Ratio (SR) of primary to secondary sludges and Recycle Ratio (RR) of fluidized sludge from sludge blanket portion of the reactor on process performance and gas production, and investigating the maximum acceptable loading rate and associated system recovery. Time permitting, other objectives included developing a set of system design criteria and determining effective and reliable parameters for indicating process failure and system steady state conditions. It is generally recognized that a research approach must be developed in the context of a particular situation. A” point-in-time statement “with a continuous flow of information (data sets of response parameters) as shown in Figure 1.1, represents a specific discrete work effort, which must be achieved prior to permitting continuance of further work tasks. As shown in Figure 1.1, emphasis was initially placed on the preparation of a realistic research proposal. It covered the whole range of problem identification, rationale, research objectives and approach, experimental program, as well as work schedule and cost estimation. After approval of the research proposal, two major tasks synthetic sludge preparation and system design and construction, were carried out -  simultaneously; this was followed by system seeding and acclimatization requiring at least 40-60 days to reach steady-state conditions. The sampling program and response parameters were undertaken as shown in Figure 4.2. Along with each sequence of the  •  .  .0.  .  KJ o  11 CD -‘  CD  ..c: •::•::•::::: • s... o• ..  .c  -v  ••-••  £2.  CD Cr) CD C)  CI)  • x... •‘<•  g  -I  CD CD  :..:.  N  .....:  .0  ...cD..:....:. ..D::: •0...  D 0  G12 -o 0  CD  0  C)  •  .  :::•::m:::::: •  ..  Cd)  -  •17  5 experimental run, data analysis and results interpretation were made, using a spreadsheet software program (Symphony Version 1.2), Response Surface Method (RSM) and Yate’s Algorithm Method. The  best known optimum operating condition that generated the  maximum % methane content and production, with superior supernatant quality, was then identified ; whereas, system maximum loading capacity and the recovery process were carried out afterward. Finally, the feasibility and effectiveness of this two-phase UASB-UASB process, to stabilize the sludge anaerobically, together with the difficulties and problems faced throughout the experiment and their remedial actions Table A1.1 of appendix A  ),  (  shown in  were conclusively evaluated and reported on. The details  of each task are discussed in Chapter 4.  6 CHAPTER TWO  BACKGROUND AND BRIEF LITERATURE REVIEW  The purpose of this chapter is to briefly overview and update theoretical concepts on anaerobic sludge digestion and process development. The review will be used as background to formulate a framework for further investigation and the experimental program. In case of any particular references that are closely related to the result of the research, they will be discussed separately in the main text of Chapter 5  -  Results and  Discussion.  2.1 ANAEROBIC SLUDGE DIGESTION (Biochemistry and Rate Liniitirig Step) The overall anaerobic conversion of biodegradable organic solids to the end products of carbon dioxide (C0 ) and methane (CH 2 ) is initially believed to involve 3 4 processes which occur simultaneously: hydrolysis of insoluble biodegradable polymers; the production of fatty acids from smaller soluble organic molecules; and CH 4 generation (Stronach, 1986). But Gujer and Zehnder (1983) proposed a six-step system in the anaerobic conversion of high molecular weight degradable organics to CH 4 and CO 2 as shown in Figure 2.1. Two groups of bacteria, acid- and methane- producing bacteria, are, in principle, responsible for the overall anaerobic conversion of biodegradable organics. Acid-producing bacteria are responsible for converting heterogeneous substrate into fatty acids. The primary acids produced during acid fermentation are acetic, propionic, and  7  PROTEINS  1A  CARBOHYDRATES  LIPIDS  1C  lB  HIGHER FATTY  AMINO ACIDS SUGARS  ALCOHOLS  2  3  INTERMEDIARY PRODUCTS PROPIONATE BUTYRATE ETC  4  HYDROGEN  ACETATE  6 rMETHANE 1. Hydrolysis 2. Fermentation 3. Anaerobic (3) Oxidation 4. Anaerobic Oxidation 5. Decarboxylation of Acetate 6. Hydrogen Oxidation  3 4 + HCO 3 COO+ H CH O —+ CH 2 + 2HzO 4 CO+ 4H—+ CH  Figure 2.1 Pathway of anaerobic biodegradation Source : After Gujer arid Zehnder, 1983  8 butyric; however, smaller quantities of formic, valeric, iso-valeric, and caproic acids are also frequently found (Malina, 1980). These acids are subsequently decomposed by methane-producing bacteria, resulting in the production of methane. Approximately 85% of the CH 4 results from the fermentation of acetic and propionic acids with the remainder generated from primarily butyric and formic acids, as well as the reduction of CO 2 by H ; some CH 2 4 is generated from the fermentation of long-chain fatty acids via anaerobic (j3) oxidation (Stronach, 1986). The pathways for the formulation of 4 CR are mostly dependent on the nature of influent substances and fall into three subgroups : lower fatty acids 6 -C ie. formic, acetic, propionic, butyric etc.); 1 (C , normal or iso-alcohols , 5 1 (C C ie. methanol, ethanol, propanol, butanol etc.); and inorganic compounds (ie. H , CO, 2 2 C0 ) . The biochemistry of these basic reactions can be summarized as follows: (1) Biochemical decomposition of lower fatty acids: (1.1) Acetic acid decomposition CH C 3 OOH  —  4 + CO CH 2  (1)  (1.2) Propionic acid decomposition Two-step requirement: 2 4C C 3 C OO H H H + 2H 0 2 3 4C C OOH H Overall:  ——  3 4C C OOH H + CO 2 + 3CH 4  4 + 4C0 4CR 2  2 4C C 3 C OO H H H + 2H 0 2  (1.3) Butyric acid decomposition Two-step requirement:  (2) (3)  2 + 7CR 5CO 4  (4)  9 3 2CH C 2 C OOH H + 2H 0 + CO 2 2 4CH C 3 OOH Overall:  —  -——b  4CH C 3 OOH + CR . (5) 4  2 4 + 4C0 4CR  3 2CH C 2 C OOH H + 2H 0 2  (6) —b  3CO + 5CR 4  (7)  (1.4) Microbial reduction of CO 2 formed from reduction CO + H 0 2  —  2 + 4H CO 2 CO + 2H 2  —  2 + H CO 2  (8)  4 + 2H CH 0 2  (9)  4 + H CR O 2  4C C 5 H 2 OOH + 8H O 2 2 + 24H 3CO  ——-p  —.  4CH C 3 OOH + 4CO 2 + 24H  4 + 6H 3CH 0 2  4C C 5 H 2 OOH + 2R O 2 CH C 3 OOH  —b  -—---*  4CH C 3 OOH + CO 2 + 3CH 4  CH + CO,  (10) (11) (12) (13) (14)  Conversion of volatile fatty acids (VFAs) to the production of CH 4 is considered to be a rate-limiting step for soluble organic matter, whereas hydrolysis of insoluble organics is believed to be a rate-limiting step for particulate matter (Eastman, 1981; Cohen, 1983; and Pavlostathis, 1986).  2.2 OPERATING PARAMETERS AND RESPONSES  Anaerobic stabilization is recognized as a sequential, di-phasic process: hydrolysis and acidogenesis, followed by methanogenesis. Phase separation is then a logical choice to stimulate the growth of these two groups of bacteria. Acid- and methane-producing bacteria are strict anaerobes and extremely sensitive to changes in temperature and pH.  10 These bacteria are active in two temperature zones: mesophilic range (3 0-35  C) and  thermophilic range (50-60 C). The optimum pH range for methane-producing bacteria 0  is 6.4-7.2, whereas it is 5.5 for acid- producing bacteria. Above pH 8 or below 6, the growth of methane formers falls rapidly. A sudden change in environmental conditions and/or an introduction of toxic substances into the system, may cause the imbalanced growth rate of these two groups of bacteria. Once the balance is upset, intermediate organic acids accumulate and the pH drops. As a result, the methanogens are further inhibited and the process eventually fails, unless corrective measures are taken. This imba’ance can be indicated by various parameters: an increase in % CO 2 content of the gas produced and a corresponding decrease in % CH 4 content; a decrease in the pH and total daily quantity of gas produced; an increase in the concentration of VFAs; an overall decrease in the efficiency of waste stabilization; and the ratio of volatile acids/alkalinity >  0.5 (Graef and Andrews, 1974a/b; US. EPA, 1979). Toxic materials and other matters  can also upset the system; these include oxygen, volatile acids (2,000 mg/L), total 3 NH N (1,500-3,000 mg/L at pH 7.4-7.6 or >3,000 mg/L at any pH values), and soluble metals eg. 3 mg/L Cr, 2 mg/L Ni, 1 mg/L Zn, and 0.5 mg/L Cu. However, if sufficient time is available, methane-producing bacteria can acclimatize to the toxic materials (Stronach, 1986; Malina, 1980; Capri, 1975; Ziekefoose, 1976; Kujelman, 1981; Graef, 1974; Cortinovis, 1984; US. EPA, 1979; Chiu-yue, 1986). In a typical anaerobic sludge digester, approximately 72 % of the methane produced evolves through acetate splitting, and the remainder comes from the reduction of CO, with H 2 (Jeris and McCarty, 1965). Hydrogen is then an important intermediate  11 in methanogenesis and a build up of hydrogen may alter the electron flow during fermentation of carbohydrates and other polymers. Accumulation of hydrogen further inhibits other important intermediates being formed during anaerobic sludge digestion, such as propionate and butyrate (Scheifinger and Wolin, 1972; Chung, 1976; Kasper and Wuhrmann, 1978). Therefore, Mosey, (1983a) has suggested that hydrogen gas might be a simpler and more effective prime indicator for monitoring the anaerobic digestion process. However, Hickey, (1987) concluded that there appeared to be some limitations on the potential of using hydrogen as a prime indicator of process upset, resulting from the application of organic toxicants. He found that severe inhibition of methane production occurred at high organic loading rates, resulting in an accumulation of hydrogen and VFA’s; however, at lower loading rates, inhibition was less severe and hydrogen accumulation was slightly above controls. He finally recommended monitoring hydrogen, in consert with other conventional process indicators, would provide an effective indication of process upset due to toxic shocks.  2.3 ANAEROBIC PROCESS DEVELOPMENT (Stability/Performance/Kinetics) Anaerobic process development has recently advanced in two directions: improvement of the gas yield and satisfactory substrate removal efficiency, while, at the same time, minimizing the system capital and operating costs. A thorough investigation of the best “system operating condition” is necessary to achieve the goals of process development.  12 A rapid escalation energy shortages and heightened environmental awareness have increased the pressure to improve anaerobic digestion performance where applicable and feasible. Two broad approaches are generally employed  -  one providing preferably  optimum environmental conditions for each group of bacteria and the other concerned with increasing bacteria population density and retaining it within the digester. The former approach can be achieved through the use of two-phase anaerobic digestion, with an adequate supply of nutrients. The latter one can also be accomplished through an increase in the system SRT by means of solid-liquid separation and appropriate sludge recycle. Either floc-based  (  suspension) or an attached-fixed film system can increase  digestion performance and provides promising results (Callander, 1983). Two-phase anaerobic stabilization is capable of providing the optimum conditions for the growth of both acid- and methane- formers, the latter preferring widely different environmental conditions from the former. The merits of this process are an increase in the production rate of CH , maximum loading rates for the methane-phase reactor, a 4 decrease in recovery time after shock loading, and enhancement of process efficiency and reliability (Pohiand and Ghosh, 1971; Cohen, 1979; Massey et al., 1978). Although a two phase stabilization process seems best suited for the treatment of soluble-type wastewaters producing a high potential for volatile acids accumulation (Pipyn et al., 1979; Ghosh et al., 1981; Ghosh et al., 1983a), superior performance has also been demonstrated for particulate-type substrates such as sewage sludge and agricultural wastes (Ghosh, 1983b; Keenan, 1976; Normann, 1977; Rijkens, 1981; Datta, 1981; Colleran, 1983).  13 The limiting step in anaerobic stabilization of complex organic macromolecules, such as contained in sewage sludge, is hydrolysis-acidification, whereas for stabilization of shorter chain soluble organics wastewater, it is methanogenesis. Phase-separated digestion (hydrolysis-acidification independent of methanogenesis) has demonstrated several practical advantages: better stabilization of the sludge and a greater quantity of gas, reduced digestion time and reduced reactor size (Ghosh, 1987; Dichtl, 1987). Perot, (1989) concluded that two “optimized” steps had several advantages over a single-phase digester: start-up period was not as long (45 days instead of 75 for a single-step process); higher volatile matter degradation yield (60% instead of 40%); and the HRT could be half of that of the single-step process, without risking the system gas production and performance. He also indicated that gas production was linked primarily to the quantity of biodegradable organic matter. Another promising approach to enhance the anaerobic sludge stabilization process is to increase the density of bacteria in the system and retain it within the digester, with adequate supply of nutrients. This can be done by an appropriate design and selection of a proper anaerobic stabilization process and recycle ratio. One of the main criticisms of anaerobic waste treatment is the difficulty of retaining a sufficient amount of active anaerobic sludge under high loading conditions, using the present anaerobic treatment technology. Recently, this difficulty has been addressed through the development of the Upflow Anaerobic Sludge Blanket (UASB) process (Holsoff-Pol et al., 1986). Upflow Anaerobic Sludge Blanket (UASB) technology is credited as an effective process in stabilizing soluble organic waste, as well as producing superior supematant  14 quality without any mixing requirements. It also provides the advantage of developing and retaining a highly settleable biomass within the digester known as “sludge blanket”; this is a granular sludge media, with high settleability and methanogenic activity. This biomass decomposes the VFA’s generated from hydrolysis-acidogenesis for the production of CH , C0 4 , and small amounts of N 2 ,H 2 , etc. The rising gases and influent 2 flow rate are significant factors in maintaining biomass granules and flocs in more-or-less fluidized states, and the resulting turbulence also aids in detaching gas bubbles from flocs in the upper part of the digester. The biogas is removed by a three-phase, gas/liquids/solids separator (GSS-device) at the top of the reactor  (  Figures 3.1-3.2  ),  whose main functions are to retain a highly settleable biomass within digester and also to provide an effective separation of the gas produced during stabilization as well as to return the dispersed sludge back to the sludge bed situated below the GSS-device (with the help of 50  wall of the settler). A gas-free zone above the collector allows  for the settling of finely- dispersed solids to the reactor bottom, while clarified effluent exits from the top. A simple baffle arrangement can assist in retaining biomass within the digester, through the creation of a quiescent region; as such, entrained flocs separate from the liquid before it leaves the digester via a number of weirs. (Lettinga, 1980). To date, it is not known which factors trigger the growth and development of granular sludge, including how and when this biomass will develop. Dolfing, (1986) suggested that acetoclastic Methanothrix-like organisms play an important role in determining which type of sludge would develop under methanogenic conditions. He also suggested that extracellular material undoubtedly played a major role as a matrix, which  15 kept the cell together. Phosphorus and sodium may also influence the filament length of Methanothrix-like organisms as they have on the filament length of Methanospirillum hungatei (Patel, 1979). The sludge granulation process generally involves 3 sequential processes: start-up, say with a loading rate up to 5 kg COD/m -d; then granulation sludge 3 appearance and floc-formed sludge washout process; and finally continued formation of granules under a volumetric loading rate up to 16 kg 3 COD/m d (Lettinga, 1986; Wu, 1985). Cultivation of the granular sludge can be obtained through a careful selection of organics, with an optimum COD : N ratio of between 30 to 55: 1. Additions of Ni, Co, Mo, and ZnSO 4 into the digester also yielded positive effects (Hulsoff-Pol, 1986; Wu, 1985). The granular sludge begins to appear at a COD loading rate of approximately 0.6 kg COD/kg VSS-d or higher, after which the granulation process develops very quickly. The optimum conditions for cultivation can be achieved under elevated mesophilic conditions (30-50 CC), a pH in excess of 6.5-7.2, sufficient buffering capacity, and the absence of inhibitory and toxic substances such as Na, K, and 3 NH N; these substances should be lower than 3,500, 2,500, and 1,700 mg/L respectively (Wu, 1985). Wiegant (1985) also stressed that a superficial biogas loading rate (biogas velocity, m/hr) was an important factor in the granulation and selection process. Appropriate start-up loading rates plus the addition of Ca + have also proven to be beneficial to the sludge flocculation and thickening process. Cail and Barford (1986) stated that the presence of Ca in the range of up to 150 mg/L stimulated sludge granule formation and thickening. Also, Mahoney (1987) found that the sludge granules formed inside the reactor with calcium addition, settled 3-4 times faster than that without  16 calcium addition. A high rate of biomass accumulation was also evident in the calciumpositive reactor. An optimum start-up process, involving favourable conditions for the flocculation/growth/high settleability and specific activity of the biomass sludge, are the main prerequisites in achieving successful treatment with high loading rates in the UASB process. The loading potential of a UASB can be maximized through a careful consideration of an appropriate design for uniform feed inlets, a  500  angle inclined-wall  settler, with a surface loading velocity of less than 0.7 m/hr, and an average flow through the aperture between gas collectors below 2.0 rn/hr (Lettinga, 1983c; Schwartz, 1982). Also recommended is periodic wasting of small amounts of sludge, to maintain a constant level of biomass sludge within the reactor (Lettinga, 1979b). However, conventional separation can be inadequate for the buoyant, flocculant sludge. It is sometimes replaced by alternatives like surface clarification (Hamoda, 1984), ultrafiltration (Choate, 1982), and coagulants (Cail, 1986). DLA Inc. (Olthof, 1982) have placed the biofilter media in the upper zone of the reactor of a conventional UASB process, to increase the system SRT and to dampen the short circuiting; this procedure has also improved gas/solids/liquid separation, as well as provided a surface for the attachment of biomass. This system has worked very well and is marketed under the trade name “Anhybrid”. Further, Oleszkiewicz (1988) has demonstrated that a reactor, with random media in the upper 40 % of the volume, showed better COD removal efficiency and gas generation, as well as less washout of the flocculant sludge through shortcircuiting, than those reactors with media oriented vertically and/or no media. Development of anaerobic reactors using attached biomass, such as the fluidized  17 bed and the anaerobic filter, has resulted in the ability to increase the loading rate from 20 to 50 kg 3 CODIm -d respectively. However, problems 3 d and from 10 to 30 kg COD/m with attached biomass systems include clogging and high operating costs, due to external energy requirements (Maat, 1987). He also found that the UASB overcame many of these limitations by introducing granulated suspended biomass and the GSS-device. This system could achieve 75-94 % removal efficiency, with a sludge concentration of 8-13 % dry solids at temperatures ranging from 20-40  0  C (even if the reactor loading is 30 kg  COD/m 3 d or higher). The UASB reactor has been successfully commercialized as the BIOPAQ wastewater treatment system. The design loading for several BIOPAQ installations is about 10 kg 3 COD/ni d, while actual capacity limits for volumetric loading have exceeded 20-30 kg 3 COD/m d (Maat, 1987). Current design practices for UASB reactors, are effective for several types of wastewaters, regardless of whether it is sewage or industrial wastewaters (with either dilute or concentrated wastes). There are three basic considerations for the design of the UASB reactor: volumetric organic load applied, liquid velocity on the settler surface, and reactor height. Based on a specific study of a typical UASB process, Souza (1986) recommended that maximum safe design values be about 15-20 kg COD/m -d, 1.2-1.5 m/hr, and a height of less than 6.0 metres, respectively. 3 Minimum and maximum superficial gas release rates were recommended to be 1 and 3-5 32 m gas/m hr, respectively. It was also suggested that the feed inlet distribution area be /inlet. Lettinga et al. (1983 and 1986) attempted to increase the superficial liquid 2 7-10 m velocity up to 5-15 m/hr, by increasing the sludge loading rate and recycling the effluent back to the system using the expanded granular sludge bed reactors (EGSB). The  18 attempt appeared to be feasible. Sludge recirculation helps inoculate the fresh sludge inside the digester and also increase the system SRT. Finally, Dold (1987) used a UASB to treat apple juice waste, at the temperature less than optimum (25  and 30  °  C) and  a maximum loading of 12-16 kg 3 COD/m d. He concluded that the UASB system worked very well, even at a low temperature of 25 C and the maximum loading rate employed. An application of two-phase separation, to treat particulate materials (such as crop residuals, manure, and municipal refuse) wherein hydrolysis is the rate-limiting step, is also showing promise. A variety of approaches has been proposed, such as using the UASB as a modified acid reactor (Zoetemeijer et al., 1982; Therkelsen, 1979), to accelerate the rate of hydrolysis and acidogenesis. However, for slurries like sewage sludge and slaughter-house wastewater, the application of phase separation, using UASB is still questionable in term of real benefits, when compared to a single-UASB process (Lettinga, 1983a). Ghosh, (1984), however, reported that a two-phase UASB process was very effective in stabilizing sewage sludge. The methane yield was nearly 77% of theoretical values at an HRT of 5.5 and 5.9 days, in the sequential reactors; the optimum HRT’s for the acid- and methane-phase reactors were 0.9-1.5 and 4.0-5.0 days, respectively. Several models has been initiated to explain and predict the mechanism and performance of anaerobic digestion. Arbitrarily, the models can be classified into 4 groups: Monod, substrate inhibition kinetics, first-order kinetics, and Contois-derived kinetics. Conceptual comparisons among these models is well documented with Monod kinetics being the most popular and accepted among researchers, to explain the  19 anaerobic digestion process (Mosey, 1983b; Ripley, 1983). For example, Monod kinetics are frequently used to explain the mechanism of anaerobic digestion of sewage sludge and particulate materials (Pavlostathis, 1986; Massey, 1987). In addition, a mathematical model for the UASB, serving as methane-phase reactor only, is well established. The principle element of the model involves dynamic behaviour and distribution of the fluid pattern, anaerobic sludge in the reactor, kinetic conversion of organic wastes, and formulation of bacterial end products and CH . The use of a mass balance for substrate, 4 , and bacterial end products in the system, is carefully made in formulating a 4 CH mathematical model for the UASB process (Buijis, 1981; Buijis, 1982; Heertjes, 1978/1982; and Van Der Meer, 1983). An indepth review of these kinetic models is beyond the scope of this project and the reader is referred to the literature as cited above. From this brief literature review, it is apparent that there have been several major studies completed, with the basic goal of enhancing the efficiency of anaerobic sludge digestion using the two-phase separation and/or the UASB process. However, very few have taken full advantage of combining these two concepts, to enhance the overall effectiveness of anaerobic stabilization. To maximize the benefits, it appeared logical to evaluate the feasibility and effectiveness of using a two-phase UASB-UASB process, one with an internal recycle of fluidized sludge known as sludge blanket in order to enhance the efficiency of anaerobic sludge stabilization. The basic idea was to take advantage of the di-phasic phenomenon of anaerobic stabilization by using phase separation to provide a preferred environment for growth stimulation of the two different groups of bacteria.  20 By using the UASB process and internal sludge blanket recycle concepts, it was hoped to increase the contact between micoorganisms and substrates as well as to increase the system bufferring capacity. Thus the system can retain the granular biomass within the digester, without any mixing requirements and provide a promising system performance and stability. The research program was initiated and formulated along these lines.  21 CHAPTER THREE SYSTEM SET-UP AND OPERATION  3.1 RATIONALE AND DESIGN CRiTERIA  The principle goals of this research were to evaluate the feasibility, effectiveness, and suitability of using a two-phase, UASB-UASB process to enhance the efficiency of anaerobic sludge stabilization. To achieve these goals, a schematic flow diagram of experimental designs was delineated as shown in Figure 4.1. The rationale and design criteria were then conceptually formulated. To enhance the efficiency of anaerobic stabilization, two broad approaches are generally employed  -  one providing preferably  optimum environmental conditions for each group of bacteria and the other concerned with increasing bacteria population density and retaining it within the digester. The former approach can be achieved through the use of two-phase anaerobic digestion, with an adequate supply of nutrients. A two-phase UASB-UASB process was selected to treat a synthetic sludge, under the specific control of temperature at 35  °  C  and pH’s of 5 and 7 for the acid-phase (A-UASB) and methane-phase (M-UASB) reactors respectively. By controlling the temperature and pH, as well as separating their environments, the acidogens and methanogens were expected to dominate the mixed cultures of bacteria within the A-UASB and M-UASB units, respectively; it was also expected that there would be a rapid utilization of organic matter, an effective production of volatile fatty acids (VFAs) and finally methane production. To enhance the  22 stabilization process and methane gas formation, nutrient requirements must be sufficient. Variation in feed sludge ratio (SR) of primary to secondary synthetic sludges, means a significant difference in feed sludge characteristics (COD/VSS, TKN, TP, etc. as shown in Table 3.1). Since it is known that primary sludge contains mostly organics while secondary sludge contains organics, nutrients (N and P) and bacterial cells. This would strongly affect the system performances and methane formation. A careful combination of these two sludges, with an optimum SR, could result in a maximization of CH 4 gas production and removal efficiency. This would be of particular interest to those waste treatment plants that produce both a primary and secondary waste sludge requiring further stabilization. The latter approach can be accomplished through an appropriate design of UASB system configuration to help keep the biomass inside the reactor with the optimul recycle ratio (RR). New technologies have incorporated changes, which allow SRT and HRT to be varied independently. Typically, the solids in the reactor effluent are allowed to settle and recycle back to the reactor influent in order to increase the ratio of SRTIHRT (Christensen, 1984). Several other factors (feed characteristics, seed sludge and start-up process, operating condition (SR, RR, mixing, wasting, etc.), and process configuration) are also separately considered to improve the system performances in this experiment. In principle, UASB composes of 3 main components (sludge bed, sludge blanket, and settler). A very concentrated sludge bed develops near the bottom of the reactor. The blanket varies from very dense and granular particles with high settling velocities near the bottom, to the lighter, more diffuse particles at higher level of the blanket. Most of  23 the reactions occurs throughout the entire sludge bed and blanket zones. The system is mixed by hydraulic upflow and rising gas bubbles. The potential of UASB reactor, are mainly dictated by the amount of sludge that can be retained in the reactor. In the internal settler, a quiescent zone is created to enable the sludge particle released from the blanket to settle rather than being washed out. Sludge separated by settling is recirculated into the reactor and thus being retained in the system. To help increase this sludge retaining ability, internal recycling ratio (RR) of this fluidized sludge known as sludge blanket back to the reactor influent can significantly enhance the system performance. Increasing the RR means an increase in not only the contact between microorganisms and substrates but also the system bufferring capacity, which finally can lead to the improvement of system stability and removal efficiency; however; too high an RR can break down the sludge bed and seriously damage the system performance.  The success of system performance depends not only on the optimal level of operating conditions such as loading rate, RR, and SR, but also on the system configuration. Since the UASB-UASB process is quite new, detailed microbial and kinetic data are not yet available. Conceptual and preliminary designs of this two-phase configuration have to be made through a modification of existing design criteria of UASB process and theoretical conceptual ideas. Overall schematic diagrams of the system configuration are shown in Figures 3.1 and 3.2, respectively. The detailed sizing of the system components is shown in Table A3.1 of Appendix A. As shown in Figure 3.1, the diameter of the settling section is double that of the sludge bed and blanket sections, and  24 Figure 3.1 Schematic Flow Diagram of a Modified Two-phase Anaerobic Sludge Digestion (UASB-UASB) Process 4 °C 35  A  V  gas  rn  j 1  ___ -iEEi I  A-UASB Legends :  (1) Sludge blender (2) Mers (3) AcId-phase reactor  (4)  Wet gas how meters (8) Pump controllers (9) pH controllers (0) TImer  Storage tank  (5) Methane-phase reactor (6) Gas trap (water)  Uquid flow  Note:  M-UASB  Solids flow  Gasfiow  Figure 3.2 Detailed Dimensions of UASB Reactors used in the experiment  A  F-B-H  I I— 5—H  Legend  A B C D E  A-UASB  M-UASB  (ems)  (ems)  20 10 20 50 50  25 15 30 50 50  (A,B) = Diameter, cms (C,D,E) = Height, ems  Note:  V  -  A-UASB  M-UAS  50 degree InclIned wall Mixer @ A-UASB 1.27 cms.Indla.@ In & outlet  (b)  26 has a  500  inclined-wall; it was designed to reduce the upflow velocity and help settle the  solids back to the lower parts. This also reduces significantly the amount of supernatant solids, especially in the A-UASB reactor. Too high a concentration can affect the M-UASB performance adversely  (  (  >  500 mg/L SS),  Christen, 1984  ).  To ensure a  homogeneous feed sludge and also to prevent the potential stabilization of the influent feed before entering the system, mixed primary and secondary sludges were mixed continuously (at 60 rpm) inside a 30-litre, plexi-glass storage vessel, installed in a walk-in temperature controlled room, at 4  -  6  0  C.  In addition, maximum system loading capacity and system failure and recovery are also worth investigated. Accidental shock load (and/or overloading system cessation (stoppage  )  ) and/or temporary  may reduce the system performance or even be a major  cause of a complete system failure. Appropriate prime indicators of system failure must be identified and quantified and then system recovery alternatives can be formulated. These additional information and results will be used as a part of a final recommendation on system design and operation of the two-phase anaerobic digestion process (UASB-UASB) for sewage sludge.  3.2 EXPERIMENTAL APPARATUS AND OPERATION  As a lab scale experiment, two completely sealed upflow anaerobic (A-UASB and M-UASB) reactors were designed to operate inside a walk-in temperature controlled room at 35  C. Their height and capacity were 1.3 meters, with 20 and 25 litres for A-  27 UASB, and M-UASB, respectively, as shown in Figure 3.2. Whenever the measured pH was under the setpoint values of 5 and 7 for the A- and M-UASB reactors, a signal was sent to the controller, which subsequently directed the diaphragm pump to start pumping a 0.1-0.2 N NaOH solution into the digester to maintain the pH at the set values. As shown in Figures 3.1 and 3.2, the influent synthetic primary and secondary sludges were mixed within a 30-litre storage vessel located in a walk-in temperature controlled room of 4-6 C; the mixture was subsequently pumped to the bottom of the 0  A-UASB reactor by a peristaltic pump. The liquid passed through sludge bed, blanket, and settler, and finally left the reactor via the weir. The effluent from the A-UASB reactor was then pumped to the M-UASB reactor, via peristaltic pumps. The liquid then followed a similar pattern to that of A-UASB and it eventually overflowed as the system final effluent. Concurrently, the fluidized sludge blanket of both reactors was recycled back into the digester. The gas produced from both reactors was entrained in a gas capture facility attatched to the upper part of each reactor. The gas was then monitored by two wet gas flow meters via water trap flasks. To ensure that there was no leakage of gas and/or fluid, rubber 0-rings and one-inch bolts were placed around the digester covers. A 1.27 cm (ID) food and beverage tube, with straight connecters and metal clamps, was used, where necessary, throughout the system to prevent clogging and/or fluid spillage. Also, a two-week schedule of tightening the clamps was implemented. After the completion of the system set up, a test run with tap water was made to check the possibility of any liquid leaking and/or improper operating equipment. A gas leaking test, using nitrogen gas at 2-3 psi and foaming agents, was also  28 carried out several times to ensure that there was no gas leakages from within the digester.  3.3 SYNTHETIC SLUDGE PREPARATION  To avoid potential problems of toxicity from actual wastewater sludge and supply reliability for both primary and secondary sludges, a synthetic sludge mixture was used. The initial constituents of synthetic primary sludge were partly based on those reported in the literature (Therkelsen, 1979). The main constituents, based on percentage by weight of total dry solids soap (4  (% by wt of dry solids), were composed of dog food (76 %),  %), corn oil (6 %), CaCO 3 (2 %), and MgCO 3 (2 %). The chemical analysis of  dog food (“No Name”-Special-dinner for Dogs) used in the preparation of both primary and secondary synthetic sludges, is shown in Table A2.2 (b) of the Appendix A. The proportion of these ingredients was further modified by using numerous trial-and-error techniques to ensure that the characteristics of prepared synthetic sludge were in the typical range of actual primary and secondary sludges, respectively. The final modified constituents of primary and secondary synthetic sludges are shown in Table A2.2 (a) of Appendix A. The amount of each ingredient was calculated based on its proportion, total liquid volume (30 and 24 litres  ), and total dry solids (4 and 2 % by weight) for  primary and secondary synthetic sludges, respectively. To ensure sufficient mixing and solubility of the prepared mixture as well as consistency of the prepared sludge characteristics, several designed preparation  29 techniques were developed and modified. The synthetic sludge was prepared inside a 60litre plexi-glass reactor with a mechanical mixer. The fine-ground, dog food, together with all other ingredients, was dissolved with tap water to make the total volume of 12 litres and was mixed continuously at 90-95 rpm for 2 hours; it was then left overnight inside the walk-in temperature controlled room at 4  C. After that, the prepared sludge was  transferred to several 1.4-litre beakers and warmed up to 65-70  C inside a water bath  for 1.5 hours; it was then mixed at 90-95 rpm for a further 1 hour and settled for 10 minutes. After settling, a portion of the settled solids was wasted, to ensure that the remaining solids level were at the assigned level of P and S for primary and secondary synthetic sludges, respectively; and finally, the volumes were made up to 30 and 24 litres, for primary and secondary synthetic sludges, respectively. A series of small scale (1-litre) and scale up (30-litre) experimental evaluations was carried out, to determine the characteristics of the prepared sludge, and to compare with those of actual domestic wastewater sludge. As shown in Figure 3.4 and 3.5, a series of run-and-compare experiments were undertaken for more than three months, before the characteristics of the synthetic sludge corresponded reasonably to those of actual sanitary waste sludges. During the scale-up experiment, an addition of urea and 4 HPO 2 Na was necessary to increase the concentration of TKN and TP up to the actual range for secondary sludge. Numerous trial-and-error efforts were spent on wasting of settled solids, in such a way that the COD/VSS ratio of both primary and secondary sludges was in the typical range for actual sludge.  A comparative summary of the basic  characteristics of synthetic and typical “actual” domestic sludges is illustrated in Table 3.1.  C)  (I)  Cl)  m  G)  EJ  C  1  m —I C) C,)  z —I  8c  cI)  -U  0  C)  m  C  G)  0  a)  I  >  C/)  1  a)  0)  Co  I  rn  m. F  -1 Co  a’  0.  m z  m  -U  I’) (0  -•1  Co  CD  Cn  4  II  —  (DC)  -‘  Co  r  0) 0  -‘  —.  I  -  liii  0 0  .  III  0  ‘——  ,  -1  -.  —  ..cn .t..C0  i—i  a) 0)  -U  I  r)  C.)  —  (1)  . -‘  /z  I  Co  I  C) 0  0  .1  00 C3  %TS  1  I  4 0  %TS  -U,  Co  C  0  ,x  Co  0  z  -u  /  I I  C)’  %TS  ACTUAL NORMAL RANGE, RATIO OR % DRY DRY SOLIDS  2 z  I  ‘ \  / \  I  /  -  -‘  RA11O  H  m  C)  C  I  m -1 0 C,)  Coz  CO CO  0  a-a  z-n  dc,)  ‘ii  cm  0 >  CO  0  —I  m c)  C  G)  z  -4  C.)  (3)  Y(  111111  -  0  Z  0  I I  -:  I  m  -I  -  0  rz.  % TS O(D0 00 0 0 0 0  II  1  C.) 0  % TS  LFI  0  (J,-.r’.)  LJ  —‘  C.)  %TS  ACTUAL NORMAL RANGE, RATIO OR % DRY DRY SOIJDS  Cl)  C  Co -UI  0  m  -1  0  0  0  RATIOOR%TS  Table 3 1 Comparative Characteristics of Prepared Synthetic Sludge and Actual Primary and Secondary Sludge s Charact.  COD TS VSS VS COD/VSS TKN TP PROTEIN CARBO. TOC  US.EPA (1979) Typical Range # Primary Secondary  [3—7]  [1—2]  [64—93]  [59—88] 2.17 [2.4—6.7] [1.3—1.6] [32—41]  11.2—1.6] [1.5—4.01 [0.35—1.2] [20—30] [17—26]  [17—441 NOTE: #  =  31  Synthetic Sludges Primary Secondary mgIL wgt % of TS mgIL wgt % of TS 32900 33370 17300 30330  3.35 0.50 91.00 1.90 3.95 1.10 25.00 20.00 41.00  25470 19980 11780 17600 ‘  1.99 0.59 88.14 2.16 5.84 1.52 36.55 26.49 33.44  Selected Parameters, percent by weight of dry solids (%TS)  Throughout the experimental program, mon itoring of key parameters of the prepared sludge was undertaken at least once a month; this monitoring showed that the constituents and characteristics of the slud ge used in the experiment were maintained within 10-15 % variation. As shown in Figure 3.6 and 3.7, throughout the Sludge monitoring period of 620 days, the char acteristics of the prepared sludge were very consistent and fell into the typical range of both actual primary and secondary sludges.  100.00  T  a  40.00  0.00  .2  1.50 1.20 0.90 0.60 0.30  TKN EESTKN  IkI ‘,  4.00  0.00 1.80  .YSzzzz:Y_  ...  —  93.00  30.00 20.00  —  0  1.00  32 -——z PfflO  Co  20.00I  2.00  ‘.j..1rteia.......  -64.00  60.00  3.00  ..  JL ii JJJJJJi A :I  80.00  Co  -  —  TP XXTP  -----  ——  -  4.00  0  —  C  —  CODNSS  —  -  -ç  1.20  -  —  —  —  0.00  49  126  203  308 371 Time, days  448  497  561  618  Figure 3.6 Characteristics of Primary Synthetic Sludge monitored throughout the experimental program: (a)  Protein,VS; (b) TKN,TP; (c) CODIVSS  100.00 80.00 60,00 Co  40.00 20.00 0.00 6.00  --88  : —  : :  -  —  N  —  P  N  P  (b)  0)  E0)  4.00  —  -  2.00 — 0.00  -  cc  12.00 : 8.00  -  C/N  —  Cc)  —  1.60 1.30 14.60  0 0, C Co  3.50  4.00  \\  cc  0.00 2.40  -—---  CODNSS  2.17  0.80 1  0 C Co  Cd)  1.60 -  0.00  :I  -  0 CO  59 41 32  49  126  203  308 371 Time, days  448  497  561  618  Figure 3.7 Characteristics of Secondary Synthetic Sludge monitored throughout the experimental program: (a) Protein,VS;(b) TKN,TP;(c) C/N;(d) CODNSS  <  33 CHAPTER FOUR EXPERIMENTAL PROGRAMS  This chapter presents details of system seeding and acclimatizatio n, followed by a series of experimental designs emphasizing the effects of influen t feed sludge ratio (SR) and recycle ratio (RR) on the process performance. Maxim um system loading capacity and the recovery process after a complete failure, are further investigated. An overview of the sampling program, analytical techniques, and data  I statistical analysis complete  the chapter.  4.1 ACCLIMATIZATION PROCESS  Acclimatization is an important step in determining the succes s or failure of the process. A careful seeding and start up of the system is requ ired.  4.1.1 System Seeding and Start up Loading In April 1988, sludge taken from the anaerobic primary sludge digester of the Lion’s Gate treatment plant (whose characteristics are shown in Table 4.1) in North Vancouver, B.C., was used to seed both reactors with a ratio of 1:1 for seed sludge and tap water. Following the seeding, the system was fed initiall y at a flow rate of 2 litres/day, with a ratio of primary and secondary synthetic sludges of about 80:20 (by volume); this was approximately equivalent to a sludge loading rate of 0.1 gCOD/gVSS/d and a  34 Table 4.1 Characteristics of Anaerobic Sludge used in Seeding the System [Anaerobic sludge digester/Lion’s Gate treatment plant] Characteristics  Concentration mg/L  pH Total Alkalinity, mg/L as CaCo3 COD Total COD Soluble COD  %Dsolids 7.2 2740  12490 3150  Solids  TS TVS SS VSS Nitrogens NH4—N NOX TKN  9300 6900 8100 6100  74 75  600 0.25  800  5  65 80  2.5  Phosphorus  P04-P TP Volatile acids HAc  45  volumetric loading rate of 1.2 gCOD/L/d, as recommended by Zeeuw, (1980). ‘The calculations of seed sludge volume and starting loading rate are shown in Table A2.1 of Appendix A. The loading rate was not increased unless more than 80% of the influent soluble COD was digested. After the system stabilized, the flow rate was increased to 5 L/day and loading optimization was started.  35 4.1.2 System Operating Conditions During the acclimatization process, the system was operated at pH values of 5 and 7 for the A-UASB and M-UASB reactors, respectively. The A-UASB reactor was equipped with a mechanical mixer, running for only the first two weeks of acclimatization at the rate of 20 rpm, to ensure sufficient contact between bacteria and incoming feed; the settled sludge of the sludge bed was wasted daily at 5-10% of the influent flow rate, to maintain sufficient active volume in the reactor. However, no sludge wasting was necessary for the M-UASB reactor. Also, the fluidized sludge blanket effluent was recycled continuously back to the sludge bed (RR) at the rate of 4 and 7 times of the influent flow rate for the A-UASB and M-UASB reactors, respectively.  4.2 EXPERIMENTAL DESIGN  The design aimed to accomplish the research objectives as mentioned earlier. The relationships of each component in the experimental design are illustrated in Figure 4.1. The process effectiveness can be evaluated mainly in terms of the process performance, at different 2 by 2 factorial design running conditions (SR and RR) and optimal operating condition; whereas, the process suitability can also be ascertained through the maximum system loading capacity and recovery process after a severe failure. The process feasibility and design criteria are finally initiated. It was assumed that the system reached a pseudo steady-state condition when the gas production, % CH 4 content, and effluent COD reached appropriately  36 steady values, with less than 10 % variation (about 2-3 system HRT). FIgute 4.iAShernatIc F!owPlagrarn:ol:ExPerImefltaI:DeSigflS:.: I System set-up I Synthetic sludge  L Acclimatization  L Optlmai operating condition  Experimental Runs  J  Max. load / Recovery  Effectiveness  Feasibility  Design Criteria  Suitability rn  4.2.1 Optimum “Best known” Operating Conditions  A 2 by 2 factorial design was applied to optimize the feed SR and RR within the A-UASB and M-UASB reactors. After the acclimatization process appeared to reach a pseudo steady-state at about 40-50 days, a number of different running conditions was commenced (as shown in Table 4.2), to maximize the gas production, % CH, and also to achieve a reasonable supernatant quality. Samples were taken and analyzed twice a week for COD, TKN, TP, TS, TVSS, ‘TSS, TVSS, , ,P0 WA, and % gas components. The influent flow rate and gas 4 NH production were recorded daily. The actual sampling program and schedules are shown in Figure 4.2. Each running condition was not changed, unless pseudo steady- state, with a minimum 2-3 system HRT and/or more than 80 % soluble COD removal efficiency 10-15 % variation in effluent soluble COD  ) was achieved.For the first step  in loading  (  37 Table 4.2 Experimental Running Conditions During the Optim al Operating Condition and Maximum Loading Capacity and Recovery Period  ExperimentalRuns J  Sludge Feed Ratio •  Recycle Ratio  Flaw Ratè,lJd  (RR)  (FR)  5-6  (SR)  Phase 1: Reference Condition (Acclimatization) 0  80/20  4/7  1  80/20  2/4  5—6  2  80/20  6/10  5-6  3  50/50  6/10  5—6  4  50150  214  5-6 5-6  Phase 2: Best known condition 5  70/30  3/6  6  70/30  5/8  5—6  7  60/40  5/8  5—6  8  60/40  3/6  5—6  9  80/20  5/8  5—6  Phase 3: Additional Runs 10  —  80/20  4/7  5-6  11  90/10  5/8  5—6  12  90/10  3/6  5—6  Maximum Loading capacity: SR = Ratio of Primary/Secondary Sludges HRT. days 9.0, 4.5, 3.0, 2.25, 1.5 RR = Ratio of Qr/Qin Recovery Periods: where Qr, Qin = recycle and influent flow rate HRT, days @ 1.5, 2.25, 3.0, 4.5, 9.0 ie. 4/7, Qr = 4*Qin in the A-UASB and Qr  ‘optimization, an arbitrary reference running condition  =  7*Qin in the M-UASB  (SR8O/20 and RR4/7),  used in the  acclimatization process, was adopted as an initial runnin g condition for the design of the experimental  runs. The  first four  running conditions  followed and  the response  parameters for each one was monitored and analyz ed continuously, until a pseudo steady-state was obtained.  NH4-N P04-P TKN TP 4.Volatile Adds HAc HPr lso-HBr HBr A-HVr lso-HVr HVr HHe 5.Gas Composition Production Yields  VS SS VSS 2.Organics TotalCOD FilterCOD 3.lnorganics  TS  1.Solids  Response Parameters  Legends:  —  = =  — — — — — — —  — — — — — —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  : —  —  2  —  —  —  —  —  —  —  —  —  —  —  —  —  —  : —  —  3  —  —  —  —  —  —  —  —  —  —  —  —  —  —  = —  —  4  —  —  —  —  —  —  —  —  —  —  —  —  —  —  : —  —  5  —  —  —  —  —  —  —  —  —  —  —  —  —  —  = —  —  6  Sampling Points and Frequency  —  —  —  1  Onpe a month for Primary/Secondary Synthetic Sludges (01,02) I wice and/or three times a week  * * * * * * * *  * * * * * * * *  Yes Yes Yes Yes Yes Yes Yes Yes  *  * * * *  * * * *  Yes Yes Yes Yes  No No No  * *  01  * *  No No  No No No  No  Preservation/ Storage  Legend: )SampIing Point  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  7  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  8  — — —  — —  10  —  9  35 C  Figure 4.2 Sampling Programs:Response Parameters/Sampling Points and Frequency/Preservation and Storage  Go  39 The average response values of each running condition were calculated in terms of main effects and interaction of each parameter, phase mean, reference mean, and change in mean response by an application of Yate’s algorithm. With these results, coupled with 2 SE (standard errors) for each individual average and an application of Response Surface Method (RSM), identification of the “best known” running condition that generated the maximum methane gas production and good supernatant quality was achieved and the effects of SR and RR were also calculated. This best known condition was then reassigned as an arbitrary reference running condition for thenext four runs.  4.2.2 Maxinium Loading Rate and Recovery Periods The loading rate increased gradually, step-by-step until the system was overloaded, causing VFA’s to accumulate within the system. The pH dropped from the desired range, resulting in an imbalance of acid-and methane-forming population; this subsequently led to a system upset. By increasing the loading rate from the optimum conditions obtained from the previous experiment, the maximum loading rate was determined. In addition, the loading rate was designed to increase gradually step-by-step, while the pH controller was off, until the system crashed. Then the loading rate was decreased gradually in order to recover the system as shown in Table 4.2.  4.2.3 Sampling Program and Analytical Techniques 4.2.3.1 Sampling Program The sampling program, analytical techniques, and data interpretation were  40 carefully designed to ensure reliable and accurate results, for evaluation of the process performance. An extensive sampling program was set up to characterize and monitor the synthetic sludge and system performance, as shown in Figure 4.2. The proposed program was strictly followed during the acclimatization process and the first four running conditions (Sequence 1), however; the sampling program was modified slightly to “suit the facts” obtained during the first four running conditions. The results of the first four runs indicated that the system could reach a pseudo steady-state condition within 2-3 HRT’s and that there was very little change in the response parameters during the first few weeks of each running condition. It was then felt justified to reduce the sampling frequency of the next four running conditions, to once a week, for the first few weeks after changing the running condition and twice a week afterward, until the system reached a pseudo steady-state condition (more than 80 % removal efficiency, 2-3 HRTs, and/or 5-10 % variation of the effluent quality  ).  