Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of ammonial loading, solids retention time and operating temperature on the biological nitrification.. 1993

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
ubc_1993_fall_azevedo_barry.pdf
ubc_1993_fall_azevedo_barry.pdf [ 17.53MB ]
Metadata
JSON: 1.0050449.json
JSON-LD: 1.0050449+ld.json
RDF/XML (Pretty): 1.0050449.xml
RDF/JSON: 1.0050449+rdf.json
Turtle: 1.0050449+rdf-turtle.txt
N-Triples: 1.0050449+rdf-ntriples.txt
Citation
1.0050449.ris

Full Text

THE EFFECT OF AMMONIA LOADING, SOLIDS RETENTION TIME AND OPERATING TEMPERATURE ON THE BIOLOGICAL NITRIFICATION AND DENITRIFICATION OF HIGH AMMONIA LANDFILL LEACHATE By Barry Azevedo B.A.Sc. (Chemical Engineering) University of British Columbia, 1987 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF CIVIL ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October, 1993 © Barry Azevedo, 1 993 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of A ,L (1kVq-  The University of British Columbia Vancouver, Canada Date DE-6 (2/88) ABSTRACT The effect of ammonia loading, solids retention time and operating temperature (20, 17, 14, 12 and 10 °C) on the treatment of high ammonia landfill leachate (200, 300, 600, 1000, 1500 and 2000 mg NH4-N/L), was investigated. Two biological, single-sludge, nitrification-predenitrification systems were operated in parallel; one with a 10 day aerobic SRT, and the other with a 20 day aerobic SRT. The study consisted of two phases: an ammonia loading phase and a cold temperature phase. From the ammonia loading phase, it was found that at an influent leachate ammonia level of 1500 mg N/L, both systems produced an effluent of <1 mg NH 4-N/L and approximately 170 mg NO. --N/L. Aerobic nitrite accumulation was observed and was likely a factor in a parallel decrease in the COD:NOx ratio from approximately 6:1 to 4:1. At the leachate ammonia level of 1500 mg N/L, "free" ammonia levels in the anoxic reactor were estimated to have been 20 mg N/L. This elevated anoxic "free" ammonia level did not appear inhibitory to either the ammonia oxidizers (Nitrosomonas) or to the denitrifiers, but may have inhibited nitrite oxidizers (Nitrobacter), thereby resulting in nitrite accumulation. When the influent ammonia concentration was raised from 1500 to 2000 mg N/L, nitrification in both systems was observed to decrease from 100 % to approximately 20 %. Several factors may have contributed to the failure of nitrification including: insufficient dissolved oxygen, solids/foaming problems, and levels of anoxic "free" ammonia inhibitory to Nitrosomonas. During the cold temperature phase, the temperature was decreased from 20 to 10 °C while maintaining the simulated leachate ammonia level at 1500 mg N/L. Aerobic nitrite accumulation and rising aerobic BOD 5 was observed to begin at 14 °C. When the temperature was decreased from 12 °C to 10 °C, nitrification was observed, in both SRT systems, to decrease from approximately 95 % to approximately 20 % . In the 10 day SRT system, denitrification decreased from 99 % to 30 %; in the 20 day SRT system, denitrification decreased from 99 % to 82 %. Based on the rise of aerobic nitrite, and only partial failure of denitrification, cold temperature was deemed responsible for nitrification failure, which for the 10 day SRT system, subsequently precipitated the failure of denitrification . In both awstems, nitrification was re-established at 10 °C, by ceasing to waste solids and by stopping methanol addition. ii TABLE OF CONTENTS ABSTRACT TABLE OF CONTENTS LIST OF TABLES^ vi LIST OF FIGURES vii ACKNOWLEDGEMENTS INTRODUCTION^ 1 1.1^Leachate Generation, Landfill Age, and Leachate Characteristics ^ 1 1.2^Environmental Problems from Nitrogen Discharges ^  2 1.3^High Ammonia Levels in Landfill Leachate ^  4 1.4^Nitrogen Removal from Landfill Leachate  4 1.5^Carbon Removal vs Nitrogen Removal ^  5 1.6^Biological Nitrification and Denitrification  5 1.6.1 Nitrification Microbiology ^  5 1 .6.2 Denitrification Microbiology  6 1.6.3 Process Train Options for Implementation of Biological Nitrification and Denitrification ^  7 1.7^Other Nitrogen Removal Options ^  10 1.7.1 Recirculation ^  10 1 .7.2 Co-treatment  11 1.7.3 Spray Irrigation ^  12 1 .7.4 Bacterial Assimilation  12 1.7.5 Physical-Chemical Treatment ^  12 1.8^Study Objectives ^  13 LITERATURE REVIEW^ 14 2.1^Biological Nitrification and Denitrification of Landfill Leachate ^ 14 III ^2.2^Effect of Dissolved Oxygen on Nitrification ^  14 2.3^Effect of Temperature ^  14 2.4^Effect of pH, "Free" Ammonia, and Nitrous Acid ^  15 2.5^Effect of Excess BOD5 on Nitrification ^  17 2.6^Effect of Carbon Source and Quantity on Denitrification ^  17 2.7^Heavy Metal Inhibition ^  18 2.8^Effect of HRT and Solids Recycle Ratio ^  19 EXPERIMENTAL SETUP^ 20 3.1^Leachate  21 3.2^Leachate Feed ^  22 3.3^Chemical Addition  22 3.3.1 Phosphate Addition ^  22 3.3.2 Methanol Addition  23 3.3.3 Ammonium Chloride Addition ^  23 3.3.4 Sodium Bicarbonate (Alkalinity) Addition ^  23 3.4^Anoxic Reactor ^  24 3.5^Aerobic Reactor  24 3.6^Clarifier ^  25 3.7^System Start-up ^  25 3.8^System Operation  26 ANALYTICAL METHODS^ 28 4.1^Temperature  28 4.2^Dissolved Oxygen (DO) ^  28 4.3^Oxidation-Reduction Potential (ORP) ^  29 4.4^pH ^  29 4.5^Suspended Solids ^  30 4.6^Alkalinity ^  30 4.7^Chemical Oxygen Demand (COD) ^  30 4.8^Biochemical Oxygen Demand (BOD 5 )  31 iv 4.9^Ammonia ^  31 4.10 NO  32 4.11^Nitrite (NO21 ^  33 4.12 Total Kjeldahl Nitrogen (TKN) ^  33 4.13 Orthophosphate ^  33 RESULTS AND DISCUSSION^ 35 5.1^Ammonia Loading Phase ^  35 5.1.1 Ammonia Levels  35 5.1.2 pH and Alkalinity Addition ^  40 5.1.3 Methanol Addition and NO; Levels ^  43 5.1.4 Nitrite Accumulation and "Free" Ammonia Levels ^  52 5.1.5 Nitrification and Denitrification ^  56 5.1.6 System Failure ^  61 5.1.7 Solids ^  62 5.1.8 Solids Retention Time ^  65 5.2^Cold Temperature Phase  68 5.2.1 BOD5 Inhibition of Nitrification ^  68 5.2.2 Loss of Nitrite Accumulation  77 5.2.3 Effect of Cold Temperature and Failure ^  77 5.2.4 10 °C Startups of Nitrification and SRT Failure ^  93 CONCLUSIONS AND RECOMMENDATIONS^ 100 6.1^Summary of Results  100 6.2^Conclusions ^  100 6.3^Recommendations ^  104 REFERENCES^ 106 APPENDICES^ 113 v LIST OF TABLES TABLE 1.1:^Landfill Stabilization Sequence ^  2 TABLE 3.1:^Treatment System Design and Operating Parameters ^  20 TABLE 3.2:^Base Leachate Composition ^  21 TABLE 5.1:^Loading Phase - Ammonia Levels  36 TABLE 5.2:^Loading Phase - % Ammonia Removal ^  39 TABLE 5.3:^Loading Phase - pH Levels and Alkalinity Addition ^  40 TABLE 5.4:^Loading Phase - NO; Levels and COD:NO, Ratio  51 TABLE 5.5:^Loading Phase - Nitrite Levels ^  52 TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia Levels ^  55 TABLE 5.7:^Loading Phase - Nitrification ^  59 TABLE 5.8:^Loading Phase - Denitrification  60 TABLE 5.9:^Loading Phase - VSS Levels ^  62 TABLE 6.1:^Summary of Results ^  101 vi LIST OF FIGURES FIGURE 1.1 FIGURE 5.1 FIGURE 5.2 FIGURE 5.3 FIGURE 5.4 FIGURE 5.5 FIGURE 5.6 FIGURE 5.7 FIGURE 5.8 FIGURE 5.9 FIGURE 5.10 FIGURE 5.11 FIGURE 5.12 FIGURE 5.13 FIGURE 5.14 Leachate Treatment System Diagram ^  8 Loading Phase - 10 Day SRT System Anoxic and Aerobic Ammonia Levels ^  37 Loading Phase - 20 Day SRT System Anoxic and Aerobic Ammonia Levels ^  38 Loading Phase - 10 Day SRT System Anoxic and Aerobic pH Levels ^  41 Loading Phase - 20 Day SRT System Anoxic and Aerobic Ammonia Levels ^  42 Loading Phase - 10 Day SRT System Alkalinity Addition ^  44 Loading Phase - 20 Day SRT System Alkalinity Addition ^  45 Loading Phase - 10 Day SRT System Anoxic and Aerobic NO; Levels ^  47 Loading Phase - 20 Day SRT System Anoxic and Aerobic NO; Levels ^  48 Loading Phase - 10 Day SRT System Methanol Addition and Anoxic BOD5 ^  49 Loading Phase - 20 Day SRT System Methanol Addition and Anoxic BOD5 ^  50 Loading Phase - 10 Day SRT System Anoxic and Aerobic Nitrite Levels ^  53 Loading Phase - 20 Day SRT System Anoxic and Aerobic Nitrite Levels ^  54 Loading Phase - 10 Day SRT System % Denitrification and % Nitrification ^  57 Loading Phase - 20 Day SRT System % Denitrification and % Nitrification ^  58 vi i FIGURE 5.15 Loading Phase - 10 Day SRT System Anoxic and Aerobic VSS Levels ^  63 FIGURE 5.16 Loading Phase - 20 Day SRT System Anoxic and Aerobic VSS Levels ^  64 FIGURE 5.17 Loading Phase - 10 Day SRT System System and Theoretical Aerobic SRT ^  66 FIGURE 5.18 Loading Phase - 20 Day SRT System System and Theoretical Aerobic SRT ^  67 FIGURE 5.19 Temperature Phase - 10 Day SRT System Aerobic BOD 5 and % Nitrification ^  69 FIGURE 5.20 Temperature Phase - 20 Day SRT System Aerobic BOD 5 and % Nitrification ^  70 FIGURE 5.21 Temperature Phase - 10 Day SRT System Aerobic BOD5 , COD vs % Nitrification ^  72 FIGURE 5.22 Temperature Phase - 20 Day SRT System Aerobic BOD5 , COD vs % Nitrification ^  73 FIGURE 5.23 Temperature Phase - 10 and 20 Day SRT Aerobic BOD5 vs % Nitrification ^  74 FIGURE 5.24 Temperature Phase - 10 Day SRT System Methanol Addition during 20 °C Startup ^  75 FIGURE 5.25 Temperature Phase - 20 Day SRT System Methanol Addition during 20 °C Startup ^  76 FIGURE 5.26 Temperature Phase - 10 Day SRT System Aerobic pH and Nitrite Levels ^  78 FIGURE 5.27 Temperature Phase - 20 Day SRT System Aerobic pH and Nitrite Levels ^  79 FIGURE 5.28 Temperature Phase - 10 Day SRT System Aerobic Nitrite and % Nitrification ^  81 FIGURE 5.29 Temperature Phase - 20 Day SRT System Aerobic Nitrite and % Nitrification ^  82 viii FIGURE 5.30 Temperature Phase - 10 Day SRT System Aerobic BOD5 and % Nitrification ^  83 FIGURE 5.31 Temperature Phase - 20 Day SRT System Aerobic BOD5 and % Nitrification ^  84 FIGURE 5.32 Temperature Phase - 10 Day SRT System % Denitrification and % Nitrification ^  85 FIGURE 5.33 Temperature Phase - 20 Day SRT System % Denitrification and % Nitrification ^  86 FIGURE 5.34 Temperature Phase - 10 Day SRT System Denitrification and Nitrification Rate ^  87 FIGURE 5.35 Temperature Phase - 20 Day SRT System Denitrification and Nitrification Rate ^  88 FIGURE 5.36 Temperature Phase - 10 Day SRT System Specific Utilization Rate ^  89 FIGURE 5.37 Temperature Phase - 20 Day SRT System Specific Utilization Rate ^  90 FIGURE 5.38 Temperature Phase - 10 Day SRT System Anoxic and Aerobic VSS Levels ^  91 FIGURE 5.39 Temperature Phase - 20 Day SRT System Anoxic and Aerobic VSS Levels ^  92 FIGURE 5.40 Temperature Phase - 10 Day SRT System Aerobic Ammonia and % Nitrification ^  94 FIGURE 5.41 Temperature Phase - 20 Day SRT System Aerobic Ammonia and % Nitrification ^  95 FIGURE 5.42 Temperature Phase - 10 Day SRT System Aerobic Nitrite and % Nitrification ^  97 FIGURE 5.43 Temperature Phase - 20 Day SRT System Aerobic Nitrite and % Nitrification ^  98 FIGURE 5.44 Temperature Phase - 20 Day SRT System ASRT, SSRT and % Nitrification ^  99 ix ACKNOWLEDGEMENTS I would like to thank Dr. D. S. Mavinic for his guidance, counselling, and patience, throughout this study. I would also like to thank Jufang Zhou, Paula Parkinson, and Susan Harper, of the U.B.C. Environmental Engineering Laboratory, for their good humour and invaluable technical assistance. Without their help, this study would not have been possible. I would also like to thank Louise Smith, not only for her patience, but also for her editorial support. Finally, I would like to thank Andhra Smith Azevedo, who (despite providing countless distractions) gave me the impetus to complete this degree. I would also like to acknowledge the billions upon billions of bacteria that gave their lives for this study. Funding for this project originated from the Natural Sciences and Engineering Research Council of Canada (NSERC), in the form of an Operating Grant to Dr. D. S. Mavinic. x Chapter 1 INTRODUCTION Landfilling is the most common means of solid waste disposal. The significant environmental problems which may arise are methane gas explosions, low-level volatile gas generation, land use issues, odours, disease and pests, and leachate generation as water passes through the fill. Proper siting, design, construction and operation of landfills can usually deal with most aspects of these problems. The problem of leachate generation is usually most comprehensively solved by some form of treatment. The two components of landfill leachate that can have the most significant environmental impact on aquatic life are biodegradable organic compounds, and ammonia. As shall be explained in greater detail in the next section, leachates from older landfills typically have low BOD and high ammonia concentrations. Thus, the primary toxicant in leachate from older landfills is ammonia. 1.1 Leachate Generation, Landfill Age, and Leachate Characteristics Leachate is generated primarily from the infiltration of rainfall, snowmelt, or groundwater into the landfill (Chian et al, 1985). The infiltrated rainwater serves as the transport phase for leaching, dissolution, and migration of contaminants from the solid waste. In addition to the rainwater, water is also available in the input solid waste, either immediately, or released from decomposition reactions. Leachate characteristics are a function of the amount of the infiltrated rainwater, landfill design and operation, input solid waste , landfill microbiology, waste compaction, cover material, and landfill age. As a landfill ages, while in use or after closure, the leachate characteristics change according to the landfill stabilization sequence presented in Table 1.1. It should be kept in mind that this phase concept for landfill stabilization is subject to alterations due to physical, chemical and microbiological conditions. In addition, since landfills are most often operated in cells, phases often overlap, producing a leachate that is the average of several cells in different phases (Chian et al, 1985). TABLE 1.1:^Landfill Stabilization Sequence (modified from Chian et al, 1985) Phase 1.^Initial Adjustment initial waste placement preliminary moisture accumulates until sufficiently present to support aerobic microbial decomposition of solid waste Phase 2.^Transition transition from aerobic to anoxic to anaerobic microbial decomposition field capacity maybe exceeded resulting in leachate generation intermediary volatile organic fatty acids appear in leachate with a corresponding rise in BOD 5 Phase 3. Phase 4. Phase 5. Acid Formation ("young" or "acetogenic" landfill) anaerobic decomposition is fully established intermediary volatile organic fatty acids predominate - significant pH decrease with parallel dissolution of metals - ammonia and phosphorus are released and partially utilized by microbial metabolism and may result in high ammonia in leachate (phosphorus is almost completely utilized and nearly absent in many leachates) leachate has high BOD5 and high COD with BOD5/COD ratio typically >0.4 (Ehrig 1985) Methane Fermentation ("older" or "methanogenic" landfill) - intermediary organics appearing during the acid formation phase are metabolized to methane and carbon dioxide pH rises as landfill changes from a buffer system controlled by volatile organic fatty acids to a buffer system controlled by the bicarbonate system - high pH results in some metal species being involved in precipitation reactions, thus leachate metal concentrations decrease ammonia concentrations in leachate are high leachate BOD 5 and COD decrease markedly as methane production is increased ratio of BOD 5/COD decreases to <0.1 (Ehrig 1985) Final Maturation organic oxygen demand and methane production tapers and all but ceases humic release may increase as more difficult compounds are degraded, may have concomitant increase in metals high ammonia in leachate may continue for some time before ceasing reappearance of oxygen and oxidized species with corresponding rise in ORP 1.2^Environmental Problems from Nitrogen Discharges Nitrogen is essential to maintain natural ecosystems; however, some forms, at sufficient levels, are hazardous to man, animals, and the ecosystem itself. The major concerns of nitrogen discharges into 2 the aquatic environment include accelerated eutrophication of receiving waters, toxicity to fish life, dissolved oxygen depletion in receiving waters, and contamination of drinking water. Cultural eutrophication, also known as biostimulation, means excessive plant or algal growth resulting from fertilization of receiving waters by primarily, nitrogen or phosphorus. The impact of eutrophication includes aesthetic changes, and algal decomposition problems resulting in seasonal or diurnal dissolved oxygen depletion and odour problems. Dissolved oxygen depletion will usually occur at lower depths in the receiving water, and thus effect the deeper, cold water fish, which tend to be the favourite of commercial and recreational fishers. In general, freshwater systems tend to be phosphorus deficient and marine environments tend to be nitrogen deficient. Therefore nitrogen-induced eutrophication tends to occur more in marine environments such as bays and estuaries. Dissolved oxygen depletion can also occur as a result of ammonia being biologically oxidized to nitrate by nitrifying bacteria within the receiving water. The toxicity of nitrogen discharges to fish life is primarily due to "free" ammonia (NH 3 ). The ratio of "free" ammonia to the ammonium ion (NH 4 + ) is greatly affected by pH. Increasing pH, increases the ratio of "free" ammonia to ammonium. The U.S. EPA (1975) reported that acute toxicity to "free" ammonia has been detected starting from between 0.01 mg/L to 2.0 mg/L. In 1945, Comley first associated the consumption of drinking water that was high in nitrates, with the rare but sometimes fatal blood disorder, infant methemoglobinemia (Shuval and Gruener 1977). It was established that water, high in nitrite or nitrate, which was fed to babies directly or via baby formula, resulted in nitrite in the stomach. Nitrite inactivates haemoglobin and the infant suffocates, producing the diagnosis of "blue babies". Another adverse health impact, discovered more recently, is the recognition of nitrates as potentially cancer causing. A study by Mirvish (1977) concluded that N-Nitroso- compounds are strong carcinogens and may be derived from nitrates in drinking water sources. 3 ^1.3^High Ammonia Levels in Landfill Leachate The emphasis at modern landfills is to lower rainwater infiltration. A simple mass balance analysis shows that this should result in lower leachate volumes but with higher concentrations of contaminants. In addition, higher ammonia levels can also be expected as more landfills are engineered to reach a methanogenic state (Knox 1985). The implications of a modelling study performed by Jasper et al (1985a), include the possibility that longer landfill retention times, due to lower infiltration and/or poor hydraulic removal, will result in producing an "older" leachate. Henry (1985) reports that high ammonia levels (100 to 1000 mg N/L) may be expected from anaerobic landfills. Ehrig (1985) summarizes leachate data from landfills in West Germany and describes an increase in ammonia-N concentrations to 1600 mg/L as the landfill becomes methanogenic. Henderson (1993) measured the ammonia-N concentration to be 2140 mg/L in a leachate from a methanogenic landfill near Kaohsiung in south western Taiwan. Maris et al (1985) report an ammonia-N concentration as high as 990 mg/L in the leachate from a methanogenic landfill in northern England. Loizidou et al (1992) report ammonia-N concentrations ranging from 1650 to 3870 mg/L in the leachate from a methanogenic landfill near Athens, Greece. Robinson (1991) observed ammonia-N concentrations as high as 5000 mg/L in leachates from landfills in Hong Kong. ^1.4^Nitrogen Removal from Landfill Leachate Nitrogen removal (in a practical sense) from landfill leachate means either physical-chemical treatment to remove ammonia, biological assimilation, or aerobic biological nitrification with optional subsequent denitrification. Biological nitrification and denitrification is generally found to be the most effective, complete, and economic means of nitrogen removal for leachate from older landfills. Biological nitrification and denitrification processes also have several ancillary benefits, such as carbon oxidation and heavy metals removal. Selection and design of a facility for landfill leachate treatment is not as simple as for sewage treatment. Leachate volume generation may vary significantly, and leachate characteristics vary with 4 time as described in Table 1.1. Forgie (1988a, 1988b, 1988c) provided an excellent review of leachate treatment options and developed comprehensive flowcharts for selection of the appropriate treatment option, based on leachate characteristics and effluent requirements. 1.5^Carbon Removal vs Nitrogen Removal The primary concern with leachate from young landfills, is carbon removal. The primary concern with leachate from older landfills, is nitrogen removal. Forgie (1988a, 1988b, 1988c) suggested that anaerobic treatment, followed by optional aerobic treatment, is the most economical and effective treatment for carbon removal from "younger" leachate, that is, leachate with high biodegradable organics and a BOD5/COD ratio greater than 0.4. For leachate with a BOD 5/COD ratio between 0.1 and 0.4, Forgie suggested aerobic biological treatment for BOD5 and ammonia removal. Biological treatment of landfill leachate may still leave unacceptably high levels of refractory COD and colour. Removal of refractory COD and colour would require physical-chemical treatment. For leachate with a BOD 5/COD less than 0.1, unless high ammonia levels are present, biological treatment may not be viable, and physical-chemical treatment is suggested by Forgie. If ammonia levels are sufficiently high, then aerobic biological nitrification is possible. As this thesis research is specifically focused on nitrogen removal from leachate from an older landfill, carbon removal will not be discussed any further, except as pertaining to biological denitrification and BOD5 inhibition of nitrification. 1.6^Biological Nitrification and Denitrification 1.6.1 Nitrification Microbiology Nitrification is an autotrophic aerobic process which utilizes an inorganic carbon source (carbonates), an inorganic electron donor or energy source (NH 4 + or NO21, and elemental oxygen as a terminal electron acceptor. The complete oxidation of ammonium to nitrate occurs in two intermediary steps by two different genera of bacteria. The first step of oxidation of ammonium to nitrite is conducted 5 by Nitrosomonas. The second step of oxidation of nitrite to nitrate is conducted primarily by Nitrobacter. The U.S. EPA (1975) states that Nitrobacter has a significantly higher growth rate than Nitrosomonas, therefore nitrite accumulation should not occur unless Nitrobacter is inhibited. Equations for synthesis and oxidation are as follows (U.S. EPA 1975): Nitrosomonas 55NH 4 + + 760 2 + 109HCO3 - -> C 5H 7NO2 + 54NO2 + 57H 20 + 104H 2CO3 Nitrobacter 400NO2 + NH 4 + + 4H 2CO3 + HCO3 + 19502 -> C5H7NO2 + 3H 20 + 400NO3- The equations assume that the empirical formulation for these bacterial groups may be represented by C5H7 NO2 . The equations also assume growth yields of 0.15 mg cells/mg NH 4 + -N for Nitrosomonas and 0.02 mg cells/mg NO2-N for Nitrobacter, and oxygen consumption ratios of 3.22 mg 0 2/mg NH4 + -N for Nitrosomonas and 1.11 mg 0 2/mg NO2-N for Nitrobacter. Alkalinity is only consumed by the first step involving ammonia oxidation. The theoretical alkalinity consumption for nitrification is calculated from the first reaction to be 7.14 g CaCO 3/g NH4 +-N. 1.6.2 Denitrification Microbiology Denitrification is an anoxic, heterotrophic process which utilizes an organic carbon source (such as methanol) for synthesis and as an electron donor, and nitrite or nitrate as the terminal electron acceptor. Complete denitrification occurs in two steps. First is the reduction of nitrate to nitrite, and second is the reduction of nitrite to nitrogen gas. The end product, being nitrogen gas, is significant since nitrogen gas has not been associated with any environmental problems. Unlike nitrification, the two steps are not distinctly associated with specific genera of bacteria; moreover, denitrification can be accomplished by a broad range of facultative bacteria, including Pseudomonas, Micrococcus, Archromobacter, and Bacillus (U.S. EPA 1975). Facultative bacteria prefer elemental oxygen to combined oxygen (such as nitrate and nitrite) as an electron acceptor. Therefore, it is important that 6 the denitrification environment be free of elemental oxygen for nitrate and nitrite reduction to occur. Equations for nitrate and nitrite reduction can be represented as follows (U.S. EPA 1975): Nitrate Reduction^NO3- + 0.33CH30H -> NO2- + 0.33H20 + 0.33H2CO3 Nitrite Reduction^NO2- + 0.5CH3OH + 0.5H2CO3 - > 0.5N2 + HCO3- + H20 The inclusion of synthesis (bacterial growth) increases the moles of methanol required per mole of complete nitrate reduction to 1.08 and to 0.67 per mole of nitrite reduction (McCarty et al, 1963). For complete nitrate reduction, this converts to 2.47 g CH3OH/gNO3--N or 3.7 g COD/gNO3--N and for nitrite reduction, this converts to 1.53 g CH3OH/gNO2--N or 2.3 g COD/gNO2--N. Alkalinity is generated by the second step of denitrification. The stoichiometric quantity of alkalinity generated is 3.57 g CaCO3/g NO2--N-denitrified• 1.6.3 Process Train Options for Implementation of Biological Nitrification and Denitrification There are many different process train options that have been proven to achieve biological nitrification and denitrification (Forgie, 1988a, 1988b, 1988c). The process train selected for this study was the Modified Ludzack Ettinger (MLE) process train.^The MLE process train is a single-sludge predenitrification-nitrification activated sludge system (see Figure 1.1). The MLE process offers the following advantages over other nitrification/denitrification systems: Having the anoxic (denitrification) reactor before the aerobic reactor (nitrification), may permit influent B0D5 to be used as a carbon source for denitrification, thereby reducing carbon addition requirements. Also, the reduction in BOD5 entering the aerobic zone, reduces aeration demands and sludge production. Having the aerobic stage prior to clarification, produces a less noxious aerobic effluent and reduces the possibility of rising sludge resulting from denitrification in the clarifier. 7 on AMMONIUM CHLORIDE ORTHOPHOSPHATE Q3 cim -.0 BICARBONATE METHANOL Or. ORP METER ^171\1 LEACHATE FEED (10 L/DAY) ---1"71 DO METER ^0 pH METER I a ;‘1171SUPPLY CLARIFIER (4 L) .^ SOLIDS RECYCLE (60 L/DAY) LOW RPM SCRAPER I AEROBIC 1r- ^ REACTOR (10 L) I A ANOXIC REACTOR (5 L) I EFFLUENT , , FIGURE 1.1: Leachate Treatment System Diagram The MLE arrangement reduces pH/alkalinity addition requirements, since 50% of the alkalinity consumed by nitrification is returned by denitrification. Dilution of the influent leachate with the aerobic/clarifier recycle, reduces the possibility of ammonia inhibition of denitrification. The converse of this is the exposure of denitrifiers to elevated levels of ammonia. The single-sludge aspect reduces tankage. Activated sludge nitrification and denitrification is well-studied and proven; primarily for sewage treatment but also in application to landfill leachate treatment. The greater biomass may permit shorter HRTs than in an aerated lagoon and therefore may require less space. A major disadvantage of the MLE process is that effluent NO.--N levels may remain unacceptably high. The effluent NO-N is approximately equal to the influent ammonia-N divided by one plus the solids recycle ratio (assuming no bacterial assimilation or air stripping). For example, an influent ammonia-N concentration of 1500 mg/L and a solids recycle ratio of 6:1, at best can result in an effluent NON--N concentration of 1500/(1 + 6) =214 mg N/L. If lower NO."-N levels are required, post-denitrification or higher recycle rates may be necessary. Other suspended growth process train options that have been investigated for their nitrogen removal potential from landfill leachate include, the aerated lagoon, and the sequencing batch reactor (SBR). Robinson and Luo (1991) achieved excellent nitrification using SBR technology from leachate with ammonia-N levels as high as 2000 mg/L. Robinson (1991) has been involved in the development of a simple and robust automated aerated lagoon for bacterial nitrogen assimilation, nitrification and carbon oxidation of high ammonia leachate from methanogenic landfills in the United Kingdom. The plants are described as extended aeration and are said to provide some distinct advantages over activated sludge plants, including greater process stability due to longer HRTs (Robinson et al, 1992). Typical influent ammonia-N levels of 1000 mg/L are reported to be reduced to less than 5 mg/L in the 9 effluent. Some plants are reported to use significant bacterial assimilation, while others achieve the majority of ammonia reduction by nitrification (Robinson 1991). Several fixed growth systems are also available for nitrogen removal from landfill leachate. Fixed growth systems are generally regarded as more resistant to surges in hydraulic and organic loading, than for suspended growth systems, since washout of the biomass is less likely to occur. This is significant because changes in hydraulic loading are a notorious problem for landfill treatment design. Knox (1985) compared nitrification of an "older" leachate by an activated sludge pilot plant and a trickling filter pilot plant, operating in parallel. Knox concluded that less problems were encountered with the trickling filter. Several studies have also found RBC technology useful for nitrification of landfill leachate (Opatken and Bond 1991, Peddie and Atwater 1985). Spengel and Dzombak (1991) successfully nitrified and denitrified landfill leachate with an average ammonia-N level of 154 mg/L, using an aerobic RBC followed by an anoxic submerged RBC. Also using an RBC, Henderson (1993) attempted to treat a leachate with a BOD concentration of 705 mg/L and an ammonia-N concentration of 2140 mg/L. At an ammonia loading of 1.3 g/m 2/day, system ammonia removal was 97%. At higher loading rates, full nitrification could not be achieved. Forgie (1988c) indicates that caution must be given to application of RBCs to treatment of landfill leachate, because of the potential of calcium and iron precipitates to form on the disks, thereby interfering with substrate transfer to the biomass or raising the spectre of axle failure. It is possible that clogging by inorganic precipitates could also apply to other fixed growth systems as well, such as trickling filters (Ehrig 1991). 1.7^Other Nitrogen Removal Options 1.7.1 Recirculation Recirculation of leachate, by collection and spraying over the landfill, was investigated by Robinson and Maris (1985). Their work supported other studies that recirculation promotes rapid stabilization of biodegradable organics, produces a more consistent leachate, and may reduce leachate volume by evaporation. However, ammonia, COD, and chloride, were found to remain relatively high. Robinson and Maris concluded that recirculation can reduce leachate strength and volume but cannot be a 10 complete answer to the leachate problem. Further, they suggest that recirculation may be most applicable in combination with aerobic biological treatment. Robinson and Maris also suggest that recirculation may result in denitrification within the landfill. 1.7.2 Co-treatment Co-treatment refers to placing the leachate into the local municipal sewerage system for treatment in the municipal sewage treatment plant. Obviously, this option may be limited by the nonexistence of sewage treatment. Co-treatment is most applicable to municipalities which have secondary or tertiary treatment, where organics, nitrogen and colour may be removed. Lema (1988) states that the addition of leachate to sewage may also be argued as a nitrogen nutrient source for municipal secondary treatment. If the municipal treatment plant is only primary treatment, then significant treatment of the leachate might not occur. However, as in the case of leachate from the Vancouver landfill (which is directed into the Annacis Island primary treatment plant), some advantages might still be obtained from dilution of the leachate in the sewage, and by good dilution into the receiving water due to efficient sewage outfall diffusers. Economic deterrents to co-treatment include the cost of building the necessary piping connections and/or paying a treatment fee to the municipal plant. Lema (1988) lists the potential negative impacts of co-treatment on secondary treatment: excessive loading of organic and inorganic compounds, high effluent nitrogen, corrosion, poor settling, precipitation of inorganic ions, heavy metal inhibition, and heavy metal contamination of the sludge, thus rendering the sludge unfit for agricultural purposes. Lema suggests that co-treatment is only acceptable when the leachate makes up less than 5% of the total sewage input and leachate COD is less than 10000 mg/L. Accordingly, assuming a sewage COD of 300 mg/L, the leachate COD contribution must be less than 64% of the COD load. Kelly (1987) investigated the effect of co-treatment on a pilot scale activated sludge plant treating domestic waste. For a leachate with 1167 mg COD/L and 71 mg NH4-N/L, and a primary wastewater with a COD of 238 mg/L, process instability was not observed for leachate mixtures of 2, 4 and 16% 1 1 by volume. The COD contribution from leachate at a mixture of 16%, was only 48% (less than the 64% maximum suggested by Lema (1988)). However, Kelly observed that leachate additions increased heavy metals in the sludge and increased precipitation onto process equipment. 1.7.3 Spray Irrigation Robinson (1983) suggested that spray irrigation, also known as land spraying, may either be used to treat relatively dilute raw leachates or to dispose of treated effluent. Lema (1988) stated that spray irrigation of landfill leachate is not a valid option because it risks polluting groundwater, renders the land unfit for agriculture, and may be toxic to plants. 1.7.4 Bacterial Assimilation Robinson and Maris (1985) concluded that bacterial assimilation, in biological treatment of "young" leachate with high BOD5 and low ammonia (down to BOD5:NH4-N ratios of 100:3.6), can be sufficient to achieve complete ammonia removal. Robinson (1988) reported a successful implementation of a nitrogen assimilation plant for removal of ammonia from landfill leachate, of approximately 700 mg NH4-N/L, which produced an effluent with ammonia-N less than 2 mg/L. A supplementary BOD5 source was used which was comprised of jam waste from a nearby jam-producing plant. In general, for nitrogen removal by bacterial assimilation to be economical, a cheap source of BOD5 must be available, in addition to a disposal option for the ammonia-rich sludge. 1.7.5 Physical-Chemical Treatment Potential physical-chemical methods for ammonia removal from landfill leachate include air stripping, reverse osmosis and ion exchange. Keenan (1979) reported that good carbon, heavy metals, and ammonia removal were obtained from pretreatment by chemical precipitation of heavy metals to prevent heavy metal inhibition, followed by air stripping to prevent ammonia inhibition, and then biological treatment for carbon oxidation and nitrification. Ehrig (1991) described the success in reverse osmosis removal as only an adjournment of a real treatment solution, since the process produces a liquid concentrate, which is usually passed back into the landfill. However, in combination 12 with air stripping, reverse osmosis may be useful in ammonia removal from landfill leachate. Ion exchange may also be used for ammonia removal using a column of clinoptilolite, a zeolite with a high selectivity for ammonium ions and calcium ions (U.S. EPA 1975). Older leachate may be very high in calcium and may therefore not be well-suited for ion exchange for the purpose of ammonia removal. have reduce the ammonial removal. In addition, column regeneration will produce a concentrate which still requires disposal or treatment. Hence, like bacterial assimilation and reverse osmosis, ion exchange cannot be considered an ultimate treatment. 1.8^Study Objectives In summary of this chapter: 1. Modern landfill design and operation of landfills, will produce leachates with high concentrations of ammonia. 2. Biological nitrification and denitrification is considered to be one of the most effective and economical methods of nitrogen removal from high ammonia leachate. 3.^The MLE process (single-sludge predenitrification activated sludge, see Figure 1.1) is one particular implementation of biological nitrification and denitrification that has several advantages (see Section 1.6.3). The potential increase in the ammonia concentrations of leachate from modern "older" landfills, raised the question, "To what ammonia level could the MLE process successfully operate, especially at colder temperatures when biological treatment is most challenged?" A particular concern was the exposure of nitrifiers and denitrifiers to elevated ammonia levels in the anoxic reactor. Based on the above reasoning this study had the following objectives: 1. Determine the effect and limit of increasing the influent leachate ammonia concentrations, on successful treatment by the MLE process shown in Figure 1.1. 2. Determine the effect of colder temperatures on treating the highest influent leachate ammonia concentration determined by Objective 1. 3.^Determine the effect of solids retention time (SRT) on Objective 1 and 2. 13 Chapter 2 LITERATURE REVIEW This literature review presents a short overview of research that has been published on the subject of biological nitrification and denitrification. Emphasis is given to research on landfill leachate treatment, cold temperature studies and other factors which affect nitrification and denitrification performance. Weight is also given to research on which the activated sludge process, or more specificall y, the MLE process, was utilized. 2.1 Biological Nitrification and Denitrification of Landfill Leachate Dedhar and Mavinic (1985) successfully nitrified leachate, with 288 mg NH4-N/L, from an "older" landfill, to less than 1 mg/L. Denitrification, using glucose as an external carbon source for an MLE process, was achieved only on several occasions. Robinson (1992), in a pilot study, successfully nitrified and denitrified landfill leachate with ammonia-N levels of 2000 mg/L, using the MLE process at 20 °C. A recycle ratio of 10:1 was found to produce an effluent NO3"-N of approximately 95 mg/L and a NO2--N of approximately 0.2 mg/L. 2.2 Effect of Dissolved Oxygen on Nitrification Stenstrom and Poduska (1980) investigated the dissolved oxygen (DO) concentration required for nitrification of municipal wastewater. They concluded that at higher SRTs, nitrification could be achieved at DO levels from 0.5 to 1.0 mg/L, and at lower SRTs, higher DO levels were required. 