Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of ammonial loading, solids retention time and operating temperature on the biological nitrification.. Azevedo, Barry 1993-12-31

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
831-ubc_1993_fall_azevedo_barry.pdf [ 17.53MB ]
Metadata
JSON: 831-1.0050449.json
JSON-LD: 831-1.0050449-ld.json
RDF/XML (Pretty): 831-1.0050449-rdf.xml
RDF/JSON: 831-1.0050449-rdf.json
Turtle: 831-1.0050449-turtle.txt
N-Triples: 831-1.0050449-rdf-ntriples.txt
Original Record: 831-1.0050449-source.json
Full Text
831-1.0050449-fulltext.txt
Citation
831-1.0050449.ris

Full Text

THE EFFECT OF AMMONIA LOADING, SOLIDS RETENTION TIME AND OPERATING TEMPERATURE ON THE BIOLOGICAL NITRIFICATION AND DENITRIFICATION OF HIGH AMMONIA LANDFILL LEACHATE By Barry Azevedo B.A.Sc. (Chemical Engineering) University of British Columbia, 1987  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in  THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CIVIL ENGINEERING  We accept this thesis as conforming to the required standard  THE UNIVERSITY OF BRITISH COLUMBIA October, 1993 © Barry Azevedo, 1 993  In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.  Department of  A (1kVq-  L  ,  The University of British Columbia Vancouver, Canada  Date  DE-6 (2/88)  ABSTRACT The effect of ammonia loading, solids retention time and operating temperature (20, 17, 14, 12 and 10 °C) on the treatment of high ammonia landfill leachate (200, 300, 600, 1000, 1500 and 2000 mg NH 4 -N/L), was investigated. Two biological, single-sludge, nitrification-predenitrification systems were operated in parallel; one with a 10 day aerobic SRT, and the other with a 20 day aerobic SRT. The study consisted of two phases: an ammonia loading phase and a cold temperature phase.  From the ammonia loading phase, it was found that at an influent leachate ammonia level of 1500 mg N/L, both systems produced an effluent of <1 mg NH 4 -N/L and approximately 170 mg NO. -N/L. -  Aerobic nitrite accumulation was observed and was likely a factor in a parallel decrease in the COD:NO x ratio from approximately 6:1 to 4:1. At the leachate ammonia level of 1500 mg N/L, "free" ammonia levels in the anoxic reactor were estimated to have been 20 mg N/L. This elevated anoxic "free" ammonia level did not appear inhibitory to either the ammonia oxidizers (Nitrosomonas) or to the denitrifiers, but may have inhibited nitrite oxidizers (Nitrobacter), thereby resulting in nitrite accumulation. When the influent ammonia concentration was raised from 1500 to 2000 mg N/L, nitrification in both systems was observed to decrease from 100 % to approximately 20 %. Several factors may have contributed to the failure of nitrification including: insufficient dissolved oxygen, solids/foaming problems, and levels of anoxic "free" ammonia inhibitory to Nitrosomonas.  During the cold temperature phase, the temperature was decreased from 20 to 10 °C while maintaining the simulated leachate ammonia level at 1500 mg N/L. Aerobic nitrite accumulation and rising aerobic BOD 5 was observed to begin at 14 °C. When the temperature was decreased from 12 °C to 10 °C, nitrification was observed, in both SRT systems, to decrease from approximately 95 % to approximately 20 % . In the 10 day SRT system, denitrification decreased from 99 % to 30 %; in the 20 day SRT system, denitrification decreased from 99 % to 82 %. Based on the rise of aerobic nitrite, and only partial failure of denitrification, cold temperature was deemed responsible for nitrification failure, which for the 10 day SRT system, subsequently precipitated the failure of denitrification . In both awstems, nitrification was re-established at 10 °C, by ceasing to waste solids and by stopping methanol addition.  ii  TABLE OF CONTENTS  ABSTRACT  TABLE OF CONTENTS  LIST OF TABLES^  vi  vii  LIST OF FIGURES^ ACKNOWLEDGEMENTS  INTRODUCTION^  1  1.1^Leachate Generation, Landfill Age, and Leachate Characteristics ^ 1 1.2^Environmental Problems from Nitrogen Discharges ^  2  1.3^High Ammonia Levels in Landfill Leachate ^  4  1.4^Nitrogen Removal from Landfill Leachate ^  4  1.5^Carbon Removal vs Nitrogen Removal ^  5  1.6^Biological Nitrification and Denitrification ^  5  1.6.1 Nitrification Microbiology ^  5  1 .6.2 Denitrification Microbiology ^  6  1.6.3 Process Train Options for Implementation of Biological Nitrification and Denitrification ^ 1.7^Other Nitrogen Removal Options ^  7 10  1.7.1 Recirculation ^  10  1 .7.2 Co-treatment ^  11  1.7.3 Spray Irrigation ^  12  1 .7.4 Bacterial Assimilation ^  12  1.7.5 Physical-Chemical Treatment ^  12  1.8^Study Objectives ^  LITERATURE REVIEW^  13  14  2.1^Biological Nitrification and Denitrification of Landfill Leachate ^ 14 III  ^ ^  2.2^Effect of Dissolved Oxygen on Nitrification ^  14  2.3^Effect of Temperature ^  14  2.4^Effect of pH, "Free" Ammonia, and Nitrous Acid ^  15  2.5^Effect of Excess BOD 5 on Nitrification ^  17  2.6^Effect of Carbon Source and Quantity on Denitrification ^  17  2.7^Heavy Metal Inhibition ^  18  2.8^Effect of HRT and Solids Recycle Ratio ^  19  EXPERIMENTAL SETUP^  20  3.1^Leachate ^  21  3.2^Leachate Feed ^  22  3.3^Chemical Addition ^  22  3.3.1 Phosphate Addition ^  22  3.3.2 Methanol Addition ^  23  3.3.3 Ammonium Chloride Addition ^  23  3.3.4 Sodium Bicarbonate (Alkalinity) Addition ^  23  3.4^Anoxic Reactor ^  24  3.5^Aerobic Reactor ^  24  3.6^Clarifier ^  25  3.7^System Start-up ^  25  3.8^System Operation ^  26  ANALYTICAL METHODS ^  28  4.1^Temperature ^  28  4.2^Dissolved Oxygen (DO) ^  28  4.3^Oxidation-Reduction Potential (ORP) ^  29  4.4^pH ^  29  4.5^Suspended Solids ^  30  4.6^Alkalinity ^  30  4.7^Chemical Oxygen Demand (COD) ^  30  4.8^Biochemical Oxygen Demand (BOD 5 ) ^  31  iv  4.9^Ammonia ^  31  4.10 NO ^  32  4.11^Nitrite (NO21 ^  33  4.12 Total Kjeldahl Nitrogen (TKN) ^  33  4.13 Orthophosphate ^  33  RESULTS AND DISCUSSION ^  35  5.1^Ammonia Loading Phase ^  35  5.1.1 Ammonia Levels ^  35  5.1.2 pH and Alkalinity Addition ^  40  5.1.3 Methanol Addition and NO; Levels ^  43  5.1.4 Nitrite Accumulation and "Free" Ammonia Levels ^  52  5.1.5 Nitrification and Denitrification ^  56  5.1.6 System Failure ^  61  5.1.7 Solids ^  62  5.1.8 Solids Retention Time ^  65  5.2^Cold Temperature Phase ^  68  5.2.1 BOD5 Inhibition of Nitrification ^  68  5.2.2 Loss of Nitrite Accumulation ^  77  5.2.3 Effect of Cold Temperature and Failure ^  77  5.2.4 10 °C Startups of Nitrification and SRT Failure ^  93  CONCLUSIONS AND RECOMMENDATIONS ^  100  6.1^Summary of Results ^  100  6.2^Conclusions ^  100  6.3^Recommendations ^  104  REFERENCES^  106  APPENDICES^  113  v  LIST OF TABLES  TABLE 1.1:^Landfill Stabilization Sequence ^  2  TABLE 3.1:^Treatment System Design and Operating Parameters ^  20  TABLE 3.2:^Base Leachate Composition ^  21  TABLE 5.1:^Loading Phase - Ammonia Levels ^  36  TABLE 5.2:^Loading Phase - % Ammonia Removal ^  39  TABLE 5.3:^Loading Phase - pH Levels and Alkalinity Addition ^  40  TABLE 5.4:^Loading Phase - NO; Levels and COD:NO, Ratio ^  51  TABLE 5.5:^Loading Phase - Nitrite Levels ^  52  TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia Levels ^  55  TABLE 5.7:^Loading Phase - Nitrification ^  59  TABLE 5.8:^Loading Phase - Denitrification ^  60  TABLE 5.9:^Loading Phase - VSS Levels ^  62  TABLE 6.1:^Summary of Results ^  vi  101  LIST OF FIGURES  FIGURE 1.1  Leachate Treatment System Diagram ^  FIGURE 5.1  Loading Phase - 10 Day SRT System Anoxic and Aerobic Ammonia Levels ^  FIGURE 5.2  54  Loading Phase - 10 Day SRT System % Denitrification and % Nitrification ^  FIGURE 5.14  53  Loading Phase - 20 Day SRT System Anoxic and Aerobic Nitrite Levels ^  FIGURE 5.13  50  Loading Phase - 10 Day SRT System Anoxic and Aerobic Nitrite Levels ^  FIGURE 5.12  49  Loading Phase - 20 Day SRT System Methanol Addition and Anoxic BOD5 ^  FIGURE 5.11  48  Loading Phase - 10 Day SRT System Methanol Addition and Anoxic BOD5 ^  FIGURE 5.10  47  Loading Phase - 20 Day SRT System Anoxic and Aerobic NO; Levels ^  FIGURE 5.9  45  Loading Phase - 10 Day SRT System Anoxic and Aerobic NO; Levels ^  FIGURE 5.8  44  Loading Phase - 20 Day SRT System Alkalinity Addition ^  FIGURE 5.7  42  Loading Phase - 10 Day SRT System Alkalinity Addition ^  FIGURE 5.6  41  Loading Phase - 20 Day SRT System Anoxic and Aerobic Ammonia Levels ^  FIGURE 5.5  38  Loading Phase - 10 Day SRT System Anoxic and Aerobic pH Levels ^  FIGURE 5.4  37  Loading Phase - 20 Day SRT System Anoxic and Aerobic Ammonia Levels ^  FIGURE 5.3  8  57  Loading Phase - 20 Day SRT System % Denitrification and % Nitrification ^ vi i  58  FIGURE 5.15 Loading Phase - 10 Day SRT System Anoxic and Aerobic VSS Levels ^  63  FIGURE 5.16 Loading Phase - 20 Day SRT System Anoxic and Aerobic VSS Levels ^  64  FIGURE 5.17 Loading Phase - 10 Day SRT System System and Theoretical Aerobic SRT ^  66  FIGURE 5.18 Loading Phase - 20 Day SRT System System and Theoretical Aerobic SRT ^  67  FIGURE 5.19 Temperature Phase - 10 Day SRT System Aerobic BOD 5 and % Nitrification ^  69  FIGURE 5.20 Temperature Phase - 20 Day SRT System Aerobic BOD 5 and % Nitrification ^  70  FIGURE 5.21 Temperature Phase - 10 Day SRT System Aerobic BOD 5 , COD vs % Nitrification ^  72  FIGURE 5.22 Temperature Phase - 20 Day SRT System Aerobic BOD 5 , COD vs % Nitrification ^  73  FIGURE 5.23 Temperature Phase - 10 and 20 Day SRT Aerobic BOD 5 vs % Nitrification ^  74  FIGURE 5.24 Temperature Phase - 10 Day SRT System Methanol Addition during 20 °C Startup ^  75  FIGURE 5.25 Temperature Phase - 20 Day SRT System Methanol Addition during 20 °C Startup ^  76  FIGURE 5.26 Temperature Phase - 10 Day SRT System Aerobic pH and Nitrite Levels ^  78  FIGURE 5.27 Temperature Phase - 20 Day SRT System Aerobic pH and Nitrite Levels ^  79  FIGURE 5.28 Temperature Phase - 10 Day SRT System Aerobic Nitrite and % Nitrification ^  81  FIGURE 5.29 Temperature Phase - 20 Day SRT System Aerobic Nitrite and % Nitrification ^  viii  82  FIGURE 5.30 Temperature Phase - 10 Day SRT System Aerobic BOD5 and % Nitrification ^  83  FIGURE 5.31 Temperature Phase - 20 Day SRT System Aerobic BOD5 and % Nitrification ^  84  FIGURE 5.32 Temperature Phase - 10 Day SRT System % Denitrification and % Nitrification ^  85  FIGURE 5.33 Temperature Phase - 20 Day SRT System % Denitrification and % Nitrification ^  86  FIGURE 5.34 Temperature Phase - 10 Day SRT System Denitrification and Nitrification Rate ^  87  FIGURE 5.35 Temperature Phase - 20 Day SRT System Denitrification and Nitrification Rate ^  88  FIGURE 5.36 Temperature Phase - 10 Day SRT System Specific Utilization Rate ^  89  FIGURE 5.37 Temperature Phase - 20 Day SRT System Specific Utilization Rate ^  90  FIGURE 5.38 Temperature Phase - 10 Day SRT System Anoxic and Aerobic VSS Levels ^  91  FIGURE 5.39 Temperature Phase - 20 Day SRT System Anoxic and Aerobic VSS Levels ^  92  FIGURE 5.40 Temperature Phase - 10 Day SRT System Aerobic Ammonia and % Nitrification ^  94  FIGURE 5.41 Temperature Phase - 20 Day SRT System Aerobic Ammonia and % Nitrification ^  95  FIGURE 5.42 Temperature Phase - 10 Day SRT System Aerobic Nitrite and % Nitrification ^  97  FIGURE 5.43 Temperature Phase - 20 Day SRT System Aerobic Nitrite and % Nitrification ^  98  FIGURE 5.44 Temperature Phase - 20 Day SRT System ASRT, SSRT and % Nitrification ^  ix  99  ACKNOWLEDGEMENTS  I would like to thank Dr. D. S. Mavinic for his guidance, counselling, and patience, throughout this study. I would also like to thank Jufang Zhou, Paula Parkinson, and Susan Harper, of the U.B.C. Environmental Engineering Laboratory, for their good humour and invaluable technical assistance. Without their help, this study would not have been possible.  I would also like to thank Louise Smith, not only for her patience, but also for her editorial support. Finally, I would like to thank Andhra Smith Azevedo, who (despite providing countless distractions) gave me the impetus to complete this degree. I would also like to acknowledge the billions upon billions of bacteria that gave their lives for this study.  Funding for this project originated from the Natural Sciences and Engineering Research Council of Canada (NSERC), in the form of an Operating Grant to Dr. D. S. Mavinic.  x  Chapter 1 INTRODUCTION  Landfilling is the most common means of solid waste disposal. The significant environmental problems which may arise are methane gas explosions, low-level volatile gas generation, land use issues, odours, disease and pests, and leachate generation as water passes through the fill. Proper siting, design, construction and operation of landfills can usually deal with most aspects of these problems. The problem of leachate generation is usually most comprehensively solved by some form of treatment. The two components of landfill leachate that can have the most significant environmental impact on aquatic life are biodegradable organic compounds, and ammonia. As shall be explained in greater detail in the next section, leachates from older landfills typically have low BOD and high ammonia concentrations. Thus, the primary toxicant in leachate from older landfills is ammonia.  1.1 Leachate Generation, Landfill Age, and Leachate Characteristics Leachate is generated primarily from the infiltration of rainfall, snowmelt, or groundwater into the landfill (Chian et al, 1985). The infiltrated rainwater serves as the transport phase for leaching, dissolution, and migration of contaminants from the solid waste. In addition to the rainwater, water is also available in the input solid waste, either immediately, or released from decomposition reactions. Leachate characteristics are a function of the amount of the infiltrated rainwater, landfill design and operation, input solid waste , landfill microbiology, waste compaction, cover material, and landfill age.  As a landfill ages, while in use or after closure, the leachate characteristics change according to the landfill stabilization sequence presented in Table 1.1. It should be kept in mind that this phase concept for landfill stabilization is subject to alterations due to physical, chemical and microbiological conditions. In addition, since landfills are most often operated in cells, phases often overlap, producing a leachate that is the average of several cells in different phases (Chian et al, 1985).  TABLE 1.1:^Landfill Stabilization Sequence (modified from Chian et al, 1985)  Phase 1.  ^Initial Adjustment initial waste placement preliminary moisture accumulates until sufficiently present to support aerobic microbial decomposition of solid waste  Phase 2.^Transition transition from aerobic to anoxic to anaerobic microbial decomposition field capacity maybe exceeded resulting in leachate generation intermediary volatile organic fatty acids appear in leachate with a corresponding rise in BOD 5 Phase 3.  Acid Formation ("young" or "acetogenic" landfill) anaerobic decomposition is fully established intermediary volatile organic fatty acids predominate significant pH decrease with parallel dissolution of metals ammonia and phosphorus are released and partially utilized by microbial metabolism and may result in high ammonia in leachate (phosphorus is almost completely utilized and nearly absent in many leachates) leachate has high BOD 5 and high COD with BOD 5 /COD ratio typically >0.4 (Ehrig 1985)  Phase 4.  Methane Fermentation ("older" or "methanogenic" landfill) intermediary organics appearing during the acid formation phase are metabolized to methane and carbon dioxide pH rises as landfill changes from a buffer system controlled by volatile organic fatty acids to a buffer system controlled by the bicarbonate system high pH results in some metal species being involved in precipitation reactions, thus leachate metal concentrations decrease ammonia concentrations in leachate are high leachate BOD 5 and COD decrease markedly as methane production is increased ratio of BOD 5/COD decreases to <0.1 (Ehrig 1985)  Phase 5.  Final Maturation organic oxygen demand and methane production tapers and all but ceases humic release may increase as more difficult compounds are degraded, may have concomitant increase in metals high ammonia in leachate may continue for some time before ceasing reappearance of oxygen and oxidized species with corresponding rise in ORP  1.2^Environmental Problems from Nitrogen Discharges Nitrogen is essential to maintain natural ecosystems; however, some forms, at sufficient levels, are hazardous to man, animals, and the ecosystem itself. The major concerns of nitrogen discharges into  2  the aquatic environment include accelerated eutrophication of receiving waters, toxicity to fish life, dissolved oxygen depletion in receiving waters, and contamination of drinking water.  Cultural eutrophication, also known as biostimulation, means excessive plant or algal growth resulting from fertilization of receiving waters by primarily, nitrogen or phosphorus. The impact of eutrophication includes aesthetic changes, and algal decomposition problems resulting in seasonal or diurnal dissolved oxygen depletion and odour problems. Dissolved oxygen depletion will usually occur at lower depths in the receiving water, and thus effect the deeper, cold water fish, which tend to be the favourite of commercial and recreational fishers. In general, freshwater systems tend to be phosphorus deficient and marine environments tend to be nitrogen deficient. Therefore nitrogen-induced eutrophication tends to occur more in marine environments such as bays and estuaries. Dissolved oxygen depletion can also occur as a result of ammonia being biologically oxidized to nitrate by nitrifying bacteria within the receiving water.  The toxicity of nitrogen discharges to fish life is primarily due to "free" ammonia (NH 3 ). The ratio of "free" ammonia to the ammonium ion (NH 4 + ) is greatly affected by pH. Increasing pH, increases the ratio of "free" ammonia to ammonium. The U.S. EPA (1975) reported that acute toxicity to "free" ammonia has been detected starting from between 0.01 mg/L to 2.0 mg/L.  In 1945, Comley first associated the consumption of drinking water that was high in nitrates, with the rare but sometimes fatal blood disorder, infant methemoglobinemia (Shuval and Gruener 1977). It was established that water, high in nitrite or nitrate, which was fed to babies directly or via baby formula, resulted in nitrite in the stomach. Nitrite inactivates haemoglobin and the infant suffocates, producing the diagnosis of "blue babies". Another adverse health impact, discovered more recently, is the recognition of nitrates as potentially cancer causing. A study by Mirvish (1977) concluded that N-Nitroso- compounds are strong carcinogens and may be derived from nitrates in drinking water sources.  3  ^  1.3^High Ammonia Levels in Landfill Leachate The emphasis at modern landfills is to lower rainwater infiltration. A simple mass balance analysis shows that this should result in lower leachate volumes but with higher concentrations of contaminants. In addition, higher ammonia levels can also be expected as more landfills are engineered to reach a methanogenic state (Knox 1985). The implications of a modelling study performed by Jasper et al (1985a), include the possibility that longer landfill retention times, due to lower infiltration and/or poor hydraulic removal, will result in producing an "older" leachate.  Henry (1985) reports that high ammonia levels (100 to 1000 mg N/L) may be expected from anaerobic landfills. Ehrig (1985) summarizes leachate data from landfills in West Germany and describes an increase in ammonia-N concentrations to 1600 mg/L as the landfill becomes methanogenic. Henderson (1993) measured the ammonia-N concentration to be 2140 mg/L in a leachate from a methanogenic landfill near Kaohsiung in south western Taiwan. Maris et al (1985) report an ammonia-N concentration as high as 990 mg/L in the leachate from a methanogenic landfill in northern England. Loizidou et al (1992) report ammonia-N concentrations ranging from 1650 to 3870 mg/L in the leachate from a methanogenic landfill near Athens, Greece. Robinson (1991) observed ammonia-N concentrations as high as 5000 mg/L in leachates from landfills in Hong Kong.  ^1.4^Nitrogen Removal from Landfill Leachate Nitrogen removal (in a practical sense) from landfill leachate means either physical-chemical treatment to remove ammonia, biological assimilation, or aerobic biological nitrification with optional subsequent denitrification. Biological nitrification and denitrification is generally found to be the most effective, complete, and economic means of nitrogen removal for leachate from older landfills. Biological nitrification and denitrification processes also have several ancillary benefits, such as carbon oxidation and heavy metals removal.  Selection and design of a facility for landfill leachate treatment is not as simple as for sewage treatment. Leachate volume generation may vary significantly, and leachate characteristics vary with 4  time as described in Table 1.1. Forgie (1988a, 1988b, 1988c) provided an excellent review of leachate treatment options and developed comprehensive flowcharts for selection of the appropriate treatment option, based on leachate characteristics and effluent requirements.  1.5^Carbon Removal vs Nitrogen Removal The primary concern with leachate from young landfills, is carbon removal. The primary concern with leachate from older landfills, is nitrogen removal.  Forgie (1988a, 1988b, 1988c) suggested that anaerobic treatment, followed by optional aerobic treatment, is the most economical and effective treatment for carbon removal from "younger" leachate, that is, leachate with high biodegradable organics and a BOD 5 /COD ratio greater than 0.4. For leachate with a BOD 5 /COD ratio between 0.1 and 0.4, Forgie suggested aerobic biological treatment for BOD 5 and ammonia removal. Biological treatment of landfill leachate may still leave unacceptably high levels of refractory COD and colour. Removal of refractory COD and colour would require physical-chemical treatment. For leachate with a BOD 5 /COD less than 0.1, unless high ammonia levels are present, biological treatment may not be viable, and physical-chemical treatment is suggested by Forgie. If ammonia levels are sufficiently high, then aerobic biological nitrification is possible.  As this thesis research is specifically focused on nitrogen removal from leachate from an older landfill, carbon removal will not be discussed any further, except as pertaining to biological denitrification and BOD 5 inhibition of nitrification.  1.6^Biological Nitrification and Denitrification 1.6.1 Nitrification Microbiology Nitrification is an autotrophic aerobic process which utilizes an inorganic carbon source (carbonates), an inorganic electron donor or energy source (NH 4 + or NO 2 1, and elemental oxygen as a terminal electron acceptor. The complete oxidation of ammonium to nitrate occurs in two intermediary steps by two different genera of bacteria. The first step of oxidation of ammonium to nitrite is conducted 5  by Nitrosomonas. The second step of oxidation of nitrite to nitrate is conducted primarily by  Nitrobacter. The U.S. EPA (1975) states that Nitrobacter has a significantly higher growth rate than Nitrosomonas, therefore nitrite accumulation should not occur unless Nitrobacter is inhibited. Equations for synthesis and oxidation are as follows (U.S. EPA 1975):  Nitrosomonas 55NH 4 + + 760 2 + 109HCO 3 - -> C 5 H 7 NO 2 + 54NO2 + 57H 2 0 + 104H 2 CO 3  Nitrobacter 400NO2 + NH 4 + + 4H 2 CO 3 + HCO3 + 1950 2 -> C 5 H 7 NO 2 + 3H 2 0 + 400NO 3 -  The equations assume that the empirical formulation for these bacterial groups may be represented by C 5 H 7 NO 2 . The equations also assume growth yields of 0.15 mg cells/mg NH 4 + -N for Nitrosomonas and 0.02 mg cells/mg NO2-N for Nitrobacter, and oxygen consumption ratios of 3.22 mg 0 2 /mg NH 4 + -N for Nitrosomonas and 1.11 mg 0 2 /mg NO2-N for Nitrobacter.  Alkalinity is only consumed by the first step involving ammonia oxidation. The theoretical alkalinity consumption for nitrification is calculated from the first reaction to be 7.14 g CaCO 3 /g NH 4 +-N.  1.6.2 Denitrification Microbiology Denitrification is an anoxic, heterotrophic process which utilizes an organic carbon source (such as methanol) for synthesis and as an electron donor, and nitrite or nitrate as the terminal electron acceptor. Complete denitrification occurs in two steps. First is the reduction of nitrate to nitrite, and second is the reduction of nitrite to nitrogen gas. The end product, being nitrogen gas, is significant since nitrogen gas has not been associated with any environmental problems. Unlike nitrification, the two steps are not distinctly associated with specific genera of bacteria; moreover, denitrification can be accomplished by a broad range of facultative bacteria, including Pseudomonas, Micrococcus,  Archromobacter, and Bacillus (U.S. EPA 1975). Facultative bacteria prefer elemental oxygen to combined oxygen (such as nitrate and nitrite) as an electron acceptor. Therefore, it is important that  6  the denitrification environment be free of elemental oxygen for nitrate and nitrite reduction to occur. Equations for nitrate and nitrite reduction can be represented as follows (U.S. EPA 1975):  Nitrate Reduction^NO3- + 0.33CH30H -> NO2- + 0.33H20 + 0.33H2CO3 Nitrite Reduction^NO2- + 0.5CH3OH + 0.5H2CO3 - > 0.5N2 + HCO3- + H20  The inclusion of synthesis (bacterial growth) increases the moles of methanol required per mole of complete nitrate reduction to 1.08 and to 0.67 per mole of nitrite reduction (McCarty et al, 1963). For complete nitrate reduction, this converts to 2.47 g CH3OH/gNO3--N or 3.7 g COD/gNO3--N and for nitrite reduction, this converts to 1.53 g CH3OH/gNO2--N or 2.3 g COD/gNO2--N.  Alkalinity is generated by the second step of denitrification. The stoichiometric quantity of alkalinity generated is 3.57 g CaCO3/g NO2--N-denitrified•  1.6.3 Process Train Options for Implementation of Biological Nitrification and Denitrification There are many different process train options that have been proven to achieve biological nitrification and denitrification (Forgie, 1988a, 1988b, 1988c). The process train selected for this study was the Modified Ludzack Ettinger (MLE) process train.^The MLE process train is a single-sludge predenitrification-nitrification activated sludge system (see Figure 1.1). The MLE process offers the following advantages over other nitrification/denitrification systems:  Having the anoxic (denitrification) reactor before the aerobic reactor (nitrification), may permit influent B0D5 to be used as a carbon source for denitrification, thereby reducing carbon addition requirements. Also, the reduction in BOD5 entering the aerobic zone, reduces aeration demands and sludge production. Having the aerobic stage prior to clarification, produces a less noxious aerobic effluent and reduces the possibility of rising sludge resulting from denitrification in the clarifier. 7  on  AMMONIUM CHLORIDE ORTHOPHOSPHATE Q3  ,  cim  METHANOL  ORP METER  Or.  -.0 BICARBONATE  ^171\1  ,  ---1"71 DO METER  I  ^0 pH METER  A ANOXIC  Ia  ^;‘1171SUPPLY  REACTOR (5 L) I AEROBIC REACTOR (10 L)  LOW RPM SCRAPER  1r-^ CLARIFIER (4 L)  LEACHATE FEED (10 L/DAY)  I  .^  SOLIDS RECYCLE (60 L/DAY) EFFLUENT  FIGURE 1.1: Leachate Treatment System Diagram  The MLE arrangement reduces pH/alkalinity addition requirements, since 50% of the alkalinity consumed by nitrification is returned by denitrification. Dilution of the influent leachate with the aerobic/clarifier recycle, reduces the possibility of ammonia inhibition of denitrification. The converse of this is the exposure of denitrifiers to elevated levels of ammonia. The single-sludge aspect reduces tankage. Activated sludge nitrification and denitrification is well-studied and proven; primarily for sewage treatment but also in application to landfill leachate treatment. The greater biomass may permit shorter HRTs than in an aerated lagoon and therefore may require less space.  A major disadvantage of the MLE process is that effluent NO.--N levels may remain unacceptably high. The effluent NO-N is approximately equal to the influent ammonia-N divided by one plus the solids recycle ratio (assuming no bacterial assimilation or air stripping). For example, an influent ammonia-N concentration of 1500 mg/L and a solids recycle ratio of 6:1, at best can result in an effluent NON--N concentration of 1500/(1 + 6) =214 mg N/L. If lower NO."-N levels are required, post-denitrification or higher recycle rates may be necessary.  Other suspended growth process train options that have been investigated for their nitrogen removal potential from landfill leachate include, the aerated lagoon, and the sequencing batch reactor (SBR). Robinson and Luo (1991) achieved excellent nitrification using SBR technology from leachate with ammonia-N levels as high as 2000 mg/L. Robinson (1991) has been involved in the development of a simple and robust automated aerated lagoon for bacterial nitrogen assimilation, nitrification and carbon oxidation of high ammonia leachate from methanogenic landfills in the United Kingdom. The plants are described as extended aeration and are said to provide some distinct advantages over activated sludge plants, including greater process stability due to longer HRTs (Robinson et al, 1992). Typical influent ammonia-N levels of 1000 mg/L are reported to be reduced to less than 5 mg/L in the 9  effluent. Some plants are reported to use significant bacterial assimilation, while others achieve the majority of ammonia reduction by nitrification (Robinson 1991).  Several fixed growth systems are also available for nitrogen removal from landfill leachate. Fixed growth systems are generally regarded as more resistant to surges in hydraulic and organic loading, than for suspended growth systems, since washout of the biomass is less likely to occur. This is significant because changes in hydraulic loading are a notorious problem for landfill treatment design. Knox (1985) compared nitrification of an "older" leachate by an activated sludge pilot plant and a trickling filter pilot plant, operating in parallel. Knox concluded that less problems were encountered with the trickling filter. Several studies have also found RBC technology useful for nitrification of landfill leachate (Opatken and Bond 1991, Peddie and Atwater 1985). Spengel and Dzombak (1991) successfully nitrified and denitrified landfill leachate with an average ammonia-N level of 154 mg/L, using an aerobic RBC followed by an anoxic submerged RBC. Also using an RBC, Henderson (1993) attempted to treat a leachate with a BOD concentration of 705 mg/L and an ammonia-N concentration of 2140 mg/L. At an ammonia loading of 1.3 g/m 2 /day, system ammonia removal was 97%. At higher loading rates, full nitrification could not be achieved. Forgie (1988c) indicates that caution must be given to application of RBCs to treatment of landfill leachate, because of the potential of calcium and iron precipitates to form on the disks, thereby interfering with substrate transfer to the biomass or raising the spectre of axle failure. It is possible that clogging by inorganic precipitates could also apply to other fixed growth systems as well, such as trickling filters (Ehrig 1991).  1.7^Other Nitrogen Removal Options 1.7.1 Recirculation Recirculation of leachate, by collection and spraying over the landfill, was investigated by Robinson and Maris (1985). Their work supported other studies that recirculation promotes rapid stabilization of biodegradable organics, produces a more consistent leachate, and may reduce leachate volume by evaporation. However, ammonia, COD, and chloride, were found to remain relatively high. Robinson and Maris concluded that recirculation can reduce leachate strength and volume but cannot be a 10  complete answer to the leachate problem. Further, they suggest that recirculation may be most applicable in combination with aerobic biological treatment. Robinson and Maris also suggest that recirculation may result in denitrification within the landfill.  1.7.2 Co-treatment Co-treatment refers to placing the leachate into the local municipal sewerage system for treatment in the municipal sewage treatment plant. Obviously, this option may be limited by the nonexistence of sewage treatment. Co-treatment is most applicable to municipalities which have secondary or tertiary treatment, where organics, nitrogen and colour may be removed. Lema (1988) states that the addition of leachate to sewage may also be argued as a nitrogen nutrient source for municipal secondary treatment. If the municipal treatment plant is only primary treatment, then significant treatment of the leachate might not occur. However, as in the case of leachate from the Vancouver landfill (which is directed into the Annacis Island primary treatment plant), some advantages might still be obtained from dilution of the leachate in the sewage, and by good dilution into the receiving water due to efficient sewage outfall diffusers. Economic deterrents to co-treatment include the cost of building the necessary piping connections and/or paying a treatment fee to the municipal plant.  Lema (1988) lists the potential negative impacts of co-treatment on secondary treatment: excessive loading of organic and inorganic compounds, high effluent nitrogen, corrosion, poor settling, precipitation of inorganic ions, heavy metal inhibition, and heavy metal contamination of the sludge, thus rendering the sludge unfit for agricultural purposes. Lema suggests that co-treatment is only acceptable when the leachate makes up less than 5% of the total sewage input and leachate COD is less than 10000 mg/L. Accordingly, assuming a sewage COD of 300 mg/L, the leachate COD contribution must be less than 64% of the COD load.  Kelly (1987) investigated the effect of co-treatment on a pilot scale activated sludge plant treating domestic waste. For a leachate with 1167 mg COD/L and 71 mg NH4-N/L, and a primary wastewater with a COD of 238 mg/L, process instability was not observed for leachate mixtures of 2, 4 and 16%  11  by volume. The COD contribution from leachate at a mixture of 16%, was only 48% (less than the 64% maximum suggested by Lema (1988)). However, Kelly observed that leachate additions increased heavy metals in the sludge and increased precipitation onto process equipment.  1.7.3 Spray Irrigation Robinson (1983) suggested that spray irrigation, also known as land spraying, may either be used to treat relatively dilute raw leachates or to dispose of treated effluent. Lema (1988) stated that spray irrigation of landfill leachate is not a valid option because it risks polluting groundwater, renders the land unfit for agriculture, and may be toxic to plants.  1.7.4 Bacterial Assimilation Robinson and Maris (1985) concluded that bacterial assimilation, in biological treatment of "young" leachate with high BOD5 and low ammonia (down to BOD5:NH4-N ratios of 100:3.6), can be sufficient to achieve complete ammonia removal. Robinson (1988) reported a successful implementation of a nitrogen assimilation plant for removal of ammonia from landfill leachate, of approximately 700 mg NH4-N/L, which produced an effluent with ammonia-N less than 2 mg/L. A supplementary BOD5 source was used which was comprised of jam waste from a nearby jam-producing plant. In general, for nitrogen removal by bacterial assimilation to be economical, a cheap source of BOD5 must be available, in addition to a disposal option for the ammonia-rich sludge.  1.7.5 Physical-Chemical Treatment Potential physical-chemical methods for ammonia removal from landfill leachate include air stripping, reverse osmosis and ion exchange. Keenan (1979) reported that good carbon, heavy metals, and ammonia removal were obtained from pretreatment by chemical precipitation of heavy metals to prevent heavy metal inhibition, followed by air stripping to prevent ammonia inhibition, and then biological treatment for carbon oxidation and nitrification. Ehrig (1991) described the success in reverse osmosis removal as only an adjournment of a real treatment solution, since the process produces a liquid concentrate, which is usually passed back into the landfill. However, in combination 12  with air stripping, reverse osmosis may be useful in ammonia removal from landfill leachate. Ion exchange may also be used for ammonia removal using a column of clinoptilolite, a zeolite with a high selectivity for ammonium ions and calcium ions (U.S. EPA 1975). Older leachate may be very high in calcium and may therefore not be well-suited for ion exchange for the purpose of ammonia removal. have reduce the ammonial removal. In addition, column regeneration will produce a concentrate which still requires disposal or treatment. Hence, like bacterial assimilation and reverse osmosis, ion exchange cannot be considered an ultimate treatment.  1.8^Study Objectives In summary of this chapter: 1.  Modern landfill design and operation of landfills, will produce leachates with high concentrations of ammonia.  2.  Biological nitrification and denitrification is considered to be one of the most effective and economical methods of nitrogen removal from high ammonia leachate.  3.^The MLE process (single-sludge predenitrification activated sludge, see Figure 1.1) is one particular implementation of biological nitrification and denitrification that has several advantages (see Section 1.6.3).  The potential increase in the ammonia concentrations of leachate from modern "older" landfills, raised the question, "To what ammonia level could the MLE process successfully operate, especially at colder temperatures when biological treatment is most challenged?" A particular concern was the exposure of nitrifiers and denitrifiers to elevated ammonia levels in the anoxic reactor. Based on the above reasoning this study had the following objectives: 1.  Determine the effect and limit of increasing the influent leachate ammonia concentrations, on successful treatment by the MLE process shown in Figure 1.1.  2.  Determine the effect of colder temperatures on treating the highest influent leachate ammonia concentration determined by Objective 1.  3.^Determine the effect of solids retention time (SRT) on Objective 1 and 2. 13  Chapter 2  LITERATURE REVIEW  This literature review presents a short overview of research that has been published on the subject of biological nitrification and denitrification. Emphasis is given to research on landfill leachate treatment, cold temperature studies and other factors which affect nitrification and denitrification performance. Weight is also given to research on which the activated sludge process, or more specificall y, the MLE process, was utilized.  2.1 Biological Nitrification and Denitrification of Landfill Leachate Dedhar and Mavinic (1985) successfully nitrified leachate, with 288 mg NH4-N/L, from an "older" landfill, to less than 1 mg/L. Denitrification, using glucose as an external carbon source for an MLE process, was achieved only on several occasions.  Robinson (1992), in a pilot study, successfully nitrified and denitrified landfill leachate with ammonia-N levels of 2000 mg/L, using the MLE process at 20 °C. A recycle ratio of 10:1 was found to produce an effluent NO3"-N of approximately 95 mg/L and a NO2--N of approximately 0.2 mg/L.  2.2 Effect of Dissolved Oxygen on Nitrification Stenstrom and Poduska (1980) investigated the dissolved oxygen (DO) concentration required for nitrification of municipal wastewater. They concluded that at higher SRTs, nitrification could be achieved at DO levels from 0.5 to 1.0 mg/L, and at lower SRTs, higher DO levels were required.  2.3 Effect of Temperature Decreasing temperature results in decreased growth rate according to the Arrhenius relationship. Decreasing temperature also decreases the fraction of ammonia present that exists as "free" ammonia. Anthonisen et al (1976) calculated that for each 10 °C drop in temperature, the "free" ammonia present decreases by approximately one half.  14  Using a 3 stage biological process (carbon oxidation, nitrification, denitrification), to treat a synthetic municipal wastewater at 5 °C, Halmo and Eimhjellen (1981) found that nitrification was "unquestionably" the critical step. Nitrification at low temperatures was determined to be possible, but was vulnerable to changes in external conditions. Halmo and Eimhjellen also found that 98% denitrification could be obtained at 5 °C, with some encouragement of psychrophilic bacterial growth.  Randall and Buth (1984) studied the effect of temperature on nitrification of a synthetic municipal wastewater. Randall and Buth found that nitrification was very sensitive to small temperature changes between 10 to 17 °C. Temperature inhibition was more significant on nitrate formers (eg. Nitrobacter) than on nitrite formers (eg. Nitrosomonas); hence, nitrite accumulation was observed. Further, Randall and Buth concluded that nitrification was more temperature sensitive than heterotrophic activity.  