Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The effect of ammonial loading, solids retention time and operating temperature on the biological nitrification.. Azevedo, Barry 1993

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
[if-you-see-this-DO-NOT-CLICK]
ubc_1993_fall_azevedo_barry.pdf [ 17.53MB ]
[if-you-see-this-DO-NOT-CLICK]
Metadata
JSON: 1.0050449.json
JSON-LD: 1.0050449+ld.json
RDF/XML (Pretty): 1.0050449.xml
RDF/JSON: 1.0050449+rdf.json
Turtle: 1.0050449+rdf-turtle.txt
N-Triples: 1.0050449+rdf-ntriples.txt
Original Record: 1.0050449 +original-record.json
Full Text
1.0050449.txt
Citation
1.0050449.ris

Full Text

THE EFFECT OF AMMONIA LOADING, SOLIDS RETENTION TIMEAND OPERATING TEMPERATURE ON THEBIOLOGICAL NITRIFICATION AND DENITRIFICATIONOF HIGH AMMONIA LANDFILL LEACHATEByBarry AzevedoB.A.Sc. (Chemical Engineering)University of British Columbia, 1987A THESIS SUBMITTED IN PARTIAL FULFILMENTOF THE REQUIREMENTS FOR THE DEGREE OFMASTER OF APPLIED SCIENCEinTHE FACULTY OF GRADUATE STUDIESDEPARTMENT OF CIVIL ENGINEERINGWe accept this thesis as conformingto the required standardTHE UNIVERSITY OF BRITISH COLUMBIAOctober, 1993© Barry Azevedo, 1 993In presenting this thesis in partial fulfilment of the requirements for an advanceddegree at the University of British Columbia, I agree that the Library shall make itfreely available for reference and study. I further agree that permission for extensivecopying of this thesis for scholarly purposes may be granted by the head of mydepartment or by his or her representatives. It is understood that copying orpublication of this thesis for financial gain shall not be allowed without my writtenpermission.Department ofA ,L(1kVq- The University of British ColumbiaVancouver, CanadaDateDE-6 (2/88)ABSTRACTThe effect of ammonia loading, solids retention time and operating temperature (20, 17, 14, 12 and10 °C) on the treatment of high ammonia landfill leachate (200, 300, 600, 1000, 1500 and 2000 mgNH4-N/L), was investigated. Two biological, single-sludge, nitrification-predenitrification systems wereoperated in parallel; one with a 10 day aerobic SRT, and the other with a 20 day aerobic SRT. Thestudy consisted of two phases: an ammonia loading phase and a cold temperature phase.From the ammonia loading phase, it was found that at an influent leachate ammonia level of 1500 mgN/L, both systems produced an effluent of <1 mg NH 4-N/L and approximately 170 mg NO. --N/L.Aerobic nitrite accumulation was observed and was likely a factor in a parallel decrease in theCOD:NOx ratio from approximately 6:1 to 4:1. At the leachate ammonia level of 1500 mg N/L, "free"ammonia levels in the anoxic reactor were estimated to have been 20 mg N/L. This elevated anoxic"free" ammonia level did not appear inhibitory to either the ammonia oxidizers (Nitrosomonas) or to thedenitrifiers, but may have inhibited nitrite oxidizers (Nitrobacter), thereby resulting in nitriteaccumulation. When the influent ammonia concentration was raised from 1500 to 2000 mg N/L,nitrification in both systems was observed to decrease from 100 % to approximately 20 %. Severalfactors may have contributed to the failure of nitrification including: insufficient dissolved oxygen,solids/foaming problems, and levels of anoxic "free" ammonia inhibitory to Nitrosomonas.During the cold temperature phase, the temperature was decreased from 20 to 10 °C whilemaintaining the simulated leachate ammonia level at 1500 mg N/L. Aerobic nitrite accumulation andrising aerobic BOD 5 was observed to begin at 14 °C. When the temperature was decreased from12 °C to 10 °C, nitrification was observed, in both SRT systems, to decrease from approximately95 % to approximately 20 % . In the 10 day SRT system, denitrification decreased from 99 % to30 %; in the 20 day SRT system, denitrification decreased from 99 % to 82 %. Based on the riseof aerobic nitrite, and only partial failure of denitrification, cold temperature was deemed responsiblefor nitrification failure, which for the 10 day SRT system, subsequently precipitated the failure ofdenitrification . In both awstems, nitrification was re-established at 10 °C, by ceasing to waste solidsand by stopping methanol addition.iiTABLE OF CONTENTSABSTRACTTABLE OF CONTENTSLIST OF TABLES^ viLIST OF FIGURES viiACKNOWLEDGEMENTSINTRODUCTION^ 11.1^Leachate Generation, Landfill Age, and Leachate Characteristics ^ 11.2^Environmental Problems from Nitrogen Discharges ^  21.3^High Ammonia Levels in Landfill Leachate ^  41.4^Nitrogen Removal from Landfill Leachate  41.5^Carbon Removal vs Nitrogen Removal ^  51.6^Biological Nitrification and Denitrification  51.6.1 Nitrification Microbiology ^  51 .6.2 Denitrification Microbiology  61.6.3 Process Train Options for Implementation of Biological Nitrification andDenitrification ^  71.7^Other Nitrogen Removal Options ^  101.7.1 Recirculation ^  101 .7.2 Co-treatment  111.7.3 Spray Irrigation ^  121 .7.4 Bacterial Assimilation  121.7.5 Physical-Chemical Treatment ^  121.8^Study Objectives ^  13LITERATURE REVIEW^ 142.1^Biological Nitrification and Denitrification of Landfill Leachate ^ 14III^2.2^Effect of Dissolved Oxygen on Nitrification ^  142.3^Effect of Temperature ^  142.4^Effect of pH, "Free" Ammonia, and Nitrous Acid ^  152.5^Effect of Excess BOD5 on Nitrification ^  172.6^Effect of Carbon Source and Quantity on Denitrification ^  172.7^Heavy Metal Inhibition ^  182.8^Effect of HRT and Solids Recycle Ratio ^  19EXPERIMENTAL SETUP^ 203.1^Leachate  213.2^Leachate Feed ^  223.3^Chemical Addition  223.3.1 Phosphate Addition ^  223.3.2 Methanol Addition  233.3.3 Ammonium Chloride Addition ^  233.3.4 Sodium Bicarbonate (Alkalinity) Addition ^  233.4^Anoxic Reactor ^  243.5^Aerobic Reactor  243.6^Clarifier ^  253.7^System Start-up ^  253.8^System Operation  26ANALYTICAL METHODS^ 284.1^Temperature  284.2^Dissolved Oxygen (DO) ^  284.3^Oxidation-Reduction Potential (ORP) ^  294.4^pH ^  294.5^Suspended Solids ^  304.6^Alkalinity ^  304.7^Chemical Oxygen Demand (COD) ^  304.8^Biochemical Oxygen Demand (BOD 5)  31iv4.9^Ammonia ^  314.10 NO  324.11^Nitrite (NO21 ^  334.12 Total Kjeldahl Nitrogen (TKN) ^  334.13 Orthophosphate ^  33RESULTS AND DISCUSSION^ 355.1^Ammonia Loading Phase ^  355.1.1 Ammonia Levels  355.1.2 pH and Alkalinity Addition ^  405.1.3 Methanol Addition and NO; Levels ^  435.1.4 Nitrite Accumulation and "Free" Ammonia Levels ^  525.1.5 Nitrification and Denitrification ^  565.1.6 System Failure ^  615.1.7 Solids ^  625.1.8 Solids Retention Time ^  655.2^Cold Temperature Phase  685.2.1 BOD5 Inhibition of Nitrification ^  685.2.2 Loss of Nitrite Accumulation  775.2.3 Effect of Cold Temperature and Failure ^  775.2.4 10 °C Startups of Nitrification and SRT Failure ^  93CONCLUSIONS AND RECOMMENDATIONS^ 1006.1^Summary of Results  1006.2^Conclusions ^  1006.3^Recommendations ^  104REFERENCES^ 106APPENDICES^ 113vLIST OF TABLESTABLE 1.1:^Landfill Stabilization Sequence ^  2TABLE 3.1:^Treatment System Design and Operating Parameters ^  20TABLE 3.2:^Base Leachate Composition ^  21TABLE 5.1:^Loading Phase - Ammonia Levels  36TABLE 5.2:^Loading Phase - % Ammonia Removal ^  39TABLE 5.3:^Loading Phase - pH Levels and Alkalinity Addition ^  40TABLE 5.4:^Loading Phase - NO; Levels and COD:NO, Ratio  51TABLE 5.5:^Loading Phase - Nitrite Levels ^  52TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia Levels ^  55TABLE 5.7:^Loading Phase - Nitrification ^  59TABLE 5.8:^Loading Phase - Denitrification  60TABLE 5.9:^Loading Phase - VSS Levels ^  62TABLE 6.1:^Summary of Results ^  101viLIST OF FIGURESFIGURE 1.1FIGURE 5.1FIGURE 5.2FIGURE 5.3FIGURE 5.4FIGURE 5.5FIGURE 5.6FIGURE 5.7FIGURE 5.8FIGURE 5.9FIGURE 5.10FIGURE 5.11FIGURE 5.12FIGURE 5.13FIGURE 5.14Leachate Treatment System Diagram ^  8Loading Phase - 10 Day SRT SystemAnoxic and Aerobic Ammonia Levels ^  37Loading Phase - 20 Day SRT SystemAnoxic and Aerobic Ammonia Levels ^  38Loading Phase - 10 Day SRT SystemAnoxic and Aerobic pH Levels ^  41Loading Phase - 20 Day SRT SystemAnoxic and Aerobic Ammonia Levels ^  42Loading Phase - 10 Day SRT SystemAlkalinity Addition ^  44Loading Phase - 20 Day SRT SystemAlkalinity Addition ^  45Loading Phase - 10 Day SRT SystemAnoxic and Aerobic NO; Levels ^  47Loading Phase - 20 Day SRT SystemAnoxic and Aerobic NO; Levels ^  48Loading Phase - 10 Day SRT SystemMethanol Addition and Anoxic BOD5 ^  49Loading Phase - 20 Day SRT SystemMethanol Addition and Anoxic BOD5 ^  50Loading Phase - 10 Day SRT SystemAnoxic and Aerobic Nitrite Levels ^  53Loading Phase - 20 Day SRT SystemAnoxic and Aerobic Nitrite Levels ^  54Loading Phase - 10 Day SRT System% Denitrification and % Nitrification ^  57Loading Phase - 20 Day SRT System% Denitrification and % Nitrification ^  58viiFIGURE 5.15 Loading Phase - 10 Day SRT SystemAnoxic and Aerobic VSS Levels ^  63FIGURE 5.16 Loading Phase - 20 Day SRT SystemAnoxic and Aerobic VSS Levels ^  64FIGURE 5.17 Loading Phase - 10 Day SRT SystemSystem and Theoretical Aerobic SRT ^  66FIGURE 5.18 Loading Phase - 20 Day SRT SystemSystem and Theoretical Aerobic SRT ^  67FIGURE 5.19 Temperature Phase - 10 Day SRT SystemAerobic BOD5 and % Nitrification ^  69FIGURE 5.20 Temperature Phase - 20 Day SRT SystemAerobic BOD 5 and % Nitrification ^  70FIGURE 5.21 Temperature Phase - 10 Day SRT SystemAerobic BOD5, COD vs % Nitrification ^  72FIGURE 5.22 Temperature Phase - 20 Day SRT SystemAerobic BOD5, COD vs % Nitrification ^  73FIGURE 5.23 Temperature Phase - 10 and 20 Day SRTAerobic BOD5 vs % Nitrification ^  74FIGURE 5.24 Temperature Phase - 10 Day SRT SystemMethanol Addition during 20 °C Startup ^  75FIGURE 5.25 Temperature Phase - 20 Day SRT SystemMethanol Addition during 20 °C Startup ^  76FIGURE 5.26 Temperature Phase - 10 Day SRT SystemAerobic pH and Nitrite Levels ^  78FIGURE 5.27 Temperature Phase - 20 Day SRT SystemAerobic pH and Nitrite Levels ^  79FIGURE 5.28 Temperature Phase - 10 Day SRT SystemAerobic Nitrite and % Nitrification ^  81FIGURE 5.29 Temperature Phase - 20 Day SRT SystemAerobic Nitrite and % Nitrification ^  82viiiFIGURE 5.30 Temperature Phase - 10 Day SRT SystemAerobic BOD5 and % Nitrification ^  83FIGURE 5.31 Temperature Phase - 20 Day SRT SystemAerobic BOD5 and % Nitrification ^  84FIGURE 5.32 Temperature Phase - 10 Day SRT System% Denitrification and % Nitrification ^  85FIGURE 5.33 Temperature Phase - 20 Day SRT System% Denitrification and % Nitrification ^  86FIGURE 5.34 Temperature Phase - 10 Day SRT SystemDenitrification and Nitrification Rate ^  87FIGURE 5.35 Temperature Phase - 20 Day SRT SystemDenitrification and Nitrification Rate ^  88FIGURE 5.36 Temperature Phase - 10 Day SRT SystemSpecific Utilization Rate ^  89FIGURE 5.37 Temperature Phase - 20 Day SRT SystemSpecific Utilization Rate ^  90FIGURE 5.38 Temperature Phase - 10 Day SRT SystemAnoxic and Aerobic VSS Levels ^  91FIGURE 5.39 Temperature Phase - 20 Day SRT SystemAnoxic and Aerobic VSS Levels ^  92FIGURE 5.40 Temperature Phase - 10 Day SRT SystemAerobic Ammonia and % Nitrification ^  94FIGURE 5.41 Temperature Phase - 20 Day SRT SystemAerobic Ammonia and % Nitrification ^  95FIGURE 5.42 Temperature Phase - 10 Day SRT SystemAerobic Nitrite and % Nitrification ^  97FIGURE 5.43 Temperature Phase - 20 Day SRT SystemAerobic Nitrite and % Nitrification ^  98FIGURE 5.44 Temperature Phase - 20 Day SRT SystemASRT, SSRT and % Nitrification ^  99ixACKNOWLEDGEMENTSI would like to thank Dr. D. S. Mavinic for his guidance, counselling, and patience, throughout thisstudy. I would also like to thank Jufang Zhou, Paula Parkinson, and Susan Harper, of the U.B.C.Environmental Engineering Laboratory, for their good humour and invaluable technical assistance.Without their help, this study would not have been possible.I would also like to thank Louise Smith, not only for her patience, but also for her editorial support.Finally, I would like to thank Andhra Smith Azevedo, who (despite providing countless distractions)gave me the impetus to complete this degree. I would also like to acknowledge the billions uponbillions of bacteria that gave their lives for this study.Funding for this project originated from the Natural Sciences and Engineering Research Council ofCanada (NSERC), in the form of an Operating Grant to Dr. D. S. Mavinic.xChapter 1INTRODUCTIONLandfilling is the most common means of solid waste disposal. The significant environmental problemswhich may arise are methane gas explosions, low-level volatile gas generation, land use issues, odours,disease and pests, and leachate generation as water passes through the fill. Proper siting, design,construction and operation of landfills can usually deal with most aspects of these problems. Theproblem of leachate generation is usually most comprehensively solved by some form of treatment.The two components of landfill leachate that can have the most significant environmental impact onaquatic life are biodegradable organic compounds, and ammonia. As shall be explained in greater detailin the next section, leachates from older landfills typically have low BOD and high ammoniaconcentrations. Thus, the primary toxicant in leachate from older landfills is ammonia.1.1 Leachate Generation, Landfill Age, and Leachate CharacteristicsLeachate is generated primarily from the infiltration of rainfall, snowmelt, or groundwater into thelandfill (Chian et al, 1985). The infiltrated rainwater serves as the transport phase for leaching,dissolution, and migration of contaminants from the solid waste. In addition to the rainwater, wateris also available in the input solid waste, either immediately, or released from decomposition reactions.Leachate characteristics are a function of the amount of the infiltrated rainwater, landfill design andoperation, input solid waste , landfill microbiology, waste compaction, cover material, and landfill age.As a landfill ages, while in use or after closure, the leachate characteristics change according to thelandfill stabilization sequence presented in Table 1.1. It should be kept in mind that this phase conceptfor landfill stabilization is subject to alterations due to physical, chemical and microbiological conditions.In addition, since landfills are most often operated in cells, phases often overlap, producing a leachatethat is the average of several cells in different phases (Chian et al, 1985).TABLE 1.1:^Landfill Stabilization Sequence(modified from Chian et al, 1985)Phase 1.^Initial Adjustmentinitial waste placementpreliminary moisture accumulates until sufficiently present to support aerobicmicrobial decomposition of solid wastePhase 2.^Transitiontransition from aerobic to anoxic to anaerobic microbial decompositionfield capacity maybe exceeded resulting in leachate generationintermediary volatile organic fatty acids appear in leachate with acorresponding rise in BOD 5Phase 3.Phase 4.Phase 5.Acid Formation ("young" or "acetogenic" landfill)anaerobic decomposition is fully establishedintermediary volatile organic fatty acids predominate- significant pH decrease with parallel dissolution of metals- ammonia and phosphorus are released and partially utilized by microbialmetabolism and may result in high ammonia in leachate (phosphorus is almostcompletely utilized and nearly absent in many leachates)leachate has high BOD5 and high COD with BOD5/COD ratio typically >0.4(Ehrig 1985)Methane Fermentation ("older" or "methanogenic" landfill)- intermediary organics appearing during the acid formation phase aremetabolized to methane and carbon dioxidepH rises as landfill changes from a buffer system controlled by volatile organicfatty acids to a buffer system controlled by the bicarbonate system- high pH results in some metal species being involved in precipitation reactions,thus leachate metal concentrations decreaseammonia concentrations in leachate are highleachate BOD 5 and COD decrease markedly as methane production is increasedratio of BOD 5/COD decreases to <0.1 (Ehrig 1985)Final Maturationorganic oxygen demand and methane production tapers and all but ceaseshumic release may increase as more difficult compounds are degraded, mayhave concomitant increase in metalshigh ammonia in leachate may continue for some time before ceasingreappearance of oxygen and oxidized species with corresponding rise in ORP1.2^Environmental Problems from Nitrogen DischargesNitrogen is essential to maintain natural ecosystems; however, some forms, at sufficient levels, arehazardous to man, animals, and the ecosystem itself. The major concerns of nitrogen discharges into2the aquatic environment include accelerated eutrophication of receiving waters, toxicity to fish life,dissolved oxygen depletion in receiving waters, and contamination of drinking water.Cultural eutrophication, also known as biostimulation, means excessive plant or algal growth resultingfrom fertilization of receiving waters by primarily, nitrogen or phosphorus. The impact ofeutrophication includes aesthetic changes, and algal decomposition problems resulting in seasonal ordiurnal dissolved oxygen depletion and odour problems. Dissolved oxygen depletion will usually occurat lower depths in the receiving water, and thus effect the deeper, cold water fish, which tend to bethe favourite of commercial and recreational fishers. In general, freshwater systems tend to bephosphorus deficient and marine environments tend to be nitrogen deficient. Thereforenitrogen-induced eutrophication tends to occur more in marine environments such as bays andestuaries. Dissolved oxygen depletion can also occur as a result of ammonia being biologically oxidizedto nitrate by nitrifying bacteria within the receiving water.The toxicity of nitrogen discharges to fish life is primarily due to "free" ammonia (NH 3 ). The ratio of"free" ammonia to the ammonium ion (NH 4 + ) is greatly affected by pH. Increasing pH, increases theratio of "free" ammonia to ammonium. The U.S. EPA (1975) reported that acute toxicity to "free"ammonia has been detected starting from between 0.01 mg/L to 2.0 mg/L.In 1945, Comley first associated the consumption of drinking water that was high in nitrates, with therare but sometimes fatal blood disorder, infant methemoglobinemia (Shuval and Gruener 1977). It wasestablished that water, high in nitrite or nitrate, which was fed to babies directly or via baby formula,resulted in nitrite in the stomach. Nitrite inactivates haemoglobin and the infant suffocates, producingthe diagnosis of "blue babies". Another adverse health impact, discovered more recently, is therecognition of nitrates as potentially cancer causing. A study by Mirvish (1977) concluded thatN-Nitroso- compounds are strong carcinogens and may be derived from nitrates in drinking watersources.3^1.3^High Ammonia Levels in Landfill LeachateThe emphasis at modern landfills is to lower rainwater infiltration. A simple mass balance analysisshows that this should result in lower leachate volumes but with higher concentrations ofcontaminants. In addition, higher ammonia levels can also be expected as more landfills are engineeredto reach a methanogenic state (Knox 1985). The implications of a modelling study performed byJasper et al (1985a), include the possibility that longer landfill retention times, due to lower infiltrationand/or poor hydraulic removal, will result in producing an "older" leachate.Henry (1985) reports that high ammonia levels (100 to 1000 mg N/L) may be expected from anaerobiclandfills. Ehrig (1985) summarizes leachate data from landfills in West Germany and describes anincrease in ammonia-N concentrations to 1600 mg/L as the landfill becomes methanogenic. Henderson(1993) measured the ammonia-N concentration to be 2140 mg/L in a leachate from a methanogeniclandfill near Kaohsiung in south western Taiwan. Maris et al (1985) report an ammonia-Nconcentration as high as 990 mg/L in the leachate from a methanogenic landfill in northern England.Loizidou et al (1992) report ammonia-N concentrations ranging from 1650 to 3870 mg/L in theleachate from a methanogenic landfill near Athens, Greece. Robinson (1991) observed ammonia-Nconcentrations as high as 5000 mg/L in leachates from landfills in Hong Kong.^1.4^Nitrogen Removal from Landfill LeachateNitrogen removal (in a practical sense) from landfill leachate means either physical-chemical treatmentto remove ammonia, biological assimilation, or aerobic biological nitrification with optional subsequentdenitrification. Biological nitrification and denitrification is generally found to be the most effective,complete, and economic means of nitrogen removal for leachate from older landfills. Biologicalnitrification and denitrification processes also have several ancillary benefits, such as carbon oxidationand heavy metals removal.Selection and design of a facility for landfill leachate treatment is not as simple as for sewagetreatment. Leachate volume generation may vary significantly, and leachate characteristics vary with4time as described in Table 1.1. Forgie (1988a, 1988b, 1988c) provided an excellent review ofleachate treatment options and developed comprehensive flowcharts for selection of the appropriatetreatment option, based on leachate characteristics and effluent requirements.1.5^Carbon Removal vs Nitrogen RemovalThe primary concern with leachate from young landfills, is carbon removal. The primary concern withleachate from older landfills, is nitrogen removal.Forgie (1988a, 1988b, 1988c) suggested that anaerobic treatment, followed by optional aerobictreatment, is the most economical and effective treatment for carbon removal from "younger" leachate,that is, leachate with high biodegradable organics and a BOD5/COD ratio greater than 0.4. Forleachate with a BOD 5/COD ratio between 0.1 and 0.4, Forgie suggested aerobic biological treatmentfor BOD5 and ammonia removal. Biological treatment of landfill leachate may still leave unacceptablyhigh levels of refractory COD and colour. Removal of refractory COD and colour would requirephysical-chemical treatment. For leachate with a BOD 5/COD less than 0.1, unless high ammonia levelsare present, biological treatment may not be viable, and physical-chemical treatment is suggested byForgie. If ammonia levels are sufficiently high, then aerobic biological nitrification is possible.As this thesis research is specifically focused on nitrogen removal from leachate from an older landfill,carbon removal will not be discussed any further, except as pertaining to biological denitrification andBOD5 inhibition of nitrification.1.6^Biological Nitrification and Denitrification1.6.1 Nitrification MicrobiologyNitrification is an autotrophic aerobic process which utilizes an inorganic carbon source (carbonates),an inorganic electron donor or energy source (NH 4 + or NO21, and elemental oxygen as a terminalelectron acceptor. The complete oxidation of ammonium to nitrate occurs in two intermediary stepsby two different genera of bacteria. The first step of oxidation of ammonium to nitrite is conducted5by Nitrosomonas. The second step of oxidation of nitrite to nitrate is conducted primarily byNitrobacter. The U.S. EPA (1975) states that Nitrobacter has a significantly higher growth rate thanNitrosomonas, therefore nitrite accumulation should not occur unless Nitrobacter is inhibited.Equations for synthesis and oxidation are as follows (U.S. EPA 1975):Nitrosomonas 55NH 4 + + 7602 + 109HCO3- -> C 5H7NO2 + 54NO2 + 57H 20 + 104H 2CO3Nitrobacter 400NO2 + NH 4 + + 4H2CO3 + HCO3 + 19502 -> C5H7NO2 + 3H 20 + 400NO3-The equations assume that the empirical formulation for these bacterial groups may be represented byC5H7NO2 . The equations also assume growth yields of 0.15 mg cells/mg NH 4 + -N for Nitrosomonasand 0.02 mg cells/mg NO2-N for Nitrobacter, and oxygen consumption ratios of 3.22 mg 0 2/mgNH4 + -N for Nitrosomonas and 1.11 mg 0 2/mg NO2-N for Nitrobacter.Alkalinity is only consumed by the first step involving ammonia oxidation. The theoretical alkalinityconsumption for nitrification is calculated from the first reaction to be 7.14 g CaCO 3/g NH4 +-N.1.6.2 Denitrification MicrobiologyDenitrification is an anoxic, heterotrophic process which utilizes an organic carbon source (such asmethanol) for synthesis and as an electron donor, and nitrite or nitrate as the terminal electronacceptor. Complete denitrification occurs in two steps. First is the reduction of nitrate to nitrite, andsecond is the reduction of nitrite to nitrogen gas. The end product, being nitrogen gas, is significantsince nitrogen gas has not been associated with any environmental problems. Unlike nitrification, thetwo steps are not distinctly associated with specific genera of bacteria; moreover, denitrification canbe accomplished by a broad range of facultative bacteria, including Pseudomonas, Micrococcus,Archromobacter, and Bacillus (U.S. EPA 1975). Facultative bacteria prefer elemental oxygen tocombined oxygen (such as nitrate and nitrite) as an electron acceptor. Therefore, it is important that6the denitrification environment be free of elemental oxygen for nitrate and nitrite reduction to occur.Equations for nitrate and nitrite reduction can be represented as follows (U.S. EPA 1975):NitrateReduction^NO3- + 0.33CH30H -> NO2- + 0.33H20 + 0.33H2CO3NitriteReduction^NO2- + 0.5CH3OH + 0.5H2CO3 - > 0.5N2 + HCO3- + H20The inclusion of synthesis (bacterial growth) increases the moles of methanol required per mole ofcomplete nitrate reduction to 1.08 and to 0.67 per mole of nitrite reduction (McCarty et al, 1963).For complete nitrate reduction, this converts to 2.47 g CH3OH/gNO3--N or 3.7 g COD/gNO3--N and fornitrite reduction, this converts to 1.53 g CH3OH/gNO2--N or 2.3 g COD/gNO2--N.Alkalinity is generated by the second step of denitrification. The stoichiometric quantity of alkalinitygenerated is 3.57 g CaCO3/g NO2--N-denitrified 1.6.3 Process Train Options for Implementation of Biological Nitrification and DenitrificationThere are many different process train options that have been proven to achieve biological nitrificationand denitrification (Forgie, 1988a, 1988b, 1988c). The process train selected for this study was theModified Ludzack Ettinger (MLE) process train.^The MLE process train is a single-sludgepredenitrification-nitrification activated sludge system (see Figure 1.1). The MLE process offers thefollowing advantages over other nitrification/denitrification systems:Having the anoxic (denitrification) reactor before the aerobic reactor (nitrification), may permitinfluent B0D5 to be used as a carbon source for denitrification, thereby reducing carbonaddition requirements. Also, the reduction in BOD5 entering the aerobic zone, reduces aerationdemands and sludge production.Having the aerobic stage prior to clarification, produces a less noxious aerobic effluent andreduces the possibility of rising sludge resulting from denitrification in the clarifier.7on AMMONIUM CHLORIDEORTHOPHOSPHATEQ3cim -.0 BICARBONATE METHANOL Or. ORP METER^171\1LEACHATEFEED(10 L/DAY)---1"71 DO METER^0 pH METERI a ;‘1171SUPPLYCLARIFIER(4 L).^SOLIDS RECYCLE (60 L/DAY)LOW RPMSCRAPERIAEROBIC 1r-^REACTOR(10 L)IA ANOXICREACTOR(5 L)IEFFLUENT, ,FIGURE 1.1: Leachate Treatment System DiagramThe MLE arrangement reduces pH/alkalinity addition requirements, since 50% of the alkalinityconsumed by nitrification is returned by denitrification.Dilution of the influent leachate with the aerobic/clarifier recycle, reduces the possibility ofammonia inhibition of denitrification. The converse of this is the exposure of denitrifiers toelevated levels of ammonia.The single-sludge aspect reduces tankage.Activated sludge nitrification and denitrification is well-studied and proven; primarily for sewagetreatment but also in application to landfill leachate treatment.The greater biomass may permit shorter HRTs than in an aerated lagoon and therefore mayrequire less space.A major disadvantage of the MLE process is that effluent NO.--N levels may remain unacceptably high.The effluent NO-N is approximately equal to the influent ammonia-N divided by one plus the solidsrecycle ratio (assuming no bacterial assimilation or air stripping). For example, an influent ammonia-Nconcentration of 1500 mg/L and a solids recycle ratio of 6:1, at best can result in an effluent NON--Nconcentration of 1500/(1 + 6) =214 mg N/L. If lower NO."-N levels are required, post-denitrificationor higher recycle rates may be necessary.Other suspended growth process train options that have been investigated for their nitrogen removalpotential from landfill leachate include, the aerated lagoon, and the sequencing batch reactor (SBR).Robinson and Luo (1991) achieved excellent nitrification using SBR technology from leachate withammonia-N levels as high as 2000 mg/L. Robinson (1991) has been involved in the development ofa simple and robust automated aerated lagoon for bacterial nitrogen assimilation, nitrification andcarbon oxidation of high ammonia leachate from methanogenic landfills in the United Kingdom. Theplants are described as extended aeration and are said to provide some distinct advantages overactivated sludge plants, including greater process stability due to longer HRTs (Robinson et al, 1992).Typical influent ammonia-N levels of 1000 mg/L are reported to be reduced to less than 5 mg/L in the9effluent. Some plants are reported to use significant bacterial assimilation, while others achieve themajority of ammonia reduction by nitrification (Robinson 1991).Several fixed growth systems are also available for nitrogen removal from landfill leachate. Fixedgrowth systems are generally regarded as more resistant to surges in hydraulic and organic loading,than for suspended growth systems, since washout of the biomass is less likely to occur. This issignificant because changes in hydraulic loading are a notorious problem for landfill treatment design.Knox (1985) compared nitrification of an "older" leachate by an activated sludge pilot plant and atrickling filter pilot plant, operating in parallel. Knox concluded that less problems were encounteredwith the trickling filter. Several studies have also found RBC technology useful for nitrification oflandfill leachate (Opatken and Bond 1991, Peddie and Atwater 1985). Spengel and Dzombak (1991)successfully nitrified and denitrified landfill leachate with an average ammonia-N level of 154 mg/L,using an aerobic RBC followed by an anoxic submerged RBC. Also using an RBC, Henderson (1993)attempted to treat a leachate with a BOD concentration of 705 mg/L and an ammonia-N concentrationof 2140 mg/L. At an ammonia loading of 1.3 g/m 2/day, system ammonia removal was 97%. Athigher loading rates, full nitrification could not be achieved. Forgie (1988c) indicates that caution mustbe given to application of RBCs to treatment of landfill leachate, because of the potential of calciumand iron precipitates to form on the disks, thereby interfering with substrate transfer to the biomassor raising the spectre of axle failure. It is possible that clogging by inorganic precipitates could alsoapply to other fixed growth systems as well, such as trickling filters (Ehrig 1991).1.7^Other Nitrogen Removal Options1.7.1 RecirculationRecirculation of leachate, by collection and spraying over the landfill, was investigated by Robinsonand Maris (1985). Their work supported other studies that recirculation promotes rapid stabilizationof biodegradable organics, produces a more consistent leachate, and may reduce leachate volume byevaporation. However, ammonia, COD, and chloride, were found to remain relatively high. Robinsonand Maris concluded that recirculation can reduce leachate strength and volume but cannot be a10complete answer to the leachate problem. Further, they suggest that recirculation may be mostapplicable in combination with aerobic biological treatment. Robinson and Maris also suggest thatrecirculation may result in denitrification within the landfill.1.7.2 Co-treatmentCo-treatment refers to placing the leachate into the local municipal sewerage system for treatment inthe municipal sewage treatment plant. Obviously, this option may be limited by the nonexistence ofsewage treatment. Co-treatment is most applicable to municipalities which have secondary or tertiarytreatment, where organics, nitrogen and colour may be removed. Lema (1988) states that the additionof leachate to sewage may also be argued as a nitrogen nutrient source for municipal secondarytreatment. If the municipal treatment plant is only primary treatment, then significant treatment of theleachate might not occur. However, as in the case of leachate from the Vancouver landfill (which isdirected into the Annacis Island primary treatment plant), some advantages might still be obtained fromdilution of the leachate in the sewage, and by good dilution into the receiving water due to efficientsewage outfall diffusers. Economic deterrents to co-treatment include the cost of building thenecessary piping connections and/or paying a treatment fee to the municipal plant.Lema (1988) lists the potential negative impacts of co-treatment on secondary treatment: excessiveloading of organic and inorganic compounds, high effluent nitrogen, corrosion, poor settling,precipitation of inorganic ions, heavy metal inhibition, and heavy metal contamination of the sludge,thus rendering the sludge unfit for agricultural purposes. Lema suggests that co-treatment is onlyacceptable when the leachate makes up less than 5% of the total sewage input and leachate COD isless than 10000 mg/L. Accordingly, assuming a sewage COD of 300 mg/L, the leachate CODcontribution must be less than 64% of the COD load.Kelly (1987) investigated the effect of co-treatment on a pilot scale activated sludge plant treatingdomestic waste. For a leachate with 1167 mg COD/L and 71 mg NH4-N/L, and a primary wastewaterwith a COD of 238 mg/L, process instability was not observed for leachate mixtures of 2, 4 and 16%1 1by volume. The COD contribution from leachate at a mixture of 16%, was only 48% (less than the64% maximum suggested by Lema (1988)). However, Kelly observed that leachate additions increasedheavy metals in the sludge and increased precipitation onto process equipment.1.7.3 Spray IrrigationRobinson (1983) suggested that spray irrigation, also known as land spraying, may either be used totreat relatively dilute raw leachates or to dispose of treated effluent. Lema (1988) stated that sprayirrigation of landfill leachate is not a valid option because it risks polluting groundwater, renders theland unfit for agriculture, and may be toxic to plants.1.7.4 Bacterial AssimilationRobinson and Maris (1985) concluded that bacterial assimilation, in biological treatment of "young"leachate with high BOD5 and low ammonia (down to BOD5:NH4-N ratios of 100:3.6), can be sufficientto achieve complete ammonia removal. Robinson (1988) reported a successful implementation of anitrogen assimilation plant for removal of ammonia from landfill leachate, of approximately 700 mgNH4-N/L, which produced an effluent with ammonia-N less than 2 mg/L. A supplementary BOD5source was used which was comprised of jam waste from a nearby jam-producing plant. In general,for nitrogen removal by bacterial assimilation to be economical, a cheap source of BOD5 must beavailable, in addition to a disposal option for the ammonia-rich sludge.1.7.5 Physical-Chemical TreatmentPotential physical-chemical methods for ammonia removal from landfill leachate include air stripping,reverse osmosis and ion exchange. Keenan (1979) reported that good carbon, heavy metals, andammonia removal were obtained from pretreatment by chemical precipitation of heavy metals toprevent heavy metal inhibition, followed by air stripping to prevent ammonia inhibition, and thenbiological treatment for carbon oxidation and nitrification. Ehrig (1991) described the success inreverse osmosis removal as only an adjournment of a real treatment solution, since the processproduces a liquid concentrate, which is usually passed back into the landfill. However, in combination12with air stripping, reverse osmosis may be useful in ammonia removal from landfill leachate. Ionexchange may also be used for ammonia removal using a column of clinoptilolite, a zeolite with a highselectivity for ammonium ions and calcium ions (U.S. EPA 1975). Older leachate may be very high incalcium and may therefore not be well-suited for ion exchange for the purpose of ammonia removal.have reduce the ammonial removal. In addition, column regeneration will produce a concentrate whichstill requires disposal or treatment. Hence, like bacterial assimilation and reverse osmosis, ionexchange cannot be considered an ultimate treatment.1.8^Study ObjectivesIn summary of this chapter:1. Modern landfill design and operation of landfills, will produce leachates with highconcentrations of ammonia.2. Biological nitrification and denitrification is considered to be one of the most effective andeconomical methods of nitrogen removal from high ammonia leachate.3.^The MLE process (single-sludge predenitrification activated sludge, see Figure 1.1) is oneparticular implementation of biological nitrification and denitrification that has severaladvantages (see Section 1.6.3).The potential increase in the ammonia concentrations of leachate from modern "older" landfills, raisedthe question, "To what ammonia level could the MLE process successfully operate, especially at coldertemperatures when biological treatment is most challenged?" A particular concern was the exposureof nitrifiers and denitrifiers to elevated ammonia levels in the anoxic reactor. Based on the abovereasoning this study had the following objectives:1. Determine the effect and limit of increasing the influent leachate ammonia concentrations, onsuccessful treatment by the MLE process shown in Figure 1.1.2. Determine the effect of colder temperatures on treating the highest influent leachate ammoniaconcentration determined by Objective 1.3.