2.3 Effect of Temperature Decreasing temperature results in decreased growth rate according to the Arrhenius relationship. Decreasing temperature also decreases the fraction of ammonia present that exists as "free" ammonia. Anthonisen et al (1976) calculated that for each 10 °C drop in temperature, the "free" ammonia present decreases by approximately one half. 1 4 Using a 3 stage biological process (carbon oxidation, nitrification, denitrification), to treat a synthetic municipal wastewater at 5 °C, Halmo and Eimhjellen (1981) found that nitrification was "unquestionably" the critical step. Nitrification at low temperatures was determined to be possible, but was vulnerable to changes in external conditions. Halmo and Eimhjellen also found that 98% denitrification could be obtained at 5 °C, with some encouragement of psychrophilic bacterial growth. Randall and Buth (1984) studied the effect of temperature on nitrification of a synthetic municipal wastewater. Randall and Buth found that nitrification was very sensitive to small temperature changes between 10 to 17 °C. Temperature inhibition was more significant on nitrate formers (eg. Nitrobacter) than on nitrite formers (eg. Nitrosomonas); hence, nitrite accumulation was observed. Further, Randall and Buth concluded that nitrification was more temperature sensitive than heterotrophic activity. Using mixed liquor from an activated sludge municipal wastewater treatment plant, Lewandowski (1982) found that the relationship between specific reaction rate for denitrification and temperature was linear within 5 to 35 °C. Below 5 °C, the reaction rate decreased more significantly. The specific reaction rate for methanol was found to be 1.83 h -1 at 20 °C and 0.93 h -1 at 10 °C. Guo (1992) studied the effect of temperature on biological nitrification and denitrification of a high ammonia landfill leachate using the MLE process. Temperatures of 20 °C, 12 °C, and 4 °C, were studied, with aerobic SRTs ranging from 20 to 60 days. Guo found that at 12 °C, using a 20 day SRT, the system was capable of ammonia-N removal from 210 mg/L in the influent leachate to less than 0.5 mg/L in the treated effluent. An effluent ammonia-N level less than 1.9 mg/L was achieved at 4 °C, using a 60 day SRT. 2.4 Effect of pH, "Free" Ammonia, and Nitrous Acid Anthonisen et al (1976) observed that nitrification was reduced by low pH due to nitrous (HNO 2) acid inhibition, and at high pH due to "free" ammonia (NH 3 ) inhibition. Both were shown to affect Nitrobacter at lower concentrations than for Nitrosomonas; thus the overall effect was nitrite 15 accumulation. "Free" ammonia inhibition to Nitrobacter was observed to begin between 0.1 to 1.0 mg/L. For nitrosomanas, "free" ammonia inhibition was observed to begin between 10 to 150 mg/L. Nitrous acid inhibition to nitrifiers, was observed to begin between 0.22 and 2.8 mg/L. Anthonisen et al qualified these results by acknowledging that "free" ammonia and nitrous acid inhibition may be affected by acclimation, temperature, and the number of nitrifying organisms present. Turk and Mavinic (1989) investigated process changes that could be used to maintain nitrite accumulation and overcome the effects of acclimitization to "free" ammonia, during nitrification and denitrification of landfill leachate and a synthetic waste. Parameters investigated included "free" ammonia, nitrous acid and dissolved oxygen. Only "free" ammonia (at 5 to 10 mg NIL) was found to be effective as a differential inhibitor of unacclimated nitrifiers. Predenitrification, in which nitrifiers are recycled through elevated "free" ammonia concentrations in the anoxic reactor, was suggested as the most effective measure for delaying acclimatization and extending nitrite accumulation. Keenan et al (1979) performed a study of ammonia substrate inhibition on nitrification of landfill leachate. Keenan observed the ammonium ion (NH4) to be the inhibitory form of ammonia and, conversely, Keenan did not observe inhibition of nitrification due to "free" ammonia. Antoniu et al (1990) determined the optimal pH for nitrifying bacteria to be approximately 7.8. Painter and Loveless (1983) determined the optimum pH for nitrification to be in the range between 7.5 to 8.5, with an optimal growth rate occurring at pH 8. The U.S. EPA (1975) suggests that pH may strongly affect nitrification by altering the amount of bicarbonate in solution. The U.S. EPA also found that the highest reported rates of denitrification were within the range of pH 7.0 to 7.5. Beccari et al (1983) observed that elevated nitrite levels may inhibit denitrification. Nitrite inhibition was attributed to the level of nitrous acid. 16 2.5 Effect of Excess BOD5 on Nitrification Several nitrification studies have found that nitrification is inhibited by the presence of elevated levels of biodegradable organic matter. The explanation given for this inhibition, is that faster-growing heterotrophic bacteria outcompete slow-growing autotrophic nitrifiers for dissolved oxygen in the presence of elevated BOD 5 . Hockenbury et al (1977) investigated the effect of simultaneous heterotrophic activity on nitrifier activity and concluded that no such inhibition takes place. Carley and Mavinic (1991), using a predenitrification activated sludge setup for landfill leachate treatment, with a 4:1 solids recycle ratio, found that a denitrification COD:NO x ratio of 20:1 resulted in significant carbon breakthrough and a resulting reduction of nitrification of up to 40%. A look at the raw data of this work (Carley, 1988) shows a corresponding increase in aerobic BOD 5, thus supporting the claim that elevated BOD5s can inhibit nitrification. Similar results have been observed with RBCs (Gonenc and Harrmoes, 1990) and with trickling filters (Figueroa and Silverstein, 1991). Gonenc and Harrmoes suggested that the ratio of BOD 5 :DO must be less than 5:1 for uninhibited nitrification to occur. Parker and Richards (1986), in a study on nitrification in trickling filters, concluded that because of competition between heterotrophic bacteria and nitrifiers, nitrification is not initiated in the trickling filter tower until soluble BOD 5 is less than 20 mg/L. 2.6 Effect of Carbon Source and Quantity on Denitrification Methanol has been widely used as an external carbon source for biological denitrification (U.S. EPA 1975). Reasons for this include: high reaction rate, abundance of supply, low sludge solids yield, and relatively low cost. Manoharan (1989) found that glucose, as a carbon source, resulted in unstable denitrification, with fluctuations between 10 to 100%. However, methanol as a carbon source was found to provide for consistent and reliable, complete denitrification. 17 Carley and Mavinic (1991) tested methanol, acetate, glucose and a brewer yeast, as external carbon sources for denitrification of a carbon-limited landfill leachate. Their results indicated that methanol and acetate were equally effective and better overall than glucose and the brewer yeast. The COD:NO, ratio (mg COD:mg NOR-N) required for complete denitrification was approximately 6.2:1 for methanol and 5.9:1 for acetate. McCarty et.al (1969) proposed the following stoichiometric-based equation for methanol (Cm) requirements for complete denitrification (all variables are in mg/L): Cm = 2.47*[NO3--N] + 1.53*[NO2--N] + 0.87*[dissolved oxygen] The U.S. EPA Process Design Manual for Nitrogen Control (U.S. EPA 1975) suggests that, in general, a methanol requirement of 4.5 mg COD/mg NO3--N will enable complete denitrification. Studies have generally shown a COD:NO, requirement in the range of 4:1 to 6.5:1 (Narkis, 1979 and Carley, 1989). As seen from McCarty's methanol requirement equation, complete denitrification of nitrite requires about 40% less methanol than complete denitrification of nitrate. The possibility of lower methanol requirements inspired Turk and Mavinic (1989) to investigate the feasibility of a shortened pathway for nitrogen removal based on inhibition of nitrite oxidizers Witrobacten. This would decrease aeration demands during nitrification, and decrease carbon demands during denitrification. High nitrite levels existed until acclimatization eventually occurred. 2.7^Heavy Metal Inhibition The nitrification process is considered very sensitive to heavy metals (Mavinic and Randall, 1992). Zinc, a predominant metal in acetogenic landfill leachates, has been reported to result in nitrification inhibition at concentrations of approximately 17 mg/L (Dedhar and Mavinic, 1985, and Jasper et al, 1986). Martin and Richard (1982) found the nitrosomonas toxic threshold for zinc to be approximately 10 mg/L. 18 Mavinic and Randall (1990) investigated heavy metal inhibition of biological nitrification and denitrification of a high ammonia landfill leachate (188 mg N/L). Their results showed that when excess phosphorus was added to account for zinc phosphate precipitation, the system could handle zinc concentrations up to 130 mg/L at 20 °C with an aerobic SRT of 10 days. Inhibition from chromium and nickel was obvious at much lower levels. 2.8 Effect of HRT and Solids Recycle Ratio The solids recycle ratio is defined as the volumetric rate of the clarifier solids underflow that is recycled back into the anoxic reactor, to the influent volumetric rate entering the anoxic reactor. A study by Elefsiniotis et al (1989), using the MLE train, varied the solids recycle ratio and found that beyond 6:1, nitrification and denitrification became unstable. Since solid recycle and effluent recycle were combined into one recycle, the reduction in HRT was suggested as the reason for poor performance at higher recycle ratios. Robinson (1992), also utilized a predenitrification arrangement, but with the aerobic reactor sequenced to also operate as a clarifier. While using HRTs that were considerably longer than the HRTs utilized by Elefsiniotis et al, Robinson successfully operated at a recycle ratio of 10:1. Finally, Painter (1977) stated that, after exposure to aerobic conditions, most denitrifying organisms require a period of approximately 1/2 to 1 hour of adaption to nitrate under anoxic conditions for denitrification to occur. 19 Chapter 3 EXPERIMENTAL SETUP Two parallel, identical, laboratory-scale, biological, single-sludge, predenitrification systems, with recycle, were used to study the effects of solids retention time (SRT), ammonia loading, and temperature, on the nitrification and denitrification of landfill leachate. Throughout the study, one system was operated at a 10 day aerobic SRT and the other system was operated at a 20 day aerobic SRT (based on the work of Mavinic and Randall (1990) and Guo (1992)). Each system consisted of an anoxic reactor, an aerobic reactor, and a clarifier with a recycle back to the anoxic reactor. The system is shown in Figure 1.1. The design and operating parameters of the system are shown in Table 3.1. The study was conducted in two phases. Phase one investigated the effects of increasing the ammonia loading. Phase two investigated the effects of cold temperature. TABLE 3.1:^Treatment System Design and Operating Parameters Parameter Value Anoxic Volume (L) 5 Aerobic Volume (L) 10 Clarifier Volume (L) 4 System Volume (L) 20* Influent Flow (L/days) 10 Recycle Flow (L/days) 60 Recycle Ratio (Recycle:Influent) 6:1 Daily Aerobic Wasting (L) 1/0.5 Aerobic SRT (days) 10/20 Anoxic Nominal HRT (hours) 12 Aerobic Nominal HRT (hours) 24 Clarifier Nominal HRT (hours) 9.6 System Nominal HRT (hours) 48 Anoxic Actual HRT (hours) 1.7 Aerobic Actual HRT (hours) 3.4 Clarifier Actual HRT (hours) 1.4 System Actual HRT (hours) 6.8 *1 L is estimated in each system for pumps and tubing. 20 A solids recycle ratio of 6:1 was selected based on the work of Elefsiniotis et al (1989). Both phases of the study were conducted within a temperature-controlled room. The temperature during the ammonia loading phase was maintained at 20 °C. The temperature during cold temperature phase was decreased from 20 °C to 10 °C. 3.1 Leachate The leachate used in this study was collected from the City of Vancouver's Burns Bog Landfill in Delta, British Columbia. The leachate was collected monthly from a pumping station located in the southwest corner of the landfill. The collected leachate was stored in closed containers at 4 °C to limit biochemical changes while in storage. The landfill began operation in 1966 and is still in use today. The leachate presently generated is typical of leachate from an older landfill, with low BOD 5, low BOD 5 :COD ratio, low heavy metals, and a consistently high ammonia concentration. The basic characteristics of the leachate are shown in Table 3.2. TABLE 3.2:^Base Leachate Composition Parameter Concentration (mg/L) Range^Mean BO D5 20-62 36 COD 285-464 371 Ammonia as N 128-256 186 NO; as N 0.1-58.8 2.7 NO2- as N 0.0-3.3 0.3 Orthophosphate as P 0.0-0.8 0.4 Alkalinity as CaCO 3 1190-2120 1600 VSS 24-65 45 TSS 56-128 97 pH (pH units) 7.6-8.3 8.0 Cu (Guo, 1992► 0-0.71 0.13 Zn (Guo, 1992) 0-0.11 0.04 21 3.2 Leachate Feed The leachate to both systems was fed from a common, covered, plastic bucket with a mechanical stirrer. Each system received leachate at approximately 10 L/day. In actuality, to maintain the aerobic HRT at approximately 3.4 hours and the anoxic HRT at approximately 1.7 hours, the rate of leachate addition was less than 10 L/day to account for the addition of ammonium chloride, orthophosphate, methanol, and bicarbonate. Initially, leachate was poured into the bucket from the storage containers. To reduce the aeration of the leachate and possible instigation of nitrification within the feed bucket, this practice was changed to siphoning the leachate from the storage container into the feed bucket. 3.3 Chemical Addition Orthophosphate, methanol, ammonium chloride and sodium bicarbonate, were all added to the systems during this study. In general, the concentrations of the feed solutions were as high as possible so that volumetric additions would be as low possible, thereby affecting the HRT as little as possible. In general, the lowest volumetric rate that the pumps could manage consistently was 5 to 10 mL/hr. Controlling the flowrate at these low levels proved to be a problem; therefore, the concentration of the chemical feed solution was altered instead of the flowrate. 3.3.1 Phosphate Addition From the start of the study, disodium orthophosphate (Na2PO4:7H20) was added to both systems to ensure that phosphorus was not a limiting nutrient. The objective of phosphate addition was to maintain the membrane-filtered orthophosphate levels above 0.5 mg P/L, as suggested by Mavinic and Randall (1992). For each system, phosphate feed solution was provided from a 1000 mL graduated cylinder into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the volume change in the graduated cylinder. Phosphate mass dosing rates were altered by changing the concentration of the feed solution. 22 3.3.2 Methanol Addition Methanol (CH3 OH) was added to the anoxic reactor as a carbon source for denitrification. The amount of methanol added was determined by the requirements for complete denitrification. For each system, methanol feed solution was fed from a 1000 mL graduated cylinder into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the change in the graduated cylinder. Methanol mass dosing rates were altered by changing the concentration of the feed solution. 3.3.3 Ammonium Chloride Addition Ammonium chloride (NH 4CI) was added to the anoxic reactor to simulate leachate with higher ammonia levels. For each system, ammonium chloride feed solution was fed from a 4000 mL graduated plastic bottle into the anoxic reactor. A single double-headed pump was used to feed both systems. Volumetric delivery rates were determined daily by checking the change in the graduated cylinder. Ammonium mass dosing rates were altered by changing the concentration of the feed solution. 3.3.4 Sodium Bicarbonate (Alkalinity) Addition Sodium bicarbonate (NaHCO 3 ) was added to the aerobic reactor to maintain the pH of the aerobic reactor at approximately 7.5. Sodium bicarbonate addition was not required until the influent leachate ammonia level was increased to 600 mg N/L. Initially, sodium bicarbonate addition was performed by a single dual-headed pump, which fed a sodium bicarbonate solution from two graduated plastic feed bottles to both aerobic reactors. The concentration of the bicarbonate solution was adjusted in response to too low or too high aerobic pHs. This method allowed some pH fluctuations below a pH of 7.0 and above 7.5. Therefore, early in the temperature phase, a Cole-Parmer Series 7142 pH/Pump Controller was added to each system. If the pH of the aerobic reactor decreased below the setpoint value, set at 7.5, the pH/pump controller would pump a solution of sodium bicarbonate into the aerobic reactor until the pH rose above the setpoint. The pH/pump controllers provided excellent control of pH in the aerobic reactors. 23 3.4 Anoxic Reactor The purpose of the anoxic reactor was to denitrify the highly nitrified solids recycle from the bottom of the clarifier. In addition to the recycle, the anoxic reactor received the natural leachate, phosphate solution, methanol solution and ammonium chloride solution. The anoxic reactor was a cylindrical plastic container with a liquid volume of 5 L. At total leachate and chemical additions of 10 L/d, and with a recycle of 60 L/d, the anoxic reactor provided a nominal HRT of 12 hours and an actual HRT of 1.7 hours. The mixed liquor in the anoxic reactor was constantly mixed by a mechanical stirrer. An oxidation-reduction potential (ORP) probe was continuously submerged in the reactor to measure the redox potential of the mixed liquor. The anoxic mixed liquor flowed by gravity into the aerobic reactor. 3.5 Aerobic Reactor The purpose of the aerobic reactor was to nitrify the high ammonia anoxic overflow. In addition to the anoxic overflow, the aerobic reactor also received sodium bicarbonate solution. Beginning early in the cold temperature phase, the pH of the aerobic mixed liquor was continuously monitored by a pH probe. The dissolved oxygen (DO) level of the aerobic mixed liquor was continuously monitored by a submerged DO probe. The DO level was maintained above 2.0 mg/L, according to the DO meter, by continuous aeration from a perforated plastic tubing at the bottom of the reactor. The perforated tubing was connected to the laboratory's compressed air supply. The flow of air was manually controlled by use of a flow valve. Early in the temperature phase, the perforated tubing was supplemented by two small porous stone air diffusers. The aerobic reactor was a cylindrical plastic container with a liquid volume of 10 L. Aerobic SRT was controlled by wasting from the aerobic reactor through a valve. 1 L was wasted daily from the 10 day SRT system to provide a 10 day theoretical aerobic SRT. 0.5 L was wasted daily from the 20 day SRT system to provide a 20 day theoretical aerobic SRT. At total leachate and chemical additions of 10 Lid, and with a recycle of 60 L/d, the aerobic reactor provided a nominal HAT of 24 hours and an 24 actual HRT of 3.4 hours. The reactor was kept constantly mixed by a mechanical stirrer. The aerobic mixed liquor flowed by gravity into the clarifier. ^ 3.6^Clarifier The clarifier was a 4 L cylindrical plexiglass container with a conical bottom. The purpose of the clarifier was to separate the suspended solids from the aerobic mixed liquor so as to produce a clear effluent supernatant, and also to allow thickening of the suspended solids, which could then be recycled back to the anoxic reactor. The aerobic reactor mixed liquor flowed by gravity into an inner sleeve within the clarifier. The inner sleeve prevented shortcircuiting of the mixed liquor to the supernatant exit. The solids recycle pump rate was set at 60 L/d, so as to produce a 6:1 solids recycle ratio. The recycle pump was initially operated on a cycle of two minutes on and two minutes off. This was later adjusted to one minute on and three minutes off. The purpose of this intermittent pumping was to decrease the possibility of blockages occurring within the recycle line. A scraper mechanism swept the conical surfaces of the clarifier bottom to prevent a buildup of settling solids. 3.7^System Start-up On August 12, 1991, the aerobic reactor and clarifier of both systems, were filled with sludge from the aerobic zone of the University of British Columbia Bio-P sewage treatment pilot plant. The leachate, recycle, and phosphate lines initially bypassed the anoxic reactor and were added directly to the aerobic reactor. No wasting occurred from the aerobic reactor until good nitrification was observed. Wasting began in the 10 day SRT system on Day 24 and Day 22 for the 20 day SRT system. 1 L was wasted daily from the aerobic reactor of one system to provide a 10 day aerobic SRT and 0.5 L was wasted daily from the aerobic reactor of the second system to provide a 20 day aerobic SRT. Also, on Day 24 (10 day SRT system) and Day 22 (20 day SRT system), each anoxic reactor was reseeded and methanol additions were begun to the anoxic reactor. The methanol addition was increased until denitrification was observed and system NO; levels began to fall. Methanol addition was then reduced until denitrification was affected. Methanol additions were then increased until complete denitrification was established. This procedure was necessary to establish the minimum 25 amount of methanol required for denitrification. Complete and stable nitrification and denitrification of the natural leachate was established in both systems by Day 61. 3.8 System Operation The study was divided into two phases. The objective of the loading phase was to determine the maximum simulated leachate ammonia level that could successful be nitrified and denitrified. The objective of the temperature phase was to observe the effects of cold temperature on nitrification and denitrification when treating leachate with the highest ammonia level successfully treated in the loading phase. The loading phase began with the establishment of complete nitrification and denitrification of the natural leachate (approximately 200 mg NH4-N/L), in both the 10 day SRT system and in the 20 day SRT system. On Day 61, ammonium chloride additions were started to the anoxic reactors of both systems to provide additional ammonia and thereby simulate a leachate with 300, 600, 1000, 1500, 2000 mg/L of ammonia-N. After each ammonium chloride increment, nitrification was allowed to stabilize, and the minimum methanol required for denitrification was determined. On Day 93, when 600 mg/L of ammonia-N was added, the aerobic reactor pH of both systems fell below 6.5 and nitrification was inhibited. On Day 103, sodium bicarbonate (alkalinity) additions were begun to the aerobic reactor to sustain the pH at approximately 7.5. The loading phase ended with an unsuccessful attempt to increase the influent leachate ammonia level to 2000 mg NIL from 1500 mg N/L (Section 5.1.6). The cold temperature phase began on March 13, 1992 (Day 1 of the cold temperature phase). Once nitrification of influent leachate, with an ammonia level of 1500 mg N/L, was re-established, the anoxic reactors were reseeded with aerobic sludge from the U.B.C. Bio-P sewage treatment plant. Complete nitrification and denitrification was not re-established until Day 91. On Day 94, the temperature was decreased from 20 to 17 °C. The temperature was subsequently decreased from 17, to 14, to 12, and finally to 10 °C. The system was allowed to adjust to each temperature for approximately 10 26 days before the next temperature decrease was imposed. Starting on Day 132, the ability of nitrification to recover from elevated ammonia and BOD 5 levels at 10 °C with no aerobic wasting, and no methanol addition, was investigated. On Day 145, the air supply for the aerobic reactors was lost for approximately eight hours, thus causing both systems to fail. From this failure, only one system recovered. On Day 156, aerobic wasting was started to yield a theoretical aerobic SRT of 10 days. By Day 169, total failure was observed. On Day 170, another loss of the air supply occurred and the system was shutdown. 27 Chapter 4 ANALYTICAL METHODS This chapter describes the sampling, preservation and analytical methods performed in this study. Initially, N and P samples were filtered by Whatman #4 and membrane. The Whatman #4 and membrane filtration results were found to be essentially equivalent. From then on, only Whatman #4 filtration was performed. ^4.1^Temperature The study was performed in a temperature-controlled room. The room temperature was measured by a mercury thermometer and a built-in temperature gauge. Both agreed within their accuracy limit of 0.5 °C. Initially the room temperature was checked daily, but once the stability of the temperature controller was recognized, room temperature was checked approximately once every second week during the loading phase. During the cold temperature phase, the room temperature was again checked daily. Liquid temperatures were measured by a digital probe thermometer. During the temperature phase, liquid temperatures were measured the day following each temperature decrease. ^4.2^Dissolved Oxygen (DO) The DO levels in the aerobic reactors were measured by using a Yellow Springs Instruments Co. Model 54 ARC Dissolved Oxygen Meter with a Yellow Springs Instrument Co. 5739 submersible DO probe. The probe performance was checked and calibrated (if necessary) by using the air calibration method (Instruction Manual YSI Models 54 ARC and 54 ABP Dissolved Oxygen Meter). If calibration failed, the probe membrane was changed. A DO reading was taken every day or every second day, to ensure that DO levels were sufficient for nitrification ( > 2 mg/L ). The DO levels were controlled by flow valve controllers attached to the laboratory air supply. 28 ^4.3^Oxidation-Reduction Potential (ORP) ORP in the anoxic reactors was measured by using a Cole-Parmer Chemicadet pH meter connected to a Broadley James Corporation ORP Electrode. The ORP measurements were recorded in mV. The ORP probes were cleaned weekly using distilled water and cleaning paper. The ORP probes were calibrated approximately every two months using a pH-buffered quinhydrone method (Broadley James Corporation Electrode Instructions ORP (REDOX) Combination Electrode). An ORP probe was submersed into each anoxic reactors. ORP measurements were recorded every day or every second day. ORP measurements are used to indicate the redox and denitrification conditions of the anoxic mixed liquor. 4.4^pH Throughout the loading phase and for the initial period of the temperature phase, the pH of the leachate, and the mixed liquor from the anoxic and aerobic reactors was measured using a Cole Parmer Digital pH Meter with a Cole Parmer Ag-AgCI combination electrode. Measurements were made by placing the probe directly into the reactor. Before measurements were started, the pH probe performance was checked, and calibrated if necessary, with two pH buffer solutions. On Day 33 of the cold temperature phase, a pH/pump controller was installed for each aerobic reactor. The controller monitored the pH of the aerobic reactor from a submersed Ag-AgCI combination pH probe. The aerobic pH was read from the digital display of the controller. The performance of the probe was checked, and calibrated if necessary, by using two pH buffers. The pH of the anoxic reactor and the leachate were measured using a Beckman pH meter with a Fisher combination electrode, using an Ag-AgCI reference element. The probe was calibrated with two buffers each time before using. pH values were recorded every day or every second day. The purpose of taking pH measurements was to observe the effect of pH on nitrification and denitrification, and vice versa. 29 4.5 Suspended Solids Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were measured on samples from the leachate, aerobic and anoxic mixed liquors and from the effluents. These were used to provide a representation of the mass of microorganisms present in the reactors. The procedure was a modified version of the suspended solids method in Standard Methods (A.P.H.A. et al, 1989). The modification used in the laboratory, was the replacement of the ceramic Gooch crucible filtration unit with a stainless steel microbiological filtration apparatus and an aluminum foil filter holder. The replacement of the ceramic holder with an aluminum holder decreased the possibility of error due to moisture absorption of the filter paper holder. Suspended solids testing was conducted two to three times a week. 4.6 Alkalinity Alkalinity measurements were taken from each batch of leachate collected, to assess the alkalinity requirements of the process. Alkalinity was also measured, on several occasions, on samples from the anoxic and aerobic mixed liquors, during the latter months of the loading phase and the first month of the temperature phase. Alkalinity was conducted in accordance with Standard Methods (A.P.H.A. et al, 1989) except that the samples were filtered (Whatman #4). Filtration was necessary to prevent the pH from drifting upwards after acid titration. The pH drift was presumably due to the acid reacting with the solids present. Titrations were performed to a pH of 4.3. Titration curves developed for the mixed liquors and leachate, indicated an endpoint at approximately 4.5. 4.7 Chemical Oxygen Demand (COD) COD tests were performed using the HACH Colorimeter Apparatus, filtered (Whatman #4) samples of leachate, anoxic and aerobic mixed liquors and effluent. For the temperature phase, effluent COD analysis was eliminated since throughout the loading phase, it was found to be virtually equivalent to the COD levels in the aerobic reactors. Samples were collected two to three times a week. Samples were immediately filtered into plastic bottles, preserved by addition of concentrated sulphuric acid to 30 pH <2, and refrigerated at 4 °C. The high chloride levels in the leachate required the use of mercuric sulphate during digestion to suppress chloride interference. 4.8 Biochemical Oxygen Demand (BOD 5 ) BOD5 tests were performed in accordance with Standard Methods (A.P.H.A. et al, 1989) on centrifuged, filtered samples (Whatman #4) of the influent, anoxic and aerobic mixed liquor, and the effluent. For the temperature phase, effluent BOO 5 analysis was eliminated, since throughout the loading phase, effluent BOD5 values were found to be essentially equivalent to aerobic BOD5 values. Dilution water used in the test was seeded with approximately 1 mL of aerobic seed per 10 L of dilution water. Because the seed contained high amounts of nitrifiers, a nitrification inhibitor (Hach Company Formula 2533) was added to the dilution water at a concentration of 10 mg/L. The initial and final DO concentrations were measured using a Yellow Springs Instrument Co. Ltd. Model 54 Dissolved Oxygen Meter, with a self-mixing DO probe. For the first half of the loading phase, BOD 5 tests were performed only after the system had stabilized and complete denitrification was suspected after an increase in methanol addition. Later in the loading phase, BOD 5 testing was performed once a week. During the temperature phase, once BOD5 inhibition of nitrification was suspected, BOO 5 testing was performed two to three times a week. 4.9 Ammonia The terms "ammonia, ammonia-N, NH 4, NH4-N", in this work, refers to the sum of the "free" ammonia-N (NH3-N) and the ammonium-N ion (NH 4 + -N). In some other works, the sum of the "free" ammonia-N and the ammonium-N ion, is referred to as ammoniacal-N. Two analytical methods were employed to measure ammonia-N levels. An Orion ammonia electrode (Model 95-10) provided an immediate scanning method for ammonia levels in the influent, aerobic and anoxic reactors. In accordance with the Orion Ammonia Electrode Instruction Manual, unfiltered 50 mL samples and three ammonia standards, were adjusted to pH 11 by addition of 0.5 mL of 10 M 31 NaOH. The probe was inserted into the solution and the mV reading was read from a Cole Parmer Chemicadet pH meter. The readings for the three standards produced a calibration line from which the ammonia levels for the samples were calculated by linear regression. Ammonia levels were also measured using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were immediately filtered (Whatman #4), preserved to pH <2 by the addition of several drops of concentrated sulphuric acid, and refrigerated in plastic bottles at 4 °C. Ammonia samples were taken two to three times a week. Samples were collected from the leachate, aerobic mixed liquor, and the anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent ammonia levels were found to be virtually equivalent to the levels in the aerobic reactor, effluent ammonia sampling was not performed regularly during the temperature phase. 4.10 NO; NO; is the sum of nitrite and nitrate. NO levels were analyzed from filtered samples using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered (Whatman #4), preserved to pH <2 by addition of several drops of concentrated sulphuric acid, and refrigerated in plastic bottles at 4 °C. NO; samples were taken two or three times a week. Samples were collected from the leachate, aerobic mixed liquor, and anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent ammonia levels were found to be virtually equivalent to the aerobic levels, effluent ammonia sampling was not performed regularly during the temperature phase. A screening method for NO„-, in accordance with Standard Methods (A.P.H.A. et al, 1989), was attempted, but did not achieve results which were consistent with the Lachat results and hence the screening method was considered inaccurate for this particular application. The screening method's 32 inaccuracy was attributed interference from the high level of refractory organics in the leachate, mixed liquors and effluent. ^ 4.11^Nitrite (NO2) NO2 levels were analyzed from filtered samples using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered (Whatman #4), preserved by the addition of several drops of phenyl mercuric acetate, and refrigerated in plastic bottles at 4 °C. Preservation with mercuric acetate was found to maintain NO2 levels for at least two months. Samples were collected from the leachate, aerobic mixed liquor and the anoxic mixed liquor. 4.12^Total Kjeldahl Nitrogen (TKN) TKN levels were measured on unfiltered and filtered (Whatman #4) samples of leachate, aerobic and anoxic mixed liquors, solids recycle liquor and effluent. Samples were preserved to pH <2 by addition of several drops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. The analytical procedure began with sample digestion in a Technicon Block Digester BD40. The digestion was performed following the instructions in the Technicon Block Industrial Method No. 376- 75W(1975). The digested sample was then analyzed in accordance with the Technicon Methodology Nol 329-74W(1975). TKN analysis was only performed during the loading phase. Samples were collected after complete nitrification and denitrification had been established for each successive ammonia increase. The TKN results were not found to have been very reproducible and were frequently below the corresponding ammonia result for the sample. 4.13^Orthophosphate Orthophosphate levels were analyzed from filtered samples (Whatman #4) using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Samples were filtered by Whatman #4, preserved to pH <2 by addition of several drops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. Orthophosphate 33 samples were taken two to three times a week. Samples were collected from the leachate, aerobic mixed liquor, and the anoxic mixed liquor. During the loading phase, samples were also collected from the effluent, but since effluent orthophosphate levels were found to be virtually equivalent to the orthophosphate levels in the aerobic reactors, effluent sampling was not performed regularly during the temperature phase. 34 Chapter 5 RESULTS AND DISCUSSION This chapter reports and discusses the results obtained from this study. As described in Chapter 3, this study used two identical, bench-scale, single-sludge, predenitrification systems, known as the Modified Ludzack-Ettinger (MLE) process. One system was operated at a 10 day aerobic SRT and the second system was operated at a 20 day aerobic SRT. The study was divided into two phases. The first phase was the ammonia loading phase, in which the effect of ammonia loading at 20 °C was investigated by incrementing the ammonia concentration in the leachate from the natural level of approximately 200 mg N/L to 2000 mg N/L. The raw spreadsheet data and calculations for the loading phase are presented in Appendix D. The second phase was the cold temperature phase, in which the effect of decrementing the operating temperature from 20 °C to 10 °C, was investigated. The raw spreadsheet data calculations for the temperature phase are presented in Appendix E. 5.1^Ammonia Loading Phase NOTE:^Throughout the discussion of the results from the ammonia loading phase, tables (Tables 5.1 to 5.9) are used to summarize system parameters at each influent ammonia concentration. After each increment in influent ammonia concentration, the systems were optimized (w.r.t. alkalinity and methanol addition) and allowed time to stabilize (based on reactor VSS, reactor NOV, and reactor ammonia). Once it was believed that a system was optimized and stabilized, approximately one week was allowed before imposing the next influent ammonia increment. The tabularized data is the average of the results collected during the final week of each influent ammonia concentration. During the failure period of the ammonia loading phase (influent ammonia level of 2000 mg NIL), the values given in the tables are the average of the last week of data of the failure period. The values, during this period, do not necessarily represent a stabilized system. Hence, the so-called failure period is primarily discussed in its own section (Section 5.1.6). 5.1.1^Ammonia Levels The terms "ammonia, ammonia-N, NH4, and NH4-N", in this work, refers to the sum of the "free" ammonia-N (NH3-N) and the ammonium-N ion (NH4+ -N). Some researchers prefer to use the term "ammoniacal-N" to refer to the sum of "free" ammonia and the ammonium ion. 35 The ammonia levels in the anoxic and aerobic reactors throughout the loading phase are shown in Figure 5.1 and Figure 5.2 for the 10 day and 20 day SRT systems. An ammonia spike was observable in the anoxic and aerobic reactors of both systems immediately after each ammonia loading increment. The ammonia spike was consistently lower in magnitude for the 20 day aerobic SRT system than for the 10 day aerobic SRT system. This may be due to the greater robustness of the 20 day aerobic SRT system, due to the presence of more biomass. Table 5.1 summarizes the ammonia level data for the loading phase. For simulated influent ammonia levels from 200 mg N/L to 1500 mg N/L, once the system had been optimized and stabilized, the aerobic ammonia levels were found to be < 1 mg N/L. Meanwhile, the steady-state anoxic ammonia levels increased from approximately 25 mg N/L to approximately 180 mg N/L. When the simulated influent ammonia level was raised to 2000 mg N/L, aerobic ammonia levels rose to approximately 700 mg N/L and anoxic ammonia levels rose to approximately 750 mg N/L. TABLE 5.1:^Loading Phase - Ammonia Levels Influent 10 Day SRT^ 20 Day SRT Ammonia^Anoxic^Aerobic Anoxic^Aerobic (mg N/L) (mg N/L)^(mg N/L)^(mg N/L)^(mg N/L) 200 25 <1 25 <1 300 50 <1 45 <1 600 70 <1 80 <1 1000 130 <1 140 <1 1500 180 <1 180 <1 2000 750 700 750 600 The % ammonia removal across the system, anoxic reactor and aerobic reactor, at each simulated leachate ammonia level after the systems were optimized and stabilized, are presented in Table 5.2. 