UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The design of a zero-effluent discharge system for Westcoast Energy inc.’s Fort Nelson Gas Plant Bechtold, Jean-Philippe 1995

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
ubc_1996-0335.pdf [ 12.34MB ]
Metadata
JSON: 1.0050386.json
JSON-LD: 1.0050386+ld.json
RDF/XML (Pretty): 1.0050386.xml
RDF/JSON: 1.0050386+rdf.json
Turtle: 1.0050386+rdf-turtle.txt
N-Triples: 1.0050386+rdf-ntriples.txt
Original Record: 1.0050386 +original-record.json
Full Text
1.0050386.txt
Citation
1.0050386.ris

Full Text

THE DESIGN OF A ZERO-EFFLUENT DISCHARGE SYSTEM FOR WESTCOAST E N E R G Y INC.'S F O R T N E L S O N G A S P L A N T  by JEAN-PHILIPPE B E C H T O L D B . S c , The University O f Western Ontario, 1993 A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF T H E R E Q U I R E M E N T S FOR THE D E G R E E OF M A S T E R OF APPLIED SCIENCE in T H E F A C U L T Y OF G R A D U A T E STUDIES (Department of C i v i l Engineering)  W e accept this thesis as confonning to the_required standard  T H E UNIVERSITY OF BRITISH C O L U M B I A June 1996 © Jean-Philippe Bechtold, 1996  In  presenting  degree  at  this  the  thesis  in  University  of  partial  British! Columbia,  freely available for reference copying  of  department publication  this or  thesis by  for  his  of  this  thesis  of  cC^^u  and study. scholarly  or for  her  financial  Er^Z-  The University of British Columbia Vancouver, Canada  Date  DE-6 (2/88)  J grsj <g  of  I further  purposes  the  requirements  I agree  that  agree  may be  representatives.  permission.  Department  fulfilment  It  gain shall not  is  that  the  permission  granted  allowed  an  advanced  Library shall make  by  understood be  for  the that  without  for  it  extensive  head  of  my  copying  or  my  written  ABSTRACT This project was initiated by Westcoast Energy Inc. (Westcoast) to examine the feasibility of transforming their Fort Nelson Gas Plant (FNGP) into a zero-effluent discharge (ZED) facility. Water flow and water chemistry data were collected at the plant. The resulting data set was used to identify water leaks in the existing distribution network, as well as to identify methods of optimizing water use at this facility. Designs for implementing a Z E D protocol at the F N G P were then developed and subsequently evaluated with a computer simulator.  A total of 18 Z E D models were constructed using reverse osmosis (RO) membranes, nanofilters and other Z E D technology. The final disposal mechanism in 10 of the 18 scenarios was a brine concentrator - spray dryer (BCS) assembly, which reduced all remaining wastewater into a solid waste. In the other 8 Z E D designs, final concentrates were disposed of in a deep well. The best deep well configuration was a 1-stage R O filter; the necessary equipment, excluding the deep well, would cost an estimated $101 700 U S dollars. The best B C S scenarios were a 1-stage R O and a B C S - o n l y models; they would cost around $1.61 and $1.79 million U S dollars, respectively. A step by step approach by which the F N G P can be transformed into a Z E D facility is detailed in Chapter 8.0 of this report.  While it is possible to implement a Z E D program at the F N G P , there are consequences to this course of action which need to be considered. The most important is final waste management. Regardless of whether a deep well or a B C S unit is used, either system w i l l have to be built and operated in such a way that the final waste products produced by the Z E D treatment train do not migrate off-site, as this action would violate the Z E D principle. Once a Z E D program is initiated, wastewater and/or waste solids produced at the F N G P w i l l no longer disappear with the F N R ; they w i l l remain on-site indefinitely.  ii  TABLE OF CONTENTS Abstract  ii  List of tables  vi  List of figures  viii  Acknowledgements  ix  1.0 I N T R O D U C T I O N  1  2.0 B A C K G R O U N D 2.1 Gas Plant Operations 2.1.1  General  7  2.1.2  Fort Nelson Gas Plant  7  2.2 F N G P Water System 2.2.1  Liquid phase  8  2.2.2  Vapour phase  11  3.0 A V A I L A B L E R E C Y C L I N G T E C H N O L O G Y 3.1 Distillation 3.2 Ion-exchange 3.3 Membrane Filtration 3.3.1 3.3.2 3.3.3 3.3.4  18 18  Ion selective separation Water permeable membranes Reverse osmosis vs. electrodialysis R O membrane selection  19 21 23 32  3.4 Brine Disposal  33  3.5 Conclusion  35  4.0 M E T H O D O L O G Y 4.1 Analysis of the Existing Water Distribution System 4.1.1  F l o w data  42  4.1.2  Chemical data  42  4.2 Selecting the Appropriate Recycling Technology for the F N G P  44  4.3 The Computer Simulator 4.3.1  Basic consttuction  45  4.3.2  Z E D components  46  4.3.3  Parameter values  47  5.0 A N A L Y S I S O F T H E E X I S T I N G W A T E R S Y S T E M 5.1 Results 5.1.1  Water balances  50  5.1.2  Mass balances  50  iii  T O C (con't) 5.0 A N A L Y S I S O F T H E E X I S T I N G W A T E R S Y S T E M (con't) 5.2 Discussion 5.2.1  Data quality  51  5.2.2  System optimization  54  5.3 Changing to a Z E D System  59  5.4 Conclusion  60  6.0 R E C Y C L I N G T E C H N O L O G Y F O R T H E F N G P 6.1 Re-evaluation of the Literature Review  88  6.2 Available Options 6.3 Conceptual Z E D Designs 6.3.1 B ack-end models  89  6.3.2  91  Composite discharge designs  92  7.0 D E S I G N E V A L U A T I O N 7.1 Simulator Performance 7.2 B C S Designs 7.2.1 Composite discharge models 7.2.2 Back-end solutions: ion-exchange vs. nanofiltration 7.2.3 Best of the back-end ion-exchangers 7.2.4 Conclusion 7.3 Deep W e l l Configurations 7.3.1 7.3.2  Composite discharge designs Back-end solutions: ion-exchange vs. nanofiltration  7.3.3 Best of the back-end ion-exchangers 7.3.4 Conclusion 7.4 Evaluation S ummary 8.0 Z E D I M P L E M E N T A T I O N A N D I M P L I C A T I O N S  95 96 96 98 101 102 102 102 103 104 125  9.0 P O T E N T I A L L I M I T A T I O N S 9.1 Non-Representative numbers 9.1.1  Flow data  130  9.1.2  Chemical data  130  9.2 Sample Variability 9.2.1  Water data  131  9.2.2  Chemical data  131  9.3 Computer Model  132  9.4 Z E D Evaluation Process  133  9.5 Conclusion  134  iv  TOC (con't)  10.0 C O N C L U S I O N S  136  11.0 R E C O M M E N D A T I O N S  138  References  139  Appendix A - Water flow data  146  Appendix B - Water balance equations and assumptions  186  Appendix C - Water chemistry data  194  Appendix D - Mass balance equations and assumptions  207  Appendix E - Equations used in the computer simulator  213  Appendix F - Simulator summary sheets  268  Appendix G - Cost estimates  278  v  LIST OF TABLES Table 3.1: Table 5.1: Table 5.2:  A comparison of the inherent advantages and disadvantages of reverse osmosis (RO), electrodialysis (ED) and electtodialysis reversal (EDR)  36  A water balance of the Fort Nelson Gas Plant based on its individual operating units  63  A water balance of the Fort Nelson Gas Plant based on the different types of water used at the facility  70  Table 5.3  A summary of treated water losses from the Fort Nelson Gas Plant  74  Table 5.4:  A mass balance on the front-end softening system  75  Table 5.5:  A mass balance on the lime ponds  76  Table 5.6:  A mass balance on the boilers  77  Table 5.7:  A mass balance on the sulphur plant  78  Table 5.8:  A mass balance on the polishing pond  79  Table 5.9:  A comparison between water flow readings from January 1995 and overall averages Table 5.10: Water balances on the raw water storage tank and front-end softeners (FESs) using metered and calculated inflow and outflow volumes from the F E S s  80 82  Table 5.11: Recalculated mass balance on the F N G P ' s front-end softening system  83  Table 5.12: Recalculated mass balance on the F N G P ' s lime ponds Table 5.13: Changes that occurred in selected areas of the Fort Nelson Gas Plant's water system before and after water observed to be escaping from the effluent treatment plant was recovered  84  Table 5.14:  Selected water flows in the Fort Nelson Gas Plant's water distribution network with and without 8 psi steam reuse  Table 5.15: The average inlet gas profile for January 1994 at the Fort Nelson Gas Plant Table 6.1: Table 7.1: Table 7.2  85  A chemical comparison of the treated water and Fort Nelson River (FNR) discharge flows Comparison of 10 selected B C S Z E D designs  86 87  93 106  Changes in R O and B / C feedwater flows, calcium pretreatment demands and product water quality, in the 1-stage R O , 2-stage R O and B C S - o n l y back-end, B C S , ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry 108  vi  LIST OF TABLES (con't) Table 7.3:  Changes in treated water quality, in the 1-stage R O , 2-stage R O and B C S - o n l y back-end, B C S , ion-exchange configurations, ttiggered by given alterations in raw water and effluent plant outflow chemistry Ill  Table 7.4:  Comparison of 8 selected deep well Z E D designs  Table 7.5:  Changes in R O feedwater flow, calcium pretreatment demands and product water quality, in the 1-stage and 2-stage R O back-end, deep well, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry 115  Table 7.6:  Changes in treated water quality, in both the 1-stage and 2-stage R O back-end, deep well, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry  117  Changes to the configuration of the back-end, B C S , 1-stage R O , ion-exchange design with various flow alterations ,  135  Table 9.1:  vii  113  LIST OF FIGURES Figure 1.1:  Water balance at the Fort Nelson Gas Plant before and after Z E D implementation .. .5  Figure 1.2:  Salt balance at the Fort Nelson Gas Plant before and after ZED implementation  Figure 2.1:  A n illustration of Westcoast Energy Inc.'s operations in British Columbia  13  Figure 2.2:  General layout of the Fort Nelson Gas Plant  14  Figure 2.3:  A n illustration of gas processing flows at the Fort Nelson Gas Plant  15  Figure 2.4:  A simplified illustration of the Fort Nelson Gas Plant's water system  16  Figure 2.5:  A simplified illustration of the Fort Nelson Gas Plant's steam system  17  Figure 3.1:  Typical operating total dissolved solid (TDS) concentrations for different desalination technologies  6  37  Figure 3.2:  An illustration of the electrodialysis process  38  Figure 3.3a:  Flows through an EDR stack when elecuicity travels from right to left  39  Figure 3.3b: Flows through an EDR stack when electricity travels from left to right  39  Figure 3.4:  Pore size distribution in three types of water permeable membranes  40  Figure 3.5:  An illustration of reverse osmosis (RO) filtration  41  Figure 4.1:  A simplified diagram of the water distribution system at the Fort Nelson Gas Plant  49  Figure 6.1:  A graphic representation of the available Z E D options  Figure 7.1:  A n illustration of the projected flow patterns in a composite discharge, reverse osmosis Z E D configuration An illustration of the changes in equipment and flow patterns in a given ZED system using nanofiltration instead of ion-exchange softening An illustration of the projected flow patterns in a back-end, BCS-only Z E D configuration  Figure 7.2: Figure 7.3:  Figure 7.4:  94  119 120 121  An illustration of the projected flow patterns in a back-end, reverse osmosis ZED configuration  122  Figure 7.5:  A simplified illustration of a 1-stage RO, BCS Z E D system..  123  Figure 7.6:  A simplified illustration of a 2-stage RO, BCS Z E D system  124  viii  ACKNOWLEDGEMENTS First and foremost, I would like to thank Wayne Soper for first hiring me as a summer student and then later arranging for Westcoast Energy Inc. to sponsor my thesis. I am also indebted to Bruce Kosugi, E d Lee, Shang Su and Lorraine Michot for their assistance. A s for the staff at U B C , I would like to thank J i m Atwater for his guidance and insight, D o n Mavinic for his helpful comments, and Pat Sheehan for making my time at U B C easier and more enjoyable.  O n a more personal note, I owe a great deal to my family. They have always been very loving and supportive. A special mention to my father, if it were not for his generosity, I would never have been able to come out to Vancouver. He is an amazing individual, and I am honoured to have him as my dad, even i f he does give me a little too much unsolicited advice. I am also grateful to Wayne Evans and Joanna McGrenere for providing me with a constant source of comic relief and inspiration, and to my step-mother, Raymonde Pommier-Bechtold, as well as to Steve Banks, Sheilah Marans and Elvira Latts, for typing up several sections of my thesis. I am eternally indebted to Belinda Fireman who helped me weather many a storm and guided me through to brighter days.  Finally, using words borrowed from Nelson Mandela, "...I have discovered the secret that after climbing a great hill, one only finds that there are many more hills to climb. I have taken a moment here to rest, to steal a view of the glorious vista that surrounds me, to look back on the distance I have come. But I can rest only for a moment... for my long walk is not yet ended."  ix  1.0 INTRODUCTION A zero-effluent discharge (ZED) facility, as defined by some, should not release any waste products into the environment. There would be no wastewater discharges, no atmospheric emissions and no solid waste output. The plant would essentially exist as closed system. There are few such facilities in existence, due to the cost, complexity and possible impracticality of a completely closed system. Z E D is, as a result, more commonly used to describe a facility which does not release any wastewater into its surroundings.  Incentives for implementing a Z E D program can include a reduction in overall operating costs, improved environmental quality and/or regulatory compliance. Westcoast Energy Inc. (Westcoast) initiated the Z E D project as a potential alternative to upgrading the current effluent tteatment facilities at its Fort Nelson Gas Plant (FNGP), as w i l l be required by stricter environmental guidelines. B y eliminating the wastewater discharge stream now released to the Fort Nelson River ( F N R ) , the F N G P w i l l be able to operate independent of British Columbia's wastewater legislation.  The feasibility of implementing a Z E D system at the F N G P is, however, bound by two initial conditions:  1) Westcoast has stipulated that while domestic wastewaters are part of the F N R discharge and w i l l , as a result, have to be included in any Z E D program, no recycled water w i l l enter the domestic system; it w i l l continue to draw fresh water from the plant's raw water reservoir.  and 2) Most of the water used in the operational sections of the plant is softened water.  B y condition (1), domestic wastewater will become a source of water for the plant (Fig. 1.1). If operational water losses do not exceed domestic wastewater input, the Z E D project is doomed to  1  fail. The surplus of domestic wastewater would necessitate a liquid discharge from this facility - a violation of the founding principle of a Z E D system. It will therefore be impossible to eliminate the F N R discharge i f the plant's domestic wastewater production proves to be greater than its operational water losses, so long as recycled water is not used in the domestic system.  While boundary condition (2) does not affect the F N G P ' s water balance, it w i l l still have profound effects on the Z E D project. A l l of the chemical contaminants snipped from raw water now used in the operational sections of this facility are currently discharged along with the plant's wastewater to the F N R . When this wastewater is recycled, as w i l l be the case in a Z E D program, these elements w i l l be returned to the head of operations. Here, they w i l l be joined by additional salts contained in the raw and domestic waters needed to replace process water losses. To maintain a chemical balance, some salts and other contaminants will have to be drained from the Z E D treatment train (Fig. 1.2). Otherwise, these materials w i l l accumulate within the water distribution network with destructive results. Although adopting a Z E D framework w i l l release the F N G P from some regulatory guidelines, the ability to implement such a program may be limited by both the size of this facility's domestic wastewater output and the continued production of a salt brine or solid waste from any Z E D treatment system.  Optimizing the F N G P ' s water distribution network is likely to increase the viability of a Z E D program, as it w i l l minimize the limitations imposed on this project by both boundary conditions. For example, the amount of brine or solid waste ultimately produced by a Z E D treatment train is directly proportional to the volume of softened water lost from the plant. Tightening up the distribution system and reducing process water losses will shrink the demand for make-up water. Less raw water w i l l then need to be imported from the raw water reservoir and fed into the frontend softeners (FESs). A s feedwater volumes to the F E S s drop, so to w i l l the mass of contaminants discharged from these vessels. Minimizing water loss in the operational sections of the plant w i l l therefore limit Z E D waste output by reducing incoming raw water flow and waste generation rates in the FESs.  2  Increasing the efficiency of the domestic system is similarly important to the success of the Z E D project. A s previously stated, domestic wastewater production rates must be smaller than operational water losses as a prerequisite to initiating a Z E D program. On one hand, this condition restricts process system optimization, in that one does not want to reduce process water losses to the point where they are less than the domestic output. A t the same time, it also implies that minimizing domestic wastewater production will theoretically permit a greater amount of process optimization and increase the probability of fulfilling the prerequisite flow regime (i.e. domestic wastewater production < operational water losses).  In addition to these benefits, network optimization, on the whole, w i l l help to minimize the cost and complexity of the required Z E D freatment train. Reducing process water losses w i l l , as previously stated, reduce the mass of contaminants contained in the F N R discharge by limiting their production in the FESs. Similarly, reusing relatively uncontaminated wastewaters, instead of releasing them into the effluent system, will reduce the volume of F N R discharge. Since the goal of the Z E D project is to eliminate the release of wastewater to the F N R , the F N G P ' s discharge stream w i l l ultimately need to be cleaned and recycled back into the plant. Reducing the volume and level of contamination of this wastewater, as achieved through system optimization, can only help to simplify this task. Increasing the efficiency of the existing water network is, therefore, a key step in establishing a cost effective Z E D program at the F N G P ; it will lead to a smaller, less contaminated final plant outflow which will be easier to recycle and produce less final solid waste than the current F N R discharge stream.  In order to identify i f operational water losses at the plant are greater than its domestic output, as well as where water is now lost from the facility, flow diagrams and water balances were consti'ucted. Plant waters were then analyzed to determine which of the escaping su'eams could be directiy reused and which others would require pretreatment before reuse. Conceptual Z E D designs, which detail the configuration of the F N G P as a Z E D facility, were developed by combining information from available literature with the assembled flow diagrams and collected  3  water chemistry data. Computer modeling was used to evaluate the efficiency of each design. The process by which all of this work occurred is discussed in the following report, starting with a brief description of the F N G P , a review of the current literature and an outline of the methodology used in this study. Later chapters detail an analysis of the plant's existing water distribution network, the appropriate recycling technology and the best Z E D configurations available to this facility. H o w a Z E D program should be implemented, together with this project's potential limitation, conclusions and recommendations, are all examined in the final sections of this document.  4  Before ZED implementation Escaping water  i_  Raw water reservoir  K  Plant Operations  Wastewater  /  \  Fort Nelson River  Domestic water system  After ZED implementation Escaping water  A Plant Operations  Raw water reservoir  Z E D system  Surplus  Fort Nelson River  Domestic water system  Figure 1.1: Water balance at the Fort Nelson Gas Plant before and after Z E D implementation.  Before ZED implementation  Water Softeners R a w water reservoir  Plant Operations  >  Domestic water system  7  F o i l Nelson River  After ZED implementation  Water Softeners Raw water reservoir  Plant Operations  \  Domestic water system  7 Salt brine or Solid waste  Figure 1.2: Salt balance at the Fort Nelson Gas Plant before and after Z E D implementation  6  2.0 BACKGROUND 2.1 Gas Plant Operations 2.1.1  General  Natural gas reserves are rarely pure methane. They generally contain a mixture of water, carbon dioxide, hydrogen sulphide and methane (Medici 1974, Ikoku 1984). Natural gas containing high levels of carbon dioxide and hydrogen sulfide is referred to as "sour" or "high acid" gas (Medici 1974, Ikoku 1984). Conversely, "sweet" gas is virtually free of pollutants (Medici 1974, Ikoku 1984). Normally raw field or production gas is dehydrated close to the well head. The remaining contaminants are removed downstream at processing plants. Production gas may also contain various heavier hydrocarbons, including ethane, propane, and butane; such gas being referred to as wet gas (as opposed to dry gas) (Medici 1974, Ikoku 1984). Processing facilities remove these liquids in addition to other undesirables, producing dry sweet sales gas. In British Columbia, most natural gas processing is undertaken at 5 major plants, including the FNGP (Fig. 2.1), all of which are owned and operated by Westcoast Energy Inc.. As shown in Figure 2.1, field production is moved through a myriad of gas gathering pipelines to these 5 major processing facilities, and sales gas is then transported via Westcoast's major trunk pipeline system to markets in British Columbia and the U.S. 2.1.2 Fort Nelson Gas Plant As field gas enters the FNGP, which itself is illustrated in Figure 2.2, it first passes through a liquid separator where liquid hydrocarbons and the remaining water are isolated from the gas (Fig. 2.3). At this point, the gas stream typically contains 87 % methane, 12 % carbon dioxide and 1 % hydrogen sulphide by volume (E/F Manual). The carbon dioxide and hydrogen sulphide are stripped from the gas using either diethanolamine (DEA), monoethanolamine (MEA), potassium carbonate (KCO3) or combination thereof (E/F and C/D Manuals). The "scrubbed" gas, although free of carbon dioxide and hydrogen sulphide, is now saturated with water from the stripping  7  solutions. This water is removed in dehydrators, and the sweet dry gas is released into the sales pipeline. Water trapped by the dehydrators drains to the flare pits for disposal.  The D E A , M E A and K C O 3 solutions are not used on a "once-through" basis. Contaminated liquids are regenerated by steam cleaning (E/F and C / D Manuals). Carbon dioxide and hydrogen sulphide are leached out of the spent stripping solutions by counter-current steam flows (Fig. 2.3). The contaminated steam exits the gas processing trains and travels to a sulphur recovery unit.  Hydrogen sulphide is a poisonous gas which cannot, under current government regulations, be freely released into the environment. Hydrogen sulphide extracted from sour gas is changed into elemental sulphur by reacting it with sulphur dioxide. This transformation, known as the "Claus" process, typically recovers 98 % of the incoming hydrogen sulphide (S/P Manual). Remaining hydrogen sulphide is burnt to sulfur dioxide and released along with all of the carbon dioxide and water contained in the vapor stream evolved when regenerating the D E A , M E A and K C O 3 solutions (Fig. 2.3).  In simple terms, gas processing at the F N G P consists primarily of snipping liquid and gaseous contaminants from incoming sour gas to produce sweet sales gas, the conversion of hydrogen sulphide to elemental sulphur, and the atmospheric release of carbon dioxide, low levels of sulphur dioxide and steam.  2.2 FNGP Water Svstem Water at the F N G P is used for processing and power generation, as well as for cleaning and domestic purposes. Depending on temperature and pressure, it exists as either a liquid or a gas.  2.2.1 L i q u i d Phase A l l of the water required by the plant originates from either the Fort Nelson River (FNR) or Burger creek (a minor water flow used in the spring and summer months). Water from either source initially travels to the raw water reservoir. From the reservoir, it is pumped, as required, to  8  a storage tank closer to the facility (Fig. 2.4). Water passes into the plant in one of three different flow systems:  i)  Cleaning water is drawn directly from the tank and travels through the plant's "raw  water" piping. ii) Water destined for domestic use moves from the tanks through two activated carbon filters; it is then chlorinated and dispersed throughout the plant in the domestic system. iii) The remaining water by-passes the domestic treatment train and flows into a water softening system; it is henceforth called tteated water.  Dirty cleaning and domestic waters are released into the effluent system, which ttansports them to the effluent treatment plant (Fig. 2.4). A l l of the surface drains within the F N G P also drain to the effluent facility. Rainwater, collected in a series of ditches and culverts, does not enter the plant's water network. It is directed off-site, unless it has been contaminated by an on-site spill (Plant Modifications 1994). If rainwater does become contaminated, then it is pumped to the effluent plant for treatment. Similarly, polluted groundwater around the facility is treated at the effluent plant (Plant Modifications 1994). In general, very little "outside" water (i.e. precipitation and/or groundwater) enters the F N G P ' s water network, and cleaning & domestic waters ttavel through separated pipelines until they mix in the effluent system.  Treated water produced by the front-end softeners (FESs) similarly remains isolated from the other water systems. Most treated water is used as boiler-feed make-up or dilutant for the natural gas snipping solutions (Fig. 2.4). Remaining treated water is used to regenerate the F E S s , backwash the domestic filters or for cleaning equipment too sensitive to be washed with raw water. Spent regeneration and backwash waters drain to the lime ponds, while dirty cleaning water goes to the effluent plant.  9  Four of the 6 natural gas processing trains at the F N G P use treated water to replace water lost from the natural gas snipping solutions (i.e. regeneration steam and flare water - F i g . 2.3) (E/F Manual). The other 2 processing ttains replace their lost water with water from the condensate return line (Fig. 2.4). Regardless of their origins, waters headed to "Process" are, for the most part, lost from the water network upon arrival. They are either eventually released to the atmosphere v i a the thermo-oxidizer or vapourized in the flare pits (Fig. 2.4). A small volume of flare water may remain in the pits not having evaporated during flaring. This residue w i l l drain into the effluent tteatment plant. In general, water which comes into direct contact with natural gas does not cycle into any other patt of the water network, except from the small volumes of flare water draining to the effluent treatment facility. Contaminants carried into the plant in the gas stream can, however, be transported down to the effluent plant in waters used to clean process vessels.  Boiler feedwater ( B F W ) is a combination of treated water and returned condensate (Fig. 2.4). It is pumped into the 3 boilers and various vessels within the sulphur plant. A small volume of B F W drains from the boilers and the sulphur plant to control contaminant concenQ-ations within the steam system, while the remaining water is vapourized and released into the steam system. Blowdown waters collect in the lime ponds.  The lime ponds receive wastewater from, as indicated, the boilers and the sulphur plant, as well as from the domestic filters, the F E S s and several treated water drains within the F N G P (Fig. 2.4). The effluent plant, on the other hand, mainly receives domestic sewage, dirty cleaning water and a tiny amount of water from the flare pits. While the lime ponds are nothing more than collection basins, the effluent plant is comprised of a 20-day stabilization pond, a 5-day activated sludge tank and 3 clarifiers (E/P Manual). Lime pond and effluent plant outflows are combined in a mixing tank, flow through a 1-day retention pond (referred to as the "polishing" pond), and are released to the F N R .  10  Raw water entering the F N G P is either directly used for cleaning, is filtered, chlorinated and used for domestic purposes, or is softened and called treated water. Spent cleaning and domestic waters are collected, treated and released to the F N R . Some tteated water, following its use as either cleaning, regenerating or blowdown water, is also collected and discharged to the F N R . The rest of the treated water appears to be lost through the flare pits and thermo-oxidizer.  