^Determine the effect of solids retention time (SRT) on Objective 1 and 2.13Chapter 2LITERATURE REVIEWThis literature review presents a short overview of research that has been published on the subject ofbiological nitrification and denitrification. Emphasis is given to research on landfill leachate treatment,cold temperature studies and other factors which affect nitrification and denitrification performance.Weight is also given to research on which the activated sludge process, or more specificall y, the MLEprocess, was utilized.2.1 Biological Nitrification and Denitrification of Landfill LeachateDedhar and Mavinic (1985) successfully nitrified leachate, with 288 mg NH4-N/L, from an "older"landfill, to less than 1 mg/L. Denitrification, using glucose as an external carbon source for an MLEprocess, was achieved only on several occasions.Robinson (1992), in a pilot study, successfully nitrified and denitrified landfill leachate with ammonia-Nlevels of 2000 mg/L, using the MLE process at 20 °C. A recycle ratio of 10:1 was found to producean effluent NO3"-N of approximately 95 mg/L and a NO2--N of approximately 0.2 mg/L.2.2 Effect of Dissolved Oxygen on NitrificationStenstrom and Poduska (1980) investigated the dissolved oxygen (DO) concentration required fornitrification of municipal wastewater. They concluded that at higher SRTs, nitrification could beachieved at DO levels from 0.5 to 1.0 mg/L, and at lower SRTs, higher DO levels were required.2.3 Effect of TemperatureDecreasing temperature results in decreased growth rate according to the Arrhenius relationship.Decreasing temperature also decreases the fraction of ammonia present that exists as "free" ammonia.Anthonisen et al (1976) calculated that for each 10 °C drop in temperature, the "free" ammoniapresent decreases by approximately one half.1 4Using a 3 stage biological process (carbon oxidation, nitrification, denitrification), to treat a syntheticmunicipal wastewater at 5 °C, Halmo and Eimhjellen (1981) found that nitrification was"unquestionably" the critical step. Nitrification at low temperatures was determined to be possible,but was vulnerable to changes in external conditions. Halmo and Eimhjellen also found that 98%denitrification could be obtained at 5 °C, with some encouragement of psychrophilic bacterial growth.Randall and Buth (1984) studied the effect of temperature on nitrification of a synthetic municipalwastewater. Randall and Buth found that nitrification was very sensitive to small temperature changesbetween 10 to 17 °C. Temperature inhibition was more significant on nitrate formers (eg. Nitrobacter)than on nitrite formers (eg. Nitrosomonas); hence, nitrite accumulation was observed. Further, Randalland Buth concluded that nitrification was more temperature sensitive than heterotrophic activity.Using mixed liquor from an activated sludge municipal wastewater treatment plant, Lewandowski(1982) found that the relationship between specific reaction rate for denitrification and temperaturewas linear within 5 to 35 °C. Below 5 °C, the reaction rate decreased more significantly. The specificreaction rate for methanol was found to be 1.83 h -1 at 20 °C and 0.93 h -1 at 10 °C.Guo (1992) studied the effect of temperature on biological nitrification and denitrification of a highammonia landfill leachate using the MLE process. Temperatures of 20 °C, 12 °C, and 4 °C, werestudied, with aerobic SRTs ranging from 20 to 60 days. Guo found that at 12 °C, using a 20 daySRT, the system was capable of ammonia-N removal from 210 mg/L in the influent leachate to lessthan 0.5 mg/L in the treated effluent. An effluent ammonia-N level less than 1.9 mg/L was achievedat 4 °C, using a 60 day SRT.2.4 Effect of pH, "Free" Ammonia, and Nitrous AcidAnthonisen et al (1976) observed that nitrification was reduced by low pH due to nitrous (HNO 2) acidinhibition, and at high pH due to "free" ammonia (NH 3) inhibition. Both were shown to affectNitrobacter at lower concentrations than for Nitrosomonas; thus the overall effect was nitrite15accumulation. "Free" ammonia inhibition to Nitrobacter was observed to begin between 0.1 to 1.0mg/L. For nitrosomanas, "free" ammonia inhibition was observed to begin between 10 to 150 mg/L.Nitrous acid inhibition to nitrifiers, was observed to begin between 0.22 and 2.8 mg/L. Anthonisenet al qualified these results by acknowledging that "free" ammonia and nitrous acid inhibition may beaffected by acclimation, temperature, and the number of nitrifying organisms present.Turk and Mavinic (1989) investigated process changes that could be used to maintain nitriteaccumulation and overcome the effects of acclimitization to "free" ammonia, during nitrification anddenitrification of landfill leachate and a synthetic waste. Parameters investigated included "free"ammonia, nitrous acid and dissolved oxygen. Only "free" ammonia (at 5 to 10 mg NIL) was found tobe effective as a differential inhibitor of unacclimated nitrifiers. Predenitrification, in which nitrifiersare recycled through elevated "free" ammonia concentrations in the anoxic reactor, was suggestedas the most effective measure for delaying acclimatization and extending nitrite accumulation.Keenan et al (1979) performed a study of ammonia substrate inhibition on nitrification of landfillleachate. Keenan observed the ammonium ion (NH4) to be the inhibitory form of ammonia and,conversely, Keenan did not observe inhibition of nitrification due to "free" ammonia.Antoniu et al (1990) determined the optimal pH for nitrifying bacteria to be approximately 7.8. Painterand Loveless (1983) determined the optimum pH for nitrification to be in the range between 7.5 to8.5, with an optimal growth rate occurring at pH 8.The U.S. EPA (1975) suggests that pH may strongly affect nitrification by altering the amount ofbicarbonate in solution. The U.S. EPA also found that the highest reported rates of denitrification werewithin the range of pH 7.0 to 7.5.Beccari et al (1983) observed that elevated nitrite levels may inhibit denitrification. Nitrite inhibitionwas attributed to the level of nitrous acid.162.5 Effect of Excess BOD5 on NitrificationSeveral nitrification studies have found that nitrification is inhibited by the presence of elevated levelsof biodegradable organic matter. The explanation given for this inhibition, is that faster-growingheterotrophic bacteria outcompete slow-growing autotrophic nitrifiers for dissolved oxygen in thepresence of elevated BOD 5 . Hockenbury et al (1977) investigated the effect of simultaneousheterotrophic activity on nitrifier activity and concluded that no such inhibition takes place.Carley and Mavinic (1991), using a predenitrification activated sludge setup for landfill leachatetreatment, with a 4:1 solids recycle ratio, found that a denitrification COD:NO x ratio of 20:1 resultedin significant carbon breakthrough and a resulting reduction of nitrification of up to 40%. A look atthe raw data of this work (Carley, 1988) shows a corresponding increase in aerobic BOD 5, thussupporting the claim that elevated BOD5s can inhibit nitrification.Similar results have been observed with RBCs (Gonenc and Harrmoes, 1990) and with trickling filters(Figueroa and Silverstein, 1991). Gonenc and Harrmoes suggested that the ratio of BOD 5 :DO mustbe less than 5:1 for uninhibited nitrification to occur. Parker and Richards (1986), in a study onnitrification in trickling filters, concluded that because of competition between heterotrophic bacteriaand nitrifiers, nitrification is not initiated in the trickling filter tower until soluble BOD 5 is less than 20mg/L.2.6 Effect of Carbon Source and Quantity on DenitrificationMethanol has been widely used as an external carbon source for biological denitrification (U.S. EPA1975). Reasons for this include: high reaction rate, abundance of supply, low sludge solids yield, andrelatively low cost.Manoharan (1989) found that glucose, as a carbon source, resulted in unstable denitrification, withfluctuations between 10 to 100%. However, methanol as a carbon source was found to provide forconsistent and reliable, complete denitrification.17Carley and Mavinic (1991) tested methanol, acetate, glucose and a brewer yeast, as external carbonsources for denitrification of a carbon-limited landfill leachate. Their results indicated that methanoland acetate were equally effective and better overall than glucose and the brewer yeast. TheCOD:NO, ratio (mg COD:mg NOR-N) required for complete denitrification was approximately 6.2:1 formethanol and 5.9:1 for acetate.McCarty et.al (1969) proposed the following stoichiometric-based equation for methanol (Cm)requirements for complete denitrification (all variables are in mg/L):Cm = 2.47*[NO3--N] + 1.53*[NO2--N] + 0.87*[dissolved oxygen]The U.S. EPA Process Design Manual for Nitrogen Control (U.S. EPA 1975) suggests that, in general,a methanol requirement of 4.5 mg COD/mg NO3--N will enable complete denitrification. Studies havegenerally shown a COD:NO, requirement in the range of 4:1 to 6.5:1 (Narkis, 1979 and Carley, 1989).As seen from McCarty's methanol requirement equation, complete denitrification of nitrite requiresabout 40% less methanol than complete denitrification of nitrate. The possibility of lower methanolrequirements inspired Turk and Mavinic (1989) to investigate the feasibility of a shortened pathwayfor nitrogen removal based on inhibition of nitrite oxidizers Witrobacten. This would decrease aerationdemands during nitrification, and decrease carbon demands during denitrification. High nitrite levelsexisted until acclimatization eventually occurred.2.7^Heavy Metal InhibitionThe nitrification process is considered very sensitive to heavy metals (Mavinic and Randall, 1992).Zinc, a predominant metal in acetogenic landfill leachates, has been reported to result in nitrificationinhibition at concentrations of approximately 17 mg/L (Dedhar and Mavinic, 1985, and Jasper et al,1986). Martin and Richard (1982) found the nitrosomonas toxic threshold for zinc to be approximately10 mg/L.18Mavinic and Randall (1990) investigated heavy metal inhibition of biological nitrification anddenitrification of a high ammonia landfill leachate (188 mg N/L). Their results showed that whenexcess phosphorus was added to account for zinc phosphate precipitation, the system could handlezinc concentrations up to 130 mg/L at 20 °C with an aerobic SRT of 10 days. Inhibition fromchromium and nickel was obvious at much lower levels.2.8 Effect of HRT and Solids Recycle RatioThe solids recycle ratio is defined as the volumetric rate of the clarifier solids underflow that is recycledback into the anoxic reactor, to the influent volumetric rate entering the anoxic reactor. A study byElefsiniotis et al (1989), using the MLE train, varied the solids recycle ratio and found that beyond 6:1,nitrification and denitrification became unstable. Since solid recycle and effluent recycle werecombined into one recycle, the reduction in HRT was suggested as the reason for poor performanceat higher recycle ratios. Robinson (1992), also utilized a predenitrification arrangement, but with theaerobic reactor sequenced to also operate as a clarifier. While using HRTs that were considerablylonger than the HRTs utilized by Elefsiniotis et al, Robinson successfully operated at a recycle ratio of10:1.Finally, Painter (1977) stated that, after exposure to aerobic conditions, most denitrifying organismsrequire a period of approximately 1/2 to 1 hour of adaption to nitrate under anoxic conditions fordenitrification to occur.19Chapter 3EXPERIMENTAL SETUPTwo parallel, identical, laboratory-scale, biological, single-sludge, predenitrification systems, withrecycle, were used to study the effects of solids retention time (SRT), ammonia loading, andtemperature, on the nitrification and denitrification of landfill leachate. Throughout the study, onesystem was operated at a 10 day aerobic SRT and the other system was operated at a 20 day aerobicSRT (based on the work of Mavinic and Randall (1990) and Guo (1992)). Each system consisted ofan anoxic reactor, an aerobic reactor, and a clarifier with a recycle back to the anoxic reactor. Thesystem is shown in Figure 1.1. The design and operating parameters of the system are shown in Table3.1. The study was conducted in two phases. Phase one investigated the effects of increasing theammonia loading. Phase two investigated the effects of cold temperature.TABLE 3.1:^Treatment System Design and Operating ParametersParameter ValueAnoxic Volume (L) 5Aerobic Volume (L) 10Clarifier Volume (L) 4System Volume (L) 20*Influent Flow (L/days) 10Recycle Flow (L/days) 60Recycle Ratio (Recycle:Influent) 6:1Daily Aerobic Wasting (L) 1/0.5Aerobic SRT (days) 10/20Anoxic Nominal HRT (hours) 12Aerobic Nominal HRT (hours) 24Clarifier Nominal HRT (hours) 9.6System Nominal HRT (hours) 48Anoxic Actual HRT (hours) 1.7Aerobic Actual HRT (hours) 3.4Clarifier Actual HRT (hours) 1.4System Actual HRT (hours) 6.8*1 L is estimated in each system for pumps and tubing.20A solids recycle ratio of 6:1 was selected based on the work of Elefsiniotis et al (1989). Both phasesof the study were conducted within a temperature-controlled room. The temperature during theammonia loading phase was maintained at 20 °C. The temperature during cold temperature phase wasdecreased from 20 °C to 10 °C.3.1 LeachateThe leachate used in this study was collected from the City of Vancouver's Burns Bog Landfill in Delta,British Columbia. The leachate was collected monthly from a pumping station located in the southwestcorner of the landfill. The collected leachate was stored in closed containers at 4 °C to limitbiochemical changes while in storage.The landfill began operation in 1966 and is still in use today. The leachate presently generated istypical of leachate from an older landfill, with low BOD 5, low BOD 5 :COD ratio, low heavy metals, anda consistently high ammonia concentration. The basic characteristics of the leachate are shown inTable 3.2.TABLE 3.2:^Base Leachate CompositionParameter Concentration (mg/L)Range^MeanBO D5 20-62 36COD 285-464 371Ammonia as N 128-256 186NO; as N 0.1-58.8 2.7NO2- as N 0.0-3.3 0.3Orthophosphate as P 0.0-0.8 0.4Alkalinity as CaCO 3 1190-2120 1600VSS 24-65 45TSS 56-128 97pH (pH units) 7.6-8.3 8.0Cu (Guo, 1992► 0-0.71 0.13Zn (Guo, 1992) 0-0.11 0.04213.2 Leachate FeedThe leachate to both systems was fed from a common, covered, plastic bucket with a mechanicalstirrer. Each system received leachate at approximately 10 L/day. In actuality, to maintain the aerobicHRT at approximately 3.4 hours and the anoxic HRT at approximately 1.7 hours, the rate of leachateaddition was less than 10 L/day to account for the addition of ammonium chloride, orthophosphate,methanol, and bicarbonate.Initially, leachate was poured into the bucket from the storage containers. To reduce the aeration ofthe leachate and possible instigation of nitrification within the feed bucket, this practice was changedto siphoning the leachate from the storage container into the feed bucket.3.3 Chemical AdditionOrthophosphate, methanol, ammonium chloride and sodium bicarbonate, were all added to the systemsduring this study. In general, the concentrations of the feed solutions were as high as possible so thatvolumetric additions would be as low possible, thereby affecting the HRT as little as possible. Ingeneral, the lowest volumetric rate that the pumps could manage consistently was 5 to 10 mL/hr.Controlling the flowrate at these low levels proved to be a problem; therefore, the concentration of thechemical feed solution was altered instead of the flowrate.3.3.1 Phosphate AdditionFrom the start of the study, disodium orthophosphate (Na2PO4:7H20) was added to both systems toensure that phosphorus was not a limiting nutrient. The objective of phosphate addition was tomaintain the membrane-filtered orthophosphate levels above 0.5 mg P/L, as suggested by Mavinic andRandall (1992). For each system, phosphate feed solution was provided from a 1000 mL graduatedcylinder into the anoxic reactor. A single double-headed pump was used to feed both systems.Volumetric delivery rates were determined daily by checking the volume change in the graduatedcylinder. Phosphate mass dosing rates were altered by changing the concentration of the feedsolution.223.3.2 Methanol AdditionMethanol (CH3OH) was added to the anoxic reactor as a carbon source for denitrification. The amountof methanol added was determined by the requirements for complete denitrification. For each system,methanol feed solution was fed from a 1000 mL graduated cylinder into the anoxic reactor. A singledouble-headed pump was used to feed both systems. Volumetric delivery rates were determined dailyby checking the change in the graduated cylinder. Methanol mass dosing rates were altered bychanging the concentration of the feed solution.3.3.3 Ammonium Chloride AdditionAmmonium chloride (NH 4CI) was added to the anoxic reactor to simulate leachate with higher ammonialevels. For each system, ammonium chloride feed solution was fed from a 4000 mL graduated plasticbottle into the anoxic reactor. A single double-headed pump was used to feed both systems.Volumetric delivery rates were determined daily by checking the change in the graduated cylinder.Ammonium mass dosing rates were altered by changing the concentration of the feed solution.3.3.4 Sodium Bicarbonate (Alkalinity) AdditionSodium bicarbonate (NaHCO 3) was added to the aerobic reactor to maintain the pH of the aerobicreactor at approximately 7.5. Sodium bicarbonate addition was not required until the influent leachateammonia level was increased to 600 mg N/L. Initially, sodium bicarbonate addition was performed bya single dual-headed pump, which fed a sodium bicarbonate solution from two graduated plastic feedbottles to both aerobic reactors. The concentration of the bicarbonate solution was adjusted inresponse to too low or too high aerobic pHs. This method allowed some pH fluctuations below a pHof 7.0 and above 7.5. Therefore, early in the temperature phase, a Cole-Parmer Series 7142 pH/PumpController was added to each system. If the pH of the aerobic reactor decreased below the setpointvalue, set at 7.5, the pH/pump controller would pump a solution of sodium bicarbonate into the aerobicreactor until the pH rose above the setpoint. The pH/pump controllers provided excellent control ofpH in the aerobic reactors.233.4 Anoxic ReactorThe purpose of the anoxic reactor was to denitrify the highly nitrified solids recycle from the bottomof the clarifier. In addition to the recycle, the anoxic reactor received the natural leachate, phosphatesolution, methanol solution and ammonium chloride solution. The anoxic reactor was a cylindricalplastic container with a liquid volume of 5 L. At total leachate and chemical additions of 10 L/d, andwith a recycle of 60 L/d, the anoxic reactor provided a nominal HRT of 12 hours and an actual HRTof 1.7 hours. The mixed liquor in the anoxic reactor was constantly mixed by a mechanical stirrer.An oxidation-reduction potential (ORP) probe was continuously submerged in the reactor to measurethe redox potential of the mixed liquor. The anoxic mixed liquor flowed by gravity into the aerobicreactor.3.5 Aerobic ReactorThe purpose of the aerobic reactor was to nitrify the high ammonia anoxic overflow. In addition to theanoxic overflow, the aerobic reactor also received sodium bicarbonate solution. Beginning early in thecold temperature phase, the pH of the aerobic mixed liquor was continuously monitored by a pH probe.The dissolved oxygen (DO) level of the aerobic mixed liquor was continuously monitored by asubmerged DO probe. The DO level was maintained above 2.0 mg/L, according to the DO meter, bycontinuous aeration from a perforated plastic tubing at the bottom of the reactor. The perforatedtubing was connected to the laboratory's compressed air supply. The flow of air was manuallycontrolled by use of a flow valve. Early in the temperature phase, the perforated tubing wassupplemented by two small porous stone air diffusers.The aerobic reactor was a cylindrical plastic container with a liquid volume of 10 L. Aerobic SRT wascontrolled by wasting from the aerobic reactor through a valve. 1 L was wasted daily from the 10 daySRT system to provide a 10 day theoretical aerobic SRT. 0.5 L was wasted daily from the 20 day SRTsystem to provide a 20 day theoretical aerobic SRT. At total leachate and chemical additions of 10Lid, and with a recycle of 60 L/d, the aerobic reactor provided a nominal HAT of 24 hours and an24actual HRT of 3.4 hours. The reactor was kept constantly mixed by a mechanical stirrer. The aerobicmixed liquor flowed by gravity into the clarifier.^3.6^ClarifierThe clarifier was a 4 L cylindrical plexiglass container with a conical bottom. The purpose of theclarifier was to separate the suspended solids from the aerobic mixed liquor so as to produce a cleareffluent supernatant, and also to allow thickening of the suspended solids, which could then berecycled back to the anoxic reactor. The aerobic reactor mixed liquor flowed by gravity into an innersleeve within the clarifier. The inner sleeve prevented shortcircuiting of the mixed liquor to thesupernatant exit. The solids recycle pump rate was set at 60 L/d, so as to produce a 6:1 solids recycleratio. The recycle pump was initially operated on a cycle of two minutes on and two minutes off. Thiswas later adjusted to one minute on and three minutes off. The purpose of this intermittent pumpingwas to decrease the possibility of blockages occurring within the recycle line. A scraper mechanismswept the conical surfaces of the clarifier bottom to prevent a buildup of settling solids.3.7^System Start-upOn August 12, 1991, the aerobic reactor and clarifier of both systems, were filled with sludge fromthe aerobic zone of the University of British Columbia Bio-P sewage treatment pilot plant. Theleachate, recycle, and phosphate lines initially bypassed the anoxic reactor and were added directlyto the aerobic reactor. No wasting occurred from the aerobic reactor until good nitrification wasobserved. Wasting began in the 10 day SRT system on Day 24 and Day 22 for the 20 day SRTsystem. 1 L was wasted daily from the aerobic reactor of one system to provide a 10 day aerobic SRTand 0.5 L was wasted daily from the aerobic reactor of the second system to provide a 20 day aerobicSRT. Also, on Day 24 (10 day SRT system) and Day 22 (20 day SRT system), each anoxic reactorwas reseeded and methanol additions were begun to the anoxic reactor. The methanol addition wasincreased until denitrification was observed and system NO; levels began to fall. Methanol additionwas then reduced until denitrification was affected. Methanol additions were then increased untilcomplete denitrification was established. This procedure was necessary to establish the minimum25amount of methanol required for denitrification. Complete and stable nitrification and denitrificationof the natural leachate was established in both systems by Day 61.3.8 System OperationThe study was divided into two phases. The objective of the loading phase was to determine themaximum simulated leachate ammonia level that could successful be nitrified and denitrified. Theobjective of the temperature phase was to observe the effects of cold temperature on nitrification anddenitrification when treating leachate with the highest ammonia level successfully treated in the loadingphase.The loading phase began with the establishment of complete nitrification and denitrification of thenatural leachate (approximately 200 mg NH4-N/L), in both the 10 day SRT system and in the 20 daySRT system. On Day 61, ammonium chloride additions were started to the anoxic reactors of bothsystems to provide additional ammonia and thereby simulate a leachate with 300, 600, 1000, 1500,2000 mg/L of ammonia-N. After each ammonium chloride increment, nitrification was allowed tostabilize, and the minimum methanol required for denitrification was determined. On Day 93, when600 mg/L of ammonia-N was added, the aerobic reactor pH of both systems fell below 6.5 andnitrification was inhibited. On Day 103, sodium bicarbonate (alkalinity) additions were begun to theaerobic reactor to sustain the pH at approximately 7.5. The loading phase ended with an unsuccessfulattempt to increase the influent leachate ammonia level to 2000 mg NIL from 1500 mg N/L (Section5.1.6).The cold temperature phase began on March 13, 1992 (Day 1 of the cold temperature phase). Oncenitrification of influent leachate, with an ammonia level of 1500 mg N/L, was re-established, the anoxicreactors were reseeded with aerobic sludge from the U.B.C. Bio-P sewage treatment plant. Completenitrification and denitrification was not re-established until Day 91. On Day 94, the temperature wasdecreased from 20 to 17 °C. The temperature was subsequently decreased from 17, to 14, to 12,and finally to 10 °C. The system was allowed to adjust to each temperature for approximately 1026days before the next temperature decrease was imposed. Starting on Day 132, the ability ofnitrification to recover from elevated ammonia and BOD 5 levels at 10 °C with no aerobic wasting, andno methanol addition, was investigated. On Day 145, the air supply for the aerobic reactors was lostfor approximately eight hours, thus causing both systems to fail. From this failure, only one systemrecovered. On Day 156, aerobic wasting was started to yield a theoretical aerobic SRT of 10 days.By Day 169, total failure was observed. On Day 170, another loss of the air supply occurred and thesystem was shutdown.27Chapter 4ANALYTICAL METHODSThis chapter describes the sampling, preservation and analytical methods performed in this study.Initially, N and P samples were filtered by Whatman #4 and membrane. The Whatman #4 andmembrane filtration results were found to be essentially equivalent. From then on, only Whatman #4filtration was performed.^4.1^TemperatureThe study was performed in a temperature-controlled room. The room temperature was measured bya mercury thermometer and a built-in temperature gauge. Both agreed within their accuracy limit of0.5 °C. Initially the room temperature was checked daily, but once the stability of the temperaturecontroller was recognized, room temperature was checked approximately once every second weekduring the loading phase. During the cold temperature phase, the room temperature was againchecked daily.Liquid temperatures were measured by a digital probe thermometer. During the temperature phase,liquid temperatures were measured the day following each temperature decrease.^4.2^Dissolved Oxygen (DO)The DO levels in the aerobic reactors were measured by using a Yellow Springs Instruments Co. Model54 ARC Dissolved Oxygen Meter with a Yellow Springs Instrument Co. 5739 submersible DO probe.The probe performance was checked and calibrated (if necessary) by using the air calibration method(Instruction Manual YSI Models 54 ARC and 54 ABP Dissolved Oxygen Meter). If calibration failed,the probe membrane was changed. A DO reading was taken every day or every second day, to ensurethat DO levels were sufficient for nitrification ( > 2 mg/L ). The DO levels were controlled by flowvalve controllers attached to the laboratory air supply.28^4.3^Oxidation-Reduction Potential (ORP)ORP in the anoxic reactors was measured by using a Cole-Parmer Chemicadet pH meter connected toa Broadley James Corporation ORP Electrode. The ORP measurements were recorded in mV. The ORPprobes were cleaned weekly using distilled water and cleaning paper. The ORP probes were calibratedapproximately every two months using a pH-buffered quinhydrone method (Broadley JamesCorporation Electrode Instructions ORP (REDOX) Combination Electrode). An ORP probe wassubmersed into each anoxic reactors. ORP measurements were recorded every day or every secondday. ORP measurements are used to indicate the redox and denitrification conditions of the anoxicmixed liquor.4.4^pHThroughout the loading phase and for the initial period of the temperature phase, the pH of theleachate, and the mixed liquor from the anoxic and aerobic reactors was measured using a Cole ParmerDigital pH Meter with a Cole Parmer Ag-AgCI combination electrode. Measurements were made byplacing the probe directly into the reactor. Before measurements were started, the pH probeperformance was checked, and calibrated if necessary, with two pH buffer solutions.On Day 33 of the cold temperature phase, a pH/pump controller was installed for each aerobic reactor.The controller monitored the pH of the aerobic reactor from a submersed Ag-AgCI combination pHprobe. The aerobic pH was read from the digital display of the controller. The performance of theprobe was checked, and calibrated if necessary, by using two pH buffers. The pH of the anoxicreactor and the leachate were measured using a Beckman pH meter with a Fisher combinationelectrode, using an Ag-AgCI reference element. The probe was calibrated with two buffers each timebefore using.pH values were recorded every day or every second day. The purpose of taking pH measurements wasto observe the effect of pH on nitrification and denitrification, and vice versa.294.5 Suspended SolidsTotal Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were measured on samples fromthe leachate, aerobic and anoxic mixed liquors and from the effluents. These were used to provide arepresentation of the mass of microorganisms present in the reactors. The procedure was a modifiedversion of the suspended solids method in Standard Methods (A.P.H.A. et al, 1989). The modificationused in the laboratory, was the replacement of the ceramic Gooch crucible filtration unit with astainless steel microbiological filtration apparatus and an aluminum foil filter holder. The replacementof the ceramic holder with an aluminum holder decreased the possibility of error due to moistureabsorption of the filter paper holder. Suspended solids testing was conducted two to three times aweek.4.6 AlkalinityAlkalinity measurements were taken from each batch of leachate collected, to assess the alkalinityrequirements of the process. Alkalinity was also measured, on several occasions, on samples from theanoxic and aerobic mixed liquors, during the latter months of the loading phase and the first month ofthe temperature phase. Alkalinity was conducted in accordance with Standard Methods (A.P.H.A. etal, 1989) except that the samples were filtered (Whatman #4). Filtration was necessary to preventthe pH from drifting upwards after acid titration. The pH drift was presumably due to the acid reactingwith the solids present. Titrations were performed to a pH of 4.3. Titration curves developed for themixed liquors and leachate, indicated an endpoint at approximately 4.5.4.7 Chemical Oxygen Demand (COD)COD tests were performed using the HACH Colorimeter Apparatus, filtered (Whatman #4) samples ofleachate, anoxic and aerobic mixed liquors and effluent. For the temperature phase, effluent CODanalysis was eliminated since throughout the loading phase, it was found to be virtually equivalent tothe COD levels in the aerobic reactors. Samples were collected two to three times a week. Sampleswere immediately filtered into plastic bottles, preserved by addition of concentrated sulphuric acid to30pH <2, and refrigerated at 4 °C. The high chloride levels in the leachate required the use of mercuricsulphate during digestion to suppress chloride interference.4.8 Biochemical Oxygen Demand (BOD 5)BOD5 tests were performed in accordance with Standard Methods (A.P.H.A. et al, 1989) oncentrifuged, filtered samples (Whatman #4) of the influent, anoxic and aerobic mixed liquor, and theeffluent. For the temperature phase, effluent BOO 5 analysis was eliminated, since throughout theloading phase, effluent BOD5 values were found to be essentially equivalent to aerobic BOD5 values.Dilution water used in the test was seeded with approximately 1 mL of aerobic seed per 10 L ofdilution water. Because the seed contained high amounts of nitrifiers, a nitrification inhibitor (HachCompany Formula 2533) was added to the dilution water at a concentration of 10 mg/L. The initialand final DO concentrations were measured using a Yellow Springs Instrument Co. Ltd. Model 54Dissolved Oxygen Meter, with a self-mixing DO probe.For the first half of the loading phase, BOD 5 tests were performed only after the system had stabilizedand complete denitrification was suspected after an increase in methanol addition. Later in the loadingphase, BOD 5 testing was performed once a week. During the temperature phase, once BOD5 inhibitionof nitrification was suspected, BOO 5 testing was performed two to three times a week.4.9 AmmoniaThe terms "ammonia, ammonia-N, NH 4, NH4-N", in this work, refers to the sum of the "free"ammonia-N (NH3-N) and the ammonium-N ion (NH 4 + -N). In some other works, the sum of the "free"ammonia-N and the ammonium-N ion, is referred to as ammoniacal-N.Two analytical methods were employed to measure ammonia-N levels. An Orion ammonia electrode(Model 95-10) provided an immediate scanning method for ammonia levels in the influent, aerobic andanoxic reactors. In accordance with the Orion Ammonia Electrode Instruction Manual, unfiltered 50mL samples and three ammonia standards, were adjusted to pH 11 by addition of 0.5 mL of 10 M31NaOH. The probe was inserted into the solution and the mV reading was read from a Cole ParmerChemicadet pH meter. The readings for the three standards produced a calibration line from which theammonia levels for the samples were calculated by linear regression. Ammonia levels were alsomeasured using a Lachat Quikchem Automated Ion Analyzer in accordance with the Methods Manualfor the Quikchem Automated Ion Analyzer (1987). Samples were immediately filtered (Whatman #4),preserved to pH <2 by the addition of several drops of concentrated sulphuric acid, and refrigeratedin plastic bottles at 4 °C.Ammonia samples were taken two to three times a week. Samples were collected from the leachate,aerobic mixed liquor, and the anoxic mixed liquor. During the loading phase, samples were alsocollected from the effluent, but since effluent ammonia levels were found to be virtually equivalent tothe levels in the aerobic reactor, effluent ammonia sampling was not performed regularly during thetemperature phase.4.10 NO;NO; is the sum of nitrite and nitrate. NO levels were analyzed from filtered samples using a LachatQuikchem Automated Ion Analyzer in accordance with the Methods Manual for the QuikchemAutomated Ion Analyzer (1987). Samples were filtered (Whatman #4), preserved to pH <2 by additionof several drops of concentrated sulphuric acid, and refrigerated in plastic bottles at 4 °C.NO; samples were taken two or three times a week. Samples were collected from the leachate,aerobic mixed liquor, and anoxic mixed liquor. During the loading phase, samples were also collectedfrom the effluent, but since effluent ammonia levels were found to be virtually equivalent to the aerobiclevels, effluent ammonia sampling was not performed regularly during the temperature phase.A screening method for NO„-, in accordance with Standard Methods (A.P.H.A. et al, 1989), wasattempted, but did not achieve results which were consistent with the Lachat results and hence thescreening method was considered inaccurate for this particular application. The screening method's32inaccuracy was attributed interference from the high level of refractory organics in the leachate, mixedliquors and effluent.^4.11^Nitrite (NO2)NO2 levels were analyzed from filtered samples using a Lachat Quikchem Automated Ion Analyzer inaccordance with the Methods Manual for the Quikchem Automated Ion Analyzer (1987). Sampleswere filtered (Whatman #4), preserved by the addition of several drops of phenyl mercuric acetate, andrefrigerated in plastic bottles at 4 °C. Preservation with mercuric acetate was found to maintain NO2levels for at least two months. Samples were collected from the leachate, aerobic mixed liquor andthe anoxic mixed liquor.4.12^Total Kjeldahl Nitrogen (TKN)TKN levels were measured on unfiltered and filtered (Whatman #4) samples of leachate, aerobic andanoxic mixed liquors, solids recycle liquor and effluent. Samples were preserved to pH <2 by additionof several drops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. Theanalytical procedure began with sample digestion in a Technicon Block Digester BD40. The digestionwas performed following the instructions in the Technicon Block Industrial Method No. 376-75W(1975). The digested sample was then analyzed in accordance with the Technicon MethodologyNol 329-74W(1975). TKN analysis was only performed during the loading phase. Samples werecollected after complete nitrification and denitrification had been established for each successiveammonia increase. The TKN results were not found to have been very reproducible and werefrequently below the corresponding ammonia result for the sample.4.13^OrthophosphateOrthophosphate levels were analyzed from filtered samples (Whatman #4) using a Lachat QuikchemAutomated Ion Analyzer in accordance with the Methods Manual for the Quikchem Automated IonAnalyzer (1987). Samples were filtered by Whatman #4, preserved to pH <2 by addition of severaldrops of concentrated sulphuric acid and refrigerated in plastic bottles at 4 °C. Orthophosphate33samples were taken two to three times a week. Samples were collected from the leachate, aerobicmixed liquor, and the anoxic mixed liquor. During the loading phase, samples were also collected fromthe effluent, but since effluent orthophosphate levels were found to be virtually equivalent to theorthophosphate levels in the aerobic reactors, effluent sampling was not performed regularly duringthe temperature phase.34Chapter 5RESULTS AND DISCUSSIONThis chapter reports and discusses the results obtained from this study. As described in Chapter 3,this study used two identical, bench-scale, single-sludge, predenitrification systems, known as theModified Ludzack-Ettinger (MLE) process. One system was operated at a 10 day aerobic SRT and thesecond system was operated at a 20 day aerobic SRT. The study was divided into two phases. Thefirst phase was the ammonia loading phase, in which the effect of ammonia loading at 20 °C wasinvestigated by incrementing the ammonia concentration in the leachate from the natural level ofapproximately 200 mg N/L to 2000 mg N/L. The raw spreadsheet data and calculations for the loadingphase are presented in Appendix D. The second phase was the cold temperature phase, in which theeffect of decrementing the operating temperature from 20 °C to 10 °C, was investigated. The rawspreadsheet data calculations for the temperature phase are presented in Appendix E.5.1^Ammonia Loading PhaseNOTE:^Throughout the discussion of the results from the ammonia loading phase, tables (Tables5.1 to 5.9) are used to summarize system parameters at each influent ammoniaconcentration. After each increment in influent ammonia concentration, the systems wereoptimized (w.r.t. alkalinity and methanol addition) and allowed time to stabilize (based onreactor VSS, reactor NOV, and reactor ammonia). Once it was believed that a system wasoptimized and stabilized, approximately one week was allowed before imposing the nextinfluent ammonia increment. The tabularized data is the average of the results collectedduring the final week of each influent ammonia concentration. During the failure period ofthe ammonia loading phase (influent ammonia level of 2000 mg NIL), the values given inthe tables are the average of the last week of data of the failure period. The values, duringthis period, do not necessarily represent a stabilized system. Hence, the so-called failureperiod is primarily discussed in its own section (Section 5.1.6).5.1.1^Ammonia LevelsThe terms "ammonia, ammonia-N, NH4, and NH4-N", in this work, refers to the sum of the "free"ammonia-N (NH3-N) and the ammonium-N ion (NH4+ -N). Some researchers prefer to use the term"ammoniacal-N" to refer to the sum of "free" ammonia and the ammonium ion.35The ammonia levels in the anoxic and aerobic reactors throughout the loading phase are shown inFigure 5.1 and Figure 5.2 for the 10 day and 20 day SRT systems. An ammonia spike was observablein the anoxic and aerobic reactors of both systems immediately after each ammonia loading increment.The ammonia spike was consistently lower in magnitude for the 20 day aerobic SRT system than forthe 10 day aerobic SRT system. This may be due to the greater robustness of the 20 day aerobic SRTsystem, due to the presence of more biomass.Table 5.1 summarizes the ammonia level data for the loading phase. For simulated influent ammonialevels from 200 mg N/L to 1500 mg N/L, once the system had been optimized and stabilized, theaerobic ammonia levels were found to be < 1 mg N/L. Meanwhile, the steady-state anoxic ammonialevels increased from approximately 25 mg N/L to approximately 180 mg N/L. When the simulatedinfluent ammonia level was raised to 2000 mg N/L, aerobic ammonia levels rose to approximately 700mg N/L and anoxic ammonia levels rose to approximately 750 mg N/L.TABLE 5.1:^Loading Phase - Ammonia LevelsInfluent 10 Day SRT^ 20 Day SRTAmmonia^Anoxic^Aerobic Anoxic^Aerobic(mg N/L) (mg N/L)^(mg N/L)^(mg N/L)^(mg N/L)200 25 <1 25 <1300 50 <1 45 <1600 70 <1 80 <11000 130 <1 140 <11500 180 <1 180 <12000 750 700 750 600The % ammonia removal across the system, anoxic reactor and aerobic reactor, at each simulatedleachate ammonia level after the systems were optimized and stabilized, are presented in Table 5.2.3660 8020^40 100^120Days140 160 180 200 220600300 1 000 1500 2000200 (Natural)800750-700-650-600-550-500-450400-350300--25°-200 -150100-50-0 oe .00       .