36 60 8020 ^ 40 100^120 Days 140 160 180 200 220 600300 1 000 1500 2000200 (Natural) 800 750- 700- 650- 600- 550- 500- 450 400- 350 300-- 25°- 200 - 150 100- 50- 0 o e .00 • • • .^t^s:p^VA ...t.vr'r • ^ Anoxic Aerobic FIGURE 5.1: LOADING PHASE-la Day SRT System Anoxic and Aerobic Ammonia Levels Simulated Ammonia Level in Influent Leachate (mg N/L) 20 40 60 80 140 160100^120 Days 180 600300 1000 1500 2000200 (Natural) Anoxic 800- 750 700- 650 600 - 550 - 500 - 450 400 - 350 300- 250 - 200 150 100- 50 0- 0 Aerobic ( 200 220 cy) a)0 0 co 0 E E • . 41' 4 4.BS c FIGURE 5.2: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic Ammonia Levels Simulated Ammonia Level in Influent Leachate (mg N/L) TABLE 5.2: Loading Phase - % Ammonia Removal Influent 10 Day SRT 20 Day SRT Ammonia Anoxic Aerobic System Anoxic Aerobic System (mg N/L) (%) (%) (%) (%) (%) (%) 200 6 100 100 10 100 100 300 1 100 100 7 100 100 600 16 100 100 7 100 100 1000 9 100 100 10 100 100 1500 9 100 100 9 100 100 2000 20 11 72 13 21 75 Aerobic ammonia removal is due to a combination of nitrification, bacterial assimilation, and "free" ammonia stripping. According to Turk (1986), the percentage of "free" ammonia at pH 7.5 (the aerobic pH maintained in this study) and at 20 °C, is approximately 1%. Hence, ammonia stripping of un-ionized ammonia is assumed to be negligible. The anoxic ammonia removal is assumed to be entirely attributed to bacterial assimilation. For the influent ammonia levels that the systems successfully treated (ie. 200 to 1500 mg N/L), the anoxic ammonia removal averaged 8 %. This agrees well with the results from Carley (1988) who found anoxic ammonia removal for methanol to average 6 %, and with the results from Mavinic and Randall (1990), in which approximately 10 % anoxic ammonia removal was observed. Both studies used the same process train and the same leachate as in this study. The observed "high system removal" of approximately 70 %, at the influent ammonia level of 2000 mg NIL (despite much lower unit removals), was probably due to the time lag in ammonia buildup and the frequent clogging problems encountered during this period. The exit from the clarifier and anoxic reactor began plugging frequently when the influent ammonia level was increased to 2000 mg N/L. When the anoxic reactor exit clogged, the high ammonia anoxic liquor overflowed onto the floor instead of into the aerobic reactor. The data presented in the graphs and in the tables does not account for this loss of ammonia. This may have contributed to the time lag in ammonia buildup within the system. 39 5.1.2 pH and Alkalinity Addition According to the theory presented in Chapter 1, nitrification consumes alkalinity and hence decreases pH. Conversely, denitrification returns alkalinity and increases pH. Figure 5.3 and 5.4 show the anoxic and aerobic pH levels throughout the loading phase for the 10 and 20 day SRT system. Table 5.3 summarizes the pH levels when the system was stabilized and optimized at each influent ammonia level. It is immediately evident from both graphs, that the anoxic pH was higher than the aerobic pH. TABLE 5.3: ^ Loading Phase - pH Levels and Alkalinity Addition Influent 10 Day SRT ^ 20 Day SRT Ammonia Anoxic^Aerobic ^ Alk:Nnitrified^Anoxic ^ Aerobic^Alk:Nnitrified (mg N/L)^pH pH (mgCaCO3/mgN) pH pH (mgCaCO3/mgN) 200 7.8 7.5 10.1 7.8 7.5 10.2 300 7.9 7.5 3.6 7.7 7.3 3.7 600 8.0 7.4 4.1 8.2 7.5 4.2 1000 8.3 7.3 4.4 8.2 7.3 3.8 1500 8.4 7.5 4.1 8.5 7.5 4.2 2000 8.5 8.5 4.4 8.6 w.4 6.2 Previous studies have reported that the optimum pH range for nitrification is from 7.5 to 8.5 (Painter and Loveless 1983), and the optimum pH range for denitrification is from 7 to 7.5 (U.S. EPA 1975). For the leachate ammonia levels of 200 mg N/L and 300 mg N/L, natural alkalinity alone was sufficient to maintain the aerobic pH at approximately 7.5. The prolonged elevated ammonia levels from Day 91 to Day 105, as observed in Figure 5.1 and 5.2, were attributed to nitrification inhibition due to low aerobic pH. Thus, pH control (alkalinity addition) was begun on Day 103 by adding sodium bicarbonate to the aerobic reactor to maintain the pH at approximately 7.5. A higher target aerobic pH was not selected, since this would result in a higher anoxic pH. From Table 5.3, it is evident that, as the influent ammonia level was increased from 200 to 1500 mg N/L, the steady-state pH levels of the anoxic reactors increased from approximately 7.8 to 8.5. Thus, as the influent ammonia concentration increased, the anoxic pH moved further above the optimal pH 40 FIGURE 5.3: LOADING PHASE - 10 Day SRT System Anoxic and Aerobic pH Levels 10_̂ 9.5_ 9- 5.5_ 5 Î(111[11-11111i111111T- 0 20^40^60^80^100^120^140^160^180^200^220 Days  2000]200 (Natural) 300 600 1 000 1500 Simulated Ammonia Level in Influent Leachate (mg NIL) 600300 1000 1500 2000200 (Natural) 5 0 T111111 20^40^60 (A) 100^120^140^160^180^200^220 Days 1 0_ Anoxic Aerobic 5.5' 8.5-: 8 6 9.5 9- FIGURE 5.4: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic pH Levels Simulated Ammonia Level in Influent Leachate (mg N/L) range for denitrification from 7.0 to 7.5 (U.S. EPA, 1975). Having the anoxic pH outside the optimal pH range for denitrification still allowed complete denitrification, but may have affected nitrification (as evidenced by nitrite accumulation). If higher ammonia loadings are to be treated, a higher anoxic pH would be expected. If this is sufficient to inhibit denitrification, acid addition for pH control of the anoxic reactor may be required. The amount of alkalinity added to the system from the natural leachate alkalinity (approximately 1500 mg CaCO3/L) and from bicarbonate addition, is given in Figure 5.5 and Figure 5.6, as a ratio to nitrogen nitrified (per N n itrified) and as a ratio to ammonia added to the system from the simulated influent leachate (per Nadded). Table 5.3 summarizes the results for alkalinity:N nitrified • The theoretical alkalinity ratio is 3.57 mg CaCO 3 consumed/mg Nnitrified +denitrified (U.S. EPA, 1975). Natural leachate alkalinity levels were sufficient to maintain the alkalinity ratio above the theoretical alkalinity ratio until the simulated leachate ammonia level was raised to 600 mg/L on Day 91. When the simulated leachate ammonia levels were increased to 600 mg N/L, thereby decreasing the alkalinity ratio to approximately 2 mg CaCO 3/mg N, the resulting effect was a reduction of aerobic pH to below 6.5. Bicarbonate addition to the aerobic reactor started on Day 103. For influent ammonia levels from 600 mg N/L to 1500 mg N/L, the alkalinity ratio found necessary to maintain an aerobic pH of 7.5 ranged from 3.8 to 4.4 mg CaCO3/mg Nnitrified' These results are near to, but slightly higher than the theoretical alkalinity ratio of 3.57 mg CaCO 3/mg N nitrified +denitrified' 5.1.3 Methanol Addition and NO,: Levels The leachate used in this study had low biodegradable organics. Therefore an external carbon source was required for denitrification. Methanol was selected as the external carbon source simply because it is the most common external carbon source used for denitrification (U.S. EPA, 1975) and because it has been used in a similar study at U.B.C. (Guo, 1992). Without methanol addition, the approximate NO; levels in the system would equal the simulated leachate ammonia concentration minus the ammonia consumed by bacterial assimilation and stripped in the aerobic reactor. 43 1 000 1 500 1 2000200 (Natural)^300 1^600 1 per N nitrified IITIIIIIIII^i^111111-II 20^40^60^80^100^120^140^160^180^200 Days 220 FIGURE 5.5: LOADING PHASE - 10 Day SRT System Alkalinity Addition Simulated Ammonia Level in Influent Leachate (mg N/L)  200 (Natural) 300 600 1000 1500 2000 80^100^120^140^160^180^200 Days 16 15 14- 13 12 11 - 10 9 8 7 6 5- 4- 3- 2 1 0 o 20^40^60 per N nitrified 220 FIGURE 5.6: LOADING PHASE - 20 Day SRT System Alkalinity Addition Simulated Ammonia Level in Influent Leachate (mg N/L) The amount of carbon source required for denitrification can be expressed by several different variations of the ratio of carbon source to nitrates and/or nitrites. The form selected here was COD:NO., primarily to allow direct comparison with previous studies (Carley and Mavinic 1991, Guo 1992). It should be noted that since the leachate used in this study had low biodegradable organics (see Table 3.2), the COD:NO. ratio includes only the COD derived from the methanol added, and not the COD in the natural leachate. If the leachate contained significant biodegradable organics, it would have been better to include the biodegradable organics in the leachate and to express the methanol requirements as BOD 5 :NO.. The NOX levels throughout the loading phase of this study are presented in Figure 5.7 and Figure 5.8. The term NO.", includes nitrites and nitrates. The COD:NO emoved ratios and anoxic BOD 5 levels are shown in Figure 5.9 and 5.10. Methanol addition to the anoxic reactor, for both systems, was started on Day 27. Prior to methanol addition, the aerobic and anoxic NOX levels (approximately 190 mg N/L) were approximately 5 % less than the incoming ammonia levels (220 mg N/L). Once the methanol addition had been optimized and the system stabilized, the anoxic NO levels were less than 1 mg N/L and the aerobic NOX levels had decreased to approximately 25 mg N/L. The NOX levels and the COD:NO. ratio, at each simulated leachate ammonia level (once the system was optimized and stabilized), are summarized in Table 5.4. 46 FIGURE 5.7: LOADING PHASE - 10 Day SRT System Anoxic and Aerobic NOx Levels 350 325- 300 275 a --Z- 250 cE) 225 c 200o tc; 175 t • 150o-.1^c o 125-0 x O 100 z 75 50 25 0 20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural) 300 600 1 000 1500 1 2000 Simulated Ammonia Level in Influent Leachate (mg N/L)  200 (Natural) 300 600 1000 1500 2000 350 325 300 275- 250- 225- 200 175 - 150- 125- 100- 75 50- 25- 0 z 0) E 0 C:11 O 0 20^40^60^80^100^120^140^160^180^200^220 Days FIGURE 5.8: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic NOx Levels Simulated Ammonia Level in Influent Leachate (mg N/L) 0^20^40 ^ 60 ^12^ 11- 10- 2-‘ cn 8- E .7-0 X 0 5- z 4- 0 ^ 3^ 2- 450 -400 -350 -300 -J 250 ° -200 ain 0 co -100 -150 ......... ...........^• 80 ^ 100^120 Days Anoxic BOD5 140 ^ 160 ^ 180^200 0 1- -^.. .... . Ti el:MU= 1.1 ................ .. -50 0 220 COD:NOx FIGURE 5.9: LOADING PHASE - 10 Day SRT System Methanol Addition and Anoxic BOD 200 (Natural) 300^600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg N/L) FIGURE 5.10: LOADING PHASE - 20 Day SRT System Methanol Addition and Anoxic BOD5 450 400 350 - 300 0 250 g 0 - 200 2 - 150 o - 100  10- 9 8 7 6 5 4 - 3 2 - 1 -^ .... , ............. x- ............ *„, x ^>< ^Anoxic BOD501 Ef MilliriliF 0^ -11-IT^T^11-FTIIIIIIIT-T^020^40^60^80^100^120^140^160^180^200^220 Days 50 200 (Natural) 300 600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg NIL) TABLE 5.4:^Loading Phase - NO; Levels and COD:NOx Ratio Influent 10 Day SRT^ 20 Day SRT Ammonia^Anoxic^Aerobic^COD:NOx^Anoxic^Aerobic^COD:NOx (mg N/L) (mg N/L) (mg N/L) (mg/mg)^(mg NIL)^(mg N/L) (mg/mg) 200 <1 25 6.0 <1 25 6.2 300 <1 50 6.0 <1 45 6.4 600 <1 80 4.8 <1 80 4.8 1000 5 125 3.5 <1 135 3.5 1500 <1 170 4.5 <1 170 4.0 2000 <1 70 9.7 3.5 80 4.7 The COD:NO. ratios for influent ammonia levels of 200 and 300 mg N/L, agree well with the results from a study by Carley and Mavinic (1991). Carley and Mavinic determined that a COD:NO. ratio of 6.2:1 was required for complete denitrification when methanol was used as an external carbon source. The study by Carley and Mavinic used the same landfill leachate and the same MLE treatment process. In general, denitrification studies have shown a COD:N0. requirement in the range of 4:1 to 6.5:1 (Narkis, 1979 and Carley, 1988). From Table 5.4, it is readily apparent that the methanol required to denitrify NO.- in the anoxic reactor, did not remain constant and that higher influent ammonia loadings resulted in lower ratios of COD:NO x,removed The decrease in the COD:NO x ratio is probably due in part to the increase in aerobic nitrite levels. As discussed in Chapter 1, nitrite requires approximately 40% less methanol for conversion to nitrogen relative to nitrate. Possible reasons for the accumulation of nitrites are given in the next section. Nitrite accumulation is probably not the only reason for a reduction in COD:NO., since in the temperature phase at 20 °C, the COD:N0. required for complete denitrification was approximately 5:1, yet no nitrites were present at that time. Ideally, all methanol added to the anoxic reactor should be consumed in the anoxic reactor, so that none will bleed into the aerobic reactor. As can be seen in Figure 5.9 and 5.10, increasing methanol 51 demands resulted in higher anoxic BOD 5 levels. As the influent ammonia level was increased from 200 mg/L to 1500 mg/L, the anoxic BOD 5 level increased from approximately 40 mg/L to 140 mg/L. The aerobic BOD5 levels remained steady at approximately 10 mg/L. When the influent ammonia level was increased to 2000 mg/L, the aerobic BOD 5 rose to as high as 60 mg/L and the anoxic BOD 5 rose to as high as 400 mg/L. The increase in BOD 5 during this failure period was predominantly due to excess methanol addition and also some cell lysing. 5.1.4 Nitrite Accumulation and "Free" Ammonia Levels Nitrite accumulation during nitrification is a result of greater inhibition of nitrite oxidizers (Nitrobacter), than of ammonia oxidizers (Nitrosomonas). This may be caused by high levels of "free" ammonia, high levels of nitrous acid, cold or hot temperature, low dissolved oxygen, high levels of metals, short sludge age, high COD loading, and phosphorus deficiency (Turk 1986). Figure 5.11 and 5.12 show the nitrite levels in the anoxic and aerobic reactors throughout the loading phase. Table 5.5 summarizes the nitrite results for both systems, at each influent ammonia level, once the systems were optimized and had stabilized. TABLE 5.5:^Loading Phase - Nitrite Levels Influent 10 Day SRT^ 20 Day SRT Ammonia Anoxic^Aerobic^Aerobic^Anoxic^Aerobic^Aerobic (mg N/L) (mg N/L) (mg N/L) NO2/NO; (mg N/L) (mg N/L) NO2"/NO; 200 <1 <1 <1 <1 300 <1 <1 <1 <1 600 <1 15 19% <1 20 25% 1000 2.1 85 68% <1 80 59% 1500 <1 110 65% <1 100 59% 2000 <1 65 93% <1 75 94% Aerobic nitrite levels began to rise in both SRT systems when the influent ammonia level was increased to 600 mg N/L. Nitrite levels continued to rise as the influent ammonia level was increased. Several factors may have contributed to the observed nitrite accumulation. The fluctuating aerobic pH (from 52  in Anoxic FIGURE 5.11: LOADING PHASE- 10 Day SRT System Anoxic and Aerobic Nitrite Levels Aerobic 220 200 180- 160 140 •-•g- 120 (.) 100 80 a) 7=^60- 2 40 ^20^ ErEl !A ^0  ^—KIX-00-N-r-lkl—rNYHM J T^ 20^40^60^80^100^120^140^160^180^200^220 Days 200 (Natural) 300 600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg N/L) Aerobic j ))f^Anoxic )15'4 4',---ra .1:*8„weogtc. 120^140^160^180^200^220 FIGURE 5.12: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic Nitrite Levels .3- 0^1----/4rW---ReA='*-kYk44-=;k—T^ 0 20^40^60^80^100 200- z 160 0) E 0 120 a) cri^0 4, 0 0 80 a) 40 - Days  200 (Natural) 300 600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg NIL) approximately 6 to 8), as observed in Figures 5.3 and 5.4, may have contributed to nitrite oxidation inhibition. Aerobic pH was controlled manually by adjusting bicarbonate addition to the aerobic reactor, in response to aerobic pH levels which were considered inhibitory. Hence, the nitrifiers in the aerobic reactor were frequently exposed to fluctuating pH levels. As the aerobic nitrite concentration increased, low aerobic pHs may have contributed to the inhibition via nitrous acid formation. Another factor was the increasing anoxic ammonia levels (see Table 5.1) in combination with increasing anoxic pH (see Table 5.3); this would have resulted in elevated anoxic "free" ammonia levels. In the MLE process train, nitrifiers are constantly recycled through the anoxic reactor and exposed to the high "free" ammonia of the anoxic reactor. Table 5.6 presents the estimated "free" ammonia concentration at each influent ammonia level. TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia Levels Influent 10 Day SRT^*p1470X 20 Day SRT Ammonia^Anoxic^Aerobic Anoxic^Aerobic (mg N/L) (mg NIL)^(mg NIL)^(mg N/L)^(mg N/L) 200 0.6 <0.01 0.6 <0.01 300 1.5 <0.01 0.9 <0.01 600 2.7 <0.01 4.8 <0.01 1000 9.5 <0.01 8.4 <0.01 1500 16.2 <0.01 20.2 <0.01 2000 84.0 78.4 102.8 54.0 The anoxic "free" ammonia levels all surpassed the lower bound of the range of 0.1 to 1.0 mg N/L, suggested by Anthonisen et al (1976), at which "free" ammonia inhibition of Nitrobacter is initiated. Turk and Mavinic (1989) found that "free" ammonia inhibition of Nitrobacter began at 5 to 10 mg N/L. Anoxic "free" ammonia concentrations began to exceed the lower bound of this range when the influent ammonia level was increased to 1000 mg N/L. Turk and Mavinic concluded that internal denitrification, such as used in this study, was the most effective means of maintaining inhibition to an acclimated population of nitrite oxidizers. Another factor which may have contributed to the inhibition of nitrite oxidation, was low aerobic dissolved oxygen levels at the higher influent ammonia 55 concentrations. Although the air supply was constantly adjusted to ensure that the in-situ dissolved oxygen meter read greater than 2 mg 0 2/L, this reading was questionable at times due to the coarse aeration of the aerobic liquor. 5.1.5^Nitrification and Denitrification Percent nitrification and percent denitrification, throughout the loading phase, are shown in Figure 5.13 and 5.14. The greater fluctuation of the % nitrification results and the existence of values in excess of 100%, is a direct consequence of the greater complexity of the % nitrification equation relative to the % denitrification equation. The % denitrification equation contains only two key variables of the same parameter: (NO; in - NOX out) % Denitrification (anoxic reactor)^NOX in The % nitrification equation contains three key variables of two different parameters: (NO; out - NOX in) % Nitrification^= (aerobic reactor) NH4+ in Hence, the % nitrification equation produces more fluctuations and on occasion, exceeds 100 %. In addition, the unknown contribution from the oxidation of organic nitrogen to NOX, in the aerobic reactor, may have affected the % nitrification results. A term that is similar to nitrification is ammonia oxidation. % ammonia oxidation as used in this work is defined as: (NO3" out - NO3 - in) % Ammonia Oxidation (aerobic reactor)^ NH4+ in The important distinction between nitrification and ammonia oxidation is most evident when applied to nitrite accumulation in the aerobic reactor. During periods of nitrite accumulation due to inhibition 56 600^1 1000 1 1500^2000200 (Natural)^300 240^ 220 ^ 200- 180- 160- 140- 120- 1001 80- 60- 40- 20- 0^I^ I^I 0 20^40^ do SO^100^120 Days 0 N c.;) 220 I^I^I^I^I^I 140^160^180^200 FIGURE 5.13: LOADING PHASE - 10 Day SRT System % Utilization Simulated Ammonia Level in Influent Leachate (mg N/L) 11000 1500^2000200 (Natural)^300 1^600 240 220- 200- 180- 160- 140 - 120 - 100 80- 60- 40 - 20-^%Denitrification ><? I^i^I 0^20^40^60^80 220140 1^1 100 120 160 180 200 Days %Nitrification FIGURE 5.14: LOADING PHASE - 20 Day SRT System % Utilization Simulated Ammonia Level in Influent Leachate (mg NIL) of nitrobacter, it is still possible to have 100% nitrification, however, ammonia oxidation will remain less than 100% since some NO; will be present as NO2" instead of NO3-. The extended period of low % nitrification for both SRT systems, from Day 91 to 103, was probably due to low pH in the aerobic reactor, resulting from insufficient bicarbonate addition. Once alkalinity addition began (on Day 103), both systems showed considerable improvement in % nitrification. Since aerobic pH control was handled manually, by adjusting the alkalinity addition in response to low pH levels, the result of each influent ammonia level beyond 300 mg N/L, was an immediate drop in % nitrification due to low aerobic pH. A summary of nitrification results at each influent ammonia level, after the systems had been optimized and stabilized, is presented in Table 5.7. TABLE 5.7: Loading Phase - Nitrification Influent 10 Day SRT 20 Day SRT Ammonia % Rate Specific Rate % Rate Specific Rate (mg NIL) (mg N/d) (mgN/d/gVSS) (mg N/d) (mgN/d/gVSS) 200 100 1900 110 100 1800 80 300 100 3500 150 100 3100 110 600 100 6100 200 100 6300 180 1000 100 8400 230 100 9500 240 1500 100 12200 190 100 12800 190 2000 10 5000 80 20 6000 90 From Table 5.7, the failure of nitrification at the influent ammonia level of 2000 mg N/L, is quite clear. All three parameters, for both systems, show a sharp decline in value. When compared to the denitrification results (see Table 5.8), it is apparent that the failure of nitrification was not initiated by the failure of denitrification. 59 TABLE 5.8:^Loading Phase - Denitrification Influent 10 Day SRT^ 20 Day SRT Ammonia^%^Rate^Specific Rate^%^Rate^Specific Rate (mg N/L) (mg N/d)^(mgN/d/gVSS) (mg N/d)^(mgN/d/gVSS) 200 98 1700 200 98 1700 160 300 98 2900 280 99 2700 180 600 99 5200 400 100 5300 320 1000 99 7200 460 99 8000 400 1500 99 10500 380 95 10900 340 2000 97 5000 120 93 5000 200 Table 5.7 and 5.8 show that the specific nitrification and denitrification rates increased as the influent ammonia level rose from 200 to 1000 mg N/L. At 1500 mg N/L, the specific utilization rates decreased slightly, producing a peak value at the influent ammonia level of 1000 mg N/L. This trend in specific utilization rates may be due to several factors. Nitrite accumulation may have been a factor. The rise in aerobic nitrite meant that a lower population of nitrifiers and denitrifiers would be present with respect to the amount of ammonia oxidized and NO denitrified; this would produce higher specific nitrification and denitrification rates. Another factor may have been that excess methanol addition, at the lower influent ammonia levels, may have raised the VSS levels, thus decreasing the specific utilization rates at those influent ammonia levels. Both systems showed nominal denitrification (0 to 11 %) until methanol addition was started on Day 27. With the addition of methanol, % denitrification rose until the minimum required amount of methanol was exceeded, at which point % denitrification equalled 100 %. Each increase in influent ammonia, resulted in a decrease in % denitrification as more NOX was produced in the aerobic reactor. As methanol addition was increased to account for the increase in NOX, % denitrification increased. Prior to performing this study, there was some concern as to whether denitrification would be inhibited by high ammonia levels (especially "free" ammonia) in the anoxic reactor. As seen in Table 5.1 and 5.6, at an influent ammonia level of 1500 mg N/L, the anoxic ammonia level was approximately 180 60 mg N/L, and the "free" ammonia level could be as much as 20 mg N/L. 100 % denitrification was still achieved. Even more extreme was the high level of denitrification during the failure period, which occurred when the influent ammonia level was increased to 2000 mg NIL. Nitrification was significantly inhibited and anoxic ammonia levels had risen to approximately 750 mg N/L, with an anoxic pH of 8.5. As seen in Table 5.6, "free" ammonia levels are estimated to have been greater than 80 mg N/L, yet denitrification > 90 % was observed. However, due to the failure of nitrification, this occurred at lower denitrification rates and at lower specific denitrification rates (see Table 5.8). 5.1.6 System Failure As seen in Table 5.7, nitrification, in both SRT systems, decreased from nearly 100 % to approximately 20%, when the simulated leachate ammonia level was raised from 1500 to 2000 mg NIL. Accordingly, system ammonia levels increased to substantial levels. The aerobic pH also rose to levels higher than the influent leachate pH, despite the reduction and eventual elimination of bicarbonate addition. Hence, in both Figure 5.5 and 5.6, during the period when the influent ammonia level was 2000 mg N/L, the Alkalinity:N nitrified ratio is significantly greater than the Alkalinity:N added ratio. Complete denitrification of all available NO; was still observed, despite anoxic "free" ammonia levels estimated to be above 80 mg N/L. Several factors may have contributed to the failure of nitrification at the influent ammonia-N level of 2000 mg/L. Insufficient aeration may have been one cause. D.O. probe readings averaged above 2.0 mg/L. However, coarse bubbles may have been read by the probe as dissolved oxygen, resulting in an overestimation of the true dissolved oxygen levels. At higher solids levels line-clogging was observed to occur as a result of increased aerobic foaming, anoxic scum, and rising sludge in the clarifier. The resulting overflows and solid losses may have produced an unstable system. Another factor may have been that anoxic "free" ammonia was of sufficient levels to result in inhibition of Nitrosomonas (ammonia oxidation). According to Anthonisen et al (1976), "free" ammonia inhibition of Nitrosomonas begins between 10 to 150 mg N/L. 61 5.1.7 Solids A characteristic of the single-sludge, predenitrification system is that it is a mixed culture system; anoxic heterotrophs and aerobic autotrophs and heterotrophs are cycled through the system. The effect of the influent leachate entering the anoxic reactor is to lower the anoxic VSS levels (by approximately 1 /7th), since the leachate itself is very low in VSS. The effect of the solids recycle is to raise the VSS since the recycle is the thickened sludge of the aerobic mixed liquor. Figure 5.15 and 5.16 show the suspended solids levels throughout the loading phase. Table 5.9 provides a summary of the suspended solid levels at each ammonia loading once the systems had been optimized and stabilized. TABLE 5.9:^Loading Phase - VSS Levels Influent 10 Day SRT^ 20 Day SRT Ammonia Anoxic^Aerobic^Effluent^Anoxic^Aerobic^Effluent (mg N/L)^(mg/L)^(mg/L) (mg/L)^(mg/L) (mg/L)^(mg/L) 200 1800 1700 20 2200 2200 40 300 2100 2200 40 3000 2900 40 600 2700 2900 70 3200 3500 90 1000 3100 3300 160 4000 3900 120 1500 5500 5600 150 6400 6400 100 2000 6200 6400 220 5400 4600 180 The increase in anoxic, aerobic, and effluent VSS levels, as influent ammonia is increased, is evident from Table 5.9. The difference in anoxic and aerobic VSS levels is nominal with the aerobic VSS levels being, on the average, slightly higher. The increase in effluent VSS is attributed to increased clarifier loading. The 20 day SRT VSS levels are on average 20 % higher than the 10 day SRT VSS levels. This difference is a reflection of the differences in aerobic wasting and SRT. As expected, the higher rate of wasting (1 L/day) from the 10 day SRT system, resulted in a lower VSS. Conversely the lower rate of wasting (0.5 L/day) from the 20 day SRT system, resulted in a higher VSS. Figure 5.16 shows that, when the influent ammonia concentration was increased from 1500 mg/L to 2000 mg/L, the aerobic VSS levels for the 20 day SRT system, rose to nearly 13000 mg/L. Since 62 13000 12000 11000- 10000- 9000 8000 7000 6000- 5000 4000 3000- 2000- 1 000 0 ^ 0 -- Anoxic FIGURE 5.15: LOADING PHASE - 10 Day SRT System Anoxic and Aerobic VSS 20^40^60^80^100^120^140^160^180^200^220 Days  200 (Natural) 300 600 1000 1 500^2000 Simulated Ammonia Level in Influent Leachate (mg NI/L) Anoxic -1111f^I^f 0^20^40^60^80^100^120^140^160^180^200^220 Days FIGURE 5.16: LOADING PHASE - 20 Day SRT System Anoxic and Aerobic VSS 13000 12000 LT 11000 - E 10000- cn u) 9000 8000 cn 7000 -10 aa) 60000) (3)^5000 (/)^4000- 3000 7:5 2000- 1000 0  200 (Natural) 300 600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg N/L) nitrification was very low at this period, the VSS increase is attributed to methanol bleeding into the aerobic reactor, resulting in aerobic heterotrophic growth. The lack of such a sharp increase in the 10 day SRT system may have been due in part to the higher wasting from the 10 day SRT system. Reactor overflows, which were frequent in both systems during this period, may have also played a significant role in determining reactor solids levels. For the 20 day SRT system, the aerobic VSS was lower than the anoxic VSS, for the last few days of the failure period. This maybe attributable to partial clogging in the anoxic reactor overflow, which may have been preventing the passage of solids but permitting the passage of liquid. Another reason may be that the sampling generally took place after the overflow was cleaned up and as best as possible placed back into the system. This may have resulted in some anomalies. The ratio of VSSiTSS was found to remain between 0.7 to 0.9, with 0.85 being the average when the systems were stabilized and optimized. Towards the end of the failure period (influent ammonia level of 2000 mg/L), the VSS/TSS ratios were at their lowest (approximately 0.7). 5.1.8 Solids Retention Time Two parallel systems were operated in this study: one with a 10 day aerobic SRT and the second with a 20 day aerobic SRT. The purpose of operating at two different SRTs was to observe if a longer SAT, resulting in higher VSS levels, would treat higher ammonia loadings. However, both systems failed when the influent ammonia level was raised from 1500 mg/L to 2000 mg/L. The only differences observed between the two SRT systems was that the longer SRT system (20 day), had approximately 20 % higher VSS levels, and lower system ammonia peaks, after each increase in ammonia loading (see Section 5.1.1). Both systems were operated on the basis of "theoretical" aerobic SAT. The "theoretical" aerobic SAT is the volume of the aerobic reactor divided by the volume wasted daily. The actual system SRT may also be calculated. The actual system SRT is the total system VSS divided by the sum of the VSS lost by wasting and in the effluent. Both SATs are shown for the loading phase in Figure 5.17 and 5.18. 65 Simulated Ammonia Level in Influent Leachate (mg N/L) 600300 15001000 2000200 (Natural) FIGURE 5.17: LOADING PHASE - 10 Day SRT System System and Theoretical Aerobic SRT 100 80 60 40 Prior to day 24, no aerobic wasting was performed 20 N^tAiomaiLiona b' I! ^:Lt. 611 Q: .•:•:'^c^*:•:. ":•:*^*::' 4^•^•:•..0^' 0 1 11^T 0^20 4.0 140^160^180^200^220 1 60^80^100^120 Days 11 Aerobic wasting on day 265 t1/4,1^Ein!gm,^ni pm mi•^Pr.`14: MK; MEW aim Ir24 1 1, 1 F:11 - Bil ^4 c ••• : ^ - • CWC^c^o •^:4 •^c ASRT SSRT ended SSRT 40 20 Aerobic wasting ended on day 201ASRT  100 - 80 60 Prior to day 22, no aerobic wasting was performed fin lc_irse 2 dm^I LIPSI^IAn el no, 31 IS graltaki mlmasa a II II n^ ion ^amik taILI " 441111 4041c^ Y . c 0: :.:.:• c^ •:•:• C •^C • C^C '121 FIGURE 5.1 8: LOADING PHASE - 20 Day SAT System System and Theoretical Aerobic SAT 0^20^40^60^80 ^ 100^120^140^160^180^200 ^ 220 Days 200 (Natural) 300 600 1000 1500 2000 Simulated Ammonia Level in Influent Leachate (mg N/L) When wasting was being performed, the actual system SRT was greater than the theoretical aerobic SRT due to the greater volumes involved. Despite the system volume being double the aerobic volume, the actual system SRT is not double the theoretical aerobic SRT, primarily due to the loss of VSS in the effluent. When no wasting was occurring, the theoretical aerobic SRT was equal to infinity. The actual system SRT is still calculable, due to the inclusion of the effluent VSS term in the denominator. 5.2 Cold Temperature Phase The objective of the cold temperature phase was to test how the 10 and 20 day SRT treatment systems would respond as the temperature was decreased from 20 °C, when treating an influent leachate ammonia level of 1500 mg/L. This phase was divided into three periods: the 20 °C startup (Days 1 to 94), the cold temperature period (Days 83 to 130), and the 10 °C nitrification startup (Days 132 to 169). Day 1 of the cold temperature phase was March 12, 1992. Following the nitrification failure experienced at the end of the loading phase, and prior to decreasing the temperature, both systems were restarted using the natural base leachate of 200 mg NH4-N/L and at 20 °C. As complete nitrification was regained, the influent ammonia level was increased, until the influent ammonia level reached 1500 mg N/L. Two small ceramic fine air diffusers were added to each aerobic reactor for ensuring sufficient dissolved oxygen; pH/pump controllers were used to control bicarbonate addition to the aerobic reactors, based on a pH setpoint of 7.5. During the 20 °C startup period of the cold temperature phase, while attempting to restart denitrification, two unanticipated observations were made: BOD5 inhibition of nitrification, and a loss of nitrite accumulation. 5.2.1 BOD5 Inhibition of Nitrification Once nitrification was re-established (Day 19 for the 10 day SRT system, Day 14 for the 20 day SAT system), both anoxic reactors were reseeded and methanol addition was increased. In both systems, within several days of large boosts in methanol (Day 27 for the 10 day SRT system, Day 22 for the 20 day SAT system), % denitrification increased, the aerobic BOD5 rose, aerobic ammonia levels increased, and % nitrification decreased (see Figure 5.19 and 5.20). The simulated influent ammonia levels and methanol addition were again cut to expedite removal of high levels of aerobic ammonia. 68 60- 50- CV 0 40- It) 0 0 cy)^co 30 -(0 0 a) 20- 10- 150 - 140 - 130 - 120 - 110 - 100 -90 -80 -70 -60 50 -- 40 -30 -20 - 10 ^0 100 X^ ,?4*-411^% N itrification ‘k> Aerobic BOD5 FIGURE 5.19: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5 and % Nitrification 70 Day 1 to 94 II^1^1^I^1^I^I^1111111111110 20 30 40 50^60^70^80^90 Days CI Aerobic BOD5 X %Nitrifcation -150 - 140 -130 - 120 X>5(^-110 • • X^-100 >t4:< -90 o 80• -70 z -60 -50 -40 -30 -20 -10 Day 1 to 94 Aerobic BOD5 % Nitrification 1111111111111111111 ^010^20^30^40^50^60^70^80^90^100 Days FIGURE 5.20: TEMPERATURE PHASE - 20 Day SRT System Aerobic BOD5 and % Nitrification 60 a 50- C\I 0 0) E 40- tr) 0O o^co 30- 2 a)• 20- 10- 0 0 70 0 Aerobic BOD5 X %Nitrification The systems were again restarted in the same manner with a similar conclusion (Days 36 to 47 for the 10 Day SRT system, Days 28 to 41 for the 20 Day SRT system). Figure 5.21 and 5.22 show the observed relationship between aerobic BOD5, COD and % nitrification during the startup phase. Figure 5.23 shows the aerobic BOD5 and % nitrification results compiled for both systems. From Figure 5.23, it appears that higher aerobic BOD5 levels correlate with lower % nitrification, with aerobic BOD5 levels over 30 mg/L correlating to 50 % nitrification or less. The COD results did not reflect the trend as significantly as BOD5, presumably because of the lower accuracy of the COD test as a representation of biodegradable organics. Figure 5.24 and 5.25 show the COD:NO. ratios during this period. Methanol additions were made on the basis of the NO; entering the anoxic reactor. However, the amount that is in excess, and will subsequently bleed into the aerobic reactor, will be determined by how much NO; is being removed through denitrification. The difference in the two COD:NO. values (with COD:NOremoved > COD: NO., entering) represents the amount that would be bleeding through to the aerobic reactor. The difference between the two COD:NO. ratios is most noticeable in the 10 Day SRT system. The peaks for COD:N0x,removed , after day 50, is due to relatively small amounts of methanol being added and producing relatively low denitrification. The low levels of methanol addition were apparently insufficient to result in nitrification inhibition. The mechanism by which excess methanol addition resulted in nitrification inhibition may have been that heterotrophic growth, in the aerobic reactor, lowered the DO to inhibitory levels. The DO meter always reported that DO levels were sufficient; however, as in the failure period of the loading phase, these readings may have been falsely high due to the coarse aeration of the aerobic mixed liquor. Another explanation for the reduction in nitrification following large methanol increases, may be that excess methanol addition resulted in methanol toxicity to Nitrosomonas. A study by Hooper and Terry (1973) concluded that short-chain alcohols, such as methanol, were significant inhibitors of ammonia oxidation. A study by Carley and Mavinic (1989) found that excess methanol did not increase aerobic ammonia levels but did reduce nitrification by resulting in heterotrophic competition for ammonia. Since ammonia levels, in this study, were 71 FIGURE 5.21: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5, COD vs % Nitrification 70   ^ 600 Day 1 to 94 -580 60 0^Aerobic BOD5^ -560 540 0 50- x-1-'1 -520 -CV—^0 0 -500 0^El x^ -480 ig) 40- in^ LI^a -460 0 -^ — 0 cm 30- x X x o^o^ a^ -440 -.1 iv^.0^*El^ -420 .0 x ,^x x 2^x ,-,>< x x x^ ro -400 a)< 20- A(xi X^><X 6 ^X e ^ X X X —^ xM -380 -360 10-^ -340o _ Aerobic COD -320 0^ I^ I 1^1^1^i^ 1^I 1^i^i^1^I^I^I 1^i^1^1^1^1111111^300 0 10 20 30 40 50 60 70 80 ' 90 100 110 120 130 140 150 % Nitrification 1_ 0 Aerobic BOD5 X Aerobic COD 70 60 50- 0 E 40- 0 co 30-.0 2a) 20- - 110 120 FIGURE 5.22: TEMPERATURE PHASE - 20 Day SRT System Aerobic BOD5, COD vs % Nitrification 10- 0 0 600 -580 560 540 520 500 480 460 440 420 -400 380 360 340 320 300 150 Elrod-- Aerobic BOD5 Aerobic COD x X X x Li Li^x $<^x x X D X D 1111111Ill-11111 10 20 30 40 50 60 70 80 % Nitrification Day 1 to 94 Li 90 100 c-N-1 0 0 ..0 2a) 130 140 CI Aerobic BOD5 X Aerobic COD LI ^LI LI FIGURE 5.23: TEMPERATURE PHASE - 10 and 20 Day SAT Aerobic BOD5 vs % Nitrification 70 Day 1 to 94 (20° C) 60- 10- LI LI ^a 0^ 0 0 0 ^ 0 0^0 ^co ^sismi.^0 En^11-1 0 0 Or3 LIE 0 ri__, ECI 0 0 0 ma 0 E ^LI 0 50- 0 cy) E 40- in 0 cc 30-.o _a 2 <c) 20- EL: 0^LI LI LI 0 -1 11111111111111111111111111111 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 % Nitrification 0 Aerobic BOD5 NOx Entering -.>(- NOx Removed z 0) E N 0 x O 0 0 FIGURE 5.24: TEMPERATURE PHASE - 10 Day SRT System Methanol Addition during 20 C Startup Day 1 to 94 COD:NOx removed in anoxic reactor COD:NOx entering anoxic reactor 10- 9^,7,::.zerarawa= 10^20^30^40^50^60^70^80^90 I I Days 80 70- 60 - 50- 40- 30- 20- 294 )4( 100 laiNixtlk-Rf-ol COD:NOx removed in anoxic reactor A< FIGURE 5.25: TEMPERATURE PHASE - 20 Day SRT System Methanol Addition during 20 C Startup Day 1 to 94 80 70 6°- 2' cm i.., j_E 50_ 0 cm E 40- x 0 -,,^z 30_ COD:NOx ehtering o) O - anoxic reactor0 020- \ .. 