2.2.2 Vapour Phase Some of the tteated water produced by the FESs mixes, as previously indicated, with condensate, forming B F W . Most of the B F W is pumped into the boilers, although some of it goes into the sulphur plant (Fig. 2.4). A l l of the B F W is transformed into steam, regardless of its destination.  The boilers produce 450 psi steam, which is used to power elecuical turbines, high pressure pumps and gas blowers (Fig. 2.5). B F W going to the sulphur plant changes to either 150, 45 or 15 psi steam, depending on where it was vapourized in the sulphur recovery ft-ain. Petrosul, a neighboring firm, purchases a small quantity of 150 psi steam. The rest of it is used to drive the sulphur plant's air intake blowers.  Gas blowers, electrical turbines and high pressure pumps all release 45 psi steam (Fig. 2.5). Combined with the 45 psi steam originally created in the sulphur plant, most of this water vapour travels to process train reboilers. Here it heats clean natural gas snipping solutions to their boiling point. Steam produced from the boiling stripping liquids is used for self-cleaning (i.e. steam from uncontaminated solution is used to clean spent liquor) and released to the sulphur plant. Treated water and/or condensate is imported into "Process", as previously described, to replace these water losses. With its heat energy transferred to the snipping liquors, the 45 psi steam condenses and leaves the reboilers as a liquid.  Forty-five psi steam not destined for process equipment is used for heating elsewhere in the plant. It eventually cools and condenses. Condensed steam is collected and returned to the B F W  11  tank (Fig. 2.5). The only exception is a small amount of 45 psi steam blown through the deaerators, wherein its pressure drops to 8 psi. The emerging 8 psi steam is vented to the atmosphere. Five and 150 psi steam created in the sulphur plant are used therein and collected as condensate (Fig. 2.5). It is similarly returned to the head to the plant with the rest of the condensate. The steam system at the F N G P is already quite efficient. A s each steam loop remains isolated within the natural gas processing and sulphur plant equipment, there is no opportunity for contamination of these high quality waters. A s a result, most of the water pumped through the steam system is reused. The need for B F W make-up, however, indicates the presence of steam leaks within the facility, possibly beyond the boiler and sulphur plant blowdowns and Petrosul outlet previously identified.  Overall, water, existing as either a liquid or a gas, is used for a number of puiposes at the F N G P , ranging from cleaning to power generation. A large proportion of water in the system is reused. Never the less, the demand of treated water make-up suggests that there are leaks in the operational water loops. A l l of the missing water may be escaping through the thermo-oxidizer, the flare pits and the steam outlet to Petrosul. This premise can, however, only be evaluated with a more thorough investigation of the plant's water network, hence the inclusion of a system diagnostic in the Z E D project.  12  Figure 2.1: A n illustration of Westcoast Energy Inc.'s operations in British Columbia  13  Alaska Highway  14  o S «  — <U o3  00  £  O  'S oo CD  o >  6  <  t  CN CN  O  c 03 on 03  O  e o  00  ti o CD 03 on  O  bo  c  on  O  Uffiffi  T3  a a  •rH  6  c  O <N CN  o oo  00  CN  O  ffi  >  o u  C  <N  o  03 t3 on 3  CN  o  U  00  oo  . rH  C <  fN  <U S-  + 03 CN CD  O S  •a  '•3  JJ ™ x o  CD  "2 o  '•3 a S a o  £ 3  5  t-i  CD > O  •a  "'2  s  c  00  II  II  II  II  %  o II  K <N O ^ " <N U ffi ooffioo O 0,1  15  S  T3 CD  o  CD  3  si T3  '3  Fort Nelson River  Burger creek  (fall & winter)  (spring & summer)  ^ Raw water tank ^  Raw water cleaning  I  1  I Domestic system  Water softeners  1  Regeneration waters  Wastewater  Treated water tanks  Wastewater  Spent regeneration & blowdown waters  -\ Cleaning water  Effluent Plant Remaining  , „  FiarewateiH  „  G a s  3  Processing  Boiler feedwater tank Condensate  Boilers  Domestic filter backwash  &  Sulphur Plant 1  Blowdown  Discharged to Fort Nelson River  Wastewater  1  Figure 2.4: A simplified illustration of the Fort Nelson Gas Plant's water system.  16  c  Treated water tanks  i—  Condensate  0  »^Boi Boiler feedwater tank  Sulphur Plant  I  t  Boiler feedwater  Various vessels  Boilers  450 psi steam  f 150 psi steam y 45 psi 15 psi steam steam  I  T Air blowers  Turbines  T  i  5 psi steam  i  1 •  I  t  H i g h pressure pumps  Gas blowers  J  45 psi steam  Steam ttacing & Preheaters Reboilers  Condensors  Deaerators T  8 psi steam Condensate Atmosphere  Figure 2.5: A simplified illustration of the Fort Nelson Gas Plant's steam system.  17  3.0 AVAILABLE RECYCLING TECHNOLOGY Reusing process wastewaters and/or secondary domestic effluent is not an uncommon practice, even at power plants and other steam generating facilities (e.g. Abdullaev et. al. 1992, Pankratz & Johanson 1992, B o w l i n & Ludlum 1992, Pierce & Sbei 1993, Strauss 1994, Strauss 1995). The recycling systems tend to involve one or more of the following principles: distillation (Brew & B l a c k w e l l 1991, B o w l i n & Ludlum 1992, Strauss 1994), ion exchange (Kalinske et. al. 1979, Egozy et. al. 1980, Abdullaev et. al. 1992, Bowlin & Ludlum 1992), and/or membrane filtration (Pankratz & Johanson 1992, B o w l i n & Ludlum 1992, Strauss 1994, Strauss 1995).  3.1 Distillation Distillation uses heat energy to produce high quality steam from the contaminated wastewater (Kalinske et. al. 1979, W o o d 1987, Parekh 1991). The steam can either be reused directly, or first cooled to a liquid. The volume of the remaining waste stream is significantly reduced, i f not completely transformed to a solid. This relatively energy intensive process is generally most efficient and cost-effective for waters with total dissolved solid (TDS) levels above 10 000 m g / L (Fig. 3.1).  3.2 Ion-exchange Ion-selective resins are the backbone of the ion exchange process (Kalinske et. al. 1979, H i l l & Lorch 1987, Parekh 1991). These resins, or beads, are coated with relatively inert ions. A s wastewater travels through an ion exchanger, unwanted ionic species are adsorbed, and replaced with more process friendly ions. The influent water is now clean and ready for reuse. The resins themselves eventually become saturated with contaminants. They are then regenerated, and the process starts anew. The optimal T D S range for ion exchanger is generally between 100 and 800 m g / L (Fig. 3.1).  18  3.3 Membrane Filtration Unlike either of the previous techniques, membrane filti'ation involves neither heat energy nor ion replacement. A s the name implies, undesirable elements in the wastewater are isolated using membrane filters (Kalinske et. al. 1979, Applegate 1984, A W W A 1989, Huang & Koseoglu 1993). The configuration of the filter determines what elements are removed, and which others are not (Applegate 1984, A W W A 1989, Cartwright 1991). Membrane filtration has been found to work best with wastewater T D S concentrations between 100 and 10 000 m g / L (Fig. 3.1). There are, however, two general classes of membrane filters; those that are ion selective, and others which are water permeable (Kalinske et. al. 1979, Applegate 1984, A W W A 1989, Cartwright 1991, Huang & Koseoglu 1993). Due to the specificity of their membranes, the two processes are fundamentally different from one another. Each one has its own inherent advantages and disadvantages.  3.3.1 Ion selective separation Ion selective separation, more commonly referred to as electrodialysis (ED), uses filters which are designed to allow either only cation or only anion passage through the membrane (Kalinske et. al. 1979, Applegate 1984, Solt & Foster 1987, A W W A 1989). In its most basic application, cationic and anionic filters are alternately stacked between an anode and a cathode (Fig. 3.2). Each cationic/anionic group is called a cell, and contained within each cell are two open areas bounded by the membranes. Water, flowing parallel to the filters, fills these spaces. When a direct current is applied to the system, cations and anions in solution move toward the cathode and anode, respectively (Fig. 3.2). With alternating cationic/anionic filters, water in one compartment w i l l be drained of its ionic contaminants, while water in the neighbouring space w i l l become increasingly contaminated. The clean and dirty waters are then collected separately as they exit the cells.  Several adaptations have been made to the basic E D configuration in attempts to either increase the robustness of the system or to improve effluent water quality. Sealed-cell electrodialysis,  19  which involves sealing each cationic/anionic membrane pair in a "bag", has shown some promise in bench-scale experiments (Schoeman & van Staden 1991). It is, however, harder to clean and maintain, as compared to the "un-sealed" E D process described above (Schoeman & van Staden 1991).  Similarly, continuous deionization, which includes ion exchange resins in the clean water compartments of an E D stack, has been shown to produce very high quality effluent (Parekh 1991, Ganzi et. al. 1992). It also appears to be rather complex and potentially difficult to operate, as well as expensive to build (Ganzi et. al. 1992). Given the drawbacks inherent in both systems, neither sealed-cell E D , nor continuous deionization, appears to be a better option than the simpler, unaltered E D stack.  One variation on the basic E D configuration which has significant benefits is electtodialysis reversal (EDR) (Applegate 1984, Schoeman 1985, Solt & Foster 1987, A W W A 1989). E D R is almost identical to E D . The only alteration has been the installation of mansformable cathodes and anodes. Rather than having the electrical current always travel in the same direction through the stacked filters (as it does in E D ) , E D R uses an alternating current. The relative position of the anode and cathode are then dependent on the direction of electton flow (Figs. 3.3a & b). A s the locations of anode and cathode change, so too does the direction of ttavel for ions in solution. Cations and anions previously moving one way are now traveling in the opposite directions (Figs. 3.3a & b). Similarly, the compartments previously producing clean water now contain more contaminated water. The great advantage of this system is that it is "self-cleaning" (Applegate 1984, Schoeman 1985, Solt & Foster 1987, A W W A 1989).  While operating under a given current, ions concentrate in certain areas of the E D or E D R filters, or stacks as they are more commonly known (Figs. 3.2 & 3.3a). Certain mineral salts, such as calcium carbonate (CaC03) or calcium sulfate (CaS04) have limited solubilities in water (Kotz & Purcell 1987). If those solubilities are exceeded, then salts w i l l start to precipitate. For example, if, as calcium and carbonate accumulate in the "contaminated" waters in the E D or E D R  20  stack, their combined ionic concentration is greater than the C a C 0 3 solubility limit, then C a C 0 3 w i l l begin to precipitate out of solution and onto the surrounding membranes. Precipitation w i l l continue until the combined abundance of calcium and carbonate ions is equivalent to the C a C 0 3 solubility limit of water. When the direction of electricity changes in E D R , ions accumulate in different parts of the stack (Fig. 3.3b). A s the previously contaminated compartment are drained of their ionic constituents, the concentrations of calcium and carbonate drop below the CaCC>3 solubility limit. A n y precipitated CaCC>3 then re-dissolves, leaving an essentially clean membrane. Precipitates formed in a noimal E D stack have to be removed with acid or some other cleaning agent (Alsakari et. al. 1977, Schoeman 1985, Hughes et. al. 1992). Current reversal allows E D R to do this automatically and internally.  O f the 4 available ion-selective technologies, E D and E D R are the most promising. E D R does appeal to have certain inherent advantages over the simpler E D alternative. A more detailed -  comparison of the two systems has, however, yet to be discussed.  3.3.2 Water permeable membranes Unlike ion selective processes, water filtering systems are essentially sieves which capture and remove contaminants carried in the water as it passes through the membrane. Exactly which elements are removed is dependent upon filter pore size. A s water slips through the pores, any particles or molecules larger than these spaces will be trapped above the membrane. Filters with smaller pores can, therefore, filter out a broader range of substances.  Tiny holed membranes do have certain restrictions. Water flow rates drop significantly as pores sizes shrink; it can reach a point where water has to forcibly pumped through the filter (Kalinske et. al. 1979, Applegate 1984, A W W A 1989, Cartwright 1991). Tighter membranes also have a higher probability of becoming clogged, as larger elements in the feedwater block pore spaces, or even cover up entire portions of the membrane wall (Applegate 1984, Parekh 1991). Although filters with tiny pores can strip a broader range of contaminants from a feed stream, using the tightest membrane is not always the best choice given the slower permeation rates and  21  higher clogging potentials associated with these filters. The success of a filtering system at the F N G P is, however, likely to depend on its ability to ek'minate the smaller molecular contaminants found within the plant's wastewater. Using a very tight membrane would, in this case, be unavoidable.  There are several types of membranes designed for molecular sieving: ulttafilters (Applegate 1984, Jordain 1987, A W W A 1989, Ericsson & Hallmans 1994a), nanofilters (Rohe et. al. 1990, K o p p et. al. 1993, Wiesner et. al. 1994, Turner & Kadubandi 1994, Jacangelo et. al. 1995) and reverse osmosis filtration (Kalinske et. al. 1979, Applegate 1984, A W W A 1989, Parekh 1991, M o r i n 1994). Ulttafilttation is the least effective of the three options; it can only remove substances measuring more than 0.005 u m in diameter (Fig. 3.4). While bacteria, viruses and most suspended particles fall within these specifications (Applegate 1984, Jordain 1987, A W W A 1989, Ericsson & Hallmans 1994a), calcium, sulfate and other ionic elements w i l l pass unhindered through ultrafiltration membranes (Applegate 1984, A W W A 1989, Ericsson & Hallmans 1994a). Ultrafilters are restricted to relatively large particle removal.  Nanofilters are slighdy tighter membranes. They can screen out ions as small as 0.0009 (im (Fig. 3.4). This includes many divalent species, such as calcium, sulfate, phosphate and magnesium (Cluff 1992, K o p p et. al. 1993, F u et. al. 1994, Ericsson & Hallmans 1994b, Jacangelo et. al. 1995). Depending on their configuration, some monovalent ions, like sodium and chloride, can also be snipped out of solution using nanofiltration (Taylor et. al. 1989, Cluff 1992, F u et. al. 1994). Nanofilters are not, however, very efficient at removing these singlely-charged elements (i.e. divalent removal rates can = > 95 %, monovalents rates are only around 35 % Conlon & M c C l e l l a n 1989, Taylor et. al. 1989, Cluff 1992, Comb 1994, F u et. al. 1994). W h i l e able to eliminate a broader range of contaminants than ultrafilmation systems, nanofilters are generally only effective at removing the larger multi-valent ions from a feedwater su eam. -  Reverse osmosis (RO) is the tightest membrane filter available. It can contain pores as small as 0.0001 | i m (Fig. 3.4). A s a result, it can efficiently strip monovalent ions (Hrubec et. al. 1979, 22  Osantowski & Geinopolos 1979, Kosarek 1979, M o r i n 1994, Comb 1994, Page 1995) and even uncharged atoms (Kalinske et. al. 1979, Kosarek 1979, Applegate 1984, Eisenberg & Middlebrooks 1986, A W W A 1989, Wethern et. al. 1991) out of water. O f the three molecular sieves, R O is the most effective one at removing a wide range of contaminants. It therefore seems to be the best of the water permeable membrane filters.  3.3.3  Reverse osmosis vs. electrodialysis  Within then respective groups, E D / E D R and R O are the most promising of the available -  filtering technologies. Each method has inherent advantages and limitation. K e y factors include their respective water recovery ratios, cleaning ability and robustness, as well as the technical expertise required to operate each system.  Water recovery ratios R O : Unlike ordinary paper filters where water flows perpendicular to the membrane surface, R O feedwater travels parallel to the filter (Fig. 3.5). B y pressurizing the feed stream and limiting the exiting water flow, some water is forced through the R O membrane. The contaminants left on top of the filter are carried out of the unit in the remaining water. Therefore, two separate stream are produced by a R O membrane: a clean water, or permeate flow and a dirty water, or concentrate stream (Fig. 3.5). Permeate production is generally limited by 2 natural phenomena: osmotic pressure and particle diffusion (Applegate 1984,, Pohland 1987, Cartwright 1991).  Unless acted upon by an outside force, water moves from areas of low solute concentration to zones of higher molecular abundance (Applegate 1984, Pohland 1987, Kotz & Purcell 1987, A W W A 1989). In R O , the reverse flow pattern is desired. High quality water is obtained by pushing liquid from the contaminated feed stream through to the relatively pure permeate side of the filter assembly (Pohland 1987, A W W A 1989, Parekh 1991). Feedwater pressure's must be greater than the osmotic pressure drawing clean water back across the membrane for there to be any permeate production (Applegate 1984, Pohland 1987, A W W A 1989, Parekh 1991).  23  A s water moves across a R O membrane, contaminant concentrations in the waste stream increase. The more concenttated the waste becomes, the greater the osmotic force pulling permeate back through the filter. Consequently, larger pressures are needed to ensure that the net flow of water is from concentrate to permeate. Eventually, as concentrate volumes get smaller and smaller, the pressure needed to drive the system will exceed filter design, and the membrane w i l l burst. Water recovery rates in R O are therefore limited by the increasing osmotic pressure associated with higher permeate flows.  Just as water naturally navels up the concentration gradient - from low concentrations to high ones, molecules diffuse down it - from areas of high concentration to those of low molecular abundance (Applegate 1984, Pohland 1987, Kotz & Purcell 1987, Cartwright 1991). Travel rates are determined by the magnitude of the concenu-ation gradient (Applegate 1984, Pohland 1987, Cartwright 1991). The larger the difference between the two zones, the greater the flow of molecules from one area to the other. So, as the concentrate stream in a R O filter gets more concentrated with higher permeate recovery rates, the gradient gets steeper. The flow of salts and other undesirable elements across the membrane subsequently increases and permeate quality decreases (Applegate 1984, Pohland 1987, Cartwright 1991). Due to the increases in salt passage and required feedwater pressures resulting from higher permeate production rates, individual R O units are typically resteicted to recovering 50 % of the incoming wastewater flow (Applegate 1984, Parekh 1991)  To increase overall wastewater recovery rates, R O vessels can be linked in series. The concenttate produced in the first is directed into the second and so on until the desired output flow is obtained (Applegate 1984, Parekh 1991). Total recoveries are, however, limited by feedwater chemistry.  Certain mineral salts are relatively insoluble in water (e.g. C a C 0 3 ) (Kotz & Purcell 1987). A s a result, when ionic concentrations (e.g. C a  2 +  and CO3 ") exceed solubility limits, these salts w i l l 2  begin to precipitate out of solution. This is relevant to R O when one considers that any feedwater  24  entering an R O unit contains a given volume of water and a given mass of solute. The produced permeate w i l l be mainly water with few contaminants (if recovery rates < 50 %). The concentrate w i l l , on the other hand, consist of almost all of the influent contaminant mass dissolved in the remaining volume of water. Ionic concentrations in the R O waste stream are, therefore, higher than in the feed stream. If, at these "new" levels, the solubility of the sparingly soluble salts has been exceeded, then precipitation will occur. The amount of water that can be withdrawn prior to precipitation is dependent on feedwater quality. If a wastewater is initially already close to the solubility limits, then very little water can be recovered before solids start to form. Alternatively, a good deal of water could be reclaimed from a waste sueam with very low scaling potential.  Once precipitation has started to occur, membrane efficiency w i l l decrease rapidly, as portion of the membrane become coated with salt (Kosarek 1979, Pohland 1987, A W W A 1989, Huang & Koseoglu 1993, Noshita 1994). Although some solids can be removed with adequate cleaning (Eisenberg & Middlebrooks 1986, Pohland 1987), most filters will need to be replaced i f salt precipitation has been extensive (Eisenberg & Middlebrooks 1986, Pohland 1987).  R O water recovery rates are limited by osmotic pressure and molecular diffusion to around 50% per R O vessel. Greater recoveries can be achieved by running two or more units in series. Influent chemical characteristics will, however, resuict the success of multi-stage R O filiation. Permeate can only continue to be produced i f the concentiation of the sparingly soluble salts is low. Once solubility limits have been exceeded, system performance w i l l fall, and costly repairs may be required.  E D / E D R : For ion-selective processes, such as E D and E D R , product water volumes are independent of feedwater quality. They are, instead, determined solely by the configuration of an E D or E D R stack. A s indicated earlier, an E D or E D R unit consists of alternating cationic and anionic membranes grouped between a cathode and an anode, with water flowing through the spaces between the membranes (Figs. 3.2 & 3.3a). When electricity is added to the system, ions w i l l move out of certain compartments into the others (Figs. 8 & 9a). Clean water is produced in -  25  areas drained of their ionic elements, while the waters in neighbouring spaces become increasingly contaminated. The ratio of clean to dirty water compartments is always x : x-1, where "x" is equal to the number of spaces in the stack producing clean water (e.g. Fig. 3.2). Water recovery ratios for individual E D and E D R units are, therefore, between 50 and 60 % of the incoming flow (i.e. recovery rate = number of clean spaces / total spaces = x / (x + x-1) = x / (2x - 1)). To increase overall wastewater recoveries, concentrate can be reprocessed either by recycling it back through the same stack or tteating it in one or more downstream units (Applegate 1984, Schoeman 1985, Solt & Foster 1987).  Cleaning efficiency R O : R O membranes contain extremely small pores. A s a result, they are able to screen ions and other atomic particles from a liquid. R O filters have been found to have the following mean removal efficiencies: 94 % for total dissolved solids (TDS) (Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Noshita 1994, Abdula'aly & Chammem 1994), 96 % divalent ions (Hrubec et. al. 1979, Kosarek 1979, Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Abdula'aly & Chammem 1994, Noshita 1994), 94 % - monovalents (Hrubec et. al. 1979, Kosarek 1979, Light et. al. 1984, Pohland 1987, Marquardt et. al. 1987, Shah et. al. 1993, Abdula'aly & Chammem 1994, Noshita 1994), and 82 % for total organic carbon ( T O C ) (Kosarek 1979, Marquardt et. al. 1987, Chin & Ong 1991).  E D / E D R : E D and E D R systems, on the other hand, have much lower removal efficiencies. The product water from a given unit typically contains 53 % of the T D S (Alsakari et. al. 1977, Kawanishi et. al. 1994, Kawahara 1994), as well as between 40 to 45 % of the mono- & divalent ions (Alsakari et. al. 1977, Hughes et. al. 1992, Kawanishi et. al. 1994, Kawahara 1994), found in the feedwater. Furthermore, these systems can only act on charged particles (Applegate 1984, Schoeman 1985, Solt & Foster 1987, A W W A 1989, Huang & Koseoglu 1993). The abundance of silica, natural organics and other inert materials in both product and concentrate streams w i l l be identical and unchanged from feedwater concentrations.  26  Ionic diffusion is probably a key factor which resnicts the cleaning ability of E D / E D R . A s ions accumulate in the concentrate compartments, concentration gradients across the separating membranes would increase. This, in turn, should promote a greater flux of charged particles back into the product water. Given the average removal rates described in the literature (described above), the optimum balance between active ion displacement and passive diffusion appeal's to occur when product water concentrations are around 50 % of those of the feedwater.  Feedwater quality will influence how close to this apparent 50 % maximum E D / E D R processes can operate. The ability to concentrate ions within the dirty water spaces in an E D / E D R stack will be bound by the solubility limits of sparingly soluble salts (Schoeman 1985, A W W A 1989, Huang & Koseoglu 1993). If a feedwater is rich in (say) carbonate and calcium, then few calcium and carbonate ions can be transferred into the contaminant compartments before calcium carbonate begins to precipitate onto the surrounding membranes. Given the ability of E D R units to periodically shed precipitated solids (see "Ion Selective Separation"), the performance of these systems w i l l be less affected by salt scaling. They should, therefore, be able to operate closer to the 50 % maximal removal rates. Just as overall R O water recovery ratios are restricted by feedwater scaling potential, so too is the cleaning ability of individual E D and, to a less extent, E D R stacks.  Product water quality from one E D / E D R unit can always be improved by putting it through other downstream stacks (e.g. Alsakari et. al. 1977, Hughes et. al. 1992, Kawahara 1994). There are, as one might expect, limits to this process. Finished water volumes w i l l be reduced by 40 to 50 % per E D / E D R unit (see "Water Recovery Ratios"). Recycling the resulting wastewater would minimize these water losses, but the larger feedwater flows (i.e. original water + recycled concentrate) would necessitate a larger E D / E D R system. More importantly, however, overall cleaning efficiencies are in themselves restricted by product water purity (Applegate 1984, Solt & Foster 1987).  27  The driving force in this process is electricity. Water by itself is a relatively poor conductor of elecuicity. A s a result, as ion concentrations in product water compartments decrease, the electtical resistance of these waters increases. More energy needs to be added to the system to maintain a current through the entire stack. Eventually, it becomes impossible to import enough electricity into the process to promote ionic displacement from product to concentrate waters. Finished water quality can no longer be improved, regardless of how many units it travels through (Applegate 1984, Solt & Foster 1987).  E D and E D R systems can only influence charged particles. A single E D or E D R stack can remove approximately 50 % of the ionic load of the feedwater stream. Although cleaning efficiencies appear to be limited by ionic diffusion, an abundance of sparingly soluble salts in the feedwater can further reduce the effectiveness of a E D or E D R system. Finished water quality can be improved by running it through additional E D / E D R units. The design of such a system would, however, have to balance cleaner water against the costs of obtaining & maintaining the desired product water quality & quantity.  Optimum TDS R O : Reverse osmosis units tend to most effective when feedwater T D S concenttations are between 2 000 and 3 000 m g / L (Kalinske et. al. 1979, M o r i n 1994).  E D / E D R : Both elecfrodialysis and elecfrodialysis reversal are generally most effective when dealing with an inlet T D S of less than 2 600 mg/L (Solt & Foster 1987, Cluff 1992, Kawahara 1994).  Membrane fouling R O : R O filters can be fouled by a number of substances. Some of these elements w i l l affect any R O system, while others are membrane specific. The former category includes suspended and colloidal solids (Larson & Argo 1976, Kalinske et. al. 1979, Kosarek 1979, Pohland 1987, A W W A 1989, Suemoto et. al. 1994), silicates (Marquardt et. al. 1987, Kawanishi et. al. 1994,  28  Noshita 1994, Abdula'aly & Chammem 1994), salt scaling (Kalinske et. al. 1979, Kosarek 1979, Pohland 1987, A W W A 1989, Huang & Koseoglu 1993, Comb 1994, Noshita 1994), and microbes (Pohland 1987, A W W A 1989, Chin & Ong 1991, Noshita 1994, Abdula'aly & Chammem 1994, Suemoto et. al. 1994). "Extreme" p H conditions (Applegate 1984, Eisenberg & Middlebrooks 1986, A W W A 1989) and various oxidizing agents, such as oxygen & chlorine (Applegate 1984, Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989), are examples of the latter group.  