^t^s:p^VA...t.vr'r   ^AnoxicAerobicFIGURE 5.1: LOADING PHASE-la Day SRT SystemAnoxic and Aerobic Ammonia LevelsSimulated Ammonia Level in Influent Leachate (mg N/L)20 40 60 80 140 160100^120Days180600300 1000 1500 2000200 (Natural)Anoxic800-750700-650600 -550 -500 -450400 -350300-250 -200150100 -500-0Aerobic(200 220cy)a)00co0EE• . 41' 4 4.BS cFIGURE 5.2: LOADING PHASE - 20 Day SRT SystemAnoxic and Aerobic Ammonia LevelsSimulated Ammonia Level in Influent Leachate (mg N/L)TABLE 5.2: Loading Phase - % Ammonia RemovalInfluent 10 Day SRT 20 Day SRTAmmonia Anoxic Aerobic System Anoxic Aerobic System(mg N/L) (%) (%) (%) (%) (%) (%)200 6 100 100 10 100 100300 1 100 100 7 100 100600 16 100 100 7 100 1001000 9 100 100 10 100 1001500 9 100 100 9 100 1002000 20 11 72 13 21 75Aerobic ammonia removal is due to a combination of nitrification, bacterial assimilation, and "free"ammonia stripping. According to Turk (1986), the percentage of "free" ammonia at pH 7.5 (theaerobic pH maintained in this study) and at 20 °C, is approximately 1%. Hence, ammonia strippingof un-ionized ammonia is assumed to be negligible. The anoxic ammonia removal is assumed to beentirely attributed to bacterial assimilation. For the influent ammonia levels that the systemssuccessfully treated (ie. 200 to 1500 mg N/L), the anoxic ammonia removal averaged 8 %. Thisagrees well with the results from Carley (1988) who found anoxic ammonia removal for methanol toaverage 6 %, and with the results from Mavinic and Randall (1990), in which approximately 10 %anoxic ammonia removal was observed. Both studies used the same process train and the sameleachate as in this study. The observed "high system removal" of approximately 70 %, at the influentammonia level of 2000 mg NIL (despite much lower unit removals), was probably due to the time lagin ammonia buildup and the frequent clogging problems encountered during this period. The exit fromthe clarifier and anoxic reactor began plugging frequently when the influent ammonia level wasincreased to 2000 mg N/L. When the anoxic reactor exit clogged, the high ammonia anoxic liquoroverflowed onto the floor instead of into the aerobic reactor. The data presented in the graphs andin the tables does not account for this loss of ammonia. This may have contributed to the time lag inammonia buildup within the system.395.1.2 pH and Alkalinity AdditionAccording to the theory presented in Chapter 1, nitrification consumes alkalinity and hence decreasespH. Conversely, denitrification returns alkalinity and increases pH. Figure 5.3 and 5.4 show the anoxicand aerobic pH levels throughout the loading phase for the 10 and 20 day SRT system. Table 5.3summarizes the pH levels when the system was stabilized and optimized at each influent ammonialevel. It is immediately evident from both graphs, that the anoxic pH was higher than the aerobic pH.TABLE 5.3:^Loading Phase - pH Levels and Alkalinity AdditionInfluent 10 Day SRT^ 20 Day SRTAmmonia Anoxic^Aerobic^Alk:Nnitrified^Anoxic^Aerobic^Alk:Nnitrified(mg N/L)^pH pH (mgCaCO3/mgN) pH pH (mgCaCO3/mgN)200 7.8 7.5 10.1 7.8 7.5 10.2300 7.9 7.5 3.6 7.7 7.3 3.7600 8.0 7.4 4.1 8.2 7.5 4.21000 8.3 7.3 4.4 8.2 7.3 3.81500 8.4 7.5 4.1 8.5 7.5 4.22000 8.5 8.5 4.4 8.6 w.4 6.2Previous studies have reported that the optimum pH range for nitrification is from 7.5 to 8.5 (Painterand Loveless 1983), and the optimum pH range for denitrification is from 7 to 7.5 (U.S. EPA 1975).For the leachate ammonia levels of 200 mg N/L and 300 mg N/L, natural alkalinity alone was sufficientto maintain the aerobic pH at approximately 7.5. The prolonged elevated ammonia levels from Day91 to Day 105, as observed in Figure 5.1 and 5.2, were attributed to nitrification inhibition due to lowaerobic pH. Thus, pH control (alkalinity addition) was begun on Day 103 by adding sodium bicarbonateto the aerobic reactor to maintain the pH at approximately 7.5. A higher target aerobic pH was notselected, since this would result in a higher anoxic pH.From Table 5.3, it is evident that, as the influent ammonia level was increased from 200 to 1500 mgN/L, the steady-state pH levels of the anoxic reactors increased from approximately 7.8 to 8.5. Thus,as the influent ammonia concentration increased, the anoxic pH moved further above the optimal pH40FIGURE 5.3: LOADING PHASE - 10 Day SRT SystemAnoxic and Aerobic pH Levels10_^9.5_9-5.5_5 ^I(111[11-11111i111111T-0 20^40^60^80^100^120^140^160^180^200^220Days 2000]200 (Natural) 300 600 1 000 1500Simulated Ammonia Level in Influent Leachate (mg NIL)600300 1000 1500 2000200 (Natural)5 0 T11111120^40^60 (A) 100^120^140^160^180^200^220Days1 0_AnoxicAerobic5.5'8.5-:869.59-FIGURE 5.4: LOADING PHASE - 20 Day SRT SystemAnoxic and Aerobic pH LevelsSimulated Ammonia Level in Influent Leachate (mg N/L)range for denitrification from 7.0 to 7.5 (U.S. EPA, 1975). Having the anoxic pH outside the optimalpH range for denitrification still allowed complete denitrification, but may have affected nitrification(as evidenced by nitrite accumulation). If higher ammonia loadings are to be treated, a higher anoxicpH would be expected. If this is sufficient to inhibit denitrification, acid addition for pH control of theanoxic reactor may be required.The amount of alkalinity added to the system from the natural leachate alkalinity (approximately 1500mg CaCO3/L) and from bicarbonate addition, is given in Figure 5.5 and Figure 5.6, as a ratio to nitrogennitrified (per N nitrified) and as a ratio to ammonia added to the system from the simulated influentleachate (per Nadded). Table 5.3 summarizes the results for alkalinity:N nitrified • The theoretical alkalinityratio is 3.57 mg CaCO 3 consumed/mg Nnitrified +denitrified (U.S. EPA, 1975). Natural leachate alkalinitylevels were sufficient to maintain the alkalinity ratio above the theoretical alkalinity ratio until thesimulated leachate ammonia level was raised to 600 mg/L on Day 91. When the simulated leachateammonia levels were increased to 600 mg N/L, thereby decreasing the alkalinity ratio to approximately2 mg CaCO 3/mg N, the resulting effect was a reduction of aerobic pH to below 6.5. Bicarbonateaddition to the aerobic reactor started on Day 103. For influent ammonia levels from 600 mg N/L to1500 mg N/L, the alkalinity ratio found necessary to maintain an aerobic pH of 7.5 ranged from 3.8to 4.4 mg CaCO3/mg N nitrified' These results are near to, but slightly higher than the theoreticalalkalinity ratio of 3.57 mg CaCO 3/mg N nitrified +denitrified'5.1.3 Methanol Addition and NO,: LevelsThe leachate used in this study had low biodegradable organics. Therefore an external carbon sourcewas required for denitrification. Methanol was selected as the external carbon source simply becauseit is the most common external carbon source used for denitrification (U.S. EPA, 1975) and becauseit has been used in a similar study at U.B.C. (Guo, 1992). Without methanol addition, the approximateNO; levels in the system would equal the simulated leachate ammonia concentration minus theammonia consumed by bacterial assimilation and stripped in the aerobic reactor.431 000 1 500 1 2000200 (Natural)^300 1^6001per N nitrifiedIITIIIIIIII^i^111111-II20^40^60^80^100^120^140^160^180^200Days220FIGURE 5.5: LOADING PHASE - 10 Day SRT SystemAlkalinity AdditionSimulated Ammonia Level in Influent Leachate (mg N/L) 200 (Natural) 300 600 1000 1500 200080^100^120^140^160^180^200Days161514-131211 -1098765-4-3-210 o20^40^60per N nitrified220FIGURE 5.6: LOADING PHASE - 20 Day SRT SystemAlkalinity AdditionSimulated Ammonia Level in Influent Leachate (mg N/L)The amount of carbon source required for denitrification can be expressed by several differentvariations of the ratio of carbon source to nitrates and/or nitrites. The form selected here wasCOD:NO., primarily to allow direct comparison with previous studies (Carley and Mavinic 1991, Guo1992). It should be noted that since the leachate used in this study had low biodegradable organics(see Table 3.2), the COD:NO. ratio includes only the COD derived from the methanol added, and notthe COD in the natural leachate. If the leachate contained significant biodegradable organics, it wouldhave been better to include the biodegradable organics in the leachate and to express the methanolrequirements as BOD 5:NO..The NOX levels throughout the loading phase of this study are presented in Figure 5.7 and Figure 5.8.The term NO.", includes nitrites and nitrates. The COD:NO emoved ratios and anoxic BOD 5 levels areshown in Figure 5.9 and 5.10. Methanol addition to the anoxic reactor, for both systems, was startedon Day 27. Prior to methanol addition, the aerobic and anoxic NOX levels (approximately 190 mg N/L)were approximately 5 % less than the incoming ammonia levels (220 mg N/L). Once the methanoladdition had been optimized and the system stabilized, the anoxic NO levels were less than 1 mg N/Land the aerobic NOX levels had decreased to approximately 25 mg N/L. The NOX levels and theCOD:NO. ratio, at each simulated leachate ammonia level (once the system was optimized andstabilized), are summarized in Table 5.4.46FIGURE 5.7: LOADING PHASE - 10 Day SRT SystemAnoxic and Aerobic NOx Levels350325-300275a--Z- 250cE) 225c 200otc; 175t• 150o-.1^co 125-0xO 100z 755025020^40^60^80^100^120^140^160^180^200^220Days 200 (Natural) 300 600 1 000 1500 1 2000Simulated Ammonia Level in Influent Leachate (mg N/L) 200 (Natural) 300 600 1000 1500 2000350325300275-250-225-200175 -150-125-100-7550-25-0z0)E0C:11O020^40^60^80^100^120^140^160^180^200^220DaysFIGURE 5.8: LOADING PHASE - 20 Day SRT SystemAnoxic and Aerobic NOx LevelsSimulated Ammonia Level in Influent Leachate (mg N/L)0^20^40^60^12^11-10-2-‘cn 8-E.7-0X0 5-z4-0^3^2-450-400-350-300 -J250 °-200 ain0co-100-150......................^ 80^100^120DaysAnoxic BOD5140^160^180^20001--^.. ..... Tiel:MU= 1.1................ ..-500220COD:NOxFIGURE 5.9: LOADING PHASE - 10 Day SRT SystemMethanol Addition and Anoxic BOD200 (Natural) 300^600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg N/L)FIGURE 5.10: LOADING PHASE - 20 Day SRT SystemMethanol Addition and Anoxic BOD5450400350- 300 0250 g0- 200 2- 150 o- 100 10-987654 -32 -1 -^.... , ............. x- ............ *„,x ^>< ^Anoxic BOD501 Ef MilliriliF0^-11-IT^T^11-FTIIIIIIIT-T^020^40^60^80^100^120^140^160^180^200^220Days50200 (Natural) 300 600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg NIL)TABLE 5.4:^Loading Phase - NO; Levels and COD:NOx RatioInfluent 10 Day SRT^ 20 Day SRTAmmonia^Anoxic^Aerobic^COD:NOx^Anoxic^Aerobic^COD:NOx(mg N/L) (mg N/L) (mg N/L) (mg/mg)^(mg NIL)^(mg N/L) (mg/mg)200 <1 25 6.0 <1 25 6.2300 <1 50 6.0 <1 45 6.4600 <1 80 4.8 <1 80 4.81000 5 125 3.5 <1 135 3.51500 <1 170 4.5 <1 170 4.02000 <1 70 9.7 3.5 80 4.7The COD:NO. ratios for influent ammonia levels of 200 and 300 mg N/L, agree well with the resultsfrom a study by Carley and Mavinic (1991). Carley and Mavinic determined that a COD:NO. ratio of6.2:1 was required for complete denitrification when methanol was used as an external carbon source.The study by Carley and Mavinic used the same landfill leachate and the same MLE treatmentprocess.In general, denitrification studies have shown a COD:N0. requirement in the range of 4:1 to 6.5:1(Narkis, 1979 and Carley, 1988). From Table 5.4, it is readily apparent that the methanol required todenitrify NO.- in the anoxic reactor, did not remain constant and that higher influent ammonia loadingsresulted in lower ratios of COD:NO x,removed The decrease in the COD:NO x ratio is probably due in partto the increase in aerobic nitrite levels. As discussed in Chapter 1, nitrite requires approximately 40%less methanol for conversion to nitrogen relative to nitrate. Possible reasons for the accumulation ofnitrites are given in the next section. Nitrite accumulation is probably not the only reason for areduction in COD:NO., since in the temperature phase at 20 °C, the COD:N0. required for completedenitrification was approximately 5:1, yet no nitrites were present at that time.Ideally, all methanol added to the anoxic reactor should be consumed in the anoxic reactor, so thatnone will bleed into the aerobic reactor. As can be seen in Figure 5.9 and 5.10, increasing methanol51demands resulted in higher anoxic BOD5 levels. As the influent ammonia level was increased from 200mg/L to 1500 mg/L, the anoxic BOD 5 level increased from approximately 40 mg/L to 140 mg/L. Theaerobic BOD5 levels remained steady at approximately 10 mg/L. When the influent ammonia level wasincreased to 2000 mg/L, the aerobic BOD 5 rose to as high as 60 mg/L and the anoxic BOD 5 rose toas high as 400 mg/L. The increase in BOD 5 during this failure period was predominantly due to excessmethanol addition and also some cell lysing.5.1.4 Nitrite Accumulation and "Free" Ammonia LevelsNitrite accumulation during nitrification is a result of greater inhibition of nitrite oxidizers (Nitrobacter),than of ammonia oxidizers (Nitrosomonas). This may be caused by high levels of "free" ammonia, highlevels of nitrous acid, cold or hot temperature, low dissolved oxygen, high levels of metals, shortsludge age, high COD loading, and phosphorus deficiency (Turk 1986). Figure 5.11 and 5.12 showthe nitrite levels in the anoxic and aerobic reactors throughout the loading phase. Table 5.5summarizes the nitrite results for both systems, at each influent ammonia level, once the systems wereoptimized and had stabilized.TABLE 5.5:^Loading Phase - Nitrite LevelsInfluent 10 Day SRT^ 20 Day SRTAmmonia Anoxic^Aerobic^Aerobic^Anoxic^Aerobic^Aerobic(mg N/L) (mg N/L) (mg N/L) NO2/NO; (mg N/L) (mg N/L) NO2"/NO;200 <1 <1 <1 <1300 <1 <1 <1 <1600 <1 15 19% <1 20 25%1000 2.1 85 68% <1 80 59%1500 <1 110 65% <1 100 59%2000 <1 65 93% <1 75 94%Aerobic nitrite levels began to rise in both SRT systems when the influent ammonia level was increasedto 600 mg N/L. Nitrite levels continued to rise as the influent ammonia level was increased. Severalfactors may have contributed to the observed nitrite accumulation. The fluctuating aerobic pH (from52 inAnoxicFIGURE 5.11: LOADING PHASE- 10 Day SRT SystemAnoxic and Aerobic Nitrite LevelsAerobic220200180-160140•-•g-- 120(.) 10080a)7=^60-240^20^ ErEl !A^0  ^—KIX-00-N-r-lkl—rNYHM J T^20^40^60^80^100^120^140^160^180^200^220Days200 (Natural) 300 600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg N/L)Aerobicj))f^Anoxic)15'44',---ra .1:*8„weogtc.120^140^160^180^200^220FIGURE 5.12: LOADING PHASE - 20 Day SRT SystemAnoxic and Aerobic Nitrite Levels.3-0^1----/4rW---ReA='*-kYk44-=;k—T^0 20^40^60^80^100200 -z 1600)E0 120a)cri^04,00 80a)40-Days 200 (Natural) 300 600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg NIL)approximately 6 to 8), as observed in Figures 5.3 and 5.4, may have contributed to nitrite oxidationinhibition. Aerobic pH was controlled manually by adjusting bicarbonate addition to the aerobic reactor,in response to aerobic pH levels which were considered inhibitory. Hence, the nitrifiers in the aerobicreactor were frequently exposed to fluctuating pH levels. As the aerobic nitrite concentrationincreased, low aerobic pHs may have contributed to the inhibition via nitrous acid formation. Anotherfactor was the increasing anoxic ammonia levels (see Table 5.1) in combination with increasing anoxicpH (see Table 5.3); this would have resulted in elevated anoxic "free" ammonia levels. In the MLEprocess train, nitrifiers are constantly recycled through the anoxic reactor and exposed to the high"free" ammonia of the anoxic reactor. Table 5.6 presents the estimated "free" ammonia concentrationat each influent ammonia level.TABLE 5.6:^Loading Phase - Estimated "Free" Ammonia LevelsInfluent 10 Day SRT^*p1470X 20 Day SRTAmmonia^Anoxic^Aerobic Anoxic^Aerobic(mg N/L) (mg NIL)^(mg NIL)^(mg N/L)^(mg N/L)200 0.6 <0.01 0.6 <0.01300 1.5 <0.01 0.9 <0.01600 2.7 <0.01 4.8 <0.011000 9.5 <0.01 8.4 <0.011500 16.2 <0.01 20.2 <0.012000 84.0 78.4 102.8 54.0The anoxic "free" ammonia levels all surpassed the lower bound of the range of 0.1 to 1.0 mg N/L,suggested by Anthonisen et al (1976), at which "free" ammonia inhibition of Nitrobacter is initiated.Turk and Mavinic (1989) found that "free" ammonia inhibition of Nitrobacter began at 5 to 10 mg N/L.Anoxic "free" ammonia concentrations began to exceed the lower bound of this range when theinfluent ammonia level was increased to 1000 mg N/L. Turk and Mavinic concluded that internaldenitrification, such as used in this study, was the most effective means of maintaining inhibition toan acclimated population of nitrite oxidizers. Another factor which may have contributed to theinhibition of nitrite oxidation, was low aerobic dissolved oxygen levels at the higher influent ammonia55concentrations. Although the air supply was constantly adjusted to ensure that the in-situ dissolvedoxygen meter read greater than 2 mg 0 2/L, this reading was questionable at times due to the coarseaeration of the aerobic liquor.5.1.5^Nitrification and DenitrificationPercent nitrification and percent denitrification, throughout the loading phase, are shown in Figure 5.13and 5.14. The greater fluctuation of the % nitrification results and the existence of values in excessof 100%, is a direct consequence of the greater complexity of the % nitrification equation relative tothe % denitrification equation. The % denitrification equation contains only two key variables of thesame parameter:(NO; in - NOX out)% Denitrification(anoxic reactor)^NOX inThe % nitrification equation contains three key variables of two different parameters:(NO; out - NOX in)% Nitrification^=(aerobic reactor) NH4+ inHence, the % nitrification equation produces more fluctuations and on occasion, exceeds 100 %. Inaddition, the unknown contribution from the oxidation of organic nitrogen to NOX, in the aerobicreactor, may have affected the % nitrification results. A term that is similar to nitrification is ammoniaoxidation. % ammonia oxidation as used in this work is defined as:(NO3" out - NO3- in)% Ammonia Oxidation(aerobic reactor)^ NH4+ inThe important distinction between nitrification and ammonia oxidation is most evident when appliedto nitrite accumulation in the aerobic reactor. During periods of nitrite accumulation due to inhibition56600^1 1000 1 1500^2000200 (Natural)^300240^220^200-180-160-140-120-100180-60-40-20-0^I^II^I0 20^40^do SO^100^120Days0Nc.;)220I^I^I^I^I^I140^160^180^200FIGURE 5.13: LOADING PHASE - 10 Day SRT System% UtilizationSimulated Ammonia Level in Influent Leachate (mg N/L)11000 1500^2000200 (Natural)^300 1^600240 220-200-180-160-140 -120 -10080-60-40-20-^%Denitrification><? I^i^I0^20^40^60^80 2201401^1100 120 160 180 200Days%NitrificationFIGURE 5.14: LOADING PHASE - 20 Day SRT System% UtilizationSimulated Ammonia Level in Influent Leachate (mg NIL)of nitrobacter, it is still possible to have 100% nitrification, however, ammonia oxidation will remainless than 100% since some NO; will be present as NO2" instead of NO3-.The extended period of low % nitrification for both SRT systems, from Day 91 to 103, was probablydue to low pH in the aerobic reactor, resulting from insufficient bicarbonate addition. Once alkalinityaddition began (on Day 103), both systems showed considerable improvement in % nitrification. Sinceaerobic pH control was handled manually, by adjusting the alkalinity addition in response to low pHlevels, the result of each influent ammonia level beyond 300 mg N/L, was an immediate drop in %nitrification due to low aerobic pH. A summary of nitrification results at each influent ammonia level,after the systems had been optimized and stabilized, is presented in Table 5.7.TABLE 5.7: Loading Phase - NitrificationInfluent 10 Day SRT 20 Day SRTAmmonia % Rate Specific Rate % Rate Specific Rate(mg NIL) (mg N/d) (mgN/d/gVSS) (mg N/d) (mgN/d/gVSS)200 100 1900 110 100 1800 80300 100 3500 150 100 3100 110600 100 6100 200 100 6300 1801000 100 8400 230 100 9500 2401500 100 12200 190 100 12800 1902000 10 5000 80 20 6000 90From Table 5.7, the failure of nitrification at the influent ammonia level of 2000 mg N/L, is quite clear.All three parameters, for both systems, show a sharp decline in value. When compared to thedenitrification results (see Table 5.8), it is apparent that the failure of nitrification was not initiated bythe failure of denitrification.59TABLE 5.8:^Loading Phase - DenitrificationInfluent 10 Day SRT^ 20 Day SRTAmmonia^%^Rate^Specific Rate^%^Rate^Specific Rate(mg N/L) (mg N/d)^(mgN/d/gVSS) (mg N/d)^(mgN/d/gVSS)200 98 1700 200 98 1700 160300 98 2900 280 99 2700 180600 99 5200 400 100 5300 3201000 99 7200 460 99 8000 4001500 99 10500 380 95 10900 3402000 97 5000 120 93 5000 200Table 5.7 and 5.8 show that the specific nitrification and denitrification rates increased as the influentammonia level rose from 200 to 1000 mg N/L. At 1500 mg N/L, the specific utilization ratesdecreased slightly, producing a peak value at the influent ammonia level of 1000 mg N/L. This trendin specific utilization rates may be due to several factors. Nitrite accumulation may have been a factor.The rise in aerobic nitrite meant that a lower population of nitrifiers and denitrifiers would be presentwith respect to the amount of ammonia oxidized and NO denitrified; this would produce higherspecific nitrification and denitrification rates. Another factor may have been that excess methanoladdition, at the lower influent ammonia levels, may have raised the VSS levels, thus decreasing thespecific utilization rates at those influent ammonia levels.Both systems showed nominal denitrification (0 to 11 %) until methanol addition was started on Day27. With the addition of methanol, % denitrification rose until the minimum required amount ofmethanol was exceeded, at which point % denitrification equalled 100 %. Each increase in influentammonia, resulted in a decrease in % denitrification as more NOX was produced in the aerobic reactor.As methanol addition was increased to account for the increase in NOX, % denitrification increased.Prior to performing this study, there was some concern as to whether denitrification would be inhibitedby high ammonia levels (especially "free" ammonia) in the anoxic reactor. As seen in Table 5.1 and5.6, at an influent ammonia level of 1500 mg N/L, the anoxic ammonia level was approximately 18060mg N/L, and the "free" ammonia level could be as much as 20 mg N/L. 100 % denitrification was stillachieved. Even more extreme was the high level of denitrification during the failure period, whichoccurred when the influent ammonia level was increased to 2000 mg NIL. Nitrification wassignificantly inhibited and anoxic ammonia levels had risen to approximately 750 mg N/L, with ananoxic pH of 8.5. As seen in Table 5.6, "free" ammonia levels are estimated to have been greater than80 mg N/L, yet denitrification > 90 % was observed. However, due to the failure of nitrification, thisoccurred at lower denitrification rates and at lower specific denitrification rates (see Table 5.8).5.1.6 System FailureAs seen in Table 5.7, nitrification, in both SRT systems, decreased from nearly 100 % toapproximately 20%, when the simulated leachate ammonia level was raised from 1500 to 2000 mgNIL. Accordingly, system ammonia levels increased to substantial levels. The aerobic pH also roseto levels higher than the influent leachate pH, despite the reduction and eventual elimination ofbicarbonate addition. Hence, in both Figure 5.5 and 5.6, during the period when the influent ammonialevel was 2000 mg N/L, the Alkalinity:N nitrified ratio is significantly greater than the Alkalinity:N addedratio. Complete denitrification of all available NO; was still observed, despite anoxic "free" ammonialevels estimated to be above 80 mg N/L.Several factors may have contributed to the failure of nitrification at the influent ammonia-N level of2000 mg/L. Insufficient aeration may have been one cause. D.O. probe readings averaged above 2.0mg/L. However, coarse bubbles may have been read by the probe as dissolved oxygen, resulting inan overestimation of the true dissolved oxygen levels. At higher solids levels line-clogging wasobserved to occur as a result of increased aerobic foaming, anoxic scum, and rising sludge in theclarifier. The resulting overflows and solid losses may have produced an unstable system. Anotherfactor may have been that anoxic "free" ammonia was of sufficient levels to result in inhibition ofNitrosomonas (ammonia oxidation). According to Anthonisen et al (1976), "free" ammonia inhibitionof Nitrosomonas begins between 10 to 150 mg N/L.615.1.7 SolidsA characteristic of the single-sludge, predenitrification system is that it is a mixed culture system;anoxic heterotrophs and aerobic autotrophs and heterotrophs are cycled through the system. Theeffect of the influent leachate entering the anoxic reactor is to lower the anoxic VSS levels (byapproximately 1 /7th), since the leachate itself is very low in VSS. The effect of the solids recycle isto raise the VSS since the recycle is the thickened sludge of the aerobic mixed liquor. Figure 5.15 and5.16 show the suspended solids levels throughout the loading phase. Table 5.9 provides a summaryof the suspended solid levels at each ammonia loading once the systems had been optimized andstabilized.TABLE 5.9:^Loading Phase - VSS LevelsInfluent 10 Day SRT^ 20 Day SRTAmmonia Anoxic^Aerobic^Effluent^Anoxic^Aerobic^Effluent(mg N/L)^(mg/L)^(mg/L) (mg/L)^(mg/L) (mg/L)^(mg/L)200 1800 1700 20 2200 2200 40300 2100 2200 40 3000 2900 40600 2700 2900 70 3200 3500 901000 3100 3300 160 4000 3900 1201500 5500 5600 150 6400 6400 1002000 6200 6400 220 5400 4600 180The increase in anoxic, aerobic, and effluent VSS levels, as influent ammonia is increased, is evidentfrom Table 5.9. The difference in anoxic and aerobic VSS levels is nominal with the aerobic VSS levelsbeing, on the average, slightly higher. The increase in effluent VSS is attributed to increased clarifierloading. The 20 day SRT VSS levels are on average 20 % higher than the 10 day SRT VSS levels.This difference is a reflection of the differences in aerobic wasting and SRT. As expected, the higherrate of wasting (1 L/day) from the 10 day SRT system, resulted in a lower VSS. Conversely the lowerrate of wasting (0.5 L/day) from the 20 day SRT system, resulted in a higher VSS.Figure 5.16 shows that, when the influent ammonia concentration was increased from 1500 mg/L to2000 mg/L, the aerobic VSS levels for the 20 day SRT system, rose to nearly 13000 mg/L. Since62130001200011000-10000-9000800070006000-500040003000-2000-1 0000 ^0-- AnoxicFIGURE 5.15: LOADING PHASE - 10 Day SRT SystemAnoxic and Aerobic VSS20^40^60^80^100^120^140^160^180^200^220Days 200 (Natural) 300 600 1000 1 500^2000Simulated Ammonia Level in Influent Leachate (mg NI/L)Anoxic-1111f^I^f0^20^40^60^80^100^120^140^160^180^200^220DaysFIGURE 5.16: LOADING PHASE - 20 Day SRT SystemAnoxic and Aerobic VSS1300012000LT 11000-E 10000-cnu) 90008000cn 7000-10aa) 60000)(3)^5000(/)^4000-30007:5 2000-10000 200 (Natural) 300 600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg N/L)nitrification was very low at this period, the VSS increase is attributed to methanol bleeding into theaerobic reactor, resulting in aerobic heterotrophic growth. The lack of such a sharp increase in the 10day SRT system may have been due in part to the higher wasting from the 10 day SRT system.Reactor overflows, which were frequent in both systems during this period, may have also played asignificant role in determining reactor solids levels. For the 20 day SRT system, the aerobic VSS waslower than the anoxic VSS, for the last few days of the failure period. This maybe attributable topartial clogging in the anoxic reactor overflow, which may have been preventing the passage of solidsbut permitting the passage of liquid. Another reason may be that the sampling generally took placeafter the overflow was cleaned up and as best as possible placed back into the system. This may haveresulted in some anomalies.The ratio of VSSiTSS was found to remain between 0.7 to 0.9, with 0.85 being the average when thesystems were stabilized and optimized. Towards the end of the failure period (influent ammonia levelof 2000 mg/L), the VSS/TSS ratios were at their lowest (approximately 0.7).5.1.8 Solids Retention TimeTwo parallel systems were operated in this study: one with a 10 day aerobic SRT and the second witha 20 day aerobic SRT. The purpose of operating at two different SRTs was to observe if a longer SAT,resulting in higher VSS levels, would treat higher ammonia loadings. However, both systems failedwhen the influent ammonia level was raised from 1500 mg/L to 2000 mg/L. The only differencesobserved between the two SRT systems was that the longer SRT system (20 day), had approximately20 % higher VSS levels, and lower system ammonia peaks, after each increase in ammonia loading(see Section 5.1.1).Both systems were operated on the basis of "theoretical" aerobic SAT. The "theoretical" aerobic SATis the volume of the aerobic reactor divided by the volume wasted daily. The actual system SRT mayalso be calculated. The actual system SRT is the total system VSS divided by the sum of the VSS lostby wasting and in the effluent. Both SATs are shown for the loading phase in Figure 5.17 and 5.18.65Simulated Ammonia Level in Influent Leachate (mg N/L)600300 15001000 2000200 (Natural)FIGURE 5.17: LOADING PHASE - 10 Day SRT SystemSystem and Theoretical Aerobic SRT100806040Prior to day 24,no aerobic wastingwas performed20 N^tAiomaiLionab' I! ^:Lt. 611Q: .•:•:'^c^*: :. ": :*^*::' 4^ ^ : ..0^'0 1 11^T0^20 4.0 140^160^180^200^220160^80^100^120Days11Aerobic wastingon day 265t1/4,1^Ein!gm,^ni pmmi ^Pr.`14: MK; MEW aimIr241 1, 1 F:11 - Bil^4 c     : : ^- CWC^c^o  ^:4  ^cASRTSSRT endedSSRT4020Aerobic wasting endedon day 201ASRT 100 -8060Prior to day 22,no aerobic wastingwas performed finlc_irse2 dm^I LIPSI^IAn el no, 31 IS graltaki mlmasa a II II n^ ion ^amiktaILI"441111 4041c^ Y . c 0: :.:.:• c^  : :  C  ^C   C^C'121FIGURE 5.1 8: LOADING PHASE - 20 Day SAT SystemSystem and Theoretical Aerobic SAT0^20^40^60^80^100^120^140^160^180^200^220Days200 (Natural) 300 600 1000 1500 2000Simulated Ammonia Level in Influent Leachate (mg N/L)When wasting was being performed, the actual system SRT was greater than the theoretical aerobicSRT due to the greater volumes involved. Despite the system volume being double the aerobic volume,the actual system SRT is not double the theoretical aerobic SRT, primarily due to the loss of VSS inthe effluent. When no wasting was occurring, the theoretical aerobic SRT was equal to infinity. Theactual system SRT is still calculable, due to the inclusion of the effluent VSS term in the denominator.5.2 Cold Temperature PhaseThe objective of the cold temperature phase was to test how the 10 and 20 day SRT treatmentsystems would respond as the temperature was decreased from 20 °C, when treating an influentleachate ammonia level of 1500 mg/L. This phase was divided into three periods: the 20 °C startup(Days 1 to 94), the cold temperature period (Days 83 to 130), and the 10 °C nitrification startup (Days132 to 169). Day 1 of the cold temperature phase was March 12, 1992. Following the nitrificationfailure experienced at the end of the loading phase, and prior to decreasing the temperature, bothsystems were restarted using the natural base leachate of 200 mg NH4-N/L and at 20 °C. Ascomplete nitrification was regained, the influent ammonia level was increased, until the influentammonia level reached 1500 mg N/L. Two small ceramic fine air diffusers were added to each aerobicreactor for ensuring sufficient dissolved oxygen; pH/pump controllers were used to control bicarbonateaddition to the aerobic reactors, based on a pH setpoint of 7.5. During the 20 °C startup period ofthe cold temperature phase, while attempting to restart denitrification, two unanticipated observationswere made: BOD5 inhibition of nitrification, and a loss of nitrite accumulation.5.2.1 BOD5 Inhibition of NitrificationOnce nitrification was re-established (Day 19 for the 10 day SRT system, Day 14 for the 20 day SATsystem), both anoxic reactors were reseeded and methanol addition was increased. In both systems,within several days of large boosts in methanol (Day 27 for the 10 day SRT system, Day 22 for the20 day SAT system), % denitrification increased, the aerobic BOD5 rose, aerobic ammonia levelsincreased, and % nitrification decreased (see Figure 5.19 and 5.20). The simulated influent ammonialevels and methanol addition were again cut to expedite removal of high levels of aerobic ammonia.6860-50-CV040-It)00cy)^co 30 -(00a) 20-10-150- 140- 130- 120- 110- 100-90-80-70-6050--40-30-20- 10^0100X^ ,?4*-411^ % N itrification‘k>Aerobic BOD5FIGURE 5.19: TEMPERATURE PHASE - 10 Day SRT SystemAerobic BOD5 and % Nitrification70Day 1 to 94II^1^1^I^1^I^I^1111111111110 20 30 40 50^60^70^80^90DaysCI Aerobic BOD5 X %Nitrifcation-150- 140-130- 120X>5(^-110•• X^-100>t4:< -90 o80•-70 z-60- 50- 40-30- 20-10Day 1 to 94Aerobic BOD5% Nitrification1111111111111111111^010^20^30^40^50^60^70^80^90^100DaysFIGURE 5.20: TEMPERATURE PHASE - 20 Day SRT SystemAerobic BOD5 and % Nitrification60a 50-C\I00)E 40-tr)0Oo^co 30-2a)• 20-10-00700 Aerobic BOD5 X %NitrificationThe systems were again restarted in the same manner with a similar conclusion (Days 36 to 47 for the10 Day SRT system, Days 28 to 41 for the 20 Day SRT system).Figure 5.21 and 5.22 show the observed relationship between aerobic BOD5, COD and % nitrificationduring the startup phase. Figure 5.23 shows the aerobic BOD5 and % nitrification results compiledfor both systems. From Figure 5.23, it appears that higher aerobic BOD5 levels correlate with lower% nitrification, with aerobic BOD5 levels over 30 mg/L correlating to 50 % nitrification or less. TheCOD results did not reflect the trend as significantly as BOD5, presumably because of the loweraccuracy of the COD test as a representation of biodegradable organics.Figure 5.24 and 5.25 show the COD:NO. ratios during this period. Methanol additions were made onthe basis of the NO; entering the anoxic reactor. However, the amount that is in excess, and willsubsequently bleed into the aerobic reactor, will be determined by how much NO; is being removedthrough denitrification. The difference in the two COD:NO. values (with COD:NOremoved >COD: NO., entering) represents the amount that would be bleeding through to the aerobic reactor. Thedifference between the two COD:NO. ratios is most noticeable in the 10 Day SRT system. The peaksfor COD:N0x,removed , after day 50, is due to relatively small amounts of methanol being added andproducing relatively low denitrification. The low levels of methanol addition were apparentlyinsufficient to result in nitrification inhibition. The mechanism by which excess methanol additionresulted in nitrification inhibition may have been that heterotrophic growth, in the aerobic reactor,lowered the DO to inhibitory levels. The DO meter always reported that DO levels were sufficient;however, as in the failure period of the loading phase, these readings may have been falsely high dueto the coarse aeration of the aerobic mixed liquor. Another explanation for the reduction in nitrificationfollowing large methanol increases, may be that excess methanol addition resulted in methanol toxicityto Nitrosomonas. A study by Hooper and Terry (1973) concluded that short-chain alcohols, such asmethanol, were significant inhibitors of ammonia oxidation. A study by Carley and Mavinic (1989)found that excess methanol did not increase aerobic ammonia levels but did reduce nitrification byresulting in heterotrophic competition for ammonia. Since ammonia levels, in this study, were71FIGURE 5.21: TEMPERATURE PHASE - 10 Day SRT SystemAerobic BOD5, COD vs % Nitrification70   ^ 600Day 1 to 94 -58060 0^Aerobic BOD5^ -560540050- x-1-'1 -520-CV—^00^ -5000^Elx^ -480ig) 40-in^ LI ^a -4600-^ —0cm 30- x X x o^o^ a^-440-.1iv^.0^ *El^ -420.0 x ,^x x2^x ,-,>< x x x^ ro -400a)< 20-A(xiX^><X 6 ^X e^X X X —^xM -380-36010-^ -340o_ Aerobic COD -3200^I^I 1^1^1^i^1^I1^i^i^1^I^I^I 1^i^1^1^1^1111111^3000 10 20 30 40 50 60 70 80 ' 90 100 110 120 130 140 150% Nitrification1_ 0 Aerobic BOD5 X Aerobic COD706050-0E 40-0co 30-.02a)20--110 120FIGURE 5.22: TEMPERATURE PHASE - 20 Day SRT SystemAerobic BOD5, COD vs % Nitrification10-00600-580560540520500480460440420-400380360340320300150Elrod-- Aerobic BOD5Aerobic CODx X XxLi Li^x $<^x xX D X D1111111Ill-1111110 20 30 40 50 60 70 80% NitrificationDay 1 to 94Li90 100c-N-100..02a)130 140CI Aerobic BOD5 X Aerobic CODLI^LILIFIGURE 5.23: TEMPERATURE PHASE - 10 and 20 Day SATAerobic BOD5 vs % Nitrification70Day 1 to 94 (20° C)60-10-LILI^a 0^ 000^0 0^0^co ^sismi.^0En^11-1 00 Or3 LIE^0 ri__, ECI0 0 0^ma 0 E^LI050-0cy)E 40-in0cc 30-.o_a2<c) 20-EL:0^LILILI0-1111111111111111111111111111110 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150% Nitrification0 Aerobic BOD5NOx Entering -.>(- NOx Removedz0)EN0xO00FIGURE 5.24: TEMPERATURE PHASE - 10 Day SRT SystemMethanol Addition during 20 C StartupDay 1 to 94COD:NOx removedin anoxic reactorCOD:NOx enteringanoxic reactor10-9^,7,::.zerarawa=10^20^30^40^50^60^70^80^90I IDays80 70-60 -50-40-30-20-294)4(100laiNixtlk-Rf-olCOD:NOx removedin anoxic reactorA<FIGURE 5.25: TEMPERATURE PHASE - 20 Day SRT SystemMethanol Addition during 20 C StartupDay 1 to 9480706°-2' cmi.., j_E 50_0cmE 40-x0-,,^z 30_ COD:NOx ehteringo) O - anoxic reactor0 020- \ ..010-Yr90 1 00L --B- NOx Entering -X- NOx Removed 1observed to increase, heterotrophic competition for ammonia was dismissed as a possible reason forthe loss of nitrification.After two failed attempts, both systems were restarted a third time (Day 58 for the 10 day SRTsystem, and Day 44 for the 20 day SRT system). This time, increments in methanol were conductedin a more slow and conservative manner. By Day 94, both systems were fully re-established at 20 °Cand at an influent ammonia level of 1500 mg N/L.