However, monitoring of the gas  production, influent flow rate, and gas content were undertaken as scheduled, so that they could be used as indicators to predict the pseudo steady-state condition of each run. The sampling program functioned in two major parts; that for acclimatization periods, and that for experimental periods. Liquid samples were taken from eight different points along the height of the A-UASB and M-UASB reactors. Two gas sampling rigs were used. In general, a liquid sample of 250 ml was collected, preserved, and analyzed for various response parameters twice a week. In addition, system maintenance, tightening of all clamps and reactor’s cover, changing of all tubing lines and pump heads, and checking of the water level and tubing of the gas flow meters, etc.,  41 were carried out regularly, to ensure that proper system operation was maintained and to prevent any incidents of leaking and/or spillage which might occur during the experimental runs.  4.2.3.2 Analytical Techniques Analytical methods for all response parameters were in accordance with Standard Methods  (i t 6 h  edition, 1985), unless specifically described separately. For soluble sample  analysis, sample preservation and storage were required prior to any further analysis. A sample of 150 ml collected from each sampling point was centrifuged at 2,500 rpm. for about 15 minutes, in an International Equipment Company Mode CS Centrifuge and the supernatant was then filtered through a no.4 Whatman filter. A filtrate aliquot was analyzed for soluble COD and the remainder was preserved and stored, as shown in Figure 4.2, for further analysis. Analytical methods for each response parameter can be summarized as follows:  Chemical Oxygen Demand (COD) Sample sizes of 0.1-0.5 and 1.0-2.0 ml were used to analyze for total and soluble COD using the dichromate oxidation reflux method as outlined in the Standard Methods.  Solids A sample of 30-60 ml of each sampling point was used for the analysis of solids content as follows:  42 TS/TVS A sample of 10-30 ml collected from the sampling point number -  1,2,3,and 6 was poured separately into the known weight of evaporating dish, which was heated for 2 hours at 550 C inside the muffle furnace and then weighed after cooling. °  Samples were then dried overnight in a Fisher isotemp oven (Model 350) at 104  °  C.  After cooling the samples inside a vacuum desiccator, the samples were then weighed and burnt for about 2 hours, for volatile solids, in a Linberg muffle oven at 550 C. The °  samples were finally cooled inside a vacuum desiccator and weighed again.  TSSITVSS  -  A sample of 10-20 ml collected from the sampling points  numbered 1-8, was treated similarly to that of TS/TVS, except that a 934-AH Whatman glass microfiber was used to filter the sample instead of using the evaporating dish. Calculation of the weight and concentration of solids was made according to Standard Methods.  Total Organic Carbon (TOC) The filtered samples were preserved as described in the COD section, and analyzed in an automatic Shimadzu Total Organic Carbon Analyzer, TOC-500, using the combustion-infrared method (TOC-500 Instruction Manual, Shimadzu Scientific Instruments, Inc.).  Proteins The crude protein content of the samples can be determined from the TKN value  43 by multiplying it with a factor of 6.25. This is based on the assumptions that all the nitrogen of the organic matter is due to protein, and that protein contains 16 percent nitrogen on average (100/16  =  6.25).  Carbohydrates The total soluble carbohydrates were determined by the ferricyanide method as outlined in the Handbook of Micromethods for the Biological Science (1974).  Inorganic/Acids A soluble sample, after being preserved and stored for up to a week, was analyzed for 4 NH N, 4 P0 P, TKNR’P, and VFAs as follows:  NH 4 N  -  Aliquots of soluble samples collected from the sampling points  numbered 1-8 were analyzed for 4 NH N, using the Automated Phenate Method (A.P.H.A., 1980). Appropriate dilutions ranging from 1/50  -  1/100 were made prior to  determining the intensity of the sample colours using a Technicon Auto Analyzer II and then compared with those of prepared 4 NH N standards, ranging from 1.0-3.0 mg/L in order to estimate the concentration of NH -N in the sample. 4  P0 4 P  -  The automated ascorbic acid reduction method (Technicon  Industrial System, 1973) was used to analyze 4 P0 P. In an acid medium, ammonium molybdate and potassium antimonyl tartrate react with 4 P0 P to form an antimony-  44 phosphomolybdate complex; this is further reduced with ascorbic acid, yielding an intense blue colour. The intensity of the sample colour was determined by a Technicon Auto Analyzer II. Calculation of 4 P0 P concentration was made by comparing the sample responses with those of prepared standards of 4 P0 P.  TKNITP dried solids samples  (  -  A series of known TKN/TP standards, soluble samples, and  after being dried at 104  C  )  were digested in the Technicon  Block Digester 40 with concentrated H 4 S 2 0 and K 4 S 2 0 This procedure liberated all bound organic nitrogen and particulate TP to 4 NH N and 4 P0 P, respectively. The TKN/TP concentrations of the samples and standards were measured colorimetrically, using the Technicon Auto Analyzer II and calculated by comparing the responses of both samples and standards.  Volatile fatty acids (VFA) Samples taken from sampling points numbered 1-8 were filtered using no.4 Whatman filters and frozen in sealed plastic pipets. After the time of analysis, the samples were thawed at room temperature and diluted 1:10 with distilled water. A 1.0 td 1  sample, after being acidified by a drop of 1 % solution of phosphoric acid to bring the  pH below 3.0, was injected into a computer-controlled Hewlett Packard 5880A gas chromatograph equipped with a flame ionization detector (FID), using helium as the carrier gas. To achieve accurate and reliable results, microsyringes  (  Hamilton Model  70 iN, 10 Ll ) and a Hewlett Packard auto-sampler ( Model 7672A) were used. The glass  45 column (0.91 m long with a 6.0 mm (OD) and 2.0 mm (ID)) packed with 0.3 % Carbowax/0.1 % 4 P0 on Supelco Carbopak C 3 H  (  supplied by Supelco Inc.  ),  was  conditioned according to the procedure outlined in the Supelco Bulletin 751E (1981). The operating conditions for the chromatograph were maintained as follows: Injection port temperature Detection port temperature  = =  Isothermal oven temperature Flow rate of carrier gas (helium)  150 oC 200 120  =  °  C °  C  20 mi/mm  The response peaks of each sample were quantified by comparing with external standard methods, using reagent grade standards.  Gas content Gas samples were extracted from sampling points 9 and 10 (See Figure 4.2) using a 1-mI Hamilton Syringe. The injection syringe was flushed twice, before the injection sample was taken. The plunger was depressed to expel the excess gas prior to inserting the syringe needle through the diaphragm of the sample injection port of the Fisher Model 29 Gas Partitioner. The sample was then rapidly injected and a mixture of gas was swept through two chromatographic columns, packed with a liquid phase is on a solid support known as DEHS and 42-60 mesh Molecular Sieve for column 1 and 2 respectively, by a continuous flow of the helium carrier gas. The gas components were separated and eluted from the system at different retention times. A thermal conductivity detector then sensed the differences in conductivity of the separated components, which  46 was amplified and integrated for quantification. The retention time elapsed from the point of injection to the emergence of a peak is characteristic of a particular gas. The area of a peak is also proportional to the concentration of the gas. Calculation of the gas concentration was made by comparing the peak areas of measurable samples and the standard.  4.2.4 Data and Statistical Analysis  All data in this research were analyzed and plotted by using an integrated software program, Symphony version 1.2 and Lotus version 2.2 with an add-in program (Aliways  ). Some  of the graphics were imported into the Freelance software program,  version 3.0, for further modifications. For the report preparation and statistical analysis, a Word Perfect 5.1 program and Systat/Sygraph programs were used.  47 CHAPTER FIVE RESULTS AND DISCUSSION  This chapter deals with two main sections :(i) the acclimatization mode; and (ii) the experimental mode. The development of the acclimatization process and a comparison of different acclimatization alternatives is followed by the effects and interaction of Sludge Ratio (SR) and Recycle Ratio (RR) on the responses and process performance, maximum loading capacity, and system recovery process. System feasibility, design criteria, and effective and reliable system indicators are also discussed.  5.1 ACCLIMATIZATION PROCESS  It has long been recognized that the acclimatization process has a great impact on the success or failure of system operation. Understanding the conceptual development of the process and acclimatizing the system properly are extremely important, in order to achieve the desired level of the system performance.  5.1.1 Development of the Acclimatization Process  One of the main difficulties in the treatment of sewage sludge appears to be in the development of suitable and efficient mixtures of microbial cultures to treat this particular type of waste in this typical reactor. To alleviate this problem, it is necessary  48 to understand the principle/behaviour/response of the UASB process under different operating conditions.  5.1.1.1 Behaviour and Response  The UASB is a suspended-growth biomass system composed of three main portions: (i) sludge bed; (ii) sludge blanket; and (iii) settler. Most of the reactions occur in the lower part of the system (sludge bed and blanket). In the two-phase UASB-UASB process, complex influent substrates such as carbohydrates, proteins, and lipids are first hydrolysed and acidified inside the A-UASB reactor by a predominantly acidogenic bacteria population; this produces simple compounds such as volatile fatty acids (VFAs). These VFAs then pass through the M-UASB reactor, where they are subsequently converted to CH 4 and CO 2 gases by predominantly methanogenic bacteria. Small amounts of N 2 gas and other by-products are also produced. Using a step-loading approach rather than continuous (constant) loading for system start-up, the system was carefully acclimatized with an increase in influent loading to keep pace, as close as possible, with an increase in system biomass (Bull et al., 1983). The influent substrate was, therefore, started and maintained initially at a low loading rate (sub-crucial level) to ensure greater conversion and biomass growth rates than washout one. The system loading rate was not increased until more than 80 % removal efficiency of the system influent COD had been achieved. Over-or-under hydraulic and/or organic loading a UASB can adversely affect the start up process. Over-loading tends to  49 produce excessive gas, causing a gas-lift in the reactor, floatation of the sludge solids, and finally, a system washout process. Under-loading results in the formation of a massive compacted sludge, thus reducing the efficiency of the system significantly  (  Hulsoff-Pol  et al., 1983). Initially, the start up of non-attached biomass processes, like UASB, relying heavily on suspended biomass and attached microflora, appears to induce a “washout phenomenon. Large quantities of the UASB biomass were washed out of the system during the first couple of weeks of this research, followed by development of small granules or pellets. Then, the remaining biomass showed better settleability and served as a surface medium for active microbial mass growth. Minimization of biomass washout is, therefore, crucial to reactor activity during the start up process. A suitable type of seed sludge, seeding ratio and acclimatization, seem to be effective in compensating for the solids washout phenomena. Precipitation of salts of CaCO 3 and P0; 3 inside the reactor is also credited for an increase in sludge settleability, as these salts weigh down the pellets, and increase the settling capacity  (  Klapwijk et al., 1981  ).  Considering all  these points and behaviours, a careful system seeding and start up of the UASB-UASB process was selected as outlined in Chapter 3.  5.1.1.2 Acclimatization Alternatives  To develop an effective start up and acclimatization process, the system was seeded with a high ratio of seed sludge to tap water (1:1 by volume), to compensate for  50 the solids washout problem. In addition, three acclimatization alternatives were investigated in detail; samples were taken regularly and analyzed for several parameters, as shown in Figure 4.2. These alternatives were: (A) Seeding both A-and M-UASBs with sludge from the Lion’s Gate treatment plant anaerobic sludge digester and using a steploading approach; (B) Seeding both reactors with acclimatized synthetic seed sludge and using a constant-loading approach; (C) Seeding the A-UASB with acclimatized synthetic seed sludge, but the M-UASB with sludge from the Lion ‘s Gate anaerobic sludge digester, using a step-loading approach. The results of this investigation are summarized as follows:  (a) Washout Phenomenon  In suspended-growth biomass systems like UASB, where the treatment potential is dictated by the dual parameters of the biomass quality retainable in the system and the specific activity of biomass  (  such as methane production and settleability  ),  an  inoculation of about 30-50 % reactor volume of active sludge is required. Start-up and acclimatization of UASB reactors requires about 4-8 weeks to develop an active microbial mass sludge (Lettinga, 1979; Zeeuw, 1980). Start-up, therefore, is dependent upon an equilibrium between loading and washout as well as the selection of a suitable seed sludge, wastewater characteristics, and careful management. Initially, large portions of biomass are washed out of the system; later, the microstructural granules or pallets are developed with the help of precipitated salts of carbonate and phosphate. These  51 weigh down the pellets, increasing the sedimentation capacity. As shown in Figure 5.1, the system with the step loading rate of 0.10-0.21 /m 3 m d, demonstrates the washout phenomenon of the MLVSS (points 1,2, and 3) at day 23-45, 1-15 and 1-7 for alternatives A, B, and C, respectively. Active biomass settles at the sludge blanket (sampling point no. 6, 50 ems from the bottom) of the M-UASB, then starts to build up to a concentration of 5750, 1265, and 2580 mg/L of MLVSS for alternatives A, B, C, respectively. It is believed that development of granule sludge and pelletization do occur at the sludge bed. Accidentally, there was a case of sludge spillage due to clogging inside the recycle line during the experimental program. Fortunately, there was still sufficient biomass remaining at the bottom of the reactor; this was characterized by very hard and dense pellets. Also, Jing-Qing Yan (1991) studied a sludge concentration profile along the height of UASB and indicated that there were 2 distinct layers of sludge concentration profiles. These included a dense sludge bed (from 0-30 cms.) with 18-58 g/L VSS and a sludge blanket (above 37 cms.) with 2-10 g/L VSS. The author also mentioned that system start-up process with a sludge loading rate of less than 0.2 kg COD/kg VSS-d was crucial for a successful development of pelletization. As mentioned earlier, the start-up sludge loading rate in the present case (UASB-UASB) was about 0.1 kg COD/kg VSS-d and the concentration of MLVSS at sludge blanket level (50 cms. height) was in the range of 1300-5800 mg/L. Since similar patterns of start-up process and MLVSS concentration range were observed in the present study, it is believed that development of sludge concentration profile (pelletizatioon) did occur in the system. It is quite clear that acidogenic and methanogenic bacteria play an important role  52  (b)  (a)  (C)  I  5  Effluent MLVSS Reactor MLVSS  4-  . 4  3  I  20  0  I  I  I  I  40  60  20  0  60  40 lime, days  40  20  0  60  Figure 5.1 An Acclimatization Washout Phenomenon Under different running condftlons (a,b,and c), Mentioned in section 5.1.1.2 AcclimatIzation Alternatives  \Y  40 30  /  (b)  (a)  —  +  coo  (C)  SoLCOD  +  04-P  20 I  II..,—  0  20  40  I  —  60  0  I  20  I  I  40  I  I  I  60  0  20  I  I  I  40  60  Time, days  Figure 5.2 System Removal Efficiency During Acclimatization: Under different running conditions (a,b,and c), Mentioned in section 5.1.1.2 AcclimatIzation Alternatives  53 in the initial wash out phenomenon. As shown in alternative A, Figures 5.1, it took approximately 23 days to develop active and sufficient amounts of acidogenic and methanogenic bacteria to dominate within A- and M-UASB reactors, respectively. As a result, influent substrate is hydrolysed and acidified in the A-UASB, producing low to medium molecular weight VFA’s such as HVr, HBu, HPr,  HAc etc.; these are further broken down to CH , C0 4 , and H 2 2 by methanogenic bacteria in the M-UASB. Figures 5.3-5.4 showed a decrease of influent total VFA from 4,070 to 1,120 mg/L with an HAcIHPr concentration ratio of 1:40, corresponding to an increas e of VFA removal efficiency of the M-UASB up to 71 %. The produced gas (CH , C0 4 , 2 , and etc.) then caused a gas-lift, solids sludge floatation, and finally, a system washo 2 H ut phenomenon in the M-UASB reactor at point (1) of the Figure 5.1.  Conversely,  alternatives B and C demonstrated the washout phenomenon immediately after day 1 (points 2 and 3, respectively), and it took only a week for alternative C to start up, compared to two weeks for alternative B; however, the acclimatization process was completed within 4 weeks for both alternatives. Lettinga (1978) found a similar result whereby, when he acclimatized a UASB at 30 C with 1250 mg/L HAc and 1000 mg/L HBu, a distinct granulation appeared 5 weeks after the start-up of the process. The time reduction, compared with alternative A, may result from the effectiveness of well acclimatized synthetic sludge seeded in A-UASBs, genera ting sufficient volume of VFAS ready for methanogenesis to proceed further in the M-UA SB. Comparing alternatives B and C at day 20-30 (same range of loading rate in both alternatives as shown in Figure B2.1 of Appendix B), it is interesting to point out that  54 100  / 60  (c)  (b)  (a)  20 >. C.)  a) C) C)  0  -60  -100  -140  I  —  0  I  20  60  I  I  —  40  40 20 Time, days  0  —  40  20  0  60  60  Figure 5.3 VFA Removal Efficiency of the M-UASB: During the acclimatization under different running conditions (a,b, and c), Mentioned in section 5.1.1.2 Acclimatization Afternatives 5  5 (b)  (a)  (C)  4  4 C)  I 3-J-. -C,)  1 hL M I  0  20  40  I 60  I  I  11111  I  20  40 Time, days  I  60  LI I  I  20  Ficiure 5.4 Efluent VFAs of the M-UASB:  I  40  During tJTe acclimatization under different running conditions (a,b, and c), Mentioned in section 5.1.1.2 Acclimatization Alternatives  60  :  55 alternative C had better performances than those of alternative B in terms of system and  VFA removal efficiencies and effluent VFA as shown in Figures 5.2-5.4. This may be caused by a more diversified structure of bacterial community due to the step-loading approach (starting from low loading rate with seed sludge from Lion’s Gate anaerobic digester used in alternative C, compared with a constant loading scheme (high loading rate) and acclimatized seed sludge in alternative B. Pavoni (1972) and Encina (1987) indicated during the start-up process that a low F/M ratio of the influent helped promote bc formation and also induce the greatest washout rate in a typical UASB. The reason is that floc and granules can be formed effectively if substrate feed rates are kept as close as possible to that of bacterial growth rates. However, there appeared to be a sudden increase in total effluent VFA of A-UASB (sampling point no.5) beyond day 30, ranging from 4,950-5,150 to 5,200-6,200 mg/L as HAc as shown in Table B2.5 of Appendix B. This sudden increase as a shock load to the M-UASB resulted in a decrease in system performances as illustrated in Figures 5.1-5.4. Combination of a difficulty in controlling the system loading rate beyond day 30 and an attempt to maintain the pH of M-UASB which destroyed the sludge bed and blanket, was responsible for this particular situation. This washout phenomenon during the start-up process was also mentioned by several other researchers. Zeeuw (1980) concluded that the acclimation process of an UASB reactor included roughly 3 stages of adaptation: (a) adaptation of sludge to the substrate composition  -  an initial loading rate should be kept close to the maximum  potential of seed sludge (0.04 kg COD/kg VSSIday) in order to prevent an inhibition of the break down of HPr; (b) increasing of the specific activity of the sludge as a result of  56 bacterial growth, retention time and washout process which occurred in the first week of operation; (c) sludge pelletization appeared approximately 6-7 weeks after the start -  up and the sludge bed concentration increased from 7 to 18 kg VSS/m . 3  (b) System Performance  In accordance with the start-up of different acclimatization procedures, as shown in Figures 5.1-5.4, the results indicated that a well-adapted sludge could form within a period of 4-5 weeks. The organic loading up to 1.0-3.4 and 0.56-1.8 kg COD.m 1d, 3 equivalent to a hydraulic loading up to 0.10-0.24 and 0.06-0.13 ”m 3 m d or an organic loading of 0.36-0.60 and 0.20-0.33 kg COD/kg VSS-d for the M-UASB and the entire system respectively, could be successfully accommodated at 35  0  C. This results have  agreed with the studies carried out by Hulsoff-Pol et.al (1983) on the effect of sludge loading rate on granulation in the UASB system. He found that pellets formed only at loading rates in excess of 0.6 kg COD/kg VSS-d, while at 0.3 kg COD/kg VSS-d, bulking and washout occurred. During acclimatization, it was interesting to note that there was a lag period of about 2 weeks for alternative A, before the system started to break down the substrate, whereas no lag period appeared in either alternative B or C (as shown in Figure 5.2-5.4). The reasons explaining this lag period have already been noted earlier. The system appeared to take about 52, 35, and 30-52 days for alternative A, B, and C to reach pseudo steady-state, at a removal efficiency of 86-91 % soluble COD and 94-100 % VFA  57 (as shown in Figure 5.2 and 5.3), respectively. The acclimatization period for alternative C took almost two months approximately 30-52 days  ),  (  longer than expected. The possible major causes of this  particular situation are a sudden increase in system loading and/or a disturbance of sludge bed and blanket as mentioned earlier. A rapid increase in the HPr/HAc ratio, as shown in Figure 5.4, indicated that the system was interrupted and/or under stress, causing the accumulation of HPr (because H -utilizing bacteria, to form CH 2 , are 4 inhibited). As such, the excess of reduction equivalents is diverted into less favourable biochemical routes (using organic acids as an electron sink) resulting in the accumulation of HPr (Zoetemeijer, 1982). However, it took only a couple of weeks for the system to recover by itself, naturally. Despite this problem, alternative C (between days 20-30) seems to be slightly better than alternatives A and B, in terms of average system removal efficiency and effluent quality as shown in Table B1.1 of Appendix B. A possible explanation is that the A-UASB of the alternative C was properly acclimatized and loaded step-wise, with well adapted seed sludge. This helped to generate sufficient volume of readily biodegradable VFA’s for methanogenesis in the M-UASB; which was seeded with sludge from the anaerobic digester of Lion’s Gate treatment plant. With greater varieties of acetogens and methanogens in this type of digester sludge, coupled with a proper start-up of the A-UASB, alternative C appears to acclimatize the system more effectively and efficiently than either alternative A or B. In terms of nutrient requirements, it appears that effluent levels and removal efficiency of 4 P0 P tend to follow the patterns of both COD and  58 VFA effluent levels and removal efficiency; however, TKN seemed to have no relationship at all with the system removal efficiency, as shown in Figure B1.1 of Appendix B. The summary of average system performance during the acclimatization process, under different running conditions was illustrated in Table BL1 of Appendix B.  5.1.2 Conclusions  System acclimatization is one of the most crucial steps to secure a reliable system performance. Careful and proper system start-up and acclimatization results in the production of an active and effective granular biomass sludge  (  pellets  ),  which  subsequently creates an effective system removal efficiency and generates significant amounts of CH 4 gas. According to the results obtained during the acclimatization process, the following conclusions can be made: (1) A step-loading scheme, starting at a sludge loading rate of 1.2 gCODIL-d with a seed sludge ratio of 1:1 (by volume), appears to be an effective measure to acclimatize the system. Salts of Ca 2 and P0 3 seem to play a major part in the increase of the 4 sludge settleability. (2) The “washout phenomenon” occurs within 2 weeks of the process acclimatization, at a sludge loading of less than 1.2 gCOD/L-d or 0.36 kg COD/kg VSS-d. (3) Acclimatization alternative C, seeding the A-UASB with acclimatized synthetic seed sludge and the M-UASB with sludge from the Lion’s Gate anaerobic sludge digester, is the most effective and practical method to accelerate the acclimatization  59 process, since anaerobic digester seed sludge is already available at sufficient volumes for a typical full scale UASB process. The system starts to wash out the MLVSS immediately after acclimatization and completes the process within 4-5 weeks, with 86-91 % COD (sol.) and 94-100 % total VFA removal efficiencies.  60 5.2 EXPERIMENTAL DESIGN  This section describes with a search for an optimum “best known” operating condition by determining the effects and interaction of SR and RR on the responses and process performance under different running conditions. The results are then used to locate the “best known” running condition, which provides superior supernatant quality and reasonable methane gas production, by an application of Yate’s algorithm and Response Surface Method (RSM) (Box, 1969). These application techniques of experimental designs are initially used as major tools to help direct the next appropriate and effective moves of the experimental design toward the optimal “best known” operating condition. The effectiveness of a two-phase anaerobic digestion (UASB-UASB) system to stabilize the particulate substrate under different running conditions is then evaluated. Steploading rate experiments are further undertaken to locate the optimum and maximum system hydraulic and/or organic loading capacities. Furthermore, the experiments should provide information on the required recovery period, after a serious washout of the active biomass has occurred. Evaluation of basic kinetics is also made. The feasibility of this two-phase (UASB-UASB) process can then be evaluated in terms of system effectiveness  ( acclimatization and performance) and system suitability (maximum and  optimum hydraulic and/or organic loading capacity and system recovery). Modifications to design criteria and operation procedures are proposed at the end of this section.  5.2.1 Optimum “best known” Operating Condition  61 The term “best known ’ in this particular situation, is defined as a running t condition that provides the maximum system COD removal efficiency and CH 4 gas production under a certain regime of pH, temperature, and influent flow rate. To locate the optimum “best known” operating condition, regarding SR and RR, a previously successful running condition, during the acclimatization process, was used as a starting condition; also, another set of running conditions, as shown in Table 4.2 of Section 4.2.1, was also implemented. The responses and efficiency of each running condition were used to evaluate the effects of SR/RR on system performance, the effectiveness of the twophase (UASB-UASB) concept, and the location of the “best known” running condition.  5.2.1.1 Effects and Interaction of Sludge Ratio (SR) and Recycle Ratio (RR)  Too high an RR can destroy the sludge bed and wash out the active biomass from the system, but too low an RR can also reduce the system removal efficiency by reducing the chances of better contact between microorganisms and substrates and decreasing the system buffering capacity. Equally important, too-high and -low an SR can significantly affect the system performance, since the primary and secondary sludges are composed of extremely different nutrient concentrations, thus affecting organic loading capacity. The effects and interaction of both RR and SR, as well as the initial optimum range of these two influential control parameters, must be analyzed and identified prior to proceeding any further toward optimum and maximum loading capacity of the UASB  62 UASB system. In this particular situation that only the acclimatization running condition is known, an “Evolutionary Operation Process (EOP)” using Yate’s algorithms with 2 standard errors (S.E.) is an effective technique to lead the experimental design toward the optimal “best known” running condition providing superior supematant quality and reasonable system removal efficiency. At each step of EOP, a reference running (best known) condition with another four appropriate running conditions is designed and implemented. Calculations of effect, interaction, phase mean, and change in mean of these data are made and analyzed with an application of Steepest Ascent technique. If necessary, another set of experimental design (best known running condition of the previous set plus another four designed running conditions) has to be set up if magnitudes of effect and change in mean are significant, compared with 2 S.E.. On the other hand, if these magnitudes are not significant compared with 2 S.E., it means the reference best known condition is closed to the vicinity of the optimal system operating condition. By applying a Yate’s algorithm with two standard errors  (  Box, 1969  )  on the  selected parameters of Sequence 1 and 2 experiments, the effect, interaction, phase mean, and change in mean were calculated and summarized in Table 5.1. A detailed calculation of the above statistical parameters, based on the replicated values at pseudo steady-state condition of each running condition in Sequence 1 and 2 experiments, is demonstrated in Table C2.1 of Appendix C. From Table 5.1, it is apparent, apart from the effect of 2 standard errors, that SR and RR have a significant effect on the effluent  63 Jale:5. 1 SI.irT1uT1ar’f..èfféits (SR.aiii ll / change in mean during the sequence 1 and 2 experiments  • lntération  .Rsponse.: parameters  :.  •::PhaSe:  Sequence 1 Effluent, mgIL or mgiL as HAc 1454 C0D(sol.) VFA(tot.) 1262 P04-P 85  -3460 -1196 -213  486 -802 -8  3207 1965 142  2357 1734 122  186/167 1441/1288 72.33/64.64  -30.56 -60.31  21.76/19.44  System Rem., % C0D(soL)  -24.46  59.75  -1.4  P04-P  -51.52  81.28  16.99  52.93 24.28  6.42/5.75  CH4 gas %CH4  -7.49  5.31  -5.31  67.9  16.3  2.79/2.5  Yields  0.77  -0.61  0.04  1.77  0.06  1.05/.95  -84 -13.5  430 83  -146 -205  -43.5  -15 63.5 -78.5  40.5  39  33  173/1 55 197/176 38.49/34.4  Sequence 2 Effluent, mgIL or mg/I. as HAc COD(sol.) -36 VFA(tot.) -13.5 P04-P System Rem., % 1.01  -0.83  1.15  93.81  2.46  2.07/1.85  P04-P CH4 gas  10.31  29.21  -8.54  83.83  -10.2  11.27/10.07  %CH4 Yields  -3.09 0.27  -0.38 -0.34  -1.81  72.62 1.94  0 0.1  0.98/0.88  -0.53  COD(sol.)  Note: 1  = 2 standard Øfto of.éfféct, ihtéräction. phãsemear 2# = 2 standard errors of change in mean Negative (—ye) response magnitude, if significant, compared with 2 S E mean better performance can be achieved by decreasing SR, RR, andlora combination of both Detailed calculation was illustrated in Table C2 1 of Appendix C .  0.29/0.27  64 and removal efficiency of COD(sol.) and 4 P0 P in the Sequence 1 experiment. However, the effect of SR appears to be of a greater magnitude than that of RR and only the interaction (SR*RR) of effluent COD is significant. This may suggest that the system COD removal efficiency is probably governed by the anaerobic stabilization processes and depends largely on the SR and RR factors to increase the contact between microorganisms and substrates, bufferring capacity, and nutrient requirements; whereas, the removal of P0 -P, without any interaction, is mostly a chemical reaction, affected 4 strongly by the influent TP in the feed SR, thus resulting in the precipitation of Ca 2 and 3 salts inside the reactor. 4 P0 The large relative magnitudes of the main effect, interaction, and change in means on most of the responses in the effluent and removal efficiency, compared with 2 SE. in the Sequence 1 experiment, indicated that the optimum “best known” running condition was still not reached. An additional sequence of running conditions was needed to move toward the optimum condition. Under these circumstances, a “steep ascent” method is the most effective preliminary procedure to direct the next appropriate move of the experimental operation and thus approaches the optimum running condition. Once the linear effect becomes small, further application of the method is unprofitable (Box et a], 1969). A graphical contour plot, using data from each pseudo steady-state of the Sequence 1 experiment, was made, as shown in Figure 5.5. The sequence 2 experimental operation was then made by assigning the “best known” condition in sequence 1 experiment as a reference running condition, plus another 4 different running conditions  YMAX.81.5 o3101  I  65 o.86I  (a)  z  2400  32o0r 000  V MIN. 48.5 V MAX.. 81.5  D552  8773  C b)  z x  72  72  56  V M(N-48.5  Figure 5.5 Surface Responses of Phase I Experiment: (a) Effluent COD (sol.);(b) COD Removal Efficienc At Pseudo Steady-state under Different Running Conca’ions Note: x = Recycle Ratio (RR); y = Sludge Ratio (SR)  66 as shown in Table 4.2. The details of this “best known” condition will be discussed in the next section. Comparing the phase means of both Sequence 1 and 2 experiments, the system performed much better in terms of effluent quality, COD removal efficiency, and 4 gas content and yield, in the Sequence 2 experiment (as shown in Table 5.1). There CH was also no significant effect of SR and RR on all the responses, when compared with 2 S.E.. These combinations indicated that the system was now in the vicinity of the optimum “best known” condition providing the maximum COD removal efficiency. However, there were still some effects of SR on the content and removal efficiency of P0 4 P and the effect of RR and interaction (SR*RR) on the CH 4 gas content. An additional run (Sequence 3 experiment as shown in Table 4.2) was then carried out to ensure that the system really reached the optimum ‘best known” running condition.  5.2.1.2 ‘Eest Known” Running Condition  By applying the steep ascent technique as mentioned earlier, a response surface of the Sequence 1 experimental runs as shown in Table 4.2, with respect to effluent COD (sol.) and COD removal efficiency, is illustrated in Figure 5.5. As shown, the contour lines of both COD removal efficiency and effluent COD tend to move towards the best known running condition (experimental run no. 0: SR8O/20 and RR4/7), where 86.09 % COD (sol.) removal efficiency and 861 mg/L of effluent COD (so!.) were obtained. It is quite interesting to note that the running condition of SR5O/50 and RR2/4 was the worst  67 43.5  -  3 E  m—()  :.  Running Conditions RR SR  -  (a) (b)  2.5-  (d)  2-  2/4 6/10  50/50 50/50  6/10 214  80/20  (C)  6°  80/20  IL  I  1.5-  I  -0.5  A-UASB  +  H  M-UASB  -  1  10  19  28  37  46  55  64  73  82  91  100  Time, days -  Figure 5.6 NaOH (0.1 N) Addition During the Sequence 1 Experiment  scenario in the Sequence 1 experiment, with 8.81 % COD removal efficiency and the effluent (so!.) COD of 5950 mg/L. This may have been the result of a large volume of 0.1 N NaOH automatically pumped into the reactor to neutralize and maintain the pH ‘at 7.0-7.2 (as shown in Figure 5.6), thus destroying the sludge bed and diminishing the 4 gas production and the system removal efficiency (as shown in Figure 5.7). It is CH speculated that a malfunction of the pH sensor in the M-UASB might have played a major role in this unusual situation. Although results of the worst running condition were suspected and even without considering them, the overall picture of sequence 1  E 4 ? roa.  38  Tbn., d.y  47  •ie  L  N04•.  Jf/J}%  (a) COD Removal Effidency;(b) Effluent COD;(c) CH4 Content;(d) CH4 Gas Production  Figure 5.7 System Responses and Performance of Sequence 1 Experiment:  40  80  10  30  50  70  ii i II. II  00 807080504030  69 experiment still remained moving toward the acclimatization running condition (SR 80/20 and RR 4/7). Reseeding and repeating the acclimatization process of the M-UASB, using a new pH sensor, were made before starting the experiments in Sequences 2 and 3, as detailed in Table 4.2. A summary of average responses and system performance under different running conditions (Sequence 1-3) is shown in Table 5.2. As also shown, running condition no.7  (SR6O/40 and RR5/8) appeared to perform better in terms of better effluent quality and higher 4 CH gas productivity than those of running condition no.10 (SR8O/20 and RR4/7); however; condition no.10 provided a better 4 P0 P removal efficiency. Finally, as shown in Table 5.2, the choice of running condition no.9 (SR8O/20 and RR5/8) was the optimum “Best known” condition with respect to 4 P0 P removal efficiency, specific 4 CR gas productivity, and CH 4 gas production, compared to all other running conditions. A summary of average responses and performance of the “best known” running condition is illustrated in Table 5.3. Under this “best known” condition, the system appears to provide a promising performance with 95, 99, and 90 % removal efficiencies of soluble  COD, total COD, and 4 P0 P, respectively. A low level of soluble effluent COD of 308 mg/L is also indicated.  5.2.1.3 Two-phase Separation (UASB-UASB)  To avoid confusion between a conventional, completely mixed “two-stage”  Average Responses  COD,%  Solids, %  Total VFA,mg/L HAG  Inorganics, mg/L  COD, mg!L  Solids, mgIL  cu.m/cu.m—d Kg COD(Sol)Icu.m—d Kg COD(Total)Icu.m—d  :  95  99 99  TSS TVSS COD(Total)  85 91  TS VS  20 1460  60  TP P04—P  270 300  NH4—N TKN  2780 2755  COD(Sol)  VS TSS TVSS COD(Total)  7140  4030 270 180  TS  0.10 0.63 5.70  11  92  98 99  80 80  91 2050  124  385  360  3055  3380  4200 580 330  6500  0.14 0.97 6.00  21  89  99 99  91 96  230 1780  230  435  425  4870  5135  1300 190 160  3480  0.10 0.62 4.50  31 4  83  99 99  82 90  340 3507  364  466  405  6030  6480  2645 280 260  5440  0.12 0.76 6.35  Sequence 1  :  51  99  99 100  91 97  9 80  176  459  455  460  490  900 210 65  3130  76  492  525  420 355  815 230 100  2355  85  483  515  445 350  1175 730 430  2635  0.12 0.91 4.70  8  91  489  510  470 300  1050 300 155  2610  0.09 0.69 4.30  91  99  99 100  89 95  99  99 99  93 97  99  96 98  91 95  99  99 99  91 96  34 6 74 20 50 0 0 0 System Removal Efficiency  74  420  400  325  400  1430 200 100  3600  71  61 Loading Rate 0.12 0.12 0.08 0.75 0.78 0.63 4.80 5.60 3.95 Effluent Quality  99  99 99  91 97  23 0  32  387  410  400 305  620 300 140  2600  99  99 100  93 97  11 0  140  557  390  425 280  930 340 120  2660  0.09 0.59 4.25  99  99 100  92 97  11 20  27  420  425  400 290  880 230 100  2600  0.10 0.62 3.85  SequenceS 101 11 12  0.11 0.59 4.25  Experimental RUAingConditiona Sequence 2  Table 5 2 Summary of Average Responses Under Pseudo Steady—state of the Different Designed iunning Conditions (Sequence 1, 2, and 3 Experiments)  TP P04—P  Note SR RR  80 46 46 1.00 0.90 0.15  34 0.75 0.70 0.12  31 40  57  53 34  66 85  54  14 0.30 0.25 0.05  35 14  —6 33  23  10 0.20 0.20 0.03  30 10  —66 —94  4  60 1.35 1.20 0.20  95 60  14 95  93 95  58 1.30 1.15 0.25  91 58  1 2 3 4 5 6  62 1.38 1.25 0.30  107 62.20  63 65 97 81 Methane Gas  95  Sludge Ratio (Primary and Secondary Sludges) = Recycle Ratio (Recycle and Influent flow) operated © walk—in controlled room temperature at 35 o and pH of 5.0—5.3 and 7.0—7.3 for A— and M—UASBs Intluent feed © 4—5 o C =  Flow, l/d Total Gas CH4 Gas CH4 Productivity lId cu.m/cu.m—d cu.m/cu.m—d @ SC cu.m/kgCOD(Total)added@SC  Inorganics, %  COD(Sol)  69 1.55 1.40 0.32  120 69  50 91  96  50 1.10 0.90 0.25  87 50  76 88  94  Experimental Running SR RR 80/20 7 2/4 6/10 80/20 8 50/50 6/10 9 50/50 2/4 10 70/30 11 3/6 70I30 12 5/8  71 1.60 1.40 0.30  126 71  57 58  95  Conditions SR 60/40 60/40 80/20 80/20 90/10 90110  54 1.20 1.00 0.25  85.00 54  40 94  96  RR 5I8 3/6 5/8 417 5/8 3/6  49 1.10 0.95 0.25  83 49  83 92  95  Running HRT, days Loading rate, kg COD(total)Icu.m-d kg VS/cu.m-d Supernatant quality, Solids,mgIl TS VS,(%TS) SS VSS,(%TS) Organics,mgIl (Total) COD (Fil.) COD lnorganics,mg/I NH4-N P04-P TKN TP Volatile acids,mg/l HAc HPr lso-HBr HBr A-HVr lso-HVr HVr HHe Total VFA,mg/1 as HAc  Operating Conditions I Pertormance  nil nil nil nil nil nil nil nil nil  510 20 490 90  470 310  2600 1050(40) 300 155(58)  5.00 2.00  9- 10  UASB-UASB  :Thble53 Peifôrinance of A:Twó-phase Anaéróbk S!udge Digestion: (UASB-UASB)Próoess  Methane gas CH4 yields cu.m/kg VS removed cu.m/kg COD (Total) added CH4 production rate cu.m/d vol/culture vol-d % theoretical CH4 Gas composition,mol % C02 N2 CH4 Removal Efficiency, % Organics (Total) COD (Fil) COD Solids TSS Inorganics P04-P TP VFA 87 56 100  98  99 97  27 1.00 72  75 1.70 95  0.90 0.32  UASB-UASB  rñiaheof:AT*d’phase Araèröblc:SiLdge Oistion:(UASBUA$B):process: at 35 degree C/ 9 day HRT/ SR 80/20 / fiR 5/8 (cont’d  Operating Conditions I Performance  :TabieS3 Pe  74 anaerobic digestion process and a “two-phase ’ anaerobic digestion process, it is t appropriate to clearly distinguish these two concepts. The “two-stage” process consists of two completely mixed reactors connected in series. The first reactor serves as a fermenter while the second one acts mainly as a settler and/or a reserved fermenter, in case of emergency or failure of the first one. Often, the second digester performs poorly as a thickener, producing dilute sludge and a high solids supernatant. This may be the result of a high proportion of fine- sized particles in the first digester. They are produced generally by mixing and natural breakdown of particle size through biological decomposition, and become saturated with digester gas. When the gas is transferred into the second digester, it will come  Out of  the solution, forming small bubbles; these become  attached to sludge particles and create a buoyant force that hinders settling. The “twophase” concept, on the other hand, is an attempt to take advantage of the di-phasic phenomenon of the anaerobic digestion process, by keeping the reactors separated physically and providing the optimum environmental conditions to stimulate and/or promote the hydrolysis-acidification and acetogenesis-methanogenesis in the first and second reactors respectively. In short, “Phase” should be used for processes when different reactions occur in different reactors and “Stage” should be applied for the same reaction/process occurring in the two consecutive reactors. It is also appropriate to avoid the use of the word “Steps”, since it is usually used to describe various types of reactions ie. mechanisms of chemical reaction. To determine whether a two-phase (UASB-UASB) process does occur, 3dimensional plots of effluent profiles obtained along the height of both A-UASB and M  75 UASB under different running conditions, were made. As shown in Figure 5.8 (a), it is clear that hydrolysis-acidification predominates in the A-UASB; the average low concentration of influent soluble COD increases gradually from the bottom up to the top of the reactor under all tested running conditions during 145 days of the Sequence 2 experiment. In contrast, the average high COD concentration of the effluent from A-UASB, fed at the bottom of M-UASB, decreases rapidly as it enters the sludge bed and blanket, before leaving the system at the top of the reactor (as shown in Figure 5.8 (b)). This means that acetogenesis-methanogenesis dominates in the M-UASB and most of the reactions occurs at the lower part of the reactor. This result also agrees with the work presented by Ghosh (1984). Figures 5.9 and 5.26 reconfirm a similar situation of 3-dimensional plots of effluent total VFA and COD (sol) profiles, indicating a feasibility of two-phase (UASB-UASB) process phenomenon during both “best known” operating condition and maximization and recovery period experiments,respectively. In addition, Figure 5.10 shows a significant difference of MLVSS concentration at the sludge bed and blanket levels, compared with those of settling and effluent levels. Influent MLVSS concentration increased significantly at the sludge bed and blanket levels and then remained almost constant at the effluent level of A-UASB. In contrast, these high effluent VSS concentrations of A-UASB decreased sharply after the sludge bed and blanket levels and remained almost unchanged in the effluent of M-UASB. All these results appear to indicate the feasibility and effectiveness of the two-phase anaerobic stabilization (UASB UASB) process, in which most of the reactions occurred at the lower part  ( sludge bed  76 El fluent COO. mgJl llhousan)  0—  I  1  I  8 16 22 25 29 43 50 57 54 71 75 35 92 99102106113120130134141146  Time, days Sampllri point no.  — Sp.1  Effluent  So.3  Sp.4  (a) Sp.2  COO. mg/I (thousand)  A  1  8 16 22 25 29 43505754 71 75 86 92 99102106113120130134141146  Time, days  I  Sampling point no. Sp.7  Sp.8  Lperimsntat running ccnditicnsj SR 70/30 70/30 60/40 60/40  Sp.6  (b) 50.5  [Exper:men1aPenods-j  RR 3/6 5/8 5/8 3/6  Days 1-29 35.71 78-1 107-145  (c)  Figure 5.8 COD (soluble) Profiles Along the Reactor Height: Under different runninq conditions (a) A-UASB; (b) M-UASB; (cYRunning Conditions Note: All sampling locations are illustrated in Fig.4.1  77  r:  L1 1  15  25  43  57  LU  106 120 134 145  000 gg  6  (a)  0017(6)  ooL7oooccfioooc/c  2 0  71 85 99 Time, days  115  145  LU  (b)  T’rne, days  Lntedos1  Figure 5.9  SR  RR  Days  70/30 70/30 60/40 60/40  3/6 5/8 5/8 3/6  1-29 36-71 78-106 107-145  (c)  Total VFA Profiles Along the Reactor Height: Under Different Running Conditions (a) A-UASB; (b) M-UASB; (c) Running Conditions Note: All sampling locations are Illustrated In FIg.4.1  78  0  i  1  15  25  43  57  71  85  99  (a)  106 120 134 145  Time, days  (7)  .J2 OOOOOOOOCCU/8) 15  25  43  57  71  85  99  106120134145  f  Time, days  [iiri.nring conditions. SR 70/30 70/30 60/40 60/40  (b  [€xperimentatP.erlàdsj  RR 3/6 5/8 5/8 3/8  Days 1-29 35-71 78-106 107-145  Cc)  Figure 5.10 MLVSS Profiles Along the Reactor Height: Under Different Running Conditions (a) A-UASB; (b) M-UASB; (c) Running Conditions Note: All sampling locations are Illustrated in Fig.4.1  79 and blanket levels  ) of both A-UASB and M-UASB. Asinari (1981)  and Harper (1986)  reported a similar situation whereby the constant production of HPr and/or HBu acids in the first reactor was beneficial for the methanogenic reactor, since it enabled the development of a healthy population of obligate hydrogen producing acetogenic, (OHPA), bacteria and the associated hydrogen-oxidizing methanogens; this ensured the rapid assimilation of these acids in the second reactor.  5.2.1.4 Conclusions  With an application of a 2 by 2 factorial design experiment and Response Surface Method (RSM), the effect and interaction of SR and RR on the system responses and performance were calculated. An optimum “best known” running condition was located, with an interpretation of the effect and interaction of SR and RR on the response parameters at different sequences of the experiment. The results of this investigation can be summarized as follows:  (1) A steep ascent technique, one of the most promising RSM approaches, appears to be an effective measure in directing an appropriate step of the experimental design toward the optimum “best known” running condition, in cases where these conditions are fairly remote or unknown, (like those of the Sequence 1 experiment). (2) The effect of SR on the effluent COD and 4 P0 P was greater than that of RR and only the interaction of SR and RR on the effluent COD was significant in the  80 Sequence 1 experiments. However, there were no significant effects and interactions of SR and RR any of the response parameters in the Sequence 2 experiments, with the exception of SR on the effluent and removal efficiency of P0 -P, and RR on the % CH 4 4 content (where a slight effect was detected). (3) The optimum “best known” running condition was SR80120 and RR5/8, with respect to P0 -P removal efficiency, specific CH 4 4 gas productivity, and CH 4 gas production. (4) The feasibility of two-phase separation of anaerobic digestion of sewage sludge was confirmed. Hydrolysis-acidification and acetogenesis-methanogenesis dominate in the A- and M- UASBs, respectively. In addition, it is quite probable that most of the reactions inside the M-UASB occurred at the lower part of the reactor blanket  ( sludge bed and  ).  5.2.2 Maximum Loading Capacity and Recovery Process  The conventional anaerobic digestion process has, until recently, been considered to be unpopular and not feasible for treatment of a high-strength organic waste (such as sewage sludge) under short retention times, since it is too sensitive to various extraneous factors and unable to retain a significant amount of viable sludge under high loading conditions. However, it is now possible and feasible to install well-functioning, full-scale anaerobic facilities operating at high loading rates. All modern “high rate” anaerobic  81 processes are based on the principles of high viable biomass retention and sludge immobilization (ie. fixation). At least two mechanisms are involved here:(i) the formation of highly settleable sludge aggregates, combined with early gas separation and sludge settling; and (ii) attachment and entrapment of bacteria and sludge aggregates to a high density particulate carrier, or packing material, supplied to the reactor (Lettinga, 1983a). The UASB is considered to be one of the most successful and promising processes of the modern high-rate anaerobic digestion concept. It has long been recognized that the UASB process has superior flocculation and settling abilities, as well as being able to maintain a high solids retention time, under a high organic loading rate. Lettinga (1979b) suggested that high settleability and specific activity of the anaerobic sludge were the main prerequisites in achieving high loading rates. To accomplish this target, at least 3 conditions must be applied:(a) careful start-up of the process; (b) maintenance of favourable conditions for flocculation and growth; and (3) promotion of thickening.  