To protect R O equipment, these contaminants are removed from the feed stream prior to its filtration. Pretreatment trains can include multi-media filters (Hrubec et. al. 1979, Osantowski & Geinopolos 1979, Kaakinen & Moody 1984, Wethern et. al. 1991, Pankratz & Johanson 1992, Shah et. al. 1993), ulti-afiltration (Kaakinen & Moody 1984, Wethern et. al. 1991), activated carbon columns (Osantowski & Geinopolos 1979, Kaakinen & M o o d y 1984, Pohland 1987, Marquardt et. al. 1987, Wethern et. al. 1991), and chlorination (Larson & Argo 1976, Kaakinen & M o o d y 1984, Suemoto et. al. 1994) and/or dechlorination (Pohland 1987, A W W A 1989) stations all depending on the extent of feedwater contamination, as well as which elements are of concern. They also tend to be more extensive than systems used for E D and E D R protection, since R O filters, on the whole, are generally more sensitive to fouling than either E D or E D R ( A W W A 1989).  E D / E D R : Similar contaminating agents affect E D and E D R membranes, including suspended and colloidal solids (Applegate 1984, Schoeman 1985, Solt & Foster 1987, Huang & Koseoglu 1993), oxidizers (Applegate 1984, Schoeman 1985), and microbes (Applegate 1984, Huang & Koseoglu 1993). Silicates, on the other hand, pose no threat to E D or E D R (Kawahara 1994), but organics can (Kalinske et. al. 1979, Applegate 1984, Schoeman 1985, Solt & Foster 1987, Huang & Koseoglu 1993). E D systems can also be detrimentally affected by salt scaling (Schoeman 1985, A W W A 1989, Huang & Koseoglu 1993). This is of less concern for E D R stacks, due to the self-cleaning mechanisms inherent in the process (see "Ion Selective Separation").  29  Pretreatment trains for E D and E D R contain similar elements as R O units; they are, however, generally simpler than R O systems, due to the greater robustness of E D and especially E D R membranes ( A W W A 1989).  Technical operation & maintenance R O : Reverse osmosis is a relatively straight forward process. Pretreated feedwater flows into a R O vessel, and exits either as concentrate or permeate (Fig. 3.5). The whole process is conuolled by flow meters, pumps and valves (e.g. Applegate 1984, Pohland 1987, Parekh 1991). Though regular chemical cleaning will help to maintain optimal filter performance (Applegate 1984, Pohland 1987), R O membranes w i l l eventually need to be replaced. They have an average life span of about 5 years (Pohland 1987). Inadequate pretteatment, highly contaminated feedwaters or harsh operating conditions will significantly reduce filter life (Applegate 1984, Light et. al. 1984, Pohland 1987). In any case, since R O membranes exist as individual units (e.g. Applegate 1984, Eisenberg & Middlebrooks 1986, Pohland 1987, Parekh 1991), it is relatively easy to isolate and replace a faulty or spent filter.  E D / E D R : B y their very configuration, E D and E D R units are complex and potentially hard to maintain. A n E D / E D R stack contains between 100 and 600 membrane pairs sandwiched between a cathode and an anode (Applegate 1984, Solt & Foster 1987). Bounded by each pair is a clean and dirty water compartment (Fig. 3.2). Water is carried to and from each opening in separate tubes. Fresh water is also continually traveling over the cathode and anode to keep them free of contaminants (Applegate 1984, Solt & Foster 1987). This results in an extensive array of pipes and valves, in addition to the equipment conttolling the flow of electricity to and from the stack.  E D R has the additional complications associated with periodic current changes. When the flow of electricity changes direction, product water compartments become filled with concenmite, and vice versa (Figs. 3.3a & b). The stack has to be purged before product water can be collected from its new locations to prevent contamination with any remaining concenttate (Applegate 1984). A s a  30  result, E D R units have even more complex valving systems than E D stacks (Applegate 1984, Schoeman 1985). Whichever process is used, E D or E D R , the operators w i l l have to be familiar with both water flow and elecnical instrumentation, and they must be able to identify potentially problematic situations before they disrupt the E D or E D R cleaning process.  A s previously mentioned, there are between 100 and 600 cell pairs in a E D / E D R unit, and water ttavels to and from each membrane set in a separate tube. There are, as a result, hundreds of tiny pipes running into and out of a single stack! If one of these tubes were to become blocked, locating the problem could take some time. Similarly, i f a membrane should fail or wear out, a good portion of the entire stack would have to be disassembled to find and replace the spent filter (Hughes et. al. 1992). A n y time a stack is taken apart, be it for manual cleaning or membrane change, there is generally a high probability of membrane damage (Applegate 1984, Hughes et. al. 1992). Clearly, maintaining a E D or E D R system can be both time and labour intensive.  Where as R O technology offers simplicity and ease of operation, E D and E D R are complex, potentially time consuming reclamation processes. Technical personnel would require greater training to operate and maintain such systems; maintenance cost are also likely to be higher than those associated with R O .  The better system R O is slightly more sensitive to fouling than either E D or E D R , and, as a result, generally requires more extensive pretteatment systems (Table 3.1). Even though average water recovery rates per operating unit are almost equivalent for E D , E D R and R O (Table 3.1), overall product water volumes also tend to be greater for E D and E D R . Product water quality is, on the other hand, likely to be better with R O , due to more efficient removal of a broader range of contaminants (Table 3.1). The best feature of reverse osmosis is its simplicity and operational ease, especially when compared to the more complex E D and E D R technologies (Table 3.1). In face of all of the above criteria, reverse osmosis appears to be the most effective membrane f i l i a t i o n system.  31  3.3.4 RO membranes selection R O membranes are derived from either cellulose acetate (Applegate 1984, Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989) or poly-organic compounds, such as polyamide (Applegate 1984, Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989). Cellulose-based membranes (CAs) are generally cheaper than polyamides (PAs) ( A W W A 1989). They are also more resistant to oxidizing agents, such as chlorine and dissolved oxygen, than P A s (Applegate 1984, Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989). O n the other hand, P A s can operate under broader temperature and p H conditions, (Eisenberg & Middlebrooks 1986, A W W A 1989 for the former; Applegate 1984, Eisenberg & Middlebrooks 1986, A W W A 1989, Abdula'aly & Chammem 1994 for the latter). They are also resistant to biological degradation (Shields 1979, Applegate 1984, Pohland 1987), unlike C A s (Applegate 1984, Eisenberg & Middlebrooks 1986, A W W A 1989), and P A s require lower water pressures than C A s to produce a given permeate flow ( A W W A 1989). A s both membrane types generally have the same filtering abilities, either one could be used in any treatment system; the R O pretreatment ttain would simply have to be designed to produce the required feedwater characteristics (e.g. proper p H , temperature, dissolved oxygen and chlorine levels...).  R O filters, regardless of their individual make-up, come in one of 4 different configuration: tubular (Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989, Parekh 1991), plate-andframe (Pohland 1987, Eisenberg & Middlebrooks 1986, A W W A 1989, Parekh 1991), hollowfibre (Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989, Parekh 1991), and spiral wound (Eisenberg & Middlebrooks 1986, Pohland 1987, A W W A 1989, Parekh 1991, M o r i n 1994). Plate-and-frame, as well as tubular designs, while effective, have limited applications. Their relatively small membrane surface area to unit volume ratios (165 & 335 m / m , respectively 2  3  - Pohland 1987) makes treating anything by very small feedwater flows extremely expensive (Pohland 1987, Parekh 1991).  32  Both spiral wound and hollow-fibre membranes have much larger area to volume ratios (1 000 & 16 500 m / m , respectively - Pohland 1987). The use of hollow fibre systems has been 2  3  restricted in the past by their relative sensitivity to fouling (Applegate 1984, Pohland 1987), and their need for higher feedwater pressures (Morin 1994). A s a result, the operating costs associated with hollow fibres are greater than those for spiral would designs (Morin 1994). The dominance of spiral would membranes is also due in part to the ease with which recent advances in membrane technology have been incorporated into these designs as compared to hollow fibre configurations ( A W W A 1989). Thus, although membrane type is a somewhat arbitrary choice based on feedwater characteristics, treatment system generally always use spiral-wound R O filters, because of the relative robustness and low cost of this configuration.  3.4 Brine Disposal Regardless of whether distillation, ion-exchange or membrane filtration is used, each system w i l l produce a final wastewater requiring further treatment; these waters could be either regeneration fluids from the ion-exchanges, very concenttated blowdown flows from the distillation vessels or R O membrane concenttates. A s the goal of the Z E D project is to completely eliminate the need for a wastewater discharge from the F N G P , none of the previously discussed technologies is, on its own, sufficient to fulfill this objective.  Power plants and other zero-effluent facilities described in the literature (e.g. Brew & Blackwell 1991, Pankratz & Johanson 1992, B o w l i n & Ludlum 1992, Pierce & Sbei 1993, Sttauss 1994) which have similar water demands as the F N G P (i.e. make-up water to replace boiler and other process losses) incorporate one of two systems into their wastewater treatment trains. Concentrated liquid wastes are either disposed of in evaporation ponds (Bowlin & Ludlum 1992, Pierce & Sbei 1993), or they are solidified prior to discharge and landfilled (Brew & B l a c k w e l l 1991, Pankratz & Johanson 1992, B o w l i n & Ludlum 1992). Evaporation ponds are rather self-explanatory. Wastewater drains into the holding ponds and evaporates. The remaining solids collect in the basins, which are eventually capped with earth.  33  Wastewater solidification, on the other hand, tends to be best carried out in two steps. Concentrate volumes are first reduced through forced evaporation using a brine concenttator (B/C) (Brew & Blackwell 1991, B o w l i n & Ludlum 1992, Pankratz & Johanson 1992). This robust piece equipment is specifically designed to handle veiy contaminated liquids. It is not affected by the precipitation of salts and other solids, typically formed during wastewater evaporation. Rather than coating the inner workings of the B / C , these substances precipitate onto seed elements added to the feed stream as it enters the unit (Pankratz & Johanson 1992, B o w l i n & L u d l u m 1992). B / C s can recover up to 90 % of the incoming wastewater (Brew & Blackwell 1991, Sttauss 1994), and product water quality is very high (< 10 mg/L T D S - B o w l i n & Ludlum 1992, Pankratz & Johanson 1992). The remaining 10 % exits the B / C and travels to the second part of the solidification process.  Brine concentrator wastes can go to either a spray dryer (Brew & Blackwell 1991, B o w l i n & L u d l u m 1992), or a crystallizer (Bowlin & Ludlum 1992, Pankratz & Johanson 1992). Wastewater entering a spray drying is atomized into tiny droplets, which then fall through a hot air chamber. Water evaporates, and the remaining solids fall into a collection basin at the bottom of the unit. The produced material tends to be very fine and powdery, because it forms from tiny water drops. It is completely dry, and can be directly landfilled (Brew & Blackwell 1991, B o w l i n & L u d l u m 1992).  Crystallizers work somewhat differently. Hot, pressurized wastewater is injected into a hollow-bodied vessel (Bowlin & Ludlum 1992, Pankratz & Johanson 1992). A s the pressure in the tank is less than that of the feedwater, flash evaporation occurs. Not all of the feed stream vapourizes at once; some of it remains as a liquid. This water falls to the bottom of the vessel, along with any newly-formed solids. Some of this solution is recycled back through the process, while the remaining portion is drained from the system. This bleed stream is generally further dewatered with a filter press (Bowlin & Ludlum 1992, Pankratz & Johanson 1992). The resulting solid filter cake can then be landfilled.  34  About 75 % of the feedwater flowing to a crystallizer will be turned to steam, which can be recovered and reused (Pankratz & Johanson 1992, B o w l i n & Ludlum 1992). Spray dryers are not designed for steam recovery; any and all vapourized water is lost to the atmosphere (Brew & B l a c k w e l l 1991, B o w l i n & Ludlum 1992). These units are, on the other hand, a final solution. Incoming wastewater is completely transformed to a dry solid. There is no need for additional dewatering equipment, as is the case with crystallizers. Capital and operating costs are, therefore, likely to be lower for Z E D operations using spray dryers instead of crystallizers. The fine, powdery nature of the solids produced by a spray dryer can, however, make them difficult to handle (Brew & Blackwell 1991).  In summary, the small volumes of wastewater draining from distillation, ion-exchange or membrane filtration processes can be disposed of either in evaporation ponds or by more energy intensive forced evaporation systems. Such a system is likely to include a brine concenn-ator and a crystallizer or spray dryer. Regardless of its configuration, any brine disposal technology w i l l produce two outflows: relatively pure water, which either escapes to the atmosphere or is collected and reused, and a solid waste, either in the form of precipitates in an evaporation pond, fine powder from a spray dryer or a filter cake from a crystallizer/filter press assembly.  3.5 Conclusion Current literature clearly indicates that the F N G P can become a Z E D facility. The required technology exists, and other facilities with similar water demands as the F N G P already operate under a Z E D framework. A wastewater recycling program at the F N G P is likely to use either distillation, ion-exchange or R O as the main treatment process. Remaining concentrates will be directed into either an evaporation pond or a brine concentrator - spray dryer or crystallizer assembly. Wastewater currendy leaving the plant w i l l be reduced to a solid waste.  35  Table 3.1: A comparison of the inherent advantages and disadvantages of reverse osmosis (RO), electrodialysis (ED) and eiecnodialysis reversal (EDR).  RO  ED  EDR  50 % max.  50 - 60 %  50 - 60 %  total dissolved solids (TDS)  94 %  53 %  53 %  monovalent ions  94%  55%  55 %  divalent ions  96 %  60 %  60%  total organic carbon  82 % Yes  No  No  2 000 - 3 000  < 2 600  < 2 600  Salts  Yes  Yes  No  Microbes  Yes  Yes  Yes  Silica  Yes  No  No  Organics  No  Yes  Yes  Solids  Yes  Yes  Yes  High  Moderate  Low  Simple  Complex  Highly complex  Parameter Water recovery rate / vessel Removal rates:  Can it remove non-ionic particles? Optimal T D S - mg/L Fouling elements:  Relative pretreatment needs Operation & maintenance  36  100000 Membranes 10000 Distillation Ion-exchange 1000 TDS (mg/L) 1 00  1 oDesalination Technology  Figure 3.1: Typical operating total dissolved solid (TDS) concentrations for different desalination technologies.  - adapted from A W W A 1989  37  T3 O3  8 £  -8 o  D 03  oo 03  03  u 03  t-c  D  oo  c  c  03 oo  PH  U.S  O  •5  c  +  c  •i  03  <5 <6  u  <  +  OO  oo <U O O S-l  OH  00  13  " i  o is  o JU  13 U  < -A  6  •-3  I I  +  13 <u  -*-»  <  c  1 E  J3  I I  > .5  <H-H  •rt  O  oo  •<-  >  °  5/2  +  <-—» o c o  •a  oo 3 3j  C  <  03  < -A  <u c  is <U 03 O  >  G <0  < g  o c  <  <u  OO  0\  U  3' SJD  -4—t  03 00  <D *—* QH OH  < O  *1  a <  a%  s O  -a o3  38  Rinse water  Rinse water  4  4  Product water  •> Concentrate  Direction of electron flow Cathode  Anode  | t. t • t t Rinse water  Wastewater  Rinse water  Figure 3.3a: Flows through an EDR stack when electricity travels from right to left.  Rinse water  Rinse water  A  Product water  Concentrate  Direction of electron flow Cathode  tt  Rinse water  Anode  t f t t(  Wastewater  Rinse water  Figure 3.3b: Flows through an EDR stack when electricity travels from left to right. - adapted from Applegate 1984  39  40  41  4.0 METHODOLOGY 4.1 Analysis of the Existing Water Distribution Network 4.1.1 Flow data Data collection: Water flow data used herein are a collection of metered readings, derived values, and numbers provided by plant personnel. Metered measurements originated from a number of sources. Some of the information was available in operational reports and other hard copy documentation. Other readings were extracted from the facility's continual monitoring computer system. Only several months worth of data was renievable from the computer network. January 1995 was one of the few months where a complete set of measured values was available. A l l of the metered numbers used in this study were average flow rates recorded over those 31 days.  Data analysis: Water balances were used in conjunction with flow diagrams to identify leak points in the F N G P ' s water distribution network. One set of balances was developed around the individual operating units within the plant (e.g. Powerhouse, E & F Process Trains and the Sulphur Plant). A second group followed each water loop through the entire facility (e.g. 450 and 45 psi steam systems). If the difference between total input and total output in a given balance was less the 10 %, the system was considered balanced.  4.1.2 Chemical data Data collection: Water samples were collected by plant personnel from a number of different locations in the water distribution network (Fig. 4.1). A I L and a 200 or 250 m L acid-washed polyethylene bottle were filled at each sampling station. Nitric acid was added to the smaller container to lower its p H to < 2 p H units; the acid was used as a preservative to stabilize metal concentrations within these samples (Greenberg et. al. 1992). N o acid was added to the larger bottle, because this water was used to determine p H , alkalinity and a number of other "acid-  42  sensitive" parameters. Sampling generally occurred twice a week for three weeks in M a y 1995 . 1  A n additional set of samples was later collected in mid-July to evaluate developing trends in the data. A t the completion of each round of sampling, full bottles were placed into a cooler with frozen ice packs, sent to the University of British Columbia's Environmental Engineering Lab, and, upon arrival, were stored at 4 ° C until they could be analyzed. Upon removal from the refrigerator, the 1 L bottles were shaken and 80 rnL of water was withdrawn from each for a total solids determination. The remaining waters were then filtered through 0.45 Jim pore membranes and analyzed for acidity, conductivity, alkalinity, total carbon content (both organic and inorganic), and various inorganics (i.e. sulphate - SO4, phosphate PO4, chloride - C l and silica - Si). Acidity and conductivity were measured with a Beckman 0 4 4 p H probe and a Fisher Scientific Accumet® conductivity meter, respectively. Alkalinity was tested by titration (Greenberg et. al. 1992). Inorganic concentrations were determined by a Lachat Quickchem Flow Injection Analyzer, while a Shimadzu TOC-500 (total organic carbon) analyzer was used to identify both inorganic and organic carbon content.  Acidified waters from the smaller 200 / 250 m L containers were also filtered prior to examination. These waters were analyzed for calcium (Ca), magnesium (Mg), sodium (Na) and iron (Fe) using A A S (atomic absorption spectrophotometry) following methods described in Thermo Jan-el A s h (1986).  A l l of the tested parameters were chosen based on their importance to boiler maintenance and operation (Jackson 1980, Robertson 1981, Schroeder 1991). A key part of the F N G P water network are the three boilers used to generate steam for the facility. They have the most stringent water quality requirements of all of the equipment in place at the plant (Shang Su, personal com.).  1  The time lapse between the collection of water flow and water chemistry data was due to the  desire to fully analyze the flow data prior to water sampling. Developing a complete image of the plant's water distribution network before initiating the sampling program ensured that all of the pertinent water flows were sampled.  43  B y identifying the abundance of the selected contaminants in different parts of the plant, Z E D equipment can be designed to produce water clean enough to maintain current B F W quality, thereby ensuring a successful wastewater recycling program.  Data analysis: Some waters contained contaminant concentrations below detection limits. These samples were subsequently assigned the detection limit value. This value replacement procedure pertained only to the inorganics and the metals; the detection hmits were 0.1 m g / L for C l , 1.0 m g / L - S 0 , 0.05 m g / L - P 0 , 0.1 m g / L - Si, 0.05 ppm - C a , 0.10 m g / L - M g , 0.04 4  4  m g / L - Fe and 0.02 m g / L for sodium.  Several individual observations were deemed non-representative and dropped from the data set, because they were either illogical (e.g. total carbon < organic carbon) or equal to ± 2 x the average value of the remaining readings. Two entire samples were also tossed out of the study, since more than 50 % of their defining parameters were found to be non-representative, as defined above. For example, discarded measurements included sodium and alkalinity readings from the M a y 24th treated water sample (Appendix C). The two completely omitted samples were the M a y 3rd reservoir and July 12th raw water samples (Appendix C ) .  The remaining data set was used in conjunction with water flow information to form mass balances of the water network. These balances were used to determine i f all pertinent chemical and water flow paths had been accounted for, as well as to deteimine which of the plant's discharged waters could be directly reused, and which others would require treatment before being pumped back into the water system.  4.2 Select the Appropriate Recycling Technology for the FNGP Components for the F N G P ' s Z E D system were chosen based on their: • ability to perform effectively at the plant • relative capital and operating costs • ease of operation  44  associated safety risks  4.3 The Computer Simulator 4.3.1  Basic construction  A computer simulator was constructed to determine the "best method" of transfonning the F N G P into a Z E D facility. It was built in a 2-step process. A l l of the data collected at the plant was first imported into Microsoft Excel® to form a static image of the water distribution network. Sources and sinks identified in previously assembled mass balances were included to this m o d e l . 2  Most of the inputted data were then replaced with numerical formulas. The values displayed in one part of the simulator were now either directly or indirectly linked to the rest of the system. With the interlinking equations in place, changing the value of a given cell resulted in the recalculation of the whole worksheet.  The formulas themselves were derived from either assumption, information available in various F N G P training manuals (e.g. calcium concentrations in lime treater blowdown were calculated from data in the Water Treatment Manual), patterns in the collected data (e.g. chloride concentration in lime tteater blowdown were the same as the raw inlet water) or a combination thereof. Every equation and its derivation is listed in Appendix E . K e y assumptions used in building the. simulator were:  • A l l identified sources and sinks were assumed to stay constant over time, and they were incorporated into the simulator as a percent increase or decrease, respectively.  • Regardless of influent characteristics, softened water leaving the ion-exchangers always had j  calcium and magnesium concentrations equal to those now found in the tteated water used at the  2  A source or sink was defined as a difference of > 15 % between the total incoming and outgoing  mass flux through a given system. The only source or sink that was not included in the simulator was a > 15 % discrepancy in iron levels across the polishing pond. This observation was dismissed as an error; when the metal samples were acidified just after collection, bound iron was probably released from algae present in these waters.  45  F N G P (i.e. 1.4 mg of C a / L and 0.5 mg of M g / L - Appendix C ) . Changes in feedwater hardness would only influence the rate at which the ion-exchangers needed to be regenerated, and not product water quality. • A l l treated water losses from the system, except for the boiler, sulphur plant and lime neater blowdowns, as well as the 8 psi steam and ion-exchanger regeneration flows, were constant over time.  • R a w water chemistry was also constant over time, as were the p H readings of the boiler, sulphur plant and lime treater blowdowns and the flow of domestic filter backwash and pump sealant to the lime pond. These assumptions, combined with observable uends in the original data, were used to assemble formulas which transformed the static model into a predictive simulator. A l l of the worksheet cells were interlinked. A change in any patt of the water network now either directly or indirectly affected the rest of the system.  4.3.2 ZED components The different recycling technologies (e.g. R O , B / C and spray dryers) were themselves represented by equations. Contaminant loads in concentrate and product waters were derived from waste removal rates found in the literature. Maximal water recovery rates for R O , B / C and other Z E D vessels were also taken from published work. Together, contaminant load and exiting flow calculations served to define the products leaving any of the Z E D components. Building different Z E D treatment trains was simply a matter of linking the pertinent recycling units together. The assembled systems were then individually connected to the water network. A s each cell in each computer worksheet was influenced by all of the other cells, the model automatically re-adjusted itself to account for any changes induced by the different Z E D designs.  46  4.3.2 Parameter values Incorporated into the simulator are a number of variables which can be altered by a user. They include, for example, the volume of 8 psi steam lost through venting and the final waste disposal system. A l l told, there are between 16 and 44 variables open to manipulation, depending on the chosen Z E D configuration. During testing, the values of certain parameters, such as the number of R O stages incorporated into a treatment ttain and the presence or absence of a brine concentrator, were automatically determined by the nature of the simulation. If the selected Z E D design was a 1-stage R O with a B / C , then clearly only 1 R O stage was used and a B / C was included in the simulation. Each Z E D configuration therefore imposed certain restrictions on a user's freedom to further manipulate the simulator.  O f the independent variables not affected by a given Z E D design, a few were kept constant throughout the evaluation process to maintain comparability between different scenarios. They included: • R O and B / C contaminant removal efficiencies • 8 psi steam losses, which were kept at zero • a continual flow of 171 m /day of condensed 8 psi steam to the hot lime treater 3  • water temperatures of 35 ° C within the R O filters • water p H values of 5.8 at the entrance of every R O filter stage • water recovery rates of 50 % on the first R O unit • B / C water recovery rates of 90 % The specific values were selected based on either current conditions at the plant (i.e. 171 m-Vday of 8 psi steam to the lime treater), opportunities for system optimization (i.e. closing the 8 psi steam vents), or information in the available literature (e.g. previous research indicates that membrane filters tend to work most effectively when feedwater temperature and p H are between 30  47  to 50 ° C (Kalinske et. al. 1979, Applegate 1984, A W W A 1989) and 4 to 7 (Applegate 1984, A W W A 1989, Suemoto et. al. 1994), respectively). The remaining parameters were changed during each simulation to provide a realistic, yet optimal view of the water distribution network under a Z E D framework. For example, literature indicates that maximal wastewater recovery rates for R O filtration are 50 % per stage (Applegate 1984, Parekh 1991). Ideally, the F N R discharge could be filtered through a 2-stage R O , with each unit operating at 50 % recovery. The waste stream would then be reduced to 25 % of its original volume. Calcium, carbonate and sulfate concentrations in the composite wastewater are, however, high enough that at this level of tteatment the R O membranes would quickly become contaminated with precipitated calcium salts. The process, while appealing to be very effective in terms of waste reduction and water recovery, would be unrealistic, due to the high salt content of the wastewater. A balance was therefore maintained between calcium pretreatment and water recovery rates to maximize the rate of wastewater reclamation while ensuring filter integrity. The final configuration of every tested Z E D design was recorded, and the inputted parameter values are listed in Appendix F.  48  5.0 ANALYSIS OF THE EXISTING WATER DISTRIBUTION NETWORK 5.1 Results 5.1.1 Water balances A l l of the individual operating units were in balance (Table 5.1), as was each water loop (Table 5.2). The only exception was the effluent plant. Almost 1/3 of the wastewater collected at the effluent plant seemingly disappeared during treatment (Table 5.1). Plant personnel have indicated that this discrepancy may have resulted from faulty or inaccurate flow meters, as opposed to actual water losses (Bruce Kosugi, personal com.). The general balance of the water system seemed to indicate that all major flow paths had been identified and accounted for. Numerous steam leaks and/or water discharges were discovered in the water system. Obviously, the effluent plant was one area of potentially significant water loss, should the flow meters prove to be accurate. Other pathways by which water escapes from the plant are fisted in Table 5.3. While some of these flows were quite large (i.e. > 150 m3/day), others were relatively insignificant (i.e. < 5.0 m3/day) (Table 5.3). A l l in all, the water distribution network seems to have been properly detailed, and the presence of leaks and other drainage points within the plant's flow network may indicate that the existing system can be optimized.  