^5.2.2^Loss of Nitrite AccumulationAerobic nitrite accumulation had occurred during the higher influent ammonia levels of the loadingphase (see Table 5.5). However, by the end of the 20 °C startup period of the temperature phase,aerobic nitrite levels had decreased to less than 1 mg N/L. Figure 5.26 and 5.27 show the aerobicnitrite levels and the aerobic pH. Possible explanations for the loss of nitrite accumulation areNitrobacter acclimatization, increased dissolved oxygen levels due to the presence of the fine bubblediffusers, and the steady aerobic pH = 7.5. On Day 33, pH/pump controllers were installed tocontinuously monitor and automatically control the aerobic pH, by pumping bicarbonate to the aerobicreactor when the pH decreased below the setpoint value of 7.5. The pH/pump controllers did not worksuccessfully for approximately one month. The fault was primarily due to electrical grounding problemswhich resulted in an unstable pH reading. The solution was to insulate the controller from a directmetal-link to the large motors stirring the aerobic reactors. However, some fluctuation remained dueto the stirrer-liquid-(pH)probe link. Despite the loss of aerobic nitrite, the COD:NO. ratio remained low(approximately 5:1), but was marginally higher than for the latter period of the loading phase, whenaerobic nitrite levels had increased substantially and COD:NO. ratios were as low as 3.5:1 (see Table5.4).^5.2.3^Effect of Cold Temperature and FailureOnce both systems were fully operational and had stabilized at 20 °C, with an influent ammonia levelof 1500 mg N/L, the operating temperature was decreased from 20 °C, to 17, 14, 12, and finally to77Aerobic NO2TAWALu LiDay 1 to 94Aerobic pHZ<>‘›co<>4><- *,50‹.-><>4FIGURE 5.26: TEMPERATURE PHASE - 10 Day SRT SystemAerobic pH and Nitrite700600-:a 500--2(3)E 400-.a)^X^..4,?^ ,e_.^,•• ..7.%....->c:^.,,op 24— •• .), . X.0 300-^:.02a)< 200-Setup pH controlleron Day 331 00->t<^_10=9.5=8.5:0_o:6.5-6=5.5lam "aaz =^nun801^1^1^1^1^1^1^1^1^1^1^120 30 40 50 60 70DaysP El^590^100El Aerobic NO2 -X-. Aerobic pH600-a 500-±-aE 400-cv.,--_.,..JZz-.1^300-co2^_Q< 200-Aerobic NO2^>f^..^p. .1541^:'''.^‘).'..^_10-9.5`9-8.5-8E-7.5 IQ.:7:6.5 •-6-5.5700Day 1 to 94'..4K 44.>kAerobic pHexooses04,4000*->"`-100-I^1^1^I^I^I^1^I^1^1^1^1^110 20 30 40 50 60Daysp-q^ 590^10070^800 Aerobic NO2 -X-. Aerobic pHFIGURE 5.27: TEMPERATURE PHASE - 20 Day SRT SystemAerobic pH and Nitrite10 °C. Each temperature was maintained for approximately 10 days to allow adjustment andacclimatization before the temperature was lowered further. The results for the cold temperatureperiod of the temperature phase are shown in Figures 5.28 to 5.39. As the temperature wasdecreased from 20 to 12, the most apparent change was the rise in aerobic nitrite (Figure 5.28 and5.29) and aerobic BOD5 (Figure 5.30 and 5.31), both starting at 14 °C. It is possible that failure hadbegun at 14 °C, but not enough time was given for total failure to have occurred.Failure in both SRT systems occurred quite dramatically when the temperature was decreased from12 °C to 10 °C. Both nitrification and denitrification decreased considerably in the 10 day SRTsystem, while only nitrification failed in the 20 day SRT (See Figures 5.32 and 5.33). In the 10 daySRT system, the % nitrification decreased from 94 % at 12 °C, to 15 % at 10 °C. % Denitrificationdecreased from 99 % at 12 °C, to 30 % at 10 °C. For the 20 day SRT system, % nitrificationdecreased from 100 % at 12 °C, to 22 % at 10 °C. % Denitrification decreased from 99 % at 12°C, to 82 % at 10 °C. The rising nitrite levels in both systems, as temperature decreased, and thecontinued high percentage of denitrification at 10 °C in the 20 day SRT system, suggest thatnitrification failure occurred first, as had been observed in the loading phase. The resulting elevatedammonia levels may have precipitated the failure of denitrification in the 10 day SRT system.Colder temperatures would have obviously been a factor in the failure of nitrification. Coldertemperatures would have resulted in slower nitrification rates, although no obvious trend in rate, asa function of temperature (between 20 and 12 °C), is obvious from the results shown in Figure 5.34and 5.35. The specific nitrification and denitrification rates are shown in Figure 5.36 and 5.37.Neither of the specific utilization rate graphs show any obvious trend as a function of temperature.The VSS results for the cold temperature period are shown in Figure 5.38 and 5.39. Lower utilizationrates, due to temperature, were anticipated to have produced lower levels of biomass. A significantdecrease in biomass is not evident from the graphs; however, the rise in aerobic nitrite accumulationmay have resulted in unused methanol bleeding into the aerobic reactor, thereby promoting aerobicheterotrophic growth, and maintaining elevated VSS levels.8020 °C^17 °C^14 °C 1 °C 1^10 °CDay 83 to 1301111111111130240220-200-180160 -0 140 -.=roC 120a)00^ 1000 80a)60--FL-r-->141-Wfl--014T-1014/414 -r-1-->Pt41-96.1-1 - 111111180^90^100^110^120Days% Nitrification-40-30-20- 10111111^0140Aerobic NO240-20 140- 130-120- 110- 10090- 80- 70-60-50FIGURE 5.28: TEMPERATURE PHASE - 10 Day SRT SystemAerobic Nitrite and % NitrificationOperating TemperatureFIGURE 5.29: TEMPERATURE PHASE - 20 Day SAT SystemAerobic Nitrite and % Nitrification%Nitrification200-180160-oc 140-cTj 120-a)co^100r.)80a)- 60--24020-080Aerobic NO2><,s'r-il-T-1*4141"1"^90^100^110Days^140-130120-110-100-90800-70 F.-60 z50-40-30-20-10240220 Day 83 to 1300130^14020 °C^17 °C j 14 °C 12 °C^10 °COperating TemperatureIli^I^I^I^l^I^I^I^I^i^I^I^I^i^1^1^1^I^I90 100 1^1^1^1110Days1^1.^1 1^1^I^I^I^'1.1^1^1^1^1Day 83 to 130% NitrificationAerobic BOD5< XFIGURE 5.30: TEMPERATURE PHASE - 10 Day SRT SystemAerobic BOD5 and % Nitrification^140 ^130-120-110-100-90-80-70-60-5040-30-20-10 -^0^80140-130-t120- 110-100-90-80 crs0- 70Z0--50-40-30-20-101130^1111111-40 020 °C 17 °C^14 °C 12 °Cf^10 °COperating Temperature20 °C^17 °C^14 °C 12 °C^o140140_^FIGURE 5.31: TEMPERATURE PHASE - 20 Day SRT SystemAerobic BOD5 and % Nitrification130-120-110-100-90-80-70-60-50 Aerobic BOD540-30-20-10-90Day 83 to 130MI1111111111111111111111111111100^110^120Days-_130_1207_110-100-90-80^-4=-704-4-60 2-50-40-30-20-101.66^0140fa's('T0cy)00c0.o2a)80%NitrificationOperating TemperatureDay 83 to 130% Denitrification% NitrificationFIGURE 5.32: TEMPERATURE PHASE - 10 Day SRT System% Denitrification and % Nitrification1(111(1111111111111111m 1 millittiiiiilimiilliiilliiiii80^90^100^110^120^130^140Days20 °C^17 °C 1 14 °C 112 °C 1^10 °COperating Temperature^140 ^130-120-110-100-90-80-70 -60-50-40-30-20 -10-^0^%Nitrification%DenitrificationDay 83 to 130140 ^1307120110-100-90-80-70-60-50-40-30-20-10-FIGURE 5.33: TEMPERATURE PHASE - 20 Day SRT System% Denitrification and % Nitrification0 11111(111111111^1^I^lIt^It^III^lIlt^lIlt1111^111111111111111180^90^100 110 120 130^140Days20 °C^17 °C^14 °C 112 °C i^10 °COperating Temperature20000^18000-16000-rci 14000-cr)E 12000-wrocc 1 0000-a0•ii^8000-NH47:= 6000-FIGURE 5.34: TEMPERATURE PHASE - 10 Day SRT SystemDenitrification and Nitrification RateIIIIIIIIIIIIII^111111111^111111111^111111^111111111111111190^100^110^120 130^140Days 20 °C 17 °C 14 °C 12 °C 1 o tOperating TemperatureFIGURE 5.35: TEMPERATURE PHASE - 20 Day SRT SystemDenitrification and Nitrification Rate2000018000 -16000-14000-12000-rocc 10000 -cO*ifs'^8000-N6000-4000-2000-^0^801^1^I^1^1^1^1^I^01^I^I^1^1^1^1^1^1^1^1^I^1^1 111101111111^IIIIIIIIIIIIIIIII111111100 120^130^140Days20 °C 17 °C 14 °C 12 °C 1 t Operating TemperatureFIGURE 5.36: TEMPERATURE PHASE - 10 Day SRT SystemSpecific Utilization Rate800Day 83 to 130700-->-,600--Co-cocm 500-400-o)co03^CC300-6(1) 200-a1 00, Den trificationxfr " s)<- EINitrification108611-T T1 F^I^T-1-7170:)6111-11-7-1 Ti-T-16ET FT-1111^ 1I 1.6011 111111140Days20 °C 17 °C 14 °C 12 °C oOperating TemperatureDenitrification><>54‹..^,^5‹,FIGURE 5.37: TEMPERATURE PHASE - 20 Day SRT SystemSpecific Utilization Rate800Day 83 to 130-3; 700-ro-o600 ->C)zE01 500 --cccc 400 -0CD^.4=0 cri 300-N4= 200 -00aco 100 -0^11IT- 11180Nitrification90"111 111166■1^110^120^130^140Days20 °C^17 °C^14 °C 1 °C I^10 °COperating Temperature6500-o)cn> 6000-cr)cn-0 5500-o-acua.5000-u).42^--5 4500->4000^180FIGURE 5.38: TEMPERATURE PHASE - 10 Day SRT SystemAnoxic and Aerobic VSS7000Day 83 to 130AerobicAnoxic90^100^110 120^130^140Days20 °C^I 17 °C^14 °C 112 -CI^oOperating Temperature Aerobic Day 83 to 130AnoxicFIGURE 5.39: TEMPERATURE PHASE - 20 Day SRT SystemAnoxic and Aerobic VSS7000:II-a 6500-_E^-u)u)> 6000-(r)-E)^-u)-o 5500-a)-oca)o_ _(.1)= 5000 -u),a)^_cil>7:5 4500-4000 - -I- Fl 1 1 I I 1 T-1-1-1-T T-T i-T- !III FT-T- 11 -7 -T-T 1 I I 7 T-1 T-T 1 I I I ET-T 1111[11 T-1 11 1 I I^ 1-80^90^100^110^120^130^140Days20 °C^17 °C 1 14 °C 12 t 1^10 °C,Operating TemperatureThe effect of temperature may have also, to some degree, influenced the toxic effect of "free"ammonia and/or nitrous acid inhibition. The fraction of "free" ammonia decreases with decreasingtemperature (therefore lowering the toxic effect of ammonia), while the fraction of nitrous acidincreases with increasing temperature (therefore increasing the toxic effect of nitrous acid). The effectof aerobic BOD5, which also increased as the temperature decreased, may have also played a role innitrification failure. The increase in aerobic BOD5 may have been due to enhanced carbon bleedingfrom the anoxic reactor as nitrite levels rose. The effect of aerobic SRT may have also beensignificant, as shown from the last part of the study.5.2.4 10 °C Startups of Nitrification and SRT FailureThe objective of the last part of the study was to determine if nitrification could recover at 10 °C, withinfluent ammonia levels at 1500 mg N/L, under the conditions of no aerobic wasting and no methanoladdition (ie. no denitrification). Figure 5.40 and 5.41 present the aerobic ammonia and % nitrificationdata for the 10 °C startup period of the cold temperature phase. The anoxic reactor was bypassedfor the first few days until aerobic ammonia levels had been depleted, after which the anoxic reactorwas re-introduced. After 10 days, nitrification in both systems was near 100 %, thus showing theability of nitrification to recover at 10 °C from elevated reactor ammonia levels of approximately 500mg N/L. The success of re-establishing nitrification at 10 °C, when it had failed earlier, may be dueto no aerobic wasting (infinite theoretical aerobic SRT), or the lack of methanol addition anddenitrification, or both. The lack of denitrification lowered the anoxic pH from 8.5 to 7.8, andconsequently lowered the anoxic "free" ammonia by approximately 50 %. The lack of methanoladdition also meant lower anoxic BOD5 and less carbon bleeding, which would have resulted in higheraerobic dissolved oxygen levels.Unfortunately, a failure in the air compressor for several hours on Day 145, resulted in completenitrification failure and ammonia levels again rose to approximately 600 mg NIL. From this failure,while continuing not to waste from both systems and with no methanol addition, only one systemrecovered . The system which recovered was previously the "20 day SRT system". From Figure 5.41,93% NitrificationAnoxic reactorbypassedAir compressor failureresults in loss of nitrificationAnoxic reactorreintroduced111111T 1150Days140 160FIGURE 5.40: TEMPERATURE PHASE - 10 Day SRT SystemAerobic Ammonia and % Nitrificationza)000-c0EE1200^1100-1000-900-800-700-600-500-400 -300-200-100-130160„x -= 11504- 130- 120- 110-100-90- 80-70-60- 50-40-30- 20El] -10- 0- -10- -20- -30--40- -50-60170Day 132 to 169 (10°C)Aerobic NH4^.54^ '>4'...••••e^  ....-->(- Aerobic Ammonia -El- %Nitrification-X- Aerobic NH4^%Nitrification1200^1100-1000-900-800- Aerobic NH4700-600-^Anoxic reactorbypassed500-400-300-200-100-0130Day 132 to 169 (10° C)Anoxic reactorreintroduced%Nitrification-150-140-130-120-110100-90-80-70-60160Air compressor failureresults in loss of nitrification-50-40-30-20-101^0170,> . ''' ''1^. Er- -''^I^1^I -T--- I^I^I-1-^I^1^I^I^III 140^150160DaysFIGURE 5.41: TEMPERATURE PHASE - 20 Day SRT SystemAerobic Ammonia and % Nitrificationit can be seen that by Day 155, the one remaining system had recovered to approximately 80 %nitrification. Throughout the recovery and the remainder of the study, the aerobic nitrite levels wereapproximately 200 mg N/L (see Figure 5.42 and 5.43) and the aerobic BOD 5 levels were approximately50 mg/L. Meanwhile, in the system which did not recover (previously operated as the "10 day SRTsystem"), no wasting or methanol addition was performed, but % nitrification remained below 10 %and the aerobic ammonia levels climbed to 1000 mg/L and above (See Figure 5.40). The reason whyone system recovered and the other failed is not clear.To observe the effects of SRT, once complete nitrification was observed in the one working system,aerobic wasting was started on Day 156, to yield a 10 day aerobic SRT. SRT and % nitrification areshown in Figure 5.44. After only 14 days of wasting, aerobic ammonia levels had risen to400 mg N/L. The failure may not have been entirely attributed to SRT alone, as high nitrite levelsindicated the system was already stressed, and high aerobic BOD 5 levels (possible cell lysing) mayhave been associated with nitrification inhibition as previously observed. Another failure of the airsupply, on Day 170, marked the end of the study, since no further lab time could be justified for thisproject.96Anoxic reactorreintroducedssss AlrjjPAAnoxic reactorbypassedFIGURE 5.42: TEMPERATURE PHASE - 10 Day SRT SystemAerobic Nitrite and % Nitrification160600-Day 132 to 169 (10° C)ss,-150-140-1301120-110-100-90-80,s -70=60-50-40-30-20  -10-0--20--30--40--50-60160^170Aerobic NO2500-a)-co 400-f!)4C1a)300-oa) 200-100-II0^130 140ari^■1% NitrificationRe.^ PA 'MaPAPA PA PAAir compressor failureresults in loss of nitrificationI150Days700-X- Aerobic Nitrite -9 - VoNitrifcation-->(- Aerobic NO2 -E3- %NitrificationFIGURE 5.43: TEMPERATURE PHASE - 20 Day SRT SystemAerobic Nitrite and % Nitrification700160- 150-140- 130- 120- 110- 100- 90- 80- 70-60-50- 40- 30-20- 100170Day 132 to 169 (10°C)600-500-o  400-4C'co300-00• 200-z100-Anoxic reactorreintroducedAnoxic reactorbypassed%Nitrification0^ \,1v IIIITII^f^111111^IIIIIIIIIIIIIIIIII130 140^150^160DaysAir compressor failureresultst in loss of nitrification80Day 132 to 169 (10°C)%Nitrification60-SSRT 120-110-100-90-80-70-60-50-40-30-20-10FIGURE 5.44: TEMPERATURE PHASE - 20 Day SRT SystemASRT, SSRT and % Nitrification0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII^I^I^0130^140^150^160^170DaysASRT^SSRT^-E3- %NitrificationChapter 6CONCLUSIONS AND RECOMMENDATIONS^6.1^Summary of ResultsTable 6.1 summarizes the key results obtained from this study. The table is placed here for quickreferencing when reading the subsequent conclusions and recommendations.^6.2^ConclusionsThe following conclusions can be made from the results of the two phases which comprised this study(the ammonia loading phase and the cold temperature phase):1. A single-sludge, nitrification-predenitrification process, operating from 20 to 12 °C, with a recycleratio of 6:1, an actual aerobic HRT of 3.4 hours, an actual anoxic HRT of 1.7 hours, and atheoretical aerobic SRT of either 10 or 20 days, was found capable of producing an effluentcontaining < 1 mg NH 4-N/L and approximately 170 mg NO;-N/L, from an influent leachate of1500 mg NH 4-N/L (once the system had been optimized and stabilized at each influent ammonialevel and at each temperature). MLE theory says that at a 6:1 recycle ratio, the effluent NO;should be approximately 1500/(6 + 1) = 214 mg N/L. The difference is attributed to bacterialassimilation (ammonia stripping should be nominal).2. At an influent ammonia level of 1500 mg N/L at 20 °C, for both the 10 and 20 day SRT systems,aerobic nitrite accumulation was observed to reach approximately 110 mg N/L (65% of aerobicNO;). Increasing nitrite may have been a factor in the reduction of COD:NO. from approximately6:1 to 3.5:1. When both systems were restarted at 20 °C in the cold temperature phase, thenitrite accumulation had disappeared, and the COD:NO; ratio was approximately 5:1.3. When the influent ammonia concentration was increased from 200 to 1500 mg N/L in the leachate,the difference between the anoxic pH and the aerobic pH was observed to increase from100TABLE 6.1:^Summary of ResultsPhase^20 °CAmmonia Loading^@Influent NH4 (mgN/L) 200 300 600 1000 1500 2000*10 Day SRT SystemAerobic NH4 (mgN/L) <1 <1 <1 <1 <1 700Aerobic NO; (mgN/L) 25 50 80 125 170 70Aerobic NO2- (mgN/L) <1 <1 15 85 110 65Aerobic pH 7.5 7.5 7.4 7.3 7.5 8.5Anoxic NH4 (mgN/L) 25 50 70 130 180 750Anoxic NO; (mgN/L) <1 <1 <1 5 <1 <1Anoxic pH 7.8 7.9 8.0 8.3 8.4 8.5COD:NO, (mgCOD/mgN) 6.0 6.0 4.8 3.5 4.5 9.7% Nitrification 100 100 100 97 91 20% Denitrification 98 98 99 99 99 9720 Day SRT SystemAerobic NH4 (mgN/L) <1 <1 <1 <1 <1 600Aerobic NO ^(mgN/L) 25 45 SO 135 170 80Aerobic NO2" (mgN/L) <1 <1 20 80 100 75Aerobic pH 7.5 7.3 7.5 7.3 7.5 8.4Anoxic NH4 (mgN/L) 25 45 80 140 180 750Anoxic NO; (mgN/L) <1 <1 <1 <1 <1 3.5Anoxic pH 7.8 7.7 8.2 8.2 8.5 8.6COD:NO, (mg02/mgN) 6.2 6.4 4.8 3.5 4.0 4.7% Nitrification 100 100 100 100 100 17% Denitrification 98 99 100 99 95 93Cold Temperature Phase @ 1500 mg NH4-N/L in InfluentTemperature (°C) 20 17 *14 12* 10*10 Day SRT SystemAerobic NH4 (mgN/L) <1 <1 <1 <1 490Aerobic NO; (mgN/L) 170 165 170 175 260Aerobic NO2- (mgN/L) <1 <1 10 90 220Aerobic B0D5 (mg02/0 20 12 10 35 120Anoxic NH4 (mgN/L) 170 160 180 180 680Anoxic NO; (mgN/L) 2 3 1 1 140COD:NO, (mg02/mgN) 5.2 4.9 4.9 4.8 13.2% Nitrification 97 100 91 94 15% Denitrification 99 99 100 99 3020 Day SRT SystemAerobic NH4 (mgN/L) <1 <1 <1 <1 560Aerobic NO; (mgN/L) 170 155 170 155 135Aerobic NO2" (mgN/L) <1 <1 <1 65 120Aerobic BOD5 (mg02/1-) 14 12 11 15 56Anoxic NH4 (mgN/L) 180 165 175 160 680Anoxic NO; (mgN/L) 3 2 2 2 23COD:NO, (mg02/mgN) 5.0 5.5 4.8 4.5 6.3% Nitrification 99 94 92 100 22% Denitrification 98 99 99 99 82*The measurements during these periods do not represent a stabilized system, especially at the influentammonia level equal to 2000 mg N/L during the ammonia loading phase, and for the temperature equalto 10 °C during the cold temperature phase.101approximately 0.3 to 1.0. Since the aerobic pH was maintained at approximately 7.5, thiscorresponded to an increase in anoxic pH from approximately 7.8 to 8.5. This suggests thatifhigher ammonia concentrations are to be treated, higher anoxic pHs might be incurred, thusraising the possibility of pH and "free" ammonia inhibition of nitrification and denitrification in theanoxic reactor. Lowering the aerobic pH to 7.2 or 7.3 may provide sufficiently low anoxic pHs toavoid pH-associated toxicity problems in the anoxic reactor.4. Aerobic nitrite accumulation during the ammonia loading phase may have had several causesincluding: low dissolved oxygen, aerobic nitrous acid, and anoxic "free" ammonia. Anoxic "free"ammonia levels are estimated to have reached 20 mg N/L at an influent ammonia level of 1500 mgN/L. Nitrifiers would have been exposed to these elevated "free" ammonia levels as they cycledthrough the anoxic reactor. Acclimatization of the nitrite oxidizers to the elevated "free" anoxicammonia levels may have accounted for the disappearance of the nitrite accumulation during the20 °C startup of the cold temperature phase. Other possible reasons for the disappearance of thenitrite accumulation are higher dissolved oxygen levels in the aerobic reactor, and a steady aerobicpH = 7.5.5. When the leachate ammonia concentration was increased from 1500 to 2000 mg N/L,% nitrification decreased in both systems, from > 90 % to approximately 20 %. Possible reasonsfor the failure of nitrification include insufficient dissolved oxygen, solids/scum/foaming problems,and inhibition of the ammonia oxidizers (Nitrosomonas) due to cyclic exposure to elevated levelsof "free" ammonia in the anoxic reactor.6. During the loading failure period, when the leachate ammonia concentration was 2000 mg N/L, %denitrification continued to be greater than 90 %, despite "free" ammonia levels as high as 80 mgN/L.1027. During the cold temperature phase 20 °C startup, elevated aerobic BOD5, associated withmethanol, was observed to correspond to reduced nitrification. Inhibition may have been due toseveral possibilities including heterotrophic competition for limited dissolved oxygen, or methanoltoxicity.8. For both SRT systems, when the operating temperature was decreased from 12 °C to 10 °C,while treating a leachate with 1500 mg NH4-N/L, % nitrification decreased from approximately 100% to 20 %. For the 10 day SRT system at 10 °C, denitrification was reduced from 99 to 30 %.For the 20 day SRT system, denitrification was reduced from 99 % to 82 %. Rising aerobicnitrites and aerobic BOD5, began at 14 °C, and were the only apparent signs of cold temperatureinhibition. However, it is possible that failure had begun at 14 °C but insufficient time was givenfor more complete failure to occur. The rise in aerobic nitrites, and the failure of nitrification inboth systems, suggests that cold temperature was more inhibitive to nitrification than todenitrification.9. After failure of nitrification at 10 °C, aerobic wasting and methanol addition were ceased.Nitrification managed to re-establish itself at 10 °C, despite aerobic ammonia levels ofapproximately 500 mg N/L, and aerobic BOD5 levels greater than 50 mg/L. Thus, short SRTsand/or methanol addition (resulting in elevated anoxic pH, elevated anoxic "free" ammonia, andpossible carbon bleeding) were shown to have inhibitive effects at 10 °C. A test to determine theeffect of shortening the theoretical aerobic SRT from infinite to 10 days resulted in completesystem failure in only fourteen days. However, this result was complicated by elevated aerobicBOD5 levels throughout the latter part of the study, presumably from cell lysing.1036.3^RecommendationsFrom the results of this study, the following recommendations for further research are made:1. A study should be conducted to investigate the addition of post-denitrification to this system, tofurther reduce effluent NO),- . Post-denitrification will require the addition of another anoxic reactorfor denitrification, and subsequent aerobic reactor for BOD5 reduction and sweetening. Metcalfand Eddy (1991) suggest that both reactors may be placed after the first aerobic reactor.Therefore the process train still maintains only one clarifier. The solids underflow is recycled backto the anoxic reactor for MLVSS control. The aerobic mixed liquor from the first aerobic reactorcan be recycled directly back to the first anoxic reactor for controlling the recycle ratio and theactual HRT.2. Further investigations should be conducted to determine the maximum recycle ratio, to furtherreduce effluent NO x- .^If higher maximum recycle ratios are achievable, the need forpost-denitrification may be obviated. Elefsiniotis et al (1989) determined that the optimum recycleratio for this system was about 6:1. Higher recycle ratios were found to result in system instabilitydue to lower actual HRT. However, Robinson (1992) has successfully used a recycle ratio of 10:1,but with a considerably longer HRT. The study should investigate the maximum recycle ratiopossible, while maintaining the same actual HRT (by decreasing influent flowrate). A more broadstudy might try several recycle ratios at a number of HRTs, while also investigating the effect ofSRT. To avoid inefficient clarification at higher recycle ratios, and for better overall control, theaddition of a direct recycle from the aerobic reactor to the anoxic reactor should be considered.3. A study should be conducted to investigate ammonia, elevated pH, and "free" ammonia toxicityto denitrification. This aspect of the single-sludge predenitrification system is a fundamentalconcern when treating high ammonia leachate.1044. A continuation of the ammonia loading phase of this study should be conducted to determine if thereason for failure when the influent ammonia concentration was increased from 1500 mg N/L to2000 mg N/L, was mechanical or biological. The two mechanical reasons (both problems of scale)that may have caused the system to fail were clogging (resulting in overflows) and low dissolvedoxygen levels. Reactor tubing and overflows should be designed in advance to handle high solids,foaming in the aerobic reactor, and floating scum in the anoxic reactor. Fine bubble diffusers andaerobic reactors with greater height to width ratio might help achieve better dissolved oxygen.Eliminating the potential mechanical reasons for failure, a higher influent ammonia level might betreated, with the limit being biological instead of mechanical.5. Further temperature studies should be conducted to determine the potential for treatment attemperatures colder than 12 °C, while operating at influent ammonia concentrations of 1500 mgN/L or higher. Long SRTs and careful control of methanol addition may result in establishing bothcomplete nitrification and denitrification at temperatures below 12 °C.105REFERENCESAnthonisen A.C., Loehr R.C., Prakasam T.B.S. and Srinath E.G. (1976) Inhibition of nitrification byammonia and nitrous acid. Journal of the Water Pollution Control Federation. 48, 835-852.Antoniou P., Hamilton J., Koopman B., Jain R., Holloway B., Lyberatos G. and Svoronos S.A. (1990)Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria.Water Research. 24, 1, 97-101.A.P.H.A. (1985) Standard Methods for the Examination of Water and Wastewater. 16th Edition,Washington, D.C., U.S.A.Beccari M., Passino R., Ramadori R. and Tandoi V. (1983) Kinetics of dissimilatory nitrate and nitritereduction in suspended growth culture. Journal of the Water Pollution Control Federation. 55, 58-64.Carley B.N. (1988) The Effect of Excess Carbon in the Anoxic Basin of a Biological Pre-denitrificationSystem for the Treatment of Landfill Leachate. M.A.Sc. Thesis, Department of Civil Engineering,University of British Columbia, Canada.Carley B.N. and Mavinic D.S. (1991) The effects of external carbon loading on nitrification anddenitrification of a high-ammonia landfill leachate. Research Journal of the Water Pollution ControlFederation. 63, 51-59.Chian E.S.K., Pohland F.G., Chang K.C. and Harper S.R. (1985) Leachate generation and control atlandfill disposal sites. Proceedings of the International Conference on New Directions and Research inWaste Treatment and Residuals Management. Vancouver, Canada, 14-30.106Dedhar S. and Mavinic D.S. (1985) Ammonia removal from a landfill leachate by nitrification anddenitrification. Water Pollution Research Journal of Canada. 20, 126-137.Ehrig H.J. (1985) Biological treatment of sanitary landfill leachate with special aspects on highammonia concentration. Proceedings of the International Conference on New Directions and Researchin Waste Treatment and Residuals Management. Vancouver, Canada, 232-248.Ehrig H.J. (1991) Control and treatment of landfill leachate - a review. 1991 Harwell WasteManagement Syposium - Challenges in Waste Management (Preprints). Harwell, Great Britain.Elefsiniotis P., Manoharan R. and Mavinic D.S. (1989) The effects of sludge recycle ratio onnitrification-denitrification of performance in biological treatment of leachate. EnvironmentalTechnology Letters. 10, 1041-1050.Figueroa L.A. and Silverstein J. (1991) Pilot-scale trickling filter nitrification at the longmont VVVVTP.Proceedings of the 1991 Specialty Conference on Environmental Engineering. Reno, U.S.A., 302-306.Forgie, D.J.L. (1988a) Selection of the most appropriate leachate treatment methods Part 1: a reviewof potential biological leachate treatment methods. Water Pollution Research Journal of Canada. 23,308-328.Forgie, D.J.L. (1988b) Selection of the most appropriate leachate treatment methods Part 2: a reviewof recirculation, irrigation and potential physical-chemical treatment methods. Water Pollution ResearchJournal of Canada. 23, 329-340.Forgie, D.J.L. (1988c) Selection of the most appropriate leachate treatment methods Part 3: a decisionmodel for the treatment train selection. Water Pollution Research Journal of Canada. 23, 341-355.107Gonenc E. and Harremoes P. (1990) Nitrification in rotating disc systems-II. Criteria for simultaneousmineralization and nitrification. Water Research. 24, 499-505.Guo J. (1992) Low Temperature Biological Treatment of a High Ammonia Municipal Landfill Leachate.M.A.Sc. Thesis, Department of Civil Engineering, University of British Columbia, Canada.Halmo G. and Eimhjellen K. (1981) Low temperature removal of nitrate by bacterial denitrification.Water Research. 15, 989-998.Henderson J.P. (1993) Treatment of a High Ammonia Concentration Landfill Leachate with anAnaerobic Filter and Rotating Biological Contactor (RBC). M.A.Sc. Thesis, Department of CivilEngineering, University of British Columbia, Canada.Henry G.J. (1985) New developments in landfill leachate treatment. Water Pollution Research Journalof Canada. 20, 1-9.Hockenbury M.R., Daigger G.T. and Grady Jr. C.P.L. (1977) Factors affecting nitrification. Journal ofthe Environmental Engineering Division. 103, 9-19.Jasper S.E., Atwater J.W. and Mavinic D.S. (1985) Leachate production and characteristics as afunction of water input and landfill configuration. Water Pollution Research Journal of Canada. 20,43-56.Keenan J.D., Steiner R.L. and Fungaroli A.A. (1979) Substrate inhibition of nitrification. Journal ofEnvironmental Science and Health. A14, 377-397.Keenan J.D., Steiner R.L. and Fungaroli A.A. (1984) Landfill Leachate Treatment. Journal of the WaterPollution Control Federation. 56, 27-34.108Kelly H.G. (1987) Pilot testing for combined treatment of leachate from a domestic waste landfill site.Journal of the Water Pollution Control Federation. 59, 254-261.Knox K. (1985) Leachate treatment with nitrification of ammonia. Water Research. 19, 895-904.Lema J.M., Mendez R. and Blazquez R. (1988) Characteristics of landfill leachates and alternatives fortheir treatment: a review. Water, Air, and Soil Pollution. 40, 223-250.Lewandowski Z. (1982) Temperature dependency of biological denitrification with organic materialsaddition. Water Research. 16, 19-22.Manoharan R., Liptak S., Parkinson P. and Mavinic D. (1989) Denitrification of a high ammonialeachate using an external carbon source. Environmental Technology Letters. 10, 701-716.Martin G. and Richard Y. (1982) Elements of the inhibition of nitrifying bacteria. Water, Science andTechnology. 14, 781-794.Mavinic D.S. and Randall C.W. (1990) Inhibition of Nitrification and Denitrification in Biotreatment ofa High-Ammonia Municipal Leachate. Report prepared for Environment Canada and VirginiaEnvironmental Endowment Fund, Vancouver, Canada, and Blacksburg, U.S.A.McCarty P.L., Beck L. and Amant P. (1969) Biological denitrification of wastewaters by addition oforganic materials. Proceedings of the 24th Industrial Waste Conference, Purdue University, U.S.A.,1271-1285.Mirvish S.S. (1977) N-nitroso- compounds, nitrite, and nitrate possible implications for the causationof human cancer. Progress in Water Technology. 8, 195-207.109Narkis N., Rebhun M. and Sheindorf C. (1979) Denitrification at various carbon to nitrogen ratios.Water Research. 13, 93-98.Opatken E.J. and Bond J.J. (1991) RBC nitrification of high ammonia leachates. EnvironmentalProgress. 10, 60-63.Painter H.A. (1977) Microbial transformations of inorganic nitrogen. Progress in Water Technology.8, 3-29.Painter H.A. and Loveless J.E. (1983) Effect of temperature and pH value on the growth-rate constantsof nitrifying bacteria in the activate-sludge process. Water Research. 17, 237-248.Parker D.S. and Richards T. (1986) Nitrification in trickling filters. Journal of the Water PollutionControl Federation. 58, 896-902.Peddie C. and Atwater J.W. (1985) RBC treatment of a municipal landfill leachate: a pilot scaleevaluation. Water Pollution Research Journal of Canada. 20, 115-125.Randall C.W. and Buth D. (1984) Nitrite build-up in activated sludge resulting from temperature effects.Journal of the Water Polllution Control Federation. 56, 1039-1049.Robinson H.D. (1983) Anal. Proc. 20, 11.Robinson H.D., Formby B.W., Barr M.J. and Carville M.S. (1991) The treatment of landfill leachate tostandards suitable for surface water discharge. Third International Landfill Symposium. Sardinia, Italy.Robinson H.D. and Luo M.M.H. (1991) Characterisation and treatment of leachates from Hong Konglandfill sites. Journal of the Institution of Water and Environmental Management. 5, 326-335.110Robinson H.D., Barr M.J. and Last S.D. (1992) Leachate collection, treatment and disposal. Journalof the Institution of Water and Environmental Management. 6, 321-332.Robinson N.D. and Maris P.J. (1985) The treatment of leachates from domestic waste in landfill sites.Journal of the Water Pollution Control Federation. 57, 30-38.Robinson H.D. and Grantham G. (1988) The treatment of landfill leachates in on-site aerated lagoonplants: experience in Britain and Ireland. Water Research. 22, 733-747.Robinson H.D. (1992) Leachate Treatment and Denitrification Trials. Unpublished Report.Shuval H.I. and Gruener N. (1977) Infant methemoglobinemia and other health effects of nitrates indrinking water. Progress in Water Technology. 8, 183-193.Spengel D.B. and Dzombak D.A. (1991) Treatment of landfill leachate with rotating biologicalcontactors: bench-scale experiments. Research Journal of the Water Pollution Control Federation. 63,971-981.Stenstrom M.K. (1980) The effect of dissolved oxygen concentration on nitrification. Water Research.14, 643-699.Turk O. (1986) The Feasibility of a Shortened Pathway for Nitrogen Removal from Highly NitrogenousWastes. Ph.D. Thesis, Department of Civil Engineering, University of British Columbia, Canada.Turk O. and Mavinic D.S. (1989) Maintaining nitrite build-up in a system acclimatized to free ammonia.Water Research. 23, 11, 1383-1388.111U.S. EPA (1975). Process Design Manual for Nitrogen Control. Technology Transfer, United StatesEnvironmental Protection Agency.112APPENDICESAppendix A:^Calculation DefinitionsAppendix B:^Raw and Calculated Data113APPENDIX A:CALCULATION DEFINITIONSANOXIC OVERFLOW (Lid) = INFLUENT FLOW (Lid) + RECYCLE FLOW (Lid) + [NH4CL FEED FLOW(mL/h) + METHANOL FEED FLOW (mL/h) + PHOSPHATE FEED FLOW (mL/h)] x 24 (hid) x 1/1000(L/mL)AEROBIC OVERFLOW (Lid) = ANOXIC OVERFLOW (L/d) + BICARBONATE FEED FLOW (mL/h) x 24(h/d) x 1/1000 (L/mL)SIMULATED INFLUENT NH4 CONCENTRATION (mgN/L) = ENH4CL FEED FLOW (mL/h) x NH4CL FEEDCONCENTRATION (gNH4Cl/L) x 1/1000 (L/mL) x 24 (h/d)x 14/53.5 (gN/gNH4C1) x 1000 (mg/g) +INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid)] / [INFLUENT FLOW (Lid) +NH4CL FEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL)1NITRIFICATION RATE (mgN/d) = AEROBIC NOX CONCENTRATION (mgN/L) x AEROBIC OVERFLOW(Lid) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)ANOXIC NOX LOAD (mgN/d) = INFLUENT NOX CONCENTRATION (mgN/L) x INFLUENT FLOW (L/d)+ AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (L/d)DENITRIFICATION RATE (mgN/d) = ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION(mgN/L) x ANOXIC OVERFLOW (L/d)% NITRIFICATION = NITRIFICATION RATE (mgN/d) / [ANOXIC NH4 CONCENTRATION (mgN/L) xANOXIC OVERFLOW (Lid)]114% DENITRIFICATION = DENITRIFICATION RATE / [INFLUENT NOX CONCENTRATION (mgN/L) xINFLUENT FLOW (L/d) + AEROBIC NOX CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)]SPECIFIC NITRIFICATION RATE (mgN/d/gVSS) = NITRIFICATION RATE (mgN/d) / AEROBIC VSSCONCENTRATION (mgVSS/L) / 10 (L) x 1000 (mg/g) x 1/24 (d/h)SPECIFIC DENITRIFICATION RATE (mgN/d/gVSS) = DENITRIFICATION RATE (mgN/d) / ANOXIC VSSCONCENTRATION (mgVSS/L) / 5 (L) x 1000 (mg/g) x 1/24 (d/h)TOTAL ALKALINITY ADDED (mgCaCO3/d) = INFLUENT ALKALINITY CONCENTRATION (mg CaCO3/L)x INFLUENT FLOW (mL/h) + BICARBONATE FEED CONCENTRATION (g NaHCO3/L) x BICARBONATEFEED FLOW (mL/h) x 24 (h/d) x 1/1000 (L/mL) x 50/84 (mgCaCO3/mgNaHCO3)ALKALINITY:NH4 ADDED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) /SIMULATED INFLUENT NH4 CONCENTRATION (mg N/L) x {INFLUENT + NH4CL} FLOW (L/d)ALKALINITY:N NITRIFIED (mgCaCO3/mgN) = TOTAL ALKALINITY ADDED (mgCaCO3/d) /NITRIFICATION RATE (mgN/d)ANOXIC METHANOL COD LOAD (mgCOD/d) = METHANOL FEED CONCENTRATION (mL CH3OH/L)x METHANOL FEED FLOW (mL/h) x 791.5 (mgCH3OH/mLCH3OH) x 1.5 (mgCOD/mgCH3OH) x1/1000 (L/mL) x 24 (h/d)COD:NOX ENTERING ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD(mgCOD/d) / ANOXIC NOX LOAD (mgN/d)115COD:NOX REMOVED IN ANOXIC REACTOR (mgCOD/mgN) = ANOXIC METHANOL COD LOAD(mgCOD/d) / [ANOXIC NOX LOAD (mgN/d) - ANOXIC NOX CONCENTRATION (mgN/L) x ANOXICOVERFLOW (Lid)]ANOXIC NH4 REMOVAL RATE (mgN/d) = INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENTFLOW (Lid) + NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) xANOXIC OVERFLOW (Lid)AEROBIC NH4 REMOVAL RATE (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXICOVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid)% ANOXIC NH4 REMOVAL = [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid)+ NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid) - ANOXIC NH4 CONCENTRATION (mgN/L) xANOXIC OVERFLOW (Lid)] / [INFLUENT NH4 CONCENTRATION (mgN/L) x INFLUENT FLOW (Lid) +NH4CL FEED CONCENTRATION (mgN/L) x NH4CL FEED FLOW (Lid) + AEROBIC NH4CONCENTRATION (mgN/L) x RECYCLE FLOW (Lid)]% AEROBIC NH4 REMOVAL (mgN/d) = ANOXIC NH4 CONCENTRATION (mgN/L) x ANOXICOVERFLOW (Lid) - AEROBIC NH4 CONCENTRATION (mgN/L) x AEROBIC OVERFLOW (Lid) / [ANOXICNH4 CONCENTRATION (mgN/L) x ANOXIC OVERFLOW (Lid)]SSRT (d) = [ANOXIC VSS CONCENTRATION (mgVSS/L) x 5 (L) + AEROBIC VSS CONCENTRATION(mgVSS/L) x 15 (L)] / [AEROBIC VSS CONCENTRATION (mgVSS/L) x AEROBIC VOLUME WASTED (L)+ EFFLUENT VSS CONCENTRATION (mgVSS/L) x [AEROBIC OVERFLOW (Lid) - RECYCLE FLOW(Lid)]]116APPENDIX B:RAW AND CALCULATED DATAAmmonia Loading PhaseInfluent Characteristics10 Day Aerobic SRT System20 Day Aerobic SRT SystemCold Temperature PhaseTemperature and Influent Characteristics10 Day Aerobic SRT System20 Day Aerobic SRT System117AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Influent^Influent^Influent^Influent^Influent^Influent^InfluentDate^Day^pH^Alkalinity VSS TSS PO4 NH4 NOx(yy mm dd) (mgCaCO3/L)^(mg/LI^(mg/L)^(mgPiL)^(mgN/L)^(mgN/L)91 08^12^1 2120 24 56 0.2 211 3.191 08^14^3 0.3 205 1.291 08^16^5 0.2 216 1.191 08^18^7 1980 0.3 217 1.191 08^20^9 7.9 0.4 225 2.491 08^23^12 0.4 246 2.791 08^26^15 2060 0.1 213 58.891 08^28^17 7.8 0.2 214 21.391 08^31^20 7.6 0.2 218 2.291 09^2^22 8.3 0.3 224 4.691 09^4^24 8.1 1910 0.3 220 4.691 09^7^27 7.9 0.4 208 6.391 09^9^29 8.0 0.3 217 3.491 09^12^32 8.2 0.3 217 2.291 09^16^36 8.0 28 68 0.2 203 1.891 09^17^37 8.1 1860 54 115 0.4 196 1.091 09^19^39 8.2 0.4 214 0.791 09^21^41 8.0 0.4 197 0.491 09^23^43 8.1 0.4 205 1.891 09^26^46 8.2 0.3 221 0.991 09^28^48 0.4 196 0.291 09^30^50 0.4 185 0.291 10^2^52 8.1 0.4 199 5.391 10^4^54 0.3 209 13.391 10^6^56 0.4 202 13.391 10^8^58 8.3 0.4 201 8.791 10^11^61 45 109 0.4 188 5.891 10^14^64 0.4 194 2.291 10^16^66 7.9 1200 31 58 0.4 206 1.191 10^18^68 0.5 233 0.391 10^20^70 0.6 207 0.391 10^23^73 7.8 0.5 217 0.691 10^25^75 0.5 204 0.491 10^27^77 0.5 215 0.891 10^29^79 7.8 0.5 226 1.091 11^1^82 0.5 233 0.691 11^3^84 0.5 195 0.991 11^5^86 0.6 222 1.091 11^7^88 7.9 0.7 228 1.091 11^10^91 0.6 228 0.891 11^12^93 0.6 211 0.591 11^13^94 7.8 0.6 213 0.591 11^15^96 8.0 1360 44 104 0.6 190 0.391 11^17^98 0.7 198 0.391 11^20^101 0.7 203 0.391 11^22^103 7.9 0.7 204 0.2118AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Influent^Influent^Influent^Influent^Influent^Influent^InfluentDate^Day^PH^Alkalinity VSS TSS PO4 NH4 NOx(yy mm dd) (mgCaCO3/1.)