Under these requirements, the system was loaded step-wisely, by keeping the best known running condition (SR8O/20 and RR5/8) from the previous section as a starting point. The system loading rate was not stepped up until the system was operated as long as 2-3 system HRT and/or 80% removal efficiency was achieved. Prior to discussing the results of maximization and recovery period, the following terms and approaches used in this particular experiment, should be clearly defined: (a) Maximum loading capacity  -  is the point where there was no system removal  at all, with the influent and effluent COD concentrations being equal.  82 (b) Recovery process  -  is the approach to recover the system by reducing the  organic loading rate, step-by-step, and analyzing the percentage of system recovery at each step of loading reduction after a complete system failure. (c) Optimum operating condition is the optimum point of SR and RR where the -  optimization of system COD removal efficiency and methane gas production were achieved. The results of system maximization, process failure, recovery period, system recovery, and optimum operating conditions are discussed in the following sections.  83 5.2.2.1 Maximum Loading Capacity  As the organic loading rate increases step-by-step and finally overloads the system, it is important to monitor whether the system reaches the point of complete failure. Several factors have to be considered, including how to identify whether the system is close to the critical point; what parameters should be measured; what options are available; and how to control them. In general, feed stoppage, influent loading reduction, effluent recycle, and alkaline addition are recommended for recovering the system after a serious shock load and/or failure. A combination of step-loading reduction and recycle was selected as a practical and effective approach to this particular case.  (a) Process Failure  Although this two-phase UASB-UASB process is designed to provide optimum conditions to stimulate the growth of acidogens and methanogens in the A- and M UASBs respectively, process failure can still occur, if the system is continuously and constantly overloaded. This can slowly turn the M-UASB into a single-stage digester, where both acidogens and methanogens compete for substrate utilization and growth. If overloading continues without any effective remedial actions taken, the system will eventually fail. Better understanding of microbiological and biochemical reactions has lead to stability improvement of the anaerobic digestion process. It is now known that VFAs and  84 hydrogen can be formed more rapidly than they are removed, under high loading rate and/or a sudden increase in organic loading (Zoetemeijer, 1982). Under this condition, acetogens (especially Obligate Hydrogen Producing Acetogens, OHPA), responsible for converting I-IPr and other higher VFAs into HAc, C0 , and H 2 2. are inhibited if the hydrogen concentration exceeds 0.01 %. As a result, the excess of reduction equivalents is diverted into less favourable biochemical routes, resulting in accumulation of HPr or higher VFA products (Zoetemeijer, 1982). This observation can partly explain the feasibility of using the two-phase concept to stabilize influent substrate anaerobically. However, if system overloading still continues, high concentration of VFAs will destroy the M-UASB buffering capacity, resulting in a drop in the digester pH and discouraging the growth of methanogens. This situation combined with high loading and high recycle rates can lead to a washout of the methanogens from the system. If the HRT exceeds the maximum bacterial growth rate, cessation of CH 4 production and finally process failure may result.  Different approaches and methods have been proposed to predict whether the system has failed or not. Graef and Andrew (1974a and 1974b) suggested that cessation of CH 4 production rate, sudden increase in VFA concentration, a increase in % CO 2 content in dry gas, and a drop in pH, as indicators of process failure. Moreover, Bergman (1966) proposed that the ratio of VFAlalkalinity exceeding 0.3-0.4 was a signal for process failure.  85 As shown in Figure 5.11 and Figure 5.13-5.14, the system (M-UASB), during the maximization sequence, indicated some signs of failure as the loading rate increased, by shortening the HRT from 3.40 to 1.20 days; it failed completely at an HRT of less than 1.0 day (0.98), equivalent to a system hydraulic loading of 1.0 /m 3 m d. COD (sol.) and VFA removal efficiencies declined from 90 % down to less than 10 %, at the HRT of 1 day, with accumulation of 4 P0 P inside the system (as shown in Figure 5.11). Figure 5.13 confirms this situation, whereby the total VFA concentration rose in the reactor at day 37, at a system hydraulic loading rate of 0.35 3 /m m d. Initially, the concentration of both HAc and HPr increased rapidly to 930 mg/L and 340 mg/L at day 40; approximately 3-4 days later, the 1-lAc disappeared and total VFA concentration rose to 1800 mg/L as HAc, by day 42. Also, the presence of HBu and other higher VFAS was noted, further increasing the concentration of total VFA up to 2815 mg/L as HAc at an HRT of 1 day (or process failure). It is interesting to note that there is an accumulation of HPr at an HRT of less than one day. Under the stress of a high organic loading rate, there may be a shift in the metabolic pathway to a less favourable one, inside the reactor. As the M UASB was loaded up step-by-step, there was a shift in the ratio of VFA producers (acidogens and acetogens) and consumers (methanogens, SRB, and NRB) inside the reactor. This leads to the production of significant amounts of CO 2 and H . As a result, 2 the partial pressure of H 2 inside the system increases up to certain level 10 atm  )  (  higher than  causing a shift in the metabolic pathway and accumulation of HPr, as shown  in Figure 5.12. As also shown in Figure 5.13 (a), the effluent soluble COD and VFA concentrations increased gradually to day 51, with an increase in loading rate, after  86  a  8  24  -  20  -  16  -  25 12  6a  47 ]1ME, days  102  -  8 -  KgCOD!cu.m-d  4  0  I  —  1  15  11  8  I  I  22  27  —‘  III’I.  33  37  42  47  51  33  37  42  47  51  liME days  100  -_ \\,4/’  80  60 40 •  I  COD (RI.)  +  P04-P  20 0 -20 -40 -60  -  -  -80 1  6  11  15  22  27 lime, days  Figure 5.11 A Two-phase (UASB-UASB) Step-loading And M-UASB Removal Efficiency During the system maximization (a) HRT,Kg COD/cum-d; (b) Removal efficiency  87  2 NA&+ 2ADP  (1) C9 (2) 2 NADH —2 NAD  .  +  2p  2 CHOOOH + 2 NADH + 2ATP PynMc add (2) CH OCOOH + 2 NADH + ADP + P CCI-COOH +2 NAD+ ATP  —  2 2H  —  (3)2 CH SOCOOH +2 NAD 2 CKoA + 2 C+ 2 NACH  +  (3) CHOCOOH + NAD DH A+O NA CCo + 2 —  (4)2CHoA+2ADP+2P (4)CHoA+NADH  2CHOOH+2ATP  COOH+H+NAD  (I)  (1  Gft.jcose  Glucose  ;NA1;7.r_aLa,  I  I  2’ 2*0.  (3g.. I  2*?’  (SI• I)  MP c3  2PYR  2PYR  (.32  CA)  2AcCoA  c 2>  I  : t  !‘H?r  AcC0A  -  HO  (5’.. 3)1  2NAc  ‘  HAc c.toc.C  Aç•r;C  Ste;.  SIc;.  1  I  cr1ict  c’aI () ;ç;-I ‘ a 4  pr.ssur.  Overail: C2&.2H2+4ADP+4P +4ATP 2 2CHOOH+2CO +4H  SIc;. r•S%if•  %J+3AOP+3P CCCOOH+CCOOH+c ++3ATP  Figure 5/2 partid 2 Aciaogenic phase ofglucosefermentation under low and h:gh H . 2 pressures to form acetic acid propionic acid ‘‘2 gas and CO Embden-Meyerhof pathway; PYR pyruvic (Abbreviations: EM? acid; AcCoA acetyl coenzyme A; I-fPr propionic acid; HAc acetic -  -  —  —  (Source: Modified after PALNS et.aI, 1987)  —  88 10  260  -  (a) 240  9—  •  CH4,Vd  ÷ %C02 COD  220 /1  200 180  6-  8  5-•  4j  I  14768102 Time, days  160-  140  —  -  120-  7---..-  1008060-  2—i 40I”II  I’ll  20 0  0  11  1  51  42  33  22 TIme, days  4-  4-  -  1.8  (b) Ma2dn,n loads  3.5  3.5  -  3  -  1.2  3-  2.5  2.5  1.4  47 Time, days  25 -  D  •  VFNALK  —  2-  102  66  —1  Tot.VFA 0.8  HAC  U >  1.5  -  -  1—  0.5  0.5  -  -  -  0. 1  0.8  0.4  0.2  0 6  11  15  22  27  33  37  42  47  51  TIme, days  Figure 5.13 A M-UASB System Effluent Qualities: During the process maximization (a) CH4 productlon,%C02,Eff.COD; (b) Total VFA,HAc/HPr,VFA/AlkallnIty  89  10 .ooyp.flod  I  9  +  Effluent MLV MLVSS(M.UASB)  8 7  A  1  25  47: lime, days  102  68  (a)  I  •  0 6  1  15  11  27  22  42  37  33  47  51  lime, days  0.9  R.oo.ty oedod  Uidnitm, toad’  T1<N(M-IJAS8)  TP(M-UASB)  -  (b) 0.6  1  I  lime, days  itfttaftftftr lime, days  Figure 5.14 A M-UASB Nutrients and MLVSS: During the System Maximization  (a) Effluent MLVSS,MLVSS(M-UASB); (b) TKNJP  90 shortening the HRT (M-UASB) to 1.20 days. The CO 2 content in the off gas increased from approximately 31.03 (day 37) to 51 % (day 51), as the loading rate increased, while 4 gas production increased almost linearly with a decrease in HRT (M-UASB) down CH to 1.55 days; however, beyond that, the CH 4 production rate decreased with a decrease in HRT. The VFA/alkalinity ratio also showed evidence of system failure at an HRT lower than 1.55 days. The ratio seems to increase linearly with a decreasing HRT and is above the critical level of 0.3-0.4 recommended by Bergman (1966).  The washout phenomenon (as shown in Figure 5.14), leading to system failure, corresponded to an increase in effluent VSS from the system. The concentration profile of MLVSS in the M-UASB, as shown in Figure 5.14, is similar to that of CR 4 gas production, illustrated in Figure 5.13. As shown, the system began to wash out the MLVSS and the concentration of MLVSS in the reactor declined sharply after reaching an HRT (M-UASB) of 1.55 days; however, the MLVSS concentration did recover slightly after about 4 days, at a hydraulic loading rate of 1.80 /m 3 m d (HRT of 1.0 day). This situation may have resulted from too high a loading rate creating an unsettled situation and severe turbulence in the lower part of the reactor, thus partly destroying the sludge bed. Because the samples were taken in the middle of the reactor (Sampling point no.6), it is possible that a higher concentration of MLVSS, resulting from this turbulence in this particular case, could occur. It is interesting at this point to note that the main causes of process failure were the combination of hydraulic overloading, thus exceeding the growth rate of both  91 acidogens and methanogens (washout phenomenon), and the destruction of the dynamic balance of acetogens and methanogens inside the M-UASB. The system demonstrated an increase in VFA concentration and % CO 2 content, but a decrease in % CH 4 content and production, as discussed earlier. This observation also confirmed that the failure was not caused by a toxic effect, since there was no sign of a decrease in VFA concentration corresponding to a decrease in % CH 4 content. In term of nutrient requirements during the process failure, only the concentration of TP inside the reactor and effluent increased significantly; TKN increased only slightly.  (b) Maximum Loading Rate  The system completely failed as the loading rate was increased and the HRT was shortened, in stepwise fashion. As shown in Figure 5.15, the soluble COD removal efficiency declined linearly, as the HRT decreased beyond 1.5 days. To predict the maximum loading rate precisely, a simple linear regression was applied, using the average values of each step loading rate, at pseudo steady-state conditions as follows:  Y  =  129.281 3.214X -  where Y= % COD (soluble) removal efficiency X  =  Influent flow rate, Lid 0.88  (15)  92 100  (a)  90  Y= 129.281 -3.214X y = % COD Removal Efficiency x = Influent Flow Rate, l/d = 0.88 2 r Max.System Capacity = 40 l/d  -  70 C.)  -90  -  80  a)  -100  -  -  -  -70 -60  6050  E  a)  40  0  30  Operating Conditions; SR 80/20,RR 5/8 Temp. 3’ C No pH Control + %CODRem.Eff. • Influent Flow,l/d  -  -  -  C)  20  •50 L.  -40 -30  Critical HRTsys,d = 3.0 HRTm-uasb = 1.5  -  -  10  -  0  80  —  10 0  4.5  3.5  2.5  1.5  I  I  I  I  I  I  —  0.5  20  M-UASB HRT, days 100 (b)  90 C 0 D  -o  80 70  ./  0 0.  I C)  0  60  [  I / I  50  36.47 60.11 73.21 97.99 83.70  1.77 2.18 2.80 4.80 6.07  ..:‘:...:...‘.:.  ...::.:...::.:.  ..::...-...:::.:  I  40  a)  -C  System HRT % Theo CH4 Prod  L_J  30  Optimal Operating Region  0  20 10 0  I  —  1  2  I  3  I  4  I  5  6  7  System HRT, days  Figure 5.15 System Optimum Operating Region and Maximum Capacity: (a) Optimal Operating Region;(b) Theoretical CH4 Production  93 Based on this simple model, the maximum loading rate (defined as no COD removal efficiency) as shown in Figure 5.15, was about 40 LId; this was equivalent to a system hydraulic loading of 1.80 /m 3 m d, at a system HRT of 1.125 days M-UASB  ).  ( 0.625 day for  The CH 4 gas production at this point of complete failure was about 50 %  of the theoretical value, which is a combination of CH 4 gas production from both A- and M-UASBs. Details of calculating the theoretical CH 4 gas production (based on the assumption that the influent substrate is 100 % glucose), are shown in Table D3.1 of Appendix D. At this “failure loading”, the effluent COD (sol.) was in excess of 9540 mg/L, total VFAs were above 3,750 mg/L as HAc, the CO 2 content was more than 45  %, and the VFAlalkalinity ratio was over 1.55. Oleszkiewicz (1988) indicated that the “failure loading rate” for a biofilter using a UASB reactor to stabilize synthetic wastewater, was 20 kg 3 COD/m d, which is equivalent to 50 LId at an HRT of 5.8 hrs. Moreover, Bergman (1966) pointed out that his system, being used to treat sewage sludge, failed at an HRT of 2.20 days, a pH of 4.60, and a HAc:HPr:HBu ratio of 2.0:2.5:1.0, with HPr over 9,000 mg/L. Although these results are not directly comparable, there is some similarity in the data bases from these UASB-UASB studies, with recognizable patterns and numerical indices in the same general range.  5.2.2.2 Recovery Process  In anaerobic treatment processes, short term hydraulic overloading is a problem difficult to avoid and operational failure is frequently the outcome. An extended reactor  94 recoveiy period is usually necessary. The problem of hydraulic overloading is aggravated where no recycle facility is available, to prevent the loss of the slow growing methanogens from the system. The following sections deal with the behaviour and response of this system after complete failure and the recovery to initial normality. Prior to a detailed discussion, however, some clarifications should be made. The term “process failure” can be either temporary loading  )  ( ie.  a sudden organic shock  or relatively prolonged (ie. a toxic shock load or hydraulic overloading  -  complete washout of the active biomass). Several studies have dealt with temporary failures, but rarely with a permanent one, especially that of hydraulic overloading. The following sections deal with system recovery back to the initial stage, using a combination of RR and step-down loading approaches.  (a) Recovery Period  The worst scenario in recovering a system after complete failure is the need to re-seed and re-acclimatize the system. However, this option is costly and not practical in terms of a full-scale operation: time-consuming processes and high-skilled manpower are required. A combination of step-down loading rate and RR is relatively simple and quite practical, compared with the option of reseeding and acclimatization (step-up loading). However, some questions still exist as to whether this approach is more effective than that of re-acclimatization, and what changes the system undergoes during the recovery process, compared with that of the initial normal stage.  95 As shown in Figure 5.16-5.18, the system appeared to begin recovering from the serious failure after 19 days of decreasing the hydraulic loading from 0.40 to 0.25 3 1m m d; this was accomplished by prolonging the HRT (M-UASB) from 1.20 day up to 2.00 days. The system demonstrated COD and VFA removal efficiencies (M-UASB) of 43 and 45 % respectively, with 6,580 mg/L effluent COD, 47 % CO 2 content, 68 LId of CH 4 gas production, and a VFAlalkalinity ratio of 1.40. Thereafter, the system seemed to recover linearly with time and recovered completely to the initial level of operation at approximately day 43, thereby showing 97 % VFA and 92 % soluble COD removal efficiencies. The effluent COD (soluble) was less than 1,000 (880) mg/L and the total VFA was 125 mg/L as HAc, with 32 % CO 2 content, 62 LId of CH 4 gas production, and VFAlalkalinity ratio of less than 0.1 (0.05). The system then followed a “dimensional time frame”, defined as the ratio of the recovery time to the HRT; this was equal to approximately 5.60 and 10 for the system and the M-UASB, respectively. This compared well to a ratio of 5-10 for an expanded bed anaerobic reactor recycle  (  UASB with effluent  ), operated at a high organic loading rate in non-steady state conditions reported  elsewhere (Encina, 1987). By day 30, the active biomass (MLVSS) of the sludge blanket, in the middle of the reactor, recovered and reached a peak at day 40. This may have been the result of the system beginning to recover and producing small gas bubbles, thus creating flocculation at the sludge blanket level, (there was evidence of increasing CH 4 gas production at day 30, as illustrated in Figure 5.17 (a)). For the next 10 days (day 3843), it is speculated that the granulation process played a major role in assisting substrate stabilization and system recovery; there was a sharp increase in COD and VFA  96 2220  -  18  -  E  -  18 0 C.,  -  -  14  -  ‘4-  lime, days  12  (a)  )10:  • +  8  HRT  KgCOD/cum-d  6 4 2 1  Ti’i’iii’ 45 38 15 26 10 19 5  I  51  liME, days  2:  /V  -10 -30  -  Recowty p.iod  Ma)*n,.,n loads  -50-70  1 1  10  25  47 lime, days  19  102  68  38  51  lime, days Figure  5.16 A Two-phase (UASB-UASB) Step-loading And M-UASB Removal Efficiency  During the system recovery  (a) HRT,Kg COD/cu.m-d; (b) Removal efficiency  97  19  190  —  -  Maximum Loads  (a)  RecovefyPeriod  •  25 E  11 —j  47 68 Tlme,days  110  CH,  %CO2 COD  102  -  .  :  .10  flme, days  6  8  -\  (b)  :  VFNALK  :  HAc  •  Aecwyp.1od  Tot.VFA  13Z2  35  HPr  1 Time, days  3  25  2  0  Time, days  Figure 5.17 A M-UASB System Recovery Process: (a) CH4 production,%C02,Eff.COD; (b) Total VFA,HAc/HPr,VFNAkalinity  98 8(a) Msjd,mai loads  :  Effluent MLVSS MLVSS (M.IJASB)  171 TIME, days  Time, days 1.2 (b) Madmum loads  1.1  Pocovery potod  TKN (M-UASB)  1 •  TP (M-UASB) Effluent TKN iEffluent TP  0.9 0.8  1  25  0.7  47 TIME, days  102  68  E 0.8 0.5 0.4 0.3 0.2 0.1 0  I  I  1  10  19  38  liME, days  Figure 5.18 A System Nutrients and MLVSS: During the recovery process (a) Effluent MLVSS,MLVSS(M-UASB); (b) TKN,TP  51  99 removal efficiencies, approximately 91-97 %, a VFA/alkalinity ratio less than 0.5, and a sharp build up in biomass (MLVSS) in the sludge blanket, up to 1,700 mg/L. Nutrient requirements, measured as COD (total):TKN:TP inside the reactor at the sludge blanket level (sampling point no.6), was in the ratio of 36:4:1.  (b) System Recovery  Although the system returned to the initial level of operation by day 40, it is quite interesting to note that an accumulation of HPr and an increase in total VFA of the M UASB occurred, as shown in Figure 17 (b); this is in agreement with results reported by Zoetemeijer et al, (1982). This might suggest that the system metabolic pathways shifted to a less favourable route; however, the pathways did shift back to more favourable ones after almost 20 days of loading reduction, as an increase in CH 4 gas production, % CH content, and a linear reduction of Total VFA and HPr concentration were obtained. Rinzema (1988) indicated that a system using the UASB process, inoculated with granular sludge to stabilize VFA in the presence of H S concentration over 100 mg/L S, 2 had a sharp drop of VFA removal efficiency, but recovered within 3-4 weeks. To demonstrate how well the system recovered at each step of loading reduction, compared with the same loading rate during the maximization process, some modification and further analysis of the experimental results were made, as shown in Figure 5.19 and 5.20. COD (sol.) removal efficiency and CH 4 gas production were selected as main response parameters for this investigation, since superior supernatant quality and  100 reasonable CH 4 gas production are the two main objectives of the anaerobic stabilization process. Figures 5.19 (c) and 5.19 (d) show the relationship between the actual running HRT and % soluble COD removal efficiency during the maximum loading and recovery period. Based on these relationships, COD removal efficiency at each discrete HRT starting from 1, 1.5,  ...  4.5 days can be estimated during the maximization and recovery  period. System recovery efficiency, defined as a percentage of COD removed during the recovery period over that of maximization at the same HRT, can then be calculated and graphed, as shown in Figures 5.19 (a) and 5.19 (b). Similarly, system recovery efficiency in terms of CH 4 gas production at each specific HRT during the maximization and recovery period can also be expressed, as shown in Figures 5.20 (a)  -  5.20 (d).  Predictive models for this system recovery, with a high correlation (r =O.81-0.99), 2 as shown in Figure 5.21, are formulated as follows:  Y  =  25.37  where Y X  =  e°  (16)  % COD (sol.) removal efficiency  HRT (M-UASB), days  For the CH 4 gas production, the predictive model is as follows:  Yl  =  where Yl  9.25 + 64.01 ln Xl =  4 gas production, Lid CH  (20)  >  80  o  o  4.  I  4.5  I  04)0  0.00  2O.Oo  40.00  00  I  •  :  •  : I  I  204) JIlys  IIRI.  I  I  :  2.0  I  I  100  I  I  Maximum Loads  I  450  I  :  I  •  350  (c)  4.7  0  20  40  .60f  80  100  80.4)0  I  -  -  1  I  I  0 041 .rr,Ir..-. U 00 lOt)  2000  404)0  600O  —  :  With different running conditions % COD (FIL) removal  (b)  r  I  :  22 88 95 97 97 98 98° 98. 98.  r  I  I  :  _j  P  I  I  : .7  I  :—: .7,  I  :  •  IUF.  tloys  00  44)0  flecovety Period  204)  r  I  __  0 41 42 52 62 72 83 92 98  5.00  .  (d)  Note° Estimated values  18 37 40 50 60 71 81 90 96  % 000(11.) removal Max.Loads Hecovery Period % Hecover  I__i—  1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 4.7  IIRT. days  Figure 5.19 A M-UASB System Recovery at Pseudo Steady-state  44)4)  I  :  I  I  Il  I!  :  1--’”---r—:  60.00  Li..  I  2.5 3.0 3.5 FIIT.days  I  10000  2.0  I  Madmurn Loads  1.5  •  Recovery Period  ‘%Recovery  1.0  /  1’  /  160001  a  020  0  0 C)  40  E a:  0  100  (a)  C)  ,  E  E  •0  :1  +  15  4.  ..  2:5  I  I .  I  I I  2.50  ,...,,,.  50 2.00 HRT. days  I  I I  I 300  I  I  I  I  I  I I  3.0  (C)  (a)  3.5  : C-)  .‘,  3.oO  I 40  1.80  2.00  220•  240  I I  CH4, cu.m/cu.m.d  I I  2.45 3.98 3.65 3.25 2.55 1.70  1.00  I  I  I I  I  I I  CH4, cu.m/cu.m-d  I I  I I  I,  .  4.00  :  I I  5.00  0 57 52 55 69 102  Recovery Period  I I  2.46 2.25 1.88 1.78 1.76 1.74  I .-.--,-.-j-,-. . I 2.00 3.C0 HRT. das  j\  Irr,rf..  With different running conditions  (b)  :ci  Max Loads Recovery Period % Recoveq  ————4,  2.0 2.5 3.0 3.5  2.60  1  1.5  IJT. days.  60  80  100  Figure 5.20 A M-UASB System Recovery at Pseudo Steady-state  1.00  I I  I  Maximum Loads I I  I  HRT, days  2.0  Recovery Period  4.  Maximtzn Loads C? %Recovery  h1:  1  •  ‘.00 ,.nm’j 3.00 0.50  i o  !E  4.00—  I.  1s  2  2.5  3.5,  4.5  5  103  L 120  Figure 5.21 A Predicted M-UASB System Recovery Under Different Running Conditions  —  % COD (Eli.) removal  80  G) > 0 C.)  /  CH4, cm/cu.m-d  100  -  /  (2)  60-  .  40  (1)  ,.  20  -  O.29X =O.99) 2 (r (1)Y=25.37e 2 0.81) (2) Y = 9.25 + 64.01 (mx) (r  0-  I  I  2 3 HRT, days  4  I  0  1  5  104 Xl  =  HRT (M-UASB), days  To meet the objectives of both pollution control and maximum CH 4 gas production, the optimum system HRT of 7.65 days and 4.25 days for the M-UASB equivalent to 43 days of recovery period after complete system failure  ) were  (  initiated  in order to provide 92 and 100 % recovery of COD removal efficiency and CH 4 gas production, respectively. It is also interesting to point out that the breakthrough of system recovery is predicted at an  HRTMUASB  of 1.5-1.7 days, resulting in more than 40  % recovery of both COD removal efficiency and CH 4 gas production, (as shown in Figure 5.21). The system then recovered back to the initial level at an HRT of 4.25 days. This observation leads to the conclusion that a two-step increase in HRT by 1.50 and 5.80 times that of the failure value  HRTMUASB of  0.625 days, is a most effective measure  for complete recovery.  5.2.2.3 Basic Experimental Kinetics  Since the anaerobic stabilization process is considered to be bi-phasic in nature, thus requiring a balance between acid production and utilization, process stabilization and control may be possibly enhanced by physical separation of these two phases. Figure 5.8 confirmed the feasibility of the phase separation concept, as discussed earlier. Although the system achieved promising results, it would be interesting to know how the mixed culture of bacteria responded during both the maximization and recovery periods.  105 One way to achieve this is to predict the kinetic response governing the acid- and methane-phase reactors (A-UASB and M-UASB), under these situations. This prediction and estimation were based on the experimental data obtained at pseudo steady-state conditions, with a continuous step-loading rate during the maximization and recovery periods. It is important at this point to mention that this kinetic estimation is system dependent: process design and configuration, running conditions, feed characteristics, seed sludge and start-up procedure, and evaluation process. A comparison of these kinetic values with others must indeed take this dependency into account. The basic kinetic responses predicted here are expected to be higher than those cited in the literature, since synthetic substrate and continuous feeding (instead of batch feeding) were used, along with a prolonged period of acclimatization and experimental running of a well-adapted mixed culture of bacteria. Because reactor kinetics governing the acid phase and methane phase are quite different, as a bi-phasic phenomenon, an estimation of the kinetics must be made accordingly. The rate-limiting step in the A-UASB reactor is the hydrolysis of particulate feed to soluble substrates, while methanogenesis is the predominant process in the M UASB. The first-order hydrolysis constant (Kh) and percentage of particulate hydrolysis of the A-UASB, the yield coefficient (a), decay coefficient (b), maximum specific substrate utilization rate (K), and half-velocity coefficient (Ks) of the M-UASB were estimated, in order to provide a broad view of microbial response under different stresses. The hydrolysis rate (Rh) follows an approximate first order reaction, with respect  106 to the concentration of degradable particulate COD (Pavlostathis, 1986).  Rh=Kh*F  (17)  where Rh  =  hydrolysis rate  Kh  =  first-order hydrolysis constant  F  =  particulate COD concentration  A Mass balance around A-UASB at steady-state conditions yields:  Q(FoF)V*Kh*F  where 0 Fo  =  =  V  =  0  (18)  Flow rate  Influent particulate COD concentration Reactor volume  Dividing equation (22) by Q and rearranging yields:  0 where 0  =  =  HRT  Fo/(F/0) =  V/Q, F  -  =  1/Kh Fo-F, and F*Kh  (18) =  By plotting 0 against 0/SF, the intercept of this line is equal to lIKh, as  107 illustrated in Figure 5.22 (c); the value of Kh is equal to 1.67 day 1 (r 2  =  0.88) during the  maximization process, compared with 3.0 day 1 reported by Eastman (1981). Rajan (1989) also reported that the percentage of particulate hydrolysis was about 45 %, defined as the percentage of effluent soluble COD over total COD. However, in this evaluation, the difference between the effluent and influent soluble COD was used to calculate the percentage of particulate hydrolysis under different loading conditions, as shown in Figure 5.22 (d). The relationship between the rate of microbial utilization of the substrate and the rate of bacterial growth can be expressed in terms of a mathematical model developed by Lawrence and McCarty (1970):  6S/&  where 6S/6t  =  =  a6L/6t bS  (19)  -  net growth rate of microorganisms, mass/vol-time  a 6L/6t  =  =  growth yield coefficient, mass/mass substrate utilization rate, mass/vol-time  b  =  microorganisms decay coefficient, time’  S  =  microbial mass concentration, mass/vol.  Dividing equation (24) by S and rearranging yields:  (6L/6t)/S  =  a(6S/6t)/S b -  (20)  0.5  2.5  3  0.5  1.5  02 0.4  (c)  02  0.4  0.5  0  4..  1  1  OlAF  1.2  1.2  0  1.4  1.4  1.6  1.8  =1.67 day-i  (61.161)13 ,day-i  0.6  2  1.6  8  0  C  10  0  .  EH  I,  0.2 0.1  0.3  0.4  0.5  0.7  •  2  p  p  4  Maximization  S  I  5  I  I  I  S  I  9  —.-.....  2  5  Expeiimental Running conditions  4  I  lnFlguro5.22(c)  During maximization and recovery period  (a) a and b; (b) K and Ks; (C) Kh; (d) Particulate COD Hydrolysis  8  I  ReccNely Period  6 7 Obau.4  Note: All ninning conditions are Illustrated  1  j  A  10  I  Maxlmizallon r— Recovey Period K=1.37day-i / K0.50day-1 Ks = 400 mgIL/ Ks = io,55o mgL  Figure 5.22 An Estimation of Experimental Kinetics  0.6  0.6  Recovery Period a = 3.52 b =-0.93 day-i r = 0.84  1.4 1.3  a 1.2  15  3.5  I  ii  10  109 By plotting (cLI5t)/S against (6S/6t)/S, a and b can be obtained as the slope and the intercept of the line, respectively, as shown in Figure 5.22 (a). The substrate utilization rate can also be related to substrate and microorganisms concentrations:  8L/6t  where k  =  =  (kLeS)/(Ks + Le)  (21)  maximum rate of substrate utilization per unit weight of  microorganisms, time’ Ks  =  half velocity coefficient, mass/vol, equal to substrate concentration when  8LI5t Le L  =  =  =  (1/2)k  effluent substrate mass concentration, mass/vol. influent substrate mass concentration, mass/vol.  Rearranging equation (26):  (6L/6t)/S  =  (kLe)/(Ks+Le)  By applying the classic plot (Monod type) between (6L/6t)/S against Le, the k and Ks values can be obtained, as shown in Figure 5.22 (b). In Table 5.4 and Figure 5.22 (a), the data show only a moderate correlation with the line (r 2  =  0.66-0.71) obtained by  regression analysis, with “a” and “b” values particularly suspect. However, despite these shortcomings, one of the kinetic coefficients, in particular, does show some evidence of  110  what may be happening inside the M-UASB during maximization and recovery periods. During maximization, as the loading rate increases step-by-step, the k value is about 1.4 day’, compared with 0.50 day’ during the recovery period. Table5.4 Statistical Constants and Kinetics During the Maximization and Recovery  L Kinetics Coefficients and constants n  Table 5.4 Statistical Constants and Kinetics During maximization and recovery period  ‘  A-LJASB .  MUASB  .  .  .  Maximization Recovery period Maximization Recovery period 4 5.00 4.00  r  0.95  Kh  1.70  0.80  0.85  0.75  1.70  a  (1.80)  3.50  b  2.65  (0.95)  K  1.40  0.50  Ks  400  10,550  6x  %Par.COD Hydrolysi  14-29 Note: n  3-26 =  number of data point  this tendency seems to reverse itself during the recovery period, as the loading rate is decreased step-by-step, (as shown in Figure 5.22 (b)). This result is in agreement with those reported by Chen (1978) where k was practically constant at low influent loadings ‘but it increased rapidly at high loading rates. Unfortunately, none of the other coefficients lend themselves to detinitive conclusions at this time and a more detailed “kinetic study” would be needed to advance any hypotheses further. Such an in-depth analysis could not be justified in this study.  111 5.2.2.4 Optimum Ioadmg Capacity  Since this process is a two-phase UASB-UASB system, optimum loading capacity should be considered separately as A-UASB and M-UASB. However, if the system is considered as a whole, the optimum loading capacity of the M-UASB is really the system loading capacity, because the maximum space loading capacity of M-UASB is the ratelimiting step of the whole system. However, the optimum loading capacity of the M UASB is not necessarily the optimum one for the A-UASB. In fact, the latter can handle a higher loading rate because the growth rate of acidogens is predominant and significantly greater than methanogens. To optimize the system loading capacity with respect to pollution control and CH 4 gas production, the following two particular cases are presented:  (a) Case 1: Overall System Loading Capacity  System loading capacity is dependent largely on system configuration and operational conditions. Differences in the configuration and operating conditions can affect the optimum system loading capacity. Figure 5.23 shows the optimum operating condition at 2 and 2.7 days HRTs for the M-UASB, resulting from two predictive models of COD removal efficiency and CH 4 gas production during the system maximization and recovery periods, respectively. These models are formulated based on the COD (sol.) removal efficiency and CH 4 gas production relative to the HRT of M-UASB as:  112 120  -  4.5  (a)  -4 100 -  > 0  E  % COD (F.) removal  A  80  3.5 1?  //  CH4,cu.i/cu.m-d  a) I  —3  E C.)  U  60  0 0  40  E  A  -2.5  V (2)  I 0 —2  20 A  = 0.74> 2 (1) V = 88.13 + 7.27 InX (r (2) V = 5.29 - 2.59 InX (r 0.90)  0  —  1  0  3  2  100  4  1.5  5  3  //,//9/Z  % COD (FH.) removal  2.5  CH4, Cu  80 Cu  > 0  E  G)  2  60  E D C.)  S  ()  C.)  0 0  40  Q  1.5 I  —.....---..-  0  20  D\  /  I  1.278 + 19.91 X (r = 0.99) 2 -0.304 (r=0.93) (4)Y=2.44X (3) V  f4 ‘  ‘  =  /  0  0  1  2  3  4  5  1  HRT, days Figure 5.23 A Predicted Optimal Operating HRT (a) Maximization Process;(b) Recovery Period  I  113 During the maximization process:  Y2  88.13 + 7.27 in X2  =  where Y2  =  X2  (23)  % soluble COD removal efficiency HRT (M-UASB), days  0.74 For CH 4 gas production, the predictive model is as follows:  Y3  5.29  =  where Y3  =  X3 2 r  -  2.59 In X3  (24)  4 gas production, Lid CH HRT (M-UASB), days  =  0.90  During the recovery period: Y4 where Y4 X4 2 r  2.44 X4° 304  =  =  =  =  (25)  % soluble COD removal efficiency HRT (M-UASB), days  0.93  For CH 4 gas production, the predictive model is as follows:  Y5  =  1.278 + 19.91 X5  (26)  114 where Y5 X5 2 r  =  =  =  4 gas production, Lid CH HRT (M-UASB), days  0.99  As shown in Figure 5.23, the overall optimum system operating condition is predicted at an HRT of 2.0 days, with 90 % COD (sol.) removal efficiency and 3.6 4 gas production. This optimum HRT corresponds to the optimum point /m 3 m d of CH obtained from the CO 2 and VFAjalkalinity ratio data at HRTs from 1.5-2.25 days, as shown in Figure 5.13 and 5.14. Figure 5.15 indicates an optimum flow rate of 16.10 Lid, equivalent to an HRT of 1.55 days with 95 % COD removal efficiency and approximately 75-80 % of the theoretical CH 4 gas production. The optimum RR’s are then calculated as 1.6 and 2.5. Ghosh (1984) suggested that HRTs of 0.9  -  1.5 and 4.0  -  5.0 days are  optimum for A-and M-UASBs reactors respectively, and Chang et al. (1989) reported that an HRT of 2 days was the optimum for the A-UASB. Approximately 77% of the theoretical CH 4 gas production (0.48 m /kg VS added at standard temperature and 3 pressure) was achieved through the use of a two-phase UASB-UASB process at HRTs of 5.5 and 5.9 days respectively (Ghosh, 1984). In principle, the minimum SRT for methanogens is in the range of 2.5-4.0 days (Eastman,1981; Andrews, 1965; Torpey, 1955; Bergman, 1966; and Anderson, 1978). US.EPA (1979), recommends that the optimum SRT is equal to the minimum SRT plus a safety factor of 2.5. Applying the EPA recommendation to this particular case, assuming that the minimum SRT (zero removal efficiency) is equivalent to the maximum HRT, the optimum HRT is then equal to  115 approximately 1.6 days, corresponding to a maximum failure flow rate of 40.22 LId, considerably higher than found in this study. (A summary of average responses and performance at each pseudo steady-state, under different running conditions, is shown in Table D1.1 of Appendix D).  Considering the optimum HRT obtained from this experimental research (1.5-2.25 days as mentioned earlier), the optimum HRTs cited in several publications, as well as the one calculated based on the US.EPA recommendation, it is reasonable and safe to suggest that the optimum operating HRT’s for the M-UASB and the overall system, are 2.0 and 4.0 days respectively. This 2-day HRT is a slightly lower than the minimum range of 2.5-4.0 day SRT recommended for methanogens mentioned above; however, in this case, it is reasonable since the designed system is a two-phase one, providing the optimum environment to stimulate the growth of methanogens. It is also equipped with a recycle facility to increase the contact between microorganisms and substrate as well as to increase the system bufferring capacity. Moreover, it is interesting to note that this optimum HRT of 2 days, predicted from the experimental results during the maximization process, is shorter than that of 2.7 days HRT obtained at the recovery period, as shown in Figure 5.23. This may be the result of a shift in the microbial structure  ( a change in predominant bacterial communities and their microenvironment,  and a difference in biochemical pathways) of the acetogenic and methanogenic bacterial community inside the M-UASB.  116 (b) Case 2: Optimum Loading Capacity of A- and M-UASBs  The optimum 2-day HRT of the M-UASB, recommended earlier in case (a), equivalent to a flow rate of about 16 LId, is not necessarily the optimum one for the A UASB, since the growth rate of acidogens is predominant in the A-UASB. From Figure  5.24 and Table D1.1 of Appendix D, it can be concluded that running condition no.4, at an A-UASB HRT of 1.0 (0.97) days and equivalent to a flow rate of 20 LId, is the optimum loading capacity. This is in agreement with the optimum range of 0.9-1.5 day HRT for acidogenic reactors reported by Ghosh (1984). At this optimum running condition during the maximization period, the A-UASB generated the highest VFA/alkalinity ratio of 7.5 at day 40, with effluent COD (sol.) of 11,055 mg/L and total VFA production of 5,300 mg/L as HAc. The MLVSS concentration of the A-UASB also increased significantly up to 42,150 mg/L, but there was only a small change in the effluent TKN and TP concentrations, as shown in Figure D1.1 and D2.1 of Appendix D. It is interesting to note that the total VFA and the VFAlalkalinity ratio of the A-UASB increased significantly during the recovery period, as shown in Figure 5.24 (b). This may be the result of the ability of the A-UASB to tolerate shock-loads, and to stimulate the reactor’s activity (Lettinga, 1979a). The optimum HRT ratios between A-and M-UASBs, and also between A-UASB and the overall system, are about 0.60 and 0.40 ,respectively (Details in Table D1.1 of Appendix D). Dinopoulou (1989) reported that the optimum volume of the acidogenic reactor was in the range of 12-25 % of the overall active  117 20  200  —i  180  -  +  CH4, l/d  ‘  % C02  COD  :; 14-’ 13-i  o 0  120  Time, days  -  100-  : TIme, days  6HAc  HPr  lime, days  P:  / \  -  6  :Iift[1JIittflZ Time, days  Figure 5.24 An A-UASB System Effluent Qualities: During the process maximization  (a) CH4 production,%C02,Eff.COD; (b) Total VFA,HAc/HPr,VFA’Alkalinity  118 volume in a study, using a two-phase anaerobic digestion system with CSTR acidogenic reactor and a methanogenic fluidized bed reactor to stabilize a synthetic wastewater. The difference in the HRTs ratios in this case may result from a longer hydrolysis rate of the particulate synthetic sludge taking place in the UASB-UASB process, compared with the shorter hydrolysis rate for the synthetic wastewater.  5.2.2.5 Conclusions  From both system performance and kinetic considerations, it appears that the UASB-UASB system can recover to its original performance by applying a step-down loading approach. Although the performance, in terms of % COD removal efficiency and % CH content, recovered to the original values, the total CH 4 gas production was reduced and the optimum operating point between COD removal efficiency and gas production was moved a little further. This means that there was a total shift of the species ratio among the mixed culture of acetogens and methanogens inside the M UASB after the recovery process. Based on the results of these studies, the following conclusions can be drawn: (1) A combination of hydraulic and organic overloading of the M-UASB reactor was a major cause of process failure; this can result in MLVSS washout, increase in total VFA concentration, reduction of the system removal efficiency, and cessation of CH 4 gas production.  119 (2) A drop in pH and an increase in total VFA/alkalinity ratio, a reduction of CH 4 gas production, and an increase in the effluent total VFA, were also indicators of the process failure.  (3) The maximum hydraulic loading rates were 1.6 and 0.90 3 1d, m m equivalent to HRTs of less than 1.125 and 0.625 days, for the M-UASB and the whole system, respectively. The CH 4 gas production was reduced to less than 50 % of the theoretical value, with effluent COD and total VFA of 9,540 mg/L and 3,750 mgfL as HAc, respectively.  (4) The M-UASB recovered exponentially with an increase in HRT (loading reduction) in term of COD removal efficiency, but logarithmically with respect to CH 4 gas production, as follows: Y Yl where  Y X  Yl  =  Xl  x 29 25.37 eo.  =  9.25 + 64.01 In Xl  % soluble COD removal efficiency HRT (M-UASB), days  =  =  =  4 gas production, Lid CH =  HRT (M-UASB), days  The system did recover back to its initial stage of operation by applying a two-step increase of the HRTM.UASB at 1.5 and 5.8 times the failure HRT, with a dimensional time of 5.60 and 10 for the M-UASB and the overall system, respectively.  120  (5) The shockloads appeared to stimulate the A-UASB’s activity during system recovery, but it appeared to have no effect at all on the M-UASB, when the system failed completely. The recovery approach, employing the step-loading reduction and the internal RR, seemed to have no significant beneficial effect, compared with the re acclimatization in term of time requirement (both needed 4-5 weeks to complete the processes). However, it did provide some advantages in terms of ease of operation and a more practical approach for a potential full-scale operation.  (6) The hydrolysis rate governing the A-UASB was about 1.70 days. The specific velocity k during the maximization and recovery periods, was 1.40 and 0.50 day , 1 respectively. The corresponding substrate saturation coefficient (half velocity constant, Ks) was found to be 400 and 10,550 mg/L during the maximization and recovery period, respectively.  (7) The optimum HRT for the A-UASB was 1.0 (0.97) days, whereas, those for the M-UASB, with respect to COD removal efficiency and CH 4 gas production, during the maximization and recovery period, were 2.0 and 2.7 days, respectively. This seems to imply there was a restructuring of the bacterial community inside the M-UASB, during the recovery period. For design purposes, the optimum operating HRT’s of 1 and 2 days, as well as the RR of 1.6 and 2.5 times the influent flow rate, are recommended for A and M-UASBs, respectively, with a conservative organic loading rate of 19 kg COD(total)/m 3 d (equivalent to 0.55 3 /d). m m  121 (8) The optimum HRTAU  HRTMUB  ratio was about 0.60 and the HRTA.  upsi/HRTsystem was 0.40, as applied to the two-phase anaerobic digestion of sewage sludge (UASB-UASB).  122  5.2.3 Development of System Design Criteria  The main research goal was to evaluate the feasibility of the two-phase anaerobic digestion (UASB-UASB) concept, to stabilize a particulate substrate. The following sections, deal with the system effectiveness (or performance), system suitability (or loading capacity), and system feasibility, followed by a modification of design criteria and operation procedures. Finally, major system control parameters are evaluated and discussed.  5.2.3.1 Optimum System Performance and Feasibility  The optimum system HRT of 2.80 (1.24+ 1.55) days equates to a hydraulic loading  rate of 0.40 3 /m m d. The overall soluble and total COD removal efficiencies were 90.76 and 98 %, respectively, with 69 % CH 4 content and 179 LId of CH 4 gas production (/equivalent to 73 % of the theoretical value). Average pseudo steady-state system performance and effluent quality, at the optimum running condition, are summarized in Table 5.5. It is interesting to point out that there was actually some P0 -P (and/or TP) 4 removal, but rarely NH -N (and/or TKN) removal as shown in Figure 5.14. This may be 4 due to chemical reactions forming precipitating salts of Ca and/or Mg phosphate. However, there was a small change in NH -N (and/or TKN). concentration, since NH 4 -N 4 can be used as a release-and-apprehend ion to maintain the balance of buffer capacity  123  Table 55 Summary of Average Responses at the Optimal System Operating .sedo S Average Responses Processes Running Period, days Sludge Feed Ratio (SR) Recycle Ratio (RR) Influent Flow, l/d HRT, days A-UASB M-UASB System Loading Rate cu.m/cu.m—d KgCOD(sol.)/cu.m—d Effluent Quality Solids, mgIL TS VS TSS TVSS COD mgIL Total COD COD(sol.) Inorganics, mg/L NH4-N TKN TP P04-P VFA mg/L HAc HPr lso—HBr HBr A-HVr lso—HVr HVr HHe Total VFA mg/L as HAc  Experimental Running Condition 2—phase (UASB—UASB) 36 80/20 2/3 16.10 1.25 1.55 2.80 0.35 2.15  2850 1230 185 110  ,  680 550 300 400 85 15  ,  40 65 0 5 0 0 0 0 95  124  Table 5 5 Summary of Average Responses at the Optimal System Operating  LJnder.I?SeUdo SIeádyStàteQn Average Responses Processes Alkalinity, mg/L as CaCO3 A-UASB M-UASB Total VFA/Alk A-UASB M-UASB System Removal Efficiency Solids, % TSS COD, % COD(sol.) Total COD Inorganics, % P04—P TP Methane Gas Flow, l/d Total Gas CH4 Gas CH4 Productivity lId cu.mlcu.m—d cu.mlcu.m—d@SC cu.m/kgCOD(Total)added @SC % of theoretical CH4 Production % CH4 content  Experimental Running Condition 2—phase (UASB—UASB)  960 2520 4.90 0.05  99.00 91.00 98.00 88.00 39.00  310.00 180.00 180.00 4.00 3.50 0.25 73.00 69.00  125 of the M-UASB, as well as a basic growth nutrient. It is difficult to compare the performance of different processes, since each process has its own unique characteristics, configuration, and operating conditions. However, the optimum system performance and effluent quality can be used as guidelines to evaluate both effectiveness and suitability, possibly leading to an evaluation of system feasibility. As shown in Table 5.5, it is clear that the two-phase UASB-UASB concept, at an extremely low operating HRT (2.8 days), performs reasonably well with 4 gas production of about 73 % theoretical CH CH 4 value, effluent COD of 550 mg/L, and volatile acids of 95 mg/L. The internal RR appears to play a major role in controlling and maintaining the system performance by increasing the contact between microorganisms and substrates, reducing the effect of shock loading, and increasing the system buffering capacity. Combining influent loading rate control and appropriate RRs, it is thus possible to maintain a good system performance or to assist in recovering the system, in case of an interruption and/or failure.  5.2.3.2 Modification of Design Criteria  and Operation  Development of anaerobic digestion system design has recently moved towards “high rate” digestion systems. Each system has its own merits, limitations, and potential, and depends largely on the local situation, characteristics of the wastes to be treated, and  126 the performance and specific experience of each system designer in each type of system configuration. Although the two-phase anaerobic digestion concept works exceptionally well, compared with a single stage one, there is still no universal, two-phase digestion configuration that is optimum for all situations. The choice of the fermenter type depends largely on the physical, chemical and biological characteristics of the feed and the objective of treatment, ie., whether it is pollution control or maximization of CH 4 gas production. The design of the two-phase UASB-UASB process must ensure a uniform distribution of influent feed at the lower part of the reactor, a sufficient cross-section to prevent biomass entrainment, and an effective separation of gas, biomass, and liquid.  The keys to the successful anaerobic stabilization processes are to increase the contact between microorganisms and substrates as well as to increase the system bufferring capacity. Sludge recycling also plays a major role in these aspects, which subsequently improves the process performance and stability. Based on the results of this study, optimum design HRT’s for A-and M-UASB’s reactors are about 1 and 2 days, with RRs 2 and 3 times the influent flow rate, respectively. Most of the reactions seem to occur at the lower part of the reactors (sludge bed and blanket portion). As shown in Figure 5.25, there is no difference in the effluent VFA concentration profile from the bottom to the upper part of the M-UASB reactor. Possible reasons for this phenomenon may be due to high concentrations of active anaerobic sludge in the lower part of the reactor, the effective mixing created by the incoming flow rate, the upward escape of the produced gas, and the recycle of the effluent from the sludge blanket. All these factors  127  Figure 5.25 Comparison of Total VFA Along the Height of M-UASB: During the Acclimatization Process  Sludge blanket VFA 1.6 HPr  MAc  2  1.2 0.8  -  I  0  I 0  0.4  -  20  I  IiIi  40  60  lime, days  0  I 80  128 contribute to increase the removal efficiency at the lower part of the reactor. Christensen (1984) found that COD removal occurred throughout the sludge bed and blanket of an UASB reactor. As shown in Figure 5.25 and 5.26, there was small change in effluent COD (sol.) profiles of both A-and M-UASBs, after the sludge blanket portion (sampling point no.3 and 6 as shown in Figure 4.2) during the acclimatization and maximization/recovery period. These results lead to the conclusion that the reactor height could have been reduced to 50 cms without any effects on the process performance. The ratio of reactor diameter to height could then be as low as 1:4 (12.5/50). However, for design purposes, this ratio should be closer to 1:8 to 1:10  (  depending on safety factor chosen), to ensure that extra space is provided for temporary gas accumulation and for scum formation. It is also important that peak hydraulic loading be taken into account for the design of digester volume. The design system hydraulic loading rate is conservatively set in the range of 0.55 3 -d, at 35 3 1m m d equivalent to 19 kg COD (total)/m  0  C with an  SR8O/20 and RR1.6/2.5. Since most municipal wastewater treatment processes produce a sludge ratio (SR) of about 60/40 (by weight), the optimum ratio of this study (80/20) can be modified to compensate for the excess amount of waste activated sludge (WAS) produced. This can be done by either increasing the ratio of WAS portion or using the excess amount, which is full of nutrients (N and P), for soil conditioning and/or composting. A summary of recommended design criteria  / start-up and acclimatization  / and operation for the two-phase anaerobic digestion of sewage sludge (UASB-UASB) process is illustrated in Table 5.6.  