5.1.2 Mass balances Mass balances were performed on 5 areas of the plant: the front-end softeners, the lime and polishing ponds, the sulphur plant and the boilers. There were large inequalities in each balance. The front-end softener (FES) and lime pond mass balances were perhaps the worst of the bunch. Significant amount of mass (i.e. > 15 % of the total incoming flux) were missing from the F E S balance for all but 2 parameters (Table 5.4). Similarly, the lime pond appeared to be a source of calcium, chloride, magnesium and a number of other chemicals, while also acting as a carbon, iron and phosphate sink (Table 5.5). Generally fewer than half of the 16 monitored parameters were significantly skewed in the remaining three mass balances (Tables 5.6, 5.7 & 5.8). In any case,  50  the presence of so many large discrepancies calls into questions the quality of the collected chemical data. 5.2  Discussion  5.2.1 Data quality Water flow numbers: The representative value of the water flow data set may at first seem somewhat suspect considering that it contains a number of readings averaged over only 1 month of the year. The January 1995 averages were, however, generally within 10 % of mean flow volumes derived over longer periods of time (Table 5.9). Even when the difference between the 2 average values was greater that 10 %, it was rarely a significant difference (t tistic > 1-96, p < sta  0.05) (Table 5.9). The January 1995 data should, therefore, be representative of general flow patterns at the plant. Although the January 1995 metered data may be representative of longer term trends, several of the flow meters from which these numbers originate may not in themselves be accurate. As previously mentioned, plant personnel have indicated that the observed water leak at the effluent plant may have been the result of faulty flow meters. Furthermore, according to the inlet and outlet flow meters on the front-end softening system, about 538 and 725 m /day entered and exited the 3  FESs, respectively (Table 5.9). At these flow rates, there would appear to be a major hole in the incoming raw water pipeline, as well as insufficient treated water make-up to replace all of the treated water now lost from the plant (Table 5.10). If one calculates the raw and treated water flow rates by a heat balance on the 8 psi steam loop (Appendix B), then the volumes of incoming raw water and outgoing treated water increase and the pipeline leak and treated water deficit disappear (Table 5.10). This discrepancy between the metered values and the calculated flows indicates that there may be, or at least have been, inaccurate flow meters at the plant, and that part of the collected data set may contain inaccurate numbers. If incorrect information was used to analyze the water distribution network, the resulting water and mass balances could be wrong. Individual flow paths could have been missed, and/or leak 51  points may have been overlooked or underestimated. Yet, considering that plant personnel have repeatedly examined the resulting water balances (hence the discovery of the apparently inaccurate flow meters on the FESs), it is unlikely that the flow data continue to contain any serious flaws. It is, therefore, reasonable to conclude that the plant's water distribution network has been adequately defined by the collected data to proceed with the Z E D project. Chemical data: The large number of inequalities found in the 5 mass balances performed on different areas of this facility seemed to indicate that plant waters were either mis-sampled and/or improperly analyzed, or that additional flow paths remained unaccounted for. With respect to the F E S balance, it was concluded that given the amount of chloride and sodium missing from the balance (Table 5.4) the regeneration waters from the ion-exchangers were never correctly sampled. Information in the Water Treatment Manual also indicates that the description of the hot lime treater blowdown waters was probably incorrect  The hot lime treater removes calcium, magnesium, silica and inorganic carbon from incoming raw water by causing these substances to precipitate. The resulting solids are then carried to the • lime ponds within this vessel's blowdown stream. A s previously discussed, filtered non-acidified water was used for silica and alkalinity measurements. A n y solidified silica and/or carbonate within the collected blowdown waters would not have been detected. Similarly, the low recorded concentrations of calcium and magnesium in these waters (Appendix C) suggests that not all of the solidified calcium and magnesium was available for observation in the acidified metal samples. A s a result, the large discrepancies in the F E S mass balance were likely due to incorrect sampling of the ion-exchangers' regeneration brine and underestimated contaminant concentrations in the hot lime blowdown sample, rather than unidentified outflows from the softening system.  Using information from the Water Treatment Manual, it was possible to estimate what the ionexchange and hot lime treater wastewaters should have looked like (Appendix D). Recalculating the mass balance with these altered outflows showed the front-end softening system to be in near  52  perfect balance; there were significant differences in only 4,-instead of 10, parameters (Table 5.11).  Problems with the original characterization of the front-end softening system was also responsible a large number of the inequalities found across the lime pond. For example, the lime pond appeared to be a source of calcium, magnesium, sodium and chloride (Table 5.5), because the influx of these elements from the hot lime ffeater and ion-exchangers was underestimated. When the lime pond mass balance was reworked with the calculated F E S outflows, these chemical surpluses disappeared (Table 5.12). Yet, rather than resulting in an even balance for all 4 elements, the lime pond turned from a source of calcium and magnesium to a sink for these 2 chemicals (Table 5.12). It also continued to be a sink for silica and inorganic carbon (Table 5.12). Considering that these contaminants are flushed from the hot lime treater as precipitates, these findings are, in retrospect, hardly surprising. The calcium, magnesium, silica and inorganic carbon flowing into the lime pond from the hot lime tieater were partof the suspended solids which settled out of solution within the lime pond, hence its appearance as a sink for these chemicals. B y the same logic, it is not unreasonable to assume that the iron, organic carbon and phosphates missing from the lime pond outflow also precipitated out of solution, either on their own or as part of larger settlable solids.  The 3 remaining mass balances were unaffected by the problems with the ion-exchanger and hot lime treater samples. Discrepancies in these systems can, however, be attributed to other causes. Conditioning chemicals added to the boiler feedwater used in the both the boilers and the sulphur plant, while having very little effect on flow volumes, alter the chemical characteristics of this water (Nalco Chemical Program). They are, as a result, responsible for several of the inconsistencies observed across these 2 systems (Tables 5.6 & 5.7). Similarly, water samples taken from the polishing pond always contained algae. These organisms were likely the cause of the significant differences between total incoming and outgoing suspended solids, phosphate, dissolved organic carbon and iron (Table 5.8). For example, their mere presence would have  53  increased the level of suspended solids within these waters, and iron bound within the algae was also probably released into solution when the metal samples were acidified just after collection.  The results from the initial mass balances suggested that there were major problems within the assembled chemical data set. Further investigation showed that several areas of the F N G P had indeed been mis-sampled. There was, however, information available at the plant which was used to more accurate characterize of these flows. Reworking the mass balances with these new estimates eliminated a large number of the originally observed inconsistencies. Some of the remaining problems were attributed to other previously overlooked factors, including the addition of conditioning chemicals to the boiler feedwater tanks and the presence of algae in the polishing pond. Since many of the discrepancies observed in the original mass balances can be explained or completely eliminated, the chemical data collected at the plant, including that contained in several operation manuals, provided sufficient information to indicate that all pertinent water flows had been identified and characterized, and that one could now proceed with the design of a Z E D system for the F N G P .  5.2.2 System optimization A s previously discussed in the inuoduction of this report, optimizing the plant's water distribution network w i l l not only reduce the demand for treated water make-up, which can lead to subsequent reductions in a Z E D system's final waste output, it w i l l also limit the size, complexity and cost of the required Z E D treatment train by limiting the volume of wastewater requiting purification prior to reuse. Increasing the efficiency of the existing water network can be achieved by closing off leaks in the system and by reusing relatively uncontaminated waste streams currently released from this facility.  Water leaks: The F N G P already appears to have quite a tight distribution network, as only 2 leak points were uncovered while compiling the water balances. They consisted of steam escaping from the plant's steam tracing pipes and wastewater lost from the effluent plant during treatment (Tables 5.3 & 5.1, respectively). While sealing up holes in the steam tracing network w i l l  54  theoretically reduce the demand for treated water make-up, the actual benefits of such action may be somewhat inconsequential. The volume of escaping steam was estimated at 5 m /day (Table 3  5.3). This is less than 1 % of the total volume of treated water now produced by the F E S s (Table 5.1). Clearly, altering the state of the steam tracing system w i l l have very little, i f any, affect on the rest of the water network and/or the success of a Z E D program at the plant.  The leak at the effluent plant was somewhat larger than the one in the steam u acing pipes. It -  was estimated at 50 m /day, almost 1/3 of the effluent plant's total mcoming water flow (Table 3  5.1). Despite its apparent size, the disappearance of wastewater from the effluent plant does not affect the tteated water system. The effluent plant mainly receives domestic sewage and dirty raw water. If more or less water were to escape from the effluent plant, treated water make-up demands would remain unaffected. Recovering the lost effluent plant wastewater is not, therefore, going to affect a Z E D system's waste output in the classic sense of increasing or decreasing waste production at the FESs. It w i l l , however, alter the size of the required Z E D treatment train and the volume of waste drained from this system, as indicated by tests with the computer simulator.  When the leak was initially sealed, the volume of the F N R discharge jumped from 282 to 332 nvVday (Table 5.13). Similarly, the mass of solid waste leaving the Z E D system increased from 415 to 483 kg/day (Table 5.13). Although both the volume of wastewater going into the Z E D treatment train and the mass of solid waste leaving said system dropped when reclaimed wastewater was recycled back through the plant, they still remained at higher levels than when the leak at the effluent plant was left untouched (i.e. 285 vs. 240 m3/day and 294 vs. 233 kg/day, respectively - Table 5.13). The reason for the sustained increase in both measurements is the abundance of contaminants in the effluent plant outflow relative to the F N G P ' s raw water inflow (e.g. T D S readings of 2850 vs. 400 mg/L, respectively - Appendix C). When the leak at the effluent plant was sealed, all of the contaminants previously escaping through this "hole" were added to the water system, and, although the flow of raw water into the F N G P did decrease below "open leak" levels once wastewater recycling was initiated, this flow reduction was insufficient to  55  prevent anet increase in the flux of contaminants through the plant's water network. A s a result, the plant produced a larger waste flow containing more contaminant mass than when the leak was left untouched.  Eliminating possible wastewater losses from the effluent plant w i l l not, however, outright abolish the opportunity to initiate a Z E D program at the F N G P . Operational water losses were found to be in excess of 600 m /day (Table 5.3). Effluent plant outflows were only 109 m /day 3  3  (Table 5.1). Even i f all of the wastewater lost from the effluent plant were recovered, effluent plant outflow would still be far less than current operational losses (i.e. 160 m /day vs. > 600 3  m /day - Tables 5.1 & 5.3, respectively). The limits imposed by this project's first boundary 3  condition have not been violated; the F N G P ' s domestic wastewater production rates are smaller than their operational water losses, and they would continue to remain so even i f all of the wastewater observed to be escaping from the effluent plant were recovered. A Z E D program can therefore be implemented at the F N G P without recycling any reclaimed wastewater through the domestic water system.  It is was initially suggested that sealing off all of the leaks present in the F N G P ' s water distribution network would increase the success of a Z E D program by reducing both the size of the required Z E D tteatment u ain and the waste flow generated by said system. Given the nature of the -  2 leak points identified in the water network, this assumption may not completely be valid. The loss of water from the steam ttacing lines was so minute that eliminating these leaks would have virtually no affect on a Z E D program. On the other hand, recovering wastewater apparently lost from the effluent plant, while not violating this project's boundary conditions, is likely to increase both the size of the required Z E D tteatment system and its final waste output. From the prospective of implementing a cost effective wastewater recycling program at the F N G P , there appeal's to be few benefits to closing off the 2 leak point identified in the water disttibution network. Yet for the F N G P to be recognized as a Z E D facility, the leak at the effluent plant w i l l have to be sealed, regardless of the economical consequences of this action.  56  . . A s indicated in the introduction, a. true Z E D operation would not release any waste.products into its surroundings. Given the cost, complexity and possible impracticality of such a process, the term Z E D has been somewhat watered down to indicate that no wastewater is expelled from a Z E D facility. B y this definition, the F N G P will have to seal off the leak at the effluent plant as part of its transformation into a Z E D operation. A s for the steam escaping from the steam tracing lines, this water was not considered wastewater, because of its purity. Considering that evaporation ponds, spray dryers and other systems used to achieve Z E D also release water vapour, this assumption appeal's to be the industry norm. Therefore, while attempts to recapture steam venting off of the steam ttacing lines is relatively inconsequential to the Z E D project, ehminating the leak at the effluent plant is a fundamental step, albeit an uneconomical one, in establishing a Z E D program at the F N G P .  Water reuse: One of the F N G P ' s process engineers, Shang Su, has indicated that only high quality wastewater can be directly reused, because most of the process vessels have relatively stringent water quality requirements. A s a result, identifying opportunities for wastewater reuse was limited to an examination of the plant's waste steam flows. Unfortunately, most of the uncovered steam vents were small leaks (< 5.0 m /day) (Table 5.3). Cost associated with 3  collecting and reusing this steam overshadow the possible benefits (Shang Su, personal com.). One obvious exception was the loss of steam from the deaerators. Approximately 376 m /day of 8 3  psi steam was released from these vessels (Table 5.3). Given the quantity and quality of water involved, the 8 psi steam should be condensed and reused. To evaluate the potential benefits of reusing this water, a simulation was run wherein the 8 psi steam currently venting off the deaerators was condensed and returned to the boiler feedwater hotwells. N o other changes were made, and no Z E D equipment was used.  When the 376 m /day of steam was initially returned to the water system, the ratio of raw 3  water to 8 psi steam entering the hot lime treater fell from 855:171 to 479:171. The increased dilution of raw water with high quality condensed steam led to improved treated water quality.  57  Cleaner treated water meant cleaner boiler feedwater, which, in turn, translated into less wastewater from the boilers and the sulphur plant (Table 5.14).  A t the same time, with less raw  water traveling through the FESs, softener blowdown and regeneration rates also dropped. Reduction i n all of these waste flows culminated in an additional saving of 72.1 m /day of raw 3  water (Table 5.14). Overall, reusing the 376 m /day of 8 psi steam triggered changes throughout 3  the water system, which ultimately resulted in a total raw water savings of the 448 m /day. 3  Aside from affecting raw water flows, reusing the 8 psi steam also influenced the F N R discharge. Wastewater volumes leaving the polishing pond fell in response to smaller incoming blowdowns, and, with less raw water being softened, the mass of contaminants stripped out by the softeners, traveling through the distribution network, and eventually exiting the plant similarly decreased (Table 5.14). Therefore, reusing the 376 m /day of 8 psi steam no only resulted in a 3  total water savings of 448 m /day, it also led to a smaller, less contaminated plant outflow. Clearly 3  reusing the 8 psi steam currently discharge from the deaerators is a key step to optimizing the existing water disuibution system.  Vapour traveling to the thermo-oxidizer and later released to the atmosphere may be anotherpotential water source ready for direct reuse (Table 5.3). Originally leached from natural gas stripping solutions, the vapour stream contains significant levels of hydrogen sulphide (H2S) and carbon dioxide (CO2) (S/P Manual). Most of the H2S is removed as elemental sulphur in the sulphur plant, while the steam, CO2 and remaining H2S move onto the thermo-oxidizer and are eventually released to the atmosphere (Fig. 2.3). If this gaseous mixture was cooled prior to its arrival at the thermo-oxidizer, condensed steam could be collected and returned to the snipping liquors.  The role of the thermo-oxidizer is to transform remaining H2S into sulfur dioxide (SO2). This process is temperature dependent; good rates of conversion only occur under extremely hot conditions (i.e. > 500 °C) (S/P Manual). Although the vapour stteam could theoretically be cooled  58  and the condensing water collected, it is unclear how a drop in feed temperature mightaffeet-the H2S - SO2 conversion within the thermo-oxidizer. Furthermore, significant levels of CO2 and H2S may return with the condensed water. Contaminated reflux may reduce the effectiveness of the stripping liquids. Further research would be required to assess if water can indeed be recovered from the thermo-oxidizer feed stream without affecting the performance of either the thermo-oxidizer or the stripping solutions. Reusing this water may also pose a problem to the entire Z E D project. If all of the water released through the thermo-oxidizer was reused, together with the 8 psi steam venting off of the deaerators, operational water losses would fall dangerously close to domestic wastewater production rates (i.e. 55.3 m /day vs. 68.5 m /day - assuming that 3  3  domestic outflow is equal to half of the dirty water reaching the effluent plant - Tables 5.1 & 5.3).  Most of the FNGP's steam discharges are too small to be effectively recaptured and reused. The 8 psi steam vent off of the deaerators is the obvious exception. Reusing this water should greatly reduce raw water flows and lead to a smaller, less contaminated final plant outflow. Although the vapour stream traveling from process, through the sulphur plant and eventually to the thermo-oxidizer may be another potential source of reusable water, further research is needed to be sure that reusing this water will not negatively affect other parts of the FNGP, or that reusing this steam in conjunction with the aforementioned 8 psi steam will not jeopardize the whole Z E D project by lowering operational water losses below domestic system output.  5.3 Changing to a ZED System To establish a Z E D program at the FNGP, wastewater generated at this facility which cannot be directly reused will have to be treated and recycled either individually or as a combined flow. There are inherent problems to dealing with each waste stream individually, as illustrated by the mechanisms needed to recycle process waters currently drained to the flare pits. Flare water, originally part of the natural gas stripping solution (Fig. 2.3), contains various hydrocarbons leached from the gas stream during processing. As a result, plant personnel have expressed strong apprehension about reusing any flare water for fear of a hydrocarbon build up within the  59  processing system, which could eventually have explosive results (Shang Su, personal com.). Installing a hydrocarbon separator would provide a means of removing the worrisome elements from the flare water. This wastewater could then be cleaned and safely poured back into the stripping solutions.  Flare water flow is, however, inconsistent. It does not, as suggested in Table 5.3, continually drain to the flare pits (Shang Su, personal com.). The hydrocarbon characteristics of this water still remain to be defined. Judging by the inlet gas profile (Table 5.15), it is bound to contain a number of different contaminants, all of which are too dilute to visibly separate out of solution (personal observation). Inconsistent flow and the potential abundance of low level hydrocarbons complicate the design of a hydrocarbon separator, and cast doubts on the benefits of recycling flare water. According to plant schematics, water not vapourized during flaring travels out of the flare pits and into the effluent treatment plant. (Fig. 4.1). The effluent plant produces a relatively constant outflow (Table 5.9). The chemistry of this discharge stream has also been defined (Appendix C ) . The objective of optimizing the F N G P water network is to reduce the complexity of the required Z E D system by limiting the size of the F N R discharge and the demand for raw water. Although recycling the flare water back into process would help to accomplish this goal, the inconsistent production of, and (to a lesser extent) the small concentration of hydrocarbons in the flare water make this option difficult. It would be more effective to simply deal with it as part of the effluent plant outflow. Since the other wastewater discharges listed in Table 5.3 similarly suffer from inconsistent flow rates (Shang Su, personal com.), the Z E D treatment system w i l l be designed around the combined F N R discharge.  5.4  Conclusion The water flow and water chemistry data collected at the F N G P initially appeared to be of  rather limited value in terms of their representative strength. Metered flow readings were average values derived from only one month's worth of data, and the mass balances were riddled with  60  inconsistencies. The January 1995 flow data were, however, generally representative of longer term trends, even i f the accuracy of some flow meters remains in question (i.e. those surrounding the F E S s and effluent plant). Similarly, although the regeneration wastes from the ion-exchangers were never properly sampled, calculations based on information from several of the plant's operating manuals provided a rough characterization of the blowdown waters leaving the FESs. When the mass balances were reconstructed, most of the original discrepancies either disappeared or could be attributed to contaminants in the sampled waters (e.g.. algae in the polishing pond samples) or conditioning chemicals added to the water system. In the end, the assembled data base provided sufficient detail to continue on with the Z E D project.  Opportunities for optimizing the existing water network were limited. Only two water leaks were detected; one was in the steam tracing lines, while the other appeared to be a significant loss of wastewater from the effluent plant. It is unlikely that tightening the steam tracing system w i l l have any impact on the plant's water flows, because only about 5 m /day of steam escapes through 3  these vents. This represents less that 1 % of current treated water production. Recovering the wastewater lost from the effluent plant, while not violating the first boundary condition limiting this project, w i l l ultimately necessitate a larger Z E D treatment system. Waste production from this system w i l l also be larger than it would be with the current F N R discharge. Clearly, the original premise that minimizing the amount of water leaking out of the F N G P ' s water network would simplify the required Z E D program does not apply in this case; closing off the 2 observed leaks is unlikely to benefit the Z E D project, but the F N G P can only become a Z E D facility i f the leak at the effluent plant is eliminated.  The same cannot be said for reusing some of the relatively uncontaminated steam now discharged from this facility. Although most of the steam vents are too small to warrant their recapture, the 8 psi deaerator vent is an obvious exception. Reusing the 376 mVday of lost 8 psi steam would result in a net raw water savings of 448 m /day. Computer simulations also indicate 3  that the F N R discharge w i l l fall by 72 m /day, and that its incumbent contaminant mass w i l l be 3  61  reduced by 291 kg/day when this water is reused. The only other steam vent which could offer similar savings is the vapour stream released through the thermo-oxidizer. Further research is first needed to investigate i f this water can be reused without compromising either the plant's gas processing efficiency or the ability to install a Z E D system at the F N G P . Given the stringent water quality requirements of the process equipment, none of the wastewater discharged into the effluent system can be directly reused. Individually, these waters suffer from inconsistent flow rates. A s a result, it is more efficient to focus on tteating and recycling these water after they combine to form the F N R discharge. A Z E D program for the F N G P was therefore designed around recycling the F N R discharge wherein no other changes were made to the water disuibution network, except that the 8 psi steam now venting from the deaerators was condensed and returned, along with other condensate, to the boiler feedwater hotwells. The apparent effluent plant leak was not altered as the only further research w i l l show if the observed water loss actually occurred, or if it was a simple manifestation caused by faulty flow meters.  62  es m  O.  m io ^  3  ON . oo  b * is * B o c3  o3  o3 <D O  o  o O  vb ON|o oo  si  oo 03  a o  OH  03  (U  bJD  & -C;  2  to  •  JH  is  .-a o P4 PQ PQ ool  •H  a  a is  VH  o  <U oo o3  03  B  O o  C O  03  0 1  "8 is  m  C O  oo C  •~  z  03 fi  o  00  •n 3 O o  OH  s  OH  j-  03  c o  3  <4-H  i3  PQ  H Q  I  D 3 D bO  ct  O O  3 9 3 £ Q >  3 co  o>  W  o  bo  o  <u  OH  !