0 10- Yr 90 1 00 L --B- NOx Entering -X- NOx Removed 1 observed to increase, heterotrophic competition for ammonia was dismissed as a possible reason for the loss of nitrification. After two failed attempts, both systems were restarted a third time (Day 58 for the 10 day SRT system, and Day 44 for the 20 day SRT system). This time, increments in methanol were conducted in a more slow and conservative manner. By Day 94, both systems were fully re-established at 20 °C and at an influent ammonia level of 1500 mg N/L. ^5.2.2^Loss of Nitrite Accumulation Aerobic nitrite accumulation had occurred during the higher influent ammonia levels of the loading phase (see Table 5.5). However, by the end of the 20 °C startup period of the temperature phase, aerobic nitrite levels had decreased to less than 1 mg N/L. Figure 5.26 and 5.27 show the aerobic nitrite levels and the aerobic pH. Possible explanations for the loss of nitrite accumulation are Nitrobacter acclimatization, increased dissolved oxygen levels due to the presence of the fine bubble diffusers, and the steady aerobic pH = 7.5. On Day 33, pH/pump controllers were installed to continuously monitor and automatically control the aerobic pH, by pumping bicarbonate to the aerobic reactor when the pH decreased below the setpoint value of 7.5. The pH/pump controllers did not work successfully for approximately one month. The fault was primarily due to electrical grounding problems which resulted in an unstable pH reading. The solution was to insulate the controller from a direct metal-link to the large motors stirring the aerobic reactors. However, some fluctuation remained due to the stirrer-liquid-(pH)probe link. Despite the loss of aerobic nitrite, the COD:NO. ratio remained low (approximately 5:1), but was marginally higher than for the latter period of the loading phase, when aerobic nitrite levels had increased substantially and COD:NO. ratios were as low as 3.5:1 (see Table 5.4). ^5.2.3^Effect of Cold Temperature and Failure Once both systems were fully operational and had stabilized at 20 °C, with an influent ammonia level of 1500 mg N/L, the operating temperature was decreased from 20 °C, to 17, 14, 12, and finally to 77 Aerobic NO2 TA WA Lu  Li Day 1 to 94 Aerobic pH Z<>‘›co<>4><- *,50‹. -><>4 FIGURE 5.26: TEMPERATURE PHASE - 10 Day SRT System Aerobic pH and Nitrite 700 600- :a 500- -2 (3) E 400- .a)^X^..4,?^ ,e_ .^,• • ..7.%....->c:^.,, op 24— • • . ), . X .0 300-^: .0 2 a) < 200- Setup pH controller on Day 33 1 00- >t< ^_10 =9.5 =8.5 :0_o :6.5 -6 =5.5 lam "a az =^nun 80 1^1^1^1^1^1^1^1^1^1^1^1 20 30 40 50 60 70 Days P El^5 90^100 El Aerobic NO2 -X-. Aerobic pH 600- a 500- ±- a E 400- cv .,--_.,..J Zz-.1^300- co 2^ _ Q< 200- Aerobic NO2 ^>f^.. ^ p. .1 541^:'''.^‘). '.. ^_10 -9.5 `9 -8.5 -8 E-7.5 IQ. :7 :6.5 • -6 -5.5 700 Day 1 to 94 '..4K 4 4.>k Aerobic pH exooses04,4000*->"` - 100- I^1^1^I^I^I^1^I^1^1^1^1^1 10 20 30 40 50 60 Days p-q^5 90^10070 ^ 80 0 Aerobic NO2 -X-. Aerobic pH FIGURE 5.27: TEMPERATURE PHASE - 20 Day SRT System Aerobic pH and Nitrite 10 °C. Each temperature was maintained for approximately 10 days to allow adjustment and acclimatization before the temperature was lowered further. The results for the cold temperature period of the temperature phase are shown in Figures 5.28 to 5.39. As the temperature was decreased from 20 to 12, the most apparent change was the rise in aerobic nitrite (Figure 5.28 and 5.29) and aerobic BOD5 (Figure 5.30 and 5.31), both starting at 14 °C. It is possible that failure had begun at 14 °C, but not enough time was given for total failure to have occurred. Failure in both SRT systems occurred quite dramatically when the temperature was decreased from 12 °C to 10 °C. Both nitrification and denitrification decreased considerably in the 10 day SRT system, while only nitrification failed in the 20 day SRT (See Figures 5.32 and 5.33). In the 10 day SRT system, the % nitrification decreased from 94 % at 12 °C, to 15 % at 10 °C. % Denitrification decreased from 99 % at 12 °C, to 30 % at 10 °C. For the 20 day SRT system, % nitrification decreased from 100 % at 12 °C, to 22 % at 10 °C. % Denitrification decreased from 99 % at 12 °C, to 82 % at 10 °C. The rising nitrite levels in both systems, as temperature decreased, and the continued high percentage of denitrification at 10 °C in the 20 day SRT system, suggest that nitrification failure occurred first, as had been observed in the loading phase. The resulting elevated ammonia levels may have precipitated the failure of denitrification in the 10 day SRT system. Colder temperatures would have obviously been a factor in the failure of nitrification. Colder temperatures would have resulted in slower nitrification rates, although no obvious trend in rate, as a function of temperature (between 20 and 12 °C), is obvious from the results shown in Figure 5.34 and 5.35. The specific nitrification and denitrification rates are shown in Figure 5.36 and 5.37. Neither of the specific utilization rate graphs show any obvious trend as a function of temperature. The VSS results for the cold temperature period are shown in Figure 5.38 and 5.39. Lower utilization rates, due to temperature, were anticipated to have produced lower levels of biomass. A significant decrease in biomass is not evident from the graphs; however, the rise in aerobic nitrite accumulation may have resulted in unused methanol bleeding into the aerobic reactor, thereby promoting aerobic heterotrophic growth, and maintaining elevated VSS levels. 80 20 °C^17 °C ^ 14 °C 1 °C 1^10 °C Day 83 to 130 1111111111 130 240 220- 200- 180 160 - 0 140 -.= ro C 120 a) 00^ 100 0 80a) 60- -FL-r-->141-Wfl--014T-1014/414 -r-1-->Pt41-96.1-1 - 1111111 80^90^100^110^120 Days % Nitrification -40 -30 -20 - 10 111111^0 140 Aerobic NO2 40- 20  140 - 130 -120 - 110 - 100 90 -80 -70 -60 -50 FIGURE 5.28: TEMPERATURE PHASE - 10 Day SRT System Aerobic Nitrite and % Nitrification Operating Temperature FIGURE 5.29: TEMPERATURE PHASE - 20 Day SAT System Aerobic Nitrite and % Nitrification %Nitrification 200- 180 160- oc 140- cTj • 120- a) co^100r.) 80a) - 60--2 40 20- 0 80 Aerobic NO2 ><, s'r-il-T-1*4141"1"^ 90^100^110 Days ^140 -130 120 -110 -100 -90 80 0 -70 F. -60 z 50 -40 -30 -20 -10 240 220 Day 83 to 130 0 130 ^ 140 20 °C ^ 17 °C j 14 °C 12 °C^10 °C Operating Temperature Ili^I^I^I^l^I^I^I^I^i^I^I^I^i^1^1^1^I^I 90 100 1^1^1^1 110 Days 1^1.^1 1^1^I^I^I^ '1.1 ^1^1^1^1 Day 83 to 130 % Nitrification Aerobic BOD5 < X FIGURE 5.30: TEMPERATURE PHASE - 10 Day SRT System Aerobic BOD5 and % Nitrification ^140 ^ 130- 120- 110- 100- 90- 80- 70- 60- 50 40- 30- 20- 10 - ^0^ 80 140 -130 -t120 - 110 -100 -90 -80 crs0 -70 Z 0--50 -40 -30 -20 -10 1130^1111111-40  0 20 °C 17 °C^14 °C 12 °Cf^10 °C Operating Temperature 20 °C ^ 17 °C^14 °C 12 °C ^o 140140_̂ FIGURE 5.31: TEMPERATURE PHASE - 20 Day SRT System Aerobic BOD5 and % Nitrification 130- 120- 110- 100- 90- 80- 70- 60- 50 Aerobic BOD5 40- 30- 20- 10- 90 Day 83 to 130 MI1111111111111111111111111111 100 ^ 110 ^ 120 Days -_130 _120 7_110 -100 -90 -80^-4= -70 4-4 -60 2 -50 -40 -30 -20 -10 1.66^0 140 fa' s('T 0 cy) 0 0 c0 .o 2a) 80 %Nitrification Operating Temperature Day 83 to 130 % Denitrification % Nitrification FIGURE 5.32: TEMPERATURE PHASE - 10 Day SRT System % Denitrification and % Nitrification 1(111(1111111111111111m 1 millittiiiiilimiilliiilliiiii 80^90^100^110^120^130^140 Days 20 °C ^ 17 °C 1 14 °C 112 °C 1^10 °C Operating Temperature ^140^ 130- 120- 110- 100- 90- 80- 70 - 60- 50- 40- 30- 20- 10- ^ 0^ %Nitrification %Denitrification Day 83 to 130 140^ 1307 120 110- 100- 90- 80- 70- 60- 50- 40- 30- 20- 10- FIGURE 5.33: TEMPERATURE PHASE - 20 Day SRT System % Denitrification and % Nitrification 0 11111(111111111^1^I^lIt^It^III^lIlt^lIlt1111^1111111111111111 80^90^100 110 120 130^140 Days 20 °C ^ 17 °C^14 °C 112 °C i^10 °C Operating Temperature 20000^ 18000- 16000- rci 14000- cr) E 12000- w ro cc 1 0000- a 0 •ii^8000- N H47:= 6000- FIGURE 5.34: TEMPERATURE PHASE - 10 Day SRT System Denitrification and Nitrification Rate IIIIIIIIIIIIII^111111111^111111111^111111^1111111111111111 90^100^110^120 130^140 Days  20 °C 17 °C 14 °C 12 °C 1 o t Operating Temperature FIGURE 5.35: TEMPERATURE PHASE - 20 Day SRT System Denitrification and Nitrification Rate 20000 18000 - 16000- 14000- 12000- ro cc 10000 - cO *ifs'^8000-N 6000- 4000- 2000- ^ 0^ 80 1^1^I^1^1^1^1^I^0 1^I^I^1^1^1^1^1^1^1^1^I^1^1 11 110 1111111^IIIIIIIIIIIIIIIII111111 100 120^130^140 Days 20 °C 17 °C 14 °C 12 °C 1 t  Operating Temperature FIGURE 5.36: TEMPERATURE PHASE - 10 Day SRT System Specific Utilization Rate 800 Day 83 to 130 700- ->-, 600- -Co- co cm 500- 400-o) co 03^CC 300- 6 (1) 200-a 1 00 , Den trification x fr " s)<-  EI Nitrification 108611-T T1 F^I^T-1-7170:)6111-11-7-1 Ti-T-16ET FT-1111^ 1I 1.6011 111111 140 Days 20 °C 17 °C 14 °C 12 °C o Operating Temperature Denitrification ><> 54‹..^ ,^ 5‹, FIGURE 5.37: TEMPERATURE PHASE - 20 Day SRT System Specific Utilization Rate 800 Day 83 to 130 -3; 700-ro -o 600 ->C) z E 01 500 - - ccc 400 - 0 CD^.4= 0 cri 300-N 4= 200 -00a co 100 - 0^11IT- 111 80 Nitrification 90"111 111166■1 ^110^120^130^140 Days 20 °C ^ 17 °C^14 °C 1 °C I^10 °C Operating Temperature 6500-o) cn > 6000- cr) cn -0 5500- o -a cua. 5000- u) .42^- -5 4500-> 4000 1̂ 80 FIGURE 5.38: TEMPERATURE PHASE - 10 Day SRT System Anoxic and Aerobic VSS 7000 Day 83 to 130 Aerobic Anoxic 90^100^110 120^130^140 Days 20 °C^I 17 °C^14 °C 112 -CI ^o Operating Temperature  Aerobic Day 83 to 130 Anoxic FIGURE 5.39: TEMPERATURE PHASE - 20 Day SRT System Anoxic and Aerobic VSS 7000 :II-a 6500-_ E^- u) u) > 6000- (r) -E)^-u) -o 5500-a) -oca)o_ _(.1)= 5000 - u) ,a)^_ cil >7:5 4500- 4000 - -I- Fl 1 1 I I 1 T-1-1-1-T T-T i-T- !III FT-T- 11 -7 -T-T 1 I I 7 T-1 T-T 1 I I I ET-T 1111[11 T-1 11 1 I I^ 1- 80^90^100^110^120^130^140 Days 20 °C^17 °C 1 14 °C 12 t 1^10 °C, Operating Temperature The effect of temperature may have also, to some degree, influenced the toxic effect of "free" ammonia and/or nitrous acid inhibition. The fraction of "free" ammonia decreases with decreasing temperature (therefore lowering the toxic effect of ammonia), while the fraction of nitrous acid increases with increasing temperature (therefore increasing the toxic effect of nitrous acid). The effect of aerobic BOD5, which also increased as the temperature decreased, may have also played a role in nitrification failure. The increase in aerobic BOD5 may have been due to enhanced carbon bleeding from the anoxic reactor as nitrite levels rose. The effect of aerobic SRT may have also been significant, as shown from the last part of the study. 5.2.4 10 °C Startups of Nitrification and SRT Failure The objective of the last part of the study was to determine if nitrification could recover at 10 °C, with influent ammonia levels at 1500 mg N/L, under the conditions of no aerobic wasting and no methanol addition (ie. no denitrification). Figure 5.40 and 5.41 present the aerobic ammonia and % nitrification data for the 10 °C startup period of the cold temperature phase. The anoxic reactor was bypassed for the first few days until aerobic ammonia levels had been depleted, after which the anoxic reactor was re-introduced. After 10 days, nitrification in both systems was near 100 %, thus showing the ability of nitrification to recover at 10 °C from elevated reactor ammonia levels of approximately 500 mg N/L. The success of re-establishing nitrification at 10 °C, when it had failed earlier, may be due to no aerobic wasting (infinite theoretical aerobic SRT), or the lack of methanol addition and denitrification, or both. The lack of denitrification lowered the anoxic pH from 8.5 to 7.8, and consequently lowered the anoxic "free" ammonia by approximately 50 %. The lack of methanol addition also meant lower anoxic BOD5 and less carbon bleeding, which would have resulted in higher aerobic dissolved oxygen levels. Unfortunately, a failure in the air compressor for several hours on Day 145, resulted in complete nitrification failure and ammonia levels again rose to approximately 600 mg NIL. From this failure, while continuing not to waste from both systems and with no methanol addition, only one system recovered . The system which recovered was previously the "20 day SRT system". From Figure 5.41, 93 % Nitrification Anoxic reactor bypassed Air compressor failure results in loss of nitrification Anoxic reactor reintroduced 111111T 1 150 Days 140 160 FIGURE 5.40: TEMPERATURE PHASE - 10 Day SRT System Aerobic Ammonia and % Nitrification z a) 0 0 0 -c 0 E E 1200^ 1100- 1000- 900- 800- 700- 600- 500- 400 - 300- 200- 100- 130 160 „x -= 1 504 - 130 - 120 - 110 -100 -90 -80 -70 -60 -50 -40 -30 -20 El] -10 - 0 - -10 - -20 - -30 --40 - -50 -60 170 Day 132 to 169 (10° C) Aerobic NH4^ .54^ '>4'... •••• e^• • .... -->(- Aerobic Ammonia - El - %Nitrification -X- Aerobic NH4^%Nitrification 1200^ 1100- 1000- 900- 800- Aerobic NH4 700- 600-^Anoxic reactor bypassed 500- 400- 300- 200- 100- 0 130 Day 132 to 169 (10° C) Anoxic reactor reintroduced %Nitrification -150 -140 -130 -120 -110 100 -90 -80 -70 -60 160 Air compressor failure results in loss of nitrification -50 -40 -30 -20 -10 1^0 170 , > . ''' ''1^. Er- - '^I^1^I -T--- I^I^I-1-^I^1^I^I^III 140^150 160 Days FIGURE 5.41: TEMPERATURE PHASE - 20 Day SRT System Aerobic Ammonia and % Nitrification it can be seen that by Day 155, the one remaining system had recovered to approximately 80 % nitrification. Throughout the recovery and the remainder of the study, the aerobic nitrite levels were approximately 200 mg N/L (see Figure 5.42 and 5.43) and the aerobic BOD 5 levels were approximately 50 mg/L. Meanwhile, in the system which did not recover (previously operated as the "10 day SRT system"), no wasting or methanol addition was performed, but % nitrification remained below 10 % and the aerobic ammonia levels climbed to 1000 mg/L and above (See Figure 5.40). The reason why one system recovered and the other failed is not clear. To observe the effects of SRT, once complete nitrification was observed in the one working system, aerobic wasting was started on Day 156, to yield a 10 day aerobic SRT. SRT and % nitrification are shown in Figure 5.44. After only 14 days of wasting, aerobic ammonia levels had risen to 400 mg N/L. The failure may not have been entirely attributed to SRT alone, as high nitrite levels indicated the system was already stressed, and high aerobic BOD 5 levels (possible cell lysing) may have been associated with nitrification inhibition as previously observed. Another failure of the air supply, on Day 170, marked the end of the study, since no further lab time could be justified for this project. 96 Anoxic reactor reintroduced ss ss  Alrjj PA Anoxic reactor bypassed FIGURE 5.42: TEMPERATURE PHASE - 10 Day SRT System Aerobic Nitrite and % Nitrification 160 600- Day 132 to 169 (10° C) ss, -150 -140 -130 1120 -110 -100 -90 -80 ,s -70 =60 -50 -40 -30 -20• -10 -0 --20 --30 --40 --50 -60 160^170 Aerobic NO2 500- a) - c o 400- f!) 4C1a) 300- o a) 200- 100- II 0^ 130 140 ari^■1 % Nitrification Re.^PA 'Ma PA PA PA PA Air compressor failure results in loss of nitrification I 150 Days 700 -X- Aerobic Nitrite -9- VoNitrifcation -->(- Aerobic NO2 -E3- %Nitrification FIGURE 5.43: TEMPERATURE PHASE - 20 Day SRT System Aerobic Nitrite and % Nitrification 700 160 - 150 -140 - 130 - 120 - 110 - 100 - 90 -80 -70 -60 -50 -40 -30 -20 - 10 0 170 Day 132 to 169 (10° C) 600- 500- o • 400- 4C' co300- 0 0• 200- z 100- Anoxic reactor reintroduced Anoxic reactor bypassed %Nitrification 0^ \,1v IIIITII^f^111111^IIIIIIIIIIIIIIIIII130 140^150^160 Days Air compressor failure resultst in loss of nitrification 80 Day 132 to 169 (10°C) %Nitrification60- SSRT  120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 FIGURE 5.44: TEMPERATURE PHASE - 20 Day SRT System ASRT, SSRT and % Nitrification 0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII^I^I^0 130^140^150^160 ^ 170 Days ASRT ^ SSRT^-E3- %Nitrification Chapter 6 CONCLUSIONS AND RECOMMENDATIONS ^ 6.1^Summary of Results Table 6.1 summarizes the key results obtained from this study. The table is placed here for quick referencing when reading the subsequent conclusions and recommendations. ^6.2^Conclusions The following conclusions can be made from the results of the two phases which comprised this study (the ammonia loading phase and the cold temperature phase): 1. A single-sludge, nitrification-predenitrification process, operating from 20 to 12 °C, with a recycle ratio of 6:1, an actual aerobic HRT of 3.4 hours, an actual anoxic HRT of 1.7 hours, and a theoretical aerobic SRT of either 10 or 20 days, was found capable of producing an effluent containing < 1 mg NH 4-N/L and approximately 170 mg NO;-N/L, from an influent leachate of 1500 mg NH 4-N/L (once the system had been optimized and stabilized at each influent ammonia level and at each temperature). MLE theory says that at a 6:1 recycle ratio, the effluent NO; should be approximately 1500/(6 + 1) = 214 mg N/L. The difference is attributed to bacterial assimilation (ammonia stripping should be nominal). 2. At an influent ammonia level of 1500 mg N/L at 20 °C, for both the 10 and 20 day SRT systems, aerobic nitrite accumulation was observed to reach approximately 110 mg N/L (65% of aerobic NO;). Increasing nitrite may have been a factor in the reduction of COD:NO. from approximately 6:1 to 3.5:1. When both systems were restarted at 20 °C in the cold temperature phase, the nitrite accumulation had disappeared, and the COD:NO; ratio was approximately 5:1. 3. When the influent ammonia concentration was increased from 200 to 1500 mg N/L in the leachate, the difference between the anoxic pH and the aerobic pH was observed to increase from 100 TABLE 6.1:^Summary of Results Phase^20 °CAmmonia Loading^@ Influent NH4 (mgN/L) 200 300 600 1000 1500 2000* 10 Day SRT System Aerobic NH4 (mgN/L) <1 <1 <1 <1 <1 700 Aerobic NO; (mgN/L) 25 50 80 125 170 70 Aerobic NO2- (mgN/L) <1 <1 15 85 110 65 Aerobic pH 7.5 7.5 7.4 7.3 7.5 8.5 Anoxic NH4 (mgN/L) 25 50 70 130 180 750 Anoxic NO; (mgN/L) <1 <1 <1 5 <1 <1 Anoxic pH 7.8 7.9 8.0 8.3 8.4 8.5 COD:NO, (mgCOD/mgN) 6.0 6.0 4.8 3.5 4.5 9.7 % Nitrification 100 100 100 97 91 20 % Denitrification 98 98 99 99 99 97 20 Day SRT System Aerobic NH4 (mgN/L) <1 <1 <1 <1 <1 600 Aerobic NO ^(mgN/L) 25 45 SO 135 170 80 Aerobic NO2" (mgN/L) <1 <1 20 80 100 75 Aerobic pH 7.5 7.3 7.5 7.3 7.5 8.4 Anoxic NH4 (mgN/L) 25 45 80 140 180 750 Anoxic NO; (mgN/L) <1 <1 <1 <1 <1 3.5 Anoxic pH 7.8 7.7 8.2 8.2 8.5 8.6 COD:NO, (mg02/mgN) 6.2 6.4 4.8 3.5 4.0 4.7 % Nitrification 100 100 100 100 100 17 % Denitrification 98 99 100 99 95 93 Cold Temperature Phase @ 1500 mg NH4-N/L in Influent Temperature (°C) 20 17 *14 12* 10* 10 Day SRT System Aerobic NH4 (mgN/L) <1 <1 <1 <1 490 Aerobic NO; (mgN/L) 170 165 170 175 260 Aerobic NO2- (mgN/L) <1 <1 10 90 220 Aerobic B0D5 (mg02/0 20 12 10 35 120 Anoxic NH4 (mgN/L) 170 160 180 180 680 Anoxic NO; (mgN/L) 2 3 1 1 140 COD:NO, (mg02/mgN) 5.2 4.9 4.9 4.8 13.2 % Nitrification 97 100 91 94 15 % Denitrification 99 99 100 99 30 20 Day SRT System Aerobic NH4 (mgN/L) <1 <1 <1 <1 560 Aerobic NO; (mgN/L) 170 155 170 155 135 Aerobic NO2" (mgN/L) <1 <1 <1 65 120 Aerobic BOD5 (mg02/1-) 14 12 11 15 56 Anoxic NH4 (mgN/L) 180 165 175 160 680 Anoxic NO; (mgN/L) 3 2 2 2 23 COD:NO, (mg02/mgN) 5.0 5.5 4.8 4.5 6.3 % Nitrification 99 94 92 100 22 % Denitrification 98 99 99 99 82 *The measurements during these periods do not represent a stabilized system, especially at the influent ammonia level equal to 2000 mg N/L during the ammonia loading phase, and for the temperature equal to 10 °C during the cold temperature phase. 101 approximately 0.3 to 1.0. Since the aerobic pH was maintained at approximately 7.5, this corresponded to an increase in anoxic pH from approximately 7.8 to 8.5. This suggests that ifhigher ammonia concentrations are to be treated, higher anoxic pHs might be incurred, thus raising the possibility of pH and "free" ammonia inhibition of nitrification and denitrification in the anoxic reactor. Lowering the aerobic pH to 7.2 or 7.3 may provide sufficiently low anoxic pHs to avoid pH-associated toxicity problems in the anoxic reactor. 4. Aerobic nitrite accumulation during the ammonia loading phase may have had several causes including: low dissolved oxygen, aerobic nitrous acid, and anoxic "free" ammonia. Anoxic "free" ammonia levels are estimated to have reached 20 mg N/L at an influent ammonia level of 1500 mg N/L. Nitrifiers would have been exposed to these elevated "free" ammonia levels as they cycled through the anoxic reactor. Acclimatization of the nitrite oxidizers to the elevated "free" anoxic ammonia levels may have accounted for the disappearance of the nitrite accumulation during the 20 °C startup of the cold temperature phase. Other possible reasons for the disappearance of the nitrite accumulation are higher dissolved oxygen levels in the aerobic reactor, and a steady aerobic pH = 7.5. 5. When the leachate ammonia concentration was increased from 1500 to 2000 mg N/L, % nitrification decreased in both systems, from > 90 % to approximately 20 %. Possible reasons for the failure of nitrification include insufficient dissolved oxygen, solids/scum/foaming problems, and inhibition of the ammonia oxidizers (Nitrosomonas) due to cyclic exposure to elevated levels of "free" ammonia in the anoxic reactor. 6. During the loading failure period, when the leachate ammonia concentration was 2000 mg N/L, % denitrification continued to be greater than 90 %, despite "free" ammonia levels as high as 80 mg N/L. 102 7. During the cold temperature phase 20 °C startup, elevated aerobic BOD5, associated with methanol, was observed to correspond to reduced nitrification. Inhibition may have been due to several possibilities including heterotrophic competition for limited dissolved oxygen, or methanol toxicity. 8. For both SRT systems, when the operating temperature was decreased from 12 °C to 10 °C, while treating a leachate with 1500 mg NH4-N/L, % nitrification decreased from approximately 100 % to 20 %. For the 10 day SRT system at 10 °C, denitrification was reduced from 99 to 30 %. For the 20 day SRT system, denitrification was reduced from 99 % to 82 %. Rising aerobic nitrites and aerobic BOD5, began at 14 °C, and were the only apparent signs of cold temperature inhibition. However, it is possible that failure had begun at 14 °C but insufficient time was given for more complete failure to occur. The rise in aerobic nitrites, and the failure of nitrification in both systems, suggests that cold temperature was more inhibitive to nitrification than to denitrification. 9. After failure of nitrification at 10 °C, aerobic wasting and methanol addition were ceased. Nitrification managed to re-establish itself at 10 °C, despite aerobic ammonia levels of approximately 500 mg N/L, and aerobic BOD5 levels greater than 50 mg/L. Thus, short SRTs and/or methanol addition (resulting in elevated anoxic pH, elevated anoxic "free" ammonia, and possible carbon bleeding) were shown to have inhibitive effects at 10 °C. A test to determine the effect of shortening the theoretical aerobic SRT from infinite to 10 days resulted in complete system failure in only fourteen days. However, this result was complicated by elevated aerobic BOD5 levels throughout the latter part of the study, presumably from cell lysing. 103 6.3^Recommendations From the results of this study, the following recommendations for further research are made: 1. A study should be conducted to investigate the addition of post-denitrification to this system, to further reduce effluent NO ),- . Post-denitrification will require the addition of another anoxic reactor for denitrification, and subsequent aerobic reactor for BOD5 reduction and sweetening. Metcalf and Eddy (1991) suggest that both reactors may be placed after the first aerobic reactor. Therefore the process train still maintains only one clarifier. The solids underflow is recycled back to the anoxic reactor for MLVSS control. The aerobic mixed liquor from the first aerobic reactor can be recycled directly back to the first anoxic reactor for controlling the recycle ratio and the actual HRT. 2. Further investigations should be conducted to determine the maximum recycle ratio, to further reduce effluent NO x- .^If higher maximum recycle ratios are achievable, the need for post-denitrification may be obviated. Elefsiniotis et al (1989) determined that the optimum recycle ratio for this system was about 6:1. Higher recycle ratios were found to result in system instability due to lower actual HRT. However, Robinson (1992) has successfully used a recycle ratio of 10:1, but with a considerably longer HRT. The study should investigate the maximum recycle ratio possible, while maintaining the same actual HRT (by decreasing influent flowrate). A more broad study might try several recycle ratios at a number of HRTs, while also investigating the effect of SRT. To avoid inefficient clarification at higher recycle ratios, and for better overall control, the addition of a direct recycle from the aerobic reactor to the anoxic reactor should be considered. 3. A study should be conducted to investigate ammonia, elevated pH, and "free" ammonia toxicity to denitrification. This aspect of the single-sludge predenitrification system is a fundamental concern when treating high ammonia leachate. 104 4. A continuation of the ammonia loading phase of this study should be conducted to determine if the reason for failure when the influent ammonia concentration was increased from 1500 mg N/L to 2000 mg N/L, was mechanical or biological. The two mechanical reasons (both problems of scale) that may have caused the system to fail were clogging (resulting in overflows) and low dissolved oxygen levels. Reactor tubing and overflows should be designed in advance to handle high solids, foaming in the aerobic reactor, and floating scum in the anoxic reactor. Fine bubble diffusers and aerobic reactors with greater height to width ratio might help achieve better dissolved oxygen. Eliminating the potential mechanical reasons for failure, a higher influent ammonia level might be treated, with the limit being biological instead of mechanical. 5. Further temperature studies should be conducted to determine the potential for treatment at temperatures colder than 12 °C, while operating at influent ammonia concentrations of 1500 mg N/L or higher. Long SRTs and careful control of methanol addition may result in establishing both complete nitrification and denitrification at temperatures below 12 °C. 105 REFERENCES Anthonisen A.C., Loehr R.C., Prakasam T.B.S. and Srinath E.G. (1976) Inhibition of nitrification by ammonia and nitrous acid. Journal of the Water Pollution Control Federation. 48, 835-852. Antoniou P., Hamilton J., Koopman B., Jain R., Holloway B., Lyberatos G. and Svoronos S.A. (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Research. 24, 1, 97-101. A.P.H.A. (1985) Standard Methods for the Examination of Water and Wastewater. 16th Edition, Washington, D.C., U.S.A. Beccari M., Passino R., Ramadori R. and Tandoi V. (1983) Kinetics of dissimilatory nitrate and nitrite reduction in suspended growth culture. Journal of the Water Pollution Control Federation. 55, 58-64. Carley B.N. (1988) The Effect of Excess Carbon in the Anoxic Basin of a Biological Pre-denitrification System for the Treatment of Landfill Leachate. M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada. Carley B.N. and Mavinic D.S. (1991) The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate. Research Journal of the Water Pollution Control Federation. 63, 51-59. Chian E.S.K., Pohland F.G., Chang K.C. and Harper S.R. (1985) Leachate generation and control at landfill disposal sites. Proceedings of the International Conference on New Directions and Research in Waste Treatment and Residuals Management. Vancouver, Canada, 14-30. 106 Dedhar S. and Mavinic D.S. (1985) Ammonia removal from a landfill leachate by nitrification and denitrification. Water Pollution Research Journal of Canada. 20, 126-137. Ehrig H.J. (1985) Biological treatment of sanitary landfill leachate with special aspects on high ammonia concentration. Proceedings of the International Conference on New Directions and Research in Waste Treatment and Residuals Management. Vancouver, Canada, 232-248. Ehrig H.J. (1991) Control and treatment of landfill leachate - a review. 1991 Harwell Waste Management Syposium - Challenges in Waste Management (Preprints). Harwell, Great Britain. Elefsiniotis P., Manoharan R. and Mavinic D.S. (1989) The effects of sludge recycle ratio on nitrification-denitrification of performance in biological treatment of leachate. Environmental Technology Letters. 10, 1041-1050. Figueroa L.A. and Silverstein J. (1991) Pilot-scale trickling filter nitrification at the longmont VVVVTP. Proceedings of the 1991 Specialty Conference on Environmental Engineering. Reno, U.S.A., 302-306. Forgie, D.J.L. (1988a) Selection of the most appropriate leachate treatment methods Part 1: a review of potential biological leachate treatment methods. Water Pollution Research Journal of Canada. 23, 308-328. Forgie, D.J.L. (1988b) Selection of the most appropriate leachate treatment methods Part 2: a review of recirculation, irrigation and potential physical-chemical treatment methods. Water Pollution Research Journal of Canada. 23, 329-340. Forgie, D.J.L. (1988c) Selection of the most appropriate leachate treatment methods Part 3: a decision model for the treatment train selection. Water Pollution Research Journal of Canada. 23, 341-355. 107 Gonenc E. and Harremoes P. (1990) Nitrification in rotating disc systems-II. Criteria for simultaneous mineralization and nitrification. Water Research. 24, 499-505. Guo J. (1992) Low Temperature Biological Treatment of a High Ammonia Municipal Landfill Leachate. M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada. Halmo G. and Eimhjellen K. (1981) Low temperature removal of nitrate by bacterial denitrification. Water Research. 15, 989-998. Henderson J.P. (1993) Treatment of a High Ammonia Concentration Landfill Leachate with an Anaerobic Filter and Rotating Biological Contactor (RBC). M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada. Henry G.J. (1985) New developments in landfill leachate treatment. Water Pollution Research Journal of Canada. 20, 1-9. Hockenbury M.R., Daigger G.T. and Grady Jr. C.P.L. (1977) Factors affecting nitrification. Journal of the Environmental Engineering Division. 103, 9-19. Jasper S.E., Atwater J.W. and Mavinic D.S. (1985) Leachate production and characteristics as a function of water input and landfill configuration. Water Pollution Research Journal of Canada. 20, 43-56. Keenan J.D., Steiner R.L. and Fungaroli A.A. (1979) Substrate inhibition of nitrification. Journal of Environmental Science and Health. A14, 377-397. Keenan J.D., Steiner R.L. and Fungaroli A.A. (1984) Landfill Leachate Treatment. Journal of the Water Pollution Control Federation. 56, 27-34. 108 Kelly H.G. (1987) Pilot testing for combined treatment of leachate from a domestic waste landfill site. Journal of the Water Pollution Control Federation. 59, 254-261. Knox K. (1985) Leachate treatment with nitrification of ammonia. Water Research. 19, 895-904. Lema J.M., Mendez R. and Blazquez R. (1988) Characteristics of landfill leachates and alternatives for their treatment: a review. Water, Air, and Soil Pollution. 40, 223-250. Lewandowski Z. (1982) Temperature dependency of biological denitrification with organic materials addition. Water Research. 16, 19-22. Manoharan R., Liptak S., Parkinson P. and Mavinic D. (1989) Denitrification of a high ammonia leachate using an external carbon source. Environmental Technology Letters. 10, 701-716. Martin G. and Richard Y. (1982) Elements of the inhibition of nitrifying bacteria. Water, Science and Technology. 14, 781-794. Mavinic D.S. and Randall C.W. (1990) Inhibition of Nitrification and Denitrification in Biotreatment of a High-Ammonia Municipal Leachate. Report prepared for Environment Canada and Virginia Environmental Endowment Fund, Vancouver, Canada, and Blacksburg, U.S.A. McCarty P.L., Beck L. and Amant P. (1969) Biological denitrification of wastewaters by addition of organic materials. Proceedings of the 24th Industrial Waste Conference, Purdue University, U.S.A., 1271-1285. Mirvish S.S. (1977) N-nitroso- compounds, nitrite, and nitrate possible implications for the causation of human cancer. Progress in Water Technology. 8, 195-207. 109 Narkis N., Rebhun M. and Sheindorf C. (1979) Denitrification at various carbon to nitrogen ratios. Water Research. 13, 93-98. Opatken E.J. and Bond J.J. (1991) RBC nitrification of high ammonia leachates. Environmental Progress. 10, 60-63. Painter H.A. (1977) Microbial transformations of inorganic nitrogen. Progress in Water Technology. 8, 3-29. Painter H.A. and Loveless J.E. (1983) Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activate-sludge process. Water Research. 17, 237-248. Parker D.S. and Richards T. (1986) Nitrification in trickling filters. Journal of the Water Pollution Control Federation. 58, 896-902. Peddie C. and Atwater J.W. (1985) RBC treatment of a municipal landfill leachate: a pilot scale evaluation. Water Pollution Research Journal of Canada. 20, 115-125. Randall C.W. and Buth D. (1984) Nitrite build-up in activated sludge resulting from temperature effects. Journal of the Water Polllution Control Federation. 56, 1039-1049. Robinson H.D. (1983) Anal. Proc. 20, 11. Robinson H.D., Formby B.W., Barr M.J. and Carville M.S. (1991) The treatment of landfill leachate to standards suitable for surface water discharge. Third International Landfill Symposium. Sardinia, Italy. Robinson H.D. and Luo M.M.H. (1991) Characterisation and treatment of leachates from Hong Kong landfill sites. Journal of the Institution of Water and Environmental Management. 5, 326-335. 110 Robinson H.D., Barr M.J. and Last S.D. (1992) Leachate collection, treatment and disposal. Journal of the Institution of Water and Environmental Management. 6, 321-332. Robinson N.D. and Maris P.J. (1985) The treatment of leachates from domestic waste in landfill sites. Journal of the Water Pollution Control Federation. 57, 30-38. Robinson H.D. and Grantham G. (1988) The treatment of landfill leachates in on-site aerated lagoon plants: experience in Britain and Ireland. Water Research. 22, 733-747. Robinson H.D. (1992) Leachate Treatment and Denitrification Trials. Unpublished Report. Shuval H.I. and Gruener N. (1977) Infant methemoglobinemia and other health effects of nitrates in drinking water. Progress in Water Technology. 8, 183-193. Spengel D.B. and Dzombak D.A. (1991) Treatment of landfill leachate with rotating biological contactors: bench-scale experiments. Research Journal of the Water Pollution Control Federation. 63, 971-981. Stenstrom M.K. (1980) The effect of dissolved oxygen concentration on nitrification. Water Research. 14, 643-699. Turk O. (1986) The Feasibility of a Shortened Pathway for Nitrogen Removal from Highly Nitrogenous Wastes. Ph.D. Thesis, Department of Civil Engineering, University of British Columbia, Canada. Turk O. and Mavinic D.S. (1989) Maintaining nitrite build-up in a system acclimatized to free ammonia. Water Research. 23, 11, 1383-1388. 111 U.S. EPA (1975). Process Design Manual for Nitrogen Control. Technology Transfer, United States Environmental Protection Agency. 112 APPENDICES Appendix A:^Calculation Definitions Appendix B:^Raw and Calculated Data 113 APPENDIX A: CALCULATION DEFINITIONS ANOXIC OVERFLOW (Lid) = INFLUENT FLOW (Lid) + RECYCLE FLOW (Lid) + [NH4CL FEED FLOW (mL/h) + METHANOL FEED FLOW (mL/h) + PHOSPHATE FEED FLOW (mL/h)] x 24 (hid) x 1/1000 (L/mL) AEROBIC OVERFLOW (Lid) = ANOXIC OVERFLOW (L/d) + BICARBONATE FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL) SIMULATED INFLUENT NH4 CONCENTRATION (mgN/L) = ENH4CL FEED FLOW (mL/h) x NH4CL FEED CONCENTRATION (gNH4Cl/L) x 1/1000 (L/mL) x 24 (h/d)x 14/53.5 (gN/gNH4C1) x 1000 (mg/g) + INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid)] / [INFLUENT FLOW (Lid) + NH4CL FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL)1 NITRIFICATION RATE (mgN/d) = AEROBIC NOX CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) ANOXIC NOX LOAD (mgN/d) = INFLUENT NOX CONCENTRATION (mgN/L) x INFLUENT FLOW (L/d) + AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (L/d) DENITRIFICATION RATE (mgN/d) = ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (L/d) % NITRIFICATION = NITRIFICATION RATE (mgN/d) / [ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] 114 % DENITRIFICATION = DENITRIFICATION RATE / [INFLUENT NOX CONCENTRATION (mgN/L) x INFLUENT FLOW (L/d) + AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)] SPECIFIC NITRIFICATION RATE (mgN/d/gVSS) = NITRIFICATION RATE (mgN/d) / AEROBIC VSS CONCENTRATION (mgVSS/L) / 10 (L) x 1000 (mg/g) x 1/24 (d/h) SPECIFIC DENITRIFICATION RATE (mgN/d/gVSS) = DENITRIFICATION RATE (mgN/d) / ANOXIC VSS CONCENTRATION (mgVSS/L) / 5 (L) x 1000 (mg/g) x 1/24 (d/h) TOTAL ALKALINITY ADDED (mgCaCO3/d) = INFLUENT ALKALINITY CONCENTRATION (mg CaCO3/L) x INFLUENT FLOW (mL/h) + BICARBONATE FEED CONCENTRATION (g NaHCO3/L) x BICARBONATE FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL) x 50/84 (mgCaCO3/mgNaHCO3) ALKALINITY:NH4 ADDED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) / SIMULATED INFLUENT NH4 CONCENTRATION (mg N/L) x {INFLUENT + NH4CL} FLOW (L/d) ALKALINITY:N NITRIFIED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) / NITRIFICATION RATE (mgN/d) ANOXIC METHANOL COD LOAD (mgCOD/d) = METHANOL FEED CONCENTRATION (mL CH3OH/L) x METHANOL FEED FLOW (mL/h) x 791.5 (mgCH3OH/mLCH3OH) x 1.5 (mgCOD/mgCH3OH) x 1/1000 (L/mL) x 24 (h/d) COD:NOX ENTERING ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD (mgCOD/d) / ANOXIC NOX LOAD (mgN/d) 115 COD:NOX REMOVED IN ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD (mgCOD/d) / [ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] ANOXIC NH4 REMOVAL RATE (mgN/d) = INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) AEROBIC NH4 REMOVAL RATE (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) % ANOXIC NH4 REMOVAL = [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] / [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4 CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)] % AEROBIC NH4 REMOVAL (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) / [ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)] SSRT (d) = [ANOXIC VSS CONCENTRATION (mgVSS/L) x 5 (L) + AEROBIC VSS CONCENTRATION (mgVSS/L) x 15 (L)] / [AEROBIC VSS CONCENTRATION (mgVSS/L) x AEROBIC VOLUME WASTED (L) + EFFLUENT VSS CONCENTRATION (mgVSS/L) x [AEROBIC OVERFLOW (Lid) - RECYCLE FLOW (Lid)]] 116 APPENDIX B: RAW AND CALCULATED DATA Ammonia Loading Phase Influent Characteristics 10 Day Aerobic SRT System 20 Day Aerobic SRT System Cold Temperature Phase Temperature and Influent Characteristics 10 Day Aerobic SRT System 20 Day Aerobic SRT System 117 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^pH^Alkalinity VSS TSS PO4 NH4 NOx (yy mm dd) (mgCaCO3/L)^(mg/LI^(mg/L)^(mgPiL)^(mgN/L)^(mgN/L) 91 08^12^1 2120 24 56 0.2 211 3.1 91 08^14^3 0.3 205 1.2 91 08^16^5 0.2 216 1.1 91 08^18^7 1980 0.3 217 1.1 91 08^20^9 7.9 0.4 225 2.4 91 08^23^12 0.4 246 2.7 91 08^26^15 2060 0.1 213 58.8 91 08^28^17 7.8 0.2 214 21.3 91 08^31^20 7.6 0.2 218 2.2 91 09^2^22 8.3 0.3 224 4.6 91 09^4^24 8.1 1910 0.3 220 4.6 91 09^7^27 7.9 0.4 208 6.3 91 09^9^29 8.0 0.3 217 3.4 91 09^12^32 8.2 0.3 217 2.2 91 09^16^36 8.0 28 68 0.2 203 1.8 91 09^17^37 8.1 1860 54 115 0.4 196 1.0 91 09^19^39 8.2 0.4 214 0.7 91 09^21^41 8.0 0.4 197 0.4 91 09^23^43 8.1 0.4 205 1.8 91 09^26^46 8.2 0.3 221 0.9 91 09^28^48 0.4 196 0.2 91 09^30^50 0.4 185 0.2 91 10^2^52 8.1 0.4 199 5.3 91 10^4^54 0.3 209 13.3 91 10^6^56 0.4 202 13.3 91 10^8^58 8.3 0.4 201 8.7 91 10^11^61 45 109 0.4 188 5.8 91 10^14^64 0.4 194 2.2 91 10^16^66 7.9 1200 31 58 0.4 206 1.1 91 10^18^68 0.5 233 0.3 91 10^20^70 0.6 207 0.3 91 10^23^73 7.8 0.5 217 0.6 91 10^25^75 0.5 204 0.4 91 10^27^77 0.5 215 0.8 91 10^29^79 7.8 0.5 226 1.0 91 11^1^82 0.5 233 0.6 91 11^3^84 0.5 195 0.9 91 11^5^86 0.6 222 1.0 91 11^7^88 7.9 0.7 228 1.0 91 11^10^91 0.6 228 0.8 91 11^12^93 0.6 211 0.5 91 11^13^94 7.8 0.6 213 0.5 91 11^15^96 8.0 1360 44 104 0.6 190 0.3 91 11^17^98 0.7 198 0.3 91 11^20^101 0.7 203 0.3 91 11^22^103 7.9 0.7 204 0.2 118 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^PH^Alkalinity VSS TSS PO4 NH4 NOx (yy mm dd) (mgCaCO3/1.)