129 COO (soluble). mg/L (Tholisanc;)  6  ii  I III I I.  22 27 33 37 42 47 51 58 81 65 70 75 84 98 102107  16  Time, days  f L  Sampling Point no. Sp.1  (a) Sp.5  Sp.4  Sp.3  COD (soluble), mg/L (Thousands)  I  6  11  22 27 33 37 42 47 51 58 61 66 70 75 84 96 102107  16  Time, days Samphng Point no. Sp.8  Sp.6  Sp.7  (b)  Sp.5  [xpeairunning conditions  Experimental Perlodsi  System HRT, days  Days  5.65- 6.84 4.652.762.13 1.552.30 2.71 3 63 7 32 -  -  -  -  -  5.16 3.16 2.20 1.82 2.77 3.21 3.95 9.00  t  Maximization  1 -15  (c)  20-29 33 37 40 44 47 51 54-58 61 65 68 72 75- 107 -  -  V  A Recover’,’ Period  -  -  -  V  Figure 5.26 COD (soluble) Profiles of a Two-phase UASB-UASB Process: During Maximization and Recovery Period  (a) A-UASB; (b) M-UASB; (c) Running Conditions Note: All sampling locations are illustrated in Fig.4.2  130 Table 5..6 RecOmmended design c and operation of a two—phase anaerobic digestion of sewage sludge (UASB-UASB) process Design criteria  Values  Optimum HRT, days A-UASB M-UASB RR, QrIQin (Lower 1/3 of the reactor height) A-UASB M-UASB Reactor diameter/height ratio Gas collection aperture, m3/m2—d (Mid of the reactor height with 50 degree inclined wall) Organic Loading Rate,kgCOD(total)/m3—d  1.00 2.00  2.00 3.00 1:10 0.70  19.00  Start-up and acclimatization System seeding ratio Start—up loading rate, kgCOD/kgVSS—d Step—up loading rate if: COD(soL) removal efficiency, % HRT, days pH control, 0.1 N, NaOH A-UASB M-UASB Temperature, o C SR RR  1:1 0.10 >80 2—3 5.0-5.3 7.0-7.3 35.00 80/20 (a) 4/7 (a)  System Operation Hydraulic loading rate, m3/m3—d pH values A-UASB M-UASB Temperature, o C SR RR  0.35 5.0-5.3 7.0-7.3 35.00 80/20 (a) 2/3 (a)  Recovery Process 2—step increasing HRT (where Q = Failure HRT) Note: (a)  =  nlIn2,where ni  =  A—UASB and n2  1 .5Q15.8Q (a)  =  M—UASB  131 To operate the system successfully and effectively, proper start-up and acclimatization are very important steps; also, close monitoring of several major control parameters is absolutely necessary to maintain an acceptable performance. pH is one of the most sensitive and practical control parameters used to monitor the anaerobic stabilization process (as shown in Figure 5.27). A significant drop and rise in pH during the process failure and recovery period demonstrates the effectiveness of this control parameter. It is also interesting to point out that the pH values of A-and M-UASBs are practically constant at 5.0-5.3 and 7.0-7.3 respectively, indicating that both reactors are naturally buffered by themselves. This may result from a balance between the NH -ions, cations 4 released from the fatty acid salts, and 3 HCO ions formed by C0 , contributed partly by 2 the recycling process in both reactors and helping to increase and stabilize the buffer capacity (Trudell, 1985). Remedial actions should be quickly made if there are significant changes in system control parameters that are providing an overall picture of what happens inside the reactor under different circumstances. Hydraulic loading reduction and recycling facility are effective measures in recovering the system, by increasing the system buffering capacity and providing the methanogens a better opportunity to contact with substrates and survive under this stress conditions. pH adjustment with an alkaline addition is another promising measure to alleviate the problem. Therefore, a combination of these measures may be necessary if the system is severely damaged. All of these measures are designed to avoid a system washout, if at all possible.  132 7.4 7.2  f  r  7  —I  ‘1  6.8  (a) Hill 1111 lU  6.6  z  E 0  6.4 6.2 6 5.8  f  Phase 2 Experiment  I  A-UASB  +  Phase 3 Experiment  M4JASB 4  --  5.6  5.4  —  5.2  T  5  ,  ,.T.  o  ---—--  “‘ii•  ill  %r  ——-r  —  ‘-J  -  —-  -__.  -  4.8  -  — I  21  41  61  81  I  101  121  141  161  181  201  221  241  261  281  Time, days  7.2 7  -  6.8 (b)  6.6 6.4  J”_  -  -L  6.2 I 6  MaxImization  4  C)  HCfWAFV  —  -..,  roIIuJ  p  5.8 5.6 I  A-UASB  +  M-IJASB  5.4 5.2  -__  5 4.8  4.6 295  315  335  355  375  395  TIme, days  Figure 5.27 rH Variation in A-UASB and M-UASB: (a) Sequence  and 3 Experiments; (b) Maximization and Recovery Period  133 CHAPTER SIX CONCLUSIONS AND RECOMMENDATIONS  6.1 CONCLUSIONS  Modification and improvement of a process configuration, start-up and acclimatization, and system operation of a two-phase UASB-UASB process have been studied. The system appears to be feasible, effective, and suitable for stabilizing sewage sludge, with promising results. Based on the results of this research program, the following major conclusions can be made:  (1). A  two-phase UASB-UASB process appears to be  feasible and effective for  stabilizing sewage sludge, with a high organic loading rate, while maintaining an acceptable level of supernatant quality and CH 4 gas production. The system also has a high potential to recover effectively after a serious failure, using a step-loading reduction and internal recirculation (RR) approach. The “Two-phase” concept has thus proven to be successful in treating sewage sludge. Hydrolysis and acidification predominate in the A-UASB, while acetogenesis and methanogenesis dominate in the M-UASB. Most of the reactions occur at the lower part of both reactors  (  Sludge blanket and bed).  (2). The most effective and practical approach to accelerate the acclimatization process is to provide a continuous, step-up organic loading rate, to match the bacterial growth.  134 The start-up loading rate recommended is 1.2 gCOD/L-d, with a seed sludge taken from an anaerobic digester for the M-UASB, and an acclimatized seed sludge for the A UASB, at the ratio of 1:1 (by volume). The washout process occurred after two weeks of acclimatization at a sludge loading of 0.40 kg COD/kg VSS-d. The acclimatization process reached a pseudo steady-state within 4-5 weeks, with 91 and 100 % COD (sol.) and VFA removal efficiencies, respectively.  (3). Under specific control of temperature at 35 C, an influent flow rate of 5-6 LId, and °  a pH at 5.0-5.3 and 7.0-7.3 for the A-UASB and M-UASB respectively, the optimum “Best Known” running condition is at sludge ratio (SR) 80/20 and recycle ratio (RR) 5/8; this achieved more than 95 and 90 % COD (sol.) and P0 -P removal efficiencies, with 4 effluent COD (sol.) of 300 mg/L. In addition, this “Best Known” condition produced a high volume of CH 4 gas, about 1.55 3 4 production of /m m d, equivalent to a specific CH 0.32 m /kg COD (Total) added, at 72 % CH 3 4 content. Internal recirculation (RR) seems to be an important feature of the two-phase system; not only does it increase the contact between microorganisms and substrates, but also helps to recover the system from a serious failure and stabilizes, naturally, the buffering capacity in both A-and M-UASBs.  (4). A combination of hydraulic and organic overloading of the M-UASB was a major cause for process failure, as indicated by MLVSS washout, an increase in the total VFA concentration, a reduction in system removal efficiency, a cessation in CH 4 gas production, a drop in pH, and an increase in total VFA/alkalinity ratio.  135 (5). Maximum hydraulic loading rates found were 1.6 and 0.90 3 1m m d , equivalent to HRTs of less than 1.125 and 0.625 days for the M-UASB and the system, respectively. The CH 4 gas production was reduced to less than 50 % of the theoretical value, with effluent COD and total VFA levels of 9,535 mg/L and 3,750 mgfL as HAc, respectively.  (6). The M-UASB recovered exponentially after failure, with an increase in HRT (loading reduction), in terms of COD removal efficiency, but logarithmically with respect to CH 4 gas production as follows:  Y Yl where Y X  =  =  =  =  25.37  e°  9.25 + 64.01 In Xl  % soluble COD removal efficiency  HRT (M-UASB), days  Yl  =  4 gas production, Lid CH  Xl  =  HRT (M-UASB), days  The system returned to its initial stage of operation by a two-step increase in the HRTMUASB,  by 1.5 and 5.8 times that of the failure HRT value (with a dimensional time  of 5.60 and 10 for the M-UASB and the overall system, respectively). Shock-loads seemed to stimulate the A-UASB’s activity during the system recovery; however, there was no apparent effect on the M-UASB, after it has failed completely. The recovery approach, employing step-loading reduction and internal RR, appears to be comparable to re-acclimatization, in terms of time requirements (both need 4-5 weeks to complete  136 the processes  )  for recovery. However, the recovery approach has some advantages, in  terms of simplicity of operation and practicality, as applied to a full-scale plant.  (7). The optimum HRT for A-UASB was 1.0 (0.97) days, whereas the HRT for the M UASB with respect to COD removal efficiency and CH 4 gas production during the maximization and recovery period was 2.0 and 2.7 days, respectively. This seems to imply a restructuring of bacterial community inside the M-UASB, during the recovery period. For design purposes, optimum operating HRTs of 1 and 2 days, as well as RR of 1.6 and 2.5 times the influent flow rate, are recommended for A-and M-UASB reactors, respectively.  (8) The  optimum HRTAUASB/HRTMUASB ratio was about  UASB/’H”Tsystem  0.60 while the HRTA  was 0.40, applied to the two-phase anaerobic digestion of sewage sludge  (UASB-UASB). The reactor diameter to height ratio is recommended at 1:8 to 1:10, with a hydraulic loading rate of 0.55 m /m3-d (equivalent to 19 kg COD 3 3 (total)/m d at 35 C and the SR8O/20 and RR2/3).  6.2 RECOMMENDATIONS  Future research needs are recommended in the following areas:  (1). Rebuilding a bench-scale, two-phase UASB-UASB process according to the modified  137 designed criteria, is highly recommended. Evaluation of system feasibility and effectiveness with actual sludge, operating at the optimum condition is also necessary.  (2). Organic shock loading and toxic spiking of the system should be investigated; this can provide additional information in understanding how the system responds under such circumstances and the degree of susceptibility.  (3). Investigating the temperature effects on the process performance by keeping the temperature of the A-UASB and M-UASB at 20 and 35 C respectively, is an interesting °  area of further research. This may help reduce the cost of reactor heating.  (4). Recirculation of the wasted sludge from the A-UASB, as a whole or part, into the M-UASB is worth investigating; it may reduce the amount of sludge to be disposed of. However, it could also reduce the efficiency of the M-UASB.  (5). The effect of the internal RR and step-loading reduction on the optimum “best Known” running condition for system recovery from failure, should be re-evaluated by employing a 2 by 2 factorial design experiment.  (6). Treating the domestic wastewater directly by using this modified process configuration is highly recommended. The idea is to evaluate the feasibility and effectiveness of the system, as to whether or not it can temporarily serve as a main  138 stream treatment facility, in case of a process interruption or failure. If successful, then a by-pass of the influent wastewater could then be temporarily re-directed through the two-phase system.  (7) Evaluating the effect of sludge recycling on the process performance. This may indicate whether there is any negative impact on system performance related to solids recycling or not.  139 REFERENCES  Anderson, G.K., Donnelly, T., (1978) “Anaerobic Contact Digestion for Treating High Strength Soluble Wastes”, In: Mattock, G.(ed.) New processes of waste water treatment and recovery, Ellis Horwood, Chichester, p.75. -  Andrew, J.W., (1968) “A Mathematical Model for the Continuous Culture of Microorganisms Utilizing Inhibitory Substances”, Biotech. Bioeng., jQ, 707-723. Andrew, J.F., and Pearson, E.A., (1965) “Kinetics and Characteristics of Volatile Acid Production in Anaerobic Fermentation Processes”, Intl.Jour.Air and Water Poll. (G.B.), 9, 439. Asinari Di San Margano, CM, (1981) “Volatile Fatty Acids, An Important State Parameter for the Control of the Reliability and the Productivities of Methane Anaerobic Digestions”,Biomass, 1, 47-59 Bergman, R.D., (1966) “Anaerobic Sludge Digestion  -  MOP 16”, J. WPCF, 38, 717-721.  Barrette, O.J., (1952) “Report on the Operation and Maintenance of the Waterly Sewage Treatment Plant-Cleveland, Ohio”, Sewage and Industrial Wastes, 4, 1427. Benefield, L.D.,and C.W. Randall, (1980) “Biological Process Design for Wastewater Process Treatment”, Practice-Hall, Inc., N.J., 526pp. Box, G.E.P., (1969) “Evolutionary Operation”, John Wiley & Sons, Inc., N.Y., U.S.A. Bruce, A., (1984) “Sewage Sludge Stabilization and Disinfection”, Ellis Horwood Limited, Chichester, England. Buijis, J.W., (1981) “Modelling and Scale-up of Anaerobic Conversion of Dissolved Fatty Acids”, Advance in Biotechnology, I.M. Moo-Young and Robinson, C.W., Pergamon, N.Y., 529 pp. Buijis, C., (1982) “Distribution and Behavoir of sludge in Upflow Reactor for Anaerobic Treatment of Wastewater”, Biotech. Bioeng., 4, 1975. Bull, M.A., (1984) “An Evaluation of Single- and Separate-Phase Anaerobic md. Waste Treatment in Fluidized Bed Reactor”, Biotech. Bioeng., 26, 1054. Cail, R.G., and et al., (1986) “The Development of Granulation in an Upflow Floc Digester and an UASB Treating Cane Juice Stillage” Biotechnology Letters, 7, 493-498.  140 Callender, I.J., et al., (1983) “Recent Advance in Anaerobic Digestion Technology”, Process Biochem., 18 (4), 24-37. Capri, M.G., (1975) “pH adjustment in Anaerobic Digestion”, Wat.Res.,  ,  307-3 13.  Chang, T.C., Wu, Y.C., and et.al, (1989) “Anaerobic Sludge Digestion Using Thermophilic Phase Separation”, J.Chem.Tech.Biotechnol., 45, 335-337. Chen, Y.R., Hashimoto, A.G., (1978) “Kinetics of Methane Fermentation”, Biotechnology Bioengineering Svmp., , 269-282. Chiu-Yue, Lin, (1986) “Methanogenic Digestion Using Mixed Substrate of Acetic, Propionic, and Butyric Acids”, Wat. Res., (3), 385-394. Choate, W.T., and et al., (1982) “Membrane-Enhanced Anaerobic Digesters” Proc. 37th Industrial Waste Confer., Purdue Univ., Indiana, 661-666. Christensen, D.R., Gerick, J.A., (1984) “Design and Operation of an Upflow Anaerobic Sludge Blanket Reactor”, WPCF, 56 (9), 1059-1062. Chung, K.T., (1976) “Inhibitory Effects of H 2 on growth of Clostridium cellobioparum” Appi. envir. Microbiol., 31, 342-348. Cohen, A., et al., (1979) “Influence of Phase Separation on the Anaerobic Digestion of Glucose-I: Maximum COD Turnover Rate during Continuous Operation”, Wat. j, 571. Cohen, A., et. al, (1983) “Two-Phase Digestion of Liquid and Solid wastes”, Proc. 3rd Inter. Svmp. on Anaero. Digest., Boston, USA, 123-138. Colleran, E., and et al., (1983) “One and Two-Stage Anaerobic digestion of Agricultural Wastes” Proc. of the 3rd International Symposium on Anaerobic Digestion, Boston, USA. Cortinovis, D., (1984) “Controlling Wastewater Treatment Processes”, Ridge Line Press, California, U.S.A. Datta, R.K., (1981) “Acidogenic Fermentation of Corn Stover” Biotech. Bioeng., 23, 61, Dichtl, N.J., (1987) “Two Stage Sludge Stabilization” Wat. Sci. Technol., j (7), 1247125 0. Dinopoulou, G, and Lester, J.N., (1989) “Optimization of a Two-phase Anaerobic Digestion System Treating a Complex Wastewater”, Env.Tech.Lett. jQ, 799-814.  141 Dolfing, J., 1986, “Granulation in UASB Reactor” Wat. Sci. Tech., j (12), 15-25. Eastman, J.A., and Ferguson, J.F., (1981) “Solubilization of Particulate Organic Carbon during the Acid Phase of Anaerobic Digestion”, J. WPCF, (3), 352-365. Enema, P.A.G., Polanco, F.F., (1987) “Behaviour of anaerobic expanded bed reactor in non-steady state conditions”, Wat.Res. (11), 1329-1334. Fannin, K.F. et. al, (1981-1983) “Anaerobic Process”, J. WPCF Literature Review Issue, , 53-55. Fisher, A.J., (1934) “Digestor Overflow Liquor: Its Character and Effect on Plant Operation”, Sewage Works, 6, 934. Fongsatitkul, P., (1986) “A Preliminary Report: An Assessment of Wastewater Treatment System Practically Used in Thailand”, CIDA Home Attachment Program. Ghosh, S., and Henry, M.P., (1981) “Stabilization and Gasification of Soft Drink Manufacturing Waste by Conventional and Two-Phase Anaerobic Digestion” Proc. of the 36th Purdue Industrial Waste Conference, Lafayette, IN, 292. Ghosh, S., and et al., (1983a) “Methane Production from Industrial Wastes by Two-Phase Anaerobic Digestion” Proc. of the 6th Symposium on Biomass and Wastes, Orlando, FL., USA. Ghosh, S., and et a!, (1983b) “Two-stage Upflow Anaerobic Digestion of Concentrated Sludge” Proc. of the 5th Smposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN. Ghosh, S., (1984) “Advance Two-Phase Digestion of Sewage Sludge”, Symp. on Energy from Biomass and Waste VIII, Lake Buena, Vista, Florida, USA, , 835-874 pp. Ghosh, S., (1987) “Improved Sludge Gasification by Two-Phase Anaerobic Digestion” J.Envir. Eng. Div., 113 (6), 1265-1284. Gloyna, E.F., (1982) “An Analysis of research Needs concerning the Treatment, Utilization, and Disposal of Wastewater treatment Plant Sludge”, WPCF Highlights, .12 (7). Graef, S.P. and Andrew, J.F., (1974a) “Stability and Control of Anaerobic Digestion”, j. WPCF, 46, 666-683. Graef, S.P., and Andrew, J.F., (1974b) “Mathematical Model and Control of Anaerobic Digestion” AIChE Symposium Series, 70, (136), 101-131.  142 Gujer, W., and Zehnder, A.J.B., (1983) “Pathway of Anaerobic Digestion”, Wat. Sci.Tech., , 127. Hamoda, M.F., and et al., (1984) “Effect of Settling on Performance of the Upflow Anaerobic Sludge Bed Reactors” Wat. Res., 12, 1561-1567. Harper, S.R., and et al, (1986) “Biotechnology Report: Recent Developments in Hydrogen Management During Anaerobic Biological Wastewater Treatment”, Biotech.Bioeng., (4), 585-602. Heertjes, P.M., (1978) “Dynamic of Liquid Flow in an Upflow Reactor used for Anaerobic Treatment of Wastewater”, Biotech. Bioeng., Q, 1577. Heertjes, P.M., (1982) “Fluid Flow in Upflow Reactor for Anaerobic Treatment of Beet Sugar Factory Wastewater”, Biotech. Bioeng., 24, 443. Hickey, R.F., Vanderwielen, J., and Swtzenbaum, M.S., (1987) “The Effects of Organic Toxicants on Methane Production and Hydrogen Gas levels during the Anaerobic Digestion of Waste Activated Sludge” Wat. Res., 21(11), 1417-1427. Hulsoff-Pol, L.W., de Zeeuw. W.J., et.al, (1983) “Granulation in UASB-reactors”, Wat.Sci.Technol, 15, 291. Hulsoff-Pol, L.W., et al, (1986) “New Technologies for Anaerobic Wastewater Treatment”, Wat. Sci. Tech., 18, (12), 41-53. Jame, R.W., (1976) “Sewage Sludge Treatment and Disposal”, Noyes Data Corporation, New Jersey USA, 339 pp. Jeris, J.S., and McCarty, P.L., (1965) “The Biochemistry of methane fermentation using 4 tracers” J. WPCF, 7, 178-192. C’ Kasper, H.F., and Wuhrmann, K., (1978) “Kinetic Parameters and Relative Turnover some Important Catabolic Reactions in Digesting sludge” Appl. envir. Microbiol , 1-7. Keenan, J.D., (1976) “Multiple Staged Recovery from Solid Wastes” J. Environ. Sci. Health, All (8/9), 525. Keleti, G., et al, (1974) “Handbook of Micromethods for the Biological Science”, Van Nostrand Reinhold Inc., N.Y., USA. Klapwijk, A., et al, (1981) “Denitrification of domestic wastewater in an upflow sludge blanket reactor without carrier material for the biomass” In:Cooper PF, Atkinson  143 B (eds) Fluidised bed treatment of water and wastewater. Ellis Horwood, Chichester, p.2O . 5 Kugelman, I.J. and Jeris, J.S., (1981) “Sludge Treatment Anaerobic Digestion”, Marcel. Dekker, Inc., N.Y., 591 pp. Lawrence, A.W., and McCArty, P.L., (1970) “ Kinetics of Methane Fermentation in Anaerobic Treatment”, J.WPCF, 41, R1-R16 Lettinga, G., (1978) “The Prospects of Anaerobic Wastewater Treatment”, 4th European Sewage and Refuse Symp., EAS, Munich., 226. Lettinga, G., Van Der Gust, A. Th, (1979a) “Anaerobic Treatment of Methanolic Waste”, Wat. Res., 13, 725. Lettinga, G. Van Velsen, and et.al, (1979b) “Feasibility of the Upflow Anaerobic Sludge Blanket (UASB)-Process”, Proc.Nat.Conf.on Environ.Eng., ASCE, San Francisco, USA, 35-45. Lettinga, G. et al, (1980) “Use of Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment”, Biotech. Bioeng., 22, 699-734. Lettinga, G., Hobma, S.W., and et.al, (1983a) “Design, operation, and economy of anaerobic treatment”, Wat. Sci. Tech., 15, 177-195. Lettinga, G., Roersma, R., and Grin, P., (1983b) “Anaerobic Treatment of Raw Domestic Sewage at ambient temperature using a granular bed UASB Reactor” Biotech. Bioeng.,, 25, 1701-1723. Lettinga, G., Huishoff, Pol, et al, (1983c) “Upflow Sludge Blanket Process”, Proc. 3rd Inter. Symp. on Anaerobic Digestion, Boston, USA, 139-158. Lettinga, G., Huishoff, Pol, et al, (1986) “Advanced Reactor Design, Operation and Economy”, Wat. Sci. Tech., 18 (12), 99-108. Maat, D.Z., and Harbets, L.H.A., (1987) “The Upflow Anaerobic Sludge Blanket Wastewater Treatment System: A Technology Review”, PuIp&Paper Canada, (11). Mahoney, E.M., Varangu, L.K., Cairns, W.L., (1987) “The Effect of Calcium on Microbial Aggregation during UASB Reactor Start-Up “ Wat. Sci. Tech., 19, 249260.  144 Malina, J.F., (1980) “Anaerobic Waste Treatment”, Lecture Note, Univ. of Texas (Austin). Massey, M.C. and Pohiand F.G., (1978) “Phase Separation of Anaerobic Stabilization by Kinetic Controls”, J. WPCF, 50, 2204. McCarty, P.L., (1971) “Energy and Kinetics of Anaerobic Treatment”, Anaerobic Bio.Treat., Proc. Amer. Chem. Society, Advance in Chemistry Series, 91-107. Montgomery, C.D., (1984) “Design and Analysis of Experiments”, John Wiley and Sons, 2nd Edition. Mosey, F.E., (1983a) “Mathematical Modelling of Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose” Water Sci. Technol., 15, 209-232. Mosey, F.E., (1983b) “Kinetic Descriptions of Anaerobic Digestion”, Proc. 3rd Inter. symp. on Anaerobic Digestion, Boston, USA, 37-52. Normann, J., and Frostell, B., (1977) “Anaerobic Wastewater Treatment in a Two-Stage Reactor of a New Design” Proc. of the 32th Purdue Industrial Waste Conference, 387. Oleszkiewicz, J.A., Thadani, V.J., (1988) “Effects of Biofilter Media on the Performance of Anaerobic Hybrid Reactors”, Env.Tech.Lett, 9, 89-100. Olthof, M., (1982) “Anaerobic Treatment of Industrial Wastewaters” Chemical Engineering, (23), 121-126. PALNS Sam-soon, et al, (1987) “Hypothesis for Pelletization in the Upflow Anaerobic Sludge Bed Reactor”, Water SA Vol.13, No.2, 69-80. Patel, G.B., Roth, L.A., and Sprott, G.D., (1979) “Factors Influencing Filament Length of Methanospirillum hungatii” J.Gen. Microbiol., 112, 411-415. Pavlostathis, S.G., and Gossett, J.M., (1986) “A Kinetic Model for Anaerobic Digestion of Biological Sludge”, Biotech. Bioeng., , 1519-1530. Pavoni, J.L., Tenney, M.W., et al, (1972) “Bacterial Exocellular Polymers and Biological Flocculation”, J.WPCF 44 (3), 415. Perot, C., (1989) “Optimization of Sludge Anaerobic Digestion by Separation of Hydrolysis-Acidification and Methanogenesis” Envir. Technol. Letter., jQ, 633-644.  145 Pipyn, P., and et al., (1979) “A Pilot-scale Anaerobic Upflow Reactor Treating Distillery Wastewaters”, Biotechnol. Lett., 1, 495. Pohland, F.G., and Ghosh, S., (1971) “Development in Anaerobic Treatment Processes”, Biotech. Bioeng. Symp., , 85-106. Pohland, F.G. and Ghosh, S., (1971a) “Development in Anaerobic Stabilization of Organic Waste The Two-Phase Concept”, Env.Letters, .1(4). -  Pohiand, F.G. and Massey, M.L., (1975) “An Application of Process Kinetics for Phase Separation of the Anaerobic Stabilization Process”, Progress in Wat. Tech., 7(1), 173-189. Rajan, R.V., Lin Jih-Gaw, Ray , B.T., (1989) “Low-level chemical pretreatment for enhanced sludge solubilization “, J.WPCF, j, 1678-1683. Rijkens, B.A., (1981) “A Novel Two-Step Process for the Anaerobic Digestion of Solid Wastes” Proc. of the 5th Symposium on Energy from Biomass and Wastes, Orlando, FL, USA, 463-475. Rinzema, A., Lettinga, G., (1988) “The Effect of Suiphide on the Anaerobic Degradation of Propionate”, Env.Tech.Lett., 9, 83-88. Ripley, L.E., and Boyle, W.C., (1983), “Anaerobic Digestion Models: Implication for the design engineer, Proc. 3rd Inter. Symp. on Anaerobic Digestion, Boston, USA, 451-463. Scheifinger, C.C., Linehan, B., and Wolin, M.J., (1972) “H 2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria” Appl. Microbiol., 29, 480-483. Schwartz, L.J., (1982) “Anaerobic Digestion and Heat Pumps: Potential for Energy Recovery in a Waste Stream”, Biotech. Bioeng. Symp., 11, 463. Souza, M.E., (1986) “Criteria for the Utilization, Design and Operation of UASB Reactor” Wat. Sci. Tech.,, 18 (12), 55-69. Stronach, L.J., et. al, (1986), in Industrial Wastewater Treatment”, Springer-Verlag, tI 183 pp Tavery, M.A. et al, (1979) “Phase Separation Treatment: Surfactant-Foaming Problems; Solid-Liquid Separation”, Water and Waste Engineering, j (2), 47. Therkensen, H.H., (1979) “Thermopholic Digestion of a Strong Complex Substrate”, j  146 WPCF, 51, 1949-1964. Torpey, W.N., (1955) “Loading to Failure of a Pilot High-Rate Digestor”, Sew, and md. Wastes. 27, 121. Trudell, M., Van der Berg, L., and et.al, (1985) “Anaerobic Treatment of High-Strength Acidic Organic Wastewaters Utilizing the Upflow Sludge Blanket Treatment Process”, Water Poll.Res.Journal (CANADA), 20 (1), 25-41. US.EPA, (1978), “Process Design Manual for Municipal Sludge Landfill”, EPA 625/1-78010.Tech. Transf. US.EPA, (1979) “Process Design Manual for Sludge Treatment and Disposal”, EPA 625/1-79-011, Tech. Transf. Van Der Meer, R.R., (1983) “Mathematical Description of Anaerobic Treatment of Wastewater in Upflow reactor”, Biotech. Bioeng., , 253 1-2556. Vesilind, P.A., (1980) “Treatment and Disposal of Wastewater Sludge”, Ann Arbor Sci., Michigan, 323pp. Wiegant, W.W., and et al., (1985) “Granulation of Biomass in Thermophilic Upflow Anaerobic Sludge Blanket Reactors Treating Acidified Wastewaters” Biotech. Bioeng., , 718-727. Wu. Wei-min, et.al, (1985) “Properties of Granular Sludge in Upflow Anaerobic Sludge Blanket Reactor and its Formation”, Proc. 4th Inter. Symp. on Anaerobic Digestion. Guangzhou, China. Yan, Jing-Qing, (1991) “Anaerobic Digestion of Cheese Whey in An Upflow Anaerobic Sludge Blanket Reactor” Ph.d Thesis, Univ.of British Columbia, Canada. Zeeuw. De Willem, (1980) “Acclimatization of Digested Sewage Sludge During Start-UP of An Upflow Anaerobic Sludge Blanket (UASB) Reactor”, Proc. 35th Purdue. Ind. Waste Conference, 39- 47. Ziekefoose, C., (1976) “Operations Manual-Anaerobic Sludge Digestion”, EPA 430/g-76001, US.EPA, Washington, D.C.,U.S.A. Zoetemeijer, R.J., (1982) “ Acidogenesis of Soluble Carbohydrate-Containing Wastewater, Ph.D Thesis, Univ. of Amsterdam, The Netherlands. Zoetemeijer, R.J. et.al, (1982) “pH Influence on Acidogenic Dissimilation of Glucose in an Anaerobic Digestion”, Wat. Res. 16, 303-3 11.  147  APPENDIX A Synthetic Sludge Preparation and System Set-up  ALl : Summary of Research Problems/Remedial Actions/Scope and Approach Modifications A2.1 : System Seeding and Loading Rate A2.2: Final Constituents of Primary and Secondary Synthetic Sludges and Chemical Analysis of Dog foods A3.1 : Detailed Sizing of Acid- and Methane-Phase Reactors (UASB-UASB) A3.2 : Spread-sheet for Sizing of the Acid- and Methane-Phase Reactors (UASB-UASB) A4.1 : Development of A Small-Scale (1-Litre) Synthetic Sludge Preparation A4.2: Development of A Scale-Up (30-Litre) Synthetic Sludge Preparation A5.1 : Monitoring the Characteristics of Primary Synthetic Sludge Prepared Throughout the Experiment A5.2: Monitoring the Characteristics of Secondary Synthetic Sludge Prepared Throughout the Experiment  Note:  *  C and  -  asoid loiiie unavailability  -  -  Combination 222 lactorial design  Alkaline addition  Slop tecding periodically  Increase Scc.skrilge ratio  Recovery alernalees:  Best known nwvwig coral.  Max.toadiogrccovcry period  Feed directly from Pn and Sec. sludges  Rerun opl.nmng corwi.  Overal process pertormancos:  -  FWSI slop FWSRimixing speed Second step RRlwaslinaJmriirig lime  222 tactorixi design:  Optimal operating conditions:  Specie control of pelifemp.  (See detaile later  in cap. runs)  Time corretraudfno study on modelling Revision of experimental designs  (Dr. KJla  Analytical method for sludge carbohydrate  (Or. Olciham)  1??  applied to second step 77 Y. theoretical C1l4  constant  2-3 considerable parameters sheuki be enough First slop varinblcs coukint remain  in the tonn of research proposal  SpCcilic control ol pllftcnrp.  equipment rcqdkost ostitnalion  Kinetics  Summarize problem areaslapproach  operate under waler level  -  Mixing StratI scaled with njbbcr!o-nng  Synthetic skidge  of % theorclieal CH4 production ( >0.4-OK)  in terms  -  Two-phase IJASB-UASB  Suscwplibildylrccovery period  Micing speed  HRTIRR/SR  Approaches:  Flow and Iced is scns.livc to LIASO Etted of temperature and pt1  Low CH4 content and production Hydrolysis rate limiting step  Poor supcmatarit quality  pH @517 br A- and M-UASBs Replicalo Build more UASB and run paralely Bid. cost problems Optionally. comparison of actual C114 production  Control tcm @35 degree  Energy recovery  System removal clliciency  CH4 content and production  Problem areas:  *  Oplinee both obicdrres in terms oil:  Agree with the approach  of the research works  Remedial actions and modifications  Pofution control  Anaerobic digestion obicctaes:  Compof er literature search on : sewage sludge; Two-phase anaerobic digcshori; UASS  of the original proposal  Research problems and conceptual ideas  1 Summary of Research Problems/Remedial Actions/Scope anci ppfoachs MoiifcatIon  Discussion/agreement among researchersupervisnrandCo-supervisor have been reached prior to any modifications to be taken  ZProposai Defense  I Proposal prepazahon  Phase/duration  Liable 1  Co  Summary of research problems/remedial actions/scope and approach modifications Phase/duration  3. Espeflrnenti program 3.1 SynthetIc aluoge  Research problems and concepeial d of the original proposal Too high CODNSS and TO  Too low N/P  (corttd)  Remedial actions arid modifications of the research works’  Slend dog food with water 2 hrl/teIVe overnight warm @ 65-70 degree 0.1.5 hrs/n, lhr Saute/drain portion of the solids out Md urea/NeJ1P04 .  3.2 System set up  Leak i pH probeir.aof.moovell  Double O..lng around the probes/more bolts Leak dMebn with oanIrrg Iuid/N2 gas  3.3 A1lJnItlZatlon  Fwn.ntazlon made the blendel Clogging insid, the tube oonn.odng th, blender end M.IASB iMUer  Move the blender to the Cold room (44 degree C) Leveling tile effluent ne from the blender 10 the A4IASB a inishir,olace all pieslid tub., with the thiokar one, used for food/bevaragW Conned the soft tubes belweefl the hard ones/ aquee regulrly Make U4ube till effluent line of both readtera/ Plece sealerit Outside the 0-ilog berw.en cover  No gas passing through the t gas flow meters  arid readers Sludge spillage  Running condltlone: 35 degree C/pH 5/7 F 10,SR 8020, RA 4/7 Mbc a’ 20 rpm 3.4 ExperImental runs 3.4.1 Opt.oparatlng Cond.  Phase/duration  Same as those mentioned In 2.0  Research problems and concepeial Ideas  of the original  proposal  Slmpl6y/stiortenrecuce the tubing line arid and Confleaervmpiace con.4hap. conneders watt the etratqnt ones arid pstid d,mps with tIle metal one, Revise running Conditions: Same as proooaea. except FR 54 (Spiliage/ttrne Cecys)  Considenng oontmentS/tlrne Constraints, Revisn or the wproacn was as: Use Surtace rasoons. method (SRM)I 22 tador,L cesign instead of 2r2 fedoral design Pseudo-eteacy state: 2-3 HRT1S-10 % variation of all responses  Remedial actions and modifications of the research works * Phase I : Reference cohdtlon (Acdlmnaliion) Runs  SR &20  0 1 2  3C.C 2O  3 4  50/50 802O  5/10  214  5-6  Phase 2: 5est Imown condition SR Runs PR 80(20 0 4/7  FR 5-6  ofeeulrunnelgcondafon  3.4.2 UIX.Ioadingf Recovery period  Same as tb,. mentioned In 2.0  Sf10  1  70/30  3  5-6  2 3 4  X/10 70/30 90(10  31.8 51 3/8  $4 5-8 5-8  2 3  No acnmnt ulnge in the irisior riepons. perssirers  FR 5-8 54 5-6 3-6  Phase 3: AdditIonal rune Runs SR 80/40 I  No r.pIt. for .eU’ run to celeie deateradion of SR and RR  PR 417 2.14  80/40 80/20  RP 3/8 3/8 5/8  FR 5-6 5-6 5-6  Cajtela elfecnfintaraCtion based ofl r.p&ste wth tImaJrspIs a’ cemer pt. (ailristIon) Comoare 3.0. a’ center pt. wEll th0 a’ saul running condition Checic ML/SS a’ eadi running condition UmeatIon of Sludge pr,parstbnllltne Constralnts Approaul was tweed as: MaadaHRT.d 9 6.5 4.5 3.0 2.25 1.5 1.13 ReCovery,HRT-d 2.25 3.0 4.5 9.0 MGLH . all’Llne eddtlufl 7777  149  150  Volum. of s..d sludg. r.quir.d for acid-phas. r.act.r: • 0.520Utr. — 10 Iltr. • 10 lltr. tap wat.r Volum. of s..d sludg. r.quir.d for m.than.—phas. r.aet.r: O.525 iltr. • 12.5 Itt. • 12.5 Iltr• tapwat.r .comm.nd.d start—up loading: 1.2 gCOD/i/d 10.1 gCOO/gVSS/d @ 58-hr HRTI and/or 5.0 KgCOD/cu.m-d to. 1-0.2 KgCOD/KgTS/dI Ch.ck loading rat.: It pri.sI: s.c.sI • 80 20 Th.n, mix.d liquid aludg. conc.ntration: CV Clvi .C2V2 C[VSSI = tt0.8V17293H0.2*117721]/V • 16,189Mg/I Similarly, CtTSJ  • =  CECODI  [tO.8333691•[0.2 199733.1/V 30,890 Mg/I  - U0.8328721•t0.2254671]/V • 31391Mg/I  Sludg. loading rat. • ttCOO/VSSIFLOWJ/V • 0.I9COD/9VSS/d =  Th.n, Flow Volum.tric loading rat.:  Th.n, Flow  ([3139 1/i6t891/451f1ow OK 2.32 l/d  • t[31391/[45*1000J]*flow • 1.2 gCOD/i/d OK l/d • 1.72  (b)  (a) Synthetic Sludges (%)  Constituents  Dog Food  Secondary  ‘No Name’ Special Dinner foe Dogs  86.50  93.00  Proteins  22 (mm)  Fat Carbohydrate  7 (mlri) 54 (mm)  Fibre  5 (max)  MoIsture  12 (max)  3.00 3.00  NaHO I’H 0  1.50 2.00  tires  Analysis (%)  Primary  Soap 011 CaC Paper MgCp  Constituents  0.25 2.00  2.00 3.25  2.00 1.50  151  :.:Tae::A3;1:::D:etai!ed::Si (1). Design Criteria 1.1) System Surface Loading Rate (Sys-SLR) • 1-1,5 m3/m2.hr 1.2) Settler Surface Loading Rate Less Than 0.7 m3/m2.hr 1.3) Gas Collection Aperture (GCA) Less Than 2.0 m3/m2.hr 1.4) 50o Inclined Walls 1.5) DesIgned HRT : 2 hrs. .9 days 1.6) ActIve Sludge Blanket/Bed (ASB) and Settler Ratio — 7:3 1.7) Proper Baffle Arrangement Beneath Gas Collector (2). Reactor Volume Sya-SLR — 1.0-1.5 m3/m2.hr (1.0 m31m2.hr) Dia. of required area — 12.5 cms. Area required (22/7)*d214 — 0.0123 m2 Max. Flow (0) • Ar’ SL — 0.0123 m2 * 1 m3/m2.hr 0.0123 m3/hrw 295 l/d CriticalHRT —2hrs: Reacter Vol. — HRT’Q 2 hrs.’0.0123 m3/hrs = 0.0246 m3 25 litre Mm Flow ((0,0246 m3)/(9 days)) *(1 000 L/m3) = 2.73 L/d (3). Reactor Height ( RH) Approx., RH — Vol/Area req’d — (0.0246 m3)/(0.0123 m2) — 1.99w2.OOm Settler Vol. — 0.325.00 — 7.5 lItre 0.0075 m3 Doubling settlers diameter — 12.5*2 —25.00 cm. Area req’d — 0.0491 m2 Settler H — (0.0075 m3)/(0.0491 m2) 15cm — 15.27cm Connect V — 5 lItre ASV • 25-7.5-5.0 • 12.5 Dtre (0.0125 m3)/(0,01 23 m2 ASH 1.00 m (4).Qas Collection Apparatus GCA = 2.00 m3/m2.hr Area Reqd — FIow/QCA — (0.0123 m3/hr)/(2.00 m3/m2/hr) 0.0062 m2 Dia.of GCA — ((0.0062 m2)*((4)/(2217))1/2 = 0.0885 m. w 8.85 cm (5). AddItional Settler Arrangement Doubling the settler’s dIameter (12.5 cm.* 2w 25cm) to slow down the liquid velocity passing through the effluent welr. CHECK: Set-SLR a 0.7 m3/m2.hr — (22/7)(d214) • (/7)’((025)2/4)) Actual SLR • (0.0064 m3/hr)/((22/7)’((025 m)214)) — 0.25 m3/m2.hr OK To help settle solids back to the ASB, a proper baffle arrangment beneath the gas collector and 500 Inclined wall @ the connection between settler and ASB Including the gas collector were created.  Settler area  SLR  m3/ni2.hr  1 1 1 1 1 1 1 1  Dia.  cm.  10.00 10.50 11.00 11.50 12.00 12.50 13.00 14.00  0.0079 0.0087 0.0095 0.0104 0.0113 0.0123 0.0133 0.0154  Area req’ m2 189 208 228 249 272 295 319 370  2 2 2 2 2 2 2 2  Max. Crit. flow HRT L/d hrs. 16 17 19 21 23 25 27 31  React. vol. lit.  [2] Reactor Volume [RV]  I.! 1.2 1.3 1.4 1.5 1.6 1.7 —  ci i.zirlg cf. .— a.ri’i 1  1.75 1.93 2.11 2.31 2.51 2.73 2.95 3.42  Mm. flow L/d 0.0047 0.0052 0.0057 0.0062 0.0068 0.0074 0.0080 0.0092  ApprS. vol. m3 20 21 22 23 24 25 26 28  Set. dia. cm 0.0314 0.0347 0.0380 0.0416 0.0453 0.0491 0.0531 0.0616  15 15 15 15 15 15 15 15  Area Set-. req’ High m2 cm 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13  Conn. vol. lit 0.0089 0.0100 0.0112 0.0124 0.0137 0.0151 0.0165 0.0194  Act.Sl. vol. ASV,m3  1.13 1.15 1.18 1.19 1.21 1.23 1.24 1.26  Act.S1 High ASH,m  [3] Reactor Height [RID  System Surface Loading Rate (Sys—SLR) = 1.0—1.5 m3!m2.hr Settler Surface Loading Rate (Set—SLR) <or = 0.7 m3/m2.hr Gas Collection Apparatus (GCA) <or = 2.0 m3/m2.hr 50 o Inclined Walls Designed HRT = 2 hrs 9 days Active Sludge Blanket/Bed (ASB) and Settler Ratio = 7:3 Proper Baffle Arrangement Beneath GCA  [1] Design Criteria  .A.3 .2.  1.34 1.36 1.39 1.40 1.42 1.44 1.45 1.47  Total RH m  2 2 2 2 2 2 2 2  m3!m2.hr  GCA  0.0039 0.0043 0.0048 0.0052 0.0057 0.0061 0.0066 0.0077  7.07 7.42 7.78 8.13 8.49 8.84 9.19 9.90  0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25  Check Area GCA SLR req’ Dia. m2 cm 0.7m3/m2h  [41 Gas Collectton Apparatus  I-’  Note:  (av)  lay) (4)(i) (2) (3) (4)  (101 (11) (12)  (91  (6) (7) (81  15)  (1) (2) {3flh) (2) (3) (4)  2.90 2.43 2.35 3.10 3.75 2.75 2.41 3.10 2.84 2.36 2.67 2.90 2.61 2.61 2.79  =  8.0 18.1 14.7 13.5 14.8 15.9 15.2 15.1 13.8 15.8 18.6 18.4 19.6 16.1  3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5  STO  3.36  3.82 2.90  TS  OCT 23, 1987 (2)=NOV2, 1987 (3) =NOVIO, 1987 (4) = DEC 15, 1987 (1)  2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17  CIN  CODNS STO  1.6 1.6  1.6  2.21  (av)  1.2 1.2  STD  1.2  3.00 1.42  COONS STD  (1) (2)  Experimental Runs  4.1 2.4 2.1 1.7 1.8 2.0 2.4 2.3 2.4 2.8 3.3 3.0 2.8 3.2 2.5  TS  7  7 7  STD  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  STO  93  92 93  VS  VS  93  93 93  STD  2 92.2 2 91.6 2 89.7 2 87.6 2 88.0 2 89.3 2 87.9 2 89.5 2 90.0 2 90.7 2 90.5 2 89.5 2 90.0 2 91.0 2 89.5  STD  64  64 64  STD  59 69 59 59 59 59 59 59 59 59 59 59 59 59 59  STO  0.81  0.83 0.79  TP  88 88 88 88 88 88 88 88 88 88 88 88 88 88 88  $70  0.35  0.35 0.35  STD  20  20 20  30  30 30  29.6  29.6  STD TOC  3.3  3.3 3.3  TKN  1.5  1.5 1.5  STD  2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4  2.4  6.94  STO TP  6.7  1.40  6.7 0.90 6.7 1.08 6.7 1.80 6.7 1.50 6.7 1.80 6.7 1.40 6.7 1.50 6.7 1.59 6.7 1.65 6.7 1.49 6.7 1.42 6.7 1.43 6.7 1.45 6.7 1.33 6.7 1.51 6.7 1.71 6.7 1.43 6.7 1.39 6.7 1.06  570  1.3  1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3  STO  ROT.  1.6  i.e  1.8 22.50 1.8 23.30 1.6 22.50 1.6 24.70 1.6 25.60 1.6 23.30 1.6 23.65 1.6 24.90 1.6 25.00 1.6 23.80 1.6 24.36 1.6 22.89 1.6 22.78 1.6 23.41 1.6 23.91 1.6 1.6 1.6  STO  Secondary Synthetic Sludge  20.73  20.83 20.82  3.60 3.73 3.59 3.90 4.10 3.70 3.78 3.98 4.00 3.80 3.89 3.66 3.64 3.75 3.82 4.53 4.72 7.96 10.55  TKN  1.2  1.2 1.2  STD PROT. STD  32 32 32 32 32 32 32 32 32 32 32 32 32 32 32  STO  4  4 4  17  17 17  STD  26  26 26  STD  41 41 41 41 41 41 41 41 41 41 41 41 41 41 41  12.50 26.67 38.3 27.90 65.0 19.89 57.3 26.84 55.5 20.31 54.7 27.10 60.3 20.90 60.8 32.10 60.2 21.10 52.7 24.60 81.3 22.20 68.0 17.00 67.0 20.80 73.7 23.38 61.4  STO GARB TOC  15.40  15.00 15.80  STD GARB  12 Combination Options of Feed solids (%T)S, Settling time (ST), Warming time. (Wi) (1) =5% WT. (51 = 6%T R WT. (9) = 7%T WT. (2) =5% WT. (6) =6%T RWT. (10) =7%T WT. (3) =5% WT. (7) =6%T RWT. (11) =7%T WT. (4) = 5% WT. (8) = 6%T R WT. (12) = 7%T WT. STO = Typical normal ranges of actual primary sludge characteristics  14.6 14.6 14.6 14.6 14.6 14.8 14.6 14.6 14.6 14.6 14.6 14.8 14.6 14.6 14.6  STO  3  3 3  STD  Characteristics, %TS Primary Synthetic Sludge  Table A4 1 Development of a small scale (1—litre) Synthetic Sludge Preparation .F23 toNó r.1O,1  17 17 17 17 17 17 17 17 17 17 17 17 17 17 17  STD  44 44 44 44 44 44 44 44 44 44 44 44 44 44 44  STD  U’  •  .:.  [avj  {4)  [avj  (3)  [avj  (2)  [avl  (1)  •  Note:  2.27 2.46 2.51 2.41 2.30 2.21 2.29 1.94 2.19 1.54 1.69 1.30 1.83 1.59 1.58 1.89 2.09 2.07 1.91 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 2.3 2.1 1.9 2.1 2.1 2.3 2.3 2.9 2.4 3.0 2.6 2.4 2.2 2.5 3.2 3.6 3.3 3.3 3.4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  88.8 88.1 87.2 88.0 87.7 88.9 87.8 89.7 88.5 90.3 89.2 88.8 88.5 89.2 90.9 91.0 91.0 90.8 90.9  STD STD VS 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93  3.1 3.1 3.1 3.1 2.9 2.8 2.9 3.1 2.9 3.5 3.6 3.6 3.5 3.6 3.9 3.9 3.9 4.1 3.9  1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 =  1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2  STD STO 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 DEC 30,1987  19.2 19.5 19.5 19.4 17.5 17.7 18.1 19.3 18.2 21.8 22.3 22.3 22.1 22.1 25.5 25.5 25.4 25.9 25.6  .  .:.  30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30  V  35.7 28.6 27.2 30.5 21.5 17.7 17.8 17.7 18.7 23.1 22.0 13.5 23.1 20.4  •  17 17 17 17 17 17 17 17 17 17 17 17 17 17  26 26 26 26 26 26 26 26 26 26 26 26 26 26  42.7 34.4 27.9 35.0 35.6 29.6 49.2 28.3 35.7 31.5 32.2 52.0 49.8 41.4  PROT SW STD CARBO SW Sm TOC  Characteristics, %TS  0.98 0.94 0.94 0.95 0.93 0.89 0.83 0.81 0.87 0.92 0.89 0.94 0.91 0.92 1.05 1.05 1.08 1.07 1.06  STD Sm TKN STD STD TP  Primary Synthetic Sludge  : (1) = NOV 17,1987 (2) = NOV 25.1987 (3) = DEC 1,1987 (4) STD = Typical normal ranges of actual primary sludge characteristics  1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6  Experimental Runs CODNS STD Sm TS  Table A4 2 Development of a Scale-Up (30-hire) Synthetic Sludge Preparation Between November 1710 December 30, 1987  C,’  (av]  (3)  [avj  (2)  lay]  {1)  Exp. Runs  2.65 2.50 3.07 2.38 2.65 2.32 1.92 2.19 2.26 2.17 2.03 2.19 2.20 2.21 2.16 Note  2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2  STD STD TKN STD STD TP 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32  41 41 41 41 41 41 41 41 41 41 41 41 41 41 41  22.9 30.3 32.0 25.9 27.8 19.8 18.0 18.7 24.1 20.2 30.4 25.5 25.0 25.1 26.5  30.1 32.5 47.6 42.8 38.3 45.4 32.4 34.3 36.5 37.2 34.0 32.7 34.1 33.0 33.4  17 17 17 17 17 17 17 17 17 17 17 17 17 17 17  44 9.4 44 11.0 44 15.6 44 14.0 44 12.5 44 12.4 44 8.9 44 9.5 44 10.7 44 10.4 44 6.1 44 5.6 44 5.3 44 6.0 44 5.7  STD STD PROT. STD STD CARBO. TOC STD STD CIN  Characteristics, %TS  1.7 1.0 2 87.4 3.2 2.4 6.7 1.7 1.3 1.6 19.8 59 88 1.7 1.0 2 87.1 1.3 1.6 18.4 59 88 3.0 2.4 6.7 1.6 19.0 1.9 1.0 2 87.5 3.1 2.4 6.7 1.5 1.3 1.6 59 88 1.8 1.0 19.0 2 87.9 3.1 2.4 6.7 1.5 1.3 1.6 59 88 1.8 1.0 2 87.5 3.1 2.4 6.7 1.6 1.3 1.6 19.1 59 88 23.0 2.3 1.0 2 89.1 3.7 2.4 6.7 1.5 1.3 1.6 59 88 2.4 1.0 2 89.5 3.7 2.4 6.7 1.4 1.3 1.6 22.3 59 88 2.2 1.0 2 89.4 1.3 1.6 22.5 59 88 3.6 2.4 6.7 1.5 22.2 2.2 1.0 2 88.8 3.4 2.4 6.7 1.4 1.3 1.6 59 88 2.3 1.0 2 89.2 1.3 1.6 22.5 59 88 3.6 2.4 6.7 1.4 2.1 1.0 2 88.1 5.6 2.4 6.7 1.3 1.3 1.6 35.1 59 88 2.0 1.0 2 88.2 1.3 1.6 36.4 59 88 5.8 2.4 6.7 1.6 1.9 1.0 2 88.8 6.4 2.4 6.7 1.8 1.3 1.6 40.0 59 88 2.0 1.0 2 88.5 1.3 1.6 34.7 59 88 5.5 2.4 6.7 1.3 2.0 1.0 2 88.4 1.3 1.6 36.6 59 88 5.8 2.4 6.7 1.5 {2}=DEC1 1987 {1}NOV25,1987 (3)=DEC23 1987 STD = Typical normal ranges of actual primary sludge characteristics  CODNSS STD TS STD STD VS  Secondary Synthetic Sludge  Between November 1710 December 30, 1987 (cont’d)  TabI&A42DeIópmeAt & a. .Scálé—Up(3O-litre) SynthéticSiudgè Preparation  3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5  14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6  STD STD  C,’  C,’  04/13/88 05/10/88 05/31/88 07/12/88 08/16/88 09/30/88 11/01/88 12/09/88 02/14/89 03/14/89 04/18189 05/30/89 07/04/89 08/01/89 08/22/89 10/03/89 10/25/89 11/21/89 12/21/89 Average  Date  37505 37959 43662 27907 23952 30515 23810 30400 25984 48898 39437 22612 27219 22963 24492 26018 28545 35785 26423 30741 7084 4549 5191 5349 5509 7340 6587 5440 4724 5371 5956 6706 4930 5147 4525 5041 6373 5567 5854 5644  STD  24550 24320 25480 20480 16880 24800 17960 21280 23586 25950 23850 .17230 15060 21810 20950 15090 23020 18780 17850 20995  1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2  1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6  3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00  7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00 89.15 91.94 92.68 87.79 88.80 89.25 89.12 88.99 87.65 86.84 84.25 87.21 89.70 89.96 88.15 86.26 87.04 89.19 86.01 88.41  64 64 64 64 64 64 64 84 64 64 64 64 64 64 84 84 64 64 64 64  93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93  3.85 3.52 4.06 3.85 3.24 3.57 3.59 3.52 4.06 3.95 3.43 3.26 4.23 3.90 4.23 5.42 3.52 3.65 3.68 3.82  of actual primary sludge characteristics  2.10 3.30 3.26 2.16 2.84 3.41 3.64 2.87 2.56 2.66 3.55 2.47 2.47 3.75 3.07 2.28 3.03 2.65 2.50 2.86  Typical normal ranges  1.53 1.56 1.71 1.36 1.42 1.23 1.33 1.43 1.10 1.88 1.65 1.31 1.81 1.05 1.17 1.72 1.24 1.91 1.48 1.47 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00 1.5 4.00  0.91 0.80 0.87 0.86 0.99 0.92 0.65 0.92 1.09 0.93 0.99 0.80 1.13 0.90 0.97 0.99 0.99 0.91 0.89 0.92  Characteristics, %TS STD STD VS STD STD TKN STD STD TP  •  •:  c:  0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35  1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20  24.08 22.00 25.37 24.06 20.25 22.31 22.44 22.00 25.37 24.69 21.44 20.38 26.44 24.38 28.44 33.88 22.00 22.81 23.00 23.86  20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20  30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30  STD STD PROT. STD STD  äMotoring on the Primary Synthetic Sludges Used ThroUghOut theExpérimental Prógram:.: :Between April 13, 1988 to December 21, 1 989  COD, mIL VSS COD! STh STD TS Total Sol. mgIL VSS  1 28 49 91 126 171 203 241 308 336 371 413 448 476 497 539 561 588 618  Days  TabliA5.1Sum ni  a,  C”  Days  1 28 49 91 126 171 203 241 308 336 371 413 448 476 497 539 561 588 618  Day  04/13188 05/10/88 05/31/88 07/12/88 08/16/88 09/30/88 11/01/88 12109188 02/14/89 03/14/89 04/18/89 05/30/89 07/04/89 08/01/89 08/22I89 10/03!89 10/25189 11/21I89 12I21I89 Average 23 18 23 9 45 34 32 14 38 16 33 35 38 26 11 15 14 7 10 23  NH4-N 115 134 80 95 90 127 138 75 171 106 114 120 129 123 134 64 122 166 139 118  P04-P 51 51 46 85 82 110 98 120 162 75 97 53 45 48 56 36 63 59 45 73  HAc 35 43 45 9 9 119 45 45 82 21 98 91 107 110 32 67 57 56 55 59  HPr  112  112  Iso-HBr  45 24 48 27 18 47  111 58 85 75 12 16 31 29  31 90  25  25  VFA, mgIL HBr A-HVr Iso-HVr  Table A5 1 Summary of Data Monitoring on the Primary Synthetic Sludges Used Throughout the Experimental Program Between April 13, 1988 to December 21, 1989  41  19  19 30 77 57  45  HVr  58  82 57  34  101 147 100 183 165 273 192 208 237 103 209 164 219 200 113 107 153 123 102 163  Tot.VFA HHe mgIL HAc  c,1  04/13/88 05/10/88 05/31/88 07/12/88 08/16/88 09/30/88 11/01/88 12/09/88 02/14/89 03/14/89 04/18/89 05/30/89 07/04/89 08/01/89 08/22/89 10/03/89 10/25/89 11/21/89 12/21/89 Average  Date  1 28 49 91 126 171 203 241 308 336 371 413 448 476 497 539 561 588 618  47505 41632 26541 25581 30515 28016 27200 29622 36768 25651 29779 38207 43738 25185 26639 23967 28512 28231 26016 31016  7084 7008 7123 6357 7340 6190 6080 7008 6970 6092 7324 7407 6839 5074 6827 6281 6289 7318 7236 6729 16300 18800 15780 11085 15010 15780 13870 16160 15760 15560 14160 15060 22410 13690 15810 11500 14710 16160 16030 15454  2.91 2.21 1.68 2.31 2.03 1.78 1.96 1.83 2.33 1.65 2.10 2.54 1.95 1.84 1.68 2.08 1.94 1.75 1.62 2.01 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00  89.74 86.84 93.86 87.79 89.32 88.98 86.25 92.74 89.99 88.54 81.88 86.05 87.49 86.53 88.68 87.39 89.03 87.20 88.77 88.27  59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59  88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88  4.95 5.09 5.61 4.95 4.80 4.94 4.57 4.90 4.11 3.59 4.50 4.06 6.74 6.00 4.26 5.47 5.18 5.27 5.12 4.95 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40  6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 8.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70  1.36 1.51 1.41 1.32 0.89 0.86 1.43 1.50 1.11 0.95 1.23 1.36 1.54 1.36 0.97 1.21 0.83 1.32 1.12 1.23  1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.3  1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.6  31 32 35 31 30 31 29 31 26 22 28 25 42 38 27 34 32 33 32 31  32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32  41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41  785 801 546 685 658 756 764 741 757 501 716 731 696 630 801 808 598 658 785 706  9.02 8.75 13.05 9.28 11.16 8.19 7.96 9.48 9.21 12.16 10.23 10.13 9.83 8.05 8.52 7.77 10.52 11.12 9.22 9.66  4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  STD Sm PROT STDSTD Sol.N GIN STh STD  5Th Typical normal ranges of actual primary sludge characteristics  2.17 2.23 2.38 2.16 2.53 2.54 2.55 2.48 2.23 2.23 2.46 1.85 3.11 1.94 2.56 2.00 2.73 2.56 2.58 2.38  Days Characteristics, %TS COD, mg!L VSS COD! STh TS STD STD VS STDSTDTKN Sm STD TP Total Sol. mg!L VSS  :.:  Table A5 2 Summary of Data Monitored on the Secondary Synthetic Sludges Used Throughout the Experimental Program ..BéieeApriI 13, 1988 to Decebei 21 1989. f..  00  01  I-’  04/13/88 05110/88 05/31/88 07112/88 08/16/88 09/30/88 11/01/88 12/09188 02114189 03114/89 04/18/89 05/30/89 07/04/89 08/01!89 08/22/89 1 0/03i89 10I25/89 11/21!89 12/21/89 Average  Date  V  1 28 49 91 126 171 203 241 308 336 371 413 448 476 497 539 561 588 618  23 18 23 9 45 34 32 14 38 16 33 35 38 26 11 15 14 7 10 23  115 134 80 95 90 127 138 75 171 106 114 120 129 123 134 64 122 166 139 118  Days NH4-N P04-P  11  56  23 35 45 72  87 81 54 56 103  14  45  HPr  55 41 52 29 106 180 145 134 146 41 22 25  HAc IsoHBr  3 5 47 81 45  17 16  101 128 10 8 9 30 109  43 65  HBr A-HVr  isoHVr  21  12  15  37  HVr  69  97  41  HHe  Table A5 2 Summary of Monitoring Data on the Secondary Synthetic Sludges Used Throughout :...::c::.thi:Experimental Program Been April 1, 19881o  121 107 73 98 273 252 194 193 250 115 22 36 12 11 50 25 47 32 100 106  Tot.VFA mgIL HAc  C,’ CD  160  APPENDIX B Acclimatization Process  Table B1.1 : Average System Effluent Quality and Removal Efficiency at Pseudo Steadystate Under Different Alternatives During the Acclimatization Table B2.1-B2.8 : Response Data of the Sampling Point Numbered 1 to 8 Under Different Running Conditions During the Acclimatization. Figure B1.1 : Effluent Qualities of the M-UASB (COD, MLVSS, P0 -P, TKNIT’P) Under 4 Different Running Conditions During the Acclimatization Figure B2.1 : System Gas Production and Loading Rate Under Different Running Condition During the Acclimatization Note : All sampling locations are illustrated in Figure 4.2 Acclimatization Alternatives: (a) Seeding both A-UASB and M-UASB with sludge from the Lion’s Gate anaerobic sludge digester and using a step-loading approach; (b) Seeding both A-UASB and M-UASB with acclimatized synthetic seed sludge and using a constant-loading approach; (c) Seeding the A-UASB with acclimatized synthetic seed sludge, but the M-UASB with sludge from the Lion’s Gate anaerobic sludge digester, using a step-loading approach.  .  Cl)  00  IsO  -  V. V.  s0—  Cl.  Os  ‘0  V.0  -  U)  -J —  —  U)  —  —  V10  U)  —J 0  —a— 0  00  —  U)  SM  U)  .  ‘3  V.  ..  0  0  U)  00  a’c  U) V. I’)N  0  —  )O  U) —V.  .  c  ——  1’3  T1  U)  .  )J  G-  0  (i  —.  0 0  -  U)  —J  00  —  CD  . 1-.) a’  1-0  -J 50  —  0  os  —  IsJO—O  .  0  00  0  a’ U) ‘000 OO0  w  0  IsO  U)  1-0  -.J 0 ‘0  —  0’  .  U)—4 U) 00 00  U) a’  U) 0’ )—V.  Cl.  WU) O4  Cl)  (  X0c-)OCO  r)znnzn  .  V.  00  Os  1-0  .  00  —  V.  1-0  00  C)  U)OO IsO 0 —.J —  ‘0  Os  .  C) ()  0 0  3.  a’  4 —  —  V.  —-.2  so  V. ‘0  ‘0  —  —  IsO  OIsOIsOO  Os  0  ——  0——C) V.— 00 Cl. Qs V.  i  .  U) U)  0  V.  1-.) Os  \0—O  0’—J—O Os a’ — — Os ‘0 .‘0  V.V.0— 50 0 0 00  V.V.—O  00  )U)0O  00  C)  c0  C)  0 0  ôh 00  (TI  cLa_  ()  .  c.  a.  ()  0 0  ))O0  Q  c,  00  —  U.  U) —2 ‘0  U) 0’ V.  ‘i  0  V.  t’3 IsO  00  u.  5)  —  C  ‘  -  C,  i. 1.  E  .  C,  w  0)  P  00  P  00  U)  I  I  00  I-.)  1.3  1-3  ‘0  0%  1.3  1-3  U  0pp0  C)  c.Cciu o w 0-  .  I  l..3  I  1.3  I  ‘0  -—  U  .  I  .  0000 V U 00 0% 1..) —  -  00  —-— 0% UI IQ -. 00 1-3 0 1.3  ‘0 00  00  <<<<  00  0000 1.31.31.3 1-.) Os UI  —  Va  C,,  C  I I  00  00  -  00 -.3  00 —  I I  00—— 50 ‘0 — 0 — 0 1-3  0000 ..30%00-. 0 1J  —  -.  pppp  Cl)  90-0-  0000  00  nnnr)  00  C)flOfl<OOflO  •ft-303  UI  -‘  1W  ‘  0--SD_  aa a@a  ()fl(fl 0000  O  P  (DOOO  I I  00  C  00  C  00  C  -  O  ‘0 UI  00 00  I I  1.31.31.31-.) ‘0 — 1-.) . 1.3 . ‘0 1.3  0%%O00 00 ‘0 0%  ——  W SO  C)  1W  0°00CCn 0.  <<<  00  C  I I  00  C  00  C  —  1.3 .  —  V)  —  I  -  ()0)0 1.3 1.3 0’ 0 l.A  013—U VI ‘0 ‘0 13  ± 0 J-  1.3  —  00  B0--0-  00  C  OOOO 0000  00  C  1 OOO f lOOO fl  I  00  C  00  C  00  C  O  .  I  .  0000 0 0 0 0 c.3 V.  -  0000 0000 0% Os UI  0000 0 0 0 0 I’) -.3 1.3 t..)  C)  1W Cl)  “‘c”  <<<  00  C  Q’  >1  I  I  C  )  CflflOi_.  I  I  C C  QC  C  C  0  —  0’  -.3  —  I  1-.)  I..3  —-  00 Qs-. 1.)  —.1  00 0%  U)  0.  ii  0-  I  0’  —  SO I  UI  —  a-1-3  0— ‘00 0 —  1-3  —  ——  U)  0-  9B ji  I  0-.  f..)  —  I  00 1-3 I.) UI ‘0  00 a.3W  1.3  —  00  Cl)  0.  B ii  00  ‘ -  -.  IIII  1 CCTh< O OI. CO  Vi 0  i.3 1.3  00  0-  —  —  -•  —  —  c  _,  .  .  llI•  .icn  GO  J  w  .4  163 Table B1.1 Average System Effluent Quality and Removal Efficiency At Pseudo Steady-State Under Different Alternatives During the Acclimatization (cont’d) Running conditions  [a]  [b]  Runningtiine,days Syem effluent Solids  48  22  [c] 50  4903  5327  3262  2740 837 527 0.49 54.88  1101 277 141 0.33  62.94  1897 165 105 0.53 38.51 0.02 62.97  1692 758  975 861  820  290 303 74 14  271  386 423 73 9  112 105 0 0 0 0 0 0 197  116 207 0 0 0 0 0 0  TS, mg/L VS, mg/L TSS, mglL TVSS, mg/L TS. % VS, % dry solids TSS, % TVSS, % dry solids COD,_mg/L Total COD Sol.COD Inorganics,_mg/L NH4—N TKN TP P04—P VFA, mg/L HAc HPr Iso—HBr HBr A-HVr HVr Iso—HVr HHe Total VFA, mg/L as HAc (M-UASB) Total VFA, mgfL as HAc (A-UASB) Syem removal efficiency COD_Removal,_% Total COD Sol. COD  TSS Removal, % Total VFA Removal, % (M-UASB TP Removal, % P04-P Removal, %  —  0.09  296 79 23  33.59 0.03 50.40  648  45  5164  284 4494  231 14 0 0 0 0 0 235 5667  94 86  98 87  98 91  97 96 54 89  99 94 55 84  99 96 64 95  Note: [a] Seeding both A-UASB and M-UASB with sludge from the Lion’s Gate anaerobic sludge digester and using a step—loading approach [b] Seeding both A-UASB and M-UASB with acclimatized synthetic seed sludge using a constant-loading approach tc] Seeding A-UASB with acclimatized synthetic seed sludge, but M-IJASB with sludge from the Lion’s Gate anaerobic sludge digester, using a step—loading approach  164 Table B2. I Response Data of the Sampling Point Numbered I Under Different Acclimatization Alternatives Acclim.  Date  Days  Alter. (1)  (3)  (4)  (5) (6)  Solids. % or %TS [%] [%TS]  TSS  30660 52300 28470  27170 47240 25480  29640  27030  3.06  52610 24090  48460 22360  04/12/88 04/15/88  1 8 12 16 19  35620  31920  18450  17120  32480  28930  21220  19690  04/19/88  23  45390  25560  27 30  31320  22290  22530  04/30/88 05/03/88 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12/06/88 12/09/88 12/13/88 12/16/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  40930 28540 45160 42610 37830 29940 23220 27680 40790 30660 36710 37140 38700 30680 22465 25465  27630  04/23/88 04/26/88  32740 30420 28980 20190 35410 24730 29710 22520 33650 34120 33190 25240 22030 28150  5.23 2.85 3.56 3.25 4.54 3.13 4.99 4.76  20460  21340  27180 19150 32540 22930 27770 22020 31110 33380 31531 24225 19520 25110 19660  25580 29190 26360 33470 34595 32680 28760 26255 30370 32005 34810 29610 22840 30563  28970 25360 29690 35660 32650 34040 24130 22180 28970 30830 25480 26710 28850 29950  35507 29087  30850 27013  03/28/88  49960 47600 42200 33250 26300 31070 45500 33450 40940 40100 41900 33510 26415 29250 23720 29180 32180 29160 36865 37665 35800 32045 29340 33335 35260 38020 32515 25580 34290 38503 32038  TVSS  [%] [%TS]  VS  04/04/88 04/08/88  (2)  Solids, mg/L TS  30170 28190  24380 28240 34020 31240 32900 22920 21090 27580 29340 24450 25190 27210 27747  2.93 2.37 2.92 3.22 2.92 3.69 3.77 3.58 3.20 2.93 3.33 3.53 3.80 3.25 2.56 3.43  89.64 90.00 88.29 89.09 89.65 91.66 89.67 92.62 92.36 91.55 85.05 87.06 86.26 87.66 90.71 90.40 90.79 91.85 91.28 89.75 89.49 91.1! 90.77 91.56 91.07 89.29 89.01  29712 25617  3.85 3.20  90.64  26400  4.22 3.32 2.63 3.11 4.55 3.35 4.09 4.01 4.19 3.35  88.62 90.33 89.50 89.59 89.07 90.17 91.12 90.39 89.52  2.64  92.18  2.96  5.26 2.41 1.85 2.12 2.76 2.23 3.27 ‘3.04 2.89  91.19 92.11 92.82 92.80 92.79 92.51 92.10 92.15 92.67 93.79  COD. mg/L Total soluble 56161  5534  62400  5720  78920 33336  6074  50742  5245  51524 96604 59514  5639 5084  2.41 2.22 2.90 3.08 2.55 2.67 2.89 2.99  94.85 91.89 92.72 93.47 97.78 92.42 97.83 95.00 95.98 88.61 89.20 92.13 91.13 96.14 95.12 95.40 95.68 96.65 94.99 95.09 95.20 95:17 95.96 94.31 94.32 92.69  35482 24998 30204 33197 24747 32193 32727 55936 45545 49600 29268 29249 44444 54475 32258 32800 33198 26721 45669 30709 33006 36292 33735 50400 36508 40396 28685 30046  3.08 2.70  96.27 94.86  41471 35196  2.02 3.54 2.47 2.97 2.25 3.36 3.41 3.32 2.52 2.20 2.82 2.13 2.90 2.54  2.97 3.57 3.27 3.40  6000  5304 5967 5000  4980 5697 5477 5312 7960 7203 8198 5760 5285 5138 5079 5681 5403 6000 5344  5182 6535 5196 7073 5996 6345 6880 7619 6970 5976 5495 6414 6855  Date Day VFA ,  mg/L Tot.VFA  TI’ P04-P HAc HPr Iso-HBr HBr A-HVr lio-HVr HVr HHc mg/I.. HAc 2.00 130 520 38 551 1.80 99 401 26 39 449 1.76 127 425 31 101 224 651 2.03 196 324 42 116 184 545 0.90 124 127 33 52 189 1.18 128 228 113 157 427 0.75 121 282 163 123 73 541 0.96 133 404 535 218 390 1241 0.91 135 440 293 172 325 986 1.06 124 307 193 116 243 686 0.97 119 357 271 132 272 827 1.13 122 317 248 125 250 750 0.82 122 236 211 100 254 30 642 0.74 142 479 477 124 352 1157 1.89 268 707 607 77 297 1426 1.02 167 842 137 36 242 1117 0.88 157 979 133 69 462 1399 0.81 136 546 49 240 727 0.81 124 556 136 119 251 895 1.64 141 753 702 116 98 1459 2.02 106 463 377 62 70 852 1.70 149 890 796 158 54 1675 1.75 162 1198 1112 199 27 2251 1.86 149 975 840 148 30 1775 1.35 132 582 424 45 952 1.36 143 504 640 157 1130 0.93 178 755 1077 273 l814 0.92 141 559 893 153 1387 1.05 118 508 788 ItS 1225 1.22 130 498 376 63 14 831 0.96 141 549 664 42 239 49 1285 0.97 160 869 1419 106 238 2232 1.03 171 882 1415 16 200 90 2211 1.02 160 1028 1620 106 204 2534 1.07 220 788 1295 59 182 1985 0.90 129 344 312 116 250 254 191 850 0.83 139 694 106 119 69 246 462 1007 1.04 184 899 1443 60 200 159 2243 to 6-28, 1988; 5—10 to 5-17, 1988; 12-30 to 01-06, 1989) for alter. I. 2, ad 3 respcctivcly  Inorganics, mgIL  NH4-N TKN TICN. XiS TP, %TS 03/28/88 26.40 I 147 3.78 100 04/04/88 8 37.50 250 1.52 170 04/08/88 12 45.86 386 2.07 148 04/12)88 16 30.56 450 1.59 142 (‘4115/88 19 28.76 166 3.66 152 04/19/88 23 28.76 196 3.93 158 04/23188 27 29.87 297 3.25 206 04/26/88 30 40.64 242 3.15 152 04/30/88 34 37.77 249 4.16 183 05/03/88 37 18.07 318 3.65 159 05/07/88 41 23.00 239 3.69 157 05/10/88 44 23.00 266 3.58 166 05/14/88 48 21.00 257 3.01 142 05/17/88 51 28.00 243 3.00 170 (2) 05/31188 I 86.00 326 4.86 278 06/07/88 8 44.00 312 4.05 184 06/14/88 15 29.00 262 4.55 190 06/21/88 22 24.00 304 4.14 168 06/28/88 29 22.00 280 4.27 169 (3) 11/15/88 1 13.15 263 3.43 181 11/18/88 28.34 4 286 3.41 137 11/22/88 8 74.00 329 4.94 201 11/25/88 ii 72.00 339 5.07 201 11/29/88 95.00 15 422 4.85 205 12)02/88 18 43.00 342 4.07 153 12/06/88 22 30.00 350 4.35 159 12)09188 25 26.00 343 3.95 233 12/13/88 29 900 302 4.13 174 12/16/88 32 18.00 362 4.20 172 12)20/88 36 18.00 345 4.18 154 12/23/88 39 57.22 338 4.04 192 12)27/89 43 57.22 304 4.50 172 12)30/88 46 72.60 419 4.61 216 01/03/89 50 18.00 345 4.14 187 01/06/89 53 30.00 394 5.10 213 (4) 24.00 255 3.20 159 (5) 25.00 282 4.32 176 (6) 40.20 386 4.62 205 No1e:(4),(5),aod (6) are average re.ponaea at pacudo ateady-ate (6-14  Alter. (1)  Acci.  Table B2.1 Response Data of the Sampling Point Numbered I Under Different Acclimatization Alternatives (cont’d)  v1  166  Table B2.2 Response Data of Sampling Point No.2 Under Different Acclimatization Alternatives Acdlim. Alter.  Date  (1)  03/28/88 04/04/88  (2)  (3)  1 8 12 16  TSS  TVSS  Solids, mgfL [%] %TSJ  46670 37640 41400  43880 35320 38910 38650  4.67 3.76 4.14 4.07  04/08/88 04/12/88 04/15/88  40700 19 41250  04/19/88 04/23/88 04/2H88  23 41470 27 46690 30 58540  04!30,’88 05/03/88  34 54530 37 54150 41 52500  05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12/06/88 12/09/88 12/13/88 12/16/88 12/20/88 12/23/88 12/27/88  12/30/88 01/03/89 01/06/89 (4) (5) (6)  Days  44 48 51 I 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43  50660  50990 50990 45330 55030 51280 53790 53600  56560 60880 50100 55730 52950  40190 59840 50720 38590 51420 49930 48640  64220 46 45960 50 49020 53 42990 50880 52890 45990  38560 4.12 39210 4.15 43990 4.67  55170 5.85 51700 5.45  50510 5.30 38300 4.02 57370 5.98 48480 5.07 36600 3.86 49260 5.14 48050 4.99 46730 4.86  mg/L Total  94.02 100606 93.84 77600 93.98 88012 94.96 69172 93.48 78884 93.94 67792 94.22 76677 94.24 113776 94.81 116122 94.85 105638 94.84 89795 94.67 108608 94.99 95335 95.31 120724 94.84 89293 93.19 80080 95.18 105743 93.20 111200 95.88 127525 95.70 74310  51360 5.42 49790 5.25 47960 5.07 48440 5.10 48600 5.10 42990 4.53 51280 5.50 48810 5.13 50132 5.38 51390 5.36 54130 5.66 57990 6.09 95.25 48160 5.01 96.13  53500 5.57  ,  98413  Sol.  NH4-N TKN  11071 9920 9380  277 288 250  10834 10362  270 242  10169 10345 9676 10161 9193 9388  10451 10832 9416 8768 9537 8673  8800 7480 10751 9762 10350 10484 9600 8907 9474 10315 8268  71595 96.00 108065 95.39 105600 95.30 85020 95.87 86640 95.58 96063 94.84 63780 95.80 117092 10295 96.23 107298 11124 96.07 62651 10683 96.37 80800 11120 95.97 84921 10159  61890 6.42 44110 4.60 46930 4.90 95.74  90297 10455  41230 4.30 95.91  64542  398 150 545 446  Inorganics. mgfL TKN 1? TP P04—P [%TSJ [%TSj 1.19 3.32 1.74 1.71  190 110 162 154  2.76 2.32 0.87 0.91  242  5.97  172  0.67  235 212 275 282 216 275 276 348 259 366 304 336 280 363 253 339 245 329 455 368 327 396 292 350 224 268 89 108 299 368 266 353 297 388 284 470 293 417 287 342 230 278 193 302 133 224 216 299 260 354 268 330 287 356  5.45 5.97 5.52 5.75 6.07  168 183 183 193 183  0.63 0.57 0.58 0.82 0.93  6.21  191  0.59  190  5.84 5.89 5.81 6.82 6.15 6.12 6.24 7.54 6.57 5.89  213 207 192 202 214 182 174 195 204 192  0.55 0.60 0.60 0.82 0.85 1.05 0.81 0.94 0.84 0.81  183 193 195 195 207 178 171 71 203 182  7.45  195  0.66  190  8.11 7.85 6.50 6.27 6.08 5.07 5.8 5.95 5.62 6.21 5.64  234 199 173 165 201 144 205 205 198 192  068 0.76 0.82 0.81 0.81 0.67 0.69 0.74 0.68 0.78  200 182 166 166 178 141 187 183 190 190  199 176  0.81 0.98  179 183  319 287  428 336  9721  293  394  5.84  48333 5.09 94.99 108222 10233 50111 5.29 94.75 114823 8318  259  344  5.85  202 300  242  6.63  386  5.82  44090 4.60 95.87  79920 10l12  202 184 183 202 209 187 205 179 186 183  5.98  191 204  184 189  0.72  182  0.58 0.93  190 140  0.84  181  167  Table 82.2 Response Data of Sampling Point No.2 Under Different Acclimatization Alternatives Acci.  Date  Days  Alter.  HAc  HPr  iso-  VFA, mg/L HBr A-HVr  HBr (1)  (2)  (3)  (4) (5) (6)  03/28/88  1  04/04/88 04/08/88 04/12/88 04/15/88 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12/06/88 12/09188 12/13/88 12/16/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  2506 2246 1544  1810 1459 1511 2128 2080 1751 1648 1663 1710 1982 1754 1382 1313 1049 1682 802 2125 2065 2058 2204 2261 2142 2334 2395 1825 2321 2420 2281 2643 2321 2535 2201 1815 1178 2352  1765  40  1490  36 25 31 24 28 37 31 42 32 43 36 40 36 49 49 49 27  1521 1173 1426 1226 1276 1204 1131 1189 1154 1220 1173 1316 1266 929 1043 1051 990 380 1027 987 1022 1015 864 879 1011 962 756 931 1080 1032 1107 938 871 854 1252 807 888  2444  26 30 31 36 34 34 37 38 35  Tot.VFA HVr HHe mg/L HAc  HVr  1740 1185 1587 1471 1606 2364 2498 2034 1824 1998 1793 2089 1798 1565 1742 1601 1690 794 2182 2023 1853 1958 2060 2058 2025 2070 1724 2304 2468 2295 2547 2236 2664 2431 1893 1362  45 41 49 47 53 52 27  Iso—  4980  782 582 724 601  18 16 26 18 26 20 23 22 31 30 29 17 19 18 24 20 22 24  69 59 49  18  22 23 18  39 35 52 38 55 44 52 47 66 61 56 37 18 59 55 57 54 58 58  135 129 99 94 100 48 37 98  661 694 632 696 622 698 665 792 749 747 947 860 765 279 590 574 647  587 546 580 503 481 432 506 845 776 770 730 702 663 735 635 698  88 3 4 4 4 4 5 5 106 695 212 153 48 110 99 95 82 92  84 80 96 82 69  5178 3664 4516 3858 4091 5378 5301 4697 4336 4604  4418 5113 4583 3869 4440  3763 4307 1904 5075 4838 4768 4904 4967 4882 4980 5012 3992 5122 5836 5474 6015 5328 5816  69  5273  4 138 73  4705 3325 5472  Note:(4),(5),and (6) are average responses at pseudo steady—state (6—14 to 6—28, 1988; 5—10 to 5—17, 19 12—30 to 01—06, 1989) for alternatives 1, 2, and 3 respectively.  (4) (5) (6)  (3)  (2)  (1)  03/28/88 04/04/88 04108188 04112/88 04115/88 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07188 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 08/28188 11/15/88 11/18188 11/22188 11/25/88 11/29/88 12/02/88 12/08/88 12/09/88 12113/88 12118/88 12120188 12123188 12/27/88 12/30/88 01/03/89 01/06/89  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  7320 6610 7330 6420 7860 7690 8360 10520 9960 10000 8280 8730 9480 9930 8440 8270 6640 12893 9330 21600 63130 35770 48930 42380 40700 40510 37570 39390 41010 39580 45720 42530 39040 35170 41030 9380 9621 38413  4870 4500 5150 4500 5670 5410 5980 8090 7350 7410 5930 6290 6890 7430 6980 5440 4980 10627 6875 18070 58235 32250 44690 38420 37190 36400 34010 35530 36930 36000 42150 38790 34840 31830 37370 6870 7494 34680 2240 1800 2800 2310 2720 2920 3080 7480 4610 4190 3030 3680 4180 4990 4690 4130 2060 6500 3970 15405 59850 31800 40000 46580 40710 28410 34640 36410 30480 34720 33700 38060 34690 38120 41690 4283 4177 38167 2030 1590 2554) 2070 2580 2550 2740 6690 4180 3880 2840 3290 3800 4510 4610 3100 1960 5993 3720 14485 56750 30210 38440 44290 38940 27110 32950 34200 29070 33440 32400 36610 33290 36570 39890 3867 3891 36583 0.73 0.66 0.73 0.64 0.79 0.77 0.84 1.05 0.99 1.00 0.82 0.87 0.95 0.99 0.84 0.83 0.66 1.28 0.93 2.16 8.31 3.58 4.89 4.24 4.07 4.05 3.76 3.94 4.10 3.96 4.57 4.25 3.90 3.52 4.10 0.94 0.96 3.84 66.53 68.08 70.26 70.09 72.14 70.35 71.53 78.90 73.80 74.10 72.50 72.05 72.68 74.82 82.46 65.78 75.00 82.42 73.69 83.66 92.25 90.16 91.33 90.86 91.38 89.85 90.52 90.20 90.05 90.96 92.19 91.21 ‘89.24 90.50 91.08 73.18 77.04 90.27 0.22 0.18 0.28 0.23 0.27 0.29 0.31 0.75 0.46 0.42 0.30 0.37 0.42 0.50 0.47 0.41 0.21 0.65 0.40 1.54 5.97 3.18 4.00 4.68 4.07 2.84 3.46 3.64 3.05 3.47 3.37 3.81 3.47 3.81 4.17 0.43 0.42 3.82 90.83 15152 88.33 14720 91.07 16811 89.61 16835 94.85 23823 87.33 17965 88.96 17121 89.44 32254 90.67 39254 92.89 21773 93.73 12517 89.40 19262 90.90 18797 90.38 22535 96.16 15111 75.06 15855 90.30 13386 92.20 24640 93.70 19187 94.03 32411 95.14 109524 95.00 57588 98.10 73387 95.08 92000 95.65 81781 95.42 55081 95.12 77185 93.93 83465 95.44 58939 96.31 59172 96.14 81847 96.19 65600 95.96 63492 95.93 66535 95.68 37450 90.23 20198 92.07 19071 95.86 55828 9758 12975 9875 10418 10788 10254 9291 10000 10644 9999 9633 9713 11724 9577 7475 6962 9228 8880 9024 10751 10794 8794 10845 9920 9636 9393 9606 9528 10452 11203 13173 10800 10794 10218 10996 10338 9044 10669  Table 82.3 Response Data of Sampling Point No.3 Under Different Acclimatization AtternaLiies Acclim. Date Days Solids, mg/L Solids, % or %TS COD, mg/I Alter. TS VS TSS TVSS Tot. sol. f%J f%TSJ [%J I%TSI 249 283 257 232 240 223 235 213 230 235 255 245 243 241 428 386 342 264 234 327 325 330 321 312 304 252 233 215 245 285 280 319 331 299 330 243 280 320 5.78 4.52 6.17 5.65 5.15 4.67 4.96 5,08 5.14 5.00 4.89 4.72 4.70 4.97  4.49 5.69 5.03 4.61 6.21 7.18 8.42 7.56 6.16 6.53 6.80 5.83 5.96 6.21 6.11 6.21 6.36 5.08 6.29 4.80 5.07 5.91  430 165 424 436 236 232 286 264 282 348 308 292 329 308  388 308 249 368 365 431 397 431 346 350 310 277 291 324 338 382 391 391 479 310 315 420  NH4—N TKN ThN 1%TSJ  204 192 169 204 206 214 205 212 185 207 193 182 191 191 200 202 199 204 247 196 188 217  200 160 142 160 180 166 165 183 194 193 197 185 207 197  3.17 1.46 2.48 1.63 0.75 0.71 1.15 0.98 0.82 0.89 0.81 0.69 0.69 0.76 0.78 0.76 0.97 0.83 0.90 2.25 2.37 0.90  1.86 2.07 2.09 2.08 3.10 2.45 2.02 1.29 1.82 1.94 2.44 2.25 2.36 2.13  187 177 188 200 207 203 185 179 193 190 188 169 190 197 174 198 199 178 178 205 200 203 202 190 179 168 178 184 185 190 186 186 190 183 205 185 184 193  Iriorganics, mg/I TP TP P04-P I%TSJ  I-’ 0) 90  169  Table 82.3 Response Data of the Sampling Po4nt Numbered 3 Under Different Acclimatization Alternatives (cont’d) Acci. Alter. (1)  (2)  (3)  (4) (5) (6)  Date  03/28/88 04104188 04/08/88 04/12/88 04/15/88 04)19/88 04123/88 04/26/88 04/30/88 05/03188 05/07188 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06121/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29)88 12/02/88 12106/88 12/09/88 12/13/88 12116/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03189 01/06/89  Days  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  HAc  HPr  1668 2090 1349 1286 1540 1571 1920 1799 1956 1822 1959 1766 2110 1963 1459 1074 1040 1430 1887 2130 2183 2424 2454 2378 2269 2309 2256 2290 2496 2349 2229 2335 2414 2305 2480 1946 1452 2400  1179 1644 1017 1155 1579 1634 2169 2157 2384 2079 2118 1824 2243 2037 1410 1300 1800 1775 2043 2345 2213 2365 2285 2104 2006 2121 2091 2281 2520 2445 2248 2311 2336 2429 2767 2035 1873 2511  leo-HBr  VFA. mg/L H& A.-HVr  29 938 34 1429 22 1053 20 1124 23 1334 24 1333 28 1090 28 953 30 1212 30 1190 35 1360 33 1207 39 1459 36 1340 40 855 38 746 54 1162 35 1030 27 1016 52 1087 49 1056 54 1238 81 1172 57 1000 48 889 941 884 897 34 954 30 1004 22 991 966 30 36 988 774 32 39 951 36 1335 39 1089 36 904  11 11 15 18 20 18 22 21 25 23 33 21 17 18 26 30 27 22  89 56 61  21 20 24 21  o-HVr  26 30 42 42 51 48 55 54 55 45 84 46 40 66 65 73 73 67 55  140 131 133 101 95 109 52 50 102  HVr  74 512 547 669 674 825 533 629 630 739 664 850 782 677 841 985 854 771 639 621 690 711 817 545 505 474 516 558 816 784 744 769 636 726 765 870 710  HHe  Tot VFA mg/I.. HAc 3282 4464 3208 3324 4139  93 75 3 3 4 4 5 5 93 14 247 176 144 128 113 121 107 101  70 83 89 64 70 5 189 74  4218 4878 4592 5125 4746 5104 4522 5498 5060 3706 3087 4093 4228 4816 5288 5203 5748 5682 5273 4900 4967 4833 5055 5540 5676 5302 5483 5564 5287 5938 5026 4379 5596  Note:(4).(5),and (6) are average responses at pseudo steady-state (6—14 to 6—28, 1988: 5—10 to 5—17. 1988: 12—30 to 01—06, 1989) for alternatives 1, 2, and 3 respectively.  170  Table B2.4 Response Data of Sampling Point Numbered 4 Under Different Acclimatization Alternatives Acclim. Alter. (1)  (2)  (3)  (4) (5) (6)  Date  03/28/88 04/04/88 04/08/88 04/12/88 04/15/88 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07188 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22188 11/25/88 11/29/88 12/02/88 12/06/88 12/09/88 12/13/88 12/16/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  Days  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  ScUds, mg/I TSS TVSS [%) 1200 860 1120 980 970 900 1310 1020 1240 1330 1050 950 1400 1340 3260 1880 600 630 815 1100 1103 1024 970 894 955 938 1283 1218 1150 1903 2300 1878 1463 1393 1403 1230 682 1420  1050 0.12 740 0.09 980 0.11 840 0.09 890 0.09 810 0.09 1040 0.13 820 0.10 1090 0.12 1240 0.13 910 0.11 750 0.10 1340 0.14 1130 0.13 3150 0.33 940 0.19 550 0.06 505 0.06 705 0.08 875 0.11 883 0.11 966 0.10 940 0.10 846 0.09 893 0.10 888 0.09 1190 0.13 1138 0.12 1066 0.12 1803 0.19 2183 0.23 1768 0.19 1388 0.15 1285 0.14 1300 0.14 1073 0.12 587 0.07 1324 0.14  [%TSJ 87.50 86.05 87.50 85.57 91.75 90.00 79.39 80.39 87.90 93.23 86.67 78.95 95.71 84.33 96.67 50.00 55.00 80.20 86.50 79.55 80.05 94.34 96.91 94.63 93.51 94.67 92.75 93.43 92.70 94.75 94.91 94.14 94.87 92.25 92.66 86.33 73.90 93.26  COD. mg/I Total Soluble 11353 11040 11940 12834 12238 12287 11968 12591 13064 12902 12653 12664 13753 13119 12000 10825 10891 9920 10650 12095 11587 12840 12661 11680 11012 10850 11575 11181 11081 13728 13655 13040 11984 10931 12510 13179 10487 11808  8848 9040 793 10928 10020 9999 9615. 9838 11209 10322 8735 9959 9939 9829 6101 8410 8356 7840 8943 10672 10714 10895 10968 10080 9555 9069 8898 8583 9823 10729 10120 10000 8730 9227 10518 9909 8380 9492  lnorgamcs, mg/I Nl-14-N TKN TP P04-P 273 298 265 247 220 230 243 245 250 239 250 267 248 243 370 407 329 257 247 345 325 322 321 345 317 265 240 210 231 299 293 312 344 402 320 253 278 355  379 280 440 454 240 220 340 304 318 378 299 306 315 305 428 415 412 284 295 421 380 417 422 489 354 290 302 236 287 358 343 334 428 350 444 309 330 407  160 70 144  126 162 156 206 208 207 189 194 188 201 196 146 202 212 274 195 202 208 203 232 236 185 157 178 152 185 207 200 191 206 196 213 195 227 205  200 193 197 209 200 199 201 203 205 190 190 178 186 187 141 198 192 178 192 203 200 205 213 192 186 173 164 160 178 190 190 190 183 183 194 184 187 187  171  Table B4 Response Data of the Sampling Point Numbered 4 Under DIfferent Acclimatization Alternatives Acclim. Alter.  Date  (1)  03/28/88 04104188 04/08/88 04/12188 04/15/88 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06107/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22)88 11/25/88 11/29/88 12/02)88 12106/88 12109/88 12/13/88 12116/88 12120/88 12123/88 12/27/88 12/30/88 01/03/89 01/06/89  (2)  (3)  (4) (5) (6)  Days HAc 1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  767 1859 2149 1607 1411 1649 1905 2044 1999 1676 1596 1717 1795 1620 1035 1049 818 1107 1681 1938 2095 1985 2339 1976 2040 1993 1961 1730 2223 2221 1980 2010 2120 1958 2100 1711 1202 2059  HPr lso-HBr 327 1456 1667 1450 1434 1785 2162 2453 2444 2005 1973 1912 2199 1887 1118 1536 1721 1654 2179 2247 2243 2102 2358 2011 1719 2139 2047 2003 875 2614 2361 2433 2448 2447 2721 1999 1851 2539  VFA. mg/I.. HBr A-HVr lso-HVr  22 31 37 28 21 28 29 30 32 30 34 35 40 34 38 49 56 37 31 53 49 57 64 57 41 31 30  189 1265 1624 1381 1229 1420 1131 1069 1230 1154 1213 1241 1391 1196 628 871 1014 818 1011 952 1040 1080 1226 970 853 891 835 695  37 33 37 39 39 40 37 41 39  971 926 873 905 706 814 1276 948 808  12 14 17 16 19 20 23 12 25 30 34 22 18 24 23 29 31 28 18  74 59 71  23 18 25 23  28 32 42 36 42 44 51 48 51 59 66 45 43 77 69 68 74 65 45  140 129 104 98 110 48 51 104  HVr  660 840 690 601 724 610 582 651 624 697 708 845 723 500 768 959 816 845 550 590 689 760 638 501 554 507 454 561 830 780 758 786 646 693 759 873 708  Note:(4),(5),and (6) are average responses at pseudo steady—state (6—14 to 6—28, 1988; 5—10 to 5—17, 12—30 to 01—08, 1989) for alternatives 1, 2. and 3 respectively.  1988:  HHe  Tot VFA mg/I. HAc  3 3 3 3 4 4 5 5 266 188 264 184 162 110 111 95 108 102  89 77 85 92 83 71 4 203 82  •  1176 4311 5127 4149 3780 4509 4832 5153 5260 4509 4493 4593 5097 4452 2872 3523 3702 3646 4775 4885 5115 4976 5695 4790 4375 4682 4509 4095 3262 5688 5157 5135 5320 4931 5411 4714 4041 5220  (4) (5) (8)  (3)  (2)  (1)  Acclim. PJter.  03/28/88 04/04/88 04/08/88 04112188 04/15188 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07188 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21188 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11)29/88 12/02/88 12/06/88 12/09/88 12113/88 12/16/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  Date  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53 48 22 50  Days  5590 4780 5110 4920 5670 4740 5650 5150 5190 5270 5170 5410 5720 3430 1970 5240 4420 6125 7115 7430 6787 7208 6310 7173 4483 6985 6483 7357 8737 7700 7840 7737 6863 8460 8177 4853 5887 7167  TS 3300 2670 3140 3000 2700 3940 3570 3100 2930 3150 3050 3020 3380 1390 1940 2740 2830 4205 4240 4537 3927 4520 3646 4373 2303 4415 3653 4500 4067 5233 5107 5180 4290 3930 5615 2597 3758 4812 520 820 500 720 590 650 890 870 560 550 510 460 680 890 1660 1380 120 520 890 1033 900 520 463 1213 • 557 538 553 698 600 1003 1503 1038 800 883 1574 810 510 952  Solids, mgIL VS TSS 480 690 480 590 540 450 710 490 440 420 380 330 570 590 1420 490 42 394 790 780 576 496 435 1153 493 483 508 643 563 943 1405 968 553 818 1463 497 409 878  TVSS  I%1 0.56 0.48 0.51 0.49 0.57 0.47 0.57 0.52 0.52 0.53 0.52 0.54 0.57 0.34 0.20 0.52 0.44 0.61 0.71 0.74 0.68 0.72 0.83 0.72 0.45 0.70 0.65 0.74 0.87 0.77 0.76 0.77 0.69 0.65 0.82 0.48 0.59 0.72  I%TSI 59.03 55.86 61.45 60.98 47.62 83.12 63.18 60.19 56.45 59.77 58.99 35.82 59.09 40.52 98.48 52.29 6403 88.65 59.59 61.08 57.86 62.71 57.78 60.96 51.37 63.21 56.35 61.17 60.37 87.98 66.85 66.95 62.51 80.84 68.67 45.14 64.09 64.00 0.05 0.08 0.05 0.07 0.06 0.07 0.09 0.07 0.06 0.06 0.05 0.05 0.07 0.07 0.17 0.14 0.01 0.05 0.09 0.10 0.09 0.05 0.05 0.12 0.08 0.05 0.06 0.07 0.06 0.10 0.15 0.10 0.06 0.07 0.16 0.06 0.05 0.10  1%]  Solids, % v %TS l%TS) 80.00 84.15 96.00 81.94 91.53 69.23 79.78 73.13 78.57 78.36 74.51 71.74 83.82 85.51 82.54 35.51 35.20 75.80 88.76 75.51 64.00 95.38 93.95 95.05 88.51 89.78 91.86 92.12 93.83 94.02 93.48 93.26 92.17 90.48 92.95 80.36 66.59 91.87 11879 10480 11528 11868 10873 11270 12455 11781 12015 11854 11592 11517 12538 11992 7232 9376 10653 10240 11463 12984 12222 11751 11048 12160 10283 10688 10394 11181 11709 13333 13494 12960 11984 11089 14104 12015 10785 12392 10586 10537 9482 11168 5074 10169 9696 10405 11209 10403 9796 10861 10832 10463 5051 8732 9307 8720 9837 11779 10952 10584 11048 9600 9717 9312 10079 9606 10138 11361 10843 10960 10635 9863 11394 10719 9288 10564 277 290 268 275 267 232 245 243 285 252 287 280 245 281 319 394 337 289 264 365 335 319 317 321 313 274 245 215 240 304 651 331 351 351 343 269 290 348 380 440 436 492 282 351 282 340 307 404 316 333 325 291 385 396 412 304 299 443 395 441 455 422 322 314 302 261 287 370 412 390 442 354 474 318 338 423 201 175 190 227 209 203 232 232 140 202 200 206 208 188 196 210 208 194 199 217 202 212 230 199 171 177 186 174 187 211 222 202 199 163 222 200 200 195  160 170 134 160 149 192 201 205 201 202 199 186 193 199 111 200 208 178 188 213 195 198 210 187 179 168 176 171 180 194 198 190 186 179 201 193 191 189  COD, mgIL Inoiganics. rnglL Total aol. NH4-N TKN TP PO4-P  Table B2.5 Response Data of Sampling Point No.5 Under Different Acclimatization Alternatives  -3 t’3  173  Table 82.5 Response Data of Sampling Point No.5 Under Different Acclimatization Alternatives Acci. Alter.  (1)  (2)  (3)  (4) (5) (6)  Date  Days HAc  03/28/88 04104188 04/08/88 04/12188 04/15/88 04/19/88 04/23/88 04/26/88 04130188 05/03/88 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22188 11/25/88 11/29/88 12/02/88 12106/88 12109188 12/13/88 12116/88 12120/88 12123/88 12/27/88 12/30/88 01/03/89 01/06/89  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53 48 22 50  1051 2059 1837 2067 1423 1560 1932 2076 2046 1894 1777 1961 2073 1970 864 1125 935 1380 2037 2069 2068 2094 2256 2101 2205 2210 2339 2247 2322 2536 2231 2418 2323 2186 2508 2001 1451 2339  HPr isoHBr 512 1602 1407 1833 1291 1626 2151 2461 2420 2193 1856 2032 2191 2049 911 1404 1771 1823 2262 2402 2295 2210 2331 1966 2066 2133 2219 2243 2404 2693 2572 2490 2324 2513 2920 2091 1952 2586  VFA . mg/L HBr A  28 346 34 1371 31 1433 33 1706 31 1270 24 1323 28 1110 30 1072 31 1226 32 1247 32 1190 38 1372 39 1414 37 1336 32 531 42 805 54 1136 37 1065 32 1135 68 1112 59 1093 53 1132 65 1191 57 964 52 933 38 958 36 966 893 916 38 1092 49 1074 39 1046 40 966 51 880 48 995 38 1374 41 1112 46 947  -  HVr  12 14 16 17 18 21 22 22 21 25 32 22 19 32 28 25 29 27 24  isoHVr  2 32 37 39 39 48 49 48 44 50 65 47 46 91 81 74 77 65 60  .  76 75 56  29 22 24 29  146 154 133 105 114 120 48 53 113  HVr  696 724 871 656 660 629 593 642 663 644 755 817 780 399 692 960 874 862 643 625 637 724 622 571 531 540 512 544 862 855 798 754 729 760 784 899 748  HHe  92 77 3 3 3 4 4 5 55 151 241 179 162 130 111 111 105 91 84  82 92 92 87 83 78 4 194 83  Tot. VFA mgIL HAc  1721 4725 4402 5251 3743 4185 4891 5238 5275 4968 4529 5057 5364 5070 2288 3370 3929 4257 5296 5339 5203 5184 5545 4858 4980 4931 5139 4976 5216 6170 5767 5805 5444 5397 6162 5164 4494 5667  Note (4)(5) and (6) are average responses at pseudo steady-state (6-14 to 6-28 1988 5-10 to 5-17 1988 12-30 to 01-06. 1989) for alternatives 1, 2, and 3 respectively.  03128/88 04/04/88 04/08/88 04/12188 04/15188 04/19/88 04/23/88 04/26188 04130188 05/03188 05107/88 05/10/88 05114188 05/17188 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15(88 11(18/88 11/22/88 11125/88 11/29/88 12102/88 12/06/88 12)09188 12113/88 12116/88 12/20/88 12/23/88 12)27/88 12/30)88 01/03/89 01/06(89  (1)  (6)  (4) (5)  (3)  (2)  Date  s c t hm. Alter.  27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  23  1 8 12 18 19  Days  8427  4570 8060 7420 6490 6570 6340 6350 6020 7820 8910 7860 8130 9470 10710 5390 4340 3570 5830 5795 3885 5240 5185 5900 8370 9325 5983 7100 6805 5550 6250 6105 6955 6765 6430 8085 9437 5065  TS  3533  2860 5000 4230 3740 3930 3780 3810 3170 4610 4030 4770 4790 5900 6750 3850 2040 1850 3680 2920 2140 2940 3110 3425 3620 5630 2937 3610 3130 2625 3480 3410 3910 3720 3505 3375 5813 2817 600 1930 1750 930 1160 1860 2190 1720 3440 2880 4250 5130 8370 7860 1920 1310 1090 1190 2140 830 997 1087 2480 3110 3690 3200 4180 3790 2630 2840 2940 3460 3110 3820 3890 6453 1473 3540  Solids, mgIL VS TSS 470 1400 1270 660 750 1280 1570 1200 2520 2170 3130 3710 4650 5750 1650 330 328 605 1285 477 587 770 1810 2170 2290 1990 2370 2250 1740 2050 2030 2480 2240 2540 2580 4703 733 2453  WS 0.46 0.81 0.74 0.65 0.66 0.63 0.64 0.60 0.76 0.69 0.79 0.81 0.95 1.07 0.54 0.43 0.36 0.58 0.58 0.39 0.52 0.52 0.59 0.64 0.93 0.60 0.71 0.68 0.56 0.63 0.61 0.70 0.68 0.64 0.61 0.94 0.51 0.64  %J 58.21 62.03 57.01 57.63 59.82 59.62 56.86 52.66 60.50 58.32 60.69 58.92 62.30 63.02 71.43 47.00 51.82 63.12 50.39 55.08 56.11 59.98 58.05 56.83 60.38 49.25 50.85 46.00 47.30 55.68 55.86 56.22 54.99 54.51 55.46 61.41 55.11 64.99  l%TSI  0.35  0.06 0.19 0.18 0.09 0.12 0.19 0.22 0.17 0.34 0.29 0.43 0.51 0.64 0.79 0.19 0.13 0.11 0.12 0.21 0.08 0.10 0.11 0.25 0.31 0.37 0.32 0.42 0.38 0.28 0.28 0.29 0.35 0.31 0.38 0.37 0.65 0.15  I%1  69.48  72.54 72.57 70.97 64.86 68.82 71.69 69.77 73.26 75.35 73.65 72.32 72.99 73.15 85.94 25.19 30.10 50.80 59.11 57.47 58.88 72.16 72.98 69.77 62.08 62.19 56.70 59.37 86.16 72.18 69.05 71.68 72.03 66.49 69.92 72.82 46.87  I%TSI 78.33  SOlids. mgIL  7760 7479 10751 5586 5423 5234 5061 7177 5725 5796 8762 6349 9819 4000 2616 1703 2800 2927 4901 6190 5759 5241 5600 4896 3644 4331 3858 2986 5128 5301 6160 5159 4673 4143 7643 2477 4658  4242 3919 7231 5681 4917 3880 2881 2880 2146 3145 2339 898 1106 895 925 3192 1891 1069 1600 1138 4427 4782 4358 2823 2840 1053 891 868 787 943 2367 2651 2320 873 1505 558 975 1269 979 396  280  296 280 324 357 376 408 414 366 282  326  265 282 279 286 277 285 299 292 249 428 418 393 402 373 378 365  270  235 255 228 270 278 241  229  277 283  COD. mgIL. Total Soluble NH4—N  Table 82.6 Response Data of Sampling Point No.6 Under Different Acclim atization Alternatives  436  3.81  1.84  1.78 1.54 2.19 3.44 2.08 2.74 3.00. 2.85 2.63 2.91 3.02 3.28 2.52 2.97 2.99 3.30 3.53 3.54 4.35 3.82  312 316 253 567 470 489 504 489 350 342 363 326 303 324 369 338 391 437 479 293  294  5.79 3.89 3.96 4.11 2.85 2.83 2.74 3.32 2.47 2.85 3.62 3.51 3.88 4.06  l%TSI  82  79  80 92 86 125 131 138 120 118 31 90 102 148 132 130 129 108 100 104 41 69  113 119 156 150 134 127 205 138 211 129 117 129 28 50  Inorganics. mg/I TKN TP  279 267 282 296 257 257 286 286 307 258 279 303 284 291  TKN  TP  4.54  3.37  3.55 2.00 4.55 4.32 3.11 3.08 2.82 3.12 3.16 5.02 4.87 6.43 8.06 4.00 3.45 3.79 3.57 4.42 5.62 2.63  1.02 1.03 0.91 0.91 1.21 1.88 1.95 1.98 2.98 2.87 2.61 2.76 2.88 2.44  l%TSI  26  32 85 80 96 59 52 36 35 53 43 30 10 23 9 29 47 42 37 14 24 29 47 22 27 14 27 6 29 43 77 5 15 44 25 8 14 31  P04—P  I-’  175  Table B6 Response Data of Sampling Point No.6 Under Different Acclimatization Alternatives (contd) Acci. Alter. (1)  (2)  (3)  (4) (5) (8)  Date  03/28/88 04/04/88 04/08/88 04/12188 04/15188 04/19/88 04/23188 04/26/88 04/30/88 05/03/88 05/07I88 05/10/88 05114188 05117/88 05/31I88 06/07/83 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12/06/88 12/09/88 12/13/88 12)16/88 12)20/88 12123188 12/27/88 12130/88 01/03/89 01/06189  Days  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  VFA, mg/L  HAc  HPr  1780 2062 1479 1065 345 92 172 69 255 277 131 218 216 193 415 398 89 236 359 819 886  1172 1053 912 1144 1003 1424 1359 1664 1466 1058 277 178 227 186 540 447 35 484 361 811 962 1236 978 584 146 198 133 266 155 114.3 1396 1301 819 4.37 123 197 293 460  407 252 122  104 96 101 95 92 201 63 208 228 119  leoHBr 25 55 44 55 39 41 32 32 25 21  32  44 56 80 56 57  19 19 13 12 10 2  HBr  A-HVr  1029 496 329 241 80  HVr  10 6 11 9  14 15 24 24  155  18 12  25 17  188 27  16  5  18 28 30 30 12  31 56 67 63 55  17 17 241 335 190 34 14 11  59  117 16  278 259 73 984  48 23 29  29  HHe  315 222 225 125  18 8  leoHVr  5 23  81 34 137 100 174  17 137  Note:(4),(5),and (6) are average responses at pseudo steady—state (8—14 to 8—28, 1988:5—10 to 5—17. 1988 12—30 to 01—06, 1989) for alternatives 1,2. and 3 respectively.  27  TC.VFA mg/I.. HAc 3449 3477 2603 2327 1313 1275 1311 1453 1492 1170 356 360 400 344 1130 793 117 651 662 1503 2127 1262 1313 1469 247 161 108 216 230 1187 1275 1268 837 684 164 368 477 562  176  Table B2.7 Response Data of Sampling Point No.7 Under Different Acclimatization Alternatives Acclim. Alter. (1)  (2)  (3)  (4) (5) (6)  Date  03128/88 04/04/88 04/08/88 04/12/88 04/15/88 04/19/88 04/23/88 04/26/88 04/30/88 05/03/88 05/07/88 05/10/88 05/14188 05/17/88 05/31/88 06/07188 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22188 11/25188 11/29/88 12102188 12/06/88 12109/88 12113/88 12116/88 12120/88 12123/88 12/27/88 12/30/88 01/03/89 01/06/89  Days  Solids, mg/I TSS VSS (%j  1 900 690 8 920 610 12 530 360 16 730 520 19 840 610 23 850 570 27 1000 670 30 770 460 34 1070 810 37 750 630 41 1240 1220 44 870 540 48 1120 850 51 940 370 1 3120 2590 8 1530 390 15 500 160 22 650 406 29 595 350 1 893 568 4 745 370 8 205 190 11 478 323 15 860 523 18 677 417 22 780 483 25 930 560 29 875 475 32 857 490 36 810 500 39 740 440 43 1080 720 46 690 530 50 785 490 53 370 207 977 587 582 305 615 409  0.09 0.92 0.05 0.07 0.08 0.09 0.10 0.08 0.11 0.08 0.12 0.09 0.11 0.09 0.31 0.15 0.05 0.07 0.06 0.09 0.07 0.02 0.05 0.09 0.07 0.08 0.09 0.09 0.09 0.08 0.07 0.11 0.07 0.08 0.04 0.10 0.06 0.06  %TS) 76.67 66.30 67.92 71.23 72.62 67.06 67.00 59.74 75.70 84.00 98.39 62.07 75.89 69.15 83.01 25.49 32.00 62.50 58.82 63.61 49.66 92.68 67.57 60.81 61.60 61.92 60.22 54.29 57.18 61.73 59.46 66.67 76.81 62.42 55.95 69 51 65  COD. mg/I lno.ganics, mg/I Total Sd. NH4-N TKN TP 04-P 4404 2788 6080 5520 4752 5578 5834 5000 4562 4136 4152 3305 3773 32Q5 3765 3036 4435 3064 3226 2258 2041 816 1926 1004 2150 832 1730 724 4566 2222 2616 1891 1386 990 2000 1120 1707 1138 5296 4190 4286 3492 3658 3580 2823 2339 2960 1920 1619 971 1377 729 1575 1024 1181 1024 1375 668 2288 1775 2691 1285 2760 2160 1151 754 1228 950 916 398 1935 853 1698 1083 1098 701  277 290 242 235 245 245 270 272 303 278 275 294 279 284 290 288 282 287 237 451 464 438 402 392 387 365 326 300 275 294 338 312 376 338 171 286 269 295  286 320 240 312 156 156 278 286 319 292 296 313 298 284 349 329 332 316 261 575 477 567 523 494 410 362 339 326 287 329 338 377 377 359 459 298 303 398  113 116 252 400 150 150 138 138 139 146 129 132 76 46 54 76 88 90 70 116 118 133 124 105 66 90 84 126 112 120 117 112 97 176 75 85 83 116  25 56 66 59 45 47 38 44 47 44 30 22 32 13 36 45 33 33 28 34 24 49 38 15 14 22 12 20 23 27 26 9 5 9 4 22 31 6  177  Table B2.7 Response Data of Sampling Point No7 Under Different Acclimatization Alternatives (cont’d) Acclim. Alter.  (1)  (2)  (3)  (4) (5) (6)  Date  03128188 04/04/88 04/08/88 04/12188 04/15/88 04/19/88 04/23/88 04/26/88 04/30188 05/03188 05/07/88 05/10/88 05/14/88 05/17/88 05/31/88 06/07/88 06/14/88 06/21/88 06/28/88 11/15/88 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12106/88 12/09/88 12/13/88 12/16/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  Days  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 53  HAc  HPr  698 1615 1775 904 381 90 118 76 169 204 103 174 130 115 287 464 72 136 254 587 820 996 560 585 186  284 692 914 955 1063 1502 1652 1459 1379 969 297 146 156 114 295 518 298 362 302 290 572 769 700 533 56 60 68 189 48 853 1259 824 650 219 46 139 321 305  104 78 44 134 85 56 118 53 140 154 76  isoHBr  38 47 46 42 44 39 29 23 19  21  34 46 54 54  VFA, mg/I HBr A-HVr  IsoHVr  154 305 284 208 83 28 5 39 35 7 25 10 10 55 30 27 26 126 105  HVr  170 186 171 135 18 11 20 19  11 19  12 19  12 18 27 19  25 41 48 57  120  69 33 23 22 139 160 60 14 20 10  28 13 16 7 7 4  6  87  18  52 52 42 38 143  15 27 18  23 91  35 26  HHe  Tot.VFA mg/L HAc  1033 2510 2851 1952 1408 1338 1513 1288 1341 1038 349 309 263 214 618 961 346 430 530 1035 1516 1736 1217 1111 237 49 55 276 117 826 1220 800 610 395 90 262 435 365  Note: (4), (5). and (6) are average responses at pseudo steady—state (6—14 to 6—28. 1988; 5—10 to 5—17. 1988: 12—30 to 01—06, 19 for alternatIves 1, 2, and 3 respectively.  178  Table BZ8 Response Data of Sampling Point No.8 Under Different Acclimatization Alternatives (contd) Acci. Alter.  Date  (1)  03128/88 04/04/88 04/08/88 04/12/88 04/15/88 04/19/88 04/23/88 04/26188 04/30/88 05/03)88 05/07/88 05/10/88 05/14/88 05117188 05/31)88 06/07/88 06)14/88 06/21/88 06/28)88 11115/88 11/18/88 11/22/88 11/25/88 11/29/88 12)02188 12106/88 12/09/88 12)13188 12/16/88 12/20/88 12123/88 12)27/88 12130)88 01/03/89 01/06/89  (2)  (3)  (4) (5) (6)  Days  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 46 50 5.3 48 22 50  HAC  HPr  iso.HBr  2051 2108 2229 977 1182 33 75 88 105 107 97 122 124 90 235 200 57 95 195 412 835 834 423 308 142 0 0 0 0 44 57 59 48 50 36 112 116 45  1417 883 1135 1072 1353 1304 1659 1371 955 713 214 96 136 83 174 244 146 235 241) 68 188 689 813 666 211 0 0 0 0 895 1207 1045 571 99 23 105 207 231  29 50 61 52 25 39 40 28 15  VFA. mg/I HBr -HVr  1249 366 330 208 1013  8 3  isoHBr  HVr  231 235 193 499  231 235 193 499  16 8 12 12  6  26 38 51 53  0 0 0 0 13 6 15 14  25 29 24  0 0 0 0  HHe  12 21 17 14 0 0 0 0 25  15 30 50 55 48 0 0 0 0 92  11  69 60 43 13 15 10 0 0 0 0 53 115 79  14  Note:(4),(5),and (6) are average responses at pseudo steady—state (6—14 to 8—28. 1988; 5—10 to 5—17. 1988; 12—30 to 01—06, 1989) for alternatIves 1, 2, and 3 respectwely.  0 0 0 0  Tot. VFA mg/I HAc  4071 3243 3554 2137 3280 1117 1457 1200 902 694 270 200 234 157 382 398 175 286 390 542 875 1465 990 865 319 0 0 0 0 810 1122 963 521 130 55 197 284 235  (4) (5) (6)  (3)  (2)  1 8 12 16 19 23 27 30 34 37 41 44 48 51 1 8 15 22 29 1 4 8 11 15 18 22 25 29 32 36 39 43 48 50 53 3580 5220 8350 6100 6060 5020 5520 6030 4670 7600 4830 4610 3840 6260 4130 4010 2790 3980 9210 3260 3225 3442 3915 3596 3167 3243 3345 3355 3403 3777 3909 3917 3507 3260 3020 4903 5327 3262  03/28/88 04/04/88 04/08/88 04112188 04115188 04/19/88 04/23188 04/26/88 04/30/88 05/03/88 05/07/88 05/10188 05/14/88 05/17/88 05/31/88 06/07/88 06114/88 06121/88 06128188 11/15188 11/18/88 11/22/88 11/25/88 11/29/88 12/02/88 12)06/88 12/09/88 12/13/88 12/18/88 12/20/88 12/23/88 12/27/88 12/30/88 01/03/89 01/06/89  (1)  Days TS  Date  Alter.  Acclim.  2280 2640 3420 3650 3510 2870 2960 3420 2290 4460 2740 2290 2010 3920 3220 1850 1230 1612 2850 1870 1855 1916 2095 1783 1300 1263 1335 1160 1037 1490 1857 1717 1300 1070 933 2740 1897 1101  VS  Solids, mg/I..  660 400 260 430 870 530 1090 2130 2053 3770 1740 780 860 870 1300 1280 120 260 115 1010 720 322 340 470 263 393 373 437 317 427 380 350 257 370 203 837 165 277  TSS 360 230 190 290 410 380 740 1540 1604 2870 1360 490 540 550 1290 300 60 169 85 580 320 170 190 270 138 197 188 200 157 210 193 113 177 177 70 527 105 141  TVSS 0.36 0.52 0.84 0.81 0.80 0.50 0.55 0.60 0.48 0.76 0.48 0.46 0.38 0.63 0.41 0.40 0.28 0.40 0.92 0.33 0.32 0.34 0.39 0.36 0.32 0.32 0.33 0.34 0.34 0.38 0.39 0.39 0.35 0.33 0.30 0.49 0.53 0.33  I%1 (%TSI 63.69 50.57 53.86 59.84 57.92 57.17 53.62 56.72 49.03 58.68 56.73 49.87 52.34 82.62 77.97 48.13 44.09 40.50 30.94 57.36 51.32 55.87 53.51 49.58 41.05 38.95 39.91 34.58 30.47 39.45 42.39 43.83 37.07 32.82 30.89 5488 38.51 33.59 0.07 0.04 0.03 0.04 0.07 0.05 0.11 0.21 0.06 0.38 0.17 0.08 0.09 0.09 0.13 0.13 0.01 0.03 0.01 0.10 0.07 0.03 0.03 0.05 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.02 0.09 0.02 0.03  (%J  Solids. % or %TS (%TS 54.55 57.50 73.08 87.44 81.19 71.69 67.89 72.30 72.73 78.13 78.18 82.82 62.79 83.22 99.23 23.44 50.00 65.00 73.91 57.43 44.44 52.80 55.88 57.45 52.47 50.13 50.40 45.77 49.53 49.18 50.79 32.29 68.87 47.84 34.48 62.94 62.97 50.40 .2727 5360 5578 5084 4307 3983 3854 506l 3225 6048 2367 1782 1744 1589 2707 2052 911 1120 894 3953 3095 3502 2419 2320 1053 574 866 709 707 1933 2289 2040 1309 713 438 1692 975 820 2869 4980 5351 4917 2537 3008 2860 2530 2419 1774 735 799 791 684 1515 1268 851 920 813 2688 2540 2412 2258 1920 891 486 709 551 589 1854 1847 2040 1032 554 359 758 861 848 258 280 229 237 235 235 264 264 272 265 287 294 284 291 306 282 274 284 254 471 438 438 392 364 374 357 322 296 280 304 274 351 370 395 394 290 271 386  COD. mg/I. Total Sd. NH4—N  Table 82.8 Response Data of Sampling Point No.8 Under Different Acclimatizatio Altern n atives  398 271 236 294 232 150 297 275 289 229 309 326 298 286 356 318 296 312 280 612 518 553 533 485 370 378 351 335 287 462 330 338 400 391 479 303 296 423  TKN  .  190 108 150 154 160 152 130 130 124 114 104 117 54 50 50 70 72 90 78 100 104 122 118 92 55 88 84 116 103 146 102 80 78 70 73 74 79 73  TP  58 58 66 70 45 38 24 32 43 35 22 16 19 8 36 36 28 23 17 47 34 42 12 27 12 12 12 14 14 26 5 5 15 5 7 14 23 9  P04—P  Inorganic.. mg/I.  0 a-  ‘I  a  E  >.c  (o coo  -  -  -  -  -  I—  a  E  Ox:  b 0  U)  U)  12 19  27 34  4)  48  1  29 (lilys  15  Ti,no  4  11  18  25  32  Figure Bi .1 Effluent Quality of the M-UASB:  1  39  46  53  During the ncclimatization under different running conditions: (a) A-UASB and M-UASB seeded with Uon Gate sludge; (b) M-UASB seeded with acclimatized sludge; (c) M-UASB seeded with Lion Gate sludge  0-  10  20  30  40  50  60-  70  80  0.2  0.6  1  1.4  1.8  2.2  2.6  3  00 0  I 0  z  /\  —  —  12 19 27 34 41  ‘  -  ‘-  M-UASO “‘  (c) -  48  29  Timo, (lays  15  4  11  Kg COofror )lcu.m-d  18  25  32  39  Kg VS)cu.m-d  46  Figure B2.1 System Gas Production and Loa ding Rate During acclimatization under different running  0-  1—  2—  -  4-  5—  6—  7—  (Li)”’  -—-—-v  “‘--  Cu.m kg d 9 V C Sr u. om m/k ov g COD  r-—-----r-  -_-_  —-  A-UAS1  ____-__--—  _.\_____-_  (a)  /-----4  1— 8 :__  3-  5-  7.--  9  —  -  53  conditions: (a) A-UASI3 and M-UASB seeded with Lion Gate sludge; (b) M-UASB seeded with acclimati zed sludge; (c) M-UASB seeded with Lion Gate sludge  3  C  (3  I.  0 0.  C 0  40 20  60  80  E  0  Co  182  APPENDIX C Optimum ‘best known” Operating Condition  Table C1.1-C1.8 : Response Data of the Sampling Point Numbered 1 to 8 Under Different Running Conditions During the Sequence 1, 2, and 3 Experiments. Table C2.1 Calculation of the effects (SR and RR), Interaction, Phase means, Change in means, on the Response Parameters during the Acclimatization (Sequence 1, 2, and 3 Experiments). Table C3.l : pH of A-and M-UASBs During the Sequence 2 and 3 Experiments as well as the Maximization and Recovery Period Table C3.2 : NaOH (0.1 N) Addition During the Sequence 1 Experiment Note : All sampling locations are illustrated in Figure 4.2  DAY  1 8 II [2].F5,SR8O/20, 15 RR6/I0 22 [07/30/88] 29 32 36 39 43 46 [31.F5,SRSO/50, 49 RR6/10 53 [08/31/88] 57 60 65 68 71 74 78 81 [4J.F5,SRSO/50, 85 RR2/4 95 [10/03/88] 99 102 [5].F5,SR7O/30, I RR3/6 8 [14/01/88] 15 22 25 29  [1].F5,SR8O/20, RR214  EXPER.RUN NUMBERS  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10104/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89  DATE  48533 43980 50255 46760 33655 41095 27915 36000 32810 34620 35050 28119 28475 17080 3534.0 49545 37825 30430 29295 42045 45025 32600 32495 28400 28745 25685 27190 33770 36065 37400 36525  TS 44427 40455 46380 43040 293f 36550 24930 32970 30065 31595 32125 25625 25835 15447 32135 45210 34755 27230 26275 38420 40755 29020 29330 25165 25640 22560 23960 30680 32735 33715 33140  VS 45500 38250 48180 42510 27260 31520 22180 27270 26580 25724 28130 33620 18960 16310 27790 34140 29570 20580 28350 34390 51830 26400 24250 19930 33960 21470 19800 28300 31090 30240 29920  TSS 43300 36420 46080 40760 25060 28670 21090 26320 25700 24978 27490 32800 18770 16080 26680 32680 28610 19930 26990 33240 49050 25190 23130 18980 31970 20120 18460 27160 29570 28560 28630 4.85 4.40 5.03 4.68 3.37 4.11 2.79 3.60 3.28 3.46 3.51 2.81 2.85 1.71 3.53 4.95 3.78 3.04 2.93 4.20 4.50 3.26 3.25 2.84 2.87 2.57 2.72 3.38 3.61 3.74 3.65 91.54 91.98 92.29 92.04 87.24 88.94 89.31 91.58 91.63 91.26 91.65 91.13 90.73 90.44 90.93 91.25 91.88 89.48 89.69 91.38 90.52 89.02 90.26 88.61 89.20 87.83 88.l2 90.85 90.77 90.15 90.73  SOLIDS, MG/L or ELSE TVSS [%] [%TSJ 4.55 3.83 4.82 4.25 2.73 3.15 2.22 2.73 2.66 2.57 2.81 3.36 1.90 1.63 2.78 3.41 2.96 2.06 2.84 3.44 5.18 2.64 2.43 1.99 3.40 2.15 1.98 2.83 3.11 3.02 2.99 95.16 75864 95.22 87230 95.64 47195 95.88 43461 91.93 31727 90.96 44488 95.09 62800 96.52 51098 96.69 41352 97.10 45759 97.72 38509 97.56 46217 99.00 38763 98.59 30266 96.01 42149 95.72 47737 96.75 34426 96.84 38367 95.20 40650 96.66 52209 94.64 47619 95.42 33939 95.38 41107 95.23 38400 94.14 37600 93.71 35777 93.23 37324 95.97 35331 95.11 40217 94.44 62602 95.6925806 5149 4951 4487 8450 7430 8645 7800 6786 7157 6233 6501 8793 7256 7689 7107 7654 8115 6449 5935 6827 6270 6426 6324 6250 6320 7801 6761 5931 6087 6179 6532  COD, MG/L SOL.  [%J %TS] TOTAL  28 14 53 54 41 77 56 82  23  18 20 18 18 50 52 50 30 23 18 32 42 39 31 41 21 50 42 59 68 39 34 276 245 267 258 270 296 282 227 269 292 277 281 378 429 464 472 477 443 485 462 480 473 494 501 521 434 622 458 416 467 409 4.06 171 3.75 158 4.04 165 4.62 185 4.27 167 4.27 136 4.56 168 3.96 151 4.08 155 4.23 175 4.08 175 4.36 186 4.69 218 4.53 222 4.78 231 4.31 214 4,43 244 4.32 204 3.45 192 3.62 245 3,.33 220 3.74 194 4.52 230 5.29 217 4.69 212 5.04 225 6.12 252 4.70 174 4.43 197 4.57 202 3.79 217  1.06 0.91 0.88 1.21 1.15 1.31 1.24 0.89 0.99 0.97 0.85 0.89 0.63 0.94 1.44 1.26 1.23 1.10 1.12 0.86 0.83 1.08 1.50 1.69 1.56 1.81 2.59 1.26 1.28 1.27 0.96  169 110 136 168 134 112 140 128 131 136 147 173 189 191 180 178 193 169 161 189 177 163 181 178 166 182 247 154 158 165 182  INORGANICS, MG!L or ELSE NH4— TKN [%TSI TP (%TSI P04-P  TABLE CLI RESPONSE DATA (SAMPLING POINT NUMBERED 1) UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, 2, AND 3  I-’  DAY  43 50 57 64 71 [7].F5,SR6O/40, 78 RR5/8 85 [03/29/89] 92 99 102 106 [8].F5,SR6O/40, 113 RR3/6 120 [05/09/89] 130 134 137 141 [9].F5,SR8O/20, 1 RRS/8 8 [06/10/89] 15 [10].F5,SR8O/20 22 RRS/8 29 [07/02/89] 36 Reacclimatizatio 43 46 50 53  [6].F5,SR7O/30, RRS/8 [02/20/89]  EXPER.RUN NUMBERS  01/14/00 01/21/00 01/28/00 02/04/00 02/11/00 02/18/00 02/25/00 03/03/00 03/10/00 03/13/00 03/17/00 03/24/00 03/31/00 04/10/00 04/14/00 04/17/00 04/21/00 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  DATE  26025 40265 30185 26420 36275 22470 32405 26305 28240 25695 32880 37165 310)0 20045 34)35 28)30 28050 29755 31610 29000 32250 39730 31935 25555 25875 29765 27540  TS 20450  31140 23350 25400 32890 23260 29010 22550 23840 24350 23760 33290 27410 13390 33230 20040 18610 21470 18270 22770 38230 33740 28170 25090 24150 28050 31490  36585 27310 23995 33310 19720 29210 23365 25440 22905 30278 33760 28100 17545 31385 25465 25275 26895 28565 25945 28795 36180 28810 22830 22895 26670 24565  TSS  23245  VS 19400 30050 22500 24450 3)040 21940 27740 21810 22970 23230 22340 31470 26230 12890 32020 19410 18070 20920 17820 21420 36550 32190 26660 24110 22970 26330 29480 4.03 3.02 2.64 3.63 2.25 3.24 2.63 2.82 2.57 3.29 3.72 3.10 2.00 3.41 2.8) 2.8) 2.98 3.16 2.90 3.23 3.97 3.19 2.56 2.59 2.98  2.60 3.02 89.32 90.48 90.86 90.48 90.82 91.83 87.76 90.14 88.82 90.08 89.14 92.09 90.84 90.62 87.53 91.94 90.53 90.11 90.39 90.37 89.47 89.29 91.06 90.21 89.34 88.48 89.60  SOLIDS, MG/L or ELSE TVSS [%] [%TSI 2.05 3.11 2.34 2.54 3.29 2.33 2.90 2.26 2.38 2.44 2.38 3.33 2.74 1.34 3.32 2.00 1.86 2.15 1.83 2.28 3.82 3.37 2.82 2.51 2.42 2.81 3.15  [%] 94.87 96.50 96.36 96.26 94.38 94.33 95.62 96.72 96.35 95.40 94.02 94.53 95.70 96.27 96.36 96.86 97.10 97.44 97.54 94.07 95.61 95.41 94.64 96.09 95.11 93.87 93.62 37081 50909 51429 43373 37333 40984 38134 29779 30891 37833 50493 36078 50693 40864 39766 30888 36223 36361 46473 60729 31014 59082 50980 56000 37037 38235 39085  6469 7354 7184 6667 6578 6967 7789 7082 8951 6918 8126 7216 7446 7151 764! 