Using mixed liquor from an activated sludge municipal wastewater treatment plant, Lewandowski (1982) found that the relationship between specific reaction rate for denitrification and temperature was linear within 5 to 35 °C. Below 5 °C, the reaction rate decreased more significantly. The specific reaction rate for methanol was found to be 1.83 h -1 at 20 °C and 0.93 h -1 at 10 °C.  Guo (1992) studied the effect of temperature on biological nitrification and denitrification of a high ammonia landfill leachate using the MLE process. Temperatures of 20 °C, 12 °C, and 4 °C, were studied, with aerobic SRTs ranging from 20 to 60 days. Guo found that at 12 °C, using a 20 day SRT, the system was capable of ammonia-N removal from 210 mg/L in the influent leachate to less than 0.5 mg/L in the treated effluent. An effluent ammonia-N level less than 1.9 mg/L was achieved at 4 °C, using a 60 day SRT.  2.4 Effect of pH, "Free" Ammonia, and Nitrous Acid Anthonisen et al (1976) observed that nitrification was reduced by low pH due to nitrous (HNO 2 ) acid inhibition, and at high pH due to "free" ammonia (NH 3 ) inhibition. Both were shown to affect  Nitrobacter at lower concentrations than for Nitrosomonas; thus the overall effect was nitrite 15  accumulation. "Free" ammonia inhibition to Nitrobacter was observed to begin between 0.1 to 1.0 mg/L. For nitrosomanas, "free" ammonia inhibition was observed to begin between 10 to 150 mg/L. Nitrous acid inhibition to nitrifiers, was observed to begin between 0.22 and 2.8 mg/L. Anthonisen et al qualified these results by acknowledging that "free" ammonia and nitrous acid inhibition may be affected by acclimation, temperature, and the number of nitrifying organisms present.  Turk and Mavinic (1989) investigated process changes that could be used to maintain nitrite accumulation and overcome the effects of acclimitization to "free" ammonia, during nitrification and denitrification of landfill leachate and a synthetic waste. Parameters investigated included "free" ammonia, nitrous acid and dissolved oxygen. Only "free" ammonia (at 5 to 10 mg NIL) was found to be effective as a differential inhibitor of unacclimated nitrifiers. Predenitrification, in which nitrifiers are recycled through elevated "free" ammonia concentrations in the anoxic reactor, was suggested as the most effective measure for delaying acclimatization and extending nitrite accumulation.  Keenan et al (1979) performed a study of ammonia substrate inhibition on nitrification of landfill leachate. Keenan observed the ammonium ion (NH4) to be the inhibitory form of ammonia and, conversely, Keenan did not observe inhibition of nitrification due to "free" ammonia.  Antoniu et al (1990) determined the optimal pH for nitrifying bacteria to be approximately 7.8. Painter and Loveless (1983) determined the optimum pH for nitrification to be in the range between 7.5 to 8.5, with an optimal growth rate occurring at pH 8.  The U.S. EPA (1975) suggests that pH may strongly affect nitrification by altering the amount of bicarbonate in solution. The U.S. EPA also found that the highest reported rates of denitrification were within the range of pH 7.0 to 7.5.  Beccari et al (1983) observed that elevated nitrite levels may inhibit denitrification. Nitrite inhibition was attributed to the level of nitrous acid. 16  2.5 Effect of Excess BOD 5 on Nitrification Several nitrification studies have found that nitrification is inhibited by the presence of elevated levels of biodegradable organic matter. The explanation given for this inhibition, is that faster-growing heterotrophic bacteria outcompete slow-growing autotrophic nitrifiers for dissolved oxygen in the presence of elevated BOD 5 . Hockenbury et al (1977) investigated the effect of simultaneous heterotrophic activity on nitrifier activity and concluded that no such inhibition takes place.  Carley and Mavinic (1991), using a predenitrification activated sludge setup for landfill leachate treatment, with a 4:1 solids recycle ratio, found that a denitrification COD:NO x ratio of 20:1 resulted in significant carbon breakthrough and a resulting reduction of nitrification of up to 40%. A look at the raw data of this work (Carley, 1988) shows a corresponding increase in aerobic BOD 5 , thus supporting the claim that elevated BOD 5 s can inhibit nitrification.  Similar results have been observed with RBCs (Gonenc and Harrmoes, 1990) and with trickling filters (Figueroa and Silverstein, 1991). Gonenc and Harrmoes suggested that the ratio of BOD 5 :DO must be less than 5:1 for uninhibited nitrification to occur. Parker and Richards (1986), in a study on nitrification in trickling filters, concluded that because of competition between heterotrophic bacteria and nitrifiers, nitrification is not initiated in the trickling filter tower until soluble BOD 5 is less than 20 mg/L.  2.6 Effect of Carbon Source and Quantity on Denitrification Methanol has been widely used as an external carbon source for biological denitrification (U.S. EPA 1975). Reasons for this include: high reaction rate, abundance of supply, low sludge solids yield, and relatively low cost.  Manoharan (1989) found that glucose, as a carbon source, resulted in unstable denitrification, with fluctuations between 10 to 100%. However, methanol as a carbon source was found to provide for consistent and reliable, complete denitrification. 17  Carley and Mavinic (1991) tested methanol, acetate, glucose and a brewer yeast, as external carbon sources for denitrification of a carbon-limited landfill leachate. Their results indicated that methanol and acetate were equally effective and better overall than glucose and the brewer yeast. The COD:NO, ratio (mg COD:mg NOR-N) required for complete denitrification was approximately 6.2:1 for methanol and 5.9:1 for acetate.  McCarty et.al (1969) proposed the following stoichiometric-based equation for methanol (Cm) requirements for complete denitrification (all variables are in mg/L):  Cm = 2.47*[NO3--N] + 1.53*[NO2--N] + 0.87*[dissolved oxygen]  The U.S. EPA Process Design Manual for Nitrogen Control (U.S. EPA 1975) suggests that, in general, a methanol requirement of 4.5 mg COD/mg NO3--N will enable complete denitrification. Studies have generally shown a COD:NO, requirement in the range of 4:1 to 6.5:1 (Narkis, 1979 and Carley, 1989).  As seen from McCarty's methanol requirement equation, complete denitrification of nitrite requires about 40% less methanol than complete denitrification of nitrate. The possibility of lower methanol requirements inspired Turk and Mavinic (1989) to investigate the feasibility of a shortened pathway for nitrogen removal based on inhibition of nitrite oxidizers Witrobacten. This would decrease aeration demands during nitrification, and decrease carbon demands during denitrification. High nitrite levels existed until acclimatization eventually occurred.  2.7^Heavy Metal Inhibition The nitrification process is considered very sensitive to heavy metals (Mavinic and Randall, 1992). Zinc, a predominant metal in acetogenic landfill leachates, has been reported to result in nitrification inhibition at concentrations of approximately 17 mg/L (Dedhar and Mavinic, 1985, and Jasper et al, 1986). Martin and Richard (1982) found the nitrosomonas toxic threshold for zinc to be approximately 10 mg/L. 18  Mavinic and Randall (1990) investigated heavy metal inhibition of biological nitrification and denitrification of a high ammonia landfill leachate (188 mg N/L). Their results showed that when excess phosphorus was added to account for zinc phosphate precipitation, the system could handle zinc concentrations up to 130 mg/L at 20 °C with an aerobic SRT of 10 days. Inhibition from chromium and nickel was obvious at much lower levels.  2.8 Effect of HRT and Solids Recycle Ratio The solids recycle ratio is defined as the volumetric rate of the clarifier solids underflow that is recycled back into the anoxic reactor, to the influent volumetric rate entering the anoxic reactor. A study by Elefsiniotis et al (1989), using the MLE train, varied the solids recycle ratio and found that beyond 6:1, nitrification and denitrification became unstable. Since solid recycle and effluent recycle were combined into one recycle, the reduction in HRT was suggested as the reason for poor performance at higher recycle ratios. Robinson (1992), also utilized a predenitrification arrangement, but with the aerobic reactor sequenced to also operate as a clarifier. While using HRTs that were considerably longer than the HRTs utilized by Elefsiniotis et al, Robinson successfully operated at a recycle ratio of 10:1.  Finally, Painter (1977) stated that, after exposure to aerobic conditions, most denitrifying organisms require a period of approximately 1/2 to 1 hour of adaption to nitrate under anoxic conditions for denitrification to occur.  19  Chapter 3  EXPERIMENTAL SETUP  Two parallel, identical, laboratory-scale, biological, single-sludge, predenitrification systems, with recycle, were used to study the effects of solids retention time (SRT), ammonia loading, and temperature, on the nitrification and denitrification of landfill leachate. Throughout the study, one system was operated at a 10 day aerobic SRT and the other system was operated at a 20 day aerobic SRT (based on the work of Mavinic and Randall (1990) and Guo (1992)). Each system consisted of an anoxic reactor, an aerobic reactor, and a clarifier with a recycle back to the anoxic reactor. The system is shown in Figure 1.1. The design and operating parameters of the system are shown in Table 3.1. The study was conducted in two phases. Phase one investigated the effects of increasing the ammonia loading. Phase two investigated the effects of cold temperature.  TABLE 3.1:^Treatment System Design and Operating Parameters Parameter  Value  Anoxic Volume (L) Aerobic Volume (L) Clarifier Volume (L) System Volume (L)  5 10 4 20*  Influent Flow (L/days) Recycle Flow (L/days) Recycle Ratio (Recycle:Influent)  10 60 6:1  Daily Aerobic Wasting (L) Aerobic SRT (days)  1/0.5 10/20  Anoxic Nominal HRT (hours) Aerobic Nominal HRT (hours) Clarifier Nominal HRT (hours) System Nominal HRT (hours)  12 24 9.6 48  Anoxic Actual HRT (hours) Aerobic Actual HRT (hours) Clarifier Actual HRT (hours) System Actual HRT (hours)  1.7 3.4 1.4 6.8  *1 L is estimated in each system for pumps and tubing. 20  A solids recycle ratio of 6:1 was selected based on the work of Elefsiniotis et al (1989). Both phases of the study were conducted within a temperature-controlled room. The temperature during the ammonia loading phase was maintained at 20 °C. The temperature during cold temperature phase was decreased from 20 °C to 10 °C.  3.1 Leachate The leachate used in this study was collected from the City of Vancouver's Burns Bog Landfill in Delta, British Columbia. The leachate was collected monthly from a pumping station located in the southwest corner of the landfill. The collected leachate was stored in closed containers at 4 °C to limit biochemical changes while in storage.  The landfill began operation in 1966 and is still in use today. The leachate presently generated is typical of leachate from an older landfill, with low BOD 5 , low BOD 5 :COD ratio, low heavy metals, and a consistently high ammonia concentration. The basic characteristics of the leachate are shown in Table 3.2.  TABLE 3.2:^Base Leachate Composition Parameter  BO D5 COD Ammonia as N NO; as N NO 2 as N Orthophosphate as P Alkalinity as CaCO 3 VSS TSS pH (pH units) Cu (Guo, 1992► Zn (Guo, 1992) -  Concentration (mg/L) Range^Mean 20-62 285-464 128-256 0.1-58.8 0.0-3.3 0.0-0.8 1190-2120 24-65 56-128 7.6-8.3 0-0.71 0-0.11  21  36 371 186 2.7 0.3 0.4 1600 45 97 8.0 0.13 0.04  3.2 Leachate Feed The leachate to both systems was fed from a common, covered, plastic bucket with a mechanical stirrer. Each system received leachate at approximately 10 L/day. In actuality, to maintain the aerobic HRT at approximately 3.4 hours and the anoxic HRT at approximately 1.7 hours, the rate of leachate addition was less than 10 L/day to account for the addition of ammonium chloride, orthophosphate, methanol, and bicarbonate.  Initially, leachate was poured into the bucket from the storage containers. To reduce the aeration of the leachate and possible instigation of nitrification within the feed bucket, this practice was changed to siphoning the leachate from the storage container into the feed bucket.  3.3 Chemical Addition Orthophosphate, methanol, ammonium chloride and sodium bicarbonate, were all added to the systems during this study. In general, the concentrations of the feed solutions were as high as possible so that volumetric additions would be as low possible, thereby affecting the HRT as little as possible. In general, the lowest volumetric rate that the pumps could manage consistently was 5 to 10 mL/hr. Controlling the flowrate at these low levels proved to be a problem; therefore, the concentration of the chemical feed solution was altered instead of the flowrate.  3.3.1 Phosphate Addition From the start of the study, disodium orthophosphate (Na2PO4:7H20) was added to both systems to ensure that phosphorus was not a limiting nutrient. The objective of phosphate addition was to maintain the membrane-filtered orthophosphate levels above 0.5 mg P/L, as suggested by Mavinic and Randall (1992). For each system, phosphate feed solution was provided from a 1000 mL graduated cylinder into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the volume change in the graduated cylinder. Phosphate mass dosing rates were altered by changing the concentration of the feed solution. 22  3.3.2 Methanol Addition Methanol (CH 3 OH) was added to the anoxic reactor as a carbon source for denitrification. The amount of methanol added was determined by the requirements for complete denitrification. For each system, methanol feed solution was fed from a 1000 mL graduated cylinder into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the change in the graduated cylinder. Methanol mass dosing rates were altered by changing the concentration of the feed solution.  3.3.3 Ammonium Chloride Addition Ammonium chloride (NH 4 CI) was added to the anoxic reactor to simulate leachate with higher ammonia levels. For each system, ammonium chloride feed solution was fed from a 4000 mL graduated plastic bottle into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the change in the graduated cylinder. Ammonium mass dosing rates were altered by changing the concentration of the feed solution.  3.3.4 Sodium Bicarbonate (Alkalinity) Addition Sodium bicarbonate (NaHCO 3 ) was added to the aerobic reactor to maintain the pH of the aerobic reactor at approximately 7.5. Sodium bicarbonate addition was not required until the influent leachate ammonia level was increased to 600 mg N/L. Initially, sodium bicarbonate addition was performed by a single dual-headed pump, which fed a sodium bicarbonate solution from two graduated plastic feed bottles to both aerobic reactors. The concentration of the bicarbonate solution was adjusted in response to too low or too high aerobic pHs. This method allowed some pH fluctuations below a pH of 7.0 and above 7.5. Therefore, early in the temperature phase, a Cole-Parmer Series 7142 pH/Pump Controller was added to each system. If the pH of the aerobic reactor decreased below the setpoint value, set at 7.5, the pH/pump controller would pump a solution of sodium bicarbonate into the aerobic reactor until the pH rose above the setpoint. The pH/pump controllers provided excellent control of pH in the aerobic reactors.  23  3.4 Anoxic Reactor The purpose of the anoxic reactor was to denitrify the highly nitrified solids recycle from the bottom of the clarifier. In addition to the recycle, the anoxic reactor received the natural leachate, phosphate solution, methanol solution and ammonium chloride solution. The anoxic reactor was a cylindrical plastic container with a liquid volume of 5 L. At total leachate and chemical additions of 10 L/d, and with a recycle of 60 L/d, the anoxic reactor provided a nominal HRT of 12 hours and an actual HRT of 1.7 hours. The mixed liquor in the anoxic reactor was constantly mixed by a mechanical stirrer. An oxidation-reduction potential (ORP) probe was continuously submerged in the reactor to measure the redox potential of the mixed liquor. The anoxic mixed liquor flowed by gravity into the aerobic reactor.  3.5 Aerobic Reactor The purpose of the aerobic reactor was to nitrify the high ammonia anoxic overflow. In addition to the anoxic overflow, the aerobic reactor also received sodium bicarbonate solution. Beginning early in the cold temperature phase, the pH of the aerobic mixed liquor was continuously monitored by a pH probe. The dissolved oxygen (DO) level of the aerobic mixed liquor was continuously monitored by a submerged DO probe. The DO level was maintained above 2.0 mg/L, according to the DO meter, by continuous aeration from a perforated plastic tubing at the bottom of the reactor. The perforated tubing was connected to the laboratory's compressed air supply. The flow of air was manually controlled by use of a flow valve. Early in the temperature phase, the perforated tubing was supplemented by two small porous stone air diffusers.  The aerobic reactor was a cylindrical plastic container with a liquid volume of 10 L. Aerobic SRT was controlled by wasting from the aerobic reactor through a valve. 1 L was wasted daily from the 10 day SRT system to provide a 10 day theoretical aerobic SRT. 0.5 L was wasted daily from the 20 day SRT system to provide a 20 day theoretical aerobic SRT. At total leachate and chemical additions of 10 Lid, and with a recycle of 60 L/d, the aerobic reactor provided a nominal HAT of 24 hours and an  24  ^  actual HRT of 3.4 hours. The reactor was kept constantly mixed by a mechanical stirrer. The aerobic mixed liquor flowed by gravity into the clarifier.  3.6^Clarifier The clarifier was a 4 L cylindrical plexiglass container with a conical bottom. The purpose of the clarifier was to separate the suspended solids from the aerobic mixed liquor so as to produce a clear effluent supernatant, and also to allow thickening of the suspended solids, which could then be recycled back to the anoxic reactor. The aerobic reactor mixed liquor flowed by gravity into an inner sleeve within the clarifier. The inner sleeve prevented shortcircuiting of the mixed liquor to the supernatant exit. The solids recycle pump rate was set at 60 L/d, so as to produce a 6:1 solids recycle ratio. The recycle pump was initially operated on a cycle of two minutes on and two minutes off. This was later adjusted to one minute on and three minutes off. The purpose of this intermittent pumping was to decrease the possibility of blockages occurring within the recycle line. A scraper mechanism swept the conical surfaces of the clarifier bottom to prevent a buildup of settling solids.  3.7^System Start-up On August 12, 1991, the aerobic reactor and clarifier of both systems, were filled with sludge from the aerobic zone of the University of British Columbia Bio-P sewage treatment pilot plant. The leachate, recycle, and phosphate lines initially bypassed the anoxic reactor and were added directly to the aerobic reactor. No wasting occurred from the aerobic reactor until good nitrification was observed. Wasting began in the 10 day SRT system on Day 24 and Day 22 for the 20 day SRT system. 1 L was wasted daily from the aerobic reactor of one system to provide a 10 day aerobic SRT and 0.5 L was wasted daily from the aerobic reactor of the second system to provide a 20 day aerobic SRT. Also, on Day 24 (10 day SRT system) and Day 22 (20 day SRT system), each anoxic reactor was reseeded and methanol additions were begun to the anoxic reactor. The methanol addition was increased until denitrification was observed and system NO; levels began to fall. Methanol addition was then reduced until denitrification was affected. Methanol additions were then increased until complete denitrification was established. This procedure was necessary to establish the minimum 25  amount of methanol required for denitrification. Complete and stable nitrification and denitrification of the natural leachate was established in both systems by Day 61.  3.8 System Operation The study was divided into two phases. The objective of the loading phase was to determine the maximum simulated leachate ammonia level that could successful be nitrified and denitrified. The objective of the temperature phase was to observe the effects of cold temperature on nitrification and denitrification when treating leachate with the highest ammonia level successfully treated in the loading phase.  The loading phase began with the establishment of complete nitrification and denitrification of the natural leachate (approximately 200 mg NH4-N/L), in both the 10 day SRT system and in the 20 day SRT system. On Day 61, ammonium chloride additions were started to the anoxic reactors of both systems to provide additional ammonia and thereby simulate a leachate with 300, 600, 1000, 1500, 2000 mg/L of ammonia-N. After each ammonium chloride increment, nitrification was allowed to stabilize, and the minimum methanol required for denitrification was determined. On Day 93, when 600 mg/L of ammonia-N was added, the aerobic reactor pH of both systems fell below 6.5 and nitrification was inhibited. On Day 103, sodium bicarbonate (alkalinity) additions were begun to the aerobic reactor to sustain the pH at approximately 7.5. The loading phase ended with an unsuccessful attempt to increase the influent leachate ammonia level to 2000 mg NIL from 1500 mg N/L (Section 5.1.6).  The cold temperature phase began on March 13, 1992 (Day 1 of the cold temperature phase). Once nitrification of influent leachate, with an ammonia level of 1500 mg N/L, was re-established, the anoxic reactors were reseeded with aerobic sludge from the U.B.C. Bio-P sewage treatment plant. Complete nitrification and denitrification was not re-established until Day 91. On Day 94, the temperature was decreased from 20 to 17 °C. The temperature was subsequently decreased from 17, to 14, to 12, and finally to 10 °C. The system was allowed to adjust to each temperature for approximately 10 26  days before the next temperature decrease was imposed. Starting on Day 132, the ability of nitrification to recover from elevated ammonia and BOD 5 levels at 10 °C with no aerobic wasting, and no methanol addition, was investigated. On Day 145, the air supply for the aerobic reactors was lost for approximately eight hours, thus causing both systems to fail. From this failure, only one system recovered. On Day 156, aerobic wasting was started to yield a theoretical aerobic SRT of 10 days. By Day 169, total failure was observed. On Day 170, another loss of the air supply occurred and the system was shutdown.  27  Chapter 4 ANALYTICAL METHODS  This chapter describes the sampling, preservation and analytical methods performed in this study. Initially, N and P samples were filtered by Whatman #4 and membrane. The Whatman #4 and membrane filtration results were found to be essentially equivalent. From then on, only Whatman #4 filtration was performed.  ^4.1^Temperature The study was performed in a temperature-controlled room. The room temperature was measured by a mercury thermometer and a built-in temperature gauge. Both agreed within their accuracy limit of 0.5 °C. Initially the room temperature was checked daily, but once the stability of the temperature controller was recognized, room temperature was checked approximately once every second week during the loading phase. During the cold temperature phase, the room temperature was again checked daily.  Liquid temperatures were measured by a digital probe thermometer. During the temperature phase, liquid temperatures were measured the day following each temperature decrease.  ^4.2^Dissolved Oxygen (DO) The DO levels in the aerobic reactors were measured by using a Yellow Springs Instruments Co. Model 54 ARC Dissolved Oxygen Meter with a Yellow Springs Instrument Co. 5739 submersible DO probe. The probe performance was checked and calibrated (if necessary) by using the air calibration method (Instruction Manual YSI Models 54 ARC and 54 ABP Dissolved Oxygen Meter). If calibration failed, the probe membrane was changed. A DO reading was taken every day or every second day, to ensure that DO levels were sufficient for nitrification ( > 2 mg/L ). The DO levels were controlled by flow valve controllers attached to the laboratory air supply.  28  ^ ^  4.3^Oxidation-Reduction Potential (ORP) ORP in the anoxic reactors was measured by using a Cole-Parmer Chemicadet pH meter connected to a Broadley James Corporation ORP Electrode. The ORP measurements were recorded in mV. The ORP probes were cleaned weekly using distilled water and cleaning paper. The ORP probes were calibrated approximately every two months using a pH-buffered quinhydrone method (Broadley James Corporation Electrode Instructions ORP (REDOX) Combination Electrode). An ORP probe was submersed into each anoxic reactors. ORP measurements were recorded every day or every second day. ORP measurements are used to indicate the redox and denitrification conditions of the anoxic mixed liquor.  4.4^pH Throughout the loading phase and for the initial period of the temperature phase, the pH of the leachate, and the mixed liquor from the anoxic and aerobic reactors was measured using a Cole Parmer Digital pH Meter with a Cole Parmer Ag-AgCI combination electrode. Measurements were made by placing the probe directly into the reactor. Before measurements were started, the pH probe performance was checked, and calibrated if necessary, with two pH buffer solutions.  On Day 33 of the cold temperature phase, a pH/pump controller was installed for each aerobic reactor. The controller monitored the pH of the aerobic reactor from a submersed Ag-AgCI combination pH probe. The aerobic pH was read from the digital display of the controller. The performance of the probe was checked, and calibrated if necessary, by using two pH buffers. The pH of the anoxic reactor and the leachate were measured using a Beckman pH meter with a Fisher combination electrode, using an Ag-AgCI reference element. The probe was calibrated with two buffers each time before using.  pH values were recorded every day or every second day. The purpose of taking pH measurements was to observe the effect of pH on nitrification and denitrification, and vice versa.  29  4.5 Suspended Solids Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were measured on samples from the leachate, aerobic and anoxic mixed liquors and from the effluents. These were used to provide a representation of the mass of microorganisms present in the reactors. The procedure was a modified version of the suspended solids method in Standard Methods (A.P.H.A. et al, 1989). The modification used in the laboratory, was the replacement of the ceramic Gooch crucible filtration unit with a stainless steel microbiological filtration apparatus and an aluminum foil filter holder. The replacement of the ceramic holder with an aluminum holder decreased the possibility of error due to moisture absorption of the filter paper holder. Suspended solids testing was conducted two to three times a week.  4.6 Alkalinity Alkalinity measurements were taken from each batch of leachate collected, to assess the alkalinity requirements of the process. Alkalinity was also measured, on several occasions, on samples from the anoxic and aerobic mixed liquors, during the latter months of the loading phase and the first month of the temperature phase. Alkalinity was conducted in accordance with Standard Methods (A.P.H.A. et al, 1989) except that the samples were filtered (Whatman #4). Filtration was necessary to prevent the pH from drifting upwards after acid titration. The pH drift was presumably due to the acid reacting with the solids present. Titrations were performed to a pH of 4.3. Titration curves developed for the mixed liquors and leachate, indicated an endpoint at approximately 4.5.  4.7 Chemical Oxygen Demand (COD) COD tests were performed using the HACH Colorimeter Apparatus, filtered (Whatman #4) samples of leachate, anoxic and aerobic mixed liquors and effluent. For the temperature phase, effluent COD analysis was eliminated since throughout the loading phase, it was found to be virtually equivalent to the COD levels in the aerobic reactors. Samples were collected two to three times a week. Samples  were immediately filtered into plastic bottles, preserved by addition of concentrated sulphuric acid to  30  pH <2, and refrigerated at 4 °C. The high chloride levels in the leachate required the use of mercuric sulphate during digestion to suppress chloride interference.  4.8 Biochemical Oxygen Demand (BOD 5 ) BOD 5 tests were performed in accordance with Standard Methods (A.P.H.A. et al, 1989) on centrifuged, filtered samples (Whatman #4) of the influent, anoxic and aerobic mixed liquor, and the effluent. For the temperature phase, effluent BOO 5 analysis was eliminated, since throughout the loading phase, effluent BOD 5 values were found to be essentially equivalent to aerobic BOD 5 values. Dilution water used in the test was seeded with approximately 1 mL of aerobic seed per 10 L of dilution water. Because the seed contained high amounts of nitrifiers, a nitrification inhibitor (Hach Company Formula 2533) was added to the dilution water at a concentration of 10 mg/L. The initial and final DO concentrations were measured using a Yellow Springs Instrument Co. Ltd. Model 54 Dissolved Oxygen Meter, with a self-mixing DO probe.  For the first half of the loading phase, BOD 5 tests were performed only after the system had stabilized and complete denitrification was suspected after an increase in methanol addition. Later in the loading phase, BOD 5 testing was performed once a week. During the temperature phase, once BOD 5 inhibition of nitrification was suspected, BOO 5 testing was performed two to three times a week.  4.9 Ammonia The terms "ammonia, ammonia-N, NH 4 , NH 4 -N", in this work, refers to the sum of the "free" ammonia-N (NH 3 -N) and the ammonium-N ion (NH 4 + -N). In some other works, the sum of the "free" ammonia-N and the ammonium-N ion, is referred to as ammoniacal-N.  Two analytical methods were employed to measure ammonia-N levels. An Orion ammonia electrode (Model 95-10) provided an immediate scanning method for ammonia levels in the influent, aerobic and anoxic reactors. In accordance with the Orion Ammonia Electrode Instruction Manual, unfiltered 50 mL samples and three ammonia standards, were adjusted to pH 11 by addition of 0.5 mL of 10 M 31  NaOH. The probe was inserted into the solution and the mV reading was read from a Cole Parmer Chemicadet pH meter. The readings for the three standards produced a calibration line from which the ammonia levels for the samples were calculated by linear regression. Ammonia levels were also measured using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were immediately filtered (Whatman #4), preserved to pH <2 by the addition of several drops of concentrated sulphuric acid, and refrigerated in plastic bottles at 4 °C.  Ammonia samples were taken two to three times a week. Samples were collected from the leachate, aerobic mixed liquor, and the anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent ammonia levels were found to be virtually equivalent to the levels in the aerobic reactor, effluent ammonia sampling was not performed regularly during the temperature phase.  4.10 NO; NO; is the sum of nitrite and nitrate. NO levels were analyzed from filtered samples using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered (Whatman #4), preserved to pH <2 by addition of several drops of concentrated sulphuric acid, and refrigerated in plastic bottles at 4 °C.  NO; samples were taken two or three times a week. Samples were collected from the leachate, aerobic mixed liquor, and anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent ammonia levels were found to be virtually equivalent to the aerobic levels, effluent ammonia sampling was not performed regularly during the temperature phase.  A screening method for NO„-, in accordance with Standard Methods (A.P.H.A. et al, 1989), was attempted, but did not achieve results which were consistent with the Lachat results and hence the screening method was considered inaccurate for this particular application. The screening method's 32  ^  inaccuracy was attributed interference from the high level of refractory organics in the leachate, mixed liquors and effluent.  4.11^Nitrite (NO2) NO2 levels were analyzed from filtered samples using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered (Whatman #4), preserved by the addition of several drops of phenyl mercuric acetate, and refrigerated in plastic bottles at 4 °C. Preservation with mercuric acetate was found to maintain NO2 levels for at least two months. Samples were collected from the leachate, aerobic mixed liquor and the anoxic mixed liquor.  4.12^Total Kjeldahl Nitrogen (TKN) TKN levels were measured on unfiltered and filtered (Whatman #4) samples of leachate, aerobic and anoxic mixed liquors, solids recycle liquor and effluent. Samples were preserved to pH <2 by addition of several drops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. The analytical procedure began with sample digestion in a Technicon Block Digester BD40. The digestion was performed following the instructions in the Technicon Block Industrial Method No. 37675W(1975). The digested sample was then analyzed in accordance with the Technicon Methodology Nol 329-74W(1975). TKN analysis was only performed during the loading phase. Samples were collected after complete nitrification and denitrification had been established for each successive ammonia increase. The TKN results were not found to have been very reproducible and were frequently below the corresponding ammonia result for the sample.  4.13^Orthophosphate Orthophosphate levels were analyzed from filtered samples (Whatman #4) using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered by Whatman #4, preserved to pH <2 by addition of several drops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. Orthophosphate 33  samples were taken two to three times a week. Samples were collected from the leachate, aerobic mixed liquor, and the anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent orthophosphate levels were found to be virtually equivalent to the orthophosphate levels in the aerobic reactors, effluent sampling was not performed regularly during the temperature phase.  34  Chapter 5 RESULTS AND DISCUSSION  This chapter reports and discusses the results obtained from this study. As described in Chapter 3, this study used two identical, bench-scale, single-sludge, predenitrification systems, known as the Modified Ludzack-Ettinger (MLE) process. One system was operated at a 10 day aerobic SRT and the second system was operated at a 20 day aerobic SRT. The study was divided into two phases. The first phase was the ammonia loading phase, in which the effect of ammonia loading at 20 °C was investigated by incrementing the ammonia concentration in the leachate from the natural level of approximately 200 mg N/L to 2000 mg N/L. The raw spreadsheet data and calculations for the loading phase are presented in Appendix D. The second phase was the cold temperature phase, in which the effect of decrementing the operating temperature from 20 °C to 10 °C, was investigated. The raw spreadsheet data calculations for the temperature phase are presented in Appendix E.  5.1^Ammonia Loading Phase  NOTE:^Throughout the discussion of the results from the ammonia loading phase, tables (Tables 5.1 to 5.9) are used to summarize system parameters at each influent ammonia concentration. After each increment in influent ammonia concentration, the systems were optimized (w.r.t. alkalinity and methanol addition) and allowed time to stabilize (based on reactor VSS, reactor NOV, and reactor ammonia). Once it was believed that a system was optimized and stabilized, approximately one week was allowed before imposing the next influent ammonia increment. The tabularized data is the average of the results collected during the final week of each influent ammonia concentration. During the failure period of the ammonia loading phase (influent ammonia level of 2000 mg NIL), the values given in the tables are the average of the last week of data of the failure period. The values, during this period, do not necessarily represent a stabilized system. Hence, the so-called failure period is primarily discussed in its own section (Section 5.1.6).  5.1.1^Ammonia Levels The terms "ammonia, ammonia-N, NH4, and NH4-N", in this work, refers to the sum of the "free" ammonia-N (NH3-N) and the ammonium-N ion (NH4+ -N). Some researchers prefer to use the term "ammoniacal-N" to refer to the sum of "free" ammonia and the ammonium ion.  35  The ammonia levels in the anoxic and aerobic reactors throughout the loading phase are shown in Figure 5.1 and Figure 5.2 for the 10 day and 20 day SRT systems. An ammonia spike was observable in the anoxic and aerobic reactors of both systems immediately after each ammonia loading increment. The ammonia spike was consistently lower in magnitude for the 20 day aerobic SRT system than for the 10 day aerobic SRT system. This may be due to the greater robustness of the 20 day aerobic SRT system, due to the presence of more biomass.  Table 5.1 summarizes the ammonia level data for the loading phase. For simulated influent ammonia levels from 200 mg N/L to 1500 mg N/L, once the system had been optimized and stabilized, the aerobic ammonia levels were found to be < 1 mg N/L. Meanwhile, the steady-state anoxic ammonia levels increased from approximately 25 mg N/L to approximately 180 mg N/L. When the simulated influent ammonia level was raised to 2000 mg N/L, aerobic ammonia levels rose to approximately 700 mg N/L and anoxic ammonia levels rose to approximately 750 mg N/L.  TABLE 5.1:^Loading Phase - Ammonia Levels 20 Day SRT Influent^ 10 Day SRT^ Ammonia^Anoxic^Aerobic^Anoxic^Aerobic (mg N/L)^(mg N/L)^(mg N/L)^(mg N/L)^(mg N/L) 200 300 600 1000 1500 2000  25 50 70 130 180 750  <1 <1 <1 <1 <1 700  25 45 80 140 180 750  <1 <1 <1 <1 <1 600  The % ammonia removal across the system, anoxic reactor and aerobic reactor, at each simulated leachate ammonia level after the systems were optimized and stabilized, are presented in Table 5.2.  36  FIGURE 5.1: LOADING PHASE-la Day SRT System Anoxic and Aerobic Ammonia Levels 800 750700650600550500450 400-  Anoxic  350 300-25°200 150 100500  o  Aerobic e .00 • • • .^t^s:p^VA  ...t.vr'r • ^ ^ 20 40 60  200 (Natural)  80  300  100^120 Days  600  140  1 0 00  160  180  1500  200  220  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.2: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic Ammonia Levels 800750 700650 cy) 600 550  -  -  500 450  Anoxic  a) 0 0  400  co 0 E E  300-  -  350 250  -  200 150 100  -  50  0-  0  B S  • . 41' 4  c  20  40  200 (Natural)  60  4.  80  300  100^120 Days  600  140  1000  160  180  1500  Aerobic ( 200 220  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  Loading Phase - % Ammonia Removal  TABLE 5.2: Influent Ammonia (mg N/L) 200 300 600 1000 1500 2000  Anoxic (%) 6 1 16 9 9 20  10 Day SRT Aerobic System (%) (%) 100 100 100 100 100 11  Anoxic (%)  100 100 100 100 100 72  10 7 7 10 9 13  20 Day SRT Aerobic System (%) (%) 100 100 100 100 100 21  100 100 100 100 100 75  Aerobic ammonia removal is due to a combination of nitrification, bacterial assimilation, and "free" ammonia stripping. According to Turk (1986), the percentage of "free" ammonia at pH 7.5 (the aerobic pH maintained in this study) and at 20 °C, is approximately 1%. Hence, ammonia stripping of un-ionized ammonia is assumed to be negligible. The anoxic ammonia removal is assumed to be entirely attributed to bacterial assimilation. For the influent ammonia levels that the systems successfully treated (ie. 200 to 1500 mg N/L), the anoxic ammonia removal averaged 8 %. This agrees well with the results from Carley (1988) who found anoxic ammonia removal for methanol to average 6 %, and with the results from Mavinic and Randall (1990), in which approximately 10 % anoxic ammonia removal was observed. Both studies used the same process train and the same leachate as in this study. The observed "high system removal" of approximately 70 %, at the influent ammonia level of 2000 mg NIL (despite much lower unit removals), was probably due to the time lag in ammonia buildup and the frequent clogging problems encountered during this period. The exit from the clarifier and anoxic reactor began plugging frequently when the influent ammonia level was increased to 2000 mg N/L. When the anoxic reactor exit clogged, the high ammonia anoxic liquor overflowed onto the floor instead of into the aerobic reactor. The data presented in the graphs and in the tables does not account for this loss of ammonia. This may have contributed to the time lag in ammonia buildup within the system.  