^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L) 91^11 25^106 0.6 194 0.4 91^11 26^107 0.6 233 0.4 91^11 29^110 8.1 0.5 182 0.2 91^12 2^113 0.5 190 0.3 91^12 4^115 0.7 205 0.1 91^12 6^117 8.0 0.7 200 0.3 91^12 7^118 0.7 203 0.5 91^12 9^120 0.6 177 0.6 91^12 11^122 0.7 196 0.6 91^12 13^124 7.9 0.7 196 0.4 91^12 16^127 1650 32 118 0.6 139 0.2 91^12 18^129 0.5 137 0.3 91^12 20^131 8.1 0.4 153 0.7 91^12 22^133 7.7 0.4 174 0.4 91^12 24^135 0.3 183 0.3 91^12 26^137 0.2 148 1.0 91^12 30^141 7.9 0.2 56 0.7 92^01 2^144 0.2 151 0.9 92^01 5^147 0.1 137 0.6 92^01 6^148 0.1 156 0.7 92^01 8^150 0.0 184 0.6 92^01 10^152 0.1 161 0.8 92^01 12^154 0.1 152 1.2 92^01 14^156 0.2 150 0.6 92^01 15^157 7.8 0.2 177 0.8 92^01 17^159 7.9 1310 60 124 0.3 212 0.6 92^01 20^162 0.3 201 0.7 92^01 22 164 0.3 225 0.4 92^01 24^166 0.2 188 0.4 92^01 26^168 0.2 225 1.0 92^01 30^172 0.1 210 0.8 92^01 31^173 0.2 215 0.7 92^02 2^175 0.2 207 0.4 92^02 3^176 0.2 200 1.0 92^02 5^178 0.3 188 1.2 92^02 6^179 0.2 183 0.7 92^02 7^180 0.2 183 1.1 92^02 10^183 0.1 230 0.9 92^02 11^184 0.1 210 0.5 92^02 12^185 0.2 207 0.5 92^02 13^186 0.3 207 1.1 92^02 14^187 0.2 217 1.0 92^02 16^189 8.0 1325 48 95 0.2 131 1.0 92^02 18^191 7.8 0.2 143 2.4 92^02 19^192 0.3 157 3.8 92^02 21^194 0.2 155 3.8 119 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Influent^Influent^Influent^Influent^Influent^Influent^Influent Date^Day^pH^Alkalinity^VSS TSS PO4 NH4 NOx (yy mm dd) (mgCaCO3/1-)^(mg/L)^Img/L)^(mgP/L)^lingN/1.1^(mgN/L) 92 02 24 197 0.3 138 4.0 92 02 27 200 0.2 143 4.1 92 02 28 201 0.2 136 3.4 92 02 29 202 0.1 128 3.0 92 03 1 203 0.1 135 3.8 92 03 2 204 0.2 163 4.3 92 03 3 205 0.3 164 2.3 92 03 4 206 0.3 144 2.9 92 03 5 207 0.2 137 3.2 92 03 6 208 0.2 137 3.5 92 03 7 209 0.2 149 2.3 92 03 10 212 163 92 03 11 213 129 120 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Influent^Influent^Influent Date^Day^NO2 SOD COD Ivy mm dd)^(mgN/L)^(mg/L)^(mg/L) 91 08 12 1 91 08 14 3 21 452 91 08 16 5 91 08 18 7 91 08 20 9 0.5 24 442 91 08 23 12 91 08 26 15 91 08 28 17 3.3 91 08 31 20 91 09 2 22 91 09 4 24 0.5 23 464 91 09 7 27 91 09 9 29 91 09 12 32 91 09 16 36 91 09 17 37 0.0 38 334 91 09 19 39 91 09 21 41 91 09 23 43 0.3 91 09 26 46 91 09 28 48 91 09 30 50 0.0 91 10 2 52 91 10 4 54 91 10 6 56 2.3 91 10 8 58 91 10 11 61 35 342 91 10 14 64 0.1 91 10 16 66 91 10 18 68 91 10 20 70 91 10 23 73 0.1 91 10 25 75 91 10 27 77 91 10 29 79 91 11 1 82 0.1 91 11 3 84 91 11 5 86 91 11 7 88 41 368 91 11 10 91 91 11 12 93 91 11 13 94 91 11 15 96 91 11 17 98 91 11 20 101 91 11 22 103 121 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Influent^Influent^Influent Data^Day^NO2 BOD COD (iffy mm dd)^(mgN/L)^(mg/L)^(mg/L) 91 11 25 106 91 11 26 107 91 11 29 110 91 12 2 113 28 421 91 12 4 115 91 12 6 117 91 12 7 118 91 12 9 120 91 12 11 122 91 12 13 124 91 12 16 127 91 12 18 129 0.0 91 12 20 131 62 354 91 12 22 133 91 12 24 135 0.1 91 12 26 137 91 12 30 141 92 01 2 144 0.1 92 01 5 147 92 01 6 148 0.1 92 01 8 150 92 01 10 152 0.0 58 415 92 01 12 154 0.1 92 01 14 156 0.1 92 01 15 157 0.0 92 01 17 159 0.1 92 01 20 162 0.0 92 01 22 164 42 436 92 01 24 166 92 01 26 168 92 01 30 172 92 01 31 173 92 02 2 175 92 02 3 176 0.1 92 02 5 178 92 02 6 179 92 02 7 180 92 02 10 183 92 02 11 184 38 374 92 02 12 185 0.0 92 02 13 186 92 02 14 187 0.0 92 02 16 189 20 334 92 02 18 191 0.1 92 02 19 192 92 02 21 194 122 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4C1^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(Lid)^(mL/h)^(rnL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow (Lid) (Lid) 91 08^12^1 10.1 0 0 0 3.5 55 0 65 91 08^14^3 10.1 0 0 0 4.1 66 0 76 91 08^16^5 9.8 0 0 0 4.8 64 0 74 91 08^18^7 9.9 0 0 0 5.2 65 0 75 91 08^20^9 9.3 0 0 0 5.1 53 0 63 91 08^23^12 10.1 0 0 0 5.1 55 0 66 91 08^26^15 10.0 0 0 0 5.0 57 0 67 91 08^28^17 9.2 0 0 0 4.8 59 0 69 91 08^31^20 10.0 0 0 0 5.0 55 0 65 91 09^2^22 10.2 0 0 0 4.8 62 0 73 91 09^4^24 10.4 0 0 0 4.8 61 1 71 91 09^7^27 9.8 0 6 0 4.7 54 1 64 91 09^9^29 10.1 0 6 0 5.1 55 1 65 91 09^12^32 9.2 0 11 0 5.2 59 1 69 91 09^16^36 9.2 0 11 0 5.2 53 1 63 91 09^17^37 10.7 0 11 0 5.3 62 1 73 91 09^19^39 9.4 0 11 0 5.1 60 1 69 91 09^21^41 9.1 0 5.4 0 5.0 64 1 73 91 09^23^43 10.0 0 5.4 0 5.0 60 1 70 91 09^26^46 9.6 0 6.9 0 4.8 63 1 73 91 09^28^48 9.8 0 7 0 5.1 56 1 66 91 09^30^50 10.2 0 7.1 0 4.9 54 1 64 91 10^2^52 9.4 0 6.8 0 4.8 58 1 68 91 10^4^54 10.1 0 7.2 0 5.2 63 1 74 91 10^6^56 10.0 0 7.4 0 5.0 59 1 69 91 10^8^58 9.4 0 7.8 0 5.0 65 1 75 91 10^11^61 10.6 0 7.3 0 4.8 60 1 71 91 10^14^64 10.0 8.4 6.5 0 5.0 64 1 74 91 10^16^66 9.6 8.2 6.8 0 4.9 55 1 65 91 10^18^68 10.2 8 6.8 0 4.8 56 1 66 91 10^20^70 9.5 8 6.8 0 5.1 61 1 71 91 10^23^73 10.8 8.2 7 0 5.1 58 1 69 91 10^25^75 9.8 8 7.2 0 5.2 59 1 69 91 10^27^77 10.1 8.2 7.1 0 5.2 65 1 76 91 10^29^79 9.9 8 7.1 0 5.4 57 1 67 91 11^1^82 10.3 8.2 6.9 0 5.4 64 1 75 91 11^3^84 10.9 4 6.9 0 5.4 64 1 76 91 11^5^86 10.3 3.45 7.2 0 5.2 55 1 66 91 11^7^88 10.3 3.2 7 0 5.3 54 1 64 91 11^10^91 10.0 6.9 6.9 0 5.1 55 1 65 91 11^12^93 10.3 7.1 7.3 0 5.2 64 1 74 91 11^13^94 9.8 7.5 7.4 0 5.3 54 1 64 91 11^15^96 10.2 7.4 7 0 5.2 65 1 76 91 11^17^98 9.6 7.5 6.9 0 5.3 55 1 65 91 11^20^101 10.2 7.3 7 0 5.3 60 1 71 91 11^22^103 9.3 7 7 4.6 4.6 63 1 73 123 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow (L/d) (L/d) 91^11 25^106 9.3 6.9 7.2 4.3 4.3 64 1 74 91^11 26^107 10.1 7.3 7.3 14.9 14.9 56 1 67 91^11 29^110 9.2 7.3 7.5 15.3 15.3 56 1 66 91^12 2^113 8.7 7.4 7.4 15 15.0 57 1 67 91^12 4^115 9.1 7.4 7.4 15 15.0 56 1 66 91^12 6^117 10.2 7.8 7.3 15.2 15.2 54 1 65 91^12 7^118 9.0 6.9 7.2 14.4 14.4 59 1 69 91^12 9^120 9.4 6.8 7.2 14.7 14.7 63 1 73 91^12 11^122 8.9 7.4 7.4 15.3 15.3 58 1 67 91^12 13^124 9.8 7.5 7.5 15.1 15.1 64 1 75 91^12 16^127 9.9 7.5 7.6 15.5 15.5 54 1 65 91^12 18^129 9.6 7.4 7.3 15.3 15.3 65 1 75 91^12 20^131 9.1 7.7 7.2 14.7 14.7 65 1 74 91^12 22^133 9.7 6.6 7.4 14.8 14.8 56 1 67 91^12 24 135 10.0 7.3 7.4 15.3 15.3 63 1 73 91^12 26^137 10.0 7.3 7.4 15.1 15.1 60 1 71 91^12 30^141 10.0 7.3 7.4 15.1 15.1 62 1 73 92^01 2^144 9.3 7.3 7.6 31 31.0 54 1 65 92^01 5^147 8.8 7.5 7.7 30.9 30.9 64 1 74 92^01 6^148 8.8 7.2 7.5 30 30.0 57 1 66 92^01 8^150 9.0 7.2 7.4 31 31.0 59 1 69 92^01 10^152 9.3 7.3 7.3 29 29.0 59 1 70 92^01 12^154 9.1 7 7.4 30 30.0 59 1 69 92^01 14^156 8.7 28.9 8.2 41.3 41.3 63 1 74 92^01 15^157 9.0 29 8 39 39.0 66 1 76 92^01 17^159 9.2 29 7.8 38 38.0 63 1 74 92^01 20^162 8.7 29 7.5 36 36.0 57 1 67 92^01 22 164 8.4 29 7.4 36 38.0 62 1 72 92^01 24^166 8.9 28 7.2 36 36.0 62 1 73 92^01 26 168 9.1 27 7.4 36 36.0 58 1 69 92^01 30^172 9.0 26.9 7.9 37.3 37.3 54 1 64 92^01 31^173 8.4 26 7.5 35 35.0 65 1 75 92^02 2^175 9.1 25.6 7 34.4 34.4 61 1 71 92^02 3^176 9.4 26 7.3 37.5 37.5 61 1 72 92^02 5^178 8.5 27 7.4 38 38.0 63 1 73 92^02 6^179 9.1 27.3 7.4 39.5 39.5 62 1 73 92^02 7^180 8.5 26 7.4 37 37.0 57 1 67 92^02 10^183 8.8 25 7.6 36 36.0 58 1 68 92^02 11^184 8.7 26 7.6 37 37.0 57 1 67 92^02 12^185 8.5 27 7.7 36 36.0 64 1 75 92^02 13^186 8.2 26 7.6 35 35.0 60 1 70 92^02 14^187 8.5 26 7.9 34.8 34.8 61 1 71 92^02 16^189 9.0 25.8 7.4 36 36.0 58 1 69 92^02 18^191 8.9 26 7.3 36 36.0 55 1 66 92^02 19^192 8.6 26 7.5 36 36.0 54 1 65 92^02 21^194 7.9 26 7.7 36 36.0 64 1 74 124 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4CI^Simulated CH3OH o-PO4 NaHCO3 (Iffy mm dcl)^Overflow (A)^Influent^ImUL)^WPM^lg/1.1 (Lid)^ (mgN/L) 91 08 12^1 65 0 209 0 0.816 0 91 08 14^3 76 0 203 0 0.816 0 91 08 16^5 74 0 214 0 0.816 0 91 08 18^7 75 0 214 0 0.816 0 91 08 20^9 63 0 222 0 0.816 0 91 08 23^12 66 0 243 0 0.816 0 91 08 26^15 67 0 210 0 0.816 0 91 08 28^17 69 0 211 0 0.816 0 91 08 31^20 65 0 215 0 0.816 0 91 09 2^22 73 0 221 0 0.816 0 91 09 4^24 71 0 218 0 0.816 0 91 09 7^27 64 0 203 25 0.816 0 91 09 9^29 65 0 211 25 0.816 0 91 09 12^32 69 0 208 25 0.816 0 91 09 16^36 63 0 195 25 0.816 0 91 09 17^37 73 0 189 25 0.816 0 91 09 19^39 69 0 206 40 0.816 0 91 09 21^41 73 0 192 80 0.816 0 91 09 23^43 70 0 200 80 0.816 0 91 09 26^46 73 0 215 40 0.816 0 91 09 28^46 66 0 190 40 0.816 0 91 09 30^50 64 0 180 60 0.816 0 91 10 2^52 68 0 193 50 0.816 0 91 10 4^54 74 0 203 50 0.816 0 91 10 6^56 69 0 196 50 0.816 0 91 10 8^58 75 0 195 50 0.816 0 91 10 11^61 71 0 183 50 0.816 0 91 10 14^64 74 19.1 281 50 0.816 0 91 10 16^66 65 19.1 294 50 0.816 0 91 10 18^68 66 19.1 312 75 0.816 0 91 10 20^70 71 19.1 294 100 0.816 0 91 10 23^73 69 19.1 295 100 0.816 0 91 10 25^75 69 19.1 288 75 0.816 0 91 10 27^77 76 19.1 298 75 0.816 0 91 10 29^79 67 19.1 308 75 0.816 0 91 11 1^82 75 19.1 313 85 0.816 0 91 11 3^84 76 19.1 231 85 0.816 0 91 11 5^86 66 55.3 326 85 0.816 0 91 11 7^88 64 48 310 85 0.816 0 91 11 10^91 65 88 582 85 0.816 0 91 11 12^93 74 88 566 85 0.816 0 91 11 13^94 64 88 606 85 0.816 0 91 11 15^96 76 88 567 85 0.816 0 91 11 17^98 65 88 600 85 0.816 0 91 11 20^101 71 88 579 85 0.816 0 91 11 22^103 73 88 598 85 0.816 14.7 1 25 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4C1^Simulated^CH3OH o-PO4 NaHCO3 (yy mm dd)^Overflow (g/L) Influent (mL/L)^(gP/L)^(g/L) (L/d)^ (mgN/L) 91^11 25^106 74 88 583 85 0.816 47 91^11 26^107 67 88 611 85 0.245 47 91^11 29^110 66 88 596 85 0.245 53.5 91^12 2^113 67 88 636 85 0.245 53.5 91^12 4^115 66 88 628 85 0.245 53.5 91^12 6^117 65 88 599 135 0.245 53.5 91^12 7^118 69 88 604 135 0.245 53.5 91^12 9^120 73 88 558 135 0.245 53.5 91^12 11^122 68 88 630 100 0.245 53.5 91^12 13^124 75 88 597 120 0.245 45 91^12 16^127 65 88 538 120 0.245 35 91^12 18^129 76 88 543 110 0.245 35 91^12 20^131 75 88 597 120 0.245 35 91^12 22 133 67 171.75 879 120 0.408 70 91^12 24 135 74 171.75 941 120 0.408 70 91^12 26 137 71 171.75 901 120 0.408 70 91^12 30^141 73 171.75 913 120 0.408 70 92^01 2^144 65 171.75 962 120 0.204 45 92^01 5^147 75 171.75 1012 160 0.204 52.5 92^01 6^148 67 171.75 1002 120 0.204 52.5 92^01 8^150 70 171.75 1012 120 0.204 52.5 92^01 10^152 70 187 1046 130 0.204 52.5 92^01 12^154 70 187 1014 130 0.204 52.5 92^01 14^156 75 69 1442 130 0.245 75 92^01 15^157 77 69 1435 130 0.245 75 92^01 17^159 75 69 1436 130 0.245 75 92^01 20^162 68 69 1492 250 0.202 75 92^01 22 164 73 69 1559 250 0.202 75 92^01 24^166 73 80 1615 250 0.202 68.75 92^01 26^168 70 80 1578 225 0.202 68.75 92^01 30^172 65 80 1571 225 0.202 72.5 92^01 31^173 76 80 1615 225 0.202 72.5 92^02 2^175 72 80 1492 180 0.231 82.5 92^02 3^176 73 80 1462 180 0.231 87.5 92^02 5^178 74 80 1630 180 0.231 80 92^02 6^179 74 80 1553 180 0.231 80 92^02 7^180 68 80 1572 180 0.231 80 92^02 10^183 69 80 1518 210 0.231 80 92^02 11^184 68 80 1564 210 0.231 77.5 92^02 12^185 75 80 1642 210 0.231 77.5 92^02 13^186 71 80 1639 210 0.231 77.5 92^02 14^187 72 80 1601 210 0.231 77.5 92^02 16^189 69 80 1444 210 0.231 77.5 92^02 18^191 67 115 2060 210 0.231 80 92^02 19^192 66 115 2142 210 0.231 80 92^02 21^194 75 115 2294 210 0.231 80 126 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4C1^Simulated CH3OH o-PO4 NaHCO3 (yy mm dd)^Overflow (g/L)^Influent^(mL/L)^(gP/L)^(g/L) (Lid)^ (mgN/L) 92 02 24 197 74 115 1940 210 0.231 80 92 02 27 200 75 115 1923 164.5 0.231 87.5 92 02 28 201 72 115 1886 164.5 0.231 87.5 92 02 29 202 74 115 1898 164.5 0.231 40 92 03 1 203 77 115 1940 164.5 0.231 40 92 03 2 204 67 115 2094 164.5 0.231 40 92 03 3 205 75 115 2028 164.5 0.231 40 92 03 4 206 72 115 2460 164.5 0.231 30 92 03 5 207 67 115 2352 164.5 0.231 30 92 03 6 208 71 115 2280 164.5 0.231 30 92 03 7 209 68 115 2088 164.5 0.231 20 92 03 10 212 67 115 2123 164.5 0.231 20 92 03 11 213 69 115 2381 164.5 0.231 20 127 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^System^System^System^Anoxic^Anoxic Data^Day^ Loading Loading Loading ORP pH (yy mm dd) CH3OH^o-PO4^NaHCO3 (mV) ^ (gCOD/d) (gP/d)^(gCaCO3/d) 91 08 12 1 0.00 0.069 2102 -130 91 08 14 3 0.00 0.081 2099 -25 91 08 16 5 0.00 0.093 2096 -57 91 08 18 7 0.00 0.101 1955 -100 91 08 20 9 0.00 0.099 1954 -40 91 08 23 12 0.00 0.099 1957 -5 91 08 26 15 0.00 0.098 2036 20 91 08 28 17 0.00 0.094 2034 5 7.6 91 08 31 20 0.00 0.098 2036 20 91 09 2 22 0.00 0.094 2037 43 91 09 4 24 0.00 0.095 1889 49 91 09 7 27 4.27 0.093 1861 8 7.9 91 09 9 29 4.27 0.099 1861 -41 7.7 91 09 12 32 7.84 0.103 1833 -86 8.0 91 09 16 36 7.84 0.102 1832 -105 7.9 91 09 17 37 7.84 0.103 1795 -100 7.9 91 09 19 39 12.54 0.100 1786 -95 8.0 91 09 21 41 12.31 0.098 1810 -95 7.9 91 09 23 43 12.31 0.098 1815 -127 7.9 91 09 26 46 7.86 0.094 1807 -120 7.9 91 09 28 48 7.98 0.100 1806 -133 7.8 91 09 30 50 12.14 0.096 1809 -132 7.8 91 10 2 52 9.69 0.094 1807 -121 7.7 91 10 4 54 10.26 0.101 1807 -155 7.7 91 10 6 56 10.54 0.097 1807 -195 7.8 91 10 8 58 11.11 0.099 1801 -168 7.8 91 10 11 61 10.40 0.095 1810 -173 7.8 91 10 14 64 9.26 0.097 1776 -100 7.9 91 10 16 66 9.69 0.095 1143 -88 7.9 91 10 18 68 14.53 0.094 1147 -112 7.8 91 10 20 70 19.38 0.099 1142 -147 7.8 91 10 23 73 19.95 0.099 1148 -145 7.9 91 10 25 75 15.39 0.101 1143 -140 7.9 91 10 27 77 15.17 0.102 1144 -145 7.9 91 10 29 79 15.17 0.106 1143 -158 7.9 91 11 1 82 16.71 0.107 1145 -165 7.9 91 11 3 84 16.71 0.106 1158 -180 7.9 91 11 5 86 17.44 0.102 1157 -175 7.9 91 11 7 88 16.95 0.104 1158 -' 33 7.9 91 11 10 91 16.71 0.099 1148 -'7.: 7.8 91 11 12 93 17.68 0.102 1148 -137 7.7 91 11 13 94 17.92 0.104 1143 -108 7.8 91 11 15 96 16.95 0.101 1300 -154 7.8 91 11 17 98 16.71 0.105 1296 -139 7.7 91 11 20 101 16.95 0.103 1316 -164 7.8 91 11 22 103 16.95 0.090 1413 -194 7.6 128 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ System^System^System^Anoxic^Anoxic Date^Day^ Loading Loading Loading ORP pH (yy mm dd) CH3OH^o-PO4^NaHCO3 (mV) (gCOD/d) (gP/d)^(gCaCO3/d) 91^11^25^106 17.44 0.084 1612 -180 7.7 91^11^26^107 17.68 0.088 2271 -155 7.9 91^11^29^110 18.16 0.090 2529 -135 7.9 91^12^2^113 17.92 0.088 2579 -145 8.1 91^12^4^115 17.92 0.088 2515 -150 8.1 91^12^6^117 28.08 0.089 2409 -150 8.1 91^12^7^118 27.70 0.085 2490 -237 8.0 91^12^9^120 27.70 0.086 2472 -152 8.1 91^12^11^122 21.09 0.090 2570 -146 8.2 91^12^13^124 25.64 0.089 2268 -168 8.2 91^12^16^127 25.99 0.091 2347 -195 8.1 91^12^18^129 22.88 0.090 2359 -220 7.9 91^12^20^131 24.62 0.086 2364 -310 7.9 91^12^22^133 25.30 0.145 3071 -179 8.2 91^12^24^135 25.30 0.150 3078 -280 8.2 91^12^26^137 25.30 0.148 3048 -245 8.1 91^12^30^141 25.30 0.148 3055 -230 7.9 92^01^2^144 25.99 0.152 3655 -199 8.3 92^01^5^147 35.10 0.151 4108 -183 8.3 92^01^6^148 25.64 0.147 4055 -188 8.3 92^01^8^150 25.30 0.152 4088 -171 8.4 92^01^10^152 27.04 0.142 3850 -180 8.4 92^01^12^154 27.41 0.147 3964 -205 8.2 92^01^14^156 30.37 0.243 6110 -200 8.3 92^01^15^157 29.63 0.229 5738 -152 8.4 92^01^17^159 28.89 0.223 5219 -179 8.5 92^01^20^162 53.43 0.175 5212 -175 8.4 92^01^22 164 52.71 0.175 5346 -177 8.5 92^01^24^166 51.29 0.175 4825 -238 8.4 92^01^26 168 47.44 0.175 4776 -203 8.6 92^01^30^172 50.65 0.181 5140 -208 8.6 92^01^31^173 48.08 0.170 5134 -185 8.5 92^02^2^175 35.90 0.191 5309 -150 8.5 92^02^3^176 37.44 0.208 5793 -166 8.6 92^02^5^178 37.95 0.211 5866 -182 8.6 92^02^6^179 37.95 0.219 5760 -178 8.6 92^02^7^180 37.95 0.205 5743 -189 8.7 92^02^10^183 45.48 0.200 5484 -196 8.6 92^02^11^184 45.48 0.205 5499 -201 8.6 92^02^12^185 46.07 0.200 5464 -220 8.4 92^02^13^186 45.48 0.194 5495 -240 8.5 92^02^14^187 47.27 0.193 5332 -250 8.4 92^02^16^189 44.28 0.200 5286 -236 8.6 92^02^18^191 43.68 0.200 5442 -248 8.3 92^02^19^192 44.88 0.200 5591 -165 8.4 92^02^21^194 46.07 0.200 5922 -132 8.3 129 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L) 91 08 12^1 3.6 170 248 1.0 91 08 14^3 3.1 156 260 401 91 08 16^5 3.5 107 312 91 08 18^7 4.7 52 304 91 08 20^9 4.0 28 281 1.2 22 432 91 08 23^12 4.4 31 223 91 08 26^15 3.7 36 198 91 08 28^17 4.5 31 202 570 91 08 31^20 4.7 30 186 91 09 2^22 5.2 31 199 1.0 91 09 4^24 1480 1934 4.7 26 193 25 405 91 09 7^27 1630 1978 4.1 25 144 91 09 9^29 1550 1896 3.7 27 144 0.7 465 91 09 12^32 1540 1804 4.1 30 151 91 09 16^36 1620 1892 4.0 32 63 91 09 17^37 1700 2092 4.2 39 57 0.3 29 413 91 09 19^39 1690 1930 3.8 31 4 91 09 21^41 1750 2153 4.3 27 0 91 09 23^43 1710 1995 4.5 33 2 0.1 445 91 09 26^46 1830 2263 4.2 28 5 91 09 28^48 1720 1982 4.9 25 5 349 91 09 30^50 1750 2073 5.3 26 1 0.0 91 10 2^52 1770 2134 4.6 28 1 91 10 4^54 1760 2060 3.8 24 1 280 91 10 6^56 1810 2082 3.9 25 0 0.0 91 10 8^58 1690 2037 4.1 28 0 91 10 11^61 1780 2115 3.4 26 0 36 260 91 10 14^64 1850 2054 4.2 110 23 0.1 91 10 16^66 2100 2516 4.3 69 37 91 10 18^68 1930 2365 3.6 54 14 388 91 10 20^70 2020 2486 4.5 55 2 91 10 23^73 1980 2396 3.9 52 2 0.0 362 91 10 25^75 1010 1271 4.8 44 5 91 10 27^77 1070 1284 5.1 42 3 418 91 10 29^79 2200 2531 4.5 49 2 91 11 1^82 2080 2604 4.1 45 1 0.0 91 11 3^84 2110 2493 4.6 40 1 370 91 11 5^86 2060 2394 4.4 47 1 91 11 7^88 2140 2456 3.9 49 1 56 375 91 11 10^91 2090 2341 3.4 90 11 91 11 12^93 2130 2440 3.8 208 1 91 11 13^94 2190 2599 4.1 200 1 91 11 15^96 2350 2562 4.3 188 2 403 91 11 17^98 2240 2594 4.6 189 3 91 11 20^101 2660 2711 3.8 201 3 91 11 22^103 2200 2585 3.9 100 0 130 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO^COD (yy mm dd)^(maiL)^(mg/L)^(mgP/L)^( mgN/L)^(mgN/L)^(mgN/L)^(mgA.)^(mg/1-) 91 11 25 106 2060 2555 3.9 86 21 366 91 11 26 107 2200 2515 4.2 78 11 91 11 29^110 2310 2656 4.8 100 13 91 12 2^113 2280 2572 4.0 85 14 45 394 91 12 4^115 2370 2754 3.9 68 27 91 12 6^117 2310 2758 3.3 80 4 91 12 7^118 2440 2796 3.6 84 1 450 91 12 9^120 2400 2811 3.8 79 4 91 12 11^122 2710 3125 4.2 62 68 91 12 13^124 2580 3011 4.6 80 2 430 91 12 16^127 2630 2912 3.7 71 0 91 12 18^129 2610 3032 3.8 74 1 0.3 91 12 20^131 2730 2662 3.5 64 0 74 510 91 12 22 133 1700 2044 5.5 208 0 91 12 24 135 1520 1685 5.7 285 1 C 3 91 12 26^137 3180 3774 6.8 260 1 91 12 30^141 2920 3329 5.6 322 40 480 92 01 2^144 4430 5260 5.0 155 62 0.4 92 01 5^147 3010 3456 7.1 126 5 92 01 6^148 3160 3663 7.6 122 3 1.5 481 92 01 8^150 3050 3535 6.3 127 2 417 92 01 10^152 3090 3462 5.9 135 5 2.2 86 409 92 01 12^154 3180 3641 5.5 133 4 2.1 454 92 01 14^156 3120 3629 8.5 264 56 15.0 92 01 15^157 2880 3341 11.1 235 110 33.3 113 523 92 01 17^159 2940 3386 12.3 137 139 54.7 92 01 20 182 3530 4109 9.8 195 6 4.4 92 01 22 164 3640 4146 8.1 194 2 1.7 116 477 92 01 24^166 3910 4429 9.2 80 9 3.0 92 01 26 168 3990 4722 8.0 205 2 1.2 92 01 30^172 4120 4552 9.6 206 0 0.6 92 01 31^173 5400 6043 9.5 185 1 0.7 119 531 92 02 2^175 5340 6265 10.5 185 60 18.1 92 02 3^176 5340 6409 8.2 184 29 29.3 92 02 5^178 5280 6164 8.1 181 18 21.9 170 508 92 02 6^179 5350 6104 9.4 181 13 13.0 92 02 7^180 5410 6472 10.2 178 22 12.4 92 02 10^183 5460 6382 8.6 186 2 2.2 438 92 02 11^184 5410 6255 7.6 175 1 1.0 126 417 92 02 12^185 5450 6138 8.8 211 0 0.0 527 92 02 13^186 5500 6633 8.3 182 5 1.1 92 02 14^187 5410 6036 7.2 205 0 0.1 92 02 16^189 5450 6243 9.6 174 0 0.1 135 573 92 02 18^191 7340 7840 9.3 396 0 0.1 634 92 02 19^192 7610 8980 10.8 575 5 0.1 92 02 21^194 6590 8690 11.4 384 34 0.7 131 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L) 92 02 24 197 6630 7650 10.3 430 3 3.1 588 92 02 27 200 6870 8860 10.7 447 19 1.3 315 92 02 28 201 6096 9120 11.2 375 5 2.5 92 02 29 202 6320 9900 10.1 394 2 0.1 92 03 1 203 6040 9211 11.6 394 11 0.9 92 03 2 204 6500 9298 11.8 603 4 1.2 219 92 03 3 205 5990 8840 14.0 548 3 6.8 744 92 03 4 206 6610 8215 15.7 662 5 1.8 92 03 5 207 6240 8339 11.5 758 9 0.2 92 03 6 208 5470 7860 11.9 503 5 0.8 92 03 7 209 6490 8450 10.6 532 1 5.2 92 03 10 212 6140 8542 734 318 650 92 03 11 213 6020 8395 758 132 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd) (mg/L) (mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L) 91 08 12 1 4.0 3.6 149 251 91 08 14 3 5.0 2.8 141 268 91 08 16 5 4.5 2730 3459 3.8 95 324 91 08 18 7 4.0 4.0 33 312 91 08 20 9 4.0 7.2 2580 3680 3.6 21 292 91 08 23 12 4.0 3.9 8 313 91 08 26 15 4.0 3.5 4 228 91 08 28 17 4.6 7.2 4.0 3 229 91 08 31 20 4.1 7.2 4.3 2 199 91 09 2 22 3.8 7.3 4.7 1 221 91 09 4 24 4.9 7.5 1650 2181 5.1 0 238 91 09 7 27 3.8 7.8 1600 1990 3.7 0 191 91 09 9 29 4.5 7.6 1800 2243 4.0 1 197 91 09 12 32 4.0 7.7 1520 1808 4.3 1 182 91 09 16 36 4.0 7.8 1590 1887 4.7 1 94 91 09 17 37 4.0 7.6 1680 2084 4.5 5 86 91 09 19 39 3.4 7.7 1710 1965 4.5 2 69 91 09 21 41 2.2 7.6 1770 2205 4.5 2 63 91 09 23 43 3.7 7.5 1740 2075 4.6 1 32 91 09 26 46 3.5 7.5 1810 2257 4.9 2 29 91 09 28 48 3.2 7.5 1820 2132 4.3 1 35 91 09 30 50 3.3 7.5 1760 2085 4.9 0 29 91 10 2 52 4.0 7.5 1790 2159 5.3 0 30 91 10 4 54 4.0 7.5 1690 2003 4.6 0 27 91 10 6 56 4.2 7.5 1760 2041 4.2 0 26 91 10 8 58 3.5 7.5 1710 1992 4.5 0 24 91 10 11 61 4.0 7.5 1700 2090 3.6 0 28 91 10 14 64 2.9 7.4 1850 1994 4.6 86 63 91 10 16 66 3.3 7.4 1780 2162 3.8 46 76 91 10 18 68 3.0 7.4 1690 2100 3.7 29 58 91 10 20 70 3.5 7.4 1970 2445 4.6 28 51 91 10 23 73 3.1 7.3 1930 2323 3.6 14 54 91 10 25 75 3.2 7.3 2000 2504 5.2 0 55 91 10 27 77 3.2 7.3 1990 2371 5.2 0 59 91 10 29 79 3.5 7.4 2210 2538 4.0 0 48 91 11 1 82 3.5 7.3 2310 2897 4.0 0 50 91 11 3 84 3.5 7.5 2190 2587 3.9 0 48 91 11 5 86 3.5 7.5 2220 2624 4.2 0 48 91 11 7 88 3.5 7.4 2200 2588 3.8 0 53 91 11 10 91 1.9 6.5 2220 2542 3.3 27 56 91 11 12 93 3.5 6.4 2250 2635 3.3 107 82 91 11 13 94 3.2 6.3 2180 2601 3.7 96 89 91 11 15 96 3.2 6.0 2250 2693 3.9 109 93 91 11 17 98 2.5 6.3 1930 2579 4.4 119 86 91 11 20 101 2.8 6.2 2890 2717 3.4 134 82 91 11 22 103 3.0 6.0 2220 2592 3.6 18 92 133 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd) (mg/L) (n19/1-1^Img/L)^(mgP/L)^(mgN/L)^(mgN/L) 91 11 25 106 4.0 5.9 2430 2555 3.5 16 113 91 11 26 107 3.5 6.6 2180 2507 3.4 15 111 91 11 29 110 4.0 7.4 2090 2420 5.2 10 116 91 12 2 113 4.5 7.6 2360 2676 3.7 5 114 91 12 4 115 4.0 7.3 2510 2930 4.3 1 128 91 12 6 117 3.5 7.3 2770 3310 3.1 0 111 91 12 7 118 2.5 7.5 2680 3139 3.7 0 85 91 12 9 120 2.2 7.8 2680 3155 4.4 0 79 91 12 11 122 5.0 7.3 2790 3269 4.6 2 187 91 12 13 124 2.5 7.3 2810 3292 5.0 1 110 91 12 16 127 4.0 7.4 2870 3246 4.0 0 64 91 12 18 129 2.5 7.2 2840 3300 3.7 0 87 91 12 20 131 3.0 7.0 2910 3344 3.7 0 78 91 12 22 133 5.0 7.6 1720 2070 5.3 91 72 91 12 24 135 3.0 7.4 1520 1716 5.2 163 110 91 12 26 137 3.0 7.1 2940 3528 6.4 156 88 91 12 30 141 4.0 7.3 3220 3709 4.9 207 142 92 01 2 144 2.4 6.7 2980 3543 5.6 18 183 92 01 5 147 2.6 7.1 3370 3924 6.2 3 120 92 01 6 148 2.7 7.2 3290 3816 6.2 1 125 92 01 8 150 3.4 7.2 3390 3918 5.8 2 134 92 01 10 152 3.0 7.2 3140 3903 5.6 1 131 92 01 12 154 3.0 7.4 3220 3845 4.8 0 118 92 01 14 156 1.0 6.6 3370 3964 8.0 93 221 92 01 15 157 1.5 6.5 2870 3379 10.8 65 254 92 01 17 159 3.4 6.7 3000 3462 11.0 18 325 92 01 20 162 2.2 7.3 3450 4035 10.1 2 156 92 01 22 164 2.4 7.2 3610 4120 8.8 2 162 92 01 24 166 1.8 7.6 3760 4278 9.4 1 169 92 01 26 168 3.0 7.0 4200 5011 7.5 18 105 92 01 30 172 2.0 7.8 4440 5026 8.8 0 134 92 01 31 173 2.0 7.1 5400 6198 9.6 0 125 92 02 2 175 2.5 6.8 5330 6383 11.7 1 200 92 02 3 176 2.6 7.5 5150 6191 10.1 0 176 92 02 5 178 2.8 7.6 5420 6438 9.3 0 169 92 02 6 179 2.9 7.5 5180 5997 8.1 0 164 92 02 7 180 4.2 7.6 5200 6229 9.3 0 174 92 02 10 183 3.7 7.4 5470 6522 8.4 1 168 92 02 11 184 3.7 7.4 5540 6465 6.9 0 180 92 02 12 185 3.1 7.5 5890 6734 9.0 0 179 92 02 13 186 3.5 7.4 5610 6730 9.2 0 169 92 02 14 187 2.9 7.3 5540 6351 8.2 0 167 92 02 16 189 4.0 7.3 5610 6435 9.8 2 177 92 02 18 191 3.5 7.4 6980 9300 8.5 181 183 92 02 19 192 3.5 6.7 7460 9890 11.8 246 83 92 02 21 194 4.0 7.0 6440 8840 13.0 473 238 134 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd) (mg/L) (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L) 92 02 24 197 3.9 7.1 6650 8010 11.0 204 91 92 02 27 200 4.0 6.3 6440 8620 12.4 364 215 92 02 28 201 5.0 8.9 7010 9260 10.1 195 104 92 02 29 202 4.7 7.7 6800 8890 9.9 282 133 92 03 1 203 5.0 7.8 6480 9125 11.3 235 124 92 03 2 204 5.2 7.9 6770 9275 10.5 421 82 92 03 3 205 3.0 8.3 6470 9202 11.7 477 65 92 03 4 206 4.0 8.2 6830 9445 13.8 512 99 92 03 5 207 3.0 7.8 6840 9176 12.5 593 107 92 03 6 208 2.5 8.1 6780 9783 11.1 422 136 92 03 7 209 5.5 7.9 6210 8275 11.6 468 70 92 03 10 212 7.0 8.3 6570 9299 715 92 03 11 213 8.0 8.3 6370 8887 612 135 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOO^COD VSS^TSS^NH4^NOx (yy mm dd)^(mgN/L)^(mg/L)^(mg/I)^(mg/L)^(mg/L)^(mgN/L)^(mgN/L) 91 08 12^1 1.3 147 248 91 08 14^3 246 142 271 91 08 16^5 19 24 94 325 91 08 18^7 31 311 91 08 20^9 1.5 6 317 33 47 20 291 91 08 23^12 7 296 91 08 26^15 3 234 91 08 28^17 455 2 218 91 08 31^20 1 204 91 09 2^22 1.1 1 225 91 09 4^24 8 284 24 32 0 234 91 09 7^27 21 26 1 201 91 09 9^29 0.8 340 20 25 1 199 91 09 12^32 36 43 1 180 91 09 16^36 24 28 1 94 91 09 17^37 0.4 8 309 25 31 1 82 91 09 19^39 19 22 3 65 91 09 21^41 20 25 2 63 91 09 23^43 0.3 346 26 31 1 54 91 09 26^46 27 33 2 33 91 09 28^48 280 28 32 1 30 91 09 30^50 0.1 24 28 0 30 91 10 2^52 33 40 0 29 91 10 4^54 266 20 24 0 27 91 10 6^56 0.1 28 32 0 27 91 10 8^58 19 22 0 24 91 10 11^61 12 225 23 28 0 28 91 10 14^64 0.3 31 35 84 63 91 10 16^66 33 40 47 76 91 10 18^68 293 24 29 28 55 91 10 20^70 21 26 26 53 91 10 23^73 0.2 261 41 49 15 54 91 10 25^75 32 40 0 55 91 10 27^77 290 35 42 0 57 91 10 29^79 29 34 0 52 91 11 1^82 0.3 20 25 0 52 91 11 3^84 218 28 33 0 48 91 11 5^86 41 48 0 46 91 11 7^88 10 275 49 57 0 53 91 11 10^91 53 61 27 56 91 11 12^93 68 79 105 78 91 11 13^94 72 85 100 90 91 11 15^96 304 73 87 107 90 91 11 17^98 97 112 117 86 91 11 20^101 75 92 129 79 91 11 22^103 93 106 17 92 '36 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD VSS^TSS^NH4^NOx (yy mm dd)^(rtigN/L)^(ing/L)^(mg/L) (mg/L)^(mg/L)^(mgN/L)^(mgN/L) 91 11 25 106 330 21 24 16 111 91 11 26 107 20 23 15 111 91 11 29 110 85 96 0 116 91 12 2 113 10 350 55 61 6 112 91 12 4 115 157 180 1 126 91 12 6 117 193 230 1 109 91 12 7 118 350 94 110 0 85 91 12 9 120 74 87 0 79 91 12 11 122 52 61 3 183 91 12 13 124 320 82 94 1 103 91 12 16 127 36 40 0 65 91 12 18 129 17.5 87 100 0 86 91 12 20 131 8 340 71 84 0 82 91 12 22 133 141 166 91 73 91 12 24 135 24.3 127 140 160 112 91 12 26 137 160 190 154 86 91 12 30 141 375 125 144 2 145 92 01 2 144 22.2 208 241 17 112 92 01 5 147 121 140 3 123 92 01 6 148 51.5 315 29 34 1 122 92 01 8 150 333 91 103 1 129 92 01 10 152 79.3 9 316 160 179 1 125 92 01 12 154 84.7 435 186 214 1 116 92 01 14 156 63.2 123 145 92 221 92 01 15 157 55.0 14 327 216 254 64 249 92 01 17 159 57.7 118 134 17 325 92 01 20 162 123.8 126 147 2 153 92 01 22 164 145.3 14 333 153 176 2 164 92 01 24 166 154.2 74 83 1 167 92 01 26 168 108.4 145 172 17 103 92 01 30 172 108.1 122 136 0 132 92 01 31 173 105.3 11 364 82 93 0 128 92 02 2 175 132.0 117 137 1 208 92 02 3 176 151.0 184 222 0 173 92 02 5 178 172.3 14 345 138 159 0 173 92 02 6 179 153.9 207 235 0 163 92 02 7 180 92.7 130 155 0 175 92 02 10 183 130.3 345 121 143 1 165 92 02 11 184 128.8 12 401 92 108 0 184 92 02 12 185 103.4 382 118 132 0 180 92 02 13 186 116.8 208 248 0 166 92 02 14 187 101.1 130 148 0 169 92 02 16 189 108.3 8 329 128 146 2 178 92 02 18 191 118.2 406 121 141 192 185 92 02 19 192 91.4 127 167 249 79 92 02 21 194 197.0 382 490 478 232 137 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD VSS^TSS^NH4^NOx lyy mm dd)^(mgN/L)^Img/L)^(mg/L)^ (mg/L)^(mg/L)^(mgN/L)^(mgN/L) 92 02 24 197 103.0 423 148 180 210 88 92 02 27 200 206.0 37 111 153 369 206 92 02 28 201 91.2 391 499 198 100 92 02 29 202 96.0 153 194 285 128 92 03 1 203 112.0 122 174 231 118 92 03 2 204 75.0 56 145 199 422 80 92 03 3 205 60.2 531 200 282 484 69 92 03 4 206 72.5 135 183 497 103 92 03 5 207 93.8 184 246 578 112 92 03 6 208 93.9 133 191 422 128 92 03 7 209 64.7 277 365 384 70 92 03 10 212 38 573 167 235 719 92 03 11 213 200 272 578 138 AMMONIA LOADING PHASE (10 DAY AEROBIC SAT SYSTEM, 20 C) ^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD VSS/TSS NOVNOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed ^ (gCOD/gN)^(gCOD/gN) 91 08 12^1 0.00 13.9 0.0 91 08 14^3 250 17.7 0.0 91 08 16^5 20.6 0.0 91 08 18^7 20.4 0.0 91 08 20^9 8 301 0.00 15.6 0.0 91 08 23^12 17.4 0.0 91 08 26^15 13.6 0.0 91 08 28^17 462 13.8 0.0 0.0 91 08 31^20 11.0 0.0 0.0 91 09 2^22 0.01 13.9 0.0 0.0 91 09 4^24 8 280 0.77 14.4 0.0 0.0 91 09 7^27 0.82 10.4 0.4 3.7 91 09 9^29 324 0.82 0.00 10.8 0.4 3.0 91 09 12^32 0.85 10.8 0.7 19.4 91 09 16^36 0.86 5.0 1.6 7.4 91 09 17^37 8 302 0.81 0.00 5.3 1.5 6.6 91 09 19^39 0.88 4.1 3.0 3.3 91 09 21^41 0.81 4.0 3.1 3.1 91 09 23^43 325 0.86 0.05 1.9 6.4 6.8 91 09 26^46 0.81 1.8 4.3 5.3 91 09 28^48 267 0.87 2.0 4.1 5.0 91 09 30^50 0.84 0.00 1.6 7.7 8.0 91 10 2^52 0.83 1.8 5.5 5.7 91 10 4^54 265 0.85 1.9 5.5 5.7 91 10 6^56 0.87 0.00 1.6 6.4 6.5 91 10 8^58 0.83 1.6 6.9 7.0 91 10 11^61 10 238 0.84 1.8 5.9 5.9 91 10 14^64 0.90 0.00 4.0 2.3 4.0 91 10 16^66 0.83 4.2 2.3 5.5 91 10 18^68 290 0.82 3.2 4.5 6.3 91 10 20^70 0.81 3.1 6.3 6.6 91 10 23^73 253 0.83 0.01 3.1 6.4 6.6 91 10 25^75 0.79 3.2 4.8 5.3 91 10 27^77 301 0.83 3.9 3.9 4.1 91 10 29^79 0.87 2.7 5.6 5.8 91 11 1^82 0.80 0.00 3.2 5.2 5.3 91 11 3^84 225 0.85 3.1 5.4 5.4 91 11 5^86 0.86 2.7 6.5 6.6 91 11 7^88 8 276 0.87 2.9 5.9 6.0 91 11 10^91 0.89 3.0 5.5 7.1 91 11 12^93 0.87 5.2 3.4 3.4 91 11 13^94 0.84 4.8 3.7 3.8 91 11 15^96 285 0.92 6.0 2.8 2.9 91 11 17^98 0.86 4.8 3.5 3.7 91 11 20^101 0.98 4.9 3.5 3.6 91 11 22^103 0.85 5.8 2.9 2.9 139 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed 19COD/gN)^(gCOD/gN) 91 11 25 106 312 0.81 7.2 2.4 3.1 91 11 26^107 0.87 6.2 2.9 3.2 91 11 29^110 0.87 6.5 2.8 3.2 91 12 2^113 11 367 0.89 6.5 2.7 3.2 91 12 4^115 0.86 7.2 2.5 3.3 91 12 6^117 0.84 6.0 4.7 4.9 91 12 7^118 345 0.87 5.0 5.5 5.6 91 12 9^120 0.85 5.0 5.6 5.9 91 12 11^122 0.87 10.8 2.0 3.4 91 12 13^124 303 0.86 7.1 3.6 3.7 91 12 16^127 0.90 3.5 7.5 7.5 91 12 18^129 0.86 0.41 5.6 4.1 4.1 91 12 20^131 9 358 1.03 5.0 4.9 4.9 91 12 22 133 0.83 4.1 6.2 6.2 91 12 24 135 0.90 0.60 6.9 3.7 3.7 91 12 26^137 0.84 5.3 4.8 4.8 91 12 30^141 355 0.88 8.8 2.9 4.3 92 01 2^144 0.84 0.01 9.9 2.6 4.4 92 01 5^147 0.87 7.6 4.6 4.8 92 01 6^148 310 0.86 0.57 7.0 3.6 3.7 92 01 8^150 321 0.86 7.9 3.2 3.3 92 01 10^152 10 319 0.89 0.42 7.8 3.5 3.6 92 01 12^154 437 0.87 0.50 7.0 3.9 4.1 92 01 14^156 0.86 0.27 14.0 2.2 3.1 92 01 15^157 12 327 0.86 0.30 16.6 1.8 3.5 92 01 17^159 0.87 0.39 20.4 1.4 2.8 92 01 20^162 0.86 0.72 8.9 6.0 6.3 92 01 22 164 9 330 0.88 0.81 10.0 5.3 5.3 92 01 24 166 0.88 0.35 10.5 4.9 5.2 92 01 26^168 0.85 0.70 6.1 7.8 7.9 92 01 30^172 0.91 1.18 7.2 7.0 7.1 92 01 31^173 13 373 0.89 0.50 8.2 5.9 6.0 92 02 2^175 0.85 0.30 12.1 3.0 4.6 92 02 3^176 0.83 1.01 10.7 3.5 4.3 92 02 5^178 14 356 0.86 1.19 10.6 3.6 4.1 92 02 6^179 0.88 1.04 10.2 3.7 4.1 92 02 7^180 0.84 0.57 9.8 3.9 4.5 92 02 10^183 353 0.86 0.95 9.7 4.7 4.8 92 02 11^184 6 394 0.86 0.86 10.3 4.4 4.5 92 02 12^185 377 0.89 0.11 11.5 4.0 4.0 92 02 13^186 0.83 0.25 10.1 4.5 4.6 92 02 14^187 0.90 0.54 10.2 4.6 4.6 92 02 16^189 11 334 0.87 0.54 10.3 4.3 4.3 92 02 18^191 389 0.94 0.67 10.2 4.3 4.3 92 02 19^192 0.85 0.01 4.5 9.9 10.6 92 02 21^194 0.76 0.02 15.3 3.0 3.6 140 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^ Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed (gCOD/gN)^(gCOD/gN) 92 02 24 197 428 0.87 1.19 5.7 8.1 8.4 92 02 27 200 44 0.78 0.07 13.7 2.6 2.9 92 02 28 201 0.80 0.47 6.3 5.4 5.8 92 02 29 202 0.77 0.06 8.3 4.1 4.2 92 03 1 203 0.72 0.08 8.2 4.2 4.6 92 03 2 204 51 0.71 0.33 4.6 8.2 8.6 92 03 3 205 510 0.78 2.65 4.1 9.4 9.9 92 03 4 206 0.74 0.39 6.1 6.1 6.4 92 03 5 207 0.76 0.02 6.1 6.2 6.9 92 03 6 208 0.77 0.15 8.1 4.6 4.8 92 03 7 209 0.77 10.16 3.9 9.6 9.7 92 03 10 212 43 573 0.70 92 03 11 213 0.79 141 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitrn %Denitrn Specific NH4 Removal^% NH4 VSS/TSS (yy mm dd)^Rate Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS) (mgN/d) 91 08 12^1 -758 -7 91 08 14^3 -483 -4 91 08 16^5 293 4 0.79 91 08 18^7 367 9 91 08 20^9 1467 45 0.70 91 08 23^12 912 31 91 08 26^15 -67 -3 91 08 28^17 -90 -1 2 0 91 08 31^20 -1146 -10 310 14 91 09 2^22 -638 -5 86 4 91 09 4^24 741 5 100 456 20 0.76 91 09 7^27 1154 11 142 458 22 0.80 91 09 9^29 1432 13 185 499 22 0.80 91 09 12^32 404 4 52 18 1 0.84 91 09 16^36 1063 21 131 -90 -5 0.84 91 09 17^37 1181 22 139 -427 -18 0.81 91 09 19^39 3832 93 453 -5 -0 0.87 91 09 21^41 3967 99 453 -64 -3 0.80 91 09 23^43 1803 94 211 -229 -11 0.84 91 09 26^46 1486 81 162 212 9 0.80 91 09 28^48 1611 82 187 348 17 0.85 91 09 30^50 1526 97 174 237 13 0.84 91 10 2^52 1707 96 193 -47 -3 0.83 91 10 4^54 1799 97 204 332 16 0.84 91 10 6^56 1617 98 179 279 14 0.86 91 10 8^58 1591 99 188 -186 -10 0.86 91 10 11^61 1755 99 197 138 7 0.81 91 10 14^64 2337 58 253 234 3 0.93 91 10 16^66 1767 43 168 1033 19 0.82 91 10 18^68 2301 71 238 1428 29 0.80 91 10 20^70 2949 95 292 672 15 0.81 91 10 23^73 3007 97 304 553 13 0.83 91 10 25^75 2901 90 574 -39 -1 0.80 91 10 27^77 3682 95 688 -2 -0 0.84 91 10 29^79 2610 96 237 -87 -3 0.87 91 11 1^82 3183 98 306 13 0 0.80 91 11 3^84 3067 99 291 -390 -15 0.85 91 11 5^86 2626 98 255 394 11 0.85 91 11 7^88 2810 98 263 202 6 0.85 91 11 10^91 2347 77 225 1692 22 0.87 91 11 12^93 5136 99 482 -2567 -20 0.85 91 11 13^94 4725 98 432 -1409 -12 0.84 91 11 15^96 5928 98 505 -1134 -9 0.84 91 11 17^98 4572 96 408 272 2 0.75 91 11 20^101 4720 96 355 -59 -0 1.06 91 11 22^103 5806 100 528 -376 -5 0.86 142 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitrn %Denitrn Specific NH4 Removal^% NH4 VSSfTSS (yy mm dd)^Rate Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS) (mgN/d) 91 11 25 106 5638 78 547 318 5 0.95 91 11 26 107 5479 89 498 2070 29 0.87 91 11 29 110 5625 87 487 -265 -4 0.86 91 12 2 113 5587 86 490 378 6 0.88 91 12 4 115 5425 76 458 1579 26 0.86 91 12 6 117 5702 95 494 1189 19 0.84 91 12 7 118 4909 98 402 -99 -2 0.85 91 12 9 120 4716 95 393 -343 -6 0.85 91 12 11 122 6229 58 460 1855 31 0.85 91 12 13 124 6881 97 533 169 3 0.85 91 12 16 127 3446 100 262 919 17 0.88 91 12 18 129 5575 99 427 -135 -2 0.86 91 12 20 131 5029 100 368 928 16 0.87 91 12 22 133 4063 100 478 159 1 0.83 91 12 24 135 6858 99 902 -828 -4 0.89 91 12 26 137 5229 99 329 431 2 0.83 91 12 30 141 5907 67 405 -1038 -5 0.87 92 01 2 144 5942 60 268 358 3 0.84 92 01 5 147 7305 96 485 260 3 0.86 92 01 6 148 6877 98 435 1176 13 0.86 92 01 8 150 7710 98 506 898 9 0.87 92 01 10 152 7428 95 481 771 8 0.80 92 01 12 154 6683 96 420 525 5 0.84 92 01 14 156 9916 71 636 465 2 0.85 92 01 15 157 8357 50 580 680 4 0.85 92 01 17 159 10260 50 698 5651 36 0.87 92 01 20 162 8446 95 479 1493 10 0.85 92 01 22 164 9884 99 543 785 5 0.88 92 01 24 166 9839 94 503 10031 64 0.88 92 01 26 168 6000 98 301 2725 16 0.84 92 01 30 172 7169 100 348 2349 15 0.88 92 01 31 173 8052 99 298 1122 8 0.87 92 02 2 175 7884 65 295 1783 12 0.84 92 02 3 176 8613 81 323 1932 13 0.83 92 02 5 178 9291 88 352 2127 14 0.84 92 02 6 179 9254 91 346 2412 16 0.86 92 02 7 180 8403 85 311 2919 20 0.83 92 02 10 183 9569 98 350 2076 14 0.84 92 02 11 184 10173 99 376 3279 22 0.86 92 02 12 185 11504 100 422 -214 -1 0.87 92 02 13 186 9833 97 358 2212 15 0.83 92 02 14 187 10231 100 378 437 3 0.87 92 02 16 189 10235 100 376 2505 18 0.87 92 02 18 191 10155 100 277 4282 14 0.75 92 02 19 192 4218 93 111 -3176 -9 0.75 92 02 21 194 12774 84 388 22355 44 0.73 143 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS (yy mm dd)^Rate Denitm Rate^Rate Removal imgN/d)^(mgN/d/gVSS) (mgN/d) 92 02 24 197 5501 97 166 1610 5 0.83 92 02 27 200 12241 90 356 9616 23 0.75 92 02 28 201 5927 94 194 3714 12 0.75 92 02 29 202 8201 98 260 7346 21 0.84 92 03 1 203 7395 90 245 4310 13 0.71 92 03 2 204 4344 95 134 4109 10 0.72 92 03 3 205 3937 95 131 9579 19 0.70 92 03 4 206 5769 95 175 6089 12 0.74 92 03 5 207 5455 90 175 4601 9 0.75 92 03 6 208 7754 95 283 11190 24 0.69 92 03 7 209 3855 99 119 11930 25 0.75 92 03 10 212 12371 21 0.71 92 03 11 213 7118 12 0.72 1 44 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 91 08 12 1 0.01 10.05 109.44 91 08 14 3 10.34 35.16 91 08 16 5 9.81 23.54 -366 91 08 18 7 9.12 32.54 91 08 20 9 0.00 8.80 26.63 -388 91 08 23 12 8.05 3.40 91 08 26 15 9.67 10.16 91 08 28 17 9.63 10.26 1851 87 91 08 31 20 9.45 24.34 846 43 91 09 2 22 0.01 9.20 13.20 1586 70 91 09 4 24 8.68 6.22 3196 173 194 91 09 7 27 9.18 6.21 3015 188 188 91 09 9 29 0.00 8.80 5.61 3445 199 191 91 09 12 32 8.80 8.26 2132 105 140 91 09 16 36 9.41 9.02 1941 97 122 91 09 17 37 0.00 9.49 9.37 2125 75 126 91 09 19 39 8.69 3.87 4496 213 263 91 09 21 41 9.44 3.73 4550 229 257 91 09 23 43 0.01 9.07 8.82 2108 91 121 91 09 26 46 8.42 10.15 1766 87 98 91 09 28 48 9.49 9.29 1962 119 108 91 09 30 50 0.00 10.05 10.37 1830 111 104 91 10 2 52 9.35 9.02 1945 101 109 91 10 4 54 8.90 9.64 1949 110 115 91 10 6 56 0.00 9.21 10.69 1748 100 99 91 10 8 58 9.25 10.06 1738 84 102 91 10 11 61 9.89 9.84 2001 108 118 91 10 14 64 0.00 6.32 6.27 2973 36 161 91 10 16 66 3.89 4.57 2519 57 142 91 10 18 68 3.67 4.21 2916 82 173 91 10 20 70 3.89 3.29 3449 88 175 91 10 23 73 0.00 3.89 3.59 3608 101 187 91 10 25 75 3.97 3.40 3463 115 173 91 10 27 77 3.84 2.82 4303 136 216 91 10 29 79 3.71 3.83 3098 94 140 91 11 1 82 0.01 3.65 3.32 3718 110 161 91 11 3 84 5.02 3.63 3601 120 164 91 11 5 86 3.55 3.95 3133 101 141 91 11 7 88 3.73 3.67 3366 108 153 91 11 10 91 1.97 4.12 2921 50 132 31 11 12 93 2.03 2.06 6011 39 267 91 11 13 94 1.89 2.09 5638 44 259 91 11 15 96 2.29 2.00 6909 48 307 91 11 17 98 2.16 2.40 5439 44 282 91 11 20 101 2.27 2.49 5579 39 193 91 11 22 103 2.36 2.03 6706 92 302 145 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/01)^(mg/d)^(mgN/d/gVSS) 91 11 25^106 2.77 2.31 6730 106 277 91 11 26 107 3.72 3.56 6673 129 306 91 11 29^110 4.24 3.58 6777 104 324 91 12 2^113 4.05 3.49 6653 118 282 91 12 4^115 4.01 3.58 6686 150 266 91 12 6^117 4.02 3.69 6919 134 250 91 12 7^118 4.12 4.06 5725 100 214 91 12 9^120 4.43 4.35 5504 95 205 91 12 11^122 4.08 2.97 8021 195 287 91 12 13^124 3.80 2.87 8034 135 286 91 12 16^127 4.36 5.85 4121 89 144 91 12 18^129 0.20 4.35 3.64 6467 116 228 91 12 20^131 3.96 3.87 5790 122 199 91 12 22 133 3.50 6.40 4811 35 280 91 12 24 135 0.22 3.27 3.95 8029 39 528 91 12 26^137 3.38 5.14 6163 34 210 91 12 30^141 3.35 4.25 7418 32 230 92 01 2^144 0.12 3.80 4.50 7834 79 263 92 01 5^147 4.06 4.45 8486 92 252 92 01 6^148 0.41 4.05 4.57 8095 101 246 92 01 8^150 4.04 4.20 9051 105 267 92 01 10^152 0.61 3.68 4.22 8773 94 279 92 01 12^154 0.72 3.91 4.77 7875 86 245 92 01 14^156 0.29 4.24 4.78 12249 63 363 92 01 15^157 0.22 4.00 5.10 11093 63 387 92 01 17^159 0.18 3.63 3.82 13839 139 461 92 01 20^162 0.79 3.49 4.96 10071 78 292 92 01 22 164 0.89 3.43 4.30 11527 84 319 92 01 24^166 0.91 2.99 4.04 11629 202 309 92 01 26 168 1.03 3.03 6.63 7120 51 170 92 01 30^172 0.81 3.27 5.86 8594 66 194 92 01 31^173 0.84 3.18 5.08 9302 68 172 92 02 2^175 0.66 3.56 5.23 10022 77 188 92 02 3^176 0.86 3.96 5.61 10562 81 205 92 02 5^178 1.02 3.60 4.95 11006 84 203 92 02 6^179 0.94 3.71 5.17 11027 85 213 92 02 7^180 0.53 3.65 5.25 10167 87 196 92 02 10^183 0.78 3.61 4.66 11320 90 207 92 02 11^184 0.72 3.52 4.35 12043 104 217 92 02 12^185 0.58 3.33 3.83 13326 86 226 92 02 13^186 0.69 3.35 4.31 11489 91 205 92 02 14^187 0.61 3.33 4.17 11918 82 215 92 02 16^189 0.61 3.66 4.27 12113 103 216 92 02 18^191 0.65 2.64 4.39 12073 47 173 92 02 19^192 1.10 2.61 10.43 5038 14 68 92 02 21^194 0.83 2.58 3.44 15024 54 233 146 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 92 02 24 197 1.13 2.68 8.30 6484 21 98 92 02 27 200 0.96 2.96 3.94 14557 44 226 92 02 28 201 0.88 3.12 8.13 6989 27 100 92 02 29 202 0.72 1.78 3.37 9558 34 141 92 03 1 203 0.90 1.86 3.98 8665 29 134 92 03 2 204 0.91 1.76 6.79 5167 13 76 92 03 3 205 0.93 2.33 9.71 4625 12 71 92 03 4 206 0.73 1.60 4.97 6719 15 98 92 03 5 207 0.88 1.39 4.39 6472 13 95 92 03 6 208 0.69 1.40 3.17 9087 26 134 92 03 7 209 0.93 