7490 7245 6679 7137 7935 6759 7425 6902 6080 5778 4926 5073 57 67 44 26 25 25 21 25 10 12 21 19 28 20 24 15 10 17 12 10 8 27 43 45 23 29 39  444 478 413 440 385 477 423 496 561 406 417 501 507 542 523 445 5)0 365 316 4)4 353 366 345 330 278 217 265 3.54 4.38 4.24 3.87 4.92 4.25 4.94 5.72 5.12 5.14 3.59 5.30 5.05 5.44 5.24 5.38 5.09 5.12 3.99 4.77 4.24 5.1) 4.94  4.61  4.95 4.85 4.77  174 257 197 199 200 202 233 218 233 183 209 25) 226 227 235 179 218 164 150 209 195 200 192 167 152 110 147  1.33 1.48 1.48 1.18 0.92 1.40 1.30 1.32 1.72 1.19 1.20 1.47 0.87 1.23 0.95 1.08 3.22 0.98 1.05 0.98 0.76 1.04 0.81 0.96 0.86 1.13 1.21  149 198 159 167 185 175 218 195 182 173 182 210 194 185 175 180 167 146 141 164 161 163 160 132 130 10) 121  COD, MG/L INORGANICS, MG/L or ELSE [%TS] TOTAL SOL. NH4-N TKN %TS] TP %TSI P04-P  TABLE CI.1 RESPONSE DATA (SAMPLING POINT NUMBERED 1) UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, 2, AND 3 EXPERIMENT  NOTE 1,2  [12].F5.SR9O/I0, RR3/6 [09/06/89]  [11].F5,SR9O/10, RRS/8 [08/05/89]  EXPER.RUN NUMBERS  08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09112/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  38015 30460 46800 39910 34845 32710 30195 35215 32320 30295 34265 32090  TS 34745 26955, 41945 36240 31530 29305 27045 32030 29175 27385 31352 28070  VS  25430 39560 37820 32710 34620 24550 36350 31330 29520 32240 33720  33450  TSS 31890 23790 37220 35950 30870 33080 23430 34810 29870 28130 31560 31020  2.75 3.80 3.05 4.68 3.99 3.48 3.27 3.02 3.52 3.23 3.03 3.43 89.20 91.40 88.49 89.63 90.80 90.49 89.59 89.57 90.96 90.27 90.39 91.50 3.35 2.54 3.96 3.78 3.27 3.46 2.46 3.64 3.13 2.95 3.22 3.37  SOLIDS, MG/L or ELSE TVSS [%] [%TSI [%] 95.34 93.55 94.08 95.06 94.37 95.55 95.44 95.76 95.34 95.29 97.89 91.99 50224 32340 48361 24899 46400 48413 35020 59345 42485 51534 31398 41322 5656 5944 6800 6270 5992 6705 5691 5971 6504 6033  5447  5650 39 33 24 34 24 24 18 24 54 50 39 24 281 278 278  262  241 337 343 547 521 276 255 283 5.83 4.88 4.73 4.24 3.88 4.36 4.55 4.37 4.46 4.06 3.52 4.32  1.04 0.94 0.94 1.04 0.85 1.00 0.66 0.74 1.23  226 237 151 141 177 137 164 177 151  290  0.75 1.07 0.78 156 296  131 121 103 123 160 123 138 165 142 142 156 135  COD, MG/L INORGANICS. MG/Lor ELSE [%TS1 TOTAL SOL. N114— TKN %TSJ TP %TSJ P04-P  1 2 3 4 5 6 7 8 9 10 Ii 12 46998 32596 38788 29880 36663 31348 31913 28090 30305 27727 35822 32217 43292 29782 35150 26712 33197 28653 28981 25370 27255 24710 32358 28936 42980 29158 38190 26047 30417 29145 27133 19325 20520 27897 35050 31827  41087 28423 36427 24693 28920 27745 25680 18740 19620 26260 33300 30237 4.70 3.26 3.88 2.99 3.67 2.83 2.89 3.11 3.07 2.71 4.05 3.23 92.11 91.35 90.53 89.36 90.55 90.65 90.44 91.23 90.38 89.14 90.31 90.72 4.30 2.92 3.82 2.60 3.04 2.91 2.71 1.93 2.05 2.79 3.51 3.18  95.58 97.46 95.50 94.92 95.08 95.32 94.65 96.98 95.80 94.20 94.99 95.06  59295 43495 46826 39036 42875 40353 41468 33556 53601 38119 39904 41418  5963 7176 6344 6298 6266 6623 7420 7368 7536 5259 6338 6169  19 31 55 22 72 26 17 13 II 30 27 38  257 283 476 505 431. 413 441 478 365 253 448 279  4.14 4.22 3.47 4.83 4.26 4.08 4.97 5.18 5.31 4.76 4.16 3.97  169 179 219 220 205 200 214 199 180 136 205 164  1.00 0.90 0.94 1.58 1.17 1.05 1.16 2.15 1.31 1.52 1.46 0.88  138 152 176 175 168 176 180 174 207 189 178 144  12 ARE AVERAGE RESPONSES AT PSEUDO—STEADY STATE FOR EXPERIMENTAL RUNNING CONDITIONS NUMBERED I TO 12 RESPEC  57 64 71 78 81 85 92 99 106 109 113 116  DAY  TABLE CI.) RESPONSE DATA (SAMPLING POINT NUMBERED I) UNDER DIFFERENT RUNNING CONDITiONS DURING PHASE 1, 2, AND 3 EXPERIMENT  I-’  rn  do  186 TABLE CI. 1 RESPONSE DATA (SAMPLING POINT NUMBERED 1) UNDER DIFFERENT RUNN1N CONDITIONS DURING PHASE 1,2, AND 3 EXPERIMENTS  EXPER.RTJN NUMBERS [1].F5,SR8O/20. RR2/4  [2].F5,SR8O/20, RR6/10 [07/30/88]  [3j.F5,SR5O/50, RR6/10 [08/31/881  [41.F5,SRSO/50, RR2/4 [10/03/88] [5].F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR70130, RRS/8 [02/20/89]  [7].F5,SR6O/40. RRS/8 [03/29/89]  DAY  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29 43 50 57 64 71 78 85 92 99 102 106  DATE  07/12188 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89  HAc  HPr  426 512 580 1318 594 297 579 551 621 561 612 841 728 709 448 388 551 261 222 622 350 248 483 368 340 854 579 510 866 736 997 551 1122 761 568 1059 455 349 631 436 350 416  143 294 371 2175 472 23 30 53 86 261 321 556 495 288 151 101 225 98 101 391 213 145 383 228 200 1527 918 777 1275 1304 1607 808 1732 1253 905 1470 776 375 1135 853 555 674  VFA. MG/L HBr A-HVr isoHBr 89 117 117 285 227 155 272 176 141 81 60 233 209 73 339 137 337 97 124 318 190 114 36 88 253 160 5 31 20 51 32 31 166 153 62 83 61 126 47 112 75 65 132 67 54 76 67 50 58  Iso— HVr HVr  1776 988 169 160 146  17  33 48 67 25 55 34  34 14 12 22 15 12 24 9 17 127 194 9.5 44 30 49 45 80 13 39 49 22 41 50 41 48  TOT.VFA HHe mgIL HAc 603 830 961 3276 2176 1003 888 794 840 1036 1045 1585 1394 1214 770 551 1011 372 311 1001  585 387 875 600 533 2280 1542 1188 1982 1853 2415 1238 2629 1875 1354 2364 1159 703 1627 1203 858 1030  187 TABLE C1.1 RESPONSE DATA (SAMPLING POINT NUMBERED 1) UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2. AND 3 EXPERIMENTS EXPER.RUN NUMBERS  DAY  DATE  VFA, MG/I. HAc HPr Iso— HRr  [05/09/89]  [9].F5,SR8O/20, RRS/8 [06/10/89] [10].F5,SRSO/20, RRS/8 [07/02/89] Reacclimatization  [11].F5,SR9OI1O, RRS/8 [08/05/89]  [12].F5,SR9O/l0, RR3/6 [09/06/89]  113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53 57 64 71 78 81 85 92 99 106 109 113 116  05/09/89 634 1272 05/16/89 650 1356 05/26/89 463 624 05/30/89 480 332 06/02/89 289 159 06/06/89 240 83 06/13/89 444 394 06/20/89 403 528 06/27/89 749 1393 07/04/89 740 1563 07/11/89 683 1432 07/18/89 792 1681 07/25/89 721 1385 07/28/89 632 1341 08/01/89 559 1144 08/04/89 566 1211 08/08/89 650 1332 08/15/89 567 1116 08/22J89 493 998 08/29/89 572 1280 09/01/89 759 1505 09/05/89 547 972 09/12/89 588 1224 09/19/89 766 1449 09/26/89 533 914 09/29/89 497 896 10/03/89 712 1290 10/06/89 508 787  Iso- HVr HHe  TOT.VFA g/L HAc  HVr  HBr  [8].F5,SR6O/40, RR3/6  -HVr  113 120 72 46 50 187 224 391 326 234 273 183 180 155 165 193 261 278 333 358 216 254 291 182 178 241 144  62 85 83 69  102 99 81 118 217 87 86 93 112 85 516 110 48 74 56 74 36 37 61 29  NOTE: 1, 2,...., 12 ARE AVERAGE RESPONSES AT PSEUDO-STEADY STATE (EXPERIMENTAL RUNNING CONDITIONS NO.1 TO 12 RESPECTIVELY) 173 803 947 1 90 671 379 260 146 2 16 26 58 398 235 3 45 17 38 397 270 4 41 90 866 1395 5 26 99 814 1188 6 44 100 7 757 1123 50 265 121 8 32 65 490 755 9 46 72 534 994 10 46 59 393 704 11 42 188 572 991 12  1779 1881 1067 821 452 307 891 984 2205 2288 2051 2411 2096 1893 1643 1715 1927 1700 1795 1902 2252 1526 1787 2183 1419 1367 1958 1261  1689 1222 632 669 2083 1859 1761 380 1165 1415 1030 1529  [5].F5,SR7O/30, RR3/6 [14/01/88]  [4].F5,SR.50/50, RR2/4 [10/03/88]  [3}.F5,SR5O/50, RR6/10 [08/31/88]  [2].F5,SR8O/20, RR6/I0 [07/30/88]  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02188 09/06/88 09/09188 09/14/88 09/17/88 09/20188 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89 49120 69990 62360 59560 67430 58010 64460 61830 50030 67100 60580 66750 59720 56410 54010 47780 55470 47620 56660 74640 59150 60600 49760 50460 45330 41950 49780 51480 58590  63550  60290  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 I 8 15 22 25 29  [1].F5,SRSO/20, RR2/4  DATE TSS  DAY  NUMBERS  EXPER.RUN  58360 61140 47450 67550 57490 57410 65280 5614.0 62360 59900 48590 65260 58960 64920 58200 55060 52530 46590 53830 46180 55020 72180 57330 58070 48320 48270 43600 40520 47800 49180 56050 4.76 5.67 7.46 5.92 6.06 4.98 5.05 4.54 4.20 4.98 5.15 5.86  5.55  4.91 7.00 6.24 5.96 6.74 5.80 6.45 6.18 5.00 6.71 6.06 6.68 5.97 5.64 5.40 4.78  6.36  6.03 96.80 96.21 96.60 96.51 92.19 96.39 96.81 96.78 96.74 96.88 97.12 97.26 97.33 97.26 97.45 97.61 97.26 97.51 97.04 96.98 97.11 96.70 96.92 95.83 97.11 95.66 96.10 96.59 96.02 95.53 95.66  SOlIDS, MG/L or ELSE TVSS [%] [%TSI 127525 172888 72727 121529 131325 109842 122800 118962 112127 119132 92340 96155 113814 109611 98347 120988 100000 96326 104878 102008 107143 147071 154150 121600 96000 93255 83803 63092 103261 60163 98387  Total  COD, MGIL  10931 8880 9207 10865 9679 8701 10040 9261 9463 9389 9648 11329 11216 10061 10826 9218 9836 9714 9675 10924 11032 10667 10751 9840 9600 10440 11831 10726 10978 11301 11452  Sol. 280 172 208 231 266 239 234 257 232 236 246 256 353 403 370 366 363 358 382 430 417 367 401 393 376 320 448 363 304 320 362  NH4—N 272 223 260 302 358 368 292 295 269 312 296 324 350 437 448 437 450 427 444 507 480 437 5O5 478 502 504 580 514 455 418 440  TKN 7.06 6.07 6.10 5.49 5.57 6.06 6.00 5.78 5.60 6.33 6.23 6.22 5.98 5.80 5.79 5.77 5.66 5.85 6.52 5.93 6.09 5.84 6.63 6.39 6.01 5.88 5.64 6.44 6.14 6.08 5.78  (%TSI  .  199 168 175 185 187 182 179 185 166 183 173 202 210 222 243 226 248 230 235 265 249 240 253 242 258 220 285 252 208 220 217  TP 0.75 0.78 0.93 0.71 0.76 0.67 0.59 0.78 0.87 0.73 0.74 0.79 0.89 0.82 0.85 0.76 0.76 0.87 0.67 0.52 0.65 0.64 0.77 0.78 0.07 0.99 1.09 1.00 0.89 0.95 0.75  [%TS1  193 163 169 182 171 166 178 180 172 175 187 192 268 224 227 216 236 219 225 239 247 238 242 235 235 189 243 219 201 215 208  P04-P  INORGANICS, MG/I  TABLE C1.2 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 2 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3  I-h 00 00  [9].F5,SR8O/20, RR5/8 [06/10/891 [l0].F5,SR8O/20, RR5/8 [07/02/891 Reacclimatizdtion  181.F5,SR6O/40, RR3/6 05/09/89}  (7].F5,SR6O/40, RR5/8 [03/29/89]  [6J.F5,SR7O/30, RRS/8 [02/20/89]  EXPER.RUN NUMBERS  14 21 28 35 42 49 56 63 70 73 77 113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53  DAY  01/14/00 01/21/00 01/28100 02/04/00 02/11/00 02/18/00 02/25/00 03/03/00 03/10/00 03/13/00 03/17/00 05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06(27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  DATE  38000 41570 44980 52210 52390 54290 52310 61000 65370 70330 64740 51400 78950 97800 25140 16420 16460 36450 I864Q 52080 54490 37000 51020 54530 63200 67020 55410  TSS 36280 39960 43530 50340 50440 52230 50560 58790 62680 67730 61750 48670 73810 96250 23190 15140 16090 34490 17790 48980 50910 33240 47860 51610 59200 62310 51550 6.10 6.54 7.03 6.47 5.14 7.90 9.78 2.51 1.64 1.65 3.65 1.86 5.21 5.45 3.70 5.10 5.45 6.32 6.70 5.54  5.23  3.80 4.16 4.50 5.22 5.24 5.43 95.47 96.13 96.78 96.42 96.28 96.21 96.65 96.38 95.88 96.30 95.38 94.69 93.49 98.42 92.24 92.20 97.75 94.62 95.44 94.05 93.43 89.84 93.81 94.65 93.67 92.97 93.03  SOLIDS, MG/L or ELSE TVSS [%] [%TS] 36292 67879 63673 84337 69010 94202 79513 107847 87129 97018 116765 69804 123564 23567 39766 43240 17726 50085 47303 77733 50895 57485 105098 89600 121482 87500 78170 9625 11313 12653 11165 10602 11639 10142 10865 10614 10656 10256 9804 10297 8173 7875 8031 8324 8349 9461 9717 6362 10299 10745 9200 8741 9044 8233  COD, MG/L Total Sol. 306 362 351 364 386 444 478 434 463 513 504 517 531 511 469 465 469 398 379 411 550 381 335 313 334 302 286  NH4-N 427 478 440 451 481 459 492 403 469 432 462 657 589 542 510 520 477 418 424 503 658 526 477 422 461 417 357  TKN 5.85 5.88 5.50 5.29 5.44 4.76 5.97 5.28 4.91 5.71 6.57 6.98 7.04 6.53 3.31 5.92 6.38 7.35 6.09 7.28 6.15 6.09 5.55 6.45 6.46 5.95 6.65  [%TSI 191 229 223 219 233 214 231 190 209 228 243 278 249 223 233 238 222 205 209 234 222 224 218 181 201 176 166  1.20 0.94 1.01 0.69 0.74 0.69 0.82 0.93 0.82 1.00 0.95 1.14 1.01 1.95 1.56 1.50 1.39 1.28 1.11 1.09 0.89 1.25 0.81 1.03 1.01 1.01 1.07  184 216 199 208 217 231 237 233 233 240 231 240 245 227 227 237 242 198 208 221 212 203 193 170 166 164 158  INORGANICS, MG/L TP [%TSJ P04-P  TABLE CI.2 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 2 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, 2, AND 3  00 CD  [12].F5,SR9O/10, RR3!6 [09/06/89]  [08/05/891  [II].F5,SR9O/t0, RR5/8  EXPER.RUN NUMBERS  113 116  109  57 64 71 78 81 85 92 99 106  DAY  08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  63650 63040 58850 74000 81410 65780 74950 72380 60450 71100 77030 78780  TSS  69420 57920 68030 73860 75220  77640 62600 71450  59240 59050 55710 70150 8.14 6.58 7.50 7.24 6.05 7.11 7.70 7.88  94.66  5.89 7.40 94.80 95.37 95.17 95.33 95.91 95.81 95.68 95.88 95.48  93.07 93.67  6.37 6.30  SOLIDS, MG/L or ELSE TVSS [%TS] !%1  13200 11032 10117 11946 9539 9898 10569 10909  166667 122178 168786 113026 143149 95122 134711  8610 8170 10738 9639  176000  73770 94779  74043  89886  COD, MG/L Total Sot.  268 357 268 270  300  283 300  301  270  250  235 260  NH4-N  356 337 332  340  329 308 162 553 521 390 380 379  TKN  5.08  6.00  5.25 4.31 5.50  6.04  5.95 4.94  6.04  652 6.23 6.73  (%TSI 169 145 189 179 237 208 193 201 166 187 198 186  0.85 0.69  1.06 0.84  0.99 1.79 0.93 0.80 1.11 0.82  1.50  1.50  162 203 191 131 207 174 183 192 197  160  158 124  INORGANICS, MG/L TP [%TS1 P04-P  TABLEC1.ZRESPONSE DATA OF THE SAMPLING POINT NUMBERED2 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3  CD  0  191 TABLE C1.2 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 2 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, 2, AND 3 EXPERIMENTS EXPER.RUN NUMBERS [1].F5,SR8O/20, RR2/4 [2].F5,SR8O/20. RR6/10 [07/30/88]  [3].F5,SR5O/50, RR6/10 [08/31/88]  [4].F5,SR5O/50, RR2/4 [10/03/88] [5].F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR7O/30, RR5/8 [02/20/89]  [7].F5,SR6O/40, RRS/8 [03/29/89]  DAY 1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29 43 50 57 64 71 78 85 92 99 102 106  DATE 07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89  HAc 2214 1920 1984 2507 1892 1948 2216 2127 2095 1937 1870 2308 1977 2093 2117 2008 1934 1908 2001 2385 2241 2122 2239 2272 2878 2353 2843 2708 2765 2546 2938 2315 2824 2702 2742 2363 2271 1800 2227 1220 1036 614  HPr Iso-HBr 2282 30 1787 22 1945 28 2859 31 1918 32 1858 29 1949 30 1685 35 1694 30 1662 31 1698 32 2278 37 1965 38 1947 35 2078 33 2065 39 30 1908 1911 28 1961 26 2313 32 2254 32 2311 28 2369 30 2049 28 1867 25 2324 35 2882 36 2518 32 2735 30 2648 27 2958 36 29 2115 2963 42 2984 38 2863 42 2809 37 2592 41 37 2552 3042 42 2180 40 2492 47 2306 46  VFA, MG/L A-HVr Iso-HVr HBr 44 19 1090 14 32 879 41 885 20 48 953 23 981 151 107 1104 1324 23 1389 15 80 1292 1 8 1034 12 55 1025 14 36 1276 43 15 1105 18 76 74 1110 21 42 1199 13 67 1101 57 1145 15 909 17 23 976 23 16 1083 20 30 1074 29 21 17 26 1075 28 1021 20 26 872 18 764 23 15 92 869 15 1069 15 95 32 975 8.2 946 78 8.5 75 915 8 56 1001 12 48 962 10 45 15 928 1175 14 52 1047 54 17 846 16 77 49 968 23 47 681 22 888 23 49 740 46 22 731 27 54 604 29 53  TOT. VFA HVr HHe mg/L HAc 5306 750 4432 616 115 4664 650 121 734 121 6032 738 4661 613 121 4713 523 139 5113 518 163 4909 480 148 4769 476 129 4397 488 131 4352 5575 693 160 4858 638 150 4951 619 153 5125 634 151 589 123 4909 4719 561 124 84 4468 518 4609 530 99 5465 619 571 93 5236 569 87 5153 577 5292 92 4931 520 101 477 108 5289 705 84 5375 760 90 6491 67 5839 585 6154 773 5793 695 862 6590 720 5163 77 6349 656 679 6428 80 619 83 6255 5673 639 5486 603 55 565 50 4758 57 5763 618 520 46 3889 572 36 3990 497 44 3290  192  TABLE CI.2 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 2 UNDER DIFFERENT RUNNING CONDiTIONS DURING PHASE 1,2, AND 3 EXPERIMENTS  EXPER.RUN NUMBERS [8].F5,SR6O/40, RR316 [05/09/89]  [9].F5,SR8O/20. RR5/8  [06/10/89] [10].F5,SR80120, RR5/8 [07/02/89] Reacelimatization  [1 1].F5,SR9O/10, RRS/8 [08/05/89]  DAY  [121.F5,SR9OIIO, RR3/6 [09/06/89]  HAc  HPr  408  113 120 130  05/09/89 05/16/89 05/26/89  134 137  05/30/89 06/02/89  141 1  06/06/89 06/13/89  399 567  2685 2891 2274 2018 1735 2148 1841  8  06/20/89  580  2073  15 22 29 36 43 46 50 53 57 64 71 78  06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  765 791 1472 1708 943 750 870 877 1087 1013 1674 1480 2591 2024 1654  2306 1370 2109 2195 2143 2080 2398 2098 2261 1858 2187 2085 2684  81  85 92 99 106 109 113 116  TOT.VFA  VFA, MGIL  DATE  650 359 493 406  2264  1692 1691 1975 1858  2399  2096 2651 2158 2187 2291 2411  ThoHBr 59 74 64 50 55 43 49 49  HBr  A-HVr  774 713 532 738  39 51 40 31  Iso— HVr 68 84 69 55  649  24  788  32  734  21  889 824 413 650 722 601  38 41 36 40 37 37 32 39  HHe  mgfL HAc  747 831 670  62 86 57  3687 4143  48  809 639  74 50  698 581 742  58 54 59  3212  31  64 49 91  34  94  766  67  3790  52 27 23 25 24  628 656 614 606 540 596 496 525 525 631 575  53 52 59 51 51 41 39 52 76 69  2680 4100 4423 3534 3205 3714 3343 3705 3315 4508 4129  3097 3231 2699 3000  3439  622 574 586 600 873 785  30 27 24 26 23  165 77 70 72 67 81 73 68 63 68 61  1234  24  56  781  81  6183  941 752 961 789 812 905 938  27 24 25 24 24 21 25  58 51 57 51 52 46 55  727 638  95 71 87 66 69 62 71  5165  544  46  HVr  34  800  667 707 692 731  4347  5660 4476  4539 4950 4993  1 8 II 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29  [1].F5,SR8O/20. RR2/4  [5].F5,SR7O/30, RR3/6 [14/01/88]  [10/03/881  [4].F5,SR5O/50, RR2/4  [3].F5.SR.50/50, RR6/10 [08/31/88]  [2].F5,SR8O/20, RR6/10 [07/30/88]  DAY  EXPER. RUNS NUMBERS  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89  DATE  13127 14765 13385 10795 11360 44675 44160 49920 43925 47645 61405 48960 48015 34857 51030 34755 25815 18145 17435 31955 45485 45650 44995 53140 49585 54340 34380 33780 40600 33860 41450  TS 10240 11695 10435 8160 8520 41290 40490 46225 40565 44415 57760 45010 44385 25450 47695 31725 22985 15475 14890 28780 41915 41745 41640 49680 46065 49440 34380 30490 36690 29230 36690  VS  6750 3925 11780 39645 34920 40930 41280 41056 56210 43450 42130 45240 44230 30510 21250 12000 10720 26160 39830 42080 39690 54680 47100 43750 31260 26200 31140 32410 29900  5560  5480  TSS 5240 5225 6475 3780 5325 38265 33930 39680 39950 39586 54670 42310 41020 44210 43110 29730 20690 11650 10380 25320 38500 40660 38460 53200 45600 41940 30130 25450 29780 30760 28540 1.31 78.01 1.48 79.21 1.34 77.96 1.08 75.59 1.14 75.00 4.47 92.42 4.42 91.69 4.99 92.60 4.39 92.35 4.76 93.22 6.14 94.06 4.90 91.93 4.80 92.44 3.49 73.01 5.10 93.46 3.48 91.28 2.58 89.04 1.81 85.29 1.74 85.40 3.20 90.06 4.55 92.15 4.57 91.45 4.50 92.54 5.31 93.49 4.96 92.90 5.43 90.98 3.44 100.00 3.38 90.26 4.06 90.37 3.39 86.33 4.15 88.52 95.62 22178 93.97 22947 95.93 23830 96.31 21569 45.20 22731 96.52 68701 97.I6 66600 96.95 75235 96.78 84692 96.42 85602 97.26 82609 97.38 71575 97.37 75763 97.72 67894 97.47 100826 97.44 55967 97.36 45082 97.08 25306 96.83 27642 96.79 64257 96.66 72222 96.63 67071 96.90 9652 97.29 86400 96.82 90400 95.86 91495 96.39 75352 97.14 50473 95.63 59783 94.91 58537 95.45 54032 11406 10688 10290 10543 11044 9409 9000 8782 9463 9073 9979 10184 11794 10552 10165 9877 9672 10204 9837 11004 11190 11636 10435 10400 10640 11144 11690 11230 11304 11707 10887  COD, MG/L SOL.  [%] [%TS] OTAL  0.55 0.56 0.68 0.39 1.18 3.96 3.49 4.09 4.13 4.11 5.62 4.35 4.21 4.52 4.42 3.05 2.13 1.20 1.07 2.62 3.98 4.21 3.97 5.47 4.71 4.38 3.13 2.62 3.11 3.24 2.99  SOLIDS, MG/L or ELSE TVSS 1%] [%TSI 244 236 263 261 329 267 222 244 253 256 263 254 382 403 409 361 442 396 425 444 437 397 406 431 438 343 448 426 346 367 378  H4-N  318 294 385 311 282 263 290 343 320 620 402 456 425 429 442 459 457 495 480 444 505 450 521 439 590 590 440 471 377  285  314  .  4.99 4.75 5.40 4.42 4.76 6.10 6.14 6.07 5.81 6.41 6.08 6.18 5.95 6.02 5.97 6.07 6.07 6.12 6.14 6.21 5.76 5.39 6.89 6.27 6.74 4.81 6.22 6.28 5,67 6.39 6.01  231 224 216 231 235 237 261 251 240 259 230 258 218 263 265 217 245 196  231  211 202 199 183 196 177 174 166 187 200 186 458  1.94 1.92 1.73 2.18 1.96 0.62 0.67 0.96 0.88 0.64 0.57 0.66 0.63 0.64 0.67 0.73 0.87 1.19 1.25 0.81 1.36 0.66 0.86 0.74 0.74 0.83 1.25 1.09 0.92 1.13 0.88  211 199 193 182 191 178 166 173 179 170 190 244 217 231 220 216 227 229 246 213 247 238 244 242 240 198 238 228 208 215 201  INORGANICS, MG/L or ELSE TKN (%TS] TP [%TSJ P04-P  TABLE C1.3 RESPONSE DATA OF TH[ SAMPLING POINT NUMBERED 3 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, 2, AND 3  43 50 57 64 71 78  [6].F5,SR7O/30, RR5/8 [02/20/891  [91.F5,SR8O/20, RRS/8 [06/10/89] [l0].F5,SR8O/20, RR5/8 [07/02/89] Reacclimatization  [8].F5,SR6O/40, RR3/6 [05/09/89]  04/11/89  85  92 04/18/89 99 04/25/89 102 04/28/89 106 05/02/89 113 05/09/89 120 05/16/89 130 05/26/89 134 05/30/89 137 06/02/89 141 06/06/89 1 06/13/89 8 06/20/89 15 06/27/89 22 07/04/89 29 07/11/89 36 07/18/89 43 07/25/89 46 07/28/89 50 08/01/89 53 08/04/89  [03/29/891  02/28/89 03/07/89 03114/89 03/21/89 03/28/89 04/04/89  DATE  RRSI8  [7].F5,SR6O/40,  DAY  EXPER. RUNS NUMBERS  33470 41770 45100 39250 27550 10410 10710 12380 14680 21760 11900 5700 8920 8360 6910 9030 10360 12650 5670 6650 7320 9830 9550 9050 9900  40650  24110  TS 20740 37120 30260 38160 42040 35910 24610 8120 8530 9870 11920 18450 9480 3870 6970 6260 5140 6920 8350 9560 3600 4150 5160 7530 6960 6830 7410  VS 17750 44510 28780 37040 43370 33260 20580 6190 7100 8640 8860 13140 9470 3910 6090 6060 3700 5820 5840 6810 2760 3480 3740 4260 4840 5110 5570  TSS 16850 42880 27820 35840 41780 32180 19780 6020 6870 8360 8350 12110 8890 3590 5490 5540 3570 5680 5690 5890 2350 2650 3110 4190 4420 4660 4570 2.41 4.07 3.35 4.18 4.51 3.93 2.76 1.04 1.07 1.24 1.47 2.18 1.19 0.57 0.89 0.84 0.69 0.90 1.04 1.27 0.57 0.67 0.73 0.98 0.96 0.91 0.99 86.02 91.32 90.41 91.36 93.22 91.49 89.33 78.00 79.65 79.73 81.20 84.79 79.66 67.89 78.14 74.88 74.38 76.63 80.60 75.57 63.49 62.41 70.49 76.60 72.88 75.47 74.85 94.93 96.34 96.66 96.76 96.33 96.75 96.11 97.25 96.76 96.76 94.24 92.16 93.88 91.82 90.15 91.42 96.49 97.59 97.43 86.49 85.14 76.15 83.16 98.36 91.32 91.19 82.05 38185 81212 57959 55422 84323 71311 48682 21328 11089 25050 29191 28627 22178 12181 12866 13514 16185 19355 21162 20648 8748 14531 17098 17600 15259 16618 16133 9389 11475 12245 10924 11394 11148 10467 10946 11327 11054 9625 9804 8951 7701 8343 8108 8709 8653 8963 9717 3897 9261 11137 9200 8519 7721 7900  COD, MG/I SOL.  [%1 [%TS] OTAL  1.78 4.45 2.88 3.70 4.34 3.33 2.06 0.62 0.71 0.86 0.89 1.31 0.95 0.39 0.61 0.61 0.37 0.58 0.58 0.68 0.28 0.35 0.37 0.43 0.48 0.51 0.56  SOLIDS, MG/L or ELSE TVSS [%] [%TSI  381 339 329 314  6 g 3  306 392 382 391 424 473 483 483 488 504 485 512 522 469 469 460 460 388 369 415 491 401 398 495 447 451 488 521 488 519 500 492 432 589 558 542 498 445 429 381 349 475 544 489 456 426 391 308 345 5.01 6.07 5.71 6.23 5.09 5.24 5.98 6.41 5.85 5.43 7.34 7.05 6.70 6.46 3.21 5.47 5.48 5.89 5.55 6.86 4,53 8.08 5.24 4.60 6.06 5.77 6.44 193 227 223 219 235 252 240 236 226 257 228 266 251 235 233 220 218 199 183 230 138 216 216 190 179 145 166  0.89 1.05 1.61 1.04 0.83 0.82 0.98 2.44 2.22 2.14 1.89 2.04 2.12 3.86 2.54 3.28 7.32 2.43 1.82 2.36 2.98 2.51 2.41 2.80 2.13 2.12 2.16  181 211 204 204 210 228 247 243 238 240 221 247 245 219 227 234 237 200 198 200 147 193 198 170 164 155 153  INORGANICS, MG/I or ELSE 114—N TKN [%TSJ TP [%TS] P04-P  TABLECL.3RESPONSE DATA OF TILE SAMPLING POINT NUMBERED 3 UNDER DIFFERENT RUNNING CONDITION S DURING PHASE 1,2, AND 3  CD  57 64 71 78 81 85 92 99 106 109 113 116  [1 1].F5,SR9O/l0. RR5/8 [08/05/89]  [12].F5,SR9OI 10, RR3/6 [09/06/891  DAY  EXPER. RUNS NUMBERS  08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  7250 10370 9850 11690 9810 9340 11375 12330 35790 12740 48000 14560  TS TSS  4860 3470 7220 5970 7160 4430 8820 5990 7480 3540 6610 5760 8525 5420 9520 5890 32450 31120 10430 7420 40560 6810 11000 8050  VS 3130 5410 3980 5310 3090 5240 5200 5600 29730 7030 6410 7670 0.73 1.04 0.99 1.17 0.98 0.93 1.14 1.23 3.58 1.27 4.80 1.46 67.03 69.62 72.69 75.45 76.25 70.77 74.95 77.21 90.67 81.87 84.50 75.55 0.35 0.60 0.44 0.60 0.35 0.58 0.54 0.59 3.11 0.74 0.68 0.81  SOLIDS, MG/L or ELSE TVSS I%I [%TSI 1%] 90.20 90.62 89.84 88.65 87.29 90.97 95.94 95.08 95.53 94.74 94.13 95.28  L%TS] 12915 15830 20656 19598 20160 18413 18055 20809 53707 24376 23740 24793 7444 7915 8770 8996 10880 11190 10817 10559 9780 9652 10163 10579  COD, MG/L OTAL SOL. 314 229 240 281 291 311 316 311 321 304 286 293 325 279 349 547 501 343 375 340 323 334 337 369 5.31 4.80 6.27 5.83 4.16 5.27 5.24 5.54 5.14 4.60 5.33 6.22  168 233 277 237 233 210 203 185 162 175 193 205  2.65 3.33 2.01 3.58 2.40 2.30 1.97 1.94 0.87 1.32 1.57 1.55  153 I19 132 155 185 198 189 200 190 185 187 197  INORGANICS. MGIL or ELSE 114-N TKN F%TSI TP I%TSJ P04-P  TABLE C13 RESPONSE DATA OF TIlE SAMPLING POINT NUMBERED 3 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2. AND 3  v1  I-a CD  196  TABLE CI.3 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 3 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2. AND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20,  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89  22  02/07/89  25 29 43 50 57 64 71 78 85 92 99 102 106  02/10/89 02/14/89 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89  RR2/4  [2].F5,SR8O/20, RR6/ 10 [07/30/881  [3] .F5,SRSO/50, RR6/10 [08/31/88]  [4] .F5,SRSO/50, RR2/4 [10/03/88] [5}.F5,SR70130, RR3/6 [14/01/88]  [6].F5,SR7O/30, RR5/8 [02/20/89]  [7].F5,SR60140.  RR5/8 [03/29/89]  DATE  04/04/89  04/11/89 04/18/89 04/25/89 04/28/89 05/02/89  HAc  HPr  2303 2234 2137 2175 1941 2015  2436 2380 2357 2560 2096 1916 1876 1527 1775 1738 2011 2201 2263 2038 2030 1888 1940 1972 2111 2262 2262 2630 2345 2594 2005 2627 2945  2044 1844  2112 1925 2130 2189 2297 2137 2028 1836 1954 2005 2131 2299 2306 2417 2184 2737 2319 2649 2854 2918 2695 2848 2726 2138 3242 2630  2616 2452 2262 1601  2765  2700 3007 2763 2002 3345  2872 2743 2911 2631 2549  1881  2501  1287  2028  1388 747  2944  2726  IsoHBr 34 34 38 37 35 32 31 30 33 34 40 36 45 39 35 36 35 32 32 34 33 34 34 39 31 45 43 41 35 33 36 28 51 41 42 45 43 41 37 36 52 51  VFA, MG/L HBr A-HVr 1123 1106 1004  954 905 1148 1191 1254 1359 1046 1134 1200 1262 1109 1120 994 1091 922 998 1027 1051 1155 970 1095 819 952 1050 1015 905 1C31 926 876 1069 1112 985 898 950 735 741 660 870 735  21 24 25 28  11 6 12 13 18 14 20 43 14 42 38 18 19 21 21 21 22 25 20 22 13 13 11 10 13 10 19 16 18 20 25 26 20 20 29 30  IsoHVr 56 .51 57 56 160 98 121 109 81 58 51 56 61 100 58  25 26 30 31 32 31 36 29 113 106 91 83 54 55 36 65 55 56 63 52 52 42 41 61 59  HVr 812 814 819 743 762 575 608  480 520 479 562 719 713 631 618 479 511 537 569 581 589 649 545 702 524 768 769 845  TOT.VFA HHe mg/L HAc 74  5628  124  5528  145  5364 5483  136  4824  128 116 140 159 135  145 149 177 158 140  4835 4894 4380 4943 4464  5007 5358 5582 5109 4940 4435  114 123 79  4681 4636  92  4954  95 91  5277 5303 5827 5168 6129 4924 6037 6558  104  90 129 121 90 93  6438  77  5626  674 679 554 812 654 585 577  6446 6062  564  573 505 510 642 617  69 94 77 77 64 54 62  4612  41  4794  44 47  3742 4857 3933  4766 7293 6211 5968 5877 5477  197  TABLE CI .3 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 3 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [81.F5,SR6O/40,  113 120  130 134 137 141 1 8 IS 22 29 36  RR3/6 [05/09/89]  [9].F5,SR8O/20, RP.S/8 [06/10/89] [10].F5,SR8O/20, RRS/8 [07/02/891 Reacclimatization  [12].F5,SR9O/10, RR3/6 [09/06/89]  HAc  HPr  Iso-  05/09/89 05/16/89  453  2946 2429  05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89  498 454 365 418 463 615 620  HBr 62 52 49  585  2261 2153 1788 2030 1681 2160 2334 694 2131 2066 2230  50 48 46 47  VFA, MG/L HBr A-HVr  Iso—  HVr  TOT.VFA HHe mg/L HAc  HVr 852 614  40 34  584 786 684 781 722 978 929 215 711 686 668 603 556 601 552 625 689 443 859  29 31 24 25 19 31  71 58  52 56 50 55 46 92 96 4 73 73 82 76 75 76 71 62  796 680  66 70  52  25 24 29 27 30 32 29 24 19 16 24  45 50  729 842 660 644 547 803 827 276 615 609 686 628 533 539 508 569 502 380 598  27 28 26 27  60 60 58 58  741 754 730 733  33  73  53 54 51  66 68  4032  3499 3266 3354 2740 3083 2705 3643 3775 1429  07/04/89  555  50  07/11/89 07/18/89 07/25/89 07/28/89 08/01/89  1705 1619 874 528 568  53  08/04/89  643  2094  57 64  08/08/89 08/15/89 08/22/89 08/29/89  2076 1873 1848 1258 2212  36  106  09/01/89 09/05/89 09/12/89 09/19/89 09/26/89  721 1028 1289 836 1821 2069 1888 1979 1765  2625 2455 2480 2350  42 43 41 42  109  09/29/89  1660  2239  39  849 799  25  54  681  61  4525  113  10/03/89  1871  38  873  24  54  738  71  4892  116  10/06/89  1786  2322 2545  48  940  31  67  780  74  5078  43  46  [11].F5,SR9O/I0, RRS/8 [08/05/89]  DATE  71 78 81 85 92 99  2164  2085  1001 876 851  54  34  4355  46 66 61 45 46 41  4201 3641 3155 3036 3155 3159 3386 3624 2439 4653 5437  54  56 41 63 80  81 77 74  5042 5117 4797  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29  [I].F5.SR80/20, RR2/4  [5].F5,SR7O/30, RR3/6 [14/01/88]  [10/03/881  [4].F5,SR5O/50, RR2/4  [3].F5,SR5O/50, RR6/10 [08/31/88]  [07/30/881  [2].F5,SR8O/20, RR6/10  DAY  EXPER. RUNS NUMBERS 07/12/88 07/19/88 07/22/88 07/26/88 08/02188 08/09/88 08/12/88, 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21188 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02114/89  DATE  940 1025 882 617 1503 1390 1563 1560 1650 1567 1417 1453 1560 1757 1830 1127 710 547 603 992 1459 1920 1584 1492 1474 1405 10250 7655 10380 2600 9410  TSS 880 970 818 600 1360 1323 1510 1487 1580 1527 1383 1447 1529 1723 1757 1123 689 516 570 912 1383 1826 1504 1432 1416 1348 9820 7365 9805 2330 8915 0.09 0.10 0.09 0.06 0.15 0.14 0.16 0.16 0.17 0.16 0.14 0.15 0.16 0.18 0.18 0.11 0.07 0.05 0.06 0.10 0.15 0.19 0.16 0.15 0.15 0.14 1.03 0.77 1.04 0.26 0.94 93.62 94.63 92.74 97.24 90.49 95.18 96.61 95,32 95.76 97.45 97.60 99.59 98.01 98.06 96.01 99.65 97.04 94.33 94.53 91.94 94.79 95.10 94.95 95.98 96.07 95.94 95.80 96.21 94.46 89.62 94.74  SOLIDS, MG/L or ELSE TVSS [%1 [%TSI 11406 12574 11451 17706 13775 13031 13720 12455 12883 12623 13126 13538 14351 14151 14628 12346 11639 11999 11301 12851 14048 15353 13281 12960 12749 12493 28169 11861 28043 14959 25806  COD, MG/L Total 9109 9430 9981 10543 10562 8858 9800 9182 9463 8994 9317 10020 11216 9571 9917 9630 9836 9959 9756 10442 10317 11071 10119 9680 9820 10029 10704 9968 10326 10813 11048  Sol. 248 242 261 270 347 304 259 284 286 286 275 265 353 420 385 409 400 400 411 430 422 39T 431 435 397 339 421 453 399 383 383  H4-N 307 289 304 306 429 358 311 316 310 327 347 324 421 476 479 468 438 443 465 507 484 491 490 470 490 389 552 576 471 413 422 195 187 197 191 200 179 183 181 179 183 194 190 226 229 243 231 231 234 233 257 255 249 242 234 296 182 246 248 215 215 220  193 184 211 197 197 175 183 187 189 184 190 232 126 217 225 211 236 231 222 234 247 242 249 239 369 189 216 223 215 208 215  INORGANICS, MG/L TKN TP P04-P  TABLE CI.4 RESPONSEbATA OF THE SAMPLiNG POINT NUMBERED 4 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1 2 AND 3 EXPERIMENTS  00  [9].F5,SR8O/20, RRS/8 [06/10/89] [101.F5,SR8O/20, RRS/8 [07/02/89] Reacclimatization  [S).F5,SR6O/40, RR3/6 [05/09/89]  [71.F5,SR6O/40, RR5/8 [03/29/89]  14 21 28  [6].F5,SR7O/30, RRS/8 [02/20/89] 42 49 56 63 70 73 77 113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53  35  DAY  EXPER. RUNS NUMBERS  02/04/00 02/11/00 02/18/00 02/25/00 03/03/00 03/10/00 03/13/00 03/17/00 05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  01/28/00  01/14/00 01/21/00  DATE  1070 855 1105 1510 2255 1665 1505 1515 2495 2765 3165 4465 2980 1375 1125 1205 820 995 1145 1660 990 2215 1175 1340 1565 1210 1340  TSS  1100 1470 2095 1540 1430 1445 2330 2610 2885 4075 2760 1230 980 1080 790 746 802 1070 775 1710 845 1225 1375 1085 1215  850  980 0.11 0.09 0.11 0.15 0.23 0.17 0.15 0.15 0.25 0.28 0.32 0.45 0.30 0.14 0.11 0.12 0.08 0.10 0.11 0.17 0.10 0.22 0.12 0.13 0.16 0.12 0.13 91.59 99.42 99.55 97.35 92.90 92.49 95.02 95.38 93.39 94.39 91.15 91.27 92.62 89.45 87.11 89.63 96.34 74.97 70.04 64.46 78.28 77.20 71.91 91.42 87.86 89.67 90.67  SOLIDS, MG/Lot ELSE TVSS [%] [%TS] 23353 12444 14204 14056 15289 15246 13631 13843 14178 15905 15148 16627 15129 9430 9669 9498 9788 10702 11120 11093 6362 11098 12078 11520 10963 9853 9979 9467 11152 12327 11004 10562 11230 10548 10865 10614 11133 9941 10275 9030 7308 8109 7954 8478 8577 8797 9393 3658 8942 9961 8400 8741 7721 7734  COD, MG/L Total Sol. 342 392 382 431 454 478 502 473 513 504 518 549 531 479 479 488 460 417 388 415 496 422 396 371 360 371 342  NH4-N 436 491 447 485 496 470 531 511 554 573 529 652 553 560 479 515 628 332 332 516 646 460 460 374 461 439 369 206 229 205 225 231 221 249 236 242 241 227 282 241 206 219 234 296 203 200 221 142 196 209 161 203 190 171  186 211 204 213 224 245 249 243 240 240 235 247 238 217 227 239 242 174 174 Ill 142 191 191 159 168 161 158  INORGAN1CS, MG/L TKN TP P04-P  TABLE C1,4 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 4 UNDER DIFFERENT RUNNING CON DITIONS DURINGPHASEI,2,AND3EXPERIMENTS  57 64 71 78 81 85 92 99 106 109 113 116  [11].F5,SR9O/10, RR5/8 [08/05/89]  [12).F5,SR9O/10, RR3/6 [09/06/89)  DAY  EXPER. RUNS NUMBERS 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  1055 1020 1325 1100 855 1340 910 780 1295 1090 1285 1340  TSS 925 905 1155 910 740 1135 855 715 1205 1050 1155 1325 0.11 0.10 0.13 0.11 0.09 0.13 0.09 0.08 0.13 0.11 0.13 0.13 87.68 88.73 87.17 82.73 86.55 84.70 93.96 91.67 93.05 96.33 89.88 98.88  SOLiDS, MG/L or ELSE TVSS [%) L%TSI 12018 9021 10820 10281 12800 12381 12607 12023 11703 11452 11544 13554  COD, MG/L Totil 7085 7915 8450 8835 10480 10873 10039 10019 9379 9816 9431 10000  Sol. 302 263 260 311 311 322 333 333 304 425 339 323  NH4-N 341 460 285 462 481 375 385 362 405 498 337 405  171 144 131 205 222 210 200 197 179 198 189 208  155 134 141 160 180 196 189 196 181 190 187 197  INORGANICS, MG/L TKN TP P04-P  TABLE Cl.4 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 4 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE I. 2, AND 3 EXPEMENTS  0 0  201  TABLE CIA RESPONSE DATA OF THE SAMPLING POINT NUMBERED 4 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20,  1  RR2/4 [2].F5,SR8O/20, RR6/10 (07/30/881  [31.F5,SRSO/50, RR6/I0 (08/31/88]  [4J.F5,SRSO/50, R.R2/4 [10/03/88] [51.F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR7O/30,  RRS/8 [02/20/89]  [7].F5,SR6O/40,  RR5/8 [03/29/89]  DATE  VFA. MGIL IsoHBr A-HVr HBr 33 878 21  HAc  HPr  07/12/88  1779  2177  8 07/19/88 11 07/22/88 15 07/26/88 22 08/02/88 29 08/09/88 32 08/12/88  2071 2335 2644 2417 1972 2072  34 38 43 43 42 36  945 994 1003 982 1116 1235  24 27 31 18 18 13  1991  43  1492  1834 1792 1888 2159 2238 2091 2157 2121 1943 2025 2127 2250 2173 2481 2363 2101 1751 2622 2781 2629 3033 2745 2825  37 39 38 39 46 44 38 42 35 31 30 34 32 34 36 32 37 47 48 42  1331 1038 1038 1042 1108 951 999 937 1041 913 987 968 931 1031 821 800 301 804 822 780 848 869 832 887 1097 1120 884 873 933 772 770 849 831 725  36  08/16/88  39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 15 22 25 29  08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89  1613 1833 1908 1933 1674 1934 1845 1837 1698 1678 1857 1871 1793 1805 1759 1874 1917 2021 1960 1913 2036 1801 1922 1147 2211 2352 2286 2460 2354 2254  43  02/28/89  2302  2132  50 03/07/89 57 03/14/89 64 03/21/89 71 03/28/89 78 04/04/89 85 04/11/89 92 04/18/89 99 04/25/89 102 04/28/89 106 05/02/89  3112 2900 2491 2322 2172 1695 1757 1502 1232 718  3189 3047 2708 2851 2692 2672 2579 2619 2818 2677  8  45  34 40 30 49 43 44 45 43 43 40 48 51 50  Iso-  HVr  HHe  .50 57 64 108 140 84  720 737 830 824 595 732 566  106 119 143 143 118 127  19  92  579  179  16 20 17 17 77 58 17 32 18 19 20 22 21 21 24 22 25 19 16 14 16 10 15 11  58 90 59 59  76 56 89 26 27 30 29 32 34 29 32 109 107 86 93 80 84 24  498 535 554 648 748 599 665 469 562 553 591 589 571 631 472 524 368 641 662 705 743 730 780 553  159 146 143 150 174 16 147 125 122  19  54  786  98  705 509 539 602 642 555 602 613 602  87 73 62  HVr 51  17  58  19  47  22 25 27 22  62 51 53 46  28  56  28 30  59 59  99 99 93 104  83 97 53 74 89  66  51  61 47  TOT.VFA mg/L HAc  4686 4498 5041 5380 5077 4586 4936 5004 4675 4340 4387 4848 5048 4562 4783 4539 4640 4554 4866 4896 4745 5230 4656 4581 3075 5408 5708 5452 6029 5678 5656 5036 7035 6667 5695 5658 5445 4873 4791  52  4668  46  4554  58  3853  202  TABLE C1.4 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 4 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3 EXPERIMENTS EXPER.RUNS NUMBERS  DAY  [8].F5,SR6O/40, RR3/6 [05/09/89]  113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53 57 64 71 78 81 85 92 99 106 109 113 116  [9].F5,SR8O/20, RR5/8 [06/10/89] [10].F5,SR8O/20, RRS/8 [07/02/89] Reaccljmatjzatjon  [1 1].F5,SR9O/I0, RRS/8 [08/05/89]  [121F5,SR9O/10, RR3/6 [09/06/89]  DATE  05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  HAc  HPr  427 569 329 330 340 416 537 526 555 479 1542 1532 701 506 522 557 634 981 1434 1406 1869 1963 1679 1784 1504 1613 1730 1590  2993 2699 2164 1822 2002 2334 2076 1978 2321 685 2041 2151 1988 2343 2253 2103 2013 1990 2248 2347 2429 2590 2364 2455 2244 2342 2327 2381  IsoHBr 65 61 48 43 49 58 54 46 50  43  40 42 42 42 41 42 40 45  VFA,MG/L HBr A-HVr 809 600 474 586 673 792 749 787 842 184 641 664 542 589 538 545 494 608 755 767 896 973 795 785 743 787 814 860  42 39 28 28 30 35 32 34 36 8 26 26 27 30 33 32 29 28 28 31 27 27 28 28 27 27 25 30  IsoHVr 73 67 52 46 58 69 66 93 98 63 72 73 75 80 79 76 70 68 70 75 56 59 59 59 57 58 55 63  HVr HHe 810 707 601 626 695 699 605 685 763 366 578 618 551 629 520 500 468 566 582 608 640 733 728 698 656 735 683 737  73 88 42 56 53 58 51 53 66 30 47 53 59 44 40 35 55 61 72 69 75 80 78 67 70 69 70  TOT.VFA mg/L HAc 4032 3732 2862 2677 2944 3390 3208 3203 3607 1417 4047 4175 3094 3273 3139 3012 2955 3427 4203 4289 4938 5276 4687 4841 4328 4596 4684 4662  [5].F5,SR7O!30, RR3/6 [14/01/88]  [10/03/88]  [41.F5,SR5O/50, RR2!4  RR6/l0 [08/31/88]  [3].F5.SRSO/50,  [07/30/88]  25 29  02/14/89  01/31/89 02/07/89 02/10/89  22  8 15  102 1  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88  DATE  10/18/88 10/21/88 01/17/89 01/24/89  95 99  85  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81  [l].F5,5R80/20, RR2/4  [2].F5,SR8O/20, RR6/10  DAY  EXPER. RUNS NUMBERS  7433 7080 6040 7057 7407 8463  5517  6500  5017  7358 8374 7333 7310 6404 9912 7012 8438 6360 6880 6470 8230 7813 9585 7850 4700 4620 4670 4487 4947 4927 7110  TS  ‘  4467 4153 3500 4053 4667 4923  2707  4693 5494 4558 4700 3824 7208 4432 5828 4123 4613 4090 5640 5157 5970 5410 2517 2400 2337 2160 2450 2430 4263 2637 4090  VS  1822 3586 477 900 1470 1565 1363 1385  592  580 540 537 437 753 4067 433 497 863 580 1580 2177 2193 1523 3327 1818 400 298 312 414 474 1508  1173 1325  1473  535 520 480 420 660 3910 411 483 847 558 633 2160 2143 1513 3260 504 393 288 266 362 436 1426 560 1752 3452 463 879 1465 0.74 0.85  0.71  0.65 0.55 0.74 0.71 0.60  0.50  034 0.84 0.73 0.73 0.64 0.99 0.70 0.84 0.64 0.69 0.65 0.82 0.78 0.96 0.79 0.47 0.46 0.47 0.45 0.49 0.49 0.71 62.92 49.07 60.10 58.66 57.95 57.43 63.01 58.17  52.56  62.28 68.92 53.55 51.95 50.04 48.14 49.52 49.32 59.96  66.01  63.78 65.6I 62.16 6430 59.71 72.72 63.21 69.07 64.83 67.05 63.21 68.53  SOLIDS, MG!L or ELSE TSS TVSS [%I [%TS]  0.09 0.15 0.16 0.14 0.14  0.05  0.18 0.36  0.06  0.15 0.33 0.18 0.04 0.03 0.03 0.04 0.05 0.15  0.22 0.22  0.06 0.05 0.05 0.04 0.08 0.41 0.04 0.05 0.09 0.06 0.16  [%]  94.12 86.06 95.67  97.72 99.34 97.99 27.72 98.25 96.64 85.26 87.44 91.98 94.56 94.59 96.16 96.26 97.06 97.67 99.66  99.22  92.24 96.30 89.39 96.11 87.65 96.14 94.92 97.18 98.15 96.21 40.06  14022 14228 14113  15215 18926 15870 11230 11265 10976 12129 12143 15758 10356 16560 15320 11554 13732 14385  16165  12673 12416 11683 12072 13293 19576 11880 11657 12565 12623 13043 16074  11855  12114  11196  11089 10295 10058 11509 10884 9409 9000 9820 10020 9152 9979 10593 12041 10879 10992 10123 9918 10286 9837 10923 11270 11394 I05’14 10400 11210 10792 11831 11483  420  430 443 357 388  325  435 435 397  412  270 238 274 283 310 282 237 331 290 275 273 275 382 441 409 380 429 396 415 4.44 468  533 421 429 547 637 482 462 444  517  3I8 293 318 338 385 344 315 326 399 320 398 363 385 492 487 460 458 463 498 507 512 420  255 314 209 261 285 219 237 217  259  209 190 187 207 187 185 179 192 217 179 196 210 231 241 247 231 237 245 255 261 260 227  246 369 191 197 240 208 215 215  251  208 184 184 194 191 183 166 190 196 177 192 190 217 238 232 225 231 234 234 244 256 240  COD, MG/L INORGANICS, MG/L or ELSE [%TS] TOTAL SOL. NH4-N TKN TP P04-P  TABLE Cl 5 RESPONSE DATA OF THE SAMPLANG POINT NO S UNDER DIFFERENT RUNNING CONDITIONS DUAUNG PHASE I 2 AND 3  0  43 50 57 64 71 78 85 92 99 102 106 113 120 130 134 137 141 I 8 15 22 29 36 43 46 50 53  [6].F5.SR70130, RRS/8 [02/20/89]  [9J.F5,SR8O/20, RR5/8 [06/10/89] [10].F5,SR8O/20. RRSI8 [07/02/89] Reacclimatization  [8].F5.SR6O/40, RR3/6 [05/09/89]  [7].F5,SR6O/40, RRS/8 [03/29/89]  DAY  EXPER. RUNS NUMBERS 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89 05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  DATE  4963 6513 6997 6240 5917 7253 4873 5400 5953 10750 8553 9553 8353 5427 8750 5420 9727 62l0 7645 5185 4675 5415 5750 8005 7680 7135 8230  TS 530 510 485 700 730 2705 736 730 985 7330 4785 5180 3316 2115 4930 1560 5415 5799 6550 3774 1102 1375 1030 3320 3093 2770 3960 0.50 0.65 0.70 0.62 0.59 0.73 0.49 0.54 0.60 1.08 0.86 0.96 0.84 0.54 0.88 0.54 0.97 0.62 0.76 0.52 0.47 0.54 0.58 0.80 0.77 0.71 0.82 54.75 59.42 55.64 63.41 63.77 66.32 53.91 59.76 63.16 78.33 73.97 74.88 64.99 62.70 75.43 63.47 76.62 65.01 67.00 69.01 59.25 55.49 56.52 70.52 71.09 67.69 71.93  SOLIDS, MG/L or ELSE TSS TVSS [%] [%TSJ  2717 685 3870 530 3893 505 3957 740 3773 805 4810 2825 2627 800 3227 735 3760 1010 8420 7635 6327 5090 7153 5585 5429 3645 3403 2310 6600 5515 3440 1745 7453 5830 4037 6235 5122 6870 3578 5897 2770 1510 3005 1780 250 1400 5645 3480 5460 3427 4830 3610 5920 4610  VS 0.07 0.05 0.05 0.07 0.08 0.28 0.08 0.07 0.10 0.76 0.51 0.56 0.36 0.23 0.55 0.17 0.58 0.62 0.69 0.59 0.15 0.18 0.14 0.35 0.34 0.36 0.46 77.37 96.23 96.04 94.59 90.68 95.75 92.00 99.32 97.52 96.01 94.01 92.75 90.97 91.56 89.39 89.40 92.88 93.01 95.34 64.00 72.98 77.25 73.57 95.40 90.25 76.73 85.90 11124 12040 12816 12691 12121 18279 12738 11590 12515 26243 19566 19922 18563 11002 10292 18224 20193 26565 24730 36032 6044 10060 11608 16160 14667 13676 16466  562 531 334 396 455 440 657 610 472 560 477 504 408 434 548 5l 485 444 465 444 409 377  507 478 513 508 485 587 526 479 497 488 479 407 498 505 496 427 370 376 350 350 359  419 406 447 496 477  502  372 413 391 426 459  10178 11071 12000 11647 11572 12049 10467 10865 10772 10974 9625 10275 9347 7623 8109 8880 8786 9108 10041 9879 3658 9501 10353 9200 8741 7721 7734  255 174 185 239 230 284 263 212 212 239 249 203 205 236 128 211 211 205 198 179 171  254  233 227  223  206  204  249 246 243 243 233 250 238 219 229 226 234 210 229 200 137 193 196 172 166 159 158  238  198 208 204 218 228  COD, MG/L INORGANICS, MG/L or ELSE SOL. H4—N TKN TP P04-P  [%1 [%TSJ TOTAL  7ABLE CL.5 RESPONSE DATA O THE SAMPLING POINT NO.5 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3  0  57 64 71 78 81 85 92 99 106 109 113 116  [11].F5,SR901 10, RRS/8 [08105/89] 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  7400 8655 12270 9855 7810 10495 9597 7485 7120 7085 5830 11270  TS 4945 6035 9335 7200 5195 7640 6870 4975 4925 4870 4695 8135  VS 3210 4450 7370 4630 7170 2690 5390 2070 2100 2840 7490 5090  TSS  4935 1940 1950 2580 6891 4760  4560 2300  2900 4030 6590 4100 0.74 0.87 1.23 0.99 0.78 1.05 0.96 0.75 0.71 0.71 0.58 1.13 66.82 69.73 76.08 73.06 66.52 72.80 71.58 66.47 69.17 68.74 80.53 72.18  SOLIDS, MGJL or ELSE TVSS [%I [%TS]  89.42 88.55  0.74 0.46 0.72 0.27 0.54 0.21 0.21 0.28 0.75 0.51 85.50 91.56 93.72 92.86 90.85 92.00 93.52  63.60  90.34 90.56 17992 16000 18730 20233 14489 12986 13742 17886 22810  26885  15067 14806 7534 7660 8934 8594 10960 11032 10195 9557 9379 9407 10488 10496 330 229 250 311 373 342 328 328 339 339 411 422  385 375 392 453 482 496  406  345 238 372 475 455  171 144 296 211 214 220 196 189 183 198 205 226  155 121 101 160 180 198 189 191 192 194 208 206  COD. MG/L INORGANICS, MG/L or ELSE [%TS] TOTAL SOL. H4-N TKN TP P04-P  0.32 0.45  [%j  1 2 3 4 5 6 7 8 9 10 11 12 7672 7193 4787 5678 7642 6079 9619 7574 6415 7682 9387 8062 4917 4781 2347 3145 4548 3865 7300 5447 4350 5403 6678 5900 505 1446 400 2000 1438 773 6103 3788 6384 3882 4830 5140 473 1117 355 1921 1324 715 5765 3488 5162 3274 3653 4744 0.77 0.72 0.48 0.57 0.76 0.61 0.96 0.76 0.64 0.77 0.94 0.81 64.02 66.26 48.99 54.85 59.54 63.59 75.73 70.05 68.00 70.24 70.79 73.82  0.05 0.14 0.04 0.20 0.14 0.08 0.61 0.38 0.64 0.39 0.48 0.51  93.93 78.50 88.23 95.67 91.95 92.64 94.25 91.14 79.67 84.30 79.22 92.12  12057 13913 11749 14079 14121 124.06 21910 19209 30381 14936 17574 18146  10621 9908 10677 10708 11722 11610 10291 8833 9960 8065 10195 10130  265 274 442 422 388 443. 527 484 502 353 342 391  316 360 506 490 463 487 517 491 491 410 445 477  195 195 259 276 224 230 251 ERR 221 183 215 210  187 186 245 289 213 223 242 244 215 161 179 203  NOTE: 1.2.,12 ARE AVERAGE RESPONSES AT PSEUDO-STEADY STATE FOR EXPERIMENTAL RUNNING CONDITION S NUMBERED I TO 12 RESPEC  [12].F5,SR9O/10, RR3/6 [09/06/89]  DAY  EXPER. RUNS NUMBERS  •:TABLE.CL.5 RESPONSE DATA O THESAMPLING POINT NO.SUNDER DIFFERENT RUNNINGCQNDIT1ON I DURING PHASE 1,2, AND 3.  v1  0  206  TABLE Cl .5 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 5 UNDER D[FFERENT RUNNING CONDiTIONS DURING PHASE 1,2, AND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20, RR2/4  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1  [21.F5,SRSO/20, RR6/10 [07/30/88]  [3].F5,SR5O/50, RR6/10 [08/31/88]  [4].F5,SRSO/50, RR2/4 [10/03/88] [5].F5,SR7O/30, RR3/6  [14/01/88]  [6].F5,SR7O/30, RR5/8 [02/20/89]  [7].F5,SR6O/40, RRS/8 [03/29/89]  DATE HAc  8  15 22 25 29 43 50 57 64 71 78 85 92 99 102 106  07/12188 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88  08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02188 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02189  2203 2016 1926 2086 2177 2036 2013 2081 2102 1907 1932 2089 2174 2043 1946 1905 2015 2043 2152 2351 2376 2415 2073 2165 1218 2591 2917 2920 2812 2985 2633 2433 2732 2968 2550 2743 2221 1780 1822 1425 1330 658  IsoHBr 2440 38 34 2232 41 2314 41 2519 42 2439 36 1949 1916 33 38 1797 41 1908 40 1841 40 1942 43 2261 49 2272 45 2128 43 2179 37 1937 36 1901 2027 32 30 2107 34 2349 35 2366 35 2612 38 2371 2177 32 1742 37 41 2593 45 2945 42 2838 43 2950 39 3249 45 2833 2237 33 45 2775 45 3146 47 2792 56 3227 46 2758 44 2655 39 2545 44 2393 2893 53 2680 53 HPr  VFA, MGIL HBr A-HVr 1118 1044 973 961  25 24 31 31  1049  1177 1162 1472 1407 1092 1075 1194 1209 1102 1096 1001 1083 926 965 1058 1087 1142 961 918 302 939 1027 986 1007 110 96 937 910 1154 903 998 955 785 766 770 850 714  11 12 13 18 17 16 20 61 23 21 18 61 19 19 22 22 22 26 21 25 19 14 14 16 13 18 12 17 17 21 26 27 27 21 25 29 33  IsoHVr 57 51 62 61 70 122  82’ 87 88 101 80 83 91 78 75 71 26 26 31 32 34 35 30 33 104 106 89 63 86 74 37 47 65 49 58 55 55 45 50 60 61  HVr  HHe  TOT. VFA mg/L HAc 5544  773  139  757  132  5118  771 761 572 607 525 540 533 632 599 739 750 687 761 488 549 546 553 608 613 653 559 542 380 734 780 845 747 834 717 608 663 79 519 592 612 654 536 507 632 608  141 130 121 140 118 171 161 148 143 152 171 162  5075 5381 5339 4951 4806 5032 5095 4689 4750 5340 5493 5098 4993 4585 4742 4733 4939 5437 5503 5805 5090 4979 3146 5910 6614 6480 6406 6270 5533 5329 6103 6479 5846 6515 5575 4964 4812 4285 4738 3793  120 124 89 93 93 99 101 94 101 52 85 94  60 66 81 92 73 75 53 65 45 43 44 51  207 TABLE C1.5 RESPONSE DATA OF THE SAMPLING POINT NUMBERED 5 UNDER DIFFERENT RUNNING DURING PHASE 1, 2, AND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [8].F5.SR6O/40, RR3/6 [05/09/89]  113 120 130 134 137  [9].F5,SR8O/20, RRS/8 [06/10/89] [10].F5,SR8O/20, RP.S/8 [07/02/89] Reacclimatization  [11].F5,SR9O/10, RRS/8 [08/05/891  [121.F5,SR9O/10, RR3/6 [09/06/89]  DATE  05/09/89 05/16/89 05/26/89 05/30/89  HAc  HPr  348 602 359 398 329  2575 2859 2236 2175 1942 2148 2227 2592 2526 606 2106 2438 2397 2338 2400 2244 2278 1954 2028 2338 2638 2717 2395 2376 2406 2335 2524 2552  141  06/02/89 06/06/89  406  1 8 15 22 29 36 43 46 50 53 57 64 71 78 81 85 92 99 106 109 113 116  06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  537 481 546 472 1677 1903 893 521 546 529 711 990 1276 1380 1969 1988 1688 1597 1453 1622 1646 1595  Iso— HBr 56 66 49 54 50 55 57 80 69  43 48 51 43  45 47 48 46 48 52 45 80 73  VFA, MG/L HBr A-HVr 729 723 571 776 714 785 888 827 874 185 695 807 716 655 623 603 600 632 723 772 978 995 807 735 755 806 829 861  NOTE: I, 2 .12 ARE AVERAGE RESPONSES AT (EXPERIMENTAL RUNNING CONDITIONS NO 1 2009 2355 39 993 2 1976 2015 41 1120 3 2293 2274 33 1037 4 1819 2097 36 727 5 2810 3011 42 404 6 2647 3010 52 951 7 2482 2993 51 977 8 368 2045 53 750 9 1801 2600 42 776 10 1624 2469 42 768 11 1378 2643 49 810 12 1621 2470 66 832  37 44 29 34 30 32  31 50 42 24 28 30 29 37 40 33 26 25 33 32 32 30 32 35 29 55 51  .  IsoHVr 63 74 54 58 59 65 67 101 91 4 69 78 82 79 87 88 77 66 65 80 66 68 64 67 71 62 112 104  HVr 698 812 682 851 748 675 710 759 739 264 578 713 722 675 610 566 564 590 555 651 709 763 724 682 727 723 743 757  TOT.VFA HHe mgJL HAc 58 84 54 75 60 57 61 68 70 31 54 69 65 52 46 46 56 60 77 79 83 77 73 71 69 71 73  PSEUDO-STEADY STATE I TO 12 RESPECTIVELY) 29 58 763 134 18 88 657 21 30 591 95 24 33 494 82 16 74 766 60 24 54 556 74 27 57 602 64 31 62 712 59 24 50 595 55 23 48 522 44 27 55 570 44 45 93 741 71  3470 4049 3073 3321 2948 3204 3494 3771 3786 1247 4269 4940 3880 3357 3408 3226 3417 3435 3824 4322 5322 5453 4732 4555 4481 4610 4884 4875  5191 4926 5293 4405 6070 6180 4001 3076 3779 3331 5032 4790  RR3!6 [14/01/881  [5].F5,SR7O/30.  [10/03/881  RR2/4  [4].F5,SR5O/50,  01/24/89 01/31/89 02/07/89 02/10/89 02/14/89  22 25 29  09/14/88 09/17/88 09120/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89  65 68 71 74 78 81 85 95 99 102 1  8 15  09/09/88  08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88  08/09/88  07/26/88 08/02/88  07/12/88 07/19/88 07/22/88  DATE  60  53  57  [08/31/88]  15 22 29 32 36 39 43 46 49  RR6/10  [31.F5,SRSO/50,  [2J.F5,SR8O/20, RR6(10 [07/30/881  EXPER. RUNS DAY NUMBERS [1].F5,SR8O/20, 1 RR2/4 8 11  7810 8155 6470 3520 4360 4545 5075 4730 4990 6390 5445 5795 6240 6070 5530 6360 6255  6635  7275 8370 11230 11465 14660 9965 9210 9380 10795 9235  10295 9130  7840  TS  3155  2985  2550 2550 2340 1160 1730 1705 1985 1990 2260 3275 2925 3170 3085 3070 2735  2715  5865 4475 4150 7580 6880 9295 5895 5975 5205 5780 4595  VS 4593 6735 610 340 1420 615 925 495 2723 1223 2990 1290 2737 1147 3015 1242 3413 1380 5190 1897 4467 1647 3347 1240 4730 1700 3170 1123 2974 1167 657 400 1467 727 1720 827 1893 887 530 347 533 420 1486 1163 640 580 2960 2320 2560 1910 3600 2500 2370 1600 2970 1900 3190 2230 0.64 0.63  50.58  0.61 0.55  50.44  46.93  49.46  61.51 49.58 67.50 60.01 63.40 59.16 64.88 55.49 53.54 49.76 40.92 32.65 31.27 36.17 32.95 39.68 37.51 39.11 42.07 45.29 51.25 53.72 54.70 49.44  0.73 0.84 1.12 1.15 1.47 1.00 0.92 0.94 1.08 0.92 0.66 0.78 0.82 0.65 0.35 0.44 0.45 0.51 0.47 0.50 0.64 0.54 0.58 0.62  0.30 0.32  0.24  0.36  0.06 0.14 0.09 0.27 0.30 0.27 0.30 0.34 0.52 0.45 0.33 0.47 0.32 0.30 0.07 0.15 0.17 0.19 0.05 0.05 0.15 0.06 0.30 0.26  SOLIDS, MG/L or ELSE TSS TVSS [%J I%TSJ 1%] 895 495 0.78 58.58 0.09 705 395 1.03 65.42 0.07 1815 925 0.91 64.24 0.18  63.97 69.91  55.74 43.31 53.51 44.91 43.14 41.91 41.19 40.43 36.55 36.87 37.05 35.94 35.43 39.24 60.88 49.56 48.08 46.86 65.47 78.80 78.26 90.63 78.38 74.61 69.44 67.51  50.96  56.03  [%TS] 55.31  4228 3790  813 887  6339 6260 7160 5320 6228 4711 6203 4294 4497 3313 5590 3188 5767 3640 4784 2887 3681 1963 3388 1736 3539 1975 4508 2459 4245 3592 5054 4246 6827 5462 6825 5635 6788 6060 7352 6640 7760 6240 7200 5840 3812 411 3803 352 4543 1136 3370 543  497 425 473 473  380 421  397  376 376 331 351 369 365 365 399 420 399 361 404 388 406 439 468 432 384 406  632 422 494 444  489 444  399 498 490  363 363 321 389 363 394 406 411 421 425 402 426 431 465 466 487 444  .  