=! t_, 03  3  ON  r-  T3  o  c & <u  o •o  O  NO  ©  fi  03  C  oo  o  m  o  V5 J -  > D Q &  B  •O  S-H  o  Si  in O o CN 1—I X CN X 1—1 m p r-H  Had  a o  3 <D  o PQ  <V5  ON r oo >o  ^  m  NO  ^ vn  H  CO  O  a s . . . oo  H  »  rO N l  oo >n  "4-  O  p o  O 00 O 00 x ^  I—I  o  £J  O0  3  ^  3 03  1  s  ^ 1  3  v 53  a. a o  is o3  _3  (D "o £ to oo S oo e 03 OH "fi oo PQ  63  M  vi  a s  H-i  H=  o3 u  H  O C3s<u C3<u u  Q  e o  03 00  I  3 O U  oo 'oo  OH  in  o  cn © X  VO  o  u  VO  X) oo  i—i o o  VO  33  0 3  O  I  O  O  X o o|  X  l> CO vol00 IT) Ov co CN  m oo  a o <U  3 3  Q.  T3 C o £  •3 Z bJ3  o  —3  _a "o o o  03 C/5  8  CU  c  OH  Tt H^  C/l  Si (ZJ e o •ri o  -3  c  o  0 3 La  OH  03  cu  a O  Tt  > •a  T3  a  a  CU  O  o  u  If  CD  C D T< 3 C  co  o Q Q U  3  a. c cu  .s  03  H  8  CU  c  OH  0)  c  *  03  c/l >.  cu u  X)  on  CZJ  cu  '3 3 u  o  -a a o U  CU  3 o o o o  HB Q  C  tifl C  a.  J-H jU  '8 O  OO  32  o3  c —  03  OO  '35  oo T3 H-» a o o D OH PQ  cu cu  2  E  cu  c CU u  CU  u  <U  E <u  CU  Tf o  Tf  o X CN o  cn  CN O  I  O  CN  ool VO  T3  ©  o  Tt  VO  oo (-1 o  03 •  0 3 UH  ©  3  a. c  c«  CU  s CS  PQ  o >n  2 CO 0O  OH  m  Tt  H 64  o ©  VO  H — 1  3  8  3'  03  a s  2 0O  • i-H  03 a:  ©  3  O  03  c r col  ON O  Q.  3  a s  o CU  X OO  CZJ  O  O  a  3 o 3  •8  c  O  3  H-)  T3  o  in  CN  cn  cn  • I"I  !_ oo CU  PH  o ^  O  3  a, c  OS  cn  O ft-) « x °o T3  D  VO  r-  1  -  03  ON  03 03 ON  o r- cs  1  co  OO  X  O  + Tt co  ON  ON  O  ON  ^ 03  CS NO  o  ON  NO  03 CO  <n  O  x <~i  p co  CS  i—( CS*  o  .O  c  -t-»  oo  c 00 CD 03 3 bo s HtU—* <+H - CU  <U UH p, 23 o3  cu  o3  U Q  >/->  VI  Tt 0O  c .3 UH " *  .S ^  TJ  •i-i  3 T3  1/2  >  o3 CU  ^  o>  Q -a & FT  J >  1  J  OH  3  0O (U  a  • T—I  3 H  «« • §  *  e  CA  o  ^ ^ £  < <U u K.; bfi . £  a  cu c-» S «  CU  1-  z  0§ CU cn O i—i  o cn  O  03  03  ON  X  O  VO  VO  H  CO  O O  VO  ^ d  >  X  gI S» r ~  OH  ^  cu  l a 55 ON  <U OH£  in Tt  H  ON  d  r- co  p co  (U  03  s  Q  03 U  -H  *5 5 £ 03 O o U co  oo .— 00 oo  O ^ Tt Tt  .  65  03  3  UH  H—» =3 033 £ 03 o H Oi C O  I  oX  r-  cs  O  e <u o  Q  o d  a  -t-»  i  TJ  CO  3  UH  (U +-» 03  in  O  VO O r l  UH  ,~ 00  cn  CO CO  bo  •S .a  1  3  e  CA  5  C  "3 5 T  03  H" cu 1  oo  S3 '53 "--  OH  co  CJ  co O  O  & & {t cn m O VO CN <N co  C3  ON  rt in  +  CN  co  CO  ON  CN  O  in  ON  ON  *-H  3 03  cMl d 03 bfl  c CD  IZI  SH  O. -b t-» <D O , <D c/3 1  03  Q  03  CZ!  3  li  on oo  T3 3 O  3  ' OH  OH  m  m  U Q  2O  czi  <+H  i  CD  O  O  bO <D  >  CZ)  I 03 cj  03 OH  a  os 3  (L)  a  <D 03  — 3  tD  3  J  b0 03 bO  O  3  •rH 3 > H 3 T3 3  03  3  o3  <H-I a O  X  oo  in  G "OH  3  <  NO  in  <Oo  03 O co  CO  to bo "55 \ §  O  O  O Q £  J  >  3  OH  3  m  J  J-" >  CJ  3  C  O  CS  • T—I  o  cu Z  CU  O0 00  S  1  «  <U •-H  E  O  cu  o oo  a  E co  H-<  00  >.  O  CO  T3 co O  '©  IZ3  CO o  CO CO  03 ON  00 O  r-  rf in  ON ON NO CN  tN M rH  O  O  00  O  CN  CN  NO ON CN  rf <+H £  co oo  c  o on  _G  " 3 fc. H S  § fainrt- .H•  CO O i—i X  r^ NO in  CO  O  X  ©  ON 00  ON 00  r—I 3  Q.  c5  O  E E 03 O  Q  •-H CD  1}  «  to  • pH  -4-»  03 OH  3  03  fc ^  3  CL  03  ^  e  OO  CZ>  03  OH  o m  O CO  W  66  OO  ^ m  PQ  03 H  CH  o  CO  «N  o E  co -a  fc. «  o  o ^ o  OH  00  +  CD o  3  OO  03  %  6 C o  e•—n C D OO  CD o  c co  T3  3  .i=l  CJ  o  C O UH CD on aCD  T3 oa o CN  nser iser  co  -8c 32 £  03  o on  03  12  co  T3 V OO O  VO  CCS r» Tt Tt  T3  m o Tt  , 1  03 co Tt 0 0  O  C3  •n oo  COTt>--H  VO^J- r^ >  CD  H-»  03 CU'-ra cn £ OH O JS in  a  03 on C CD a T3 C 03 O 0 3 on £j U  03  PQ  on  O — in  OH ft O • m  •n co F—  1  CZ)  67  s03  CD on  OH !  Tt PQ co  -4-»  o3 on C CD T3 C O  2  'o  03 O  a  CO  oj  ^3  OO  oo - fA cn  oo  CN  O  vo cn "1 00 oo co • co co CN  O  oo CO CN  Tt  CN  T3 3 O  I  CH  OO  si Z3  I  -*-> 3 O  .. oo  g  3  4H  oo bo a »H •H C «  2  _  OO  H  «  rj-  CU 60  00  "3  M  CH 33  ^  CH  -a  B CD  > Us a £ 3  3 -3  o  T3  60 CU  bfl  CD  ^ >  fi CD  CD  3  CD  bO  <V)  J3 C D oo  fi tH 03  rS S> -a 3 U >  Q  >, CO  3  oo o3 bO  SH  CD JO  3  v  o jy  60  oo S3  3 O  o  r03 eg" "S3 M Jt CD DH EH 1  "o  o  cu  C CU  3  a> •-  m  3  3 O  _o  cu  CD  CD  E <u  **  60  CO  'd  o NO CN  o oo  vO CN  co co rr  rr  00 oo co O  CN  rT  CN  3  3 O  CD  Ct  3  OH HJ^  3  O  3 a c  <u N  CO  E 03  B  o oo © 'oo E OH u  3  00 o  <u  oo 03 bfl  E •-  3^ t5  03 -rt  £  o5  OH S3 .3  O rT r ? £  68  oo o3 bfl  O  os  r?  £  a.  3 O  3 a e  03 03 03  cj as _ VO CO - ° • f i CO OO VO ON r H OO NO «—1 CO OO  OO CO O  oo cn CN  o  <N in cn  CN m  ON  ON  o  cn  T3 c o  OH  00 c  o  co cu  OH  CO  cu o  0  (U  bO  bO  01  X! O  XI  cu  E  CU  <u  H—*  s  c  CU  1/1 >>  E CU  3  a a  G  c  CU  CO  3  a c  Ca. ZJ  CU  cu  JS  bO  O  s  V  w  CU CU  CU CU  C CU U  C cu  u  CU  -8  0  OH •a o  cu  cu u C CU u  •a  orH •H—»  a  1  01 >  e  .s  03  c 0  •a  CU  CU  CO CU T3  03 03  UH  CU  C'  T3  >n 'bb X cu ON c T3 PH ON W c  _ o  <u 2 ;  CU  o o  OH  oo VO  CN 00  UH  3  UH  G cu  11 =  OH  -rd  3  3  a. -s  3 OH  .S •  e es CM  §  =3  cu •n  Q Q  (U  c  SJD S .2 W  O  3  O  3  a xi  PH  69  bO  o  i  m  a  3  O  CU CU  3  a  O T3  O  O N  3  o3  a *H  o u O O o cn cn - H CN  o ©  r- oo  cn ^ Cf ^ CN q  T3  a s  •-a g  CU ^3  "c3 ,3 > o 3  CU  c  53 to .  X II ^ T3 bo cu  co <U cd ^ C 'XI OH •3 OH OH  3  s &  £3  | JS ^  !j  UH  <U  3  u !z; 03  o  T 3  OO  03  T3 T3 a a o o CM  CH  CD  CD  CH  CD  CD  CD 0 3  o3  o3  o3  tn 2  i>  c/3 o j  SH  £g£  !>  =5 oo  0D C 3  o 3  o  2J  o  S3 S3 03  03  o £o CD o3  5,  oo o3  oo 03  o>  ££££  a  a  oo oo  u  O  CO vo  C3  vd 2 rS  NO  —i  VD H  rf oo m O  oo  CD  in rj-  CH  ts  =3  • rM  CD -*-»  OO  <Z)  CH  £3  o  M  o J  rf  '  TS cn  03 03 03 OO  CO ON VO ^ H  W  <%  id ^ bfi E a  _5 2 & *H  _•> ^  £ £ £ -d W o o 0 3  CO  CM CM  in .5 al o 2 & 2  03  =5  § § I  _  o O O j_, H H H §  c d  T3 T3 a o a o  T3 a o  £ E % a a W  cD  bo  -*-» CD <D  OO ON  ON  rM CN  o  O  CN  rj-  ON VO  (N  r-  SH  -3  a  o •d  03  du;  EP £ g  CM  o o  CD CD O  3  DM  O  CO  CD  u  S3 S3 D  A <u  00  O  1 pXH CH  o3  o3  c  cn  CO  CO  3  E 03  3 O  OH  a  3  a  3  £  ca  •cc  —  CH  03 &  43 pq  cu U  Q  CD  8 PH J3 P  co  CO  lU  VH  T3  CD  CD  >  C  0 3  O  00  o  8  oo  00  l-H  x  ^  CD u l U  CD  'o  ^  %  TS > C U T 3 c U CD  2  03  00  3  CD  T3  3  O  O  'o pa 70  3  U  cy  OH  tU  bfi' O a D O  CH  CU  CH  O  CD CD O  00  U  it > *2 -a •a 3  * S3  00  CZ)  Ct  CD  bJ31 ^  1  £ E  r>n o o rtir> ON  o p *—c  1  3  co  O  03 03  X o o CO  •5  03  CH  CH  ^  c o  Q.  a  3  S3  ' o o  co Q  5  i—i  o o  <4H  § ts  ©  O  +-»  £ .a  CD  CD HH03 CO  CD  3 §» bora  ©  O0  03  CD  "I'a*  ©  bO >. a )H a a 'a 03  LT)  O •<=)  3  M  .s I  3  H—  * 13 bfl a CD I  o  oo  cZi  2  ^°  T3 C C O  o OH  OH  <U CU  c 'X  8  c c  CU X! OH OO  'X  o -*-» o  H-)  UH  O  UH  cd cd  s  4—»  CU H-»  "5 • cI—/31:  CU CU OH -*-» OO cd O cd  H — » O O  cd  in in in Tt Tt Tt Tt Tt Tt  IT) Tt  OH o O m —1  C/l CU  CA  cu  CU  c  NO  Tt  x  oo oo  •o T3 cn tn cn tn © © © ©  i2 £ CU c/i Si CO  — rH  cu 00  CU CJ  C  CU sCU  u cn © NO ON  X  cn cn  NO  r-  ON  Ct  ft  CU  &  3  CU  o  *- bO §  * e . S ° fc •>-> tu  H->  I s -° bO .i=l c cd "Cl 5i |  co CO > . h! cU Xt  cu CJ CU •_ CU cn • ©  X  CO r>  NO  T3  > > C/-N Tt  r—I  NO  r-  ON  a.  3  H-i  3  O  2  3  cd  s £ cd O  CU  '© CQ  c/l <D  cu  3  a  a c  CH<2  UH  PQ H PQ  T© C  s. cu *J  cu  13 3 d 3 S 3 ^ 2 £g .S x -3 £ £ p, Q § a g a U U O w h  4  X  c/i  Q,  £3  d 6 >•> * xi  PQ & PQ  Tt ©  CU  CO  • I-H X  oo  ^ O t« •_ UH fc <D  cu s «  3  o  o  oo ON ON  OO CU  'c  C  ©  i—i X X X X 00 oo X oo g OO NO r- NO OO <N ON ON OO © © 1—1 CN  i—i VO ©  a  2  W  cn ©  3  bfi c •d  .2 •— CU  T3 cn  fc  "I o PQ © «o  71 Tt  O 3  a. c  UH  JU  E 'o CU CA  a.  X  ri  X Pi  o Si  irj CO  CD CD  2  cd CD tU CD « p A <3 r-j cd cd cd <T\  CO  CO  CO  y  CD  CD  CD  -g c  e  R  ^  u u  u  «  w  2  2  i  cd  cd  a co cd CD CD S O "32 a c a "2 « o o o  n T) TJ X)  r  8  CO CD cd u  CO  C  X)  1  o oo  r-  CD  § so  c o U c/i cu  o co  CO CO  TC  O O ^ O ^ * X hX- H « U IT) IC1 £J\ NO Tt O o >n co  NO m CN ON Tf  cu c  o "3 Xi X co E  Tt  CO  CO  CU  *H c/i Si  co 3  a  cu UH  o o CD  CM  O  H->  CD  co  C CD T3 C O  CU CD  c  T3 CD  PH PH  CO  'co  cu CD  CU  *H CO  Si CO  cd C3 co co co 03  03  co  O O O  I—I i—I r—I  O  CS  X X X in oo  >n o T t o  03  ON t~-  ON t— — 1  CN  cu c/i  Q. O  «o  K  O  TC O  OO OO OO O NO ON,  ° 3  oo ON  _  03  O o  T t  00 j—j CO "—'  0O  1  co C  3  CO  o. c  CD  CO  c  CD  83 S3 I ?  3  t5 c/3 O •fe  co O  ttcd S CO  a ^ U W c o H W f Q  72  c o  3  o -  a s  PQ  cd  c u  C  o CD £ 5 N° CU  H+:  CO  1  •H-»  CO  a.  CD CO  O  UH  S o a ....s - E Q ^ a, Q Tt  UH  3  UH  O  m  3  CD  a  cd  ^ U T 3  Si CO  CN  3  o cu  O CO  CO  e  XJ  £  s_ .<u CU  CU  52  PH  S  £  S  CD  V  Xi  cd  CU  •S Si  a, <*>  ID  UH  •8  3  a. M ss  E o  E * 2 "8 to  §  •35  >  a. oo  Vi  cd  OJ)  -4-»  C CD D &  8  60 CU  <u  E  _3  o  O  CH  £  Vi  §S  cod o C  cd  V  J3  CD  cu  CQ  o •*-> cd  T3  OO  3  o  o U  O0 O  H-3  CO  I  ca vq  ca in o rf  ca r- nin  vo  -4->  CO  VO  d  d  cu  3 O  •a  cd > CD  CH  3  C D 3 k> -H  •a 60  CD  Vi  >H CD  ea  cu  CU  Vi  3  C  «  <u VI  -8  "ea  3  3  o CD  "2  cu  CD 3 et  CU C  Vi  CD  3  cCd oO o  X)  CU  -H CH  u cu  § .5  .a  ea  60 3  '' Vi  CM  in  cu  CO  CO  in o 9 °  in o  3  cn  s o vj CU  15  ea H  e,  c  "3D *C O  3  O cu E ea cu  60 Q. 00  C  ca rrO oo  o  o  ca ca  m o ~ oo  CO  O  53 o  3  Q. C  ea <  O E 3 E cd E C3 0 0  O0 . . H '  oo _ oo 73 in PH o o in CH  60  s "* ^ o U  '33  a.  m  73  •a  Co D CD o CD C X)D  «  3  CL c  4—*  cd cd  SH  E •S  3  CH  X CD xl CM 3  CD O  3  "  e 8  X  3  oo 2  5 •  X  OH  P  "-*-» CM  in in  Q>  O 3 a s  rrU O O  3  3 a oo 3  Q. S  •o  60  60  cd -d  cu  cu  _o  O  3  CO CD w> 3 C D 3 "cd H33 > O 2 -*= >  XI  53 co  I H O cd 3 XI o o o o CD II „-J cd • rH bfl C D C_ ;=! cCd CH s D SH CH "8 o3o -5 ~ CH 3 X! 1 _8 2H Jo8 3 E CD E3o ca x> o T3  Table 5.3: A summary of treated water losses from the Fort Nelson Gas Plant.  Source  Rate of loss (m /day)  Destination  376  Atmosphere  3.0 3.9 1.1 0.3 1.9 5.0 391  Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere  19.6 19.6  Petrosul  81.6 70.8 16.3 16.3 39.1 21.8 20.7 178 1.0 445  Lime pond Lime pond Lime pond Lime pond Lime pond Effluent plant Flare pits Thermo-oxidizer Sweet gas  3  Venting 8 psi steam off the deaerators Turbine vents: Powerhouse Process Sulphur plant Thermo-oxidizer Booster Station 12 Steam tracing Export 150 psi steam Discharge Blowdown Boilers Sulphur plant Hot lime treater Domestic backwash Softener regeneration Filter cleaning Process water  Total loss = Treated water input •  856 808 -47.9  74  Table 5.4: A mass balance on the front-end softening system.  Parameter  Total i n  Water flow (m-Vday)  1.45 x 10  Total Alkalinity (kg/day)  a  3  Total out  Difference  % diff.  0  0  43.1  118  73  -  -  -  1.45x 10  162  3  3  Explanation  mis-sampled  Solids (kg/day) Total Suspended  -  -  -  -  Dissolved  -  -  -  -  Total  54.8  26.1  28.7  52  mis-sampled  Inorganic  44.4  17.5  26.9  61  mis-sampled  Organic  10.4  8.7  1.7  16  mis-sampled  Calcium  70.0  2.8  67.1  96  mis-sampled  Magnesium  15.8  0.7  15.1  95  mis-sampled  Sodium  154  59.6  94.1  61  mis-sampled  Iron  0.5  0.7  -0.2  -50  mis-sampled  Phosphates  0.1  0.1  0.0  -13  mis-sampled  Chlorides  217  3.0  214  99  mis-sampled  Sulfates  78.6  88.3  -9.6  -12  mis-sampled  Silica  4.6  1.0  3.6  78  mis-sampled  Carbon content (kg/dav)  •  Metals Ckg/dav)  Inorganics (kg/dav)  a  Refer to Appendix D for calculations  75  Table 5.5:  A mass balance on the lime ponds.  Parameter  Total i n  Water flow (m /day)  246  Total Alkalinity (kg/day)  Difference  % diff.  238  8.0  3  51.3  17.3  34.0  66  precipitated  218  610  -393  -180  F E S s error  ; Suspended  2.2  1.6  0.5  25  precipitated  Dissolved  134  609  -475 •  -354  F E S s error  Total  12.7  6.4  6.3  50  precipitated  Inorganic  5.2  2.5  2.7  53  precipitated  Organic  7.6  3.9  3.7  49  precipitated  Calcium  2.5  52.7  -50.1  -1.97 x 1 0  Magnesium  0.5  4.7  -4.2  -808  F E S s error  Sodium  64.6  149  -84.6  -131  F E S s error  Iron  0.2  0.0  0.2  82  precipitated  Phosphates  1.1  0.0  1.1  98  Chlorides  2.7  217  -214  -7.90 x 1 0  Sulfates  97.0  148  -50.5  -52  1.0  0.9  0.1  6  a  Total out  3  Explanation  0  3  Solids (kg/dav^) Total  Carbon content fkg/dav)  Metals Ckg/dav~) 3  F E S s error  Inorganics (kg/dav)  Silica  precipitated 3  F E S s error F E S s error insig. difference  a  Refer to Appendix D for calculations  b  precipitated = missing mass setded out of solution within the lime ponds; F E S s error = frontend softeners mis-sampled; insig. difference = insignificant difference  76  Table 5.6: A mass balance on the boilers.  Parameter  Total i n  Water flow (m-Vday)  1.03 x 10  % diff.  9.85 x 10  402  4  104  75.5  28.2  28  840 7.6 832  828 3.1 824  12.5 4.5  1  8.0  59 1  Carbon content fkg/dav) Total 67.7 Inorganic 26.9 Organic 40.7  63.0 20.1 42.9  4.6 6.8 -2.2  7 25 -5  insig. difference  3.0  2.3  22  ?  1.8 61.7 2.2  1.6 53.1 2.1  0.7 0.2 8.7 0.2  9 14 8  insig. difference chemical add'n insig. difference  Phosphates  0.5 2.5  -0.6 0.0  -126 0  chemical add'n  Chlorides Sulfates  67.7  1.1 2.5 79.4  -11.7  -17  chemical add'n  1.5  1.6  -0.1  -3  insig. difference  Total Alkalinity (kg/day) Solids (kg/dav) Total Suspended Dissolved  Metals (kg/dav) Calcium Magnesium Sodium Iron  4  Total out  Explanation  Difference  a  3  3  13  ?  insig. difference ?  insig. difference  ?  insig. difference  Inorganics (kg/dav)  Silica a  Refer to Appendix D for calculations  b  chemical add'n = changes induced by addition BFW polishing chemicals; ? = unknown source : or sink; insig. difference = insignificant difference  77  Table 5.7: A mass balance on the sulphur plant.  Parameter  Total i n  Water flow (m /day)  2.61 x 10  Difference  % diff.  2.87 x 10  260  10  22.0  22.9  -0.9  -4  insig. difference  197 1.5 196  224  -26.2  insig. difference  0.5 223  1.0 -27.2  -13 65 -14  17.1  -1.1  -7  5.3  0.8  13  insig. difference chemical add'n  11.9  -1.9  -19  ?  0.7 0.4  0.6 0.4  0.1 0.0  17 4  ?  insig. difference  11.8 0.5  18.7  -6,8  -58  chemical add'n  0.5  0.0  8  insig. difference  Phosphates  0.1  0.5  -333  chemical add'n  Chlorides Sulfates Silica  0.5 13.1 0.3  0.9 29.8 0.5  -0.4 -0.4  -70 -128 -45  ?  a  3  Total out  a  3  Explanation  13  3  Total Alkalinity (kg/day) Solids (kg/dav) Total Suspended Dissolved  Carbon content Ckg/dav) Total 16.0 Inorganic 6.1 Organic 10.0 Metals Ckg/dav) Calcium Magnesium Sodium Iron  ?  insig. difference  Inorganics (kg/dav)  -16.8 -0.1  chemical add'n ?  a  Refer to Appendix D for calculations  b  chemical add'n = changes induced by addition BFW polishing chemicals; ? = unknown source or sink; insig. difference = insignificant difference  78  Table 5.8: A mass balance on the polishing pond.  Parameter  Total i n  Water flow (m-Vday)  347  Total Alkalinity (kg/day)  Total out  Explanation  Difference  % diff.  352  5  1  36.7  35.3  1.4  4  insig. difference  922 2.9 919  973 9.5 964  -51.0 -6.6 -44.3  -6 -232 -5  insig. difference algae insig. difference  Carbon content (kg/dav") Total 28.4 Inorganic 8.9 Organic 19.5  34.3 10.1 24.2  -5.9 -1.2  -21  algae  -13 -25  insig. difference algae  51.3 7.2  7.4  205 0.6  -0.6 4.9 -0.2  13 -9 2 -41  insig. difference insig. difference insig. difference algae  algae  Solids (kg/day) Total Suspended Dissolved  Metals Ckg/dav") Calcium Magnesium Sodium Iron  a  58.7 6.6. 210 0.4  a  -4.8  15  Inorganics (kg/dav) Phosphates  0.0  0.1  -0.1  -130  Chlorides  239  220  18.9  8  insig. difference  Sulfates Silica  183 1.7  191 1.8  -7.6 -0.2  -4  insig. difference insig. difference  -10  a  Refer to Appendix D for calculations  b  algae = changes induced by algae in polishing pond; insig. difference = insignificant difference  79  Table 5.9: A comparison between water flow readings from January 1995 and overall averages.  January Flow Path  Avg.  Reservoir - m /day  C.V.  Overall a  Avg.  1.0 x 10  0.44  1.1 x 10  Raw water inlet - m /day  538  0.62  Treated water - m /day  724  Boiler #5 - KLBH Steam production Blowdown  3  3  Boiler #6 - KLBH Steam production Blowdown  %  Months  b  Differei  0.39  14  9  623  0.52  14  14  0.61  854  0.50  14  15  297  0.04 0.40  0.13 0.38  14 2  -4  1.8  285 2.1  301 3.1  0.02 0.19  276 3.1  0.23 0.21  14 2  -9 0  299 2.6  0.02  0.12  0.25  281 2.7  0.25  14 2  -6 4 60* -11  3  3  C.V.  a  3  14  Boiler #7 - KLBH Steam production Blowdown  450 psi steam breakdn. - KLBH E/F trains  0.2  1.37  0.5  1.39  2  G/H trains  18.9  0.56  17.0  0.53  2  C train - carbonate C train - MEA D train - carbonate D train - MEA  103 33.7  0.05 0.04  106  5 5  109 35.0  0.05  32.0 107  0.03  33.1  0.18 0.18 0.14 0.12  E train - DEA  125  5  2  120 131 127  0.03 0.05  128 126 129 128  0.08  F train - DEA G train -DEA H train - DEA  0.06 0.04  0.08 0.08 0.07  5 5 5  5 2 1  Reboiler steam - KLBH 3 5 2  5 5  Processed gas - mmscfd  569  0.03  569  0.04  5  Stack emissions - mmscfd  6.2  0.16  7.3  0.18  14  6  .  15*  Table 5.9 (con't)  January Avg. C.V.  Flow Path Petrosul Water - m /day Steam - KLBH  a  Avg.  33.5 1.9  -  34.2  -  159 109  Lime pond - m /day Polishing pond - m /day  3  Effluent Plant - m /day Incoming water  Overall C.V. Months a  b  % Difference  2  0.6  0.17 1.04  16 15  -217  0.37 0.16  172  0.42  148  0.30  17 17  8 26*  238  0.24  192  0.31  17  -24*  351  0.17  329  0.25  17  7  3  Effluent 3  3  CV. = Coefficient of variation = standard deviation / average b Number of months over which flow readings were recorded and averaged * Significant difference between the January 1995 and overall averages (t tatistic > 1.96, p < 0.05) a  s  81  Table 5.10: Water balances on the raw water-storage tank and front-end softeners (FESs) using metered and calculated inflow and ouflow volumes from the FESs.  Flow path  Metered values (m /day)  Calculated values (m /day)  1.00 x 10  1.00 x 10  3  3  Raw water storage tank Inflow Reservoir pipline  3  3  Outflows #5 unlioc cooling water Pump sealant Cleaning & domestic systems Treated water system Export to Petrosul Inflow - outflow =  6.8 6.8 137 538 32.7 282  6.8 6.8 137 859 32.7 -38.7  Front-end softeners Inflow Raw water storage tank 8 psi steam  538 547 1.08 x 10  Outflows Hot lime treater blowdown Ion-exchanger regeneration Cleaning water Stripping solution make-up Steam venting off lime treater Domestic filter backwash  16.3 39.1 21.8 129 360 16.3 583  Product water volume = Total treated water losses 3  a  3  503 856 -353  See Table 5.3  82  859 547 1.41 x 10  3  16.3 39.1 21.8 129 376 16.3 599 808 856 -47.9  Table 5.11: Recalculated mass balance on the F N G P ' s front-end softening system.  Parameter  Total i n  Water flow (m /day)  1.0 x 10  a  Total out  a  Difference  % diff.  Explanation  15  3  1.0 x 10  3  0.0  0  3  3.3 x 10  3  -95  -3  insig. difference  ?  3  Carbon content Inorganic (mol/day) 3.2 x 10 Organic (kg/day)  8.7  6.6  2.0  23  Calcium  69.9  69.8  0.1  0  Magnesium  15.7  15.7  0.1  0  Sodium  11.0  141  -130  -1181  Iron  0.4  0.6  -0.3  -69  Phosphates  0.1  0.1  0.0  0  Chlorides  2.5  217  -215  -8554  Sulfates  74.8  84.2  -9.4  -13  Silica  4.5  4.5  0.0  0  Metals (kg/dav)  Ion-x regeneration  ?  Inorganics Ckg/dav) Ion-x regeneration insig. difference  a  Refer to Appendix D for calculations  b  ? = unknown source or sink; insig. difference = insignificant difference; Ion-x regeneration = sodium chloride used to regenerate the ion-exchangers  83  Table 5.12: Recalculated mass balance on the FNGP's lime ponds.  Parameter  Total i n  Water flow (m /day)  246  a  Total out 238  a  Explanation  Difference  % diff.  7.6  3  insig. difference  93 47  precipitated precipitated  24  precipitated precipitated  13  3  Carbon content Inorganic (mol/day) 3.2 x 10 Organic (kg/day) 7.3 Metals (kg/day) Calcium Magnesium Sodium Iron Inorganics Ckg/dav) Phosphates Chlorides Sulfates Silica a  b  3  2.4 x 10 3.9  2  2.9 x 10 3.4  69.6 15.6 148 0.2  52.6 4.7 149  17.0 10.9  0.0  -1.0 0.2  1.1 217 97.6 4.5  0.0 217 148 0.9  1.1 0.0 -49.9 3.6  2  70 0 100  precipitated  100 0 -51  precipitated  80  precipitated  ?  Refer to Appendix D for calculations precipitated = missing mass settled out of solution within the lime ponds; ? = unknown source or sink; insig. difference = insignificant difference  84  Table 5.13: Changes that occurred in selected areas of the Fort Nelson Gas Plant's water system before and after water observed to escaping from the effluent treatment plant (E/P) was recovered.  Parameter  E/P leak untouched  E/P leak closed  -initial  407  407  - with wastewater recycling  138  90.1  282 240  332 285  - initial  415  - with wastewater recycling  233  483 294  Raw water flow (m /day) 3  F N R discharge flow (m /day) 3  - initial - with wastewater recycling Z E D solid waste output (kg/day)  85  Table 5.14: Selected water flows in the Fort Nelson Gas Plant's water distribution network with and without 8 psi steam reuse.  Current system (m /day)  8 psi steam reused (m /day)  Difference (m /day)  Raw water inflow  855  407  448  8 psi steam flow to lime treater  171  171  Lost 8 psi steam  376  0.0  376  Lime treater blowdown  17.0  13.9  3.1  Ion-exchange blowdown  38.9  19.0  19.9  Boiler blowdown  80.6  54.6  26.0  Sulphur plant blowdown  69.9  46.8  23.1  Lime pond outflow  245  173  72.0  Effluent plant outflow  109  109  Polishing pond  354  282  72.0  Discharged contaminant mass (kg/day)  713  422  291  Flow path  3  86  3  3  Table 5.15: The average inlet gas profile for January 1994 at the Fort Nelson Gas Plant.  Substance  Relative abundance  Nitrogen (N2)  0.0103  Hydrogen sulfide (H2S)  0.0168  Carbon dioxide (CO2)  0.1241  Organic carbon compounds: 1 - carbon elements (Cl) 2 - carbon elements (C2) 3 - carbon elements (C3) 4 - carbon elements (C4) 5 - carbon elements (C5) 6+ - carbon elements (C6+)  0.8456 0.0023 0.0004 0.0002 0.0001 0.0002  Average gas volume = 18 707 000 m /day 3  87  6.0 RECYCLING TECHNOLOGY FOR THE FNGP 6.1 Re-evaluation of the Literature Review Three principle treatment technologies are available to the F N G P : distillation, ion-exchange and membrane filtration. Each systems functions optimally within a given total dissolved solids (TDS) range (Fig. 3.1). The F N R discharge had a T D S concentration of 2700 m g / L (Table 6.1). According to Figure 3.1, this level of contamination would be best treated with membrane filtration. A s previously discussed, there are two types of membrane filters: ion-selective and water permeable. E D and E D R are the best ion-selective units. R O is the most suitable water permeable membrane for the F N G P , considering the large amounts mono- and divalent ions which need to be removed from the F N R discharge before it can be reused (Table 6.1). A preliminary comparison between the 3 alternatives indicated that R O , while more sensitive to fouling than both E D and E D R , generally produces the cleanest permeate of the 3 alternatives. Finthermore, despite the higher product water output with E D and E D R , R O units are simpler and easier to operate than E D and E D R . AS a result, R O was chosen to be the best membrane filtration system.  A further argument to support the use of R O at the F N G P instead of E D or E D R concerns personal safety. A s most of the equipment used in R O is already in use at this facility, plant personnel are already familiar with the potential dangers associated with R O (e.g. moving parts on pumps and valves, weakened pipes bursting...). O n the other hand, the driving force in electrodialysis is electricity. The abundance of electrical current and highly conductive waters in, and potentially around, E D / E D R stacks is a definite health hazard, one that does not currently exist at the plant. So, while installing a R O filter is unlikely to introduce any new hazards into the F N G P , incorporating an E D or E D R unit into the Z E D program would open plant personnel up to increased heath risks. Given the inherent advantages of R O over E D and E D R , it was selected as the most suitable treatment technology for the F N G P .  88  The R O membranes should themselves be of a spiral wound design, as this is the best of the available configurations (see Section 3.3.4). A t this stage, it makes little difference i f cellulose acetate of polyamide filters are used; they both provided the same level of treatment. When the final Z E D treatment train is developed, filter type will become important, because it may influence the layout of the R O pretreatment system (see Section 3.3.4). According to the literature, Z E D plants generally dispose of R O concentrates in either evaporation ponds of by solidification (see Section 3.4). Evaporation ponds are only effective in climates where ambient air conditions encourage water evaporation. This is clearly not the case in Fort Nelson (58 ° N x 124 ° W ) for a better part of the year. Winter temperature are generally well below 0 ° C , and winter can last from October to May. R O concentrates w i l l have to be disposed of by a more active approach. A brine concentrator followed up with a spray dryer or crystallizer seems to be the proven method for solidifying R O concentrates (see Section 3.4). Spray dryers produce a solid effluent, while waste products from a crystallizer still require some processing before they can be landfilled. The fine, powdery solids exiting a spray dryer can, however, be difficult to handle. Given the reassurance of manufacturers that this is riot likely to be a problem in a properly designed system ( R C C - personal com.), and their lower costs, spray dryers appear to be the more appropriate technology to follow-up a brine concentrator as part of the Z E D program at the F N G P .  Instead of using a B C S (brine concentrator - spray dryer) assembly, R O concentrates can, as suggested by some Westcoast personnel, be disposed of in a deep well. In any case, re-evaluating the available literature reveals that the most appropriate technology from the F N G P would be a reverse osmosis filtration unit followed up with a B C S assembly or a deep well.  6.2 Available Options The most suitable Z E D technology for the F N G P has been previously identified as an R O filtration unit paired up with a waste disposal system consisting of either a B C S assembly or a deep  89  well. There are, however, a number of different ways of applying this technology. The available options include: • using a 1, 2 or multi-stage R O filtration system and/or • disposing of R O concentrates in a deep well and/or • disposing of R O concentrates with a B C S assembly and/or • replacing the ion-exchangers in the front-end softening system with nanofilters (NF) to reduce solid waste production (i.e. no longer adding the large quantities of sodium chloride used to regenerate the ion-exchangers into the water network) Preliminary work with the computer simulator has also indicated that calcium, carbonate and sulphate concentrations in the F N R discharge flow are so high that, without adequate pretreatment, solids w i l l precipitate onto the R O membranes. Furthermore, regardless of the extent of pretreatment, solids w i l l continue to form in a R O system containing more than 2 successive filtering units. These findings led to the inclusion of a calcium-removal pretreatment step into the computer model, as well as the development of two additional Z E D alternatives:  1) placing the R O filters and associated disposal equipment between the hot lime treater and the ion-exchangers, rather than downstream of the.polishing pond. and/or 2) R O technology is completely excluded from the Z E D system, and only a B C S unit is used W i t h configuration (1), effluent from the polishing pond would flow directly into the hot lime treater, which is currently in operation only 1 out of eveiy 2 or 3 days (Shang Su, personal com.).  90  Here it would mix with incoming raw water, and the combined mixture would pass into the R O assembly. The inherent advantage of this design is the use of the lime treater to partially soften the R O feedwaters, rather than building a new calcium removal process for this task.  A s for option (2), the performance of a brine concentrator (B/C) is unaffected by the precipitation of calcium and magnesium salts. Instead of attaching to the sides of the vessel, solids precipitate onto seed particles introduced into the feed stream as it enters the B / C (Pankratz & Johanson 1992, B o w l i n & Ludlum 1992). A s a result, a B / C can operate effectively even with highly concentrated wastewaters, hence the original intention of using a B / C to treat R O concentrates.  Given the abundance of potential options, there are numerous Z E D combinations available to the plant. Initial work with the simulator indicated that any R O filtration system would be limited to two stages and that calcium pretreatment would be necessary to prevent membrane fouling even in a 1-stage set-up. With these restrictions in mind, a variety of conceptual Z E D designs were developed.  6.3 Conceptual ZED Designs Each Z E D design was developed around the F N G P ' s water network as it is expected to perform when the 8 psi steam released from the deaerators is recaptured and reused. Eighteen different configurations were built, and they can be classified into one of two groups based on the relative position of the Z E D equipment.  