^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)91^11 25^106 0.6 194 0.491^11 26^107 0.6 233 0.491^11 29^110 8.1 0.5 182 0.291^12 2^113 0.5 190 0.391^12 4^115 0.7 205 0.191^12 6^117 8.0 0.7 200 0.391^12 7^118 0.7 203 0.591^12 9^120 0.6 177 0.691^12 11^122 0.7 196 0.691^12 13^124 7.9 0.7 196 0.491^12 16^127 1650 32 118 0.6 139 0.291^12 18^129 0.5 137 0.391^12 20^131 8.1 0.4 153 0.791^12 22^133 7.7 0.4 174 0.491^12 24^135 0.3 183 0.391^12 26^137 0.2 148 1.091^12 30^141 7.9 0.2 56 0.792^01 2^144 0.2 151 0.992^01 5^147 0.1 137 0.692^01 6^148 0.1 156 0.792^01 8^150 0.0 184 0.692^01 10^152 0.1 161 0.892^01 12^154 0.1 152 1.292^01 14^156 0.2 150 0.692^01 15^157 7.8 0.2 177 0.892^01 17^159 7.9 1310 60 124 0.3 212 0.692^01 20^162 0.3 201 0.792^01 22 164 0.3 225 0.492^01 24^166 0.2 188 0.492^01 26^168 0.2 225 1.092^01 30^172 0.1 210 0.892^01 31^173 0.2 215 0.792^02 2^175 0.2 207 0.492^02 3^176 0.2 200 1.092^02 5^178 0.3 188 1.292^02 6^179 0.2 183 0.792^02 7^180 0.2 183 1.192^02 10^183 0.1 230 0.992^02 11^184 0.1 210 0.592^02 12^185 0.2 207 0.592^02 13^186 0.3 207 1.192^02 14^187 0.2 217 1.092^02 16^189 8.0 1325 48 95 0.2 131 1.092^02 18^191 7.8 0.2 143 2.492^02 19^192 0.3 157 3.892^02 21^194 0.2 155 3.8119AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Influent^Influent^Influent^Influent^Influent^Influent^InfluentDate^Day^pH^Alkalinity^VSS TSS PO4 NH4 NOx(yy mm dd) (mgCaCO3/1-)^(mg/L)^Img/L)^(mgP/L)^lingN/1.1^(mgN/L)92 02 24 197 0.3 138 4.092 02 27 200 0.2 143 4.192 02 28 201 0.2 136 3.492 02 29 202 0.1 128 3.092 03 1 203 0.1 135 3.892 03 2 204 0.2 163 4.392 03 3 205 0.3 164 2.392 03 4 206 0.3 144 2.992 03 5 207 0.2 137 3.292 03 6 208 0.2 137 3.592 03 7 209 0.2 149 2.392 03 10 212 16392 03 11 213 129120AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Influent^Influent^InfluentDate^Day^NO2 SOD CODIvy mm dd)^(mgN/L)^(mg/L)^(mg/L)91 08 12 191 08 14 3 21 45291 08 16 591 08 18 791 08 20 9 0.5 24 44291 08 23 1291 08 26 1591 08 28 17 3.391 08 31 2091 09 2 2291 09 4 24 0.5 23 46491 09 7 2791 09 9 2991 09 12 3291 09 16 3691 09 17 37 0.0 38 33491 09 19 3991 09 21 4191 09 23 43 0.391 09 26 4691 09 28 4891 09 30 50 0.091 10 2 5291 10 4 5491 10 6 56 2.391 10 8 5891 10 11 61 35 34291 10 14 64 0.191 10 16 6691 10 18 6891 10 20 7091 10 23 73 0.191 10 25 7591 10 27 7791 10 29 7991 11 1 82 0.191 11 3 8491 11 5 8691 11 7 88 41 36891 11 10 9191 11 12 9391 11 13 9491 11 15 9691 11 17 9891 11 20 10191 11 22 103121AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Influent^Influent^InfluentData^Day^NO2 BOD COD(iffy mm dd)^(mgN/L)^(mg/L)^(mg/L)91 11 25 10691 11 26 10791 11 29 11091 12 2 113 28 42191 12 4 11591 12 6 11791 12 7 11891 12 9 12091 12 11 12291 12 13 12491 12 16 12791 12 18 129 0.091 12 20 131 62 35491 12 22 13391 12 24 135 0.191 12 26 13791 12 30 14192 01 2 144 0.192 01 5 14792 01 6 148 0.192 01 8 15092 01 10 152 0.0 58 41592 01 12 154 0.192 01 14 156 0.192 01 15 157 0.092 01 17 159 0.192 01 20 162 0.092 01 22 164 42 43692 01 24 16692 01 26 16892 01 30 17292 01 31 17392 02 2 17592 02 3 176 0.192 02 5 17892 02 6 17992 02 7 18092 02 10 18392 02 11 184 38 37492 02 12 185 0.092 02 13 18692 02 14 187 0.092 02 16 189 20 33492 02 18 191 0.192 02 19 19292 02 21 194122AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^FlowrateDate^Day Influent^NH4C1^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic(yy mm dd)^(Lid)^(mL/h)^(rnL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow(Lid) (Lid)91 08^12^1 10.1 0 0 0 3.5 55 0 6591 08^14^3 10.1 0 0 0 4.1 66 0 7691 08^16^5 9.8 0 0 0 4.8 64 0 7491 08^18^7 9.9 0 0 0 5.2 65 0 7591 08^20^9 9.3 0 0 0 5.1 53 0 6391 08^23^12 10.1 0 0 0 5.1 55 0 6691 08^26^15 10.0 0 0 0 5.0 57 0 6791 08^28^17 9.2 0 0 0 4.8 59 0 6991 08^31^20 10.0 0 0 0 5.0 55 0 6591 09^2^22 10.2 0 0 0 4.8 62 0 7391 09^4^24 10.4 0 0 0 4.8 61 1 7191 09^7^27 9.8 0 6 0 4.7 54 1 6491 09^9^29 10.1 0 6 0 5.1 55 1 6591 09^12^32 9.2 0 11 0 5.2 59 1 6991 09^16^36 9.2 0 11 0 5.2 53 1 6391 09^17^37 10.7 0 11 0 5.3 62 1 7391 09^19^39 9.4 0 11 0 5.1 60 1 6991 09^21^41 9.1 0 5.4 0 5.0 64 1 7391 09^23^43 10.0 0 5.4 0 5.0 60 1 7091 09^26^46 9.6 0 6.9 0 4.8 63 1 7391 09^28^48 9.8 0 7 0 5.1 56 1 6691 09^30^50 10.2 0 7.1 0 4.9 54 1 6491 10^2^52 9.4 0 6.8 0 4.8 58 1 6891 10^4^54 10.1 0 7.2 0 5.2 63 1 7491 10^6^56 10.0 0 7.4 0 5.0 59 1 6991 10^8^58 9.4 0 7.8 0 5.0 65 1 7591 10^11^61 10.6 0 7.3 0 4.8 60 1 7191 10^14^64 10.0 8.4 6.5 0 5.0 64 1 7491 10^16^66 9.6 8.2 6.8 0 4.9 55 1 6591 10^18^68 10.2 8 6.8 0 4.8 56 1 6691 10^20^70 9.5 8 6.8 0 5.1 61 1 7191 10^23^73 10.8 8.2 7 0 5.1 58 1 6991 10^25^75 9.8 8 7.2 0 5.2 59 1 6991 10^27^77 10.1 8.2 7.1 0 5.2 65 1 7691 10^29^79 9.9 8 7.1 0 5.4 57 1 6791 11^1^82 10.3 8.2 6.9 0 5.4 64 1 7591 11^3^84 10.9 4 6.9 0 5.4 64 1 7691 11^5^86 10.3 3.45 7.2 0 5.2 55 1 6691 11^7^88 10.3 3.2 7 0 5.3 54 1 6491 11^10^91 10.0 6.9 6.9 0 5.1 55 1 6591 11^12^93 10.3 7.1 7.3 0 5.2 64 1 7491 11^13^94 9.8 7.5 7.4 0 5.3 54 1 6491 11^15^96 10.2 7.4 7 0 5.2 65 1 7691 11^17^98 9.6 7.5 6.9 0 5.3 55 1 6591 11^20^101 10.2 7.3 7 0 5.3 60 1 7191 11^22^103 9.3 7 7 4.6 4.6 63 1 73123AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^PO4^Recycle^Aerobic^Anoxic(yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/d)^Wasting^Overflow(L/d) (L/d)91^11 25^106 9.3 6.9 7.2 4.3 4.3 64 1 7491^11 26^107 10.1 7.3 7.3 14.9 14.9 56 1 6791^11 29^110 9.2 7.3 7.5 15.3 15.3 56 1 6691^12 2^113 8.7 7.4 7.4 15 15.0 57 1 6791^12 4^115 9.1 7.4 7.4 15 15.0 56 1 6691^12 6^117 10.2 7.8 7.3 15.2 15.2 54 1 6591^12 7^118 9.0 6.9 7.2 14.4 14.4 59 1 6991^12 9^120 9.4 6.8 7.2 14.7 14.7 63 1 7391^12 11^122 8.9 7.4 7.4 15.3 15.3 58 1 6791^12 13^124 9.8 7.5 7.5 15.1 15.1 64 1 7591^12 16^127 9.9 7.5 7.6 15.5 15.5 54 1 6591^12 18^129 9.6 7.4 7.3 15.3 15.3 65 1 7591^12 20^131 9.1 7.7 7.2 14.7 14.7 65 1 7491^12 22^133 9.7 6.6 7.4 14.8 14.8 56 1 6791^12 24 135 10.0 7.3 7.4 15.3 15.3 63 1 7391^12 26^137 10.0 7.3 7.4 15.1 15.1 60 1 7191^12 30^141 10.0 7.3 7.4 15.1 15.1 62 1 7392^01 2^144 9.3 7.3 7.6 31 31.0 54 1 6592^01 5^147 8.8 7.5 7.7 30.9 30.9 64 1 7492^01 6^148 8.8 7.2 7.5 30 30.0 57 1 6692^01 8^150 9.0 7.2 7.4 31 31.0 59 1 6992^01 10^152 9.3 7.3 7.3 29 29.0 59 1 7092^01 12^154 9.1 7 7.4 30 30.0 59 1 6992^01 14^156 8.7 28.9 8.2 41.3 41.3 63 1 7492^01 15^157 9.0 29 8 39 39.0 66 1 7692^01 17^159 9.2 29 7.8 38 38.0 63 1 7492^01 20^162 8.7 29 7.5 36 36.0 57 1 6792^01 22 164 8.4 29 7.4 36 38.0 62 1 7292^01 24^166 8.9 28 7.2 36 36.0 62 1 7392^01 26 168 9.1 27 7.4 36 36.0 58 1 6992^01 30^172 9.0 26.9 7.9 37.3 37.3 54 1 6492^01 31^173 8.4 26 7.5 35 35.0 65 1 7592^02 2^175 9.1 25.6 7 34.4 34.4 61 1 7192^02 3^176 9.4 26 7.3 37.5 37.5 61 1 7292^02 5^178 8.5 27 7.4 38 38.0 63 1 7392^02 6^179 9.1 27.3 7.4 39.5 39.5 62 1 7392^02 7^180 8.5 26 7.4 37 37.0 57 1 6792^02 10^183 8.8 25 7.6 36 36.0 58 1 6892^02 11^184 8.7 26 7.6 37 37.0 57 1 6792^02 12^185 8.5 27 7.7 36 36.0 64 1 7592^02 13^186 8.2 26 7.6 35 35.0 60 1 7092^02 14^187 8.5 26 7.9 34.8 34.8 61 1 7192^02 16^189 9.0 25.8 7.4 36 36.0 58 1 6992^02 18^191 8.9 26 7.3 36 36.0 55 1 6692^02 19^192 8.6 26 7.5 36 36.0 54 1 6592^02 21^194 7.9 26 7.7 36 36.0 64 1 74124AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4CI^Simulated CH3OH o-PO4 NaHCO3(Iffy mm dcl)^Overflow (A)^Influent^ImUL)^WPM^lg/1.1(Lid)^ (mgN/L)91 08 12^1 65 0 209 0 0.816 091 08 14^3 76 0 203 0 0.816 091 08 16^5 74 0 214 0 0.816 091 08 18^7 75 0 214 0 0.816 091 08 20^9 63 0 222 0 0.816 091 08 23^12 66 0 243 0 0.816 091 08 26^15 67 0 210 0 0.816 091 08 28^17 69 0 211 0 0.816 091 08 31^20 65 0 215 0 0.816 091 09 2^22 73 0 221 0 0.816 091 09 4^24 71 0 218 0 0.816 091 09 7^27 64 0 203 25 0.816 091 09 9^29 65 0 211 25 0.816 091 09 12^32 69 0 208 25 0.816 091 09 16^36 63 0 195 25 0.816 091 09 17^37 73 0 189 25 0.816 091 09 19^39 69 0 206 40 0.816 091 09 21^41 73 0 192 80 0.816 091 09 23^43 70 0 200 80 0.816 091 09 26^46 73 0 215 40 0.816 091 09 28^46 66 0 190 40 0.816 091 09 30^50 64 0 180 60 0.816 091 10 2^52 68 0 193 50 0.816 091 10 4^54 74 0 203 50 0.816 091 10 6^56 69 0 196 50 0.816 091 10 8^58 75 0 195 50 0.816 091 10 11^61 71 0 183 50 0.816 091 10 14^64 74 19.1 281 50 0.816 091 10 16^66 65 19.1 294 50 0.816 091 10 18^68 66 19.1 312 75 0.816 091 10 20^70 71 19.1 294 100 0.816 091 10 23^73 69 19.1 295 100 0.816 091 10 25^75 69 19.1 288 75 0.816 091 10 27^77 76 19.1 298 75 0.816 091 10 29^79 67 19.1 308 75 0.816 091 11 1^82 75 19.1 313 85 0.816 091 11 3^84 76 19.1 231 85 0.816 091 11 5^86 66 55.3 326 85 0.816 091 11 7^88 64 48 310 85 0.816 091 11 10^91 65 88 582 85 0.816 091 11 12^93 74 88 566 85 0.816 091 11 13^94 64 88 606 85 0.816 091 11 15^96 76 88 567 85 0.816 091 11 17^98 65 88 600 85 0.816 091 11 20^101 71 88 579 85 0.816 091 11 22^103 73 88 598 85 0.816 14.71 25AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4C1^Simulated^CH3OH o-PO4 NaHCO3(yy mm dd)^Overflow (g/L) Influent (mL/L)^(gP/L)^(g/L)(L/d)^ (mgN/L)91^11 25^106 74 88 583 85 0.816 4791^11 26^107 67 88 611 85 0.245 4791^11 29^110 66 88 596 85 0.245 53.591^12 2^113 67 88 636 85 0.245 53.591^12 4^115 66 88 628 85 0.245 53.591^12 6^117 65 88 599 135 0.245 53.591^12 7^118 69 88 604 135 0.245 53.591^12 9^120 73 88 558 135 0.245 53.591^12 11^122 68 88 630 100 0.245 53.591^12 13^124 75 88 597 120 0.245 4591^12 16^127 65 88 538 120 0.245 3591^12 18^129 76 88 543 110 0.245 3591^12 20^131 75 88 597 120 0.245 3591^12 22 133 67 171.75 879 120 0.408 7091^12 24 135 74 171.75 941 120 0.408 7091^12 26 137 71 171.75 901 120 0.408 7091^12 30^141 73 171.75 913 120 0.408 7092^01 2^144 65 171.75 962 120 0.204 4592^01 5^147 75 171.75 1012 160 0.204 52.592^01 6^148 67 171.75 1002 120 0.204 52.592^01 8^150 70 171.75 1012 120 0.204 52.592^01 10^152 70 187 1046 130 0.204 52.592^01 12^154 70 187 1014 130 0.204 52.592^01 14^156 75 69 1442 130 0.245 7592^01 15^157 77 69 1435 130 0.245 7592^01 17^159 75 69 1436 130 0.245 7592^01 20^162 68 69 1492 250 0.202 7592^01 22 164 73 69 1559 250 0.202 7592^01 24^166 73 80 1615 250 0.202 68.7592^01 26^168 70 80 1578 225 0.202 68.7592^01 30^172 65 80 1571 225 0.202 72.592^01 31^173 76 80 1615 225 0.202 72.592^02 2^175 72 80 1492 180 0.231 82.592^02 3^176 73 80 1462 180 0.231 87.592^02 5^178 74 80 1630 180 0.231 8092^02 6^179 74 80 1553 180 0.231 8092^02 7^180 68 80 1572 180 0.231 8092^02 10^183 69 80 1518 210 0.231 8092^02 11^184 68 80 1564 210 0.231 77.592^02 12^185 75 80 1642 210 0.231 77.592^02 13^186 71 80 1639 210 0.231 77.592^02 14^187 72 80 1601 210 0.231 77.592^02 16^189 69 80 1444 210 0.231 77.592^02 18^191 67 115 2060 210 0.231 8092^02 19^192 66 115 2142 210 0.231 8092^02 21^194 75 115 2294 210 0.231 80126AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4C1^Simulated CH3OH o-PO4 NaHCO3(yy mm dd)^Overflow (g/L)^Influent^(mL/L)^(gP/L)^(g/L)(Lid)^ (mgN/L)92 02 24 197 74 115 1940 210 0.231 8092 02 27 200 75 115 1923 164.5 0.231 87.592 02 28 201 72 115 1886 164.5 0.231 87.592 02 29 202 74 115 1898 164.5 0.231 4092 03 1 203 77 115 1940 164.5 0.231 4092 03 2 204 67 115 2094 164.5 0.231 4092 03 3 205 75 115 2028 164.5 0.231 4092 03 4 206 72 115 2460 164.5 0.231 3092 03 5 207 67 115 2352 164.5 0.231 3092 03 6 208 71 115 2280 164.5 0.231 3092 03 7 209 68 115 2088 164.5 0.231 2092 03 10 212 67 115 2123 164.5 0.231 2092 03 11 213 69 115 2381 164.5 0.231 20127AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^System^System^System^Anoxic^AnoxicData^Day^ Loading Loading Loading ORP pH(yy mm dd) CH3OH^o-PO4^NaHCO3 (mV)^(gCOD/d) (gP/d)^(gCaCO3/d)91 08 12 1 0.00 0.069 2102 -13091 08 14 3 0.00 0.081 2099 -2591 08 16 5 0.00 0.093 2096 -5791 08 18 7 0.00 0.101 1955 -10091 08 20 9 0.00 0.099 1954 -4091 08 23 12 0.00 0.099 1957 -591 08 26 15 0.00 0.098 2036 2091 08 28 17 0.00 0.094 2034 5 7.691 08 31 20 0.00 0.098 2036 2091 09 2 22 0.00 0.094 2037 4391 09 4 24 0.00 0.095 1889 4991 09 7 27 4.27 0.093 1861 8 7.991 09 9 29 4.27 0.099 1861 -41 7.791 09 12 32 7.84 0.103 1833 -86 8.091 09 16 36 7.84 0.102 1832 -105 7.991 09 17 37 7.84 0.103 1795 -100 7.991 09 19 39 12.54 0.100 1786 -95 8.091 09 21 41 12.31 0.098 1810 -95 7.991 09 23 43 12.31 0.098 1815 -127 7.991 09 26 46 7.86 0.094 1807 -120 7.991 09 28 48 7.98 0.100 1806 -133 7.891 09 30 50 12.14 0.096 1809 -132 7.891 10 2 52 9.69 0.094 1807 -121 7.791 10 4 54 10.26 0.101 1807 -155 7.791 10 6 56 10.54 0.097 1807 -195 7.891 10 8 58 11.11 0.099 1801 -168 7.891 10 11 61 10.40 0.095 1810 -173 7.891 10 14 64 9.26 0.097 1776 -100 7.991 10 16 66 9.69 0.095 1143 -88 7.991 10 18 68 14.53 0.094 1147 -112 7.891 10 20 70 19.38 0.099 1142 -147 7.891 10 23 73 19.95 0.099 1148 -145 7.991 10 25 75 15.39 0.101 1143 -140 7.991 10 27 77 15.17 0.102 1144 -145 7.991 10 29 79 15.17 0.106 1143 -158 7.991 11 1 82 16.71 0.107 1145 -165 7.991 11 3 84 16.71 0.106 1158 -180 7.991 11 5 86 17.44 0.102 1157 -175 7.991 11 7 88 16.95 0.104 1158 -' 33 7.991 11 10 91 16.71 0.099 1148 -'7.: 7.891 11 12 93 17.68 0.102 1148 -137 7.791 11 13 94 17.92 0.104 1143 -108 7.891 11 15 96 16.95 0.101 1300 -154 7.891 11 17 98 16.71 0.105 1296 -139 7.791 11 20 101 16.95 0.103 1316 -164 7.891 11 22 103 16.95 0.090 1413 -194 7.6128AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^System^System^System^Anoxic^AnoxicDate^Day^ Loading Loading Loading ORP pH(yy mm dd) CH3OH^o-PO4^NaHCO3 (mV)(gCOD/d) (gP/d)^(gCaCO3/d)91^11^25^106 17.44 0.084 1612 -180 7.791^11^26^107 17.68 0.088 2271 -155 7.991^11^29^110 18.16 0.090 2529 -135 7.991^12^2^113 17.92 0.088 2579 -145 8.191^12^4^115 17.92 0.088 2515 -150 8.191^12^6^117 28.08 0.089 2409 -150 8.191^12^7^118 27.70 0.085 2490 -237 8.091^12^9^120 27.70 0.086 2472 -152 8.191^12^11^122 21.09 0.090 2570 -146 8.291^12^13^124 25.64 0.089 2268 -168 8.291^12^16^127 25.99 0.091 2347 -195 8.191^12^18^129 22.88 0.090 2359 -220 7.991^12^20^131 24.62 0.086 2364 -310 7.991^12^22^133 25.30 0.145 3071 -179 8.291^12^24^135 25.30 0.150 3078 -280 8.291^12^26^137 25.30 0.148 3048 -245 8.191^12^30^141 25.30 0.148 3055 -230 7.992^01^2^144 25.99 0.152 3655 -199 8.392^01^5^147 35.10 0.151 4108 -183 8.392^01^6^148 25.64 0.147 4055 -188 8.392^01^8^150 25.30 0.152 4088 -171 8.492^01^10^152 27.04 0.142 3850 -180 8.492^01^12^154 27.41 0.147 3964 -205 8.292^01^14^156 30.37 0.243 6110 -200 8.392^01^15^157 29.63 0.229 5738 -152 8.492^01^17^159 28.89 0.223 5219 -179 8.592^01^20^162 53.43 0.175 5212 -175 8.492^01^22 164 52.71 0.175 5346 -177 8.592^01^24^166 51.29 0.175 4825 -238 8.492^01^26 168 47.44 0.175 4776 -203 8.692^01^30^172 50.65 0.181 5140 -208 8.692^01^31^173 48.08 0.170 5134 -185 8.592^02^2^175 35.90 0.191 5309 -150 8.592^02^3^176 37.44 0.208 5793 -166 8.692^02^5^178 37.95 0.211 5866 -182 8.692^02^6^179 37.95 0.219 5760 -178 8.692^02^7^180 37.95 0.205 5743 -189 8.792^02^10^183 45.48 0.200 5484 -196 8.692^02^11^184 45.48 0.205 5499 -201 8.692^02^12^185 46.07 0.200 5464 -220 8.492^02^13^186 45.48 0.194 5495 -240 8.592^02^14^187 47.27 0.193 5332 -250 8.492^02^16^189 44.28 0.200 5286 -236 8.692^02^18^191 43.68 0.200 5442 -248 8.392^02^19^192 44.88 0.200 5591 -165 8.492^02^21^194 46.07 0.200 5922 -132 8.3129AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicData^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD(yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)91 08 12^1 3.6 170 248 1.091 08 14^3 3.1 156 260 40191 08 16^5 3.5 107 31291 08 18^7 4.7 52 30491 08 20^9 4.0 28 281 1.2 22 43291 08 23^12 4.4 31 22391 08 26^15 3.7 36 19891 08 28^17 4.5 31 202 57091 08 31^20 4.7 30 18691 09 2^22 5.2 31 199 1.091 09 4^24 1480 1934 4.7 26 193 25 40591 09 7^27 1630 1978 4.1 25 14491 09 9^29 1550 1896 3.7 27 144 0.7 46591 09 12^32 1540 1804 4.1 30 15191 09 16^36 1620 1892 4.0 32 6391 09 17^37 1700 2092 4.2 39 57 0.3 29 41391 09 19^39 1690 1930 3.8 31 491 09 21^41 1750 2153 4.3 27 091 09 23^43 1710 1995 4.5 33 2 0.1 44591 09 26^46 1830 2263 4.2 28 591 09 28^48 1720 1982 4.9 25 5 34991 09 30^50 1750 2073 5.3 26 1 0.091 10 2^52 1770 2134 4.6 28 191 10 4^54 1760 2060 3.8 24 1 28091 10 6^56 1810 2082 3.9 25 0 0.091 10 8^58 1690 2037 4.1 28 091 10 11^61 1780 2115 3.4 26 0 36 26091 10 14^64 1850 2054 4.2 110 23 0.191 10 16^66 2100 2516 4.3 69 3791 10 18^68 1930 2365 3.6 54 14 38891 10 20^70 2020 2486 4.5 55 291 10 23^73 1980 2396 3.9 52 2 0.0 36291 10 25^75 1010 1271 4.8 44 591 10 27^77 1070 1284 5.1 42 3 41891 10 29^79 2200 2531 4.5 49 291 11 1^82 2080 2604 4.1 45 1 0.091 11 3^84 2110 2493 4.6 40 1 37091 11 5^86 2060 2394 4.4 47 191 11 7^88 2140 2456 3.9 49 1 56 37591 11 10^91 2090 2341 3.4 90 1191 11 12^93 2130 2440 3.8 208 191 11 13^94 2190 2599 4.1 200 191 11 15^96 2350 2562 4.3 188 2 40391 11 17^98 2240 2594 4.6 189 391 11 20^101 2660 2711 3.8 201 391 11 22^103 2200 2585 3.9 100 0130AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO^COD(yy mm dd)^(maiL)^(mg/L)^(mgP/L)^( mgN/L)^(mgN/L)^(mgN/L)^(mgA.)^(mg/1-)91 11 25 106 2060 2555 3.9 86 21 36691 11 26 107 2200 2515 4.2 78 1191 11 29^110 2310 2656 4.8 100 1391 12 2^113 2280 2572 4.0 85 14 45 39491 12 4^115 2370 2754 3.9 68 2791 12 6^117 2310 2758 3.3 80 491 12 7^118 2440 2796 3.6 84 1 45091 12 9^120 2400 2811 3.8 79 491 12 11^122 2710 3125 4.2 62 6891 12 13^124 2580 3011 4.6 80 2 43091 12 16^127 2630 2912 3.7 71 091 12 18^129 2610 3032 3.8 74 1 0.391 12 20^131 2730 2662 3.5 64 0 74 51091 12 22 133 1700 2044 5.5 208 091 12 24 135 1520 1685 5.7 285 1 C 391 12 26^137 3180 3774 6.8 260 191 12 30^141 2920 3329 5.6 322 40 48092 01 2^144 4430 5260 5.0 155 62 0.492 01 5^147 3010 3456 7.1 126 592 01 6^148 3160 3663 7.6 122 3 1.5 48192 01 8^150 3050 3535 6.3 127 2 41792 01 10^152 3090 3462 5.9 135 5 2.2 86 40992 01 12^154 3180 3641 5.5 133 4 2.1 45492 01 14^156 3120 3629 8.5 264 56 15.092 01 15^157 2880 3341 11.1 235 110 33.3 113 52392 01 17^159 2940 3386 12.3 137 139 54.792 01 20 182 3530 4109 9.8 195 6 4.492 01 22 164 3640 4146 8.1 194 2 1.7 116 47792 01 24^166 3910 4429 9.2 80 9 3.092 01 26 168 3990 4722 8.0 205 2 1.292 01 30^172 4120 4552 9.6 206 0 0.692 01 31^173 5400 6043 9.5 185 1 0.7 119 53192 02 2^175 5340 6265 10.5 185 60 18.192 02 3^176 5340 6409 8.2 184 29 29.392 02 5^178 5280 6164 8.1 181 18 21.9 170 50892 02 6^179 5350 6104 9.4 181 13 13.092 02 7^180 5410 6472 10.2 178 22 12.492 02 10^183 5460 6382 8.6 186 2 2.2 43892 02 11^184 5410 6255 7.6 175 1 1.0 126 41792 02 12^185 5450 6138 8.8 211 0 0.0 52792 02 13^186 5500 6633 8.3 182 5 1.192 02 14^187 5410 6036 7.2 205 0 0.192 02 16^189 5450 6243 9.6 174 0 0.1 135 57392 02 18^191 7340 7840 9.3 396 0 0.1 63492 02 19^192 7610 8980 10.8 575 5 0.192 02 21^194 6590 8690 11.4 384 34 0.7131AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicData^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD(yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)92 02 24 197 6630 7650 10.3 430 3 3.1 58892 02 27 200 6870 8860 10.7 447 19 1.3 31592 02 28 201 6096 9120 11.2 375 5 2.592 02 29 202 6320 9900 10.1 394 2 0.192 03 1 203 6040 9211 11.6 394 11 0.992 03 2 204 6500 9298 11.8 603 4 1.2 21992 03 3 205 5990 8840 14.0 548 3 6.8 74492 03 4 206 6610 8215 15.7 662 5 1.892 03 5 207 6240 8339 11.5 758 9 0.292 03 6 208 5470 7860 11.9 503 5 0.892 03 7 209 6490 8450 10.6 532 1 5.292 03 10 212 6140 8542 734 318 65092 03 11 213 6020 8395 758132AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx(yy mm dd) (mg/L) (mg/L)^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)91 08 12 1 4.0 3.6 149 25191 08 14 3 5.0 2.8 141 26891 08 16 5 4.5 2730 3459 3.8 95 32491 08 18 7 4.0 4.0 33 31291 08 20 9 4.0 7.2 2580 3680 3.6 21 29291 08 23 12 4.0 3.9 8 31391 08 26 15 4.0 3.5 4 22891 08 28 17 4.6 7.2 4.0 3 22991 08 31 20 4.1 7.2 4.3 2 19991 09 2 22 3.8 7.3 4.7 1 22191 09 4 24 4.9 7.5 1650 2181 5.1 0 23891 09 7 27 3.8 7.8 1600 1990 3.7 0 19191 09 9 29 4.5 7.6 1800 2243 4.0 1 19791 09 12 32 4.0 7.7 1520 1808 4.3 1 18291 09 16 36 4.0 7.8 1590 1887 4.7 1 9491 09 17 37 4.0 7.6 1680 2084 4.5 5 8691 09 19 39 3.4 7.7 1710 1965 4.5 2 6991 09 21 41 2.2 7.6 1770 2205 4.5 2 6391 09 23 43 3.7 7.5 1740 2075 4.6 1 3291 09 26 46 3.5 7.5 1810 2257 4.9 2 2991 09 28 48 3.2 7.5 1820 2132 4.3 1 3591 09 30 50 3.3 7.5 1760 2085 4.9 0 2991 10 2 52 4.0 7.5 1790 2159 5.3 0 3091 10 4 54 4.0 7.5 1690 2003 4.6 0 2791 10 6 56 4.2 7.5 1760 2041 4.2 0 2691 10 8 58 3.5 7.5 1710 1992 4.5 0 2491 10 11 61 4.0 7.5 1700 2090 3.6 0 2891 10 14 64 2.9 7.4 1850 1994 4.6 86 6391 10 16 66 3.3 7.4 1780 2162 3.8 46 7691 10 18 68 3.0 7.4 1690 2100 3.7 29 5891 10 20 70 3.5 7.4 1970 2445 4.6 28 5191 10 23 73 3.1 7.3 1930 2323 3.6 14 5491 10 25 75 3.2 7.3 2000 2504 5.2 0 5591 10 27 77 3.2 7.3 1990 2371 5.2 0 5991 10 29 79 3.5 7.4 2210 2538 4.0 0 4891 11 1 82 3.5 7.3 2310 2897 4.0 0 5091 11 3 84 3.5 7.5 2190 2587 3.9 0 4891 11 5 86 3.5 7.5 2220 2624 4.2 0 4891 11 7 88 3.5 7.4 2200 2588 3.8 0 5391 11 10 91 1.9 6.5 2220 2542 3.3 27 5691 11 12 93 3.5 6.4 2250 2635 3.3 107 8291 11 13 94 3.2 6.3 2180 2601 3.7 96 8991 11 15 96 3.2 6.0 2250 2693 3.9 109 9391 11 17 98 2.5 6.3 1930 2579 4.4 119 8691 11 20 101 2.8 6.2 2890 2717 3.4 134 8291 11 22 103 3.0 6.0 2220 2592 3.6 18 92133AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx(yy mm dd) (mg/L) (n19/1-1^Img/L)^(mgP/L)^(mgN/L)^(mgN/L)91 11 25 106 4.0 5.9 2430 2555 3.5 16 11391 11 26 107 3.5 6.6 2180 2507 3.4 15 11191 11 29 110 4.0 7.4 2090 2420 5.2 10 11691 12 2 113 4.5 7.6 2360 2676 3.7 5 11491 12 4 115 4.0 7.3 2510 2930 4.3 1 12891 12 6 117 3.5 7.3 2770 3310 3.1 0 11191 12 7 118 2.5 7.5 2680 3139 3.7 0 8591 12 9 120 2.2 7.8 2680 3155 4.4 0 7991 12 11 122 5.0 7.3 2790 3269 4.6 2 18791 12 13 124 2.5 7.3 2810 3292 5.0 1 11091 12 16 127 4.0 7.4 2870 3246 4.0 0 6491 12 18 129 2.5 7.2 2840 3300 3.7 0 8791 12 20 131 3.0 7.0 2910 3344 3.7 0 7891 12 22 133 5.0 7.6 1720 2070 5.3 91 7291 12 24 135 3.0 7.4 1520 1716 5.2 163 11091 12 26 137 3.0 7.1 2940 3528 6.4 156 8891 12 30 141 4.0 7.3 3220 3709 4.9 207 14292 01 2 144 2.4 6.7 2980 3543 5.6 18 18392 01 5 147 2.6 7.1 3370 3924 6.2 3 12092 01 6 148 2.7 7.2 3290 3816 6.2 1 12592 01 8 150 3.4 7.2 3390 3918 5.8 2 13492 01 10 152 3.0 7.2 3140 3903 5.6 1 13192 01 12 154 3.0 7.4 3220 3845 4.8 0 11892 01 14 156 1.0 6.6 3370 3964 8.0 93 22192 01 15 157 1.5 6.5 2870 3379 10.8 65 25492 01 17 159 3.4 6.7 3000 3462 11.0 18 32592 01 20 162 2.2 7.3 3450 4035 10.1 2 15692 01 22 164 2.4 7.2 3610 4120 8.8 2 16292 01 24 166 1.8 7.6 3760 4278 9.4 1 16992 01 26 168 3.0 7.0 4200 5011 7.5 18 10592 01 30 172 2.0 7.8 4440 5026 8.8 0 13492 01 31 173 2.0 7.1 5400 6198 9.6 0 12592 02 2 175 2.5 6.8 5330 6383 11.7 1 20092 02 3 176 2.6 7.5 5150 6191 10.1 0 17692 02 5 178 2.8 7.6 5420 6438 9.3 0 16992 02 6 179 2.9 7.5 5180 5997 8.1 0 16492 02 7 180 4.2 7.6 5200 6229 9.3 0 17492 02 10 183 3.7 7.4 5470 6522 8.4 1 16892 02 11 184 3.7 7.4 5540 6465 6.9 0 18092 02 12 185 3.1 7.5 5890 6734 9.0 0 17992 02 13 186 3.5 7.4 5610 6730 9.2 0 16992 02 14 187 2.9 7.3 5540 6351 8.2 0 16792 02 16 189 4.0 7.3 5610 6435 9.8 2 17792 02 18 191 3.5 7.4 6980 9300 8.5 181 18392 02 19 192 3.5 6.7 7460 9890 11.8 246 8392 02 21 194 4.0 7.0 6440 8840 13.0 473 238134AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOx(yy mm dd) (mg/L) (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)92 02 24 197 3.9 7.1 6650 8010 11.0 204 9192 02 27 200 4.0 6.3 6440 8620 12.4 364 21592 02 28 201 5.0 8.9 7010 9260 10.1 195 10492 02 29 202 4.7 7.7 6800 8890 9.9 282 13392 03 1 203 5.0 7.8 6480 9125 11.3 235 12492 03 2 204 5.2 7.9 6770 9275 10.5 421 8292 03 3 205 3.0 8.3 6470 9202 11.7 477 6592 03 4 206 4.0 8.2 6830 9445 13.8 512 9992 03 5 207 3.0 7.8 6840 9176 12.5 593 10792 03 6 208 2.5 8.1 6780 9783 11.1 422 13692 03 7 209 5.5 7.9 6210 8275 11.6 468 7092 03 10 212 7.0 8.3 6570 9299 71592 03 11 213 8.0 8.3 6370 8887 612135AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^EffluentDate^Day^NO2^BOO^COD VSS^TSS^NH4^NOx(yy mm dd)^(mgN/L)^(mg/L)^(mg/I)^(mg/L)^(mg/L)^(mgN/L)^(mgN/L)91 08 12^1 1.3 147 24891 08 14^3 246 142 27191 08 16^5 19 24 94 32591 08 18^7 31 31191 08 20^9 1.5 6 317 33 47 20 29191 08 23^12 7 29691 08 26^15 3 23491 08 28^17 455 2 21891 08 31^20 1 20491 09 2^22 1.1 1 22591 09 4^24 8 284 24 32 0 23491 09 7^27 21 26 1 20191 09 9^29 0.8 340 20 25 1 19991 09 12^32 36 43 1 18091 09 16^36 24 28 1 9491 09 17^37 0.4 8 309 25 31 1 8291 09 19^39 19 22 3 6591 09 21^41 20 25 2 6391 09 23^43 0.3 346 26 31 1 5491 09 26^46 27 33 2 3391 09 28^48 280 28 32 1 3091 09 30^50 0.1 24 28 0 3091 10 2^52 33 40 0 2991 10 4^54 266 20 24 0 2791 10 6^56 0.1 28 32 0 2791 10 8^58 19 22 0 2491 10 11^61 12 225 23 28 0 2891 10 14^64 0.3 31 35 84 6391 10 16^66 33 40 47 7691 10 18^68 293 24 29 28 5591 10 20^70 21 26 26 5391 10 23^73 0.2 261 41 49 15 5491 10 25^75 32 40 0 5591 10 27^77 290 35 42 0 5791 10 29^79 29 34 0 5291 11 1^82 0.3 20 25 0 5291 11 3^84 218 28 33 0 4891 11 5^86 41 48 0 4691 11 7^88 10 275 49 57 0 5391 11 10^91 53 61 27 5691 11 12^93 68 79 105 7891 11 13^94 72 85 100 9091 11 15^96 304 73 87 107 9091 11 17^98 97 112 117 8691 11 20^101 75 92 129 7991 11 22^103 93 106 17 92'36AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^EffluentDate^Day^NO2^BOD^COD VSS^TSS^NH4^NOx(yy mm dd)^(rtigN/L)^(ing/L)^(mg/L) (mg/L)^(mg/L)^(mgN/L)^(mgN/L)91 11 25 106 330 21 24 16 11191 11 26 107 20 23 15 11191 11 29 110 85 96 0 11691 12 2 113 10 350 55 61 6 11291 12 4 115 157 180 1 12691 12 6 117 193 230 1 10991 12 7 118 350 94 110 0 8591 12 9 120 74 87 0 7991 12 11 122 52 61 3 18391 12 13 124 320 82 94 1 10391 12 16 127 36 40 0 6591 12 18 129 17.5 87 100 0 8691 12 20 131 8 340 71 84 0 8291 12 22 133 141 166 91 7391 12 24 135 24.3 127 140 160 11291 12 26 137 160 190 154 8691 12 30 141 375 125 144 2 14592 01 2 144 22.2 208 241 17 11292 01 5 147 121 140 3 12392 01 6 148 51.5 315 29 34 1 12292 01 8 150 333 91 103 1 12992 01 10 152 79.3 9 316 160 179 1 12592 01 12 154 84.7 435 186 214 1 11692 01 14 156 63.2 123 145 92 22192 01 15 157 55.0 14 327 216 254 64 24992 01 17 159 57.7 118 134 17 32592 01 20 162 123.8 126 147 2 15392 01 22 164 145.3 14 333 153 176 2 16492 01 24 166 154.2 74 83 1 16792 01 26 168 108.4 145 172 17 10392 01 30 172 108.1 122 136 0 13292 01 31 173 105.3 11 364 82 93 0 12892 02 2 175 132.0 117 137 1 20892 02 3 176 151.0 184 222 0 17392 02 5 178 172.3 14 345 138 159 0 17392 02 6 179 153.9 207 235 0 16392 02 7 180 92.7 130 155 0 17592 02 10 183 130.3 345 121 143 1 16592 02 11 184 128.8 12 401 92 108 0 18492 02 12 185 103.4 382 118 132 0 18092 02 13 186 116.8 208 248 0 16692 02 14 187 101.1 130 148 0 16992 02 16 189 108.3 8 329 128 146 2 17892 02 18 191 118.2 406 121 141 192 18592 02 19 192 91.4 127 167 249 7992 02 21 194 197.0 382 490 478 232137AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^EffluentDate^Day^NO2^BOD^COD VSS^TSS^NH4^NOxlyy mm dd)^(mgN/L)^Img/L)^(mg/L)^ (mg/L)^(mg/L)^(mgN/L)^(mgN/L)92 02 24 197 103.0 423 148 180 210 8892 02 27 200 206.0 37 111 153 369 20692 02 28 201 91.2 391 499 198 10092 02 29 202 96.0 153 194 285 12892 03 1 203 112.0 122 174 231 11892 03 2 204 75.0 56 145 199 422 8092 03 3 205 60.2 531 200 282 484 6992 03 4 206 72.5 135 183 497 10392 03 5 207 93.8 184 246 578 11292 03 6 208 93.9 133 191 422 12892 03 7 209 64.7 277 365 384 7092 03 10 212 38 573 167 235 71992 03 11 213 200 272 578138AMMONIA LOADING PHASE (10 DAY AEROBIC SAT SYSTEM, 20 C)^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^BOD^COD VSS/TSS NOVNOX NOX Load COD:NOX COD:NOX(yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed^(gCOD/gN)^(gCOD/gN)91 08 12^1 0.00 13.9 0.091 08 14^3 250 17.7 0.091 08 16^5 20.6 0.091 08 18^7 20.4 0.091 08 20^9 8 301 0.00 15.6 0.091 08 23^12 17.4 0.091 08 26^15 13.6 0.091 08 28^17 462 13.8 0.0 0.091 08 31^20 11.0 0.0 0.091 09 2^22 0.01 13.9 0.0 0.091 09 4^24 8 280 0.77 14.4 0.0 0.091 09 7^27 0.82 10.4 0.4 3.791 09 9^29 324 0.82 0.00 10.8 0.4 3.091 09 12^32 0.85 10.8 0.7 19.491 09 16^36 0.86 5.0 1.6 7.491 09 17^37 8 302 0.81 0.00 5.3 1.5 6.691 09 19^39 0.88 4.1 3.0 3.391 09 21^41 0.81 4.0 3.1 3.191 09 23^43 325 0.86 0.05 1.9 6.4 6.891 09 26^46 0.81 1.8 4.3 5.391 09 28^48 267 0.87 2.0 4.1 5.091 09 30^50 0.84 0.00 1.6 7.7 8.091 10 2^52 0.83 1.8 5.5 5.791 10 4^54 265 0.85 1.9 5.5 5.791 10 6^56 0.87 0.00 1.6 6.4 6.591 10 8^58 0.83 1.6 6.9 7.091 10 11^61 10 238 0.84 1.8 5.9 5.991 10 14^64 0.90 0.00 4.0 2.3 4.091 10 16^66 0.83 4.2 2.3 5.591 10 18^68 290 0.82 3.2 4.5 6.391 10 20^70 0.81 3.1 6.3 6.691 10 23^73 253 0.83 0.01 3.1 6.4 6.691 10 25^75 0.79 3.2 4.8 5.391 10 27^77 301 0.83 3.9 3.9 4.191 10 29^79 0.87 2.7 5.6 5.891 11 1^82 0.80 0.00 3.2 5.2 5.391 11 3^84 225 0.85 3.1 5.4 5.491 11 5^86 0.86 2.7 6.5 6.691 11 7^88 8 276 0.87 2.9 5.9 6.091 11 10^91 0.89 3.0 5.5 7.191 11 12^93 0.87 5.2 3.4 3.491 11 13^94 0.84 4.8 3.7 3.891 11 15^96 285 0.92 6.0 2.8 2.991 11 17^98 0.86 4.8 3.5 3.791 11 20^101 0.98 4.9 3.5 3.691 11 22^103 0.85 5.8 2.9 2.9139AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX(yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed19COD/gN)^(gCOD/gN)91 11 25 106 312 0.81 7.2 2.4 3.191 11 26^107 0.87 6.2 2.9 3.291 11 29^110 0.87 6.5 2.8 3.291 12 2^113 11 367 0.89 6.5 2.7 3.291 12 4^115 0.86 7.2 2.5 3.391 12 6^117 0.84 6.0 4.7 4.991 12 7^118 345 0.87 5.0 5.5 5.691 12 9^120 0.85 5.0 5.6 5.991 12 11^122 0.87 10.8 2.0 3.491 12 13^124 303 0.86 7.1 3.6 3.791 12 16^127 0.90 3.5 7.5 7.591 12 18^129 0.86 0.41 5.6 4.1 4.191 12 20^131 9 358 1.03 5.0 4.9 4.991 12 22 133 0.83 4.1 6.2 6.291 12 24 135 0.90 0.60 6.9 3.7 3.791 12 26^137 0.84 5.3 4.8 4.891 12 30^141 355 0.88 8.8 2.9 4.392 01 2^144 0.84 0.01 9.9 2.6 4.492 01 5^147 0.87 7.6 4.6 4.892 01 6^148 310 0.86 0.57 7.0 3.6 3.792 01 8^150 321 0.86 7.9 3.2 3.392 01 10^152 10 319 0.89 0.42 7.8 3.5 3.692 01 12^154 437 0.87 0.50 7.0 3.9 4.192 01 14^156 0.86 0.27 14.0 2.2 3.192 01 15^157 12 327 0.86 0.30 16.6 1.8 3.592 01 17^159 0.87 0.39 20.4 1.4 2.892 01 20^162 0.86 0.72 8.9 6.0 6.392 01 22 164 9 330 0.88 0.81 10.0 5.3 5.392 01 24 166 0.88 0.35 10.5 4.9 5.292 01 26^168 0.85 0.70 6.1 7.8 7.992 01 30^172 0.91 1.18 7.2 7.0 7.192 01 31^173 13 373 0.89 0.50 8.2 5.9 6.092 02 2^175 0.85 0.30 12.1 3.0 4.692 02 3^176 0.83 1.01 10.7 3.5 4.392 02 5^178 14 356 0.86 1.19 10.6 3.6 4.192 02 6^179 0.88 1.04 10.2 3.7 4.192 02 7^180 0.84 0.57 9.8 3.9 4.592 02 10^183 353 0.86 0.95 9.7 4.7 4.892 02 11^184 6 394 0.86 0.86 10.3 4.4 4.592 02 12^185 377 0.89 0.11 11.5 4.0 4.092 02 13^186 0.83 0.25 10.1 4.5 4.692 02 14^187 0.90 0.54 10.2 4.6 4.692 02 16^189 11 334 0.87 0.54 10.3 4.3 4.392 02 18^191 389 0.94 0.67 10.2 4.3 4.392 02 19^192 0.85 0.01 4.5 9.9 10.692 02 21^194 0.76 0.02 15.3 3.0 3.6140AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX(yy mm dd)^(mg/L)^(mg/L) (gN/d)^Entering^Removed(gCOD/gN)^(gCOD/gN)92 02 24 197 428 0.87 1.19 5.7 8.1 8.492 02 27 200 44 0.78 0.07 13.7 2.6 2.992 02 28 201 0.80 0.47 6.3 5.4 5.892 02 29 202 0.77 0.06 8.3 4.1 4.292 03 1 203 0.72 0.08 8.2 4.2 4.692 03 2 204 51 0.71 0.33 4.6 8.2 8.692 03 3 205 510 0.78 2.65 4.1 9.4 9.992 03 4 206 0.74 0.39 6.1 6.1 6.492 03 5 207 0.76 0.02 6.1 6.2 6.992 03 6 208 0.77 0.15 8.1 4.6 4.892 03 7 209 0.77 10.16 3.9 9.6 9.792 03 10 212 43 573 0.7092 03 11 213 0.79141AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitrn %Denitrn Specific NH4 Removal^% NH4 VSS/TSS(yy mm dd)^Rate Denitrn Rate^Rate Removal(mgN/d)^(mgN/d/gVSS) (mgN/d)91 08 12^1 -758 -791 08 14^3 -483 -491 08 16^5 293 4 0.7991 08 18^7 367 991 08 20^9 1467 45 0.7091 08 23^12 912 3191 08 26^15 -67 -391 08 28^17 -90 -1 2 091 08 31^20 -1146 -10 310 1491 09 2^22 -638 -5 86 491 09 4^24 741 5 100 456 20 0.7691 09 7^27 1154 11 142 458 22 0.8091 09 9^29 1432 13 185 499 22 0.8091 09 12^32 404 4 52 18 1 0.8491 09 16^36 1063 21 131 -90 -5 0.8491 09 17^37 1181 22 139 -427 -18 0.8191 09 19^39 3832 93 453 -5 -0 0.8791 09 21^41 3967 99 453 -64 -3 0.8091 09 23^43 1803 94 211 -229 -11 0.8491 09 26^46 1486 81 162 212 9 0.8091 09 28^48 1611 82 187 348 17 0.8591 09 30^50 1526 97 174 237 13 0.8491 10 2^52 1707 96 193 -47 -3 0.8391 10 4^54 1799 97 204 332 16 0.8491 10 6^56 1617 98 179 279 14 0.8691 10 8^58 1591 99 188 -186 -10 0.8691 10 11^61 1755 99 197 138 7 0.8191 10 14^64 2337 58 253 234 3 0.9391 10 16^66 1767 43 168 1033 19 0.8291 10 18^68 2301 71 238 1428 29 0.8091 10 20^70 2949 95 292 672 15 0.8191 10 23^73 3007 97 304 553 13 0.8391 10 25^75 2901 90 574 -39 -1 0.8091 10 27^77 3682 95 688 -2 -0 0.8491 10 29^79 2610 96 237 -87 -3 0.8791 11 1^82 3183 98 306 13 0 0.8091 11 3^84 3067 99 291 -390 -15 0.8591 11 5^86 2626 98 255 394 11 0.8591 11 7^88 2810 98 263 202 6 0.8591 11 10^91 2347 77 225 1692 22 0.8791 11 12^93 5136 99 482 -2567 -20 0.8591 11 13^94 4725 98 432 -1409 -12 0.8491 11 15^96 5928 98 505 -1134 -9 0.8491 11 17^98 4572 96 408 272 2 0.7591 11 20^101 4720 96 355 -59 -0 1.0691 11 22^103 5806 100 528 -376 -5 0.86142AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitrn %Denitrn Specific NH4 Removal^% NH4 VSSfTSS(yy mm dd)^Rate Denitrn Rate^Rate Removal(mgN/d)^(mgN/d/gVSS) (mgN/d)91 11 25 106 5638 78 547 318 5 0.9591 11 26 107 5479 89 498 2070 29 0.8791 11 29 110 5625 87 487 -265 -4 0.8691 12 2 113 5587 86 490 378 6 0.8891 12 4 115 5425 76 458 1579 26 0.8691 12 6 117 5702 95 494 1189 19 0.8491 12 7 118 4909 98 402 -99 -2 0.8591 12 9 120 4716 95 393 -343 -6 0.8591 12 11 122 6229 58 460 1855 31 0.8591 12 13 124 6881 97 533 169 3 0.8591 12 16 127 3446 100 262 919 17 0.8891 12 18 129 5575 99 427 -135 -2 0.8691 12 20 131 5029 100 368 928 16 0.8791 12 22 133 4063 100 478 159 1 0.8391 12 24 135 6858 99 902 -828 -4 0.8991 12 26 137 5229 99 329 431 2 0.8391 12 30 141 5907 67 405 -1038 -5 0.8792 01 2 144 5942 60 268 358 3 0.8492 01 5 147 7305 96 485 260 3 0.8692 01 6 148 6877 98 435 1176 13 0.8692 01 8 150 7710 98 506 898 9 0.8792 01 10 152 7428 95 481 771 8 0.8092 01 12 154 6683 96 420 525 5 0.8492 01 14 156 9916 71 636 465 2 0.8592 01 15 157 8357 50 580 680 4 0.8592 01 17 159 10260 50 698 5651 36 0.8792 01 20 162 8446 95 479 1493 10 0.8592 01 22 164 9884 99 543 785 5 0.8892 01 24 166 9839 94 503 10031 64 0.8892 01 26 168 6000 98 301 2725 16 0.8492 01 30 172 7169 100 348 2349 15 0.8892 01 31 173 8052 99 298 1122 8 0.8792 02 2 175 7884 65 295 1783 12 0.8492 02 3 176 8613 81 323 1932 13 0.8392 02 5 178 9291 88 352 2127 14 0.8492 02 6 179 9254 91 346 2412 16 0.8692 02 7 180 8403 85 311 2919 20 0.8392 02 10 183 9569 98 350 2076 14 0.8492 02 11 184 10173 99 376 3279 22 0.8692 02 12 185 11504 100 422 -214 -1 0.8792 02 13 186 9833 97 358 2212 15 0.8392 02 14 187 10231 100 378 437 3 0.8792 02 16 189 10235 100 376 2505 18 0.8792 02 18 191 10155 100 277 4282 14 0.7592 02 19 192 4218 93 111 -3176 -9 0.7592 02 21 194 12774 84 388 22355 44 0.73143AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS(yy mm dd)^Rate Denitm Rate^Rate RemovalimgN/d)^(mgN/d/gVSS) (mgN/d)92 02 24 197 5501 97 166 1610 5 0.8392 02 27 200 12241 90 356 9616 23 0.7592 02 28 201 5927 94 194 3714 12 0.7592 02 29 202 8201 98 260 7346 21 0.8492 03 1 203 7395 90 245 4310 13 0.7192 03 2 204 4344 95 134 4109 10 0.7292 03 3 205 3937 95 131 9579 19 0.7092 03 4 206 5769 95 175 6089 12 0.7492 03 5 207 5455 90 175 4601 9 0.7592 03 6 208 7754 95 283 11190 24 0.6992 03 7 209 3855 99 119 11930 25 0.7592 03 10 212 12371 21 0.7192 03 11 213 7118 12 0.721 44AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)91 08 12 1 0.01 10.05 109.4491 08 14 3 10.34 35.1691 08 16 5 9.81 23.54 -36691 08 18 7 9.12 32.5491 08 20 9 0.00 8.80 26.63 -38891 08 23 12 8.05 3.4091 08 26 15 9.67 10.1691 08 28 17 9.63 10.26 1851 8791 08 31 20 9.45 24.34 846 4391 09 2 22 0.01 9.20 13.20 1586 7091 09 4 24 8.68 6.22 3196 173 19491 09 7 27 9.18 6.21 3015 188 18891 09 9 29 0.00 8.80 5.61 3445 199 19191 09 12 32 8.80 8.26 2132 105 14091 09 16 36 9.41 9.02 1941 97 12291 09 17 37 0.00 9.49 9.37 2125 75 12691 09 19 39 8.69 3.87 4496 213 26391 09 21 41 9.44 3.73 4550 229 25791 09 23 43 0.01 9.07 8.82 2108 91 12191 09 26 46 8.42 10.15 1766 87 9891 09 28 48 9.49 9.29 1962 119 10891 09 30 50 0.00 10.05 10.37 1830 111 10491 10 2 52 9.35 9.02 1945 101 10991 10 4 54 8.90 9.64 1949 110 11591 10 6 56 0.00 9.21 10.69 1748 100 9991 10 8 58 9.25 10.06 1738 84 10291 10 11 61 9.89 9.84 2001 108 11891 10 14 64 0.00 6.32 6.27 2973 36 16191 10 16 66 3.89 4.57 2519 57 14291 10 18 68 3.67 4.21 2916 82 17391 10 20 70 3.89 3.29 3449 88 17591 10 23 73 0.00 3.89 3.59 3608 101 18791 10 25 75 3.97 3.40 3463 115 17391 10 27 77 3.84 2.82 4303 136 21691 10 29 79 3.71 3.83 3098 94 14091 11 1 82 0.01 3.65 3.32 3718 110 16191 11 3 84 5.02 3.63 3601 120 16491 11 5 86 3.55 3.95 3133 101 14191 11 7 88 3.73 3.67 3366 108 15391 11 10 91 1.97 4.12 2921 50 13231 11 12 93 2.03 2.06 6011 39 26791 11 13 94 1.89 2.09 5638 44 25991 11 15 96 2.29 2.00 6909 48 30791 11 17 98 2.16 2.40 5439 44 28291 11 20 101 2.27 2.49 5579 39 19391 11 22 103 2.36 2.03 6706 92 302145AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/01)^(mg/d)^(mgN/d/gVSS)91 11 25^106 2.77 2.31 6730 106 27791 11 26 107 3.72 3.56 6673 129 30691 11 29^110 4.24 3.58 6777 104 32491 12 2^113 4.05 3.49 6653 118 28291 12 4^115 4.01 3.58 6686 150 26691 12 6^117 4.02 3.69 6919 134 25091 12 7^118 4.12 4.06 5725 100 21491 12 9^120 4.43 4.35 5504 95 20591 12 11^122 4.08 2.97 8021 195 28791 12 13^124 3.80 2.87 8034 135 28691 12 16^127 4.36 5.85 4121 89 14491 12 18^129 0.20 4.35 3.64 6467 116 22891 12 20^131 3.96 3.87 5790 122 19991 12 22 133 3.50 6.40 4811 35 28091 12 24 135 0.22 3.27 3.95 8029 39 52891 12 26^137 3.38 5.14 6163 34 21091 12 30^141 3.35 4.25 7418 32 23092 01 2^144 0.12 3.80 4.50 7834 79 26392 01 5^147 4.06 4.45 8486 92 25292 01 6^148 0.41 4.05 4.57 8095 101 24692 01 8^150 4.04 4.20 9051 105 26792 01 10^152 0.61 3.68 4.22 8773 94 27992 01 12^154 0.72 3.91 4.77 7875 86 24592 01 14^156 0.29 4.24 4.78 12249 63 36392 01 15^157 0.22 4.00 5.10 11093 63 38792 01 17^159 0.18 3.63 3.82 13839 139 46192 01 20^162 0.79 3.49 4.96 10071 78 29292 01 22 164 0.89 3.43 4.30 11527 84 31992 01 24^166 0.91 2.99 4.04 11629 202 30992 01 26 168 1.03 3.03 6.63 7120 51 17092 01 30^172 0.81 3.27 5.86 8594 66 19492 01 31^173 0.84 3.18 5.08 9302 68 17292 02 2^175 0.66 3.56 5.23 10022 77 18892 02 3^176 0.86 3.96 5.61 10562 81 20592 02 5^178 1.02 3.60 4.95 11006 84 20392 02 6^179 0.94 3.71 5.17 11027 85 21392 02 7^180 0.53 3.65 5.25 10167 87 19692 02 10^183 0.78 3.61 4.66 11320 90 20792 02 11^184 0.72 3.52 4.35 12043 104 21792 02 12^185 0.58 3.33 3.83 13326 86 22692 02 13^186 0.69 3.35 4.31 11489 91 20592 02 14^187 0.61 