5.11 4.74 5.47 4.73  4.58 4.62  5.51 4.46  2.87 2.88 3.84 3.46 4.63  2.84  0.84 1.05 0.93 1.37 1.62 1.23 1.56 1.66 1.62 1.40 2.19 3.41  11.22 11.58 10.29 6.38 6.27 7.39 7.89 6.90 7.09 6.57 3.37 3.16  332 231 224 248 197 236 295 360  118 220 49 112  260 91 72  4.57 5.80  4.25  4.81  10.03  209  417  2.85 5.13 5.21 6.62 9.40 8.46 7.30 10.63 10.22  76 117 90 141 132 134 155 164 149  28 8 11 20  23 102 34 42 137 84 85 57 110 29 157 176 210 232 201 233 301 .345 403 355 8 4  COD, MGIL INORGANICS, MGIL or ELSE TOT. SOL. NH4-N TKN [%TSI TP [%TSI P04-P 3089 2693 261 276 0.71 52 2.25 24 4165 3222 274 293 0.53 70 2.16 35 4255 3017 278 289 0.93 55 3.38 20 3219 2897 298 306 0.74 65 3.15 7 5582 4137 310 389 0.94 85 3.09 53  ABLE Cl 6 RESPONSE DATA OF SAMPLING POINT NO 6 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1 2 AND S EXPERIMENTS  0  [07/02/89] Reacclirnatizatio  46 50 53  36 43  43 50 57 64 71 [7].F5,SR60140, 78 RR5/8 85 [03/29/891 92 99 102 106 [8].F5,SR6O/4.0, 113 RR3/6 120 [05/(39/89] 130 134 137 141 [9].F5,SR8O/20, 1 RRS/8 8 [06/10/89] 15 [10].F5,SR8O/20 22 RR5/8 29  [6J.F5,SR7O/30. RR5/8 [02/20/89]  NUMBERS  EXPER. RUNS DAY  02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89 05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  DATE  5270 5490 6525 5550 5720 4475 5055 5655 5850 5755 5770 5385 5330 4345 4865 5520 4945 6165 5345 4215 2635 3480 4905 4060 3975 3735 3395  TS 2940 3035 3765 3160 3390 2455 2820 3455 3450 3685 3260 3150 2895 2270 2830 3270 2830 3825 3200 2080 1005 1490 2740 2035 2025 1385 1)95  VS 2800 2920 3010 2660 3320 2720 2980 3610 3690 4330 3310 3420 3650 2920 3570 4190 2740 3890 2460 2490 1600 1270 3000 1710 1590 1470 1370 0.40 0.37 0.34  0.41  1460 1)70 1000 880  0.53 0.55 0.65 0.56 0.57 0.45 0.51 0.57 0.59 0.58 0.58 0.54 0.53 0.43 0.49 0.55 0.49 0.62 0.53 0.42 0.26 0.35 0.49  (%J  2070 2460 2380 1990 2410 2010 2250 2860 2720 3400 2450 2420 2660 1940 2270 2780 2070 2950 2010 1390 980 560 1980  TSS TVSS 0.28 0.29 0.30 0.27 0.33 0.27 0.30 0.36 0.37 0.43 0.33 0.34 0.37 0.29 0.36 0.42 0.27 0.39 0.25 0.25 0.16 0.13 0.30  1%]  50.94 0.16 37.08 0.15 35.20 0.14  50.12 0.17  55.79 55.28 57.70 56.94 59.27 54.86 55.79 61.10 58.97 64.03 56.50 58.50 54.32 52.24 58.17 59.24 57.23 62.04 59.87 49.35 38.14 42.82 55.86  L%TS1  SOLIDS, MG/L or ELSE  1926 1912 1414  3294 2160  66.00 85.38 73.58 68.03 64.23  4103 4687 5469 3213 4380 3443 3732 3622 4990 5010 5207 3843 3732 2358 3977 3166 3622 5844 3485 2267 1034 1836  370 368 249  392 320  710 1131 1633 803 1026 656 487 322 1663 477 473 353 317 236 546 421 385 380 415 162 318 399  423 429 398  473 450  387 433 448 444 429 493 517 522 559 541 522 587 587 511 460 5)1 529 560 531 491 447 498 448 391 426 397  514  482 432 447 443 414 510 507 488 473 432 417 610 662 479 529 493 45) 483 499 524 467 534 5.56 4.71 5.24 5.89  3.55  4.95 4.78 4.68 4.99 4.58 5.52 6.18 5.04 5.14 5.38 6.79 5.90 6.69 5.80 4.10 5.78 5.72 6.16 5.99 4.66 365 3.48  70 99 84 39  79  151 147 115 111 115 98 97 84 97 93 90 151 149 93 196 107 125 135 104 103 87 92  4.54 4.75 5.22 6.07  3.35  4.51 3.47 4.04 3.81 4.34 4.25 4.36 4.35 5.12 5.27 6.13 6.34 6.26 7.13 6.71 6.88 2.61 6.87 5.39 7.66 4.89 6.50  6 8 36 15  28  2.64 13.76 6.14 9.21 6 92 20 26 44 23 59 40 109 69 198 61 110 42 18 18 28 24  COD, MG!L INORGANICS, MG/Lor ELSE TOT. SOt. NH4—N TKN 1%TSI TP I%TSI P04-P  73.93 84.25 79.07 74.81 72.59 73.90 75.50 79.22 73.71 78.52 74.02 70.76 72.88 66.44 63.59 66.35 75.55 75.84 81.71 55.82 61.25 44.09  [%TSI  TABLE C1.6 RESPONSE DATA OF SAMPLING POINT NO.6 uNDE R DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3 EXPERIMENTS  0  106  [09/06/89]  RR3/6  109 113 116  08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  57 64 71 78 81 85 92 99  [1 11.F5,SR9OIIO, RR.5/8 [08/05189]  [12].F5,SR9O/I0,  DATE  EXPER. RUNS DAY NUMBERS 4030 3870 3535 4285 3920 4320 4255 3190 3530 3410 4055 4195  TS IHO 980 1645 2050 2120 2155 1880 1365 1575 1715 2020 1945  VS  0.39 0.43 0.43 0.32 0.35 0.34 0.41 0.42  1530 1010 1130 520 790 1042 1080 880  970 1180 1680 1710 1260  0.35 0.43  860 1190 0.15 0.19 0.22 0.15 0.16 0.10 0.12 0.17 0.17 0.13  46.53  0.19  0.18  47.84 54.08 49.88 44.18 42.79 44.62 50.29 49.82 46.36  0.39  1500 1930 2150 1510 1550  27.54 25.32  0.40  1210 1240  1750 1870  SOLIDS, MGIL or ELSE TSS TVSS [%j [%TSI [%] 69.14 66.31 57.33 61.66 71.16 66.89 72.90 53.61 66.95 62.02 63.16 69.84 1794 1787 1639 2249 2160 3016 2033 1079 1443 1636 1789 1488 359 340 328 522 400 476 467 308 240 409 407 331 381 342 322 393 381 404 383 394 411 411 411 428 357  527 527 417 422 449 423 431 419 405  407 331  5.49 80 4.70 81 5.81 273 5.04 90 3.83 196 3.36 61 3.25 54 3.41 59 3.33 57 3.31 58 4.11 12 3.02 47  6.45 6.46 5.72 6.4.0 2.93 3.10 2.79 6.92 5.20 4.85 7.68 5.24  IS 4 9 22 S  15  6 18  6  8 34 4  -  COD, MGIL INORGANICS, MGIL or ELSE [%TS] TOT. SOL NH4-N TKN 1%TSJ TP (%TS) P04-P  TABLE Ct 6 RESPONSE DATA OF SAMPLING POINT NO 6 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1 2 AND 3 EXPERiMENTS  0  211 TABLE Ci.6 RESPONSE DATA OF TIlE SAMPLING POINT NUMBERED 6 tiNDERDIFFEREN T:: RUG COND1ONS DURING PHE 1,2, AND 3EERTS EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20, RR2/4  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29 43 50 57 64 71 78 85 92 99 102 106  [2].F5,SR8O/20, RR6/10 [07/30/88]  [3].F5,SR5O/50, RR6/10 [08/31/88]  [4].F5,SRSO/50, RR2/4 [10/03/88] [5].F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR7O/30, RRS/8 [02/20/89]  [7].F5,SR60140, RRS/8 [03/29/89]  DATE HAc  HPr  iso— HBr  07/12/88 654 07/19/88 846 07/22/88 792 07/26/88 629 08/02/88 1464 08/09/88 2382 08/12/88 2497 08/16/88 2170 08/19/88 1845 08/23/88 1290 08/26/88 1414 08/29/88 1324 09/02188 966 09/06/88 498 09/09/88 368 09/14/88 241 09/17/88 370 09/20/88 274 09/23/88 435 09/27/88 226 09/30/88 126 10/04/88 311 10/14/88 423 10/18/88 452 10/21/88 480 01/17/89 72 01/24/89 116 01/31/89 148 02/07189 216 02/10/89 218 02/14/89 187 02128/89 393 03/07/89 562 03/14/89 818 03/21/89 287 03/28/89 352 04/04/89 102 04/11/89 55 04/18/89 44 04/25/89 58 04/28/89 39 05/02/89 41  779 1028 1021 799 905 836 882 757 752 629 585 690 418 347 330 365 469 602 1188 1637 1836 1745 1840 1844 1647 61 84 122 118 125 113 102 124 193 64 149 34 19 15 28 19 43  25 39 39 37 50 78 79 71 67 63 64 63 54 32 20 18 29 29 39 42 51 44 39 40 39  VFA, MG/L HBr A-HVr  38 43 22 15 167 323 290 214 183 93 106 126 50 30 60 82 153 145 80 271 242 330 392 355 310  18 40 34 23 733 638 127 109 91 65 31 78 21 10 13 36 26 31 32 38 31 28 27 24  IsoHVr  HVr  14 30 25  156 87 49 28 804 760 479 351 395 342 295 344 267 122 274 210 237 232 305 376 409 390 385 386 452  531 492 249 223 219 214 122 197 144) 76 116 33 24 33 38 47 39 34 35 49  3 9 5 5 6 6 8 13 3 8  7 1 8 12 24  6  5  HHc  30  53 59 58 51 59 56  TOTVFA mg/L HAc  1439 1828 1725 1342 3562 4445 3967 3380 3040 2272 2268 2376 1628 944 920 756 1050 1047 1696 2056 2136 2281 2498 2510 2391 121 186 253 318 328 283 480 674 994 341 495 130 70 56 81 54 80  212 TABLE C1.6 RESPONSE DATA OP THE SAMPLING POINT:NUMBERED UNDER;. 6 RUNNING CONDITIONS DURING PHASE 1,2, AND EXPER. RUNS NUMBERS  [8].F5,SR6O/40, RR3/6 [05/09/89]  DAY  113 120 130 134 137 141 [9].F5,SR8O/20, 1 RRS/8 8 [06/10/89] 15 [10].F5,SR8O/20, 22 RR5/8 29 [07/02/89] 36 Reaccliinatization 43 46 50 53 [I1].F5,SR9O/10, 57 RRS/8 64 [08/05/89] 71 78 81 85 [12].F5,SR9O/10, 92 RR3/6 99 [09/06/89] 106 109 113 116  DATE  05/09/89  05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12189 09/19/89 09/26/89 09)29/89 10/03/89 10/06/89  MAc  HPr  33 29 22 39  23 21 17  37 44 34 29 30 34 52 44  24 44 21 19 20 28 40 35  Iso— HBr  VFA, MGIL HBr A-HVr  6 2 4 6 3  isoHVr  HVr  9  HHe  ..  TOT.VFA mg/L HAc  52 46 36 39 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 89 51 46 46 59 89 74  605  08/12/88  08/16/88 08/19/88  32  36 39  [14/01/88]  [5].F5,SR7O/30. RR3/6  [4].F5,SRSO/50, RR2!4 [10/03/881  [3].F5,SRSO/50, RR6/10 [08/31/88]  [2].F5,SR8O/20, RR6/I0 [07/30/88]  1153 560 316 306 332 257 364 462 324 300 840 600 560 475  09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89  65 68 71 74 78 81 85 95 99 102 1 8  01/31/89 02/07/89 02/10/89 02/14/89  15 22 25 29 510  500  413 467 393  783 1020 793  08/29/88  603 400 256 226 232 185 292 406 316 278 660 370 415 265 190 340  527  09/02/88  08/26/88  49 53 57 60  08/23/88  43 46 437 503  377  0.05  0.12 0.06 0.03 0.03 0.03 0.03 0.04 0.05 0.03 0.03 0.08 0.06 0.06 0.05 0.05  0.08 0.10 0.08  0.08 0.10  0.10  0.06 0.07  0.04  0.07  290 350  373  0.06  0.05 0.06 0.05 0.05  320 352 320 267  365  66.67  52.30 71.43 81.01 73.86 69.88 71.98 80.22 87.88 97.53 92.67 78.57 61.67 74.11 55.79 38.00  52.75 45.78 49.56  56.75 48.23  50.67  56.52 66.36 57.38 55.44  64.00 55.17 60.72 53.40  60.33  SOLIDS, MG/L or ELSE TVSS [%] [%TS]  680 1040 770 1043  610  500 660 437  500 638 527  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88  1 8 11 15 22 29  [1].F5,SR8O/20,  RR2/4  •TSS  DATE  DAY  EXPER. RUNS NUMBERS  2222 2705 3674 4472 5863 5794 6303 6798 6480 12400 938 845 1136 1033 1016 847  1983  3685 4049 3452 2209  3945  4950 4771  5971  6260  2772 3694 3327 3058 4378 274  403  1564 1885 3347 3984 7068 5476 5980 6403 6080 9600 352 704 568 435 813  1718 1488  3558 2804  3314 3188  4471 4374  5320  5157  478  390 392 392 382 406 457 427 372 384 430 380 421 511 473 462  369 420 409  348 365  376  346 366  376  354  287 366  3095  2495 4217  259  255  NH4-N  2297 3065  COD, MG/L Total Sol,  471  418 410 407 440 491 491 466 446 395 502 474 529 693 490 413  456  441  429 406  402  373 394  347  302 381 358 387  282  285  261  .  73  324 224 213 239 233 246 299 379 379 262 82 76 107 84 34  167  155  161 128  144 204  138  III  65 82 79 125  51  70  50  INORGANICS, MG/L TKN TP  11  308 186 217 220 208 242 299 349 346 244 17 II 13 15 6  30  114  136 136  136 69  91  69  19 39 44 44  22  47  19  P04-P  TABLE Cl 7 RESPONSE DATA OF THE SAMPLiNG POINT NO 7 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE I 2 AND 3  [9].F5,SR80120, RR5/8 [06/10/891 [10].F5,SR8O!20, RR518 [07/02/89] Reacelimatization  [05/09/89]  [8].F5,SR6O/40, RR3/6  07/28/89 08/01/8.9 08/04/89  46 50  53  06(13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89  06/06/89  141  1 8 15 22 29 36 43  05/30/89 06/02/89  03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89 05/09/89 05/16/89 05/26/89  71 78 85 92 99 102 106 113 120  [7].F5,SR60140, RR5/8 [03/29/89]  [02/20/89]  130 134 137  02/28/89 03/07/89 03/14/89 03/21/89  43 50 57 64  RR518  [6].F5,SR7O/30,  DATE  DAY  EXPER. RUNS NUMBERS  525 670 520  820 990 930 675 985 880 585  600  735 620 736  620 690 620 855  665  745 510 535 585  760 845 570 775  TSS  365 350 335  510 350 425 450 565 805 490 265 545 405 495  510 310 330 420 440 490 390 355 600  465 585 470 545  46.02 84.62 69.52 52.24 64.42  0.09  55.33  0.10 0.06 0.05 0.07 0.05  68.90 81.31 52.69 39.26  75.00  69.39 56.45 57.74  68.46 60.78 61.68 71.79 66.17 79.03 56.52 57.26 70.18  61.18 69.23 82.46 70.32  0.08 0.10 0.09 0.07  0.06  0.07 0.06 0.07  0.07 0.05 0.05 0.06 0.07 0.06 0.07 0.06 0.09  0.08 0.08 0.06 0.08  SOLIDS, MG/L or ELSE TVSS [%] [%TS]  840 741 882 748  1139 1162 891 994 998 902  1040  1022 858 734  1147 820 730 724 792 1909 1972 902 1188  1065 1374 1673 1365  Total  COD, MG/L  280 370 294 291  417 747 243 358 479 431  232 462  314 390  412 369 365 201 673 318 828 314 317  828 687 1020 482  Sol,  439 321 387 392  531 510 496 460 503 478  472  552 474 397  568 615  440  496 528 417  449 507  366  423 444 444  408  NH4-N  448 444 418 409  567 493  479  550 517 524  520  542 542 506  403 440 517 512 558 532 559 558 693  411 512 462 455  .  50 48 66 44  135 98 83 95 90 66  175  65  78 76 86 46 93 72 82 95 191 133 131  67 153 99 85  INORGANICS, MG/L TKN TP  12 37 16  54 33 30 25 25 37 10  105  68  103 79 126  38  10 83 18 15 40 22 61  4 8 2 9  P04-P  TABLE CL 7 RESPONSE DATA OF THE SAMPLING POINT NO 7 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1 2 AND 3  I-’  [12].F5,SR9OIIO, RR3/6 [09/06/89]  [l1].F5,SR9O/10, RR5/8 [08/05/89]  EXPER. RUNS NUMBERS 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89  09/19/89 09/26/89  09/29/89 10/03/89 10/06/89  81 85 92  99  106  109 113 116  DATE  57 64 71 78  DAY  590 380  505  730  600  510 500 595  630 695 615 535  TSS  375 350 255  380 505  270 250 430  335 445 305 265 49.53  0.05 0.05 52.94 50.00 72.27 63.33 69.18 74.26 59.32 67.11  49.59  0.06  0.05 0.06 0.06 0.07 0.05 0.06 0.04  53.17 64.03  0.06 0.07  SOLIDS, MG/L or ELSE TVSS [%] [%TS]  289  661  308 281  409 407  240 320 397 350  369  404 298  794 856 771 962 777 813  683 680  820  807 814  COD, MGIL Total Sol,  446 446 446  438 393  399  393 414  381  352  364 359  NH4-N  424 390 483 427 496 455 514  547 547  402  365 365  133 20 46 24 57 48 52 49  133  111  72 95  INORGANICS, MG/L TKN TP  3 27 23 23 4 6 22 9  5  2  9 45  P04—P  TABLE CI 7 RESPONSE DATA OF THE SAMPLING POINT NO 7 UNDER D1FIERENT RUNNING CONDITIONS DURING PHASE 1 2 AND 3  1  216  TABLE C1.7 RESPONSE DATA OF THE SAMPLING POINT NO.7 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1, ZAND 3 EXPERIMENTS EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20, RR2/4  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29 43 50 57 64 71 78 85 92 99 102 106  [2].F5,SR8O/20, RR6/10 [07/30/88]  [3].F5,SRSO/50, RR6/10 [08/31/88]  [4].F5,SR5O/50. RR2/4 [10/03/88] [5].F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR7O/30, RR5/8 [02120/89]  [7].F5,SR6O/40, RRS/8 [03/29/89]  DATE HAc  HPr  07/12188 563 07/19/88 787 07/22/88 800 07/26/88 586 08/02/88 1363 08/09/88 2279 08/12/88 2484 08/16188 2169 08/19/88 1967 08/23/88 1389 08/26/88 1386 08/29/88 1394 09/02/88 999 09/06/88 528 09/09/88 339 09/14/88 289 09/17/88 294 09/20/88 333 09/23/88 413 09/27/88 162 09/30/88 149 10/04/88 330 10/14/88 381 10/18/88 446 10/21/88 2552 01/17/89 47 01/24/89 121 01/31/89 60 02/07/89 131 02/10/89 116 02/14/89 75 02/28/89 244 03/07/89 271 03/14/89 428 03/21/89 178 03/28/89 113 04/04/89 47 04/11/89 20 04/18/89 21 04/25/89 30 04/28/89 20 05/02/89 21  676 973 1015 777 816 748 803 701 751 618 480 601 331 292 221 306 331 666 1062 1555 1706 1807 1804 1671 2038 23 105 22 45 38 22 88 25 64 24 29  -  -  16 --  24  isoHBr 22 36 40 37 48 75 78 71 71 64 59 61 49 29 17 16 26 32 37 42 48 46 39 36 30  5  VFA, MGIL HBr -HVr 22 42 36 10 151 293 269 183 187 93 70 98 32 44 20 73 101 180 49 239 244 324 359 327 718  21 37 33 21 664 592 124 252 411 52 45 49 82 62 19 30 30 31 33 35 33 26 25 19  IsoHVr 27 26 14 476 452 240 289 352 167 169 163  47 32 99 29 32 38 43 41 33 31 28  HVr  TOT. VFA HHe mgfL HAc  28 81 53 18 704 69J 453 333 460 312 298 305 1 24 170 240 267 281 362 380 402 376 358 500  23  73  28  5  1170 1714 1741 1279 3245 4157 3852 3425 3471  39 35 51 57 51 55 53 108  2309 2164 2294 1371 865 571 72 866 1229 1553 1895 2030 2354 2399 2319 5092 66 265 78 167 147 93 337 291 483 197 137 47 20 21 43 20 40  217  TABLE CL7 RESPONSE DATA OF THE SAMPLING POINT NO.7 UNDER PWFERBNTRTJNNU’G: CONDITIONS DURING PHASE 1 2 AND S EXPERTh4ENTS EXPER. RUNS NUMBERS  DAY  [8].F5,SR6O/40, RR3/6 [05/09/89]  113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53 57 64 71 78 81 85 92 99 106 109 113 116  [9].F5,SR80120, RRS/8 [06/10/89] [10].F5,SR8O/20, RRS/8 [07/02189] Reacclimatization  [li].F5,SR9O/10, RRS/8 [08/05/89]  [12].F5,SR9O/10, RR3/6 [09/06/89]  DATE  05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06113189 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  HAc  HPr  17  15 14  IsoHBr  VFA, MGIL HBr A-HVr  Iso— HVr  HVr  HHe  19  96  19 23 19 20 20 22 28 32  13 20 13 12 13 17 18 26  281  3 2 2 3 4  9  TOT.VFA mgfL HAc  29 11 0 19 0 0 0 243 0 0 0 0 0 0 0 0 0 0 0 0 30 41 36 30 32 38 43 56  1 8 II  15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 I 8 15 22 25 29  [1].F5,SR80120,  [2].F5,SR80/20.  RR6/10 [07/30/88]  [5].F5,SR7O/30, RR3/6 [14/01/881  (4].F5,SR5O/50, RR2/4 [10/03/881  [3].F5,SRSOI5O, RR6/10 [08/31/88]  RR2/4  DAY  EXPER. RUNS NUMBERS 07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27188 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02/14/89  DATE  6415 7968 7238 6224 6404 9556 8765 10532 7387 7127 6423 5950 5143 5335 3240 3900 3610 3223 3333 3323 37.77 4650 5417 5393 5517 3067 3473 2800 2913 3370 3110  TS 3420 4670 4148 3272 2580 6111 5368 6797 4477 4787 3990 3817 3130 2045 1197 1063 1133 987 1280 1150 1467 2007 2547 2683 2607 947 953 640 767 1040 907  VS 320 350 260 193 223 183 200 423 357 770 320 650 273 630 307 727 200 155 190 195 176 292 286 324 237 170 293 216 230 213 193  TSS 185 230 147 153 103 120 160 260 200 420 207 370 210 317 170 437 197 130 152 169 150 228 272 300 217 97 160 126 43 73 80  0.64 0.80 0.72 0.62 0.64 0.96 0.88 1.05 0.74 0.71 0.64 0.60 0.51 0.53 0.32 0.39 0.36 0.32 0.33 0.33 0.38 0.47 0.54 0.54 0.55 0.31 0.35 0.28 0.29 0.34 0.31 53.31 58.61 57.31 52.57 40.29 63.95 61.24 64.54 6061 67.17 62.12 64.15 60.86 38.33 36.94 27.26 31.39 30.62 38.40 34.61 38.84 43.16 47.02 49.75 47.25 30.88 27.44 22.86 26.33 30.86 29.16  SOLIDS. MG/L or ELSE TVSS [%TS] [%] 0.03 0.04 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.08 0.03 0.07 0.03 0.06 0.03 0.07 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.02 0.02  [%] 57.81 65.71 56.54 79.27 46.19 65.57 80.00 61.47 56.02 54.55 64.69 56.92 76.92 50.32 55.37 60.11 98.50 83.87 80.00 86.67 85.23 78.08 95.10 92.59 91.56 57.06 54.61 58.33 18.70 34.27 41.45 4471 4135 3313 3354 3476 2804 1636 1901 1481 2377 3592 4228 5622 5555 6384 6640 6240 6570 352 282 631 489 569 403  5480  2297 3300 2785 2254 3896 4843  6160 5850 293 528 568 489 488 403  6090  2178 3065 2824 2374 3916 5689 5140 4152 3817 3116 3043 3006 2309 1391 1405 1235 1885 3429 3943 5422 5238 5899 .  366 377 363 331 368 367 398 390 385 398 429 433 438 431 436 437 434 444 458 434 506 394 547 622 404 516 471  355  295 278 307 322 361 369 336 334 358 348 365 374 391 385 385 421 404 396 444 437 412 380 401 434 366 403 511 425 462 473  263 259 268 289  85 81 Lii 116 120 136 131 124 123 241 244 232 244 229 222 306 379 455 258 57 83 96 77 75 70  72 fl  33 57 37 72 116 92 64 38 86 19 136 223 223 237 232 231 303 370 410 240 20 7 II 6 10 II  37  25 10  48 67  22  28  58  50  COD. MG/L INORGANICS, MG/L or ELSE [%TS] TOTAL SOL. NH4-N TKN TP P04-P  TABLE CI 8 RESPONSE DATA OF THE SAMPLING POINT NO 8 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2. AND 3  130 134 137 141 1  8 15 22 29  36  43  [05/09/89]  [9].F5,SR80120,  RR5/8 [06/10/89] [101.F5.SR8O/20, RRS/8  [07/02/89]  Reacelimatization  46 50 53  113 120  [8].F5,SR6O/40. RR3/6  [03/29/891  RRS/8  71 78 85 92 99 102 106  2823 2193 2253  06/27/89  07/18/89 07/25/89 07/28/89 08/01/89 08/04/89  07/04/89 07/11/89  2758 2700 2337  2300  2657  3005 2267 2293 2393  1910 2165  06/02/89  06/20/89  •  1013 590 267  690  647 663 943  1133  547 765 1475 873 857 970  783 765 667  2300 2385 2113  2340 2210 2383  603  867  1060 947 1995  643  VS  593 837 880 897  2317 2027 2247  3110 4875  2553 2953  TS  06/06/89 06/13/89  05/26/89 05/30189  05/09/89 05/16/89  04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02189  03/14/89 03/21/89 03/28/89  57 64  [7].F5,SR6O/40,  02/28/89 03107/89  43 50  [6].F5,SR70130, RRS/8 [02/20/89]  DATE  DAY  EXPER. RUNS NUMBERS  220 393 277  143  580  423 363 387  217 277 1200 263 200 190  285 217 357  190 207 153 187  170 240 160  303 263 240  TSS  90 207 133  260 133  157 137 120  153  103 110 713 150 153  115 73 150  107 60 73 113 120 120  167 93  137 150  0.28 0.27 0.23  0.23  0.23 0.27  0.22  0.19 0.22 0.30 0.23 0.23 0.24 0.28  0.21  0.20 0.22 0.23 0.22 0.24 0.23 0.24  0.31 0.49 0.23  0.26 0.30  36.73 21.85 11.42  30.00  35.49  29.50 29.43  28.64 35.33 49.08 38.51 37.37 40.53 40.13  32.08 31.57  37.42 29.75 26.39 35.77 39.82 37.64 34.04  30.45 40.92  25.19 35.90  SOLIDS. MG/L or ELSE TVSS [%J L%TSI  0.02 0.04 0.03  0.01  0.06  0.04 0.04  0.04  0.02  0.04 0.02 0.03 0.12 0.03 0.02  0.03 0.02  0.02 0.02 0.02 0.02 0.02 0.02  0.02 0.02  0.03 0.03  40.91 52.67 48.01  93.01  44.83  31.01  37.12 37.74  80.53  47.47 39.71 59.42 57.03 76.50  40.35 33.64 42.02  38.42 54.59 78.43 64.17  37.50  44.58  69.58 5471  45.21 57,03  222 515 457  440  745  437 519  405  539  493  501  386  542  432  515  392  394  331 656 406 362 396 477  606 980 482  394  240 333 294 291  398 399 431  243  304 373  385  309  314 429  317  353  394  291 328 365 161 594 318  816 361  394 525  439 392 398  434  483  460 478  491  531  515 479 515 515 555  591  531  513  517 493 533 532  449  361  395 439  362 372  400 383 377  526  510  467 563  548 555 461 504 477 461 516  558  620  440  461 477 457 417  4.44  388  428 451  394 457  55 24 18  55  58  83 75  110 171 57 113 123 88 93  120  78  72  63 67 75 82 73 77  37 85  31 35  11 24 18  6  7 15  30  66 167 58 89 41 18 21  102  45  50  2 67 10 19 37 8  3 9  3 6  COD, MG/L INORGANICS, MGIL or ELSE SOL. NH4-N TKN TP P04-P  [%I [%TSI TOTAL  TABLE C1.8 RESPONSE DATA OF THE SAMPLING POINT NO.8 UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE 1,2, AND 3  l.A  [09/06/891  [12].F5,SR9O/l0, RR3/6  [II].F5,SR9O/I0, RR5/8 [08/05/89]  EXPER. RUNS NUMBERS  113 116  106 109  57 U 71 78 81 85 92 99  DAY  08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  DATE  260 467  1033 943 657 1010 990 1110 1105 1053  2640. 2743 2423 2687 2470 2517 3395 2847 247 140 207 183 180 233 123  313  350 363  185 145 807  TSS  700  VS  2307 2423 2436 2587  IS  83 60 110 127 103 100 60  160  113 140 57 124 0.24 0.24 0.26 0.26 0.27 0.24 0.27 0.25 0.25 0.34 0.28  0.23  32.55 36.99  40.08 44.10  28.74 31.19 39.13 34.38 27.12 37.59  8.02 5.98  SOLIDS, MG/Lot ELSE TVSS [%] [%TSI  0.03 0.05 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.01  0.04 0.04  [%]  57.22 42.92 48.78  69.40  42.86 53.14  33.60  38.57 21.92 26.55 51.12  32.29  496  407  368  347 441  320 516 389  442  426 328  448 3l4 213 287 241 320 278 272 270 281 368 285 248 411 422  446  336 363 373 414 381 421 427 411  375  423  401  427 440 423 435  560 390  238 553  448  365  171 20 48 47 49 42 19 21  109  76 14 97  8 18 7 13 5 5 20 9  8  7 14 4  COD, MG/L INORGANICS, MO/L or ELSE [%TS] TOTAL SOL. NH4-N TKN TP P04-P  TAJLE Cl 8 RESPONSE DATA OI THE SAMPLING POINT NO 8 LNDER DIFFERENT RUNNING CONDITIONS DURING PHASE I 2 AND 3  0  221  TABLE CI S RESPONSE DATA OF THE SAMPUNO POINT NO S UNDER DIFFERENT RUNNING CONDITIONS DURING PHASE I 2, AND 3EXPERIMENTS.. EXPER. RUNS NUMBERS  DAY  [1].F5,SR8O/20, RR2/4  1 8 11 15 22 29 32 36 39 43 46 49 53 57 60 65 68 71 74 78 81 85 95 99 102 1 8 15 22 25 29 43 50 57 64 71  [2].F5,SR8O/20, RR6/10 [07/30/88]  [3].F5,SRSO/50, RR6/10 [08/31/88]  [4].F5,SRSO/50, RR2/4 (10/03/88] [5].F5,SR7O/30, RR3/6 [14/01/88]  [6].F5,SR7O/30, ,RR5/8 [02/20/89]  [7].F5,SR6O/40,  78  RRSI8 [03/29/89]  85 92 99 102 106  DATE  07/12/88 07/19/88 07/22/88 07/26/88 08/02/88 08/09/88 08/12/88 08/16/88 08/19/88 08/23/88 08/26/88 08/29/88 09/02/88 09/06/88 09/09/88 09/14/88 09/17/88 09/20/88 09/23/88 09/27/88 09/30/88 10/04/88 10/14/88 10/18/88 10/21/88 01/17/89 01/24/89 01/31/89 02/07/89 02/10/89 02114/89 02/28/89 03/07/89 03/14/89 03/21/89 03/28/89 04/04/89 04/11/89 04/18/89 04/25/89 04/28/89 05/02/89  HAc  HPr  586 756 716 572 1366 2272 2447 2129 1721 1334 1315 1345 909 447 349 231 402 326 380 189 103 261 378 415 2932 26 50 32.5 91 75 35 124 180 303 53 46 17 0 0 0 0 0  673 887 881 734 779 701 743 645 607 576 399 528 256 172 208 72 221 556 951 1661 1640 1661 1824 1833 2143 18 48  Iso— HBr 23 28 37 36 47 76 79 71 64 62 54 61 45 24 15 10 28 33 33 44 47 44 39 41 31  14 34 12 26 139 259 225 159 119 98 52 78 23 10 46 11 83 150 38 263 211 301 382 353 799 7  34 15 32 13 30  VFA, MG/L HBr A-HVr  4  20 55 30 17 703 628 556 101 89 34 23 30 13 91 29 26 25 31 29 33 35 32 26 28 20  IsoHVr .  34 20 499 470 437 227 218 111 100 137 156  HVr 18 25 19 23 737 692 567 383 362 244 241 203  37  23  46 29 29 40 42 39 34 36 28  252 253 252 371 366 386 380 386 511 28  HHe  104  37 28 54 52 56 57 59 114  TOT.VFA mg/L HAc 1179 1638 1504 1233 3265 4122 4174 3227 2731 2139 1925 2086 1262 663 612 319 847 1105 1396 2034 1896 2141 2432 2465 5623 41 110 33 119 87 35 150 191 330 53 46 17 0 0 0 0 0  222  TABLE CI.8 RESPONSE DATA OF TIlE SAMPLING POINT NO.8 UNDER DIFFERENT RUNN1NGCOND RUNNING CONDITIONS DURING PHASE 1.Z AND3 EXPERIMENTS.. EXPER. RUNS NUMBERS  DAY  [81.F5,SR6O/40, RR3/6 [05/09/89]  113 120 130 134 137 141 1 8 15 22 29 36 43 46 50 53 57 64 71 78 81 85 92 99 106 109 113 116  [9].F5,SR8O/20, RR5/8 [06/10/89] [10].F5,SR8O/20, RR5/8 [07/02/89] Reacclimatization  [11].F5,SR9O/10, RRS/8 [08/05/89]  [12].F5,SR9O/10, RR3/6 [09/06/89]  DATE  VFA, MG/L  HAc 05/09/89 05/16/89 05/26/89 05/30/89 06/02/89 06/06/89 06/13/89 06/20/89 06/27/89 07/04/89 07/11/89 07/18/89 07/25/89 07/28/89 08/01/89 08/04/89 08/08/89 08/15/89 08/22/89 08/29/89 09/01/89 09/05/89 09/12/89 09/19/89 09/26/89 09/29/89 10/03/89 10/06/89  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 10 10 0 12 13 16  HPr  IsoHBr  IsoHVr  HBr A-HVr  HVr  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 22 10 10 0 22 23 16  .  10 11  11 12  TOT.VFA HHe mg/L HAc  2  ;•:::::....:::::NoTE: 1, 2,.,12 ARE AVERAGE RESPONSE SATPSEUDO-STEADY STATE. (EXPERIMENTAL RUNNING CONDITIONS NUMBERED I TO 12 RESPECTIVELY) 1 681 834 34 24 34 27 22 104 1459 2 1331 501 76 59 29 116 229 2050 3 224 1417 41 171 32 37 330 45 1776 4 1242 1933 37 511 25 33 426 77 3507 5 67 25 80 6 50 50 7 0 0 8 0 0 9 0 0 10 0 0 11 9 11 15 12 14 12 2 20 -  223 C2.1 Calculation of the effects (SR and RR), Interaction, Phase means, Change in means, on the Response Parameters during the Acclimatization (Sequence 1 and 2 Experiments).  .  851  —  .  1.79/%1T  1)  .  2.00 1.79  1.00  1  .  +(5i +  +(2 Y2  Y3 —  —  Y4)  Y4)  —  +  Y)  Y3  phase nai  —  —  —  +  3,043  3,043  3,043  (2)  4 0.37 0.25 0.33 J.O  3 0.35 0.33 0.50 115 1 .U3  2 0.30 0.50 1.00 1.41 1.26  0.38 0.20 0.25 O.9 O.iO  0.39 0.17 0.20 0.3? 0 73  56  9 0.10 0.11 0.12 0.67  8 0.10 012 014 0.71 0.63  7 OAO 0.14 0.11 0.76 0.63  2,340  339  —3,456  1,651  3,191  6,160  -.  of Standard  New  0.41 0.10 0 l 0.C3 0.57  ±  of 2  s  =  4 ,162  4,650  S.E. Limits  =  =  2,325  t3  Source: Re ference (Hontgoiaery,1984)  For change in mean:  For new egects:  10]  =  s  =  =  =  =  Deviation  D atc  Pt Oject IJASB— IJASD Phase I  new sum  Calculation  averages  Newsums  Range  Previous sum s Previous average s News = range x f,,  Prior estimate of a  Calculation  For new averages:  1,054  1,054  6,160  (4)  1,054  (3)  6,160  =  Table of lultip1ying )aclors  Change in mean effect  Interaction on._effcci. (SnHll)  1/(n 2/v’i  3/n  -  Y4  +  =  4(5’2  Y3  eect  + 52  4,848  +  y  RR  f  (AB)  (B)  (A)  averages:  4,818  851  {(o+  Nw  (vi)  sums  Phase mean  Now  (v)  4,848  (1)  851  (0)  Averages  —  ResponsetFlL.COD_(ig/L)  CYCLE )i  22 Fac(oria! with added reference condirio,i  Calculation of Efiects  Calculation  Operating conditions  .  0) Previous cycle sum  .  (ii) Previous cycle avcrag (iii) New observations Differences (ii) less (iii) (iv)  .  .0  2  3  n  .  .  RR  5’  —  1.79/c  1)  .  .  2.00 1.79  1.00  .  Interaction (SRIt.R)  2/v’  I/n l/(n  f  .  (AB)  (B)  (A)  Phase mean  (vi) New averages:  (v) New sums  =  +i  1.26  1.41  2 0.30 0.50 1.00  3 0.35 0.33 (‘.0 1.15 1.03 0.9  0.37 0.25 0.33 1.00  4  Table  —  —  —  —  +  +  3)  Y4)  Y3  )4)  phase mean —5o  )1  Yi  Y2  3,066  of  440  0.41 0.10 0i 0(3 0.7 0.40 0.11 0.12 0.67 060  tt  = —  .-  new sum s  =  249  .  ±  2  —  1.79  —  2  —  5  s  s  =  =  ± 314  ±351  351  t’3. C,’  Source: flçferencc (Nontgoiaery,1984)  .  ±  ±  Calculation of 2 S.E. Limits  New averages  =  830 249 —  I  2,325  Range Newsums  =  =  249  For change in mean:  0.40 0.12 0.14 0.71 0.63  -  a  Previous averages New s= range Xf 5  Previous sums  Prior estimate of a  For new effects:  10  2,316  547  3,421  D  Phase  Project •S8— U  Calculation of Standard Deviation  For new average s:  9  —  1,440  3,202  1,075  41 2,149  1,095  1,054  1,054  (4)  8  =  =  =  5,940  11,880  —  5,720  3,088 45 6,131  6,160 6,160  (3)  3,043 3,043  (2)  J1ultiplying Faciors 7 6 5 0.40 0.39 0.38 0.14 0.17 0.20 0.17 0.J0 0.25 0.76 0.S2 0.E) 0.C 0.73 O1O  =  —  )4  Y3  + 5’2  2+ C  (h +  Change in mean effect  on.effcct  effect  +  Calculation of Effects  886  5,043  390 10,086  69  (iv) Differences (ii) less (iii)  average  1,771  5,238  920  (iii)  (ii) Pie ious cycle  (i) Previous cylè sum  Newobservations  (1)  4,848 4,848  1  2  Resporie. FIL.C0l) (mg/L)  CYCLE 71  Fac(orial ‘idi cidded reference co;dirion  851 851  (0)  Calculation of Averages  Operating Conditions  —  22  _____________  12  (j)  ,  —  )  2/v’ l.79//  1J(ii—  .  2.00 1.79  1.00  1  (suiw)  V  ‘j  V  V  V  850  73 1,699  813  1,771 886  (0)  effect  effect  f  +CP +  +O +  2 (.p  0.30 0.50 1.00 1.41 1.26  2  0.35 0.33 0.50 1.15 1.03  3  =  Y2  .4  )‘3  i  )‘j  phase  —  —  + +  Y4)  )‘3)  )‘4)  Y3  —  Yo  Y4)  3,036  V  486  460  0.10 0.11 0.63 0.57  162  324  213  249  ±  s  s  —  1.795  —  2  —  2  V  =  —  • i67  +186  ± .186 —  =  V  —  V  V  ULSI3  Source: Heference (Montgoaery,1984)  For change in mean:.  0.11 0.12 0.67 0.60  =  =  =  249  2325  Calculation of 2 S.E. Limits  —  Prior estimate of o Previous sums Previous averages News = range xf 5 Range Newsums new sum New averages  For new effects:  iO  Date  Projcct IJASB Phase Calculation of Standard Deviation  For new average s:  0.41  V  1,097  2,193  —79  1,057 1,136  2,149  (4)  0.40  9  2,357  V  0  1,454  3,207  0.40 0.12 0.14 0.71 0.63  =  6,010  12,020  5,940 6,080  6,072  meai  —  (3)  —140  Table of l1ultip1yingFactos 4 5 6 7 0.37 0.3 0.39 0.40 0.25 0.20 0.17 0.14 0.33 0.25 0.20 0.17 1.00 .0.29 0.22 0.36 0.29 0.20 0.73 0.63  Chrige in mean effect  =  (o+ 2  5,042  3  FILCOD (ing/L)  11,88()  :  60  3,066 3,006  5,0*13 5,040 3 10,083  6,131  (2)  10,086  (1)  Response  CYCL.E  Fac(orial wiz’h added refrvence coridiiio,i  Calculation of Effects  -  Interaction otL_effect  SR  RR  Phase mean  f5.n 1/n  V  (A)  (AB)  •  (vi) New averages  22  Calculation of Averages  • Operating conditions (I) Previous cycle sUm (ii) Previous cycle average (iii) New obserations (iv) Differences (ii) less (iii) (v)Nesums  .0  .  .  1 .79/JT  .  1)  .‘  1.79  2.G)  1.00  (siitn)  —  2/f1  l/(n  i/n  y•  =  effcct =  effect  Y3  +  I .03  ‘‘.‘  0.37 0.25 0.33 I .0  0.35 0.33  0.30 0.50 1.00 1.41 0  4  3  1.15  =  )‘2  .  —  —  +  0  .  0.3 0.20 0.25 09  5  0.73  0.39 0.1? (120 0.?  6  —  0.68  0.40 0.14 0.17 0.76  7  8  9  0)10 0.]] 0.12 0.67 0 co  —451  —147  -  —283  581  594  594  (3)  0)10 0.12 0.14 0.71 0 63  =  =  —  + 5) =  Factors  Y4)  -  phase mean  —  —  —  1  361  361  (2)  Table of Multiplying  in mean effect  CP +  +h  i 5  0+ C  2  Change  1 .2S  429  429  (1)  1  -  of  s =  .  range  eWects:  0.41 010 0.11 0,3 0.O?  —  ±  266  -12. ‘vl_  s  ±  532  = ± 476  =± 532  =  of 2 S.2. Limits  =  =  =  =  =  ii  Source: fleference (Hontgomery,1984)  For change in mean:  For new  =  -  newsums  x f,,  Calculation  New averages  New sum  Range  New  Previous sum s Previous average x  Prior eimate  For new average :  10  489  489  (4)  Date.  Phase  Project hASH— UASB  Calculation of Standard Deviat ion  added reference condiiion  CYCLE 77=  wii’Ji  Rcsponse j1L.COD (nig/L)  Fac(orial  Calculation of Etects  1,032  iiteraction _effect =  SR  1R  riiase mean  ,  f  (AB)  (B)  (A)  (vi)  -  (ii) less (iii)  Nc.w averages:  New sums  (v)  •  Differences  New observations  (iv)  (iii)  (0)  I ,032  Calculation o  Opea1ing conditions evious cycle sum I  —  (ii) Previous cycle ayerage  .  A  22  .0.  .  ,i  2.00 1.79  2/’i  I .79/—jT  1.00  1/n 1/(n— 1)  fr,,  I  Interation  (AB)  793  I  1 369  120 738  478 1,56  554  1,0321  1,0321  (1) 429 429 309  (0)  1  0.35 0.33 0.50 1.15  0.30 0.50 1,00 IAI 1.26 1.03  3  2  +  + Y2  -  Y3  -  Y’I  —  —  —  +  5’.) —  +  Y)  Y3  phase wa  —  —  —  Y  326  70 652  31 361 291  (2)  Y4)  ‘I  0:37 0.25 0.33 1.0 0.  4 0.3d 0.20 0.25 0.39 0.-:u  5  0.39 017 0.20 0.22 0.73  6  0.40 0.14 0.17 0.76 0.63  7  —  —  —  —  9 0.40 0.11 0.12. 0.67 0.60  306  125  38  487  456  276 912  594 594 318  ()  0.40 0.12 0.14 0.71 0,63  =  Table of 1.lultiplying Factors  e1ft  j 4  2 (j  2+ 4-c  +Oo+ 5 +  mean  effeCt  =  =  =  I  ‘  2  n—I  =  =  =  143  143  477  143  266  ±  ±  ±  2  —  1.79  —  2  —  s  s =  =  180  * 202  * 202  t3  Source: Reference (Montgomery, 1984)  Fur change in mean:  s:  Calculation of 2 S.E. Limits  ——  Prior estimate of j Previous sums Previous averages New s = ran,e X f Range New sum s new sum s New avcrae s =  For new average  0.41 0.10 0)1 0.63 0.57  D a te  Project UASB— UASEI Phase 11 Calculation of Sta ridard Deviation  For new effects:  10  489  1 977  489 489 488  (‘i)  Response:F1L.COLI (mg/L)  CYcLE 77  Facz’orial with added reference condition  Calculation of Effects  Change in  SR  .  ()  (A)  Phase mean  On  (i) Previous cyck sum (ii) Previous cycle average (iii) N.w observations (iv)Diirercnces (ii) less (iii) (v) e.w sums  (vi) Ncw averages:  22  Calculation of Averages  Operating conditions  .0  2  —  .  —  1/n 1/(n 1) 2/v’i 1.79/4T  f.  n  2XYJ 1.79  1.00  1  (sR9rn)  on  1.2  1.41  1.00  0.30 0.50  2  377  =  =  0.33 0.50 1.15 1.03  0.35  3  326  652  0  652 326 326  (?)  (2  4(2  +  +  phase  —  —  —  y4)  3)  54)  uiea  —  —  —  —  =  0  0.)  1.00 (  0.3 0.20 0.25  5  0.37 0.25 0.33  4  U1  0.22  0.17 0.20  0.3  6  0.6S  0.14 0.17 0.76  0.40  7  Table of }1 ult ii1yir;g Factois  Y4  ± Y3  +(ü++2+3+4)  Change in mean effect  effect  effect  SR  (B)  Interact ion  effect  (AB)  576  754  Calculation of Effects  R1  Pl,asemc.an  16  434 1,152  385 —  738  1,586 793 359 369  (1)  Response  84  15  36  0.63  0.10 0.12 0.1’ 0.71  $  —146  —  —  —  430  425  62 850  912 456 394  (3)  0.11 0.i2 067  0.40  9  —  tniiatc  uf  s  u.:i  0.63  0i  new sum s =  151  450 301  158  143 143  ±  ±  s  s  =  ± 155  *173  ±173  t3  Source: Reference (Montgomery,1984)  Fui cliangcin itican:  For new effects:  OA1 Ql0  =  =  —.  Calculauon of 2 S.E. Limits  New a’crac  Range New sums  Fic.ious um s Pjcviou avcitge s New s = r.mc X J,,  iw  266  Project UASB-— hAD Pha II Da tts  (l.ul.LticJI ot iLi.liid 1)cittiii  For new averages:  101  446  86 892  403  977 489  o)  FIL.COD (mg/L)  CYCLE 77  Focorial with added reference condition  (0)  (A)  .  ..  (vi) Nw averages: y,  .  (v) 1kw sums  22  Calcu)a ion ol AvcIa)c5  Opcrting conditions 0) Previous cycle sum (ii) Previous cycle average (iii) New çbservations (iv) Differences (ii) less (iii)  —A  2  12  .  .  =  Interact ian oiieffect  —  .  1/n I/(n 1) 2/i 1 .79/JT  2.00 1.79  1.00  1  +  (5’ +  2 0.30 0.50 1.00 1.41 1.26 3 0.35 0.33 0.50 1.15 1.03  =  Y  .j  -  phase  —  —  —  f  -  —  —  +  y4)  )‘  —  +  Yo  Y4)  53.19  53. 19  (2)  0.3/ 0.25 0.33 1.00 0.)  4 0.3 0.20 0.25 0.) O.  5  0.39 0.17 0.20 0,22 0.73  6 0.40 0.14 0.17 0.76 OCX  —  —  1  8  0.40 0.11 0.12 067 0(0  9  38.53  3.01  55.66  —35.23  5109  5.48  5.48  (3)  0.40 0.12 0.14 0.71 0.63  =  =  =  =  Table of 11uIti.plyin Factors  Change in mean effect  =  eftect  SR  (suiuu  =  cfrcct  flit  —  n  f 3 4  (48)  (4)  (5o+ )‘  32.76  32.70  (1)  Calculation of Efrects  89.62  =  5’  (iii)  80.62  Phase mean  (vi) Nc.w averages:  (v) Pkw sums  Uv) Dt1crenccs ()  (i) Previous cycle sum (ii) Previous cyc1eaveragc (iii) New observations  (0)  77 =  s  0.41 0.10 011 0.6) 0.57  s  ±78.76  ± 70.49  L72 S  ±78.76.  s  =  0  Source: Iteference (Montgomery,1984)  For clancin muan:  For new cects:  iol  n—I  sum  =  39.38  Calculation of 2 SE. Limits  New average  Pre’’ious average s New s = range X f , 5 Range New sum s  1ieviu sum s  Prior estimate of  Für new averages:  85.40  85.40  (4).  Phase 1__ Date.  Project IJASB— UASD  Calculation ocstandard Deviation  Response:!nEATHENT_EFF1CIENCY(%)—F1L.COD  CYCLE  21 Fac(orial huh added reference c.oiidii’ion  CIculat ion o1Ayeracs  • Oer-ating conditions  —A  .0  •  •  ii  •  SR  ,  —  1)  1.79  2.00  1.00  1  (sn’iw)  24.61  3  0.35 0.33 0.50 1.15 I .o:  2  0.30 0.30 1.00 1.41 1 .2  —  —  Y’.)  Y’)  phasem —Yo  —  —  Y4)  57.53  (i  :-i  0.37 0.25 0.33 1.00  0.38 0.39 0.20 0.17 0.25 0.20 0.9 032 0 ‘o.7a  0.40 0.14 0.17 0.76 OlS  I  3. 13  $  —3.26  85.40 88.66  (4)  _  Sums  24.98 7.49  s  ±  L!2  •±s  ±  =  10.56  ±  9.44  ±W.56  ±  7.49  39.38  1  Source: Reference (Montgomery.1984)  For change in wean:  Fornewelfects:  0.41 0.10 011 063 0.57  = flCV  =  =  —  Calculaiion of 2 S.E. Limits  New average  Range Nwsums  Prior estimate of Previous sum s Previous average s News range y  For new averages:  10  Date  Phase  Project hASH— UASI3  Calculation of Standard Deviation  -_  87.03  174.06  0.40 0.11 0.12 0.67 0(0  9  —35.36  —  59.30  —26.38  51.47  1.36  2.71  —3.19  —5.48 8.19  (3)  0.40 012 011 0.71 0.63  =  Table of Muluplytug Factors 4 5 7 6  =  Change in mean effect  + Y3  2 .P  effect  (2  8.68  115.06  —  53.19 61.87  (2)  + Y2 ± h +  Calculation of Eects  86.83  49.22  16.30  5.59 173.65  32.76 16.46  (1)  2  ResponseTiftATHbNT_EFF1CIkiSCY(%)-F’1L .COD  c’ci...tn=  Fac(orial with added ieference cOi,dii’ion  89.62 81.03  (0)  1 + +U  Interaction on  2./v’ 1 I .79f-.J  l/(n  1/n  f  (AB)  (B)  (M  Phase mean  (vi) Nc.w avetagcs:  SUS  (i) Previous cycle Sum m. cycle average (iii) Newçbscrvtions (iv) Dillerences (ii) less (iii)  (v) NeW  22  Cculation of Averages  Operating conditions  —A’  2  ___  _____  _____  A  —  3  •  ,i  •  1.00  2.00 1.79  1/Qi 1) 2//i I ,79/  —  i),i  .  (sn•iu)  SR  j  171.45  —  (1)  effect  efTct  effect  =  =  +  3  0.35 0.33 0.50 1.15 I .03  2  0.30 0.50 1.00 1.41 J .2  -  .P  —  —  —  +  Y4)  p)  j)  Y3 Y4)  61.67  phase mcan —o  —  —  —  +  57.53 65.81  (2)  8.28 123.34  —  —  0.37 0.25 0.33 1 .0J 02)  4  0.0  5 0.3 020 0.25 029  0.17 0.20 0.S2 U 73  0.39  6  0.40 0.14 0.17 0.6 0(2  7  1.36 5.30  (3)  0.10 0.12 0.14 0.71 0.63  —  —  —  88.03  30.56  1.40  0.40 0.11 0.12 0.(.7 0.60  =  2  S  s  —  1.79 s  2  —  ± —p-  ±  =  =  ±  +  5.75  6.42  6.42  Source: flcterence (Hontgoiiery,1984)  For change in mean:  0.41 0.10 Oh 0.63 0.57  5.58  10.49 11.16  7.49 3.67  Calculation of 2 S.E. Limits  Ncwavcrages  =  New sums  =  =  =  RanEe new sum s n—I  Prior euite of Previous sum s Previous averages New s = iange X f  For new cllects:  10  Date  Project UAS13— UASB Phase  Calculation of Standard Deviation  For new average .s:  87.53  —1.00 175.06  24.46  9  (i) 87.03  -—  52.93  3.33  —3.94 6.66  —  Table of li ultiplying Factors  =  1 +J -CP  4-(2  Y3  (i’o+ Yi -1-. Y2  2+ 4c  I  j  j  26.381  3.53 52.75  Calculation of Effects  85.73  j  2.21  84.62  86.83  (0)  Change in mean effect  1nterction on  .  RU  Phase mean  f  (,4B)  ()  (4)  .  (vi) New averages: y  (iv) Differences (ii) less (iii) (v) F’kw sums  (i) Previous cycle sum (ii) Previous cycle average (iii) New observations  -  3  ResponseTREATM1.NT_EFFICIENCY(%)-FJL.COD  CYCLE T7  Fc(orial with added reference condition  24.61 28.14  22  CIculation of Aveacs  Operating conditions  —  2  -  —  1/n 1/(n 1) 2/v’ l.79/_1T  n  .  0.50 1.00  1.41 1 .2  1.00  2.00 1.79  0.35 0.33 0.50 1.15 1 .0.  3  =  =  +  +(Yi  +  2+ 4c  (‘  0.33 1.00 0.9  0.25  0.37  Table 4  Y3 Y4)  ) 3 .p  J)  )‘3  5  0.17 0.20 0.S2 0.73  0.39  6  Yo  =  1  0.12 0.14 0.71 0.C  0.40 0.14 0.17 0.76 0.CS  7  0.11 0.12 0.67 0C)  9 0.40  5.7  183  —0.60  0.80  92.15  93.36  93.36  (3)  $ 0.40  .Y4) =  ]:acrs  —  f  94.59  U1C8J  —  —  —  +  (2)  94.59  )Iultip1ying  phase  —  —  +Y2  0.3 020 0.75 0) 0.Ei3  of  Y2  (Yo+ Yj  mean effect  effcct  Change in  1,2 : 0.30  (su’i)  cfTcct  SR  ()  Interaction on  effect  .  94.39  94.39  (1)  Calculation of Effects  rn  (AB)  86.45  (0)  86.45  (A)  Phase mean  .  F’revious cycle sum Pcvious cycle average Nw observations DitTercnces (ii) less (iii) Ncw sums  (vi) Ne.w averages: yj,  .  (I) (ii) (iii) (iv) (v)  —  ‘  0.57  0.63  0.11  0.41 0.10  3•35  ±  s  s  =  ± 6.00  ± 6.70  ± 6.70  Source: Ueference (Montgomery,1984)  For changen mean:  For new effects:  l0  =  =  =  =  -  Calculation of 2 S.E. Limits  —  Prior estimate of u Previous sum s Previous average s News range X ft,, Range New sum s new sum s New avcrac’e s  For new average s:  91.97  91.97  (4)  Date  Project UAS— UASD Phase II  Calculation of Standard Deviation  Rcsponse:RF.ATH1NT_£FFICIENCY(%)—FIL.COD  CYCLE 71  22 fac(c’ria! with added reference coi,diü on  Ca)culation olAverages  Operiting conditions  12  ___  _____  _____  —‘-  .  V  n  V  SR  HR  (iii)  V  —  V  2.00 1.79  1.00  1  (snun)  0.30 0.50 1.00 1.4 I 1.26  2  95.13  1.48 190.26  —  94.3’.) 95.87  (1)  effect  effect  +  1+ 4-c  = +Q2  = (2  +(+  0.35 0.33 0.50 1.15 1 .0  3  . —  —  Y4)  5)  —  + Y4)  ) 4 y  Y3  phase meir  —  —  —  +  95.09  0.99 190.17  —  94.59 95.58  (2)  (V:J  0.37 0.25 0.33 1.00  4  0V’  0.20 0.25 0 )  OV3  5  0.39 0.17 0.20 0. u. /3  6 0.40 0.14 0.17 076 0.63  93.36 95.40  (3)  2  =  0.10 0.12 014 0.71 0.63  9 040 0.11 0)2 067 0(0  1.90  —1.19  •  91.97 92.10  (4)  I  =  ‘.‘  /  aerage s :  0.41 0.10 011 061 0.  1.98  6.59 1.98  1.98  3.35  mew  ±  ±  2  —  —  2  —  s  s  =  ±  2.49  ± 2.79  ± 2.79  V  Source: Reference (Montgomery,1984)  Fur chingein  —  —  =  =  =  -  Calculation of 2 S.E. Limits  New average s  new sum s  range XJ,,  Range New sum s  News  Prior estimate of o Previous sum s Previous averages  For new effects:  10  Date.  Project UASIi— Phase II  Calculation of Standard Deviation  F or ne  92.04  0.13 184.07  —  93.18  93.38  2.04 188.76  —  =  Table. of liultip1ymg 1-actors  Y2  4  —  Yi + Y2  I  I i  —  ResponseTiEATHLNT_EFF1CILNCY(%)-FIL.COD  CYCLE 77  .Foc(orial viih added reference condition  Calculation of Effects  89 a 25  5.60 178.50  —  Change in mean efftct  Interaction on  1/n 1/(n 1) 2/v’i 1 .79/J7T  f•,,  (AB)  (B)  (4)  Phase mean  (vi) Ncw averages:  lD ferences (ii) less (iv) 1 (v) }‘k’ sums  86.45 92.05  (0)  Calculation of Averages  Ope’rating conditions  A  (i) Previous cycle Sum (ii) Previous cycl average (iii) New observations  .  —  22  ___________  (iv) Differcnces (ii)les (iii) (v) 4ew sums  .  —  1/n 1/(n 1) 2/v’s 1.79/JT  f’,,  n  .  2.00 1.79  1.00  1  (si’iLI)  Thte  .  effect  4-(;’  = 2  (92  +  +  -I-  2 0.30 0.50 1.00 1.41 1 .2 0.33 (iSO 1.15 I .03  0.35  3  —  Y2 Y3  5 —  —  —  Y4)  5)  —  95.09  phase iiien  —  Y4  3 y  .  95.09  95.09  (2)  0.00 100.18  —  .  J.Oi 0  0.37 0.25 0.33 0  .‘  (i.  0.3 0.20 0.5  0.17 0.20 0.S2 (; 7i  0.39  0.40 0.14 0.17 0.76 0(3  94.38  (3)  0.40 0.12 0.14 0.71 0.63  =  —  93.83  92.04  (4)  0.C  9 0.40 0.11 0.12 067  2.46  1.15  0.83  1.01  .COD  n—I  new sum  S  =  =  1.80  1.62 4.63 3.60  1.98  1.79 .s  2 =  =  ± 1.85  ±2.O7  2.07  Source: Reference (Montgoiery,1984).  For change In mean:  For new effects:  2  Calculation of 2 S.E. Limits  New averages=  Range Newsurns  Prior estimate of u Previous sum S Previous average s News = raiwe X /  -  Project UASU— UASI3 Phase ‘I Date.  Calculation of Standard Deviation  For new avet age s:  10 0.41 010 0,) 0.63 0.7  .  92.94  —1.79 185.87  93.81  94.77  95.15 —0.77 189.53  Table of Multiplying Factors 4 5 6 7  Change in mean effect  tion on  _cITcct  SR  (B)  (Al?)  _elTcct  IG’  —  94.91  Calculation of Effects  91.35  j  94.69  93.44 0.44 189.82  95.13  1 (I)  3  ResponseTREATI1ENT_EFFICIENCY(%)—FIL  CYCLE 71=  Fac(oritil vith added reference condüion  89.25  (0)  4.19 182.69  (A)  Phase mean  1 (vi) Ncw averagcs:  22  Calculation of Averages  Operating conditions  3  (i) Previous cycle sm (ii) Previous cycle average (iii) Nev obserS’ations  11  17  2  A  —‘-  .  sums  ()  (A)  5,  ‘  —  I/u l/(n 1) 2/v’ I.79/’T  2.00 1.79  1.00  effect  effect =  =  =  (4 Yi  +(92  4-(22  +  +  0.35  0.30 0.50 1.00 1A1 1.26 0.33 0.50 1.15 1.03  3  2  0.9  1.00  0.37 0.25 0.33  4  TLle  )‘t  1 .P  •  Y2  phase  —  —  —  +  —  —  —  +  Y4)  Y3)  —  +  5)  Y3  Yo  Y4)  1.75  1.75  (2)  0.3 0.20 0.25 0.9 0.)  5  0.39 0.17 0.20 0.2 073  6  1  0.40 0.14 0.17 0.76 0.C  7  0.  0.40 0.11 0.12 0.67 0.CO  9  io  0.36  0.77  —0.07  0 0.12 0.14 0.71  —  1.25  0.63  0.63  (3)  (JXJ3  =  of biulti1yng Factors  Y2  Y4  —I- Y3  Oo+ Yi  Calculation of Effects  1.05  1.05  1.35  1.35  (1)  —  condition  -  s:  0.10 0.11 0.63 0.57  ‘  I  n—I  new sum s =  0.43  ±  s  S  —  1.79s  —  2  2  +  0.77  0.86  • 0.86 —  .  Source: ileference (Montgoiaery,1984)  For change in mean:  For new effects:  10  =  =  =  =  Calculation of 2 S.E. Limits  Ncw averages  Prior estimate of Previous sum s Previous a’ciage s New s = range x f,, Range New sum s  For new average  1.46  1.46  (4)  Project LJAS8— UASB Phase I Date.  Calculation of Standard Deviation  4 PRO TI0N(CH Response GAS )  CYCLE 17  Fac(orial with added reference  (0)  Change in mean effect  Interaction on (sn9m)  SR  Phase mean  11•  f , 5 ,  ‘  (48)  .  (vi) New averages:  New  (iv) Differences (ii) less (iii)  (v)  22  Calculation of Averagcs  Opcraing conditions (i) previous cycle sum (ii) Previous cycle average (iii New observations  —  3  2  A  —‘--  .  Pievious cycleaverage (iii) New observations  () Previous cyEle sum 1  .  —  .  1)  2/v’i 1.79/.J  1/(n  .  2.00 ;79 u.S 1 (“3  0.50  0.33  0.50 1.00 L41 1.26  1/n  1.00  0.35  0.30  f  1  =  =  Y4  2 + .P  +  2 -j- 5 -CP  + 5’ 0 -c  Y3  Y2  —  —  —  +  Y4)  Y3)  —  +  j)  5’)  phase ncn  —  —  -F ) 4 y  0.2$ 0.33 1.00 0.9  0.37  4  0.25 0) 00  0.3 0.20  5  0.17 0.20 052 0.73  0.39  6  0.40 0.14 0.17 0.76 0.65  7  S  0.63  9  0.40 0.11 0.12 0.Ci O.1C  0.04  0.59  —0.39  —0.12  .1.56  0.10 0.12 0.14 011  =  =  Table of Multij.4ying lactors  Chnse in mean effect  effect  effect  effect  3  ,  (slt•im)  Sit  Interaction on  •:  RR  2  (.4B)  (B)  (A)  Phase mean  Calculation of Eflects  2  OZI  063  0)1  0.41 0.10  If)  -  0.83  0.83  2.75  0.83  0.43  ±  2  —  1.79  —  2  —  s  s  s  =  ±  1.04  1.17  ± 1.17  1s3 C.) —1  Source: Iteference (Montgoiaery,1984)  meaI  For new eftecis:  For cliarigein  —  new sum s  =  =  =  =  =  Calculation of 2 S.E. Limits  Ncwavcrages=  Newsurns  Range  Prior estimate of Previous sum s Previous average s News = range xf 5  For new average s:  1.14  0.64 2.28  1.46 0.82  (4)  D atc.  Prcject UASB— UASB Phase 1  Calculation of Standard Deviation  ResponseA5_PRODUCTiON (CA ) 4  CYCLE71  Fac(orial wih added refre,ice condiio;i  4 . 2 J lll.Gll .  (vi) Nw averages:  (iv) Differences (ii) less (iii) (v) 1’kw sums  (ii)  22  Calculation of Averages  Opeting conditions  —  3  2  __  _____  _____  .  —  V  V  1.79  2.00  1.00  1  (sR1u)  1) i/(ii 2/-/ 1 .79/.JT  1/n  3 f  .  on =  + Y3  5’!  Y2  —  —  —  +  Y4) —  +  J’)  Y3  phase ‘mean  —  —  —  + Y4)  1.88  •‘  —0.53  1.61 2.14  (2)  0.37 0.25 0.33 1.00  0.35 0.33 0.50 1.15 1.03  0.30 0.50  (;.  4  3  O.3d 0.20 0,25 09 00  5  0.39 0.17 0.20 0.S2 0.73  6  0.40 0.14 0.1’! 0.76 0.6S  7  1.41 3.49  (3)  8  9 0.40 011 0.12 061 0CC;  0.06  0.04  —0.61  0.77  0.40 0.12 0.14 0.71 0.63  =  =  =  —  1.77  2.45  —2.08 4.90  —  Table of Multiplying Faclois  Y  Y4  + Y3  -(5 +  = +(5’2  = 4-(2  2  1.00 1.41 1.26  1.72  0.78 3.44  2.11 1.33  (1)  &o+ Yi  Chnse in mean effect  effect  effect  SR  (B)  (AB)  effect  HR  (A)  Phase mean  1  Calculation of ElTects  1.71  (vi) New averages:  V  0.38 3.42  1.52 1.90  (iv) Difierences Oi) less (iii) (v) Hew sums  (i) Pivious Cycle sum (.U) Previous cycl&averagc (iii) New observations  (0)  3  1.14 1.01  (4)  New  0.41 0.10 0.11 0.63 0.57  10  —  =  0.92  2.86 1.83  0.83 1.00  mean:  s:  ±  ±  2  s  s  —  1.79s  —  2  —  =  1.05  ± 0.95  • 1.05  ±  00  Source: ]efererice (Montgomery ,1984)  ii)  For new eftc.cts:  For change  =  new sum s  =,  =  Calculation of 2 S.E. Limis  average s  New sums  Range  Prior estimate of u Previous sum s Previous averages News range Xf,,  For new average  1.08  0.13 2.15  -  Date  Project UASI3—UASD Phase I  Calculation of Standard Deviation  Response LGAS 4 PRODtJCT1ON(Cl1 )  CYCLE fl=  2 Fac(orial with added reference conditio,  Calculation of Averages  Operating conditions  2  __  _____  _____  12  a-i  V  V  i.79/4  2/v’i  .  2.00 1.79  .  1.00  1  (suim)  2.23  =  =  +  +( +  2  0.50 1.00 1.41 1.2  0.30  0.33 0.50 1.15 1.03  0.35  3  Y3 —  Y4)  phase mii  —  —  Y4)  —  Yo  =  1.00 0.-’9  0.37 0.25 0.33  4  0J  0.25  5 0.3d 0.20  o.7:  0.17 0.20 0.32  0.3)  6  0.76 0.63  0.17  0.40 0.14  7  Table of 1ultipyirig Factors  =  Y2  Y4  —  8 0.40 0.12 0.14 0.71 0.63  —  (4)  .  new  effects:  0.41 0.10 0.11 0.6) 0.5?  10  =  ±  ±  2  1.79  —  2  —  s  s  1.06  1.06.  ± 0.95  ±  • —  t’3  Source: fleference (Montgoiaery,1984)  For changcn mean:  For  S  =  =  =  =  =  Calculation of 2 S.E. Limits  Pievious sum s Previous average s New s = range X f Range &w sums new sum New avcraQc s = n—I  Prior estimate of u  0.53  Project UASB— UASB Phase XI Date  Calculat ion of Standard Deviation  For new average s  1.79  1.79  -  9 0.40 0.11 0.12 0.67 (.C(  —0. i  0.66  —0.68  0.45  —  4( + Y3 =-  2.92  V  2.92  (3)  2.07  1.58  1.58  (2)  (Yo+Yi +Y2±Y3+Y4)  Chttnge in mean effect  2  1.81  1.81  (1)  Calculation of Effects  2.23  Interact iGn oeffcct  -  i/n 1/(’z— I)  3 f  .  (AB)  (B)  (A)  Phasemcari  (vi) Nc.w averages:  (iv) Differences (ii) less (iii) (v) New sums  (i) Previous cycle sum (ii) Previous cycle average (iii) Nw observations  (0)  —  I  4 PROD ResponseGAS ) VCT1ON(d11  CYCLE 77  22 Fc(ori! ih added r,ference coiidkio,i  Calculation of Averages  Operating conditions  .0  _  ___________  3  22  ,  —  1)  V  1.79  2.00  V  1.00  1  •  (sumt)  2/-/ñ 1.79/s  1/(n  Sit  I  effect  effect  +  +  0.35 0.33 0.50 1.15 1.03  0.30 0.50 1.00 1.41 1.26  3  2  Y4  Y3  Y2  —  —  —  +  I  Y)  )  --  +  5’)  Y3  .  Y4)  1.67  phasc mari  —  —  —  V  -  3.33  —0.15  1.59 1.74  (2)  0.25 0.33 1.00 0.  0VV)  0.25 0i  0.20  V73  0V2  020  0.17  =  =  =  =  2  0.C  OV’lG  0.14 0.17  I  0.14 0.11 0.3  0.12  0.41 010 0.11 0.63 0.7  j  11—1  new sum s =  1.15  0.35  0.35  ±  ±  s  =  0.49  ± 0.44  ±  0.49  V  0  Source: Teference (Montgomery,1984)  For change in mean:  For new effects:  10  =  =  Calculation of 2 S.E. Limits  New averages  New sums  =  =  Previous sum s Previous averaèe s New s = rany.e Range  =  Prior estimate of  0.35  Project UASB— UASU II Phase 0 atc.  Calculation of Standard Deviation  For new averages:  1.99  3.98  —0.40  1.79 2.19  (‘I)  —  0.40 0.11 0.12 0.67 0(0  9  —0.02  —0.60  —0.28  1.83  1.98  2.55  5.09  0.75  2.92 2.17  (3)  Table of Multiplying Faclors 4 5 7 6 0.37 0.3 0.39 0.40 0.40  —  2 1 + .P C’  = +(2  = (2  (Yo+ Yi  Calculation of Effects  Change in mean effect  Interaction on  V  Phase mean  1/n  f  -  (AB)  (B)  (A)  .  1.67  2.00  • (vi) Nc.w averages: I  3.33  4.00  )‘  0.29  0.49  .  1.81 1.52  2.23 1.74  (I)  77  Response GAS. 4 PROL)UCTJON(d11 )  CYCLE  Fac(orial with added reference condition  (i)Prevous cycle sum (ii) Previous cycle average (iii) New observations (iv) Df[ercnces (ii) less (iii) (v) New sums  (0)  C1cu1ation of Averages  Operating conditions  :  .0  2  2.00 3 .79  1/(’i 1) 2/-171 I .79/.1T  —  1.00  1  1/n  .  2  +  —  —  —  Y3)  —  +  ) 4 y  phase mean  —  —  —  Y3  Yo  Y4)  1.67  3.33  4 0.37 0.25 0.33 1.00 0.  3 0.35 0.33 0.50 3.15 1.03  2 0.30 0.50 1.00 1.41 1.20  0.3 0.20 3.25 0i.9 0.0  5  0.39 0.17 0.20 0.2. 0.73  0.40 0.14 0.17 0.76 0.(’.  67  Table of Multiplying Factors  Chuige in mean effect  2 1 + .P +C  -1-  5’ +  Interaction o_effcct (s1im)  4(5’2  o+  +i  =  =  Calculation of Effects  elicci  SR  Phase mean  li  J  (AB)  (B)  (,4)  .  