6.3.1 Back-end models In these scenarios, the required Z E D equipment was attached to the polishing pond. Recovered wastewater re-entered the water network through the front-end softening system. Ten back-end models were tested with the simulator. Four of them used 1-stage R O units, while another 4 simulations incorporated 2-stage R O filtration. The remaining 2 designs did not contain any R O  91  membranes; they relied solely on a B C S assembly. A l l 10 scenarios can be loosely represented by the formula: I - X (ion-exchange) or N F softening + x-stage R O + B C S or deep well disposal  6.3.2 Composite discharge designs A s opposed to the back-end models, composite discharge from the polishing pond now flowed directly into the hot lime treater, and then into downstream R O filters. Eight composite discharge solutions were developed. Four of them used 1-stage R O filtration,, while the other 4 contained a 2-stage R O process. The following equation symbolizes the different composite discharge options:  I - X or N F softening + direct effluent reuse + x-stage R O + B C S or deep well disposal N o composite discharge/BCS-only configurations were built, since the basis for directly reusing polishing pond effluent was to circumvent the need for an external R O pretreatment u'ain. A s no R O technology was used in the BCS-only models, this premise became irrelevant. Figure 6.1 summarizes the basic structure of all 18 Z E D designs.  92  Table 6.1: A chemical comparison of the treated water and Fort Nelson River (FNR) discharge flows.  Parameter  FNR discharge  Treated water  Total dissolved solids - mg/L  2744  279  Total organic carbon - mg/L  97.7  20.7  Chlorides - mg/L  627  2.4  Sulfates - mg SO4/L  543 5.2  81.9  146  1.4  20.6 584  0.5  Inorganics:  Silica - mg S1O2/L Metals: Calcium - mg/L Magnesium - mg/L Sodium - mg/L  93  0.9  50.5  Softening technology  94  7.0 DESIGN EVALUATION The 18 proposed Z E D designs were previously described as either back-end or composite discharge models depending on the relative position of the installed Z E D equipment. The presence or absence of a brine concentrator - spray dryer (BCS) assembly is, however, a more significant difference between the various conceptual configurations. Those solutions with a deep well in place of a B C S assembly can only transform the F N G P into a Z E D facility i n the strict sense that there w i l l no longer a surface discharge from the plant to the F N R ; the water network w i l l , however, continue to generate a liquid waste, which w i l l be disposed of as a liquid. The water loop w i l l never be completely closed, unlike the B C S models which w i l l generate a solid waste. The only water that w i l l escape from a B C S design will be waste steam vented from the spray dryer. Given this fundamental difference between the 18 Z E D solutions, they were evaluated separately as either B C S or deep well designs. Factors used to detemiine which are the most effective Z E D programs included cost, complexity, waste generation rates and calcium pretreatment requirements.  7.1 Simulator Performance The computer simulator was, as previously detailed, originally constructed from the water flow and water chemistry data collected at the plant. The inputted data were then replaced with formulas, transforming the static model into a predictive tool. Preliminary work with the simulator identified various bugs in the system; it occasionally crashed or did not respond as expected. A l l of the equations and the layout of the model were reviewed and, i f necessary corrected. The simulator was then repeatedly run through a series of simulations to examine i f the problems had been properly addressed. This exercise was also used to ensure that the computer's projected image of the F N G P as a Z E D facility was consistent over time and independent of previous simulations. Once the simulator passed through these tests without error, it was used to evaluate the 18 proposed Z E D configurations summarized in Figure 6.1. A t no time during the design evaluations were any major problems encountered. The program appeared to be bug free.  95  7.2 BCS Designs 7.2.1 Composite discharge models The hot lime treater successfully removed enough calcium in all four composite discharge scenarios to circumvent the need to build a calcium removal process upstream of the R O filters (Table 7.1). Product water quality from each Z E D assembly was such that, when all four systems were in full recycle, downstream softeners were no longer required. The ion-exchangers were subsequently dropped from their respective simulations (Table 7.1). The nanofilters remained in place, since they removed more than just calcium and magnesium. Using in-situ equipment to pretreat R O feedwaters required significant alterations to the existing water network (e.g. Fig. 7.1). M u c h larger R O and B C S units were used in all 4 composite discharge solutions compared to the simpler back-end models (Table 7.1). They were, as a result, among the most expensive of the available scenarios (Table 7.1). The composite discharge simulations also produced more waste steam than many of the other designs and roughly equivalent amounts of solid waste (Table 7.1). A s there are no significant cost or waste savings inherent in any of the 4 complex composite discharge configurations, compared to the other available options, none of them appear to be particularly well suited for the F N G P .  7.2.2 Back-end solutions: Ion-exchange vs. nanofiltration In all 3 back-end categories (i.e. 1-stage R O , 2-stage R O and BCS-only), the scenarios containing nanofilter (NF) were at times almost identical to their respective ion-exchange (I-X) counterparts. Both models generally possessed the same size R O and/or B C S systems and produced equal volumes of waste steam, regardless of whether the Z E D equipment had just been attached or reclaimed wastewater was being recycled (Table 7.1). Calcium pretreatment demands of the 1-stage R O / N F configuration were also equivalent to those of the 1-stage R O / I - X option (Table 7.1). This was not the case in the 2-stage R O designs; the " N F " scenario continually required more calcium to be removed from R O feedwaters than its " I - X " alternative (Table 7.1).  96  There were other trends in the " I - X " and " N F " solutions which were common to all 3 groups. The " N F " options were always more expensive than the opposing " I - X " designs, due to the capital costs associated with replacing the existing ion-exchangers with nanofilters (Table 7.1). Because the front-end treatment network had to be altered to install the N F vessels (Fig. 7.2), the " N F " configurations would in reality be harder to assemble and slightly more complex to operate than their respective " I - X " alternatives. The " N F " simulations did, on the other hand, generate less solid waste than the " I - X " systems (Table 7.1).  Before reclaimed wastewater was recirculated back through the plant, the difference i n solid waste generation rates were significant. The " N F " models initially produced less than 2/3 of the total waste output of their respective "I-X" counterparts (Table 7.1). These savings dropped to around 13 % in both of the R O simulations after the water loops were closed (Table 7.1). The difference between the BCS-only scenarios remained above 28 % (Table 7.1).  W i t h respect to the 4 R O designs, neither " N F " configuration .illustrated.significant, sustained gains which would have suggested that they were more suitable to the F N G P than their respective " I - X " alternatives. Both " N F " systems were more expensive, more complex and, at least in the case of the 2-stage R O / N F simulations, more delicate (as illustrated by higher pretreatment demands) than either R O / I - X option (Table 7.1). Their respective B C S units produced near identical amounts of waste steam (Table 7.1). Initial solid waste savings quickly fell to only a 13 % margin of difference once wastewater recycling had started (Table 7.1). Neither R O / N F model is the best Z E D design available to the F N G P .  A l l of the finding summarized in the last paragraph also apply to the B C S / N F scenario, except for solid waste output. This configuration, as stated above, continually generated less solid waste than the B C S / I - X option. Until disposal costs are properly assessed, the value of reduced wasting rates remains unclear. A s such, all 3 "I-X" solutions were still deemed to be more efficient that their " N F " counterparts.  97  7.2.3 Best of the back-end ion-exchangers Cost and complexity: The BCS-only model was the simplest of the available configurations (Table 7.1). It contained the shortest Z E D treatment system; wastewater reclamation occurred in a single vessel (Fig. 7.3), rather than in a series of separate units (Fig. 7.4), and pretreatment w i l l likely be limited to deaeration and p H adjustments (Fig. 7.3), instead of multiple pre-filters, p H adjustments, anti-scalant addition and possibly chlorination and/or dechlorination (Fig. 7.4). The brine concentrator (B/C) was, however, the most expensive component of any B C S design (Appendix G ) . The B C S - o n l y scenario contained the largest B / C of the three " I - X " options (Table 7.1). A s a result, the simplest Z E D configuration was also the most expensive (Table 7.1). Using a 2-stage R O unit in place of a "1-stage" process increased the complexity of the overall water network. Additional pumps, pipes and p H adjustment stations were required to support the second set of membrane filters (Fig. 7.5 vs. Fig. 7.6). The resulting wastewater flow path was longer and more complicated than in either the 1-stage R O or B C S - o n l y configurations. On the other hand, adding the second stage cut the flow of R O concentrates to the B / C by 10 % (Table 7;1). The monetary savings of using a smaller B / C were such that the 2-stage R O design was slightly cheaper than its "1-stage" counterpart (Table 7.1).  It appeals that the more complex the option, the cheaper its overall capital cost. Both R O designs were cheaper than the simplest Z E D scenario, the B C S - o n l y / I - X model. The more complex 2-stage R O simulation was similarly cheaper than the simpler R O alternative.  Waste generation rates: Steam losses from the Z E D equipment were proportional to the size of the B / C . A s such, the B C S - o n l y model generated the most waste steam, while the 2-stage R O simulations produced the least (Table 7.1).  Solid waste production followed a similar trend. The B C S - o n l y scenario had the highest generation rates of the back-end/I-X solutions (Table 7.1). The 2-stage R O design produced less solid waste than its "1-stage" counterpart, although the difference between the two configurations  98  was less than 5 % (Table 7.1). While the BCS-only scenario continually generated the most solid and steam waste, and the two R O models had near identical solid waste production rates, the 2stage R O design always vented less steam than the 1-stage R O alternative.  Robustness and treated water quality: Although the robustness of a B / C has already been discussed as it pertains to pretreatment requirements, it is the cleaning ability of each Z E D system that is now being evaluated. Robustness, within this context, was assessed by observing fluctuation in product and treated water quality that occurred when given contaminant concentrations i n either the raw water inflow or effluent plant outflow were changed; product water, or reclaimed wastewater, refers to water produced by the Z E D equipment, while treated water is softened water leaving the FESs. Prior to any alterations, the B C S model contained the cleanest product and treated waters, followed, in order, by the 1-stage and 2-stage R O scenarios (Tables 7.2 & 7.3).  When different contaminant concentrations were doubled, reclaimed wastewater and treated water quality in the BCS-only configuration generally changed the least (Tables 7.2 & 7.3). The cleaning ability of this process was perhaps best demonsfrated when chloride and dissolved organic carbon (DOC) levels were increased. Although these changes resulted in significant increases i n the abundance of both chloride and D O C in both R O designs, there was no observed deterioration in treated water quality in the BCS-only scenario (Table 7.3). Not only did the B C S only system initially produce the cleanest water, it also proved to be the most robust of the three back-end/I-X options.  The fragility of the 2-stage R O model was illustrated by its calcium pretreatment requirements. Whenever calcium, sulfate or alkalinity levels were raised, the risk of membrane fouling increased, so more calcium had to be removed in the pretreatment train (Table 7.2). The 1-stage R O design did not show the same susceptibility to salt precipitation. When the water loop was first closed, calcium pretreatment was no longer necessary (Table 7.1). A n observation not mirrored in the 2stage alternative (Table 7.1). Subsequent changes to raw water or effluent plant chemistry rarely  99  resulted in the reinstatement of a calcium removal step (Table 7.2). The probability of salt precipitating in the 2-stage R O membranes was much higher than in the 1-stage R O vessels, illustrating the relative fragility of this system compared to its more resilient "1-stage" counterpart.  Aside from being more delicate than the 1-stage R O system, the 2-stage R O configuration tended to produce the lowest quality recycled and treated waters of the three Z E D options (Tables 7.2 & 7.3). Chloride and D O C levels in the treated water were, even before any chemical alterations were made, well above current concentrations (Table 7.3). Furthermore, although some chemical manipulations caused larger relative shifts in the "1-stage R O " waters, the 1-stage R O solution always contained product and treated waters of equal or better quality than its 2-stage R O alternative (Tables 7.2 & 7.3). While the BCS-only design continually produced the highest quality waters regardless of changing water chemistry, the 1-stage R O configuration was more resilient, and generated cleaner waters, than its "2-stage" counterpart.  Best design: The 1-stage R O design was less complex and more robust than the 2-stage RO-. scenario (Tables 7.1, 7.2 & 7.3). Treated and recycled water quality were similarly better in the; 1stage R O simulation (Tables 7.2 & 7.3). The two R O systems generated roughly equivalent amounts of solid waste, although steam losses were higher in the 1-stage R O solution (Table 7.1). The 2-stage R O option was also found to be $40 000 cheaper that the 1-stage R O alternative, since it used a smaller B C S unit (Table 7.1). This was an odd finding as one would have expected a two stage R O unit to cost substantially more than a single stage R O filter. In light of the possibly questionable monetary savings associated with the more delicate and complex 2-stage R O simulation, the 1-stage R O model seems to be the better R O design.  Choosing the "best" Z E D design for the F N G P thus comes down to the relative importance of cost, as both the 1-stage R O and B C S - o n l y configurations performed successfully. The B C S - o n l y scenario had the higher capital costs (Table 7.1). It was, on the other hand, simpler and more robust than the 1-stage R O simulation (Tables 7.1, 7.2 & 7.3). The B C S - o n l y solution also produced better quality recycled water than the 1-stage R O alternative (Table 7.2), which lead to  100  the observed-larger-solid waste generation rates (i.e. all contaminants stripped from reclaimed wastewater were released as a solid, so the cleaner the product water, the larger the mass of removed solids) (Table 7.1). It was impossible to predict how solid waste output and recycled water quality might affect the operating costs of these two Z E D options. Therefore, within the limits of this study, it was impossible to determine which of the two configurations is the best Z E D system for the F N G P . Only further research, encompassing both bench-scale and pilot plant experiments, w i l l reveal which is the better design.  7.2.4 Conclusion Ten B C S Z E D scenarios were originally developed and evaluated. The 4 composite discharge configurations proved to be extremely bulky and complex. They were more expensive and less effective that the other 6 back-end models. None of these options were deemed to be appropriate for the F N G P .  In 3 of the back-end designs, the existing ion-exchangers were replaced with nanofilters. Due to the installation costs of these new softeners, all of the " N F " scenarios were more.expensive than their respective " I - X " counterparts. There were few, i f any, benefits incurred from changing softeners that justified their relatively high costs. They were subsequently eliminated from the selection process.  Comparisons between the 3 remaining ion-exchange solutions revealed that the 2-stage R O configurations was complex, fragile and produced relatively poor quality recycled water. The 1. stage R O scenario, while a better choice than its "2-stage" counterpart, was less robust and more complicated than the BCS-only simulation. On the other hand, it was cheaper than the B C S - o n l y system, and, with adequate pretreatment, would be just as successful at closing off the plant as the B C S - o n l y design. Further research is needed to determine which of the two configurations, the 1stage R O or the B C S - o n l y option, is the best Z E D system for the F N G P .  101  7.3 Deep Well Configurations 7.3.1  Composite discharge designs  Similar to the trends observed in the B C S designs, the deep well composite discharge configurations used much larger Z E D equipment than any of the back-end scenarios (Table 7.4). They were more complex than the back-end systems, and they produced far more wastewater than their back-end counterparts (Table 7.4). The sole advantage of directly reusing the polishing pond outflow waters was the elimination of an external calcium removal process (Table 7.4). Using insitu equipment for R O pretreatment did not, however, translate into substantial cost reductions. Due to the size of the R O units required by these designs, the composite discharge solutions were far more expensive than either back-end/I-X option (Table 7.4). Even though the two composite discharge/I-X scenarios were cheaper than the back-end/NF alternatives (Table 7.4), all 4 composite discharge models were dismissed as possible Z E D designs for the F N G P .  7.3.2 Back-end solutions: Ion-exchange vs. nanofiltration R O feedwater and concentrate flows differed by at most 7 % between the back-end/NF configurations and their respective " I - X " counterparts (Table 7.4). The " N F " models were more complex and expensive than either " I - X " solution (Table 7.4). A s there were no immediate benefits to replacing the existing ion-exchangers with nanofilters, neither back-end/NF design appeared to be the best Z E D solution available to the F N G P .  7.3.3 Best of the back-end ion-exchangers Cost and complexity: The 1-stage R O design was cheaper than its "2-stage" counterpart (Table 7.4). A s previously indicated, expanding a R O unit to include a second set of filters increased the complexity of the resulting water network. The 2-stage R O solution was, therefore, the more complicated and expensive of the two options (Table 7.4).  102  It is important to note that this price comparison was, as were all deep well cost analyses, limited to the capital costs of the R O membranes and associated supportive equipment (Appendix G). The cost of a deep well was assumed to be independent of the Z E D configuration. Waste generation rates: The 2-stage R O simulation operated at a wastewater recovery rate of 60 %, while the 1-stage R O solution was limited to 50 % (Appendix F). Not surprisingly, the 1stage R O system discharged more liquid waste to the deep well than the 2-stage R O model (Table 7.4).  Robustness: A Z E D system's robustness was tested, as explained earlier, by doubling the concentrations of different constituents in the raw and effluent plant outflow waters, and observing the resulting changes in recycled and treated water quality. Prior to any alterations, the 1-stage R O simulation contained the better quality product and treated waters (Tables 7.5 & 7.6). It continued to contain the cleaner waters when contaminant levels were changed (Tables 7.5 & 7.6). The 1stage R O option was the more robust of the two deep well solutions; it produced better quality recycled and treated waters than its "2-stage " counterpart regardless of the changes i n water chemisuy elsewhere in the system.  Best design: The 1-stage R O design was the better of the two ion-exchange scenarios. It was not only cheaper and simpler than the 2-stage R O option (Table 7.4), it was also produced higher quality treated and recycled water than the "2-stage" alternative (Tables 7.5 & 7.6). The only disadvantage of the 1-stage R O system was its higher wastewater production rates (Table 7.4), yet, given its many inherent advantages over the other deep well Z E D simulations, the 1-stage R O configuration is felt to be the best deep well solution for the F N G P .  7.3.4  Conclusion  Eight deep well models were developed and evaluated with the computer simulator. The 4 composite discharge configurations were too bulky, complex and expensive compared to the other available options. The back-end simulations with nanofilters in place of existing ion-exchangers  103  were similarly eliminated as possible Z E D solutions, as they were more complex, costly and had higher pretreatment demands than the "I-X" alternatives. O f the two remaining scenarios, the 1-stage back-end R O system was cheaper, more robust and simpler than its "2-stage" counterpart. The 1-stage R O simulation also produced the higher quality recycled and treated waters of the two models. The only advantage of the 2-stage R O configurations was its smaller wastewater stream. In any case, the 1-stage back-end R O design appears to be the best of the deep well options available to F N G P .  7.4 Evaluation Summary Information from the available literature, combined with suggestions from Westcoast personnel and the data collected from the plant, indicated that the F N G P could achieve Z E D by a number of different treatment configurations. A computer simulator was built to evaluate the effectiveness of each option. The 18 original scenarios were sub-divided into 2 categories based on their final disposal technology. Each Z E D program was then tested,and the resulting output-compared to that from the other designs within the group.  The best B C S systems were the back-end, 1-stage R O and B C S - o n l y models, which maintained an ion-exchanger in the plant's front-end softening system. They were both more robust, cost effective and simpler than the alternatives. The 1-stage R O scenario would cost around $1.61 million U S dollars, while the BCS-only configuration has a price tag of around $1.79 million U S dollars.  A s for the deep well designs, the best option was the back-end, 1-stage R O unit with an ionexchanger in the raw water softening system. This model was more efficient and less complex than the other deep well configurations. The 1-stage R O system would cost approximately $101 700 U S dollars, excluding the cost of the deep well.  It is important to note that within every test ran, it was assumed that the 8 psi steam now venting off of the deaerators was recaptured and reused elsewhere in the water system. The cost  104  analyses reported herein were also very rudimentary in nature. They were developed from R O , N F , B C S , multi-media filter and ion-exchange unit capital costs (Appendix G); operating costs were not assessed. Given the preliminary nature of this study, the reported cost estimates should be sufficient for Westcoast personnel to decide if a Z E D program for the F N G P is economically viable and which of the evaluated design to pursue.  105  fa  00 r-  00  NO ON r f CN  ON  CN i—1 co CN I-H  ON  r- r f  ON  m in  ri n in CN CN  r-; r-. •n i n CN CN  ON OO CO CO  ON ON VO NO  ON ON  CN CN  NO NO CN CN  ON OO  ON OO  m >n  a; <u  O ON CN O  l>  © CN CN 1-1  © <N CN ^-1  CO NO ON ON CO r+  ©  ©  00  ©  ©  r-  ©  ©  ON  ©  ©  c sm a  03 JS  in >r>  .22'  -3 cu O OJ  E o  CN cn CN —1 T-H  O in  ON ON CO <  r- © © ©  r f CN  m  O m >n  r- co CN CN  r-.  r~ co CN CN  cN m 00 co CN CN  cu TS O  ON  in  r- CN  CN CN  E  ca  D cu) TC <5 D Ai  <N CN  CN r f 0 0 rf CN CN  co  in r- CN  © CN  r- i n CN CN CN  ON  co co i n T-H r f co  rf  ON  ON NO  in  ©  t-~ r - 1-H  ©  CN CN  00 o  m  NO NO  ON CO CO CN  ON  in  00  OO  NO  ° ON  E •o  -S cu • cu  in 06 CO CN  CN O 1 - 1  O  ,—• © r f CN  1/3  ^ r-  1  *3  O  s  ON  ca  OS  .5  CD  PH  O  CN  co  NO CO  in ©  r f r-n'  CN CN  in  CN CN  jo  C8  33  -  CN © 0O T f CN CN  <-< © r f CN  .2 « I I "S'S  o  <u  T—1  rf  co  CD a CD Wi c«  PQ  106  03  ri  CN  03  s  e  03 CD  <n co  CD r f CN a 0 •.d  00  -C  8  ©  T-H  CU  § u 'i  rf  ^  ©  1 CO  a o  P,  00 o3  E§ CO  3  •'0 CO  E a  • rH CD  •a u  00  o U  2  It  X  oi cu  2f* CS  "cd  1  o  cu ox CS  •3 Z co a + o - «u DH  I  "3  u  B &  E o z o CU  > I  ox  CO cd  co X co cd CD  UH  IO  'cd  o  bfi  OH  C  +  PQ c o  <D OH  i3 .a CD 'co  c 0 1 CO  - U O CQ  CD  13  ta  5  E Xcd o  U  fc Z co  o  CD  X  U  CN  5  CD  CO  Pi PQ 1  o <4=l C/i cn UH CD o bO C O 'cd Xcd  CD  cs H-»  0  bfi C cd o X  x  ta  °3  cd  CD  o  cu  CN  O OO  co  c« O Q.  CD bO CD  co ca  Xi  U  o  5  fc  +  cd  CO  U  PQ  Pi  0  T3  T3  U  ,UH  <HH  0 0  T3  U  Cd pQ  CO  CD PH  43  C/3  X  ta  cu  •o o OZ E OC cu  o % ^ o CD  UH CD  bp c!?i co  cd fc  bfi  C cd X  ^ § PQ CN ^  z  CD  X  CD  ox  i cu CS  1  cs  C  e  <N  •a  o  CD  CD  Pi  "E  CU CD  c 'CD UH  3  CD  + g>  CO > O  -rt  1«  CO  - o & oi  ^  cd  m  CD  bO  3 § f K  oo  +  UH  cd  CO U  PQ  "Cl 3  & cd to CD Cd UH  "8 o e .a  xi  H^  X •p  c  om  .2  PQ  8  II  cs  U  CD  o  oi CU  CO  O  cd  CN  i •8  ta Oz  ta  T3  T3  03  o  CD  CD  X  U  107  CO I O 1?> Q .S.  Oi 3 a, CD be s 03  ON  co  q ON  <N {#>  oo  X  i  i—i  ON  O  2 ^  r- 2  ON  CD  CN  I  O  ON ^  x » i  0O ~ CN  xS  1  ON  3  S <+-i  CN  CU  -d x —. c s • «J  ON  £ © .2 2 _  r-;  03  X  CD cu  UH  UH  CD  3 T3 O  OH  T3  a  on 3  CU  UH  <U  CD  73  T3 3 03  ''5b  3  03  CD CD UH  OH  CD  "o3 CD co & O  CD  03 £ T3  be be  cz:  CD  E CN  d  s  ca  H•  CN  O  0\  d  d  cn  r—I  d ^  X  X  d  CN  00  cs  oo  d  Tt  CO I  CO 1  O  in  00  0  CN  Tt  CN  co  X - (SI NO  O  X  ^  CO  co •  co •  O  cn  cn  «-H  CN  i—i  ON  - 5?  X  CN  in  —H  CN 00  04  ON • ON  O  CO  O  •a  o >>  03  be cd  ••si*  3  0  CD CD  CU  ^ oo ^ in co SH O 2H m §5  © ^ CN CNr-.cn ^ ON <N  CN  _  _H  ^ »9 CN _H  CN —<  co  O O  O) CO S , CN °  w  be 3 o3  HM. Cd  O CM  CD X  CD  • <U cu  1  .3 „ O  O  Tt  T3  Sw  Tt Tt  CN  CN  CN -H  CN —  q d  NO  q d  VO  ^  CN  &  0  O  >s> O . o Tt m ^ fS, CO (S, CO  E ^  ~ ca / - N  "3 £ lie  CD  i  3  ^  T3  O  1  T3 3 03  O  be be 2  $  0  00 CD  X  CD  .a w>  01  « <g c§ be 03  CB cu  3  O  S3 C  2 xs  mi  c/l CD  be  I CN  0  03  ^ CO  CO  u PQ  3 03  ^H  03 CD  u T3  4H  X  CD  X  O  I P<  108  CD  be be  1  cu  u  0,  01 oi 3 CD CD  CU  U  —  in  w  §• CQ  CN  cn j£ •n  CO  u  oo 3  be co . x U  oo ^ 8N  CN  X  "3  •fi  CQ "O  3  x  CN  1—I  E _  U  T3 3  o  o  s  X UH  £ 1  cn  ca  >> x  e •8 £CD H-»  3£  o  oo in  I'll  3  CD>  . CD  X  i  I  •  "O CZJ  UH _o '-3 s 03  03  OO  cn ^  CN  S i ?  CD  H—»  •5  cn ^  CU  cr 03  o cn  S U  "•^ 3  CN  i  T3  CD  3  O  T3  0  O  P^ CD  be I CN  3  O  < 01 CD be  u  PQ  3 O on T3 _CD X  3  O  T3  O CD  3  O  be  CO  on i '  PQ  CN  U  CN  CN  d ONg x S  oo  as  I  as S as o  •—i  VO  od  X  m  o CN  vO  8«  r-- ^  CN  ON  t  -  o in  5£  CN  ©  d  r- o UO  x -?  -H  X CO  i  CN  CN  I o  T-H oo  CO  in o  ON  as  i  CN  •  -^ 1  00  O  ©  ©  00  Os  xg  ©  co  o  in o  xg  CO  rr ^ ©  • CN  O  OO ^ • VO O ^  CO I  CO ©  s£  m  •o  rf  CN  X CN CN  ©  ^  - i ^ in ^  CN  ^  © 2  X ^  © ^  oo  ^  © ^  2fe  CN  © ©  O 03  bo  S ^  a  CD  bo  &  Vi -H  O  <N  x a  CN -r  co g  Os  CN  rf  d S co 5  0  01 <D bJ) l CN  o  CN  CN  3  o 00  < H  Q  CN O  CO  oo  ^  vd  ^ CN  r? 3  0  0 Pi  01  bO CD  b0 <D  1 CN  00 T3 o T3  rf  rf  (N °  c/2  U  o U 3 -2 o 3s O  3 O  CN *r  c3  u o  Q  3  3 O  g  I © cx o  r f e= CN  © ©  CN  O P<  0 Pi  bfi  00 u  co ^  CN <=>  CD  X !  109  X CN^ X CO  g  g.fc -jq-fe  °  © ^ >n  °  CN  co  2 o OS  °  f g  T  ©  co  CN CO  CO I  Vi  -  1  ^  in  CD  bo  1 CN  3 O  00 U pq  <N i  ~ e* o ; g ON  o  CN I  "1 £ o o CN "O >< co  CN  co o  OO  rr" CN I ©  IT) O  o  CO I  •n j£  CN  ©  © co co•  o  CO CN "T*  ©  CO  rN  T-J-  g  CN °  'JO . p rr g  CN O  © ©  rf  O  o CO W)  I  fl  I  Vi  ^  C  o CO U  CN  o u •*-» 3 3 o O T3  110  Table 7.3: Changes in treated water quality, in the 1-stage R O , 2-stage R O and B C S - o n l y backend, B C S , ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry.  Treated water chemistry Sodium Chloride DOC 3  Chemical change  Sulphate  Model  Total C 0  (mg/L)  (mg/L)  (mg/L)  (mg/L)  81.9  50.5  2.4  6.1  3.1 x l O  1- stage R O  25.3  16.6  4.2  6.0  3.6 x l O "  4  2- stage R O  27.2  22.8  7.6  9.1  4.2 x l O "  4  BCS-only  25.0  25.9  0.9  2.7  4.7 x l O "  4  24.3 -4%  52.6 217%  9.9 135%  5.8 -4%  4.7 x l O " 30%  4  1- stage R O  26.1 -4%  59.6 162%  18.3 140%  8.7 -4%  4.7 x l O " 13%  4  2- stage R O  24.3 -3%  60.6 134%  0.9 -5%  2.6 -4%  4.7 x l O " 0%  4  BCS-only  47.8 89%  16.5 -1%  4.1 -2%  6.0  1.3 x 10256%  3  1- stage R O  49.8 83%  22.7 0%  7.5 -1%  9.0 -1%  1.3 x l O " 220%  3  2- stage R O  49.5 98%  10.7 -59%  0.9 -5%  2.7 0%  7.5 x l O " 57%  4  BCS-only  1- stage R O  25.3 0%  16.6 0%  4.1 -1%  6.0 0%  3.45 x l O " -4%  27.2 0%  22.8 0%  7.6 -1%  9.1 0%  4.1 x l O " -2%  4  2- stage R O  25.0 0%  25.9 0%  0.9 4%  2.7 0%  4.7 x l O " 0%  4  BCS-only  3  (mol/L)  N o changes  Current system  4  Raw water - doubled C a & M g  - doubled S 0  4  b  & T. A l k .  