1.16 5.24 4596 13 74 92 03 10 212 1.06 92 03 11 213 0.94 147 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (mgN/d) 91 08 12 1 1374 12 29 91 08 14 3 1112 9 30 91 08 16 5 882 11 56 91 08 18 7 1453 37 85 91 08 20 9 428 24 90 91 08 23 12 1497 74 97 91 08 26 15 2147 89 98 91 08 28 17 1947 92 99 91 08 31 20 1855 95 99 91 09 2 22 2180 97 100 91 09 4 24 1830 99 10 16.1 100 91 09 7 27 1578 98 10 17.0 100 91 09 9 29 1691 97 10 16.5 100 91 09 12 32 1975 97 10 15.6 100 91 09 16 36 1941 97 10 16.8 99 91 09 17 37 2468 87 10 16.4 97 91 09 19 39 1989 94 10 17.2 99 91 09 21 41 1841 93 10 17.2 99 91 09 23 43 2271 98 10 16.5 100 91 09 26 46 1899 93 10 16.7 99 91 09 28 48 1560 95 10 16.3 99 91 09 30 50 1650 100 10 16.7 100 91 10 2 52 1924 100 10 16.2 100 91 10 4 54 1779 100 10 17.2 100 91 10 6 56 1750 100 10 16.5 100 91 10 8 58 2076 100 10 17.2 100 91 10 11 61 1851 100 10 16.9 100 91 10 14 64 1821 22 10 16.2 70 91 10 16 66 1464 33 10 16.9 84 91 10 18 68 1601 45 10 17.2 91 91 10 20 70 1970 50 10 17.4 91 91 10 23 73 2614 73 10 15.5 95 91 10 25 75 2998 100 10 14.3 100 91 10 27 77 3157 100 10 14.2 100 91 10 29 79 3279 100 10 16.8 100 91 11 1 82 3371 100 10 17.0 100 91 11 3 84 2995 100 10 16.5 100 91 11 5 86 3088 99 10 15.7 100 91 11 7 88 3108 99 10 15.3 100 91 11 10 91 4125 70 10 15.0 95 91 11 12 93 7512 49 10 14.2 81 91 11 13 94 6650 52 10 14.3 84 91 11 15 96 5995 42 10 14.4 81 91 11 17 98 4575 37 10 '3.2 80 91 11 20 101 4754 33 10 14.7 77 91 11 22 103 5971 82 10 13.5 97 148 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (mgN/d) 91 11 25 106 5144 81 10 16.9 97 91 11 26 107 4156 80 10 17.4 97 91 11 29 110 5879 90 10 14.0 98 91 12 2 113 5312 94 10 15.5 99 91 12 4 115 4376 98 10 11.6 100 91 12 6 117 5169 100 10 10.4 100 91 12 7 118 5735 100 10 13.9 100 91 12 9 120 5756 100 10 14.5 100 91 12 11 122 3957 96 10 16.1 100 91 12 13 124 5888 99 10 14.3 100 91 12 16 127 4601 100 10 16.5 100 91 12 18 129 5539 100 10 14.2 100 91 12 20 131 4721 99 10 15.2 100 91 12 22 133 7700 56 10 10.3 89 91 12 24 135 8783 42 10 10.1 82 91 12 26 137 7245 40 10 12.3 82 91 12 30 141 8255 35 10 13.2 77 92 01 2 144 8731 88 10 12.5 98 92 01 5 147 9011 98 10 13.7 100 92 01 6 148 7943 99 10 17.4 100 92 01 8 150 8498 98 10 14.6 100 92 01 10 152 9287 100 10 12.5 100 92 01 12 154 9080 100 10 12.0 100 92 01 14 156 12376 64 10 13.5 93 92 01 15 157 12777 72 10 10.5 95 92 01 17 159 8685 87 10 13.3 99 92 01 20 162 12803 99 10 13.9 100 92 01 22 164 13651 99 10 13.4 100 92 01 24 166 5698 99 10 16.0 100 92 01 26 168 12686 91 10 13.7 99 92 01 30 172 13049 100 10 14.5 100 92 01 31 173 13740 100 10 16.6 100 92 02 2 175 12954 99 10 15.5 100 92 02 3 176 13009 100 10 13.8 100 92 02 5 178 13025 100 10 15.1 100 92 02 6 179 12964 100 10 13.4 100 92 02 7 180 11699 100 10 15.4 100 92 02 10 183 12507 100 10 15.5 100 92 02 11 184 11616 100 10 16.2 100 92 02 12 185 15541 100 10 15.5 100 92 02 13 186 12543 100 10 13.9 100 92 02 14 187 14468 100 10 15.3 100 92 02 16 189 11616 99 10 15.2 100 92 02 18 191 13859 54 10 16.4 90 92 02 19 192 20776 57 10 16.3 87 92 02 21 194 -6886 -25 10 12.3 77 149 AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal InigN/d) 92 02 24 197 16200 52 10 15.3 89 92 02 27 200 5784 18 10 16.3 79 92 02 28 201 12418 47 10 11.6 89 92 02 29 202 7824 28 10 15.8 84 92 03 1 203 11746 40 10 16.0 87 92 03 2 204 11378 29 10 15.5 78 92 03 3 205 4488 11 57.4 73 92 03 4 206 9788 21 97.8 76 92 03 5 207 10139 21 71.5 72 92 03 6 208 5129 15 94.4 79 92 03 7 209 3727 11 39.5 75 92 03 10 212 634 1 69.9 63 92 03 11 213 9298 18 59.0 72 1 50 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(ml/h)^(ml/h)^(Lid)^Wasting^Overflow (Lid)^(L/d) 91 08^12^1 9.9 0 0 0 5.0 59 0 69 91 08^14^3 9.7 0 0 0 5.1 58 0 67 91 08^16^5 9.6 0 0 0 5.3 53 0 63 91 08^18^7 9.8 0 0 0 5.3 60 0 70 91 08^20^9 10.1 0 0 0 5.4 55 0 66 91 08^23^12 9.8 0 0 0 5.0 63 0 73 91 08^26^15 10.0 0 0 0 5.2 62 0 72 91 08^28^17 9.9 0 0 0 5.0 55 0 65 91 08^31^20 10.0 0 0 0 5.3 57 0 68 91 09^2^22 10.0 0 0 0 5.4 56 0.5 66 91 09^4^24 9.8 0 0 0 5.4 62 0.5 72 91 09^7^27 10.0 0 6 0 5.2 62 0.5 73 91 09^9^29 10.0 0 6 0 5.3 66 0.5 77 91 09^12^32 9.8 0 11 0 5.0 68 0.5 78 91 09^16^36 9.6 0 11 0 5.1 64 0.5 74 91 09^17^37 9.8 0 11 0 5.3 66 0.5 76 91 09^19^39 10.0 0 11 0 5.3 61 0.5 72 91 09^21^41 9.8 0 5.4 0 5.2 61 0.5 71 91 09^23^43 9.9 0 5.4 0 4.9 56 0.5 66 91 09^26^46 9.6 0 6.9 0 5.0 61 0.5 71 91 09^28^48 9.5 0 7 0 4.9 60 0.5 70 91 09^30^50 9.4 0 7.1 0 5.2 62 0.5 72 91 10^2^52 9.7 0 6.8 0 5.3 64 0.5 74 91 10^4^54 9.9 0 7.2 0 5.1 67 0.5 77 91 10^6^58 9.6 0 7.4 0 4.9 58 0.5 68 91 10^8^58 9.9 0 7.8 0 5.2 61 0.5 71 91 10^11^61 10.0 0 7.3 0 5.0 61 0.5 71 91 10^14^64 10.1 8.4 6.5 0 4.9 55 0.5 65 91 10^16^66 10.1 8.2 6.8 0 4.8 62 0.5 73 91 10^18^68 10.0 8 6.8 0 4.8 65 0.5 75 91 10^20^70 10.0 8 6.8 0 5.1 58 0.5 68 91 10^23^73 10.0 8.2 7 0 5.3 58 0.5 68 91 10^25^75 9.8 8 7.2 0 5.0 60 0.5 70 91 10^27^77 9.7 8.2 7.1 0 5.2 56 0.5 66 91 10^29^79 9.4 8 7.1 0 5.0 61 0.5 71 91 11^1^82 9.6 8.2 6.9 0 4.8 59 0.5 69 91 11^3^84 9.6 4 6.9 0 5.1 63 0.5 73 91 11^5^88 9.4 3.45 7.2 0 5.1 66 0.5 75 91 11^7^88 9.4 3.2 7 0 5.1 60 0.5 70 91 11^10^91 9.2 6.9 6.9 0 5.0 60 0.5 70 91 11^12^93 9.0 7.1 7.3 0 5.1 54 0.5 64 91 11^13^94 9.4 7.5 7.4 0 5.2 53 0.5 63 91 11^15^96 9.4 7.4 7 0 5.4 54 0.5 63 91 11^17^98 9.7 7.5 6.9 0 5.3 60 0.5 70 91 11^20^101 9.8 7.3 7 4.8 4.8 61 0.5 72 151 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Flowrate Flowrate^i ^ Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^ CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic i (yy mm dd)^(L/d) (mL/h)^(mL/h)^IL/d)^Wasting^Overflow (L/d) (Lid) 91^11 22 103 9.6 7 7 4.6 4.6 64 0.5 74 91^11 25 106 9.9 6.9 7.2 4.3 4.3 56 0.5 66 91^11 26 107 9.7 7.3 7.3 14.9 14.9 60 0.5 70 91^11 29^110 9.6 7.3 7.5 15.3 15.3 56 0.5 66 91^12 2^113 9.6 7.4 7.4 15 15.0 54 0.5 64 91^12 4^115 9.6 7.4 7.4 15 15.0 59 0.5 69 91^12 6^117 9.6 7.8 7.3 15.2 15.2 55 0.5 66 91^12 7^118 9.6 6.9 7.2 14.4 14.4 61 0.5 71 91^12 9^120 9.7 6.8 7.2 14.7 14.7 56 0.5 66 91^12 11^122 9.5 7.4 7.4 15.3 15.3 62 0.5 72 91^12 13^124 9.7 7.5 7.5 15.1 15.1 61 0.5 72 91^12 16^127 9.8 7.5 7.6 15.5 15.5 56 0.5 66 91^12 18^129 9.9 7.4 7.3 15.3 15.3 58 0.5 69 91^12 20^131 9.5 7.7 7.2 14.7 14.7 55 0.5 65 91^12 22 133 9.4 6.6 7.4 14.8 14.8 62 0.5 72 91^12 24 135 9.5 7.3 7.4 15.3 15.3 58 0.5 69 91^12 26 137 9.6 7.3 7.4 15.1 15.1 55 0.5 66 91^12 30^141 9.7 7.3 7.4 15.1 15.1 56 0.5 66 92^01 2^144 9.4 7.3 7.6 31 31.0 52 0.5 63 92^01 5^147 9.3 7.5 7.7 30.9 30.9 63 0.5 73 92^01 6^148 9.5 7.2 7.5 30 30.0 63 0.5 74 92^01 8^150 9.2 7.2 7.4 31 31.0 60 0.5 70 92^01 10^152 9.0 7.3 7.3 29 29.0 52 0.5 62 92^01 12^154 8.9 7 7.4 30 30.0 56 0.5 66 92^01 14^156 8.7 28.9 8.2 41.3 41.3 61 0.5 71 92^01 15^157 8.5 29 8 39 39.0 55 0.5 66 92^01 17^159 8.5 29 7.8 38 38.0 61 0.5 71 92^01 20 162 8.3 29 7.5 36 36.0 54 0.5 64 92^01 22 164 8.4 29 7.4 36 36.0 61 0.5 71 92^01 24 166 8.6 28 7.2 36 36.0 64 0.5 74 92^01 26 168 8.7 27 7.4 36 36.0 59 0.5 70 92^01 30 172 8.7 26.9 7.9 37.3 37.3 54 0.5 64 92^01 31^173 8.6 26 7.5 35 35.0 56 0.5 66 92^02 2^175 8.5 25.6 7 34.4 34.4 54 0.5 64 92^02 3^176 8.6 26 7.3 37.5 37.5 62 0.5 72 92^02 5^178 8.8 27 7.4 38 38.0 55 0.5 66 92^02 6^179 8.7 27.3 7.4 39.5 39.5 52 0.5 63 92^02 7^180 9.0 26 7.4 37 37.0 54 0.5 65 92^02 10^183 8.7 25 7.6 36 36.0 53 0.5 63 92^02 11^184 8.9 26 7.6 37 37.0 56 0.5 67 92^02 12^185 9.1 27 7.7 36 36.0 57 0.5 68 92^02 13^186 8.8 26 7.6 35 35.0 59 0.5 70 92^02 14^187 8.8 26 7.9 34.8 34.8 64 0.5 75 92^02 16^189 8.9 25.8 7.4 36 36.0 66 0.5 77 92^02 18^191 8.6 26 7.3 36 36.0 68 0.5 78 1 52 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 CI ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic (YY mm cid)^(Lid)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/c1)^Wasting^Overflow (L/d) (L/d) 92 02 19^192 8.8 26 7.5 36 36.0 58 0.5 69 92 02 21^194 8.5 26 7.7 36 36.0 58 0.5 68 92 02 24 197 8.7 26 7.7 36 36.0 58 0.5 68 92 02 27 200 8.6 26.2 8.2 32.6 32.6 56 0.5 66 92 02 28 201 8.6 23.5 7.3 36 36.0 55 0.5 65 92 02 29 202 8.5 25.3 7.8 41.4 41.4 52 0 62 92 03 1^203 8.7 24 7.3 40 40.0 61 0 71 92 03 2^204 8.5 25.6 8 41.2 41.2 56 0 66 92 03 3^205 8.5 24.7 8.3 58.4 58.4 59 0 70 92 03 4^206 8.4 27.4 7.9 54.3 54.3 60 0 71 92 03 5^207 8.4 26.9 8 42 42.0 54 0 64 92 03 6^208 8.6 26.9 8 42 42.0 58 0 69 92 03 7^209 8.6 26.9 8 42 42.0 62 0 72 92 03 10 212 8.9 26.4 6.6 35 35.0 60 0 70 92 03 11^213 9.0 30 7.2 35 35.0 55 0 66 1 53 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3 (yy mm dd)^Overflow 19/1-1^Influent NH4^(mL/L)^19P/L)^(g/L) (L/d)^ (mgN/L) 91 08^12^1 69 0 208 0 0.816 0 91 08^14^3 67 0 202 0 0.816 0 91 08^16^5 63 0 213 0 0.816 0 91 08^18^7 70 0 214 0 0.816 0 91 08^20^9 66 0 222 0 0.816 0 91 08^23^12 73 0 243 0 0.816 0 91 08^26^15 72 0 210 0 0.816 0 91 08^28^17 65 0 211 0 0.816 0 91 08^31^20 68 0 215 0 0.816 0 91 09^2^22 66 0 221 0 0.816 0 91 09^4^24 72 0 217 0 0.816 0 91 09^7^27 73 0 203 25 0.816 0 91 09^9^29 77 0 211 25 0.816 0 91 09^12^32 78 0 209 25 0.816 0 91 09^16^36 74 0 195 50 0.816 0 91 09^17^37 76 0 188 50 0.816 0 91 09^19^39 72 0 206 50 0.816 0 91 09^21^41 71 0 192 100 0.816 0 91 09^23^43 66 0 200 100 0.816 0 91 09^26^46 71 0 215 100 0.816 0 91 09^28^48 70 0 190 80 0.816 0 91 09^30^50 72 0 179 50 0.816 0 91 10^2^52 74 0 193 43 0.816 0 91 10^4^54 77 0 203 50 0.816 0 91 10^6^56 68 0 196 50 0.816 0 91 10^8^58 71 0 195 50 0.816 0 91 10^11^61 71 0 183 50 0.816 0 91 10^14^64 65 19 281 50 0.816 0 91 10^16^66 73 19 290 75 0.816 0 91 10^18^68 75 19 314 75 0.816 0 91 10^20^70 68 19 289 75 0.816 0 91 10^23^73 68 19 301 84 0.816 0 91 10^25^75 70 19 288 84 0.816 0 91 10^27^77 66 19 301 70 0.816 0 91 10^29^79 71 19 312 70 0.816 0 91 11^1^82 69 19 320 84 0.816 0 91 11^3^84 73 19 236 84 0.816 0 91 11^5^86 75 55 336 84 0.816 0 91 11^7^88 70 48 318 84 0.816 0 91 11^10^91 70 88 614 84 0.816 0 91 11^12^93 64 88 615 84 0.816 0 91 11^13^94 63 88 620 84 0.816 0 91 11^15^96 63 88 596 84 0.816 0 91 11^17^98 70 88 597 84 0.816 0 91 11^20^101 72 88 595 84 0.816 0 154 AMMONIA LOADING PHASE (20 DAY AEROBIC SAT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3 (yy mm dd)^Overflow (g/L)^Influent NH4^(nt/L)^(gP/L)^(g/LI (Lid)^ (mgN/L) -- ---- 91^11^22^103 75 88 587 84 0.816 15 91^11^25^106 66 88 560 84 0.816 47 91^11^26^107 70 88 625 84 0.245 47 91^11^29^110 66 88 582 84 0.245 54 91^12^2^113 65 88 595 84 0.245 54 91^12^4^115 70 88 610 180 0.245 54 91^12^6^117 66 88 625 135 0.245 54 91^12^7^118 71 88 578 135 0.245 54 91^12^9^120 67 88 547 135 0.245 54 91^12^11^122 72 88 605 100 0.245 54 91^12^13^124 72 88 601 110 0.245 45 91^12^16^127 67 88 543 110 0.245 35 91^12^18^129 69 88 533 110 ').245 35 91^12^20^131 65 88 579 110 0.245 35 91^12^22^133 72 175 910 110 0.408 70 91^12^24^135 69 175 988 150 0.408 70 91^12^26^137 66 175 950 150 0.408 90 91^12^30^141 66 190 1021 150 0.408 90 92^01^2^144 63 190 1034 120 0.204 65 92^01^5^147 74 190 1059 120 0.204 53 92^01^6^148 74 190 1025 120 0.204 53 92^01^8^150 71 190 1080 130 0.204 53 92^01^10 152 63 190 1090 130 0.204 43 92^01^12 154 67 190 1047 130 0.204 43 92^01^14^156 72 70 1463 150 0.245 75 92^01^15^157 67 70 1515 150 0.245 75 92^01^17^159 72 70 1546 150 0.245 75 92^01^20 162 65 70 1565 165 0.202 75 92^01^22 164 72 80 1782 165 0.202 75 92^01^24 166 75 80 1664 165 0.202 69 92^01^26 168 71 80 1623 165 0.202 69 92^01^30 172 65 80 1611 165 0.202 83 92^01^31^173 67 80 1579 165 0.202 83 92^02^2^175 65 80 1581 230 0.231 83 92^02^3^176 73 80 1571 230 0.231 83 92^02^5^178 67 80 1580 165 0.231 75 92^02^6^179 64 80 1599 165 0.231 75 92^02^7^180 66 80 1504 165 0.231 88 92^02^10 183 64 80 1541 245 0.231 88 92^02^11^184 68 80 1535 245 0.231 83 92^02^12 185 69 80 1558 210 0.231 78 92^02^13 186 71 80 1542 210 0.231 78 92^02^14 187 76 80 1559 210 0.231 78 92^02^16 189 78 80 1464 210 0.231 78 92^02^18^191 79 115 2122 210 0.231 83 1 55 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc. Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3 (yy mm dd)^Overflow (g/L)^Influent NH4^(mL/L)^(gP/L)^(g/L) (L/d)^ (mgN/L) 92 02 19^192 69 115 2093 210 0.231 83 92 02 21^194 69 115 2154 210 0.231 83 92 02 24 197 69 115 2099 210 0.231 90 92 02 27 200 67 115 2140 210 0.231 80 92 02 28 201 66 115 1950 100 0.231 83 92 02 29 202 63 115 2086 100 0.231 83 92 03 1^203 72 115 1953 100 0.231 88 92 03 2^204 67 115 2129 100 0.231 88 92 03 3^205 71 115 2072 100 0.231 88 92 03 4^206 72 115 2281 100 0.231 88 92 03 5^207 65 115 2236 100 0.231 88 92 03 6^208 70 115 2194 100 0.231 88 92 03 7^209 73 115 2205 100 0.231 40 92 03 10 212 71 115 2124 100 0.231 20 92 03 11^213 67 115 2302 100 0.231 0 1 56 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ System^System^System^Anoxic^Anoxic Date^Day^ Loading Loading Loading ORP pH (yy mm dd) CH3OH^o-PO4^NaHCO3 (mV) (gCOD/d) (gP/d)^(gCaCO3/d) 91 08 12^1 0.00 0.098 2095 30 91 08 14^3 0.00 0.100 2094 4 91 08 16^5 0.00 0.104 2092 22 91 08 18^7 0.00 0.104 1955 30 91 08 20^9 0.00 0.106 1955 30 91 08 23^12 0.00 0.098 1956 20 91 08 26^15 0.00 0.101 2035 20 91 08 28^17 0.00 0.099 2035 19 7.5 91 08 31^20 0.00 0.103 2034 29 91 09 2^22 0.00 0.105 2034 54 91 09 4^24 0.00 0.106 1885 47 91 09 7^27 4.27 0.102 1860 -28 7.5 91 09 9^29 4.27 0.104 1860 -80 7.9 91 09 12^32 7.84 0.097 1838 -113 8.0 91 09 16^36 15.67 0.100 1836 -105 7.9 91 09 17^37 15.67 0.103 1788 -100 7.8 91 09 19^39 15.67 0.104 1790 -117 7.8 91 09 21^41 15.39 0.103 1813 -106 7.8 91 09 23^43 15.39 0.097 1815 -110 7.8 91 09 26^46 19.66 0.097 1806 -135 7.8 91 09 28^48 15.96 0.097 1806 -126 7.9 91 09 30^50 10.12 0.102 1803 -141 7.8 91 10 2^52 8.33 0.103 1806 -128 7.8 91 10 4^54 10.26 0.100 1806 -165 7.8 91 10 6^56 10.54 0.095 1805 -160 7.8 91 10 8^58 11.11 0.102 1803 -174 7.8 91 10 11^61 10.40 0.099 1806 -184 7.8 91 10 14^64 9.26 0.096 1776 -90 7.9 91 10 16^66 14.53 0.095 1146 -92 7.8 91 10 18^68 14.53 0.095 1146 -112 7.7 91 10 20^70 14.53 0.100 1145 -154 7.7 91 10 23^73 16.75 0.104 1144 -188 7.6 91 10 25^75 17.23 0.099 1143 -140 7.7 91 10 27^77 14.16 0.101 1142 -175 7.7 91 10 29^79 14.16 0.098 1141 -199 7.7 91 11 1^82 16.52 0.094 1143 -215 7.7 91 11 3^84 16.52 0.099 1154 -186 7.7 91 11 5^86 17.23 0.099 1154 -207 7.7 91 11 7^88 16.75 0.100 1155 -207 7.8 91 11 10^91 16.52 0.098 1144 -128 7.6 91 11 12^93 17.47 0.099 1141 -124 7.6 91 11 13^94 17.71 0.102 1142 -105 7.6 91 11 15^96 16.75 0.105 1295 -124 7.7 91 11 17^98 16.52 0.104 1297 -164 7.6 91 11 20^101 16.75 0.094 1314 -209 7.5 1 57 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^System^System^System^Anoxic^Anoxic Date^Day^ Loading Loading Loading ORP pH (yy mm dd) CH3OH^o-PO4^NaHCO3 (mV) ^ (gCOD/d► (gP/d)^(gCaCO3/d) 91 11^22^103 16.75 0.090 1411 -227 7.8 91 11^25^106 17.23 0.084 1597 -415 7.7 91 11^26^107 17.47 0.088 2305 -162 7.8 91 11^29^110 17.95 0.090 2489 -135 8.1 91 12^2^113 17.71 0.088 2466 -138 8.2 91 12^4^115 37.95 0.088 2467 -145 8.2 91 12^6^117 28.08 0.089 2476 -150 8.3 91 12^7^118 27.70 0.085 2416 229 8.1 91 12^9^120 27.70 0.086 2438 -204 8.2 91 12^11^122 21.09 0.090 2499 -169 8.4 91 12^13^124 23.51 0.089 2277 -205 8.3 91 12^16^127 23.82 0.091 2355 -329 8.3 91 12^18^129 22.88 0.090 2343 -330 8.2 91 12^20^131 22.57 0.086 2336 -290 8.1 91 12^22 133 23.19 0.145 3106 -200 8.3 91 12^24 135 31.63 0.150 3139 -180 8.2 91 12^26 137 31.63 0.148 3545 -222 8.4 91 12^30^141 31.63 0.148 3531 -215 7.8 92 01^2^144 25.99 0.152 4526 -200 8.6 92 01^5^147 26.33 0.151 3989 -207 8.5 92 01^6^148 25.64 0.147 3882 -201 8.4 92 01^8^150 27.41 0.152 4031 -182 8.6 92 01^10^152 27.04 0.142 3478 -221 8.2 92 01^12^154 27.41 0.147 3553 -156 8.4 92 01^14^156 35.05 0.243 6116 -160 8.3 92 01^15^157 34.19 0.229 5933 -100 8.3 92 01^17^159 33.34 0.223 5509 -134 8.1 92 01^20 162 35.15 0.175 5371 -210 8.6 92 01^22 164 34.69 0.175 5365 -209 8.4 92 01^24 166 33.75 0.175 4946 -283 8.6 92 01^26 168 34.69 0.175 4892 -156 8.3 92 01^30 172 37.03 0.181 5812 -163 8.6 92 01^31^173 35.15 0.170 5565 -132 8.6 92 02^2^175 45.88 0.191 5584 -150 8.6 92 02^3^176 47.84 0.208 5895 -145 8.5 92 02^5^178 34.69 0.211 5426 -118 8.3 92 02^6^179 34.69 0.219 5614 -108 8.3 92 02^7^180 34.69 0.205 5932 -176 8.6 92 02^10 183 53.06 0.200 5968 -209 8.6 92 02^11^184 53.06 0.205 5681 -180 8.6 92 02^12^185 46.07 0.200 5219 -208 8.5 92 02^13^186 45.48 0.194 5214 -210 8.5 92 02^14 187 47.27 0.193 5210 -215 8.5 92 02^16^189 44.28 0.200 5345 -190 8.5 92 02^18^191 43.68 0.200 5711 -234 8.2 1 58 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^System^System^System^Anoxic^Anoxic Date^Day^ Loading Loading Loading ORP pH (yy mm dd) CH3OH^o-PO4^NaHCO3 (mV) ^ (gCOD/d) (gp/d)^fgCaCO3/d I 92 02 19^192 44.88 0.200 5620 -241 8.1 92 02 21^194 46.07 0.200 5757 -235 8.2 92 02 24 197 46.07 0.200 6074 -197 8.9 92 02 27 200 49.07 0.181 5166 -236 8.4 92 02 28 201 20.80 0.200 5783 -150 8.5 92 02 29 202 22.23 0.230 6467 -142 8.4 92 03 1^203 20.80 0.222 6493 -142 8.3 92 03 2^204 22.80 0.229 6726 -159 8.4 92 03 3^205 23.65 0.324 9076 -160 8.4 92 03 4^206 22.51 0.301 8576 -190 8.9 92 03 5^207 22.80 0.233 6910 -135 8.8 92 03 6^208 22.80 0.233 6799 -144 8.4 92 03 7^209 22.80 0.233 3762 -117 8.4 92 03 10 212 18.81 0.194 2252 -128 8.6 92 03 11^213 20.52 0.194 1206 -117 8.9 1 59 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^IrritA)^In1911-1 91 08^12^1 4.4 223 4 91 08^14^3 4.3 198 5 338 91 08^16^5 4.6 128 35 91 08^18^7 4.6 80 79 91 08^20^9 4.1 45 227 159.0 19 359 91 08^23^12 3.9 39 288 91 08^26^15 3.4 32 200 91 08^28^17 3.4 34 191 1.3 362 91 08^31^20 3.8 29 187 91 09^2^22 3.7 28 201 91 09^4^24 1210 1539 4.1 24 193 0.7 22 347 91 09^7^27 1420 1770 3.8 24 163 91 09^9^29 1750 2238 4.1 28 157 355 91 09^12^32 1820 2292 3.9 25 151 91 09^16^36 1640 2041 4.5 27 40 91 09^17^37 1760 2240 4.5 27 53 1.0 24 347 91 09^19^39 1770 2075 4.1 24 27 91 09^21^41 1760 2023 5.1 26 3 91 09^23^43 1860 2143 4.8 24 1 0.0 329 91 09^26^46 1605 1762 5.3 24 1 91 09^28^48 1990 2189 4.1 24 1 330 91 09^30^50 1840 2190 4.5 26 1 0.0 91 10^2^52 2070 2300 5.3 24 4 91 10^4^54 2240 2867 4.6 25 1 341 91 10^6^56 2060 2396 4.6 26 0 0.0 91 10^8^58 2200 2845 4.0 23 0 91 10^11^61 2110 2536 5.0 25 0 41 348 91 10^14^64 2280 2502 5.3 36 13 0.3 91 10^16^66 2420 2869 4.9 37 5 91 10^18^68 2360 2904 5.3 50 3 354 91 10^20^70 2410 2646 4.2 37 1 91 10^23^73 2690 2986 3.9 33 1 0.0 341 91 10^25^75 2790 3929 4.3 35 1 91 10^27^77 2980 3383 3.7 40 7 369 91 10^29^79 2780 3419 4.8 39 8 91 11^1^82 2850 3159 4.7 40 0 0.0 91 11^3^84 2960 3849 5.2 51 0 335 91 11^5^86 2800 3262 5.1 38 0 91 11^7^88 3230 3992 5.3 44 0 50 392 91 11^10^91 2890 3660 4.6 80 1 91 11^12^93 2880 3757 3.7 174 9 91 11^13^94 2900 3399 3.5 164 11 91 11^15^96 2930 3716 3.8 146 370 91 11^17^98 3040 3589 4.8 138 2 91 11^20^101 2930 3563 3.8 133 1 160 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Date Ivy mm Day dc0 Anoxic VSS (mg/Li Anoxic TSS (mg/Li Anoxic o-PO4 (mg1:11-) Anoxic NH4 (mgN/1.) Anoxic NOx frtigN/1.1 Anoxic NO2 (mgN/L) Anoxic BOO (mg/Li Anoxic COD (mg/Li 91 11 22 103 3140 3937 4.3 125 1 91 11 25 106 2870 3513 4.0 139 1 366 91 11 28 107 2860 3515 3.2 96 7 91 11 29 110 2680 3175 3.6 81 12 91 12 2^113 2990 3758 3.0 78 10 39 385 91 12 4^115 3120 3933 3.6 91 0 91 12 6^117 2960 3415 3.5 85 6 91 12 7^118 3210 3686 3.0 84 1 397 91 12 9^120 3450 4120 3.8 70 0 91 12 11^122 3230 4031 3.9 88 20 91 12 13^124 3330 3845 3.4 80 0 421 91 12 16^127 3110 3583 3.5 75 0 91 12 18^129 3160 3933 4.0 76 1 0.0 91 12 20^131 3330 3790 3.4 82 0 94 431 91 12 22 133 3610 4403 4.1 154 30 91 12 24 135 3660 4466 4.5 139 12 0.2 91 12 26 137 3530 4153 6.5 128 3 91 12 30^141 3490 3905 7.5 133 1 555 92 01 2^144 3530 3980 7.3 130 6 0.0 92 01 5^147 3690 4220 5.9 123 4 92 01 6^148 4090 4669 6.6 120 1 0.0 444 92 01 8^150 4120 4816 5.9 135 3 426 92 01 10^152 3980 4739 5.8 156 0 0.0 78 440 92 01 12^154 3980 4895 5.2 133 0 0.0 407 92 01 14^156 4040 4955 8.1 207 98 2.9 92 01 15^157 3260 4204 8.3 260 97 3.7 105 473 92 01 17^159 2980 3638 10.4 305 118 4.9 92 01 20 162 3450 4356 9.4 193 22 18.0 92 01 22 164 4300 5276 9.4 201 52 15.1 95 507 92 01 24 166 5070 6130 9.1 302 11 4.6 92 01 26 168 4980 5884 6.8 217 67 15.6 92 01 30 172 5410 6704 7.2 196 2 0.7 92 01 31^173 5700 6765 8.4 188 13 6.1 134 533 92 02 2^175 6140 7836 7.7 184 0 1.3 92 02 3^176 6050 7089 6.6 186 1 12.9 92 02 5^178 6110 7705 6.0 189 38 36.0 170 594 92 02 6^179 6280 7427 6.1 191 39 38.0 92 02 7^180 6400 7779 6.0 174 31 22.0 92 02 10^183 6370 7776 5.6 192 0 1.2 457 92 02 11^184 6486 8358 6.5 218 2 1.4 133 502 92 02 12^185 6290 8008 7.1 181 0 0.1 578 92 02 13^186 6600 8303 7.2 207 0 1.1 92 02 14^187 6530 8519 6.6 190 1 0.2 92 02 16^189 6350 7652 6.4 178 0 0.4 141 486 92 02 18^191 7880 10004 5.0 263 0 0.4 672 161 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD (yy mm dd)^Img/L1^Img/L1^(mgPIL)^ImgN/L1^I mgN/L)^(mgN/L)^(mg/L)^I mg/L) 92 02 19 192 8840 11088 6.4 363 1 0.2 92 02 21^194 10410 13713 5.1 358 1 0.3 92 02 24 197 9930 13308 6.5 332 1 0.5 758 92 02 27 200 10290 13678 8.4 468 1 0.7 327 92 02 28 201 8830 11781 7.3 536 45 2.4 92 02 29 202 7360 9634 7.9 491 13 0.6 92 03 1^203 8780 11683 10.2 430 34 0.7 92 03 2^204 7000 9661 11.0 447 3 3.1 294 92 03 3^205 6870 9103 13.6 375 19 1.3 892 92 03 4^206 6610 9206 14.4 394 5 2.5 92 03 5^207 6240 8506 12.1 394 2 0.1 92 03 6^208 5310 7424 10.4 603 11 0.9 92 03 7^209 4990 6310 8.6 548 4 1.2 92 03 10 212 5010 6572 662 410  808 92 03 11^213 6090 8143 758 1 62 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO PH^VSS^TSS^o-PO4^NH4^NOx (yy mm dd) (mg/L)^(mg/L)^(mg/L)^lingP/1.1^(mgN/L)^(mgN/L) 91 08 12^1 4.0 4.8 208 5 91 08 14^3 3.0 3.8 189 6 91 08 16^5 3.5 2730 3898 3.9 108 45 91 08 18^7 4.0 4.2 55 128 91 08 20^9 3.5 7.2 2580 3471 4.4 21 255 91 08 23^12 4.2 3.7 9 349 91 08 26^15 4.0 3.8 4 228 91 08 28^17 4.8 7.3 3.3 2 225 91 08 31^20 4.1 7.8 3.9 2 217 91 09 2^22 4.0 7.7 4.1 2 221 91 09 4^24 4.5 7.8 1344 1737 4.0 2 217 91 09 7^27 4.3 7.7 1660 2111 4.1 0 189 91 09 9^29 4.5 7.8 1800 2330 4.6 0 178 91 09 12^32 4.2 7.8 1850 2350 3.5 0 177 91 09 16^36 4.0 7.7 1880 2395 4.5 1 80 91 09 17^37 4.0 7.6 1810 2354 5.0 3 83 91 09 19^39 4.4 7.7 1790 2140 4.1 2 56 91 09 21^41 2.0 7.6 1800 2121 4.8 1 30 91 09 23^43 3.7 7.6 1990 2288 4.9 0 30 91 09 26^46 3.5 7.6 2010 2257 5.5 1 28 91 09 28^48 3.0 7.7 1970 2222 4.5 0 31 91 09 30^50 3.3 7.6 2220 2652 4.1 0 24 91 10 2^52 3.8 7.5 2110 2345 4.4 0 28 91 10 4^54 3.0 7.5 2140 2724 5.1 0 25 91 10 6^56 3.8 7.5 2230 2629 4.2 0 24 91 10 8^58 3.8 7.5 2130 2747 3.8 0 29 91 10 11^61 3.0 7.5 2200 2661 4.2 0 26 91 10 14^64 3.0 7.4 2460 2742 4.4 22 33 91 10 16^66 3.3 7.4 2410 2849 5.4 17 58 91 10 18^68 3.0 7.3 2310 2849 4.6 25 47 91 10 20^70 3.0 7.4 2490 2807 4.6 12 45 91 10 23^73 4.9 7.3 2670 2991 3.8 5 41 91 10 25^75 4.5 7.3 2530 3541 4.6 0 41 91 10 27^77 4.0 7.2 2980 3455 3.3 1 46 91 10 29^79 3.2 7.3 3000 3670 3.9 0 50 91 11 1^82 2.5 7.3 2950 3357 4.0 0 46 91 11 3^84 3.0 7.3 2840 3758 5.4 0 46 91 11 5^86 2.0 7.4 2790 3333 5.0 0 41 91 11 7^88 3.5 7.3 2920 3592 6.0 0 43 91 11 10^91 4.5 6.5 2990 3861 4.9 8 51 91 11 12^93 4.5 5.8 3120 4065 4.2 68 67 91 11 13^94 3.9 5.8 3080 3651 4.0 58 72 91 11 15^96 3.4 6.0 2880 3750 3.4 57 81 91 11 17^98 3.5 5.8 2790 3305 5.2 64 98 91 11 20^101 4.0 5.7 2850 3444 4.0 56 95 1 63 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO pH^VSS^TSB^o-PO4^NH4^NOx (yy mm dd) (mg/.1^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^Im9N/L) 91 11 22 103 3.0 5.8 2780 3561 4.7 62 96 91 11 25 106 4.5 5.8 2650 3277 3.8 96 79 91 11 26 107 3.8 5.9 2720 3395 3.7 20 106 91 11 29 110 4.0 7.5 3040 3630 3.4 0 133 91 12 2^113 4.5 7.7 3270 4190 3.5 0 134 91 12 4^115 3.5 7.5 3330 4198 4.0 0 77 91 12 6^117 3.5 7.4 3200 3786 3.8 0 121 91 12 7^118 2.5 7.6 3340 3917 3.2 0 80 91 12 9^120 4.0 7.7 3560 4365 3.7 0 86 91 12 11^122 5.0 7.3 3390 4206 4.4 0 120 91 12 13^124 2.5 7.4 3460 4083 3.8 0 117 91 12 16^127 4.0 7.5 3420 4047 3.4 0 84 91 12 18^129 3.0 7.3 3550 4510 3.5 0 80 91 12 20^131 3.0 7.0 3380 3910 3.9 0 88 91 12 22 133 5.0 6.5 3510 4272 3.9 18 162 91 12 24 135 4.0 6.3 3480 4259 3.9 3 117 91 12 26 137 3.5 6.5 3550 4209 5.5 0 150 91 12 30^141 2.5 6.0 3660 4100 6.2 2 141 92 01 2^144 3.0 7.7 3650 4119 7.8 0 183 92 01 5^147 3.0 7.2 3840 4413 7.1 0 130 92 01 6^148 2.7 7.3 3780 4341 5.9 0 153 92 01 8^150 2.5 7.4 3910 4594 5.1 0 128 92 01 10^152 3.0 7.0 3820 4668 5.4 0 138 92 01 12^154 4.0 7.3 3940 4941 5.1 0 141 92 01 14 156 1.5 6.5 3780 4699 6.7 1 299 92 01 15^157 2.2 6.4 3740 4849 7.3 122 218 92 01 17^159 4.6 6.4 3610 4455 10.7 138 291 92 01 20 162 3.8 7.2 4280 5402 8.9 1 170 92 01 22 164 3.1 6.3 4640 5684 8.0 5 231 92 01 24 166 2.4 8.0 4720 5861 7.5 94 255 92 01 26 168 5.0 6.2 5020 5902 6.7 19 205 92 01 30 172 3.0 7.7 5530 7000 7.8 0 159 92 01 31^173 1.8 6.6 6780 8060 9.1 0 166 92 02 2^175 2.5 7.4 6760 8710 8.6 0 135 92 02 3^176 2.2 7.5 6920 8072 7.7 0 137 92 02 5^178 2.4 6.5 6500 8407 6.2 2 175 92 02 6^179 2.3 6.1 6660 8064 6.4 2 182 92 02 7^180 5.4 7.3 6490 7949 5.5 0 188 92 02 10^183 3.5 7.4 6520 7928 5.5 0 175 92 02 11^184 2.5 7.4 6410 8256 7.2 0 172 92 02 12^185 2.3 7.4 6530 8408 6.2 0 170 92 02 13^186 2.2 7.3 6340 8039 6.1 0 194 92 02 14^187 1.9 7.4 6600 8565 7.4 0 167 92 02 16^189 2.5 7.2 6360 7778 6.2 0 179 92 02 18^191 1.7 6.6 7990 10282 5.5 26 148 1 64 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx Ivy mm dd) Img/t.)^(mg/L)^(mg/L)^(mgP/L)^(mgNit.)^(mgN/1-) 92 02 19^192 1.7 6.5 9510 12071 6.9 74 110 92 02 21^194 1.1 6.6 9450 12463 5.1 141 110 92 02 24 197 1.2 7.7 11900 16330 5.8 150 128 92 02 27 200 0.8 7.1 11880 16024 9.2 120 157 92 02 28 201 5.0 7.4 10130 13502 7.9 185 258 92 02 29 202 2.7 6.7 10540 14159 9.0 200 182 92 03 1^203 4.0 7.2 12490 16956 9.8 204 238 92 03 2^204 1.8 7.1 9470 13154 10.2 364 91 92 03 3^205 5.0 7.3 11340 15244 10.9 195 215 92 03 4^206 2.0 7.9 10650 14790 15.6 282 104 92 03 5^207 5.0 7.7 8210 11258 12.6 235 133 92 03 6^208 0.5 8.0 5090 7149 11.0 421 124 92 03 7^209 6.0 8.1 6280 8098 9.8 477 82 92 03 10 212 9.0 8.3 3080 4072 512 92 03 11^213 9.5 8.9 4520 6063 593 1 65 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Date ivy mm Day dd) Aerobic NO2 (mgNIL) Aerobic BOD (mg/L) Aerobic COD (mg/L) Effluent VSS Img/L) Effluent TSS (mg/L) Effluent NH4 (mg111/1.) Effluent NOx (mgN/L) 91 08 12^1 212 5 91 08 14^3 281 187 6 91 08 16^5 118 168 105 43 91 08 18^7 55 127 91 08 20^9 176.0 13 274 94 125 21 257 91 08 23^12 12 306 91 08 26^15 4 235 91 08 28^17 7.2 318 2 215 91 08 31^20 2 216 91 09 2^22 1 218 91 09 4^24 3.9 14 273 21 27 2 217 91 09 7^27 16 20 0 193 91 09 9^29 286 20 26 0 176 91 09 12^32 28 35 0 177 91 09 16^36 37 46 1 82 91 09 17^37 2.3 11 268 41 53 3 85 91 09 19^39 26 31 2 53 91 09 21^41 54 63 1 29 91 09 23^43 1.0 270 36 41 0 30 91 09 26^46 29 32 1 28 91 09 28^48 258 37 41 0 30 91 09 30^50 0.9 23 28 0 23 91 10 2^52 18 20 0 27 91 10 4^54 273 19 24 0 24 91 10 6^56 0.9 35 41 0 23 91 10 8^58 40 50 0 29 91 10 11^61 6 290 45 56 0 26 91 10 14^64 1.4 38 42 22 33 91 10 16^66 32 37 17 55 91 10 18^68 264 44 51 24 45 91 10 20^70 26 29 12 42 91 10 23^73 1.7 248 25 28 5 42 91 10 25^75 45 51 0 41 91 10 27^77 271 37 43 1 40 91 10 29^79 73 90 0 47 91 11 1^82 2.0 48 54 0 38 91 11 3^84 285 42 52 0 45 91 11 5^86 59 65 0 43 91 11 7^88 11 292 15 18 0 41 91 11 10^91 37 46 8 51 91 11 12^93 65 83 69 71 91 11 13^94 49 60 57 71 91 11 15^96 281 16 21 56 83 91 11 17^98 36 43 63 98 91 11 20^101 66 80 54 90 166 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOO^COD VSS^TSS^NH4^NOx (yy mm dcl)^ImgN/1.1^(mg/L)^(mg/L)^(mg/L)^(mg/L)^ImgN/1.1^ImaN/1.1 91 11 22 103 84 107 58 93 91 11 25 106 291 108 133 93 78 91 11 26 107 116 145 20 100 91 11 29 110 151 184 0 113 91 12 2 113 6 291 141 186 0 124 91 12 4 115 127 159 0 75 91 12 6 117 99 116 0 123 91 12 7 118 279 87 104 0 79 91 12 9 120 112 137 0 81 91 12 11 122 54 68 0 119 91 12 13 124 286 93 111 0 109 91 12 16 127 119 144 0 86 91 12 18 129 13.5 100 127 0 84 91 12 20 131 12 331 51 57 0 88 91 12 22 133 95 115 18 159 91 12 24 135 96.5 110 134 2 123 91 12 26 137 184 220 1 148 91 12 30 141 385 136 149 1 138 92 01 2 144 108.0 68 76 0 180 92 01 5 147 132 148 0 127 92 01 6 146 64.2 352 121 143 0 140 92 01 8 150 343 138 167 0 126 92 01 10 152 73.0 19 329 141 169 0 144 92 01 12 154 89.0 389 94 116 0 139 92 01 14 156 74.5 215 268 1 296 92 01 15 157 86.4 12 381 196 259 120 209 92 01 17 159 43.5 152 189 135 281 92 01 20 162 132.0 130 164 1 170 92 01 22 164 155.0 8 333 333 402 5 215 92 01 24 166 118.0 164 200 94 263 92 01 26 168 142.0 131 152 21 204 92 01 30 172 125.0 121 157 0 153 92 01 31 173 105.0 11 411 76 88 0 159 92 02 2 175 117.0 115 146 0 126 92 02 3 176 123.0 114 131 0 132 92 02 5 178 161.0 14 405 190 243 2 173 92 02 6 179 159.0 144 178 2 184 92 02 7 180 141.0 150 188 0 194 92 02 10 183 135.0 363 127 154 0 180 92 02 11 184 112.0 14 368 120 147 0 160 92 02 12 185 119.0 382 111 147 0 175 92 02 13 186 104.0 113 142 0 199 92 02 14 187 107.0 98 129 0 167 92 02 16 189 95.0 18 356 90 110 0 187 92 02 18 191 114.0 480 353 456 26 153 167 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^Effluent Date^Day^NO2^BOD^COD VSS^TSS^NH4^NOx (yy mm dd)^(mgN/L)^(mgA.)^DMA)^Img/LI^(mg/L)^(mgN/L)^(mgN/L) 92 02 19^192 121.0 155 197 74 109 92 02 21^194 108.0 392 524 143 111 92 02 24 197 107.0 504 151 208 138 126 92 02 27 200 110.0 38 111 152 124 147 92 02 28 201 142.0 260 347 175 264 92 02 29 202 155.0 528 731 194 174 92 03 1^203 197.0 214 257 210 232 92 03 2^204 103.0 40 582 796 169 88 92 03 3^205 206.0 604 183 245 198 206 92 03 4^206 91.2 560 798 185 100 92 03 5^207 96.0 206 281 231 128 92 03 6^208 112.0 140 194 322 118 92 03 7^209 75.0 128 164 384 80 92 03 10 212 58 563 239 309 497 92 03 11^213 172 233 578 1 68 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOO^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^fmg/L)^(mg/1-) (gN/d)^Entering^Removed (gCOD/gN) (gCOO/gN) 91 08 12^1 0.3 0.0 91 08 14^3 264 0.4 0.0 91 08 16^5 2.4 0.0 91 08 18^7 7.6 0.0 91 08 20^9 14 284 0.70 14.1 0.0 91 08 23^12 22.0 0.0 91 08 26^15 14.7 0.0 91 08 28^17 322 0.01 12.5 0.0 0.0 91 08 31^20 12.5 0.0 0.0 91 09 2^22 12.4 0.0 0.0 91 09 4^24 12 270 0.79 0.00 13.5 0.0 0.0 91 09 7^27 0.80 11.9 0.4 1020.6 91 09 9^29 272 0.78 11.9 0.4 -23.5 91 09 12^32 0.79 12.0 0.7 32.1 91 09 16^36 0.80 5.1 3.1 7.1 91 09 17^37 11 265 0.79 0.02 5.5 2.8 10.9 91 09 19^39 0.85 3.5 4.5 10.2 91 09 21^41 0.87 1.8 8.5 9.5 91 09 23^43 276 0.87 0.06 1.7 9.0 9.2 91 09 26^46 0.91 1.7 11.5 12.3 91 09 28^48 262 0.91 1.9 8.6 8.9 91 09 30^50 0.84 0.04 1.5 6.9 7.2 91 10 2^52 0.90 1.8 4.6 5.4 91 10 4^54 267 0.78 1.8 5.8 6.0 91 10 6^56 0.86 0.04 1.5 7.1 7.2 91 10 8^58 0.77 .8 6.1 6.1 91 10 11^61 5 294 0.83 1.6 6.4 6.5 91 10 14^64 0.91 0.03 1.8 5.1 9.3 91 10 16^66 0.84 3.6 4.0 4.5 91 10 18^68 246 0.81 3.1 4.7 5.1 91 10 20^70 0.91 2.6 5.6 5.8 91 10 23^73 241 0.90 0.04 2.4 7.0 7.2 91 10 25^75 0.71 2.4 7.1 7.2 91 10 27^77 280 0.88 2.6 5.5 6.6 91 10 29^79 0.81 3.0 4.7 5.7 91 11 1^82 0.90 0.02 2.7 6.1 6.1 91 11 3^84 271 0.77 2.9 5.7 5.8 91 11 5^86 0.86 2.7 6.4 6.4 91 11 7^88 10 297 0.81 2.6 6.5 6.6 91 11 10^91 0.79 3.1 5.3 5.5 91 11 12^93 0.77 3.6 4.8 5.7 91 11 13^94 0.85 3.9 4.6 5.6 91 11 15^96 269 0.79 4.3 3.9 4.0 91 11 17^98 0.85 5.9 2.8 2.9 91 11 20^101 0.82 5.9 2.9 2.9 1 69 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX (yy mm dd)^(mg/t)^(mg/LI (gN/d)^Entering^Removed (gCOD/gN)^(gCOD/gN) 91 11^22^103 0.80 6.2 2.7 2.7 91 11^25^106 295 0.82 4.4 3.9 4.0 91 11^26^107 0.81 6.3 2.8 3.0 91 11^29^110 0.84 7.4 2.4 2.7 91 12^2^113 8 278 0.80 7.2 2.4 2.7 91 12^4^115 0.79 4.5 8.3 8.4 91 12^6^117 0.87 6.7 4.2 4.5 91 12^7^118 267 0.87 4.8 5.7 5.8 91 12^9^120 0.84 4.8 5.7 5.8 91 12^11^122 0.80 7.4 2.9 3.6 91 12^13^124 289 0.87 7.2 3.3 3.3 91 12^16^127 0.87 4.7 5.1 5.1 91 12^18^129 0.80 0.02 4.7 4.9 4.9 91 12^20^131 11 342 0.88 4.8 4.7 4.7 91 12^22^133 0.82 10.0 2.3 2.9 91 12^24^135 0.82 0.02 6.9 4.6 5.2 91 12^26 137 0.85 8.3 3.8 3.9 91 12^30^141 387 0.89 7.9 4.0 4.1 92 01^2^144 0.89 0.00 9.6 2.7 2.8 92 01^5^147 0.87 8.2 3.2 3.3 92 01^6^148 357 0.88 0.03 9.6 2.7 2.7 92 01^8^150 350 0.86 7.7 3.6 3.7 92 01^10^152 23 333 0.84 0.02 7.2 3.8 3.8 92 01^12^154 384 0.81 7.9 3.5 3.5 92 01^14^156 0.82 0.03 18.2 1.9 3.1 92 01^15^157 10 388 0.78 0.04 12.1 2.8 5.9 92 01^17^159 0.82 0.04 17.8 1.9 3.5 92 01^20^162 0.79 0.83 9.1 3.9 4.5 92 01^22 164 8 325 0.81 0.29 14.1 2.5 3.3 92 01^24 166 0.83 0.40 16.2 2.1 2.2 92 01^26^168 0.85 0.23 12.2 2.9 4.6 92 01^30^172 0.81 0.45 8.6 4.3 4.4 92 01^31^173 14 406 0.84 0.49 9.3 3.8 4.1 92 02^2^175 0.78 3.15 7.3 6.3 6.3 92 02^3^176 0.85 10.49 8. 5.6 5.7 92 02^5^178 11 415 0.79 0.96 9.. 3.6 4.8 92 02^6^179 0.85 0.97 9.5 3.7 4.9 92 02^7^180 0.82 0.72 10.2 3.4 4.2 92 02^10^183 362 0.82 8.51 9.2 5.7 5.8 92 02^11^184 16 358 0.78 0.73 9.7 5.5 5.6 92 02^12 185 388 0.79 0.26 9.7 4.8 4.8 92 02^13^186 0.79 2.61 11.5 3.9 4.0 92 02^14 187 0.77 0.14 10.8 4.4 4.4 92 02^16^189 16 345 0.83 0.93 11.8 3.7 3.7 92 02^18^191 478 0.79 1.10 10.0 4.4 4.4 1 70 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Date Ivy mm Day dd) Effluent BOO (mg/L) Effluent COD (m9/1-) Anoxic VSS/TSS Anoxic NO2/NOX Anoxic NOX Load (gN/d) Anoxic COD:NOX Entering I gCOD/gN) Anoxic COD:NOX Removed (gCOD/gN) 92 02 19^192 0.80 0.36 6.4 7.0 7.1 92 02 21^194 0.76 0.43 6.4 7.2 7.3 92 02 24 197 484 0.75 0.81 7.4 6.2 6.2 92 02 27 200 29 0.75 1.01 8.8 5.6 5.6 92 02 28 201 0.75 0.05 14.2 1.5 1.8 92 02 29 202 0.76 0.04 9.4 2.4 2.6 92 03 1^203 0.75 0.02 14.6 1.4 1.7 92 03 2^204 41 0.72 1.19 5.1 4.5 4.6 92 03 3^205 624 0.75 0.07 12.7 1.9 2.1 92 03 4^206 0.72 0.47 6.3 3.6 3.8 92 03 5^207 0.73 0.06 7.2 3.2 3.2 92 03 6^208 0.72 0.08 7.3 3.1 3.5 92 03 7^209 0.79 0.33 5.1 4.5 4.7 92 03 10 212 63 576 0.76 92 03 11^213 0.75 171 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS (yy mm dd)^Rate Denitm Rate^Rate Removal (mgN/d)^(mgN/d/gVSS) (mgN/d) 91 08 12^1 -1057 -7 91 08 14^3 -461 -4 91 08 16^5 -230 -3 0.70 91 08 18^7 -134 -2 91 08 20^9 485 14 0.74 91 08 23^12 163 5 91 08 26^15 70 3 91 08 28^17 162 1 -16 36 2 91 08 31^20 -154 -1 15 311 14 91 09 2^22 -868 -7 87 461 20 91 09 4^24 -389 -3 -321 595 26 0.77 91 09 7^27 4 0 3 370 17 0.79 91 09 9^29 -182 -2 -104 53 2 0.77 91 09 12^32 244 2 134 237 11 0.79 91 09 16^36 2196 43 1339 39 2 0.79 91 09 17^37 1438 26 817 3 0 0.77 91 09 19^39 1530 44 864 528 24 0.84 91 09 21^41 1627 89 924 166 8 0.85 91 09 23^43 1665 97 895 471 23 0.87 91 09 26^46 1604 94 1000 440 20 0.89 91 09 28^48 1788 97 899 214 11 0.89 91 09 30^50 1398 96 760 -135 -8 0.84 91 10 2^52 1536 84 742 173 9 0.90 91 10 4^54 1716 97 766 184 9 0.79 91 10 6^56 1470 98 714 164 8 0.85 91 10 8^58 1819 99 827 349 18 0.78 91 10 11^61 1602 99 759 81 4 0.83 91 10 14^64 991 54 435 1804 43 0.90 91 10 16^66 3254 90 1345 1450 35 0.85 91 10 18^68 2842 92 1204 1142 23 0.81 91 10 20^70 2511 97 1042 1173 32 0.89 91 10 23^73 2337 98 869 1152 34 0.89 91 10 25^75 2381 98 853 543 18 0.71 91 10 27^77 2144 83 720 483 15 0.86 91 10 29^79 2492 82 896 301 10 0.82 91 11 1^82 2688 99 943 489 15 0.88 91 11 3^84 2860 99 966 -1364 -57 0.76 91 11 5^86 2674 99 955 398 12 0.84 91 11 7^88 2536 99 785 77 2 0.81 91 11 10^91 2998 97 1037 792 12 0.77 91 11 12^93 3051 84 1059 -1559 16 0.77 91 11 13^94 3140 81 1083 -1135 -12 0.84 91 11 15^96 4208 97 1436 -340 -4 0.77 91 11 17^98 5739 98 1888 223 2 0.84 91 11 20^101 5761 98 1966 -60 -1 0.83 1 72 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS (yy mm dd)^Rate Denitrn Rate^Rate Removal (mgN/d)^(mgN/d/gVSS) (mgN/d) 91 11 22 103 6158 99 1961 502 5 0.78 91 11 25 106 4324 98 1507 1914 17 0.81 91 11 26^107 5823 92 2036 800 11 0.80 91 11 29^110 6619 89 2470 479 8 0.84 91 12 2^113 6590 91 2204 930 16 0.78 91 12 4^115 4538 100 1454 -178 -3 0.79 91 12 6^117 6309 94 2132 703 11 0.85 91 12 7^118 4771 99 1486 -162 -3 0.85 91 12 9^120 4799 99 1391 822 15 0.82 91 12 11^122 5931 80 1836 -326 -5 0.81 91 12 13^124 7159 100 2150 332 5 0.85 91 12 16^127 4686 100 1507 611 11 0.85 91 12 18^129 4643 99 1469 248 5 0.79 91 12 20^131 4785 99 1437 427 7 0.86 91 12 22 133 7871 79 2180 -1004 -10 0.82 91 12 24^135 6076 89 1660 435 4 0.82 91 12 26^137 8130 98 2303 1104 12 0.84 91 12 30^141 7808 99 2237 1580 15 0.89 92 01 2^144 9168 96 2597 2093 21 0.89 92 01 5^147 7925 97 2148 1296 13 0.87 92 01 6^148 9564 99 2338 1334 13 0.87 92 01 8^150 7490 97 1818 912 9 0.85 92 01 10^152 7179 100 1804 607 6 0.82 92 01 12^154 7914 100 1988 1040 11 0.80 92 01 14^156 11316 62 2801 -521 -4 0.80 92 01 15^157 5771 48 1770 4172 20 0.77 92 01 17^159 9447 53 3170 1503 7 0.81 92 01 20 162 7762 85 2250 2333 16 0.79 92 01 22 164 10477 74 2437 2591 15 0.82 92 01 24 166 15389 95 3035 -390 -2 0.81 92 01 26 168 7550 62 1516 1695 10 0.85 92 01 30^172 8458 99 1563 2962 19 0.79 92 01 31^173 8511 91 1493 2605 17 0.84 92 02 2^175 7263 100 1183 3008 21 0.78 92 02 3^176 8408 99 1390 1532 10 0.86 92 02 5^178 7228 75 1183 3066 20 0.77 92 02 6^179 7093 75 1130 3615 23 0.83 92 02 7^180 8218 81 1284 3623 25 0.82 92 02 10^183 9223 100 1448 2622 18 0.82 92 02 11^184 9541 99 1471 573 4 0.78 92 02 12^185 9656 100 1535 3353 22 0.78 92 02 13^186 11493 100 1741 611 4 0.79 92 02 14^187 10669 99 1634 902 6 0.77 92 02 16^189 11817 100 1861 648 5 0.82 92 02 18^191 9986 100 1267 1532 7 0.78 1 73 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Aerobic Date^Day^Denitm %Denitrn Specific NH4 Removal^% NH4 VSS/TSS (yy mm dd)^Rate Denitm Rate^Rate Removal (mgN/d)^(mgN/d/gVSS) (mgN/d) 92 02 19 192 6365 99 720 -132 -1 0.79 92 02 21 194 6353 99 610 4195 15 0.76 92 02 24 197 7390 99 744 6305 22 0.73 92 02 27 200 8733 99 849 -3636 -14 0.74 92 02 28 201 11276 79 1277 -6116 -22 0.75 92 02 29 202 8612 91 1170 -230 -1 0.74 92 03 1 203 12127 83 1381 653 2 0.74 92 03 2 204 4933 97 705 11085 28 0.72 92 03 3 205 11365 90 1654 5146 17 0.74 92 03 4 206 5925 94 896 10615 28 0.72 92 03 5 207 7098 98 1137 8352 25 0.73 92 03 6 208 6559 90 1235 4309 10 0.71 92 03 7 209 4844 95 971 11162 22 0.78 92 03 10 212 5119 10 0.76 92 03 11 213 6238 11 0.75 1 74 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NOVNOX^ALK:NH4^AUC:N H4^Nitrn^%Nitm Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 91 08 12^1 10.05 495.87 42 0 91 08 14^3 10.34 638.78 32 0 91 08 16^5 9.81 33.48 607 8 22 91 08 18^7 9.12 5.74 3375 61 91 08 20^9 0.69 8.80 10.89 1835 62 71 91 08 23^12 8.05 4.38 4451 157 91 08 26^15 9.67 10.17 2019 89 91 08 28^17 0.03 9.63 9.25 2202 100 91 08 31^20 9.45 10.19 2028 102 91 09 2^22 9.20 15.56 1324 71 91 09 4^24 0.02 8.68 10.87 1728 102 129 91 09 7^27 9.18 10.15 1890 108 114 91 09 9^29 8.80 11.85 1610 75 89 91 09 12^32 8.80 9.25 2029 105 110 91 09 16^36 9.41 6.17 2979 150 158 91 09 17^37 0.03 9.49 7.99 2272 109 126 91 09 19^39 8.69 8.81 2104 123 118 91 09 21^41 9.44 9.49 1924 105 107 91 09 23^43 0.03 9.07 9.41 1956 124 98 91 09 26^46 8.42 9.53 1869 108 93 91 09 28^48 9.49 8.50 2088 125 106 91 09 30^50 0.04 10.05 10.78 1624 87 73 91 10 2^52 9.35 10.20 1762 101 83 91 10 4^54 8.90 10.03 1834 97 86 91 10 6^56 0.04 9.21 11.30 1576 89 71 91 10 8^58 9.25 9.07 2027 124 95 91 10 11^61 9.89 10.28 1808 101 82 91 10 14^64 0.04 6.33 14.25 1316 56 54 91 10 16^66 3.96 3.15 3859 143 160 91 10 18^68 3.65 3.59 3333 89 144 91 10 20^70 3.96 4.03 2978 117 120 91 10 23^73 0.04 3.80 4.33 2762 121 103 91 10 25^75 3.97 4.19 2793 116 110 91 10 27^77 3.79 4.45 2607 98 87 91 10 29^79 3.66 3.80 2973 107 99 91 11 1^82 0.04 3.57 3.65 3147 115 107 91 11 3^84 4.89 3.47 3308 89 116 91 11 5^86 3.43 3.68 3066 106 110 91 11 7^88 3.63 3.82 2944 97 101 91 11 10^91 1.86 3.15 3483 63 116 91 11 12^93 1.85 2.93 3682 33 118 91 11 13^94 1.84 2.94 3852 37 125 91 11 15^96 2.17 2.55 5002 54 174 91 11 17^98 2.17 1.96 6731 70 241 91 11 20^101 2.21 1.97 6733 71 236 1 75 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 91 11 22 103 2.40 1.97 7124 77 256 91 11 25 106 2.85 3.18 5136 56 194 91 11 26 107 3.69 3.36 6920 103 254 91 11 29 110 4.28 3.09 7986 151 263 91 12 2^113 4.14 3.07 7966 160 244 91 12 4^115 4.04 4.59 5330 85 160 91 12 6^117 3.96 3.27 7556 136 236 91 12 7^118 4.18 4.32 5588 94 167 91 12 9^120 4.46 4.29 5681 122 160 91 12 11^122 4.13 3.44 7146 114 211 91 12 13 