39  5.1.2 pH and Alkalinity Addition  According to the theory presented in Chapter 1, nitrification consumes alkalinity and hence decreases pH. Conversely, denitrification returns alkalinity and increases pH. Figure 5.3 and 5.4 show the anoxic and aerobic pH levels throughout the loading phase for the 10 and 20 day SRT system. Table 5.3 summarizes the pH levels when the system was stabilized and optimized at each influent ammonia level. It is immediately evident from both graphs, that the anoxic pH was higher than the aerobic pH.  TABLE 5.3:  ^  Loading Phase - pH Levels and Alkalinity Addition  ^ ^ 10 Day SRT 20 Day SRT Influent ^ ^ ^ Alk:N nitrified Anoxic Aerobic^Alk:Nnitrified Ammonia Anoxic^Aerobic ^ ^ pH pH (mgCaCO 3 /mgN) (mg N/L)^pH^pH (mgCaCO 3 /mgN)  200 300 600 1000 1500 2000  7.8 7.9 8.0 8.3 8.4 8.5  7.5 7.5 7.4 7.3 7.5 8.5  10.1 3.6 4.1 4.4 4.1 4.4  7.8 7.7 8.2 8.2 8.5 8.6  7.5 7.3 7.5 7.3 7.5 w.4  10.2 3.7 4.2 3.8 4.2 6.2  Previous studies have reported that the optimum pH range for nitrification is from 7.5 to 8.5 (Painter and Loveless 1983), and the optimum pH range for denitrification is from 7 to 7.5 (U.S. EPA 1975). For the leachate ammonia levels of 200 mg N/L and 300 mg N/L, natural alkalinity alone was sufficient to maintain the aerobic pH at approximately 7.5. The prolonged elevated ammonia levels from Day 91 to Day 105, as observed in Figure 5.1 and 5.2, were attributed to nitrification inhibition due to low aerobic pH. Thus, pH control (alkalinity addition) was begun on Day 103 by adding sodium bicarbonate to the aerobic reactor to maintain the pH at approximately 7.5. A higher target aerobic pH was not selected, since this would result in a higher anoxic pH.  From Table 5.3, it is evident that, as the influent ammonia level was increased from 200 to 1500 mg N/L, the steady-state pH levels of the anoxic reactors increased from approximately 7.8 to 8.5. Thus, as the influent ammonia concentration increased, the anoxic pH moved further above the optimal pH  40  FIGURE 5.3: LOADING PHASE - 10 Day SRT System Anoxic and Aerobic pH Levels 10_^ 9.5_ 9-  5.5_ 5^ I(111[11-11111i111111T0^20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  1 0 00  1500  200 0]  Simulated Ammonia Level in Influent Leachate (mg NIL)  FIGURE 5.4: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic pH Levels 1 0_ 9.5 9-  Anoxic  8.5-: 8  Aerobic 6 5.5' 5  0  20^40^60  T111111  (A)  100^120^140^160^180^200^220  Days  200 (Natural)  300  600  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  range for denitrification from 7.0 to 7.5 (U.S. EPA, 1975). Having the anoxic pH outside the optimal pH range for denitrification still allowed complete denitrification, but may have affected nitrification (as evidenced by nitrite accumulation). If higher ammonia loadings are to be treated, a higher anoxic pH would be expected. If this is sufficient to inhibit denitrification, acid addition for pH control of the anoxic reactor may be required.  The amount of alkalinity added to the system from the natural leachate alkalinity (approximately 1500 mg CaCO 3 /L) and from bicarbonate addition, is given in Figure 5.5 and Figure 5.6, as a ratio to nitrogen nitrified (per N n i trifi e d) and as a ratio to ammonia added to the system from the simulated influent leachate (per Nadded). Table 5.3 summarizes the results for alkalinity:N nitrified • The theoretical alkalinity ratio is 3.57 mg CaCO 3 consumed/mg Nnitrified +denitrified (U.S. EPA, 1975). Natural leachate alkalinity levels were sufficient to maintain the alkalinity ratio above the theoretical alkalinity ratio until the simulated leachate ammonia level was raised to 600 mg/L on Day 91. When the simulated leachate ammonia levels were increased to 600 mg N/L, thereby decreasing the alkalinity ratio to approximately 2 mg CaCO 3 /mg N, the resulting effect was a reduction of aerobic pH to below 6.5. Bicarbonate addition to the aerobic reactor started on Day 103. For influent ammonia levels from 600 mg N/L to 1500 mg N/L, the alkalinity ratio found necessary to maintain an aerobic pH of 7.5 ranged from 3.8 to 4.4 mg CaCO3/mg N nitrified' These results are near to, but slightly higher than the theoretical alkalinity ratio of 3.57 mg CaCO 3 /mg N nitrified +denitrified'  5.1.3 Methanol Addition and NO,: Levels  The leachate used in this study had low biodegradable organics. Therefore an external carbon source was required for denitrification. Methanol was selected as the external carbon source simply because it is the most common external carbon source used for denitrification (U.S. EPA, 1975) and because it has been used in a similar study at U.B.C. (Guo, 1992). Without methanol addition, the approximate NO; levels in the system would equal the simulated leachate ammonia concentration minus the ammonia consumed by bacterial assimilation and stripped in the aerobic reactor. 43  FIGURE 5.5: LOADING PHASE - 10 Day SRT System Alkalinity Addition  per N nitrified  IITIIIIIIII^i^111111-II 20^40^60^80^100^120^140^160^180^200 Days  200 (Natural)^300  11^600  1 000  1 500  220  1 2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.6: LOADING PHASE - 20 Day SRT System Alkalinity Addition 16 15 1413 12 11 10 9  per N nitrified  8 7 6 5432 1 0  o  20^40^60  200 (Natural)  80^100^120^140^160^180^200 Days  300  600  1000  1500  220  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  The amount of carbon source required for denitrification can be expressed by several different variations of the ratio of carbon source to nitrates and/or nitrites. The form selected here was COD:NO., primarily to allow direct comparison with previous studies (Carley and Mavinic 1991, Guo 1992). It should be noted that since the leachate used in this study had low biodegradable organics (see Table 3.2), the COD:NO. ratio includes only the COD derived from the methanol added, and not the COD in the natural leachate. If the leachate contained significant biodegradable organics, it would have been better to include the biodegradable organics in the leachate and to express the methanol requirements as BOD 5 :NO..  The NOX levels throughout the loading phase of this study are presented in Figure 5.7 and Figure 5.8. The term NO.", includes nitrites and nitrates. The COD:NO  emoved  ratios and anoxic BOD 5 levels are  shown in Figure 5.9 and 5.10. Methanol addition to the anoxic reactor, for both systems, was started on Day 27. Prior to methanol addition, the aerobic and anoxic NOX levels (approximately 190 mg N/L) were approximately 5 % less than the incoming ammonia levels (220 mg N/L). Once the methanol addition had been optimized and the system stabilized, the anoxic NO levels were less than 1 mg N/L and the aerobic NOX levels had decreased to approximately 25 mg N/L. The NOX levels and the COD:NO. ratio, at each simulated leachate ammonia level (once the system was optimized and stabilized), are summarized in Table 5.4.  46  FIGURE 5.7: LOADING PHASE - 10 Day SRT System Anoxic and Aerobic NOx Levels 350 325300 275 a --Z- 250 cE) 225 c o 200 tc; 175 t • 150 -.1^o c o 1250 x O 100 z 75 50 25 0  20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  1 0 00  1500 1 2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.8: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic NOx Levels 350 325 300 275-  z  250-  E  225-  0  200  1  175 -  0)  C: 1  150O  125-  0  100-  75 5025  0  -  20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  ^  FIGURE 5.9: LOADING PHASE - 10 Day SRT System Methanol Addition and Anoxic BOD ^12^  450  11-  -400  10-  -350  COD:NOx  2-‘  cn 8-  -300  E  0  .7-  250 ° n -200 ia  X  0 5-  z  0  4-  -150  3^  -100  2-  1-^  0  -J  ..  ....  .  el:MU= 1.1  ................... ... ^ Ti  ................  0^20^40  ^  200 (Natural)  60  80  ^  -50  •  ..  100^120 Days  300^600  Anoxic BOD5 ^ ^ 140 160 180^200  1000  1500  0 220  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  0 co  FIGURE 5.10: LOADING PHASE - 20 Day SRT System Methanol Addition and Anoxic BOD5 450 10-  400  9  350  8 -  7  5  -  -  -  3 2  1  0  250 g  6  4  300  -  .... -^  x  , ............. x- ............ *„,  ^><  200  100  01 Ef MilliriliF -11-IT^T^ 11-FTIIIIIIIT-T^ 0^ 20^40^60^80^ 100^120^140^160^180^200^ 0 220 Days  200 (Natural)  300  600  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg NIL)  2  150 o  50 ^Anoxic BOD5  0  TABLE 5.4:^Loading Phase - NO; Levels and COD:NOx Ratio 20 Day SRT Influent^10 Day SRT^ Ammonia^Anoxic^Aerobic^COD:NOx^Anoxic^Aerobic^COD:NOx (mg N/L) (mg N/L) (mg N/L)^(mg/mg)^(mg NIL)^(mg N/L)^(mg/mg) 200 300 600 1000 1500 2000  <1 <1 <1 5 <1 <1  25 50 80 125 170 70  6.0 6.0 4.8 3.5 4.5 9.7  <1 <1 <1 <1 <1 3.5  25 45 80 135 170 80  6.2 6.4 4.8 3.5 4.0 4.7  The COD:NO. ratios for influent ammonia levels of 200 and 300 mg N/L, agree well with the results from a study by Carley and Mavinic (1991). Carley and Mavinic determined that a COD:NO. ratio of 6.2:1 was required for complete denitrification when methanol was used as an external carbon source. The study by Carley and Mavinic used the same landfill leachate and the same MLE treatment process.  In general, denitrification studies have shown a COD:N0. requirement in the range of 4:1 to 6.5:1 (Narkis, 1979 and Carley, 1988). From Table 5.4, it is readily apparent that the methanol required to denitrify NO.- in the anoxic reactor, did not remain constant and that higher influent ammonia loadings resulted in lower ratios of COD:NO x,removed The decrease in the COD:NO x ratio is probably due in part to the increase in aerobic nitrite levels. As discussed in Chapter 1, nitrite requires approximately 40% less methanol for conversion to nitrogen relative to nitrate. Possible reasons for the accumulation of nitrites are given in the next section. Nitrite accumulation is probably not the only reason for a reduction in COD:NO., since in the temperature phase at 20 °C, the COD:N0. required for complete denitrification was approximately 5:1, yet no nitrites were present at that time.  Ideally, all methanol added to the anoxic reactor should be consumed in the anoxic reactor, so that none will bleed into the aerobic reactor. As can be seen in Figure 5.9 and 5.10, increasing methanol 51  demands resulted in higher anoxic BOD 5 levels. As the influent ammonia level was increased from 200 mg/L to 1500 mg/L, the anoxic BOD 5 level increased from approximately 40 mg/L to 140 mg/L. The aerobic BOD 5 levels remained steady at approximately 10 mg/L. When the influent ammonia level was increased to 2000 mg/L, the aerobic BOD 5 rose to as high as 60 mg/L and the anoxic BOD 5 rose to as high as 400 mg/L. The increase in BOD 5 during this failure period was predominantly due to excess methanol addition and also some cell lysing.  5.1.4 Nitrite Accumulation and "Free" Ammonia Levels Nitrite accumulation during nitrification is a result of greater inhibition of nitrite oxidizers (Nitrobacter), than of ammonia oxidizers (Nitrosomonas). This may be caused by high levels of "free" ammonia, high levels of nitrous acid, cold or hot temperature, low dissolved oxygen, high levels of metals, short sludge age, high COD loading, and phosphorus deficiency (Turk 1986). Figure 5.11 and 5.12 show the nitrite levels in the anoxic and aerobic reactors throughout the loading phase. Table 5.5 summarizes the nitrite results for both systems, at each influent ammonia level, once the systems were optimized and had stabilized.  TABLE 5.5:^Loading Phase - Nitrite Levels 20 Day SRT Influent^ 10 Day SRT^ Ammonia Anoxic^Aerobic^Aerobic^Anoxic^Aerobic^Aerobic (mg N/L) (mg N/L) (mg N/L) NO2/NO; ^(mg N/L) (mg N/L) NO 2 "/NO; 200 300 600 1000 1500 2000  <1 <1 <1 2.1 <1 <1  <1 <1 15 85 110 65  <1 <1 <1 <1 <1 <1  19% 68% 65% 93%  <1 <1 20 80 100 75  25% 59% 59% 94%  Aerobic nitrite levels began to rise in both SRT systems when the influent ammonia level was increased to 600 mg N/L. Nitrite levels continued to rise as the influent ammonia level was increased. Several factors may have contributed to the observed nitrite accumulation. The fluctuating aerobic pH (from  52  FIGURE 5.11: LOADING PHASE- 10 Day SRT System Anoxic and Aerobic Nitrite Levels 220  180160 140 •-•g -- 120  (.) 100  in  80  a)  7=^602  Anoxic  40  ^20 ^0  Aerobic  200  ^  ErEl !A  ^—KIX-00-N-r-lkl—rNYHM J T^ 20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  10 0 0  1500  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.12: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic Nitrite Levels  200  z 0) E 0  Aerobic  -  160  120  j  a)  cri^0 4,  0  0 80 a) 40  -  ))f^Anoxic )15'4  .34',---ra .1:*8„weogtc. 0^1----/4rW---ReA='*-kYk44-=;k—T^ 0^20^40^60^80^100 120^140^160^180^200^220 Days  200 (Natural)  300  600  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg NIL)  approximately 6 to 8), as observed in Figures 5.3 and 5.4, may have contributed to nitrite oxidation inhibition. Aerobic pH was controlled manually by adjusting bicarbonate addition to the aerobic reactor, in response to aerobic pH levels which were considered inhibitory. Hence, the nitrifiers in the aerobic reactor were frequently exposed to fluctuating pH levels. As the aerobic nitrite concentration increased, low aerobic pHs may have contributed to the inhibition via nitrous acid formation. Another factor was the increasing anoxic ammonia levels (see Table 5.1) in combination with increasing anoxic pH (see Table 5.3); this would have resulted in elevated anoxic "free" ammonia levels. In the MLE process train, nitrifiers are constantly recycled through the anoxic reactor and exposed to the high "free" ammonia of the anoxic reactor. Table 5.6 presents the estimated "free" ammonia concentration at each influent ammonia level.  TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia Levels Influent^ 10 Day SRT^*p1470X 20 Day SRT Ammonia^Anoxic^Aerobic^Anoxic^Aerobic (mg N/L)^(mg NIL)^(mg NIL)^(mg N/L) ^(mg N/L) 200 300 600 1000 1500 2000  0.6 1.5 2.7 9.5 16.2 84.0  <0.01 <0.01 <0.01 <0.01 <0.01 78.4  0.6 0.9 4.8 8.4 20.2 102.8  <0.01 <0.01 <0.01 <0.01 <0.01 54.0  The anoxic "free" ammonia levels all surpassed the lower bound of the range of 0.1 to 1.0 mg N/L, suggested by Anthonisen et al (1976), at which "free" ammonia inhibition of Nitrobacter is initiated. Turk and Mavinic (1989) found that "free" ammonia inhibition of Nitrobacter began at 5 to 10 mg N/L. Anoxic "free" ammonia concentrations began to exceed the lower bound of this range when the influent ammonia level was increased to 1000 mg N/L. Turk and Mavinic concluded that internal denitrification, such as used in this study, was the most effective means of maintaining inhibition to an acclimated population of nitrite oxidizers. Another factor which may have contributed to the inhibition of nitrite oxidation, was low aerobic dissolved oxygen levels at the higher influent ammonia  55  concentrations. Although the air supply was constantly adjusted to ensure that the in-situ dissolved oxygen meter read greater than 2 mg 0 2 /L, this reading was questionable at times due to the coarse aeration of the aerobic liquor.  5.1.5^Nitrification and Denitrification Percent nitrification and percent denitrification, throughout the loading phase, are shown in Figure 5.13 and 5.14. The greater fluctuation of the % nitrification results and the existence of values in excess of 100%, is a direct consequence of the greater complexity of the % nitrification equation relative to the % denitrification equation. The % denitrification equation contains only two key variables of the same parameter: (NO; in - NOX out) % Denitrification (anoxic reactor)^NOX in  The % nitrification equation contains three key variables of two different parameters:  (NO; out - NOX in) % Nitrification^= (aerobic reactor)^NH4+ in  Hence, the % nitrification equation produces more fluctuations and on occasion, exceeds 100 %. In addition, the unknown contribution from the oxidation of organic nitrogen to NOX, in the aerobic reactor, may have affected the % nitrification results. A term that is similar to nitrification is ammonia oxidation. % ammonia oxidation as used in this work is defined as:  (NO 3 " out - NO 3 in) % Ammonia Oxidation NH4+ in (aerobic reactor)^ -  The important distinction between nitrification and ammonia oxidation is most evident when applied to nitrite accumulation in the aerobic reactor. During periods of nitrite accumulation due to inhibition  56  FIGURE 5.13: LOADING PHASE - 10 Day SRT System % Utilization 240 ^ 220 ^ 2001801600 N  c.;)  1401201001 806040200^I^II^I 0^20^40^ ^SO^100^120 do Days  200 (Natural)^300  I^I^I^I^I^I  140^160^180^200  220  600^1 1000 1 1500^2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.14: LOADING PHASE - 20 Day SRT System % Utilization 240 220%Nitrification  200180160140 120  -  -  100 806040  -  20-^%Denitrification ><? I^i^I 0^20^40^60^80  1^1  100 120 Days  200 (Natural)^300 1^600  140  1100 0  160  180  200  220  1500^2000  Simulated Ammonia Level in Influent Leachate (mg NIL)  of nitrobacter, it is still possible to have 100% nitrification, however, ammonia oxidation will remain less than 100% since some NO; will be present as NO2" instead of NO3-.  The extended period of low % nitrification for both SRT systems, from Day 91 to 103, was probably due to low pH in the aerobic reactor, resulting from insufficient bicarbonate addition. Once alkalinity addition began (on Day 103), both systems showed considerable improvement in % nitrification. Since aerobic pH control was handled manually, by adjusting the alkalinity addition in response to low pH levels, the result of each influent ammonia level beyond 300 mg N/L, was an immediate drop in % nitrification due to low aerobic pH. A summary of nitrification results at each influent ammonia level, after the systems had been optimized and stabilized, is presented in Table 5.7.  Loading Phase - Nitrification  TABLE 5.7: Influent Ammonia (mg NIL) 200 300 600 1000 1500 2000  %  100 100 100 100 100 10  10 Day SRT Specific Rate Rate (mgN/d/gVSS) (mg N/d)  %  110 150 200 230 190 80  100 100 100 100 100 20  1900 3500 6100 8400 12200 5000  20 Day SRT Rate Specific Rate (mgN/d/gVSS) (mg N/d) 1800 3100 6300 9500 12800 6000  80 110 180 240 190 90  From Table 5.7, the failure of nitrification at the influent ammonia level of 2000 mg N/L, is quite clear. All three parameters, for both systems, show a sharp decline in value. When compared to the denitrification results (see Table 5.8), it is apparent that the failure of nitrification was not initiated by the failure of denitrification.  59  TABLE 5.8:^Loading Phase - Denitrification Influent^10 Day SRT^ 20 Day SRT Ammonia^%^Rate^Specific Rate^%^Rate^Specific Rate (mg N/L)^(mg N/d)^(mgN/d/gVSS)^ (mg N/d)^(mgN/d/gVSS) 200 300 600 1000 1500 2000  98 98 99 99 99 97  1700 2900 5200 7200 10500 5000  200 280 400 460 380 120  98 99 100 99 95 93  1700 2700 5300 8000 10900 5000  160 180 320 400 340 200  Table 5.7 and 5.8 show that the specific nitrification and denitrification rates increased as the influent ammonia level rose from 200 to 1000 mg N/L. At 1500 mg N/L, the specific utilization rates decreased slightly, producing a peak value at the influent ammonia level of 1000 mg N/L. This trend in specific utilization rates may be due to several factors. Nitrite accumulation may have been a factor. The rise in aerobic nitrite meant that a lower population of nitrifiers and denitrifiers would be present with respect to the amount of ammonia oxidized and NO denitrified; this would produce higher specific nitrification and denitrification rates. Another factor may have been that excess methanol addition, at the lower influent ammonia levels, may have raised the VSS levels, thus decreasing the specific utilization rates at those influent ammonia levels.  Both systems showed nominal denitrification (0 to 11 %) until methanol addition was started on Day 27. With the addition of methanol, % denitrification rose until the minimum required amount of methanol was exceeded, at which point % denitrification equalled 100 %. Each increase in influent ammonia, resulted in a decrease in % denitrification as more NOX was produced in the aerobic reactor. As methanol addition was increased to account for the increase in NOX, % denitrification increased.  Prior to performing this study, there was some concern as to whether denitrification would be inhibited by high ammonia levels (especially "free" ammonia) in the anoxic reactor. As seen in Table 5.1 and 5.6, at an influent ammonia level of 1500 mg N/L, the anoxic ammonia level was approximately 180  60  mg N/L, and the "free" ammonia level could be as much as 20 mg N/L. 100 % denitrification was still achieved. Even more extreme was the high level of denitrification during the failure period, which occurred when the influent ammonia level was increased to 2000 mg NIL. Nitrification was significantly inhibited and anoxic ammonia levels had risen to approximately 750 mg N/L, with an anoxic pH of 8.5. As seen in Table 5.6, "free" ammonia levels are estimated to have been greater than 80 mg N/L, yet denitrification > 90 % was observed. However, due to the failure of nitrification, this occurred at lower denitrification rates and at lower specific denitrification rates (see Table 5.8).  5.1.6 System Failure As seen in Table 5.7, nitrification, in both SRT systems, decreased from nearly 100 % to approximately 20%, when the simulated leachate ammonia level was raised from 1500 to 2000 mg NIL. Accordingly, system ammonia levels increased to substantial levels. The aerobic pH also rose to levels higher than the influent leachate pH, despite the reduction and eventual elimination of bicarbonate addition. Hence, in both Figure 5.5 and 5.6, during the period when the influent ammonia level was 2000 mg N/L, the Alkalinity:N  nitrified  ratio is significantly greater than the Alkalinity:N added  ratio. Complete denitrification of all available NO; was still observed, despite anoxic "free" ammonia levels estimated to be above 80 mg N/L.  Several factors may have contributed to the failure of nitrification at the influent ammonia-N level of 2000 mg/L. Insufficient aeration may have been one cause. D.O. probe readings averaged above 2.0 mg/L. However, coarse bubbles may have been read by the probe as dissolved oxygen, resulting in an overestimation of the true dissolved oxygen levels. At higher solids levels line-clogging was observed to occur as a result of increased aerobic foaming, anoxic scum, and rising sludge in the clarifier. The resulting overflows and solid losses may have produced an unstable system. Another factor may have been that anoxic "free" ammonia was of sufficient levels to result in inhibition of  Nitrosomonas (ammonia oxidation). According to Anthonisen et al (1976), "free" ammonia inhibition of Nitrosomonas begins between 10 to 150 mg N/L.  61  5.1.7 Solids A characteristic of the single-sludge, predenitrification system is that it is a mixed culture system; anoxic heterotrophs and aerobic autotrophs and heterotrophs are cycled through the system. The effect of the influent leachate entering the anoxic reactor is to lower the anoxic VSS levels (by approximately 1 /7 th ), since the leachate itself is very low in VSS. The effect of the solids recycle is to raise the VSS since the recycle is the thickened sludge of the aerobic mixed liquor. Figure 5.15 and 5.16 show the suspended solids levels throughout the loading phase. Table 5.9 provides a summary of the suspended solid levels at each ammonia loading once the systems had been optimized and stabilized.  TABLE 5.9:^Loading Phase - VSS Levels Influent^ 10 Day SRT^ 20 Day SRT Ammonia Anoxic^Aerobic^Effluent^Anoxic^Aerobic^Effluent (mg N/L)^(mg/L)^(mg/L)^(mg/L)^(mg/L)^(mg/L)^(mg/L)  200 300 600 1000 1500 2000  1800 2100 2700 3100 5500 6200  1700 2200 2900 3300 5600 6400  20 40 70 160 150 220  2200 3000 3200 4000 6400 5400  2200 2900 3500 3900 6400 4600  40 40 90 120 100 180  The increase in anoxic, aerobic, and effluent VSS levels, as influent ammonia is increased, is evident from Table 5.9. The difference in anoxic and aerobic VSS levels is nominal with the aerobic VSS levels being, on the average, slightly higher. The increase in effluent VSS is attributed to increased clarifier loading. The 20 day SRT VSS levels are on average 20 % higher than the 10 day SRT VSS levels. This difference is a reflection of the differences in aerobic wasting and SRT. As expected, the higher rate of wasting (1 L/day) from the 10 day SRT system, resulted in a lower VSS. Conversely the lower rate of wasting (0.5 L/day) from the 20 day SRT system, resulted in a higher VSS.  Figure 5.16 shows that, when the influent ammonia concentration was increased from 1500 mg/L to 2000 mg/L, the aerobic VSS levels for the 20 day SRT system, rose to nearly 13000 mg/L. Since  62  FIGURE 5.15: LOADING PHASE - 10 Day SRT System  Anoxic and Aerobic VSS  13000 12000 11000100009000 8000 7000 60005000 4000 30002000-- Anoxic  1 000 0 ^ 0  20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  1000  1 500^2000  Simulated Ammonia Level in Influent Leachate (mg NI/L)  FIGURE 5.16: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic VSS 13000 12000 LT  11000 -  E 10000cn u) 9000 8000  cn -  0)  7000 10 a) 6000 a (3)^5000  (/)^4000-  3000 7:5  20001000 0  Anoxic -  1111f^I^f  0^20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural)  300  600  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  nitrification was very low at this period, the VSS increase is attributed to methanol bleeding into the aerobic reactor, resulting in aerobic heterotrophic growth. The lack of such a sharp increase in the 10 day SRT system may have been due in part to the higher wasting from the 10 day SRT system. Reactor overflows, which were frequent in both systems during this period, may have also played a significant role in determining reactor solids levels. For the 20 day SRT system, the aerobic VSS was lower than the anoxic VSS, for the last few days of the failure period. This maybe attributable to partial clogging in the anoxic reactor overflow, which may have been preventing the passage of solids but permitting the passage of liquid. Another reason may be that the sampling generally took place after the overflow was cleaned up and as best as possible placed back into the system. This may have resulted in some anomalies.  The ratio of VSSiTSS was found to remain between 0.7 to 0.9, with 0.85 being the average when the systems were stabilized and optimized. Towards the end of the failure period (influent ammonia level of 2000 mg/L), the VSS/TSS ratios were at their lowest (approximately 0.7).  5.1.8 Solids Retention Time Two parallel systems were operated in this study: one with a 10 day aerobic SRT and the second with a 20 day aerobic SRT. The purpose of operating at two different SRTs was to observe if a longer SAT, resulting in higher VSS levels, would treat higher ammonia loadings. However, both systems failed when the influent ammonia level was raised from 1500 mg/L to 2000 mg/L. The only differences observed between the two SRT systems was that the longer SRT system (20 day), had approximately 20 % higher VSS levels, and lower system ammonia peaks, after each increase in ammonia loading (see Section 5.1.1).  Both systems were operated on the basis of "theoretical" aerobic SAT. The "theoretical" aerobic SAT is the volume of the aerobic reactor divided by the volume wasted daily. The actual system SRT may also be calculated. The actual system SRT is the total system VSS divided by the sum of the VSS lost by wasting and in the effluent. Both SATs are shown for the loading phase in Figure 5.17 and 5.18. 65  ^4  FIGURE 5.17: LOADING PHASE - 10 Day SRT System System and Theoretical Aerobic SRT 100 11 80  60  40 Prior to day 24, no aerobic wasting  20  Aerobic wasting ended on day 265  was performed  N^tAiomaiLiona  c  0  SSRT  b' I!  ^:Lt.  611  1^T  0^20  4.0  200 (Natural)  t1/4,1^Ein!gm,^ni pm Pr.`14: MK; MEW aim Ir24 1 1 1 F:11 -^Bil ^ •^CWC^c^o •^: 4 •^c  mi•^  ••• Q: .•:•:'^c^*:•:. ":•:*^*::' :•: 4^•^•:•..0^'  ASRT 1 1 1 60^80^100^120 Days  300  600  ,  140^160^180^200^220  1000  1500  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  FIGURE 5.1 8: LOADING PHASE - 20 Day SAT System System and Theoretical Aerobic SAT 100 -  80  60  40  Prior to day 22, no aerobic wasting was performed  SSRT fin  2 dm^I LI PSI^IA n el no, 31 IS graltaki ml m asa II amik ILI  a  20  c^ . c 0: :.:.:• c^  II  n^ ionlc_^ irse ta  441111 4041  •:•:• C •^C • C^C  '121  200 (Natural)  300  ^  Y Aerobic wasting ended on day 201  ASRT 0^20^40^60^80  "  100^120^140^160^180^200 Days  600  1000  1500  ^  220  2000  Simulated Ammonia Level in Influent Leachate (mg N/L)  When wasting was being performed, the actual system SRT was greater than the theoretical aerobic SRT due to the greater volumes involved. Despite the system volume being double the aerobic volume, the actual system SRT is not double the theoretical aerobic SRT, primarily due to the loss of VSS in the effluent. When no wasting was occurring, the theoretical aerobic SRT was equal to infinity. The actual system SRT is still calculable, due to the inclusion of the effluent VSS term in the denominator.  5.2 Cold Temperature Phase The objective of the cold temperature phase was to test how the 10 and 20 day SRT treatment systems would respond as the temperature was decreased from 20 °C, when treating an influent leachate ammonia level of 1500 mg/L. This phase was divided into three periods: the 20 °C startup (Days 1 to 94), the cold temperature period (Days 83 to 130), and the 10 °C nitrification startup (Days 132 to 169). Day 1 of the cold temperature phase was March 12, 1992. Following the nitrification failure experienced at the end of the loading phase, and prior to decreasing the temperature, both systems were restarted using the natural base leachate of 200 mg NH4-N/L and at 20 °C. As complete nitrification was regained, the influent ammonia level was increased, until the influent ammonia level reached 1500 mg N/L. Two small ceramic fine air diffusers were added to each aerobic reactor for ensuring sufficient dissolved oxygen; pH/pump controllers were used to control bicarbonate addition to the aerobic reactors, based on a pH setpoint of 7.5. During the 20 °C startup period of the cold temperature phase, while attempting to restart denitrification, two unanticipated observations were made: BOD5 inhibition of nitrification, and a loss of nitrite accumulation.  5.2.1 BOD5 Inhibition of Nitrification Once nitrification was re-established (Day 19 for the 10 day SRT system, Day 14 for the 20 day SAT system), both anoxic reactors were reseeded and methanol addition was increased. In both systems, within several days of large boosts in methanol (Day 27 for the 10 day SRT system, Day 22 for the 20 day SAT system), % denitrification increased, the aerobic BOD5 rose, aerobic ammonia levels increased, and % nitrification decreased (see Figure 5.19 and 5.20). The simulated influent ammonia levels and methanol addition were again cut to expedite removal of high levels of aerobic ammonia. 68  FIGURE 5.19: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5 and % Nitrification 70  150  Day 1 to 94 60-  CV  - 140 - 130 - 120 - 110 - 100  Aerobic BOD5  50-  0  -90  40It)  cy)^  (0  0  -80  co 30 -  -70  0  -60  0  a)  50  20-  10-  -- 40 -30  X^ ,?4*-411^ % N itrification  ‘k >  II^1^1^I^1^I^I^11111111111 10^20^30^40^50^60^70^ 80^90 Days  CI Aerobic BOD5 X %Nitrifcation  -20  - 10 ^0 100  FIGURE 5.20: TEMPERATURE PHASE - 20 Day SRT System  Aerobic BOD5 and % Nitrification  70  Day 1 to 94  -150  % Nitrification  60  -  C\I 0  •  0)  E 40tr) 0  :  O  120  X>5(^-110 • X^-100  >t4<  -90 o 80  •  o^co 30-  2  140  -130  a 50-  a) •  -  -70 -60  20-  -  -  10-  -  Aerobic BOD5 0  -  50 40 30 20  -10 0  1111111111111111111  10^20^30^40^  ^0 50^60^70^80^ 90^100 Days  0 Aerobic BOD5 X %Nitrification  z  The systems were again restarted in the same manner with a similar conclusion (Days 36 to 47 for the 10 Day SRT system, Days 28 to 41 for the 20 Day SRT system).  Figure 5.21 and 5.22 show the observed relationship between aerobic BOD5, COD and % nitrification during the startup phase. Figure 5.23 shows the aerobic BOD5 and % nitrification results compiled for both systems. From Figure 5.23, it appears that higher aerobic BOD5 levels correlate with lower % nitrification, with aerobic BOD5 levels over 30 mg/L correlating to 50 % nitrification or less. The COD results did not reflect the trend as significantly as BOD5, presumably because of the lower accuracy of the COD test as a representation of biodegradable organics.  Figure 5.24 and 5.25 show the COD:NO. ratios during this period. Methanol additions were made on the basis of the NO; entering the anoxic reactor. However, the amount that is in excess, and will subsequently bleed into the aerobic reactor, will be determined by how much NO; is being removed through denitrification. The difference in the two COD:NO. values (with COD:NOremoved > COD: NO., en tering) represents the amount that would be bleeding through to the aerobic reactor. The difference between the two COD:NO. ratios is most noticeable in the 10 Day SRT system. The peaks for COD:N0x,removed , after day 50, is due to relatively small amounts of methanol being added and producing relatively low denitrification. The low levels of methanol addition were apparently insufficient to result in nitrification inhibition. The mechanism by which excess methanol addition resulted in nitrification inhibition may have been that heterotrophic growth, in the aerobic reactor, lowered the DO to inhibitory levels. The DO meter always reported that DO levels were sufficient; however, as in the failure period of the loading phase, these readings may have been falsely high due to the coarse aeration of the aerobic mixed liquor. Another explanation for the reduction in nitrification following large methanol increases, may be that excess methanol addition resulted in methanol toxicity to Nitrosomonas. A study by Hooper and Terry (1973) concluded that short-chain alcohols, such as methanol, were significant inhibitors of ammonia oxidation. A study by Carley and Mavinic (1989) found that excess methanol did not increase aerobic ammonia levels but did reduce nitrification by resulting in heterotrophic competition for ammonia. Since ammonia levels, in this study, were 71  ^  FIGURE 5.21: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5, COD vs % Nitrification 70  ^  Day 1 to 94  60 0 ^Aerobic  600 -580 -560  BOD5^  540 -1-1' 50-  0  -520  x  CV ^0  -500  - —  0^  0^El  -480 x^ 40LI ^a^ -460 in^ 0^ 0 -440 x X x^ o^o^ a^ cm 30-^ -.1 -420 iv^.0^ *El^ x ,^x x .0^ ro -400 2^x ,-,>< x x x^ a) < 20xM -380 X^>< X 6 ^X e X X X —^ -360 ig)  -^  —  A(xi 10-^ _^ Aerobic COD  o  -340 -320  I 1^1^1^i^ 1^i^1^1^1^1111111^300 1^i^i^1^I^I^I^ 0^ I^ 50 60 70 80 1^I 10 20 30 40 ' 90 100 110 120 130 140 150 0  % Nitrification  1  _ 0 Aerobic BOD5 X Aerobic COD  FIGURE 5.22: TEMPERATURE PHASE - 20 Day SRT System  Aerobic BOD5, COD vs % Nitrification  70  600  Day 1 to 94 60  -580 560  Li  540  Elrod-- Aerobic BOD5  520  500  Aerobic COD  E 40-  x  0 co 30.0 2 a)  X  20-  x  x $<^x x X D X D  -  480 440 0 0 420 -400 380 360  10-  340 320  0  0  c-N-1  460  X  Li Li^  500  1111111Ill-11111 10  20 30 40 50 60 70 80 90 100 110 120 130 140 % Nitrification  CI Aerobic BOD5 X Aerobic COD  300 150  ..0 2  a)  ^  FIGURE 5.23: TEMPERATURE PHASE - 10 and 20 Day SAT  Aerobic BOD5 vs % Nitrification  70  Day 1 to 94 (20° C)  60LI  50-  ^  LI  LI  0  cy) E 40in  0  0^LI  ^a cc 30.o  _a 2  EL:  LI LI  LI  LI  0  0 0 0^0 0 0 0 En^11-1^0 ri _,^ _ ECI ^LI ^sismi.^0  <c) 20^0 ^co ^ma 10-  0^  0  ^ 0 E 0 Or3 LIE 0  -1  0  11111111111111111111111111111  0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 % Nitrification  0 Aerobic BOD5  FIGURE 5.24: TEMPERATURE PHASE - 10 Day SRT System Methanol Addition during 20 C Startup 80  Day 1 to 94 70-  z  60  COD:NOx removed in anoxic reactor  294  -  0)  E  N 0 x O  0 0  50-  COD:NOx entering 40- anoxic reactor 3020  )4(  -  10-  9^,7,::.zerarawa=  10^20^30^40^50^ Days  I I 60^70^80^90  NOx Entering -.>(- NOx Removed  100  FIGURE 5.25: TEMPERATURE PHASE - 20 Day SRT System 80  Methanol Addition during 20 C Startup  Day 1 to 94  70 COD:NOx removed in anoxic reactor  6°2' cm i..,Ej_ 50_  0 cm E 40x 0 -,,^z 30_ COD:NOx ehtering o)^ O 0 - anoxic reactor 020- \  A<  Yr  ..  10laiNixtlk -Rf-ol  0  90  L --B- NOx Entering -X- NOx Removed 1  1 00  observed to increase, heterotrophic competition for ammonia was dismissed as a possible reason for the loss of nitrification.  After two failed attempts, both systems were restarted a third time (Day 58 for the 10 day SRT system, and Day 44 for the 20 day SRT system). This time, increments in methanol were conducted in a more slow and conservative manner. By Day 94, both systems were fully re-established at 20 °C and at an influent ammonia level of 1500 mg N/L.  ^5.2.2^Loss of Nitrite Accumulation Aerobic nitrite accumulation had occurred during the higher influent ammonia levels of the loading phase (see Table 5.5). However, by the end of the 20 °C startup period of the temperature phase, aerobic nitrite levels had decreased to less than 1 mg N/L. Figure 5.26 and 5.27 show the aerobic nitrite levels and the aerobic pH. Possible explanations for the loss of nitrite accumulation are Nitrobacter acclimatization, increased dissolved oxygen levels due to the presence of the fine bubble diffusers, and the steady aerobic pH = 7.5. On Day 33, pH/pump controllers were installed to continuously monitor and automatically control the aerobic pH, by pumping bicarbonate to the aerobic reactor when the pH decreased below the setpoint value of 7.5. The pH/pump controllers did not work successfully for approximately one month. The fault was primarily due to electrical grounding problems which resulted in an unstable pH reading. The solution was to insulate the controller from a direct metal-link to the large motors stirring the aerobic reactors. However, some fluctuation remained due to the stirrer-liquid-(pH)probe link. Despite the loss of aerobic nitrite, the COD:NO. ratio remained low (approximately 5:1), but was marginally higher than for the latter period of the loading phase, when aerobic nitrite levels had increased substantially and COD:NO. ratios were as low as 3.5:1 (see Table 5.4).  ^5.2.3^Effect of Cold Temperature and Failure Once both systems were fully operational and had stabilized at 20 °C, with an influent ammonia level of 1500 mg N/L, the operating temperature was decreased from 20 °C, to 17, 14, 12, and finally to 77  FIGURE 5.26: TEMPERATURE PHASE - 10 Day SRT System Aerobic pH and Nitrite 700  600-  ^_10  Day 1 to 94  Aerobic NO2  =9.5  TA WA :a 500-2 Lu (3) E 400.a)^X^..4,?^ ,e_ ..7.%....->c •• :^.,, .^, •^.  op 2 4— .0  Li  Aerobic pH  >t<  :0 _o *,50‹. -><>4  Z<>‘›co<>4><-  • : . X ),^  300-^  =8.5  .0 2  a) < 200-  :6.5 -6  1 00 -  Setup pH controller on Day 33  =5.5 lam "a  1^1^1^1^1^1^1^1^1^1^1^1  20^30^40^50^60^70 Days  El Aerobic NO2 -X-. Aerobic pH  az =^nun  80  P El^5 90^100  ^ ^  FIGURE 5.27: TEMPERATURE PHASE - 20 Day SRT System Aerobic pH and Nitrite 700  ^_10  Day 1 to 94  - 9.5  600Aerobic NO2  a  `9  500-  ±.. ^>f^ a p.^ . E 1^54 400cv 1^:'''.^‘). '..4K 4 .,--_. ,..J '. z -.1^ Z 3004.>k -  co  Aerobic pH  -8.5 -8  exooses04,4000*->"`  E- 7.5 I Q. :7  _  2^ < 200Q  :6.5 • -6  100-5.5 I^1^1^I^I^I^1^I^1^1^1^1^1 10^20^30^40^50^60 Days  0 Aerobic NO2 -X-. Aerobic pH  70  ^  80  p-q^ 5 90^100  10 °C. Each temperature was maintained for approximately 10 days to allow adjustment and acclimatization before the temperature was lowered further. The results for the cold temperature period of the temperature phase are shown in Figures 5.28 to 5.39. As the temperature was decreased from 20 to 12, the most apparent change was the rise in aerobic nitrite (Figure 5.28 and 5.29) and aerobic BOD5 (Figure 5.30 and 5.31), both starting at 14 °C. It is possible that failure had begun at 14 °C, but not enough time was given for total failure to have occurred.  