3.33 4.17 11918 82 21592 02 16^189 0.61 3.66 4.27 12113 103 21692 02 18^191 0.65 2.64 4.39 12073 47 17392 02 19^192 1.10 2.61 10.43 5038 14 6892 02 21^194 0.83 2.58 3.44 15024 54 233146AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitrn Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)92 02 24 197 1.13 2.68 8.30 6484 21 9892 02 27 200 0.96 2.96 3.94 14557 44 22692 02 28 201 0.88 3.12 8.13 6989 27 10092 02 29 202 0.72 1.78 3.37 9558 34 14192 03 1 203 0.90 1.86 3.98 8665 29 13492 03 2 204 0.91 1.76 6.79 5167 13 7692 03 3 205 0.93 2.33 9.71 4625 12 7192 03 4 206 0.73 1.60 4.97 6719 15 9892 03 5 207 0.88 1.39 4.39 6472 13 9592 03 6 208 0.69 1.40 3.17 9087 26 13492 03 7 209 0.93 1.16 5.24 4596 13 7492 03 10 212 1.0692 03 11 213 0.94147AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(mgN/d)91 08 12 1 1374 12 2991 08 14 3 1112 9 3091 08 16 5 882 11 5691 08 18 7 1453 37 8591 08 20 9 428 24 9091 08 23 12 1497 74 9791 08 26 15 2147 89 9891 08 28 17 1947 92 9991 08 31 20 1855 95 9991 09 2 22 2180 97 10091 09 4 24 1830 99 10 16.1 10091 09 7 27 1578 98 10 17.0 10091 09 9 29 1691 97 10 16.5 10091 09 12 32 1975 97 10 15.6 10091 09 16 36 1941 97 10 16.8 9991 09 17 37 2468 87 10 16.4 9791 09 19 39 1989 94 10 17.2 9991 09 21 41 1841 93 10 17.2 9991 09 23 43 2271 98 10 16.5 10091 09 26 46 1899 93 10 16.7 9991 09 28 48 1560 95 10 16.3 9991 09 30 50 1650 100 10 16.7 10091 10 2 52 1924 100 10 16.2 10091 10 4 54 1779 100 10 17.2 10091 10 6 56 1750 100 10 16.5 10091 10 8 58 2076 100 10 17.2 10091 10 11 61 1851 100 10 16.9 10091 10 14 64 1821 22 10 16.2 7091 10 16 66 1464 33 10 16.9 8491 10 18 68 1601 45 10 17.2 9191 10 20 70 1970 50 10 17.4 9191 10 23 73 2614 73 10 15.5 9591 10 25 75 2998 100 10 14.3 10091 10 27 77 3157 100 10 14.2 10091 10 29 79 3279 100 10 16.8 10091 11 1 82 3371 100 10 17.0 10091 11 3 84 2995 100 10 16.5 10091 11 5 86 3088 99 10 15.7 10091 11 7 88 3108 99 10 15.3 10091 11 10 91 4125 70 10 15.0 9591 11 12 93 7512 49 10 14.2 8191 11 13 94 6650 52 10 14.3 8491 11 15 96 5995 42 10 14.4 8191 11 17 98 4575 37 10 '3.2 8091 11 20 101 4754 33 10 14.7 7791 11 22 103 5971 82 10 13.5 97148AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(mgN/d)91 11 25 106 5144 81 10 16.9 9791 11 26 107 4156 80 10 17.4 9791 11 29 110 5879 90 10 14.0 9891 12 2 113 5312 94 10 15.5 9991 12 4 115 4376 98 10 11.6 10091 12 6 117 5169 100 10 10.4 10091 12 7 118 5735 100 10 13.9 10091 12 9 120 5756 100 10 14.5 10091 12 11 122 3957 96 10 16.1 10091 12 13 124 5888 99 10 14.3 10091 12 16 127 4601 100 10 16.5 10091 12 18 129 5539 100 10 14.2 10091 12 20 131 4721 99 10 15.2 10091 12 22 133 7700 56 10 10.3 8991 12 24 135 8783 42 10 10.1 8291 12 26 137 7245 40 10 12.3 8291 12 30 141 8255 35 10 13.2 7792 01 2 144 8731 88 10 12.5 9892 01 5 147 9011 98 10 13.7 10092 01 6 148 7943 99 10 17.4 10092 01 8 150 8498 98 10 14.6 10092 01 10 152 9287 100 10 12.5 10092 01 12 154 9080 100 10 12.0 10092 01 14 156 12376 64 10 13.5 9392 01 15 157 12777 72 10 10.5 9592 01 17 159 8685 87 10 13.3 9992 01 20 162 12803 99 10 13.9 10092 01 22 164 13651 99 10 13.4 10092 01 24 166 5698 99 10 16.0 10092 01 26 168 12686 91 10 13.7 9992 01 30 172 13049 100 10 14.5 10092 01 31 173 13740 100 10 16.6 10092 02 2 175 12954 99 10 15.5 10092 02 3 176 13009 100 10 13.8 10092 02 5 178 13025 100 10 15.1 10092 02 6 179 12964 100 10 13.4 10092 02 7 180 11699 100 10 15.4 10092 02 10 183 12507 100 10 15.5 10092 02 11 184 11616 100 10 16.2 10092 02 12 185 15541 100 10 15.5 10092 02 13 186 12543 100 10 13.9 10092 02 14 187 14468 100 10 15.3 10092 02 16 189 11616 99 10 15.2 10092 02 18 191 13859 54 10 16.4 9092 02 19 192 20776 57 10 16.3 8792 02 21 194 -6886 -25 10 12.3 77149AMMONIA LOADING PHASE (10 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) RemovalInigN/d)92 02 24 197 16200 52 10 15.3 8992 02 27 200 5784 18 10 16.3 7992 02 28 201 12418 47 10 11.6 8992 02 29 202 7824 28 10 15.8 8492 03 1 203 11746 40 10 16.0 8792 03 2 204 11378 29 10 15.5 7892 03 3 205 4488 11 57.4 7392 03 4 206 9788 21 97.8 7692 03 5 207 10139 21 71.5 7292 03 6 208 5129 15 94.4 7992 03 7 209 3727 11 39.5 7592 03 10 212 634 1 69.9 6392 03 11 213 9298 18 59.0 721 50AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic(yy mm dd)^(L/d)^(mL/h)^(mL/h)^(ml/h)^(ml/h)^(Lid)^Wasting^Overflow(Lid)^(L/d)91 08^12^1 9.9 0 0 0 5.0 59 0 6991 08^14^3 9.7 0 0 0 5.1 58 0 6791 08^16^5 9.6 0 0 0 5.3 53 0 6391 08^18^7 9.8 0 0 0 5.3 60 0 7091 08^20^9 10.1 0 0 0 5.4 55 0 6691 08^23^12 9.8 0 0 0 5.0 63 0 7391 08^26^15 10.0 0 0 0 5.2 62 0 7291 08^28^17 9.9 0 0 0 5.0 55 0 6591 08^31^20 10.0 0 0 0 5.3 57 0 6891 09^2^22 10.0 0 0 0 5.4 56 0.5 6691 09^4^24 9.8 0 0 0 5.4 62 0.5 7291 09^7^27 10.0 0 6 0 5.2 62 0.5 7391 09^9^29 10.0 0 6 0 5.3 66 0.5 7791 09^12^32 9.8 0 11 0 5.0 68 0.5 7891 09^16^36 9.6 0 11 0 5.1 64 0.5 7491 09^17^37 9.8 0 11 0 5.3 66 0.5 7691 09^19^39 10.0 0 11 0 5.3 61 0.5 7291 09^21^41 9.8 0 5.4 0 5.2 61 0.5 7191 09^23^43 9.9 0 5.4 0 4.9 56 0.5 6691 09^26^46 9.6 0 6.9 0 5.0 61 0.5 7191 09^28^48 9.5 0 7 0 4.9 60 0.5 7091 09^30^50 9.4 0 7.1 0 5.2 62 0.5 7291 10^2^52 9.7 0 6.8 0 5.3 64 0.5 7491 10^4^54 9.9 0 7.2 0 5.1 67 0.5 7791 10^6^58 9.6 0 7.4 0 4.9 58 0.5 6891 10^8^58 9.9 0 7.8 0 5.2 61 0.5 7191 10^11^61 10.0 0 7.3 0 5.0 61 0.5 7191 10^14^64 10.1 8.4 6.5 0 4.9 55 0.5 6591 10^16^66 10.1 8.2 6.8 0 4.8 62 0.5 7391 10^18^68 10.0 8 6.8 0 4.8 65 0.5 7591 10^20^70 10.0 8 6.8 0 5.1 58 0.5 6891 10^23^73 10.0 8.2 7 0 5.3 58 0.5 6891 10^25^75 9.8 8 7.2 0 5.0 60 0.5 7091 10^27^77 9.7 8.2 7.1 0 5.2 56 0.5 6691 10^29^79 9.4 8 7.1 0 5.0 61 0.5 7191 11^1^82 9.6 8.2 6.9 0 4.8 59 0.5 6991 11^3^84 9.6 4 6.9 0 5.1 63 0.5 7391 11^5^88 9.4 3.45 7.2 0 5.1 66 0.5 7591 11^7^88 9.4 3.2 7 0 5.1 60 0.5 7091 11^10^91 9.2 6.9 6.9 0 5.0 60 0.5 7091 11^12^93 9.0 7.1 7.3 0 5.1 54 0.5 6491 11^13^94 9.4 7.5 7.4 0 5.2 53 0.5 6391 11^15^96 9.4 7.4 7 0 5.4 54 0.5 6391 11^17^98 9.7 7.5 6.9 0 5.3 60 0.5 7091 11^20^101 9.8 7.3 7 4.8 4.8 61 0.5 72151AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Flowrate Flowrate^i^Flowrate Flowrate Flowrate Flowrate Flowrate^FlowrateDate^Day Influent^ CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxici(yy mm dd)^(L/d) (mL/h)^(mL/h)^IL/d)^Wasting^Overflow(L/d) (Lid)91^11 22 103 9.6 7 7 4.6 4.6 64 0.5 7491^11 25 106 9.9 6.9 7.2 4.3 4.3 56 0.5 6691^11 26 107 9.7 7.3 7.3 14.9 14.9 60 0.5 7091^11 29^110 9.6 7.3 7.5 15.3 15.3 56 0.5 6691^12 2^113 9.6 7.4 7.4 15 15.0 54 0.5 6491^12 4^115 9.6 7.4 7.4 15 15.0 59 0.5 6991^12 6^117 9.6 7.8 7.3 15.2 15.2 55 0.5 6691^12 7^118 9.6 6.9 7.2 14.4 14.4 61 0.5 7191^12 9^120 9.7 6.8 7.2 14.7 14.7 56 0.5 6691^12 11^122 9.5 7.4 7.4 15.3 15.3 62 0.5 7291^12 13^124 9.7 7.5 7.5 15.1 15.1 61 0.5 7291^12 16^127 9.8 7.5 7.6 15.5 15.5 56 0.5 6691^12 18^129 9.9 7.4 7.3 15.3 15.3 58 0.5 6991^12 20^131 9.5 7.7 7.2 14.7 14.7 55 0.5 6591^12 22 133 9.4 6.6 7.4 14.8 14.8 62 0.5 7291^12 24 135 9.5 7.3 7.4 15.3 15.3 58 0.5 6991^12 26 137 9.6 7.3 7.4 15.1 15.1 55 0.5 6691^12 30^141 9.7 7.3 7.4 15.1 15.1 56 0.5 6692^01 2^144 9.4 7.3 7.6 31 31.0 52 0.5 6392^01 5^147 9.3 7.5 7.7 30.9 30.9 63 0.5 7392^01 6^148 9.5 7.2 7.5 30 30.0 63 0.5 7492^01 8^150 9.2 7.2 7.4 31 31.0 60 0.5 7092^01 10^152 9.0 7.3 7.3 29 29.0 52 0.5 6292^01 12^154 8.9 7 7.4 30 30.0 56 0.5 6692^01 14^156 8.7 28.9 8.2 41.3 41.3 61 0.5 7192^01 15^157 8.5 29 8 39 39.0 55 0.5 6692^01 17^159 8.5 29 7.8 38 38.0 61 0.5 7192^01 20 162 8.3 29 7.5 36 36.0 54 0.5 6492^01 22 164 8.4 29 7.4 36 36.0 61 0.5 7192^01 24 166 8.6 28 7.2 36 36.0 64 0.5 7492^01 26 168 8.7 27 7.4 36 36.0 59 0.5 7092^01 30 172 8.7 26.9 7.9 37.3 37.3 54 0.5 6492^01 31^173 8.6 26 7.5 35 35.0 56 0.5 6692^02 2^175 8.5 25.6 7 34.4 34.4 54 0.5 6492^02 3^176 8.6 26 7.3 37.5 37.5 62 0.5 7292^02 5^178 8.8 27 7.4 38 38.0 55 0.5 6692^02 6^179 8.7 27.3 7.4 39.5 39.5 52 0.5 6392^02 7^180 9.0 26 7.4 37 37.0 54 0.5 6592^02 10^183 8.7 25 7.6 36 36.0 53 0.5 6392^02 11^184 8.9 26 7.6 37 37.0 56 0.5 6792^02 12^185 9.1 27 7.7 36 36.0 57 0.5 6892^02 13^186 8.8 26 7.6 35 35.0 59 0.5 7092^02 14^187 8.8 26 7.9 34.8 34.8 64 0.5 7592^02 16^189 8.9 25.8 7.4 36 36.0 66 0.5 7792^02 18^191 8.6 26 7.3 36 36.0 68 0.5 781 52AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 CI^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic(YY mm cid)^(Lid)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(L/c1)^Wasting^Overflow(L/d) (L/d)92 02 19^192 8.8 26 7.5 36 36.0 58 0.5 6992 02 21^194 8.5 26 7.7 36 36.0 58 0.5 6892 02 24 197 8.7 26 7.7 36 36.0 58 0.5 6892 02 27 200 8.6 26.2 8.2 32.6 32.6 56 0.5 6692 02 28 201 8.6 23.5 7.3 36 36.0 55 0.5 6592 02 29 202 8.5 25.3 7.8 41.4 41.4 52 0 6292 03 1^203 8.7 24 7.3 40 40.0 61 0 7192 03 2^204 8.5 25.6 8 41.2 41.2 56 0 6692 03 3^205 8.5 24.7 8.3 58.4 58.4 59 0 7092 03 4^206 8.4 27.4 7.9 54.3 54.3 60 0 7192 03 5^207 8.4 26.9 8 42 42.0 54 0 6492 03 6^208 8.6 26.9 8 42 42.0 58 0 6992 03 7^209 8.6 26.9 8 42 42.0 62 0 7292 03 10 212 8.9 26.4 6.6 35 35.0 60 0 7092 03 11^213 9.0 30 7.2 35 35.0 55 0 661 53AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3(yy mm dd)^Overflow 19/1-1^Influent NH4^(mL/L)^19P/L)^(g/L)(L/d)^ (mgN/L)91 08^12^1 69 0 208 0 0.816 091 08^14^3 67 0 202 0 0.816 091 08^16^5 63 0 213 0 0.816 091 08^18^7 70 0 214 0 0.816 091 08^20^9 66 0 222 0 0.816 091 08^23^12 73 0 243 0 0.816 091 08^26^15 72 0 210 0 0.816 091 08^28^17 65 0 211 0 0.816 091 08^31^20 68 0 215 0 0.816 091 09^2^22 66 0 221 0 0.816 091 09^4^24 72 0 217 0 0.816 091 09^7^27 73 0 203 25 0.816 091 09^9^29 77 0 211 25 0.816 091 09^12^32 78 0 209 25 0.816 091 09^16^36 74 0 195 50 0.816 091 09^17^37 76 0 188 50 0.816 091 09^19^39 72 0 206 50 0.816 091 09^21^41 71 0 192 100 0.816 091 09^23^43 66 0 200 100 0.816 091 09^26^46 71 0 215 100 0.816 091 09^28^48 70 0 190 80 0.816 091 09^30^50 72 0 179 50 0.816 091 10^2^52 74 0 193 43 0.816 091 10^4^54 77 0 203 50 0.816 091 10^6^56 68 0 196 50 0.816 091 10^8^58 71 0 195 50 0.816 091 10^11^61 71 0 183 50 0.816 091 10^14^64 65 19 281 50 0.816 091 10^16^66 73 19 290 75 0.816 091 10^18^68 75 19 314 75 0.816 091 10^20^70 68 19 289 75 0.816 091 10^23^73 68 19 301 84 0.816 091 10^25^75 70 19 288 84 0.816 091 10^27^77 66 19 301 70 0.816 091 10^29^79 71 19 312 70 0.816 091 11^1^82 69 19 320 84 0.816 091 11^3^84 73 19 236 84 0.816 091 11^5^86 75 55 336 84 0.816 091 11^7^88 70 48 318 84 0.816 091 11^10^91 70 88 614 84 0.816 091 11^12^93 64 88 615 84 0.816 091 11^13^94 63 88 620 84 0.816 091 11^15^96 63 88 596 84 0.816 091 11^17^98 70 88 597 84 0.816 091 11^20^101 72 88 595 84 0.816 0154AMMONIA LOADING PHASE (20 DAY AEROBIC SAT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3(yy mm dd)^Overflow (g/L)^Influent NH4^(nt/L)^(gP/L)^(g/LI(Lid)^ (mgN/L)-- ----91^11^22^103 75 88 587 84 0.816 1591^11^25^106 66 88 560 84 0.816 4791^11^26^107 70 88 625 84 0.245 4791^11^29^110 66 88 582 84 0.245 5491^12^2^113 65 88 595 84 0.245 5491^12^4^115 70 88 610 180 0.245 5491^12^6^117 66 88 625 135 0.245 5491^12^7^118 71 88 578 135 0.245 5491^12^9^120 67 88 547 135 0.245 5491^12^11^122 72 88 605 100 0.245 5491^12^13^124 72 88 601 110 0.245 4591^12^16^127 67 88 543 110 0.245 3591^12^18^129 69 88 533 110 ').245 3591^12^20^131 65 88 579 110 0.245 3591^12^22^133 72 175 910 110 0.408 7091^12^24^135 69 175 988 150 0.408 7091^12^26^137 66 175 950 150 0.408 9091^12^30^141 66 190 1021 150 0.408 9092^01^2^144 63 190 1034 120 0.204 6592^01^5^147 74 190 1059 120 0.204 5392^01^6^148 74 190 1025 120 0.204 5392^01^8^150 71 190 1080 130 0.204 5392^01^10 152 63 190 1090 130 0.204 4392^01^12 154 67 190 1047 130 0.204 4392^01^14^156 72 70 1463 150 0.245 7592^01^15^157 67 70 1515 150 0.245 7592^01^17^159 72 70 1546 150 0.245 7592^01^20 162 65 70 1565 165 0.202 7592^01^22 164 72 80 1782 165 0.202 7592^01^24 166 75 80 1664 165 0.202 6992^01^26 168 71 80 1623 165 0.202 6992^01^30 172 65 80 1611 165 0.202 8392^01^31^173 67 80 1579 165 0.202 8392^02^2^175 65 80 1581 230 0.231 8392^02^3^176 73 80 1571 230 0.231 8392^02^5^178 67 80 1580 165 0.231 7592^02^6^179 64 80 1599 165 0.231 7592^02^7^180 66 80 1504 165 0.231 8892^02^10 183 64 80 1541 245 0.231 8892^02^11^184 68 80 1535 245 0.231 8392^02^12 185 69 80 1558 210 0.231 7892^02^13 186 71 80 1542 210 0.231 7892^02^14 187 76 80 1559 210 0.231 7892^02^16 189 78 80 1464 210 0.231 7892^02^18^191 79 115 2122 210 0.231 831 55AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Flowrate^Feed Conc.^Feed Conc. Feed Conc.^Feed Conc. Feed Conc.Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4 NaHCO3(yy mm dd)^Overflow (g/L)^Influent NH4^(mL/L)^(gP/L)^(g/L)(L/d)^ (mgN/L)92 02 19^192 69 115 2093 210 0.231 8392 02 21^194 69 115 2154 210 0.231 8392 02 24 197 69 115 2099 210 0.231 9092 02 27 200 67 115 2140 210 0.231 8092 02 28 201 66 115 1950 100 0.231 8392 02 29 202 63 115 2086 100 0.231 8392 03 1^203 72 115 1953 100 0.231 8892 03 2^204 67 115 2129 100 0.231 8892 03 3^205 71 115 2072 100 0.231 8892 03 4^206 72 115 2281 100 0.231 8892 03 5^207 65 115 2236 100 0.231 8892 03 6^208 70 115 2194 100 0.231 8892 03 7^209 73 115 2205 100 0.231 4092 03 10 212 71 115 2124 100 0.231 2092 03 11^213 67 115 2302 100 0.231 01 56AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^System^System^System^Anoxic^AnoxicDate^Day^ Loading Loading Loading ORP pH(yy mm dd) CH3OH^o-PO4^NaHCO3 (mV)(gCOD/d) (gP/d)^(gCaCO3/d)91 08 12^1 0.00 0.098 2095 3091 08 14^3 0.00 0.100 2094 491 08 16^5 0.00 0.104 2092 2291 08 18^7 0.00 0.104 1955 3091 08 20^9 0.00 0.106 1955 3091 08 23^12 0.00 0.098 1956 2091 08 26^15 0.00 0.101 2035 2091 08 28^17 0.00 0.099 2035 19 7.591 08 31^20 0.00 0.103 2034 2991 09 2^22 0.00 0.105 2034 5491 09 4^24 0.00 0.106 1885 4791 09 7^27 4.27 0.102 1860 -28 7.591 09 9^29 4.27 0.104 1860 -80 7.991 09 12^32 7.84 0.097 1838 -113 8.091 09 16^36 15.67 0.100 1836 -105 7.991 09 17^37 15.67 0.103 1788 -100 7.891 09 19^39 15.67 0.104 1790 -117 7.891 09 21^41 15.39 0.103 1813 -106 7.891 09 23^43 15.39 0.097 1815 -110 7.891 09 26^46 19.66 0.097 1806 -135 7.891 09 28^48 15.96 0.097 1806 -126 7.991 09 30^50 10.12 0.102 1803 -141 7.891 10 2^52 8.33 0.103 1806 -128 7.891 10 4^54 10.26 0.100 1806 -165 7.891 10 6^56 10.54 0.095 1805 -160 7.891 10 8^58 11.11 0.102 1803 -174 7.891 10 11^61 10.40 0.099 1806 -184 7.891 10 14^64 9.26 0.096 1776 -90 7.991 10 16^66 14.53 0.095 1146 -92 7.891 10 18^68 14.53 0.095 1146 -112 7.791 10 20^70 14.53 0.100 1145 -154 7.791 10 23^73 16.75 0.104 1144 -188 7.691 10 25^75 17.23 0.099 1143 -140 7.791 10 27^77 14.16 0.101 1142 -175 7.791 10 29^79 14.16 0.098 1141 -199 7.791 11 1^82 16.52 0.094 1143 -215 7.791 11 3^84 16.52 0.099 1154 -186 7.791 11 5^86 17.23 0.099 1154 -207 7.791 11 7^88 16.75 0.100 1155 -207 7.891 11 10^91 16.52 0.098 1144 -128 7.691 11 12^93 17.47 0.099 1141 -124 7.691 11 13^94 17.71 0.102 1142 -105 7.691 11 15^96 16.75 0.105 1295 -124 7.791 11 17^98 16.52 0.104 1297 -164 7.691 11 20^101 16.75 0.094 1314 -209 7.51 57AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^System^System^System^Anoxic^AnoxicDate^Day^ Loading Loading Loading ORP pH(yy mm dd) CH3OH^o-PO4^NaHCO3 (mV)^(gCOD/d► (gP/d)^(gCaCO3/d)91 11^22^103 16.75 0.090 1411 -227 7.891 11^25^106 17.23 0.084 1597 -415 7.791 11^26^107 17.47 0.088 2305 -162 7.891 11^29^110 17.95 0.090 2489 -135 8.191 12^2^113 17.71 0.088 2466 -138 8.291 12^4^115 37.95 0.088 2467 -145 8.291 12^6^117 28.08 0.089 2476 -150 8.391 12^7^118 27.70 0.085 2416 229 8.191 12^9^120 27.70 0.086 2438 -204 8.291 12^11^122 21.09 0.090 2499 -169 8.491 12^13^124 23.51 0.089 2277 -205 8.391 12^16^127 23.82 0.091 2355 -329 8.391 12^18^129 22.88 0.090 2343 -330 8.291 12^20^131 22.57 0.086 2336 -290 8.191 12^22 133 23.19 0.145 3106 -200 8.391 12^24 135 31.63 0.150 3139 -180 8.291 12^26 137 31.63 0.148 3545 -222 8.491 12^30^141 31.63 0.148 3531 -215 7.892 01^2^144 25.99 0.152 4526 -200 8.692 01^5^147 26.33 0.151 3989 -207 8.592 01^6^148 25.64 0.147 3882 -201 8.492 01^8^150 27.41 0.152 4031 -182 8.692 01^10^152 27.04 0.142 3478 -221 8.292 01^12^154 27.41 0.147 3553 -156 8.492 01^14^156 35.05 0.243 6116 -160 8.392 01^15^157 34.19 0.229 5933 -100 8.392 01^17^159 33.34 0.223 5509 -134 8.192 01^20 162 35.15 0.175 5371 -210 8.692 01^22 164 34.69 0.175 5365 -209 8.492 01^24 166 33.75 0.175 4946 -283 8.692 01^26 168 34.69 0.175 4892 -156 8.392 01^30 172 37.03 0.181 5812 -163 8.692 01^31^173 35.15 0.170 5565 -132 8.692 02^2^175 45.88 0.191 5584 -150 8.692 02^3^176 47.84 0.208 5895 -145 8.592 02^5^178 34.69 0.211 5426 -118 8.392 02^6^179 34.69 0.219 5614 -108 8.392 02^7^180 34.69 0.205 5932 -176 8.692 02^10 183 53.06 0.200 5968 -209 8.692 02^11^184 53.06 0.205 5681 -180 8.692 02^12^185 46.07 0.200 5219 -208 8.592 02^13^186 45.48 0.194 5214 -210 8.592 02^14 187 47.27 0.193 5210 -215 8.592 02^16^189 44.28 0.200 5345 -190 8.592 02^18^191 43.68 0.200 5711 -234 8.21 58AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^System^System^System^Anoxic^AnoxicDate^Day^ Loading Loading Loading ORP pH(yy mm dd) CH3OH^o-PO4^NaHCO3 (mV)^(gCOD/d) (gp/d)^fgCaCO3/d I92 02 19^192 44.88 0.200 5620 -241 8.192 02 21^194 46.07 0.200 5757 -235 8.292 02 24 197 46.07 0.200 6074 -197 8.992 02 27 200 49.07 0.181 5166 -236 8.492 02 28 201 20.80 0.200 5783 -150 8.592 02 29 202 22.23 0.230 6467 -142 8.492 03 1^203 20.80 0.222 6493 -142 8.392 03 2^204 22.80 0.229 6726 -159 8.492 03 3^205 23.65 0.324 9076 -160 8.492 03 4^206 22.51 0.301 8576 -190 8.992 03 5^207 22.80 0.233 6910 -135 8.892 03 6^208 22.80 0.233 6799 -144 8.492 03 7^209 22.80 0.233 3762 -117 8.492 03 10 212 18.81 0.194 2252 -128 8.692 03 11^213 20.52 0.194 1206 -117 8.91 59AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD(yy mm dd)^(mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^IrritA)^In1911-191 08^12^1 4.4 223 491 08^14^3 4.3 198 5 33891 08^16^5 4.6 128 3591 08^18^7 4.6 80 7991 08^20^9 4.1 45 227 159.0 19 35991 08^23^12 3.9 39 28891 08^26^15 3.4 32 20091 08^28^17 3.4 34 191 1.3 36291 08^31^20 3.8 29 18791 09^2^22 3.7 28 20191 09^4^24 1210 1539 4.1 24 193 0.7 22 34791 09^7^27 1420 1770 3.8 24 16391 09^9^29 1750 2238 4.1 28 157 35591 09^12^32 1820 2292 3.9 25 15191 09^16^36 1640 2041 4.5 27 4091 09^17^37 1760 2240 4.5 27 53 1.0 24 34791 09^19^39 1770 2075 4.1 24 2791 09^21^41 1760 2023 5.1 26 391 09^23^43 1860 2143 4.8 24 1 0.0 32991 09^26^46 1605 1762 5.3 24 191 09^28^48 1990 2189 4.1 24 1 33091 09^30^50 1840 2190 4.5 26 1 0.091 10^2^52 2070 2300 5.3 24 491 10^4^54 2240 2867 4.6 25 1 34191 10^6^56 2060 2396 4.6 26 0 0.091 10^8^58 2200 2845 4.0 23 091 10^11^61 2110 2536 5.0 25 0 41 34891 10^14^64 2280 2502 5.3 36 13 0.391 10^16^66 2420 2869 4.9 37 591 10^18^68 2360 2904 5.3 50 3 35491 10^20^70 2410 2646 4.2 37 191 10^23^73 2690 2986 3.9 33 1 0.0 34191 10^25^75 2790 3929 4.3 35 191 10^27^77 2980 3383 3.7 40 7 36991 10^29^79 2780 3419 4.8 39 891 11^1^82 2850 3159 4.7 40 0 0.091 11^3^84 2960 3849 5.2 51 0 33591 11^5^86 2800 3262 5.1 38 091 11^7^88 3230 3992 5.3 44 0 50 39291 11^10^91 2890 3660 4.6 80 191 11^12^93 2880 3757 3.7 174 991 11^13^94 2900 3399 3.5 164 1191 11^15^96 2930 3716 3.8 146 37091 11^17^98 3040 3589 4.8 138 291 11^20^101 2930 3563 3.8 133 1160AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)DateIvy mmDaydc0AnoxicVSS(mg/LiAnoxicTSS(mg/LiAnoxico-PO4(mg1:11-)AnoxicNH4(mgN/1.)AnoxicNOxfrtigN/1.1AnoxicNO2(mgN/L)AnoxicBOO(mg/LiAnoxicCOD(mg/Li91 11 22 103 3140 3937 4.3 125 191 11 25 106 2870 3513 4.0 139 1 36691 11 28 107 2860 3515 3.2 96 791 11 29 110 2680 3175 3.6 81 1291 12 2^113 2990 3758 3.0 78 10 39 38591 12 4^115 3120 3933 3.6 91 091 12 6^117 2960 3415 3.5 85 691 12 7^118 3210 3686 3.0 84 1 39791 12 9^120 3450 4120 3.8 70 091 12 11^122 3230 4031 3.9 88 2091 12 13^124 3330 3845 3.4 80 0 42191 12 16^127 3110 3583 3.5 75 091 12 18^129 3160 3933 4.0 76 1 0.091 12 20^131 3330 3790 3.4 82 0 94 43191 12 22 133 3610 4403 4.1 154 3091 12 24 135 3660 4466 4.5 139 12 0.291 12 26 137 3530 4153 6.5 128 391 12 30^141 3490 3905 7.5 133 1 55592 01 2^144 3530 3980 7.3 130 6 0.092 01 5^147 3690 4220 5.9 123 492 01 6^148 4090 4669 6.6 120 1 0.0 44492 01 8^150 4120 4816 5.9 135 3 42692 01 10^152 3980 4739 5.8 156 0 0.0 78 44092 01 12^154 3980 4895 5.2 133 0 0.0 40792 01 14^156 4040 4955 8.1 207 98 2.992 01 15^157 3260 4204 8.3 260 97 3.7 105 47392 01 17^159 2980 3638 10.4 305 118 4.992 01 20 162 3450 4356 9.4 193 22 18.092 01 22 164 4300 5276 9.4 201 52 15.1 95 50792 01 24 166 5070 6130 9.1 302 11 4.692 01 26 168 4980 5884 6.8 217 67 15.692 01 30 172 5410 6704 7.2 196 2 0.792 01 31^173 5700 6765 8.4 188 13 6.1 134 53392 02 2^175 6140 7836 7.7 184 0 1.392 02 3^176 6050 7089 6.6 186 1 12.992 02 5^178 6110 7705 6.0 189 38 36.0 170 59492 02 6^179 6280 7427 6.1 191 39 38.092 02 7^180 6400 7779 6.0 174 31 22.092 02 10^183 6370 7776 5.6 192 0 1.2 45792 02 11^184 6486 8358 6.5 218 2 1.4 133 50292 02 12^185 6290 8008 7.1 181 0 0.1 57892 02 13^186 6600 8303 7.2 207 0 1.192 02 14^187 6530 8519 6.6 190 1 0.292 02 16^189 6350 7652 6.4 178 0 0.4 141 48692 02 18^191 7880 10004 5.0 263 0 0.4 672161AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD^COD(yy mm dd)^Img/L1^Img/L1^(mgPIL)^ImgN/L1^I mgN/L)^(mgN/L)^(mg/L)^I mg/L)92 02 19 192 8840 11088 6.4 363 1 0.292 02 21^194 10410 13713 5.1 358 1 0.392 02 24 197 9930 13308 6.5 332 1 0.5 75892 02 27 200 10290 13678 8.4 468 1 0.7 32792 02 28 201 8830 11781 7.3 536 45 2.492 02 29 202 7360 9634 7.9 491 13 0.692 03 1^203 8780 11683 10.2 430 34 0.792 03 2^204 7000 9661 11.0 447 3 3.1 29492 03 3^205 6870 9103 13.6 375 19 1.3 89292 03 4^206 6610 9206 14.4 394 5 2.592 03 5^207 6240 8506 12.1 394 2 0.192 03 6^208 5310 7424 10.4 603 11 0.992 03 7^209 4990 6310 8.6 548 4 1.292 03 10 212 5010 6572 662 410  80892 03 11^213 6090 8143 7581 62AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO PH^VSS^TSS^o-PO4^NH4^NOx(yy mm dd) (mg/L)^(mg/L)^(mg/L)^lingP/1.1^(mgN/L)^(mgN/L)91 08 12^1 4.0 4.8 208 591 08 14^3 3.0 3.8 189 691 08 16^5 3.5 2730 3898 3.9 108 4591 08 18^7 4.0 4.2 55 12891 08 20^9 3.5 7.2 2580 3471 4.4 21 25591 08 23^12 4.2 3.7 9 34991 08 26^15 4.0 3.8 4 22891 08 28^17 4.8 7.3 3.3 2 22591 08 31^20 4.1 7.8 3.9 2 21791 09 2^22 4.0 7.7 4.1 2 22191 09 4^24 4.5 7.8 1344 1737 4.0 2 21791 09 7^27 4.3 7.7 1660 2111 4.1 0 18991 09 9^29 4.5 7.8 1800 2330 4.6 0 17891 09 12^32 4.2 7.8 1850 2350 3.5 0 17791 09 16^36 4.0 7.7 1880 2395 4.5 1 8091 09 17^37 4.0 7.6 1810 2354 5.0 3 8391 09 19^39 4.4 7.7 1790 2140 4.1 2 5691 09 21^41 2.0 7.6 1800 2121 4.8 1 3091 09 23^43 3.7 7.6 1990 2288 4.9 0 3091 09 26^46 3.5 7.6 2010 2257 5.5 1 2891 09 28^48 3.0 7.7 1970 2222 4.5 0 3191 09 30^50 3.3 7.6 2220 2652 4.1 0 2491 10 2^52 3.8 7.5 2110 2345 4.4 0 2891 10 4^54 3.0 7.5 2140 2724 5.1 0 2591 10 6^56 3.8 7.5 2230 2629 4.2 0 2491 10 8^58 3.8 7.5 2130 2747 3.8 0 2991 10 11^61 3.0 7.5 2200 2661 4.2 0 2691 10 14^64 3.0 7.4 2460 2742 4.4 22 3391 10 16^66 3.3 7.4 2410 2849 5.4 17 5891 10 18^68 3.0 7.3 2310 2849 4.6 25 4791 10 20^70 3.0 7.4 2490 2807 4.6 12 4591 10 23^73 4.9 7.3 2670 2991 3.8 5 4191 10 25^75 4.5 7.3 2530 3541 4.6 0 4191 10 27^77 4.0 7.2 2980 3455 3.3 1 4691 10 29^79 3.2 7.3 3000 3670 3.9 0 5091 11 1^82 2.5 7.3 2950 3357 4.0 0 4691 11 3^84 3.0 7.3 2840 3758 5.4 0 4691 11 5^86 2.0 7.4 2790 3333 5.0 0 4191 11 7^88 3.5 7.3 2920 3592 6.0 0 4391 11 10^91 4.5 6.5 2990 3861 4.9 8 5191 11 12^93 4.5 5.8 3120 4065 4.2 68 6791 11 13^94 3.9 5.8 3080 3651 4.0 58 7291 11 15^96 3.4 6.0 2880 3750 3.4 57 8191 11 17^98 3.5 5.8 2790 3305 5.2 64 9891 11 20^101 4.0 5.7 2850 3444 4.0 56 951 63AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO pH^VSS^TSB^o-PO4^NH4^NOx(yy mm dd) (mg/.1^(mg/L)^Img/L)^(mgP/L)^(mgN/L)^Im9N/L)91 11 22 103 3.0 5.8 2780 3561 4.7 62 9691 11 25 106 4.5 5.8 2650 3277 3.8 96 7991 11 26 107 3.8 5.9 2720 3395 3.7 20 10691 11 29 110 4.0 7.5 3040 3630 3.4 0 13391 12 2^113 4.5 7.7 3270 4190 3.5 0 13491 12 4^115 3.5 7.5 3330 4198 4.0 0 7791 12 6^117 3.5 7.4 3200 3786 3.8 0 12191 12 7^118 2.5 7.6 3340 3917 3.2 0 8091 12 9^120 4.0 7.7 3560 4365 3.7 0 8691 12 11^122 5.0 7.3 3390 4206 4.4 0 12091 12 13^124 2.5 7.4 3460 4083 3.8 0 11791 12 16^127 4.0 7.5 3420 4047 3.4 0 8491 12 18^129 3.0 7.3 3550 4510 3.5 0 8091 12 20^131 3.0 7.0 3380 3910 3.9 0 8891 12 22 133 5.0 6.5 3510 4272 3.9 18 16291 12 24 135 4.0 6.3 3480 4259 3.9 3 11791 12 26 137 3.5 6.5 3550 4209 5.5 0 15091 12 30^141 2.5 6.0 3660 4100 6.2 2 14192 01 2^144 3.0 7.7 3650 4119 7.8 0 18392 01 5^147 3.0 7.2 3840 4413 7.1 0 13092 01 6^148 2.7 7.3 3780 4341 5.9 0 15392 01 8^150 2.5 7.4 3910 4594 5.1 0 12892 01 10^152 3.0 7.0 3820 4668 5.4 0 13892 01 12^154 4.0 7.3 3940 4941 5.1 0 14192 01 14 156 1.5 6.5 3780 4699 6.7 1 29992 01 15^157 2.2 6.4 3740 4849 7.3 122 21892 01 17^159 4.6 6.4 3610 4455 10.7 138 29192 01 20 162 3.8 7.2 4280 5402 8.9 1 17092 01 22 164 3.1 6.3 4640 5684 8.0 5 23192 01 24 166 2.4 8.0 4720 5861 7.5 94 25592 01 26 168 5.0 6.2 5020 5902 6.7 19 20592 01 30 172 3.0 7.7 5530 7000 7.8 0 15992 01 31^173 1.8 6.6 6780 8060 9.1 0 16692 02 2^175 2.5 7.4 6760 8710 8.6 0 13592 02 3^176 2.2 7.5 6920 8072 7.7 0 13792 02 5^178 2.4 6.5 6500 8407 6.2 2 17592 02 6^179 2.3 6.1 6660 8064 6.4 2 18292 02 7^180 5.4 7.3 6490 7949 5.5 0 18892 02 10^183 3.5 7.4 6520 7928 5.5 0 17592 02 11^184 2.5 7.4 6410 8256 7.2 0 17292 02 12^185 2.3 7.4 6530 8408 6.2 0 17092 02 13^186 2.2 7.3 6340 8039 6.1 0 19492 02 14^187 1.9 7.4 6600 8565 7.4 0 16792 02 16^189 2.5 7.2 6360 7778 6.2 0 17992 02 18^191 1.7 6.6 7990 10282 5.5 26 1481 64AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^ DO pH^VSS^TSS^o-PO4^NH4^NOxIvy mm dd) Img/t.)^(mg/L)^(mg/L)^(mgP/L)^(mgNit.)^(mgN/1-)92 02 19^192 1.7 6.5 9510 12071 6.9 74 11092 02 21^194 1.1 6.6 9450 12463 5.1 141 11092 02 24 197 1.2 7.7 11900 16330 5.8 150 12892 02 27 200 0.8 7.1 11880 16024 9.2 120 15792 02 28 201 5.0 7.4 10130 13502 7.9 185 25892 02 29 202 2.7 6.7 10540 14159 9.0 200 18292 03 1^203 4.0 7.2 12490 16956 9.8 204 23892 03 2^204 1.8 7.1 9470 13154 10.2 364 9192 03 3^205 5.0 7.3 11340 15244 10.9 195 21592 03 4^206 2.0 7.9 10650 14790 15.6 282 10492 03 5^207 5.0 7.7 8210 11258 12.6 235 13392 03 6^208 0.5 8.0 5090 7149 11.0 421 12492 03 7^209 6.0 8.1 6280 8098 9.8 477 8292 03 10 212 9.0 8.3 3080 4072 51292 03 11^213 9.5 8.9 4520 6063 5931 65AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Dateivy mmDaydd)AerobicNO2(mgNIL)AerobicBOD(mg/L)AerobicCOD(mg/L)EffluentVSSImg/L)EffluentTSS(mg/L)EffluentNH4(mg111/1.)EffluentNOx(mgN/L)91 08 12^1 212 591 08 14^3 281 187 691 08 16^5 118 168 105 4391 08 18^7 55 12791 08 20^9 176.0 13 274 94 125 21 25791 08 23^12 12 30691 08 26^15 4 23591 08 28^17 7.2 318 2 21591 08 31^20 2 21691 09 2^22 1 21891 09 4^24 3.9 14 273 21 27 2 21791 09 7^27 16 20 0 19391 09 9^29 286 20 26 0 17691 09 12^32 28 35 0 17791 09 16^36 37 46 1 8291 09 17^37 2.3 11 268 41 53 3 8591 09 19^39 26 31 2 5391 09 21^41 54 63 1 2991 09 23^43 1.0 270 36 41 0 3091 09 26^46 29 32 1 2891 09 28^48 258 37 41 0 3091 09 30^50 0.9 23 28 0 2391 10 2^52 18 20 0 2791 10 4^54 273 19 24 0 2491 10 6^56 0.9 35 41 0 2391 10 8^58 40 50 0 2991 10 11^61 6 290 45 56 0 2691 10 14^64 1.4 38 42 22 3391 10 16^66 32 37 17 5591 10 18^68 264 44 51 24 4591 10 20^70 26 29 12 4291 10 23^73 1.7 248 25 28 5 4291 10 25^75 45 51 0 4191 10 27^77 271 37 43 1 4091 10 29^79 73 90 0 4791 11 1^82 2.0 48 54 0 3891 11 3^84 285 42 52 0 4591 11 5^86 59 65 0 4391 11 7^88 11 292 15 18 0 4191 11 10^91 37 46 8 5191 11 12^93 65 83 69 7191 11 13^94 49 60 57 7191 11 15^96 281 16 21 56 8391 11 17^98 36 43 63 9891 11 20^101 66 80 54 90166AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^EffluentDate^Day^NO2^BOO^COD VSS^TSS^NH4^NOx(yy mm dcl)^ImgN/1.1^(mg/L)^(mg/L)^(mg/L)^(mg/L)^ImgN/1.1^ImaN/1.191 11 22 103 84 107 58 9391 11 25 106 291 108 133 93 7891 11 26 107 116 145 20 10091 11 29 110 151 184 0 11391 12 2 113 6 291 141 186 0 12491 12 4 115 127 159 0 7591 12 6 117 99 116 0 12391 12 7 118 279 87 104 0 7991 12 9 120 112 137 0 8191 12 11 122 54 68 0 11991 12 13 124 286 93 111 0 10991 12 16 127 119 144 0 8691 12 18 129 13.5 100 127 0 8491 12 20 131 12 331 51 57 0 8891 12 22 133 95 115 18 15991 12 24 135 96.5 110 134 2 12391 12 26 137 184 220 1 14891 12 30 141 385 136 149 1 13892 01 2 144 108.0 68 76 0 18092 01 5 147 132 148 0 12792 01 6 146 64.2 352 121 143 0 14092 01 8 150 343 138 167 0 12692 01 10 152 73.0 19 329 141 169 0 14492 01 12 154 89.0 389 94 116 0 13992 01 14 156 74.5 215 268 1 29692 01 15 157 86.4 12 381 196 259 120 20992 01 17 159 43.5 152 189 135 28192 01 20 162 132.0 130 164 1 17092 01 22 164 155.0 8 333 333 402 5 21592 01 24 166 118.0 164 200 94 26392 01 26 168 142.0 131 152 21 20492 01 30 172 125.0 121 157 0 15392 01 31 173 105.0 11 411 76 88 0 15992 02 2 175 117.0 115 146 0 12692 02 3 176 123.0 114 131 0 13292 02 5 178 161.0 14 405 190 243 2 17392 02 6 179 159.0 144 178 2 18492 02 7 180 141.0 150 188 0 19492 02 10 183 135.0 363 127 154 0 18092 02 11 184 112.0 14 368 120 147 0 16092 02 12 185 119.0 382 111 147 0 17592 02 13 186 104.0 113 142 0 19992 02 14 187 107.0 98 129 0 16792 02 16 189 95.0 18 356 90 110 0 18792 02 18 191 114.0 480 353 456 26 153167AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Effluent^Effluent^Effluent^EffluentDate^Day^NO2^BOD^COD VSS^TSS^NH4^NOx(yy mm dd)^(mgN/L)^(mgA.)^DMA)^Img/LI^(mg/L)^(mgN/L)^(mgN/L)92 02 19^192 121.0 155 197 74 10992 02 21^194 108.0 392 524 143 11192 02 24 197 107.0 504 151 208 138 12692 02 27 200 110.0 38 111 152 124 14792 02 28 201 142.0 260 347 175 26492 02 29 202 155.0 528 731 194 17492 03 1^203 197.0 214 257 210 23292 03 2^204 103.0 40 582 796 169 8892 03 3^205 206.0 604 183 245 198 20692 03 4^206 91.2 560 798 185 10092 03 5^207 96.0 206 281 231 12892 03 6^208 112.0 140 194 322 11892 03 7^209 75.0 128 164 384 8092 03 10 212 58 563 239 309 49792 03 11^213 172 233 5781 68AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^BOO^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX(yy mm dd)^fmg/L)^(mg/1-) (gN/d)^Entering^Removed(gCOD/gN) (gCOO/gN)91 08 12^1 0.3 0.091 08 14^3 264 0.4 0.091 08 16^5 2.4 0.091 08 18^7 7.6 0.091 08 20^9 14 284 0.70 14.1 0.091 08 23^12 22.0 0.091 08 26^15 14.7 0.091 08 28^17 322 0.01 12.5 0.0 0.091 08 31^20 12.5 0.0 0.091 09 2^22 12.4 0.0 0.091 09 4^24 12 270 0.79 0.00 13.5 0.0 0.091 09 7^27 0.80 11.9 0.4 1020.691 09 9^29 272 0.78 11.9 0.4 -23.591 09 12^32 0.79 12.0 0.7 32.191 09 16^36 0.80 5.1 3.1 7.191 09 17^37 11 265 0.79 0.02 5.5 2.8 10.991 09 19^39 0.85 3.5 4.5 10.291 09 21^41 0.87 1.8 8.5 9.591 09 23^43 276 0.87 0.06 1.7 9.0 9.291 09 26^46 0.91 1.7 11.5 12.391 09 28^48 262 0.91 1.9 8.6 8.991 09 30^50 0.84 0.04 1.5 6.9 7.291 10 2^52 0.90 1.8 4.6 5.491 10 4^54 267 0.78 1.8 5.8 6.091 10 6^56 0.86 0.04 1.5 7.1 7.291 10 8^58 0.77 .8 6.1 6.191 10 11^61 5 294 0.83 1.6 6.4 6.591 10 14^64 0.91 0.03 1.8 5.1 9.391 10 16^66 0.84 3.6 4.0 4.591 10 18^68 246 0.81 3.1 4.7 5.191 10 20^70 0.91 2.6 5.6 5.891 10 23^73 241 0.90 0.04 2.4 7.0 7.291 10 25^75 0.71 2.4 7.1 7.291 10 27^77 280 0.88 2.6 5.5 6.691 10 29^79 0.81 3.0 4.7 5.791 11 1^82 0.90 0.02 2.7 6.1 6.191 11 3^84 271 0.77 2.9 5.7 5.891 11 5^86 0.86 2.7 6.4 6.491 11 7^88 10 297 0.81 2.6 6.5 6.691 11 10^91 0.79 3.1 5.3 5.591 11 12^93 0.77 3.6 4.8 5.791 11 13^94 0.85 3.9 4.6 5.691 11 15^96 269 0.79 4.3 3.9 4.091 11 17^98 0.85 5.9 2.8 2.991 11 20^101 0.82 5.9 2.9 2.91 69AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Effluent^Effluent^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX COD:NOX(yy mm dd)^(mg/t)^(mg/LI (gN/d)^Entering^Removed(gCOD/gN)^(gCOD/gN)91 11^22^103 0.80 6.2 2.7 2.791 11^25^106 295 0.82 4.4 3.9 4.091 11^26^107 0.81 6.3 2.8 3.091 11^29^110 0.84 7.4 2.4 2.791 12^2^113 8 278 0.80 7.2 2.4 2.791 12^4^115 0.79 4.5 8.3 8.491 12^6^117 0.87 6.7 4.2 4.591 12^7^118 267 0.87 4.8 5.7 5.891 12^9^120 0.84 4.8 5.7 5.891 12^11^122 0.80 7.4 2.9 3.691 12^13^124 289 0.87 7.2 3.3 3.391 12^16^127 0.87 4.7 5.1 5.191 12^18^129 0.80 0.02 4.7 4.9 4.991 12^20^131 11 342 0.88 4.8 4.7 4.791 12^22^133 0.82 10.0 2.3 2.991 12^24^135 0.82 0.02 6.9 4.6 5.291 12^26 137 0.85 8.3 3.8 3.991 12^30^141 387 0.89 7.9 4.0 4.192 01^2^144 0.89 0.00 9.6 2.7 2.892 01^5^147 0.87 8.2 3.2 3.392 01^6^148 357 0.88 0.03 9.6 2.7 2.792 01^8^150 350 0.86 7.7 3.6 3.792 01^10^152 23 333 0.84 0.02 7.2 3.8 3.892 01^12^154 384 0.81 7.9 3.5 3.592 01^14^156 0.82 0.03 18.2 1.9 3.192 01^15^157 10 388 0.78 0.04 12.1 2.8 5.992 01^17^159 0.82 0.04 17.8 1.9 3.592 01^20^162 0.79 0.83 9.1 3.9 4.592 01^22 164 8 325 0.81 0.29 14.1 2.5 3.392 01^24 166 0.83 0.40 16.2 2.1 2.292 01^26^168 0.85 0.23 12.2 2.9 4.692 01^30^172 0.81 0.45 8.6 4.3 4.492 01^31^173 14 406 0.84 0.49 9.3 3.8 4.192 02^2^175 0.78 3.15 7.3 6.3 6.392 02^3^176 0.85 10.49 8. 5.6 5.792 02^5^178 11 415 0.79 0.96 9.. 3.6 4.892 02^6^179 0.85 0.97 9.5 3.7 4.992 02^7^180 0.82 0.72 10.2 3.4 4.292 02^10^183 362 0.82 8.51 9.2 5.7 5.892 02^11^184 16 358 0.78 0.73 9.7 5.5 5.692 02^12 185 388 0.79 0.26 9.7 4.8 4.892 02^13^186 0.79 2.61 11.5 3.9 4.092 02^14 187 0.77 0.14 10.8 4.4 4.492 02^16^189 16 345 0.83 0.93 11.8 3.7 3.792 02^18^191 478 0.79 1.10 10.0 4.4 4.41 70AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)DateIvy mmDaydd)EffluentBOO(mg/L)EffluentCOD(m9/1-)AnoxicVSS/TSSAnoxicNO2/NOXAnoxicNOX Load(gN/d)AnoxicCOD:NOXEnteringI gCOD/gN)AnoxicCOD:NOXRemoved(gCOD/gN)92 02 19^192 0.80 0.36 6.4 7.0 7.192 02 21^194 0.76 0.43 6.4 7.2 7.392 02 24 197 484 0.75 0.81 7.4 6.2 6.292 02 27 200 29 0.75 1.01 8.8 5.6 5.692 02 28 201 0.75 0.05 14.2 1.5 1.892 02 29 202 0.76 0.04 9.4 2.4 2.692 03 1^203 0.75 0.02 14.6 1.4 1.792 03 2^204 41 0.72 1.19 5.1 4.5 4.692 03 3^205 624 0.75 0.07 12.7 1.9 2.192 03 4^206 0.72 0.47 6.3 3.6 3.892 03 5^207 0.73 0.06 7.2 3.2 3.292 03 6^208 0.72 0.08 7.3 3.1 3.592 03 7^209 0.79 0.33 5.1 4.5 4.792 03 10 212 63 576 0.7692 03 11^213 0.75171AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS(yy mm dd)^Rate Denitm Rate^Rate Removal(mgN/d)^(mgN/d/gVSS) (mgN/d)91 08 12^1 -1057 -791 08 14^3 -461 -491 08 16^5 -230 -3 0.7091 08 18^7 -134 -291 08 20^9 485 14 0.7491 08 23^12 163 591 08 26^15 70 391 08 28^17 162 1 -16 36 291 08 31^20 -154 -1 15 311 1491 09 2^22 -868 -7 87 461 2091 09 4^24 -389 -3 -321 595 26 0.7791 09 7^27 4 0 3 370 17 0.7991 09 9^29 -182 -2 -104 53 2 0.7791 09 12^32 244 2 134 237 11 0.7991 09 16^36 2196 43 1339 39 2 0.7991 09 17^37 1438 26 817 3 0 0.7791 09 19^39 1530 44 864 528 24 0.8491 09 21^41 1627 89 924 166 8 0.8591 09 23^43 1665 97 895 471 23 0.8791 09 26^46 1604 94 1000 440 20 0.8991 09 28^48 1788 97 899 214 11 0.8991 09 30^50 1398 96 760 -135 -8 0.8491 10 2^52 1536 84 742 173 9 0.9091 10 4^54 1716 97 766 184 9 0.7991 10 6^56 1470 98 714 164 8 0.8591 10 8^58 1819 99 827 349 18 0.7891 10 11^61 1602 99 759 81 4 0.8391 10 14^64 991 54 435 1804 43 0.9091 10 16^66 3254 90 1345 1450 35 0.8591 10 18^68 2842 92 1204 1142 23 0.8191 10 20^70 2511 97 1042 1173 32 0.8991 10 23^73 2337 98 869 1152 34 0.8991 10 25^75 2381 98 853 543 18 0.7191 10 27^77 2144 83 720 483 15 0.8691 10 29^79 2492 82 896 301 10 0.8291 11 1^82 2688 99 943 489 15 0.8891 11 3^84 2860 99 966 -1364 -57 0.7691 11 5^86 2674 99 955 398 12 0.8491 11 7^88 2536 99 785 77 2 0.8191 11 10^91 2998 97 1037 792 12 0.7791 11 12^93 3051 84 1059 -1559 16 0.7791 11 13^94 3140 81 1083 -1135 -12 0.8491 11 15^96 4208 97 1436 -340 -4 0.7791 11 17^98 5739 98 1888 223 2 0.8491 11 20^101 5761 98 1966 -60 -1 0.831 72AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitm %Denitm Specific NH4 Removal^% NH4 VSS/TSS(yy mm dd)^Rate Denitrn Rate^Rate Removal(mgN/d)^(mgN/d/gVSS) (mgN/d)91 11 22 103 6158 99 1961 502 5 0.7891 11 25 106 4324 98 1507 1914 17 0.8191 11 26^107 5823 92 2036 800 11 0.8091 11 29^110 6619 89 2470 479 8 0.8491 12 2^113 6590 91 2204 930 16 0.7891 12 4^115 4538 100 1454 -178 -3 0.7991 12 6^117 6309 94 2132 703 11 0.8591 12 7^118 4771 99 1486 -162 -3 0.8591 12 9^120 4799 99 1391 822 15 0.8291 12 11^122 5931 80 1836 -326 -5 0.8191 12 13^124 7159 100 2150 332 5 0.8591 12 16^127 4686 100 1507 611 11 0.8591 12 18^129 4643 99 1469 248 5 0.7991 12 20^131 4785 99 1437 427 7 0.8691 12 22 133 7871 79 2180 -1004 -10 0.8291 12 24^135 6076 89 1660 435 4 0.8291 12 26^137 8130 98 2303 1104 12 0.8491 12 30^141 7808 99 2237 1580 15 0.8992 01 2^144 9168 96 2597 2093 21 0.8992 01 5^147 7925 97 2148 1296 13 0.8792 01 6^148 9564 99 2338 1334 13 0.8792 01 8^150 7490 97 1818 912 9 0.8592 01 10^152 7179 100 1804 607 6 0.8292 01 12^154 7914 100 1988 1040 11 0.8092 01 14^156 11316 62 2801 -521 -4 0.8092 01 15^157 5771 48 1770 4172 20 0.7792 01 17^159 9447 53 3170 1503 7 0.8192 01 20 162 7762 85 2250 2333 16 0.7992 01 22 164 10477 74 2437 2591 15 0.8292 01 24 166 15389 95 3035 -390 -2 0.8192 01 26 168 7550 62 1516 1695 10 0.8592 01 30^172 8458 99 1563 2962 19 0.7992 01 31^173 8511 91 1493 2605 17 0.8492 02 2^175 7263 100 1183 3008 21 0.7892 02 3^176 8408 99 1390 1532 10 0.8692 02 5^178 7228 75 1183 3066 20 0.7792 02 6^179 7093 75 1130 3615 23 0.8392 02 7^180 8218 81 1284 3623 25 0.8292 02 10^183 9223 100 1448 2622 18 0.8292 02 11^184 9541 99 1471 573 4 0.7892 02 12^185 9656 100 1535 3353 22 0.7892 02 13^186 11493 100 1741 611 4 0.7992 02 14^187 10669 99 1634 902 6 0.7792 02 16^189 11817 100 1861 648 5 0.8292 02 18^191 9986 100 1267 1532 7 0.781 73AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AerobicDate^Day^Denitm %Denitrn Specific NH4 Removal^% NH4 VSS/TSS(yy mm dd)^Rate Denitm Rate^Rate Removal(mgN/d)^(mgN/d/gVSS) (mgN/d)92 02 19 192 6365 99 720 -132 -1 0.7992 02 21 194 6353 99 610 4195 15 0.7692 02 24 197 7390 99 744 6305 22 0.7392 02 27 200 8733 99 849 -3636 -14 0.7492 02 28 201 11276 79 1277 -6116 -22 0.7592 02 29 202 8612 91 1170 -230 -1 0.7492 03 1 203 12127 83 1381 653 2 0.7492 03 2 204 4933 97 705 11085 28 0.7292 03 3 205 11365 90 1654 5146 17 0.7492 03 4 206 5925 94 896 10615 28 0.7292 03 5 207 7098 98 1137 8352 25 0.7392 03 6 208 6559 90 1235 4309 10 0.7192 03 7 209 4844 95 971 11162 22 0.7892 03 10 212 5119 10 0.7692 03 11 213 6238 11 0.751 74AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NOVNOX^ALK:NH4^AUC:N H4^Nitrn^%Nitm Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)91 08 12^1 10.05 495.87 42 091 08 14^3 10.34 638.78 32 091 08 16^5 9.81 33.48 607 8 2291 08 18^7 9.12 5.74 3375 6191 08 20^9 0.69 8.80 10.89 1835 62 7191 08 23^12 8.05 4.38 4451 15791 08 26^15 9.67 10.17 2019 8991 08 28^17 0.03 9.63 9.25 2202 10091 08 31^20 9.45 10.19 2028 10291 09 2^22 9.20 15.56 1324 7191 09 4^24 0.02 8.68 10.87 1728 102 12991 09 7^27 9.18 10.15 1890 108 11491 09 9^29 8.80 11.85 1610 75 8991 09 12^32 8.80 9.25 2029 105 11091 09 16^36 9.41 6.17 2979 150 15891 09 17^37 0.03 9.49 7.99 2272 109 12691 09 19^39 8.69 8.81 2104 123 11891 09 21^41 9.44 9.49 1924 105 10791 09 23^43 0.03 9.07 9.41 1956 124 9891 09 26^46 8.42 9.53 1869 108 9391 09 28^48 9.49 8.50 2088 125 10691 09 30^50 0.04 10.05 10.78 1624 87 7391 10 2^52 9.35 10.20 1762 101 8391 10 4^54 8.90 10.03 1834 97 8691 10 6^56 0.04 9.21 11.30 1576 89 7191 10 8^58 9.25 9.07 2027 124 9591 10 11^61 9.89 10.28 1808 101 8291 10 14^64 0.04 6.33 14.25 1316 56 5491 10 16^66 3.96 3.15 3859 143 16091 10 18^68 3.65 3.59 3333 89 14491 10 20^70 3.96 4.03 2978 117 12091 10 23^73 0.04 3.80 4.33 2762 121 10391 10 25^75 3.97 4.19 2793 116 11091 10 27^77 3.79 4.45 2607 98 8791 10 29^79 3.66 3.80 2973 107 9991 11 1^82 0.04 3.57 3.65 3147 115 10791 11 3^84 4.89 3.47 3308 89 11691 11 5^86 3.43 3.68 3066 106 11091 11 7^88 3.63 3.82 2944 97 10191 11 10^91 1.86 3.15 3483 63 11691 11 12^93 1.85 2.93 3682 33 11891 11 13^94 1.84 2.94 3852 37 12591 11 15^96 2.17 2.55 5002 54 17491 11 