b  -1%  E/P outflow - doubled C a & M g  b  111  4  Table 7.3 (con't)  Treated water chemistry Sodium Chloride DOC (mg/L) (mg/L) (mg/L) 3  Chemical change  Model  Sulphate (mg/L)  Total C 0 (mol/L)  3  -doubled S O 4 & . T . Alk.b 1-stage R O  26.6 5%  16.6 0%  4.1 -1%  6.0 0%  9.5 x l O " 162%  4  2-stage R O  29.9 10%  22.8 0%  7.5 -1%  9.1 0%  1.1 X l O " 160%  3  BCS-only  25.0 0%  25.0 -3%  0.9 4%  2.7 0%  4.7 x l O " 0%  4  1-stage R O  25.2 0%  16.6 0%  4.1 -1%  9.0 49%  3.6 x l O ' 0%  2-stage R O  27.1 0%  22.8 0%  7.5 -1%  15.0 64%  4.2 x l O " 0%  BCS-only  25.0 0%  25.9 0%  0.9  -4%  2.7 0%  4.7 x l O " 0%  1-stage R O  25.2 0%  16.6 0%  5.9 39%  6.0 0%  3.6 x l O " 0%  2-stage R O  27.2 0%  22.8 0%  11.0 44%  9.1 0%  4.2 x l O " 0%  4  BCS-only  25.0 0%  25.8 0%  0.9 4%  2.7 1%  4.7 x 10^ 0%  4  - doubled D O C  - doubled C l  3  b  4  4  4  b  4  Calcium and magnesium treated water concentrations not shown since they were held at < 1.4 and 0.5 mg/L, repectively.  b  C a = calcium, M g = magnesium, SO4 = sulphate, T . A l k . = total alkalinity, C l = cloride, Total CO3 = total carbonate content, D O C = dissolved organic carbon  112  fa 0 Z  cu ex u ea JS o  CN r-- vo  VO rf vo CN T-H  o o  r-H OO Os r- vo  cn cn >o r-CN T-H  o o  cn ON oo r> os as  as as rf rf  T-H  T-H  VO 00 CN  • DC ea *H C/5  O  1  <N  rf VO  Vi  •3 <u  "33  o cu|  E  o U  O  T-H  O O  OO CN  T 11 1 o o  VO  © O  cn  i—i  cn  i—i  OO rf  X X rf m  o o  </~) IT.  as vo r- rf CN CN  CU  TS  . O  CN -H T_L  oo ON  CNoo cnvo CN CN  cn m  ON VO r- rf CN CN  O  T-H  >/-. o  cn CN  oo ON vo CN  CN  o *-< >n CN  CN CN  r- rf  O  E  TS G cu i  u, fa cu ea o z 03  a:  cu ea  cd  32.  rf  cn  B Vi  cd  33  cN cn 00 NO CN CN  X  CU» cd — • rf m C o •d cd  'f-H  .2 ea ea CU "ea > w  fa  cn CN  '  cd  Icu O  i cn  cd oo O  fc c 81 K  cd  CO  fi  O  Vi  o  CU & 2 cd  113  P.  U  o  U  fa oz on es  OX i. ea JS  cd o  X  Vi  o  i  fa o oZ Q. cc £ cu  Vi  o 'cd  o U  1  8  -S 8  cu bo c cd  CN  o  b0 S3 cd e 4C3U  'cd  -4H  CU  bo  fl  3  S  fa  T3 O  oz oc  H  cd CH & O  o  cd  CH  O  ca  T3  •a z  ea  l CNX 60  •in OH Icu '6S  O  X )  CU CU X )  CH CU  CC  E  CU  +  X >  CN  TJ S cu  O  •  JX  o  1 3 ' cu • £ OH  fa Z  I s cu '55 CC  CC  CH  cu  + CD 13 Z 3  cx  •8  CU  DX) es  X  .2  es  I I 1'S fa  o  CU  I bo  T3  -a  = 3 cu  CC bo  +  CH X I  X  CU  1  o U  114  CU  =3  cu  fl  bo  cu •$ CH  O cd  =3  CC  OH  CU  -8  T3  o  13 cu  CH  cd  cu  CN  OX) CU  •8  %  + bJ5 CH fl I  O  +  CU  CN c^j  JG  1  CH  o =3 cc cu  JG  «5 CU  rH  cu  cu ea oa  ca  i  CJ ca  ox ea  a  •o  6 cc  o  Vi  cu  r _  PL, CO  + Z  b O cd CH C cd o JC o ca 4>  '5?  4? 8  cu  CU  CH  c  SH  cu  U  o  Vi  •3  o  GO H <u cd 00  o U  cu  cu  JG  CU I  ec  <S  Vi  x  Q  £  I/O  ON  r~  oo  NO ^ CN  CN  Tt £ Tt S  00 CN  CN >  1  cu  a  fo  TT ^ NO S  NO O CN  Tt  Tt e£  ON sis Tt ^  O£N 3  Tt  NO O  CN^  CN  cu cu  cy  Tt  T3CU CO S_  S2  oo ^ 6 2  CN o CN  >n ^ ^ 2  ^  CNg  cN co  — in  CU 'c/3 J OS g bo ca  OX) £  d  "3  q  oo  d  r- ^  o  O ro  ^  g*  o  O N  CN  ^ O  oo  CO <o C„J O O  CN• r— ro g • o CN <N CN co  o  >n  CN O  CO co 2  m  Tt  NO  ON CN  -H TT TT  o  O  o  cd  00 cd  co  co co  CO  po  ON  Tt e£ vo g=  ^  d S  ^  CO  U o >> CC  T3 co  cu cu  £ O  3 V  J  ca  d  L. £ ,  o  T3O  >-H 2« .5  OX C  cu CQ  u  2. £  CN  Tt CO  o  O  ai CD bO cd  ai ai cU <U M) bJ) cd cd H-» H-> in c/i  CU  2LH  ai  CN  CN  U,  UH  o o  cd  cd  cd U T3 3 T3  cd  ai 115  O  —I  u  H «« Tt  O co -o 3 T3  O  t~~ JS5 o 2  2 l  co ^  CO CN  O  ai CD cf  ai  ca 00  CN  cd o  9  3  O  u 3  O T3  bo cd  S i CN  00  6g  5f5  dCN C1N  OO  NO  T-H r r  CN  _ J cs  •  CN  ^ ES CN 00 in o  o  PCCD bfi  cd  bfi «> £ CN  ««  ~H  do  O  u T3 1  tflo  cd  1  ON o co  c o r-~ c o CN  Si  © d O  S i  CN  1/0  00  CN  O  co "~>  ^  o  10 CO  CN f  ESS  co  ON fS CO iS CN ^ O ^  sS  2 o  O  Si  o ^ o i  co o  O  3?  VO  T-H  fi  rt o\ 00  °°. g?  CO  1 0  co ON co oo  °1 g? CO  d g  o  PH  <  CD oa  cd  ««  a on 4H  3  3 O T3  116  in  CN  CN  00 CN d  d  g= CO ES co o  ^co ESo  ©  T-H  ON  m  CN  d  ^ E£ co o  r-H °  r^H  NO g^  CN COO  O o  og  ojg  r-H  ON o CN  O  O  0  O  0  bfi  CD  c o &s 0  g?  CO CN °  cd  00 g,  CN  OO  rt  CCCD  PC  cd -*->  SP  I  CN  4  cd  u o  PC  PCCD  CD  bO -cd »-»  CD  1 CN  Q  U  3 33  3  O T3  PC  -*-»  c/3  1 CN  NO ^  CD  3 O  Table 7.6: Changes i n treated water quality, in both the 1-stage and 2-stage back-end R O , deepwell, ion-exchange configurations, triggered by given alterations in raw water and effluent plant outflow chemistry.  Treated water chemistry Sodium Chloride DOC 3  Chemical change  Model  Sulphate  Total CO3  (mg/L)  (mg/L)  (mg/L)  (mg/L)  (mol/L)  81.9  50.5  2.4  6.1  3.1 x 10-  1-stage R O  43.3  37.1  7.5  7.4  4.7 x l O "  4  2-stage R O  42.0  40.5  12.5  10.2  4.7 x l O "  4  1-stage R O  43.4 0%  104 180%  18.0 141%  7.1 -4%  4.7 x 100%  4  2-stage R O  41.6 -1%  106 161%  31.4 151%  9.6 -6%  4.7 x l O " 0%  4  1-stage R O  84.4 95%  18.9 -49%  4.6 -38%  7.4 0%  1.4 x l O " 190%  3  2-stage R O  80.0 90%  24.6 -39%  7.9 -37%  10.1 -1%  1.4 x 10" 187%  3  1-stage R O  43.3 0%  37.3 0%  7.6 1%  7.4 0%  4.7 x 10" 0%  4  2-stage R O  42.0 0%  40.8 1%  12.6 1%  10.2 0%  4.7 x 10" 0%  4  1-stage R O  44.6 3%  28.8 -22%  6.2 -17%  7.4 0%  4.7 x l O " 0%  4  2-stage R O  44.7 7%  24.8 -39%  7.9 -37%  10.3 1%  2.5 x l O " -48%  4  43.3 0%  37.2 0%  7.5 1%  10.2 38%  4.7 x 10" 0%  4  N o changes  Current system  Raw water - doubled C a & M g  b  - doubled S 0 & T. A l k b 4  E / P outflow -doubled C a & M g  b  - doubled S 0 & T. Alk.b 4  - doubled D O C  b  1-stage R O  117  Table 7.6 (con't)  Treated water chemistry Sodium Chloride DOC 3  Chemical change  Model  Sulphate  Total C0  (mg/L)  (mg/L)  (mg/L)  (mg/L)  (mol/L)  42.0 0%  40.5 0%  12.5 0%  15.8 55%  4.7 x l O " 0%  4  1-stage R O  43.3 0%  37.1 0%  9.2 22%  7.4 0%  4.7 x l O " 0%  4  2-stage R O  42.0 0%  40.5 0%  15.8 26%  10.2 0%  4.7 x l O " 0%  4  3  E / P outflow (con't) - doubled D O C  b  2-stage R O -doubled C l  a  b  Calcium and magnesium treated water concentrations not shown since they were held at < 1.4 and 0.5 mg/L, repectively.  b  C a = calcium, M g = magnesium, SO4 = sulphate, T . A l k . = total alkalinity, C l = cloride, Total CO3 = total carbonate content, D O C = dissolved organic carbon  118  00  O  s 2  oo O c o o o SH  ^  CO > CO" 00  co  & 43  o  ^3 co  »H  CJ  oo  -*-»  e o  • H  00  O P-  co  s O  00  >  CJ  CO  c3d 3  in  co cd CH  cd ••a CO s  & O  ca OO  o CO  SH  CO  ^H  3  ya  CH  co  43  O cd 3 O >H 3 ••P bo  oo o oo fi CH O ime  t—H  a, Tj 00  C  C/3  U  pa  6  00  CD  CO CO e o c 3 O o 00 o Ja ^ S3 & CJ u s 0) CO T J £ o c X <D ? _ e i O 73 •c S O <= 53 > O co m o c II CJ 60  •9  #  TJ C  CO  0< D CJ —I CO  II  •  X  119  fi cd E C  CO  fi w < N  3  m  cu s3 61)  Z E D system with ion-exchange softening  /Product wateiM ^ tank  Raw water storage tank  ZED equipment  Hot lime treater  Polishing Pond  Effluent Plant Lime Ponds  z  FNGP  I  Multi-media filters  Ion^ *f exchangers J  Treated wateA tanks J  Multi-media filters  Cartridge filters  pH adjustment  Z E D system with nanofiltration softening  Raw water storage tank  Hot lime treater  Nanofilters =l  ZED equipment  Lime Ponds Polishing Pond  FNGP  Effluent Plant  3  Treated water tanks  Figure 7.2: An illustration of the changes in equipment and flow patterns in a given Z E D system using nanofiltration instead of ion-exchange softening.  120  121  Polishing Pond  Lime Ponds Effluent Plant  FNGP  Pretreatment network pH adjustment  Reverse Osmosis filters Product wateA tank J  Solid waste Waste steam  Figure 7.5: A simplified illustration of a 1-stage RO, BCS ZED system.  123  Polishing Pond  Lime Ponds Effluent Plant  FNGP  Pretreatment network  I  pH adjustment  pH adjustment First RO stage ^ ^ ~ ^ Z ) — • ^ P r o d u c t water\ tank J  Second RO stage  Solid waste Waste steam  BCS assembly  Figure 7.6: A simplified illustration of a 2-stage RO, BCS ZED system.  124  8.0 ZED IMPLEMENTATION AND IMPLICATIONS The purpose of this section is to describe the sequential changes required at the F N G P to transform it into a Z E D facility, and the rationale for, and/or consequences of, each step.  S T E P 1: Check the accuracy of existing flow meters The accuracy of some of the F N G P ' s flow meters has been called into question several times in this report. Specifically, the raw water inflow and treated water outflow meters on the F E S s appeared to be mis-calibrated (see Section 5.2.1). Several Westcoast personnel have also indicated that the leak detected at the effluent plant may have been caused by incorrect flow readings instead of actual water losses (Bruce Kosugi, personal com.) These problems need to be investigated and, if necessary, corrected. A n accurate and precise water monitoring system is vital to the Z E D project. Only with such a system can the validity of the findings described herein be authenticated. Furthermore, one has to be able to properly assess water flow changes predicted to occur in Steps 2 through 7.  S T E P 2: Reuse the 8 psi steam venting off of the deaerators A l l of the 8 psi steam generated in the deaerators should be captured at its point of origin. If the hot lime treater is on, then the trapped 8 psi steam should be cooled with a counter-current heat exchanger using raw water heading into the hot lime treater. Using a heat exchanger to cool the 8 psi vapor w i l l ensure that raw water temperatures reach required levels without having to inject 8 psi steam directly into the lime treater. When the lime treater is "off-line", the 8 psi steam should be converted to liquid in an air-cooled condenser; the same type that is already in place at the plant (E/F Manual). To maintain current raw water dilution rates, approximately 170 m /day of 3  condensed 8 psi steam should flow into the hot lime treater when it is in operation. Remaining water should be returned to the hotwells for reuse as boiler feedwater.  Reusing the 8 psi steam w i l l substantially reduce both the flow of wastewater and the flux of contaminants through the lime ponds, as well as the demand for treated water make-up (see Section  125  5.2.2). If this action were carried out in isolation and the plant's wastewater continued to be discharged to the F N R , the former result may cause permit non-compliance problems. Effluent from the lime pond is used to dilute outflow waters from the effluent plant. A s the volume of available dilutant drops with 8 psi steam reuse, wastewater released to the F N R may no longer satisfy regulatory guidelines. Sealing the 8 psi steam leaks w i l l reduce raw water demands and improve the efficiency of the existing water network, hence its importance to the Z E D project. On its own, this action also has the potential to disrupt current discharge practices should the expected decrease in lime pond effluent trigger non-compliance of the plant's wastewater flow, should it continue to be discharged to the F N R .  STEP 3: Collect water flow and water chemistry data Once the 8 psi vents have been sealed, plant personnel should collect water flow and chemical data to evaluate the validity of the simulator's predictions. If-the water network changes as expected, the system should continue to respond accordingly as Z E D equipment is added. O n the other hand, i f the resulting flow patterns are significantly different from those predicted by the simulator, the model should be corrected and reworked to reassess the benefits of a Z E D program.  STEP 4: Bench-scale and pilot-plant testing of pertinent Z E D equipment Small scale testing of Z E D equipment, specifically R O membranes and a B/C, w i l l allow for a true evaluation of the robustness and resilience of the available technology to produce clean water under field conditions. These experiments will also provide a better understanding of the required pretreatment trains and energy demands of each Z E D process. The resulting data can then be used to evaluate the feasibility of proceeding to full scale Z E D implementation.  S T E P 5: Installation of a separate domestic feed pipe on the raw water pipeline To prevent cross-contamination of domestic feedwaters with recycled wastewater a separate pipeline should be attached to the incoming raw water line. Raw water w i l l then travel directly into the domestic system without contacting reclaimed effluent. Plant personnel have already identified  126  a connection valve on the existing system where the new feedline could be connected and the equipment necessary to set-up an independent domestic feed pipe ( Z E D Report). S T E P 6: Attach R O filters to the water network (if applicable) Regardless of whether the chosen Z E D design is a B C S or deep well R O configuration, it may be desirable to install the R O filtration system before either a deep well or B C S assembly is purchased or installed, and to operate die plant with only the R O units attached. R O technology is cheaper than the B C S and possibly a deep well. B y running the plant with only the R O vessels attached, the plant can examine the potential effectiveness of a full-scale Z E D program before larger amounts of capital are invested in the project. Furthermore, as indicated by the deep well Z E D simulations, a smaller waste disposal system w i l l be required i f wastewater recycling starts with only the R O filters in place, since wastewater production rates w i l l drop as soon as reclaimed wastewater begins to cycle back through the plant (Tables 7.1 & 7.4). Starting the Z E D process after installing only the R O technology should, therefore, highlight any potential limitations of a full-scale Z E D program prior to purchasing the more costly final disposal equipment, as well as reduce the size and cost of these expensive systems.  Operating the F N G P without a means of disposing of R O concentrates on site w i l l necessitate their discharge to the F N R . A s the R O waste stream w i l l be more concentrated than the current F N R discharge wastewater, a special temporary discharge permit may be required. Alternatively, R O concentrates could be diluted with raw water to meet current regulations, if they indeed prove to be too contaminated to be released on their own. The advantages of beginning the Z E D program with only the R O equipment in place must be considered with due respect to potential R O concentrate disposal problems.  S T E P 7: Install a B C S or deep well (whichever is appropriate) Constructing a deep well w i l l complete the transformation of the F N G P to a Z E D system. Concerns about wastewater disposal now shift from the F N R to subsurface migration. Z E D implies that no liquid waste w i l l leave the F N G P . The deep well, therefore, has to be built to  127  ensure that contaminants transferred to the subsurface do not migrate off-site, a difficult and potentially expensive task.  Similarly, although a B C S assembly w i l l produce a solid, rather than a liquid, waste, the waste stream w i l l still require appropriate disposal. The generated solids w i l l be water soluble; i f they are left exposed to the elements, they w i l l readily re-dissolve. Should the solid waste liquefy and drain into the F N R , the primary objective of the Z E D project (to ehminate the flow of contaminants from the F N G P into the F N R ) will not have been met. Furthermore, the discharge of previously solidified contaminants into the F N R may prove to be more harmful to the river's ecosystem than the plant's current, relatively inert outflow, since the collected waste would be carried into the river during infrequent rainfalls or snow melts. The flux of material entering the river would be much higher during these storm events than it is now. For these reasons, solid waste produced from a B C S Z E D program cannot be stored in exposed above ground stock-piles.  Burying the solid waste may not, on its own, constitute a sufficient disposal mechanism. Water percolating through the cover layer w i l l cause some of the underlying solids to dissolve. Unless the disposal pit has been adequately lined with an impermeable barrier, the nowcontaminated water w i l l continue its downward migration until it encounters a groundwater flow and subsequently migrates off-site. A s previously indicated, off-site migration of wastewater violates the principal of a Z E D facility. Although, by regulatory standards, the solid waste generated in a B C S Z E D system would not be a hazardous or special waste, it clearly must be handled and disposed of correctly because, i f it re-dissolves and exits the F N G P compound, none of the original objectives of the Z E D project will have been met.  Transforming the F N G P to a Z E D facility is a relatively straight forward process. There are, however, consequences associated with such a conversion which must be considered. Final waste management is a critical issue. A l l the plant's wastewater is currently treated on-site and released to the F N R . Waste products from either a B C S or deep well Z E D design would, on the other hand, need a far more stringent disposal system. Waste management would require the constant  128  . attention of plant personnel as these wastes would be retained on site indefinitely, unlike currently treated wastewater.  129  9.0 P O T E N T I A L L I M I T A T I O N S  The analyses described herein, from constructing water balances and identifying opportunities for optimization to developing a computer model and choosing the most suitable Z E D design from the resulting simulations, are all ultimately based on the original water flow and water chemistry data collected at the plant. There are potential limitations to these data and the way in which they have been used which need to be considered. First and foremost, the data may not be totally representative of the true situation at the F N G P . Some of the data were derived from assumptions and calculations rather that from actual measurements. Furthermore, only average values were utilized in this investigation. These limitations, as well as those associated with the computer simulator and the Z E D design selection process, are discussed below.  9.1  Non-Representative Numbers  9.1.1  Flow data  The flow data used to characterize the F N G P initially appeared to contain some unrealistic or non-representative values, as illustrated by large discrepancies between some metered and calculated flow numbers (e.g. Table 5.10). Replacing problematic metered data with calculated values ehminated most of the inconsistencies. Plant personnel have repeatedly reviewed the constructed water balances, and it is unlikely that any serious flaws continue to exist. 9.1.2  Chemical data  The inclusion of non-representative chemical values within this study is possible considering that several areas of the plant were incorrectly sampled or described by only one or two samples. A large number of inconsistencies were indeed observed in the initial mass balances (Tables 5.4 through 5.8). A re-examination of the water system indicated that water additives and other contaminating agents had been overlooked and that the characteristics of the mis-sampled waters could be estimated from information in several operational manuals at the plant. When the mass balances were reworked with this new data, a number of the earlier discrepancies disappeared.  130  The corrected data set seemed to adequately detail this facility's water chemistry. Further sampling and subsequent analyses w i l l , however, be required to fully test this hypothesis.  9.2 Sample Variability 9.2.1 Water data A l l water flows were expressed as daily averages, including inconsistent pathways such as blowdowns from the boilers, ion-exchangers and hot lime treater. This u'ansformation was necessary for the construction of the water and mass balances. Flow variability does, however, become important in sizing the required Z E D equipment. The treatment system has to be designed to handle the largest expected flows. One reason for focusing the Z E D program around the F N R discharge, instead of individual drainage points, was to avoid using costly, over designed, cleaning processes which would have to be big enough to treat large, but infrequent, feedwater volumes. The lime ponds and effluent plant produce much more consistent outflows. Nevertheless, the. volume of wastewater discharged from the plant is not constant (Table 5.9), nor, according to plant personnel, is the amount of treated water lost from the thermo-oxidizer (Shang Su, personal com.). To assess the potential impact flow variation may have on a Z E D configuration, a sensitivity analysis was performed using the back-end, 1-stage R O , B C S / I - X design.  Some flow changes, such as increased treated water losses to the stack, did not significantly alter the size of the required Z E D equipment (Table 9.1), although they produced large changes elsewhere in the system (e.g. increased raw water demands and/or solid waste output). O n the other hand, increasing other flow paths to account for observed variability did indeed necessitate a bigger Z E D treatment train (Table 9.1). A s illustrated by these findings, the chosen Z E D scenario w i l l have to be designed appropriately to account for water flow variability.  9.2.2  Chemical data  Varying contaminant concennation will similarly change Z E D equipment sizing requirements. Doubling raw water calcium and magnesium content, for example, resulted in an 11 % increase in  131  R O feedwater flows in the back-end, R O , B C S / I - X models (Table 7.2). The higher calcium and magnesium levels triggered increased softener and boiler blowdowns, which then had to be treated in larger Z E D vessels. Clearly fluctuations in both water flow and water chemistry must be considered when designing the final Z E D program, as they w i l l likely affect the sizing of the required equipment. Apart from some testing on the effects of variability, this study was, in the main, restticted to initial design and comparison work, and, as such, did not incorporate actual plant variability into the analyses.  9.3 Computer Model Although all bugs appeared to have been removed from the computer simulator prior to its use in evaluating the proposed Z E D designs, there are numerous assumptions built into the simulator. They range from the obvious (e.g. chloride levels in the lime treater product waters equal those in the raw water) to the potentially erroneous (e.g. treated water from the ion-exchangers w i l l always have a calcium concentration of 1.4 mg/L). The value of the model's output is dependent on its ability to mirror the real water system; i f the simulator does not react to change the same way the actual water network would, then it has no predictive value. The realism of the model is therefore dependent on the assumptions and calculations used in its construction. If these "building blocks" are valid, then the results are valuable. The validity of the model, its output, and the resulting conclusions remain unproven at this point. In other words, although the simulator reacted as expected to given changes in the virtual water system, there is no way to know i f this is how the plant's actual water network w i l l react until the same changes are made at the plant. The predictive ability of the simulator should therefore be further examined after the 8 psi steam vents are closed.  A more obvious limitation of the computer model is that there is no time lag incorporated into the system. The lime ponds, effluent plant and polishing pond have hydraulic retention times of 5, 20, and 1 day(s), respectively (E/P Manual). Changes in the water distribution network would not occur as rapidly as they appear to in the model. Calcium pretreatment systems were also never  132  fully incorporated into the model. The extent of included pretreatment was the removal of calcium from R O feedwaters, and its inclusion in the R O concentrate stream. Other influences from the removal process were ignored. For example, regeneration wastes from (say) an ion-exchanger or chemical changes resulting from the use of an anti-scalant to immobilize the problematic calcium were not accounted for in the simulator. Although then absence undoubtedly alters the absolute -  precision of the m o d e l , it is unlikely that the inclusion of these small missing flows, and/or chemical changes, would have changed the overall conclusions of this project.  9 . 4 ZED Design Evaluation The Z E D design selection process included a general discussion of system price. The cost of a particular Z E D program was limited to the capital investment required to purchase the key pieces of equipment, including the R O , B C S and/or N F units. R O pretreatment costs were limited to mixedmedia filters and ion-exchange softeners (Appendix G). Although cartridge filters, chlorination and dechlorination stations, as well as p H adjustment stations were included in several Z E D diagrams (i.e. Figs. 7.1 & 7.4), it is unclear at this stage what pretreatment systems w i l l be needed at the F N G P beyond a mixed-media filter and inlet softener . A s a result, no cost estimates were 1  made for these other units. They were, however, included in the illustrations to indicate that an R O pretreatment train is likely to include several different processes as suggested by Applegate (1984), Pohland (1987) and Suemoto et. al. (1994).  Aside from certain parts of the hypothesized R O pretreatment trains, deep well installation, solid waste disposal and general system operating costs were never evaluated. Given that this study was initiated as a "first look" into transforming the F N G P into a Z E D facility, the reported costs should be sufficient to allow Westcoast personnel to decide i f a Z E D program is feasible and which particular option to pursue.  1  Simulator output indicated that salt precipitation in an R O unit was inevitable without inlet  softening, and the presence of algae and other suspended solids in the F N R discharge w i l l necessitate a R O pre-filter.  133  9.5  Conclusion There are potential limitations inherent in this investigation. The data base on which this report  is founded may contain non-representative information. The computer simulator used to test the 18 proposed Z E D designs is a yet untested model of the F N G P ' s water distribution network which instantaneously adjusts to any change, and a very rudimentary cost analysis was incorporated into the Z E D design selection process. O n the other hand, plant personnel have reviewed the collected data and seems satisfied with the reported values. The simulator continued to respond as expected to changes in the plant's configuration; the pricing system used herein was sufficient to fulfill the primary objective of this project, which was to show that the F N G P can be transformed into a Z E D facility for a given amount of money. Finally, sample variability, although not taken into account during this study for previously mentioned reasons, is bound to be important in Z E D equipment sizing, as demonstrated in sensitivity analyses described above. Further research should therefore be performed prior to installing a Z E D system at the F N G P to better define water flow and water chemistry fluctuations, as well as to better assess Z E D pretreatment requirements.  134  Table 9.1: Changes to the configuration of the back-end, B C S , 1-stage R O , ion-exchange design with various flow alterations.  R.W. flow (m /day)  Calcium pretreat (mg/L)  RO f.water (m /day)  B/C f.water (m /day)  407  48.2  282  141  14.1  415  N o 8 psi steam reuse  110%  146%  26%  26%  25%  68%  Double T / O losses'  48%  79%  7%  7%  7%  24%  0%  -44%  39%  39%  39%  36%  47%  -  81%  81%  81%  77%  138  0.0  240  120  12.0  234  N o 8 psi steam reuse  275%  71.0  27%  27%  27%  103%  Double T / O losses'  130%  23.9  9%  10%  9%  42%  -76%  0%  41%  41%  41%  55%  -23%  0%  53%  53%  53%  16%  a  Flow change  3  3  3  3  3  3  Waste Products water solids (m /day) (kg/day) 3  Initial outlay No change  5  Double E / P ouflow  b  Double lime pond ull recvcle No change  5  Double E / P ouflow Double lime pond  a  b  R . W . = raw water; Calcium pretreat. = calcium pretreatment requirements; R O f.water = feedwater flow to reverse osmosis filters; B / C f.water = feedwater flow to brine concentrator  b  T / O = thermo-oxidizer; E / P = effluent plant  135  10.0 CONCLUSIONS Data collected from the F N G P indicated that operational water losses are greater than domestic wastewater production rates, so the plant can theoretically become a Z E D facility. The data also showed that there are 2 leak points in the plant's water distribution network. One was in the steam tracing lines, and the second one was within the effluent plant. It is doubtful that closing off either escape route w i l l be of economic benefit to the Z E D project; the leak in the steam tracing pipes is too small to be of any consequence, and recovering wastewater lost from the effluent plant w i l l only increase the flow of domestic wastewater into a Z E D system. The increased domestic flow w i l l not jeopardize the success of a Z E D program at the plant, but it w i l l necessitate a larger treatment system to purify the water and generate a larger final waste stream than the current F N R discharge flow. Unfortunately the-FNGP-will only be recognized as a Z E D facility once the leak at the effluent plant has been eliminated.  