124 3.79 2.73 8374 146 242 91 12 16^127 4.34 4.29 5571 114 163 91 12 18^129 0.17 4.39 4.36 5489 105 155 91 12 20^131 4.03 4.06 5673 107 168 91 12 22 133 3.41 3.20 9508 86 271 91 12 24 135 0.82 3.18 4.26 7277 77 209 91 12 26 137 3.73 3.64 9669 116 272 91 12 30^141 3.46 3.82 9263 106 253 92 01 2^144 0.59 4.38 4.00 11089 138 304 92 01 5^147 3.77 4.15 9271 104 241 92 01 6^148 0.42 3.79 3.41 11170 128 296 92 01 8^150 3.73 4.36 8799 94 225 92 01 10 152 0.53 3.19 3.79 8554 89 224 92 01 12^154 0.63 3.39 3.54 9312 107 236 92 01 14^156 0.25 4.18 4.05 14470 99 383 92 01 15^157 0.40 3.92 6.96 8021 48 214 92 01 17^159 0.15 3.56 4.17 12448 58 345 92 01 20 162 0.78 3.43 5.23 9469 78 221 92 01 22 164 0.67 3.01 3.87 12805 90 276 92 01 24 166 0.46 2.97 2.59 18008 82 382 92 01 26 168 0.69 3.01 4.84 9681 65 193 92 01 30^172 0.79 3.61 5.48 10107 81 183 92 01 31^173 0.63 3.52 5.15 10213 83 151 92 02 2^175 0.87 3.53 5.99 8619 74 128 92 02 3^176 0.90 3.75 5.65 9812 74 142 92 02 5^178 0.92 3.43 5.77 9062 74 139 92 02 6^179 0.87 3.51 5.97 9003 76 135 92 02 7^180 0.75 3.94 5.68 10213 92 157 92 02 10^183 0.77 3.87 5.11 11018 92 169 92 02 11^184 0.65 3.70 4.87 11363 79 177 92 02 12^185 0.64 3.35 4.51 11485 95 176 92 02 13^186 0.54 3.38 3.72 13520 95 213 92 02 14^187 0.64 3.34 4.03 12403 88 188 92 02 16^189 0.53 3.65 3.77 13691 101 215 92 02 18^191 0.77 2.69 4.69 11489 57 144 1 76 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) ^ Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day NO2/NOX^ALK:N H4^ALK:N H4^Nitrn^%Nitm Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 92 02 19^192 1.10 2.68 7.23 7482 30 79 92 02 21^194 0.98 2.67 7.22 7441 31 79 92 02 24 197 0.84 2.89 6.66 8684 39 73 92 02 27 200 0.70 2.41 4.72 10299 34 87 92 02 28 201 0.55 2.97 3.88 13869 40 137 92 02 29 202 0.85 3.10 5.74 10457 35 99 92 03 1^203 0.83 3.33 4.22 14579 48 117 92 03 2^204 1.13 3.16 10.76 5836 20 62 92 03 3^205 0.96 4.38 6.18 13642 53 120 92 03 4^206 0.88 3.76 11.29 6994 26 66 92 03 5^207 0.72 3.09 7.54 8429 34 103 92 03 6^208 0.90 3.10 8.16 7819 19 154 92 03 7^209 0.91 1.71 6.22 5678 15 90 92 03 10 212 1.06 -2.59 92 03 11^213 0.52 -1.42 1 77 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (mgN/d) 91 08 12^1 1062 7 0 91 08 14^3 593 4 7 91 08 16^5 1252 16 49 91 08 18^7 1712 31 74 91 08 20^9 1566 53 90 91 08 23^12 2169 77 96 91 08 26^15 2016 89 98 91 08 28^17 2058 94 99 91 08 31^20 1856 94 99 91 09 2^22 1763 94 20 99 91 09 4^24 1548 91 20 28.4 99 91 09 7^27 1716 98 20 30.7 100 91 09 9^29 2110 99 20 30.9 100 91 09 12^32 1888 98 20 29.1 100 91 09 16^36 1903 96 20 26.5 99 91 09 17^37 1881 90 20 26.0 99 91 09 19^39 1587 93 20 29.3 99 91 09 21^41 1759 96 20 23.7 100 91 09 23^43 1552 98 20 27.5 100 91 09 26^46 1667 97 20 28.2 100 91 09 28^48 1654 99 20 28.0 100 91 09 30^50 1878 100 20 30.4 100 91 10 2^52 1751 100 20 32.5 100 91 10 4^54 1882 100 20 32.7 100 91 10 6^56 1770 100 20 28.6 100 91 10 8^58 1637 100 20 27.9 100 91 10 11^61 1797 100 20 26.6 100 91 10 14^64 930 39 20 28.3 92 91 10 16^66 1436 53 20 29.8 94 91 10 18^68 1886 50 20 27.5 92 91 10 20^70 1731 68 20 31.1 96 91 10 23^73 1943 85 20 32.0 98 91 10 25^75 2408 100 20 28.7 100 91 10 27^77 2568 97 20 30.5 100 91 10 29^79 2784 100 20 25.3 100 91 11 1^82 2726 100 20 28.5 100 91 11 3^84 3703 99 20 29.8 100 91 11 5^86 2887 100 20 27.1 100 91 11 7^88 3026 100 20 35.7 100 91 11 10^91 5034 90 20 30.6 99 91 11 12^93 6738 61 20 26.8 89 91 11 13^94 6716 65 20 28.6 91 91 11 15^96 5650 61 20 34.6 90 91 11 17^98 5190 54 20 31.0 89 91 11 20^101 5505 58 20 26.1 90 1 78 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 lyy mm ddl^Rate Removal (days)^(days) Removal (mgN/d) 91 11 22 103 4705 51 20 24.6 89 91 11 25 106 2827 31 20 21.2 83 91 11 26 107 5294 79 20 20.5 97 91 11 29 110 5298 100 20 18.3 100 91 12 2 113 4978 100 20 19.8 100 91 12 4 115 6227 100 20 21.1 100 91 12 6 117 5528 100 20 22.8 100 91 12 7 118 5931 100 20 24.6 100 91 12 9 120 4644 100 20 22.9 100 91 12 11 122 6271 100 20 28.5 100 91 12 13 124 5710 100 20 24.2 100 91 12 16 127 4892 100 20 21.5 100 91 12 18 129 5190 100 20 23.3 100 91 12 20 131 5282 100 20 29.1 100 91 12 22 133 9723 88 20 24.8 98 91 12 24 135 9310 98 20 23.5 100 91 12 26 137 8329 100 20 18.4 100 91 12 30 141 8620 99 20 21.3 100 92 01 2 144 8045 100 20 27.2 100 92 01 5 147 8923 100 20 22.1 100 92 01 6 148 8729 100 20 23.3 100 92 01 8 150 9368 100 20 22.5 100 92 01 10 152 9541 100 20 22.2 100 92 01 12 154 8665 100 20 25.9 100 92 01 14 156 14525 100 20 17.7 100 92 01 15 157 8823 52 20 17.7 91 92 01 17 159 11634 54 20 19.5 90 92 01 20 162 12080 100 20 22.5 100 92 01 22 164 13806 97 20 15.3 100 92 01 24 166 15101 69 20 22.7 94 92 01 26 168 13647 91 20 24.7 99 92 01 30 172 12377 100 20 26.1 100 92 01 31 173 12308 100 20 29.7 100 92 02 2 175 11603 100 20 27.8 100 92 02 3 176 13246 100 20 27.6 100 92 02 5 176 12132 99 20 23.3 100 92 02 6 179 11688 99 20 25.9 100 92 02 7 180 11082 100 20 25.5 100 92 02 10 183 11927 100 20 27.1 100 92 02 11 184 14368 100 20 27.4 100 92 02 12 185 12097 100 20 27.7 100 92 02 13 186 14280 100 20 28.1 100 92 02 14 187 14067 100 20 29.1 100 92 02 16 189 13476 100 20 29.4 100 92 02 18 191 18216 90 20 19.9 99 1 79 AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 I yy mm dd)^Rate Removal (days)^(days) Removal (mgN/d) 92 02 19^192 19515 79 20 27.9 96 92 02 21^194 14463 60 20 21.2 93 92 02 24 197 12120 54 20 28.9 92 92 02 27 200 22562 74 20 31.0 94 92 02 28 201 22370 65 20 24.3 90 92 02 29 202 17538 59 34.2 89 92 03 1^203 15733 52 98.5 88 92 03 2^204 5035 17 28.0 81 92 03 3^205 12004 47 99.3 89 92 03 4^206 7418 27 31.1 86 92 03 5^207 9823 39 69.9 88 92 03 6^208 11912 29 67.6 79 92 03 7^209 4581 12 85.3 76 92 03 10 212 10018 22 27.3 74 92 03 11^213 10214 21 50.9 72 180 COLD TEMPERATURE PHASE ^ Influent^Influent^Influent^Influent^Influent Date^Day^Operating^ pH^Alkalinity VSS TSS PO4 Ivy mm dcl)^Temp (C) ImgCaCO3/1-1^lmg/LI^(mg/L)^im(IPA3 92^03^12 1 20 92^03^13 2 20 92^03^15 4 20 92^03^17 6 20 92^03^20 9 20 92^03^22 11 20 92^03^23 12 20 1580 58 115 0.2 92^03^25 14 20 92^03^26 15 20 92^03^28 17 20 7.8 92^03^30 19 20 92^04^1 21 20 92^04^3 23 20 92^04^5 25 20 92^04^6 26 20 92^04^8 28 20 92^04^9 29 20 92^04^10 30 20 92^04^12 32 20 92^04^13 33 20 92^04^15 35 20 92^04^16 36 20 92^04^18 38 20 92^04^21 41 20 92^04^24 44 20 92^04^25 45 20 92^04^27 47 20 8.0 1190 31 61 0.5 92^04^30 50 20 92^05^3 53 20 92^05^5 55 20 92^05^6 56 20 92^05^8 58 20 92^05^9 59 20 92^05^11 61 20 92^05^13 63 20 92^05^15 65 20 92^05^18 68 20 92^05^19 69 20 92^05^21 71 20 92^05^25 75 20 92^05^26 76 20 92^05^28 78 20 92^05^31 81 20 7.8 1420 44 87 0.4 92^06^2 83 20 92^06^4 85 20 181 COLD TEMPERATURE PHASE ^ Influent^Influent^Influent^Influent^Influent Date^Day^Operating^ pH^Alkalinity VSS TSS PO4 (yy mm dd)^Temp (DI (mgDaD03/L)^(nig/L)^(mg/L)^(mgP/L) 92^06^6^87 20 92^06^7^88 20 92^06^10^91 20 92^06^13^94 20 92^06^15^96 17 92^06^16^97 17 92^06^17^98 17 92^06^19 100 17 92^06^22 103 17 92^06^23 104 17 92^06^26 107 14 92^06^28 109 14 92^06^29 110 14 92^07^3^114 14 7.9 1370 65 128 0.1 92^07^4^115 14 92^07^6^117 12 92^07^9^120 12 92^07^10^121 12 92^07^12^123 10 92^07^14 125 10 92^07^15^126 10 92^07^17^128 10 92^07^19 130 10 92^07^21^132 10 92^07^23 134 10 92^07^26 137 10 92^07^27 138 10 92^07^29 140 10 92^07^31^142 10 92^08^2^144 10 92^08^4^146 10 7.7 1540 59 119 0.3 92^08^6^148 10 92^08^7^149 10 92^08^10 152 10 92^08^13 155 10 92^08^14 156 10 92^08^17^159 10 92^08^19^161 10 92^08^21^163 10 92^08^23 165 10 92^08^24 166 10 92^08^27 169 10 182 COLD TEMPERATURE PHASE ^ Influent^Influent^Influent^Influent^Influent Date^Day^NH4 NOx NO2 BOO^COD fyy mm del)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L) 92 03 12 1 158 92 03 13 2 133 92 03 15 4 161 92 03 17 6 164 92 03 20 9 155 92 03 22 11 141 92 03 23 12 173 8.8 0.2 61 285 92 03 25 14 181 92 03 26 15 195 92 03 28 17 176 92 03 30 19 167 92 04 1 21 35 92 04 3 23 149 92 04 5 25 182 92 04 6 26 191 92 04 8 28 179 92 04 9 29 193 92 04 10 30 198 92 04 12 32 186 92 04 13 33 196 92 04 15 35 197 92 04 16 36 189 92 04 18 38 169 92 04 21 41 173 92 04 24 44 164 92 04 25 45 151 92 04 27 47 229 11.2 0.4 37 343 92 04 30 50 176 92 05 3 53 176 92 05 5 55 256 92 05 6 56 185 92 05 8 58 191 92 05 9 59 192 92 05 11 61 174 92 05 13 63 178 92 05 15 65 172 92 05 18 68 187 92 05 19 69 176 92 05 21 71 173 92 05 25 75 186 92 05 26 76 167 92 05 28 78 169 92 05 31 81 162 15.6 0.3 29 329 92 06 2 83 66 92 06 4 85 156 COLD TEMPERATURE PHASE ^ Influent^Influent^Influent^Influent^Influent Date^Day^NH4 NOx NO2 BOD^COD (Icy mm dd)^(mgN/1.1^(mgN/L)^(rtigN/L)^(mg/1.1^Img/L) 92 06 6^87 166 92 06 7^88 177 92 06 10^91 175 92 06 13^94 176 92 06 15^96 163 92 06 16^97 181 92 06 17^98 159 92 06 19^100 171 92 06 22 103 178 92 06 23 104 157 92 06 26 107 180 92 06 28 109 171 92 06 29^110 168 92 07 3^114 180 3.7 0.1 35 350 92 07 4^115 183 92 07 6^117 199 92 07 9^120 177 92 07 10^121 197 92 07 12^123 192 92 07 14^125 192 92 07 15^126 183 92 07 17^128 203 92 07 19^130 201 92 07 21^132 179 92 07 23 134 194 92 07 26 137 199 92 07 27^138 189 92 07 29 140 198 92 07 31^142 196 92 08 2^144 181 92 08 4^146 201 7.7 0.1 22 318 92 08 6^148 193 92 08 7^149 200 92 08 10^152 200 92 08 13^155 197 92 08 14^156 193 92 08 17^159 189 92 08 19^161 207 92 08 21^163 181 92 08 23 165 190 92 08 24 166 203 92 08 27^169 184 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^Iml/h)^(Lid)^Wasting^Overflow (Lid)^(Lid) 92^03^12 1 9.7 27 6.5 41 41 57 0 68 92^03^13 2 9.5 24.4 6.4 42 42 57 0 68 92^03^15 4 9.4 27.5 6.3 37 37 57 0 68 92^03^17 6 9.5 25 6.6 39 39 57 0 68 92^03^20 9 9.3 24.6 6.65 36 36 63 0 74 92^03^22 11 9.3 23.8 6.7 41 41 63 0 74 92^03^23 12 9.4 19.5 6.9 43 43 60 0 71 92^03^25 14 9.0 23 6.5 42 42 60 0 71 92^03^26 15 9.1 21 6.5 39 39 60 0 71 92^03^28 17 8.9 20 6.4 39 39 59 1 69 92^03^30 19 9.0 20 6.4 39 39 59 1 70 92^04^1 21 8.9 19.5 6.8 47 47 59 1 70 92^04^3 23 8.7 16 6.9 38 38 59 1 69 92^04^5 25 8.8 15.4 6.6 44 44 56 1 66 92^04^6 26 8.7 26 6.7 48 48 56 1 67 92^04^8 28 8.6 26 6.8 46 46 56 1 66 92^04^9 29 8.6 26.8 7.4 44 44 56 1 66 92^04^10 30 8.4 25 6.8 37 37 63 1 73 92^04^12 32 8.7 25 7 45 45 63 0 74 92^04^13 33 8.9 25 6.8 14 11.7 63 0 73 92^04^15 35 8.9 25 6.7 28 11.5 58 0 68 92^04^16 36 8.5 24 6.5 37 11.8 58 0.5 68 92^04^18 38 7.9 26 6.5 80 11.4 58 1 67 92^04^21 41 8.2 27 6.8 32 11.2 58 1 67 92^04^24 44 8.2 26 6.6 32 11.1 58 1 67 92^04^25 45 8.3 24.5 6.5 25 11.0 64 0 73 92^04^27 47 8.5 26.5 6.7 22 10.9 64 0 74 92^04^30 50 8.5 28 6.6 12 10.8 64 0 74 92^05^3 53 8.6 26.7 6.8 16.7 11.0 64 0 74 92^05^5 55 8.7 24.6 6.7 12 11.5 64 0 74 92^05^6 56 8.6 27 6.6 17 11.4 64 1 74 92^05^8 58 8.6 28 6.9 22 11.8 59 1 39 92^05^9 59 8.3 25 6.3 34 11.7 59 1 68 92^05^11 61 8.1 26 6.2 53 11.7 62 1 71 92^05^13 63 8.0 28 7 68 12.1 62 1 71 92^05^15 65 8.1 26.5 6.6 41 12.1 62 1 71 92^05^18 68 8.2 25.7 6.5 34 11.9 62 1 71 92^05^19 69 8.6 25.5 6.9 26 12.1 65 1 75 92^05^21 71 8.5 23.9 6.4 41.3 12.2 65 1 75 92^05^25 75 8.5 24 6.7 40 11.6 65 1 75 92^05^26 76 8.5 23 6.9 43 12.1 65 1 75 92^05^28 78 8.3 25.1 6.8 35.2 12.0 63 1 72 92^05^31 81 8.3 24.8 6.8 55 12.5 63 1 72 92^06^2 83 8.0 23.6 6.5 47 12.7 63 1 72 92^06^4 85 8.1 23.5 6.7 47 12.7 63 1 72 1 85 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) Date (yy mm Day dd) Flowrate Influent (L/d) Flowrate NH4C1 (mL/h) Flowrate CH3OH 1mL/h1 Flowrate NaHCO3 1mL/h) Flowrate o-PO4 (mliti) Flowrate Recycle (Lid) Flowrate Aerobic Wasting Flowrate Anoxic Overflow 11./d) (L/d) 92 06 6^87 8.3 24.6 6.5 39 12.2 57 1 66 92 06 7^88 8.5 25.5 6.9 44 11.8 57 1 67 92 06 10^91 8.3 24.2 6.4 55 11.7 57 1 66 92 06 13^94 8.1 24.1 6.7 48 11.4 57 1 66 92 06 15^96 8.1 25.8 6.8 57 11.3 57 1 66 92 06 16^97 8.3 22.6 6.6 42 11.7 57 1 66 92 06 17^98 8.3 21 6.7 42 12.0 57 1 66 92 06 19^100 8.3 22.1 6.5 39 12.5 60 1 69 92 06 22 103 7.9 23.1 6.8 53 12.7 60 1 69 92 06 23 104 8.1 20.3 6.8 47 13.0 60 1 69 92 06 26 107 8.0 20.9 5.9 59 12.8 60 1 69 92 06 28 109 8.2 21.2 6.2 40 12.9 60 1 69 92 06 29^110 8.1 21.9 6 54 13.4 64 1 73 92 07 3^114 7.9 33.7 5.9 46 13.8 61 1 70 92 07 4^115 8.2 31.7 5.85 37 13.9 61 1 70 92 07 6^117 8.1 32.3 6 58 13.6 61 1 70 92 07 9^120 7.9 31 6.1 43 13.3 61 1 70 92 07 10^121 7.8 29.2 5.9 44 13.3 64 1 73 92 07 12^123 8.1 29.2 6 35 13.9 64 1 73 92 07 14^125 8.4 30.1 6.1 42 13.4 64 1 74 92 07 15^126 8.2 30 6 25 13.5 64 1 73 92 07 17^128 8.3 29.1 5.8 47 13.9 61 1 70 92 07 19^130 8.2 27.5 6.1 31 14.5 61 0 70 92 07 21^132 7.7 29.2 0 113 14.9 61 0 70 92 07 23 134 7.6 29.7 0 89.1 14.9 61 0 70 92 07 26 137 7.5 26.8 0 95.2 14.5 61 0 69 92 07 27^138 7.3 23.1 0 89 15.1 61 1 69 92 07 29 140 7.7 29.4 0 0 14.9 61 1 70 92 07 31^142 7.6 29.7 0 83.8 14.5 61 1 70 92 08 2^144 7.7 25.4 0 79.6 14.3 55 1 64 92 08 4^146 8.1 25.8 0 33.9 14.1 55 0 64 92 08 6^148 7.6 27.2 0 90.5 13.9 62 0 71 92 08 7^149 7.6 28.6 0 47.1 14.0 62 0 71 92 08 10^152 8.4 28.5 0 0 14.1 58 0 67 92 08 13^155 8.5 28.6 0 44 14.4 58 0 68 92 08 14^156 8.4 29.9 0 22 14.1 58 0 67 92 08 17^159 8.4 29.9 0 56.8 14.6 58 0 67 92 08 19^161 8.2 28.1 0 58 14.9 55 0 64 92 08 21^163 8.3 28.6 0 51.9 14.4 55 0 64 92 08 23 165 7.8 27.8 0 95.5 14.9 55 0 64 92 08 24 166 7.7 27.9 0 53.9 14.7 55 0 64 92 08 27^169 7.9 28.9 0 50.8 15.0 55 0 64 1 86 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic NH4C1 Simulated^CH3OH o-PO4 (yy mm dd)^Overflow (g/L)^Influent NH4 (mL/L)^IgP/L) (Lid)^ (mgN/L) 92 03 12 1 69 0 146 10 0.231 92 03 13 2 69 0 123 10 0.231 92 03 15 4 69 0 148 10 0.231 92 03 17 6 69 25 536 10 0.231 92 03 20 9 75 25 529 10 0.231 92 03 22 11 75 25 502 10 0.231 92 03 23 12 72 50 771 10 0.231 92 03 25 14 72 80 1363 10 0.231 92 03 26 15 72 100 1529 10 0.231 92 03 28 17 70 100 1484 10 0.231 92 03 30 19 71 110 1589 200 0.231 92 04 1 21 71 110 1544 200 0.231 92 04 3 23 70 120 1437 200 0.231 92 04 5 25 67 125 1467 200 0.231 92 04 6 26 68 80 1558 200 0.231 92 04 8 28 68 80 1558 500 0.231 92 04 9 29 68 80 1607 500 0.231 92 04 10 30 74 80 1553 500 0.231 92 04 12 32 75 SO 1497 500 0.231 92 04 13 33 73 0 180 200 0.361 92 04 15 35 69 25 569 200 0.361 92 04 16 36 68 50 931 10 0.361 92 04 18 38 69 80 1404 10 0.361 92 04 21 41 68 80 1592 150 0.361 92 04 24 44 68 80 1536 150 0.361 92 04 25 45 74 80 1460 500 0.361 92 04 27 47 74 80 1608 500 0.361 92 04 30 50 74 50 1118 10 0.361 92 05 3 53 74 25 605 10 0.361 92 05 5 55 74 25 648 10 0.361 92 05 6 56 74 0 169 10 0.361 92 05 8 58 69 25 630 100 0.361 92 05 9 59 69 50 987 200 0.361 92 05 11 61 72 80 1480 200 0.361 92 05 13 63 73 80 1537 200 0.361 92 05 15 65 72 80 1544 300 0.361 92 05 18 68 72 80 1521 300 0.361 92 05 19 69 75 80 1476 400 0.361 92 05 21 71 76 80 1352 400 0.361 92 05 25 75 75 80 1375 400 0.361 92 05 26 76 76 90 1438 200 0.361 92 05 28 78 73 90 1627 200 0.361 92 05 31 81 74 90 1525 250 0.361 92 06 2 83 73 90 1527 250 0.361 92 06 4 85 73 90 1496 250 0.361 1 87 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 (yy mm dd)^Overflow Ig/L)^Influent NH4 (mL/L)^(gPIL) (L/d)^ ImgN/LI ----- 92 06 6^87 67 90 1573 265 0.361 92 06 7^88 68 90 1597 265 0.361 92 06 10^91 68 90 1511 265 0.361 92 06 13^94 67 90 1554 265 0.361 92 06 15^96 68 90 1607 265 0.361 92 06 16^97 67 90 1462 265 0.361 92 06 17^98 67 90 1347 265 0.361 92 06 19^100 70 100 1584 265 0.361 92 06 22 103 70 100 1643 265 0.361 92 06 23 104 70 100 1442 265 0.361 92 06 26 107 70 100 1471 265 0.361 92 06 28 109 70 100 1527 265 0.361 92 06 29^110 74 100 1537 290 0.361 92 07 3^114 71 73 1772 290 0.361 92 07 4^115 71 73 1661 290 0.361 92 07 6^117 72 73 1643 290 0.361 92 07 9^120 71 73 1654 290 0.361 92 07 10^121 74 73 1590 290 0.361 92 07 12^123 74 73 1582 290 0.361 92 07 14^125 75 73 1557 290 0.361 92 07 15^126 74 73 1632 290 0.361 92 07 17^128 72 73 1511 290 0.361 92 07 19^130 71 73 1503 290 0.361 92 07 21^132 72 73 1366 0 0.361 92 07 23 134 72 73 1491 0 0.361 92 07 26^137 72 73 1356 0 0.361 92 07 27 138 71 73 1217 0 0.361 92 07 29 140 70 73 1853 0 0.361 92 07 31^142 72 73 1506 0 0.361 92 08 2^144 66 73 1307 0 0.361 92 08 4^146 65 73 1447 0 0.361 92 08 6^148 73 73 1366 0 0.361 92 08 7^149 72 73 1605 0 0.361 92 08 10^152 67 73 1682 0 0.361 92 08 13^155 69 73 1486 0 0.361 92 08 14^156 68 73 1641 0 0.361 92 08 17^159 69 73 1506 0 0.361 92 08 19^161 66 73 1454 0 0.361 92 08 21^163 66 73 1472 0 0.361 92 08 23 165 66 73 1354 0 0.361 92 08 24 166 65 73 1528 0 0.361 92 08 27^169 65 73 1542 0 0.361 1 88 COLD TEMPERATURE PHASE (10 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3 Loading Loading Loading ORP (yy mm dd)^Ig/L) CH3OH^o-PO4^NaHCO3 imIn (gCOD/d) (cip/d)^(gCaCO3/d) 92 03 12 1 44 1.85 0.228 3671 -156 92 03 13 2 56 1.82 0.233 4537 -109 92 03 15 4 56 1.80 0.205 4121 -17 92 03 17 6 50 1.88 0.217 3952 53 92 03 20 9 81 1.89 0.200 5402 66 92 03 22 11 81 1.91 0.228 5958 121 92 03 23 12 81 1.97 0.239 6442 73 92 03 25 14 100 1.85 0.233 7672 50 92 03 26 15 100 1.85 0.217 7163 11 92 03 28 17 100 1.82 0.217 7331 16 92 03 30 19 100 36.47 0.217 7253 -30 92 04 1 21 100 38.75 0.261 8543 -44 92 04 3 23 100 39.32 0.211 7326 -29 92 04 5 25 100 37.61 0.244 8228 -39 92 04 6 26 75 38.18 0.267 6893 10 92 04 8 28 75 96.88 0.255 6708 -86 92 04 9 29 50 105.43 0.244 4783 -107 92 04 10 30 50 96.88 0.205 4334 -91 92 04 12 32 13 99.73 0.250 2300 -55 92 04 13 33 75 38.75 0.102 3002 -62 92 04 15 35 75 38.18 0.100 4414 -34 92 04 16 36 75 1.85 0.103 5403 -51 92 04 18 38 75 1.85 0.099 9575 -42 92 04 21 41 75 29.06 0.097 5021 -75 92 04 24 44 75 28.21 0.097 5034 -91 92 04 25 45 75 92.61 0.095 4292 -110 92 04 27 47 75 95.45 0.095 3552 -114 92 04 30 50 75 1.88 0.093 2495 -81 92 05 3 53 75 1.94 0.095 2984 -44 92 05 5 55 75 1.91 0.099 2469 21 92 05 6 56 75 1.88 0.099 3016 -3 92 05 8 58 75 19.66 0.102 3529 -8 92 05 9 59 75 35.90 0.101 4840 -15 92 05 11 61 75 35.33 0.101 6793 -32 92 05 13 63 75 39.89 0.105 8172 -49 92 05 15 65 75 56.42 0.105 5623 -36 92 05 18 68 75 55.56 0.103 4866 -114 92 05 19 69 75 78.64 0.105 3927 -124 92 05 21 71 75 72.94 0.106 5455 -110 92 05 25 75 75 76.36 0.101 5342 -166 92 05 26 76 75 39.32 0.105 5607 -142 92 05 28 78 75 38.75 0.105 4966 -130 92 05 31 81 75 48.44 0.108 7020 -129 92 06 2 83 75 46.30 0.110 6426 -160 92 06 4 85 75 47.73 0.110 6363 -160 189 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3 Loading Loading Loading ORP (yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV) (gCOD/d) (gP/d)^(gCaCO3/d) 92 06 6 87 75 49.08 0.106 5518 -136 92 06 7 88 75 52.10 0.102 5938 -151 92 06 10 91 75 48.33 0.102 7057 -166 92 06 13 94 75 50.59 0.099 6499 -172 92 06 15 96 75 51.35 0.098 7334 -151 92 06 16 97 75 49.84 0.101 5817 -190 92 06 17 98 75 50.59 0.104 5803 -200 92 06 19 100 75 49.08 0.108 5544 -185 92 06 22 103 75 51.35 0.110 7027 -154 92 06 23 104 75 51.35 0.113 6366 -160 92 06 26 107 75 44.55 0.111 7536 -164 92 06 28 109 75 46.82 0.112 5659 -183 92 06 29 110 75 49.58 0.116 7051 -171 92 07 3 114 75 48.75 0.120 6353 -169 92 07 4 115 75 48.34 0.120 5308 -174 92 07 6 117 75 49.58 0.118 7374 -140 92 07 9 120 75 50.41 0.115 6067 -158 92 07 10 121 75 48.75 0.116 6201 -161 92 07 12 123 75 49.58 0.121 5174 -187 92 07 14 125 75 50.41 0.116 5742 -234 92 07 15 126 75 49.58 0.117 4095 -258 92 07 17 128 75 47.93 0.121 6245 -207 92 07 19 130 75 50.41 0.126 4714 -226 92 07 21 132 75 0.00 0.129 12253 -119 92 07 23 134 75 0.00 0.129 10526 -30 92 07 26 137 75 0.00 0.126 11120 -8 92 07 27 138 75 0.00 0.131 10779 -5 92 07 29 140 75 0.00 0.129 1309 5 92 07 31 142 75 0.00 0.126 10053 15 92 08 2 144 75 0.00 0.124 9667 39 92 08 4 146 75 0.00 0.123 5277 -15 92 08 6 148 75 0.00 0.121 10717 30 92 08 7 149 75 0.00 0.121 6860 21 92 08 10 152 75 0.00 0.122 1480 40 92 08 13 155 75 0.00 0.125 6087 45 92 08 14 156 75 0.00 0.123 3935 46 92 08 17 159 75 0.00 0.127 7307 42 92 08 19 161 75 0.00 0.129 7504 54 92 08 21 163 75 0.00 0.125 6926 35 92 08 23 165 75 0.00 0.129 10952 49 92 08 24 166 75 0.00 0.128 7454 47 92 08 27 169 75 0.00 0.131 7027 57 1 90 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO (yy mm dd) (mg/L)^Img/L)^I ingP/1.1^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L) 92 03 12 1 7.5 6115 8127 45 92 03 13 2 7.3 6090 7974 29 92 03 15 4 7.8 5660 7036 25 267 92 03 17 6 7.3 5802 7372 108 92 03 20 9 7.4 6232 8146 84 92 03 22 11 7.6 6093 8540 83 161 92 03 23 12 7.5 5700 8204 146 92 03 25 14 7.7 5114 8799 14.5 206 865 293.6 92 03 26 15 7.7 4679 7209 10.5 220 926 265.8 92 03 28 17 7.9 4608 6893 9.9 208 1028 310.0 74 92 03 30 19 8.2 4485 4839 10.3 193 704 274.2 92 04 1 21 8.1 4970 5496 9.6 195 485 278.1 92 04 3 23 8.5 5291 5134 7.2 181 400 236.9 92 04 5 25 8.6 5815 5895 8.7 198 327 288.9 117 92 04 6 26 8.3 6132 6571 9.2 183 339 256.7 92 04 8 28 8.2 6126 6550 7.6 298 155 134.9 92 04 9 29 8.3 6371 6773 6.8 246 95 69.7 92 04 10 30 8.3 6451 7163 5.9 255 55 52.2 92 04 12 32 8.7 6192 6632 6.8 336 45 35.7 285 92 04 13 33 8.7 6180 6767 4.9 42 94 53.1 92 04 15 35 8.2 6736 6907 4.0 143 324 261.5 258 92 04 16 36 8.2 6658 7124 3.4 201 587 360.0 219 92 04 18 38 8.2 6388 7466 3.1 276 1122 577.0 180 92 04 21 41 8.2 6491 7758 3.9 201 484 123.1 86 92 04 24 44 8.4 6663 8260 3.3 188 236 115.5 116 92 04 25 45 8.6 6335 7536 3.0 359 135 62.5 92 04 27 47 8.5 6094 7571 2.6 620 127 81.6 364 92 04 30 50 8.1 7663 11039 2.7 661 246 106.8 292 92 05 3 53 8.5 5878 7941 3.3 348 224 104.3 250 92 05 5 55 8.0 5335 7267 2.8 266 282 109.0 152 92 05 6 56 8.0 5190 7240 3.5 57 198 63.6 92 05 8 58 7.6 4863 6661 3.3 118 355 114.0 113 92 05 9 59 8.0 4630 6271 4.2 176 495 139.9 129 92 05 11 61 8.3 4439 6272 4.2 227 672 149.9 104 92 05 13 63 8.0 4174 5091 4.2 215 518 98.6 127 92 05 15 65 7.9 4292 5048 3.9 198 405 64.2 121 92 05 18 68 7.9 4450 5268 3.5 183 317 41.6 114 92 05 19 69 8.0 4516 5055 3.1 186 72 32.6 227 92 05 21 71 8.0 4669 5304 3.1 177 15 9.6 183 92 05 25 75 8.3 4721 5196 3.4 191 9 1.0 175 92 05 26 76 8.4 4835 5344 2.9 187 140 3.7 146 92 05 28 78 8.3 4917 5529 2.5 188 91 0.4 118 92 05 31 81 8.7 5301 5758 2.9 168 30 1.8 214 92 06 2 83 8.9 5217 5740 2.3 181 23 1.8 182 92 06 4 85 8.4 5171 5715 2.9 168 16 0.6 198 191 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO lyy mm dd) (mg/L)^Img/t.)^(mgP/L)^imgN/L)^(mgN/L)^(mgN/L)^(mg/L) 92 06 6^87 8.4 4977 5545 2.4 179 2 0.2 216 92 06 7^88 8.4 5308 5888 2.5 183 3 0.3 92 06 10^91 8.4 5243 5709 2.1 176 1 1.0 175 92 06 13^94 8.6 5280 5857 2.1 168 3 0.3 193 92 06 15^96 8.5 5078 5742 2.8 182 1 0.2 92 06 16^97 8.3 5480 6445 2.8 163 2 0.9 154 92 06 17^98 8.4 5123 5839 2.6 169 1 0.5 133 92 06 19^100 8.3 4958 5814 2.6 161 2 0.4 155 92 06 22 103 8.4 5305 6256 2.7 166 4 1.6 162 92 06 23 104 8.4 5168 5908 2.7 161 1 0.5 92 06 26 107 8.4 4938 5671 2.9 177 1 0.8 187 92 06 28 109 8.4 5258 6196 3.3 171 0 0.1 180 92 06 29^110 8.5 5272 5855 3.3 181 1 0.9 173 92 07 3^114 8.3 5339 5947 2.7 186 1 0.5 169 92 07 4^115 8.3 5307 5946 3.0 179 2 1.9 92 07 6^117 8.4 5410 5994 3.1 184 0 0.4 205 92 07 9^120 8.3 5609 6216 2.6 181 2 0.5 188 92 07 10^121 8.4 5566 6172 2.3 176 1 0.7 92 07 12^123 8.4 5363 5891 2.9 248 24 17.1 162 92 07 14^125 8.2 5377 6176 2.8 305 93 46.1 196 92 07 15^126 8.2 5253 5992 3.1 578 133 137.3 92 07 17^128 8.3 5171 5849 2.7 595 100 87.2 198 92 07 19^130 8.2 5221 5851 3.3 679 186 159.8 213 92 07 21^132 8.0 4122 5149 3.6 527 930 0.5 501 92 07 23 134 8.1 4311 6113 4.8 535 836 0.4 340 92 07 26 137 8.1 2508 3154 5.0 507 825 0.4 307 92 07 27^138 7.9 3198 4072 4.8 581 799 0.5 92 07 29 140 7.8 3317 4372 4.6 249 872 64.8 248 92 07 31^142 7.6 3190 4588 4.4 221 932 71.6 270 92 08 2^144 7.5 3306 4664 3.7 204 923 30.9 217 92 08 4^146 7.7 3293 4437 3.4 652 754 308.8 594 92 08 6^148 7.4 3278 4370 3.4 719 823 365.0 361 92 08 7^149 7.5 3381 4367 3.4 785 723 506.0 92 08 10^152 7.5 3375 4342 2.7 830 649 660.0 300 92 08 13^155 7.5 3332 4251 3.0 1013 603 441.0 92 08 14^156 7.7 3330 4259 3.4 924 520 448.0 205 92 08 17^159 7.5 3268 4335 2.8 1078 504 415.3 92 08 19^161 7.5 3176 4171 3.1 1069 442 367.5 340 92 08 21^163 7.6 3419 4603 3.6 1199 390 358.3 92 08 23 165 7.7 3459 4385 4.0 963 412 374.3 296 92 08 24 166 7.6 3424 4665 3.8 1054 453 402.0 92 08 27 169 7.5 3304 4460 3.7 1228 448 316.0 1 92 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD DO PH^VSS^TSS^o-PO4^NH4 (yy mm dd)^(mg/L)^(mg/L)^Img/L)^(mg/L)^(mgP/1.)^(mgN/1.) 92 03 12 1 652 9.1 6.7 6361 8614 32 92 03 13 2 708 8.0 7.2 6290 8346 14 92 03 15 4 715 8.2 7.7 6520 8072 7 92 03 17 6 670 7.8 7.1 6225 7998 41 92 03 20 9 744 8.7 7.1 5924 7697 14 92 03 22 11 667 9.0 7.6 5290 7544 16 92 03 23 12 536 8.6 7.8 5030 7244 58 92 03 25 14 624 5.5 7.3 4090 7119 14.3 55 92 03 26 15 504 5.5 7.6 4350 6680 9.9 20 92 03 28 17 488 8.0 7.5 4364 6488 10.4 17 92 03 30 19 469 7.0 7.4 5690 6256 8.5 5 92 04 1 21 477 7.0 7.6 5702 6412 9.7 13 92 04 3 23 482 7.5 8.1 6592 6504 6.2 0 92 04 5 25 505 7.5 8.0 6507 6752 8.9 12 92 04 6 26 459 6.0 6.9 6461 6932 9.6 6 92 04 8 28 485 5.0 6.5 6550 7059 6.9 148 92 04 9 29 536 5.5 6.9 6625 7203 6.8 120 92 04 10 30 578 5.0 6.8 6592 7323 5.1 177 92 04 12 32 626 5.0 8.3 6852 7428 6.1 255 92 04 13 33 656 4.5 7.3 6770 7515 5.8 22 92 04 15 35 634 7.5 7.7 7362 7645 5.0 59 92 04 16 36 634 7.0 7.5 7325 7889 3.2 116 92 04 18 38 592 7.5 7.9 6820 8062 3.2 139 92 04 21 41 561 7.5 6.8 6798 8073 3.2 18 92 04 24 44 533 6.5 7.3 6373 8109 3.7 6 92 04 25 45 613 5.0 8.2 6503 7933 2.9 272 92 04 27 47 709 6.7 8.5 6109 7787 2.7 525 92 04 30 50 717 7.0 7.8 5036 7230 2.4 547 92 05 3 53 652 9.8 7.7 5077 6875 3.2 261 92 05 5 55 629 7.5 7.3 4788 6608 2.4 210 92 05 6 56 576 7.3 7.4 4428 6308 2.8 27 92 05 8 58 510 5.8 7.4 4337 6014 3.6 53 92 05 9 59 468 6.1 7.3 4253 5868 3.9 54 92 05 11 61 435 5.8 7.3 3985 5698 4.7 29 92 05 13 63 447 5.0 7.3 4514 5504 4.3 13 92 05 15 65 446 4.7 7.3 4682 5484 3.9 5 92 05 18 68 483 5.0 7.4 4645 5491 4.1 5 92 05 19 69 489 5.3 7.4 4858 5494 3.0 3 92 05 21 71 490 5.5 7.3 4853 5547 3.0 1 92 05 25 75 507 4.0 7.3 5098 5604 3.4 13 92 05 26 76 487 7.5 7.3 5064 5692 2.9 1 92 05 28 78 503 8.4 7.3 5067 5756 2.7 4 92 05 31 81 533 6.6 7.4 5288 5802 3.3 4 92 06 2 83 550 6.8 7.4 5283 5889 2.5 2 92 06 4 85 548 6.5 7.4 5253 5944 3.0 5 193 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD DO pH^VSS^TSS^o-PO4^NH4 Iyy mm dd)^(mg/L)^(mg/L)^Img/L1^Img/L1^(mgP/L)^(mgN/L) 92 06 6^87 572 6.0 7.4 5270 5993 2.5 0 92 06 7^88 579 5.8 7.4 5397 6031 2.3 1 92 06 10^91 574 6.6 7.5 5489 6095 2.1 1 92 06 13^94 574 6.3 7.5 5407 6157 1.9 0 92 06 15^96 554 6.0 7.4 5408 6192 2.9 1 92 06 16^97 527 5.7 7.4 5296 6211 3.1 1 92 06 17^98 523 6.6 7.4 5325 6204 2.9 3 92 06 19 100 539 7.1 7.4 5178 6194 2.8 0 92 06 22 103 514 7.5 7.4 5177 6158 2.7 1 92 06 23 104 568 6.5 7.4 5230 6127 2.5 1 92 06 26 107 532 6.5 7.3 5232 6131 2.9 2 92 06 28 109 500 6.8 7.3 5208 6129 3.4 1 92 06 29^110 511 7.0 7.4 5452 6136 2.9 1 92 07 3^114 526 6.9 7.3 5429 6200 3.0 1 92 07 4^115 519 7.3 7.3 5460 6240 3.4 0 92 07 6^117 524 7.2 7.3 5605 6252 2.8 31 92 07 9^120 526 6.4 7.4 5701 6325 2.5 2 92 07 10^121 517 6.2 7.3 5733 6401 2.2 1 92 07 12^123 545 7.1 7.3 5690 6392 2.4 139 92 07 14^125 566 7.2 7.3 5612 6427 2.8 151 92 07 15^126 586 6.3 7.3 5554 6358 3.4 495 92 07 17^128 554 6.6 7.3 5558 6335 2.7 471 92 07 19 130 584 5.7 7.3 5583 6309 3.3 562 92 07 21^132 709 5.1 7.3 4885 6247 3.2 344 92 07 23 134 676 6.5 7.3 4326 6185 4.3 149 92 07 26 137 648 7.0 7.3 4701 5922 5.2 66 92 07 27 138 665 7.2 7.3 4545 5819 5.0 14 92 07 29 140 617 5.9 7.3 4372 5767 4.8 88 92 07 31^142 636 6.4 7.3 3930 5691 4.5 15 92 08 2^144 625 6.2 7.3 3871 5500 3.5 3 92 08 4^146 811 0.0 7.3 3851 5201 3.4 620 92 08 6^148 759 6.3 7.3 3748 5112 3.0 657 92 08 7^149 703 6.7 7.3 3685 4868 3.1 713 92 08 10^152 678 7.4 7.4 3644 4665 2.9 774 92 08 13^155 681 7.1 7.5 3704 4832 3.1 1058 92 08 14^156 619 6.7 7.4 3632 4684 3.4 982 92 08 17^159 640 6.4 7.4 3644 4957 2.6 962 92 08 19^161 707 6.6 7.4 3599 4784 3.0 955 92 08 21^163 739 6.5 7.4 3528 4725 3.0 1076 92 08 23 165 689 6.9 7.4 3546 4616 3.5 901 92 08 24 166 669 6.1 7.4 3451 4680 4.0 1078 92 08 27^169 717 6.3 7.3 3418 4583 3.2 1138 1 94 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOO^COD VSS^TSS^NH4 (yy mm dd)^(nigN/L)^(mgN/L)^Img/L)^(mg/L)^Ong/1J^(INOL)^hngNAJ 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 12 13 15 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4 1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85 1004 1083 1207 878 662 587 485 507 324 192 118 110 118 389 644 1247 615 390 198 163 317 294 333 219 412 600 862 703 680 467 216 137 152 302 242 198 271 155 441.8 501.8 537.1 577.0 434.0 354.0 289.0 269.1 241.6 132.6 89.3 83.3 62.9 164.6 305.9 437.0 304.0 237.2 162.7 132.1 95.6 113.8 103.4 91.8 104.6 97.7 72.1 74.0 56.1 65.8 17.2 13.1 18.8 0.4 2.5 3.7 2.6 0.9 32 15 8 22 52 44 34 38 28 26 61 56 48 44 37 34 30 24 18 19 37 20 18 16 24 30 30 26 744 588 496 469 568 451 502 515 478 362 387 404 371 380 376 413 429 404 420 437 438 399 414 386 402 406 404 411 401 418 403 395 388 385 387 380 354 381 376 383 395 395 405 380 400 137 148 157 172 197 218 198 251 140 123 147 159 150 143 150 126 127 127 131 155 131 152 202 133 186 150 184 233 163 200 182 155 148 170 130 145 148 138 126 138 145 147 141 158 155 188 190 197 218 251 303 284 428 223 181 158 177 147 147 159 135 140 141 147 170 139 162 233 164 236 188 239 339 231 269 253 219 198 237 157 167 170 154 145 146 158 165 155 171 172 1.52 1 95 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOD^COO VSS^TSS^NH4 (yy mm dd)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)^Img/LI^Img/LI^(nigN/L) 92 06 6 87 176 0.4 22 366 139 155 92 06 7 88 174 1.4 363 156 176 92 06 10 91 156 0.8 17 378 128 141 92 06 13 94 176 0.6 21 372 148 166 92 06 15 96 186 0.6 360 137 154 92 06 16 97 166 0.6 16 364 163 184 92 06 17 98 176 1.5 10 347 141 162 92 06 19 100 151 1.0 15 355 157 183 0.14 92 06 22 103 177 0.4 8 378 139 160 92 06 23 104 165 1.0 382 124 144 92 06 26 107 167 1.1 11 380 134 152 92 06 28 109 169 0.8 15 369 140 165 92 06 29 110 178 0.6 8 370 141 155 92 07 3 114 162 1.0 9 360 132 145 92 07 4 115 168 8.5 354 124 142 92 07 6 117 143 12.6 13 341 137 147 92 07 9 120 157 103.2 22 378 149 163 92 07 10 121 177 80.2 403 127 142 92 07 12 123 113 104.8 40 390 127 142 92 07 14 125 235 165.7 43 417 150 170 92 07 15 126 198 205.0 446 139 164 92 07 17 128 203 186.1 49 411 151 172 92 07 19 130 262 226.3 122 457 149 176 92 07 21 132 1108 513.0 69 487 244 312 92 07 23 134 1053 439.2 5 491 251 365 92 07 26 137 920 450.4 4 491 187 249 92 07 27 138 953 490.7 491 204 270 92 07 29 140 753 343.8 64 455 180 249 92 07 31 142 11 12 312.2 38 414 188 272 92 08 2 144 1054 432.9 35 402 141 207 3.06 92 08 4 146 873 411.0 155 465 158 228 92 08 6 148 961 480.4 202 536 207 292 92 08 7 149 775 528.3 557 199 278 92 08 10 152 607 618.4 265 621 198 280 92 08 13 155 668 496.4 642 182 258 92 08 14 156 555 480.3 200 621 176 251 92 08 17 159 605 506.0 582 183 270 92 08 19 161 530 455.6 200 597 202 294 92 08 21 163 484 451.9 561 178 265 92 08 23 165 1228 428.7 165 557 163 235 92 08 24 166 528 477.5 578 192 273 92 08 27 169 539 387.1 607 180 265 1 96 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOO^COD VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm ddi^(mgN/L)^(m8/1-)^(m8A3 (gN/d)^Entering (gCOD/gN) 92 92 "41....„ 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 03 03 CZ 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 12 13 1` 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4 1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85 265.6 0.75 0.76 0.80 0.79 0.77 0.71 0.69 0.58 0.65 0.67 0.93 0.90 1.03 0.99 0.93 0.94 0.94 0.90 0.93 0.91 0.98 0.93 0.86 0.84 0.81 0.84 0.80 0.69 0.74 0.73 0.72 0.73 0.74 0.71 0.82 0.85 0.84 0.89 0.88 0.91 0.90 0.89 0.92 0.91 0.90 0.34 0.29 0.30 0.39 0.57 0.59 0.88 0.76 0.87 0.74 0.95 0.79 0.56 0.81 0.61 0.51 0.25 0.49 0.46 0.64 0.43 0.47 0.39 0.32 0.32 0.28 0.22 0.19 0.16 0.13 0.45 0.63 0.11 0.03 0.00 0.06 0.08 0.04 60.3 65.0 71.3 51.9 39.1 34.7 27.2 28.4 18.2 10.8 7.5 7.0 7.5 22.7 37.4 72.4 35.7 22.7 12.7 10.5 20.4 18.9 21.4 14.1 24.4 35.5 53.5 43.7 42.2 29.0 14.1 9.0 10.0 19.7 15.3 12.6 17.2 9.9 0.0 0.0 0.0 0.7 1.0 1.1 1.4 1.3 5.3 9.8 12.9 14.3 5.2 1.7 0.0 0.0 0.8 1.2 7.3 9.1 0.1 0.1 0.1 0.1 0.8 1.0 0.7 0.9 1.3 1.9 5.6 8.1 7.7 2.0 2.5 3.8 2.7 4.8 197 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm dd)^(mgN/L)^(mg/L)^(mg/-) (gN/d)^Entering (gCOD/gN) 92 06 6^87 0.90 0.12 10.2 4.8 92 06 7^88 0.90 0.10 10.0 5.2 92 06 10^91 0.92 0.74 9.0 5.4 92 06 13^94 0.90 0.12 10.2 5.0 92 06 15^96 0.88 0.27 10.7 4.8 92 06 16^97 0.85 0.59 9.6 5.2 92 06 17^98 0.88 0.86 10.2 5.0 92 06 19 100 153.3 0.85 0.19 9.2 5.4 92 06 22 103 0.85 0.37 10.8 4.8 92 06 23 104 0.87 0.86 10.0 5.1 92 06 26 107 0.87 0.58 10.1 4.4 92 06 28 109 0.85 0.37 10.2 4.6 92 06 29 110 0.90 0.68 11.5 4.3 92 07 3^114 0.90 0.89 9.9 4.9 92 07 4^115 0.89 0.89 10.3 4.7 92 07 6^117 0.90 0.92 8.8 5.7 92 07 9^120 0.90 0.31 9.6 5.2 92 07 10^121 0.90 0.58 11.4 4.3 92 07 12 123 0.91 0.72 7.2 6.9 92 07 14 125 0.87 0.50 15.1 3.3 92 07 15^126 0.88 1.03 12.7 3.9 92 07 17 128 0.88 0.87 12.4 3.9 92 07 19 130 0.89 0.86 16.0 3.1 92 07 21^132 0.80 0.00 0.0 92 07 23 134 0.71 0.00 0.0 92 07 26 137 0.80 0.00 0.0 92 07 27 138 0.79 0.00 0.0 92 07 29 140 0.76 0.07 45.9 0.0 92 07 31^142 0.70 0.08 67.8 0.0 92 08 2^144 992.5 0.71 0.03 58.0 0.0 92 08 4^146 0.74 0.41 48.1 0.0 92 08 6^148 0.75 0.44 59.6 0.0 92 08 7^149 0.77 0.70 48.1 0.0 92 08 10 152 0.78 1.02 35.3 0.0 92 08 13^155 0.78 0.73 38.8 0.0 92 08 14^156 0.78 0.86 32.2 0.0 92 08 17^159 0.75 0.82 35.1 0.0 92 08 19^161 0.76 0.83 29.2 0.0 92 08 21^163 0.74 0.92 26.7 0.0 92 08 23 165 0.79 0.91 67.6 0.0 92 08 24 166 0.73 0.89 29.1 0.0 92 08 27 169 0.74 0.70 29.7 0.0 198 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitm %Donitm Specific NH4 Removal^% NH4 hay mm dd)^Removed^Rats Denitrn Rate^Rate Removal (gC00/gN)^(mgN/d)^(ingN/d/g1/SS) (mgN/d) 92^03^12 1 291 9 92^03^13 2 113 5 92^03^15 4 260 13 92^03^17 6 554 7 92^03^20 9 51 1 92^03^22 11 -64 -1 92^03^23 12 1044 9 92^03^25 14 31.9 58 0 2 2130 13 92^03^26 15 4.5 415 1 18 847 5 92^03^28 17 2.1 858 1 37 826 5 92^03^30 19 10.3 3556 7 159 2347 15 92^04^1 21 6.6 5914 15 238 2104 14 92^04^3 23 5.3 7391 21 279 1002 7 92^04^5 25 6.4 5876 22 202 1477 10 92^04^6 26 6.1 6267 22 204 3084 20 92^04^8 28 12.0 8050 44 263 3413 15 92^04^9 29 22.9 4611 43 145 5752 26 92^04^10 30 27.3 3550 47 110 6942 27 92^04^12 32 27.0 3698 53 119 5894 19 92^04^13 33 57.6 673 9 22 73 2 92^04^15 35 62.1 614 3 18 -621 -7 92^04^16 36 -0.8 -2408 -6 -72 2238 14 92^04^18 38 -0.4 -4188 -6 -131 3646 16 92^04^21 41 9.4 3096 9 95 2498 16 92^04^24 44 4.2 6790 30 204 2075 14 92^04^25 45 32.5 2852 22 90 4657 15 92^04^27 47 80.0 1193 11 39 3303 7 92^04^30 50 0.8 2374 12 62 -3093 -7 92^05^3 53 0.8 2465 13 84 -3122 -14 92^05^5 55 2.7 720 3 27 -1 -0 92^05^6 56 -4.2 -446 -3 -17 -856 -26 92^05^8 58 294.2 67 0 3 1051 11 92^05^9 59 22.8 1575 4 68 567 4 92^05^11 61 6.7 5292 10 238 -51 -0 92^05^13 63 6.3 6305 14 302 814 5 92^05^15 65 4.3 13257 31 618 840 6 92^05^18 68 8.7 6380 22 287 1702 12 92^05^19 69 9.0 8750 62 388 619 4 92^05^21 71 9.3 7868 87 337 307 2 92^05^25 75 8.2 9295 93 394 152 1 92^05^26 76 4.3 9241 47 382 454 3 92^05^28 78 4.4 8712 57 354 2176 14 92^05^31 81 4.7 10403 82 392 3316 21 92^06^2 83 3.0 15577 91 597 1631 11 92^06^4 85 5.4 8770 88 339 2645 18 199 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitm %Denitm Specific NH4 Removal^% NH4 (yy mm dd)^Removed^Rate Denitm Rate^Rate Removal (gCOD/gN)^(mgN/d)^(mgN/d/gVSS) (mgN/d) 92 06^6^87 4.9 10054 99 404 3361 22 92 06^7^88 5.3 9824 98 370 3728 23 92 06^10^91 5.4 8923 99 340 3384 22 92 06^13^94 5.1 9974 98 378 3867 26 92 06^15^96 4.8 10668 99 420 3774 24 92 06^16^97 5.3 9479 99 346 3460 24 92 06^17^98 5.0 10119 100 395 2063 15 92 06^19 100 5.5 9000 98 363 4086 27 92 06^22 103 4.9 10448 97 394 4404 28 92 06^23 104 5.1 9978 100 386 2829 20 92 06^26 107 4.4 10019 99 406 2309 16 92 06^28 109 4.6 10220 100 389 2864 19 92 06^29 110 4.3 11414 99 433 1784 12 92 07^3^114 4.9 9873 100 370 3740 22 92 07^4^115 4.8 10144 99 382 3318 21 92 07^6^117 5.7 8723 100 322 5156 28 92 07^9^120 5.3 9501 99 339 2885 18 92 07^10^121 4.3 11271 99 405 1959 13 92 07^12 123 9.0 5497 76 205 5542 23 92 07^14 125 6.1 8212 54 305 2456 10 92 07^15^126 17.0 2914 23 111 4479 10 92 07^17^128 9.1 5287 43 204 1485 3 92 07^19 130 17.2 2933 18 112 632 1 92 07^21^132 0.0 92 07^23 134 0.0 92 07^26 137 0.0 92 07^27 138 0.0 92 07^29 140 0.0 -14252 -31 -859 3086 15 92 07^31^142 0.0 1712 3 107 264 2 92 08^2^144 0.0 -1873 -3 -113 -128 -1 92 08^4^146 0.0 -399 -1 -24 5589 12 92 08^6^148 0.0 265 0 16 2719 5 92 08^7^149 0.0 -3302 -7 -195 2963 5 92 08^10 152 0.0 -7987 -23 -473 4175 7 92 08^13^155 0.0 -2078 -5 -125 7285 10 92 08^14 156 0.0 -2744 -9 -165 10026 14 92 08^17 159 0.0 817 2 50 -2366 -3 92 08^19^161 0.0 507 2 32 -2429 -4 92 08^21^163 0.0 1363 5 80 -4103 -6 92 08^23 165 0.0 40641 60 2350 675 1 92 08^24 166 0.0 -36 -0 -2 5745 8 92 08^27 169 0.0 779 3 47 -1976 -3 200 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSSFTSS NO2/NOX^ALK:NH4^ALK:NH4^Nitrn^%Nitrn Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 92 03^12 1 0.74 25.17 92 03^13 2 0.75 38.78 92 01^15 A 0.81 27.80 92 03^17 6 0.78 7.38 92 03^20 9 0.77 10.20 92 03^22 11 0.70 11.87 92 03^23 12 0.69 8.36 92 03^25 14 0.57 0.44 5.63 6.93 10696 74 262 92 03^26 15 0.65 0.46 4.69 5.87 11950 78 275 92 03^28 17 0.67 0.44 4.94 5.21 13394 94 307 92 03^30 19 0.91 0.66 4.57 5.48 12766 96 224 92 04^1 21 0.89 0.66 5.53 6.31 12871 96 226 92 04^3 23 1.01 0.60 5.10 5.12 13307 107 202 92 04^5 25 0.96 0.60 5.61 7.09 10834 84 167 92 04^6 26 0.93 0.53 4.42 5.63 11559 97 179 92 04^8 28 0.93 0.75 4.30 5.53 11366 58 174 92 04^9 29 0.92 0.69 2.98 6.88 6540 41 99 92 04^10 30 0.90 0.75 2.79 8.51 4666 25 71 92 04^12 32 0.92 0.76 1.54 4.56 4778 20 70 92 04^13 33 0.90 0.53 16.66 16.08 1808 59 27 92 04^15 35 0.96 0.42 7.76 9.46 4652 48 63 92 04^16 36 0.93 0.47 5.80 12.59 4213 31 58 92 04^18 38 0.85 0.35 6.82 10.55 9310 49 137 92 04^21 41 0.84 0.49 3.15 5.13 9209 68 135 92 04^24 44 0.79 0.61 3.28 4.45 10620 84 167 92 04^25 45 0.82 0.82 2.94 8.42 4733 18 73 92 04^27 47 0.78 0.81 2.21 12.27 2750 6 45 92 04^30 50 0.70 0.30 2.23 4.25 5411 11 107 92 05^3 53 0.74 0.39 4.93 5.28 5328 21 105 92 05^5 55 0.72 0.31 3.81 5.88 3939 20 82 92 05^6 56 0.70 0.42 17.90 17.11 1662 40 38 92 05^8 58 0.72 0.25 5.60 8.06 4196 52 97 92 05^9 59 0.72 0.16 4.90 6.11 7588 63 178 92 05^11 61 0.70 0.08 4.59 4.69 14161 87 355 92 05^13 63 0.82 0.11 5.32 5.98 13771 89 305 92 05^15 65 0.85 0.08 3.64 2.67 20073 142 429 92 05^18 68 0.85 0.14 3.20 4.20 11014 84 237 92 05^19 69 0.88 0.08 2.66 3.50 10883 78 224 92 05^21 71 0.87 0.10 4.03 5.90 9218 69 190 92 05^25 75 0.91 0.12 3.88 4.91 10793 75 212 92 05^26 76 0.89 0.00 3.90 4.56 12342 88 244 92 05^28 78 0.88 0.01 3.05 4.29 11084 81 219 92 05^31 81 0.91 0.02 4.60 5.71 12387 101 234 92 06^2 83 0.90 0.01 4.21 3.39 18211 139 345 92 06^4 85 0.88 0.01 4.25 6.04 10243 84 195 201 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSSITSS NOZNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitrn Specific (yy mm dd)^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 92 06 6^87 0.88 0.00 3.51 4.57 11741 98 223 92 06 7^88 0.89 0.01 3.72 5.13 11532 94 214 92 06 10^91 0.90 0.01 4.67 6.76 10446 89 190 92 06 13^94 0.88 0.00 4.18 5.40 11652 104 216 92 06 15^96 0.87 0.00 4.56 5.81 12497 103 231 92 06 16^97 0.85 0.00 3.98 5.14 11060 102 209 92 06 17^98 0.86 0.01 4.31 4.82 11801 105 222 92 06 19 100 0.84 0.01 3.50 5.14 10404 93 201 92 06 22 103 0.84 0.00 4.28 5.61 12138 105 234 92 06 23 104 0.85 0.01 4.41 5.36 11535 103 221 92 06 26 107 0.85 0.01 5.12 6.42 11627 94 222 92 06 28 109 0.85 0.00 3.70 4.62 11802 99 227 92 06 29 110 0.89 0.00 4.59 5.28 13131 98 241 92 07 3^114 0.88 0.01 3.58 5.22 11507 88 212 92 07 4^115 0.88 0.05 3.20 4.29 11856 94 217 92 07 6^117 0.90 0.09 4.49 7.16 10223 78 182 92 07 9^120 0.90 0.66 3.67 5.14 11061 87 194 92 07 10^121 0.90 0.45 3.90 4.44 13017 101 227 92 07 12 123 0.89 0.93 3.27 7.35 6603 36 116 92 07 14^125 0.87 0.71 3.69 5.29 10661 47 190 92 07 15^126 0.87 1.04 2.51 7.83 