Failure in both SRT systems occurred quite dramatically when the temperature was decreased from 12 °C to 10 °C. Both nitrification and denitrification decreased considerably in the 10 day SRT system, while only nitrification failed in the 20 day SRT (See Figures 5.32 and 5.33). In the 10 day SRT system, the % nitrification decreased from 94 % at 12 °C, to 15 % at 10 °C. % Denitrification decreased from 99 % at 12 °C, to 30 % at 10 °C. For the 20 day SRT system, % nitrification decreased from 100 % at 12 °C, to 22 % at 10 °C. % Denitrification decreased from 99 % at 12 °C, to 82 % at 10 °C. The rising nitrite levels in both systems, as temperature decreased, and the continued high percentage of denitrification at 10 °C in the 20 day SRT system, suggest that nitrification failure occurred first, as had been observed in the loading phase. The resulting elevated ammonia levels may have precipitated the failure of denitrification in the 10 day SRT system.  Colder temperatures would have obviously been a factor in the failure of nitrification. Colder temperatures would have resulted in slower nitrification rates, although no obvious trend in rate, as a function of temperature (between 20 and 12 °C), is obvious from the results shown in Figure 5.34 and 5.35. The specific nitrification and denitrification rates are shown in Figure 5.36 and 5.37. Neither of the specific utilization rate graphs show any obvious trend as a function of temperature. The VSS results for the cold temperature period are shown in Figure 5.38 and 5.39. Lower utilization rates, due to temperature, were anticipated to have produced lower levels of biomass. A significant decrease in biomass is not evident from the graphs; however, the rise in aerobic nitrite accumulation may have resulted in unused methanol bleeding into the aerobic reactor, thereby promoting aerobic heterotrophic growth, and maintaining elevated VSS levels. 80  FIGURE 5.28: TEMPERATURE PHASE - 10 Day SRT System Aerobic Nitrite and % Nitrification 240  140  Day 83 to 130  220-  -  -120  200180  -  -  160  -  0 140 .= ro C 120 a) 00^ 100 0 80 a)  40  110 100 90  -  60  130  -  -  Aerobic NO2  80 70  -60  % Nitrification  -50 -40  -  -30 -  -20  20  -  -FL-r-->14 1-Wfl--014 T-1 014/ 414 -r-1-->Pt41-96.1-1 - 1111111 80^90^100^110^120 Days  20 °C^17 °C  ^  1111111111  130  10  111111^ 0 140  14 °C 1 °C 1^10 °C Operating Temperature  FIGURE 5.29: TEMPERATURE PHASE - 20 Day SAT System Aerobic Nitrite and % Nitrification 240  ^140  Day 83 to 130  220  -130 120  200-  %Nitrification  180  -100  160c o  -110 -90  140-  80  0 -70 F.  cTj  • 120a) co^100 r.) 80 a) -2  60-  -60 z 50 -40  Aerobic NO2  -30  40  -20  200  -10  ><,  80  90^  s'r-il-T-1*4141"1"^ 100^ 110  130  ^  0 140  Days  20 °C  ^  17 °C j 14 °C 12 °C^10 °C Operating Temperature  FIGURE 5.30: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5 and % Nitrification ^140  ^  140 Day 83 to 130  130120-  -130 -t120  % Nitrification  110-  - 110  100-  -100  90-  - 90  80-  -80  70  -  -  70  6050 40-  -50  Aerobic BOD5  -40  30-  -30  20-  -20  10  <X  -  ^0^ 80  ^  Ili^I^I^I^l^I^I^I^I^i^I^I^I^i^1^1^1^I^I  90  20 °C  100  .  1^1 ^1  1^1^1^1  110 Days  1^1^I^I^I  17 °C^14 °C  ^  '1.1  ^1^1^1^1  -10  0 130^1111111-40 1  12 °Cf^10 °C Operating Temperature  crs 0 Z -0  FIGURE 5.31: TEMPERATURE PHASE - 20 Day SRT System Aerobic BOD5 and % Nitrification 140_^  140  Day 83 to 130  130-  -_130  120-  _120 %Nitrification  110fa' 100s('T 0 90cy) 800 0 c0 .o  2 a)  7_110 -100 -90 -80^-4=  70-  -70  60-  -60  50 Aerobic BOD5  -50  40-  -40  30-  -30  20-  -20  10-  -10  80  4-4  90  20 °C  ^ 110 120 Days  MI1111111111111111111111111111 ^ 100  ^  17 °C^14 °C 12 °C  1.66^0  ^  140  o  Operating Temperature  2  ^  FIGURE 5.32: TEMPERATURE PHASE - 10 Day SRT System % Denitrification and % Nitrification ^140 ^  Day 83 to 130  130120110100-  % Denitrification  908070  -  % Nitrification  6050403020  -  10  -  0 ^ 1(111(1111111111111111m 1 millittiiiiilimiilliiilliiiii 80^90^100^110^120^130^140  Days  20 °C  ^  17 °C 1 14 °C 112 °C 1^10 °C Operating Temperature  FIGURE 5.33: TEMPERATURE PHASE - 20 Day SRT System % Denitrification and % Nitrification 140 ^ 1307  %Nitrification  Day 83 to 130  120 110100908070- %Denitrification 6050403020100  11111(111111111^1^I^lIt^It^III^lIlt^lIlt1111^1111111111111111  80^90^100^110^120^130^140 Days  20 °C  ^  17 °C^14 °C 112 °C i^10 °C Operating Temperature  FIGURE 5.34: TEMPERATURE PHASE - 10 Day SRT System Denitrification and Nitrification Rate 20000 ^ 1800016000rci 14000cr) E 12000w ro cc 1 0000a 0  •ii^8000N  =  H47:  6000-  IIIIIIIIIIIIII^111111111^111111111^111111 ^1111111111111111  90^100^110^120^130^140 Days  20 °C  17 °C  14 °C  12 °C  1  ot  Operating Temperature  ^  FIGURE 5.35: TEMPERATURE PHASE - 20 Day SRT System  Denitrification and Nitrification Rate  20000 18000  -  160001400012000ro cc 10000 c O ifs'^8000N *  6000400020000^ 80  1^1^I^1^1^1^1^I^  0 1^I^I^1^1^1^1^1^1^1^1^I^1^1  11 1111111^IIIIIIIIIIIIIIIII111111  100^ 110  120^130^140  Days  20 °C  17 °C  14 °C  12 °C  1 t Operating Temperature  FIGURE 5.36: TEMPERATURE PHASE - 10 Day SRT System Specific Utilization Rate 800  Day 83 to 130 700->-, 600-Coco cm 500-  o) co 03^ CC  400-  , Den trification  x  fr " s)<-  300-  6  (1) a 200-  EI  1 00 Nitrification 08611-T T1 F^I^T-1-7170:)6111-11-7-1 1 Ti-T16ET FT-1111^  I 1.6011 111111 1  140  Days  20 °C  17 °C  14 °C  12 °C  o Operating Temperature  FIGURE 5.37: TEMPERATURE PHASE - 20 Day SRT System  Specific Utilization Rate  800  Day 83 to 130 -3;  ro  700-  -o  > 600 C)  z  01  E  500 -  Denitrification  -  cc 400 cc 0  CD^.4= 0^  cri 300N  54‹..^  ,^ ><>  5‹,  200 0 0 a co 100 4=  Nitrification 0^11IT- 111  80  90"111  20 °C  111166■1  ^  ^110^120^130^140 Days  17 °C^14 °C 1 °C I^10 °C Operating Temperature  FIGURE 5.38: TEMPERATURE PHASE - 10 Day SRT System Anoxic and Aerobic VSS 7000  Day 83 to 130 o)  6500-  cn > 6000-  cr)  cn -0  o -a cu  a.  u)  Aerobic  5500-  5000-  .42^-  Anoxic  -5 > 4500-  4000 ^1 80  90^100^110 Days  20 °C  ^  120^130^140  I 17 °C^14 °C 112 -CI  ^  o  Operating Temperature  FIGURE 5.39: TEMPERATURE PHASE - 20 Day SRT System Anoxic and Aerobic VSS 7000  Day 83 to 130  Aerobic  a  :II 6500_ E^u) u) > 6000(r)  -E)^u) -o 5500a) -o c a) o_ _ (.1) = 5000 u) ,a)^_  Anoxic  cil 7:5 4500>  4000 - I Fl 1 1 I I 1 T 1 1 1 T T T i T !III FT T 11 7 T T 1 I I 7 T 1 T T 1 I I I ET T 1111[11 T 1 11 1 I I^ 1 80^90^100^110^120^130^140 Days -  -  - -  -  -  -  - -  -  -  -  -  -  20 °C^17 °C 1 14 °C  -  -  -  -  -  12 t 1^10 °C , Operating Temperature  The effect of temperature may have also, to some degree, influenced the toxic effect of "free" ammonia and/or nitrous acid inhibition. The fraction of "free" ammonia decreases with decreasing temperature (therefore lowering the toxic effect of ammonia), while the fraction of nitrous acid increases with increasing temperature (therefore increasing the toxic effect of nitrous acid). The effect of aerobic BOD5, which also increased as the temperature decreased, may have also played a role in nitrification failure. The increase in aerobic BOD5 may have been due to enhanced carbon bleeding from the anoxic reactor as nitrite levels rose. The effect of aerobic SRT may have also been significant, as shown from the last part of the study.  5.2.4 10 °C Startups of Nitrification and SRT Failure The objective of the last part of the study was to determine if nitrification could recover at 10 °C, with influent ammonia levels at 1500 mg N/L, under the conditions of no aerobic wasting and no methanol addition (ie. no denitrification). Figure 5.40 and 5.41 present the aerobic ammonia and % nitrification data for the 10 °C startup period of the cold temperature phase. The anoxic reactor was bypassed for the first few days until aerobic ammonia levels had been depleted, after which the anoxic reactor was re-introduced. After 10 days, nitrification in both systems was near 100 %, thus showing the ability of nitrification to recover at 10 °C from elevated reactor ammonia levels of approximately 500 mg N/L. The success of re-establishing nitrification at 10 °C, when it had failed earlier, may be due to no aerobic wasting (infinite theoretical aerobic SRT), or the lack of methanol addition and denitrification, or both. The lack of denitrification lowered the anoxic pH from 8.5 to 7.8, and consequently lowered the anoxic "free" ammonia by approximately 50 %. The lack of methanol addition also meant lower anoxic BOD5 and less carbon bleeding, which would have resulted in higher aerobic dissolved oxygen levels.  Unfortunately, a failure in the air compressor for several hours on Day 145, resulted in complete nitrification failure and ammonia levels again rose to approximately 600 mg NIL. From this failure, while continuing not to waste from both systems and with no methanol addition, only one system recovered . The system which recovered was previously the "20 day SRT system". From Figure 5.41, 93  FIGURE 5.40: TEMPERATURE PHASE - 10 Day SRT System Aerobic Ammonia and % Nitrification 1200 ^  Day 132 to 169 (10° C)  1100-  e^•  1000-  z  a)  ••••  Aerobic NH4^  900-  .54^  .. '>4'.  • ....  8000  700-  160 „x -= 114500 130 120 - 110 -100 -90 80 -70 -60 50 -40 -30 20 -10 El] -0 -10 -20 -30 --40 - -50 -60 170 -  -  -  % Nitrification  600-  -  0  0 c 0 E E  500400  Anoxic reactor bypassed  -  300200-  -  Anoxic reactor reintroduced  -  Air compressor failure results in loss of nitrification  100130  -  -  111111T  140  1  150 Days  160  -->(- Aerobic Ammonia El %Nitrification -  -  FIGURE 5.41: TEMPERATURE PHASE - 20 Day SRT System Aerobic Ammonia and % Nitrification 1200^  160  Day 132 to 169 (10° C)  1100-  -150 -140  1000-  -130  900-  -120  Anoxic reactor reintroduced  800- Aerobic NH4  -110  700^ Anoxic reactor 600500-  %Nitrification  -70 -60 -50  Air compressor failure  -40  results in loss of nitrification  200-  -30 ,  1000 130  -90 -80  bypassed  400300-  100  -20 -10  -1-^I^1^I^I^III  1^. Er> .-''^ ''' '' I^1^I -T--- I^I^I  140^150^160 Days  -X- Aerobic NH4^%Nitrification  1^ 0 170  it can be seen that by Day 155, the one remaining system had recovered to approximately 80 % nitrification. Throughout the recovery and the remainder of the study, the aerobic nitrite levels were approximately 200 mg N/L (see Figure 5.42 and 5.43) and the aerobic BOD 5 levels were approximately 50 mg/L. Meanwhile, in the system which did not recover (previously operated as the "10 day SRT system"), no wasting or methanol addition was performed, but % nitrification remained below 10 % and the aerobic ammonia levels climbed to 1000 mg/L and above (See Figure 5.40). The reason why one system recovered and the other failed is not clear.  To observe the effects of SRT, once complete nitrification was observed in the one working system, aerobic wasting was started on Day 156, to yield a 10 day aerobic SRT. SRT and % nitrification are shown in Figure 5.44. After only 14 days of wasting, aerobic ammonia levels had risen to 400 mg N/L. The failure may not have been entirely attributed to SRT alone, as high nitrite levels indicated the system was already stressed, and high aerobic BOD 5 levels (possible cell lysing) may have been associated with nitrification inhibition as previously observed. Another failure of the air supply, on Day 170, marked the end of the study, since no further lab time could be justified for this project.  96  FIGURE 5.42: TEMPERATURE PHASE - 10 Day SRT System Aerobic Nitrite and % Nitrification 700  Day 132 to 169 (10° C) 600-  a)  500-  c o 400f!) 4C1 a) 300o a)  200-  100-  Aerobic NO2 ss,  ss ss  Al  rjj  % Nitrification  PA  Anoxic reactor reintroduced  ari  ^■1 Re.^ PA 'Ma  PA  Anoxic reactor bypassed  Air compressor failure results in loss of nitrification II  0^ 130^140  I  150 Days  -X- Aerobic Nitrite 9 -  -  VoNitrifcation  PA  PA  PA  160 -150 -140 -130 1120 -110 -100 -90 -80 ,s -70 =60 -50 -40 -30 -20 -10 -0  •  --20 --30 --40 --50 -60 160^170  •  FIGURE 5.43: TEMPERATURE PHASE - 20 Day SRT System Aerobic Nitrite and % Nitrification 700  160  Day 132 to 169 (10 ° C)  -  600-  -140  500-  o  Anoxic reactor reintroduced  400-  %Nitrification  C' co300- Anoxic reactor  -  130  -  120  -  110  -  100  -  90  -  80  -  70  4  bypassed  0  150  -60  0  • 200-  -50  z  Air compressor failure resultst in loss of nitrification  100-  \,1  0^IIIITII^f^ v^  -  40  -  30  -20 -  111111^  130^140^150^  IIIIIIIIIIIIIIIIII  Days  -->(- Aerobic NO2 -E3- %Nitrification  160  10  0 170  FIGURE 5.44: TEMPERATURE PHASE - 20 Day SRT System  ASRT, SSRT and % Nitrification  80  120  Day 132 to 169 (10°C)  -110 -100 %Nitrification  60-  SSRT  -90 -80 -70 -60 -50 -40 -30  -20 -10 0  ^  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII^I^I^0  130^140^150^160 Days  ASRT  ^  SSRT^-E3- %Nitrification  170  ^  Chapter 6 CONCLUSIONS AND RECOMMENDATIONS  6.1^Summary of Results Table 6.1 summarizes the key results obtained from this study. The table is placed here for quick referencing when reading the subsequent conclusions and recommendations.  ^6.2^Conclusions The following conclusions can be made from the results of the two phases which comprised this study (the ammonia loading phase and the cold temperature phase):  1.  A single-sludge, nitrification-predenitrification process, operating from 20 to 12 °C, with a recycle ratio of 6:1, an actual aerobic HRT of 3.4 hours, an actual anoxic HRT of 1.7 hours, and a theoretical aerobic SRT of either 10 or 20 days, was found capable of producing an effluent containing < 1 mg NH 4 -N/L and approximately 170 mg NO;-N/L, from an influent leachate of 1500 mg NH 4 -N/L (once the system had been optimized and stabilized at each influent ammonia level and at each temperature). MLE theory says that at a 6:1 recycle ratio, the effluent NO; should be approximately 1500/(6 + 1) = 214 mg N/L. The difference is attributed to bacterial assimilation (ammonia stripping should be nominal).  2.  At an influent ammonia level of 1500 mg N/L at 20 °C, for both the 10 and 20 day SRT systems, aerobic nitrite accumulation was observed to reach approximately 110 mg N/L (65% of aerobic NO;). Increasing nitrite may have been a factor in the reduction of COD:NO. from approximately 6:1 to 3.5:1. When both systems were restarted at 20 °C in the cold temperature phase, the nitrite accumulation had disappeared, and the COD:NO; ratio was approximately 5:1.  3. When the influent ammonia concentration was increased from 200 to 1500 mg N/L in the leachate, the difference between the anoxic pH and the aerobic pH was observed to increase from 100  TABLE 6.1:^Summary of Results  Phase^20 °C Ammonia Loading^@ Influent NH4 (mgN/L)  200  300  600  1000  1500  2000*  <1 25 <1 7.5 25 <1 7.8 6.0 100 98  <1 50 <1 7.5 50 <1 7.9 6.0 100 98  <1 80 15 7.4 70 <1 8.0 4.8 100 99  <1 125 85 7.3 130 5 8.3 3.5 97 99  <1 170 110 7.5 180 <1 8.4 4.5 91 99  700 70 65 8.5 750 <1 8.5 9.7 20 97  <1 25 <1 7.5 25 <1 7.8 6.2 100 98  <1 45 <1 7.3 45 <1 7.7 6.4 100 99  <1 SO 20 7.5 80 <1 8.2 4.8 100 100  <1 135 80 7.3 140 <1 8.2 3.5 100 99  <1 170 100 7.5 180 <1 8.5 4.0 100 95  600 80 75 8.4 750 3.5 8.6 4.7 17 93  10 Day SRT System  Aerobic NH4 (mgN/L) Aerobic NO; (mgN/L) Aerobic NO2- (mgN/L) Aerobic pH Anoxic NH4 (mgN/L) Anoxic NO; (mgN/L) Anoxic pH COD:NO, (mgCOD/mgN) % Nitrification % Denitrification 20 Day SRT System  Aerobic NH4 (mgN/L) Aerobic NO ^(mgN/L) Aerobic NO2" (mgN/L) Aerobic pH Anoxic NH4 (mgN/L) Anoxic NO; (mgN/L) Anoxic pH COD:NO, (mg02/mgN) % Nitrification % Denitrification  Cold Temperature Phase @ 1500 mg NH4-N/L in Influent 20  17  14 *  12*  10*  Aerobic NH4 (mgN/L) Aerobic NO; (mgN/L) Aerobic NO2- (mgN/L) Aerobic B0D5 (mg02/0 Anoxic NH4 (mgN/L) Anoxic NO; (mgN/L) COD:NO, (mg02/mgN) % Nitrification % Denitrification  <1 170 <1 20 170 2 5.2 97 99  <1 165 <1 12 160 3 4.9 100 99  <1 170 10 10 180 1 4.9 91 100  <1 175 90 35 180 1 4.8 94 99  490 260 220 120 680 140 13.2 15 30  20 Day SRT System Aerobic NH4 (mgN/L) Aerobic NO; (mgN/L) Aerobic NO2" (mgN/L) Aerobic BOD5 (mg02/1-) Anoxic NH4 (mgN/L) Anoxic NO; (mgN/L) COD:NO, (mg02/mgN) % Nitrification % Denitrification  <1 170 <1 14 180 3 5.0 99 98  <1 155 <1 12 165 2 5.5 94 99  <1 170 <1 11 175 2 4.8 92 99  <1 155 65 15 160 2 4.5 100 99  560 135 120 56 680 23 6.3 22 82  Temperature (°C) 10 Day SRT System  *The measurements during these periods do not represent a stabilized system, especially at the influent ammonia level equal to 2000 mg N/L during the ammonia loading phase, and for the temperature equal to 10 °C during the cold temperature phase.  101  approximately 0.3 to 1.0. Since the aerobic pH was maintained at approximately 7.5, this corresponded to an increase in anoxic pH from approximately 7.8 to 8.5. This suggests that ifhigher ammonia concentrations are to be treated, higher anoxic pHs might be incurred, thus raising the possibility of pH and "free" ammonia inhibition of nitrification and denitrification in the anoxic reactor. Lowering the aerobic pH to 7.2 or 7.3 may provide sufficiently low anoxic pHs to avoid pH-associated toxicity problems in the anoxic reactor.  4.  Aerobic nitrite accumulation during the ammonia loading phase may have had several causes including: low dissolved oxygen, aerobic nitrous acid, and anoxic "free" ammonia. Anoxic "free" ammonia levels are estimated to have reached 20 mg N/L at an influent ammonia level of 1500 mg N/L. Nitrifiers would have been exposed to these elevated "free" ammonia levels as they cycled through the anoxic reactor. Acclimatization of the nitrite oxidizers to the elevated "free" anoxic ammonia levels may have accounted for the disappearance of the nitrite accumulation during the 20 °C startup of the cold temperature phase. Other possible reasons for the disappearance of the nitrite accumulation are higher dissolved oxygen levels in the aerobic reactor, and a steady aerobic pH = 7.5.  5.  When the leachate ammonia concentration was increased from 1500 to 2000 mg N/L, % nitrification decreased in both systems, from > 90 % to approximately 20 %. Possible reasons for the failure of nitrification include insufficient dissolved oxygen, solids/scum/foaming problems, and inhibition of the ammonia oxidizers (Nitrosomonas) due to cyclic exposure to elevated levels of "free" ammonia in the anoxic reactor.  6. During the loading failure period, when the leachate ammonia concentration was 2000 mg N/L, % denitrification continued to be greater than 90 %, despite "free" ammonia levels as high as 80 mg N/L.  102  7.  During the cold temperature phase 20 °C startup, elevated aerobic BOD5, associated with methanol, was observed to correspond to reduced nitrification. Inhibition may have been due to several possibilities including heterotrophic competition for limited dissolved oxygen, or methanol toxicity.  8.  For both SRT systems, when the operating temperature was decreased from 12 °C to 10 °C, while treating a leachate with 1500 mg NH4-N/L, % nitrification decreased from approximately 100 % to 20 %. For the 10 day SRT system at 10 °C, denitrification was reduced from 99 to 30 %. For the 20 day SRT system, denitrification was reduced from 99 % to 82 %. Rising aerobic nitrites and aerobic BOD5, began at 14 °C, and were the only apparent signs of cold temperature inhibition. However, it is possible that failure had begun at 14 °C but insufficient time was given for more complete failure to occur. The rise in aerobic nitrites, and the failure of nitrification in both systems, suggests that cold temperature was more inhibitive to nitrification than to denitrification.  9. After failure of nitrification at 10 °C, aerobic wasting and methanol addition were ceased. Nitrification managed to re-establish itself at 10 °C, despite aerobic ammonia levels of approximately 500 mg N/L, and aerobic BOD5 levels greater than 50 mg/L. Thus, short SRTs and/or methanol addition (resulting in elevated anoxic pH, elevated anoxic "free" ammonia, and possible carbon bleeding) were shown to have inhibitive effects at 10 °C. A test to determine the effect of shortening the theoretical aerobic SRT from infinite to 10 days resulted in complete system failure in only fourteen days. However, this result was complicated by elevated aerobic BOD5 levels throughout the latter part of the study, presumably from cell lysing.  103  6.3^Recommendations From the results of this study, the following recommendations for further research are made:  1. A study should be conducted to investigate the addition of post-denitrification to this system, to further reduce effluent NO ), . Post-denitrification will require the addition of another anoxic reactor -  for denitrification, and subsequent aerobic reactor for BOD 5 reduction and sweetening. Metcalf and Eddy (1991) suggest that both reactors may be placed after the first aerobic reactor. Therefore the process train still maintains only one clarifier. The solids underflow is recycled back to the anoxic reactor for MLVSS control. The aerobic mixed liquor from the first aerobic reactor can be recycled directly back to the first anoxic reactor for controlling the recycle ratio and the actual HRT.  2.  Further investigations should be conducted to determine the maximum recycle ratio, to further reduce effluent NO x .^If higher maximum recycle ratios are achievable, the need for -  post-denitrification may be obviated. Elefsiniotis et al (1989) determined that the optimum recycle ratio for this system was about 6:1. Higher recycle ratios were found to result in system instability due to lower actual HRT. However, Robinson (1992) has successfully used a recycle ratio of 10:1, but with a considerably longer HRT. The study should investigate the maximum recycle ratio possible, while maintaining the same actual HRT (by decreasing influent flowrate). A more broad study might try several recycle ratios at a number of HRTs, while also investigating the effect of SRT. To avoid inefficient clarification at higher recycle ratios, and for better overall control, the addition of a direct recycle from the aerobic reactor to the anoxic reactor should be considered.  3. A study should be conducted to investigate ammonia, elevated pH, and "free" ammonia toxicity to denitrification. This aspect of the single-sludge predenitrification system is a fundamental concern when treating high ammonia leachate.  104  4.  A continuation of the ammonia loading phase of this study should be conducted to determine if the reason for failure when the influent ammonia concentration was increased from 1500 mg N/L to 2000 mg N/L, was mechanical or biological. The two mechanical reasons (both problems of scale) that may have caused the system to fail were clogging (resulting in overflows) and low dissolved oxygen levels. Reactor tubing and overflows should be designed in advance to handle high solids, foaming in the aerobic reactor, and floating scum in the anoxic reactor. Fine bubble diffusers and aerobic reactors with greater height to width ratio might help achieve better dissolved oxygen. Eliminating the potential mechanical reasons for failure, a higher influent ammonia level might be treated, with the limit being biological instead of mechanical.  5.  Further temperature studies should be conducted to determine the potential for treatment at temperatures colder than 12 °C, while operating at influent ammonia concentrations of 1500 mg N/L or higher. Long SRTs and careful control of methanol addition may result in establishing both complete nitrification and denitrification at temperatures below 12 °C.  105  REFERENCES  Anthonisen A.C., Loehr R.C., Prakasam T.B.S. and Srinath E.G. (1976) Inhibition of nitrification by ammonia and nitrous acid. Journal of the Water Pollution Control Federation. 48, 835-852.  Antoniou P., Hamilton J., Koopman B., Jain R., Holloway B., Lyberatos G. and Svoronos S.A. (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research. 24, 1, 97-101.  A.P.H.A. (1985) Standard Methods for the Examination of Water and Wastewater. 16th Edition, Washington, D.C., U.S.A.  Beccari M., Passino R., Ramadori R. and Tandoi V. (1983) Kinetics of dissimilatory nitrate and nitrite reduction in suspended growth culture. Journal of the Water Pollution Control Federation. 55, 58-64.  Carley B.N. (1988) The Effect of Excess Carbon in the Anoxic Basin of a Biological Pre-denitrification System for the Treatment of Landfill Leachate. M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada.  Carley B.N. and Mavinic D.S. (1991) The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. Research Journal of the Water Pollution Control Federation. 63, 51-59.  Chian E.S.K., Pohland F.G., Chang K.C. and Harper S.R. (1985) Leachate generation and control at landfill disposal sites. Proceedings of the International Conference on New Directions and Research in Waste Treatment and Residuals Management. Vancouver, Canada, 14-30.  106  Dedhar S. and Mavinic D.S. (1985) Ammonia removal from a landfill leachate by nitrification and denitrification. Water Pollution Research Journal of Canada. 20, 126-137.  Ehrig H.J. (1985) Biological treatment of sanitary landfill leachate with special aspects on high ammonia concentration. Proceedings of the International Conference on New Directions and Research in Waste Treatment and Residuals Management. Vancouver, Canada, 232-248.  Ehrig H.J. (1991) Control and treatment of landfill leachate - a review. 1991 Harwell Waste Management Syposium - Challenges in Waste Management (Preprints). Harwell, Great Britain.  Elefsiniotis P., Manoharan R. and Mavinic D.S. (1989) The effects of sludge recycle ratio on nitrification-denitrification of performance in biological treatment of leachate. Environmental Technology Letters. 10, 1041-1050.  Figueroa L.A. and Silverstein J. (1991) Pilot-scale trickling filter nitrification at the longmont VVVVTP. Proceedings of the 1991 Specialty Conference on Environmental Engineering. Reno, U.S.A., 302-306.  Forgie, D.J.L. (1988a) Selection of the most appropriate leachate treatment methods Part 1: a review of potential biological leachate treatment methods. Water Pollution Research Journal of Canada. 23, 308-328.  Forgie, D.J.L. (1988b) Selection of the most appropriate leachate treatment methods Part 2: a review of recirculation, irrigation and potential physical-chemical treatment methods. Water Pollution Research Journal of Canada. 23, 329-340.  Forgie, D.J.L. (1988c) Selection of the most appropriate leachate treatment methods Part 3: a decision model for the treatment train selection. Water Pollution Research Journal of Canada. 23, 341-355.  107  Gonenc E. and Harremoes P. (1990) Nitrification in rotating disc systems-II. Criteria for simultaneous mineralization and nitrification. Water Research. 24, 499-505.  Guo J. (1992) Low Temperature Biological Treatment of a High Ammonia Municipal Landfill Leachate. M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada.  Halmo G. and Eimhjellen K. (1981) Low temperature removal of nitrate by bacterial denitrification. Water Research. 15, 989-998.  Henderson J.P. (1993) Treatment of a High Ammonia Concentration Landfill Leachate with an Anaerobic Filter and Rotating Biological Contactor (RBC). M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada.  Henry G.J. (1985) New developments in landfill leachate treatment. Water Pollution Research Journal of Canada. 20, 1-9.  Hockenbury M.R., Daigger G.T. and Grady Jr. C.P.L. (1977) Factors affecting nitrification. Journal of the Environmental Engineering Division. 103, 9-19.  Jasper S.E., Atwater J.W. and Mavinic D.S. (1985) Leachate production and characteristics as a function of water input and landfill configuration. Water Pollution Research Journal of Canada. 20, 43-56.  Keenan J.D., Steiner R.L. and Fungaroli A.A. (1979) Substrate inhibition of nitrification. Journal of Environmental Science and Health. A14, 377-397.  Keenan J.D., Steiner R.L. and Fungaroli A.A. (1984) Landfill Leachate Treatment. Journal of the Water Pollution Control Federation. 56, 27-34. 108  Kelly H.G. (1987) Pilot testing for combined treatment of leachate from a domestic waste landfill site. Journal of the Water Pollution Control Federation. 59, 254-261.  Knox K. (1985) Leachate treatment with nitrification of ammonia. Water Research. 19, 895-904.  Lema J.M., Mendez R. and Blazquez R. (1988) Characteristics of landfill leachates and alternatives for their treatment: a review. Water, Air, and Soil Pollution. 40, 223-250.  Lewandowski Z. (1982) Temperature dependency of biological denitrification with organic materials addition. Water Research. 16, 19-22.  Manoharan R., Liptak S., Parkinson P. and Mavinic D. (1989) Denitrification of a high ammonia leachate using an external carbon source. Environmental Technology Letters. 10, 701-716.  Martin G. and Richard Y. (1982) Elements of the inhibition of nitrifying bacteria. Water, Science and Technology. 14, 781-794.  Mavinic D.S. and Randall C.W. (1990) Inhibition of Nitrification and Denitrification in Biotreatment of a High-Ammonia Municipal Leachate. Report prepared for Environment Canada and Virginia Environmental Endowment Fund, Vancouver, Canada, and Blacksburg, U.S.A.  McCarty P.L., Beck L. and Amant P. (1969) Biological denitrification of wastewaters by addition of organic materials. Proceedings of the 24th Industrial Waste Conference, Purdue University, U.S.A., 1271-1285.  Mirvish S.S. (1977) N-nitroso- compounds, nitrite, and nitrate possible implications for the causation of human cancer. Progress in Water Technology. 8, 195-207.  109  Narkis N., Rebhun M. and Sheindorf C. (1979) Denitrification at various carbon to nitrogen ratios. Water Research. 13, 93-98.  Opatken E.J. and Bond J.J. (1991) RBC nitrification of high ammonia leachates. Environmental Progress. 10, 60-63.  Painter H.A. (1977) Microbial transformations of inorganic nitrogen. Progress in Water Technology.  8, 3-29.  Painter H.A. and Loveless J.E. (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activate-sludge process. Water Research. 17, 237-248.  Parker D.S. and Richards T. (1986) Nitrification in trickling filters. Journal of the Water Pollution Control Federation. 58, 896-902.  Peddie C. and Atwater J.W. (1985) RBC treatment of a municipal landfill leachate: a pilot scale evaluation. Water Pollution Research Journal of Canada. 20, 115-125.  Randall C.W. and Buth D. (1984) Nitrite build-up in activated sludge resulting from temperature effects. Journal of the Water Polllution Control Federation. 56, 1039-1049.  Robinson H.D. (1983) Anal. Proc. 20, 11.  Robinson H.D., Formby B.W., Barr M.J. and Carville M.S. (1991) The treatment of landfill leachate to standards suitable for surface water discharge. Third International Landfill Symposium. Sardinia, Italy.  Robinson H.D. and Luo M.M.H. (1991) Characterisation and treatment of leachates from Hong Kong landfill sites. Journal of the Institution of Water and Environmental Management. 5, 326-335. 110  Robinson H.D., Barr M.J. and Last S.D. (1992) Leachate collection, treatment and disposal. Journal of the Institution of Water and Environmental Management. 6, 321-332.  Robinson N.D. and Maris P.J. (1985) The treatment of leachates from domestic waste in landfill sites. Journal of the Water Pollution Control Federation. 57, 30-38.  Robinson H.D. and Grantham G. (1988) The treatment of landfill leachates in on-site aerated lagoon plants: experience in Britain and Ireland. Water Research. 22, 733-747.  Robinson H.D. (1992) Leachate Treatment and Denitrification Trials. Unpublished Report.  Shuval H.I. and Gruener N. (1977) Infant methemoglobinemia and other health effects of nitrates in drinking water. Progress in Water Technology. 8, 183-193.  Spengel D.B. and Dzombak D.A. (1991) Treatment of landfill leachate with rotating biological contactors: bench-scale experiments. Research Journal of the Water Pollution Control Federation. 63, 971-981.  Stenstrom M.K. (1980) The effect of dissolved oxygen concentration on nitrification. Water Research. 14, 643-699.  Turk O. (1986) The Feasibility of a Shortened Pathway for Nitrogen Removal from Highly Nitrogenous Wastes. Ph.D. Thesis, Department of Civil Engineering, University of British Columbia, Canada.  Turk O. and Mavinic D.S. (1989) Maintaining nitrite build-up in a system acclimatized to free ammonia. Water Research. 23, 11, 1383-1388.  111  U.S. EPA (1975). Process Design Manual for Nitrogen Control. Technology Transfer, United States Environmental Protection Agency.  112  APPENDICES  Appendix A:^Calculation Definitions  Appendix B:^Raw and Calculated Data  113  APPENDIX A: CALCULATION DEFINITIONS  ANOXIC OVERFLOW (Lid) = INFLUENT FLOW (Lid) + RECYCLE FLOW (Lid) + [NH4CL FEED FLOW (mL/h) + METHANOL FEED FLOW (mL/h) + PHOSPHATE FEED FLOW (mL/h)] x 24 (hid) x 1/1000 (L/mL)  AEROBIC OVERFLOW (Lid) = ANOXIC OVERFLOW (L/d) + BICARBONATE FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL)  SIMULATED INFLUENT NH4 CONCENTRATION (mgN/L) = ENH4CL FEED FLOW (mL/h) x NH4CL FEED CONCENTRATION (gNH4Cl/L) x 1/1000 (L/mL) x 24 (h/d)x 14/53.5 (gN/gNH4C1) x 1000 (mg/g) + INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid)] / [INFLUENT FLOW (Lid) + NH4CL FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL)1  NITRIFICATION RATE (mgN/d) = AEROBIC NOX CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)  ANOXIC NOX LOAD (mgN/d) = INFLUENT NOX CONCENTRATION (mgN/L) x INFLUENT FLOW (L/d) + AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (L/d)  DENITRIFICATION RATE (mgN/d) = ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (L/d)  % NITRIFICATION = NITRIFICATION RATE (mgN/d) / [ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] 114  % DENITRIFICATION = DENITRIFICATION RATE / [INFLUENT NOX CONCENTRATION (mgN/L) x INFLUENT FLOW (L/d) + AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)]  SPECIFIC NITRIFICATION RATE (mgN/d/gVSS) = NITRIFICATION RATE (mgN/d) / AEROBIC VSS CONCENTRATION (mgVSS/L) / 10 (L) x 1000 (mg/g) x 1/24 (d/h)  SPECIFIC DENITRIFICATION RATE (mgN/d/gVSS) = DENITRIFICATION RATE (mgN/d) / ANOXIC VSS CONCENTRATION (mgVSS/L) / 5 (L) x 1000 (mg/g) x 1/24 (d/h)  TOTAL ALKALINITY ADDED (mgCaCO3/d) = INFLUENT ALKALINITY CONCENTRATION (mg CaCO3/L) x INFLUENT FLOW (mL/h) + BICARBONATE FEED CONCENTRATION (g NaHCO3/L) x BICARBONATE FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL) x 50/84 (mgCaCO3/mgNaHCO3)  ALKALINITY:NH4 ADDED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) / SIMULATED INFLUENT NH4 CONCENTRATION (mg N/L) x {INFLUENT + NH4CL} FLOW (L/d)  ALKALINITY:N NITRIFIED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) / NITRIFICATION RATE (mgN/d)  ANOXIC METHANOL COD LOAD (mgCOD/d) = METHANOL FEED CONCENTRATION (mL CH3OH/L) x METHANOL FEED FLOW (mL/h) x 791.5 (mgCH3OH/mLCH3OH) x 1.5 (mgCOD/mgCH3OH) x 1/1000 (L/mL) x 24 (h/d)  COD:NOX ENTERING ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD (mgCOD/d) / ANOXIC NOX LOAD (mgN/d)  115  COD:NOX REMOVED IN ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD (mgCOD/d) / [ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)]  ANOXIC NH4 REMOVAL RATE (mgN/d) = INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)  AEROBIC NH4 REMOVAL RATE (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid)  % ANOXIC NH4 REMOVAL = [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] / [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)]  % AEROBIC NH4 REMOVAL (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) / [ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)]  SSRT (d) = [ANOXIC VSS CONCENTRATION (mgVSS/L) x 5 (L) + AEROBIC VSS CONCENTRATION (mgVSS/L) x 15 (L)] / [AEROBIC VSS CONCENTRATION (mgVSS/L) x AEROBIC VOLUME WASTED (L) + EFFLUENT VSS CONCENTRATION (mgVSS/L) x [AEROBIC OVERFLOW (Lid) - RECYCLE FLOW (Lid)]]  116  APPENDIX B: RAW AND CALCULATED DATA  Ammonia Loading Phase Influent Characteristics 10 Day Aerobic SRT System 20 Day Aerobic SRT System  Cold Temperature Phase Temperature and Influent Characteristics 10 Day Aerobic SRT System 20 Day Aerobic SRT System  117  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^pH^Alkalinity^VSS^TSS^PO4^NH4^NOx (yy mm dd)^ (mgCaCO3/L)^(mg/LI^(mg/L)^(mgPiL)^(mgN/L)^(mgN/L)  91  08^12^1  91 91 91 91 91 91 91  08^14^3 08^16^5 08^18^7 08^20^9 08^23^12 08^26^15 08^28^17  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08^31^20 09^2^22 09^4^24 09^7^27 09^9^29 09^12^32 09^16^36 09^17^37 09^19^39 09^21^41 09^23^43 09^26^46 09^28^48 09^30^50 10^2^52 10^4^54 10^6^56 10^8^58 10^11^61 10^14^64 10^16^66 10^18^68 10^20^70 10^23^73 10^25^75 10^27^77 10^29^79  91 91  11^1^82 11^3^84  91 91 91  11^5^86 11^7^88 11^10^91 11^12^93  91 91 91 91 91 91  11^13^94 11^15^96 11^17^98 11^20^101 11^22^103  2120  24  56  0.2 0.3 0.4 0.4 0.1  1980 7.9 2060 7.8 7.6 8.3 8.1 7.9 8.0 8.2 8.0 8.1 8.2 8.0  1910  28 54  1860  68 115  8.1 8.2  8.1  8.3  7.9  1200  45  109  31  58  7.8  7.8  7.9  7.8 8.0  0.2 0.3  1360  44  7.9  118  104  0.2 0.2 0.3 0.3 0.4 0.3 0.3 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.5  211 205 216 217 225 246 213 214 218 224 220 208 217 217 203 196 214 197 205 221 196 185 199 209 202 201 188 194 206 233 207  0.6 0.5 0.5  217 204  0.5 0.5 0.5 0.5  215 226 233 195  0.6 0.7 0.6 0.6 0.6 0.6 0.7 0.7 0.7  228 228 211 213 190 198 203 204  222  3.1 1.2 1.1 1.1 2.4 2.7 58.8 21.3 2.2 4.6 4.6 6.3 3.4 2.2 1.8 1.0 0.7 0.4 1.8 0.9 0.2 0.2 5.3 13.3 13.3 8.7 5.8 2.2 1.1 0.3 0.3 0.6 0.4 0.8 1.0 0.6 0.9 1.0 1.0 0.8 0.5 0.5 0.3 0.3 0.3 0.2  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^PH^Alkalinity^VSS^TSS^PO4^NH4^NOx (yy mm dd)^ (mgCaCO3/1.)