1.84  (vi) New averages: y, 1.74  —0.14 3.48  0.33 3.67 0.01  1.67 1.66  (2)  1.67  (1)  1.81  (0)  —  .3  0.10 0.12 014 011 0.6,  8  0.40 0.11 0.12 067 0.60  9  0. 10  —0.53  —0.34  0.27  1.94  2.53  0.04 5.06  2.51  2.55  (3)  .  s  s:  0.41 0.10 0.11 063 0.57  =  0.26  2  —  2  —  —  1.79  -%/  ±  ±  s  s  s  =  ±0.27  ±0.29  ±0.29.  Source: Reference (Montgomery,1984)  For change-in mean:  For new effects:  101  —  new sum s  0.47 0.51 =  0.35. 0.16 =  =  =  =  Calculation of 2 S.E. Limits  Nw average  Prior estimate of a Previous sum Previous average s New .c = range x Range New sum s  For new average  1.93  0.12 3.86  1.99 1.87  (4).  -  Project UASB— UAMJ Phase ii Date.  Calculation of Standard Deviation  Response _GAS PRODUCTiON (CH ) 4  CYCLE n  Fac(orial vI(h added reference.coiidiiion  2.00 1.67  .  Calculation oF Averages  Operaiin conditions  3  22  (i) Previous cycle sum (ii) Previous cycle average (iii) 14ew observations (iv) Differences (ii) )css (iiO (v) New sums  1  .0  2  .  .  .  —  .  .  1)  1  2.00 119  1.00  ‘  (SRk)  cffcct  1.15 1.03  0.50  0.33 0.33  0.30 0.50  1.00  3  2  )A1 i.26  (I)  (2  Y4 3 y —  —  y)  3)  —  Yo  + Y4)  y)  Y3  phase mean  —  —  —  +  70.53  70.53  (2)  =  0.37 0.25 0.33 1.00 0.,)  0.33 0.20 0.25 0.) 0.:3  0.73  0.39 0.17 0.20 0.82  456  0.40 0.14 0,17 0.76 0.68  7  Table of Multiplying Factors  =  +h  +  +  Y  52.30  o+ Yt  = +(52  =  =  Chnse in mean effect  Interaction on  2/i 1.79/T  1/(n  15.’, 1/n  (48)  effect  .  SR  .  (B)  —  effect  RR  mean  1  Calculation of Effects  87.24  (4)  Phase  ,  87.24  (0)  =  .1  7.72  23. 10  4.87  0.40 0.12 0.14 0.71 0.63  0.40 0.11 0.12 067 0(0  9  —17.57  —  —  .  83.12  (.1)  s:  O.1I 0.10 0.11 0.C3 0.57  ±  ±  12  2  ____  $  s  ±  ±  ±  28.34  31.66  31.66  -._________  t’3  Source: Thference (Montgoaaery,1984)  For changen mean:  For new effects:  It)  15.83  Calculation of 2 S.E. Limits  n—I  Prior etirnte of = Previous sum s = Previous average .s News = range >( f Range = New sum s = new sum s New average s =  —  Project UASB— LJASB Phast Date.  Calculation of StanJard Deviation  For ne.’ average  .  (%)  83. 12  69.67  55.15  55.15  (3)  4 Resp C ON onse TEN .j_cH T  CYCLE 71  Fac(orial with added referc’nce condian  52.30  22  Calculation ol Averacs  Previous cycle sum Pcvious cycle’average New oI.servations Differences (ii) less (iii) New sums  (vi) New averages:  (i) (ii) (iii) (iv) (v)  A  Operating conditions  —  •  Operating conditions  (B)  (A)  ,i  I  .79/-.JT  1)  1.79  2.00  1.00  1  (skill)  —  2//  ]/(‘z  i  83.81  (Yo+ Y’i  + Y3  +  effect  +  3 0.35 0.33 0.50 1.15 1.03  2 0.30 0.50 1.00 1.41 1 .2  phase  Y3  Y4) mcai —  —  0.37 (X25 0.33 J.OCJ 0.2  4  0.3 0.20 0.25 O.) 0O  5  0.1? 0.20 O.2 *73  6 0.39  0.40 0.14 0.17 0.76  7  8  6.36  o•7  6.46  79.64  63.12  (4)  S  3.23  10.76 3.23  3.23  ±  ±  $  -  ± 4.03  ± 4.55  ± 4.55  Source: fleference O4ontgomery,1984)  For change in mean:  10  n—I  new sum  =  =  =  =  l.JASD  S14.22  Calculation of 2 S.E. Limits  New averages  Newsurns  Range  Prior estimate of Prevwus sum Previous average s New s range x f  For new eects:  0.41 OW 0 Ii 0.63 O.?_—  -  1) a (.  Ph  Project $1  Calculation of Standard Dev.tion  Forncwaverages:  81.38  3.48 162.76  0.40 0.11 0.12 0.67 0 60  9  —15.38  —  —  I  68.43  54.15  2.00 108.30  55.15 53.15  (3)  0.40 0.12 0.lt (i’ll 0.63  =  Table of I1ulLiplying 1-actors  Change in mean effect  .  —  94• 91  Cl + h  (9  Y4)  68.57  3.92 137.14  70.53 66.61  (2)  4 ce + 2 — 3 ) j— ct 9 (9 9  =  Y2  54.25  3.90 108.50  6.86 167.62 —  56.20  52.30  (1)  87.24 80.38  (0)  2  Response: CI1 4 C0NTE1T (%)  CYCLE 71  Factorial wIth added reference condlrion  Catculaton of Efkcts  I  Interactinn onefject  SR  Phase mean  1/n  (AD)  :  (v) Nw averages: 5i,  22  Calulation of Averages  (I) Previous cycle sum (ii) Preious cycle average (iii) New observations (iv) Differences (ii) less (iii) (v) ewsuins  -  A  2  ___  _____  _____  .  i/n l/(n — 1) 2/’Ji l.79/-T  J  n  (B)  .  2.00 1.79  1.00  =  2 CP  -(2  +  +  -f  4 0.37 0.25 0.33 1.00 0.9  3 0.35 0.33 USC) 1.15 1.03  2 0.30 0.50 1.00 I’ll 1.2  T; L c 1  54.41  —  —  —  +  +  Y4)  3)  4)  Y3  =  =  =  =  0.39 0.17 020 0S2 0.73  6  81.38 80.06  (.1)  —5.31  5.31  10 0.41 0.10 0.1 i 0.63 0.57 0.40 0.11 0.12 067 0.60 OAO 0.12 0 14 0.71 0.63 0.40 0.14 0.17 0.76 0.68  I  UASL3— UAt1  S =  =  =  =  2.43  4.62 4.85  3.23 1.62  s:  2  1•79  -/  —  2  —  =  =  s  =  s  s  ± 2.50  ±2.79  ± 2.79  Source: liçference (Hontgowcry,1984)  ±  Calculation of 2 S.E. Limits  For change in mean:  9  -  j  Previous sum s Previous a’,’crae s New s = range X f Range Newsurns new sum New averages I  Prior estimate of  For new effects:  6  V  Date  Phase  Project  ICalculation of Standard Deviation 8= 14.64  For new average  80.72  132 161.44  —16.30  —  F  67.90  52.23  3.85 104.45  54.15 50.30  (3)  (%)  7  lull i p 1 yin g Fact ors  ) 4 Y  67.92  1.30 135.84  68.57 67.27  (2)  phascTncan  —  —  0.3’d 0.20 025 0.) 0.  5  =  Y  514  Y3  of  Chne in mean effect  effect  effect  SR  (4)  Interaction on (swim)  84.20  0.32 108.82  —  54.25 54.57  (1)  V  C0NTEN 4 Response : C11  CYCLE 77 = 3  Fac(oria! wizl added reference condiiion  Calculation of Effects  effect  (/iB)  0.77  84.58  83.81  (0)  168.39  —  rn  Phase mean  .  ‘  Previous cycle sum Previous cycle average New observations Differences (ii) less (iii) New sums  (vi) New averages:  (i) (ii) (iii) (iv) (v)  22  Calculation of Averages  Operating conitions  V  1  3  2  •  —  V  1 i.79/ c -  1)  2.00 1.79  =  1 + 4-Cf’  +  +  3 0.35 0.33 0.50 L5 1.03  2 030 0.50 1.00 1.41 1.20  2 .P  Y4  Y3  Yi  5’  Yi —  —  +  ) 4 .P.  3)  —  +  5)  Y3  Yo  Y4)  69.93  69.93  (2)  phase inca  —  —  —  + Y2  74.03  74.03  (I)  0.37 0.25 0.33 1.00 0.7  flV0  0V;  0.3 0.20 0.25  =  i  073  flV)  020  0.39 017  0.40 0.14 0.17 0Z1 0.6  V  —  —  0.40 0.11 0.12 067 0.60  9  1.55  1.10  1.13  2.98  72.14  —  0.40 0.12 014 0.71 063  —  72.15  72.15  (3)  (%)  -  s:  I O.J  0.41 J.10 0 i 0.3  1  For changHn mean;  =  =  =  ±  2  s  —  ±. 3.38  3.78  37  V  1.89  V  Source: 9 U f erence (Montgoacry,1984)  -  $  = =  Calculation of 2 S.E. Limits  Prior estimate of Previous sum s Previous average .s News= range Xf,, Range New sum S new sum Ncw averages fl—I  For new cf1cct:  10  -  Project LJASI3— UASD II Phace. Datc Calculation of Standard Deviation S  For new average  74.00  V  74.00  (4)  Response; C 4 C ONTIN II T  CYCLE  Fac(orial wIth added reference condition  Table of )lultiplying_Facior :1 5 6 7  Change in mean effect  effect  cflct =  SR +(2  effect= (52  1.00  22  Calculation of Effects  70.59  70.59  (C))  Em  Iitçt ion on (Su1m)  2//  1/n  (AR)  (4)  V  Previous cycle sum Previous cycle a’erage New observations DiITCIcnces (ii) less (iii) Hew sums  Phase mean  -  CalculaUon of Averages  Operating conditions  _J  (vi) New averages:  (i) (ii) (iii) (iv) (v)  iJ  4.  V  (ii)  n  1  SR  y  less (iii)  effect  —  .79/.T  1)  •  2.00 3.79  1.00  1  (suiw)  Y4 Y2  +(h + +(; +  0.3? 0.25 0.33  0.3 0.33  0.50 1.15 1.03  0.30 0.50  1.00 1,41  1.00 0.59  4  3  2  .2’S  +  Y3 —  —  —  Y4)  3)  Y4)  —  +  j,.)  pha5c mean  —  —  Y)  0.3 0:20 0.25 (i 9 (‘0  5  0.39 0.17 0.20 OS? 0.71  6  0.40 0.14 0.17 0.76 0(5  7  2  =  —  —  —  0.41 o:io Oh 0.63 0.37  .±  ±  s  —  =  .  ±  2 S.E. Limits  S  =  =  =  -  0.97  1.09  1.09  0.77  2.57 0.77  0.77  0)  Source: Th?ference (itontgomery,1984)  For change in mean:  0.10 0.11 0.12. 0.67 0.60  sure n—I  new  Calculation of  New average s  Prior estinmte of u Previous sum s Previous avcrng s New s = range X f 5 Range New sum s  For new cftecs:  10  Date  Projcct UASIJ— UASD Phase Ii Calculation of Standard Deviation  For new averages:  0.01 147.99  74.00 73.99  Qi)  (%)  9  0.58  1.21  i.io  2.86  72.37  72.23  144.45  0.15  72.15 72.30  (3)  0.40 0.12 0.14 0.7) 0.63  —  =  Table of Multiplying Factois  Change in mean effect  =  (Y’2  o+ Yt +Y2  Calculation of Effects  69.98  73.88  71.80  —  69.93 70.03  (2)  0.10 139.96  74.03 73.72  (1)  0.31 147.75  70.59 73.01  (0)  =  CONTENT 4 Response: CH  CYCLE ‘i  Fac(orial with added reference condition  2.42 143.60  —  Interaction_neffect  2//  1/(n  fsn  (AB)  (B)  (A)  Phase mean  (vi) N.w averages:  (v) Nc.w sums  (iv) Diifercncs  (I) Previous cycle sum (ii) Previous cycle average (iii) New observations  Operating cOndiLiOflS  Calculation o1Avcracs  22  .  in  BR  —  V  2.00 1.79  1.00  V  1  (SRut) •  Interaction  .  I/n 1) 1/(n 2/v’i 1.79/-1T  f  (AB)  (B)  (A)  •  Phase mean  (vi) Nw averages:  (1)  effect  effect  =  =  0.3 0.20 0.25  0.37 0.25 0.33 1.00 0.9  0.35 0.33  0.30 0.50 1.00 3.11 1.26  0.P.0  09  5  4  3  3.15 1.03  5A.i)  .P)  5)  Y4)  —  +  =  =  =  0,20 0.S2 0.73  0.17  0.39  6  3  1.81  3.38  3.09  0.10 0.12 0 14 0.71 0.63  0.10 0.14 0.17 0.76 0.68  0.41 010 0.3 0.63 0.57  0.10 0.11 0.12 0.67 0.60  in  nean:  s:  ±  ±  ±  2  Vn  —=  1.79  —  2  —  s  s  £  =  ±  ±  ±  0.88  0.98  0.98  t’3  Source: Uçfcrence (Montgoncry,1984)  For change  0.85  2.65 1.70  0.77 0.93  S= 1.80  Calculation of 2 S.E. Limits  For new effects:  10  =  Previous sum s Previous avcrae s New s raitg X = Range = Newsurns = new sum s = Ncwaverages= n—I  Prior estimate of  -  Project UASB— UA Phase II  Calculation of Standard Deviation  For new average  74.88  1.78 149.76  —  9  0.00  8  —  —  —  72.62  72.17  0.1 144.33  73.99 75.77  (4)  N.ffeNT (%)  72.2 72. 1(  (3)  7  Table of J1uItiplying Factors 2  0.50  —  —  —  Y3  69.98  0.00 139.96  69.98 69.98  (2)  phase mai  Y3  +CPI + Y —  —  y  +  Y  Y4  +(2  -I-  0+ Yj +Y2  +  73.45 I  0.87 146.89  Calculation of Effects  72.62  1.63 145.23  —  71.80 73.43  Chnse in meiin effect  on  (iv) DiiThrcrices (ii) less (iii) (v) Nc’y sums  (i) Previous cycle sum (ii) Previou.s cycle average (iii) Ncw observations  (0)  Response j.Jil  CYCLE TI  Fac(ori’al rvih added reference côiidition  73.88 73.01  22  Calculation of Avera1es  Operting couditions  12  A  —‘  (i) Fevious cycc sum (ii) Previous cyc1 average (iii) New observations (iv) Difrercties (ii) less (iii) (v) New sums  .  ii  1.00  2.00 1.79  1/(n— 1) 2/./i 1.79/-JT  1  1/n  .  (suim)  23  23  (0)  effect  0.35 0.33 0.50 1.15 1.03  0.30 0.50  1.00  3  2  —  —  0.25 0.33 1.00 0.)  0.9 0..u  0.3 0.20 0.25  1L1c of Ill 4 5 0.37  6  + Y4)  I  =  =  0.40 0.14 0.17 0.76 0.63  7  iacoL S  cari  Y)  Y3)  Y4)  Y3  116  116  (2)  lying  —  —  +  0.39 0.17 0.20 0.22 u.73  Yj  Y2  =phis  Y4  + +  Y3  Y +  2+ 4-(.P  +(Po+  = +(2  =  Chanseinmeneffec.t  1.41 1.26  232  232  (I)  n  1  -  237.50  161.80  0.63  45.00  9 0.40 0.11 0.12 0.67 060  138.80  0.10 0.12 0.14 0.71  8  —  -  new  average s:  new sum s n—I  =  ±  2  s  =  ± 291.11  325.26  ± 325.26  ) (Montg omery 4 Source; Uference 98 ,1  For changein mean:  10  =  =  =  =  =  Calculation of 2 SE. Limits  New average s  For new effects:  For  I  Prior estimate of Previous sum s Previous average s News = ran’e X Range New sum s  162.63  Project UASU— UASB Phase Date CaIcuI:tion of Standard Devation  0.41 0.10 011 0.63 0.5  28  28  (4)  —  —249.00  .  410  410  (3)  4 ResponseLP P O jg/L)  CYCLE  Fc(oria! wirh added reference condirio,  Calculation of E[[ects  1ntction_o_ef[ect  RR  Phase mean  1 f5-,  (AB)  (B)  (A)  .  (vi) New averages: y  .  22  Calcu)tion oIA.veragcs  OLiing conditions  .  —  3  2  .  2  + y  Y3  —  —  )‘I  —  —  + 4)  Y3  j  ) 4 .Y  1  — 85.00  141.60  325  170 650  410 240  (3)  V  i.79/.JT  (3:20  0.25 0.33 1 .0 U H  0.33  0.50 1.15 1 .(‘  1.00 1.41 1.26  1.00  2.00 1.79  0.25 OH u ‘  0.38  0.37  0.35  0.30 0.50  5  4  1  3  U 7  0.17 0.20 0.2?  0.39  6  0.14 0.17 0.76 0.6X  0.40  7  of Multiplying iactors  2  Table  —  o.i: 0.67 0,’  (t.)4  0.71 (,.6  0.11  0.40  0.10 0.12  9  8  121.60  8.00  =  +  +Y  104  24 208  116 92  (2)  Interaction _cffcct + Y2 — Y3 5.i) (SRHR) • Chanse in mean effect = phase mean  1/n J/(n — 1) 2//ii  (AB)  (B)  4(5’2  -o+ Y’i  2  —213.00  eflect  SR  (4)  =  =  -  estimate o  =  eftects:  average  s:  0:10 0.11 0.63 0.?  = —  new sum  s  =  =  =  =  51.30  171.00 51.30  51.30  s —  1.79s  —  2  ...J  2 —  =  =  ±  ±  64.64  72.33  72.33  ference (Montgoiacry,1984) 9 Source: 1  For change n mean:  For tiew  For new  s  x  =  Calculation of 2 S.E. Limits  New average  s  range  Range sum s  ’ s 1 Nev  Previous average  Previous sum  Prior  162.63  Project IJASB— UASB I 1) ate Calculation of Standard Deviation  101 0.41  27  3 53  28 25  (4)  P0 — P (IEilL) Response : 4  CYCLE 77  with added reference condition  5)  effect  mean  R1  n  Phase  .  Calculation of Ellects  232  20  (vi) New  j  1 463  6 40  averages:  232 231  (1)  23 17  (0)  Calculation of Averages  Operating conditions  —‘  22 Fac(orial  (i) Prcous cycle um (ii) Previous cycle average (iii) New observations (iv) Differences (ii) less (iii) (v) Ncw sums  .  A  3  2  —  .  l/, 1/(n 1) 2/-/ i.79//  ri f  .  2.00 1.79  1.00  1  —  —  +  + Y3 +  Y3 —  —  —  Y)  3)  J)  2 0.30 0.50 1.00 1.41 1 .2  3. 0.35 0.33 0.50 1.15 I .o:  Tab1e of lvi ultiplying 4 5 6 0.37 OJ) O.3 0.25 017 0.20 0.33 0.20 0.25 0:9 1.Vj 0.22 C; ) 0:-’ *7  4)  = 44.80  0.40 0.l’l 0.17 0.6 0.CS  -)  9 0.40 011 0.12 0.6i 0.C  39.80  66.50  —94.50  —63.50  0.10 0.12 0.14 0.71 0.C3  =  =  =  —  Factors  Change in mean effect = phase mean  +(i  +i  (Sli9tR)  Interaction on  effect  .  (AB)  (B) Y4-  +  effect  Sit  (A)  4Q +  effect  RR  .  Phase mean  .  New averac’e  ,  10 0.41 0.10 0 Ii 0.63 u.57  =  n—i  s  =  =  69.5  ±  ±  .-‘./;7  2  s =  139.16  —  • 124.55  ±  ±. 139.16  C  ci  Source: Rçference (Montgomcry,1984)  C1I:LngC in iflcui:  For ew effects:  For new average s:  For  S  new sum  = = = =  =  Calculation of 2 S.F. Limits  s  (vi) Nc.w avt ages:  a  Ptevious sum s Previous average s New s range X f,,  Prior estimate of  -  —  Project ASB— IJASB Phase II Date Calculation of Standard Deviation  Range New sum.  2  1  (i) Previous cycle sirn (ii) Previous cycle average (iii) New observations (iv) Differences (ii) less (iii’ (v) New sums  Calculation of Effects  T7  P0 — P (‘!g/L) Response: 4  CYCLE  22 Fac(orial with added reference óndiion  CalculaUon of Averages  Operating conditions  —A—--’-  3  2  .  .  +  Y4 —  —  3)  —  =  ) = 4 Y3 -t- y  38.60  ui  .  2/-/ 1 ,79/%/T  2.00 1.79  1.00  1 0.35 0.33  0.30 0.50 1.00 1.41 1.26 1.15 1.03  0.50  3  2  0  i.oc  0.37 0.25 0.33  4  0.3 0.20 0.25 0.9 0 lu  5  0.39 0.17 0.20 0.2 0.73  6  o.6:  0.10 0.14 0.17 0.76  7  9 0.40 0.11 0.12. 067 0(0  32.60  phase mcan  8 0.10 0.12 0.14 0.71 0.63  40.50  5)  —  Table of blultiplying lactors  Iiiteract ion on effect + (SitItlt) • Change in mean effect  1/(n— 1)  I/n  (AB)  —78.50  1( +  +  SR effect  (5+ i  (B)  =  I  —43.50  ‘  Phase mean  Calculation of Effects  44  FU  .  I  6  -  128  6  87  —13  50  37  (3)  (4)  —  (vi) Nc.w averages: y, .  7 Ii  78 256  2  12  89  9  (2)  —2  167  7  (1)  5  (0)  2  9  17  5  ii  6  ±  2  s  s  —  l.79s  —  2  —  =  =  .± 34.40  ± 38.49  ± 38.49  C,’ I-’  Source: urerence (Montgouery,1984)  For change in mean:  For new effects:  10  27.30  27.30  91.00  27.30  Calculation of 2 Si. Limits  Prior estimate of a = Previous sum s = Previous averape .s New s = range X = Range = New sums = new sum s New avcrage s = = u—I  52.49  Project UASB— USD II Phase Date.  Calculation of Standard Deviation  F or new averaLe s :  0.’H 0.10 0.11 0.63 0.5?  (4)  Rsporise : P0—P (sng/L)  CYCLE 71  22 Fac(orial with added reference co,di(jo,z  Calculation of Averages  Operating conditions  3  Ci) Previous cycle sum (ii) Previous cycle average (iii) Ncw obscrvatiors (iv) Dffercnces (ii) less (iii) (v) New sums  .  .0  2  __  ___________  Differences (v) New sums  -  .  n  —  i.79/4T  1)  83.09  83.09  (0)  I  effect  ciTect  = (j  +(Y2  3  Y4  + Yz  +  (2 j  —  —  +  I  •1  +  5’.)  5)  5’)  Y3  I  Y4)  33.71  33.71  (2)  I  =  0.37 025 0.33 1.00 0 9  0.3 0.70 0.25 0. 0  073  0.39 0.17 0.20 0.?  .0.3  0.40 0.14 0.17 0.76  Table of Multiplying Factors 4 7 6 5  phase mean —Yo  —  —  —  -(Yo+ Y -+Y  Change in mean effect  2  6.53  6.53  (1)  —  —  I  72.90  0.14 0.71  1  J 7  0.11 0.10 01 0i.  S =  =  75.72  ±  ±  !12  2  S  s  s  =  =  I  ±  135.54  ± 151.44  151.44  C,’  Source: Dçference (Hontgoiiery,1984)  For cliangcin mean:  For tiew effects:  10  new sum  =  =  =  Calculation of 2 S.E. Limits  New average s  Range New sum s  Piior estmiatc of a Previous sum i Previous average s New s = range x  For new average s:  63.29  63.29  (4)  °,  9 0.40 0.11 0.12 0.6?  —67.70  43.32  101.84  OAU 012  8  —  15.39  —109.61  109.6  (3)  Phase Date.  Project hASH— UASD  (lcu1aUon of Standard Deviation  Response:_TREATHfT FF1C 4 IENCY P (%)-P0  CYCLE n  Fac(orial wi(h added reference co,ididoii  C1cu1ation of Effects  0.35 0.30 0.50 0.33 1.00 0.50 1.00 1.15 1 ‘11 2.00 1.791.261.03  1  (sI1i)  RU  Interaction on  2/v’i  1/n 1/(’i  f  (AB)  (B)  (A)  .  Phase mean  (vi) New averages: y;  •  (ii) lesS (iii)  (1) Pi cviCuS cycle sum (ii) Picvious cycle average (iii) New observations  (iy)  22  Calculation of Avragcs  Operating conditions  —A  —  .0  2  _  ___________  t:  (A)  .  V  n  —  ,  1  +  +  .—.  j  effect =  >4)  ) 3 .P  I  0.3 0.2.0 0.2.5 0 0.U  0.37 0.25 0.33 1.00 0.59  0.35 0.33  0.30 0.50 1.00 1.41 1.26  5  4  0.39 0.1? 0.20 0,22 U Ti  6 0.40 0.14 0.17 0.26 0.68  (3)  =  =  —  —  0.40 0.12 0.14 0.71 0.63  9 0.40 0.11 0.12. 0,67 0.60  —60.31  16.99  81.28  —51.52  63.29 70.91  new effects:  0.41 0.10 011 0.6) 0.52  It)  ±  2  1.79  —  V’ 2  —  s  .s  ±  ±  I  19.44  21.76  21.76  15.43  51.43 15.43  15.43  59.36  Limits  -  -  IJASU  Q1  Source: flference (Montgomery ,1984)  For change in mean  For  sum s 11—1  new  =  =  =  =  =  Calculation of 2 S.E.  Newaverages=  Range New sums  Previous sum s Previous average s News range x f  For new average s:  67.10  Project Phase. Date.  Calculation of Standard Deviation (4) Prior estimate of a  7.62 134.20  —  —  24.28  65.69  — 43.99 -.131.38  —109.68 21.70  Table of 11 ult iplying Factors 3  0.50 1.15 1 Ui  —  —  phase wcai  —  -,  2  —  Y2  4-( + J’  —  + )  32.57  2.28 65.14  33.71 31.43  (2)  2 eTec — 3 + i—5 t(P .)  U+ i  Calculation of Effects  Interaction on effect 4-(; + (S1tuR) Change in meneffect  SR  HR  1.00 1/n 1) 1/(n 2/-s/i ‘2.00 1.79 I .79/.1T  .  Phase mean  fs  .  (AB)  .  ‘  2.81  84.59  (v) New averages: .  7.44 5.62  3.00 169.18  —  6.53 0.91  (iv) Differences (ii) less’ (iii) (v) Ncw sums  (i)  83.09 86.09  (1)  Previous cycle srn (i) Previous cycie avecage (ii) New observations  0)  V  EFF1C1ENC P Y(%)-P0 Respons_TRF.ATHENj 4  CYCLE 772  22 Fac(orial ‘ith added reference coiidition  Calculanon of Averacs  Opcratng conditions  _‘\__.‘,_  ,.o  —  1/’ l/(n 1) 2/./’i 1 .79/.AT  fs.  n  ‘  1  2.00 .79  1.00  •  -CPo+ 5i  .  +  .  1CP +  = +2  0.35  0,33 0.50  0.30  0.50 1.00 I’ll 1.26 1.03  1.15  3  2  =  2  Y4 —  ) 4 y  — •)  phase mean  —  1  —  So  +2+Y3+Y4)  =  Table of llultip1yirig Factors 4 67 5 0.37 0.40 0.39 0.3 0.25 0.20 0.17 0.14 0.33 0,25 0.17 0.20 ) 0.22 1.(i 0 0.76 0 ) 073 0.63 0 0  Charge in mean efiect  effect  Interaction  (AB)  (sJ9mJ  efYcct  SR  (B) on  =  94.61  4 cff 2 3 — 1 ) jcc 5 t(  lUt  (4)  .  Phasemcan  67.78  Calculation of Effects  91.23 I  0.10 0.12 0.14 011 0.63  8  0.40 0.11 0.12 0.67 0.60  9  6.74  21.68  5.15  85.90  79.67  79.67  —  —  I  101  =  —  2  2  s  —  I.79s  ..‘Q/;;  ±  =  +—  21.52  24.04  24.04  12.02  01  Source: 1ç Lerence (Montgomery 1984)  For change in mean:  For new cifects:  0.41 0.0 Dli 0.3 051  n—I  s  =  =  =  =  Calculation of 2 SE. Limits  s new sum  Prior eslimate of Previous sum s Previous average s New $ = range X f Range  For new average s:  96.20  96.20  (4)  New average s  .  94.61  (3)  (vi) New averages:  67.78  (2)  New sum  91.23  (1)  Date  F, oject UASIJ— UASI3 Phase 11 Calculation of 1 Star d ard Deviation  Response: TREATMENT 4 EFFICIENC P Y(X)-P0  1  (i) Previous cycle sum (ii) Previous cycle average (iii) New observations (iv) Difrerccces (ii) less (iii) (v) Nw sums  (0)  Ccu)ation of Averages  Operating conditions  —A—-’--  CYCLE fl  22 Fac(orial wit/i added reference coidiiion  (B)  (A)  .  effect  =  =  =  I I  .  +( +  V  Y4  -F .P  + 0 4-c —  5’  +  V  98.92  94.61  (2)  —  —  5)  2.00 1.79  l/(n— 1) 2/v’i I .79/J  1  3 0.35 0.33 0.50 1.15 1.03  2 0.30 0.50 1.00 1.41 1.26  I  I  =  0.37 0.25 0.33 1.03 0.9  4  0.3d 0.20 0.75 0.9 0i  5  0.39 0.17 0.20 0.32 0.73  6  0.40 0.14 0.17 0.76 0,63  7  Table of Multiplying Factors  —  V  4) =  —  +  5’.)  3  96.77  4.31 193.53  —  +  I 21.07 I 114.49 I 57.25 I  46.71  67.78  (I)  Calculation of Effects  94.03  5.59 188.05  —  96.82  j  91.23 I  (0)  2  0.40 0.12 0.14 0.71 0.63  8  8.54  29.21  10.31  —  10 0,41 0.10 011 0.13 0.5? 0.40 0.11 0.12 0.67 0.60  ±  ±  2  s  —‘I n  —  1.79 ::  —  2  —  ± 10.07  i1.27  11.27’  7•99  C,’  C,’  fcrence (Montgomery,1984) 9 Source: R  For change in mean:  For new eftects:  V  ±  12.02  26.66 7.99  Calculation of 2 S.E. Limits  —  Prior esOrnateof ci = Previous sum s = Previous average s = = New s = rame x fs Range = New sums newsums Newaverages= =  For new average s:  95.00  9  —10.20  —  (‘1)  96.20 93.96  ,  2.24 190.16  83.83  76.10  7.14 152.20  79.67 72.53  (3)  Project IJAS1I— IJASB Phast II 1) ate.  Calculation of Standard Deviation  Response : TRAThET 4 EFFICIENCY(%)—P0 — P  CYCLE 77  Fac(oriai with added reference condition  Interaction on effect )4) +(y + Y2 Y3 (g•ult) phase mean Change in mean etTect  SR  1.00  !7  ,i  —  —  .  Phase mean  y’  1/n  15  (AB)  V  (vi) Nw averages:  22  Calculation of 1’e’rages  Operating conditions  V  3  (i) PreviDus cycle sum (ii) Pievious cycle average (iii) New observations (iv) Differences (ii) less (lit) (\) New sums  ‘1  2  +  (2)  :  —  .  1.00  2.00 1.79  1/(ii— 1) 2/-/ 1.79/.JT  .‘  .  Interaction  )),  CAB)  .SR  (B)  —  RH  (A)  .  Phase mean  effeCt  =  2 0.30 0.50 1.00 1.41 1 .2’1  3 0.35 0.33 0.50 1.15 1.03  Y3  +Ci + Y2  2+ (P  Y3  Y2  —  —  )  Y4)  —  +  Y4)  Y3  phase mean  —  —  +  2, 138  2,138  4 0.37 0.25 0.33 1.00 0 9  6 0.39 0.17 0.20 0.22 0.71  5 0.3 0.20 0.25 0.9 0,  0.40 0.14 0.17 0.76 0.GS  7  Table of Multiplying Factors  Ch&nge in mean effect  Ofl  effect  +Co+ 5 i  Calculation of Effects  2,034  2,034  175  175  (1)  (0) (3)  (.1)  51  345  0.40 0.12 0.14 0.71 0i3  0.40 0.11 0.12 0.67 0(0  9  1,508  —  1,683  2,432  2,432  Prior estimate of  0.41 0.10 0.11 0.63 0.57  10  =  —  new sum s =  =  =  =  newefTeçts:  •‘  2 2  —  s  =  ±  1592.83  ± 1779.70  01  a)  Source: Thference (Montgomery,1984)  ‘V fl  —  1.795  j—s  ±  1779.70  889.85  Calculation of 2 S.F. Limits  S  new a’‘ef1L S :  Range  Previous sum s Previous average s News = rarwe X  For change in mean:  For  For  1.638  1,638  Date  Project LJAStS—UASD I Phase  Calculation of Standard Deviation  VFA(mizJ1) AS HAc  New average s  1  Response  (vi) New averages:  Calculatiün of A/cL ages  added reference ondion  CYCLE 77 1  with  1”kw  A  3  Fac(orial  Operain 1 co: d itions (i) Previous cycle sum (ii) Previous cycle average (iii) New observations (iv) Differences () less (iii) (v) Ncw sums  Ii  • it .2._J 22  _____________  A  —-  sums  .  •  n  effect  SR  2.00  1.79  1) 1/(n 2/v’  ).79/_/T  —  1.00  .  1/n  ‘.  1  =  =  +(2  +  +  4-(2 -j-  0.35  0.30 0.50 1.00 1.41 1. 0.50 1.15 1.ü3  0.33  3  2  5’2  5  —  —  3)  .Po  4)  —  --  5)  S’3  phase mean  —  —  —  +.Y  =  —  —•  (.-,  0.37 0.25 033 1 (v  0.39 0.38 0.17 020 (i.0 0.2’ (? 0 ;9 0 .CC7.  —  2  0.)i  067 0.(,u  (Lu (,63  10  u—I  new sums  =  =  =  =  =  1,022  1,022  3,405  1,022  889.85  2  s  s  =  ±  1,288  ± 1,441  = ± 1,441  cu  t’3  Source: Rçference (Hontgojiery,1984)  —  1.79 s  —  2  —  .v’  ±  ±  Calculation of 2 S.E. Limits  New averages  New sun)s  Range  For change in mtari:  (•(.;  0.1i  of a  Previous sum s Previous averages News = range xf,,  Prior estimate  For new cliects:  0.41 0.10 0 Ii 0.63  9  1,734  802  Date  Phase  Project UAS)— VA  Fatcuiation of Standard Deviation  For new average s:  0.10 0.11 0.12  —  —1,196  1,262  1,571  134 3,142  1,Q38 1,504  (4)  0/iO 0.12  8  I  1,965  4,028  3,191 8,055  2,432 5,623  (3)  -  0.40 0.14 0.17 0.36  Table of 11ultipying Factors 7 6 4 5  Chanse in mean effect  Interaction oi_cffect (ntit)  effect  -(+ +  2,031  1,965  231 -  4,062  461  138 3,930  214  2,138 1,924  (2)  Ill  2,034 1,896  (I)  Calculation of Effects  I  —  HR  Phase mean  5 f  (AB)  (B)  (A)  .  (vi) New averages:  (v) 1’kw  (iv) Differences (ii) less (iii)  (iii) New observations  175 286  (0)  CYCLE 71  wit’h added reference cOndition  Response : VFA(wg/L). AS IlAc  22 Fac(orial  Calculation of Averages  Operating conditions  —  (i) Pievious cycle sum (ii) Pievious cycle avcage  fI’  3  Y2  ±  I.?9/..,J’  1)  V  V  2.(Yi 1.7$  1.00  V  (j’j)  —  2/1i  1/(n  Jf,  ?1  ()  +  y  3 y  Y  +U + Y2  +(5;2  2 -f 4C  Y3 —  —  5;.i)  5;.)  Y3  phase mean  —  -.  —  +  53  =  —  V  ..Po  0.37 0.25 033 I .o:j or.’  3  0.35 0.33 0.0 I .1 5 i.o:  2  0.30 0.50 1.00 1.4 I  o UVV’  (I,  n  020 (1.25 1 ::i  0.40 0.14 0.17 0.39 0.1)  0.3 0.20  .  8  0  —  138.60  33.00  86.00  33.00  012 0.14 (‘ 7)  VV_V  ()  (j  0.40 0.11 012  —382.40  —  0.40  =  =  =  )-actoi s Table of 1.ilti.dyng VV 7 6  Change in mean effect  Interaction oi_effLzct  effect  SR  (A) =  =  effect  HR  (AB)  0  Calculation of Effects =  V  Phase mean  .  521  n-I  =  2  —“Ill  1.79  —  2  —  ± —p-  ±  S  s  s  =  =  =  392  438  438 V  ‘3 00  u.  V  (I  I  s V  Source: Rçference (Montgomery.1984)  For change in mean:  For new effects:  V  =  =  219  Calculation of 2 S.E. Limits  For new average s:  10 0.41 0.10 0.1  119  new sum  =  Range  Previous average S New s range x f , 3  New average s  V  119  =  =  Prior estimate of a Previous sums  (vi) New averages:  + 5’)  0  53  0  521  V  (4)  New sum s  V  (3)  (2)  (1)  (0)  Date  Project UASIi— VAbU Phase 11 Standard Dcv jatiori  (v) New sums  ‘  CaLculatiotof  Response : VFA(wg/L) AS ilAc  CYCL.E77 1  22 Ficuria / ii’flhi u i1/cd rcfcr’ncc co,iIi(ii_’,s  Cc•utation of Averages  Operating conditions as cycle su,m 1 (i) Pcci. (ii)Pre.vous.cyc1e average (iii) New observations (iv) Differences (ii) less (iii)  ii.  2 z7  V  22  (5 +  .  Y2  +  ‘  —  l)n 1) l/(n 2/v’i 1 .79//  f  .  =  —  —  y4)  )  phasc nean  —  0.39  0.17 0.2() 0.32 0.73  0.36  0.20 0.25 0 39 0.0  0.37  0.25 0.33 1.0:) 0. 9  0.35  0.33 0.50 1.15 1.03  0.30  0.50 1.00 1.41 1.26  1.00  2.00 .7S  6 ‘5  4  3  2  I  Y4)  —  +  1_54)  Y3  =  =  =  2  63.50  13.50  =  Previous sum s  10 0.41  0.10 0.11 0.63 0.7  0.40  0.11 0.12 0,67 0.60  0,40  0.12 0.14 0.’lJ 0.63  0.40  0.14 0.17 0.76 0.63  n—I  =  2  s  ±—= $  =  ±  ±  ,  176  197  197  -  139.80  CD  C,’  Source: Rçference (Montgomery,1984)  For change in mean:  For new effects:  9  =  466.00 139.80  Calculation of 2 S.E. Limits  New average s  Previous average s = New £ = range X f = ke = New sum £ flew sum s .  =  Prior estimate of u  139.80  Project UASI3— IJASD Phase II Date  Calculation of Standard Deviation  Forncwavcrages:  1  —205.00  — 13.50  —  83.00  —  77  84 154  0 0 0  119 35  (4)  0 0  (3)  7  Trible of Multiplying Factors  Change in mean effect  Interaction on (Sk1it)  effect  (AB)  —  +  effect  SR  (B) Y  +y 2 effect=-j(5 — 3  -  RR  =  (A)  .  Phase mean  Calculation of Effects  50  0  288  (vi) New averages: -  7 99  0 0  466 576  (iii) New observations (iv) Diffei’cnces (ii) less (iii) (v) New sums  .  53 4  (2)  0 0  (1)  ii  Response : VFA(gJL) AS HAc  CYCLE  Tac(orial vith added reference coi,dkion  521 55  (0)  C’alcula ion of Averages  Operating conditions  A  12  (I) Previous cycle, sum (ii) Previous cycle average  •11.  .0  260  Table C3. 1 pH of A-UASB and M—UASB during the Phase 2 and 3 experiments including maximization and recovery period Days  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  33 34  35 36 37 38 39 40  pH (LJAS8) UA5.04 5.08 5.04 5.11 5.03 5.06 5.04 5.05 5.04 5.08 5.06 5.12 5.09 5.11 5.01 4.98 4.98 4.98 4.93 4.94 5.01 5.00 4.97 4.94 4.92 4.90 5.24 5.06 4.95 5.13 5.04 4.98 4.96 5.01 5.07 5.06 5.42 5.22 5.12 5.00  7.04 7.00 7.00 8.99 7.02 7.04 7.06 7.11 6.70 6.70 6.70 8.70 6.70 6.70 6.70 6.70 8.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70 7.22 7.24 7.27 7.27 7.30 7.33 7.39 7.39 7.37 7.36 7.37 7.34 7.37 7.38 7.36  Days  41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  pH (UASB) AU4.94 5.08 5.08 5.05 5.00 4.98 4.93 5.14 5.05 4.97 4.96 4.94 5.02 5.01 5.28 5.12 5.06 4.96 4.96 4.93 5.05 5.23 5.05 4.93 4.98 4.95 4.96 4.96 4.95 5.40 5.10 5.06 5.05 5.06 4.94 4.94 5.25 5.06 4.96 4.98  7.39 7.35 7.35 7.37 7.28 7.27 7.28 7.25 7.24 7.25 7.25 7.25 7.24 7.23 7.26 7.27 7.28 7.28 7.28 7.27 7.26 7.31 7.31 7.22 7.18 7.15 7.13 7.11 7.09 7.05 7.06 7.09 7.09 7.07 7.02 7.02 7.07 7.08 7.10 7.07  Days  81 82 83 84 85 86 87 88 89 90 91 92 93 34 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120  pH (UAS8) UA4.98 5.08 4.97 5.05 4.97 5.15 5.06 5.07 5.08 5.07 5.04 4.95 4.97 5.02 5.02 4.95 5.02 5.00 4.97 4.98 4.95 4.96 4.98 4.92 4.96 4.96 5.04 5.02 5.07 5.07 5.10 5.10 5.08 5.10 5.07 4.99 5.06 5.02 5.06 5.08  7.10 7.13 7.06 7.10 7.10 7.13 7.14 7.19 7.19 7.16 7.17 7.17 7.13 7.32 7.02 7.02 7.00 7.01 7.01 7.01 7.06 7.04 7.05 7.06 7.07  7.09 7.09 7.10 7.12 7.12 7.11 7.12 7.12 7.13 7.12 7.10 7.10 7.09 7.09 7.08  pH (UAS8) AU-  Days  121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 138 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160  -  5.09 5.12 5.09 5.10 5.18 5.21 5.23 5.22 5.29 5.35 5.38 5.37 5.39 5.34 5.34 5.35 5.46 5.46 5.50 5.54 5.48 5.49 5.57 5.62 5.56 5.60 5.60 5.53 5.49 5.45 5.47 5.51 5.57 5.54 5.53 5.89 5.68 5.68 5.70 5.68  7.09 7.09 7.10 7.10 7.13 7.12 %7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.12 7.13 7.13 7.13 7.13 7.13 7.12 7.11 7.10 7.10 7.09 7.09 7.08 7.08  pH (UASB) AU-  Days  161 162 163 164 165 166 187 168  169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200  .  5.70 5.72 5.68 5.62 5.59 5.62 5.59 5.61 5.53 5.48 5.45 5.39 5.41 5.41 5.41 5.35 5.35 5.35 5.36 5.35 5.36 5.33 5.30 5.33 5.32 5.31 5.37 5.37 5.44 5.47 5.43 5.34 5.33 5.40 5.25 5.16 5.14 5.09 5.07 5.06  7.08 7.07 7.07 7.08 7.07 7.07 7.08 7.08 7.08 7.08 7.09 7.09 7.09 7.08 7.08 7.06 7.09 7.09 7.09 7.09 7.09 7.10 7.11 7.12 7.12 7.11 7.11 7.10 7.10 7.09 7.08 7.08 7.08 7.05 7.02 7.04 7.02 7.03 7.04 7.06  Ncte: (1) The Phase I and 2 Experiments Start @ day I and 170 respectively whereas, the Maximization and Recovery Period St 0 day 295 and 364, respectively; and (2) A- and U- represent A-UASB and U-UASB, respectively  261  Table C3 1 p11 of A-UASB and M-IJASB during the Phase 2 and 3 experiments including maximizaton and recovery period (cont’d) Days  201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240  pH (UASB) MA5.09 5.05 5.00 5.00 5.00 5.01 5.01 5.03 5.04 5.19 5.20 5.21 5.19 5.24 5.27 5.29 5.28 5.25 5.23 5.23 5.28 5.24 5.33 5.30 5.21 5.28 5.24 5.34 5.33 5.22 5.22 5.24 5.27 5.21 5.21 5.17 5.10 5.12 5.02 5.04  7.07 7.08 7.09 7.11 7.13 7.14 7.11 7.10 7.10 7.11 7.13 7.14 7.15 7.15 7.13 7.13 7.12 7.10 7.10 7.09 7.09 7.09 7.09 7.08 7.08 7.08 7.08 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.07 7.08 7.08 7.10  Days  241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 280 281 262 283 284 285 266 267 288 269 270 271 272 273 274 275 276 277 278 279 280  pH (IJASS) UA5.02 5.24 5.07 5.04 5.07 5.14 5.13 5.15 5.10 5.09 5.18 5.04 5.01 4.99 5.02 5.02 5.02 4.98 4.98 5.00 5.10 5.09 5.08 5.08 5.04 5.05 5.08 5.08 5.02 4.99 5.08 5.01 5.02 5.04 5.04 5.09 5.11 5.02 5.07 5.01  7.10 7.11 7.12 7.14 7.14 7.15 7.16 7.15 7.15 7.16 7.15 7.15 7.16 7.16 7.16 7.17 7.16 7.18 7.18 7.16 7.16 7.15 7.17 7.17 7.18 7.17 7.17 7.16 7.17 7.17 7.18 7.15 7.15 7.14 7.14 7.14 7.14 7.14 7.14 7.14  Days  281 282 283 284 285 286 287 288 289 290 291 292 293 294 296 298 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 318 317 318 319 320  pH (UASB) PrU5.04 5.10 5.04 5.06 5.08 4.98 5.01 5.07 5.07 5.11 5.13 5.16 5.05 5.09 511 5.16 5.14 5.12 5.14 5.12 5.12 5.15 5.15 5.19 5.15 5.14 5.12 5.12 5.12 5.08 5.07 5.07 5.10 5.11 5.08 5.07 5.06 5.06 5.03 5.06  7.14 7.14 7.14 7.14 7.15 7.14 7.13 7.14 7.14 7.14 7.14 7.14 7.12 7.10 7.09 7.08 7.07 7.07 7.06 7.05 7.05 7.05 7.04 7.04 7.05 7.04 7.05 7.04 7.03 7.03 7.03 7.03 7.03 -7.02 7.02 7.02 7.02 7.02 7.03 7.01  Days  pH (UASB)  A321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 348 347 348 349 350 351 352 353 354 355 356 357 358 359 360  5.02 5.16 5.17 5.15 5.15 5.25 5.36 5.40 5.16 4.99 5.00 4.98 5.09 5.08 4.97 4.94 4.92 4.93 4.93 4.95 4.99 5.02 5.01 4.98 4.98 4.93 4.90 4.95 4.94 4.95 4.92 4.89 4.86 4.90 4.90 4.89 4.86 4.86 4.84 4.84  Days  7.02 7.03 7.03 7.04 7.04 7.04 7.02 7.01 7.00 6.98 6.99 7.00 6.99 7.00 7.03 7.03 7.02 7.00 6.93 8.93 8.86 6.72 8.67 6.59 6.59 6.47 8.34 8.30 6.22 6.42 6.42 6.39 8.30 6.30 8.29 6.39 8.47 6.51 6.54 8.56  pH (UASB)  A-  U361  4.79 362 . 4.8,3 4.88 363 4.92 364 385 4.85 4.90 366 367 4.4 4.96 368 4.91 369 4.89 370 4.91 371 4.94 372 4.99 373 5.02 374 4.99 375 4.97 376 4.99 377 5.01 378 5.02 379 5.02 380 5.07 381 382 5.05 5.06 383 5.10 384 5.11 385 5.15 386 387 5.12 5.11 388 5.14 389 5.18 390 5.20 391 5.28 392 5.24 393 5.22 394 395 5.25 5.25 396 5.31 397 5.35 398 399 5.38 5.46 400  Days  6.56 6.56 6.60 6.68 6.70 6.71 6.74 6.76 8.77 6.76 6.79 6.80 6.89 6.89 6.90 8.92 8.97 6.96 6.94 6.94 6.94 6.94 6.94 6.94 6.95 8.96 6.95 8.96 8.96 8.96 6.96 6.95 8.95 6.94 8.94 6.93 6.92 6.92 6.91 6.91  pH (UASB)  A-  U401 402 403 404  5.49 5.47 5.44 5.21  U6.91 6.91 6.91 6.92  Note: (1) The Phase I and 2 Experiments Start 0 day 1 and 170 respectively; whereas, the Maximization and Recovery Period Start 0 day 295 and 364, respectively; and (2) A- and U- represent A-UASB and U-LJAS8. respectively  (1 ).F5.SR8O/20, RR214  Running Conditions  07109188 07/10/88 07/1 1188 07/12/88 07/13/88 07)14/88 07115/88 07/16/88 07/17/88 07/18/88 07/19/88 07/20/88 07121/88 07/22)88 07/23/88 07/24/88 07/25/88 07/26188 07)27/88 07/28188 07/29/88  Date  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  Days ‘  400 0 882 0 1100 0 0 0 209 900 1768 0 61 0 0 0 0 497 0 0 0 760 [2).F5,SR8O/20, 1178 RR6I1 0 725 (07130/88J 1100 600 1350 659 653 751 400 1389 1120 613 667 353 469 400 331 533 660 864  NaOH Use, mild Running Conditions A-UASB M-UASB Date  07130188 07/31/88 08/01/88 08/02/88 08103/88 08/04/88 08105/88 08/06/88 08107/88 08/08/88 08109/88 08/10/88 08111)88 08/12/88 08/13/88 08/14/88 08115/88 08/16/88 08117/88 08/18188 08/19/88 08/20/88  Table 03.2 Alkaline (0.1 N, NaOH) Addition During the Phase 1 ExperIment:..  22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  Days  •  63 0 0 0 0 0 0 0 0 0 0 1114 0 0 0 0 0 0 0 0 0 0  981 1094 1252 760 1254 1176 744 1286 320 1700 877 691 853 688 772 1237 372 200 200 360 326 0  NaOH Use, mild A—UASB M-UASB  i...  [3J.F5,SR50150, RR6/10 [08131188)  Running Conditions  08/31/88 09/01/88 09/02)88 09/03188 09/04/88 09/05/88 09/06/88 09/07/88 09/08188 09/09/88 09/10/88 09/11/88 09/12/88 09113/88 09/14/88 09/15/88 09/1 6188 09/17/88 09118/88 09/19/88  Date  54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73  Days  0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 [4J.F5,SR50I50, RR2/4 0 0 [10l03/88] 776 1266 392 740 584 647 1054 704 595 469 1186 1091 1164 1097 1273 823 900  NaOH Use, mild Running Conditions A-UASB M-UASB  10)03188 10/04/88 10/05/88 10/06188 10/07/88 10/08/88 10/09188 10110188 10111188 10/12188 10/13/88 10114188 10/15/88 10/16/88 10/17/88 10118/88 10/19/88 10/20/88 10/21188 10/22188  Date  Table C3.2 Alkaline (0.1 N, NaOH) Addition During the Phase 1 Experiment (cont’d)  87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106  Days  0 40 20 0 0 0 0 0 0 0 0 0 0 43 0 0 0 0 0 0  1136 460 2312 0 3527 1700 1020 1795 2480 1716 157 0 2508 1451 940 1760 1740 1200 1318 1043  NaOH Use, mild A-UASB M-UASB  264 APPENDIX D Maximum Loading Capacity and Recovery Process Table DL1 : Summary of Average System Performance and Removal Efficiency at Pseudo Steady-state During the Maximization and Recovery Period. Table D2.1-D2.8 : Response Data of the Sampling Point Numbered 1 to 8 Under Different Running Conditions During the During the Maximization and Recovery Period. Table D2.9 : Average Response Data of the Sampling Point Numbered 1 through 8 at Pseudo Steady-state Under Different Running Conditions During the During the Maximization and Recovery Period. Table D3.1 : Calculation of the Theoretical CH 4 Production Table D4.1 : A-and M-UASBs System Recovery at Pseudo Steady-state Under Different Running Conditions (CH , 3 4 /m m d) Table D4.2 : A-and M-UASBs System Recovery at Pseudo Steady-state Under Different Running Conditions (COD (sol.) Removal Efficiency, %) Table D5.1 : Response Data of Gas Composition, Production, and Loading Rate (Aand M-UASBs) During the Acclimatization Process. Table D5.2 : Response Data of Gas Composition, Production, and Loading Rate (Aand M-UASBs) During Sequence 1, 2, and 3 Experiments. Table D5.3 : Response Data of Gas Composition, Production, and Loading Rate (A UASB) During the Maximization and Recovery Period. Table D5.4 : Response Data of Gas Composition, Production, and Loading Rate (M UASB) During the Maximization and Recovery Period. Figure D1.1 : An A-UASB Step-loading and Removal Efficiency (COD,P0 -P) Under 4 Different Running Conditions During the Maximization and Recovery Period. Figure D2.1 : An A-UASB System Nutrients and MLVSS Under Different Running Conditions During the Maximization and Recovery Period. Note : All sampling locations are illustrated in Figure 4.2 All experimental running conditions numbered 1 through 9 are shown in Figure 5.26 (c). D1.1 Summary of Average System Performance and Removal Efficiency at Pseudo Steady-state During the Maximization and Recovery Period.  264A  Table Dl 1 Simunazy of Average System Performance and Removal Efficiency at Pseudo Steady-state During the Maximization and Recovery Period  Experimental Rimmng Cànditiàns 1  2  3  4  5  6  7  13 7.43  27 9.37  36 16.10  43 20.69  50 25.49  57 17.89  64 15.30  A—UASB  2.69  0.97  0.78  1.67  3.75  1.55  1.21 2.17  0.98 1.77  1.12 1.40  1.31  3.36  2.13 2.67 4.80  1.24  M—UASB System  1.63 2.94  2.09 3.77  4.69 8.43  0.34  0.27  0.12  2.37  1.72  0.97  Running Period, days Influent Flow, lid  8 71 11.95  9 106 5.34  HRT, days  6.06  2.80  cu.mlcu.m—d  0.17  0.21  0.36  KgCOD(sol.)icu.m—d  1.02  1.28  2.14  2.52  Loading Rate 0.46 0.57 0.40 3.46 2.89 2.78  4  EffluenL Quality Solids, mg/L 5712 3492  9365 5920  8389 5474  6820  6240  2163  4133  3829  790  185 108  1169  1572  3030  1769  1813  157  685  1209  2322  1397  1520  73  469 331  677 554  5147 4089  11200 9015  11077  9483  8562  7507  7862  6573  682 424  377  394  362  332  261  302  387  345  TKN  407  460  301 404  424  496  337  406  505  371  TP P04—P  57  84  11  71 34  15  121 71  370 296  176 193  196 169  161 99  103 34  HAc  11  0  40  731  0  695  550  335  0  HPr  9  0  67  858  1738  1837  2365  2641  0  53 1421  53 678  68 477  0 0  34  26  31  84 78 44  TS VS  2397  2828  2854  962  1125  1232  TSS  201 31  184 145  318 207  NH4—N  TVSS COD  mgIL Total COD COD(sol.) Inorganics, mg/L  VFA, mg/L  Iso—HEr  0  HBr A-HVr  6 0  Iso  —  HVr  HVr HHe Total VFA mg/L as HAc Alkalinity, mg/L as CaCO3 A—UASB M—UASB  0 5  0  77  5  0  0 0  0 0  135 149 178  55  52  66  89  0  0 0  0 0  0  428  637  597  735  355  0  0 1648  48  134  97  0  1  0 96  70  19  2877  3096  3396  2922  0  0  1188  1267  963  669  719  557  700  882  1438  2621  2659  2519  2513  1988  1607  1813  2132  2225  3.63  3.42  4.84  6.26  4.23  9.91 2.17  8.71  5.63  2.38  1.83  1.35  0.01  Total VFA/A1k A—UASB M-UASE  0.01  0.01  0.06  0.51  0.71  265 Table Dl 1 Snmmary of Average System Performance and Remov al Efficicacy at Pseudo Steady-state During the Ma imii.tio1 and Recovery Period (cciWd)  1  :Rnnfl Condftks 4 3 5 6 7  2  $  9  Sycm Removal Efficiency Solids, % TSS  99.24  99.33  99.09  96.01  66.99  96.66  94.64  90.76  34.43  -48.19  99.15  98.81  98.29  87.37  73.50  P04—P  92.34 68.29  73.16 57.63  87.71 39.21  45.11  TP  90.15  95.23  93.26  99.21  —7.30 —13.99 69.83 84.3.5  —1.41  94.88  78.12  98.71  22.35 —5.16  37.76  COD, % COD(sol.) Total COD Inorganics, %  Flow, lid Total Gas CH4 Gas CH4 Productivity l/d cu.mlcu.m—d cu.m/cu.m-d@SC % of theo.CH4 Prod. Specific CH4 Gas Prod. cu.mlkgCODadded cu.m/kgCODrem. cu.m/kgCODadded @S cu.mikgCODrem.@SC % CH4 content  —130.89 —37.41 —26.46 18.14 —151.89 —19.81 —35.96 Methane Gas  80.88  153.38 244.51 311.00 359.33 87.76 139.50 179.4.0 177.01  311.89 248.55 249.41 110.94 103.58 98.81  193.58 80.48  135.63  87.76  110.94  103.58  98.81  80.48  75.97  2.47  2.30  2.20  1.79  1.69  2.19 36.47  2.04 59.92  1.95 32.80  1.59 58.68  1.50 74.41  0.85 0.93 3367 —10.25 0.75 0.83 2984 —9.08 5426 51.31  1.04 4.57  1.76 1.85  1.95 1.73 83.70  139.50 179.4.0 177.01 3.10 3.99 3.93 2.75 3.53 3.49 97.99 73.21 60.11  1.91  2.42  1.86  1.97  2.56  2.05  1.35 4.57  0.71 —1.59  1.69 1.75 69.67  2.15 2.27 68.61  1.65 1.82 69.29  1.20 4.05 62.69  0.63 —1.41 50.66  Note Experimental running conditions (I 9)035 degree C pHs5O-5.3 and 70-73 for A- and M-UASBs under different HRTs mentio ned aboved All CODs used in calculatloa of qec CU4 gas produCtion are soluble COD  75.97  0.92  1.56  4.05 51.88  1.64 69.82  266 TABLE D2. 1 RESPONSE DATA OF SAMPLING POINT No.1 UNDER DIFFERENT RUNNING DURING THE MAXIMIZATION AND RECOVERY PERIOD:.. EXP.  DAY  DATE  No. I  18165  10/16/89  6  10/18/89  23635 22160  15500 20750 19305  14060 20300 22070  21670  8  10/20/89  27565  24565  21870  20930  2.22 2.76  11  10/23/89  26920 27870  2.67  10/25/89 10/27/89  23655 27345  25370  13  26740 30600  3.06  31345 31235  25070 27400  25760  3.13 3.12  39410  28030 27765 35735  25980 23080  21695  20185  3.94  32380 27810  29360 26070  28110 24440  3.59  11/08/89  35900 33340  11/10/89 11/14/89  28910 34155  25265  28080  26060  30710  20 22 25 27 29  3  4  5  6  7  8  9  [%]  10/13/89  11/01/89 11/03/89 11/06/89  13560 19390  SOLIDS, % or %TS COD MGIL [%TSJ [%] [%TS] TOTAL SOL. ,  1 4  15 2  SOLIDS, MG/L TS VS TSS TVSS  1.82 2.36  85.33  1.41  96.44  45455  5455  87.79 87.12  2.03  95.52  35802  5844  98.19  40909  5868  89.12  2.21 2.19  95.70  31687  6584  88.46 89.36  2.69 2.79  94.24  43354  6135  93.22  30608  89.42  2.51 2.74 2.17  92.06 94.01 93.04  6205 6250 6597 6217  2.94  38333 66013 43354 49796  6367  37161  5929  34999  6167 6971  88.89 90.67  3.33 2.89  90.19 83.41  2.61  95.74 93.75  87.39  2.81  92.81  28070  3.42  89.91  2.91  96.63  51452  21400  2.77  89.40  2.24  95.37  49583  1.82 1.78  91.44  33131  6250 5737  93.44  40159  6044  94.32 93.23 94.97  49802  6561  36104 35388 41649  6024 5487  42828  5899  33265 36961 36475  6982  33 35 37  11/16/89  27725  24785  29050 22440  11/18/89  23490  20345  18220  16660  2.35  86.61  40  11/21/89  28080  24865  17840  16670  2.81  42 44 47 49  11/23/89 11/25/89 11/28/89 11/30/89  30075 26685  26970  33100  31220  3.01  88.55 89.68  25260 26240  2.67 3.34  88.25  35230  23550 24920 33100  88.08  33395 35090  23505 29470 31600  3.31 2.53 2.62  51  12/02/89 12/05/89  27795  24600  32030  31900  56 58  12/07/89 12/09/89  33475 28525  28300 29695  61  12/12/89  63  12114/89  54  3.51  90.05  3.52  93.95  2.78  88.51  3.20  26040  29650 24550  3.19  2.60  24880  32480 28940  30350 26860  3.35 2.85  35075  31405  33970  32040  3.51  88.71 88.71 87.22 89.54  92.57 94.28  42970  38725  39320  36800 29140  4.30  90.12  3.11  19720 24020  2.71 2.60  89.29 88.04 87.87  28380  3.37  65  12116/89  31144)  27805  68 70  27130 25970 33720  23885 22820  72  12/19/89 12121/89 12/23/89  30100  31120 20980 25950 30500  75  12/26/89  37650  33805  33020  79  12/30/89 01/04/90  26560  23555  25130  31510 23430  26105 25245  24980 24900  23950 23720  27365  31980  30440  84 91  3.25 2.89 3.40 3.93  93.44 92.81 94.32  6305  6653  36961  7295 5941  61538  7368  3.11  93.59 93.64  89.26  2.10 2.60 3.05  93.99 92.56 93.05  40650 37247  3.77  89.79  3.30  95.43  40644  2.66  88.69  2.51  93.24  37247  2.92 2.83 3.04  89.34 89.33  2.50 2.49  95.88 95.26  90.05  37827 41616 36072  59635  6491  35628  6397 6341 6644) 7163 6154  96  01/16/90  29220 28260 30390  3.20  95.18  98  01/18/90  33845  30800  33720  32030  3.38  91.00  3.37  94.99  48907  8429  102  01/22/90  30970  28020  32070  30580  3.10  90.47  3.21  95.35  45679  7490  104  01/24/90  34860  31560  27740  26590  90.53  2.77  95.85  40974  7383  107  01/27/90  38010  34940  33700  32150  3.49 3.80  91.92  3.37  95.40  62903  8952  01/11/90  7807 8727 7455  287  TABLE D2;I RESPONSE DATA OF SAMPLING POINT No.1 UNDER DIFFERENT RUNNING CONDITIONS DURING THE MAXIMIZATION AND RECOVERY PERIOD EXP. DAY No.  2  3  4  5  6  7  8  9  DATE  1 10/13/89 4 10/16/89 6 10/18/89 8 10/20/89 11 10/23/89 13 10/25/89 15 10/27/89 20 11/01/89 22 11/03/89 25 11/06/89 27 11/08/89 29 11/10/89 33 11/14/89 35 11/16/89 37 11/18/89 40 11/21/89 42 11/23/89 44 11/25/89 47 11/28/89 49 11/30/89 51 12/02/89 54 12/05/89 56 12/07/89 58 12/09/89 61 12/12)89 63 12/14/89 65 12/16/89 68 12/19/89 70 12/21/89 72 12/23/89 75 12)26/89 79 12/30/89 84 01/04/90 91 01/11/90 96 01/16/90 98 01/18/90 102 01/22/90 104 01/24/90 107 01/27/90  INORGANICS • MG/L NH4-N TKN %TS TP %TS P04-P HAc 24 18 18 30 24 18 18 16 II 11 11 16 2 2 10 8 2 2 3 8 8 3 5 3 8 11 2 4 1 5 5 9 5 23 23 30 19 19 27  299 320 345 316 364 378 398 381 390 338 421 416 345 372 352 352 371 358 376 394 343 426 335 354 371 330 375 359 404 372 440 335 313 350 317 304 347 316 394  5.26 4.81 5.32 5.35 4.01 4.33 4.51 4.17 3.18 3.96 3.11 5.02 4.43 3.95 3.76 2.67 4.04 3.81 3.90 4.28 3.23 4.12 3.87 3.65 4.35 2.48 2.36 3.61 3.80 4.25 3.90 3.71 4.62 4.36 4.11 4.68 5.04 4.01 4.00  129 132 156 175 185 171 181 195 176 172 161 173 165 149 126 130 149 147 149 159 137 158 139 154 150 137 150 143 157 149 231 152 201 194 152 196 179 160 203  0.84 1.11 1.22 1.06 1.10 0.90 1.14 1.05 0.80 0.85 0.65 1.13 0.91 0.82 1.05 0.66 1.01 0.69 0.73 0.99 0.85 0.97 0.75 0.63 1.14 1.19 1.32 1.02 0.99 1.11 0.99 0.91 0.94 0.88 0.86 0.89 0.87 0.86 0.87  119 117 131 149 140 140 138 142 127 145 121 125 145 118 118 114 123 131 135 135 123 135 139 141 124 136 132 130 132 120 173 106 147 143 131 137 144 137 164  448 357 354 579 380 398 237 408 321 510 126 391 586 451 193 171 398 424 253 356 285 385 403 374 289 343 358 288 345 318 399 346 622 653 522 672 581 523 714  VFA, MGIL TOT.VFA HPr HBr Iso- HVr HHc mg/i HAc HVr 401 108 62 883 246 130 76 690 256 155 88 719 533 416 73 1338 343 235 33 838 363 235 853 417 232 3 735 775 349 1274 764 293 1140 1099 365 1650 427 144 570 963 292 1371 1337 363 1918 1060 312 1523 338 110 542 225 107 28 443 676 272 1132 725 271 1197 556 269 887 456 204 24 2 880 621 192 3 921 485 312 44 24 1031 400 287 923 453 365 990 69 88 117 474 91 164 203 648 80 256 597 89 265 541 106 333 658 105 253 576 169 508 882 186 278 686 384 609 189 1460 492 591 109 1519 415 458 1171 652 664 178 1758 535 459 1328 464 377 137 1237 819 677 176 1943  268  TABLE D2 2 RESPONSE DATA OF SAMPLING POINT NO 2 UNDER DIFFERENT RUNNING CONDITIONS DURING THE MAXIMIZATION AND RECOVERY PERIOD EXP. DAY NOs. 1  2  3  4  5  6  7  8  9  1 4 6 8 11 13 15 20 22 25 27 29 33 35 37 40 42 44 47 49 51 54 56 58 61 63 65 68 70 72 75 79 84 91 96 98 102 104 107  DATE TS 10/13/89 10/16/89 10/18/89 10/20/89 10/23/89 10/25/89  10/27/89 11/01/89 11/03/89 11/06/89 11/08/89 11/10/89 11/14/89 11/16/89 11/18/89 11/21/89 11/23/89 11/25/89 11/28/89 11/30/89 12/02/89 12/05/89 12/07/89 12/09/89 12/12/89 12/14/89 12/16/89 12/19/89 12/21/89 12/23/89 12/26/89 12/30/89 01/04/90 01/11/90 01/16/90 01/18/90 01/22/90 01/24/90 01/27/90  9570 11350 11820 11080 12720 12250 14010 17960 36370 13370 21046 10630 13900 10750 15250 44640 71360 66340 78300 70860 77990 58400 67220 67210 61180 68680 65860 62760 74440 68540 72300 15740 10380 60720 37550 12310 9980 7620 6430  SOLIDS MG/L VS TSS TVSS 7200 8730 9060 8720 10110 9800 11190 15030 32630 11140 18803 8080 11450 8460 12600 41460 67000 62510 73310 66530 73390 54280 62730 62530 56970 63950 61450 58350 69390 64410 67750 12760 7930 56860 34030 10040 7850 5550 4890  5310 7220 5870 8170 8580 8790 94.00 12410 35450 9970 12670 6960 8310 6540 10090 44030 67180 71010 74480 69980 75220 52950 63550 59560 57530 69540 67120 59780 58560 68810 78410 10530 5570 17990 24840 8370 6140 4150 3650  5060 6930 5450 7550 7830 8010 8590 11570 33390 9690 12160 6550 7900 6240 9640 42150 64350 68200 71580 66840 71730 50560 60710 56680 55440 66840 64430 57590 56460 66260 75490 9950 5380 17270 23710 7800 5590 3830 3420  SOLIDS, % OR %T COD MGIL [%] %TS] [%] %TSJ OTAL SOL. H4-N P04-P ,  0.96 1.14 1.18 1.11 1.27 1.23 1.40 1.80 3.64 1.34 2.10 1.06 1.39 1.08 1.53 4.46 7.14 6.63 7.83 7.09 7.80 5.84 6.72 6.72 6.12 6.87 6.59 6.28 7.44 6.85 7.23 1.57 1.04 6.07 3.76 1.23 1.00 0.76 0.64  75.24 76.92 76.65 78.70 79.48 80.00 79.87 83.69 89.72 83.32 89.34 76.01 82.37 78.70 82.62 92.88 93.89 94.23 93.63 93.89 94.10 92.95 93.32 93.04 93.12 93.11 93.30 92.97 93.22 93.97 93.71 81.07 76.40 93.64 90.63 81.56 78.66 72.83 76.05  0.53 0.72 0.59 0.82 0.86 0.88 0.94 1.24 3.55 1.00 1.27 0.70 0.83 0.65 1.01 4.40 6.72 7.10 7.45 7.00 7.52 5.30 6.36 5.96 5.75 6.95 6.71 5.98 5.86 6.88 7.84 1.05 0.56 1.80 2.48 0.84 0.61 0.42 0.37  95.29 95.98. 92.84 92.41 91.26 91.13 91.38 93.23 9419 97.19 95.97 94.11 95.07 95.41 95.54 95.73 95.79 96.04 96.11 95.51 95.36 95.49 95.53 95.16 96.37 96.12 95.99 96.34 96.41 96.29 96.28 94.49 96.59 96.00 95.45 93.19 91.04 92.29 93.70  18017 20741 17851 23045 24540 23648 22667 32067 30561 28571 31733 20833 20747 17917 27879 76740 125692 110040 116103 103918 143838 67351 123203 93443 112526 106883 130629 97166 91870 104453 117505 39406 27632 120404 54509 27038 16872 16227 26210  8430 9218 8926 9547 9734 9895 10417 10355 10552 10449 10605 9917 8548 10333 9939 10020 11621 10683 9781 11464 10263 9774 11745 11557 11088 11822 11684 12146 11220 10283 12314 11579 10865 10263 10100 10577 8724 8763 8952  270 270 293 323 276 375 293 299 268 286 293 256 180 192 242 162 180 162 147 130 113 153 170 289 175 163 145 211 235 163 270 304 259 270 277 197 243 248 288  167 172 186 203 210 206 212 200 212 206 198 188 157 153 159 163 184 184 195 159 189 172 218 203 214 220 216 218 212 180 247 224 201 199 185 183 174 171 188  269  TABLE D2 2 RESPONSE DATA OF SAMPLING POINT NO 2 UNDER DIFFERENT RUNNING CONDITIONS : DURING THE MAXIMIZATION AND RECOVERY P EXP. DAY NOs. 1  2  3  4  5  6  7  3  9  DATE  INORGANICS MG/L VFA, MG/L TKN %TS TP %TS HAc HPr Iso- HEr A-HVr HBr 1 10/13/89 316 8.55 168 2.15 1397 1842 35 785 23 4 10/16/89 275 7.54 179 2.10 1526 1838 36 939 23 6 10/18/89 333 7.28 180 2.02 1509 1781 37 1052 24 8 10/20/89 354 7.19 204 1.79 1471 1704 40 1155 27 11 10/23/89 398 5.57 216 1.39 1575 1713 46 1355 30 13 10/25/89 446 5.55 242 1.53 1620 1705 47 1424 30 15 10/27/89 367 6.35 226 1.68 1725 1780 43 1471 24 20 11/01/89 354 5.60 220 1.35 1631 1927 45 1556 24 22 11/03/89 390 6.53 241 1.13 1626 2143 49 1673 26 25 11/06/89 373 6.29 204 1.45 1360 2174 48 1545 26 27 11/08/89 425 7.74 230 1.71 1202 2399 50 1567 29 29 11/10/89 415 6.00 225 1.80 846 2139 47 1423 27 33 11/14/89 310 4.43 171 0.91 886 2334 35 1099 20 35 11/16/89 323 5.4