17^98 2.17 1.96 6731 70 24191 11 20^101 2.21 1.97 6733 71 2361 75AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NO2/NOX^ALK:NH4^ALK:NH4^Nitm^%Nitm Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)91 11 22 103 2.40 1.97 7124 77 25691 11 25 106 2.85 3.18 5136 56 19491 11 26 107 3.69 3.36 6920 103 25491 11 29 110 4.28 3.09 7986 151 26391 12 2^113 4.14 3.07 7966 160 24491 12 4^115 4.04 4.59 5330 85 16091 12 6^117 3.96 3.27 7556 136 23691 12 7^118 4.18 4.32 5588 94 16791 12 9^120 4.46 4.29 5681 122 16091 12 11^122 4.13 3.44 7146 114 21191 12 13 124 3.79 2.73 8374 146 24291 12 16^127 4.34 4.29 5571 114 16391 12 18^129 0.17 4.39 4.36 5489 105 15591 12 20^131 4.03 4.06 5673 107 16891 12 22 133 3.41 3.20 9508 86 27191 12 24 135 0.82 3.18 4.26 7277 77 20991 12 26 137 3.73 3.64 9669 116 27291 12 30^141 3.46 3.82 9263 106 25392 01 2^144 0.59 4.38 4.00 11089 138 30492 01 5^147 3.77 4.15 9271 104 24192 01 6^148 0.42 3.79 3.41 11170 128 29692 01 8^150 3.73 4.36 8799 94 22592 01 10 152 0.53 3.19 3.79 8554 89 22492 01 12^154 0.63 3.39 3.54 9312 107 23692 01 14^156 0.25 4.18 4.05 14470 99 38392 01 15^157 0.40 3.92 6.96 8021 48 21492 01 17^159 0.15 3.56 4.17 12448 58 34592 01 20 162 0.78 3.43 5.23 9469 78 22192 01 22 164 0.67 3.01 3.87 12805 90 27692 01 24 166 0.46 2.97 2.59 18008 82 38292 01 26 168 0.69 3.01 4.84 9681 65 19392 01 30^172 0.79 3.61 5.48 10107 81 18392 01 31^173 0.63 3.52 5.15 10213 83 15192 02 2^175 0.87 3.53 5.99 8619 74 12892 02 3^176 0.90 3.75 5.65 9812 74 14292 02 5^178 0.92 3.43 5.77 9062 74 13992 02 6^179 0.87 3.51 5.97 9003 76 13592 02 7^180 0.75 3.94 5.68 10213 92 15792 02 10^183 0.77 3.87 5.11 11018 92 16992 02 11^184 0.65 3.70 4.87 11363 79 17792 02 12^185 0.64 3.35 4.51 11485 95 17692 02 13^186 0.54 3.38 3.72 13520 95 21392 02 14^187 0.64 3.34 4.03 12403 88 18892 02 16^189 0.53 3.65 3.77 13691 101 21592 02 18^191 0.77 2.69 4.69 11489 57 1441 76AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day NO2/NOX^ALK:N H4^ALK:N H4^Nitrn^%Nitm Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)92 02 19^192 1.10 2.68 7.23 7482 30 7992 02 21^194 0.98 2.67 7.22 7441 31 7992 02 24 197 0.84 2.89 6.66 8684 39 7392 02 27 200 0.70 2.41 4.72 10299 34 8792 02 28 201 0.55 2.97 3.88 13869 40 13792 02 29 202 0.85 3.10 5.74 10457 35 9992 03 1^203 0.83 3.33 4.22 14579 48 11792 03 2^204 1.13 3.16 10.76 5836 20 6292 03 3^205 0.96 4.38 6.18 13642 53 12092 03 4^206 0.88 3.76 11.29 6994 26 6692 03 5^207 0.72 3.09 7.54 8429 34 10392 03 6^208 0.90 3.10 8.16 7819 19 15492 03 7^209 0.91 1.71 6.22 5678 15 9092 03 10 212 1.06 -2.5992 03 11^213 0.52 -1.421 77AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(mgN/d)91 08 12^1 1062 7 091 08 14^3 593 4 791 08 16^5 1252 16 4991 08 18^7 1712 31 7491 08 20^9 1566 53 9091 08 23^12 2169 77 9691 08 26^15 2016 89 9891 08 28^17 2058 94 9991 08 31^20 1856 94 9991 09 2^22 1763 94 20 9991 09 4^24 1548 91 20 28.4 9991 09 7^27 1716 98 20 30.7 10091 09 9^29 2110 99 20 30.9 10091 09 12^32 1888 98 20 29.1 10091 09 16^36 1903 96 20 26.5 9991 09 17^37 1881 90 20 26.0 9991 09 19^39 1587 93 20 29.3 9991 09 21^41 1759 96 20 23.7 10091 09 23^43 1552 98 20 27.5 10091 09 26^46 1667 97 20 28.2 10091 09 28^48 1654 99 20 28.0 10091 09 30^50 1878 100 20 30.4 10091 10 2^52 1751 100 20 32.5 10091 10 4^54 1882 100 20 32.7 10091 10 6^56 1770 100 20 28.6 10091 10 8^58 1637 100 20 27.9 10091 10 11^61 1797 100 20 26.6 10091 10 14^64 930 39 20 28.3 9291 10 16^66 1436 53 20 29.8 9491 10 18^68 1886 50 20 27.5 9291 10 20^70 1731 68 20 31.1 9691 10 23^73 1943 85 20 32.0 9891 10 25^75 2408 100 20 28.7 10091 10 27^77 2568 97 20 30.5 10091 10 29^79 2784 100 20 25.3 10091 11 1^82 2726 100 20 28.5 10091 11 3^84 3703 99 20 29.8 10091 11 5^86 2887 100 20 27.1 10091 11 7^88 3026 100 20 35.7 10091 11 10^91 5034 90 20 30.6 9991 11 12^93 6738 61 20 26.8 8991 11 13^94 6716 65 20 28.6 9191 11 15^96 5650 61 20 34.6 9091 11 17^98 5190 54 20 31.0 8991 11 20^101 5505 58 20 26.1 901 78AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4lyy mm ddl^Rate Removal (days)^(days) Removal(mgN/d)91 11 22 103 4705 51 20 24.6 8991 11 25 106 2827 31 20 21.2 8391 11 26 107 5294 79 20 20.5 9791 11 29 110 5298 100 20 18.3 10091 12 2 113 4978 100 20 19.8 10091 12 4 115 6227 100 20 21.1 10091 12 6 117 5528 100 20 22.8 10091 12 7 118 5931 100 20 24.6 10091 12 9 120 4644 100 20 22.9 10091 12 11 122 6271 100 20 28.5 10091 12 13 124 5710 100 20 24.2 10091 12 16 127 4892 100 20 21.5 10091 12 18 129 5190 100 20 23.3 10091 12 20 131 5282 100 20 29.1 10091 12 22 133 9723 88 20 24.8 9891 12 24 135 9310 98 20 23.5 10091 12 26 137 8329 100 20 18.4 10091 12 30 141 8620 99 20 21.3 10092 01 2 144 8045 100 20 27.2 10092 01 5 147 8923 100 20 22.1 10092 01 6 148 8729 100 20 23.3 10092 01 8 150 9368 100 20 22.5 10092 01 10 152 9541 100 20 22.2 10092 01 12 154 8665 100 20 25.9 10092 01 14 156 14525 100 20 17.7 10092 01 15 157 8823 52 20 17.7 9192 01 17 159 11634 54 20 19.5 9092 01 20 162 12080 100 20 22.5 10092 01 22 164 13806 97 20 15.3 10092 01 24 166 15101 69 20 22.7 9492 01 26 168 13647 91 20 24.7 9992 01 30 172 12377 100 20 26.1 10092 01 31 173 12308 100 20 29.7 10092 02 2 175 11603 100 20 27.8 10092 02 3 176 13246 100 20 27.6 10092 02 5 176 12132 99 20 23.3 10092 02 6 179 11688 99 20 25.9 10092 02 7 180 11082 100 20 25.5 10092 02 10 183 11927 100 20 27.1 10092 02 11 184 14368 100 20 27.4 10092 02 12 185 12097 100 20 27.7 10092 02 13 186 14280 100 20 28.1 10092 02 14 187 14067 100 20 29.1 10092 02 16 189 13476 100 20 29.4 10092 02 18 191 18216 90 20 19.9 991 79AMMONIA LOADING PHASE (20 DAY AEROBIC SRT SYSTEM, 20 C)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4I yy mm dd)^Rate Removal (days)^(days) Removal(mgN/d)92 02 19^192 19515 79 20 27.9 9692 02 21^194 14463 60 20 21.2 9392 02 24 197 12120 54 20 28.9 9292 02 27 200 22562 74 20 31.0 9492 02 28 201 22370 65 20 24.3 9092 02 29 202 17538 59 34.2 8992 03 1^203 15733 52 98.5 8892 03 2^204 5035 17 28.0 8192 03 3^205 12004 47 99.3 8992 03 4^206 7418 27 31.1 8692 03 5^207 9823 39 69.9 8892 03 6^208 11912 29 67.6 7992 03 7^209 4581 12 85.3 7692 03 10 212 10018 22 27.3 7492 03 11^213 10214 21 50.9 72180COLD TEMPERATURE PHASE^Influent^Influent^Influent^Influent^InfluentDate^Day^Operating^ pH^Alkalinity VSS TSS PO4Ivy mm dcl)^Temp (C) ImgCaCO3/1-1^lmg/LI^(mg/L)^im(IPA392^03^12 1 2092^03^13 2 2092^03^15 4 2092^03^17 6 2092^03^20 9 2092^03^22 11 2092^03^23 12 20 1580 58 115 0.292^03^25 14 2092^03^26 15 2092^03^28 17 20 7.892^03^30 19 2092^04^1 21 2092^04^3 23 2092^04^5 25 2092^04^6 26 2092^04^8 28 2092^04^9 29 2092^04^10 30 2092^04^12 32 2092^04^13 33 2092^04^15 35 2092^04^16 36 2092^04^18 38 2092^04^21 41 2092^04^24 44 2092^04^25 45 2092^04^27 47 20 8.0 1190 31 61 0.592^04^30 50 2092^05^3 53 2092^05^5 55 2092^05^6 56 2092^05^8 58 2092^05^9 59 2092^05^11 61 2092^05^13 63 2092^05^15 65 2092^05^18 68 2092^05^19 69 2092^05^21 71 2092^05^25 75 2092^05^26 76 2092^05^28 78 2092^05^31 81 20 7.8 1420 44 87 0.492^06^2 83 2092^06^4 85 20181COLD TEMPERATURE PHASE^Influent^Influent^Influent^Influent^InfluentDate^Day^Operating^ pH^Alkalinity VSS TSS PO4(yy mm dd)^Temp (DI (mgDaD03/L)^(nig/L)^(mg/L)^(mgP/L)92^06^6^87 2092^06^7^88 2092^06^10^91 2092^06^13^94 2092^06^15^96 1792^06^16^97 1792^06^17^98 1792^06^19 100 1792^06^22 103 1792^06^23 104 1792^06^26 107 1492^06^28 109 1492^06^29 110 1492^07^3^114 14 7.9 1370 65 128 0.192^07^4^115 1492^07^6^117 1292^07^9^120 1292^07^10^121 1292^07^12^123 1092^07^14 125 1092^07^15^126 1092^07^17^128 1092^07^19 130 1092^07^21^132 1092^07^23 134 1092^07^26 137 1092^07^27 138 1092^07^29 140 1092^07^31^142 1092^08^2^144 1092^08^4^146 10 7.7 1540 59 119 0.392^08^6^148 1092^08^7^149 1092^08^10 152 1092^08^13 155 1092^08^14 156 1092^08^17^159 1092^08^19^161 1092^08^21^163 1092^08^23 165 1092^08^24 166 1092^08^27 169 10182COLD TEMPERATURE PHASE^Influent^Influent^Influent^Influent^InfluentDate^Day^NH4 NOx NO2 BOO^CODfyy mm del)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)92 03 12 1 15892 03 13 2 13392 03 15 4 16192 03 17 6 16492 03 20 9 15592 03 22 11 14192 03 23 12 173 8.8 0.2 61 28592 03 25 14 18192 03 26 15 19592 03 28 17 17692 03 30 19 16792 04 1 21 3592 04 3 23 14992 04 5 25 18292 04 6 26 19192 04 8 28 17992 04 9 29 19392 04 10 30 19892 04 12 32 18692 04 13 33 19692 04 15 35 19792 04 16 36 18992 04 18 38 16992 04 21 41 17392 04 24 44 16492 04 25 45 15192 04 27 47 229 11.2 0.4 37 34392 04 30 50 17692 05 3 53 17692 05 5 55 25692 05 6 56 18592 05 8 58 19192 05 9 59 19292 05 11 61 17492 05 13 63 17892 05 15 65 17292 05 18 68 18792 05 19 69 17692 05 21 71 17392 05 25 75 18692 05 26 76 16792 05 28 78 16992 05 31 81 162 15.6 0.3 29 32992 06 2 83 6692 06 4 85 156COLD TEMPERATURE PHASE^Influent^Influent^Influent^Influent^InfluentDate^Day^NH4 NOx NO2 BOD^COD(Icy mm dd)^(mgN/1.1^(mgN/L)^(rtigN/L)^(mg/1.1^Img/L)92 06 6^87 16692 06 7^88 17792 06 10^91 17592 06 13^94 17692 06 15^96 16392 06 16^97 18192 06 17^98 15992 06 19^100 17192 06 22 103 17892 06 23 104 15792 06 26 107 18092 06 28 109 17192 06 29^110 16892 07 3^114 180 3.7 0.1 35 35092 07 4^115 18392 07 6^117 19992 07 9^120 17792 07 10^121 19792 07 12^123 19292 07 14^125 19292 07 15^126 18392 07 17^128 20392 07 19^130 20192 07 21^132 17992 07 23 134 19492 07 26 137 19992 07 27^138 18992 07 29 140 19892 07 31^142 19692 08 2^144 18192 08 4^146 201 7.7 0.1 22 31892 08 6^148 19392 08 7^149 20092 08 10^152 20092 08 13^155 19792 08 14^156 19392 08 17^159 18992 08 19^161 20792 08 21^163 18192 08 23 165 19092 08 24 166 20392 08 27^169 184COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4^Recycle^Aerobic^Anoxic(yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^Iml/h)^(Lid)^Wasting^Overflow(Lid)^(Lid)92^03^12 1 9.7 27 6.5 41 41 57 0 6892^03^13 2 9.5 24.4 6.4 42 42 57 0 6892^03^15 4 9.4 27.5 6.3 37 37 57 0 6892^03^17 6 9.5 25 6.6 39 39 57 0 6892^03^20 9 9.3 24.6 6.65 36 36 63 0 7492^03^22 11 9.3 23.8 6.7 41 41 63 0 7492^03^23 12 9.4 19.5 6.9 43 43 60 0 7192^03^25 14 9.0 23 6.5 42 42 60 0 7192^03^26 15 9.1 21 6.5 39 39 60 0 7192^03^28 17 8.9 20 6.4 39 39 59 1 6992^03^30 19 9.0 20 6.4 39 39 59 1 7092^04^1 21 8.9 19.5 6.8 47 47 59 1 7092^04^3 23 8.7 16 6.9 38 38 59 1 6992^04^5 25 8.8 15.4 6.6 44 44 56 1 6692^04^6 26 8.7 26 6.7 48 48 56 1 6792^04^8 28 8.6 26 6.8 46 46 56 1 6692^04^9 29 8.6 26.8 7.4 44 44 56 1 6692^04^10 30 8.4 25 6.8 37 37 63 1 7392^04^12 32 8.7 25 7 45 45 63 0 7492^04^13 33 8.9 25 6.8 14 11.7 63 0 7392^04^15 35 8.9 25 6.7 28 11.5 58 0 6892^04^16 36 8.5 24 6.5 37 11.8 58 0.5 6892^04^18 38 7.9 26 6.5 80 11.4 58 1 6792^04^21 41 8.2 27 6.8 32 11.2 58 1 6792^04^24 44 8.2 26 6.6 32 11.1 58 1 6792^04^25 45 8.3 24.5 6.5 25 11.0 64 0 7392^04^27 47 8.5 26.5 6.7 22 10.9 64 0 7492^04^30 50 8.5 28 6.6 12 10.8 64 0 7492^05^3 53 8.6 26.7 6.8 16.7 11.0 64 0 7492^05^5 55 8.7 24.6 6.7 12 11.5 64 0 7492^05^6 56 8.6 27 6.6 17 11.4 64 1 7492^05^8 58 8.6 28 6.9 22 11.8 59 1 3992^05^9 59 8.3 25 6.3 34 11.7 59 1 6892^05^11 61 8.1 26 6.2 53 11.7 62 1 7192^05^13 63 8.0 28 7 68 12.1 62 1 7192^05^15 65 8.1 26.5 6.6 41 12.1 62 1 7192^05^18 68 8.2 25.7 6.5 34 11.9 62 1 7192^05^19 69 8.6 25.5 6.9 26 12.1 65 1 7592^05^21 71 8.5 23.9 6.4 41.3 12.2 65 1 7592^05^25 75 8.5 24 6.7 40 11.6 65 1 7592^05^26 76 8.5 23 6.9 43 12.1 65 1 7592^05^28 78 8.3 25.1 6.8 35.2 12.0 63 1 7292^05^31 81 8.3 24.8 6.8 55 12.5 63 1 7292^06^2 83 8.0 23.6 6.5 47 12.7 63 1 7292^06^4 85 8.1 23.5 6.7 47 12.7 63 1 721 85COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)Date(yy mmDaydd)FlowrateInfluent(L/d)FlowrateNH4C1(mL/h)FlowrateCH3OH1mL/h1FlowrateNaHCO31mL/h)Flowrateo-PO4(mliti)FlowrateRecycle(Lid)FlowrateAerobicWastingFlowrateAnoxicOverflow11./d) (L/d)92 06 6^87 8.3 24.6 6.5 39 12.2 57 1 6692 06 7^88 8.5 25.5 6.9 44 11.8 57 1 6792 06 10^91 8.3 24.2 6.4 55 11.7 57 1 6692 06 13^94 8.1 24.1 6.7 48 11.4 57 1 6692 06 15^96 8.1 25.8 6.8 57 11.3 57 1 6692 06 16^97 8.3 22.6 6.6 42 11.7 57 1 6692 06 17^98 8.3 21 6.7 42 12.0 57 1 6692 06 19^100 8.3 22.1 6.5 39 12.5 60 1 6992 06 22 103 7.9 23.1 6.8 53 12.7 60 1 6992 06 23 104 8.1 20.3 6.8 47 13.0 60 1 6992 06 26 107 8.0 20.9 5.9 59 12.8 60 1 6992 06 28 109 8.2 21.2 6.2 40 12.9 60 1 6992 06 29^110 8.1 21.9 6 54 13.4 64 1 7392 07 3^114 7.9 33.7 5.9 46 13.8 61 1 7092 07 4^115 8.2 31.7 5.85 37 13.9 61 1 7092 07 6^117 8.1 32.3 6 58 13.6 61 1 7092 07 9^120 7.9 31 6.1 43 13.3 61 1 7092 07 10^121 7.8 29.2 5.9 44 13.3 64 1 7392 07 12^123 8.1 29.2 6 35 13.9 64 1 7392 07 14^125 8.4 30.1 6.1 42 13.4 64 1 7492 07 15^126 8.2 30 6 25 13.5 64 1 7392 07 17^128 8.3 29.1 5.8 47 13.9 61 1 7092 07 19^130 8.2 27.5 6.1 31 14.5 61 0 7092 07 21^132 7.7 29.2 0 113 14.9 61 0 7092 07 23 134 7.6 29.7 0 89.1 14.9 61 0 7092 07 26 137 7.5 26.8 0 95.2 14.5 61 0 6992 07 27^138 7.3 23.1 0 89 15.1 61 1 6992 07 29 140 7.7 29.4 0 0 14.9 61 1 7092 07 31^142 7.6 29.7 0 83.8 14.5 61 1 7092 08 2^144 7.7 25.4 0 79.6 14.3 55 1 6492 08 4^146 8.1 25.8 0 33.9 14.1 55 0 6492 08 6^148 7.6 27.2 0 90.5 13.9 62 0 7192 08 7^149 7.6 28.6 0 47.1 14.0 62 0 7192 08 10^152 8.4 28.5 0 0 14.1 58 0 6792 08 13^155 8.5 28.6 0 44 14.4 58 0 6892 08 14^156 8.4 29.9 0 22 14.1 58 0 6792 08 17^159 8.4 29.9 0 56.8 14.6 58 0 6792 08 19^161 8.2 28.1 0 58 14.9 55 0 6492 08 21^163 8.3 28.6 0 51.9 14.4 55 0 6492 08 23 165 7.8 27.8 0 95.5 14.9 55 0 6492 08 24 166 7.7 27.9 0 53.9 14.7 55 0 6492 08 27^169 7.9 28.9 0 50.8 15.0 55 0 641 86COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc.Date^Day^Aerobic NH4C1 Simulated^CH3OH o-PO4(yy mm dd)^Overflow (g/L)^Influent NH4 (mL/L)^IgP/L)(Lid)^ (mgN/L)92 03 12 1 69 0 146 10 0.23192 03 13 2 69 0 123 10 0.23192 03 15 4 69 0 148 10 0.23192 03 17 6 69 25 536 10 0.23192 03 20 9 75 25 529 10 0.23192 03 22 11 75 25 502 10 0.23192 03 23 12 72 50 771 10 0.23192 03 25 14 72 80 1363 10 0.23192 03 26 15 72 100 1529 10 0.23192 03 28 17 70 100 1484 10 0.23192 03 30 19 71 110 1589 200 0.23192 04 1 21 71 110 1544 200 0.23192 04 3 23 70 120 1437 200 0.23192 04 5 25 67 125 1467 200 0.23192 04 6 26 68 80 1558 200 0.23192 04 8 28 68 80 1558 500 0.23192 04 9 29 68 80 1607 500 0.23192 04 10 30 74 80 1553 500 0.23192 04 12 32 75 SO 1497 500 0.23192 04 13 33 73 0 180 200 0.36192 04 15 35 69 25 569 200 0.36192 04 16 36 68 50 931 10 0.36192 04 18 38 69 80 1404 10 0.36192 04 21 41 68 80 1592 150 0.36192 04 24 44 68 80 1536 150 0.36192 04 25 45 74 80 1460 500 0.36192 04 27 47 74 80 1608 500 0.36192 04 30 50 74 50 1118 10 0.36192 05 3 53 74 25 605 10 0.36192 05 5 55 74 25 648 10 0.36192 05 6 56 74 0 169 10 0.36192 05 8 58 69 25 630 100 0.36192 05 9 59 69 50 987 200 0.36192 05 11 61 72 80 1480 200 0.36192 05 13 63 73 80 1537 200 0.36192 05 15 65 72 80 1544 300 0.36192 05 18 68 72 80 1521 300 0.36192 05 19 69 75 80 1476 400 0.36192 05 21 71 76 80 1352 400 0.36192 05 25 75 75 80 1375 400 0.36192 05 26 76 76 90 1438 200 0.36192 05 28 78 73 90 1627 200 0.36192 05 31 81 74 90 1525 250 0.36192 06 2 83 73 90 1527 250 0.36192 06 4 85 73 90 1496 250 0.3611 87COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc.Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4(yy mm dd)^Overflow Ig/L)^Influent NH4 (mL/L)^(gPIL)(L/d)^ ImgN/LI-----92 06 6^87 67 90 1573 265 0.36192 06 7^88 68 90 1597 265 0.36192 06 10^91 68 90 1511 265 0.36192 06 13^94 67 90 1554 265 0.36192 06 15^96 68 90 1607 265 0.36192 06 16^97 67 90 1462 265 0.36192 06 17^98 67 90 1347 265 0.36192 06 19^100 70 100 1584 265 0.36192 06 22 103 70 100 1643 265 0.36192 06 23 104 70 100 1442 265 0.36192 06 26 107 70 100 1471 265 0.36192 06 28 109 70 100 1527 265 0.36192 06 29^110 74 100 1537 290 0.36192 07 3^114 71 73 1772 290 0.36192 07 4^115 71 73 1661 290 0.36192 07 6^117 72 73 1643 290 0.36192 07 9^120 71 73 1654 290 0.36192 07 10^121 74 73 1590 290 0.36192 07 12^123 74 73 1582 290 0.36192 07 14^125 75 73 1557 290 0.36192 07 15^126 74 73 1632 290 0.36192 07 17^128 72 73 1511 290 0.36192 07 19^130 71 73 1503 290 0.36192 07 21^132 72 73 1366 0 0.36192 07 23 134 72 73 1491 0 0.36192 07 26^137 72 73 1356 0 0.36192 07 27 138 71 73 1217 0 0.36192 07 29 140 70 73 1853 0 0.36192 07 31^142 72 73 1506 0 0.36192 08 2^144 66 73 1307 0 0.36192 08 4^146 65 73 1447 0 0.36192 08 6^148 73 73 1366 0 0.36192 08 7^149 72 73 1605 0 0.36192 08 10^152 67 73 1682 0 0.36192 08 13^155 69 73 1486 0 0.36192 08 14^156 68 73 1641 0 0.36192 08 17^159 69 73 1506 0 0.36192 08 19^161 66 73 1454 0 0.36192 08 21^163 66 73 1472 0 0.36192 08 23 165 66 73 1354 0 0.36192 08 24 166 65 73 1528 0 0.36192 08 27^169 65 73 1542 0 0.3611 88COLD TEMPERATURE PHASE (10 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Feed Conc.^ System^System^System^AnoxicDate^Day NaHCO3 Loading Loading Loading ORP(yy mm dd)^Ig/L) CH3OH^o-PO4^NaHCO3 imIn(gCOD/d) (cip/d)^(gCaCO3/d)92 03 12 1 44 1.85 0.228 3671 -15692 03 13 2 56 1.82 0.233 4537 -10992 03 15 4 56 1.80 0.205 4121 -1792 03 17 6 50 1.88 0.217 3952 5392 03 20 9 81 1.89 0.200 5402 6692 03 22 11 81 1.91 0.228 5958 12192 03 23 12 81 1.97 0.239 6442 7392 03 25 14 100 1.85 0.233 7672 5092 03 26 15 100 1.85 0.217 7163 1192 03 28 17 100 1.82 0.217 7331 1692 03 30 19 100 36.47 0.217 7253 -3092 04 1 21 100 38.75 0.261 8543 -4492 04 3 23 100 39.32 0.211 7326 -2992 04 5 25 100 37.61 0.244 8228 -3992 04 6 26 75 38.18 0.267 6893 1092 04 8 28 75 96.88 0.255 6708 -8692 04 9 29 50 105.43 0.244 4783 -10792 04 10 30 50 96.88 0.205 4334 -9192 04 12 32 13 99.73 0.250 2300 -5592 04 13 33 75 38.75 0.102 3002 -6292 04 15 35 75 38.18 0.100 4414 -3492 04 16 36 75 1.85 0.103 5403 -5192 04 18 38 75 1.85 0.099 9575 -4292 04 21 41 75 29.06 0.097 5021 -7592 04 24 44 75 28.21 0.097 5034 -9192 04 25 45 75 92.61 0.095 4292 -11092 04 27 47 75 95.45 0.095 3552 -11492 04 30 50 75 1.88 0.093 2495 -8192 05 3 53 75 1.94 0.095 2984 -4492 05 5 55 75 1.91 0.099 2469 2192 05 6 56 75 1.88 0.099 3016 -392 05 8 58 75 19.66 0.102 3529 -892 05 9 59 75 35.90 0.101 4840 -1592 05 11 61 75 35.33 0.101 6793 -3292 05 13 63 75 39.89 0.105 8172 -4992 05 15 65 75 56.42 0.105 5623 -3692 05 18 68 75 55.56 0.103 4866 -11492 05 19 69 75 78.64 0.105 3927 -12492 05 21 71 75 72.94 0.106 5455 -11092 05 25 75 75 76.36 0.101 5342 -16692 05 26 76 75 39.32 0.105 5607 -14292 05 28 78 75 38.75 0.105 4966 -13092 05 31 81 75 48.44 0.108 7020 -12992 06 2 83 75 46.30 0.110 6426 -16092 06 4 85 75 47.73 0.110 6363 -160189COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Feed Conc.^ System^System^System^AnoxicDate^Day NaHCO3 Loading Loading Loading ORP(yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV)(gCOD/d) (gP/d)^(gCaCO3/d)92 06 6 87 75 49.08 0.106 5518 -13692 06 7 88 75 52.10 0.102 5938 -15192 06 10 91 75 48.33 0.102 7057 -16692 06 13 94 75 50.59 0.099 6499 -17292 06 15 96 75 51.35 0.098 7334 -15192 06 16 97 75 49.84 0.101 5817 -19092 06 17 98 75 50.59 0.104 5803 -20092 06 19 100 75 49.08 0.108 5544 -18592 06 22 103 75 51.35 0.110 7027 -15492 06 23 104 75 51.35 0.113 6366 -16092 06 26 107 75 44.55 0.111 7536 -16492 06 28 109 75 46.82 0.112 5659 -18392 06 29 110 75 49.58 0.116 7051 -17192 07 3 114 75 48.75 0.120 6353 -16992 07 4 115 75 48.34 0.120 5308 -17492 07 6 117 75 49.58 0.118 7374 -14092 07 9 120 75 50.41 0.115 6067 -15892 07 10 121 75 48.75 0.116 6201 -16192 07 12 123 75 49.58 0.121 5174 -18792 07 14 125 75 50.41 0.116 5742 -23492 07 15 126 75 49.58 0.117 4095 -25892 07 17 128 75 47.93 0.121 6245 -20792 07 19 130 75 50.41 0.126 4714 -22692 07 21 132 75 0.00 0.129 12253 -11992 07 23 134 75 0.00 0.129 10526 -3092 07 26 137 75 0.00 0.126 11120 -892 07 27 138 75 0.00 0.131 10779 -592 07 29 140 75 0.00 0.129 1309 592 07 31 142 75 0.00 0.126 10053 1592 08 2 144 75 0.00 0.124 9667 3992 08 4 146 75 0.00 0.123 5277 -1592 08 6 148 75 0.00 0.121 10717 3092 08 7 149 75 0.00 0.121 6860 2192 08 10 152 75 0.00 0.122 1480 4092 08 13 155 75 0.00 0.125 6087 4592 08 14 156 75 0.00 0.123 3935 4692 08 17 159 75 0.00 0.127 7307 4292 08 19 161 75 0.00 0.129 7504 5492 08 21 163 75 0.00 0.125 6926 3592 08 23 165 75 0.00 0.129 10952 4992 08 24 166 75 0.00 0.128 7454 4792 08 27 169 75 0.00 0.131 7027 571 90COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO(yy mm dd) (mg/L)^Img/L)^I ingP/1.1^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)92 03 12 1 7.5 6115 8127 4592 03 13 2 7.3 6090 7974 2992 03 15 4 7.8 5660 7036 25 26792 03 17 6 7.3 5802 7372 10892 03 20 9 7.4 6232 8146 8492 03 22 11 7.6 6093 8540 83 16192 03 23 12 7.5 5700 8204 14692 03 25 14 7.7 5114 8799 14.5 206 865 293.692 03 26 15 7.7 4679 7209 10.5 220 926 265.892 03 28 17 7.9 4608 6893 9.9 208 1028 310.0 7492 03 30 19 8.2 4485 4839 10.3 193 704 274.292 04 1 21 8.1 4970 5496 9.6 195 485 278.192 04 3 23 8.5 5291 5134 7.2 181 400 236.992 04 5 25 8.6 5815 5895 8.7 198 327 288.9 11792 04 6 26 8.3 6132 6571 9.2 183 339 256.792 04 8 28 8.2 6126 6550 7.6 298 155 134.992 04 9 29 8.3 6371 6773 6.8 246 95 69.792 04 10 30 8.3 6451 7163 5.9 255 55 52.292 04 12 32 8.7 6192 6632 6.8 336 45 35.7 28592 04 13 33 8.7 6180 6767 4.9 42 94 53.192 04 15 35 8.2 6736 6907 4.0 143 324 261.5 25892 04 16 36 8.2 6658 7124 3.4 201 587 360.0 21992 04 18 38 8.2 6388 7466 3.1 276 1122 577.0 18092 04 21 41 8.2 6491 7758 3.9 201 484 123.1 8692 04 24 44 8.4 6663 8260 3.3 188 236 115.5 11692 04 25 45 8.6 6335 7536 3.0 359 135 62.592 04 27 47 8.5 6094 7571 2.6 620 127 81.6 36492 04 30 50 8.1 7663 11039 2.7 661 246 106.8 29292 05 3 53 8.5 5878 7941 3.3 348 224 104.3 25092 05 5 55 8.0 5335 7267 2.8 266 282 109.0 15292 05 6 56 8.0 5190 7240 3.5 57 198 63.692 05 8 58 7.6 4863 6661 3.3 118 355 114.0 11392 05 9 59 8.0 4630 6271 4.2 176 495 139.9 12992 05 11 61 8.3 4439 6272 4.2 227 672 149.9 10492 05 13 63 8.0 4174 5091 4.2 215 518 98.6 12792 05 15 65 7.9 4292 5048 3.9 198 405 64.2 12192 05 18 68 7.9 4450 5268 3.5 183 317 41.6 11492 05 19 69 8.0 4516 5055 3.1 186 72 32.6 22792 05 21 71 8.0 4669 5304 3.1 177 15 9.6 18392 05 25 75 8.3 4721 5196 3.4 191 9 1.0 17592 05 26 76 8.4 4835 5344 2.9 187 140 3.7 14692 05 28 78 8.3 4917 5529 2.5 188 91 0.4 11892 05 31 81 8.7 5301 5758 2.9 168 30 1.8 21492 06 2 83 8.9 5217 5740 2.3 181 23 1.8 18292 06 4 85 8.4 5171 5715 2.9 168 16 0.6 198191COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOOlyy mm dd) (mg/L)^Img/t.)^(mgP/L)^imgN/L)^(mgN/L)^(mgN/L)^(mg/L)92 06 6^87 8.4 4977 5545 2.4 179 2 0.2 21692 06 7^88 8.4 5308 5888 2.5 183 3 0.392 06 10^91 8.4 5243 5709 2.1 176 1 1.0 17592 06 13^94 8.6 5280 5857 2.1 168 3 0.3 19392 06 15^96 8.5 5078 5742 2.8 182 1 0.292 06 16^97 8.3 5480 6445 2.8 163 2 0.9 15492 06 17^98 8.4 5123 5839 2.6 169 1 0.5 13392 06 19^100 8.3 4958 5814 2.6 161 2 0.4 15592 06 22 103 8.4 5305 6256 2.7 166 4 1.6 16292 06 23 104 8.4 5168 5908 2.7 161 1 0.592 06 26 107 8.4 4938 5671 2.9 177 1 0.8 18792 06 28 109 8.4 5258 6196 3.3 171 0 0.1 18092 06 29^110 8.5 5272 5855 3.3 181 1 0.9 17392 07 3^114 8.3 5339 5947 2.7 186 1 0.5 16992 07 4^115 8.3 5307 5946 3.0 179 2 1.992 07 6^117 8.4 5410 5994 3.1 184 0 0.4 20592 07 9^120 8.3 5609 6216 2.6 181 2 0.5 18892 07 10^121 8.4 5566 6172 2.3 176 1 0.792 07 12^123 8.4 5363 5891 2.9 248 24 17.1 16292 07 14^125 8.2 5377 6176 2.8 305 93 46.1 19692 07 15^126 8.2 5253 5992 3.1 578 133 137.392 07 17^128 8.3 5171 5849 2.7 595 100 87.2 19892 07 19^130 8.2 5221 5851 3.3 679 186 159.8 21392 07 21^132 8.0 4122 5149 3.6 527 930 0.5 50192 07 23 134 8.1 4311 6113 4.8 535 836 0.4 34092 07 26 137 8.1 2508 3154 5.0 507 825 0.4 30792 07 27^138 7.9 3198 4072 4.8 581 799 0.592 07 29 140 7.8 3317 4372 4.6 249 872 64.8 24892 07 31^142 7.6 3190 4588 4.4 221 932 71.6 27092 08 2^144 7.5 3306 4664 3.7 204 923 30.9 21792 08 4^146 7.7 3293 4437 3.4 652 754 308.8 59492 08 6^148 7.4 3278 4370 3.4 719 823 365.0 36192 08 7^149 7.5 3381 4367 3.4 785 723 506.092 08 10^152 7.5 3375 4342 2.7 830 649 660.0 30092 08 13^155 7.5 3332 4251 3.0 1013 603 441.092 08 14^156 7.7 3330 4259 3.4 924 520 448.0 20592 08 17^159 7.5 3268 4335 2.8 1078 504 415.392 08 19^161 7.5 3176 4171 3.1 1069 442 367.5 34092 08 21^163 7.6 3419 4603 3.6 1199 390 358.392 08 23 165 7.7 3459 4385 4.0 963 412 374.3 29692 08 24 166 7.6 3424 4665 3.8 1054 453 402.092 08 27 169 7.5 3304 4460 3.7 1228 448 316.01 92COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^COD DO PH^VSS^TSS^o-PO4^NH4(yy mm dd)^(mg/L)^(mg/L)^Img/L)^(mg/L)^(mgP/1.)^(mgN/1.)92 03 12 1 652 9.1 6.7 6361 8614 3292 03 13 2 708 8.0 7.2 6290 8346 1492 03 15 4 715 8.2 7.7 6520 8072 792 03 17 6 670 7.8 7.1 6225 7998 4192 03 20 9 744 8.7 7.1 5924 7697 1492 03 22 11 667 9.0 7.6 5290 7544 1692 03 23 12 536 8.6 7.8 5030 7244 5892 03 25 14 624 5.5 7.3 4090 7119 14.3 5592 03 26 15 504 5.5 7.6 4350 6680 9.9 2092 03 28 17 488 8.0 7.5 4364 6488 10.4 1792 03 30 19 469 7.0 7.4 5690 6256 8.5 592 04 1 21 477 7.0 7.6 5702 6412 9.7 1392 04 3 23 482 7.5 8.1 6592 6504 6.2 092 04 5 25 505 7.5 8.0 6507 6752 8.9 1292 04 6 26 459 6.0 6.9 6461 6932 9.6 692 04 8 28 485 5.0 6.5 6550 7059 6.9 14892 04 9 29 536 5.5 6.9 6625 7203 6.8 12092 04 10 30 578 5.0 6.8 6592 7323 5.1 17792 04 12 32 626 5.0 8.3 6852 7428 6.1 25592 04 13 33 656 4.5 7.3 6770 7515 5.8 2292 04 15 35 634 7.5 7.7 7362 7645 5.0 5992 04 16 36 634 7.0 7.5 7325 7889 3.2 11692 04 18 38 592 7.5 7.9 6820 8062 3.2 13992 04 21 41 561 7.5 6.8 6798 8073 3.2 1892 04 24 44 533 6.5 7.3 6373 8109 3.7 692 04 25 45 613 5.0 8.2 6503 7933 2.9 27292 04 27 47 709 6.7 8.5 6109 7787 2.7 52592 04 30 50 717 7.0 7.8 5036 7230 2.4 54792 05 3 53 652 9.8 7.7 5077 6875 3.2 26192 05 5 55 629 7.5 7.3 4788 6608 2.4 21092 05 6 56 576 7.3 7.4 4428 6308 2.8 2792 05 8 58 510 5.8 7.4 4337 6014 3.6 5392 05 9 59 468 6.1 7.3 4253 5868 3.9 5492 05 11 61 435 5.8 7.3 3985 5698 4.7 2992 05 13 63 447 5.0 7.3 4514 5504 4.3 1392 05 15 65 446 4.7 7.3 4682 5484 3.9 592 05 18 68 483 5.0 7.4 4645 5491 4.1 592 05 19 69 489 5.3 7.4 4858 5494 3.0 392 05 21 71 490 5.5 7.3 4853 5547 3.0 192 05 25 75 507 4.0 7.3 5098 5604 3.4 1392 05 26 76 487 7.5 7.3 5064 5692 2.9 192 05 28 78 503 8.4 7.3 5067 5756 2.7 492 05 31 81 533 6.6 7.4 5288 5802 3.3 492 06 2 83 550 6.8 7.4 5283 5889 2.5 292 06 4 85 548 6.5 7.4 5253 5944 3.0 5193COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^COD DO pH^VSS^TSS^o-PO4^NH4Iyy mm dd)^(mg/L)^(mg/L)^Img/L1^Img/L1^(mgP/L)^(mgN/L)92 06 6^87 572 6.0 7.4 5270 5993 2.5 092 06 7^88 579 5.8 7.4 5397 6031 2.3 192 06 10^91 574 6.6 7.5 5489 6095 2.1 192 06 13^94 574 6.3 7.5 5407 6157 1.9 092 06 15^96 554 6.0 7.4 5408 6192 2.9 192 06 16^97 527 5.7 7.4 5296 6211 3.1 192 06 17^98 523 6.6 7.4 5325 6204 2.9 392 06 19 100 539 7.1 7.4 5178 6194 2.8 092 06 22 103 514 7.5 7.4 5177 6158 2.7 192 06 23 104 568 6.5 7.4 5230 6127 2.5 192 06 26 107 532 6.5 7.3 5232 6131 2.9 292 06 28 109 500 6.8 7.3 5208 6129 3.4 192 06 29^110 511 7.0 7.4 5452 6136 2.9 192 07 3^114 526 6.9 7.3 5429 6200 3.0 192 07 4^115 519 7.3 7.3 5460 6240 3.4 092 07 6^117 524 7.2 7.3 5605 6252 2.8 3192 07 9^120 526 6.4 7.4 5701 6325 2.5 292 07 10^121 517 6.2 7.3 5733 6401 2.2 192 07 12^123 545 7.1 7.3 5690 6392 2.4 13992 07 14^125 566 7.2 7.3 5612 6427 2.8 15192 07 15^126 586 6.3 7.3 5554 6358 3.4 49592 07 17^128 554 6.6 7.3 5558 6335 2.7 47192 07 19 130 584 5.7 7.3 5583 6309 3.3 56292 07 21^132 709 5.1 7.3 4885 6247 3.2 34492 07 23 134 676 6.5 7.3 4326 6185 4.3 14992 07 26 137 648 7.0 7.3 4701 5922 5.2 6692 07 27 138 665 7.2 7.3 4545 5819 5.0 1492 07 29 140 617 5.9 7.3 4372 5767 4.8 8892 07 31^142 636 6.4 7.3 3930 5691 4.5 1592 08 2^144 625 6.2 7.3 3871 5500 3.5 392 08 4^146 811 0.0 7.3 3851 5201 3.4 62092 08 6^148 759 6.3 7.3 3748 5112 3.0 65792 08 7^149 703 6.7 7.3 3685 4868 3.1 71392 08 10^152 678 7.4 7.4 3644 4665 2.9 77492 08 13^155 681 7.1 7.5 3704 4832 3.1 105892 08 14^156 619 6.7 7.4 3632 4684 3.4 98292 08 17^159 640 6.4 7.4 3644 4957 2.6 96292 08 19^161 707 6.6 7.4 3599 4784 3.0 95592 08 21^163 739 6.5 7.4 3528 4725 3.0 107692 08 23 165 689 6.9 7.4 3546 4616 3.5 90192 08 24 166 669 6.1 7.4 3451 4680 4.0 107892 08 27^169 717 6.3 7.3 3418 4583 3.2 11381 94COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^EffluentDate^Day^NOx^NO2^BOO^COD VSS^TSS^NH4(yy mm dd)^(nigN/L)^(mgN/L)^Img/L)^(mg/L)^Ong/1J^(INOL)^hngNAJ9292929292929292929292929292929292929292929292929292929292929292929292929292929292929292920303030303030303030303040404040404040404040404040404040405050505050505050505050505050506061213151720222325262830135689101213151618212425273035689111315181921252628312412469111214151719212325262829303233353638414445475053555658596163656869717576788183851004108312078786625874855073241921181101183896441247615390198163317294333219412600862703680467216137152302242198271155441.8501.8537.1577.0434.0354.0289.0269.1241.6132.689.383.362.9164.6305.9437.0304.0237.2162.7132.195.6113.8103.491.8104.697.772.174.056.165.817.213.118.80.42.53.72.60.932158225244343828266156484437343024181937201816243030267445884964695684515025154783623874043713803764134294044204374383994143864024064044114014184033953883853873803543813763833953954053804001371481571721972181982511401231471591501431501261271271311551311522021331861501842331632001821551481701301451481381261381451471411581551881901972182513032844282231811581771471471591351401411471701391622331642361882393392312692532191982371571671701541451461581651551711721.521 95COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^EffluentDate^Day^NOx^NO2^BOD^COO VSS^TSS^NH4(yy mm dd)^(mgN/L)^(mgN/L)^(mg/L)^(mg/L)^Img/LI^Img/LI^(nigN/L)92 06 6 87 176 0.4 22 366 139 15592 06 7 88 174 1.4 363 156 17692 06 10 91 156 0.8 17 378 128 14192 06 13 94 176 0.6 21 372 148 16692 06 15 96 186 0.6 360 137 15492 06 16 97 166 0.6 16 364 163 18492 06 17 98 176 1.5 10 347 141 16292 06 19 100 151 1.0 15 355 157 183 0.1492 06 22 103 177 0.4 8 378 139 16092 06 23 104 165 1.0 382 124 14492 06 26 107 167 1.1 11 380 134 15292 06 28 109 169 0.8 15 369 140 16592 06 29 110 178 0.6 8 370 141 15592 07 3 114 162 1.0 9 360 132 14592 07 4 115 168 8.5 354 124 14292 07 6 117 143 12.6 13 341 137 14792 07 9 120 157 103.2 22 378 149 16392 07 10 121 177 80.2 403 127 14292 07 12 123 113 104.8 40 390 127 14292 07 14 125 235 165.7 43 417 150 17092 07 15 126 198 205.0 446 139 16492 07 17 128 203 186.1 49 411 151 17292 07 19 130 262 226.3 122 457 149 17692 07 21 132 1108 513.0 69 487 244 31292 07 23 134 1053 439.2 5 491 251 36592 07 26 137 920 450.4 4 491 187 24992 07 27 138 953 490.7 491 204 27092 07 29 140 753 343.8 64 455 180 24992 07 31 142 11 12 312.2 38 414 188 27292 08 2 144 1054 432.9 35 402 141 207 3.0692 08 4 146 873 411.0 155 465 158 22892 08 6 148 961 480.4 202 536 207 29292 08 7 149 775 528.3 557 199 27892 08 10 152 607 618.4 265 621 198 28092 08 13 155 668 496.4 642 182 25892 08 14 156 555 480.3 200 621 176 25192 08 17 159 605 506.0 582 183 27092 08 19 161 530 455.6 200 597 202 29492 08 21 163 484 451.9 561 178 26592 08 23 165 1228 428.7 165 557 163 23592 08 24 166 528 477.5 578 192 27392 08 27 169 539 387.1 607 180 2651 96COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^NOx^BOO^COD VSS/TSS NO2/NOX NOX Load COD:NOX(yy mm ddi^(mgN/L)^(m8/1-)^(m8A3 (gN/d)^Entering(gCOD/gN)9292"41....„9292929292929292929292929292929292929292929292929292929292929292929292929292929292920303CZ03030303030303030404040404040404040404040404040404050505050505050505050505050505060612131`172022232526283013568910121315161821242527303568911131518192125262831241246911121415171921232526282930323335363841444547505355565859616365686971757678818385265.60.750.760.800.790.770.710.690.580.650.670.930.901.030.990.930.940.940.900.930.910.980.930.860.840.810.840.800.690.740.730.720.730.740.710.820.850.840.890.880.910.900.890.920.910.900.340.290.300.390.570.590.880.760.870.740.950.790.560.810.610.510.250.490.460.640.430.470.390.320.320.280.220.190.160.130.450.630.110.030.000.060.080.0460.365.071.351.939.134.727.228.418.210.87.57.07.522.737.472.435.722.712.710.520.418.921.414.124.435.553.543.742.229.014.19.010.019.715.312.617.29.90.00.00.00.71.01.11.41.35.39.812.914.35.21.70.00.00.81.27.39.10.10.10.10.10.81.00.70.91.31.95.68.17.72.02.53.82.74.8197COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^NOx^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX(yy mm dd)^(mgN/L)^(mg/L)^(mg/-) (gN/d)^Entering(gCOD/gN)92 06 6^87 0.90 0.12 10.2 4.892 06 7^88 0.90 0.10 10.0 5.292 06 10^91 0.92 0.74 9.0 5.492 06 13^94 0.90 0.12 10.2 5.092 06 15^96 0.88 0.27 10.7 4.892 06 16^97 0.85 0.59 9.6 5.292 06 17^98 0.88 0.86 10.2 5.092 06 19 100 153.3 0.85 0.19 9.2 5.492 06 22 103 0.85 0.37 10.8 4.892 06 23 104 0.87 0.86 10.0 5.192 06 26 107 0.87 0.58 10.1 4.492 06 28 109 0.85 0.37 10.2 4.692 06 29 110 0.90 0.68 11.5 4.392 07 3^114 0.90 0.89 9.9 4.992 07 4^115 0.89 0.89 10.3 4.792 07 6^117 0.90 0.92 8.8 5.792 07 9^120 0.90 0.31 9.6 5.292 07 10^121 0.90 0.58 11.4 4.392 07 12 123 0.91 0.72 7.2 6.992 07 14 125 0.87 0.50 15.1 3.392 07 15^126 0.88 1.03 12.7 3.992 07 17 128 0.88 0.87 12.4 3.992 07 19 130 0.89 0.86 16.0 3.192 07 21^132 0.80 0.00 0.092 07 23 134 0.71 0.00 0.092 07 26 137 0.80 0.00 0.092 07 27 138 0.79 0.00 0.092 07 29 140 0.76 0.07 45.9 0.092 07 31^142 0.70 0.08 67.8 0.092 08 2^144 992.5 0.71 0.03 58.0 0.092 08 4^146 0.74 0.41 48.1 0.092 08 6^148 0.75 0.44 59.6 0.092 08 7^149 0.77 0.70 48.1 0.092 08 10 152 0.78 1.02 35.3 0.092 08 13^155 0.78 0.73 38.8 0.092 08 14^156 0.78 0.86 32.2 0.092 08 17^159 0.75 0.82 35.1 0.092 08 19^161 0.76 0.83 29.2 0.092 08 21^163 0.74 0.92 26.7 0.092 08 23 165 0.79 0.91 67.6 0.092 08 24 166 0.73 0.89 29.1 0.092 08 27 169 0.74 0.70 29.7 0.0198COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^COD:NOX^Denitm %Donitm Specific NH4 Removal^% NH4hay mm dd)^Removed^Rats Denitrn Rate^Rate Removal(gC00/gN)^(mgN/d)^(ingN/d/g1/SS) (mgN/d)92^03^12 1 291 992^03^13 2 113 592^03^15 4 260 1392^03^17 6 554 792^03^20 9 51 192^03^22 11 -64 -192^03^23 12 1044 992^03^25 14 31.9 58 0 2 2130 1392^03^26 15 4.5 415 1 18 847 592^03^28 17 2.1 858 1 37 826 592^03^30 19 10.3 3556 7 159 2347 1592^04^1 21 6.6 5914 15 238 2104 1492^04^3 23 5.3 7391 21 279 1002 792^04^5 25 6.4 5876 22 202 1477 1092^04^6 26 6.1 6267 22 204 3084 2092^04^8 28 12.0 8050 44 263 3413 1592^04^9 29 22.9 4611 43 145 5752 2692^04^10 30 27.3 3550 47 110 6942 2792^04^12 32 27.0 3698 53 119 5894 1992^04^13 33 57.6 673 9 22 73 292^04^15 35 62.1 614 3 18 -621 -792^04^16 36 -0.8 -2408 -6 -72 2238 1492^04^18 38 -0.4 -4188 -6 -131 3646 1692^04^21 41 9.4 3096 9 95 2498 1692^04^24 44 4.2 6790 30 204 2075 1492^04^25 45 32.5 2852 22 90 4657 1592^04^27 47 80.0 1193 11 39 3303 792^04^30 50 0.8 2374 12 62 -3093 -792^05^3 53 0.8 2465 13 84 -3122 -1492^05^5 55 2.7 720 3 27 -1 -092^05^6 56 -4.2 -446 -3 -17 -856 -2692^05^8 58 294.2 67 0 3 1051 1192^05^9 59 22.8 1575 4 68 567 492^05^11 61 6.7 5292 10 238 -51 -092^05^13 63 6.3 6305 14 302 814 592^05^15 65 4.3 13257 31 618 840 692^05^18 68 8.7 6380 22 287 1702 1292^05^19 69 9.0 8750 62 388 619 492^05^21 71 9.3 7868 87 337 307 292^05^25 75 8.2 9295 93 394 152 192^05^26 76 4.3 9241 47 382 454 392^05^28 78 4.4 8712 57 354 2176 1492^05^31 81 4.7 10403 82 392 3316 2192^06^2 83 3.0 15577 91 597 1631 1192^06^4 85 5.4 8770 88 339 2645 18199COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^COD:NOX^Denitm %Denitm Specific NH4 Removal^% NH4(yy mm dd)^Removed^Rate Denitm Rate^Rate Removal(gCOD/gN)^(mgN/d)^(mgN/d/gVSS) (mgN/d)92 06^6^87 4.9 10054 99 404 3361 2292 06^7^88 5.3 9824 98 370 3728 2392 06^10^91 5.4 8923 99 340 3384 2292 06^13^94 5.1 9974 98 378 3867 2692 06^15^96 4.8 10668 99 420 3774 2492 06^16^97 5.3 9479 99 346 3460 2492 06^17^98 5.0 10119 100 395 2063 1592 06^19 100 5.5 9000 98 363 4086 2792 06^22 103 4.9 10448 97 394 4404 2892 06^23 104 5.1 9978 100 386 2829 2092 06^26 107 4.4 10019 99 406 2309 1692 06^28 109 4.6 10220 100 389 2864 1992 06^29 110 4.3 11414 99 433 1784 1292 07^3^114 4.9 9873 100 370 3740 2292 07^4^115 4.8 10144 99 382 3318 2192 07^6^117 5.7 8723 100 322 5156 2892 07^9^120 5.3 9501 99 339 2885 1892 07^10^121 4.3 11271 99 405 1959 1392 07^12 123 9.0 5497 76 205 5542 2392 07^14 125 6.1 8212 54 305 2456 1092 07^15^126 17.0 2914 23 111 4479 1092 07^17^128 9.1 5287 43 204 1485 392 07^19 130 17.2 2933 18 112 632 192 07^21^132 0.092 07^23 134 0.092 07^26 137 0.092 07^27 138 0.092 07^29 140 0.0 -14252 -31 -859 3086 1592 07^31^142 0.0 1712 3 107 264 292 08^2^144 0.0 -1873 -3 -113 -128 -192 08^4^146 0.0 -399 -1 -24 5589 1292 08^6^148 0.0 265 0 16 2719 592 08^7^149 0.0 -3302 -7 -195 2963 592 08^10 152 0.0 -7987 -23 -473 4175 792 08^13^155 0.0 -2078 -5 -125 7285 1092 08^14 156 0.0 -2744 -9 -165 10026 1492 08^17 159 0.0 817 2 50 -2366 -392 08^19^161 0.0 507 2 32 -2429 -492 08^21^163 0.0 1363 5 80 -4103 -692 08^23 165 0.0 40641 60 2350 675 192 08^24 166 0.0 -36 -0 -2 5745 892 08^27 169 0.0 779 3 47 -1976 -3200COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day VSSFTSS NO2/NOX^ALK:NH4^ALK:NH4^Nitrn^%Nitrn Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)92 03^12 1 0.74 25.1792 03^13 2 0.75 38.7892 01^15 A 0.81 27.8092 03^17 6 0.78 7.3892 03^20 9 0.77 10.2092 03^22 11 0.70 11.8792 03^23 12 0.69 8.3692 03^25 14 0.57 0.44 5.63 6.93 10696 74 26292 03^26 15 0.65 0.46 4.69 5.87 11950 78 27592 03^28 17 0.67 0.44 4.94 5.21 13394 94 30792 03^30 19 0.91 0.66 4.57 5.48 12766 96 22492 04^1 21 0.89 0.66 5.53 6.31 12871 96 22692 04^3 23 1.01 0.60 5.10 5.12 13307 107 20292 04^5 25 0.96 0.60 5.61 7.09 10834 84 16792 04^6 26 0.93 0.53 4.42 5.63 11559 97 17992 04^8 28 0.93 0.75 4.30 5.53 11366 58 17492 04^9 29 0.92 0.69 2.98 6.88 6540 41 9992 04^10 30 0.90 0.75 2.79 8.51 4666 25 7192 04^12 32 0.92 0.76 1.54 4.56 4778 20 7092 04^13 33 0.90 0.53 16.66 16.08 1808 59 2792 04^15 35 0.96 0.42 7.76 9.46 4652 48 6392 04^16 36 0.93 0.47 5.80 12.59 4213 31 5892 04^18 38 0.85 0.35 6.82 10.55 9310 49 13792 04^21 41 0.84 0.49 3.15 5.13 9209 68 13592 04^24 44 0.79 0.61 3.28 4.45 10620 84 16792 04^25 45 0.82 0.82 2.94 8.42 4733 18 7392 04^27 47 0.78 0.81 2.21 12.27 2750 6 4592 04^30 50 0.70 0.30 2.23 4.25 5411 11 10792 05^3 53 0.74 0.39 4.93 5.28 5328 21 10592 05^5 55 0.72 0.31 3.81 5.88 3939 20 8292 05^6 56 0.70 0.42 17.90 17.11 1662 40 3892 05^8 58 0.72 0.25 5.60 8.06 4196 52 9792 05^9 59 0.72 0.16 4.90 6.11 7588 63 17892 05^11 61 0.70 0.08 4.59 4.69 14161 87 35592 05^13 63 0.82 0.11 5.32 5.98 13771 89 30592 05^15 65 0.85 0.08 3.64 2.67 20073 142 42992 05^18 68 0.85 0.14 3.20 4.20 11014 84 23792 05^19 69 0.88 0.08 2.66 3.50 10883 78 22492 05^21 71 0.87 0.10 4.03 5.90 9218 69 19092 05^25 75 0.91 0.12 3.88 4.91 10793 75 21292 05^26 76 0.89 0.00 3.90 4.56 12342 88 24492 05^28 78 0.88 0.01 3.05 4.29 11084 81 21992 05^31 81 0.91 0.02 4.60 5.71 12387 101 23492 06^2 83 0.90 0.01 4.21 3.39 18211 139 34592 06^4 85 0.88 0.01 4.25 6.04 10243 84 195201COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day VSSITSS NOZNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitrn Specific(yy mm dd)^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)92 06 6^87 0.88 0.00 3.51 4.57 11741 98 22392 06 7^88 0.89 0.01 3.72 5.13 11532 94 21492 06 10^91 0.90 0.01 4.67 6.76 10446 89 19092 06 13^94 0.88 0.00 4.18 5.40 11652 104 21692 06 15^96 0.87 0.00 4.56 5.81 12497 103 23192 06 16^97 0.85 0.00 3.98 5.14 11060 102 20992 06 17^98 0.86 0.01 4.31 4.82 11801 105 22292 06 19 100 0.84 0.01 3.50 5.14 10404 93 20192 06 22 103 0.84 0.00 4.28 5.61 12138 105 23492 06 23 104 0.85 0.01 4.41 5.36 11535 103 22192 06 26 107 0.85 0.01 5.12 6.42 11627 94 22292 06 28 109 0.85 0.00 3.70 4.62 11802 99 22792 06 29 110 0.89 0.00 4.59 5.28 13131 98 24192 07 3^114 0.88 0.01 3.58 5.22 11507 88 21292 07 4^115 0.88 0.05 3.20 4.29 11856 94 21792 07 6^117 0.90 0.09 4.49 7.16 