^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)  91^11 91^11 91^11 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02  25^106 26^107 29^110 2^113 4^115 6^117 7^118 9^120 11^122 13^124 16^127 18^129 20^131 22^133 24^135 26^137 30^141 2^144 5^147 6^148 8^150 10^152 12^154 14^156 15^157 17^159 20^162  0.6 0.6 8.1  8.0  7.9 1650  32  118  8.1 7.7  0.2 0.2 0.2 0.1 0.1  7.9  0.0 0.1 0.1 0.2 7.8 7.9  1310  60  124  18^191 19^192 21^194  0.2 0.3 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.1  22 164 24^166 26^168 30^172 31^173 2^175 3^176 5^178 6^179 7^180 10^183 11^184 12^185 13^186 14^187 16^189  0.5 0.5 0.7 0.7 0.7 0.6 0.7 0.7 0.6 0.5 0.4 0.4 0.3  8.0 7.8  1325  48  95  0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.2  119  194 233 182 190 205 200 203 177 196 196 139 137 153 174 183 148 56 151 137 156 184 161 152 150 177 212 201 225 188 225 210 215 207 200 188 183 183 230 210 207 207  0.4 0.4 0.2 0.3 0.1 0.3 0.5 0.6 0.6 0.4 0.2 0.3 0.7 0.4 0.3 1.0 0.7 0.9 0.6 0.7 0.6 0.8 1.2 0.6  217 131  0.8 0.6 0.7 0.4 0.4 1.0 0.8 0.7 0.4 1.0 1.2 0.7 1.1 0.9 0.5 0.5 1.1 1.0 1.0  143 157 155  2.4 3.8 3.8  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^pH^Alkalinity^VSS^TSS^PO4^NH4^NOx (yy mm dd)^  92 92 92 92 92 92 92 92  02 02 02 02 03 03 03 03  92 92 92 92 92  03 03 03 03 03  24 27 28 29 1 2 3 4 5 6 7 10 11  (mgCaCO3/1-)^(mg/L)^Img/L)^(mgP/L)^lingN/1.1^(mgN/L)  197  0.3  200 201 202 203 204 205 206  0.2 0.2 0.1 0.1 0.2 0.3 0.3  207 208 209 212 213  0.2 0.2 0.2  120  138 143  4.0 4.1  136 128 135 163 164 144 137 137 149 163 129  3.4 3.0 3.8 4.3 2.3 2.9 3.2 3.5 2.3  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Influent^Influent^Influent Date^Day^NO2^SOD^COD Ivy mm dd)^(mgN/L)^(mg/L)^(mg/L)  91  08  12  91  08  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  91 91 91 91 91 91  08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10  14 16 18  91 91 91 91 91 91 91 91 91 91 91 91 91  10 10 10 10 11 11 11 11 11 11 11 11 11  91 91  11 11  91 91 91 91 91 91 91 91  1 3 5 7 9 12 15 17 20 22  20 23 26 28 31 2 4 7 9 12 16 17 19 21 23 26 28 30 2 4 6 8 11 14  29 32 36 37 39 41 43 46 48 50 52 54 56 58 61 64  16 18  66 68  20 23 25  70 73 75  27 29 1 3 5 7 10  77 79 82 84 86 88 91 93 94 96  12 13 15 17 20 22  24 27  21  452  24  442  0.5  23  464  0.0  38  334  35  342  41  368  0.5  3.3  0.3  0.0  2.3  0.1  0.1  0.1  98 101 103  121  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Influent^Influent^Influent Data^Day^NO2^BOD^COD (iffy mm dd)^(mgN/L)^(mg/L)^(mg/L)  91 91  11 11  25 26  91 91 91 91 91 91 91 91 91 91  29 2 4 6 7 9 11 13 16 18  91 91 91  11 12 12 12 12 12 12 12 12 12 12 12 12  91 91 92 92 92 92 92 92 92 92 92 92 92 92 92  12 12 01 01 01 01 01 01 01 01 01 01 01 01 01  92 92 92  01 01 02 02  92 92 92 92 92 92 92 92 92 92 92 92 92  02 02 02 02 02 02 02 02 02 02 02 02  20 22 24 26 30 2 5 6 8 10 12 14 15 17 20 22 24 26 30 31 2 3 5 6 7 10 11 12 13 14 16 18 19 21  106 107 110 113 115 117 118 120 122 124 127 129 131 133 135 137 141 144 147 148 150 152 154 156 157 159 162 164 166 168  28  421  62  354  58  415  42  436  38  374  20  334  0.0  0.1  0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0  172 173 175 176 178 179 180 183 184 185 186 187 189 191  0.1  0.0 0.0 0.1  192 194  122  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4C1^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(Lid)^(mL/h)^(rnL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow (Lid)^(Lid)  91 91 91 91 91 91 91 91  08^12^1 08^14^3 08^16^5 08^18^7 08^20^9 08^23^12 08^26^15 08^28^17  91 91  08^31^20 09^2^22  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  09^4^24 09^7^27 09^9^29 09^12^32 09^16^36 09^17^37 09^19^39 09^21^41 09^23^43 09^26^46 09^28^48 09^30^50 10^2^52 10^4^54 10^6^56  91 91 91 91 91  10^8^58 10^11^61 10^14^64 10^16^66 10^18^68  91 91 91 91  10^20^70 10^23^73 10^25^75 10^27^77 10^29^79  91 91 91 91 91 91 91 91 91 91 91 91  10.1 10.1 9.8 9.9 9.3 10.1 10.0 9.2 10.0 10.2 10.4  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0  0 0 0  0 0 0 0 0 0 0  9.8 10.1 9.2 9.2 10.7 9.4 9.1 10.0 9.6 9.8 10.2 9.4 10.1 10.0 9.4 10.6 10.0 9.6 10.2  8.4 8.2 8  9.5 10.8 9.8 10.1  8 8.2 8 8.2  11^5^86  9.9 10.3 10.9 10.3  8 8.2 4 3.45  11^7^88 11^10^91 11^12^93 11^13^94 11^15^96 11^17^98 11^20^101 11^22^103  10.3 10.0 10.3 9.8 10.2 9.6 10.2 9.3  3.2 6.9 7.1 7.5 7.4  11^1^82 11^3^84  0 0 0 0 0 0 0 0 0 0  7.5 7.3 7  6 6 11 11 11 11 5.4 5.4 6.9 7 7.1 6.8 7.2 7.4 7.8 7.3 6.5 6.8 6.8 6.8 7 7.2 7.1 7.1 6.9 6.9 7.2 7 6.9 7.3 7.4 7 6.9 7 7  123  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  3.5 4.1 4.8 5.2 5.1 5.1 5.0 4.8 5.0 4.8 4.8 4.7 5.1 5.2 5.2 5.3 5.1 5.0 5.0 4.8 5.1 4.9 4.8 5.2 5.0 5.0 4.8  0 0 0 0 0 0 0 0 0 0 0  5.0 4.9 4.8 5.1 5.1 5.2 5.2 5.4 5.4 5.4 5.2  0 0 0 0 0 0 0 4.6  5.3 5.1 5.2 5.3 5.2 5.3 5.3 4.6  55  0  66 64 65  0 0 0 0 0 0 0  53 55 57 59 55 62 61 54 55 59 53 62 60 64 60 63 56 54 58 63 59 65 60 64 55 56 61 58 59 65 57 64 64 55 54 55 64 54 65 55 60 63  0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  65 76 74 75 63 66 67 69 65 73 71 64 65 69 63 73 69 73 70 73 66 64 68 74 69 75 71 74 65 66 71 69 69 76 67 75 76 66 64 65 74 64 76 65 71 73  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow (L/d)^(L/d)  91^11 91^11  25^106 26^107  91^11 91^12 91^12 91^12 91^12 91^12 91^12 91^12  29^110 2^113 4^115 6^117 7^118 9^120 11^122 13^124  91^12 91^12 91^12 91^12 91^12 91^12 91^12 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01  16^127 18^129 20^131 22^133 24 135 26^137 30^141 2^144 5^147 6^148 8^150 10^152 12^154 14^156  92^01 92^01 92^01 92^01 92^01 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02  15^157 17^159 20^162 22 164 24^166 26 168 30^172 31^173 2^175 3^176 5^178 6^179 7^180 10^183 11^184 12^185 13^186 14^187 16^189 18^191 19^192 21^194  9.3 10.1  6.9 7.3  9.2 8.7 9.1 10.2 9.0 9.4  7.3 7.4 7.4 7.8 6.9 6.8  8.9 9.8 9.9 9.6 9.1 9.7 10.0 10.0 10.0 9.3 8.8 8.8 9.0  7.4 7.5 7.5 7.4  9.3 9.1 8.7 9.0 9.2 8.7 8.4 8.9 9.1 9.0 8.4 9.1 9.4 8.5 9.1 8.5 8.8  7.2 7.3 7.5 7.4  7.7 6.6 7.3 7.3 7.3  7.4 7.3 7.2 7.2 7.4 7.5 7.6 7.3 7.2 7.4 7.4 7.4 7.4  7.3 7.5 7.2 7.2  7.6 7.7 7.5 7.4  7.3 7 28.9 29  7.3 7.4 8.2 8 7.8 7.5 7.4 7.2 7.4 7.9 7.5 7 7.3 7.4 7.4 7.4 7.6 7.6 7.7 7.6  29 29 29 28 27 26.9 26 25.6 26 27  8.7 8.5 8.2 8.5 9.0 8.9  27.3 26 25 26 27 26 26 25.8 26  7.9 7.4 7.3  8.6 7.9  26 26  7.5 7.7  124  4.3 14.9 15.3 15 15 15.2 14.4 14.7 15.3 15.1 15.5 15.3 14.7 14.8 15.3 15.1 15.1 31 30.9 30 31 29 30 41.3 39 38 36 36 36 36 37.3 35 34.4 37.5 38 39.5 37 36 37 36 35 34.8 36 36 36 36  4.3 14.9 15.3 15.0 15.0 15.2 14.4 14.7 15.3 15.1 15.5 15.3 14.7 14.8 15.3 15.1 15.1 31.0 30.9 30.0 31.0 29.0 30.0 41.3 39.0 38.0 36.0 38.0 36.0 36.0 37.3 35.0 34.4  64 56 56 57 56 54 59 63 58 64 54 65 65 56 63 60 62 54 64 57 59 59 59 63 66 63 57 62  37.5 38.0  62 58 54 65 61 61 63  39.5 37.0 36.0 37.0 36.0 35.0 34.8 36.0 36.0 36.0 36.0  62 57 58 57 64 60 61 58 55 54 64  1 1  74 67  1 1  66 67  1 1 1 1 1 1  66 65 69 73 67 75 65 75 74 67 73 71 73  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  65 74 66 69 70 69 74 76 74 67 72 73 69 64 75 71 72 73 73 67 68 67 75 70 71 69 66 65 74  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic^ NH4CI^Simulated^CH3OH^o-PO4 NaHCO3 (Iffy mm dcl)^Overflow^ (A)^Influent^ImUL)^WPM^lg/1.1 (Lid)^ (mgN/L)  91  08  12^1  65  91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 08 09  91 91 91 91 91  09 09 09 09 09  14^3 16^5 18^7 20^9 23^12 26^15 28^17 31^20 2^22 4^24  76 74 75 63 66 67 69 65 73 71  7^27 9^29 12^32 16^36  64 65 69 63  91 91 91 91 91 91 91 91 91 91 91 91 91  09 09 09 09 09 09 09 10 10 10 10 10 10  17^37 19^39 21^41 23^43 26^46 28^46 30^50 2^52 4^54 6^56 8^58 11^61 14^64  73 69 73 70 73 66 64  91 91  10 10  16^66 18^68  91 91 91 91 91 91 91 91  10 10 10 10 10 11 11 11  20^70 23^73 25^75 27^77 29^79 1^82 3^84 5^86  91 91 91 91 91 91  11 11 11  7^88 10^91 12^93 13^94 15^96 17^98 20^101 22^103  91 91  11 11 11 11 11  68 74 69 75 71 74 65 66 71 69 69 76 67  0 0 0 0 0 0 0 0 0 0  215 221  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  218 203 211 208 195 189 206 192 200 215 190 180 193 203 196 195 183  19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1  209 203 214 214 222 243 210 211  281 294 312 294 295 288  75 76 66 64 65 74 64 76 65  55.3 48 88 88 88 88 88  298 308 313 231 326 310 582 566 606 567 600  71 73  88 88  579 598  1 25  0 0 0 0 0 0 0 0 0 0 0 25 25 25 25 25 40 80 80 40 40 60 50 50 50 50 50 50 50 75 100 100 75  0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  75 75 85 85  0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816  85 85 85 85 85 85 85  0.816 0.816 0.816 0.816 0.816 0.816 0.816  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  85 85  0.816 0.816  0 14.7  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic^ NH4C1^Simulated^CH3OH^o-PO4 NaHCO3 (yy mm dd)^Overflow^ (g/L)^Influent^(mL/L)^(gP/L)^(g/L) (L/d)^  91^11 91^11 91^11 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 91^12 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^01 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02 92^02  25^106 26^107 29^110 2^113 4^115 6^117 7^118 9^120 11^122 13^124 16^127 18^129 20^131 22 133 24 135 26 137 30^141 2^144 5^147 6^148 8^150 10^152 12^154 14^156 15^157 17^159 20^162 22 164 24^166 26^168 30^172 31^173 2^175 3^176 5^178 6^179 7^180 10^183 11^184 12^185 13^186 14^187 16^189 18^191 19^192 21^194  (mgN/L)  74 67 66 67 66 65 69 73 68 75 65 76 75 67 74 71 73 65 75 67 70 70 70 75 77 75 68 73 73 70 65 76 72 73 74 74 68 69 68 75 71 72 69 67 66 75  88  583  88  611 596 636 628 599 604 558 630 597 538 543  88 88 88 88 88 88 88 88 88 88 88 171.75 171.75  597 879 941  171.75 171.75 171.75  901 913 962  171.75 171.75 171.75 187 187 69 69 69 69 69 80 80 80  1012 1002 1012 1046 1014 1442  80 80 80 80 80 80 80 80 80 80 80 80 115 115 115  126  1435 1436 1492 1559 1615 1578 1571 1615 1492 1462 1630 1553 1572 1518 1564 1642 1639 1601 1444 2060 2142 2294  85 85 85 85 85 135 135 135 100 120 120 110 120 120 120 120 120 120 160 120 120 130 130 130 130 130 250 250 250 225 225 225 180 180 180 180 180 210 210 210 210 210 210 210 210 210  0.816  47  0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245  47 53.5 53.5 53.5 53.5 53.5 53.5 53.5 45 35 35 35 70 70  0.245 0.408 0.408 0.408 0.408 0.204  70 70 45  0.204 0.204 0.204 0.204 0.204 0.245 0.245 0.245 0.202 0.202  52.5 52.5 52.5 52.5 52.5 75 75 75 75 75  0.202 0.202  68.75 68.75  0.202 0.202 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231  72.5 72.5 82.5 87.5 80 80 80 80 77.5 77.5 77.5 77.5 77.5 80 80 80  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic^ NH4C1^Simulated^CH3OH^o-PO4 NaHCO3 (yy mm dd)^Overflow^ (g/L)^Influent^(mL/L)^(gP/L)^(g/L) (mgN/L) (Lid)^  92  02  24  197  74  115  1940  210  0.231  80  92 92 92 92 92 92  02 02 02 03 03 03  27 28 29  1923 1886 1898 1940 2094 2028 2460 2352 2280 2088 2123 2381  164.5 164.5 164.5 164.5 164.5 164.5 164.5 164.5 164.5 164.5 164.5 164.5  0.231  87.5  03 03 03 03 03 03  75 72 74 77 67 75 72 67 71 68  115  92 92 92 92 92 92  200 201 202 203 204 205 206 207 208 209 212 213  0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231  87.5 40 40 40 40 30 30 30  1 2 3 4 5 6 7 10 11  67 69  115 115 115 115 115 115 115 115 115 115 115  127  0.231  20 20 20  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^System^System^System^Anoxic^Anoxic Loading^Loading^Loading^ ORP^pH Data^Day^ (yy mm dd)^  CH3OH^o-PO4^NaHCO3^  (mV)  (gCOD/d)^(gP/d)^(gCaCO3/d)  91  08  12  1  0.00  0.069  2102  -130  91  08  14  3  0.00  91  08  16  5  91  08  18  7  91  08  20  9  91  08  23  12  91  08  26  15  91  08  28  17  08  31  20  91 91  09  2  22  09 09 09 09 09 09 09 09 09 09 09  4 7 9 12 16 17 19 21 23 26  24 27 29 32 36 37 39 41 43 46  2099 2096 1955 1954 1957 2036 2034 2036 2037 1889 1861 1861 1833  -25 -57 -100 -40 -5 20 5  91  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.081 0.093 0.101 0.099 0.099  1832 1795 1786  -105 -100 -95 -95  7.7 8.0 7.9 7.9 8.0 7.9  28 30 2 4  48 50 52 54  -127 -120 -133  7.9 7.9 7.8  6 8 11 14 16 18 20 23 25 27 29 1 3 5  56 58 61 64  -132 -121 -155 -195 -168 -173 -100 -88 -112 -147 -145 -140 -145 -158  7.8 7.7 7.7 7.8 7.8 7.8 7.9 7.9 7.8 7.8 7.9 7.9 7.9  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  09 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11  7 10 12 13 15 17 20 22  66 68 70 73 75 77 79 82 84 86 88 91 93 94 96 98 101 103  0.098  0.094 0.098 0.094 0.095 0.093 0.099 0.103  4.27 4.27 7.84 7.84 7.84 12.54 12.31 12.31 7.86  0.102 0.103 0.100 0.098 0.098 0.094 0.100 0.096 0.094 0.101 0.097 0.099 0.095 0.097 0.095 0.094  7.98 12.14 9.69 10.26 10.54 11.11 10.40 9.26 9.69 14.53 19.38 19.95 15.39 15.17 15.17 16.71 16.71 17.44  0.099 0.099 0.101 0.102 0.106 0.107 0.106 0.102 0.104 0.099 0.102 0.104 0.101 0.105 0.103 0.090  16.95 16.71 17.68 17.92 16.95 16.71 16.95 16.95  128  1810 1815 1807 1806 1809 1807 1807 1807 1801 1810 1776 1143 1147 1142 1148 1143 1144 1143 1145 1158 1157 1158 1148 1148 1143 1300 1296 1316 1413  20 43 49 8 -41 -86  7.6  7.9  -165 -180  7.9 7.9 7.9  -175 -' 33 -'7.: -137 -108 -154 -139 -164 -194  7.9 7.9 7.8 7.7 7.8 7.8 7.7 7.8 7.6  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Date^Day^ (yy mm dd)^  91^11^25^106 91^11^26^107 91^11^29^110 91^12^2^113 91^12^4^115 91^12^6^117 91^12^7^118 91^12^9^120 91^12^11^122 91^12^13^124 91^12^16^127 91^12^18^129 91^12^20^131 91^12^22^133 91^12^24^135 91^12^26^137 91^12^30^141 92^01^2^144 92^01^5^147 92^01^6^148 92^01^8^150 92^01^10^152 92^01^12^154 92^01^14^156 92^01^15^157 92^01^17^159 92^01^20^162 92^01^22 164 92^01^24^166 92^01^26 168 92^01^30^172 92^01^31^173 92^02^2^175 92^02^3^176 92^02^5^178 92^02^6^179 92^02^7^180  System^System^System^Anoxic^Anoxic Loading^Loading^Loading^ ORP^pH CH3OH^o-PO4^NaHCO3^ (mV) (gCOD/d)^(gP/d)^(gCaCO3/d)  17.44 17.68  0.084 0.088 0.090 0.088  18.16 17.92 17.92  0.088 0.089 0.085 0.086 0.090 0.089 0.091 0.090 0.086 0.145  28.08 27.70 27.70 21.09 25.64 25.99 22.88 24.62 25.30 25.30  0.150 0.148 0.148 0.152 0.151 0.147  25.30 25.30 25.99 35.10 25.64 25.30  0.152 0.142 0.147 0.243 0.229 0.223 0.175 0.175 0.175 0.175 0.181 0.170 0.191  27.04 27.41 30.37 29.63 28.89 53.43 52.71 51.29 47.44 50.65 48.08 35.90 37.44  0.208 0.211  37.95 37.95 37.95 45.48  92^02^10^183 92^02^11^184 92^02^12^185 92^02^13^186 92^02^14^187 92^02^16^189 92^02^18^191  45.48 46.07 45.48 47.27 44.28 43.68  92^02^19^192 92^02^21^194  44.88 46.07  0.219 0.205 0.200 0.205 0.200 0.194 0.193 0.200 0.200 0.200 0.200  129  1612 2271 2529 2579 2515 2409 2490 2472 2570 2268 2347 2359 2364 3071 3078 3048 3055 3655 4108 4055 4088 3850 3964 6110 5738 5219 5212 5346  -180  7.7  -155 -135 -145 -150  7.9 7.9 8.1 8.1 8.1 8.0 8.1 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 8.3 8.3 8.3 8.4  -150 -237 -152 -146 -168 -195 -220 -310 -179 -280 -245 -230 -199 -183 -188 -171 -180 -205 -200 -152 -179 -175 -177  8.4 8.2 8.3 8.4 8.5 8.4 8.5 8.4 8.6 8.6 8.5 8.5  4825 4776 5140 5134 5309 5793  -208 -185 -150 -166  5866  -182  5760 5743 5484 5499 5464 5495 5332 5286 5442  -178 -189 -196 -201 -220 -240 -250 -236 -248  8.6 8.6 8.4 8.5 8.4 8.6 8.3  5591 5922  -165 -132  8.4 8.3  -238 -203  8.6 8.6 8.6 8.7  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)  91  08  12^1  3.6  91 91 91 91 91 91 91 91 91  08  14^3 16^5 18^7 20^9 23^12 26^15 28^17 31^20  3.1 3.5 4.7  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 09  2^22  09 09 09 09  4^24 7^27 9^29 12^32  09 09 09 09 09 09 09 09 10 10 10 10 10 10  16^36 17^37 19^39 21^41 23^43 26^46 28^48 30^50 2^52 4^54  10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11  4.0 4.4 3.7  6^56 8^58 11^61 14^64 16^66 18^68 20^70 23^73 25^75 27^77 29^79 1^82 3^84 5^86 7^88 10^91 12^93 13^94 15^96 17^98 20^101 22^103  1480 1630 1550 1540 1620 1700 1690 1750 1710 1830 1720 1750 1770 1760 1810 1690 1780 1850 2100 1930 2020 1980 1010 1070 2200 2080 2110 2060 2140 2090 2130 2190 2350 2240 2660 2200  1934 1978 1896 1804 1892 2092 1930 2153 1995 2263 1982 2073 2134 2060 2082 2037 2115 2054 2516 2365 2486 2396 1271 1284 2531 2604 2493 2394 2456 2341 2440  4.5 4.7 5.2 4.7 4.1 3.7 4.1 4.0 4.2 3.8 4.3 4.5 4.2 4.9 5.3 4.6 3.8 3.9 4.1 3.4 4.2 4.3 3.6 4.5 3.9 4.8 5.1  2599 2562 2594  4.5 4.1 4.6 4.4 3.9 3.4 3.8 4.1 4.3 4.6  2711 2585  3.8 3.9  130  170 156 107 52 28 31 36 31 30 31 26 25 27 30 32 39 31 27 33 28 25 26 28 24 25 28 26  248 260 312 304 281 223 198 202 186 199 193 144 144 151  110 69 54 55 52 44  23 37 14 2 2 5 3  42 49 45 40  63 57 4 0 2 5 5 1 1 1 0 0 0  2 1 1  47 49 90 208  1 1 11 1  200 188 189 201 100  1 2 3 3 0  1.0 401  1.2  22  432  570 1.0 25 0.7  0.3  405 465  29  0.1  413  445 349  0.0 280 0.0 36  260  0.1 388 0.0  362 418  0.0 370 56  375  403  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO^COD (yy mm dd)^(maiL)^(mg/L)^(mgP/L)^( mgN/L)^(mgN/L)^(mgN/L)^(mgA.)^(mg/1-)  91 91  11 11  25 106 26 107  91 91 91  11 12 12  29^110 2^113 4^115  91 91 91 91 91 91 91 91 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92  12 12 12 12 12 12 12 12 12 12 12 12 01 01 01 01 01 01 01 01 01 01 01  92 92 92 92 92  01 01 01 01 02 02  6^117 7^118 9^120 11^122 13^124 16^127 18^129 20^131 22 133 24 135 26^137 30^141 2^144 5^147 6^148 8^150 10^152 12^154 14^156 15^157 17^159 20 182 22 164 24^166 26 168 30^172 31^173 2^175 3^176  02 02 02 02 02 02 02 02 02 02 02 02  5^178 6^179 7^180 10^183 11^184 12^185 13^186 14^187 16^189 18^191 19^192 21^194  92 92 92 92 92 92 92 92 92 92 92 92 92  2060  2555  3.9  2200 2310 2280 2370 2310 2440 2400  2515 2656 2572 2754 2758 2796 2811 3125 3011 2912 3032 2662 2044  4.2 4.8 4.0 3.9 3.3 3.6 3.8 4.2 4.6 3.7 3.8 3.5 5.5 5.7 6.8 5.6 5.0 7.1 7.6 6.3 5.9 5.5 8.5 11.1 12.3 9.8 8.1 9.2 8.0 9.6 9.5 10.5 8.2  2710 2580 2630 2610 2730 1700 1520 3180 2920 4430 3010 3160 3050 3090 3180 3120 2880 2940 3530 3640 3910 3990 4120 5400 5340 5340 5280 5350 5410 5460 5410 5450 5500 5410 5450 7340 7610 6590  1685 3774 3329 5260 3456 3663 3535 3462 3641 3629 3341 3386 4109 4146 4429 4722 4552 6043 6265 6409 6164 6104 6472 6382 6255 6138 6633 6036 6243 7840 8980 8690  8.1 9.4 10.2 8.6 7.6 8.8 8.3 7.2 9.6 9.3 10.8 11.4  131  86 78 100 85 68 80 84 79 62 80 71 74 64 208 285 260 322 155 126 122 127 135 133 264 235 137 195 194 80 205 206 185 185 184 181 181 178 186 175 211 182 205 174 396 575 384  21  366  11 13 14 27  45  4 1 4  394  450  68 2 0 1 0 0 1 1 40 62 5 3 2 5 4 56 110 139 6 2  2.2 2.1 15.0 33.3 54.7 4.4 1.7  9 2 0 1 60  3.0 1.2 0.6 0.7 18.1  29 18 13 22 2 1 0 5 0 0 0 5 34  29.3 21.9  430 0.3 74  510  C3 480 0.4 1.5 86  481 417 409 454  113  523  116  477  119  531  170  508  126  438 417 527  13.0 12.4 2.2 1.0 0.0 1.1 0.1 0.1 0.1 0.1 0.7  135  573 634  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)  92 92 92 92 92 92 92 92 92 92 92 92 92  02 02 02 02 03 03 03 03  24 27 28 29 1 2 3 4  197 200 201 202 203 204 205 206  03 03 03 03 03  5 6 7 10 11  207 208 209 212 213  6630 6870 6096 6320 6040 6500 5990 6610 6240 5470 6490 6140 6020  7650 8860 9120 9900 9211 9298 8840 8215 8339 7860 8450 8542 8395  10.3 10.7 11.2 10.1 11.6 11.8 14.0  430 447 375 394 394 603 548  3 19  15.7 11.5 11.9 10.6  662 758 503 532 734 758  5 9 5 1  132  5 2 11 4 3  588  3.1 1.3 2.5 0.1 0.9 1.2 6.8 1.8 0.2 0.8  315  219 744  5.2 318  650  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd)^ (mg/L)^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10  12 14 16 18 20 23 26 28 31 2 4 7 9 12 16 17 19 21 23 26 28 30 2 4  1 3 5 7 9 12 15 17 20 22 24 27 29 32 36 37 39 41 43 46 48 50 52 54  4.0 5.0 4.5 4.0 4.0 4.0 4.0 4.6 4.1 3.8 4.9 3.8 4.5 4.0 4.0 4.0 3.4 2.2 3.7 3.5 3.2 3.3 4.0 4.0 4.2  91  10  6  56  91 91 91 91 91 91 91 91 91 91 91 91  10 10 10 10 10 10 10 10 10 10 11 11  8 11 14 16 18 20 23 25 27 29 1 3  58 61 64 66 68 70 73 75 77 79 82 84  91 91 91 91 91 91 91 91 91  11 11 11 11 11 11 11 11 11  5 7 10 12 13 15 17 20 22  86 88 91  3.5 3.5 3.5 3.5 1.9  93 94 96 98 101 103  3.5 3.2 3.2 2.5 2.8 3.0  3.5 4.0 2.9 3.3 3.0 3.5 3.1 3.2 3.2 3.5  7.2  7.2 7.2 7.3 7.5 7.8 7.6 7.7 7.8 7.6 7.7 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.3 7.3 7.3 7.4 7.3 7.5 7.5 7.4 6.5 6.4 6.3 6.0 6.3 6.2 6.0  133  2162 2100 2445 2323 2504 2371 2538 2897 2587 2624 2588 2542 2635  3.6 2.8 3.8 4.0 3.6 3.9 3.5 4.0 4.3 4.7 5.1 3.7 4.0 4.3 4.7 4.5 4.5 4.5 4.6 4.9 4.3 4.9 5.3 4.6 4.2 4.5 3.6 4.6 3.8 3.7 4.6 3.6 5.2 5.2 4.0 4.0 3.9 4.2 3.8 3.3 3.3  2601 2693 2579 2717 2592  3.7 3.9 4.4 3.4 3.6  2730  3459  2580  3680  1650 1600 1800 1520 1590 1680 1710 1770 1740 1810 1820 1760 1790 1690 1760 1710 1700 1850 1780 1690 1970 1930 2000 1990 2210 2310 2190 2220 2200 2220  2181 1990 2243 1808 1887 2084 1965 2205 2075 2257 2132 2085 2159 2003 2041 1992 2090 1994  2250 2180 2250 1930 2890 2220  149 141 95 33 21 8 4 3 2 1 0 0 1 1 1 5 2 2 1 2 1 0 0 0 0 0 0 86 46 29 28 14 0 0 0 0 0 0 0 27 107 96 109 119 134 18  251 268 324 312 292 313 228 229 199 221 238 191 197 182 94 86 69 63 32 29 35 29 30 27 26 24 28 63 76 58 51 54 55 59 48 50 48 48 53 56 82 89 93 86 82 92  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd)^ (mg/L)^(n19/1-1^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02  25 26 29 2 4 6 7 9 11 13 16 18 20 22 24 26 30  106 107 110 113 115 117 118  120 122 124 127 129 131 133 135 137 141 2 144 147 5 6 148 8 150 10 152 12 154 14 156 15 157 17 159 20 162 22 164 24 166 26 168 30 172 31 173 2 175 3 176 5 178 6 7 10 11 12 13 14 16 18 19 21  179 180 183 184 185 186 187 189 191 192 194  4.0 3.5 4.0 4.5 4.0 3.5 2.5 2.2 5.0 2.5 4.0 2.5 3.0 5.0 3.0 3.0 4.0 2.4 2.6 2.7 3.4  5.9 6.6 7.4 7.6 7.3 7.3 7.5 7.8 7.3 7.3 7.4 7.2 7.0 7.6 7.4 7.1 7.3 6.7 7.1 7.2 7.2  3.0 3.0 1.0 1.5 3.4 2.2 2.4 1.8 3.0 2.0 2.0 2.5 2.6 2.8  7.5 7.6  2.9 4.2 3.7 3.7 3.1 3.5  7.5 7.6 7.4 7.4 7.5 7.4  2.9 4.0 3.5 3.5 4.0  7.3 7.3 7.4 6.7 7.0  7.2 7.4 6.6 6.5 6.7 7.3 7.2 7.6 7.0 7.8 7.1 6.8  134  2430 2180 2090 2360 2510 2770 2680 2680 2790 2810 2870 2840 2910 1720 1520 2940 3220 2980 3370 3290 3390 3140 3220 3370 2870 3000 3450 3610 3760 4200 4440 5400 5330 5150 5420 5180 5200 5470 5540 5890 5610 5540 5610 6980 7460 6440  2555 2507 2420 2676 2930 3310 3139 3155 3269 3292 3246 3300 3344 2070 1716 3528 3709 3543 3924 3816 3918 3903 3845 3964 3379 3462 4035 4120 4278 5011 5026 6198 6383 6191 6438 5997 6229 6522 6465 6734 6730 6351 6435 9300 9890 8840  3.5 3.4 5.2 3.7 4.3 3.1 3.7 4.4 4.6 5.0 4.0 3.7 3.7 5.3 5.2 6.4 4.9 5.6 6.2 6.2 5.8 5.6 4.8 8.0 10.8 11.0 10.1 8.8 9.4 7.5 8.8 9.6 11.7 10.1 9.3 8.1 9.3 8.4 6.9 9.0 9.2 8.2 9.8 8.5 11.8 13.0  16 15 10 5 1 0 0 0 2 1 0 0 0 91 163 156 207 18  111 116 114 128 111 85 79 187 110 64 87 78 72 110 88 142 183  3 1 2 1 0 93 65 18 2 2 1 18 0 0 1 0 0  120 125 134 131 118 221 254 325 156 162 169 105 134 125 200 176 169  0 0  164 174 168 180 179 169 167 177 183 83 238  1 0 0 0 0 2 181 246 473  113  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd)^ (mg/L)^ (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)  92 92 92 92 92 92 92  02 02 02 02 03 03 03  24 27 28 29 1 2 3  197 200 201 202 203 204 205  3.9 4.0 5.0 4.7 5.0 5.2 3.0  92 92 92 92 92 92  03 03 03 03 03 03  4 5 6 7 10 11  206 207 208 209 212 213  4.0 3.0 2.5 5.5 7.0 8.0  7.1 6.3 8.9 7.7 7.8 7.9 8.3 8.2 7.8 8.1 7.9 8.3 8.3  135  6650 6440 7010 6800 6480 6770 6470 6830 6840 6780 6210 6570 6370  8010 8620 9260 8890 9125 9275 9202 9445 9176 9783 8275 9299 8887  11.0 12.4 10.1 9.9 11.3 10.5 11.7 13.8 12.5 11.1 11.6  204 364 195 282 235 421 477 512 593 422 468 715 612  91 215 104 133 124 82 65 99 107 136 70  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOO^COD^ VSS^TSS^NH4^NOx (yy mm dd)^(mgN/L)^(mg/L)^(mg/I)^(mg/L)^(mg/L)^(mgN/L)^(mgN/L)  91 91  08 08  12^1 14^3  91 91 91 91 91  08 08 08 08 08  16^5 18^7 20^9 23^12 26^15  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 09 09 09  28^17 31^20 2^22 4^24  91 91 91 91 91  09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10  7^27 9^29 12^32 16^36 17^37 19^39 21^41 23^43 26^46 28^48 30^50 2^52 4^54 6^56 8^58 11^61 14^64  1.3 246  1.5  6  20^70 23^73 25^75 27^77  91 91  10 11 11  91 91 91 91 91 91 91 91 91  11 11 11 11 11 11 11 11 11  29^79 1^82 3^84 5^86 7^88 10^91 12^93 13^94 15^96 17^98 20^101 22^103  24  33  47  24  32 26 25 43 28 31 22 25 31 33 32 28 40 24 32 22 28 35 40 29  455 1.1 8 0.8  0.4  284 340  8  0.3  309  346 280  0.1 266 0.1 12  225  0.3  16^66 18^68  10 10 10 10  317  19  293 0.2  261 290  0.3 218 10  275  304  21 20 36 24 25 19 20 26 27 28 24 33 20 28 19 23 31 33 24 21 41 32 35 29 20 28 41 49 53 68 72 73 97 75 93  '36  147 142 94 31 20 7 3 2 1 1 0 1 1 1 1 1 3 2 1 2 1 0 0 0 0 0 0 84 47 28 26 15 0 0 0  248 271 325 311 291 296 234 218 204 225 234 201 199 180 94 82 65 63 54 33 30 30 29 27 27 24 28 63 76 55  26 49 40 42 34 25 33 48 57 61 79 85 87 112  0 0 0 0 27 105 100 107 117  53 54 55 57 52 52 48 46 53 56 78 90 90 86  92 106  129 17  79 92  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD^  VSS^TSS^NH4^NOx (yy mm dd)^(rtigN/L)^(ing/L)^(mg/L)^(mg/L)^(mg/L)^(mgN/L)^(mgN/L)  91  11  25  106  91 91 91 91 91 91 91 91 91 91  26 29 2 4 6 7  91 91 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02  107 110 113 115 117 118 120 122 124 127 129  92 92  02 02  9 11 13 16 18 20 22 24 26 30 2 5 6 8 10 12 14 15  6 7 10 11 12 13 14 16  131 133 135 137 141 144 147 148 150 152 154 156 157 159 162 164 166 168 172 173 175 176 178 179 180 183 184 185 186 187 189  18 19 21  191 192 194  17 20 22 24 26 30 31 2 3 5  330  10  350  350  320 17.5 8  340  24.3 375 22.2 51.5 79.3 84.7 63.2 55.0 57.7 123.8 145.3 154.2 108.4 108.1 105.3 132.0 151.0 172.3 153.9 92.7 130.3 128.8 103.4 116.8 101.1 108.3 118.2 91.4 197.0  9  315 333 316 435  14  327  14  333  21 20  24 23  85  96  55 157 193 94 74 52 82 36 87  61 180 230 110 87 61 94  71 141 127 160 125 208 121 29 91 160 186 123 216 118 126 153 74 145 122  11  364  14  345  12  8  345 401 382  329 406  137  82 117 184 138 207 130 121 92 118 208 130 128 121 127 382  40 100 84 166 140 190 144 241 140 34 103 179 214 145 254 134 147 176 83 172 136 93 137 222 159 235 155 143 108 132 248 148 146 141 167 490  16 15 0 6 1 1 0 0 3 1 0 0 0 91 160 154 2 17 3 1 1 1 1 92 64 17 2 2 1 17 0 0 1 0 0 0 0 1 0 0 0 0 2 192 249 478  111 111 116 112 126 109 85 79 183 103 65 86 82 73 112 86 145 112 123 122 129 125 116 221 249 325 153 164 167 103 132 128 208 173 173 163 175 165 184 180 166 169 178 185 79 232  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD^ VSS^TSS^NH4^NOx lyy mm dd)^(mgN/L)^Img/L)^(mg/L)^ (mg/L)^(mg/L)^(mgN/L)^(mgN/L)  92  02  24  197  92  02  27  200  92  02  92  02  28 29  201 202  92  03  1  203  92  03  2  204  92  03  3  205  92  03  4  206  92 92  03 03  5 6  207 208 209  92  03  7  92  03  10  212  92  03  11  213  103.0 206.0 91.2 96.0 112.0 75.0 60.2 72.5 93.8 93.9 64.7  423 37  56 531  38  573  138  148 111 391 153 122 145 200 135 184 133 277 167 200  180 153 499 194 174 199 282 183 246 191 365 235  210 369 198 285 231 422 484 497 578 422 384 719  272  578  88 206 100 128 118 80 69 103 112 128 70  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SAT SYSTEM, 20 C)  ^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD^VSS/TSS NOVNOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L)^ (gN/d)^Entering^Removed (gCOD/gN)^(gCOD/gN)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10  12^1 14^3 16^5 18^7 20^9 23^12 26^15 28^17 31^20 2^22 4^24 7^27 9^29 12^32 16^36 17^37 19^39 21^41 23^43 26^46 28^48 30^50 2^52 4^54 6^56 8^58 11^61 14^64  91 91 91 91 91  10 10 10 10 10  91 91  10 10  16^66 18^68 20^70 23^73 25^75 27^77 29^79  91 91  11 11  1^82 3^84  91 91 91 91 91 91 91 91 91  11 11 11 11 11 11 11 11 11  5^86 7^88 10^91 12^93 13^94 15^96 17^98 20^101 22^103  0.00  8  250  13.9 17.7  301  20.6 20.4 15.6  0.00  462 0.01 8  280  301  0.77 0.82 0.82 0.85 0.86 0.81 0.88 0.81 0.86 0.81 0.87 0.84 0.83 0.85 0.87 0.83 0.84 0.90 0.83 0.82 0.81 0.83 0.79 0.83  225  0.80 0.85  324  8  302  325 267  265  10  238  290 253  0.00  0.00  0.05  0.00  0.00  0.00  0.01  0.87  8  0.86 0.87 0.89 0.87 0.84 0.92 0.86 0.98 0.85  276  285  139  0.00  17.4 13.6 13.8 11.0 13.9 14.4 10.4 10.8 10.8 5.0 5.3 4.1 4.0 1.9 1.8 2.0 1.6 1.8 1.9 1.6 1.6 1.8 4.0 4.2 3.2 3.1 3.1 3.2 3.9 2.7 3.2 3.1 2.7 2.9 3.0 5.2 4.8 6.0 4.8 4.9 5.8  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.7 1.6 1.5 3.0 3.1 6.4 4.3 4.1 7.7 5.5 5.5 6.4 6.9 5.9 2.3 2.3 4.5 6.3 6.4 4.8 3.9 5.6 5.2 5.4 6.5 5.9 5.5 3.4 3.7 2.8 3.5 3.5 2.9  0.0 0.0 0.0 0.0 3.7 3.0 19.4 7.4 6.6 3.3 3.1 6.8 5.3 5.0 8.0 5.7 5.7 6.5 7.0 5.9 4.0 5.5 6.3 6.6 6.6 5.3 4.1 5.8 5.3 5.4 6.6 6.0 7.1 3.4 3.8 2.9 3.7 3.6 2.9  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD^VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L)^ (gN/d)^Entering^Removed 19COD/gN)^(gCOD/gN)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  11 11 11 12 12 12 12 12 12 12 12 12 12 12 12  25 106 26^107 29^110 2^113 4^115 6^117 7^118  91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  12 12 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02  10^152 12^154 14^156 15^157 17^159 20^162 22 164 24 166 26^168 30^172 31^173 2^175 3^176 5^178 6^179 7^180  92  02  10^183  92 92 92 92 92 92 92 92  02 02 02 02 02 02 02 02  11^184 12^185 13^186 14^187 16^189 18^191 19^192 21^194  9^120 11^122 13^124 16^127 18^129 20^131 22 133 24 135  312  11  0.81 0.87 0.87 0.89 0.86 0.84 0.87 0.85 0.87 0.86 0.90 0.86 1.03 0.83 0.90 0.84 0.88 0.84 0.87 0.86 0.86 0.89  367  345  303  9  26^137 30^141 2^144 5^147 6^148 8^150  358  355  10  12  310 321 319 437  9  330  13  373  14  356  394 377  11  334 389  140  0.01 0.57  5.6 5.0 4.1 6.9 5.3 8.8 9.9 7.6 7.0 7.9 7.8 7.0 14.0 16.6  4.1 4.9 6.2 3.7 4.8 2.9 2.6 4.6 3.6 3.2 3.5 3.9 2.2 1.8 1.4 6.0 5.3 4.9 7.8 7.0 5.9 3.0 3.5 3.6 3.7 3.9  20.4 8.9 10.0 10.5 6.1 7.2 8.2 12.1 10.7  0.86 0.88 0.84 0.86 0.86 0.89 0.83 0.90 0.87 0.94 0.85 0.76  0.86 0.11 0.25 0.54 0.54 0.67 0.01 0.02  10.3 11.5 10.1 10.2 10.3 10.2 4.5 15.3  0.87 0.86 0.88 0.88 0.85 0.91 0.89 0.85 0.83  353 6  0.60  2.4 2.9 2.8 2.7 2.5 4.7 5.5 5.6 2.0 3.6 7.5  0.42 0.50 0.27 0.30 0.39 0.72 0.81 0.35 0.70 1.18 0.50 0.30 1.01 1.19 1.04 0.57 0.95  0.87 0.86 0.86  327  0.41  7.2 6.2 6.5 6.5 7.2 6.0 5.0 5.0 10.8 7.1 3.5  10.6 10.2 9.8 9.7  4.7 4.4 4.0 4.5 4.6 4.3 4.3 9.9 3.0  3.1 3.2 3.2 3.2 3.3 4.9 5.6 5.9 3.4 3.7 7.5 4.1 4.9 6.2 3.7 4.8 4.3 4.4 4.8 3.7 3.3 3.6 4.1 3.1 3.5 2.8 6.3 5.3 5.2 7.9 7.1 6.0 4.6 4.3 4.1 4.1 4.5 4.8 4.5 4.0 4.6 4.6 4.3 4.3 10.6 3.6  ^ ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD^VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L)^ (gN/d)^Entering^Removed (gCOD/gN)^(gCOD/gN)  92 92 92 92 92 92 92 92 92 92 92 92 92  02 02 02 02 03 03 03 03 03 03 03 03 03  24 27 28 29 1 2 3 4 5 6 7 10 11  197 200 201 202 203 204 205 206 207 208 209 212 213  428  0.87 0.78 0.80 0.77 0.72 0.71 0.78 0.74 0.76 0.77 0.77 0.70 0.79  44  51 510  43  573  141  1.19 0.07 0.47 0.06 0.08 0.33 2.65 0.39 0.02 0.15 10.16  5.7 13.7 6.3 8.3 8.2 4.6 4.1 6.1 6.1 8.1 3.9  8.1 2.6 5.4 4.1 4.2 8.2 9.4 6.1 6.2 4.6 9.6  8.4 2.9 5.8 4.2 4.6 8.6 9.9 6.4 6.9 4.8 9.7  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitrn %Denitrn^Specific NH4 Removal^% NH4^VSS/TSS (yy mm dd)^Rate^Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS)^(mgN/d)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10  12^1 14^3 16^5 18^7 20^9 23^12 26^15 28^17 31^20 2^22 4^24  -90 -1146 -638 741  7^27 9^29 12^32 16^36 17^37 19^39 21^41 23^43 26^46 28^48 30^50 2^52 4^54 6^56  1154 1432 404 1063 1181 3832 3967 1803 1486 1611 1526 1707 1799 1617  10 10 10  8^58 11^61 14^64  91 91 91 91 91 91 91 91 91  10 10 10 10 10 10 10 11 11  91 91 91 91  -1 -10 -5 5 11  100 142 185 52 131 139 453 453 211 162 187 174 193 204 179  1591 1755 2337  13 4 21 22 93 99 94 81 82 97 96 97 98 99 99 58  188 197 253  16^66 18^68 20^70 23^73 25^75 27^77 29^79 1^82 3^84  1767 2301 2949 3007 2901 3682 2610 3183 3067  43 71 95 97 90 95 96 98 99  168 238 292 304 574 688 237 306 291  11  5^86  2626  11 11 11  7^88 10^91 12^93  98 98 77 99  91 91  11 11  13^94 15^96  91 91 91  11 11 11  17^98 20^101 22^103  2810 2347 5136 4725 5928 4572  255 263 225 482 432 505 408 355 528  91 91 91 91  4720 5806  98 98 96 96 100  142  -758 -483 293 367 1467 912 -67 2 310 86 456 458 499 18 -90 -427 -5 -64 -229 212 348 237 -47 332 279 -186 138  -7 -4 4 9 45 31 -3 0 14 4 20 22 22 1 -5 -18 -0 -3 -11 9 17 13 -3 16 14 -10 7  234 1033 1428  3 19 29  672 553 -39 -2 -87  15 13 -1 -0  13 -390 394 202 1692 -2567 -1409 -1134  -3 0 -15 11 6 22 -20 -12 -9  272 -59 -376  2 -0 -5  0.79 0.70  0.76 0.80 0.80 0.84 0.84 0.81 0.87 0.80 0.84 0.80 0.85 0.84 0.83 0.84 0.86 0.86 0.81 0.93 0.82 0.80 0.81 0.83 0.80 0.84 0.87 0.80 0.85 0.85 0.85 0.87 0.85 0.84 0.84 0.75 1.06 0.86  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitrn %Denitrn^Specific NH4 Removal^% NH4^VSSfTSS (yy mm dd)^Rate^Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS)^(mgN/d)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 92 92 92  11  25  106  11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12  26 29 2 4 6 7 9 11 13 16 18 20 22 24 26 30  01 01 01  2 5 6  92 92 92 92 92 92 92  01 01 01 01 01 01 01  8 10 12 14 15 17 20  107 110 113 115 117 118 120 122 124 127 129 131 133 135 137 141 144 147 148 150 152 154 156 157 159 162  92 92 92  01 01 01  22 24 26  164 166 168  92 92 92 92 92 92 92 92 92 92 92 92 92 92  01 01 02 02 02 02 02 02 02 02 02 02 02 02  92 92  02 02  30 172 31 173 2 175 3 176 5 178 6 179 7 180 10 183 11 184 12 185 13 186 14 187 16 189 18 191 19 192 21 194  5638 5479 5625 5587 5425 5702 4909 4716 6229 6881 3446 5575 5029 4063 6858 5229 5907 5942 7305 6877 7710 7428 6683 9916 8357 10260 8446 9884 9839 6000 7169 8052 7884 8613 9291 9254 8403 9569 10173 11504 9833 10231 10235 10155 4218 12774  78 89 87 86 76 95 98 95 58 97 100 99 100 100 99 99 67 60 96 98 98 95 96 71 50 50 95 99  547 498 487 490 458 494 402 393 460 533 262 427 368 478 902 329 405 268 485 435 506 481 420 636 580 698 479 543 503 301  94 98 100 99 65 81 88 91 85 98 99 100 97 100 100 100 93 84  348 298 295 323 352 346 311 350 376 422 358 378 376 277 111 388  143  318 2070 -265 378 1579 1189 -99 -343 1855 169 919 -135 928 159 -828 431 -1038 358 260 1176 898 771 525 465 680 5651 1493 785 10031 2725 2349 1122 1783 1932 2127 2412 2919 2076 3279 -214 2212 437 2505 4282 -3176 22355  5 29 -4 6 26 19 -2 -6 31 3 17 -2 16 1 -4 2 -5 3 3 13 9 8 5 2 4 36 10 5 64 16 15 8 12 13 14 16 20 14 22 -1 15 3 18 14 -9 44  0.95 0.87 0.86 0.88 0.86 0.84 0.85 0.85 0.85 0.85 0.88 0.86 0.87 0.83 0.89 0.83 0.87 0.84 0.86 0.86 0.87 0.80 0.84 0.85 0.85 0.87 0.85 0.88 0.88 0.84 0.88 0.87 0.84 0.83 0.84 0.86 0.83 0.84 0.86 0.87 0.83 0.87 0.87 0.75 0.75 0.73  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm^Specific NH4 Removal^% NH4^VSS/TSS (yy mm dd)^Rate^Denitm Rate^Rate Removal imgN/d)^(mgN/d/gVSS)^(mgN/d)  92 92  02 02  92 92 92 92 92 92 92 92 92 92 92  02 02 03 03 03 03 03 03 03 03 03  24 27 28 29 1 2 3 4 5 6 7 10 11  197 200 201 202 203 204 205 206 207 208 209 212 213  5501 12241  97 90  166 356  5927 8201 7395 4344 3937 5769 5455 7754 3855  94 98 90 95 95 95 90 95 99  194 260 245 134 131 175 175 283 119  1610 9616 3714 7346 4310 4109 9579 6089 4601 11190 11930 12371 7118  1 44  5 23 12 21 13 10 19 12 9 24 25 21 12  0.83 0.75 0.75 0.84 0.71 0.72 0.70 0.74 0.75 0.69 0.75 0.71 0.72  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm^Specific Added^Nitrified^Rate^ Nitm Rate (yy mm dd)^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  91 91  08 08  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09  91 91 91 91 91 91 91 91 91 91 91 91 91  09 09 10 10 10 10 10 10 10 10 10  91 91 91 91  10 10 10 10  91 91 91 91 91 31 91 91 91 91 91  11 11 11 11 11 11 11 11 11 11 11  12 14 16 18 20 23 26 28 31 2 4 7 9 12 16 17 19 21 23 26 28 30 2 4 6 8 11 14 16 18 20 23 25 27 29 1 3 5 7 10 12 13 15 17 20 22  1 3 5 7  0.01  9 12 15 17 20 22 24 27 29 32 36 37 39 41 43 46 48 50 52 54 56 58 61 64 66 68 70 73 75  0.00  0.01  0.00  0.00  0.01  0.00  0.00  0.00  0.00  77 79 82 84 86 88 91 93 94 96 98 101 103  0.01  10.05 10.34 9.81 9.12 8.80  109.44 35.16 23.54 32.54 26.63 3.40 10.16 10.26  8.05 9.67 9.63 9.45 9.20 8.68 9.18 8.80 8.80 9.41 9.49 8.69 9.44  24.34 13.20 6.22 6.21 5.61 8.26 9.02 9.37 3.87 3.73 8.82 10.15  -366 -388  1851 846 1586 3196 3015 3445 2132 1941 2125 4496 4550 2108 1766  9.07 8.42 9.49 10.05  9.29 10.37  9.35 8.90 9.21 9.25 9.89 6.32 3.89 3.67  9.02 9.64 10.69 10.06 9.84 6.27 4.57 4.21  3.89 3.89 3.97 3.84 3.71  3.29 3.59 3.40 2.82 3.83  3.65 5.02 3.55 3.73 1.97 2.03 1.89 2.29 2.16 2.27 2.36  3.32 3.63  1962 1830 1945 1949 1748 1738 2001 2973 2519 2916 3449 3608 3463 4303 3098 3718 3601  3.95 3.67 4.12 2.06 2.09 2.00 2.40 2.49 2.03  3133 3366 2921 6011 5638 6909 5439 5579 6706  145  87 43 70 173 188 199 105 97 75 213 229 91 87 119 111 101 110 100 84 108 36 57 82 88 101 115 136 94 110 120 101 108 50 39 44 48 44 39 92  194 188 191 140 122 126 263 257 121 98 108 104 109 115 99 102 118 161 142 173 175 187 173 216 140 161 164 141 153 132 267 259 307 282 193 302  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn^Specific (yy mm dd)^ Added^Nitrified^Rate^ Nitm Rate (gCaCO3/gN)^(gCaCO3/01)^(mg/d)^(mgN/d/gVSS)  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  11 11 11 12 12  25^106 26 107 29^110 2^113 4^115  12 12 12 12 12 12 12 12 12 12 12 12  6^117 7^118 9^120 11^122 13^124 16^127 18^129 20^131 22 133 24 135 26^137 30^141 2^144  01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02  5^147 6^148 8^150 10^152 12^154 14^156 15^157 17^159 20^162 22 164 24^166 26 168 30^172 31^173 2^175 3^176 5^178 6^179 7^180 10^183 11^184 12^185 13^186 14^187 16^189 18^191 19^192 21^194  0.20  0.22  0.12  2.77  2.31  6730  3.72 4.24 4.05 4.01 4.02 4.12  3.56 3.58 3.49 3.58  6673 6777 6653 6686  3.69 4.06 4.35 2.97 2.87 5.85 3.64 3.87 6.40 3.95 5.14 4.25  6919 5725  4.43 4.08 3.80 4.36 4.35 3.96 3.50 3.27 3.38 3.35 3.80  0.86 1.02 0.94 0.53 0.78 0.72 0.58  4.06 4.05 4.04 3.68 3.91 4.24 4.00 3.63 3.49 3.43 2.99 3.03 3.27 3.18 3.56 3.96 3.60 3.71 3.65 3.61 3.52 3.33  0.69 0.61 0.61 0.65 1.10 0.83  3.35 3.33 3.66 2.64 2.61 2.58  0.41 0.61 0.72 0.29 0.22 0.18 0.79 0.89 0.91 1.03 0.81 0.84 0.66  4.50 4.45 4.57 4.20 4.22 4.77 4.78 5.10 3.82 4.96 4.30 4.04 6.63  146  5504 8021 8034 4121 6467 5790 4811 8029 6163 7418 7834 8486 8095 9051 8773 7875 12249 11093 13839 10071 11527 11629 7120 8594 9302 10022 10562  106 129 104 118 150 134 100 95 195 135 89 116 122 35 39 34 32 79 92 101 105 94 86 63 63 139 78 84 202 51 66 68 77  5.86 5.08 5.23 5.61 4.95 5.17 5.25 4.66 4.35 3.83  11006 11027 10167 11320 12043 13326  85 87 90 104 86  4.31 4.17 4.27 4.39 10.43 3.44  11489 11918 12113 12073 5038 15024  91 82 103 47 14 54  81 84  277 306 324 282 266 250 214 205 287 286 144 228 199 280 528 210 230 263 252 246 267 279 245 363 387 461 292 319 309 170 194 172 188 205 203 213 196 207 217 226 205 215 216 173 68 233  ^  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn^Specific (yy mm dd)^ Added^Nitrified^Rate^ Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  92 92  02 02  24 27  92 92 92 92 92 92 92 92 92 92  02 02 03 03 03 03 03 03 03 03 03  28 29 1  92  2 3 4 5 6 7 10 11  197  1.13  200  0.96 0.88 0.72 0.90 0.91 0.93 0.73 0.88 0.69 0.93  201 202 203 204 205 206 207 208 209 212 213  2.68 2.96  8.30 3.94  3.12 1.78 1.86 1.76 2.33 1.60  8.13 3.37 3.98 6.79 9.71 4.97 4.39 3.17 5.24  1.39 1.40 1.16 1.06 0.94  147  6484  21  98  14557  44  6989 9558 8665 5167 4625  27 34 29 13 12 15 13 26 13  226 100 141 134  6719 6472 9087 4596  76 71 98 95 134 74  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  System^System Aerobic^Aerobic^ Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (mgN/d)  91  08  12  1  91  08  14  91 91 91 91 91  08 08 08 08 08 08 08 09 09 09 09 09  16 18 20 23 26 28 31 2 4 7 9 12  09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10  16 17 19 21 23 26 28 30 2 4 6 8 11 14 16 18  3 5 7 9 12 15 17 20 22 24 27 29 32 36 37 39 41 43 46  20 23 25 27  10 11 11 11 11 11 11 11 11 11 11 11  29 1 3 5 7 10 12 13 15 17 20 22  91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91  1374 1112 882 1453 428 1497 2147 1947 1855 2180 1830 1578 1691 1975  12 9 11 37 24 74 89 92 95 97 99 98 97 97  10  29 30 56 85 90 97 98 99 99 100 100 100  10 10 10  16.1 17.0 16.5 15.6 16.8 16.4 17.2 17.2 16.5 16.7 16.3 16.7 16.2 17.2 16.5 17.2 16.9 16.2 16.9 17.2 17.4  99 100 99 99 100 100 100 100 100 100 70 84 91 91  100 100 99 97 99  48 50 52 54 56 58 61 64 66 68 70  1941 2468 1989 1841 2271 1899 1560 1650 1924 1779 1750 2076 1851 1821 1464 1601 1970  97 87 94 93 98 93 95 100 100 100 100 100 100 22 33 45 50  10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  73 75  2614 2998  73 100  10 10  15.5 14.3  95 100  77 79  3157 3279 3371 2995 3088 3108 4125 7512 6650 5995 4575 4754 5971  100 100 100 100  10 10 10 10 10 10 10 10 10 10 10 10 10  14.2 16.8  100 100 100 100 100 100 95 81 84 81 80 77 97  82 84 86 88 91 93 94 96 98 101 103  99 99 70 49 52 42 37 33 82  148  17.0 16.5 15.7 15.3 15.0 14.2 14.3 14.4 '3.2 14.7 13.5  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (mgN/d)  91 91 91 91  11 11 11 12  25 26 29 2  106 107 110 113  91 91 91 91 91 91 91 91 91 91 91 91 91 92 92 92 92  12 12 12 12 12 12 12 12 12 12 12 12 12 01 01 01 01  4 6 7 9  115 117 118 120  11 13  92 92 92 92 92 92  01 01 01 01 01 01  122 124 127 129 131 133 135 137 141 144 147 148 150 152 154 156  92 92 92 92 92 92 92 92  01 01 01 01 01 02 02 02  92 92 92 92 92 92 92 92 92 92 92  02 02 02 02 02 02 02 02 02 02 02  16 18 20 22 24 26 30 2 5 6 8 10 12 14 15 157 17 159 20 162 22 24 26 30 31 2 3  164 166 168 172 173 175 176  5 6 7 10 11 12 13 14 16 18 19 21  178 179 180 183 184 185 186 187 189 191 192 194  5144  81  4156 5879 5312 4376 5169 5735 5756 3957 5888 4601 5539 4721 7700 8783 7245 8255 8731 9011 7943 8498 9287  80 90 94 98 100 100 100 96 99 100 100 99 56 42 40 35 88 98 99  9080 12376 12777 8685 12803 13651 5698 12686 13049 13740 12954 13009 13025 12964 11699 12507 11616 15541 12543 14468 11616 13859 20776 -6886  10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  98 100 100 64 72 87 99 99  10 10 10 10 10 10  99 91 100  10 10 10 10 10 10 10  100 99 100 100 100 100 100 100 100 100 100 99 54  10 10 10 10 10 10 10 10 10 10 10  57 -25  149  16.9 17.4 14.0 15.5 11.6 10.4 13.9 14.5 16.1 14.3 16.5 14.2 15.2 10.3 10.1 12.3 13.2 12.5 13.7 17.4 14.6 12.5 12.0 13.5 10.5 13.3 13.9 13.4 16.0 13.7 14.5 16.6 15.5 13.8 15.1 13.4 15.4 15.5 16.2 15.5 13.9 15.3 15.2 16.4 16.3 12.3  97 97 98 99 100 100 100 100 100 100 100 100 100 89 82 82 77 98 100 100 100 100 100 93 95 99 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 90 87 77  AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal  InigN/d)  92  02  24  197  92 92 92 92 92 92  02 02 02 03 03 03  27 28 29 1 2 3  200 201 202 203 204 205  92  03  4  92 92 92 92 92  03 03 03 03 03  5 6 7 10 11  16200 5784 12418 7824 11746 11378 4488  52 18 47 28 40  206  9788  21  207 208 209 212 213  10139 5129 3727 634 9298  21 15 11 1 18  10 10 10 10 10 10  29 11  1 50  15.3 16.3 11.6 15.8 16.0 15.5 57.4  89 79 89 84 87 78 73  97.8 71.5 94.4 39.5 69.9 59.0  76 72 79 75 63 72  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(ml/h)^(ml/h)^(Lid)^Wasting^Overflow (Lid)^(L/d)  91  08^12^1  9.9  0  0  0  5.0  59  0  69  0  0  0  5.1  58  0  0 0  0  0  5.3  0 0  0 0  5.3 5.4  53 60  0 0  67 63  55  0  70 66  0 0  0  5.0 5.2 5.0  63 62 55  0 0 0  73 72 65 68 66 72  91  08^14^3  9.7  91 91  08^16^5 08^18^7  91  08^20^9 08^23^12  9.6 9.8 10.1  0  9.8 10.0  0  91 91 91 91  08^26^15 08^28^17 08^31^20  91 91  0  9.9  0  0  09^2^22  10.0 10.0  0 0  0 0  09^4^24 09^7^27 09^9^29  9.8 10.0 10.0  0  91 91  0 0  91 91 91  09^12^32 09^16^36 09^17^37  9.8 9.6 9.8  0 0 0  91 91 91  09^19^39 09^21^41 09^23^43  10.0  0  9.8 9.9  0 0  91 91  09^26^46 09^28^48  9.6  91  0 0 0  91 91  09^30^50 10^2^52 10^4^54  9.5 9.4  91 91 91  10^6^58 10^8^58 10^11^61  9.7 9.9 9.6 9.9 10.0  91  10^14^64 10^16^66 10^18^68  91 91 91  0 0  0  0  5.3 5.4 5.4  57  0 0  56 62  0.5 0.5  6 6  0 0  5.2 5.3  62 66  11 11 11  0  5.0  68  0.5 0.5 0.5  0 0  5.1 5.3  64 66  11 5.4 5.4  0  5.3  0 0  5.2 4.9  7.1  0 0 0  0 0 0  6.8 7.2  0 0  7.4  0 0  7.8 7.3  0 0 0  10.1  8.4  10.1 10.0  8.2 8  6.5 6.8 6.8  6.9 7  0  73 77 78 74 76  61  0.5 0.5 0.5  72  61 56  0.5 0.5  71 66  5.0 4.9  61 60  71  5.2  70 72  5.3 5.1 4.9  62 64 67 58  0.5 0.5 0.5 0.5 0.5 0.5  74 77 68  5.2 5.0  61 61  0.5  71 71  0  4.9  55  0.5 0.5  0 0  4.8 4.8  62 65  0.5 0.5  73 75  0.5  68 68  65  10.0  8  10.0  8.2  6.8 7  0 0  5.1 5.3  58 58  9.8  8 8.2  7.2 7.1  0  5.0  60  0.5 0.5  0  8 8.2 4  7.1 6.9  0  5.2 5.0 4.8 5.1  0.5 0.5 0.5  6.9  0 0  56 61 59 63  0.5  3.45 3.2 6.9  7.2 7  0 0  6.9  0  5.1 5.1 5.0  66 60 60  7.1 7.5 7.4  7.3 7.4 7  7.5  6.9  5.1 5.2 5.4 5.3  54 53  9.7  0 0 0 0  54 60  0.5 0.5 0.5 0.5 0.5 0.5 0.5  70  9.8  7.3  7  4.8  4.8  61  0.5  72  91  10^20^70 10^23^73  91 91  10^25^75 10^27^77  91 91  10^29^79 11^1^82  9.6  91 91 91  11^3^84 11^5^88 11^7^88  9.6 9.4 9.4  91 91 91  11^10^91 11^12^93 11^13^94  91 91  11^15^96  9.2 9.0 9.4 9.4  11^17^98  91  11^20^101  9.7 9.4  151  70 66 71 69 73 75 70 70 64 63 63  