4862 11 88 92 07 17^128 0.88 0.92 4.13 8.34 7400 18 133 92 07 19 130 0.88 0.86 3.14 8.01 5546 12 99 92 07 21^132 0.78 0.46 8.97 35 92 07 23 134 0.70 0.42 7.06 52 92 07 26 137 0.79 0.49 8.20 65 92 07 27 138 0.78 0.51 8.86 98 92 07 29 140 0.76 0.46 0.71 -1.37 -7692 -45 -176 92 07 31^142 0.69 0.28 6.67 7.39 13560 86 345 92 08 2^144 0.70 0.41 7.40 10.43 9184 69 237 92 08 4^146 0.74 0.47 3.65 5.99 8147 19 212 92 08 6^148 0.73 0.50 7.85 10.27 10583 20 282 92 08 7^149 0.76 0.68 4.28 14.83 4191 8 114 92 08 10^152 0.78 1.02 0.88 -5.49 -2346 -4 -64 92 08 13^155 0.77 0.74 4.10 12.22 4926 7 133 92 08 14^156 0.78 0.87 2.40 13.34 2740 4 75 92 08 17^159 0.74 0.84 4.85 10.12 7291 10 200 92 08 19^161 0.75 0.86 5.16 12.30 6081 9 169 92 08 21^163 0.75 0.93 4.71 10.67 6404 8 181 92 08 23 165 0.77 0.35 8.09 2.11 54218 86 1529 92 08 24 166 0.74 0.90 4.88 13.42 5185 8 150 92 08 27 169 0.75 0.72 4.56 10.75 6196 8 181 202 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) ^ Aerobic Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (nigN/d) 92 03 12 1 873 29 76.7 76 92 03 13 2 987 51 72.0 87 ca, 03 15 A 1177 70 68.6 95 92 03 17 6 4465 62 61.0 92 92 03 20 9 5099 84 53.6 97 92 03 22 11 4946 81 43.6 97 92 03 23 12 6063 59 45.3 92 92 03 25 14 10457 73 31.1 96 92 03 26 15 13905 91 56.3 99 92 03 28 17 13126 92 10 15.0 99 92 03 30 19 12926 98 10 14.2 100 92 04 1 21 12418 93 10 14.2 99 92 04 3 23 12355 100 10 14.7 100 92 04 5 25 12087 94 10 15.1 99 92 04 6 26 11571 97 10 15.1 100 92 04 8 28 9635 49 10 15.6 89 92 04 9 29 8115 50 10 15.8 92 92 04 10 30 5508 30 10 15.9 88 92 04 12 32 5595 23 92.2 81 92 04 13 33 1448 48 79.5 87 92 04 15 35 5667 58 99.5 89 92 04 16 36 5698 42 20 26.0 87 92 04 18 38 9237 49 10 14.2 89 92 04 21 41 12305 91 10 15.8 99 92 04 24 44 12273 97 10 15.0 100 92 04 25 45 6216 24 83.1 80 92 04 27 47 6648 15 62.4 65 92 04 30 50 7978 16 47.4 47 92 05 3 53 6191 24 61.6 54 92 05 5 55 3985 20 47.3 66 92 05 6 56 2170 52 10 14.1 83 92 05 8 58 4450 55 10 14.4 91 92 05 9 59 8333 69 10 14.4 94 92 05 11 61 14222 87 10 13.6 98 92 05 13 63 14529 94 10 14.3 99 92 05 15 65 13822 98 10 14.2 100 92 05 18 68 12703 97 10 14.3 100 92 05 19 69 13677 98 10 14.5 100 92 05 21 71 13166 99 10 14.8 100 92 05 25 75 13359 93 10 14.6 99 92 05 26 76 13961 100 10 14.5 100 92 05 28 78 13374 98 10 14.6 100 92 05 31 81 12004 98 10 14.9 100 92 06 2 83 13027 99 10 14.6 100 92 06 4 85 11860 97 10 14.6 100 203 COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Aerobic Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (mgN/d) 92 06 6 87 11921 100 10 14.8 100 92 06 7 88 12172 99 10 14.6 100 92 06 le 91 11733 99 10 15.1 100 92 06 13 94 11175 100 10 14.8 100 92 06 15 96 12117 100 10 14.9 100 92 06 16 97 10806 99 10 14.6 100 92 06 17 98 11100 98 10 14.9 100 92 06 19 100 11202 100 10 14.4 100 92 06 22 103 11508 99 10 15.1 100 92 06 23 104 11185 100 10 15.3 100 92 06 26 107 12243 99 10 14.9 100 92 06 28 109 11844 99 10 15.0 100 92 06 29 110 13319 100 10 14.9 100 92 07 3 114 13005 99 10 15.2 100 92 07 4 115 12615 100 10 15.3 100 92 07 6 117 10820 83 10 15.0 98 92 07 9 120 12604 99 10 15.0 100 92 07 10 121 12869 100 10 15.5 100 92 07 12 123 7901 43 10 15.4 91 92 07 14 125 11261 50 10 14.7 90 92 07 15 126 5727 14 10 15.1 67 92 07 17 128 8460 20 10 14.6 67 92 07 19 130 7869 16 69.9 60 92 07 21 132 73 92 07 23 134 89 92 07 26 137 95 92 07 27 138 10 99 92 07 29 140 11054 64 10 13.2 95 92 07 31 142 14587 93 10 12.0 99 92 08 2 144 13045 99 10 13.3 100 92 08 4 146 1672 4 45.3 54 92 08 6 148 4044 8 30.9 49 92 08 7 149 4627 8 35.4 52 92 08 10 152 3206 6 36.8 50 92 08 13 155 -3781 -5 35.8 24 92 08 14 156 -4607 -7 38.6 36 92 08 17 159 7161 10 34.2 32 92 08 19 161 6762 10 30.9 30 92 08 21 163 7273 9 35.5 22 92 08 23 165 3456 5 37.2 29 92 08 24 166 -2266 -3 34.3 24 92 08 27 169 5014 6 35.3 21 204 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic (yy mm dd)^(Lid)^I ml/h)^( ml/h)^(mL/h)^( WA)^(Lid) Wasting^Overflow (Lid)^(Lid) 92^03^12 1 9.8 27.0 6.5 41 41 57 0.0 69 92^03^13 2 9.2 23.9 6.3 42 42 57 0.0 68 92^03^15 4 8.9 27.5 6.3 37 37 57 0.0 68 92^03^17 6 8.8 27.0 6.6 39 39 57 0.0 68 92^03^20 9 9.0 24.6 6.7 36 36 63 0.0 74 92^03^22 11 9.0 23.8 6.7 41 41 63 0.0 74 92^03^23 12 9.0 19.5 6.7 43 43 60 0.0 71 92^03^25 14 8.9 23.0 6.5 42 42 60 0.0 71 92^03^26 15 8.7 21.0 6.7 39 39 60 0.0 70 92^03^28 17 8.9 20.0 6.4 39 39 59 0.5 69 92^03^30 19 8.6 20.0 6.4 39 39 59 0.5 69 92^04^1 21 8.8 19.5 6.8 47 47 59 0.5 70 92^04^3 23 9.0 16.0 7.0 38 38 59 0.5 69 92^04^5 25 8.8 15.4 6.9 44 44 56 0.5 66 92^04^6 26 8.9 25.0 6.8 48 48 56 0.5 67 92^04^8 28 8.7 25.8 6.8 46 46 56 0.5 67 92^04^9 29 8.6 24.0 6.8 44 44 56 0.5 66 92^04^10 30 8.6 27.0 6.7 37 37 63 0.5 73 92^04^12 32 8.4 25.0 6.9 45 45 63 0.0 73 92^04^13 33 8.4 25.0 6.7 44 11.7 63 0.0 72 92^04^15 35 8.4 25.0 6.7 48 11.5 58 0.0 67 92^04^16 36 8.2 24.0 6.5 40 11.8 58 0.5 67 92^04^18 38 8.3 26.0 6.5 38 11.4 58 0.5 67 92^04^21 41 8.3 27.0 6.8 32 11.2 58 0.5 67 92^04^24 44 8.6 26.0 6.6 32 11.1 58 0.5 68 92^04^25 45 8.5 25.9 6.5 45 11.0 64 0.0 74 92^04^27 47 8.2 26.9 6.7 42 10.9 64 0.0 73 92^04^30 50 8.6 27.0 6.3 12 10.8 64 0.0 74 92^05^3 53 8.8 26.7 6.8 17 11.0 64 0.0 74 92^05^5 55 8.8 24.6 6.6 12 11.5 64 0.0 74 92^05^6 56 9.0 27.0 6.6 17 11.4 64 0.5 74 92^05^8 58 8.9 27.0 6.7 22 11.8 59 0.5 69 92^05^9 59 8.5 25.0 6.2 34 11.7 59 0.5 69 92^05^11 61 8.2 25.0 6.2 53 11.7 62 0.5 71 92^05^13 63 8.0 25.5 7.0 68 12.1 62 0.5 71 92^05^15 65 8.2 27.1 6.6 41 12.1 62 0.5 71 92^05^18 68 8.5 24.8 6.5 34 11.9 62 0.5 72 92^05^19 69 8.6 26.0 6.8 26 12.1 65 0.5 75 92^05^21 71 8.3 22.6 6.5 44 12.2 65 0.5 74 92^05^25 75 8.5 24.0 6.6 39 11.6 65 0.5 75 92^05^26 76 8.3 23.0 7.2 35 12.1 65 0.5 74 92^05^28 78 8.3 25.0 6.8 35 12.0 63 0.5 72 92^05^31 81 8.4 25.0 6.8 55 12.5 63 0.5 72 92^06^2 83 8.3 23.6 7.0 47 12.7 63 0.5 72 92^06^4 85 8.5 25.2 7.0 47 12.7 63 0.5 73 205 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^Flowrate Date^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle^Aerobic^Anoxic (yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(Lid)^Wasting^Overflow (L/d) (Lid) 92^06^6^87 8.6 25.5 7.1 39 12.2 57 0.5 67 92^06^7^88 8.5 25.5 6.9 44 11.8 57 0.5 67 92^06^10^91 8.4 24.2 6.4 35 11.7 57 0.5 66 92^06^13^94 8.5 24.1 6.3 48 11.4 57 0.5 67 92^06^15^96 8.6 23.0 7.1 47 11.3 57 0.5 67 92^06^16^97 8.4 23.8 6.5 42 11.7 57 0.5 66 92^06^17^98 8.3 25.6 6.5 32 12.0 57 0.5 66 92^06^19 100 8.3 25.1 6.5 39 12.5 60 0.5 69 92^06^22 103 8.4 25.8 6.6 43 12.7 60 0.5 69 92^06^23 104 8.4 23.6 6.7 41 13.0 60 0.5 69 92^06^26 107 8.2 22.8 6.4 36 12.8 60 0.5 69 92^06^28 109 8.2 21.2 6.2 40 12.9 60 0.5 69 92^06^29 110 8.1 19.0 6.0 44 13.4 64 0.5 73 92^07^3^114 8.1 29.7 5.8 36 13.8 61 0.5 70 92^07^4^115 8.2 31.6 5.7 37 13.9 61 0.5 70 92^07^6^117 8.2 32.3 5.6 58 13.6 61 0.5 70 92^07^9^120 8.2 30.9 5.7 47 13.3 61 0.5 70 92^07^10^121 8.2 29.2 5.7 44 13.3 64 0.5 73 92^07^12 123 8.0 29.2 5.3 48 13.9 64 0.5 73 92^07^14 125 8.3 30.1 5.6 42 13.4 64 0.5 73 92^07^15 126 8.4 30.2 5.7 35 13.5 64 0.5 74 92^07^17 128 8.3 29.1 5.5 47 13.9 61 0.5 70 92^07^19 130 8.3 27.5 5.7 31 14.5 61 0.0 70 92^07^21^132 7.9 29.2 0.0 113 14.9 61 0.0 70 92^07^23 134 7.6 28.5 0.0 89 14.9 61 0.0 70 92^07^26 137 7.4 28.8 0.0 95 14.5 61 0.0 69 92^07^27 138 7.2 23.8 0.0 89 15.1 61 0.0 69 92^07^29 140 7.3 28.9 0.0 74 14.9 61 0.5 69 92^07^31^142 7.6 30.8 0.0 44 14.5 61 1.0 70 92^08^2^144 8.0 26.3 0.0 37 14.3 55 1.0 64 92^08^4^146 8.3 26.3 0.0 34 14.1 55 0.0 64 92^08^6^148 8.6 28.6 0.0 41 13.9 62 0.0 72 92^08^7^149 8.4 28.6 0.0 47 14.0 62 0.0 71 92^08^10 152 8.1 29.8 0.0 57 14.1 58 0.0 67 92^08^13 155 8.3 29.0 0.0 64 14.4 58 0.0 67 92^08^14 156 8.3 30.8 0.0 52 14.1 58 1.0 67 92^08^17^159 8.2 30.3 0.0 37 14.6 58 1.0 67 92^08^19^161 8.5 27.3 0.0 16 14.9 55 1.0 64 92^08^21^163 8.6 24.7 0.0 31 14.4 55 1.0 65 92^08^23 165 8.3 22.2 0.0 46 14.9 55 1.0 64 92^08^24 166 8.3 20.4 0.0 34 14.7 55 1.0 64 92^08^27 169 8.4 21.3 0.0 31 15.0 55 1.0 64 206 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 (yy mm dcl)^Overflow Iti/LI^Influent NH4 ImL/1.1^(gP/L) (Lid)^ (mgN/L) 92 03 12 1 70 13 346 10 0.231 92 03 13 2 69 13 313 10 0.231 cb, 03 16 4 68 25 592 10 0.231 92 03 17 6 68 25 591 10 0.231 92 03 20 9 74 50 937 10 0.231 92 03 22 11 75 83 1398 10 0.231 92 03 23 12 72 90 1302 10 0.231 92 03 25 14 72 90 1517 200 0.231 92 03 26 15 71 100 1588 200 0.231 92 03 28 17 70 100 1486 200 0.231 92 03 30 19 70 110 1651 200 0.231 92 04 1 21 71 110 1559 200 0.231 92 04 3 23 70 120 1404 500 0.231 92 04 5 25 67 125 1472 500 0.231 92 04 6 26 68 90 1642 500 0.231 92 04 8 28 68 0 164 10 0.231 92 04 9 29 67 25 580 10 0.231 92 04 10 30 74 50 1083 10 0.231 92 04 12 32 74 80 1534 10 0.231 92 04 13 33 73 80 1441 10 0.361 92 04 15 35 69 80 1422 100 0.361 92 04 16 36 68 80 1415 200 0.361 92 04 18 38 68 80 1499 400 0.361 92 04 21 41 68 80 1582 400 0.361 92 04 24 44 68 50 980 10 0.381 92 04 25 45 75 0 128 10 0.361 92 04 27 47 74 0 195 10 0.361 92 04 30 50 74 25 619 10 0.381 92 05 3 53 74 25 597 10 0.361 92 05 5 55 74 50 1052 10 0.361 92 05 6 56 75 60 1200 10 0.361 92 05 8 58 70 75 1459 25 0.361 92 05 9 59 69 75 1370 50 0.361 92 05 11 61 73 88 1525 100 0.361 92 05 13 63 73 80 1412 100 0.361 92 05 15 65 72 80 1559 100 0.361 92 05 18 68 72 80 1445 200 0.361 92 05 19 69 75 80 1512 200 0.361 92 05 21 71 75 80 1305 200 0.361 92 05 25 75 75 80 1381 300 0.361 92 05 26 76 75 80 1350 300 0.361 92 05 28 78 73 SO 1449 300 0.361 92 05 31 81 74 80 1370 300 0.361 92 06 2 83 73 80 1339 300 0.361 92 06 4 85 74 80 1391 300 0.361 207 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Date^Day^Aerobic NH4C1 Simulated CH3OH o-PO4 (Icy mm dd)^Overflow (g/L)^Influent NH4^ImL/L)^(gPIL) (L/d)^ (mgN/L) 92 06 6^87 68 80 1424 250 0.361 92 06 7^88 68 80 1431 250 0.361 92 06 10^91 67 80 1409 250 0.361 92 06 13^94 68 80 1347 270 0.361 92 06 15^96 68 80 1273 270 0.361 92 06 16^97 67 80 1372 265 0.361 92 06 17^98 67 80 1493 265 0.361 92 06 19^100 70 80 1445 265 0.361 92 06 22 103 71 80 1461 265 0.361 92 06 23 104 70 80 1335 265 0.361 92 06 26 107 70 80 1363 265 0.361 92 06 28 109 70 95 1464 290 0.361 92 06 29 110 74_ 95 1323 290 0.361 92 07 3^114 71 73 1588 290 0.361 92 07 4^115 71 73 1655 290 0.361 92 07 6^117 72 73 1619 290 0.361 92 07 9^120 72 73 1587 290 0.361 92 07 10^121 74 73 1534 290 0.361 92 07 12^123 74 73 1549 290 0.361 92 07 14 125 74 73 1569 290 0.361 92 07 15^126 74 73 1577 290 0.361 92 07 17^128 72 73 1507 290 0.361 92 07 19^130 71 73 1487 290 0.361 92 07 21^132 73 73 1338 0 0.361 92 07 23 134 72 73 1428 0 0.361 92 07 26 137 72 73 1456 0 0.361 92 07 27 138 71 73 1263 0 0.361 92 07 29 140 71 73 1555 0 0.361 92 07 31^142 71 73 1722 0 0.361 92 08 2^144 65 73 1457 0 0.361 92 08 4^146 65 73 1437 0 0.361 92 08 6^148 73 73 1481 0 0.361 92 08 7^149 73 73 1488 0 0.361 92 08 10^152 69 73 1547 0 0.361 92 08 13^155 69 73 1464 0 0.361 92 08 14^156 69 73 1580 0 0.361 92 08 17^159 68 73 1632 0 0.361 92 08 19^161 65 73 1540 0 0.361 92 08 21^163 65 73 1318 0 0.361 92 08 23 165 65 90 1452 0 0.361 92 08 24 166 65 90 1391 0 0.361 92 08 27 169 65 95 1507 0 0.361 208 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3 Loading Loading Loading ORP (yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV) (gCOD/d) (gp/d)^(gCaCO3/d) 92 03 12 1 44 1.85 0.228 3648 -156 92 03 13 2 56 1.80 0.233 4636 -109 92 03 16 4 56 1.80 0.205 4276 -17 92 03 17 6 50 1.88 0.217 4109 53 92 03 20 9 81 1.89 0.200 5518 66 92 03 22 11 81 1.91 0.228 6116 121 92 03 23 12 81 1.91 0.239 6639 73 92 03 25 14 50 37.04 0.233 4577 5 92 03 26 15 50 38.18 0.217 4440 -11 92 03 28 17 50 36.47 0.217 4407 -16 92 03 30 19 50 36.47 0.217 4486 -30 92 04 1 21 50 38.75 0.261 5047 -44 92 04 3 23 50 .. 99.73 0.211 4332 -129 92 04 5 25 50 98.30 0.244 4870 -93 92 04 6 26 50 96.88 0.267 5012 -90 92 04 8 28 63 1.94 0.255 5777 -86 92 04 9 29 75 1.94 0.244 6482 -107 92 04 10 30 83 1.91 0.205 6085 -91 92 04 12 32 93 1.97 0.250 7905 -55 92 04 13 33 93 1.91 0.102 7242 -62 92 04 15 35 75 19.09 0.100 6472 -34 92 04 16 36 75 37.04 0.103 5805 -51 92 04 18 38 75 74.08 0.099 5579 -42 92 04 21 41 75 77.50 0.097 4998 -75 92 04 24 44 75 1.88 0.097 4897 -91 92 04 25 45 75 1.85 0.095 6182 -110 92 04 27 47 75 1.91 0.095 5689 -114 92 04 30 50 75 1.80 0.093 2485 -81 92 05 3 53 75 1.94 0.095 2950 -44 92 05 5 55 75 1.88 0.099 2456 21 92 05 6 56 75 1.88 0.099 2934 -3 92 05 8 58 75 4.77 0.102 3458 -8 92 05 9 59 75 8.83 0.101 4758 -15 92 05 11 61 75 17.67 0.101 6695 -32 92 05 13 63 75 19.95 0.105 8174 -49 92 05 15 65 75 18.81 0.105 5570 -36 92 05 18 68 75 37.04 0.103 4782 -114 92 05 19 69 75 38.75 0.105 3949 -124 92 05 21 71 75 37.04 0.106 5858 -110 92 05 25 75 75 56.42 0.101 5255 -166 92 05 26 76 75 61.55 0.105 4942 -142 92 05 28 78 75 58.13 0.105 4942 -130 92 05 31 81 75 58.13 0.108 6973 -92 92 06 2 83 75 59.84 0.110 6283 -90 92 06 4 85 75 59.84 0.110 6204 -106 209 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Feed Conc.^ System^System^System^Anoxic Date^Day NaHCO3 Loading Loading Loading ORP (yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV) (gCOD/d) (gP/d)^(gCaCO3/d) 92 06 6^87 75 50.58 0.106 5400 -136 92 06 7^88 75 49.15 0.102 5919 -151 °2 Oa. 1 °^9 1 75 45.59 0.102 5108 -166 92 06 13^94 75 48.47 0.099 6290 -172 92 06 15^96 75 54.62 0.098 6147 -151 92 06 16^97 75 49.08 0.101 5795 -190 92 06 17^98 75 49.08 0.104 4850 -200 92 06 19 100 75 49.08 0.108 5519 -185 92 06 22 103 75 49.84 0.110 5862 -154 92 06 23 104 75 50.59 0.113 5662 -160 92 06 26 107 75 48.33 0.111 5292 -184 92 06 28 109 75 51.23 0.112 5677 -183 92 06 29^110 75 49.58 0.116 6111 -171 92 07 3^114 75 47.93 0.120 5285 -169 92 07 4^115 75 47.10 0.120 5305 -174 92 07 6^117 75 46.27 0.118 7273 -140 92 07 9^120 75 47.10 0.115 6297 -158 92 07 10^121 75 47.10 0.116 6008 -161 92 07 12 123 75 43.80 0.121 6511 -187 92 07 14^125 75 46.27 0.116 5781 -234 92 07 15^126 75 47.10 0.117 5056 -258 92 07 17 128 75 45.45 0.121 6232 -207 92 07 19 130 75 47.10 0.126 4673 -226 92 07 21^132 75 0.00 0.129 11994 -119 92 07 23 134 75 0.00 0.129 10462 -30 92 07 26 137 75 0.00 0.126 11194 -8 92 07 27 138 75 0.00 0.131 10894 -5 92 07 29 140 75 0.00 0.129 9457 5 92 07 31^142 75 0.00 0.126 6366 15 92 08 2^144 75 0.00 0.124 5448 39 92 08 4^146 75 0.00 0.123 5176 -15 92 08 6^148 75 0.00 0.121 5713 30 92 08 7^149 75 0.00 0.121 6419 21 92 08 10^152 75 0.00 0.122 7447 40 92 08 13^155 75 0.00 0.125 8021 45 92 08 14^156 75 0.00 0.123 6871 46 92 08 17^159 75 0.00 0.127 5533 42 92 08 19^161 75 0.00 0.129 3255 54 92 08 21^163 75 0.00 0.125 4774 35 92 08 23 165 75 0.00 0.129 6324 49 92 08 24 166 75 0.00 0.128 5170 47 92 08 27 169 75 0.00 0.131 4851 57 210 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^PH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO (yy mm dd) (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L) 92 03^12 1 7.5 5780 8078 268 92 03^13 2 7.3 5674 7412 133 92 03^15 4 7.8 5458 7216 118 307 92 03^17 6 7.3 5306 8977 88 92 03^20 9 7.4 5380 6806 134 92 03^22 11 7.6 5756 6566 189 184 92 03^23 12 7.5 4850 7066 174 92 03^25 14 7.7 4626 6347 14.5 196 644.0 292.0 92 03^26 15 7.7 4620 6358 10.4 215 802.0 238.0 92 03^28 17 7.9 4789 6105 10.2 198 614.0 210.0 88 92 03^30 19 8.2 4898 6440 8.0 208 674.0 194.6 92 04^1 21 8.1 4883 6416 9.2 207 731.0 167.0 92 04^3 23 8.5 4614 5364 6.9 218 125.9 87.0 92 04^5 25 8.6 4650 5258 7.2 348 19.7 14.3 218 92 04^6 26 8.3 4540 5437 7.1 384 4.4 0.4 92 04^8 28 8.2 4339 5249 6.5 138 72.0 27.0 92 04^9 29 8.3 4639 5505 5.9 196 344.7 138.0 92 04^10 30 8.3 4699 5530 6.5 229 338.0 143.0 92 04^12 32 8.7 4758 5911 6.7 206 897.0 226.0 208 92 04^13 33 8.7 4677 5438 5.3 198 843.0 251.0 92 04^15 35 8.2 4704 5547 4.2 199 489.0 254.0 108 92 04^16 36 8.2 4792 5346 3.8 189 369.2 91.0 119 92 04^18 38 8.2 4756 5201 2.9 289 71.0 21.9 310 92 04^21 41 8.2 4736 4996 3.3 309 15.4 14.4 328 92 04^24 44 8.4 4776 5466 3.2 201 437.0 103.4 245 92 04^25 45 8.6 4897 5680 3.4 35 117.0 18.3 92 04^27 47 8.5 4738 5529 3.3 27 171.0 19.2 114 92 04^30 50 8.1 4307 5435 3.1 233 396.0 33.0 86 92 05^3 53 8.5 4008 5003 3.4 128 494.0 47.0 62 92 05^5 55 8.0 4163 5174 3.2 155 593.0 66.0 66 92 05^6 56 8.0 4167 5058 2.8 166 676.0 60.0 92 05^8 58 7.6 4140 4714 2.6 172 885.0 158.0 72 92 05^9 59 8.0 4222 4900 3.0 189 857.0 156.0 66 92 05^11 61 8.3 4246 4745 3.1 191 845.0 24.0 104 92 05^13 63 8.0 4345 4681 3.5 193 961.0 15.6 97 92 05^15 65 7.9 4412 5112 3.3 163 921.0 13.5 83 92 05^18 68 7.9 4280 4443 3.8 178 844.3 3.5 127 92 05^19 69 8.0 4544 4623 4.0 183 838.7 3.3 127 92 05^21 71 8.0 4769 5117 3.1 154 879.2 2.0 136 92 05^25 75 8.3 5250 5076 3.0 162 427.0 0.4 186 92 05^26 76 8.4 5360 5394 3.4 175 202.2 0.6 218 92 05^28 78 8.3 5600 5316 2.6 163 36.1 0.8 196 92 05^31 81 8.7 6150 5857 2.3 154 3.8 0.1 212 92 06^2 83 8.9 6029 6027 2.3 161 12.6 0.6 183 92 06^4 85 8.4 5859 6191 2.8 158 0.9 0.2 193 211 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Data^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD (yy mm dd) Img/LI^Img/LI^ImgP/LI^ImgN/LI^(mgNIL)^(mgNIL)^Img/LI 92 06 6^87 8.4 5737 6112 2.5 151 2.6 1.4 206 92 06 7^88 8.4 6143 7045 3.0 168 6.3 0.5 92 06 10^91 8.4 5924 6351 2.4 155 2.3 1.2 185 92 06 13^94 8.6 6090 6686 2.0 177 2.9 0.9 173 92 06 15^96 8.5 6018 6853 2.2 172 1.9 0.1 92 06 16^97 8.3 5716 6653 2.4 163 0.8 0.0 184 92 06 17^98 8.4 5554 6553 2.0 169 1.0 0.0 168 92 06 19^100 8.3 5992 6909 2.7 155 2.7 0.6 172 92 06 22 103 8.4 5655 6646 2.7 162 1.2 0.0 194 92 06 23 104 8.4 5550 6463 3.1 163 1.7 0.0 92 06 26 107 8.4 5408 6499 3.3 159 0.8 0.1 193 92 06 28 109 8.4 5480 6181 3.0 171 4.6 1.9 188 92 06 29^110 8.5 5606 5977 3.5 171 2.8 0.1 179 92 07 3^114 8.3 5857 6830 3.1 186 2.3 1.2 204 92 07 4^115 8.3 5910 6471 3.5 176 0.8 0.0 92 07 6^117 8.4 5847 6446 2.6 184 1.4 0.2 205 92 07 9^120 8.3 6393 7268 2.3 181 1.5 0.1 185 92 07 10^121 8.4 6635 7318 3.0 161 2.6 0.0 92 07 12^123 8.4 6118 6890 2.7 192 2.7 0.7 223 92 07 14^125 8.2 5935 6671 2.8 278 15.0 1.5 189 92 07 15^126 8.2 6160 6880 2.7 298 13.0 9.7 92 07 17^128 8.3 5960 6729 2.7 506 23.6 2.1 236 92 07 19 130 8.2 5910 6715 3.1 685 22.1 3.9 248 92 07 21^132 8.0 6046 7309 3.6 507 8.7 1.3 361 92 07 '3^134 8.1 5734 7964 3.7 493 8.4 0.4 328 92 07 '3^137 8.1 5359 7936 4.3 450 8.5 0.4 330 92 07 27 138 7.9 4858 6699 4.9 281 316.0 14.6 92 07 29 140 7.8 4700 6671 5.1 308 621.0 26.4 205 92 07 31^142 7.6 4745 6523 4.3 209 932.0 71.6 263 92 08 2^144 7.5 4763 6751 3.3 194 957.0 69.2 190 92 08 4^146 7.7 4429 6249 3.7 718 746.0 308.8 625 92 08 6^148 7.4 4163 5775 3.4 680 870.0 463.0 468 92 08 7^149 7.5 3973 5325 2.8 505 1086.0 497.0 92 08 10^152 7.5 3910 5512 3.2 310 905.6 530.0 300 92 08 13^155 7.5 3941 5153 3.3 207 902.5 427.5 92 08 14^156 7.7 3880 5266 2.7 199 972.0 498.1 205 92 08 17^159 7.5 3812 5070 2.8 225 1014.0 446.4 92 08 19^161 7.5 3855 4979 3.3 249 903.0 355.0 232 92 08 21^163 7.6 3550 4743 3.5 256 821.0 368.9 92 08 23 165 7.7 3474 4594 3.1 507 696.0 358.8 241 92 08 24 166 7.6 3452 4600 3.5 531 626.0 336.7 92 08 27 169 7.5 3297 4224 3.8 649 698.0 214.3 212 COLD TEMPERATURE PHASE (20 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) ^ Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD DO pH^VSS^TSS^o-PO4^NH4 (yy mm dd)^(mall)^(mg/L)^(mg/L)^(ing/L)^(m9P/L)^( mgN/L) 92 03^12 1 702 9.10 6.7 5970 8320 239 92 03^13 2 828 8.00 7.2 6079 7905 81 92 03^15 4 685 8.20 7.7 5680 7643 53 92 03^17 6 798 7.80 7.1 5569 7350 4 92 03^20 9 704 8.70 7.1 5625 7131 8 92 03^22 11 642 9.00 7.6 6010 7023 17 92 03^23 12 605 8.60 7.8 4890 7085 3 92 03^25 14 641 5.50 7.3 4902 6832 14.3 5 92 03^26 15 651 5.50 7.6 4839 6646 11.9 14 92 03^28 17 679 8.00 7.5 5100 6470 9.5 2 92 03^30 19 644 7.00 7.4 4900 6408 9.4 4 92 04^1 21 597 7.00 7.6 4765 6312 10.5 1 92 04^3 23 750 7.50 8.1 5152 6113 7.7 94 92 04^5 25 727 7.50 8.0 5240 6034 8.3 237 92 04^6 26 690 6.00 6.9 4922 6008 6.4 263 92 04^8 28 669 5.00 6.5 4810 5864 6.5 68 92 04^9 29 637 5.50 6.9 4806 5753 6.6 92 92 04^10 30 620 5.00 6.8 4811 5750 6.4 38 92 04^12 32 610 5.00 8.3 4540 5751 6.5 14 92 04^13 33 607 4.50 7.3 4760 5681 5.2 7 92 04^15 35 599 7.50 7.7 4830 5683 3.5 4 92 04^16 36 591 7.00 7.5 5120 5693 3.9 6 92 04^18 38 729 7.50 7.9 5240 5707 3.0 165 92 04^21 41 820 7.50 6.8 5350 5677 3.2 248 92 04^24 44 677 6.50 7.3 4970 5758 2.8 65 92 04^25 45 679 5.00 8.2 4813 5619 3.1 22 92 04^27 47 541 6.70 8.5 4660 5484 2.9 6 92 04^30 50 487 7.00 7.8 4320 5435 3.0 120 92 05^3 53 453 9.80 7.7 4259 5281 3.4 51 92 05^5 55 494 7.50 7.3 4140 5177 3.3 41 92 05^6 56 504 7.30 7.4 4095 5096 2.9 15 92 05^8 58 500 5.80 7.4 4320 5027 2.1 10 92 05^9 59 434 6.10 7.3 4360 5035 2.4 17 92 05^11 61 500 5.80 7.3 4550 5053 2.7 19 92 05^13 63 500 5.00 7.3 4660 5124 3.2 7 92 05^15 65 475 4.70 7.3 4490 5176 3.3 7 92 05^18 68 516 5.00 7.4 4960 5199 4.0 12 92 05^19 69 547 5.30 7.4 5110 5324 3.6 13 92 05^21 71 523 5.50 7.3 5070 5431 2.5 7 92 05^25 75 628 4.00 7.3 5580 5537 3.1 5 92 05^26 76 654 7.50 7.3 5620 5740 2.7 2 92 05^28 78 652 8.40 7.3 6200 5920 2.5 6 92 05^31 81 647 6.60 7.4 6350 6172 1.9 1 92 06^2 83 570 6.82 7.4 6320 6409 1.7 2 92 06^4 85 607 6.47 7.4 6240 6578 2.6 9 213 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day^COD DO pH^VSS^TSS^o-PO4^NH4 (yy mm dd)^Img/LI^Img/LI^Img/LI^Img/LI^(mgP/L)^(nigN/L) 92 06 6^87 630 5.97 7.4 6160 6696 2.0 1 92 06 7^88 637 5.83 7.4 5940 6793 2.5 1 92 06 10^91 592 6.56 7.5 6240 6810 2.5 1 92 06 13^94 650 6.27 7.5 6180 6915 2.2 1 92 06 15^96 543 6.05 7.4 6016 6979 1.8 0 92 06 16^97 569 5.74 7.4 5990 6981 1.8 1 92 06 17^98 543 6.63 7.4 5910 6985 1.8 1 92 06 19 100 619 7.12 7.4 5910 6953 2.0 0 92 06 22 103 681 7.51 7.4 5840 6931 2.0 5 92 06 23 104 579 6.50 7.4 5850 6903 2.2 0 92 06 26 107 623 6.52 7.3 5730 6877 3.1 2 92 06 28 109 622 6.78 7.3 6073 6846 2.8 1 92 06 29 110 594 7.00 7.4 6318 6902 3.1 1 92 07 3^114 616 6.90 7.3 5950 7017 2.7 1 92 07 4^115 585 7.32 7.3 6275 7017 2.6 0 92 07 6^117 565 7.17 7.3 6410 7100 2.5 1 92 07 9^120 588 6.39 7.4 6220 7192 2.1 1 92 07 10^121 600 6.20 7.3 6360 7198 2.2 0 92 07 12^123 675 7.12 7.3 6390 7273 2.7 2 92 07 14^125 666 7.17 7.3 6410 7252 2.5 156 92 07 15^126 706 6.27 7.3 6370 7211 2.4 199 92 07 17^128 632 6.55 7.3 6340 7298 2.7 305 92 07 19^130 746 5.69 7.3 6290 7268 2.4 558 92 07 21^132 812 5.08 7.3 5890 7121 2.7 481 92 07 23 134 734 6.53 7.3 5150 7333 3.8 103 92 07 26 137 829 7.03 7.3 4840 7300 3.9 66 92 07 27 138 707 7.19 7.3 5020 6993 4.2 81 92 07 29 140 633 5.89 7.3 4760 6862 4.4 56 92 07 31^142 670 6.42 7.3 4754 6633 4.3 8 92 08 2^144 633 6.15 7.3 4550 6449 3.2 4 92 08 4^146 1093 0.00 7.3 4330 6228 3.0 560 92 08 6^148 946 6.33 7.3 4220 5944 3.5 578 92 08 7^149 882 6.72 7.3 4187 5707 2.5 380 92 08 10^152 776 7.37 7.4 3920 5576 2.9 121 92 08 13^155 737 7.08 7.5 4060 5393 2.9 12 92 08 14^156 617 6.66 7.4 3910 5289 3.0 5 92 08 17^159 646 6.38 7.4 3840 5174 2.2 23 92 08 19^161 661 6.64 7.4 3950 5068 3.2 36 92 08 21^163 703 6.54 7.4 3680 4976 3.0 105 92 08 23 165 724 6.94 7.4 3550 4813 2.5 386 92 08 24 166 746 6.11 7.4 3490 4638 2.8 426 92 08 27^169 762 6.31 7.3 3460 4523 3.4 487 214 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) ^ Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOD^COD 1/88^TSB^NH4 (yy nun dd)^(ugN/L)^ImgNAJ^OngAJ^(mg/1)^(mgA)^OngA4^OngNA4 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 12 13 15 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4 1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85 756 938 825 806 889 237 123 117 125 552 495 1051 996 625 489 197 61 521 117 154 481 540 694 807 1019 1008 1043 1125 1054 990 976 978 603 353 176 177 163 170 387.5 608.5 507.6 571.0 709.9 115.9 107.0 84.3 86.5 139.6 228.5 231.5 341.9 326.4 201.2 45.7 42.2 132.5 27.0 109.3 102.3 104.6 142.8 152.6 190.3 180.6 73.2 61.2 57.6 484.3 64.4 9.4 25.0 11.1 5.5 6.0 2.0 0.8 41 18 18 53 14 12 16 24 58 33 17 22 10 16 13 16 20 14 15 20 12 20 24 18 16 15 12 14 215 491 485 456 433 385 399 381 440 408 425 402 428 450 447 442 456 429 403 403 420 372 397 448 500 458 420 369 342 338 327 332 318 303 341 342 327 343 373 387 398 406 416 404 375 377 155 153 182 147 144 138 255 150 119 138 170 151 148 148 181 161 129 126 167 125 125 130 157 139 185 181 190 209 168 174 140 159 143 133 121 152 150 146 144 128 130 129 135 149 143 211 194 248 194 178 160 372 208 159 173 222 202 178 176 224 196 157 154 212 153 149 147 171 152 221 212 240 274 211 219 176 186 166 147 136 172 158 151 152 127 135 126 131 152 148 2 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) ^ Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent Date^Day^NOx^NO2^BOO^COD V88^TSB^NH4 (yy mm dd)^(mgN/L)^ImgN/1.1^(mg/L)^(mg/L)^OngAJ^OngAJ^OngNAJ 92 06 6^87 166 5.0 18 393 136 146 92 06 7^88 184 0.6 384 155 177 92 06 10^91 156 1.1 17 394 143 154 92 06 13^94 175 0.3 11 384 125 139 92 06 15^96 186 0.4 400 174 205 92 06 16^97 176 3.1 14 370 133 158 92 06 17^98 153 0.4 18 358 131 155 92 06 19 100 149 10.0 10 370 120 143 0 92 06 22 103 147 0.1 13 400 138 162 92 06 23 104 157 0.6 392 129 150 92 06 26 107 176 2.0 11 413 164 198 92 06 28 109 181 0.4 15 398 154 169 92 06 29 110 156 0.4 8 382 134 144 92 07 3^114 160 0.3 14 379 182 217 92 07 4^115 171 5.8 365 149 168 92 07 6^117 183 71.2 16 383 142 156 92 07 9^120 167 59.3 12 372 175 205 92 07 10^121 177 67.0 386 137 151 92 07 12^123 173 68.4 20 447 130 145 92 07 14^125 131 55.7 23 421 146 165 92 07 15^126 114 73.8 433 123 143 92 07 17^128 161 116.1 29 401 129 151 92 07 19^130 135 118.0 72 523 150 174 92 07 21^132 808 92.2 84 549 224 277 92 07 23 134 815 73.1 55 472 262 383 92 07 26^137 484 79.7 41 496 233 345 92 07 27 138 458 58.0 488 151 214 92 07 29 140 761 71.2 142 464 199 283 92 07 31^142 1106 75.2 35 415 144 205 92 08 2^144 1138 62.0 35 409 175 246 5 92 08 4^146 878 117.2 155 697 223 317 92 08 6^148 977 125.0 202 648 218 306 92 08 7^149 1246 139.9 550 149 204 92 08 10^152 1071 186.7 42 474 235 329 92 08 13^155 1055 197.0 446 132 173 92 08 14 156 1126 209.0 32 416 217 295 92 08 17^159 1195 184.8 396 136 185 92 08 19^161 1080 206.5 53 420 186 243 92 08 21^163 962 172.7 432 181 241 92 08 23 165 801 160.3 38 464 187 264 92 08 24 166 701 138.4 437 150 201 92 08 27 169 832 189.7 463 149 200 216 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^NOx^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX (yy mm dd)^(mgN/L)^(mg/L)^(mS/L)^ (gN/d)^Entering (gCOD/gN) 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 12 13 15 17 20 22 23 25 26 28 30 1 3 5 6 8 9 10 12 13 15 16 18 21 24 25 27 30 3 5 6 8 9 11 13 15 18 19 21 25 26 28 31 2 4 1 2 4 6 9 11 12 14 15 17 19 21 23 25 26 28 29 30 32 33 35 36 38 41 44 45 47 50 53 55 56 58 59 61 63 65 68 69 71 75 76 78 81 83 85 159 0.72 0.77 0.76 0.76 0.79 0.88 0.69 0.73 0.73 0.78 0.76 0.76 0.86 0.88 0.84 0.83 0.84 0.85 0.80 0.86 0.85 0.90 0.91 0.95 0.87 0.86 0.86 0.79 0.80 0.80 0.82 0.88 0.86 0.90 0.93 0.86 0.96 0.98 0.93 1.03 0.99 1.05 1.05 1.00 0.95 0.45 0.30 0.34 0.29 0.23 0.69 0.73 0.09 0.38 0.40 0.42 0.25 0.30 0.52 0.25 0.31 0.94 0.24 0.16 0.11 0.08 0.10 0.11 0.09 0.18 0.18 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.05 0.24 45.4 56.4 48.8 47.6 52.5 14.1 7.0 6.6 7.1 31.0 31.2 66.3 62.8 36.3 28.4 11.5 3.6 30.3 7.6 9.9 30.9 34.7 44.5 51.7 60.2 59.6 64.8 69.8 65.4 61.5 63.5 63.7 39.3 23.0 11.2 11.3 10.4 10.8 0.8 0.7 0.7 0.8 0.7 7.1 14.1 14.6 0.3 0.1 0.1 0.0 0.0 0.5 1.3 6.4 21.4 0.1 0.2 0.2 0.1 0.1 0.0 0.0 0.1 0.1 0.3 0.3 0.3 0.6 0.6 0.6 1.4 2.7 5.2 5.2 5.8 5.5 217 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^Effluent^Effluent^Effluent Date^Day^NOx^BOD^COD (yy mm dd)^(mgN/L)^(mg/L)^(mg/L) Anoxic^Anoxic^Anoxic^Anoxic VSS/TS8 NO2/NOX NOX Load COD:NOX (gN/d)^Entering (gCOD/gN)  92 06 6 87 0.94 0.55 9.6 5.3 92 06 7 88 0.87 0.08 10.6 4.6 92 06 10 91 0.93 0.50 9.0 5.1 92 06 13 94 0.91 0.31 10.1 4.8 92 06 15 96 0.88 0.06 10.7 5.1 92 06 16 97 0.86 0.01 10.2 4.8 92 06 17 98 0.85 0.04 8.9 5.5 92 06 19 100 153 0.87 0.21 9.1 5.4 92 06 22 103 0.85 0.03 9.0 5.6 92 06 23 104 0.86 0.01 9.6 5.3 92 06 26 107 0.83 0.10 10.7 4.5 92 06 28 109 0.89 0.41 11.0 4.7 92 06 29 110 0.94 0.02 10.1 4.9 92 07 3 114 0.86 0.52 9.8 4.9 92 07 4 115 0.91 0.01 10.5 4.5 92 07 6 117 0.91 0.15 11.2 4.1 92 07 9 120 0.88 0.07 10.2 4.6 92 07 10 121 0.91 0.00 11.4 4.1 92 07 12 123 0.89 0.26 11.1 3.9 92 07 14 125 0.89 0.10 8.4 5.5 92 07 15 126 0.90 0.75 7.3 6.4 92 07 17 128 0.89 0.09 9.8 4.6 92 07 19 130 0.88 0.18 8.3 5.7 92 07 21 132 0.83 0.14 0.0 92 07 23 134 0.72 0.05 0.0 92 07 26 137 0.68 0.05 0.0 92 07 27 138 0.73 0.05 28.0 0.0 92 07 29 140 0.70 0.04 46.4 0.0 92 07 31 142 0.73 0.08 67.5 0.0 92 08 2 144 1002 0.71 0.07 62.6 0.0 92 08 4 146 0.71 0.41 48.4 0.0 92 08 6 148 0.72 0.53 60.6 0.0 92 08 7 149 0.75 0.46 77.3 0.0 92 08 10 152 0.71 0.59 62.2 0.0 92 08 13 155 0.76 0.47 61.3 0.0 92 08 14 156 0.74 0.51 65.4 0.0 92 08 17 159 0.75 0.44 69.4 0.0 92 08 19 161 0.77 0.39 59.5 0.0 92 08 21 163 0.75 0.45 53.0 0.0 92 08 23 165 0.76 0.52 44.1 0.0 92 08 24 166 0.75 0.54 38.6 0.0 92 08 27 169 0.78 0.31 45.8 0.0 218 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitrn %Denitm Specific NH4 Removal^% NH4 (yy mm dd)^Removed^Rate Denitrn Rate^Rate Removal (gCOD/gN)^(mgNid)^(mghl/d/gVSS) (mgN/d) 92 03 12 1 -823 -5 92 03 13 2 -1184 -15 92 03 15 4 1033 12 92 03 17 6 176 3 92 03 20 9 -77 -1 92 03 22 11 894 6 92 03 23 12 656 5 92 03 25 14 62.6 592 1 26 1272 9 92 03 26 15 53.1 719 1 31 802 5 92 03 28 17 5.4 6693 14 280 633 4 92 03 30 19 22.3 1635 3 67 1302 8 92 04 1 21 15.3 2531 5 104 553 4 92 04 3 23 18.4 5432 39 235 3980 21 92 04 5 25 17.3 5679 82 244 4266 16 92 04 6 26 15.3 6341 96 279 5362 18 92 04 8 28 0.8 2361 33 109 -3660 -68 92 04 9 29 0.2 8452 27 364 -2227 -21 92 04 10 30 0.3 6766 22 288 -4157 -33 92 04 12 32 1.3 1515 2 64 148 1 92 04 13 33 1.4 1408 2 60 228 2 92 04 15 35 6.2 3072 8 131 926 6 92 04 16 36 10.7 3469 12 145 1168 8 92 04 18 38 11.1 6696 58 282 4487 19 92 04 21 41 30.1 2577 71 109 8530 29 92 04 24 44 2.8 679 2 28 -281 -2 92 04 25 45 -1.7 -1091 -14 -45 109 4 92 04 27 47 -0.7 -2642 -27 -112 238 11 92 04 30 50 1.0 1857 6 86 -3644 -27 92 05 3 53 -1.1 -1703 -5 -85 -399 -4 92 05 5 55 2.0 942 2 45 1201 10 92 05 6 56 1.0 1813 4 87 562 4 92 05 8 58 -6.4 -742 -1 -36 3180 21 92 05 9 59 14.4 611 1 29 1406 10 92 05 11 61 4.5 3963 6 187 2585 16 92 05 13 63 34.7 574 1 26 722 5 92 05 15 65 -34.8 -540 -1 -24 3812 25 92 05 18 68 40.3 918 1 43 2043 14 92 05 19 69 41.1 943 1 41 1745 11 92 05 21 71 -17.6 -2105 -3 -88 1747 13 92 05 25 75 7.7 7318 19 279 1822 13 92 05 26 76 7.7 7957 35 297 -7 -0 92 05 28 78 6.8 8559 77 306 2495 17 92 05 31 81 5.3 11004 98 358 2708 19 92 06 2 83 6.3 9480 91 314 1607 12 92 06 4 85 5.6 10778 99 368 3007 21 219 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic Date^Day^COD:NOX^Denitrn %Denitm Specific NH4 Removal^% NH4 (yy mm dd)^Removad^Rate Denitrn Rate^Rate Removal (gCOD/gN)^(mgN/d)^(maN/d/gVSS) (mgN/d) 92 06 6^87 5.4 9422 98 328 4179 29 92 06 7^88 4.8 10198 96 332 3111 22 92 06 10^91 5.1 8861 98 299 3340 24 92 06 13^94 4.9 9906 98 325 1767 13 92 06 15^96 5.1 10607 99 353 1429 11 92 06 16^97 4.9 10110 99 354 2643 20 92 06 17^98 5.6 8783 99 316 2991 21 92 06 19 100 5.5 8882 98 296 3228 23 92 06 22 103 5.6 8867 99 314 3410 23 92 06 23 104 5.4 9432 99 340 1795 14 92 06 26 107 4.5 10632 99 393 1977 15 92 06 28 109 4.8 10667 97 389 2190 16 92 06 29^110 5.0 9904 98 353 166 1 92 07 3^114 5.0 9631 98 329 1929 13 92 07 4^115 4.5 10404 99 352 3485 22 92 07 6^117 4.2 11074 99 379 3343 20 92 07 9^120 4.7 10111 99 316 2751 18 92 07 10^121 4.2 11170 98 337 3070 21 92 07 12 123 4.0 10903 98 356 803 5 92 07 14 125 6.3 7308 87 246 4804 19 92 07 15^126 7.4 6369 87 207 6053 22 92 07 17^128 5.6 8151 83 274 -2315 -7 92 07 19^130 7.0 6713 81 227 -92 -0 92 07 21^132 0.0 92 07 23 134 0.0 92 07 26 137 0.0 92 07 27 138 0.0 5650 20 233 -2724 -16 92 07 29 140 0.0 2735 6 116 -3665 -20 92 07 31^142 0.0 2245 3 95 1386 9 92 08 2^144 0.0 1173 2 49 1173 9 92 08 4^146 0.0 237 0 11 -1857 -4 92 08 6^148 0.0 -1926 -3 -93 1637 3 92 08 7^149 0.0 -745 -1 -37 1964 5 92 08 10^152 0.0 759 1 39 1188 5 92 08 13^155 0.0 -237 -0 -12 1379 9 92 08 14^156 0.0 -623 -1 -32 2443 15 92 08 17^159 0.0 1031 1 54 1507 9 92 08 19^161 0.0 1482 2 77 224 1 92 08 21^163 0.0 -159 -0 -9 2017 11 92 08 23 165 0.0 -929 -2 -53 2513 7 92 08 24 166 0.0 -1764 -5 -102 2400 7 92 08 27 169 0.0 836 2 51 -800 -2 220 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSS/TSS NOVNOX^ALK:NH4^ALIC:NH4^Nitm^%Nitrn Specific (yy mm dd)^ Added Nitrified^Rate Nitro Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS) 92 03 12 1 0.72 10.53 92 03 13 2 0.77 14.82 92 03 15 4 0.74 7.22 92 03 17 6 0.76 6.95 92 03 20 9 0.79 5.89 92 03 22 11 0.86 4.38 92 03 23 12 0.69 5.10 92 03 25 14 0.72 0.51 3.02 5.15 8561 63 175 92 03 26 15 0.73 0.65 2.80 4.04 10313 69 213 92 03 28 17 0.79 0.62 2.96 2.75 15226 112 299 92 03 30 19 0.76 0.71 2.72 4.25 9762 69 199 92 04 1 21 0.75 0.80 3.24 4.02 11809 83 248 92 04 3 23 0.84 0.49 3.09 5.28 7831 52 152 92 04 5 25 0.87 0.87 3.31 6.58 6875 30 131 92 04 6 26 0.82 0.72 3.05 6.42 7526 30 153 92 04 8 28 0.82 0.69 35.18 15.19 3609 40 75 92 04 9 29 0.84 0.25 11.18 4.30 14136 110 294 92 04 10 30 0.84 0.46 5.62 4.86 11776 71 245 92 04 12 32 0.79 0.22 5.15 5.94 12255 83 270 92 04 13 33 0.84 0.34 5.02 6.07 11744 81 247 92 04 15 35 0.85 0.52 4.55 6.73 9623 71 199 92 04 16 36 0.90 0.41 4.10 6.66 8383 66 164 92 04 18 38 0.92 0.23 3.72 6.23 8647 44 165 92 04 21 41 0.94 0.69 3.16 15.17 3124 15 58 92 04 24 44 0.86 0.25 5.00 7.95 6018 44 121 92 04 25 45 0.86 0.23 48.19 846.80 73 3 2 92 04 27 47 0.85 0.71 29.18 -47.52 -1152 -58 -25 92 04 30 50 0.79 0.21 4.01 3.53 6541 38 151 92 05 3 53 0.81 0.19 4.94 7.59 3732 40 88 92 05 5 55 0.80 0.21 2.34 2.97 7831 69 189 92 05 6 56 0.80 0.19 2.45 2.84 10200 83 249 92 05 8 58 0.86 0.19 2.37 3.46 9891 83 229 92 05 9 59 0.87 0.18 3.47 4.24 10993 85 252 92 05 11 61 0.90 0.07 4.39 4.48 14871 108 327 92 05 13 63 0.91 0.05 5.79 6.58 12509 90 268 92 05 15 65 0.87 0.05 3.57 5.26 10214 87 227 92 05 18 68 0.95 149 3.31 4.21 11039 86 223 92 05 19 69 0.96 0.07 2.61 3.50 10856 79 212 92 05 21 71 0.93 0.01 4.49 7.25 7921 69 156 92 05 25 75 1.01 0.04 3.81 3.84 13526 112 242 92 05 26 76 0.98 0.03 3.66 4.14 11442 88 204 92 05 28 78 1.05 0.03 3.41 4.64 10268 87 166 92 05 31 81 1.03 0.03 5.09 5.54 12777 113 201 92 06 2 83 0.99 0.01 4.69 5.62 11055 94 175 92 06 4 85 0.95 0.00 4.46 5.01 12458 108 200 221 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT) Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic Date^Day VSS/TSS NOVNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitm Specific (yy mm ddl^ Added Nitrified^Rate Nitm Rate ^ (gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gV88 I 92 06 6^87 0.92 0.03 3.79 4.89 11050 109 179 92 06 7^88 0.87 0.00 4.14 4.93 12019 107 202 92 06 10^91 0.92 0.01 3.63 4.79 10329 100 166 92 06 13^94 0.89 0.00 4.67 5.46 11641 98 188 92 06 15^96 0.86 0.00 4.83 5.02 12469 108 207 92 06 16^97 0.86 0.02 4.22 4.82 11808 108 197 92 06 17^98 0.85 0.00 3.25 4.51 10200 91 173 92 06 19 100 0.85 0.07 3.82 5.21 10289 95 174 92 06 22 103 0.84 0.00 4.01 5.64 10282 91 176 92 06 23 104 0.85 0.00 4.24 5.11 '')939 96 187 92 06 26 107 0.83 0.01 3.88 4.09 12269 111 214 92 06 28 109 0.89 0.00 3.88 4.40 12369 104 204 92 06 29^110 0.92 0.00 4.62 5.17 11345 90 180 92 07 3^114 0.85 0.00 3.32 4.42 11225 86 189 92 07 4^115 0.89 0.03 3.20 4.19 12145 98 194 92 07 6^117 0.90 0.39 4.49 5.64 13030 100 203 92 07 9^120 0.86 0.36 3.97 5.20 11838 92 190 92 07 10^121 0.88 0.38 3.92 4.50 12984 109 204 92 07 12^123 0.88 0.40 4.20 4.93 12651 90 198 92 07 14 125 0.88 0.43 3.68 6.51 8649 42 135 92 07 15^126 0.88 0.65 3.21 6.51 7525 34 118 92 07 17^128 0.87 0.72 4.13 6.29 9824 27 155 92 07 19^130 0.87 0.87 3.14 5.53 8061 17 128 92 07 21^132 0.83 0.11 8.97 20 92 07 23 134 0.70 0.09 7.33 47 92 07 26 137 0.66 0.16 7.69 33 92 07 27 138 0.72 0.13 8.63 10.20 10309 52 205 92 07 29 140 0.69 0.09 6.08 8.55 10383 48 218 92 07 31^142 0.72 0.07 3.70 4.41 12999 89 273 92 08 2^144 0.71 0.05 3.74 4.06 12340 99 271 92 08 4^146 0.70 0.13 3.60 5.42 9068 20 209 92 08 6^148 0.71 0.13 3.86 6.77 8366 17 198 92 08 7^149 0.73 0.11 4.31 5.13 12356 34 295 92 08 10 152 0.70 0.17 4.81 6.10 11984 57 306 92 08 13 155 0.75 0.19 5.48 7.31 11125 79 274 92 08 14 156 0.74 0.19 4.35 6.02 11288 84 289 92 08 17^159 0.74 0.15 3.39 3.98 13068 86 340 92 08 19^161 0.78 0.19 2.11 2.48 12073 76 306 92 08 21^163 0.74 0.18 3.62 4.79 9696 59 263 92 08 23 165 0.74 0.20 4.36 8.51 7223 22 203 92 08 24 166 0.75 0.20 3.72 9.49 5181 15 148 92 08 27 169 0.77 0.23 3.22 5.06 9062 22 262 222 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) Aerobic^Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (yy mm dd)^Rate Removal (days)^(days) Removal (mgPlici) 92 03 12 1 1724 10 63.1 25 92 03 13 2 3397 38 68.5 71 92 03 15 4 4156 54 55.7 90 92 03 17 6 5468 95 67.5 99 92 03 20 9 9106 94 69.7 99 92 03 22 11 12530 91 76.8 99 92 03 23 12 11896 98 34.1 100 92 03 25 14 13288 97 57.6 100 92 03 26 15 13945 94 74.3 99 92 03 28 17 13473 99 20 24.0 100 92 03 30 19 13912 98 20 22.4 100 92 04 1 21 14082 99 20 23.0 100 92 04 3 23 8434 56 20 23.2 93 92 04 5 25 6965 31 20 23.4 82 92 04 6 26 7626 30 20 20.9 82 92 04 8 28 4496 50 20 21.8 54 92 04 9 29 6702 52 20 24.2 82 92 04 10 30 13970 84 20 24.7 96 92 04 12 32 13842 93 51.0 99 92 04 13 33 13896 96 69.5 99 92 04 15 35 13250 98 69.1 100 92 04 16 36 12385 97 20 24.7 100 92 04 18 38 8286 42 20 23.1 88 92 04 21 41 3956 19 20 24.3 83 92 04 24 44 9176 67 20 21.3 93 92 04 25 45 933 36 48.2 82 92 04 27 47 1579 79 45.8 97 92 04 30 50 8204 48 39.6 79 92 05 3 53 5605 59 46.5 91 92 05 5 55 8352 73 45.2 96 92 05 6 56 11122 91 20 22.3 99 92 05 8 58 11132 94 20 21.3 99 92 05 9 59 11836 91 20 22.5 99 92 05 11 61 12393 90 20 23.2 99 92 05 13 63 13438 97 20 24.1 100 92 05 15 65 11142 95 20 22.4 99 92 05 18 68 11877 93 20 22.7 99 92 05 19 69 12687 93 20 23.4 99 92 05 21 71 10969 95 20 23.7 99 92 05 25 75 11768 97 20 25.4 100 92 05 26 76 12927 99 20 25.7 100 92 05 28 78 11417 96 20 26.1 100 92 05 31 81 11199 99 20 26.0 100 92 06 2 83 11611 99 20 25.3 100 92 06 4 85 10881 94 20 25.2 99 223 COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT) ^ Aerobic Aerobic^ System^System Date^Day NH4 Removal % NH4 ASRT^SSRT % NH4 (Icy mm dd)^Rate Removal (days)^(days) Removal (mgN/c1) 92 06 6^87 10047 99 20 25.6 100 92 06 7^88 11199 99 20 24.8 100 92 06 10^91 10285 100 20 25.6 100 92 06 13^94 11834 100 20 26.6 100 92 06 15^96 11523 100 20 23.6 100 92 06 16^97 10815 99 20 25.8 100 92 06 17^98 11174 99 20 25.9 100 92 06 19^100 10803 100 20 27.0 100 92 06 22 103 10997 97 20 25.3 100 92 06 23 104 11377 100 20 25.8 100 92 06 26 107 10927 99 20 23.9 100 92 06 28 109 11847 100 20 24.6 100 92 06 29^110 12515 99 20 26.0 100 92 07 3^114 13040 100 20 23.5 100 92 07 4^115 12404 100 20 25.2 100 92 07 6^117 12988 99 20 25.2 100 92 07 9^120 12760 100 20 24.1 100 92 07 10^121 11836 100 20 26.7 100 92 07 12^123 14006 99 20 26.7 100 92 07 14^125 8855 43 20 25.3 89 92 07 15^126 7158 33 20 27.0 86 92 07 17^128 14011 39 20 26.2 78 92 07 19^130 8591 18 77.4 60 92 07 21^132 62 92 07 23 134 92 92 07 26 137 95 92 07 27^138 14084 71 61.6 93 92 07 29 140 17700 82 20 20.7 96 92 07 31^142 14050 96 10 14.7 99 92 08 2^144 12208 98 10 14.0 100 92 08 4^146 9838 21 36.8 58 92 08 6^148 6917 14 34.8 58 92 08 7^149 8724 24 50.2 73 92 08 10^152 12732 61 30.2 92 92 08 13^155 13326 94 53.8 99 92 08 14^156 13134 97 10 12.0 100 92 08 17^159 13598 90 10 14.0 98 92 08 19^161 13602 85 10 13.0 97 92 08 21^163 9711 59 10 12.5 92 92 08 23 165 7651 23 10 12.3 72 92 08 24 166 6565 19 10 13.3 68 92 08 27 169 10193 24 10 13.2 66 224

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 18 54
United States 7 0
Japan 3 0
Canada 3 0
United Kingdom 2 0
Republic of Korea 1 0
City Views Downloads
Beijing 11 0
Unknown 7 0
Hangzhou 4 0
Mountain View 3 0
Tokyo 3 0
Guangzhou 2 0
Dongguan 1 0
Wilmington 1 0
Kingston 1 0
Ashburn 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}

Share

Share to:

Comment

Related Items