10223 78 18292 07 9^120 0.90 0.66 3.67 5.14 11061 87 19492 07 10^121 0.90 0.45 3.90 4.44 13017 101 22792 07 12 123 0.89 0.93 3.27 7.35 6603 36 11692 07 14^125 0.87 0.71 3.69 5.29 10661 47 19092 07 15^126 0.87 1.04 2.51 7.83 4862 11 8892 07 17^128 0.88 0.92 4.13 8.34 7400 18 13392 07 19 130 0.88 0.86 3.14 8.01 5546 12 9992 07 21^132 0.78 0.46 8.97 3592 07 23 134 0.70 0.42 7.06 5292 07 26 137 0.79 0.49 8.20 6592 07 27 138 0.78 0.51 8.86 9892 07 29 140 0.76 0.46 0.71 -1.37 -7692 -45 -17692 07 31^142 0.69 0.28 6.67 7.39 13560 86 34592 08 2^144 0.70 0.41 7.40 10.43 9184 69 23792 08 4^146 0.74 0.47 3.65 5.99 8147 19 21292 08 6^148 0.73 0.50 7.85 10.27 10583 20 28292 08 7^149 0.76 0.68 4.28 14.83 4191 8 11492 08 10^152 0.78 1.02 0.88 -5.49 -2346 -4 -6492 08 13^155 0.77 0.74 4.10 12.22 4926 7 13392 08 14^156 0.78 0.87 2.40 13.34 2740 4 7592 08 17^159 0.74 0.84 4.85 10.12 7291 10 20092 08 19^161 0.75 0.86 5.16 12.30 6081 9 16992 08 21^163 0.75 0.93 4.71 10.67 6404 8 18192 08 23 165 0.77 0.35 8.09 2.11 54218 86 152992 08 24 166 0.74 0.90 4.88 13.42 5185 8 15092 08 27 169 0.75 0.72 4.56 10.75 6196 8 181202COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)^Aerobic Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(nigN/d)92 03 12 1 873 29 76.7 7692 03 13 2 987 51 72.0 87ca, 03 15 A 1177 70 68.6 9592 03 17 6 4465 62 61.0 9292 03 20 9 5099 84 53.6 9792 03 22 11 4946 81 43.6 9792 03 23 12 6063 59 45.3 9292 03 25 14 10457 73 31.1 9692 03 26 15 13905 91 56.3 9992 03 28 17 13126 92 10 15.0 9992 03 30 19 12926 98 10 14.2 10092 04 1 21 12418 93 10 14.2 9992 04 3 23 12355 100 10 14.7 10092 04 5 25 12087 94 10 15.1 9992 04 6 26 11571 97 10 15.1 10092 04 8 28 9635 49 10 15.6 8992 04 9 29 8115 50 10 15.8 9292 04 10 30 5508 30 10 15.9 8892 04 12 32 5595 23 92.2 8192 04 13 33 1448 48 79.5 8792 04 15 35 5667 58 99.5 8992 04 16 36 5698 42 20 26.0 8792 04 18 38 9237 49 10 14.2 8992 04 21 41 12305 91 10 15.8 9992 04 24 44 12273 97 10 15.0 10092 04 25 45 6216 24 83.1 8092 04 27 47 6648 15 62.4 6592 04 30 50 7978 16 47.4 4792 05 3 53 6191 24 61.6 5492 05 5 55 3985 20 47.3 6692 05 6 56 2170 52 10 14.1 8392 05 8 58 4450 55 10 14.4 9192 05 9 59 8333 69 10 14.4 9492 05 11 61 14222 87 10 13.6 9892 05 13 63 14529 94 10 14.3 9992 05 15 65 13822 98 10 14.2 10092 05 18 68 12703 97 10 14.3 10092 05 19 69 13677 98 10 14.5 10092 05 21 71 13166 99 10 14.8 10092 05 25 75 13359 93 10 14.6 9992 05 26 76 13961 100 10 14.5 10092 05 28 78 13374 98 10 14.6 10092 05 31 81 12004 98 10 14.9 10092 06 2 83 13027 99 10 14.6 10092 06 4 85 11860 97 10 14.6 100203COLD TEMPERATURE PHASE (10 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Aerobic Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(mgN/d)92 06 6 87 11921 100 10 14.8 10092 06 7 88 12172 99 10 14.6 10092 06 le 91 11733 99 10 15.1 10092 06 13 94 11175 100 10 14.8 10092 06 15 96 12117 100 10 14.9 10092 06 16 97 10806 99 10 14.6 10092 06 17 98 11100 98 10 14.9 10092 06 19 100 11202 100 10 14.4 10092 06 22 103 11508 99 10 15.1 10092 06 23 104 11185 100 10 15.3 10092 06 26 107 12243 99 10 14.9 10092 06 28 109 11844 99 10 15.0 10092 06 29 110 13319 100 10 14.9 10092 07 3 114 13005 99 10 15.2 10092 07 4 115 12615 100 10 15.3 10092 07 6 117 10820 83 10 15.0 9892 07 9 120 12604 99 10 15.0 10092 07 10 121 12869 100 10 15.5 10092 07 12 123 7901 43 10 15.4 9192 07 14 125 11261 50 10 14.7 9092 07 15 126 5727 14 10 15.1 6792 07 17 128 8460 20 10 14.6 6792 07 19 130 7869 16 69.9 6092 07 21 132 7392 07 23 134 8992 07 26 137 9592 07 27 138 10 9992 07 29 140 11054 64 10 13.2 9592 07 31 142 14587 93 10 12.0 9992 08 2 144 13045 99 10 13.3 10092 08 4 146 1672 4 45.3 5492 08 6 148 4044 8 30.9 4992 08 7 149 4627 8 35.4 5292 08 10 152 3206 6 36.8 5092 08 13 155 -3781 -5 35.8 2492 08 14 156 -4607 -7 38.6 3692 08 17 159 7161 10 34.2 3292 08 19 161 6762 10 30.9 3092 08 21 163 7273 9 35.5 2292 08 23 165 3456 5 37.2 2992 08 24 166 -2266 -3 34.3 2492 08 27 169 5014 6 35.3 21204COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle Aerobic^Anoxic(yy mm dd)^(Lid)^I ml/h)^( ml/h)^(mL/h)^( WA)^(Lid) Wasting^Overflow(Lid)^(Lid)92^03^12 1 9.8 27.0 6.5 41 41 57 0.0 6992^03^13 2 9.2 23.9 6.3 42 42 57 0.0 6892^03^15 4 8.9 27.5 6.3 37 37 57 0.0 6892^03^17 6 8.8 27.0 6.6 39 39 57 0.0 6892^03^20 9 9.0 24.6 6.7 36 36 63 0.0 7492^03^22 11 9.0 23.8 6.7 41 41 63 0.0 7492^03^23 12 9.0 19.5 6.7 43 43 60 0.0 7192^03^25 14 8.9 23.0 6.5 42 42 60 0.0 7192^03^26 15 8.7 21.0 6.7 39 39 60 0.0 7092^03^28 17 8.9 20.0 6.4 39 39 59 0.5 6992^03^30 19 8.6 20.0 6.4 39 39 59 0.5 6992^04^1 21 8.8 19.5 6.8 47 47 59 0.5 7092^04^3 23 9.0 16.0 7.0 38 38 59 0.5 6992^04^5 25 8.8 15.4 6.9 44 44 56 0.5 6692^04^6 26 8.9 25.0 6.8 48 48 56 0.5 6792^04^8 28 8.7 25.8 6.8 46 46 56 0.5 6792^04^9 29 8.6 24.0 6.8 44 44 56 0.5 6692^04^10 30 8.6 27.0 6.7 37 37 63 0.5 7392^04^12 32 8.4 25.0 6.9 45 45 63 0.0 7392^04^13 33 8.4 25.0 6.7 44 11.7 63 0.0 7292^04^15 35 8.4 25.0 6.7 48 11.5 58 0.0 6792^04^16 36 8.2 24.0 6.5 40 11.8 58 0.5 6792^04^18 38 8.3 26.0 6.5 38 11.4 58 0.5 6792^04^21 41 8.3 27.0 6.8 32 11.2 58 0.5 6792^04^24 44 8.6 26.0 6.6 32 11.1 58 0.5 6892^04^25 45 8.5 25.9 6.5 45 11.0 64 0.0 7492^04^27 47 8.2 26.9 6.7 42 10.9 64 0.0 7392^04^30 50 8.6 27.0 6.3 12 10.8 64 0.0 7492^05^3 53 8.8 26.7 6.8 17 11.0 64 0.0 7492^05^5 55 8.8 24.6 6.6 12 11.5 64 0.0 7492^05^6 56 9.0 27.0 6.6 17 11.4 64 0.5 7492^05^8 58 8.9 27.0 6.7 22 11.8 59 0.5 6992^05^9 59 8.5 25.0 6.2 34 11.7 59 0.5 6992^05^11 61 8.2 25.0 6.2 53 11.7 62 0.5 7192^05^13 63 8.0 25.5 7.0 68 12.1 62 0.5 7192^05^15 65 8.2 27.1 6.6 41 12.1 62 0.5 7192^05^18 68 8.5 24.8 6.5 34 11.9 62 0.5 7292^05^19 69 8.6 26.0 6.8 26 12.1 65 0.5 7592^05^21 71 8.3 22.6 6.5 44 12.2 65 0.5 7492^05^25 75 8.5 24.0 6.6 39 11.6 65 0.5 7592^05^26 76 8.3 23.0 7.2 35 12.1 65 0.5 7492^05^28 78 8.3 25.0 6.8 35 12.0 63 0.5 7292^05^31 81 8.4 25.0 6.8 55 12.5 63 0.5 7292^06^2 83 8.3 23.6 7.0 47 12.7 63 0.5 7292^06^4 85 8.5 25.2 7.0 47 12.7 63 0.5 73205COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate Flowrate ^FlowrateDate^Day Influent^NH4CI^CH3OH NaHCO3^o-PO4 Recycle^Aerobic^Anoxic(yy mm dd)^(L/d)^(mL/h)^(mL/h)^(mL/h)^(mL/h)^(Lid)^Wasting^Overflow(L/d) (Lid)92^06^6^87 8.6 25.5 7.1 39 12.2 57 0.5 6792^06^7^88 8.5 25.5 6.9 44 11.8 57 0.5 6792^06^10^91 8.4 24.2 6.4 35 11.7 57 0.5 6692^06^13^94 8.5 24.1 6.3 48 11.4 57 0.5 6792^06^15^96 8.6 23.0 7.1 47 11.3 57 0.5 6792^06^16^97 8.4 23.8 6.5 42 11.7 57 0.5 6692^06^17^98 8.3 25.6 6.5 32 12.0 57 0.5 6692^06^19 100 8.3 25.1 6.5 39 12.5 60 0.5 6992^06^22 103 8.4 25.8 6.6 43 12.7 60 0.5 6992^06^23 104 8.4 23.6 6.7 41 13.0 60 0.5 6992^06^26 107 8.2 22.8 6.4 36 12.8 60 0.5 6992^06^28 109 8.2 21.2 6.2 40 12.9 60 0.5 6992^06^29 110 8.1 19.0 6.0 44 13.4 64 0.5 7392^07^3^114 8.1 29.7 5.8 36 13.8 61 0.5 7092^07^4^115 8.2 31.6 5.7 37 13.9 61 0.5 7092^07^6^117 8.2 32.3 5.6 58 13.6 61 0.5 7092^07^9^120 8.2 30.9 5.7 47 13.3 61 0.5 7092^07^10^121 8.2 29.2 5.7 44 13.3 64 0.5 7392^07^12 123 8.0 29.2 5.3 48 13.9 64 0.5 7392^07^14 125 8.3 30.1 5.6 42 13.4 64 0.5 7392^07^15 126 8.4 30.2 5.7 35 13.5 64 0.5 7492^07^17 128 8.3 29.1 5.5 47 13.9 61 0.5 7092^07^19 130 8.3 27.5 5.7 31 14.5 61 0.0 7092^07^21^132 7.9 29.2 0.0 113 14.9 61 0.0 7092^07^23 134 7.6 28.5 0.0 89 14.9 61 0.0 7092^07^26 137 7.4 28.8 0.0 95 14.5 61 0.0 6992^07^27 138 7.2 23.8 0.0 89 15.1 61 0.0 6992^07^29 140 7.3 28.9 0.0 74 14.9 61 0.5 6992^07^31^142 7.6 30.8 0.0 44 14.5 61 1.0 7092^08^2^144 8.0 26.3 0.0 37 14.3 55 1.0 6492^08^4^146 8.3 26.3 0.0 34 14.1 55 0.0 6492^08^6^148 8.6 28.6 0.0 41 13.9 62 0.0 7292^08^7^149 8.4 28.6 0.0 47 14.0 62 0.0 7192^08^10 152 8.1 29.8 0.0 57 14.1 58 0.0 6792^08^13 155 8.3 29.0 0.0 64 14.4 58 0.0 6792^08^14 156 8.3 30.8 0.0 52 14.1 58 1.0 6792^08^17^159 8.2 30.3 0.0 37 14.6 58 1.0 6792^08^19^161 8.5 27.3 0.0 16 14.9 55 1.0 6492^08^21^163 8.6 24.7 0.0 31 14.4 55 1.0 6592^08^23 165 8.3 22.2 0.0 46 14.9 55 1.0 6492^08^24 166 8.3 20.4 0.0 34 14.7 55 1.0 6492^08^27 169 8.4 21.3 0.0 31 15.0 55 1.0 64206COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc.Date^Day^Aerobic NH4CI Simulated^CH3OH o-PO4(yy mm dcl)^Overflow Iti/LI^Influent NH4 ImL/1.1^(gP/L)(Lid)^ (mgN/L)92 03 12 1 70 13 346 10 0.23192 03 13 2 69 13 313 10 0.231cb, 03 16 4 68 25 592 10 0.23192 03 17 6 68 25 591 10 0.23192 03 20 9 74 50 937 10 0.23192 03 22 11 75 83 1398 10 0.23192 03 23 12 72 90 1302 10 0.23192 03 25 14 72 90 1517 200 0.23192 03 26 15 71 100 1588 200 0.23192 03 28 17 70 100 1486 200 0.23192 03 30 19 70 110 1651 200 0.23192 04 1 21 71 110 1559 200 0.23192 04 3 23 70 120 1404 500 0.23192 04 5 25 67 125 1472 500 0.23192 04 6 26 68 90 1642 500 0.23192 04 8 28 68 0 164 10 0.23192 04 9 29 67 25 580 10 0.23192 04 10 30 74 50 1083 10 0.23192 04 12 32 74 80 1534 10 0.23192 04 13 33 73 80 1441 10 0.36192 04 15 35 69 80 1422 100 0.36192 04 16 36 68 80 1415 200 0.36192 04 18 38 68 80 1499 400 0.36192 04 21 41 68 80 1582 400 0.36192 04 24 44 68 50 980 10 0.38192 04 25 45 75 0 128 10 0.36192 04 27 47 74 0 195 10 0.36192 04 30 50 74 25 619 10 0.38192 05 3 53 74 25 597 10 0.36192 05 5 55 74 50 1052 10 0.36192 05 6 56 75 60 1200 10 0.36192 05 8 58 70 75 1459 25 0.36192 05 9 59 69 75 1370 50 0.36192 05 11 61 73 88 1525 100 0.36192 05 13 63 73 80 1412 100 0.36192 05 15 65 72 80 1559 100 0.36192 05 18 68 72 80 1445 200 0.36192 05 19 69 75 80 1512 200 0.36192 05 21 71 75 80 1305 200 0.36192 05 25 75 75 80 1381 300 0.36192 05 26 76 75 80 1350 300 0.36192 05 28 78 73 SO 1449 300 0.36192 05 31 81 74 80 1370 300 0.36192 06 2 83 73 80 1339 300 0.36192 06 4 85 74 80 1391 300 0.361207COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Flowrate^Feed Conc.^Feed Conc.^Feed Conc.^Feed Conc.Date^Day^Aerobic NH4C1 Simulated CH3OH o-PO4(Icy mm dd)^Overflow (g/L)^Influent NH4^ImL/L)^(gPIL)(L/d)^ (mgN/L)92 06 6^87 68 80 1424 250 0.36192 06 7^88 68 80 1431 250 0.36192 06 10^91 67 80 1409 250 0.36192 06 13^94 68 80 1347 270 0.36192 06 15^96 68 80 1273 270 0.36192 06 16^97 67 80 1372 265 0.36192 06 17^98 67 80 1493 265 0.36192 06 19^100 70 80 1445 265 0.36192 06 22 103 71 80 1461 265 0.36192 06 23 104 70 80 1335 265 0.36192 06 26 107 70 80 1363 265 0.36192 06 28 109 70 95 1464 290 0.36192 06 29 110 74_ 95 1323 290 0.36192 07 3^114 71 73 1588 290 0.36192 07 4^115 71 73 1655 290 0.36192 07 6^117 72 73 1619 290 0.36192 07 9^120 72 73 1587 290 0.36192 07 10^121 74 73 1534 290 0.36192 07 12^123 74 73 1549 290 0.36192 07 14 125 74 73 1569 290 0.36192 07 15^126 74 73 1577 290 0.36192 07 17^128 72 73 1507 290 0.36192 07 19^130 71 73 1487 290 0.36192 07 21^132 73 73 1338 0 0.36192 07 23 134 72 73 1428 0 0.36192 07 26 137 72 73 1456 0 0.36192 07 27 138 71 73 1263 0 0.36192 07 29 140 71 73 1555 0 0.36192 07 31^142 71 73 1722 0 0.36192 08 2^144 65 73 1457 0 0.36192 08 4^146 65 73 1437 0 0.36192 08 6^148 73 73 1481 0 0.36192 08 7^149 73 73 1488 0 0.36192 08 10^152 69 73 1547 0 0.36192 08 13^155 69 73 1464 0 0.36192 08 14^156 69 73 1580 0 0.36192 08 17^159 68 73 1632 0 0.36192 08 19^161 65 73 1540 0 0.36192 08 21^163 65 73 1318 0 0.36192 08 23 165 65 90 1452 0 0.36192 08 24 166 65 90 1391 0 0.36192 08 27 169 65 95 1507 0 0.361208COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Feed Conc.^ System^System^System^AnoxicDate^Day NaHCO3 Loading Loading Loading ORP(yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV)(gCOD/d) (gp/d)^(gCaCO3/d)92 03 12 1 44 1.85 0.228 3648 -15692 03 13 2 56 1.80 0.233 4636 -10992 03 16 4 56 1.80 0.205 4276 -1792 03 17 6 50 1.88 0.217 4109 5392 03 20 9 81 1.89 0.200 5518 6692 03 22 11 81 1.91 0.228 6116 12192 03 23 12 81 1.91 0.239 6639 7392 03 25 14 50 37.04 0.233 4577 592 03 26 15 50 38.18 0.217 4440 -1192 03 28 17 50 36.47 0.217 4407 -1692 03 30 19 50 36.47 0.217 4486 -3092 04 1 21 50 38.75 0.261 5047 -4492 04 3 23 50 .. 99.73 0.211 4332 -12992 04 5 25 50 98.30 0.244 4870 -9392 04 6 26 50 96.88 0.267 5012 -9092 04 8 28 63 1.94 0.255 5777 -8692 04 9 29 75 1.94 0.244 6482 -10792 04 10 30 83 1.91 0.205 6085 -9192 04 12 32 93 1.97 0.250 7905 -5592 04 13 33 93 1.91 0.102 7242 -6292 04 15 35 75 19.09 0.100 6472 -3492 04 16 36 75 37.04 0.103 5805 -5192 04 18 38 75 74.08 0.099 5579 -4292 04 21 41 75 77.50 0.097 4998 -7592 04 24 44 75 1.88 0.097 4897 -9192 04 25 45 75 1.85 0.095 6182 -11092 04 27 47 75 1.91 0.095 5689 -11492 04 30 50 75 1.80 0.093 2485 -8192 05 3 53 75 1.94 0.095 2950 -4492 05 5 55 75 1.88 0.099 2456 2192 05 6 56 75 1.88 0.099 2934 -392 05 8 58 75 4.77 0.102 3458 -892 05 9 59 75 8.83 0.101 4758 -1592 05 11 61 75 17.67 0.101 6695 -3292 05 13 63 75 19.95 0.105 8174 -4992 05 15 65 75 18.81 0.105 5570 -3692 05 18 68 75 37.04 0.103 4782 -11492 05 19 69 75 38.75 0.105 3949 -12492 05 21 71 75 37.04 0.106 5858 -11092 05 25 75 75 56.42 0.101 5255 -16692 05 26 76 75 61.55 0.105 4942 -14292 05 28 78 75 58.13 0.105 4942 -13092 05 31 81 75 58.13 0.108 6973 -9292 06 2 83 75 59.84 0.110 6283 -9092 06 4 85 75 59.84 0.110 6204 -106209COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Feed Conc.^ System^System^System^AnoxicDate^Day NaHCO3 Loading Loading Loading ORP(yy mm dd)^(g/L) CH3OH^o-PO4^NaHCO3 (mV)(gCOD/d) (gP/d)^(gCaCO3/d)92 06 6^87 75 50.58 0.106 5400 -13692 06 7^88 75 49.15 0.102 5919 -151°2 Oa. 1 °^9 1 75 45.59 0.102 5108 -16692 06 13^94 75 48.47 0.099 6290 -17292 06 15^96 75 54.62 0.098 6147 -15192 06 16^97 75 49.08 0.101 5795 -19092 06 17^98 75 49.08 0.104 4850 -20092 06 19 100 75 49.08 0.108 5519 -18592 06 22 103 75 49.84 0.110 5862 -15492 06 23 104 75 50.59 0.113 5662 -16092 06 26 107 75 48.33 0.111 5292 -18492 06 28 109 75 51.23 0.112 5677 -18392 06 29^110 75 49.58 0.116 6111 -17192 07 3^114 75 47.93 0.120 5285 -16992 07 4^115 75 47.10 0.120 5305 -17492 07 6^117 75 46.27 0.118 7273 -14092 07 9^120 75 47.10 0.115 6297 -15892 07 10^121 75 47.10 0.116 6008 -16192 07 12 123 75 43.80 0.121 6511 -18792 07 14^125 75 46.27 0.116 5781 -23492 07 15^126 75 47.10 0.117 5056 -25892 07 17 128 75 45.45 0.121 6232 -20792 07 19 130 75 47.10 0.126 4673 -22692 07 21^132 75 0.00 0.129 11994 -11992 07 23 134 75 0.00 0.129 10462 -3092 07 26 137 75 0.00 0.126 11194 -892 07 27 138 75 0.00 0.131 10894 -592 07 29 140 75 0.00 0.129 9457 592 07 31^142 75 0.00 0.126 6366 1592 08 2^144 75 0.00 0.124 5448 3992 08 4^146 75 0.00 0.123 5176 -1592 08 6^148 75 0.00 0.121 5713 3092 08 7^149 75 0.00 0.121 6419 2192 08 10^152 75 0.00 0.122 7447 4092 08 13^155 75 0.00 0.125 8021 4592 08 14^156 75 0.00 0.123 6871 4692 08 17^159 75 0.00 0.127 5533 4292 08 19^161 75 0.00 0.129 3255 5492 08 21^163 75 0.00 0.125 4774 3592 08 23 165 75 0.00 0.129 6324 4992 08 24 166 75 0.00 0.128 5170 4792 08 27 169 75 0.00 0.131 4851 57210COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^PH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOO(yy mm dd) (mg/L)^(mg/L)^(mgP/L)^(mgN/L)^(mgN/L)^(mgN/L)^(mg/L)92 03^12 1 7.5 5780 8078 26892 03^13 2 7.3 5674 7412 13392 03^15 4 7.8 5458 7216 118 30792 03^17 6 7.3 5306 8977 8892 03^20 9 7.4 5380 6806 13492 03^22 11 7.6 5756 6566 189 18492 03^23 12 7.5 4850 7066 17492 03^25 14 7.7 4626 6347 14.5 196 644.0 292.092 03^26 15 7.7 4620 6358 10.4 215 802.0 238.092 03^28 17 7.9 4789 6105 10.2 198 614.0 210.0 8892 03^30 19 8.2 4898 6440 8.0 208 674.0 194.692 04^1 21 8.1 4883 6416 9.2 207 731.0 167.092 04^3 23 8.5 4614 5364 6.9 218 125.9 87.092 04^5 25 8.6 4650 5258 7.2 348 19.7 14.3 21892 04^6 26 8.3 4540 5437 7.1 384 4.4 0.492 04^8 28 8.2 4339 5249 6.5 138 72.0 27.092 04^9 29 8.3 4639 5505 5.9 196 344.7 138.092 04^10 30 8.3 4699 5530 6.5 229 338.0 143.092 04^12 32 8.7 4758 5911 6.7 206 897.0 226.0 20892 04^13 33 8.7 4677 5438 5.3 198 843.0 251.092 04^15 35 8.2 4704 5547 4.2 199 489.0 254.0 10892 04^16 36 8.2 4792 5346 3.8 189 369.2 91.0 11992 04^18 38 8.2 4756 5201 2.9 289 71.0 21.9 31092 04^21 41 8.2 4736 4996 3.3 309 15.4 14.4 32892 04^24 44 8.4 4776 5466 3.2 201 437.0 103.4 24592 04^25 45 8.6 4897 5680 3.4 35 117.0 18.392 04^27 47 8.5 4738 5529 3.3 27 171.0 19.2 11492 04^30 50 8.1 4307 5435 3.1 233 396.0 33.0 8692 05^3 53 8.5 4008 5003 3.4 128 494.0 47.0 6292 05^5 55 8.0 4163 5174 3.2 155 593.0 66.0 6692 05^6 56 8.0 4167 5058 2.8 166 676.0 60.092 05^8 58 7.6 4140 4714 2.6 172 885.0 158.0 7292 05^9 59 8.0 4222 4900 3.0 189 857.0 156.0 6692 05^11 61 8.3 4246 4745 3.1 191 845.0 24.0 10492 05^13 63 8.0 4345 4681 3.5 193 961.0 15.6 9792 05^15 65 7.9 4412 5112 3.3 163 921.0 13.5 8392 05^18 68 7.9 4280 4443 3.8 178 844.3 3.5 12792 05^19 69 8.0 4544 4623 4.0 183 838.7 3.3 12792 05^21 71 8.0 4769 5117 3.1 154 879.2 2.0 13692 05^25 75 8.3 5250 5076 3.0 162 427.0 0.4 18692 05^26 76 8.4 5360 5394 3.4 175 202.2 0.6 21892 05^28 78 8.3 5600 5316 2.6 163 36.1 0.8 19692 05^31 81 8.7 6150 5857 2.3 154 3.8 0.1 21292 06^2 83 8.9 6029 6027 2.3 161 12.6 0.6 18392 06^4 85 8.4 5859 6191 2.8 158 0.9 0.2 193211COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicData^Day^pH^VSS^TSS^o-PO4^NH4^NOx^NO2^BOD(yy mm dd) Img/LI^Img/LI^ImgP/LI^ImgN/LI^(mgNIL)^(mgNIL)^Img/LI92 06 6^87 8.4 5737 6112 2.5 151 2.6 1.4 20692 06 7^88 8.4 6143 7045 3.0 168 6.3 0.592 06 10^91 8.4 5924 6351 2.4 155 2.3 1.2 18592 06 13^94 8.6 6090 6686 2.0 177 2.9 0.9 17392 06 15^96 8.5 6018 6853 2.2 172 1.9 0.192 06 16^97 8.3 5716 6653 2.4 163 0.8 0.0 18492 06 17^98 8.4 5554 6553 2.0 169 1.0 0.0 16892 06 19^100 8.3 5992 6909 2.7 155 2.7 0.6 17292 06 22 103 8.4 5655 6646 2.7 162 1.2 0.0 19492 06 23 104 8.4 5550 6463 3.1 163 1.7 0.092 06 26 107 8.4 5408 6499 3.3 159 0.8 0.1 19392 06 28 109 8.4 5480 6181 3.0 171 4.6 1.9 18892 06 29^110 8.5 5606 5977 3.5 171 2.8 0.1 17992 07 3^114 8.3 5857 6830 3.1 186 2.3 1.2 20492 07 4^115 8.3 5910 6471 3.5 176 0.8 0.092 07 6^117 8.4 5847 6446 2.6 184 1.4 0.2 20592 07 9^120 8.3 6393 7268 2.3 181 1.5 0.1 18592 07 10^121 8.4 6635 7318 3.0 161 2.6 0.092 07 12^123 8.4 6118 6890 2.7 192 2.7 0.7 22392 07 14^125 8.2 5935 6671 2.8 278 15.0 1.5 18992 07 15^126 8.2 6160 6880 2.7 298 13.0 9.792 07 17^128 8.3 5960 6729 2.7 506 23.6 2.1 23692 07 19 130 8.2 5910 6715 3.1 685 22.1 3.9 24892 07 21^132 8.0 6046 7309 3.6 507 8.7 1.3 36192 07 '3^134 8.1 5734 7964 3.7 493 8.4 0.4 32892 07 '3^137 8.1 5359 7936 4.3 450 8.5 0.4 33092 07 27 138 7.9 4858 6699 4.9 281 316.0 14.692 07 29 140 7.8 4700 6671 5.1 308 621.0 26.4 20592 07 31^142 7.6 4745 6523 4.3 209 932.0 71.6 26392 08 2^144 7.5 4763 6751 3.3 194 957.0 69.2 19092 08 4^146 7.7 4429 6249 3.7 718 746.0 308.8 62592 08 6^148 7.4 4163 5775 3.4 680 870.0 463.0 46892 08 7^149 7.5 3973 5325 2.8 505 1086.0 497.092 08 10^152 7.5 3910 5512 3.2 310 905.6 530.0 30092 08 13^155 7.5 3941 5153 3.3 207 902.5 427.592 08 14^156 7.7 3880 5266 2.7 199 972.0 498.1 20592 08 17^159 7.5 3812 5070 2.8 225 1014.0 446.492 08 19^161 7.5 3855 4979 3.3 249 903.0 355.0 23292 08 21^163 7.6 3550 4743 3.5 256 821.0 368.992 08 23 165 7.7 3474 4594 3.1 507 696.0 358.8 24192 08 24 166 7.6 3452 4600 3.5 531 626.0 336.792 08 27 169 7.5 3297 4224 3.8 649 698.0 214.3212COLD TEMPERATURE PHASE (20 DAY AEROBIC SAT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)^Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^COD DO pH^VSS^TSS^o-PO4^NH4(yy mm dd)^(mall)^(mg/L)^(mg/L)^(ing/L)^(m9P/L)^( mgN/L)92 03^12 1 702 9.10 6.7 5970 8320 23992 03^13 2 828 8.00 7.2 6079 7905 8192 03^15 4 685 8.20 7.7 5680 7643 5392 03^17 6 798 7.80 7.1 5569 7350 492 03^20 9 704 8.70 7.1 5625 7131 892 03^22 11 642 9.00 7.6 6010 7023 1792 03^23 12 605 8.60 7.8 4890 7085 392 03^25 14 641 5.50 7.3 4902 6832 14.3 592 03^26 15 651 5.50 7.6 4839 6646 11.9 1492 03^28 17 679 8.00 7.5 5100 6470 9.5 292 03^30 19 644 7.00 7.4 4900 6408 9.4 492 04^1 21 597 7.00 7.6 4765 6312 10.5 192 04^3 23 750 7.50 8.1 5152 6113 7.7 9492 04^5 25 727 7.50 8.0 5240 6034 8.3 23792 04^6 26 690 6.00 6.9 4922 6008 6.4 26392 04^8 28 669 5.00 6.5 4810 5864 6.5 6892 04^9 29 637 5.50 6.9 4806 5753 6.6 9292 04^10 30 620 5.00 6.8 4811 5750 6.4 3892 04^12 32 610 5.00 8.3 4540 5751 6.5 1492 04^13 33 607 4.50 7.3 4760 5681 5.2 792 04^15 35 599 7.50 7.7 4830 5683 3.5 492 04^16 36 591 7.00 7.5 5120 5693 3.9 692 04^18 38 729 7.50 7.9 5240 5707 3.0 16592 04^21 41 820 7.50 6.8 5350 5677 3.2 24892 04^24 44 677 6.50 7.3 4970 5758 2.8 6592 04^25 45 679 5.00 8.2 4813 5619 3.1 2292 04^27 47 541 6.70 8.5 4660 5484 2.9 692 04^30 50 487 7.00 7.8 4320 5435 3.0 12092 05^3 53 453 9.80 7.7 4259 5281 3.4 5192 05^5 55 494 7.50 7.3 4140 5177 3.3 4192 05^6 56 504 7.30 7.4 4095 5096 2.9 1592 05^8 58 500 5.80 7.4 4320 5027 2.1 1092 05^9 59 434 6.10 7.3 4360 5035 2.4 1792 05^11 61 500 5.80 7.3 4550 5053 2.7 1992 05^13 63 500 5.00 7.3 4660 5124 3.2 792 05^15 65 475 4.70 7.3 4490 5176 3.3 792 05^18 68 516 5.00 7.4 4960 5199 4.0 1292 05^19 69 547 5.30 7.4 5110 5324 3.6 1392 05^21 71 523 5.50 7.3 5070 5431 2.5 792 05^25 75 628 4.00 7.3 5580 5537 3.1 592 05^26 76 654 7.50 7.3 5620 5740 2.7 292 05^28 78 652 8.40 7.3 6200 5920 2.5 692 05^31 81 647 6.60 7.4 6350 6172 1.9 192 06^2 83 570 6.82 7.4 6320 6409 1.7 292 06^4 85 607 6.47 7.4 6240 6578 2.6 9213COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day^COD DO pH^VSS^TSS^o-PO4^NH4(yy mm dd)^Img/LI^Img/LI^Img/LI^Img/LI^(mgP/L)^(nigN/L)92 06 6^87 630 5.97 7.4 6160 6696 2.0 192 06 7^88 637 5.83 7.4 5940 6793 2.5 192 06 10^91 592 6.56 7.5 6240 6810 2.5 192 06 13^94 650 6.27 7.5 6180 6915 2.2 192 06 15^96 543 6.05 7.4 6016 6979 1.8 092 06 16^97 569 5.74 7.4 5990 6981 1.8 192 06 17^98 543 6.63 7.4 5910 6985 1.8 192 06 19 100 619 7.12 7.4 5910 6953 2.0 092 06 22 103 681 7.51 7.4 5840 6931 2.0 592 06 23 104 579 6.50 7.4 5850 6903 2.2 092 06 26 107 623 6.52 7.3 5730 6877 3.1 292 06 28 109 622 6.78 7.3 6073 6846 2.8 192 06 29 110 594 7.00 7.4 6318 6902 3.1 192 07 3^114 616 6.90 7.3 5950 7017 2.7 192 07 4^115 585 7.32 7.3 6275 7017 2.6 092 07 6^117 565 7.17 7.3 6410 7100 2.5 192 07 9^120 588 6.39 7.4 6220 7192 2.1 192 07 10^121 600 6.20 7.3 6360 7198 2.2 092 07 12^123 675 7.12 7.3 6390 7273 2.7 292 07 14^125 666 7.17 7.3 6410 7252 2.5 15692 07 15^126 706 6.27 7.3 6370 7211 2.4 19992 07 17^128 632 6.55 7.3 6340 7298 2.7 30592 07 19^130 746 5.69 7.3 6290 7268 2.4 55892 07 21^132 812 5.08 7.3 5890 7121 2.7 48192 07 23 134 734 6.53 7.3 5150 7333 3.8 10392 07 26 137 829 7.03 7.3 4840 7300 3.9 6692 07 27 138 707 7.19 7.3 5020 6993 4.2 8192 07 29 140 633 5.89 7.3 4760 6862 4.4 5692 07 31^142 670 6.42 7.3 4754 6633 4.3 892 08 2^144 633 6.15 7.3 4550 6449 3.2 492 08 4^146 1093 0.00 7.3 4330 6228 3.0 56092 08 6^148 946 6.33 7.3 4220 5944 3.5 57892 08 7^149 882 6.72 7.3 4187 5707 2.5 38092 08 10^152 776 7.37 7.4 3920 5576 2.9 12192 08 13^155 737 7.08 7.5 4060 5393 2.9 1292 08 14^156 617 6.66 7.4 3910 5289 3.0 592 08 17^159 646 6.38 7.4 3840 5174 2.2 2392 08 19^161 661 6.64 7.4 3950 5068 3.2 3692 08 21^163 703 6.54 7.4 3680 4976 3.0 10592 08 23 165 724 6.94 7.4 3550 4813 2.5 38692 08 24 166 746 6.11 7.4 3490 4638 2.8 42692 08 27^169 762 6.31 7.3 3460 4523 3.4 487214COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)^Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^EffluentDate^Day^NOx^NO2^BOD^COD 1/88^TSB^NH4(yy nun dd)^(ugN/L)^ImgNAJ^OngAJ^(mg/1)^(mgA)^OngA4^OngNA492929292929292929292929292929292929292929292929292929292929292929292929292929292929292929203030303030303030303030404040404040404040404040404040404050505050505050505050505050505060612131517202223252628301356891012131516182124252730356891113151819212526283124124691112141517192123252628293032333536384144454750535556585961636568697175767881838575693882580688923712311712555249510519966254891976152111715448154069480710191008104311251054990976978603353176177163170387.5608.5507.6571.0709.9115.9107.084.386.5139.6228.5231.5341.9326.4201.245.742.2132.527.0109.3102.3104.6142.8152.6190.3180.673.261.257.6484.364.49.425.011.15.56.02.00.8411818531412162458331722101613162014152012202418161512142154914854564333853993814404084254024284504474424564294034034203723974485004584203693423383273323183033413423273433733873984064164043753771551531821471441382551501191381701511481481811611291261671251251301571391851811902091681741401591431331211521501461441281301291351491432111942481941781603722081591732222021781762241961571542121531491471711522212122402742112191761861661471361721581511521271351261311521482COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)^Aerobic^Aerobic^Aerobic^Aerobic^Effluent^Effluent^EffluentDate^Day^NOx^NO2^BOO^COD V88^TSB^NH4(yy mm dd)^(mgN/L)^ImgN/1.1^(mg/L)^(mg/L)^OngAJ^OngAJ^OngNAJ92 06 6^87 166 5.0 18 393 136 14692 06 7^88 184 0.6 384 155 17792 06 10^91 156 1.1 17 394 143 15492 06 13^94 175 0.3 11 384 125 13992 06 15^96 186 0.4 400 174 20592 06 16^97 176 3.1 14 370 133 15892 06 17^98 153 0.4 18 358 131 15592 06 19 100 149 10.0 10 370 120 143 092 06 22 103 147 0.1 13 400 138 16292 06 23 104 157 0.6 392 129 15092 06 26 107 176 2.0 11 413 164 19892 06 28 109 181 0.4 15 398 154 16992 06 29 110 156 0.4 8 382 134 14492 07 3^114 160 0.3 14 379 182 21792 07 4^115 171 5.8 365 149 16892 07 6^117 183 71.2 16 383 142 15692 07 9^120 167 59.3 12 372 175 20592 07 10^121 177 67.0 386 137 15192 07 12^123 173 68.4 20 447 130 14592 07 14^125 131 55.7 23 421 146 16592 07 15^126 114 73.8 433 123 14392 07 17^128 161 116.1 29 401 129 15192 07 19^130 135 118.0 72 523 150 17492 07 21^132 808 92.2 84 549 224 27792 07 23 134 815 73.1 55 472 262 38392 07 26^137 484 79.7 41 496 233 34592 07 27 138 458 58.0 488 151 21492 07 29 140 761 71.2 142 464 199 28392 07 31^142 1106 75.2 35 415 144 20592 08 2^144 1138 62.0 35 409 175 246 592 08 4^146 878 117.2 155 697 223 31792 08 6^148 977 125.0 202 648 218 30692 08 7^149 1246 139.9 550 149 20492 08 10^152 1071 186.7 42 474 235 32992 08 13^155 1055 197.0 446 132 17392 08 14 156 1126 209.0 32 416 217 29592 08 17^159 1195 184.8 396 136 18592 08 19^161 1080 206.5 53 420 186 24392 08 21^163 962 172.7 432 181 24192 08 23 165 801 160.3 38 464 187 26492 08 24 166 701 138.4 437 150 20192 08 27 169 832 189.7 463 149 200216COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Effluent^Effluent^Effluent^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^NOx^BOD^COD VSS/TSS NO2/NOX NOX Load COD:NOX(yy mm dd)^(mgN/L)^(mg/L)^(mS/L)^ (gN/d)^Entering(gCOD/gN)9292929292929292929292929292929292929292929292929292929292929292929292929292929292929292920303030303030303030303040404040404040404040404040404040405050505050505050505050505050506061213151720222325262830135689101213151618212425273035689111315181921252628312412469111214151719212325262829303233353638414445475053555658596163656869717576788183851590.720.770.760.760.790.880.690.730.730.780.760.760.860.880.840.830.840.850.800.860.850.900.910.950.870.860.860.790.800.800.820.880.860.900.930.860.960.980.931.030.991.051.051.000.950.450.300.340.290.230.690.730.090.380.400.420.250.300.520.250.310.940.240.160.110.080.100.110.090.180.180.030.020.010.000.000.000.000.000.020.010.050.2445.456.448.847.652.514.17.06.67.131.031.266.362.836.328.411.53.630.37.69.930.934.744.551.760.259.664.869.865.461.563.563.739.323.011.211.310.410.80.80.70.70.80.77.114.114.60.30.10.10.00.00.51.36.421.40.10.20.20.10.10.00.00.10.10.30.30.30.60.60.61.42.75.25.25.85.5217COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Effluent^Effluent^EffluentDate^Day^NOx^BOD^COD(yy mm dd)^(mgN/L)^(mg/L)^(mg/L)Anoxic^Anoxic^Anoxic^AnoxicVSS/TS8 NO2/NOX NOX Load COD:NOX(gN/d)^Entering(gCOD/gN) 92 06 6 87 0.94 0.55 9.6 5.392 06 7 88 0.87 0.08 10.6 4.692 06 10 91 0.93 0.50 9.0 5.192 06 13 94 0.91 0.31 10.1 4.892 06 15 96 0.88 0.06 10.7 5.192 06 16 97 0.86 0.01 10.2 4.892 06 17 98 0.85 0.04 8.9 5.592 06 19 100 153 0.87 0.21 9.1 5.492 06 22 103 0.85 0.03 9.0 5.692 06 23 104 0.86 0.01 9.6 5.392 06 26 107 0.83 0.10 10.7 4.592 06 28 109 0.89 0.41 11.0 4.792 06 29 110 0.94 0.02 10.1 4.992 07 3 114 0.86 0.52 9.8 4.992 07 4 115 0.91 0.01 10.5 4.592 07 6 117 0.91 0.15 11.2 4.192 07 9 120 0.88 0.07 10.2 4.692 07 10 121 0.91 0.00 11.4 4.192 07 12 123 0.89 0.26 11.1 3.992 07 14 125 0.89 0.10 8.4 5.592 07 15 126 0.90 0.75 7.3 6.492 07 17 128 0.89 0.09 9.8 4.692 07 19 130 0.88 0.18 8.3 5.792 07 21 132 0.83 0.14 0.092 07 23 134 0.72 0.05 0.092 07 26 137 0.68 0.05 0.092 07 27 138 0.73 0.05 28.0 0.092 07 29 140 0.70 0.04 46.4 0.092 07 31 142 0.73 0.08 67.5 0.092 08 2 144 1002 0.71 0.07 62.6 0.092 08 4 146 0.71 0.41 48.4 0.092 08 6 148 0.72 0.53 60.6 0.092 08 7 149 0.75 0.46 77.3 0.092 08 10 152 0.71 0.59 62.2 0.092 08 13 155 0.76 0.47 61.3 0.092 08 14 156 0.74 0.51 65.4 0.092 08 17 159 0.75 0.44 69.4 0.092 08 19 161 0.77 0.39 59.5 0.092 08 21 163 0.75 0.45 53.0 0.092 08 23 165 0.76 0.52 44.1 0.092 08 24 166 0.75 0.54 38.6 0.092 08 27 169 0.78 0.31 45.8 0.0218COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^COD:NOX^Denitrn %Denitm Specific NH4 Removal^% NH4(yy mm dd)^Removed^Rate Denitrn Rate^Rate Removal(gCOD/gN)^(mgNid)^(mghl/d/gVSS) (mgN/d)92 03 12 1 -823 -592 03 13 2 -1184 -1592 03 15 4 1033 1292 03 17 6 176 392 03 20 9 -77 -192 03 22 11 894 692 03 23 12 656 592 03 25 14 62.6 592 1 26 1272 992 03 26 15 53.1 719 1 31 802 592 03 28 17 5.4 6693 14 280 633 492 03 30 19 22.3 1635 3 67 1302 892 04 1 21 15.3 2531 5 104 553 492 04 3 23 18.4 5432 39 235 3980 2192 04 5 25 17.3 5679 82 244 4266 1692 04 6 26 15.3 6341 96 279 5362 1892 04 8 28 0.8 2361 33 109 -3660 -6892 04 9 29 0.2 8452 27 364 -2227 -2192 04 10 30 0.3 6766 22 288 -4157 -3392 04 12 32 1.3 1515 2 64 148 192 04 13 33 1.4 1408 2 60 228 292 04 15 35 6.2 3072 8 131 926 692 04 16 36 10.7 3469 12 145 1168 892 04 18 38 11.1 6696 58 282 4487 1992 04 21 41 30.1 2577 71 109 8530 2992 04 24 44 2.8 679 2 28 -281 -292 04 25 45 -1.7 -1091 -14 -45 109 492 04 27 47 -0.7 -2642 -27 -112 238 1192 04 30 50 1.0 1857 6 86 -3644 -2792 05 3 53 -1.1 -1703 -5 -85 -399 -492 05 5 55 2.0 942 2 45 1201 1092 05 6 56 1.0 1813 4 87 562 492 05 8 58 -6.4 -742 -1 -36 3180 2192 05 9 59 14.4 611 1 29 1406 1092 05 11 61 4.5 3963 6 187 2585 1692 05 13 63 34.7 574 1 26 722 592 05 15 65 -34.8 -540 -1 -24 3812 2592 05 18 68 40.3 918 1 43 2043 1492 05 19 69 41.1 943 1 41 1745 1192 05 21 71 -17.6 -2105 -3 -88 1747 1392 05 25 75 7.7 7318 19 279 1822 1392 05 26 76 7.7 7957 35 297 -7 -092 05 28 78 6.8 8559 77 306 2495 1792 05 31 81 5.3 11004 98 358 2708 1992 06 2 83 6.3 9480 91 314 1607 1292 06 4 85 5.6 10778 99 368 3007 21219COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Anoxic^Anoxic^Anoxic^Anoxic^Anoxic^AnoxicDate^Day^COD:NOX^Denitrn %Denitm Specific NH4 Removal^% NH4(yy mm dd)^Removad^Rate Denitrn Rate^Rate Removal(gCOD/gN)^(mgN/d)^(maN/d/gVSS) (mgN/d)92 06 6^87 5.4 9422 98 328 4179 2992 06 7^88 4.8 10198 96 332 3111 2292 06 10^91 5.1 8861 98 299 3340 2492 06 13^94 4.9 9906 98 325 1767 1392 06 15^96 5.1 10607 99 353 1429 1192 06 16^97 4.9 10110 99 354 2643 2092 06 17^98 5.6 8783 99 316 2991 2192 06 19 100 5.5 8882 98 296 3228 2392 06 22 103 5.6 8867 99 314 3410 2392 06 23 104 5.4 9432 99 340 1795 1492 06 26 107 4.5 10632 99 393 1977 1592 06 28 109 4.8 10667 97 389 2190 1692 06 29^110 5.0 9904 98 353 166 192 07 3^114 5.0 9631 98 329 1929 1392 07 4^115 4.5 10404 99 352 3485 2292 07 6^117 4.2 11074 99 379 3343 2092 07 9^120 4.7 10111 99 316 2751 1892 07 10^121 4.2 11170 98 337 3070 2192 07 12 123 4.0 10903 98 356 803 592 07 14 125 6.3 7308 87 246 4804 1992 07 15^126 7.4 6369 87 207 6053 2292 07 17^128 5.6 8151 83 274 -2315 -792 07 19^130 7.0 6713 81 227 -92 -092 07 21^132 0.092 07 23 134 0.092 07 26 137 0.092 07 27 138 0.0 5650 20 233 -2724 -1692 07 29 140 0.0 2735 6 116 -3665 -2092 07 31^142 0.0 2245 3 95 1386 992 08 2^144 0.0 1173 2 49 1173 992 08 4^146 0.0 237 0 11 -1857 -492 08 6^148 0.0 -1926 -3 -93 1637 392 08 7^149 0.0 -745 -1 -37 1964 592 08 10^152 0.0 759 1 39 1188 592 08 13^155 0.0 -237 -0 -12 1379 992 08 14^156 0.0 -623 -1 -32 2443 1592 08 17^159 0.0 1031 1 54 1507 992 08 19^161 0.0 1482 2 77 224 192 08 21^163 0.0 -159 -0 -9 2017 1192 08 23 165 0.0 -929 -2 -53 2513 792 08 24 166 0.0 -1764 -5 -102 2400 792 08 27 169 0.0 836 2 51 -800 -2220COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day VSS/TSS NOVNOX^ALK:NH4^ALIC:NH4^Nitm^%Nitrn Specific(yy mm dd)^ Added Nitrified^Rate Nitro Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gVSS)92 03 12 1 0.72 10.5392 03 13 2 0.77 14.8292 03 15 4 0.74 7.2292 03 17 6 0.76 6.9592 03 20 9 0.79 5.8992 03 22 11 0.86 4.3892 03 23 12 0.69 5.1092 03 25 14 0.72 0.51 3.02 5.15 8561 63 17592 03 26 15 0.73 0.65 2.80 4.04 10313 69 21392 03 28 17 0.79 0.62 2.96 2.75 15226 112 29992 03 30 19 0.76 0.71 2.72 4.25 9762 69 19992 04 1 21 0.75 0.80 3.24 4.02 11809 83 24892 04 3 23 0.84 0.49 3.09 5.28 7831 52 15292 04 5 25 0.87 0.87 3.31 6.58 6875 30 13192 04 6 26 0.82 0.72 3.05 6.42 7526 30 15392 04 8 28 0.82 0.69 35.18 15.19 3609 40 7592 04 9 29 0.84 0.25 11.18 4.30 14136 110 29492 04 10 30 0.84 0.46 5.62 4.86 11776 71 24592 04 12 32 0.79 0.22 5.15 5.94 12255 83 27092 04 13 33 0.84 0.34 5.02 6.07 11744 81 24792 04 15 35 0.85 0.52 4.55 6.73 9623 71 19992 04 16 36 0.90 0.41 4.10 6.66 8383 66 16492 04 18 38 0.92 0.23 3.72 6.23 8647 44 16592 04 21 41 0.94 0.69 3.16 15.17 3124 15 5892 04 24 44 0.86 0.25 5.00 7.95 6018 44 12192 04 25 45 0.86 0.23 48.19 846.80 73 3 292 04 27 47 0.85 0.71 29.18 -47.52 -1152 -58 -2592 04 30 50 0.79 0.21 4.01 3.53 6541 38 15192 05 3 53 0.81 0.19 4.94 7.59 3732 40 8892 05 5 55 0.80 0.21 2.34 2.97 7831 69 18992 05 6 56 0.80 0.19 2.45 2.84 10200 83 24992 05 8 58 0.86 0.19 2.37 3.46 9891 83 22992 05 9 59 0.87 0.18 3.47 4.24 10993 85 25292 05 11 61 0.90 0.07 4.39 4.48 14871 108 32792 05 13 63 0.91 0.05 5.79 6.58 12509 90 26892 05 15 65 0.87 0.05 3.57 5.26 10214 87 22792 05 18 68 0.95 149 3.31 4.21 11039 86 22392 05 19 69 0.96 0.07 2.61 3.50 10856 79 21292 05 21 71 0.93 0.01 4.49 7.25 7921 69 15692 05 25 75 1.01 0.04 3.81 3.84 13526 112 24292 05 26 76 0.98 0.03 3.66 4.14 11442 88 20492 05 28 78 1.05 0.03 3.41 4.64 10268 87 16692 05 31 81 1.03 0.03 5.09 5.54 12777 113 20192 06 2 83 0.99 0.01 4.69 5.62 11055 94 17592 06 4 85 0.95 0.00 4.46 5.01 12458 108 200221COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-NIL IN INFLUENT)Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^Aerobic^AerobicDate^Day VSS/TSS NOVNOX^ALK:NH4^ALK:NH4^Nitrn^%Nitm Specific(yy mm ddl^ Added Nitrified^Rate Nitm Rate^(gCaCO3/gN)^(gCaCO3/gN)^(mg/d)^(mgN/d/gV88 I92 06 6^87 0.92 0.03 3.79 4.89 11050 109 17992 06 7^88 0.87 0.00 4.14 4.93 12019 107 20292 06 10^91 0.92 0.01 3.63 4.79 10329 100 16692 06 13^94 0.89 0.00 4.67 5.46 11641 98 18892 06 15^96 0.86 0.00 4.83 5.02 12469 108 20792 06 16^97 0.86 0.02 4.22 4.82 11808 108 19792 06 17^98 0.85 0.00 3.25 4.51 10200 91 17392 06 19 100 0.85 0.07 3.82 5.21 10289 95 17492 06 22 103 0.84 0.00 4.01 5.64 10282 91 17692 06 23 104 0.85 0.00 4.24 5.11 '')939 96 18792 06 26 107 0.83 0.01 3.88 4.09 12269 111 21492 06 28 109 0.89 0.00 3.88 4.40 12369 104 20492 06 29^110 0.92 0.00 4.62 5.17 11345 90 18092 07 3^114 0.85 0.00 3.32 4.42 11225 86 18992 07 4^115 0.89 0.03 3.20 4.19 12145 98 19492 07 6^117 0.90 0.39 4.49 5.64 13030 100 20392 07 9^120 0.86 0.36 3.97 5.20 11838 92 19092 07 10^121 0.88 0.38 3.92 4.50 12984 109 20492 07 12^123 0.88 0.40 4.20 4.93 12651 90 19892 07 14 125 0.88 0.43 3.68 6.51 8649 42 13592 07 15^126 0.88 0.65 3.21 6.51 7525 34 11892 07 17^128 0.87 0.72 4.13 6.29 9824 27 15592 07 19^130 0.87 0.87 3.14 5.53 8061 17 12892 07 21^132 0.83 0.11 8.97 2092 07 23 134 0.70 0.09 7.33 4792 07 26 137 0.66 0.16 7.69 3392 07 27 138 0.72 0.13 8.63 10.20 10309 52 20592 07 29 140 0.69 0.09 6.08 8.55 10383 48 21892 07 31^142 0.72 0.07 3.70 4.41 12999 89 27392 08 2^144 0.71 0.05 3.74 4.06 12340 99 27192 08 4^146 0.70 0.13 3.60 5.42 9068 20 20992 08 6^148 0.71 0.13 3.86 6.77 8366 17 19892 08 7^149 0.73 0.11 4.31 5.13 12356 34 29592 08 10 152 0.70 0.17 4.81 6.10 11984 57 30692 08 13 155 0.75 0.19 5.48 7.31 11125 79 27492 08 14 156 0.74 0.19 4.35 6.02 11288 84 28992 08 17^159 0.74 0.15 3.39 3.98 13068 86 34092 08 19^161 0.78 0.19 2.11 2.48 12073 76 30692 08 21^163 0.74 0.18 3.62 4.79 9696 59 26392 08 23 165 0.74 0.20 4.36 8.51 7223 22 20392 08 24 166 0.75 0.20 3.72 9.49 5181 15 14892 08 27 169 0.77 0.23 3.22 5.06 9062 22 262222COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)Aerobic^Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(yy mm dd)^Rate Removal (days)^(days) Removal(mgPlici)92 03 12 1 1724 10 63.1 2592 03 13 2 3397 38 68.5 7192 03 15 4 4156 54 55.7 9092 03 17 6 5468 95 67.5 9992 03 20 9 9106 94 69.7 9992 03 22 11 12530 91 76.8 9992 03 23 12 11896 98 34.1 10092 03 25 14 13288 97 57.6 10092 03 26 15 13945 94 74.3 9992 03 28 17 13473 99 20 24.0 10092 03 30 19 13912 98 20 22.4 10092 04 1 21 14082 99 20 23.0 10092 04 3 23 8434 56 20 23.2 9392 04 5 25 6965 31 20 23.4 8292 04 6 26 7626 30 20 20.9 8292 04 8 28 4496 50 20 21.8 5492 04 9 29 6702 52 20 24.2 8292 04 10 30 13970 84 20 24.7 9692 04 12 32 13842 93 51.0 9992 04 13 33 13896 96 69.5 9992 04 15 35 13250 98 69.1 10092 04 16 36 12385 97 20 24.7 10092 04 18 38 8286 42 20 23.1 8892 04 21 41 3956 19 20 24.3 8392 04 24 44 9176 67 20 21.3 9392 04 25 45 933 36 48.2 8292 04 27 47 1579 79 45.8 9792 04 30 50 8204 48 39.6 7992 05 3 53 5605 59 46.5 9192 05 5 55 8352 73 45.2 9692 05 6 56 11122 91 20 22.3 9992 05 8 58 11132 94 20 21.3 9992 05 9 59 11836 91 20 22.5 9992 05 11 61 12393 90 20 23.2 9992 05 13 63 13438 97 20 24.1 10092 05 15 65 11142 95 20 22.4 9992 05 18 68 11877 93 20 22.7 9992 05 19 69 12687 93 20 23.4 9992 05 21 71 10969 95 20 23.7 9992 05 25 75 11768 97 20 25.4 10092 05 26 76 12927 99 20 25.7 10092 05 28 78 11417 96 20 26.1 10092 05 31 81 11199 99 20 26.0 10092 06 2 83 11611 99 20 25.3 10092 06 4 85 10881 94 20 25.2 99223COLD TEMPERATURE PHASE (20 DAY AEROBIC SRT SYSTEM, 1500 mg NH4-N/L IN INFLUENT)^Aerobic Aerobic^ System^SystemDate^Day NH4 Removal % NH4 ASRT^SSRT % NH4(Icy mm dd)^Rate Removal (days)^(days) Removal(mgN/c1)92 06 6^87 10047 99 20 25.6 10092 06 7^88 11199 99 20 24.8 10092 06 10^91 10285 100 20 25.6 10092 06 13^94 11834 100 20 26.6 10092 06 15^96 11523 100 20 23.6 10092 06 16^97 10815 99 20 25.8 10092 06 17^98 11174 99 20 25.9 10092 06 19^100 10803 100 20 27.0 10092 06 22 103 10997 97 20 25.3 10092 06 23 104 11377 100 20 25.8 10092 06 26 107 10927 99 20 23.9 10092 06 28 109 11847 100 20 24.6 10092 06 29^110 12515 99 20 26.0 10092 07 3^114 13040 100 20 23.5 10092 07 4^115 12404 100 20 25.2 10092 07 6^117 12988 99 20 25.2 10092 07 9^120 12760 100 20 24.1 10092 07 10^121 11836 100 20 26.7 10092 07 12^123 14006 99 20 26.7 10092 07 14^125 8855 43 20 25.3 8992 07 15^126 7158 33 20 27.0 8692 07 17^128 14011 39 20 26.2 7892 07 19^130 8591 18 77.4 6092 07 21^132 6292 07 23 134 9292 07 26 137 9592 07 27^138 14084 71 61.6 9392 07 29 140 17700 82 20 20.7 9692 07 31^142 14050 96 10 14.7 9992 08 2^144 12208 98 10 14.0 10092 08 4^146 9838 21 36.8 5892 08 6^148 6917 14 34.8 5892 08 7^149 8724 24 50.2 7392 08 10^152 12732 61 30.2 9292 08 13^155 13326 94 53.8 9992 08 14^156 13134 97 10 12.0 10092 08 17^159 13598 90 10 14.0 9892 08 19^161 13602 85 10 13.0 9792 08 21^163 9711 59 10 12.5 9292 08 23 165 7651 23 10 12.3 7292 08 24 166 6565 19 10 13.3 6892 08 27 169 10193 24 10 13.2 66224

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
China 57 54
United States 21 1
Republic of Korea 3 0
United Kingdom 3 0
Canada 3 0
Japan 3 0
Myanmar [Burma] 1 0
France 1 0
Belarus 1 0
City Views Downloads
Hangzhou 32 0
Unknown 15 0
Beijing 11 0
Guangzhou 7 0
Mountain View 4 0
Seattle 3 0
Tokyo 3 0
Ashburn 2 0
Buffalo 2 1
Wilmington 2 0
Kingston 1 0
Roubaix 1 0
Shanghai 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050449/manifest

Comment

Related Items