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate Flowrate^i Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate i Date^Day Influent^ CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^IL/d)^Wasting^Overflow (L/d)^(Lid)  91^11  22 103  9.6  7  7  4.6  4.6  64  0.5  91^11  25 106  9.9  6.9  7.2  4.3  4.3  56  0.5  66  91^11 91^11  26 107 29^110  9.7 9.6  7.3 7.3  7.3 7.5  14.9 15.3  91^12  2^113  9.6  7.4  7.4  14.9 15.3 15  15.0  60 56 54  0.5 0.5 0.5  70 66 64  91^12 91^12 91^12  4^115 6^117 7^118  9.6 9.6 9.6  7.4  7.4 7.3  15.0 15.2 14.4  59 55 61  0.5 0.5  7.2  15 15.2 14.4  69 66 71  91^12  9^120  9.7  7.2  14.7  14.7  56  0.5  66  91^12 91^12  11^122 13^124  9.5 9.7  7.4  15.3  62  0.5  72  7.5  7.5  15.1  15.3 15.1  61  0.5  72  91^12 91^12  16^127 18^129  9.8 9.9  7.5 7.4  7.6 7.3  15.5 15.3  15.5 15.3  56 58  66 69  9.5 9.4  7.7 6.6  7.2  14.7  14.7  55  0.5 0.5 0.5  65  14.8 15.3  62 58 55  0.5 0.5  72 69  15.1  14.8 15.3 15.1  7.8 6.9 6.8 7.4  0.5  74  91^12  20^131  91^12 91^12  22 133 24 135  91^12  26 137  9.5 9.6  7.3 7.3  7.4 7.4 7.4  0.5  66  91^12 92^01  30^141 2^144  9.7 9.4  7.3 7.3  7.4 7.6  15.1 31  15.1 31.0  56 52  0.5 0.5  66 63  92^01 92^01 92^01  5^147 6^148 8^150  30.9 30 31  30.9 30.0 31.0  63 63 60  0.5 0.5 0.5  73 74 70  10^152 12^154 14^156  7.5 7.2 7.2 7.3  7.7 7.5 7.4  92^01 92^01 92^01  9.3 9.5 9.2 9.0 8.9 8.7  29 30 41.3  29.0 30.0 41.3  52 56 61  0.5 0.5 0.5  62 66 71  92^01  15^157  29  7.3 7.4 8.2 8  39  39.0  55  0.5  66  92^01 92^01  17^159 20 162  7.8 7.5  38 36  38.0 36.0  61 54  0.5 0.5  71  8.3  29 29  92^01 92^01  22 164 24 166  8.4 8.6  29 28  7.4 7.2  36 36  36.0 36.0  61 64  0.5 0.5  71 74  36.0  59  0.5  70  37.3 35.0 34.4  54 56  0.5 0.5  64 66  54  72  8.5 8.5  7 28.9  92^01  26 168  92^01 92^01  30 172 31^173  8.7 8.7  27 26.9  7.4 7.9  36 37.3  8.6  26  7.5  35  92^02 92^02 92^02  2^175 3^176 5^178  8.5 8.6 8.8  25.6 26 27  7 7.3 7.4  34.4 37.5 38  37.5 38.0  62 55  0.5 0.5 0.5  92^02 92^02 92^02 92^02  6^179 7^180 10^183  8.7 9.0 8.7  27.3 26 25  7.4 7.4 7.6  39.5 37  39.5 37.0  8.9  26  7.6  36.0 37.0  0.5 0.5 0.5  11^184  36 37  52 54 53  92^02 92^02 92^02 92^02  12^185 13^186  9.1 8.8  27 26  7.7 7.6  36.0  14^187 16^189  8.8 8.9  26 25.8  7.9 7.4  36 35 34.8  35.0 34.8  36  92^02  18^191  8.6  26  7.3  36  1 52  64  64 66 63 65 63 67  56  0.5  57 59  0.5 0.5  36.0  64 66  0.5 0.5  70 75 77  36.0  68  0.5  78  68  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 CI  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic (YY mm cid)^(Lid)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/c1)^Wasting^Overflow (L/d)^(L/d)  92  02  19^192  8.8  26  7.5  36  36.0  58  0.5  92  02  21^194  8.5  26  7.7  8.7 8.6  26 26.2  7.7  56  68 66  02 02 03  8.6  23.5  8.2 7.3  0.5 0.5  92 92 92  24 197 27 200 28 201  58 58  68  02 02  36.0 36.0 32.6  0.5  92 92  36 36 32.6  0.5  65  8.5 8.7  25.3 24  7.8 7.3  36.0 41.4 40.0  55  29 202 1^203  36 41.4 40  52 61  62 71  2^204 3^205 4^206  8.5 8.5 8.4  25.6  8 8.3 7.9  41.2 58.4 54.3  41.2 58.4 54.3  56  0 0 0 0  70  5^207  8.4  8  42  42.0  54  0 0  71 64  0 0  92  03  92 92  03 03  92 92 92 92  03 03 03 03  92  03  24.7 27.4  59 60  69  66  8.6  26.9 26.9  10 212  26.9 26.4  8 8 6.6  42 42 35  42.0 42.0 35.0  58  8.6 8.9  62 60  0  69 72 70  11^213  9.0  30  7.2  35  35.0  55  0  66  6^208 7^209  1 53  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. NH4CI^Simulated^CH3OH^o-PO4 NaHCO3  Date^Day^Aerobic^ (yy mm dd)^Overflow^ (L/d)^  19/1-1^Influent NH4^(mL/L)^19P/L)^(g/L) (mgN/L)  91  08^12^1  69  0  208  91  08^14^3  67  0  202  91  0  213 214  91 91  08^16^5 08^18^7  63 70  08^20^9  91 91  08^23^12 08^26^15  66 73 72  91  08^28^17  91 91  08^31^20 09^2^22  91  09^4^24  66 72  0 0 0 0  65 68  222 243 210  0 0 0 0  211 215 221 217  0 0  0.816  0  0.816 0.816  0 0  0.816  0.816  0 0 0  0 0  0.816 0.816  0 0  0  0.816 0.816 0.816  0 0  0 0  0 0 0  0 0  0.816 0.816  0 0 0  91  09^7^27  73  91 91  09^9^29 09^12^32  77 78  0 0 0  203 211 209  25 25  91 91  09^16^36 09^17^37  74 76  0 0  195 188  50 50  0.816 0.816 0.816  0 0  91 91 91  09^19^39 09^21^41 09^23^43  72 71  0 0  91 91 91  09^26^46 09^28^48 09^30^50  91 91  10^2^52 10^4^54  91  10^6^56  91 91  10^8^58 10^11^61  91  10^14^64  91 91  10^16^66 10^18^68  25  0.816  0  206  0 0  192 200  50 100 100  0.816 0.816 0.816  0 0 0  215 190 179  100 80 50  0.816 0.816 0.816  0 0 0  0  193  0.816  0  77 68  0  203  43 50  0  196  50  0.816 0.816  0  71 71 65  0 0  195 183  50 50  0.816 0.816  0 0  66 71 70 72 74  0  0  19  281  50  0.816  0  19 19  290 314  75 75  0 0 0  91  10^20^70  73 75 68  19  289  75  0.816 0.816 0.816  91 91  10^23^73 10^25^75  68 70  19 19  301 288  84 84  0.816 0.816  0 0  91 91  10^27^77 10^29^79 11^1^82  66 71  19 19  0.816 0.816  0  69  19  11^3^84  73 75 70  0.816 0.816  0 0  0.816 0.816  0  91 91 91 91  11^5^86 11^7^88 11^10^91  301  70  19  312 320 236  70 84 84  55 48 88  336 318 614  84  615 620  11^12^93  70 64  91 91 91  11^13^94 11^15^96 11^17^98  63 63 70  88 88 88 88  596 597  91  11^20^101  72  88  595  91 91  154  84 84 84 84 84 84 84  0.816 0.816  0  0 0 0 0  0.816 0.816 0.816  0 0  0.816  0  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SAT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic^ NH4CI^Simulated^CH3OH^o-PO4 NaHCO3 (yy mm dd)^Overflow^ (Lid)^ -- ----  (g/L)^Influent NH4^(nt/L)^(gP/L)^(g/LI (mgN/L)  91^11^22^103  75  88  587  84  0.816  15  91^11^25^106  66  560  70 66  625 582  0.245 0.245  47 47 54  91^12^2^113  88 88 88  0.245  54  91^12^4^115 91^12^6^117  65 70 66  84 84 84 84  0.816  91^11^26^107 91^11^29^110  88 88 88  610 625  71  91^12^9^120 91^12^11^122  67  88 88  0.245 0.245 0.245  54 54  91^12^7^118  180 135 135  547  135 100  0.245  54 54  72  595  578  91^12^13^124 91^12^16^127  72  88 88  605 601  67  88  91^12^18^129  69 65  543 533  110 110  579  110  910  91^12^20^131 91^12^22^133 91^12^24^135 91^12^26^137 91^12^30^141 92^01^2^144 92^01^5^147 92^01^6^148  72 69 66 66 63 74 74  88 88 175 175 175 190 190 190 190  110  ').245  35  110 150  35 70 70  1021 1034  150 150 120  0.408 0.408 0.204  90 90 65  120 120 130  0.204 0.204 0.204  53 53  0.204  43 43 75  988 950  92^01^8^150 92^01^10 152 92^01^12 154  71 63  190 190  1090  67  190  92^01^14^156 92^01^15^157  72  70 70  1047 1463  130 130 150  70 70  1515 1546  150 150  1565  165  80 80  1782 1664  80 80 80  1623 1611 1579  80 80 80  1581 1571 1580  92^01^17^159 92^01^20 162  65  92^01^22 164 92^01^24 166 92^01^26 168  72 75 71  92^01^30 172 92^01^31^173 92^02^2^175  65 67 65  92^02^3^176 92^02^5^178  73 67  165  0.202 0.202  75 75  165 165  0.202 0.202  69 69  165 165 230  0.202 0.202 0.231  83 83 83  230 165  0.231 0.231 0.231  83 75  0.231 0.231 0.231  88 88  64 66 64  80 80 80  1599 1504 1541  165 165 245  92^02^11^184  68  80  92^02^12 185 92^02^13 186  69 71  210  92^02^14 187 92^02^16 189  76 78  80 80 80  1535 1558  80  92^02^18^191  79  115  1464 2122  0.245 0.245  75 75  92^02^7^180 92^02^10 183  1542 1559  0.204  53  0.245  92^02^6^179  1 55  45 35  0.245 0.408 0.408  1059 1025 1080  67 72  0.245 0.245 0.245  54  245  0.231 0.231 0.231  75  83 78  210 210 210  0.231  78 78  210  0.231  83  78  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic^ NH4CI^Simulated^CH3OH^o-PO4 NaHCO3 (yy mm dd)^Overflow^ (g/L)^Influent NH4^(mL/L)^(gP/L)^(g/L) (L/d)^  (mgN/L)  92  02  19^192  69  115  2093  210  0.231  83  92  02  21^194  69  115  2154  210  0.231  92 92 92  02 02 02  24 197  115  0.231 0.231  83 90  66  115 115  2099 2140  210  27 200 28 201  69 67  92 92 92  02 03 03  29 202 1^203 2^204  63 72 67  92 92  03 03  3^205 4^206  71  92 92 92  03 03 03  92 92  03 03  80  1950  210 100  0.231  83  115  2086  100  0.231  115 115  1953 2129  100 100  0.231 0.231  83 88 88  2072 2281  100 100  0.231 0.231  88 88  5^207 6^208 7^209  72 65 70 73  115 115 115 115 115  2236 2194 2205  100 100 100  0.231 0.231 0.231  88 88 40  10 212 11^213  71 67  115 115  2124 2302  100 100  0.231 0.231  20 0  1 56  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Date^Day^ (yy mm dd)^  System^System^System^Anoxic^Anoxic Loading^Loading^Loading^ ORP^pH CH3OH^o-PO4^NaHCO3^ (mV) (gCOD/d)^(gP/d)^(gCaCO3/d)  0.00  0.098 0.100  2095 2094  4  0.00  0.104 0.104  2092 1955  22 30  0.00  0.106  1955  30  0.00 0.00  0.098 0.101  1956 2035  20  0.00 0.00  0.099 0.103 0.105  2035 2034 2034  19 29 54  0.00  0.106  1885  47  09 09  4^24 7^27 9^29  4.27 4.27  0.102 0.104  1860 1860  12^32  7.84  0.097  -28 -80 -113  7.9 8.0  91 91 91  09 09 09  16^36 17^37 19^39  15.67 15.67  0.100 0.103 0.104  -105 -100  7.9 7.8  91 91  09 09  21^41 23^43  -117 -106 -110  7.8 7.8 7.8  91 91  09 09  91 91 91  91 91  08 08  12^1 14^3  91 91  08 08  16^5 18^7  91  08  20^9  91 91  08 08  23^12 26^15  91 91 91  08 08 09  28^17 31^20 2^22  0.00  91 91  09 09  91 91  0.00 0.00  30  20 7.5  7.5  0.103 0.097  26^46 28^48  15.67 15.39 15.39 19.66 15.96  1838 1836 1788 1790 1813 1815  0.097 0.097  1806 1806  -135 -126  7.8 7.9  09  30^50  10.12  0.102  1803  -141  7.8  10 10  2^52 4^54  8.33 10.26  0.103 0.100  1806 1806  -128 -165  7.8 7.8  91 91  10  6^56  10.54  0.095  1805  -160  7.8  10  8^58  -174  7.8  10 10  11^61 14^64  0.102 0.099  1803  91 91  11.11 10.40 9.26  0.096  1806 1776  -184 -90  7.8 7.9  91 91 91  10 10 10  16^66 18^68 20^70 23^73 25^75 27^77  -92 -112 -154 -188 -140  7.8 7.7 7.7  10 10 10  0.095 0.095 0.100 0.104 0.099  1146 1146 1145  91 91  14.53 14.53 14.53 16.75 17.23  10  29^79  91  11 11  91 91  14.16  0.101  1144 1143 1142  -175  7.7  1^82 3^84  14.16 16.52  0.098 0.094  1141 1143  -199 -215  7.7 7.7  16.52  0.099  1154  -186  11 11  5^86 7^88  17.23 16.75  0.099 0.100  1154 1155  -207 -207  7.7 7.7  91 91  11 11  91  16.52 17.47 17.71  0.098 0.099 0.102  1144 1141 1142  91 91  11 11 11  10^91 12^93 13^94  16.75 16.52  91  11  15^96 17^98 20^101  0.105 0.104 0.094  1295 1297 1314  -128 -124 -105 -124 -164 -209  91 91 91  16.75  1 57  7.6 7.7  7.8 7.6 7.6 7.6 7.7 7.6 7.5  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  ^System^System^System^Anoxic^Anoxic Date^Day^ Loading^Loading^Loading^ ORP^pH (yy mm dd)^  CH3OH^o-PO4^NaHCO3^ (mV) (gCOD/d►^(gP/d)^(gCaCO3/d)  91  11^22^103  16.75  91 91 91 91  11^25^106 11^26^107 11^29^110 12^2^113  17.23  91 91 91  12^4^115 12^6^117 12^7^118  91 91  12^9^120 12^11^122  27.70 21.09  91 91 91  12^13^124 12^16^127 12^18^129  23.51  91 91 91 91  12^20^131 12^22 133 12^24 135 12^26 137  91  12^30^141  92 92 92  01^2^144 01^5^147 01^6^148  0.090 0.084  1411  -227  1597  -415  7.7  0.088 0.090 0.088  2305 2489 2466  -162 -135 -138  7.8 8.1 8.2  0.088 0.089 0.085  2467 2476 2416  -145 -150 229  8.3 8.1  0.086 0.090 0.089  2438 2499 2277  -204 -169  8.4  0.091 0.090  2355 2343  -205 -329 -330  8.3 8.3 8.2  23.19 31.63  0.086 0.145 0.150  2336 3106 3139  -290 -200 -180  8.1 8.3 8.2  31.63  0.148 0.148 0.152  3545 3531 4526  -222 -215 -200  8.4  31.63 25.99 26.33 25.64  0.151 0.147 0.152 0.142  -207 -201 -182  8.5 8.4  27.41 27.04 27.41 35.05  3989 3882 4031 3478  0.147 0.243  3553 6116  -221 -156  8.2 8.4  -160  34.19 33.34  0.229 0.223  5933 5509  8.3 8.3 8.1  35.15  0.175  5371  -210  34.69  0.175 0.175  5365 4946  -209 -283  0.175  4892 5812 5565  -156  17.47 17.95 17.71 37.95 28.08 27.70  23.82 22.88 22.57  92  01^8^150  92 92  01^10^152 01^12^154  92 92 92 92  01^14^156 01^15^157 01^17^159 01^20 162  92 92  01^22 164 01^24 166  92  92  01^26 168 01^30 172 01^31^173 02^2^175  37.03 35.15 45.88  92 92  02^3^176 02^5^178  47.84 34.69  0.191 0.208 0.211  92 92 92  02^6^179 02^7^180 02^10 183  34.69 34.69 53.06  0.219 0.205 0.200  92 92 92  02^11^184 02^12^185 02^13^186  53.06 46.07 45.48  0.205 0.200 0.194  92 92  02^14 187 02^16^189  47.27 44.28  92  02^18^191  43.68  92 92  33.75 34.69  0.181 0.170  1 58  5584 5895  -100 -134  -163 -132 -150 -145  7.8  8.2  8.2  7.8 8.6  8.6  8.6 8.4 8.6 8.3 8.6 8.6 8.6 8.5 8.3  5426  -118  5614 5932  -108  8.3 8.6  5968 5681  -176 -209 -180 -208 -210 -215 -190  8.5 8.5  0.193 0.200  5219 5214 5210 5345  0.200  5711  -234  8.2  8.6 8.6  8.5 8.5  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  ^System^System^System^Anoxic^Anoxic Date^Day^ Loading^Loading^Loading^ ORP^pH (yy mm dd)^  CH3OH^o-PO4^NaHCO3^ (mV) (gCOD/d)^(gp/d)^fgCaCO3/d I  92  02  19^192  44.88  0.200  5620  -241  8.1  92  02  21^194  46.07  0.200  5757  8.2  92 92  02 02  24 197 27 200  46.07 49.07  0.200 0.181  6074 5166  -235 -197 -236  92  02  28 201  20.80  0.200  5783  -150  8.5  92 92  02 03  29 202 1^203  22.23 20.80  0.230  6467 6493  -142 -142  8.4 8.3  6726 9076 8576  -159  8.4  -160 -190  8.4 8.9  -135 -144 -117  8.8 8.4 8.4  0.222  8.9 8.4  92  03  2^204  22.80  0.229  92 92  03 03  92 92  03 03 03  23.65 22.51 22.80  0.324 0.301  92  3^205 4^206 5^207 6^208 7^209  03  10 212  0.233 0.233 0.233 0.194  6910 6799 3762  92  22.80 22.80 18.81  2252  -128  8.6  92  03  11^213  20.52  0.194  1206  -117  8.9  1 59  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^IrritA)^In1911-1  91  08^12^1  4.4  91 91 91 91  08^14^3 08^16^5 08^18^7  4.3 4.6 4.6  08^20^9  91 91  08^23^12 08^26^15  4.1 3.9 3.4  91  08^28^17  3.4  34  191  91 91  08^31^20 09^2^22  29 28  187 201  91 91  09^4^24 09^7^27  3.8 3.7 4.1  91  09^9^29 09^12^32  91 91  223 198  4  128 80 45 39  35 79 227 288  32  200  5  338  159.0  1.3  1210  1539  24  193  1420 1750 1820  1770 2238 2292  3.8 4.1  24 28  163 157  3.9  25  151  2041 2240 2075 2023 2143 1762 2189  4.5 4.5 4.1 5.1 4.8 5.3 4.1  27 27 24 26 24 24 24  40 53 27 3 1 1 1  0.0  2190 2300  4.5  26  1  0.0  5.3 4.6 4.6  24 25 26  4 1 0  0.0  23 25  0 0 13  09^16^36  1640  91 91  09^17^37 09^19^39  1760 1770  91 91  09^21^41 09^23^43  1760 1860  91 91  09^26^46 09^28^48  1605 1990  91 91  1840  91  09^30^50 10^2^52 10^4^54  91 91  10^6^56 10^8^58  91  2070 2240  2867  2060  2396  2200 2110  2845 2536  4.0  10^11^61  91  10^14^64  2280  2502  5.3  91 91  10^16^66 10^18^68  2420 2360  2869 2904  4.9 5.3  36 37 50  91  10^20^70  2410  2646  4.2  37  1  91 91 91  10^23^73 10^25^75 10^27^77  2690 2790 2980  2986 3929 3383  3.9 4.3  33 35  1 1  3.7  40  91  10^29^79  3419  11^1^82 11^3^84  3159 3849  4.8 4.7  39 40  7 8  91 91  2780 2850 2960  5.2  91 91  11^5^86 11^7^88  2800 3230  3262 3992  5.1 5.3  51 38 44  91 91 91  11^10^91 11^12^93 11^13^94  2890 2880 2900  3660 3757 3399  4.6 3.7  80 174  3.5  164  1 9 11  91 91  11^15^96 11^17^98  2930 3040  3716 3589  3.8 4.8  146 138  2  91  11^20^101  2930  3563  3.8  133  1  5.0  160  19  0.7  362  22  1.0  24  347  329 330  341  41  348  0.3 354 0.0  341 369  0.0  0 0 0  347 355  5 3  0  359  335 50  392  370  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Day  Date Ivy mm  dc0  Anoxic VSS  Anoxic TSS  Anoxic o-PO4  Anoxic NH4  Anoxic NOx  Anoxic NO2  Anoxic BOO  Anoxic COD  (mg/Li  (mg/Li  (mg1:11-)  (mgN/1.)  frtigN/1.1  (mgN/L)  (mg/Li  (mg/Li  91  11  22 103  3140  3937  4.3  125  1  91 91 91  11 11 11  25 106 28 107 29 110  2870  3513  4.0  1  2860 2680  3515 3175  139 96 81  7 12  91  12  2^113  2990  3758  3.2 3.6 3.0  78  10  91 91  12 12  4^115 6^117  3120 2960  3933 3415  3.6 3.5  91 85  0 6  91 91  12  7^118  3210  3686  3.0  12  4120 4031  3.8 3.9  1 0  12  3450 3230  84 70  91  9^120 11^122  91  12  13^124  3330  3.4  88 80  20 0  91  12  16^127  3110  3845 3583  0  91 91  12 12  18^129 20^131  91 91  12 12  22 133 24 135  3160 3330 3610 3660  3933 3790 4403 4466  4.0 3.4 4.1 4.5  75 76 82 154 139  91 91 92  12 12 01  26 137 30^141 2^144  3530 3490 3530  4153 3905 3980  6.5 7.5 7.3  128 133 130  92 92  5^147 6^148  3690 4090  4220 4669  5.9 6.6  92 92 92  01 01 01  8^150  01 01  10^152 12^154  4120 3980 3980  4816 4739 4895  92 92 92  01 01 01  14^156 15^157 17^159  4040 3260 2980  4955 4204 3638  3.5  1 0 30 12 3  366  39  385  397  421 0.0 94  431  0.2  1 6  0.0  123 120  4 1  0.0  444  5.9  135  3  5.8 5.2  156 133  0 0  0.0  426 440  8.1 8.3 10.4  207 260 305  98  2.9 3.7  97 118  555  92  01  20 162  3450  4356  9.4  193  22  4.9 18.0  92 92 92  01 01 01  22 164 24 166 26 168  4300 5070 4980  5276 6130 5884  9.4 9.1  201 302  6.8  217  52 11 67  15.1 4.6 15.6  92  01  30 172  5410  6704  92 92  01 02  31^173 2^175  5700 6140  6765 7836  7.2 8.4 7.7  196 188 184  2 13  0.7 6.1  0  1.3  92  02  3^176  6050  7089  92 92  02 02  5^178 6^179  6110 6280  7705 7427  6.6 6.0  186 189  1 38  12.9 36.0  6.1  92 92  02 02  7^180 10^183  6400 6370  7779 7776  6.0 5.6  191 174 192  39 31 0  38.0 22.0 1.2  92 92 92  02  11^184  6486  8358  02 02  12^185 13^186  6290 6600  8008 8303  6.5 7.1 7.2  218 181 207  2 0 0  1.4 0.1 1.1  92 92 92  02 02 02  14^187 16^189 18^191  6530 6350 7880  8519 7652 10004  6.6 6.4 5.0  190 178  1 0  0.2 0.4  263  0  0.4  161  78  0.0  407 105  473  95  507  134  533  170  594  457 133  502 578  141  486 672  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^Img/L1^Img/L1^(mgPIL)^ImgN/L1^I mgN/L)^(mgN/L)^(mg/L)^I mg/L)  92  02  19 192  8840  11088  6.4  363  1  0.2  92  02  21^194  10410  13713  5.1  358  1  0.3  92 92  02 02  24 197 27 200  9930 10290  6.5 8.4  332 468  1 1  0.5 0.7  92  02 02  7.3  536 491 430  45 13  2.4 0.6  34  0.7  3  3.1  19 5  1.3  92 92 92 92  28 201  8830  13308 13678 11781  03  29 202 1^203  7360 8780  9634 11683  7.9 10.2  03  2^204  9661  11.0  03 03 03  3^205 4^206  7000 6870  9103  13.6  447 375  9206  14.4 12.1  394 394  10.4 8.6  603 548 662 758  92 92 92 92  03 03  92 92  03 03  6610 6240  5^207 6^208 7^209 10 212  5310 4990 5010  11^213  6090  8506 7424 6310 6572 8143  1 62  2 11 4  758 327  294 892  2.5 0.1 0.9 1.2 410  808  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^PH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd)^ (mg/L)^(mg/L)^(mg/L)^lingP/1.1^(mgN/L)^(mgN/L)  91  08  12^1  4.0  4.8  208  91  08  14^3  3.0  3.8  189  6  91 91 91  08 08 08  16^5 18^7 20^9  3.5 4.0  45  3.5  91  08  91  08  23^12 26^15  4.2 4.0  91  08  28^17  91 91 91  08 09  31^20 2^22  4.8 4.1 4.0  09  4^24  4.5  7.8  91 91  09 09  7^27 9^29  7.7 7.8  91  09  12^32  4.3 4.5 4.2  7.8  1800 1850  91 91  09 09  16^36 17^37  4.0 4.0  7.7 7.6  1880 1810  91 91 91  09  19^39  4.4  21^41 23^43  2.0 3.7  7.7 7.6 7.6  1790  09 09  91 91  09 09  26^46 28^48  3.5 3.0  7.6 7.7  91  09  30^50  91 91  10 10  2^52 4^54  3.3 3.8 3.0  7.5 7.5  91  10  7.5  10 10  6^56 8^58 11^61  3.8  91 91  3.8 3.0  7.5 7.5 7.4 7.4  7.2  2730  3898  3.9 4.2  108 55  2580  3471  4.4 3.7 3.8  21 9 4  349 228  3.3 3.9 4.1  2 2 2  225 217 221  1737  4.0  2111 2330  4.1 4.6  2 0 0  217 189 178  2350  3.5  0  177  2395 2354  4.5 5.0  1 3  83  2  7.3 7.8 7.7  7.6  91  10  14^64  3.0  91 91  10 10  16^66 18^68  3.3 3.0  91 91  10 10  91 91  10 10  20^70 23^73 25^75  3.0 4.9 4.5  7.3 7.3  27^77  4.0  7.2  91  10  29^79  3.2  7.3  91 91  11 11  1^82 3^84  2.5 3.0  91 91  11 11  91 91 91 91  11 11 11 11  5^86 7^88 10^91  2.0 3.5 4.5  7.3 7.3 7.4 7.3 6.5  12^93 13^94 15^96  4.5 3.9 3.4  91 91  11 11  17^98 20^101  3.5 4.0  1344 1660  4.1 4.8 4.9  1 0  56 30 30  2257 2222  5.5 4.5  1 0  28 31  2220 2110 2140  2652  4.1  0  24  2345 2724  4.4 5.1  0 0  25  2230 2130 2200  2629 2747 2661  4.2 3.8 4.2  0 0 0  24 29 26  2460  2742 2849  4.4 5.4  22 17  33 58  2849 2807  4.6 4.6  25  47  12  45  2991 3541  3.8 4.6  5 0  41 41 46 50  7.3  2490  5.8 5.7  1 63  80  2140 2121 2288  7.4  5.8 6.0  128 255  1800 1990 2010 1970  2410 2310  5.8  5  2670 2530 2980 3000 2950  3455  3.3  1  3670  3.9  0  3357  4.0  28  2840 2790 2920 2990  3758 3333 3592  5.4 5.0 6.0  0 0 0 0  46  3861  8  3120 3080  4065 3651  4.9 4.2 4.0  46 41 43 51  68 58  67 72  2880  3750  3.4  2790 2850  3305 3444  5.2 4.0  57 64  81 98  56  95  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^pH^VSS^TSB^o-PO4^NH4^NOx (yy mm dd)^  (mg/.1^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^Im9N/L)  91 91  11 11  22 103 25 106  3.0 4.5  5.8 5.8  2780 2650  3561  4.7  62  96  3277  96  91 91  11 11  26 107 29 110  3.8 4.0  5.9 7.5  2720 3040  3395  3.8 3.7  3630  3.4  20 0  79 106 133  91  2^113  4.5  7.7  3270  91 91  12 12 12  4^115 6^117  3.5 3.5  7.5 7.4  3330 3200  4190 4198 3786  3.5 4.0 3.8  0 0 0  134 77 121  7^118 9^120 11^122  2.5 4.0 5.0  7.6  3340 3560 3390  3917 4365 4206  80  2.5  7.4  4083  16^127 18^129  4.0 3.0  7.5 7.3  3460 3420  0 0 0  86 120  13^124  3.2 3.7 4.4 3.8  0  7.7 7.3  91  12  91 91  12 12  91 91 91  12 12 12  91 91 91  12 12 12  20^131 22 133  3.0 5.0  7.0 6.5  24 135  4.0  26 137 30^141 2^144  3480 3550  6.0  5^147 6^148  3.5 2.5 3.0 3.0 2.7  6.3 6.5  3660 3650 3840 3780  8^150 10^152 12^154 14 156  2.5 3.0 4.0 1.5  15^157 17^159  2.2 4.6  20 162 22 164 24 166  91  12  91 92 92 92  12 01 01 01  92 92 92 92  01  92 92 92 92 92  01 01 01 01 01 01 01  7.7 7.2 7.3  3550 3380 3510  117  4047 4510 3910  3.4  0  84  3.5  0 0  80 88  4272 4259 4209  3.9 3.9 5.5  18 3  162 117  0  4100 4119  2 0  150 141 183  4413 4341  6.2 7.8 7.1 5.9  3.9  0 0 0  130 153  0 0 1  138 141 299 218  7.4 7.0 7.3 6.5 6.4  3910 3820 3940  4594 4668 4941  5.1 5.4 5.1  3780 3740  4699 4849  6.7 7.3  6.4  3610  10.7  122 138  3.8  7.2  4280  4455 5402  8.9  1  170  3.1  6.3  4640 4720  5684 5861  8.0 7.5  5 94  231 255  19 0 0  205 159 166  0 0 2  135 137 175 182  01 01  26 168  2.4 5.0  8.0  92  6.2  5020  5902  6.7  92 92  01 01  30 172 31^173  3.0 1.8  7.7 6.6  5530 6780  7000 8060  7.8 9.1  92  02  2^175  2.5  7.4  6760  3^176 5^178  2.2 2.4  6^179 7^180  2.3 5.4  7.5 6.5 6.1  6920 6500  92 92 92  02 02 02 02  8710 8072 8407  8.6  92 92  6660 6490  8064 7949  02  10^183  6520  7928  5.5  92  02  6410  92 92  02 02  11^184 12^185  3.5 2.5  7.3 7.4 7.4  7.7 6.2 6.4 5.5  13^186  2.3 2.2  7.3  6530 6340  8256 8408  92 92  02 02  14^187 16^189  1.9 2.5  7.4 7.2  6600 6360  92  02  18^191  1.7  6.6  7990  7.4  1 64  8039 8565 7778 10282  128  291  2 0  188  7.2 6.2 6.1  0 0  175 172  0 0  170 194  7.4 6.2  0 0  167 179  5.5  26  148  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO^pH^VSS^TSS^o-PO4^NH4^NOx Ivy mm dd)^ Img/t.)^(mg/L)^(mg/L)^(mgP/L)^(mgNit.)^(mgN/1-)  92  02  19^192  92 92 92 92 92  02 02 02 02 02  21^194 24 197 27 200 28 201 29 202  92 92  03 03  1^203 2^204  1.8  7.1  9470  13154  10.2  92 92  03 03  3^205 4^206  5.0 2.0  7.3 7.9  11340 10650  15244 14790  10.9 15.6  92  03  5^207  7.7  92 92  03 03  6^208 7^209  5.0 0.5  8210 5090  12.6 11.0  92 92  03 03  10 212 11^213  6280 3080  11258 7149 8098 4072  4520  6063  1.7 1.1  9510  12071  6.9  74  110  1.2 0.8 5.0  6.5 6.6 7.7 7.1 7.4  9450 11900 11880 10130  12463 16330 16024  5.1 5.8 9.2  141 150 120  110 128 157  6.7 7.2  10540 12490  13502 14159 16956  7.9  2.7 4.0  9.0 9.8  185 200 204  258 182 238  6.0 9.0 9.5  8.0 8.1 8.3 8.9  1 65  9.8  364 195 282 235 421 477 512 593  91 215 104 133 124 82  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Day  Date ivy mm  dd)  91  08  12^1  91  08  14^3  91  08  16^5  91 91  08 08  18^7 20^9  91 91  08 08  23^12 26^15  91  28^17  91 91  08 08 09  91 91 91  09 09 09  91 91 91  09 09 09  12^32 16^36 17^37  91 91  09 09  19^39 21^41  Aerobic NO2  Aerobic BOD  Aerobic COD  Effluent VSS  Effluent TSS  Effluent NH4  Effluent NOx  (mgNIL)  (mg/L)  (mg/L)  Img/L)  (mg/L)  (mg111/1.)  (mgN/L)  212 187  5 6  281 118 176.0  13  7.2  274  94  168 125  105  43  55  127  21  257  12 4  306  2 2  215 216  318  31^20 2^22 4^24  3.9  14  7^27 9^29  91  09  23^43  91 91  09 09  26^46 28^48  91  09  30^50  91 91  10 10  2^52 4^54  91  10  6^56  91 91  10 10  8^58 11^61  91  10  14^64  91  10  16^66  91 91 91 91  10 10  18^68 20^70  10 10  23^73 25^75  91  10  27^77  91 91 91  10 11 11  29^79 1^82 3^84  91 91  11 11  5^86 7^88  91  11  91 91 91  273  2.3  11  1.0  217 193 176 177 82 85  268  35 46 53  0  37 41  31 63 41  2 1  270  26 54 36  258  29 37  32 41  0 1 0  28 30  28 20 24  0  23  273  23 18 19  0 0  27 24  35 40  41 50  0.9 290  1.4 264 1.7  218  286  0.9  6  1 2 0 0  21 16 20 28  248 271  2.0  27  235  20 26  1 3  53 29 30  0  23 29  45  56  0 0  38  42  22  32 44 26  37 51  25 45  26 33  17  55  29  24 12  45 42  28 51  5 0  42 41 40 47 38  37  43  1  73 48  90 54  0 0  285  42  52  0  292  65 18  0 0  10^91  59 15 37  11 11  12^93 13^94  65 49  46 83 60  8 69 57  91  11 11  15^96 17^98  16 36  21 43  56 63  71 71 83 98  91  11  20^101  66  80  54  90  11  281  166  45 43 41 51  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOO^COD^ VSS^TSS^NH4^NOx (yy mm dcl)^ImgN/1.1^(mg/L)^(mg/L)^(mg/L)^(mg/L)^ImgN/1.1^ImaN/1.1  91  11  22  103  91 91 91  11 11 11  25 26 29  106 107 110  91 91 91  12 12 12  2 4  113 115  6  117  91  12  91 91  12 12  7 9  118 120  11  122  91 91  12 12  91 91 91 91  6  124  12 12 12 12  127 129  20 22 24  131 133  12 12  26 30  135 137 141  96.5  91 91 92 92 92  01 01 01  2 5 6  144 147 146  108.0  92 92  01 01 01 01  8 10  150  92 92 92  01 01  12 14 15  01  17 20  92 92  01 01  22 24  92 92  01 01 01 02 02 02  92 92  92 92 92 92 92 92 92 92  02 02 02 02  92 92  02  92 92 92  02 02  02  02  12  64.2 19  156  73.0 89.0 74.5  157 159  86.4 43.5  12  162  132.0 155.0  26 30 31  118.0 142.0  172 173  125.0 105.0  2  175  3 5  176 178  6  179 180 183  14 16 18  93 78  116 151  145 184  20 0  100 113  291  141  186 159 116  0 0 0  124 75 123  279  127 99 87  331  385  164  12 13  58 93  13.5  166 168  7 10 11  107 133  286  13 16 18  152 154  84 108  291  104  0  79  112 54  137  0  68  0  81 119  93  111  119 100  144  0 0  127  0  51  57  0  88  115 134 220 149  159 123 148  76 148 143  18 2 1 1 0 0 0  167 169 116  0 0  268  1  259 189 164  120 135 1  209  5  215  94 21 0 0  263 204  352  136 68 132 121  343 329  138 141  389  94  381  215 196  333  0  138 180 127 140 126 144 139 296 281 170  333 164 131  402 200  121  117.0  76 115  157 88 146  0  126  123.0 161.0  114 190  131 243  0 2  132 173  159.0  144  141.0 135.0  178 188 154  2 0 0  184 194  147 147  0  160 175  11  14  14  411  405  363  150 127  368  120  382  185  112.0 119.0  186  104.0  111 113  187 189  107.0 95.0  191  114.0  184  86 84  95 110 184  152 130 8  109  18  152  153 159  180  0 0  199  356  98 90  142 129 110  0 0  167 187  480  353  456  26  153  167  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD^ VSS^TSS^NH4^NOx (yy mm dd)^(mgN/L)^(mgA.)^DMA)^Img/LI^(mg/L)^(mgN/L)^(mgN/L)  155 392  197 524  74 143  109 111  151 111  208 152  138 124  126 147  142.0  260  347  528 214  731 257  175 194 210  264  155.0 197.0  582  796  169  88  183 560  245 798  198 185  206 100  206 140  281  231  128  128  194 164  322 384  118 80  239 172  309 233  497 578  19^192  121.0  21^194  108.0  02  24 197 27 200  107.0 110.0  92 92 92  02 02 03  28 201 29 202 1^203  92 92 92  03 03 03  2^204 3^205 4^206  206.0  92  03  5^207  96.0  92  6^208  92 92  03 03 03  7^209 10 212  112.0 75.0  92  03  11^213  92 92  02 02  92  02  92  103.0  504 38  40 604  91.2  58  563  1 68  174 232  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOO^COD^VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (gN/d)^Entering^Removed (yy mm dd)^fmg/L)^(mg/1-)^ (gCOD/gN) (gCOO/gN)  91 91  08 08  12^1 14^3  91  08  16^5  91 91  08 08  18^7 20^9  91 91  08 08  23^12 26^15  91  08  28^17  91 91  08 09  31^20 2^22  91 91  09 09  4^24 7^27  91  09  9^29  91 91  09 09 09  12^32 16^36 17^37  0.3 264  14  0.0  2.4 7.6  0.0 0.0 0.0 0.0 0.0 0.0  284  0.70  14.1 22.0 14.7  322  0.01  12.5 12.5 12.4  12  11  270  0.79  272  0.80 0.78 0.79 0.80 0.79  265  0.00  0.02  0.0  0.4  13.5 11.9 11.9 12.0  0.0 0.0 0.0 0.4 0.4  0.0 0.0 0.0 0.0 1020.6 -23.5  5.1  0.7 3.1  32.1 7.1 10.9  5.5 3.5 1.8  2.8 4.5 8.5  1.7 1.7 1.9  9.0  9.2  11.5 8.6  12.3 8.9  1.5 1.8 1.8 1.5  6.9 4.6  7.2 5.4 6.0  .8 1.6  6.1 6.4  91 91  09  91 91 91 91  09 09 09 09  91 91 91  09 10 10  91 91 91  10 10 10  6^56 8^58 11^61  91  10  14^64  0.91  1.8  5.1  91  10 10 10  16^66 246  3.6 3.1  0.91  2.6  4.0 4.7 5.6  4.5  18^68 20^70  0.84 0.81  23^73  241  25^75 27^77  0.90 0.71  2.4 2.4  7.0 7.1  91  10 10 10  280  91 91  10 11  2.6 3.0  5.5 4.7 6.1  91  11  29^79 1^82 3^84  0.88 0.81 0.90  7.2 7.2 6.6  91 91  11 11  5^86 7^88  91 91  10^91  91  11 11 11  12^93 13^94  91 91  11 11  15^96 17^98  91  11  20^101  91 91 91 91  0.85  19^39 21^41 23^43 26^46  276  28^48 30^50  262  2^52 4^54  0.87 0.87 0.91 0.91 0.84  0.86  0.04  0.77 0.83  294  0.77 0.86 0.81  271 10  0.04  0.90 0.78  267  5  0.06  297  0.79 0.77 0.85 269  1 69  0.03  0.04  0.02  2.7 2.9 2.7 2.6 3.1  5.8 7.1  10.2 9.5  7.2 6.1 6.5 9.3 5.1 5.8  5.7 6.1  5.7 6.4 6.5  5.8 6.4 6.6  5.3  5.5 5.7  3.6 3.9  4.8 4.6  0.79  4.3  0.85 0.82  5.9 5.9  3.9 2.8 2.9  5.6 4.0 2.9 2.9  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD^VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (gN/d)^Entering^Removed (gCOD/gN)^(gCOD/gN)  (yy mm dd)^(mg/t)^(mg/LI^  91  11^22^103  91  11^25^106  91 91 91  11^26^107 11^29^110 12^2^113  91 91  12^4^115 12^6^117  91 91  12^7^118 12^9^120  91 91  12^11^122 12^13^124  91 91  12^16^127 12^18^129  91 91 91  12^20^131 12^22^133 12^24^135  91 91 92  12^26 137 12^30^141 01^2^144  92 92  01^5^147 01^6^148  92  01^8^150  92 92  01^10^152 01^12^154  92 92  01^14^156 01^15^157  92 92  01^17^159 01^20^162  92 92  01^22 164 01^24 166  92  01^26^168  92 92  01^30^172 01^31^173  92  02^2^175  92 92 92  02^3^176 02^5^178 02^6^179  92 92 92  02^7^180 02^10^183 02^11^184  92 92 92  02^12 185 02^13^186 02^14 187  92  02^16^189  92  02^18^191  295  8  0.80  6.2  2.7  2.7  0.82 0.81  4.4  3.9  4.0  6.3 7.4 7.2  2.8 2.4 2.4  3.0 2.7  4.5 6.7 4.8  8.3 4.2 5.7  8.4 4.5 5.8  4.8 7.4  5.7 2.9  5.8 3.6  7.2  3.3 5.1 4.9  3.3 5.1 4.9  4.7  4.7 2.9 5.2  0.84 0.80  278  0.79 0.87 0.87 0.84  267  0.80 0.87  289  0.87 0.80 11  342  0.88 0.82 0.82  0.02  4.7 4.7 4.8 10.0  2.7  0.02  6.9  2.3 4.6  0.85 0.89 0.89  0.00  8.3 7.9 9.6  3.8 4.0 2.7  3.9 4.1 2.8  357  0.87 0.88  0.03  8.2 9.6  3.3 2.7  350 333 384  3.7  23  0.84 0.81  10  388  8  325  387  14  11  16  0.02  7.2 7.9  3.8 3.5  3.8 3.5  0.82  0.03  18.2  1.9  3.1  0.78 0.82  0.04 0.04  12.1 17.8  2.8 1.9  5.9 3.5  0.79 0.81 0.83  0.83 0.29 0.40  9.1 14.1  3.9 2.5  4.5 3.3  16.2  0.85  0.23  2.1 2.9  0.81 0.84  0.45 0.49  12.2 8.6 9.3  0.78 0.85  3.15  7.3  10.49  0.79 0.85  0.96 0.97  0.82 0.82  0.86  406  415  362 16  7.7  3.2 2.7 3.6  358  0.78  388  0.79 0.79  345  0.77 0.83  478  0.79  1 70  2.2  4.3  4.6 4.4  3.8 6.3  4.1 6.3  8. 9.. 9.5  5.6 3.6  5.7 4.8  3.7  0.72 8.51 0.73  10.2 9.2 9.7  4.9 4.2 5.8  0.26 2.61 0.14  9.7 11.5  3.4 5.7 5.5 4.8  10.8  3.9 4.4  4.4  0.93  11.8 10.0  3.7 4.4  3.7 4.4  1.10  5.6 4.8 4.0  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Day  Date Ivy mm  dd)  Effluent BOO  Effluent COD  (mg/L)  (m9/1-)  Anoxic VSS/TSS  Anoxic NO2/NOX  Anoxic NOX Load  Anoxic COD:NOX  Anoxic COD:NOX  (gN/d)  Entering I gCOD/gN)  Removed (gCOD/gN)  92  02  19^192  0.80  0.36  6.4  7.0  7.1  92  02  21^194  0.43  6.4  7.2  92 92 92 92  02 02 02 02 03 03  24 197 27 200 28 201 29 202 1^203 2^204 3^205  0.76 0.75  7.4 8.8 14.2  6.2 5.6 1.5  7.3 6.2 5.6  9.4 14.6  2.4 1.4  2.6 1.7  1.19 0.07 0.47  5.1 12.7 6.3  4.5 1.9 3.6  4.6 2.1 3.8  0.06 0.08  7.2  3.2  3.2  7.3  0.33  5.1  3.1 4.5  3.5 4.7  92 92 92  03 03  92 92  03  92 92  03 03  484 29  0.75 0.75 0.76 0.75  41  0.72 0.75  624  4^206 5^207  0.72 0.72 0.79  92  03  6^208 7^209 10 212  92  03  11^213  0.73  63  576  0.76 0.75  171  0.81 1.01 0.05 0.04 0.02  1.8  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm^Specific NH4 Removal^% NH4^VSS/TSS (yy mm dd)^Rate^Denitm Rate^Rate Removal (mgN/d)^(mgN/d/gVSS)^(mgN/d)  91  08  12^1  -1057  -7  91  08  14^3  -461  91 91 91  08 08 08  16^5 18^7 20^9  -230 -134 485  -4 -3  91 91  08 08  23^12 26^15  163 70  91  08  28^17  91 91  08 09  31^20 2^22  162 -154 -868  1  -16  -1 -7  15 87 -321 3 -104  36 311 461  -2 14 5 3  0.70 0.74  2  595  14 20 26  0.77  370  17  0.79  134  53 237  2 11  0.77 0.79  91  09  4^24  -389  91 91  09 09  7^27 9^29  4 -182  91  09  12^32  244  -3 0 -2 2  91 91  09 09  16^36 17^37  2196 1438  43 26  1339 817  39 3  2 0  0.79 0.77  91 91  09 09  19^39 21^41  24 8  0.85  91  09 09 09 09  23^43 26^46 28^48  91 91 91 91 91  30^50 2^52 4^54  91  10 10 10  91 91  10 10  8^58 11^61  91  10  91 91  10 10  14^64 16^66  91  10  91 91 91  10 10 10  23^73 25^75  91  10  27^77 29^79  91 91  11 11  91 91 91  6^56  1530  44  864  528  1627 1665  89 97  166 471  1604 1788  94 97  924 895 1000 899  1398 1536 1716 1470  96 84 97  1819 1602 991  760 742 766 714  23 20 11 -8 9 9  0.87 0.89 0.89  8  0.84 0.90 0.79 0.85  81  18 4  0.83  435 1345  1804 1450  43 35  0.90 0.85  98 99 99 54  440 214 -135  0.84  173 184 164  827 759  349  0.78  3254  90  18^68  2842  92  1204  1142  23  0.81  20^70  2511  97  1042  1173  0.89  2337 2381  98 98  869 853  1152 543 483  32 34 18  0.89 0.71  15 10 15  0.86 0.82 0.88  2144  83  720  82 99 99  896  1^82 3^84  2492 2688 2860  11 11 11  5^86 7^88 10^91  2674 2536 2998  91 91  11 11  12^93 13^94  91 91  11 11  91  11  943 966  301 489 -1364  -57  0.76  99 99 97  955 785 1037  398 77 792  12 2 12  0.84 0.81 0.77  3051 3140  84 81  1059 1083  -1559 -1135  16 -12  0.77 0.84  15^96 17^98  4208 5739  97 98  1436 1888  -340 223  -4 2  0.77 0.84  20^101  5761  98  1966  -60  -1  0.83  1 72  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm^Specific NH4 Removal^% NH4^VSS/TSS (yy mm dd)^Rate^Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS)^(mgN/d)  91  11  22 103  6158  99  1961  502  5  0.78  91 91  11 11  25 106  4324  1507  1914  17  0.81  26^107  5823  98 92  91  11  29^110  6619 6590  91  12  2^113  91 91 91  12  4^115  12 12  6^117 7^118  91 91  12 12 12  9^120 11^122 13^124  12  91 91  12 12  16^127 18^129 20^131  91 91 91  12 12 12  22 133 24^135 26^137  91 92  12 01  30^141 2^144  92 92  01 01  5^147 6^148  92 92 92  01 01 01  8^150 10^152 12^154 14^156 15^157  91 91  2036  800  11  0.80  2470 2204  479 930  8 16  0.84 0.78  100  1454  -178  -3  2132 1486 1391 1836 2150 1507  703 -162  11  0.79 0.85  7159 4686  94 99 99 80 100 100  822 -326 332  -3 15 -5 5  0.85 0.82 0.81 0.85  4643 4785  99 99  1469 1437  611 248 427  11 5 7  0.85 0.79 0.86  7871  79  2180  -1004  -10  6076 8130  89 98  1660 2303  435 1104  4 12  0.82 0.82 0.84  4538 6309 4771 4799 5931  89 91  7808  99  2237  1580  9168 7925 9564 7490  96 97 99  2597  2093  15 21  0.89 0.89  2148 2338 1818  1296 1334 912  13 13 9  0.87 0.87 0.85 0.82 0.80 0.80  7179 7914 11316  97 100 100 62  1804 1988 2801  607 1040 -521  6 11  5771 9447  48 53  1770 3170  4172 1503  0.77  85 74 95  2250  2333  20 7 16  2437 3035  2591 -390  15 -2 10  0.82 0.81  92  01  92 92 92  01 01 01  17^159 20 162  7762  92 92  01 01  22 164 24 166  10477 15389  92 92  01 01  7550 8458 8511  91  7263 8408  100 99  7228 7093  75 75  8218 9223  81 100 99 100 100  62 99  -4  0.81 0.79  92  01  26 168 30^172 31^173  1516  1695  1563 1493  2962 2605  19  92  02  2^175  1183  3008  21  92 92 92  02 02 02  3^176 5^178 6^179  0.78  1390 1183 1130 1284 1448 1471  1532 3066 3615  10 20 23  0.86 0.77 0.83  92 92 92  02 02 02  7^180 10^183 11^184  3623 2622 573  25 18 4  0.82 0.82 0.78  92 92 92  02 02 02  12^185 13^186 14^187  9541 9656 11493 10669  1535 1741 1634  3353 611 902  22 4 6  92  02  16^189  11817  99 100  1861  648  5  0.79 0.77 0.82  92  02  18^191  9986  100  1267  1532  7  0.78  1 73  17  0.85 0.79 0.84  0.78  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitrn^Specific NH4 Removal^% NH4^VSS/TSS (yy mm dd)^Rate^Denitm Rate^Rate Removal (mgN/d)^(mgN/d/gVSS)^(mgN/d)  -132 4195  92  02  19  192  6365  99  720  92  02  194  92 92  02 02 02  21 24  6353 7390  99 99  610 744  27 28 29 1  200 201  8733  849 1277 1170 1381  -6116  202 203  99 79 91 83 97 90 94  705 1654 896  6559  98 90  4844  95  92 92 92  197  11276 8612  92  02 03 03  2  204  4933  92 92 92  03 03 03  3 4 5  205 206  11365 5925 7098  92 92  03 03  6  208 209  92 92  03 03  207  7 10 212 11  12127  6305 -3636  -1  0.79  15  0.76  22 -14 -22 -1  0.73 0.74 0.75  2  0.74 0.74  11085  28  0.72  5146 10615  17 28  0.74 0.72  1137 1235  8352 4309  25  0.73  10  0.71  971  11162  22  0.78  5119 6238  10 11  0.76 0.75  213  1 74  -230 653  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NOVNOX^ALK:NH4^AUC:N H4^Nitrn^%Nitm^Specific Added^Nitrified^Rate^ Nitm Rate (yy mm dd)^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  91  08  495.87  42  08 08  12^1 14^3  10.05  91 91  10.34  638.78  32  0 0  16^5  9.81  08  18^7  9.12  607 3375  8 61  08 08 08 08  20^9 23^12 26^15 28^17  8.80  33.48 5.74 10.89  22  91 91 91 91  1835  62  71  8.05 9.67  4.38 10.17  4451 2019  157  9.63 9.45 9.20  9.25 10.19  2202  8.68 9.18 8.80  10.87 10.15  91 91 91  08  31^20  09  2^22  91 91 91  09  4^24  09 09  91  09  7^27 9^29 12^32  91 91  16^36 17^37  91  09 09 09  91 91 91 91  09 09 09 09  91 91 91  09 10 10  21^41 23^43 26^46 28^48 30^50 2^52 4^54  91 91  10 10  91 91  10 10  14^64  91 91 91  10 10 10  16^66 18^68 20^70  91 91  10 10  91 91 91  10 10 11  23^73 25^75 27^77  91 91 91  11 11 11  91 91 91  11 11 11  91 91 91  0.69  0.03  2028 1324  102  1728  102  129  108 75  114  11.85  1890 1610  9.25 6.17 7.99  2029 2979 2272  105  0.03  8.80 9.41 9.49  110 158 126  0.03  8.69 9.44 9.07  8.81 9.49 9.41  2104 1924 1956  0.04  8.42 9.49 10.05  9.53 8.50 10.78  1869 2088 1624  9.35 8.90  10.20 10.03  9.21 9.25 9.89  0.02  19^39  6^56  0.04  8^58 11^61  29^79 1^82 3^84 5^86 7^88  89 100  0.04  0.04  0.04  15.56  71  150 109  89  123 105 124 108 125 87  118 107 98 93 106 73  101 97  83 86  11.30  1762 1834 1576  89  71  9.07 10.28  2027 1808  124 101  95 82  1316 3859  56 143  54  6.33  14.25  3.96 3.65  3.15 3.59  3333  89  160 144  3.96  4.03  2978  117  120  3.80 3.97 3.79  4.33  2762 2793  121  103 110  4.19 4.45 3.80  3.66 3.57 4.89  3.65 3.47 3.68 3.82  10^91  3.43 3.63 1.86  12^93 13^94  1.85 1.84  11 11  15^96 17^98  2.17 2.17  2.93 2.94 2.55 1.96  11  20^101  2.21  1.97  3.15  1 75  2607 2973 3147 3308  116 98 107 115 89  87 99 107 116  106 97 63  110  3682 3852 5002  33 37  118 125 174  6731  70  241  6733  71  236  3066 2944 3483  54  101 116  ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm^Specific (yy mm dd)^  Added^Nitrified^Rate^ Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  91  11  22 103  2.40  1.97  7124  77  91 91  11 11  25 106 26 107  2.85 3.69  3.18 3.36  5136 6920  56 103  91  11  29 110  4.28  3.09  7986  151  254 263  91 91 91  12 12 12  2^113 4^115 6^117  4.14 4.04 3.96  3.07 4.59 3.27  7966 5330 7556  160 85 136  244 160 236  91  12  7^118  5588  94  167  12 12  4.29 3.44  5681 7146  91 91 91 91  12 12 12 12  9^120 11^122 13 124  4.18 4.46  4.32  91 91  8374 5571  114  160 211 242 163  4.39 4.03  2.73 4.29 4.36 4.06  122 114 146  5489 5673  105 107  155 168  91 91 91  12 12 12  0.82  3.41 3.18  3.20 4.26  9508  24 135 26 137  86 77  271 209  3.73  91 92  12 01  30^141 2^144  0.59  3.46 4.38  92 92 92  01 01 01  5^147 6^148 8^150  0.42  3.77 3.79  92 92 92  01 01 01  10 152 12^154 14^156  0.53 0.63  3.73 3.19 3.39  92 92 92  01 01 01  15^157 17^159 20 162  0.25 0.40 0.15  4.18 3.92 3.56  01 01  22 164 24 166  01  26 168  0.78 0.67 0.46 0.69  3.43  92 92 92 92 92  01 01  30^172 31^173  0.79 0.63  92 92  02  2^175  02  0.87 0.90  92  02  3^176 5^178  3.52 3.53 3.75  0.92  3.43  92 92 92 92  02 02 02  6^179 7^180 10^183  02  92 92  02 02  11^184 12^185 13^186  0.87 0.75 0.77 0.65 0.64  3.51 3.94 3.87 3.70 3.35  0.54  92 92  02 02  14^187 16^189  0.64 0.53  92  02  18^191  0.77  16^127 18^129 20^131  4.13 3.79 4.34 0.17  22 133  3.01 2.97 3.01 3.61  256 194  3.64  7277 9669  116  272  3.82 4.00  9263 11089  106 138  253 304  4.15 3.41 4.36  9271 11170 8799  104 128 94  241 296 225  3.79 3.54 4.05 6.96 4.17 5.23  8554 9312 14470  89 107 99  8021 12448 9469  48 58 78  224 236 383 214 345  3.87 2.59  12805 18008  90  4.84  9681  82 65  5.48 5.15  10107 10213  81 83  221 276 382 193 183 151 128  5.99  8619  74  5.65 5.77  9812 9062  74 74  5.97 5.68 5.11  9003 10213 11018  76 92 92  139 135 157 169  3.38  4.87 4.51 3.72  11363 11485 13520  79 95 95  177 176 213  3.34 3.65  4.03 3.77  12403 13691  88 101  188 215  2.69  4.69  11489  57  144  1 76  142  ^ ^  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:N H4^ALK:N H4^Nitrn^%Nitm^Specific Added^Nitrified^Rate^ Nitm Rate (yy mm dd)^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  92  02  19^192  1.10  2.68  7.23  7482  30  79  92  02 02 02  21^194 24 197 27 200  0.98  2.67  31 39 34  79 73 87  28 201 29 202 1^203  137 99 117  1.13  20  62  0.96 0.88  4.38 3.76  11.29  13642 6994  53 26  120  92 92  2^204 3^205 4^206  13869 10457 14579 5836  40 35 48  03 03 03  2.89 2.41 2.97 3.10 3.33 3.16  7441 8684 10299  02 02 03  0.84 0.70 0.55 0.85 0.83  7.22 6.66 4.72 3.88 5.74 4.22 10.76  03  92  03  5^207 6^208  0.72 0.90  3.09 3.10  7.54 8.16  8429 7819  34 19  103 154  0.91  6.22  5678  15  90  92 92 92 92 92 92 92  6.18  92  03  7^209  92  03  10 212  1.71 1.06  -2.59  92  03  11^213  0.52  -1.42  1 77  66  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (mgN/d)  91 91 91 91  08 08 08 08  12^1 14^3  1062  7  593  4  7  16^5 18^7  1252 1712  16 31  49 74  91  08  20^9  91 91  08 08  23^12 26^15  1566 2169  91  08  28^17  91  08  91 91  09 09  31^20 2^22 4^24  91 91  09 09  7^27 9^29  91  09 09 09  12^32 16^36 17^37  91 91 91  09  19^39  91  09  91 91 91  09 09 09  21^41 23^43  2016 2058 1856 1763 1548 1716 2110 1888  0  53  90  77 89  96 98  94  99  94 94  99  91 98 99  20 20  28.4  20 20  30.7 30.9  99 99  98  20  29.1  100 100 100  1903 1881 1587  96 90 93  20 20 20  26.5 26.0 29.3  99 99 99  1759 1552 1667  96  20  98 97  20 20 20  23.7 27.5  100 100 100 100 100  91  09  26^46 28^48 30^50  100  20  28.2 28.0 30.4  91 91 91  10 10 10  2^52 4^54 6^56  1751 1882 1770  100 100 100  20 20 20  32.5 32.7 28.6  100 100 100  91 91 91  10 10 10  8^58 11^61 14^64  1637 1797  100 100  20 20  100 100  930  39  20  27.9 26.6 28.3  91 91  10 10  16^66 18^68  1436 1886  53 50  20 20  29.8 27.5  92  91 91  10 10  20 20 20  31.1 32.0  96 98  28.7  100  20 20  30.5  1654 1878  99  20^70  1731  68  1943 2408  85 100  2568  97  92 94  91  10  23^73 25^75  91 91  10 10  27^77 29^79  11 11  1^82 3^84  100 100 99  25.3  91 91  2784 2726 3703  100 100  20 20  28.5 29.8  100 100  91 91 91  11 11 11  5^86 7^88 10^91  2887 3026 5034  100 100 90  20 20 20  27.1 35.7 30.6  100 100 99  91 91 91  12^93 13^94  6738 6716  61 65  91  11 11 11 11  15^96 17^98  5650 5190  61 54  20 20 20 20  26.8 28.6 34.6 31.0  89 91 90 89  91  11  20^101  5505  58  20  26.1  90  1 78  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  System^System Aerobic^Aerobic^ Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 lyy mm ddl^Rate Removal^(days)^(days) Removal (mgN/d)  91  11  22  103  4705  51  20  24.6  91 91 91  11 11 11  25 26 29  106  2827  31  20  21.2  83  107  79 100  97 100  12  4978  100  12 12  115 117  6227 5528  100 100 100  19.8  91 91  2 4 6  20 20 20  20.5 18.3  91  110 113  5294 5298  20 20  21.1 22.8  100 100  7 9 11  118 120 122  5931  100  20  24.6  100  4644  100 100  20 20  22.9 28.5  100 100  100 100  20 20  24.2  100  20 20  21.5 23.3  100 100  29.1 24.8 23.5 18.4 21.3  100  91  12  91 91  12 12  6271  91  12  13  124  5710  91  12  127  91 91  12 12  16 18  4892 5190  91 91  12 12  91 91  12 12  92 92 92  01 01 01 01  20  129 131  5282  100 100  22 24 26  133 135 137  9723 9310 8329  88 98 100  20 20 20  30 2  141 144 147 148  8620 8045  99 100 100 100  20 20  27.2  98 100 100 100 100  20 20  22.1 23.3  100 100  100 100  20 20  22.5 22.2  100 100  100  20  25.9  100  100 52 54 100  20  17.7 17.7  100 91  5 6  8923 8729  150  9368  152 154  9541 8665  156  14525  15  157  8823  17 20  159 162  11634 12080  01 01  22 24  164 166  13806 15101  01  26  168  13647  97 69 91  01 01  30 31  172 173  12377 12308  100 100  92  02  2  175  11603  92  02  3 5  176 176  13246 12132  99  20  6  179  11688  7 10 11  180 183 184  11082 11927  99 100 100  20 20  12 13 14 16  185 186  14368 12097 14280  187 189  14067 13476  18  191  18216  01  8 10  01 01  12 14  92  01 01 01  92 92 92 92 92  92 92 92 92 92 92  92 92  02 02 02  92 92 92  02 02  92 92  02 02  92 92 92  02 02 02  89  20 20 20  19.5  90  22.5 15.3  20 20 20  22.7 24.7  100 100 94 99  26.1 29.7  100 100  100  20  27.8  100  100  20  27.6 23.3  100  20 20  25.9  100 100  20  25.5 27.1  100 100  20 20 20  27.4 27.7 28.1  100 100 100  100  20 20  29.1 29.4  100 100  90  20  19.9  99  100 100 100 100  1 79  AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)  Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 I yy mm dd)^Rate Removal^(days) ^(days) Removal (mgN/d)  92  02  19^192  19515  79  20  27.9  92  02  21^194  14463  60  20 20  21.2  96 93  28.9 31.0  92 94  24.3 34.2  89  92  02  24 197  12120  92  02  27 200  22562  54 74  92 92 92  02 02 03  28 201 29 202 1^203  22370 17538 15733  65 59 52  92  03  2^204  5035  92 92 92  03 03 03  3^205 4^206 5^207  12004  17 47  98.5 28.0 99.3  88 81 89  7418 9823  27 39  31.1 69.9  86 88  92  03 03 03  6^208 7^209 10 212  11912 4581 10018  29 12 22  67.6 85.3 27.3  79  92 92 92  76 74  03  11^213  10214  21  50.9  72  20 20  180  90  ^  COLD TEMPERATURE PHASE  Influent^Influent^Influent^Influent^Influent Date^Day^Operating^ pH^Alkalinity^VSS^TSS^PO4 Ivy mm dcl)^Temp (C)^ ImgCaCO3/1-1^lmg/LI^(mg/L)^im(IPA3  92^03^12  1  92^03^13 92^03^15  2 4  92^03^17  6  20 20  92^03^20 92^03^22 92^03^23  9 11 12  20 20 20  92^03^25 92^03^26 92^03^28  14 15 17  20 20 20  92^03^30  19  20  92^04^1 92^04^3  21 23  20 20  92^04^5  25  20  92^04^6 92^04^8 92^04^9  26  20  28 29  20 20  30 32  20 20  33 35 36 38 41  20 20 20 20 20  92^04^10 92^04^12 92^04^13 92^04^15 92^04^16 92^04^18 92^04^21  20 20  92^04^25 92^04^27  44 45  20 20  47  20  92^04^30  50  20  92^05^3 92^05^5  53 55  20 20  92^05^6 92^05^8 92^05^9  56  20  58 59  20 20  61  20  63 65  20 20  92^05^18 92^05^19 92^05^21  68  20 20  92^05^25  75 76 78  20 20 20  81 83  20 20  85  20  92^04^24  92^05^11 92^05^13 92^05^15  92^05^26 92^05^28 92^05^31 92^06^2 92^06^4  69 71  1580  58  115  0.2  7.8  8.0  1190  31  61  0.5  7.8  1420  44  87  0.4  20  181  ^  COLD TEMPERATURE PHASE  Influent^Influent^Influent^Influent^Influent pH^Alkalinity^VSS^TSS^PO4  Date^Day^Operating^ (yy mm dd)^Temp (DI^  92^06^6^87  20  92^06^7^88  20  92^06^10^91 92^06^13^94 92^06^15^96  20 20 17  92^06^16^97 92^06^17^98 92^06^19 100  17 17 17  92^06^22 103 92^06^23 104 92^06^26 107  17 17 14  92^06^28 109 92^06^29 110 92^07^3^114 92^07^4^115 92^07^6^117 92^07^9^120 92^07^10^121 92^07^12^123 92^07^14 125 92^07^15^126 92^07^17^128 92^07^19 130 92^07^21^132  14 14 14  1370  65  128  0.1  7.7  1540  59  119  0.3  12 12 12 10 10 10 10 10 10 10 10  92^07^29 140 92^07^31^142 92^08^2^144  10 10  92^08^6^148 92^08^7^149 92^08^10 152 92^08^13 155  7.9  14  92^07^23 134 92^07^26 137 92^07^27 138  92^08^4^146  (mgDaD03/L)^(nig/L)^(mg/L)^(mgP/L)  10  10  10 10 10 10 10  92^08^14 156 92^08^17^159  10  92^08^19^161 92^08^21^163 92^08^23 165  10 10 10  92^08^24 166 92^08^27 169  10 10  10  182  ^  COLD TEMPERATURE PHASE  Influent^Influent^Influent^Influent^Influent Date^Day^NH4^NOx^NO2^BOO^COD fyy mm del)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)  92  03  12  1  158  92  03  92 92 92  03 03 03  13 15  2 4  133 161  17 20  6 9  164 155  92  03  22  11  141  92 92  03 03  23 25  12 14  173 181  92 92  03 03  26  15 17 19  195 176 167  92  03  28 30  92 92  04 04 04  1 3 5  21 23 25  35 149 182  04 04 04  6 8 9  26 28 29  191 179 193 198 186  92 92 92 92 92 92 92 92 92  04  10  30  04 04  12 13  32 33  04 04  15 16  35 36  04  38 41 44  169 173 164 229 176  04 04  92 92 92  04 04 04  25 27 30  45 47 50  92 92  05  3  53  176  05  5  55  256  6 8  56 58  185 191  05 05 05  92  05  92  9  59  192 178  92 92  05 05 05  61 63  15 18  65 68  172 187  92 92 92  05 05 05  19 21 25  69 71 75  176 173  92  05 05 05 06  26 28 31 2  76 78 81 83  186 167 169 162 66  06  4  85  156  92  285  11.2  0.4  37  343  15.6  0.3  29  329  151  11 13  92 92 92  61  189  18 21 24  92  0.2  196 197  92 92 92  92 92  8.8  174  ^  COLD TEMPERATURE PHASE  Influent^Influent^Influent^Influent^Influent Date^Day^NH4^NOx^NO2^BOD^COD (Icy mm dd)^(mgN/1.1^(mgN/L)^(rtigN/L)^(mg/1.1^Img/L)  92  06  6^87  166  92 92  06 06  7^88  177  10^91  175  92  06  13^94  92  06  15^96  176 163  92 92  06 06  92  06 06 06 06  16^97 17^98 19^100 22 103  181 159 171 178  23 104 26 107  157 180  06 06 07  28 109 29^110 3^114  171 168 180  4^115 6^117  183 199  92  07 07 07  9^120  177  92 92  07 07  10^121 12^123  197 192  92 92 92  07 07 07 07  14^125 15^126 17^128  192 183 203 201 179 194  92 92 92 92 92 92 92 92  92 92 92  07 07  19^130 21^132 23 134  92 92  07 07  26 137 27^138  92  07  29 140  92 92  07 08  31^142 2^144  196  92 92  08 08 08 08  4^146 6^148 7^149 10^152  201  13^155 14^156 17^159  197 193 207 181 190 203 184  92 92 92  08  92 92  08 08  92  08  92 92  08 08  19^161 21^163 23 165  92 92  08 08  24 166 27^169  3.7  0.1  35  350  7.7  0.1  22  318  199 189 198 181 193 200 200  189  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^Iml/h)^(Lid)^Wasting^Overflow (Lid)^(Lid)  92^03^12  1  9.7  27  6.5  41  41  57  0  68  92^03^13  2  9.5  24.4  6.4  42  57  0  68  92^03^15 92^03^17 92^03^20  4 6 9  9.4 9.5  27.5  6.3  37  42 37  57  0  6.6 6.65  39 36  39  57  9.3  25 24.6  11  9.3 9.4 9.0  23.8 19.5 23  6.7  9.1 8.9 9.0  21 20 20  6.9 6.5 6.5 6.4  41 43 42 39 39  63 63 60  68 68 74  92^03^22 92^03^23  36 41  0 0  6.4  39  8.9  6.8 6.9  92^03^25 92^03^26 92^03^28  12 14 15 17 19  43 42 39 39 39 47 38  60 60 59  21 23  8.7  19.5 16  92^04^5 92^04^6 92^04^8  25  8.8  15.4  6.6  47 38 44  26 28  8.7 8.6  29 30  8.6  26 26 26.8  6.7 6.8 7.4  48 46 44  25 25  6.8 7 6.8 6.7  37  46 44 37  45 14 28  45 11.7 11.5  63 63 58  92^04^9  74 71  0 1  71 69  1 1  70  59  92^03^30 92^04^1 92^04^3  44 48  0 0 0  71  70 69  59 59  1  56 56 56 56  1 1 1 1  67 66 66  63  1 0 0 0  73 74 73 68 68  66  33 35 36  8.4 8.7 8.9 8.9 8.5  25 25 24  6.5  37  11.8  58  38  7.9  26  6.5  11.4  58  0.5 1  8.2 8.2  27 26  6.8 6.6  11.2 11.1  58  1  67 67  92^04^24  41 44  80 32 32  92^04^25 92^04^27  45 47  8.3  24.5  67 73  50 53  26.5 28  58 64 64  1 0  8.5 8.5  25 22  92^04^30  6.5 6.7 6.6  64  0 0  74 74  8.6 8.7  26.7 24.6  16.7 12 17  64 64  0 0  74 74  27 28  6.8 6.7 6.6  11.4  64  6.9 6.3  22 34  11.8 11.7  59 59  1 1  6.2 7 6.6  53 68 41  11.7  62  1 1  74 39 68 71  12.1  62 62  1 1  71 71  25.7 25.5 23.9 24  6.5 6.9 6.4  34 26 41.3  11.9 12.1 12.2  62 65  1  71  65  1 1  75 75  6.7  40  11.6  6.9 6.8 6.8 6.5  43 35.2 55 47  12.1 12.0 12.5 12.7  65 65 63  1 1 1  75 75  63 63  1 1  72 72  6.7  47  12.7  63  1  72  92^04^10 92^04^12 92^04^13 92^04^15 92^04^16 92^04^18 92^04^21  92^05^3 92^05^5 92^05^6  32  55  92^05^8 92^05^9 92^05^11  59  8.6 8.6 8.3  61  8.1  92^05^13 92^05^15 92^05^18  63 65 68  8.0 8.1  92^05^19 92^05^21  69  92^05^25 92^05^26 92^05^28 92^05^31 92^06^2 92^06^4  56 58  71 75  8.2 8.6 8.5  25 26 28 26.5  78 81  8.5 8.5 8.3 8.3  83  8.0  23 25.1 24.8 23.6  85  8.1  23.5  76  1 85  12  11.0 10.9 10.8 11.0 11.5  12.1  72  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Day  Date (yy mm  dd)  Flowrate Influent (L/d)  Flowrate  Flowrate  Flowrate  Flowrate  Flowrate  Flowrate  NH4C1  CH3OH  NaHCO3  o-PO4  Recycle  (mL/h)  1mL/h1  1mL/h)  (mliti)  (Lid)  Aerobic Wasting  Flowrate Anoxic  11./d)  Overflow (L/d)  92  06  6^87  8.3  24.6  6.5  39  12.2  57  1  66  92  06  7^88  8.5  25.5  6.9  44  11.8  57  1  67  92 92  06 06  10^91 13^94  8.3 8.1  24.2 24.1  55 48  11.7 11.4  1 1 1  66 66 66  92  06  15^96  8.1  25.8  6.4 6.7 6.8  57  11.3  57 57 57  92 92  06 06  16^97 17^98  8.3 8.3  22.6 21  6.6 6.7  42 42  11.7 12.0  57 57  1 1  66 66  92  06 06  8.3 7.9 8.1  22.1 23.1 20.3  6.5 6.8 6.8  39 53  12.5  92  12.7 13.0  60 60 60  1 1 1  69 69 69 69  92  06  19^100 22 103 23 104  92  06  26 107  8.0  20.9  5.9  59  12.8  60  1  92 92 92  06 06 07  28 109 29^110 3^114  8.2 8.1 7.9  21.2 21.9 33.7  6.2 6  40 54  12.9 13.4  60 64  1 1  5.9  92 92 92 92  07 07 07 07  4^115 6^117 9^120  8.2 8.1 7.9  92 92 92  07 07 07  10^121 12^123  7.8 8.1  31.7 32.3 31 29.2 29.2  5.85 6 6.1 5.9 6  46 37 58 43 44 35  13.8 13.9 13.6 13.3 13.3 13.9  61 61 61 61 64 64  1 1 1 1 1 1  14^125 15^126  8.4 8.2  30.1 30  6.1 6  42 25  13.4 13.5  64 64  1 1  13.9  61  1  14.5 14.9  61 61  0 0  61 61  0  47  69 73 70 70 70 70 73 73 74 73  92  07  17^128  8.3  29.1  5.8  92 92  07 07  19^130  8.2  21^132  7.7  27.5 29.2  6.1 0  47 31 113  92 92  07  23 134  7.6  29.7  0  89.1  07 07  26 137 27^138  7.5 7.3  26.8  0 0  95.2  14.9 14.5  0  70 69  29 140  61 61  1 1  70  92  08  61 55 55  1 1 0  70 64  08 08 08 08  83.8 79.6 33.9  14.5 14.3  92 92 92 92  2^144 4^146 6^148 7^149 10^152  7.7 7.6 7.7  15.1 14.9  92  07 07  89 0  62 62 58  0 0 0  71 71 67  92 92  08  13^155  58  0  14^156 17^159  92 92  08 08  19^161 21^163  8.4 8.2 8.3  0 0 0  68 67  92  08 08  67 64  92 92 92  08 08 08  23 165 24 166 27^169  7.8 7.7 7.9  92 92  31^142  8.1 7.6 7.6 8.4 8.5 8.4  70 70 70  23.1 29.4  0  29.7 25.4  0 0  25.8  0 0 0 0  90.5 47.1 0  14.1  0 0  44 22  14.4 14.1  56.8  14.6  28.1 28.6  0 0 0  58 58  58 51.9  14.9 14.4  55 55  0  64  27.8 27.9 28.9  0 0 0  95.5  14.9  55  0  53.9 50.8  14.7 15.0  55 55  0 0  64 64 64  27.2 28.6 28.5 28.6 29.9 29.9  1 86  14.1 13.9 14.0  69  64  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. NH4C1^Simulated^CH3OH^o-PO4 (g/L)^Influent NH4^(mL/L)^IgP/L)  Date^Day^Aerobic^ (yy mm dd)^Overflow^ (Lid)^  (mgN/L)  0  146  10  0.231  0  123  0.231  0  148  10 10  25  536  75  25  529  75 72  25 50  502 771  72  80  1363  72 70  100 100  1529 1484  92  03  12  1  92  03  13  2  69 69  92  03  92 92 92 92  03 03 03 03  15 17  4 6  69 69  20 22 23  9 11 12  92  03 03 03  14 15 17  03  25 26 28 30  19  71  110  1589  04 04  1 3  21 23  71 70  1544 1437  04 04 04 04  5  25  1467  200 200  6 8  26 28  67 68  110 120 125  68  80 80  1558 1558  200 500  9  04  10  29 30  68 74  80 80  1607 1553  04 04 04  12 13 15  32 33  75 73 69  SO 0 25  68 69 68  80 80  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  04  16  04 04 04  18 21 24  35 36 38 41 44 45  92 92 92  04 04  25 27  04  30  47 50  92 92  05 05  3 5  53 55  92  05  6  56  92 92  05 05  8 9  58 59  92  05 05  92 92 92  05 05 05 05  68 74 74  50  931  10  0.361  1404 1592  10 150  0.361 0.361  150  0.361  500 500  0.361 0.361  80  1536 1460 1608  74  50  1118  10  0.361  74 74 74  25 25  605 648  10 10  0.361 0.361  0  169  25 50  630 987  10 100 200  0.361  69  0.361 0.361  80  1480  200  0.361  80  200  80  1537 1544  0.361 0.361  80  1521  75 76  80 80  1476 1352  75 76 78  75 76 73  80 90 90  74 73 73  81 83  92  06  4  85  0.231 0.231  80 80  72  31 2  0.231  0.361 0.361  68 69  05 06  0.231 0.231  200 200  18 19 21  92 92  200  180 569  73 72  05 05  0.231 0.231 0.231  0.231  1497  63 65  92 92  10 10 200  0.231  61  71  0.231 0.231  0.231 0.231  11  25 26 28  0.231  10 10 10  500  13 15  05  0.231 0.231  500 500  69 72  92 92 92  10 10  300 300  0.361  1375  400 400 400  0.361 0.361 0.361  1438 1627  200 200  90  1525  90 90  1527  250 250  0.361 0.361 0.361  1496  250  1 87  0.361 0.361  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic^ NH4CI^Simulated^CH3OH^o-PO4 (yy mm dd)^Overflow^ Ig/L)^Influent NH4^(mL/L) ^(gPIL) (L/d)^  ImgN/LI  ----92 92  06 06  6^87 7^88  67  90  1573  265  0.361  68  90  1597  265  0.361  92 92  06 06  10^91 13^94  68 67  90 90  1511 1554  265 265  0.361 0.361  92  06  15^96  68  90  06 06  16^97 17^98  67 67  90 90  1607 1462 1347  265 265 265  0.361  92 92  0.361 0.361  265  0.361  92  06  19^100  70  100  92 92  06 06  22 103 23 104  70 70  100 100  1584 1643  265  0.361  1442  265  0.361  92  06  26 107 28 109 29^110  100 100 100  1471 1527 1537  0.361  06 06  70 70 74  265  92 92  0.361 0.361 0.361  92  07  3^114  71  73  1772  265 290 290  92 92  07 07  71 72 71  73 73 73 73 73  1661 1643 1654  290 290 290  0.361 0.361 0.361  1590  290 290 290 290  0.361 0.361 0.361 0.361  290 290 0  0.361 0.361  0 0  0.361 0.361 0.361 0.361  92  07  4^115 6^117 9^120  92 92 92 92  07 07 07 07  10^121 12^123 14^125 15^126  74 74 75 74  73 73  92 92 92 92  07  17^128  07 07 07  19^130 21^132 23 134  72 71 72  73 73 73  72  73  1503 1366 1491  92 92  07 07  26^137 27 138  72 71  73  1356  73  07 07  29 140 31^142  70  1217 1853  0  92 92  08 08  2^144 4^146  72 66 65  1506 1307  0  92  1447 1366 1605  0 0 0  0.361 0.361  1682 1486 1641  0 0 0  0.361 0.361 0.361  1506 1454  0 0 0  0.361  92  73 73 73 73  92 92 92  08  6^148  73  08 08  7^149 10^152  72 67  73 73 73  92 92  08 08  13^155 14^156  69 68  73 73  1582 1557 1632 1511  92  08  17^159  69  73  92 92  08 08 08  66 66 66  73 73  92  19^161 21^163 23 165  73  1472 1354  92 92  08 08  24 166 27^169  65 65  73 73  1528 1542  1 88  0 0  0 0 0  0.361  0.361 0.361 0.361  0.361 0.361 0.361 0.361 0.361  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Feed Conc.^ System^System^System^Anoxic Loading^Loading^Loading^ ORP Date^Day NaHCO3^ (yy mm dd)^Ig/L)^ CH3OH^o-PO4^NaHCO3^ imIn (gCOD/d)^(cip/d)^(gCaCO3/d)  92  03  12  1  44  1.85  0.228  03  13  2  1.82  0.233  92 92 92  03 03 03 03 03  15 17 20 22 23  1.80 1.88  0.205 0.217 0.200  4121 3952 5402  -17 53 66  25 26 28  0.228 0.239 0.233  5958 6442 7672  121 73  03 03 03  4 6 9 11 12 14  56 56 50 81  3671 4537  -156  92  0.217  11 16  30  19  92  03 04  1  92 92  04 04  3 5  21 23 25  100 100  92 92 92  04  6 8 9  26 28 29  75 75 50  10  92 92 92 92 92 92  92 92 92 92 92 92 92 92 92  04 04  0.217  36.47  0.217  7253  -30  38.75 39.32  0.261 0.211  8543 7326  -44 -29  0.244  8228 6893 6708  -39  37.61 38.18 96.88  0.267 0.255  50 13  105.43 96.88 99.73  0.244 0.205 0.250  75 75  38.75 38.18  0.102 0.100  4783 4334  16  36  75  1.85  0.103  5403  18 21  38 41  75 75  1.85 29.06  0.099 0.097  24 25  44  75 75  28.21 92.61 95.45  0.097  9575 5021 5034  0.095 0.095  4292 3552  1.88 1.94  0.093  2495 2984  05 05  3 5  92 92 92  05  6 8 9  92 92  1.82  04  04 04  45 47  75  50  75  53  75  55 56  75 75  58 59  50  7163 7331  04 04 04  92 92  92 92 92  100 100  1.85 1.85  12 13 15  27 30  92 92  100 100  1.91 1.97  30 32 33 35  04  92 92  17  81 100  1.89  04 04 04 04  92 92  92 92 92  15  81  -109  1.91  0.095 0.099 0.099  1.88 19.66 35.90 35.33  0.102 0.101 0.101  2300 3002 4414  2469  10 -86 -107 -91 -55 -62 -34 -51 -42 -75 -91 -110 -114 -81 -44  3016 3529 4840  21 -3 -8 -15 -32 -49 -36 -114 -124  05  11  61  75 75 75  05 05  13 15  0.105  18 19  75 75 75  39.89  05  63 65 68  56.42 55.56  0.105 0.103  6793 8172 5623 4866  69 71  75 75  78.64 72.94  0.105 0.106  3927 5455  75 76  75 75  76.36  0.101  5342  -110 -166  75 75 75  39.32 38.75  0.105 0.105  5607 4966  -142 -130  2  78 81 83  48.44 46.30  0.108 0.110  7020 6426  4  85  75  47.73  0.110  6363  -129 -160 -160  05 05  05 05  21  05  25  05 05  26 28 31  05 06 06  189  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Feed Conc.^ Date^Day NaHCO3^ (yy mm dd)^(g/L)^  System^System^System^Anoxic Loading^Loading^Loading^ ORP CH3OH^o-PO4^NaHCO3^ (mV) (gCOD/d)^(gP/d)^(gCaCO3/d)  0.106  52.10  0.102  91 94 96  75 75  48.33 50.59  0.102 0.099  75  0.098  97 98  0.101 0.104  5817 5803  100  75 75 75  51.35 49.84  7057 6499 7334  5544  -200 -185  103 104  75 75  51.35 51.35  0.108 0.110  7027 6366  -154 -160  75  44.55  75 75  46.82 49.58 48.75  7536 5659  6 7  87 88  92 92  06 06  10 13  92  06  15  92  06 06  16  92 92  06  17 19  06  22  92  06  23  92 92 92 92  06 06 06  26 28 29  110  07 07 07  3 4 6  114 115 117  92 92 92  107 109  07  9  92  07  10  120 121  92 92 92  07 07 07  12  123  14 15  125 126  92 92 92  07  17 19 21  128 130  23 26  92 92 92 92  07 07  132  07 07  27  134 137 138  07  29  140  07 08  31 2 4  142 144  07  92 92 92  08  92 92  08 08  92 92  6  146 148 149  08  7 10  08 08  13 14  155 156  92  08  17  159  92 92 92  08 08  19 21  161 163  08  165 166 169  92  92  08  23 24  92  08  27  -136  49.08  06 06  92  5518 5938  75 75  92 92  152  75  75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75  50.59 49.08  0.113 0.111  -151 -166 -172 -151 -190  7051  48.34 49.58  0.116 0.120 0.120 0.118  -164 -183 -171  6353 5308 7374  -169 -174 -140  50.41  0.115  6067  48.75  0.116 0.121 0.116 0.117  6201 5174 5742 4095  -158 -161  0.121 0.126 0.129 0.129  6245 4714 12253  49.58 50.41 49.58 47.93 50.41 0.00 0.00  0.112  10526 11120 10779  -187 -234 -258 -207 -226 -119 -30  0.00 0.00  0.126 0.131 0.129  1309  -8 -5 5  0.00 0.00  0.126 0.124  10053 9667  15 39  0.00  0.123 0.121 0.121  5277 10717  -15  0.00 0.00  6860  0.00 0.00  0.122 0.125  1480  21 40  0.00  0.123  6087 3935  45 46  0.00  30  0.00  0.127 0.129 0.125  7307 7504 6926  42  0.00  0.129  10952  0.128 0.131  7454 7027  49 47  0.00 0.00 0.00 0.00  1 90  54 35  57  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO (yy mm dd)^ (mg/L)^Img/L)^I ingP/1.1^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)  92 92 92 92 92  03 03  12  1  7.5  6115  8127  45  13 15 17  7.3 7.8 7.3  6090 5660 5802  7974 7036 7372  29  03  2 4  25 108  6232 6093 5700  8146  84  8540 8204  83 146  6  267  03 03  20  9  22 23 25  11 12  7.4 7.6 7.5  92  03 03 03  14  7.7  5114  206  865  293.6  03 03  26 28  15  220 208  926 1028  265.8 310.0  03  30  8.2  4679 4608 4485  10.5 9.9  92 92  17 19  7.7 7.9  8799 7209 6893  14.5  92 92  4839  10.3  193  704  274.2  04 04  1 3  21 23  8.1  4970  5496  278.1 236.9  04 04  25  6132 6126  6571 6550  9.2 7.6  155  288.9 256.7 134.9  92  9 10 12  29 30 32  6371  6773  92 92  04 04 04  8.3 8.2 8.3  327 339  04  5 6 8  5134 5895  485 400  92 92 92  5291 5815  9.6 7.2  195  8.5 8.6  13 15 16  33 35  7163 6632 6767 6907  69.7 52.2 35.7  04 04 04  6451 6192 6180 6736  95 55 45  92 92 92  8.3 8.7 8.7 8.2  6.8 5.9 6.8  94 324 587  04  18  7124 7466  3.4  92  6658 6388 6491  53.1 261.5 360.0  258  8.2  42 143 201  3.1  276  7758  201  577.0 123.1  180 86  6663  8260  3.9 3.3  1122 484  188  236  115.5  116  6335  3.0  359  135  62.5 81.6  364  92 92  92  26 28  36 38  8.7  4.9 4.0  181 198 183 298 246 255 336  161  92 92  04 04  21 24  41 44  8.2 8.2 8.4  92 92  04 04  25 27  45 47  8.6 8.5  6094  7536 7571  2.6  620  92 92 92 92 92  04 05 05 05 05  50 53 55 56  8.1  7663  11039  2.7  661  127 246  8.5 8.0 8.0  5878 5335  7941 7267 7240  3.3 2.8 3.5 3.3  348 266 57 118  224 282 198 355  92 92  05  30 3 5 6 8 9  05  11  495 672  92  05 05  13  61 63  176 227  15  65  518 405  92  05  18  92 92  05 05  19  92 92 92  05  92  92 92 92  05 05 05 06 06  58 59  7.6 8.0 8.3  5190 4863  6661 6271 6272  4.2 4.2  5091 5048  4.2 3.9  215  7.9  4174 4292  68  7.9  4450  3.5  183  69 71  8.0 8.0  4516 4669  5268 5055 5304  3.1 3.1  186 177  8.3 8.4 8.3 8.7 8.9  4721 4835 4917 5301 5217  5196 5344 5529  3.4 2.9 2.5  2  75 76 78 81 83  5758 5740  2.9 2.3  191 187 188 168 181  4  85  8.4  5171  5715  2.9  168  21 25 26 28 31  8.0  4630 4439  191  198  74  117  285  219  106.8 104.3 109.0 63.6 114.0 139.9  292 250 152  149.9 98.6  104  113 129 127  64.2  121  317 72 15  41.6  114  32.6 9.6  227 183  9 140 91  1.0 3.7 0.4  175 146 118  30  1.8 1.8 0.6  214 182 198  23 16  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO (mg/L)^Img/t.)^(mgP/L)^imgN/L)^(mgN/L)^(mgN/L)^(mg/L) lyy mm dd)^  216  92  06  6^87  8.4  4977  5545  2.4  179  92  06 06  7^88  8.4  5308  5888  2.5  183  2 3  0.2 0.3  10^91  8.4  5243  5709  06  13^94  8.6  5280  5857  2.1 2.1  176 168  1 3  1.0 0.3  193  06  8.5 8.3 8.4  5078 5480 5123  5742 6445 5839  2.8 2.8 2.6  182 163  06 06  15^96 16^97 17^98  169  1 2 1  0.2 0.9 0.5  154 133  19^100  8.3  4958  5814  2.6  06 06 06  22 103 23 104 26 107  8.4 8.4 8.4  5305 5168 4938  6256 5908  2.7 2.7 2.9  161 166 161  2 4 1  0.4 1.6 0.5  177  06 06 07  28 109  8.4  5258  1 0  29^110 3^114  8.5 8.3  0.8 0.1 0.9  180 173  0.5  169  07 07 07  4^115 6^117  8.3 8.4 8.3  1.9 0.4  205  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  06  07 07 07 07 07  9^120 10^121 12^123 14^125 15^126  07  17^128 19^130 21^132 23 134  92 92  07 07  26 137 27^138  92  29 140  92 92  07 07 08  92  92 92 92  07 07  8.4 8.4 8.2 8.2 8.3 8.2 8.0 8.1 8.1 7.9  5272 5339 5307 5410  5671 6196 5855 5947  3.3 3.3 2.7  171 181 186  5946 5994  3.0 3.1  5609 5566 5363  6216 6172 5891  2.6 2.3  179 184 181  5377 5253  6176 5992  2.9 2.8 3.1  5171 5221  5849 5851 5149  2.7 3.3 3.6  595 679 527  6113 3154 4072  4.8 5.0  535 507  930 836 825  4.8  581  799  4372 4588  4.6 4.4  249  872 932  4664  4122 4311 2508 3198 3317  31^142 2^144  7.8 7.6 7.5  3190 3306  08  4^146  7.7  3293  4437  3.7 3.4  92 92  08 08  6^148  7.4  3.4  92 92  08 08  10^152 13^155  7.5 7.5  3278 3381  4370  7^149  3375  4367 4342  3.4 2.7  08 08  3332 3330  4251  92 92  7.5 7.7  4259  3.0 3.4  92 92 92  08 08 08  7.5 7.5 7.6  3268 3176 3419  4335 4171 4603  2.8 3.1 3.6  92 92  08 08  7.7 7.6 7.5  3459 3424 3304  4385 4665 4460  4.0 3.8 3.7  14^156 17^159 19^161 21^163 23 165 24 166 27 169  1 92  176 248 305 578  221 204 652 719 785  1 1 2 0 2 1 24 93 133 100 186  923 754 823  175  155 162 187  0.5 0.7  188  17.1  162  46.1 137.3  196  87.2 159.8 0.5  198 213 501  0.4 0.4 0.5  340 307  64.8  248 270  71.6 30.9 308.8  217 594  830  723 649  365.0 506.0 660.0  300  1013 924  603 520  441.0 448.0  205  1078 1069 1199 963 1054 1228  504 442 390  415.3  412 453 448  361  367.5 358.3  340  374.3 402.0 316.0  296  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD^ DO^PH^VSS^TSS^o-PO4^NH4 (yy mm dd)^(mg/L)^(mg/L)^Img/L)^(mg/L)^(mgP/1.)^(mgN/1.)  92  03  12  1  652  9.1  6.7  6361  8614  32  92  13 15  2 4  708 715  8.0  7.2  6290  8346  14  92  03 03  8072  7  03  17  6  670  7.7 7.1  6520  92  8.2 7.8  6225  7998  41  92  03  20  9  744  8.7  7.1  5924  7697  14  92 92  03 03  22 23  11 12  667 536  9.0 8.6  7.6 7.8  5290 5030  7544 7244  16 58  7.3  4090  7119  14.3  55  7.6  4350 4364  6680 6488  9.9 10.4  92  03  25  14  624  92 92  03 03  5.5 5.5 8.0  03  15 17 19  504 488  92  26 28 30  469  7.0  7.5 7.4  92 92  04 04  1 3  21 23  477 482  92 92  04 04  25 26 28  505 459 485  7.0 7.5 7.5  7.6 8.1 8.0  6.0 5.0  6.9 6.5 6.9 6.8 8.3  5690  6256  8.5  20 17 5  5702 6592  6412 6504  9.7 6.2  13 0  6507 6461  6752 6932  8.9 9.6  12 6  6550  7059  6.9  148  6625 6592  7203 7323  6.8 5.1  120 177  92  04  5 6 8  92 92  04 04  9 10  29 30  536 578  92 92 92  04  12  32  626  5.5 5.0 5.0  6852  7428  6.1  255  04 04 04  13 15 16  656 634 634  4.5 7.5 7.0  7.3 7.7 7.5  6770 7362 7325  7515 7645  5.8 5.0 3.2  22 59 116  04 04 04  18 21 24  33 35 36 38 41 44  592 561 533  7.5 7.5 6.5  7.9 6.8 7.3  04  25  45  613  5.0  8.2  3.2 3.2 3.7 2.9  139 18 6  92 92  04  27  47  709  6.7  8.5  6820 6798 6373 6503 6109  50 53  717  7.0  7.8  5036  7230  2.4  547  9.8 7.5  7.7 7.3  5077 4788  6875  3.2 2.4  261  92 92 92 92  7889 8062 8073 8109 7933 7787  2.7  272 525  92  04  30  92 92  05 05  3 5  55  652 629  92  05 05 05 05  6  56  576  7.3  7.4  4428  6608 6308  8 9 11  58 59 61  510 468 435  5.8 6.1  7.4 7.3 7.3  4337 4253 3985  6014 5868 5698  7.3 7.3 7.4  4514  5504  4.3  13  4682 4645  5484 5491  3.9 4.1  5 5  4858 4853  5494 5547  3.0 3.0  3 1  92 92 92  2.8  210 27  3.6  53  3.9 4.7  54 29  92  05  13  63  447  5.8 5.0  92 92  05 05  15 18  65 68  446 483  4.7 5.0  92 92  19 21 25  69 71 75  489 490 507  5.3  7.4  92  05 05 05  5.5 4.0  7.3 7.3  5098  5604  3.4  13  92 92  05 05  26 28  76 78  487 503  7.5 8.4  7.3 7.3  5064 5067  5692 5756  2.9 2.7  1 4  92 92 92  05  31 2  81 83  533 550  6.6  7.4  5288  06 06  85  548  7.4 7.4  5283 5253  5802 5889 5944  3.3 2.5 3.0  4 2  4  6.8 6.5  193  5  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD^ DO^pH^VSS^TSS^o-PO4^NH4 Iyy mm dd)^(mg/L)^(mg/L)^Img/L1^Img/L1^(mgP/L)^(mgN/L)  92 92  06 06  6^87  572 579  6.0 5.8  7.4 7.4  5270 5397  5993  2.5  7^88  6031  2.3  1  92 92  10^91 13^94 15^96  574 574 554  6.6 6.3 6.0  7.5 7.5 7.4  5489 5407  6095 6157  2.1 1.9  1 0  92 92 92 92  06 06 06  5408  06 06 06  16^97 17^98 19 100  527 523 539  5.7 6.6  7.4 7.4 7.4  2.9 3.1 2.9  1 3  5178  6192 6211 6204 6194  2.8  0  92 92  06 06  22 103 23 104  7.4 7.4  5177 5230  6158 6127  2.7 2.5  1 1  92  06  26 107  514 568 532  6.5  7.3  92 92  06 06  6131 6129  2 1 1  5429  6136 6200  2.9 3.4 2.9  6.9  7.3 7.4 7.3  5232 5208 5452  07  500 511 526  6.8 7.0  92  28 109 29^110 3^114  92 92  07 07  4^115  519 524  7.3 7.2  7.3 7.3  5460 5605  6240 6252  3.0 3.4 2.8  1 0  92  07 07 07  9^120 10^121 12^123  526  6.4  7.4  6325  517 545  6.2 7.1  7.3 7.3  5701 5733 5690  07 07  14^125 15^126  07  17^128  566 586 554  7.2 6.3 6.6  7.3 7.3 7.3  5612 5554 5558  19 130 21^132 23 134  584 709 676  5.7 5.1 6.5  7.3 7.3 7.3  5583  92 92  07 07 07  92 92  07 07  26 137 27 138  648 665  7.0 7.2  7.3 7.3  92 92 92  07 07 08  29 140 31^142 2^144  617 636 625  5.9 6.4  7.3 7.3  6.2  92  08  4^146  811  0.0  92 92  08 08  6^148 7^149  759 703  6.3 6.7  678 681  7.4 7.1 6.7  92 92 92 92 92 92  6^117  92  08  10^152  92 92 92  08 08 08  13^155 14^156  92 92 92  08  17^159 19^161  08 08  21^163 23 165  08 08  24 166 27^169  92 92  619 640 707 739 689 669 717  7.1 7.5 6.5  5296 5325  4885 4326 4701 4545  6401 6392  2.5 2.2 2.4  6427 6358  2.8 3.4  6335 6309 6247 6185 5922 5819  2.7 3.3 3.2 4.3 5.2 5.0  0  1  31 2 1 139 151 495 471 562 344 149 66 14 88  7.3  4372 3930 3871  5767 5691 5500  7.3 7.3  3851 3748  5201 5112  7.3 7.4  3685 3644  4868 4665  7.5 7.4 7.4  3704 3632 3644  4832 4684 4957  3.1  7.4  3599  6.5 6.9  7.4 7.4  3528 3546  4784 4725  3.0 3.0  1076  6.1 6.3  7.4 7.3  3451 3418  4616 4680 4583  3.5 4.0 3.2  901 1078 1138  6.4 6.6  1 94  4.8 4.5 3.5 3.4  15 3 620  3.0 3.1 2.9  713 774  3.4 2.6  657  1058 982 962 955  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOO^COD^ VSS^TSS^NH4 (yy mm dd)^(nigN/L)^(mgN/L)^Img/L)^(mg/L)^Ong/1J^(INOL)^hngNAJ  92  03  12  1  744  137  188  92  03  13  2  588  148  190  92 92  03 03  15 17  4 6  496  157 172  197 218  92  03  20  9  92 92  03 03  22 23  11 12  197 218 198  251 303 284  251 140 123  428 223 181  147 159  158  32  469 568 15  451 502  92  03  25  14  1004  441.8  515  92 92  03 03  26 28  15 17  1083 1207  501.8 537.1  478  92 92 92  03 04 04  30 1 3  19 21 23  878 662  577.0  362 387  434.0 354.0  404 371  587  92  04  5  25  485  289.0  92 92  04 04  6 8  26 28  507 324  269.1 241.6  92 92 92  04 04 04  9 10  29 30  12  32  192 118 110  132.6 89.3 83.3  92 92  04 04 04  13 15 16  33 35 36  118 389 644  62.9 164.6  04  18  1247 615  92 92  8  22  380 376 413 429 404  52  420 437  44  150 143 150 126  177 147 147 159 135 140  127 127  141  131 155 131  147 170 139  305.9 437.0 304.0  34 38 28  438 399 414 386  26  402  133 186  61  406 404  150 184  236 188 239  411 401 418  233  339  163  231  403  200 182  269 253  152  162  202  233 164  92  04  21  38 41  92 92 92  04 04 04  24 25 27  44 45 47  390 198 163  237.2  92  04 05  30 3  50 53  317  95.6  56  05  5 6  55 56  294 333  113.8 103.4  48 44  219  91.8  58 59 61  412 600 862  104.6 97.7  37 34  395 388  155 148  219 198  05 05 05  8 9 11  72.1  30  13 15  63  24 18  385 387  170 130  237 157  65.8  19  216 137 152  17.2 13.1  167 170 154 145  18.8  37 20 18  148 138 126  92  69 71 75  380 354 381 376  145  18 19 21 25  65 68  74.0 56.1  05 05 05 05  703 680 467  383  92 92  05 05  26 28  76 78  302 242  0.4 2.5  16 24  395 395  147  158 165  92 92  05 06  31 2  81 83  198 271  3.7  30 30  405 380  141 158  155 171  92  06  4  85  155  26  400  155  172  92 92 92  05  92 92 92  05 05  92 92 92 92 92  162.7 132.1  2.6 0.9  1 95  138 145  146  1.52  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOD^COO^ VSS^TSS^NH4 (yy mm dd)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)^Img/LI^Img/LI^(nigN/L)  366 363  139  155  156  176  17 21  378 372 360  128 148 137  141 166 154  16  364 347 355  163 141 157  184 162 183  378 382  139 124  160 144  11 15 8  380 369 370  134 140 141  152 165 155  9  360 354 341  145 142 147 163  22  92  06  6  87  176  0.4  92 92 92  06 06 06  7  88  1.4  10 13  91 94  174 156 176  0.8 0.6  92 92 92  06  15  96  186  0.6  06 06  16  97 98  166 176  0.6 1.5  06  19 22  100  151  1.0  177 165  0.4 1.0  8  23  103 104  92 92 92  17  10 15  92  06 06 06  92  06  26 28  107 109  167 169  1.1 0.8  92 92 92 92  06 07  29 3  110 114  07 07 07  4 6 9  115 117 120  178 162 168 143  0.6 1.0 8.5 12.6  378  10  121 123  103.2 80.2  22  07 07  157 177  132 124 137 149  113  104.8  40  403 390  127 127  142 142  125 126  235 198  165.7 205.0  43  417 446  186.1  49 122 69 5 4  150 139 151  170 164 172  92 92 92 92 92  07 07  12 14 15  92  07  17  128  92 92  07 07  19 21  130 132  203 262 1108  92 92 92  07 07 07  23 26 27  134 137 138  1053 920 953  226.3 513.0 439.2 450.4 490.7  92  07  29  140  753  343.8  07 08 08  31 2 4  142 144 146  11 12 1054 873  312.2 432.9 411.0  92  08  6  92  08 08  7 10  148 149  961 775  152  92 92  08 08  13 14  155 156  92 92 92  08 08 08  17 19  159 161 163  605 530 484  92 92 92  08 08  165  1228 528 539  477.5 387.1  92 92 92  92  08  21 23 24 27  166 169  13  411 457 487 491  149 244  176 312  251  365  491 491  187 204  249 270  455  180  249  35  414 402  188 141  272 207  155  465  158  228  480.4 528.3  202  536 557  207 199  292 278  607  618.4  265  280  496.4 480.3  621 642  198  668 555  182 176  258 251  64 38  200  621 582  183  270  455.6 451.9  200  597 561  202 178  428.7  165  557  163  294 265 235  578 607  192 180  273 265  506.0  1 96  0.14  3.06  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOO^COD^VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm ddi^(mgN/L)^(m8/1-)^(m8A3^ (gN/d)^Entering (gCOD/gN)  92 92 ....„ 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 "41  03 03 CZ 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06  12 13 1` 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4  0.75 0.76 0.80 0.79 0.77 0.71 0.69 0.58 0.65 0.67 0.93 0.90 1.03 0.99 0.93 0.94 0.94 0.90 0.93 0.91 0.98 0.93 0.86 0.84 0.81 0.84 0.80 0.69 0.74 0.73 0.72 0.73 0.74 0.71 0.82 0.85 0.84 0.89 0.88 0.91 0.90 0.89 0.92 0.91 0.90  1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  265.6  197  0.34 0.29 0.30 0.39 0.57 0.59 0.88 0.76 0.87 0.74 0.95 0.79 0.56 0.81 0.61 0.51 0.25 0.49 0.46 0.64 0.43 0.47 0.39 0.32 0.32 0.28 0.22 0.19 0.16 0.13 0.45 0.63 0.11 0.03 0.00 0.06 0.08 0.04  60.3 65.0 71.3 51.9 39.1 34.7 27.2 28.4 18.2 10.8 7.5 7.0 7.5 22.7 37.4 72.4 35.7 22.7 12.7 10.5 20.4 18.9 21.4 14.1 24.4 35.5 53.5 43.7 42.2 29.0 14.1 9.0 10.0 19.7 15.3 12.6 17.2 9.9  0.0 0.0 0.0 0.7 1.0 1.1 1.4 1.3 5.3 9.8 12.9 14.3 5.2 1.7 0.0 0.0 0.8 1.2 7.3 9.1 0.1 0.1 0.1 0.1 0.8 1.0 0.7 0.9 1.3 1.9 5.6 8.1 7.7 2.0 2.5 3.8 2.7 4.8  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOD^COD^VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm dd)^(mgN/L)^(mg/L)^(mg/-)^  (gN/d)^Entering (gCOD/gN)  92  06  6^87  0.90  0.12  10.2  92 92  06 06  7^88 10^91  0.90  0.10  10.0  92  06  13^94  0.92 0.90 0.88 0.85 0.88  0.74 0.12  9.0 10.2  0.27  10.7 9.6 10.2 9.2  5.2 5.0  10.8 10.0  4.8 5.1  92  06  15^96  92 92  06 06  16^97 17^98  0.59 0.86  4.8 5.2 5.4 5.0 4.8  92  06  19 100  0.85  0.19  92 92  06 06  22 103 23 104  0.85  92 92 92  06 06 06  26 107 28 109 29 110  0.87  0.37 0.86 0.58  92  07  3^114  0.85 0.90 0.90  92 92  07 07  4^115 6^117  0.89 0.90  92 92 92  07 07 07  0.90 0.90 0.91  0.58 0.72  92 92 92  07 07 07  9^120 10^121 12 123 14 125 15^126 17 128  0.87 0.88  0.50 1.03  0.88  92 92  07 07 07  19 130 21^132 23 134  0.89 0.80 0.71  0.00 0.00  0.0 0.0  92  07  26 137  0.80  92  07  27 138  0.79  0.00 0.00  0.0  92 92 92  07 07 08  29 140  0.76 0.70 0.71  92  08  4^146  0.74  92 92 92  08  6^148  08 08  7^149 10 152  0.75 0.77 0.78  92 92  08 08  13^155 14^156  92  31^142 2^144  153.3  0.87  992.5  5.4  10.1  4.4  10.2 11.5 9.9  4.6 4.3 4.9  10.3 8.8  4.7 5.7  9.6 11.4 7.2  5.2 4.3 6.9  0.87  15.1 12.7 12.4  3.3 3.9 3.9  0.86  16.0  0.37 0.68 0.89 0.89 0.92 0.31  0.07 0.08 0.03 0.41  3.1  0.0 0.0  45.9 67.8 58.0  0.0 0.0  0.44  48.1 59.6  0.0 0.0  0.70 1.02  48.1 35.3  0.0 0.0  0.78  0.73  38.8  0.0  0.86 0.82  32.2 35.1  0.0 0.0  92  08  17^159  0.78 0.75  92  08  0.83  08  19^161 21^163  0.76  92  0.74  0.92  29.2 26.7  0.0 0.0  92 92  08 08  23 165 24 166  0.79 0.73  0.91 0.89  67.6 29.1  0.0 0.0  92  08  27 169  0.74  0.70  29.7  0.0  198  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitm %Donitm^Specific NH4 Removal^% NH4 hay mm dd)^Removed^Rats^Denitrn Rate^Rate Removal (gC00/gN)^(mgN/d)^(ingN/d/g1/SS)^(mgN/d)  92^03^12 92^03^13 92^03^15 92^03^17 92^03^20 92^03^22 92^03^23 92^03^25 92^03^26 92^03^28 92^03^30 92^04^1 92^04^3 92^04^5 92^04^6 92^04^8 92^04^9 92^04^10 92^04^12 92^04^13 92^04^15 92^04^16 92^04^18 92^04^21 92^04^24 92^04^25 92^04^27 92^04^30 92^05^3 92^05^5 92^05^6 92^05^8 92^05^9 92^05^11 92^05^13 92^05^15 92^05^18 92^05^19 92^05^21 92^05^25 92^05^26 92^05^28 92^05^31 92^06^2 92^06^4  1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  31.9 4.5 2.1 10.3 6.6 5.3 6.4 6.1 12.0 22.9 27.3 27.0 57.6 62.1 -0.8 -0.4 9.4 4.2 32.5 80.0 0.8 0.8 2.7 -4.2 294.2 22.8 6.7 6.3 4.3 8.7 9.0 9.3 8.2 4.3 4.4 4.7 3.0 5.4  58 415 858 3556 5914 7391 5876 6267 8050 4611 3550 3698 673 614 -2408 -4188 3096 6790 2852 1193 2374 2465 720 -446 67 1575 5292 6305 13257 6380 8750 7868 9295 9241 8712 10403 15577 8770  0 1 1 7 15 21 22 22 44 43 47 53 9 3 -6 -6 9 30 22 11 12 13 3 -3 0 4 10 14 31 22 62 87 93 47 57 82 91 88  199  2 18 37 159 238 279 202 204 263 145 110 119 22 18 -72 -131 95 204 90 39 62 84 27 -17 3 68 238 302 618 287 388 337 394 382 354 392 597 339  291 113 260 554 51 -64 1044 2130 847 826 2347 2104 1002 1477 3084 3413 5752 6942 5894 73 -621 2238 3646 2498 2075 4657 3303 -3093 -3122 -1 -856 1051 567 -51 814 840 1702 619 307 152 454 2176 3316 1631 2645  9 5 13 7 1 -1 9 13 5 5 15 14 7 10 20 15 26 27 19 2 -7 14 16 16 14 15 7 -7 -14 -0 -26 11 4 -0 5 6 12 4 2 1 3 14 21 11 18  ^ ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitm %Denitm^Specific NH4 Removal^% NH4 (yy mm dd)^Removed^Rate^Denitm Rate^Rate Removal (gCOD/gN)^(mgN/d)^(mgN/d/gVSS)^(mgN/d)  92  06^6^87  4.9  10054  99  404  3361  22  92  06^7^88  5.3  9824  98  370  3728  92 92  06^10^91 06^13^94  5.4 5.1  8923 9974  06^15^96  4.8  10668  340 378 420  3384 3867  92  99 98 99  23 22 26 24  92 92  06^16^97 06^17^98  9479 10119  99 100  346  92  06^19 100  5.3 5.0 5.5  9000  98  92 92  06^22 103 06^23 104  4.9 5.1  10448 9978  97 100  92  06^26 107  4.4  10019  99  386 406  92 92  06^28 109 06^29 110  4.6 4.3  10220 11414  100 99  389 433  92 92  07^3^114 07^4^115  9873 10144  100  370  92 92  07^6^117 07^9^120  4.9 4.8 5.7  99 100  382 322  92 92  5.3  8723 9501  07^10^121 07^12 123  4.3 9.0  11271 5497  92  07^14 125  6.1  8212  395 363 394  3774 3460 2063  24 15  4086 4404 2829  27 28 20  2309 2864 1784 3740  19 12  16  22  3318 5156 2885  21 28  1959  13 23 10  99  339  99 76 54  405 205 305  5542 2456  92  07^15^126  17.0  2914  4479  07^17^128 07^19 130 07^21^132 07^23 134  9.1 17.2 0.0  5287 2933  23 43 18  111  92 92 92 92  204 112  1485 632  92 92  07^26 137 07^27 138  0.0 0.0  18  10 3 1  0.0  92  07^29 140  0.0  -14252  -31  -859  3086  92 92  07^31^142 08^2^144  0.0  1712  3  264  2  0.0  -1873  -3  107 -113  -128  -1  92 92  08^4^146 08^6^148  0.0  -399  -1  -24  5589  08^7^149  265 -3302  0  92  0.0 0.0  16 -195  2719 2963  12 5 5  92 92  08^10 152 08^13^155 08^14 156  0.0 0.0  -7987 -2078  -473 -125  4175 7285  7 10  0.0 0.0  -2744 817  14  08^17 159  92 92  08^19^161 08^21^163  0.0 0.0  92  08^23 165 08^24 166 08^27 169  0.0 0.0 0.0  92 92  92 92  -7 -23 -5 -9  15  -165  10026  2  50  -2366  -3  507 1363 40641  2 5 60  32 80  -4 -6  2350  -2429 -4103 675  -36 779  -0 3  -2 47  5745  8 -3  200  -1976  1  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSSFTSS NO2/NOX ^ALK:NH4^ALK:NH4^Nitrn^%Nitrn^Specific (yy mm dd)^ Added^Nitrified^Rate^ Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  03^12 03^13 01^15 03^17 03^20 03^22 03^23 03^25 03^26 03^28 03^30 04^1 04^3 04^5 04^6 04^8 04^9 04^10 04^12 04^13 04^15 04^16 04^18 04^21 04^24 04^25 04^27 04^30 05^3 05^5 05^6 05^8 05^9 05^11 05^13 05^15 05^18 05^19 05^21 05^25 05^26 05^28 05^31 06^2 06^4  1 2 A  6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  0.74 0.75 0.81 0.78 0.77 0.70 0.69 0.57 0.65 0.67 0.91 0.89 1.01 0.96 0.93 0.93 0.92 0.90 0.92 0.90 0.96 0.93 0.85 0.84 0.79 0.82 0.78 0.70 0.74 0.72 0.70 0.72 0.72 0.70 0.82 0.85 0.85 0.88 0.87 0.91 0.89 0.88 0.91 0.90 0.88  0.44 0.46 0.44 0.66 0.66 0.60 0.60 0.53 0.75 0.69 0.75 0.76 0.53 0.42 0.47 0.35 0.49 0.61 0.82 0.81 0.30 0.39 0.31 0.42 0.25 0.16 0.08 0.11 0.08 0.14 0.08 0.10 0.12 0.00 0.01 0.02 0.01 0.01  25.17 38.78 27.80 7.38 10.20 11.87 8.36 5.63 4.69 4.94 4.57 5.53 5.10 5.61 4.42 4.30 2.98 2.79 1.54 16.66 7.76 5.80 6.82 3.15 3.28 2.94 2.21 2.23 4.93 3.81 17.90 5.60 4.90 4.59 5.32 3.64 3.20 2.66 4.03 3.88 3.90 3.05 4.60 4.21 4.25  201  6.93 5.87 5.21 5.48 6.31 5.12 7.09 5.63 5.53 6.88 8.51 4.56 16.08 9.46 12.59 10.55 5.13 4.45 8.42 12.27 4.25 5.28 5.88 17.11 8.06 6.11 4.69 5.98 2.67 4.20 3.50 5.90 4.91 4.56 4.29 5.71 3.39 6.04  10696 11950 13394 12766 12871 13307 10834 11559 11366 6540 4666 4778 1808 4652 4213 9310 9209 10620 4733 2750 5411 5328 3939 1662 4196 7588 14161 13771 20073 11014 10883 9218 10793 12342 11084 12387 18211 10243  74 78 94 96 96 107 84 97 58 41 25 20 59 48 31 49 68 84 18 6 11 21 20 40 52 63 87 89 142 84 78 69 75 88 81 101 139 84  262 275 307 224 226 202 167 179 174 99 71 70 27 63 58 137 135 167 73 45 107 105 82 38 97 178 355 305 429 237 224 190 212 244 219 234 345 195  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSSITSS NOZNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitrn^Specific (yy mm dd)^ Added^Nitrified^Rate^ Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  92  06  0.00  3.51  4.57  11741  0.89  0.01  3.72  5.13  11532  98 94  223  06 06 06  6^87 7^88  0.88  92 92 92  10^91 13^94  0.90 0.88  0.01 0.00  4.67 4.18  10446 11652  89 104  190 216  92  06  15^96  0.87  06 06 06  16^97 17^98 19 100  0.85 0.86  5.14 4.82  11801  0.84  0.01  22 103 23 104  3.50 4.28  5.14 5.61  10404 12138  103 102 105 93  231 209  0.01  4.56 3.98 4.31  12497  92 92  0.00 0.00  6.76 5.40 5.81  105  4.41  5.36  11535  103  234 221  5.12 3.70 4.59  6.42 4.62 5.28  11627 11802 13131  3.58  5.22 4.29 7.16  11507 11856 10223  94 99 98 88  222 227 241 212  94 78  5.14 4.44  11061 13017  217 182 194  7.35  92 92  06  92 92  06 06  92 92  06 06  26 107  0.84  0.00  0.85 0.85  0.01 0.01  0.85 0.89 0.88  0.00 0.00 0.01 0.05 0.09 0.66 0.45 0.93 0.71 1.04  92  07  28 109 29 110 3^114  92  07  4^115  92 92  07 07  6^117 9^120  0.88 0.90 0.90  92 92 92  07 07 07  10^121 12 123 14^125  0.90 0.89 0.87  92  07  15^126 17^128  0.87 0.88  19 130  0.88 0.78 0.70  92  07  92 92  07 07  92  07  21^132 23 134  92  07 07  26 137 27 138  0.79 0.78  29 140 31^142  0.76  92  07 07  92 92  08 08  2^144 4^146  92  08  6^148  92 92  08  7^149  08  92 92  08 08  10^152 13^155 14^156  92 92  92 92  08 08  92 92  08 08  92 92  17^159 19^161  0.69 0.70  0.92  3.20 4.49 3.67 3.90 3.27 3.69 2.51  0.42  4.13 3.14 8.97 7.06  0.49  8.20  0.51 0.46  8.86 0.71  0.28  6.67 7.40  0.86 0.46  11060  214  222 201  6603  87 101 36  227 116  5.29 7.83  10661 4862  47 11  190 88  8.34  7400  18  133  8.01  5546  12 35  99  52 65 -1.37  -7692  98 -45  7.39  13560  86  9184 8147  69 19  -176 345 237  0.74  0.47  3.65  10.43 5.99  0.73 0.76  0.50 0.68  7.85 4.28  10.27 14.83  10583 4191  20 8  282 114  0.78  1.02 0.74 0.87  0.88 4.10  -5.49 12.22 13.34  -2346 4926 2740  -4 7 4  133 75  10.12  7291  10  12.30 10.67  6081  9 8  0.77 0.78 0.74  0.41  0.84  21^163  0.75 0.75  0.86 0.93  23 165  0.77  0.35  08  24 166  0.74  0.90  08  27 169  0.75  0.72  2.40 4.85 5.16 4.71 8.09 4.88 4.56  202  212  -64  200 169 181  2.11  6404 54218  86  1529  13.42 10.75  5185 6196  8 8  150 181  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  System^System Aerobic Aerobic^ Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (nigN/d)  29  76.7 72.0  87  A  51 70  95  17  6  4465  62  68.6 61.0  20  9  5099  84  53.6  92 97  11 12  4946  81 59  43.6 45.3  92  73 91  31.1 56.3 15.0  96 99 99  14.2 14.2 14.7  100 99  03 03  12 13  1 2  03  15  92 92  03 03  92 92  03 03  92  03 03 03  22 23 25  92  92 92  14  6063 10457 13905 13126  30 1 3  15 17 19 21 23  12418 12355  26 28  92 98  10  12087  93 100 94  26 28  11571 9635  97 49  10 10 10 10 10  9 10 12  29 30 32  8115  50  10  5508 5595  30 23  10  04 04  13 15  33 35  1448  48  92 92 92  04 04 04  16 18 21  36  5667 5698  58 42  92 92 92  04 04 04  24 25 27  92 92 92  04 05 05  92  05  30 3 5 6  92 92  05 05  92 92 92  03 04  92  5  25  92 92  04 04 04  6 8  92 92 92  04 04 04  92 92  04  76  873 987 1177  92 ca,  12926  38 41 44  9237 12305  49 91  12273  97  45 47  6216 6648  50 53  7978  24 15 16  56  2170  24 20 52  4450  55  9  58 59  8333  69  8  55  6191 3985  10  15.1 15.1 15.6 15.8 15.9 92.2 79.5 99.5  20  26.0  10 10 10  14.2 15.8 15.0 83.1 62.4 47.4  97  100 99 100 89 92 88 81 87 89 87 89 99 100 80 65  61.6 47.3  47 54 66  10  14.1  83  10 10  14.4 14.4  91 94 98  92  05  11  61  14222  87  10  13.6  92  05  13  63  94  10  14.3  99  92  05  65  98  10  05  68  14.2 14.3  100  92  15 18  14529 13822  19 21 25  14.5  92  05 05 05  69 71 75  92 92  05 05  26 28  76 78  100 100 99 100 100  92 92  12703 13677 13166  10  97 98  10 10 10  14.8 14.6  98  10 10  14.5 14.6  99 93 100  100  92  05  31  81  13359 13961 13374 12004  14.9  100  06  2  83  13027  98 99  10  92  10  14.6  100  92  06  4  85  11860  97  10  14.6  100  203  ^  COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  System^System Aerobic Aerobic^ Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (mgN/d)  92 92  06  6 7  87  11921  100  06  88  12172  99  10 10  14.8 14.6  92 92  06 06  le 13  91 94  11733 11175  99 100  10  15.1  100  10  14.8  100  96 97  12117 10806  100  10  14.9  100  99 98  10 10  14.6 14.9  100 100  100 99 100  10  14.4  100  10 10  15.1 15.3  100 100  99 99 100  10 10 10  14.9 15.0 14.9  100 100 100  99 100  15.2 15.3 15.0  100 100 98  92  06  15  92 92 92  06 06 06  16 17  98  11100  19  100  11202  92 92 92  06 06 06  22 23 26  103 104 107  11508 11185 12243  92 92 92  06 06 07  28  11844 13319 13005  92 92  07 07  29 3 4  109 110 114 115  92  07  6 9  117 120  92 92  07 07 07 07  10  121  12 14 15  123 125 126  7901 11261 5727  07  17  128 130 132 134  92 92 92 92 92 92 92  07  19  07 07  21 23  07 07  26 27  07  29  138 140  07 08  31 2  142 144  92  08  4  92  08  6  92 92  08 08  7 10  92 92  08 08  92 92 92 92 92 92  92  83  10 10 10  99 100 43  10  15.0  100  10 10  15.5 15.4  100 91  50 14  10 10  90  8460  20  10  14.7 15.1 14.6  7869  16  12615 10820 12604 12869  69.9  10  11054  64 93  146  14587 13045 1672  99 4  148 149  4044 4627  152  13  155  08  14 17  156 159  08 08  19 21  161 163  08 08 08  23 24 27  165 166 169  10 10  67 67 60 73 89 95 99  137  92 92 92  100 100  95  13.2 12.0 13.3 45.3  99 100  8 8  30.9  49  35.4  3206  6  36.8  52 50  -3781 -4607  35.8 38.6  24 36  7161  -5 -7 10  6762  10  34.2 30.9  32 30  7273 3456  9 5  35.5  22  -2266 5014  -3 6  37.2 34.3 35.3  29 24 21  10  204  54  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic (yy mm dd)^(Lid)^I ml/h)^( ml/h)^(mL/h)^( WA)^(Lid) Wasting^Overflow (Lid)^(Lid)  92^03^12 92^03^13 92^03^15 92^03^17 92^03^20 92^03^22 92^03^23 92^03^25 92^03^26 92^03^28 92^03^30 92^04^1 92^04^3 92^04^5 92^04^6 92^04^8 92^04^9 92^04^10 92^04^12 92^04^13 92^04^15 92^04^16 92^04^18 92^04^21 92^04^24 92^04^25 92^04^27 92^04^30 92^05^3 92^05^5 92^05^6 92^05^8 92^05^9 92^05^11 92^05^13 92^05^15 92^05^18 92^05^19 92^05^21 92^05^25 92^05^26 92^05^28 92^05^31 92^06^2 92^06^4  1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  9.8 9.2 8.9 8.8 9.0 9.0 9.0 8.9 8.7 8.9 8.6 8.8 9.0 8.8 8.9 8.7 8.6 8.6 8.4 8.4 8.4 8.2 8.3 8.3 8.6 8.5 8.2 8.6 8.8 8.8 9.0 8.9 8.5 8.2 8.0 8.2 8.5 8.6 8.3 8.5 8.3 8.3 8.4 8.3 8.5  27.0 23.9 27.5 27.0 24.6 23.8 19.5 23.0 21.0 20.0 20.0 19.5 16.0 15.4 25.0 25.8 24.0 27.0 25.0 25.0 25.0 24.0 26.0 27.0 26.0 25.9 26.9 27.0 26.7 24.6 27.0 27.0 25.0 25.0 25.5 27.1 24.8 26.0 22.6 24.0 23.0 25.0 25.0 23.6 25.2  6.5 6.3 6.3 6.6 6.7 6.7 6.7 6.5 6.7 6.4 6.4 6.8 7.0 6.9 6.8 6.8 6.8 6.7 6.9 6.7 6.7 6.5 6.5 6.8 6.6 6.5 6.7 6.3 6.8 6.6 6.6 6.7 6.2 6.2 7.0 6.6 6.5 6.8 6.5 6.6 7.2 6.8 6.8 7.0 7.0  205  41 42 37 39 36 41 43 42 39 39 39 47 38 44 48 46 44 37 45 44 48 40 38 32 32 45 42 12 17 12 17 22 34 53 68 41 34 26 44 39 35 35 55 47 47  41 42 37 39 36 41 43 42 39 39 39 47 38 44 48 46 44 37 45 11.7 11.5 11.8 11.4 11.2 11.1 11.0 10.9 10.8 11.0 11.5 11.4 11.8 11.7 11.7 12.1 12.1 11.9 12.1 12.2 11.6 12.1 12.0 12.5 12.7 12.7  57 57 57 57 63 63 60 60 60 59 59 59 59 56 56 56 56 63 63 63 58 58 58 58 58 64 64 64 64 64 64 59 59 62 62 62 62 65 65 65 65 63 63 63 63  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5  69 68 68 68 74 74 71 71 70 69 69 70 69 66 67 67 66 73 73 72 67 67 67 67 68 74 73 74 74 74 74 69 69 71 71 71 72 75 74 75 74 72 72 72 73  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(Lid)^Wasting^Overflow (L/d)^(Lid)  92^06^6^87  8.6  25.5  7.1  39  12.2  57  0.5  67  92^06^7^88 92^06^10^91  8.5 8.4  6.9 6.4  57 57 57  0.5 0.5  8.6  23.0  57  0.5  66 67 67  23.8  11.7  92^06^17^98  8.4 8.3  7.1 6.5  11.8 11.7 11.4 11.3  67  8.5  44 35 48  0.5  92^06^13^94  25.5 24.2 24.1  25.6 25.1  6.5 6.5  57 57 60  0.5 0.5  66 66  0.5  69  60 60  0.5 0.5  69 69  60 60 64  0.5 0.5 0.5  69 69 73  61 61 61  0.5 0.5 0.5  70 70 70  92^06^15^96 92^06^16^97  6.3  47 42 32  12.0  92^06^19 100  8.3  92^06^22 103 92^06^23 104 92^06^26 107  8.4 8.4 8.2  25.8  6.6  23.6 22.8  6.7 6.4  36  92^06^28 109 92^06^29 110 92^07^3^114  8.2 8.1  21.2 19.0  6.2 6.0  40 44  8.1 8.2  29.7 31.6  36 37  92^07^9^120  8.2 8.2  32.3 30.9  5.8 5.7 5.6 5.7  58 47  13.3  61  0.5  92^07^10^121 92^07^12 123  8.2 8.0  29.2 29.2  5.7 5.3  44 48  13.3 13.9  64 64  0.5 0.5  70 73 73  92^07^14 125  8.3 8.4  30.1 30.2  5.6  92^07^15 126  42 35  13.4 13.5  64 64  0.5 0.5  74  92^07^17 128  8.3  29.1  5.7 5.5  70  27.5 29.2  5.7 0.0  14.5 14.9  61 61 61  0.5  8.3 7.9  47 31 113  13.9  92^07^19 130 92^07^21^132 92^07^23 134  70  7.6  28.5  0.0  89  14.9  0.0 0.0 0.0  7.4 7.2  28.8 23.8  0.0 0.0  95 89  14.5 15.1  7.3  28.9  0.0  74  14.9  7.6  30.8 26.3  0.0  44  0.0  8.6  26.3 28.6  0.0 0.0  37 34 41  13.9  62  0.0  92^08^10 152  8.4 8.1  28.6 29.8  0.0 0.0  47 57  14.0 14.1  62 58  0.0 0.0  92^08^13 155 92^08^14 156  8.3 8.3  29.0 30.8  0.0 0.0  64  14.4  0.0  52  14.1  58 58  92^08^17^159 92^08^19^161 92^08^21^163  8.2 8.5 8.6  30.3 27.3 24.7  0.0 0.0 0.0  37 16 31  14.6 14.9 14.4  58 55 55  1.0 1.0 1.0  92^08^23 165 92^08^24 166 92^08^27 169  8.3 8.3 8.4  22.2 20.4 21.3  0.0 0.0 0.0  46 34 31  14.9 14.7  55 55 55  1.0 1.0 1.0  92^07^4^115 92^07^6^117  92^07^26 137 92^07^27 138 92^07^29 140 92^07^31^142 92^08^2^144 92^08^4^146 92^08^6^148 92^08^7^149  8.0 8.3  206  39  12.5  43 41  12.7 13.0 12.8 12.9 13.4 13.8 13.9 13.6  61 61 61  0.0 0.0  73  70 70 69  0.5  69 69  14.5  61 61  1.0  70  14.3  55  1.0  14.1  55  0.0  64 64  15.0  1.0  72 71 67 67 67 67 64 65 64 64 64  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic^ NH4CI^Simulated^CH3OH^o-PO4 (yy mm dcl)^Overflow^ Iti/LI^Influent NH4^ImL/1.1^(gP/L) (mgN/L) (Lid)^  92 92 cb,  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06  12 13 16 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4  1 2 4  6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  70 69 68 68 74 75 72 72 71 70 70 71 70 67 68 68 67 74 74 73 69 68 68 68 68 75 74 74 74 74 75 70 69  75  13 13 25 25 50 83 90 90 100 100 110 110 120 125 90 0 25 50 80 80 80 80 80 80 50 0 0 25 25 50 60 75 75 88 80 80 80 80 80 80 80  73  SO  74  80 80 80  73 73 72 72 75 75 75  73  74  207  346 313 592 591 937 1398 1302 1517 1588 1486 1651 1559 1404 1472 1642 164 580 1083 1534 1441 1422 1415 1499 1582 980 128 195 619 597 1052 1200 1459 1370 1525 1412 1559 1445 1512 1305 1381 1350 1449 1370 1339 1391  10 10 10 10 10 10 10 200 200 200 200 200 500 500 500 10 10 10 10 10 100 200 400 400 10 10 10 10 10 10 10 25 50 100 100 100 200 200 200 300 300 300 300 300 300  0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.361 0.361 0.361 0.361 0.361 0.381 0.361 0.361 0.381 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic^ NH4C1^Simulated^CH3OH^o-PO4 (Icy mm dd)^Overflow^ (g/L)^Influent NH4^ImL/L)^(gPIL) (L/d)^ (mgN/L)  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  06 06 06 06 06 06 06 06 06 06 06 06 06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08  6^87 7^88 10^91 13^94 15^96 16^97 17^98 19^100 22 103 23 104 26 107 28 109 29 110 3^114 4^115 6^117 9^120 10^121 12^123 14 125 15^126 17^128 19^130 21^132 23 134 26 137 27 138 29 140 31^142 2^144 4^146 6^148 7^149 10^152 13^155 14^156 17^159 19^161 21^163 23 165 24 166 27 169  68 68 67 68 68 67 67 70 71 70 70 70 74_ 71 71 72 72 74 74 74 74 72 71 73 72 72 71 71 71 65 65 73 73 69 69 69 68 65 65 65 65 65  80 80 80 80 80 80 80 80 80 80 80 95 95 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 90 90 95  208  1424 1431 1409 1347 1273 1372 1493 1445 1461 1335 1363 1464 1323 1588 1655 1619 1587 1534 1549 1569 1577 1507 1487 1338 1428 1456 1263 1555 1722 1457 1437 1481 1488 1547 1464 1580 1632 1540 1318 1452 1391 1507  250 250 250 270 270 265 265 265 265 265 265 290 290 290 290 290 290 290 290 290 290 290 290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361 0.361  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3^ Loading^Loading^Loading^ORP (yy mm dd)^(g/L)^ CH3OH^o-PO4^NaHCO3^(mV) (gCOD/d)^(gp/d)^(gCaCO3/d)  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06  12 13 16 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4  1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  44 56 56 50 81 81 81 50 50 50 50 50 50 .. 50 50 63 75 83 93 93 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75  1.85 1.80 1.80 1.88 1.89 1.91 1.91 37.04 38.18 36.47 36.47 38.75 99.73 98.30 96.88 1.94 1.94 1.91 1.97 1.91 19.09 37.04 74.08 77.50 1.88 1.85 1.91 1.80 1.94 1.88 1.88 4.77 8.83 17.67 19.95 18.81 37.04 38.75 37.04 56.42 61.55 58.13 58.13 59.84 59.84  209  0.228 0.233 0.205 0.217 0.200 0.228 0.239 0.233 0.217 0.217 0.217 0.261 0.211 0.244 0.267 0.255 0.244 0.205 0.250 0.102 0.100 0.103 0.099 0.097 0.097 0.095 0.095 0.093 0.095 0.099 0.099 0.102 0.101 0.101 0.105 0.105 0.103 0.105 0.106 0.101 0.105 0.105 0.108 0.110 0.110  3648 4636 4276 4109 5518 6116 6639 4577 4440 4407 4486  5047 4332 4870 5012 5777 6482 6085 7905 7242 6472 5805 5579 4998 4897 6182 5689 2485 2950 2456 2934 3458 4758 6695 8174 5570 4782 3949 5858 5255 4942 4942 6973 6283 6204  -156 -109 -17 53 66 121 73 5 -11 -16 -30 -44 -129 -93 -90 -86 -107 -91 -55 -62 -34 -51 -42 -75 -91 -110 -114 -81 -44 21 -3 -8 -15 -32 -49 -36 -114 -124 -110 -166 -142 -130 -92 -90 -106  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3^ Loading^Loading^Loading^ ORP (yy mm dd)^(g/L)^ CH3OH^o-PO4^NaHCO3^(mV) (gCOD/d)^(gP/d)^(gCaCO3/d)  92 92 °2 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  06 06 Oa. 06 06 06 06 06 06 06 06 06 06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08  6^87 7^88 1 °^9 1 13^94 15^96 16^97 17^98 19 100 22 103 23 104 26 107 28 109 29^110 3^114 4^115 6^117 9^120 10^121 12 123 14^125 15^126 17 128 19 130 21^132 23 134 26 137 27 138 29 140 31^142 2^144 4^146 6^148 7^149 10^152 13^155 14^156 17^159 19^161 21^163 23 165 24 166 27 169  75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75  50.58 49.15 45.59 48.47 54.62 49.08 49.08 49.08 49.84 50.59 48.33 51.23 49.58 47.93 47.10 46.27 47.10 47.10 43.80 46.27 47.10 45.45 47.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  210  0.106 0.102 0.102 0.099 0.098 0.101 0.104 0.108 0.110 0.113 0.111 0.112 0.116 0.120 0.120 0.118 0.115 0.116 0.121 0.116 0.117 0.121 0.126 0.129 0.129 0.126 0.131 0.129 0.126 0.124 0.123 0.121 0.121 0.122 0.125 0.123 0.127 0.129 0.125 0.129 0.128 0.131  5400 5919 5108 6290 6147 5795 4850 5519 5862 5662 5292 5677 6111 5285 5305 7273 6297 6008 6511 5781 5056 6232 4673 11994 10462 11194 10894 9457 6366 5448 5176 5713 6419 7447 8021 6871 5533 3255 4774 6324 5170 4851  -136 -151 -166 -172 -151 -190 -200 -185 -154 -160 -184 -183 -171 -169 -174 -140 -158 -161 -187 -234 -258 -207 -226 -119 -30 -8 -5 5 15 39 -15 30 21 40 45 46 42 54 35 49 47 57  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^PH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO (yy mm dd)^ (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  03^12 03^13 03^15 03^17 03^20 03^22 03^23 03^25 03^26 03^28 03^30 04^1 04^3 04^5 04^6 04^8 04^9 04^10 04^12 04^13 04^15 04^16 04^18 04^21 04^24 04^25 04^27 04^30 05^3 05^5 05^6 05^8 05^9 05^11 05^13 05^15 05^18 05^19 05^21 05^25 05^26 05^28 05^31 06^2 06^4  1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85  7.5 7.3 7.8 7.3 7.4 7.6 7.5 7.7 7.7 7.9 8.2 8.1 8.5 8.6 8.3 8.2 8.3 8.3 8.7 8.7 8.2 8.2 8.2 8.2 8.4 8.6 8.5 8.1 8.5 8.0 8.0 7.6 8.0 8.3 8.0 7.9 7.9 8.0 8.0 8.3 8.4 8.3 8.7 8.9 8.4  5780 5674 5458 5306 5380 5756 4850 4626 4620 4789 4898 4883 4614 4650 4540 4339 4639 4699 4758 4677 4704 4792 4756 4736 4776 4897 4738 4307 4008 4163 4167 4140 4222 4246 4345 4412 4280 4544 4769 5250 5360 5600 6150 6029 5859  8078 7412 7216 8977 6806 6566 7066 6347 6358 6105 6440 6416 5364 5258 5437 5249 5505 5530 5911 5438 5547 5346 5201 4996 5466 5680 5529 5435 5003 5174 5058 4714 4900 4745 4681 5112 4443 4623 5117 5076 5394 5316 5857 6027 6191  211  14.5 10.4 10.2 8.0 9.2 6.9 7.2 7.1 6.5 5.9 6.5 6.7 5.3 4.2 3.8 2.9 3.3 3.2 3.4 3.3 3.1 3.4 3.2 2.8 2.6 3.0 3.1 3.5 3.3 3.8 4.0 3.1 3.0 3.4 2.6 2.3 2.3 2.8  268 133 118 88 134 189 174 196 215 198 208 207 218 348 384 138 196 229 206 198 199 189 289 309 201 35 27 233 128 155 166 172 189 191 193 163 178 183 154 162 175 163 154 161 158  307  184 644.0 802.0 614.0 674.0 731.0 125.9 19.7 4.4 72.0 344.7 338.0 897.0 843.0 489.0 369.2 71.0 15.4 437.0 117.0 171.0 396.0 494.0 593.0 676.0 885.0 857.0 845.0 961.0 921.0 844.3 838.7 879.2 427.0 202.2 36.1 3.8 12.6 0.9  292.0 238.0 210.0 194.6 167.0 87.0 14.3 0.4 27.0 138.0 143.0 226.0 251.0 254.0 91.0 21.9 14.4 103.4 18.3 19.2 33.0 47.0 66.0 60.0 158.0 156.0 24.0 15.6 13.5 3.5 3.3 2.0 0.4 0.6 0.8 0.1 0.6 0.2  88  218  208 108 119 310 328 245 114 86 62 66 72 66 104 97 83 127 127 136 186 218 196 212 183 193  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD (yy mm dd)^ Img/LI^Img/LI^ImgP/LI^ImgN/LI^(mgNIL)^(mgNIL)^Img/LI  92  06  6^87  8.4  5737  6112  2.5  151  06  7^88  8.4  6143  7045  3.0  168  2.6 6.3  1.4 0.5  206  92 92 92  06 06  10^91 13^94  8.4 8.6  5924 6090  6351 6686  2.4 2.0  155 177  2.3 2.9  1.2 0.9  185 173  92 92 92  06 06 06  15^96 16^97 17^98  8.5  6853 6653  1.9  0.1  163 169  0.8 1.0  0.0 0.0  184 168  06 06  19^100 22 103 23 104  8.3 8.4 8.4  6553 6909 6646  2.2 2.4 2.0  92  6018 5716 5554 5992 5655  172  8.3 8.4  155  2.7  0.6  172  6463  1.2 1.7  0.0 0.0  194  5550  162 163  26 107 28 109 29^110  8.4 8.4 8.5  5408 5480 5606  6499 6181 5977  159 171 171  0.8 4.6 2.8  0.1 1.9 0.1  193  3.0 3.5  3^114  8.3 8.3  5857 5910  6830 6471  3.1 3.5  186 176  2.3 0.8  1.2 0.0  204  8.4 8.3  5847 6393  6446  2.6  184  1.4  0.2  205  7268  2.3  1.5  0.1  185  8.4 8.4  6635 6118 5935 6160  7318 6890 6671 6880  3.0 2.7  181 161  2.8 2.7  192 278 298  2.6 2.7 15.0 13.0  0.0 0.7 1.5 9.7  223 189  5960 5910 6046  6729 6715 7309 7964 7936 6699  2.7 3.1 3.6 3.7 4.3 4.9  506 685 507  23.6 22.1 8.7  2.1 3.9 1.3  236 248 361  493  8.4  0.4  328  450 281  8.5 316.0  0.4 14.6  330  92 92 92  06 06  92 92  06 06  92  07 07 07  4^115 6^117  92  07  9^120  92 92 92  07 07 07  10^121  92 92 92 92  07 07 07 07  17^128 19 130 21^132  92 92 92  07 07 07  '3^134 '3^137 27 138  92 92  12^123 14^125 15^126  8.2 8.2 8.3 8.2 8.0 8.1 8.1 7.9  5734 5359 4858  2.7 2.7 3.1 3.3  188 179  92  07  29 140  7.8  4700  6671  5.1  308  621.0  26.4  205  92 92  07 08  31^142  7.6 7.5  4745 4763  6523 6751  4.3 3.3  209 194  932.0 957.0  71.6 69.2  263 190  92  08  92  08  92  08  92 92 92  08 08 08  2^144 4^146  7.7  4429  6249  3.7  718  746.0  308.8  625  6^148 7^149  7.4 7.5  4163 3973  5775 5325  3.4  7.5 7.5  5512  7.7  3910 3941 3880  463.0 497.0 530.0  468  2.8 3.2  870.0 1086.0  10^152 13^155 14^156  680 505 310  5153 5266  3.3 2.7  207 199  7.5  3812  5070  225  972.0 1014.0  7.5 7.6 7.7  3855 3550  249 256  903.0 821.0  355.0 368.9  232  3474  4979 4743 4594  2.8 3.3 3.5  4600 4224  507 531 649  696.0 626.0 698.0  241  3452 3297  3.1 3.5 3.8  358.8  7.6 7.5  92 92 92  08 08 08  17^159 19^161 21^163  92 92 92  08 08 08  23 165 24 166 27 169  212  905.6 902.5  427.5 498.1  300 205  446.4  336.7 214.3  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD^ DO^pH^VSS^TSS^o-PO4^NH4 (yy mm dd)^(mall)^(mg/L)^(mg/L)^(ing/L)^(m9P/L)^( mgN/L)  92 92  03^12 03^13  92 92 92  03^15 03^17 03^20  92  03^22  1 2 4 6 9  702 828 685 798  9.10  6.7  5970  8.00 8.20 7.80  6079 5680 5569  7643 7350  704  8.70  7.2 7.7 7.1 7.1  5625  7131  8  642  9.00 8.60  7.6  6010  7.8  4890  7023 7085  17 3  5.50 5.50  7.3 7.6  4902 4839  8.00 7.00  7.5 7.4  5100 4900  7.00 7.50 7.50  7.6 8.1 8.0  4765 5152 5240  8.3  237  6.00 5.00  6.9 6.5  4922  6008 5864  6.4 6.5  263 68  5.50 5.00 5.00 4.50  6.9 6.8  5753 5750  6.6 6.4 6.5  92 38  5.2 3.5 3.9  7 4 6 165 248 65 22 6  92  03^23  11 12  92 92  03^25  14  605 641  03^26 03^28  15 17  651 679  03^30 04^1 04^3  19 21 23  644 597 750  04^5 04^6  727 690  92 92 92 92 92 92  04^8  25 26 28  92 92  04^9 04^10  29 30  92  04^12  32  637 620 610  92 92  04^13 04^15  33 35  607 599  7.50  8.3 7.3 7.7  591 729 820  7.00 7.50 7.50  7.5 7.9 6.8  677 679 541  6.50 5.00 6.70  7.3 8.2  487 453  7.00 9.80 7.50  92  669  92  04^16  36  92 92 92  04^18 04^21 04^24  38 41 44  92 92  04^25 04^27  45 47  92 92 92  04^30 05^3 05^5  50 53 55  92  05^6  56  504  92 92  05^8 05^9  58 59  500 434  494  4810 4806 4811 4540 4760 4830 5120  8320 7905  6832 6646 6470  239 81 53 4  14.3 11.9 9.5  5 14 2  6408  9.4  4  6312 6113 6034  10.5 7.7  1 94  5751 5681 5683 5693  14  5240 5350 4970  5707 5677 5758  3.0 3.2 2.8  8.5  4813 4660  7.8 7.7 7.3 7.4  4320  5619 5484 5435  3.1 2.9 3.0  4259 4140 4095  5281 5177 5096  3.4 3.3  120 51 41  2.9  15  7.4  4320 4360 4550  2.1 2.4  10 17  5.80  7.3 7.3  5027 5035 5053  2.7  19  5.00 4.70  7.3 7.3  4660 4490  5124 5176  3.2 3.3  7 7  4.0 3.6  7.30 5.80 6.10  92  05^11  92  05^13  61 63  500 500  92 92  05^15 05^18  65 68  475 516  5.00  7.4  4960  5199  92 92  69 71  547 523  5.30 5.50  7.4 7.3  5110 5070  5324 5431  92  05^19 05^21 05^25  75  92 92  05^26 05^28  76 78  628 654 652  4.00 7.50 8.40  7.3 7.3 7.3  5580 5620 6200  92 92 92  05^31 06^2 06^4  81 83  647 570  6.60 6.82  7.4 7.4  6350 6320  5537 5740 5920 6172 6409  85  607  6.47  7.4  6240  6578  213  12  2.5 3.1  13 7 5  2.7 2.5  2 6  1.9 1.7  1 2 9  2.6  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD^ DO^pH^VSS^TSS^o-PO4^NH4 (yy mm dd)^Img/LI^Img/LI^Img/LI^Img/LI^(mgP/L)^(nigN/L)  92  06  6^87  630  5.97  7.4  92  06  7^88  637 592  5.83  7.4  6160 5940  6.56  650  6.27  7.5 7.5  6240 6180  6.05 5.74 6.63  7.4 7.4 7.4  2.5  1  6016  2.2 1.8  1 0  5990 5910  6981 6985  1.8 1.8  7.4 7.4 7.4  5910 5840 5850  6953  2.0  1 1 0  6931 6903  7.3 7.3  5730 6073  10^91  06 06  13^94 15^96  92 92 92 92  06 06  16^97 17^98  543 569 543  06 06  19 100 22 103  619 681  7.12 7.51  92 92  06 06  23 104 26 107  579  6.50  92 92  06 06  623 622 594  6.52 6.78 7.00  7.4  92  07  28 109 29 110 3^114  616  6.90  7.3  92 92  07 07  4^115 6^117  585 565  7.32  7.3 7.3 7.4  07  9^120  588  92 92  07 07  10^121 12^123  600 675  92 92 92  07 07 07  14^125 15^126 17^128  666 706 632  92 92 92  07 07  19^130 21^132  07  23 134  746 812 734  92 92 92  07 07 07  26 137 27 138 29 140  829 707 633  07 08  31^142 2^144  92  08  4^146  670 633 1093  92 92  08 08  6^148 7^149  92  08  92 92  92 92 92 92 92 92 92 92  08 08 08 08 08 08 08 08  6.20 7.12 7.17 6.27 6.55 5.69 5.08 6.53 7.03 7.19  6877  2.0 2.2 3.1  6318  6846 6902  2.8 3.1  5950  7017  6275 6410  7017 7100  2.7 2.6 2.5  7.3 7.3  6220 6360 6390  7192 7198 7273  2.1 2.2 2.7  1 0  7.3 7.3  6410 6370  7252 7211  2.5 2.4  156 199  7.3 7.3 7.3  6340 6290 5890  7298 7268  2.7  305  2.4 2.7  7.3 7.3  5150 4840 5020  558 481 103  5.89 6.42 6.15 0.00  7.3 7.3 7.3  4760 4754  7.3 7.3  4330  946 882  6.33 6.72  7.3 7.3  10^152 13^155  776 737  7.37  7.4  4220 4187 3920  14^156  617  7.08 6.66  7.5 7.4  4060 3910  17^159 19^161 21^163 23 165  646 661 703  6.38 6.64 6.54 6.94  7.4 7.4 7.4  24 166 27^169  724 746 762  6.11 6.31  214  1  6810  06  92  2.0 2.5  6915 6979  92 92 92  7.17 6.39  1  6696 6793  7.4 7.4 7.3  4550  7121 7333 7300 6993 6862 6633 6449  3.8 3.9 4.2 4.4 4.3 3.2  5 0 2 1 1 1 0 1  2  66 81 56 8 4  6228 5944 5707  3.0  560  3.5 2.5  578 380  5576  2.9  121  2.9 3.0  12 5  3840 3950 3680 3550  5393 5289 5174  2.2  5068 4976 4813  3.2 3.0 2.5  23 36 105 386  3490 3460  4638 4523  2.8 3.4  426 487  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOD^COD^ 1/88^TSB^NH4 (yy nun dd)^(ugN/L)^ImgNAJ^OngAJ^(mg/1)^(mgA)^OngA4^OngNA4  92  03  12  1  491  155  92  03  13  2  485  153  194  92 92  03 03  15 17  4 6  456 433  182 147  92 92 92  03  385  144  03 03  20 22 23  248 194 178  11 12  399  92 92 92  03 03 03  25 26  14 15  756 938  387.5 608.5  28  03  30  825 806  507.6  92 92 92 92  17 19  571.0  425 402  138 255 150 119 138 170  173 222  04 04 04  1 3  21 23  5  25  889 237 123  709.9 115.9 107.0  428 450 447  151 148 148  202 178 176  92  04 04  6 8  26 28  117 125  84.3 86.5  442 456  181 161  224 196 157  126 167  92  41  9 18  381 440 408 18  53  211  160 372 208 159  92  04  9  29  552  139.6  92 92 92 92 92  04 04  30 32  495 1051  228.5 231.5  14  429 403 403  04 04 04  10 12 13  996 625 489  341.9 326.4 201.2  12 16  420 372 397  125  15 16  33 35 36  154 212 153  125 130  149 147  92 92 92  04 04 04  18 21 24  38 41 44  197 61 521  45.7 42.2 132.5  24 58 33  448 500 458  157 139 185  171 152  92 92  04  25  45  117  27.0  420  27 30  47 50  154  92  04 04  481  109.3 102.3  17 22  369 342  181 190  92 92  05 05  3  327  5 6 8  53 55  540 694  104.6 142.8  10 16  56 58  807 1019  13  9  59  1008  152.6 190.3 180.6  92  05  92 92  05 05  92 92 92  05 05 05  11 13 15  61 63 65  1043 1125 1054  73.2 61.2 57.6  92 92  05 05  18 19  68  92  05  21  69 71  990 976 978  484.3 64.4 9.4  92 92 92  05 05 05  25 26 28  75 76 78  603 353  25.0 11.1  176  92 92  05 06  31 2  81 83  177 163  5.5 6.0 2.0  92  06  4  85  170  0.8  16 20 14 15 20 12 20 24 18 16  338 332 318 303 341 342 327 343 373 387 398 406  15  416 404  12 14  375 377  215  129  221 212  209  240 274  168 174  211 219  140 159  176  143  186 166  133 121 152 150  147 136 172 158  146 144 128  151 152 127  130  135  129 135 149  126 131 152  143  148  2  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOO^COD^ V88^TSB^NH4 (yy mm dd)^(mgN/L)^ImgN/1.1^(mg/L)^(mg/L)^OngAJ^OngAJ^OngNAJ  92  06  6^87  166  06  7^88  184  5.0 0.6  18  92 92  06  10^91  92  06  13^94  156 175  1.1 0.3  17 11  92  06 06  15^96 16^97  186  0.4  176  92 92  06  17^98  153  3.1 0.4  06  19 100  92 92  06 06  22 103 23 104  149 147  92 92  06  26 107 28 109  92  92 92 92 92 92 92 92 92 92 92 92 92 92  06 06  139 205  14 18  370 358  133  158  131  155  10.0 0.1 0.6  10 13  370 400  120  143 162 150  176 181 156 160  2.0 0.4 0.4  11 15  5.8 71.2 59.3  157  392  8 14  171 183  07 07 07 07  10^121 12^123 14^125 15^126  177 173 131 114  55.7 73.8  17^128  161  116.1  29  19^130 21^132 23 134  135 808  118.0 92.2  815 484 458 761  142  1106  75.2  35  1138 878 977 1246  62.0 117.2  35 155  125.0 139.9  202  07 07  92 92  07 08  31^142 2^144  92 92  154  4^115 6^117 9^120  26^137 27 138 29 140  92 92 92  143 125 174  07 07 07  92 92 92  07  08 08 08  4^146 6^148 7^149  08  10^152 13^155  92  08 08  14 156  92  08  92 92 92  08 08 08  21^163 23 165  92 92  08 08  24 166 27 169  17^159 19^161  146 177  394  29 110 3^114  07 07  136 155  384 400  07  07 07  393 384  167  0.3  134 182 149 142  217 168 156  175  205  20 23  386 447 421 433  137 130 146 123  151 145 165 143  401 523 549  129  151  72 84  150 224  174 277  73.1  55  472  262  79.7 58.0 71.2  41  496 488 464  233 151  383 345  67.0 68.4  186.7 197.0 209.0  1195  184.8 206.5 172.7  832  365  160.3 138.4 189.7  214  415 409  175  283 205 246  697 648 550  223 218 149  317 306 204  42  474  235  329  32  446 416  132 217  396  136 186 181  243 241  187 150 149  201 200  53  420 432  38  464 437 463  216  199 144  0  198 169 144  383 372  1071  701  379  164 154  16 12  1055 1126 1080 962 801  413 398 382  138 129  173 295 185  264  5  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOD^COD^VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm dd)^(mgN/L)^(mg/L)^(mS/L)^ (gN/d)^Entering (gCOD/gN)  92  03  12  1  0.72  92 92 92  03 03 03  13 15 17  2 4 6  0.77  92 92  03 03  92 92 92  0.76 0.76 0.79  20  9  03  22 23  11 12  03 03  25 26  14  0.88 0.69 0.73  28  92  03 03  30  15 17 19  0.73 0.78 0.76  92 92  04 04  1 3  21 23  92  0.45  45.4  0.8  0.30 0.34 0.29  56.4 48.8 47.6  0.7 0.7 0.8  0.76 0.86  0.23 0.69  52.5 14.1  0.7 7.1  92  04  5  25  0.88  0.73  7.0  14.1  92 92 92  04 04 04  6 8 9  26 28 29  0.84 0.83 0.84  0.09 0.38  6.6 7.1  14.6 0.3  92 92 92 92  04 04 04 04  10 12 13 15  30 32 33 35  0.85 0.80  31.0 31.2 66.3  0.1 0.0  0.86 0.85  0.40 0.42 0.25 0.30 0.52  62.8 36.3 28.4  0.0 0.5 1.3  0.1  92  04  16  36  0.90  0.25  92 92 92  04 04 04  18 21 24  38 41 44  0.91 0.95 0.87  0.31 0.94 0.24  11.5 3.6  6.4 21.4  30.3  0.1  92  04  25  45  92  04 04  27 30  47 50  0.86 0.86  0.16 0.11  7.6 9.9  0.2 0.2  53 55  0.10  30.9 34.7  92  3 5  0.79 0.80 0.80  0.08  05 05  0.11  44.5  0.1 0.0  92 92 92  05 05 05  6 8 9  56 58 59  0.09 0.18  51.7  0.0  92 92 92  05  11 13 15  61 63 65  60.2 59.6 64.8  0.1 0.1 0.3 0.3 0.3 0.6  92 92  05 05  92  05  18  68  92  05  92  05  19 21  69 71  92 92  05 05  25 26  75 76  92 92  05 05  92 92  06 06  28 31 2  78 81 83  4  85  159  217  0.1  0.82 0.88 0.86 0.90  0.18 0.03  0.93 0.86 0.96  0.02 0.01 0.00  69.8 65.4  0.98  0.00  63.5  0.93 1.03  0.00 0.00  63.7 39.3  0.99 1.05  0.00 0.02  23.0 11.2  1.05  0.01  11.3  5.2  1.00  0.05  0.95  0.24  10.4 10.8  5.8 5.5  61.5  0.6 0.6 1.4 2.7 5.2  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  ^Effluent^Effluent^Effluent Date^Day^NOx^BOD^COD  Anoxic^Anoxic^Anoxic^Anoxic VSS/TS8 NO2/NOX NOX Load COD:NOX  (yy mm dd)^(mgN/L)^(mg/L)^(mg/L)  (gN/d)^Entering (gCOD/gN)  92  06  6  87  92  06  7  88  0.94 0.87  92 92  06 06  10 13  91 94  0.93 0.91  92 92  06  15  96  16 17  97 98  92  06 06  92  06  19  92 92 92  06 06 06  22 23  100 103 104  26  92 92 92  06 06 07 07  153  0.50  9.0  5.3 4.6 5.1  10.1  4.8  0.88  0.31 0.06  10.7  5.1  0.86 0.85  0.01 0.04  10.2 8.9  4.8 5.5 5.4 5.6  0.87  0.21  9.1  0.03 0.01  9.0 9.6  107  0.83  0.10  10.7  4.5  28 29 3 4 6  109 110 114 115 117  0.89 0.94  0.41 0.02  4.7 4.9  0.86 0.91 0.91  0.52 0.01 0.15  11.0 10.1 9.8 10.5  9 10 12  120 121 123  0.88 0.91 0.89  0.07 0.00 0.26  14 15  125 126  0.89  0.10 0.75  128 130  07  92 92  07 07  92  07  92  07  92 92  07 07  17  92 92 92 92 92  07 07 07 07 07  19 21 23 26 27  132 134 137 138  92  07  92 92  07 08  29 31  140 142  2  144  92  08  4  146  0.71  92 92 92  08 08 08  6 7 10  148 149  0.72 0.75  92 92  08 08  13 14  92 92  08 08 08  17 19 21  08 08  23 24 27  92 92 92  08  9.6 10.6  0.85 0.86  92 92  92  0.55 0.08  0.90 0.89 0.88 0.83 0.72 0.68 0.73 0.70 0.73 0.71  1002  0.09 0.18 0.14  0.04 0.08  4.9 4.5  11.2  4.1  10.2 11.4  4.6 4.1  11.1 8.4 7.3  3.9 5.5  9.8 8.3  6.4 4.6 5.7  28.0  0.0 0.0 0.0 0.0  0.05 0.05 0.05  5.3  46.4  0.07  67.5 62.6  0.41 0.53 0.46  48.4 60.6 77.3  0.0 0.0 0.0 0.0 0.0 0.0 0.0  152  0.71  0.59  62.2  155  0.76 0.74  0.47 0.51  61.3 65.4  0.75  0.44  69.4  0.0 0.0  163  0.77 0.75  0.39 0.45  59.5 53.0  0.0 0.0  165 166 169  0.76  0.52 0.54 0.31  44.1  0.75 0.78  0.0 0.0 0.0  156 159 161  218  38.6 45.8  0.0  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitrn %Denitm^Specific NH4 Removal^% NH4 (yy mm dd)^Removed^Rate^Denitrn Rate^Rate Removal (gCOD/gN)^(mgNid)^(mghl/d/gVSS)^(mgN/d)  92  03  12  1  -823  -5  92  03  13  2  -1184 1033  -15 12  92  03  15  4  92 92  03 03  17 20  6 9  176  3  -77  -1  92 92 92  03 03 03  22 23 25  11 12 14  894  6  656 1272  5 9  92 92  03 03  15 17 19  802 633  5 4  62.6  592  1  53.1 5.4  1 14  26 31 280  92  03  26 28 30  22.3  719 6693 1635  3  67  1302  8  92 92  04 04 04  1 3 5  21 23 25  15.3 18.4 17.3  2531 5432 5679  5 39 82  104 235 244  553 3980 4266  4 21 16  6 8 9  26 28  15.3 0.8  6341  92  04 04 04  279 109 364  5362 -3660 -2227  18 -68 -21  04 04  10 12  0.2 0.3  96 33 27  92 92  29 30 32  2361 8452  288 64  -4157 148  -33 1  92 92 92  04 04 04  13 15 16  228 926 1168  2 6 8  92 92 92  04 04 04  18 21  19 29  92 92  04 04  92 92 92  04 05 05  92 92 92  6766  22  33  1.3 1.4  1515 1408  35 36  6.2 10.7  3072 3469  2 2 8 12  60 131 145  11.1 30.1  24  38 41 44  2.8  6696 2577 679  58 71 2  282 109 28  4487 8530 -281  25 27  45 47  -1.7 -0.7  -1091 -2642  -14 -27  -45 -112  109 238  50  1.0  1857  6  86  -3644  53 55 56  -1.1 2.0 1.0  -1703 942  -85 45  -399 1201  -2 4 11 -27  92  05  30 3 5 6  1813  -5 2 4  87  562  -4 10 4  92 92  05 05  8 9  58 59  -6.4 14.4  -742 611  -1 1  -36 29  92 92  05  11  4.5  3963  6  187  21 10 16  05 05  13 15  61 63  3180 1406 2585  34.7  574  1  26  65  -34.8  -540  -24  722 3812  5 25  92  05  18  68  40.3  918  -1 1  05 05 05  69  41.1  943  71 75 76 78 81  -17.6 7.7  -2105 7318 7957 8559 11004 9480  35 77 98  279 297 306 358  83  7.7 6.8 5.3 6.3  91  314  2043 1745 1747 1822 -7 2495 2708 1607  14  92  85  5.6  10778  99  368  3007  92  92 92 92 92 92  05 05 05  19 21 25 26 28 31  92 92  06 06  2 4  1 -3 19  219  43 41 -88  11 13 13 -0 17 19 12 21  ^ ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitrn %Denitm^Specific NH4 Removal^% NH4 (yy mm dd)^Removad^Rate^Denitrn Rate^Rate Removal (gCOD/gN)^(mgN/d)^(maN/d/gVSS)^(mgN/d)  06 06  6^87 7^88  5.4  9422  98  328  4179  29  92  4.8  10198  96  332  92 92  06 06  10^91 13^94  5.1  98 98  299 325  22 24  4.9  8861 9906  3111 3340  92  06  15^96  5.1  10607  99  353  1767 1429  13 11  92 92  06 06  16^97 17^98  4.9 5.6  10110 8783  99 99  354 316  2643  20  2991  21  92 92 92  06  19 100  5.5  8882  98  296  3228  23  06 06  22 103 23 104  5.6 5.4  8867 9432  99 99  314 340  3410 1795  23 14  06 06 06  26 107 28 109  4.5  10632  99  393  1977  15  29^110  4.8 5.0  10667 9904  97 98  389 353  2190 166  16 1  07 07 07  3^114 4^115 6^117  5.0  9631  98  4.5 4.2  10404 11074  99 99  329 352 379  1929 3485 3343  13 22 20  92  07 07 07  9^120 10^121 12 123  4.7 4.2 4.0  10111 11170 10903  99 98 98  316 337 356  2751 3070 803  18 21 5  92 92  07 07  14 125 15^126  4804 6053  274  -2315  19 22 -7  92 92  07 07  17^128 19^130  87 83  246 207  07  7308 6369 8151  87  92  6.3 7.4 5.6  6713  81  227  -92  -0  21^132  7.0 0.0  92 92 92  07 07  23 134 26 137  0.0 0.0  92  92 92 92 92 92 92 92 92  07  27 138  0.0  5650  20  233  -2724  -16  29 140 31^142 2^144 4^146  0.0 0.0 0.0  2735 2245 1173  6 3  -3665 1386 1173  -20  0.0  237  2 0  116 95 49  92  07 07 08 08  92  08  6^148  92 92  08 08  7^149 10^152  0.0 0.0 0.0  -1926 -745 759  -3 -1 1  92 92  08  13^155 14^156  0.0  -237  -0  17^159  0.0 0.0  -623 1031  -1 1  19^161 21^163 23 165  0.0 0.0 0.0  1482 -159  92  08 08 08  -929  2 -0 -2  92 92  08 08  24 166 27 169  0.0 0.0  -1764 836  -5 2  92 92 92  92 92 92  08 08  220  9 9  11  -1857  -4  -93  1637  -37  1964  3 5  39  1188  5  -12 -32  1379  9  2443 1507  15 9  54 77 -9 -53 -102 51  224 2017 2513 2400 -800  1 11 7 7 -2  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSS/TSS NOVNOX^ALK:NH4^ALIC:NH4 ^Nitm^%Nitrn^Specific Added^Nitrified^Rate^ Nitro Rate (yy mm dd)^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)  03 03  12  1  0.72  10.53  13  2  0.77  14.82  15 17  4 6  0.74 0.76  7.22 6.95  92  03 03 03  92 92  03 03  92 92 92  03 03 03  92 92  03 04  92  04  92 92 92  04 04 04  5  92 92 92 92 92  04 04 04 04 04  92  04  92 92 92 92  20  9  0.79  5.89  22 23 25  11  0.86 0.69 0.72  4.38 5.10  26 28  12 14 15 17 19  3.02  0.65 0.62 0.71  2.80 2.96  5.15 4.04 2.75 4.25 4.02  21 23 25  0.75 0.84 0.87  0.80 0.49 0.87  3.09 3.31  5.28 6.58  0.82 0.82 0.84  0.72 0.69 0.25  3.05 35.18 11.18  6.42  9  26 28 29  10 12  30 32  13 15 16  33 35 36  0.84 0.79 0.84 0.85  5.15 5.02 4.55  0.90  0.46 0.22 0.34 0.52 0.41  38 41 44  0.92 0.94 0.86  0.23 0.69 0.25  45  0.86  0.23  47 50  0.85 0.79  53  1 3 6 8  294 245  83 81 71  270 247 199 164  7.95 846.80  6018 73  44 3  165 58 121  0.71 0.21  29.18  -47.52  -1152  -58  4.01  3.53  6541  0.81 0.80  0.19 0.21  4.94  7.59  3732  38 40  0.80 0.86  0.19 0.19  2.34 2.45  2.97 2.84  7831 10200  0.87  0.18  2.37 3.47  3.46 4.24  9891 10993  0.07  14871 12509 10214  68 69 71 75  0.95  0.05 0.05 149  4.39 5.79 3.57  4.48  65  0.90 0.91 0.87  3.31  0.96 0.93 1.01  0.07 0.01 0.04  4.21 3.50  0.03 0.03 0.03 0.01  5.09 4.69  4.64 5.54 5.62  0.00  4.46  5.01  04 05  30 3  92 92  5 6  55  92  05 05 05  92 92  05 05  8 9  58 59  11  92 92  05 05  13 15  61 63  92 92 92  05 05 05 05  19 21 25  4  75  110 71  66  92 92  06  131 153  44 15  25 27  92  11776 12255 11744 9623  30 40  199 248 152  8647 3124  04  05 05 06  4.86 5.94 6.07 6.73  69 83 52 30  8383  04 04  92 92 92  15.19 4.30  6875 7526 3609 14136  112  175 213 299  6.66  92 92 92  26 28 31 2  5.62  9762 11809 7831  63 69  6.23 15.17  04 04  18  0.76  8561 10313 15226  4.10 3.72 3.16 5.00 48.19  92 92  05  0.51  2.72 3.24  30  18 21 24  92 92  0.73 0.79  56  78 81 83  0.98 1.05 1.03 0.99  85  0.95  76  2.61 4.49 3.81 3.66 3.41  221  6.58 5.26  7.25 3.84 4.14  11039 10856 7921 13526 11442 10268  69 83 83 85 108  2 -25 151 88 189 249 229 252 327  90 87 86  268 227  79 69  212 156  112  242 204 166  223  12777 11055  88 87 113 94  201 175  12458  108  200  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)  Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSS/TSS NOVNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitm^Specific Added^Nitrified^Rate^ Nitm Rate (yy mm ddl^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gV88 I  92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92  06 06 06 06 06 06 06 06 06 06 06 06 06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08  6^87 7^88 10^91 13^94 15^96 16^97 17^98 19 100 22 103 23 104 26 107 28 109 29^110 3^114 4^115 6^117 9^120 10^121 12^123 14 125 15^126 17^128 19^130 21^132 23 134 26 137 27 138 29 140 31^142 2^144 4^146 6^148 7^149 10 152 13 155 14 156 17^159 19^161 21^163 23 165 24 166 27 169  0.92 0.87 0.92 0.89 0.86 0.86 0.85 0.85 0.84 0.85 0.83 0.89 0.92 0.85 0.89 0.90 0.86 0.88 0.88 0.88 0.88 0.87 0.87 0.83 0.70 0.66 0.72  0.03 0.00 0.01 0.00 0.00 0.02 0.00 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.39 0.36 0.38 0.40 0.43 0.65 0.72 0.87 0.11 0.09 0.16 0.13  0.69 0.72 0.71  0.09 0.07 0.05  0.70 0.71 0.73 0.70 0.75 0.74 0.74 0.78 0.74 0.74 0.75 0.77  0.13 0.13 0.11 0.17 0.19 0.19 0.15 0.19 0.18 0.20 0.20 0.23  3.79 4.14 3.63 4.67 4.83 4.22 3.25 3.82 4.01 4.24 3.88 3.88 4.62 3.32 3.20 4.49 3.97 3.92 4.20 3.68 3.21 4.13 3.14 8.97 7.33 7.69 8.63 6.08 3.70 3.74 3.60 3.86 4.31 4.81 5.48 4.35 3.39 2.11 3.62 4.36 3.72 3.22  222  4.89 4.93 4.79 5.46 5.02 4.82 4.51 5.21 5.64 5.11 4.09 4.40 5.17 4.42 4.19 5.64 5.20 4.50 4.93 6.51 6.51 6.29 5.53  10.20 8.55 4.41 4.06 5.42 6.77 5.13 6.10 7.31 6.02 3.98 2.48 4.79 8.51 9.49 5.06  11050 12019 10329 11641 12469 11808 10200 10289 10282 '')939 12269 12369 11345 11225 12145 13030 11838 12984 12651 8649 7525 9824 8061  10309 10383 12999 12340 9068 8366 12356 11984 11125 11288 13068 12073 9696 7223 5181 9062  109 107 100 98 108 108 91 95 91 96 111 104 90 86 98 100 92 109 90 42 34 27 17 20 47 33 52 48 89 99 20 17 34 57 79 84 86 76 59 22 15 22  179 202 166 188 207 197 173 174 176 187 214 204 180 189 194 203 190 204 198 135 118 155 128  205 218 273 271 209 198 295 306 274 289 340 306 263 203 148 262  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 (yy mm dd)^Rate Removal^(days)^(days) Removal (mgPlici)  92  03  12  1  1724  10  63.1  25  92 92  03 03  13 15  2 4  3397 4156  38 54  71  92  03  17  6  5468  95  92  03  20  9  9106  94  68.5 55.7 67.5 69.7  99  92 92 92  03 03 03 03 03 03  22 23  11 12  12530 11896  91 98  76.8 34.1  99 100  25  14  13288  97  57.6  26 28 30  15 17 19  13945 13473 13912  94 99 98  20 20  74.3 24.0 22.4  100 99 100 100  04 04  1 3  21 23  99 56  20 20  92 92 92 92  90 99  92  04  5  25  14082 8434 6965  31  20  23.2 23.4  92 92  04 04  6 8  7626 4496 6702  30 50  20 20  20.9 21.8  82 82 54  92  23.0  100 93  92  04  9  26 28 29  52  20  24.2  82  92 92  04 04  10 12  30 32  13970 13842  84 93  20  24.7 51.0  96 99  92 92 92  04 04 04  13 15 16  33 35 36  13896 13250 12385  96 98 97  69.5 69.1  92 92  04 04  38  04  41 44  8286 3956 9176  42 19  92  18 21 24  92 92  25  45  933  92  04 04 04  27 30  47 50  1579 8204  36 79 48  39.6  92 92  05 05  3 5  53 55  5605 8352  59 73  46.5 45.2  79 91 96  92  05  56  11122  92 92  05 05  6 8 9  58 59  11132 11836  91 94 91  20 20 20  22.3 21.3 22.5  99 99 99  92  05 05  11 13  61 63  12393 13438  90 97  20 20  23.2 24.1  99 100  20 20  22.4 22.7 23.4 23.7 25.4  99 99 99  92 92  20 20 20 20  67  05  15  65  11142  95  92 92 92  05 05 05  18 19 21  68 69 71  11877 12687 10969  93 93 95  92 92 92  05 05 05  25 26 28  75 76 78  11768 12927 11417  97 99 96  92 92  05 06  31 2  81 83  11199 11611  99 99  92  06  4  85  10881  94  20 20 20 20 20 20 20 20  223  24.7  99 100 100  23.1 24.3  88 83  21.3  93  48.2 45.8  82 97  99 100  25.7 26.1 26.0  100 100  25.3  100  25.2  99  100  ^  COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)  Aerobic Aerobic^ System^System Date^Day NH4 Removal % NH4^ASRT^SSRT % NH4 (Icy mm dd)^Rate Removal^(days)^(days) Removal (mgN/c1)  92  06  6^87  10047  99  20  25.6  92 92 92  06 06 06  7^88 10^91 13^94  11199 10285 11834  99  20  100 100  20  24.8 25.6  92 92 92  06 06 06  15^96 16^97 17^98  11523 10815 11174  100 99 99  20 20 20 20  26.6 23.6 25.8 25.9  100 100 100 100 100 100 100  92  06  19^100  10803  100  20  27.0  100  92 92  06 06  22 103 23 104  97 100  20 20  25.3  06  26 107  99  20  25.8 23.9  100 100  92  10997 11377 10927  92 92 92  06 06 07  28 109 29^110 3^114  100 99  20 20  24.6 26.0  92 92 92  07 07 07  4^115 6^117 9^120  92 92  07 07  10^121 12^123  11847 12515 13040 12404 12988 12760 11836  92  07  14^125  92 92  07  15^126  07  92 92  07 07  17^128 19^130 21^132  14006  100  20  23.5  100 99 100  20 20 20  25.2 25.2 24.1  100 99  20  26.7 26.7  100 100  25.3 27.0  89  43  20 20  14011  33 39  20 20  8591  18  8855 7158  100 100 100  26.2 77.4  100 100 100 100  86 78 60 62  92  07  23 134  92  92 92 92  07 07 07  26 137 27^138 29 140  92 92  07 08  31^142 2^144  12208  82 96 98  92  08  4^146  9838  92 92  08 08  6^148 7^149  6917 8724  14084 17700 14050  61.6  95 93  20.7 14.7 14.0  96 99 100  21  36.8  58  14 24  34.8 50.2  58 73  30.2 53.8  92 99  10  12.0 14.0  100 98  10 10  13.0 12.5  97 92  71  92  08  10^152  12732  61  92 92  08 08  13^155 14^156  13326 13134  94 97  92  08  17^159  92 92  08 08  19^161 21^163  13598 13602  90 85 59  92  08  92 92  08 08  23 165 24 166 27 169  9711 7651 6565 10193  20 10 10  10  23  10  12.3  72  19 24  10 10  13.3 13.2  68 66  224  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050449/manifest

Comment

Related Items