Direct wastewater reuse is limited to the 8 psi steam currently discharged from the deaerators. Collecting, condensing and reusing this water should significantly reduce raw water inflow and wastewater outflow rates, which w i l l simplify the design of the ultimate Z E D treatment train. There is, however, an inherent risk that reusing this steam may lead to the non-compliance of the F N R discharge stream, as detailed in Section 9.0 - Step 2. Due caution must be exercised i f the 8 psi steam is reused while continuing to discharge the plant's wastewaters to the F N R . Although water escaping from the thermo-oxidizer is another potentially reusable waste stream, further research is needed to detennine i f reusing this water w i l l compromise the plant's gas processing efficiency or the ability to transform this facility over to Z E D framework. Rather than tackling the remaining wastewater flows at their points of origin, the Z E D project focused on recycling the F N R discharge.  Eighteen prospective Z E D designs were developed and subsequently tested with a computer simulator. The best deep well configuration was a back-end, 1-stage R O unit with an ion-  136  exchange softener in the plant's front-end softening system. This design was estimated to cost $101 700 U S dollars, excluding the cost of a deep well. The best B C S models were the back-end, 1-stage R O and B C S - o n l y options, both of which maintained an ion-exchanger in the front-end softening system. They were estimated to cost approximately $1.61 & $1.79 million U S dollars, respectively.  Transforming the F N G P into a Z E D facility is, on its own, a simple process; the appropriate equipment just needs to be incorporated into the water system. There are, however, consequences to a Z E D program. The most important is final waste management. If a deep well solution is used, the well itself w i l l have to be build to prevent off-site migration of disposal wastes, a potentially expensive endeavor. Similarly, the'solid waste generated by a B C S assembly w i l l have to be disposed of properly to prevent any of it from resolubilizing and migrating off-site. Once a Z E D protocol is initiated, wastewater or waste solids produced at the F N G P w i l l no longer disappear with the F N R ; they w i l l remain on-site indefinitely.  137  11.0 RECOMMENDATIONS 1) Close the 8 psi steam loop regardless of whether or not a Z E D program is adopted at the plant, so long as this process can occur without disrupting current wastewater disposal practices.  2) Westcoast Energy Inc. needs to assess the viability of transforming the F N G P into a Z E D facility i n light of the involved costs and final waste disposal requirements.  3) If the plant is to be transformed into a Z E D facility, implement the Z E D program as specified in Chapter 8.0.  138  REFERENCES Abdula'aly, A . I . and A . A . Chammem. 1994. Groundwater treatment in the central region of Saudi Arabia. Desalination 96: 203-214. Abdullaev, K . M . , L A . Malakhov, L . N . Poletaev and A . S . Sobol. 1992. Urban Waste Waters: treatment for use in steam and power generation. Ellis Horwood, Toronto, Ont., Canada. 254pp. Alsakari, S., F. Kawamata, N . Matsumoto, H . Saeki and Y . Terada. 1977. Electrodialysis plant at Hatsushima. Desalination 21: 45-50. Applegate, L . E . 1984. Membrane separation processes. Chemical Engineering 64:64-89. A W W A Water Desalting and Reuse Committee. 1989. Committee report: membrane desalting technologies. Journal of the American Water Works Association 81(11): 30-37. Benefield, L . D . , J.F. Judkins and B . L . Weand. 1982. Process Chemistry for Water and Wastewater Treatment. Prentice-Hall, Englewood Cliffs, N J , U S A . 510pp. B o w l i n , D . and R. Ludlum. 1992. Case studies: zero liquid discharge systems at three gas-fired power plants. Pages 443-447 in Cooke, D . H , S . H . Borglin, H . W . Holland and L . S . Langston. 6th International Conference on Gas Turbines in Cogeneration and Utility, Industrial and Independent Power Generation - Houston, T X . A S M E , N e w York, N Y , U S A . Brew, C . and C . Blackwell. 1991. Ten years of "real life" operational experience of a zero discharge power plant in Florida. Pages 479-488 in 4th International Power Generation Exhibition and Conference - Tampa, F l . - Parts 3 & 4. Power-Gen, Houston, T X , U S A . Cartwright, P.S. 1991. Zero discharge/water reuse - the opportunities for membrane technologies in pollution control. Desalination 83: 225-241. C / D Manual - C and D Process Trains Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant. Chin, K . K . and S.L. Ong. 1991. A study of reclamation of sewage for industrial waters. Water Science and Technology 23: 2181-2187.  139  Cluff, C . B . 1992. Slow sand/nanofiltration treatment for secondary treated wastewater. Desalination 88: 53-67. Comb, L . F . 1994. Membrane technology for water treatment. Filtration & Separation 31: 223225. Conlon, W . J . and S.A. McClellan. 1989. Membrane softening: a treatment process comes of age. Journal of the American W a t e r w o r k s Association 81(11): 47-51. E / F Manual - E and F Process Trains Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant. E/P Manual - Effluent Treatment Plant Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant. Egozy, Y . , E . Korngold and N . C . Daltrophe. 1980. Waste water recycling by ion-exchange: 1. complete desalination. Desalination 33: 123-137. Eisenberg, T . N . and E.J. Middlebrooks. 1986. Reverse Osmosis Treatment of Drinking Water. Butterworth Publishers, Stoneham, M A , U S A . 271pp. Ericsson, B . and B . Hallmans. 1994a. Membrane applications i n raw water treatment with and without reverse osmosis desalination. Desalination 98: 3-16. Ericsson, B . and B . Hallmans. 1994b. Treatment and disposal of saline wastewater from coal mines in Poland. Desalination 98: 239-248. F u , P, H . R u i z , K . Thompson and C . Spangenberg. 1994. Selecting membranes for removing N O M and D B P precursors. Journal of the American Water Works Association 86(12): 55-72. Ganzi, G . C . , J . H . W o o d and C S . Griffin. 1992. Water purification and recycling using the C D I process. Environmental Progress 11: 49-53. Greenberg, A . E . , L . S . Clesceii and A . D . Eaton, eds. 1992. Standard Methods, 18th ed. American Public Health Association, Washington D . C , U S A . H i l l , R. and W . Lorch. 1987. Ion exchange. Pages 226-300 in W . Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.  140  Hrubec, J., J.C. Shippers and B . C . J . Zoeteman. 1979. Studies on water reuse in the Netherlands. Pages 785-807 in Proceedings from Water Reuse Symposium - Washington, D . C . - Volume 2. A W W A Research Foundation, Denver, C O , U S A . Huang, Y . C . and S.S. Koseoglu. 1993. Separation of heavy metals from industrial waste streams by membrane separation technology. Waste Management 13: 481-501. Hughes, M . , A . E . Raubenheimer and A . J . Viljoen. 1992. Electrodialysis reversal at Tutuka Power Station, RSA-seven years' design and operating experience. Water, Science and Technology 25: 277-289. Ikoku, C U . 1984. Natural Gas Production Engineering. W i l e y , N e w Y o r k , U S A . 517pp. Jacangelo, J . G . , J. DeMarco, D . M . Owen and S.J. Randtke. 1995. Selected processes for removing N O M : an overview. Journal of the American Water Works Association 87(1): 64-77. Jackson, J.J. 1980. Steam Boiler Operation: Principles and Practice. Prentice-Hill Inc., Englewood Cliffs, N e w Jersey, U S A . Jordain, P. 1987. Ultrafiltration. Pages 373-398 in W . Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada. Kaakinen, J.W. and C D . Moody. 1984. Characteristics of R O membrane fouling at the Y u m a Desalting Test Facility. Pages 359-382 in S. Sourirajan and T. Matsuura, eds. Symposium of the American Chemical Society - Philadelphia, P A . A C S , Washington D . C , U S A . Kalinske, A . A . , J.F. W i l l i s and S.R. Martin. 1979. Reclamation of wastewater treatment plant effluent for high quality industrial reuse. Pages 958-992 in Proceedings from Water Reuse Symposium - Washington, D . C . - Volume 1. A W W A Research Foundation, Denver, C O , USA. Kawahara, T. 1994. Construction and operation experience of a large-scale electrodialysis water desalination plant. Desalination 96: 341-348. Kawanishi, T., S. Matsumoto, Y . H o r i i and M . Masuzaki. 1994. Desalination for landfill leachates containing condensed inorganic salts. Desalination 97: 415-425. K o p p , V . , N . Tanghe and M . Faivre. 1993. Tertiary refining by nanofiltration of surface water in the Paiis region. Water Supply 11: 271-280.  141  Kosarek, L . J . 1979. Water reclamation and reuse in the power, petrochemical processing and mining industries. Pages 421-432 in Proceedings from Water Reuse Symposium Washington, D . C . - Volume 1. A W W A Research Foundation, Denver, C O , U S A . K o t z , J . C . and K . F . Purcell. 1987. Chemistry & Chemical Reactivity. Saunders College Publishing, Toronto, Ont., Canada. 1020pp. Larson, T.J. and D . G . Argo. 1976. Large scale water reclamation by reverse osmosis. Desalination 19: 421-432. Light, W . G . , Z . B . Taylor and A . B . Riedinger. 1984. Single-stage seawater desalting with thinfilm composite membrane element. Pages 247-260 in S. Sourirajan and T. Matsuura, eds. Symposium of the American Chemical Society - Philadelphia, P A . A C S , Washington D . C , USA. Marquardt, K . , H . Dengler and H . Hoffmann. 1987. Demineralization: ten years experience in producing high purity water by reverse osmosis, part II - operating and performance data. Ultrapure Water 4: 31-39. M e d i c i , M . 1974. Natural Gas Industry; A Review of World Resources and Industrial Applications. Newnes-Butterworths, London, England. M o r i n , O.J. 1994. Membrane plants in North America. Journal of the American Water Works Association 86(12): 42-54. Nalco Chemical Program - Section 1 of the Program Administration Manual prepared by Nalco Canada Inc for the Fort Nelson Gas Plant. Noshita, M . 1994. Reverse osmosis seawater desalination for power plant. Desalination 96: 359368. Osmonics. 1993. The Filtration Spectrum - Chart of pore size distributions for different membrane filters. Osantowski, R . A . and A . Geinopolos. 1979. A W T evaluation in 2 selected industries. Pages 283294 in Proceedings from Water Reuse Symposium - Washington, D . C . - Volume 1. A W W A Research Foundation, Denver, C O , U S A . Page, J. 1995. Economic recycling with aqueous cleaning. Electric Production 24: 34-36.  142  Pankratz, T. and K . Johanson. 1992 A hybrid zero liquid discharge treatment system. Pages 455461 in Cooke, D . H , S . H . Borglin, H . W . Holland and L . S . Langston. 6th International Conference on Gas Turbines in Cogeneration and Utility, Industrial and Independent Power Generation - Houston, T X . A S M E , New York, N Y , U S A . Parekh, B . S . 1991. Get your process water to come clean. Chemical Engineering 98: 70-85. Pierce, J . L . and S . M . Sbei. 1993. Zero discharge wastewater management at a 31 mw agricultural waste fired power plant. Pages 49-57 in Proceedings of the 1993 Industrial Power Conference - Denver, C O . A S M E , New York, N Y , U S A . Plant Modifications 1994 - Westcoast Energy Inc. internal memo prepared by Gordon Pink, Febuary 22, 1994. Pohland, H . W . 1987. Reverse osmosis. Pages 316-372 in W . Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada. Robertson, W . S . , ed. 1981. Boiler Efficiency and Safety: a guide for managers, engineers and operators responsible for small steam boilers. The M a c M i l l a n Press Ltd., London, England. 140pp. Rohe, D . L . , T . C . Blanton and B . J . Marinas. 1990. Drinking water treatment by nanofiltration.. Pages 707-716 in O'Melia, C.R., ed. Proceedings of the 1990 Specialty Conference on Environmental Engineering - Arlington, V A . A S C E , New Y o r k , N Y , U S A . Sawyer, C . N . and P . L . McCarty. 1978. Chemistry for Environmental Engineering, 3rd edition. M c G r a w - H i l l , Inc., Montreal, Quebec, Canada. 532pp. Schoeman, J.J. and J.F. van Staden. 1991. Evaluation of sealed-cell electrodialysis for industrial effluent treatment. Water S A 17: 307-320. Schoeman, J.J. 1984. The status of electrodialysis technology for brackish and industrial water treatment. Water S A 11: 79-86. Schroeder, C D . 1991. Solutions to Boiler and Cooling Water Problems. V a n Nostrand Reinhold, N e w Y o r k , N Y , U S A . 221pp. Shah, V . J . , R . M . K a v a , C V . Devmurari and A . V . Rao. 1993. Performance of reverse osmosis desalination plant in a rural area. Research and Industry 38: 27-31.  143  Shields, C P . 1979. Five years experience with reverse osmosis systems using DuPont "Permasep" permeators. Desalination 28: 157-179 Solt, G . and P. Foster. 1987. Electrodialysis. Pages 399-424 in W . Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada. Strauss, S.D. 1994. Zero discharge firmly entrenched as a power plant design strategy. Power 130: 41-48. Strauss, S.D. 1995. Optimize water-treatment economics at your power plant. Power 139: 29-34. S/P Manual r Sulphur Plant Operating Manual prepared by Westcoast Energy Inc. for the Fort Nelson Gas Plant. Suemoto, S . H . L . A . Haugseth and C D . Moody. 1994. Research experiences from operational difficulties Y u m a Desalting Plant, U S A . Desalination 96: 43-50. Taylor, J.S., L . A . Mulford, S.J. Duranceau and W . M . Barrett. 1989. Cost and performance of a membrane pilot plant. Journal of the American Water Works Association 81(11): 52-60. Turner, C D . and S.R. Kadubandi. 1994. D B P and hardness control by membrane filtration. Pages 344-351 in Ryan, J.N. and M . Edwards, eds. Critical Issues in Water and Wastewater Treatment - National Conference on Environmental Engineering - Boulder, C O . A S C E , New York, N Y , U S A . Water Treatment Manual - Front-end Softening System Operating Manual prepared by Nalco Canada Inc. for the Fort Nelson Gas Plant. Wethem, M . J . , D . H . Stone and S.S. Whipple. 1991. A method for increased wastewater reuse/recycle at a coal fired electrical power station. Pages 521-530 in 4th International Power Generation Exhibition and Conference - Tampa F l . - Parts 3 & 4. Power-Gen, Houston, T X , USA. Wiesner, M . R . , J. Hackney, S. Sethi, J . G . Jacangelo and J . M . Laine. 1994. Cost estimates for membrane filtration and conventional treatment. Journal of the American Water Works Association 86(12): 33-41. W o o d , F . C 1987. Saline distillation. Pages 467-487 in W . Lorch. Handbook of Water Purification, 2nd ed. Ellis Horwood, Toronto, Ont, Canada.  144  Z E D Report - Summary report compiled by L l o y d Scrimshaw (Westcoast Energy Inc. employee) detailing an "in-house" investigation into transforming the Fort Nelson Gas Plant into a zeroeffluent discharge facility.  145  APPENDIX A WATER FLOW DATA  146  N o S300 oo  •33  § .2  CN  r•O cn  r-  oo cn  Tt cn cn  Tien cn  Tt ON CN  >n cn  _  CN O O  O N  CN  CN  cn  CN >n cn  oo CN cn  ON cn CN  o 00 CN  lO NO CN  cn  Os in CN  ON i n CN  rCN  CN NO CN  CN NO CN  cn cn cn  cn  o cn  CN CN cn  NO Tien  CN cn cn  ON in cn  in oo cn  o  o  Tt T t  CJ  <u -oi n o o c ^ O T + i o i n o o r - ^ o o £ c r-~m^ONOr--[~~NONOinir)r—i  o o o o o o T cn m m ^ H C N f N l ^ t N ' H ' - l r H r H f S r - I N ^ r H r H t S O j  • - o' — 1  "O 1)  _  CO  T 3  c n O N O i n ^ O i n c n c N ^H^HNOcncN^Ht--'-<(N  «n ON  o o 2 ; ^ -  |  ininTtcNTtoinONCNcnoor-omr-oo  o  ©  s 3  S  ^ - ' C N c n T t m N D r - ^ o o o N  o  C N c n  N O _ . - . c n T t O N O O O N O ^ H T t N O  ^ o S ^ S ^ o o T j r - O N N O  in  i n m, m,  O N  O CN ON O N  0  CN  o  N O  oo  ooNcn^HiooNooooTt  T t - N o r - ' n N O N O  r - r - ~ r - - N O > o > o r - ~ o o T t ^ T t o o o o ^ H O c N r H H r t r t r t H r t r H N C N t N C N ' t N N N N  Q  t  S oo  C N CN t  O N  rt  N  O N  C  m  CN T t N O N O c N c n i n c nO M cs ^ H '  )Li  m r -  N  N  O  N O  r~  O N  O  N  T ti n N o r - o o o \ o ^ c N c o T t > n N o r - o o a N O r H r H r H r t r H C N l C N C N c N t N N l N N t N C N C n  > o 33  00 O & X i  S °  ^ c n O N o c n c N O O N N O r - - *—i o o i n o o c N ^ T t ^ H C N c n c n O • c n • c n C N <N • c n c n c n c n c o c nc n  r - ^ r ~ o O N O O \ T t c N O N c n c - > n > n c n o c - - O N O N a N T t r - - c N C N C N c n c n c N c N c N c N c n c n  T t 0O NO NO c N CN  r ~ T t T + c N c N c n i n O N ^ r - NO T t <-! T t NO O O C N ^ - H VO T t -  ^ \o —i o t~-- t CN CN T t o  O O O T + O N O N T t T t l O C N ^ O N  or-cnONcnoooNcnONcnocn vOTtcn^HcncncNcNNOr-ncNcN  •5 o in — 1 DJ  O  N N  i—i  O  O N N  O  r-  0O  N  O  in  N  O  a,  CO +-' c«  Q  3  r - r ~ O N ^ - ' r — i n - — " N O O O O O T t N O O N T t T t O N O O C N ^ - , _ < ^ , - ^ _ ^ c N C N > — '  O r-H  ^ c N c n T t i n N O r - ~ - o o o N  O  i-H  O  N  r  H  H  H  H  V  O  M  l  O  CN C N I—I  CN  N  T t oo »-< c n N c n  N C  C N O N  g r=  O  N  O  N  oo ON  ro  o o  f^_4.—HinoNONr--^in ^ n c i o \ H O \ a \ h ^ 1  c N c n - ^ i n N o r ~ o o o N O ^ c N c n T t i n N o r - - o o o N O ^ H H H r H r t H H r t ( S l O ) ( N N l N ( N C N t N t N ( S n C C )  cn ^  as o ON  V  o o o c N O \ 0 \ o \ o t - ~S t > -E r -E »  oo o c n O c n C  OcnoNcnr— Ocnr~oo h c n v o v o M r t x o c n  T3  ^HrtOocNcNTtr>.Ttr~-r--  >n cn cn  o  147  B o,  •55  gpl  vovocNONr~-a\cor--coinr--cNOr-^voo\  S ° o -23 CJ "a CJ T j  .5 o -J  c n i n c x > c N O r f ^ i n _  +  r f  r  ^ . c o o o o r - - r f  oo i—i cn  m  r f  cn NO <n cn cn  T-H  OO O  in in  v i  in ^  r~ VO  oo 00  VO  OO r f  < N  CN  C N  cn cn cn  rcn  C N  C N  oo i n i n h  T-H  ^  C N  o cn oo  ON  i n i/i  T-H  oo oo f vo  \o r  Cu|  CJ CJ  «J  co cn  T-H  ^ H  NO TH  r f  in  1—1  r~ r f  T-H  roo T-H  VO oo •—I  oo oo  cn oo  1—1  1—1  ON ON  CN T-H  CN  ON ON T-H  o m CN  o CN CN  ON CN  ON  as  oo ON 1—1  T-H  O  00  o rf  CN  as r -  N O r f in H T H cN O O ON TH CN CN CN CN H  rf  i—i  —  3  TS  fi  r-  rr,  ^  O S i r f £2 c n  c n ON OO cn cn  rf  CM  B Q  in ©  T - H r f O N o o « o o o r - T - i o v o  rf m  or~oN>ooint--r~oor~-  T-H  rf  oo in  m C N T - H C N T - H T - H T - H T - H T - H ^ H  T - H C N c n r f m v o r ^ o o o N  ON c o i n r f O N C N r~ cn cn C N ^ H  O N  T-H  in o H  CN  cn  r f « n v o r ^ o o o N O T H C N c n r f > n v o r - - o o o N O T H T-H T - H T - H T - H T - H T - H c N C N C N C N C N C N C N C N C N C N CO CO  5  CO in CO  H  in  CN  ON  VO  ON  CO  CO  CO  ON 0 0 rf  r~-  r f OS  s es C cu  S  E  cn  s  B  o,  •33 Ml vo o Sa T-H  & -fi  CO  C N c n 00 c o CO CO  vo r f  r» r f ON r f  a co  0  s  c  •fi o  D-I  J  in 00 H  o r-  Ct>  T-H TH CN  O Si  00  O N  00  vo r f cn  rr  o\ V O  o  i n  CO  S CJ ^  cn r f  in  t—  m ^  O CN  00 CN CO  *n C N  £ f  CO  CO  CO O CN CN r f  vo  C N  00 rCO  CN rco  r00 CO  0  in vo  r f r-  co H 00 00 v o c o  ON  CO  CO r f CO  0 i n CO  00 00 CO  CN i n CO  CO  r f r-  C - v o 00 c r f CO CO r f T-H T - H C N H  10  H  H  r  f H  CN  c o CN  CN T H C N C N  0 CN  <N O CN  CN CN CN  rf  T-H  CN  CN CN CN  rH  CN  O CN CN  0O O CN  CO T-H  ro  00 H  i n o  0 00 CN  H  vo H  H  H  T H \ o o O c O O r f O N T H \ o o O V O C N t ~ - 0 N 0 0 T H O C N C N O l n 0 N 0 N  in 00 CO  in vo o c-- c o c o o CN r f C O C O CN CN CN H H H  00 ON  CN  vo i n CO  os c n  c n c N 00 c n r ~ t~- o  CN  r-  cn C N  H  CH  CJ T H C N c n r f i n N o r - o o o N  O  T H  CN  CO  r f i n v o r - o o o N O T H C N c n r f i n v o r - o o o N O T H T  CJ  CJ  Q  148  H  T  H  T  H  T  H  T  H  T  H  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  O  C  O  B o, oS 3  •53 £o|  &^  S ° o .52 CJ "O  •is o J O J  CJ  oorrvoc^r~cNoor--oor-~ooinvocNr---ri- c n o r - - o o c N c n O N V O r - - 0 » o c n c n - O~ N r ^ O_ O _ r o o c NC N( NC rN ^r-c >oo o rr ~ N O _c x > r f o •o- c n c » c N r ~ c ^ C O C O C O C O C N C ^ C ^ ( N C N C N C N C O ( N  o\ o -. -.  5  «E  s  rf  s  _  -  -- — -  s  >0 v o  o o > o r j - c 3 N r ) - v o r - ~ o o o c n r f _ C N O O N O « O r f O O O O T - H c < - )  <ovootN'-Hirj(nr^TH\oo\mcNOcx3  r> >  H  >  u Bro  e  >OC«CNCNrNC<I^^^SvoONrfONr^cOTHCNVOCNCN  O  OS  VI  Q  ©  <—i CN cn  rr -  vnvor^ooosOT-HCNcn H f H H r H r H N N M N  >n vo r~ oo o\ o CN C N C N C N C N c n c n  CJ  C  ea c n s S TJ  CU 3  E  ti  o  N l n N M l n o o ^ O ^ H r t l n c < J H ^ n O T r t O ^ ^ O m ^ O o o n ^ ^ ^ c | C ^ ; ^ l o ^ ^ l n c e ^ o 1 • N H o n l n ' O c ^ H n > o c ^ ^ c « ^ o c ^ n \ O H N r t o c l cncncNcncnrfcncnrfcncncNcNcNcNCNcncNcNcNcNCNrfcn r  CM  s  i  o CJ  CJ T J  S c .fi o  ^ v o a ^ O M o o o o o \ m v l N ^ m \ o ; M M v o c ^ a H ^ o l n ^ o ( s c ^ l o \ o ^ n o M l / l c ^ ^ l n ' ^ M l n ^ » H N l n o o ^ o o l o c ) \ r ^ l f 1 0 N O \ l O ^ r H T H C N C N C n T H T H H ^ r H M H r H ^ H T H T H T H ^ T H T H - H C n C N C N C N ' - H r t H  T  ,  r  T  •J O J  TJ CJ  CJ ro  Q H ro cj  3 fi  <nocnt~~r^ooovocncNO\r^rt o a i c n r f ^ H i n i n m o ^ O H  ^  \  0  ^  ^  ^  t  0  0  ^  t  H  r  t  *  N  °  ^  ON  H  f  N  r-H.ot-~r--r--r---r-~r~<ncN  o  ^ H ^ O O O O O O O T - I C N  \  n  -  >  ^  r  t  m  0  OO OO CCN N CCN N C CNN O U 0  0  0  oj  «2 c3 Q  CNcnr)-«nvor^oooN  cNcnrf*nvor^ooo\0'- CNcn-si->nvor-oo ,-i^HT-Hr-HrHT-HHH^cNCNCNCNCNCNCNCNCN H  CJ  149  o  a  r- o NO ro t-- oo r1 0 T t CO CO co  T t »—1  CO  .3  O  VO  00  0 0  1—1  CO  T t  CO  oo o c- CN CN >o  T t T t  T t  CO T t  Ov CO CO CO T t  T t  VO in r-- CO VO CO CO CO  m oo o T t  5  Os  V) V)  CO  V)  1/1 OO O " 3 " v ^ oW ) w ^ i o r ^ v o^ ^J c C o l c o VL^ C"s| '—I o c nON o ol^J o cC oJ cC o ^ v SL/ o cCN v o Si-* v o<oJTT tT TT—tJ "c do r [— ^ i o ^ rOH N -C-N O l O O C N O C NCN O O N O N ON O OOC >OC ON O T Ct O< T O tV "~ O c < 1 —0 N— T t v O. — C » —t ^ -r ^ l O C > C N C O—e O— C ^—  S  O  OO Os Os OS CN CO  O Si OJ  o oo r- oo r- T t r- ros CN Os T t rrco co co Tot CO T t T t CO CO T t  Tt vo OS r- vo r-  >o  r o  o "O^HVOCO"—iCOCOOSOOTt^HCOTtOOOSOOCN O r ~ - r - r ~ - r ~ < o v o v o « r ) C N o o o o r - - i o o c o c o r ~  v o r - - o o v r ^ o v o t - - r- in vo oo  ^ C N  CO T t  *n  VO C  OO  OS  m o o o r ^ O N o o o N r ^ o O O O N ' - < C S H H H r t ( S  vo  CO T t O v co l O T t IT) CO T t CO  CN VO v o CO ON CN T t  r- r- r- r- co o  o ^ c N c o T t i o v o r ~ - o o o N O ' - < c N c o T t i o v o r ^ o o o N O ' - <  5?  S3 ^c o• v vo oc No O^ r N- vmo oc oo OH' —n l ^o .o Ho c( Nl cON No omo lo no v• on v lo or -^- ^' —o i o> ow v oo >o On TMt co Nn> lr n) rO- vl on r ^~ •- o  .3 o  <U  •5  J  ^O  Tt  CO CO T t CO CO T t T t T t C O > O T t T t C O C O < O C N C O C O T t  cocoeococococococOTt  T3 v O C N T t > - ^ C ^ T t v o r ~ O N V O O v O N ^ C N C N > O V O V O O O C - - - C O O s C N ^ C O V O c o ^ H  T„t  OO  ^ - ' o, 0C vN cC ON ^0 C\ -N c-N— 0 0— 0 0 CC NNCON OC ON Cc N0 0C vN C^ HN C^ N- <C CN CN NT Ct OO ^O C0 N0 ^O C0 N0 v 0 0 N 0 0 r - ~ O C0NN 0 0 --O \ Os oj _  "S  H  CO  3  o  S  OO T t IT) CN l O T t C l r t O O I C l O N t N V l H H H H C V ! O CO CO CO 0 0 oo oo o o o t - - r - - c N o r - v o v o v o v o o o _ ^ H t N M ( N r H f S t N M r H r t r H r H r H r H C N ( N l  ' O W  VO'  Os l O '<—i  IM ^  X^J  ' ' I'l H H cn  vo vo V  W  ^  ^  ^  _^ O U  r-n  _  Ol O  \  r-1 V O  C-» r ON ON U> v ^o  H h V O T  f~ ( f ) O t  T  t  t~n  0  0  0  0  0  H 0  Ol 0  0  t-- o W J o v ^ o r r-  c^oscovovocoX^voc^^c^ooeNSSSScococN^orrSTtr^TtcNr^ O Si O J cj Q  H  (  N  t  n  ^  i  n  v  o  h  M  O  \  Os  O  r-H  < N c o T t > o v o r ^ o o o N O ^ c N c o T t > o N o r ~ - o o o N O IHHHHrtHCN!tN!ClN(NtNNNN(N!fn rtr  150  •55 £01  a  » ^ o o o l n N ' 0 ^ t n o o N ^ o o N H » ( n o o l O o o n x o « 0 « ( ^ m ' t > n > o o & - 3 > O r O C ~ - C ? \ C N N O N O r - s l C N C 7 s ON O S O V~) OO r-~ > T ) \ 0 ^ O N 0 m 0 0 O N 0 0 N C N N 0 O ' O C N C N C N C N e o c N c O T t T t c O c O T t c O C N C S C N C N C N C N c o c N C N c o c ^  § -S3  CJ ."O  ID 73 •3  O  —1 3-1  ^ O r ^ • ^ ) • ^ r  ;  | • [ s o t N H C o ( ^ H H J O H O H H c o N O O H H » J l n o \ T t C ^  T3 , _ S  CJ  —  +  O s c o O [ " - - - 0 \ ^ T t i / - ) V O O O r ^ a \ ^ H — < c O C N T t . - H V © O O O O O o O c N O \  cNr-~coovoor--cNTt^HO>cooscoooo ^ ^ H ^ . - H ^ H ^ H ^ H ^ H ^ H . - H r S l e N C N C N C N C N  " 3 r - C N oo \ o o o> o T t r t < - H i o o o c > c < ) \ o r - o o o r ^ T t r o o o u ^ T t r - H r — T t r - o r - i o T t r ~ - O c N O ' - < O N a \ O O O C H O V O V O h O i V O O O O O M V O ^ H O C I r H l n l n h C O O O W H O. - H c N c N C N C N ^ H ^ - l ^ - < r - < T - H ^ < ^ H ^ H C N C N C N ^ - l - - < ^ H ^ H ^ H ^ H C N  O Si 4) 03  Q  O  po  3  c c cy  o?  73  o OH CJ 00  s o  u  1) - a V O ^ H T t l O C O O O C N O O C O O O l O T t  c o r ^ o c » o o i o c o c N T t v o o s o r - - c N N D N O O N o c » i n v o r ~ r ^ © e o c » T t o c o o r - - c N < — i i - i ^ o H H r H H r H r H ( N l N H N ( N f M N H t M N N C N N  S c  •3  —1  O N O i H N M O v O h h V O v O O ( S N r H N C N N N r H H r H H H  aj  T3  oo T t o \ r - r ~ C N C N CO C N o  o  to  c ^ c o r ~ - c N r ~ - o ^ a \ v o ^ - i > o o ^ ^ c N a \ o o v o r - - ^ H > o o o c o a \ c o v ^ T t T t c o u ^ v o i o v o v o r ^ o o c ^ o o r ^ ^ c o c o c N c O T t T t c o ^ H  CJ  —  3 «  O Si ^  a\ v  o  r  ^  r  ^  v  o  v  o  o  *  vo  H  >n  - H C O c O - H r - H ^ ^ H  a  N  CO £ ^ H C N c o c N C N  T t O CO  T t CO CN  2  T t in io h  OH  o 03  Q  c N c o T t « n v o r - o o o \  O  ^ c s c o T t < o v o r - - o o C T \ 0 ^ c N c o T t i o v o r - - - o o o N O r H r t r t r H r H H r H r H N C S C N I N C N t N C N C N C N C N c n  151  °  aepi s°  & CJ, •33  o  O . 43  o -22  y  T  •—i  J  ss •3  c-- o  O  N  r  r  c —  vo C  N  r  r  V O T - H C * ~ ) [ — O  O  v  o  ^  oo m  1  o ^  ON-^H  0  2  0  rl- o o *  >0 CN ON  ON  OO  ON r r c o ON O O m  c— r -  ^  CN  O  —I oJ -H aj c-  1  _  a  r— r(-rr O  -H  ca  t — r - c o - H v o v o ^ O N r f r f - t V O O O ^ r n  rr  ON  ro as  O  o  i  ON H  c — — O  c— tr—• O rf  O N O N CO H H in  <j* 2;  N  ^  ro  ca  "3  C  o o o o o o - H - H c o > o i r - ) > o < o o N ' r i O N C N r f c N  c o O Si oJ CN  o o o N v o c o r ^ r ^ r - r - ' H r ^ C O C  O  ~ H —H —H —H H  T-H T-H r-H  c  rH  >  =  ^  .  r ^ v o c N ^  O  O  C  N  O  O  C  N  I  O  O  V  D  O  O  T  '  O  N  C  O  ^ ^ o c N c o c N i o o o c o ^ r H  r  cN CN CN CN  C O  CN CN CN CN CN CN CN ^ H  H QI^  CJ  Q  Vi  H  r  s  c  n  ^  i  n  v  o  ^  w  m  r  t  r  H  r  <  H  r  H  r  t  r  (  H  H  H  N  N  (  N  N  N  N  N  p  )  N  N  n  © CH CJ oo  C T J  co  C cu  s  CJ,  o 43 o co  CH  S  S co  N D  O  N O  ON ON  C —  H O N O N 0 0 r r c o r r c o  C O  CN  3  ON - H O Or f ON r f t — VO ON C O C O CN C O CN rf r f  S  O m C N C— - H r f V O O O O N O r f O O O r - - V O r? i o O v o o o c N » o v o v O r H r o c o c O r f > r ) O N V o c O c O r f r f r f r f r f c o c N c o c N T H c N C N C N C N CO  o CJ CJ  S «T- -HH  •3 HJ  T  J  o oj  VO IT)t — o o O N O N O c O O s T H O O r f O v O C N c O O C N V O c O c O C N O O C O O O T H O O r f T - i c o r - o o o o r f r fOO T H O C N O N T H [ — T - 4 T H H H H H _ H _ H _ H - H - H _ H C N C N C N T H C S I C N T - H C N T H T H  CJ • 3 S3 H  * E >o r~ >o CJ H rf  J-  1  co  H ca  3 O Si c  O.  cj H  vo  O_ r—  o o c o  VO _ . CN . O 0 N T H r < - > r f C N 0 0 0 0 O C N r f t — N 0 c o c o r ~ > 0 > 0 O N r ~ T - H ( N i c N v o i r ) C N O c o > o v o i o > o r f i o o o v o r ~ rt - H C N C N T H T H C N C N C N C N C N T H T H T - H . v . v .  CN  O  £5 ^ 2; °>  s  rf r f ON ON  2  H H  °  N  C N C N C N c O C N C N C N C N C N - H  c ^ l n N o ^ ^ O T H O O V O CN C N C N  R  F  ^  ^  N  ^  H . H H » ^ c ^ ^ V O O N O N  ^ H C N c o r f i n v o r ~ - 0 0 O N  O  H  n  . O  N  N  c M o o r n o o l £ l O H o o l n r ^ l ^ o ^ o ^ o o O r^f Cr -N T ^ H ^C N C N C N T H T H T H T H C N C N C N C N C N T OH N T rH f  CN  C N c O r f i o v o r - o o O N O - H c N c o r f i o v o r - o o O N O H H T  H  T  ca  Q  CN vo vo  ON < 0 T^,  60 3  <  152  H  ^  H  T  H  T  H  T  H  T  H  T  H  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  O  C  O  o c3 O 1 )  ON  ON  T t  T t  in  in  cn ON vo ON OO CN ON CN m O N ON NO ON T t >n t- ON CN r- oo T t T t cn cn cn cn T t cn T t T t cn T t  T 3 O  4)  1) CO  CJ  «  i — i in in T t CN *—1 in m >n in OO r- oo OO OO cn ON CN CN CN CN cn cn cn cn cn T t cn cn cn cn cn  r-r--OcNOcncncnr-t-~-NONOONONONONON  c n c n O N r - ~ c n c n r - - r - - r - - i n r - - r c n c n ^ T t c n c n T t T t o r ^ o o  NONONOONOOOOCNCNON_,_,Cnt~-r--C--(~--NO l  4>  to Q  o  T t  inOCNCNNONOinoOCSCNNOCNTtOCNOOOONOOOOOOOOOOOONOCNNONONONO T t c > r ~ t ^ c N c N T t o p ~ c N O c N T t T t r ^ O T t ^ r ~ T t c n c n c n c n c N r - ~ o o o o cncNcNcNcncncncncNcNcNcNcntNcNcncNcncNc^cNcNcNc^  ooo^ooc^r-^r;r;cnTtTtTtTtTt ^ ^ O Si OJ c N c N c N - H c n c n c N c N ' - H  CA  r-<  7 3  Sc  •—  oo cn r - H ON r- CN ON T t r t cn T t  r  o  T t T t C N r ~ ^ . ^ . O N O N O N O N O N O  1  T t i n N o r ~ - o o o N O ^ c N c n T t i n N o r - o o o N O *— r—H < t—! T—( T —< cN C N CN C N CN CN CN CN CN CN cn  ^ c N m T t i n N o r ~ ~ o o o N  1  >  O  Z CU cn CU  N O O s T t v O T t c N ' - H . ^ + c N ^ _ ^ _ O O O N i n O H OO OO N ^ r - r - CN '— CN CN CN CN CN CN CN CN ^  3  l  1  l  ---•ONOOTtTtr^r^cnvooTt 1  CJ  •5 J  o  o  r-- i n m  T t  c n  2oN22^oooSoor~-r-  OH|  NO  O N  CN  i - "  r-  N  i  -  1  T3 cn c n CN O c n c n cn in  ca CJ  VO (N!  rH  ON O C N NO O Si rH CS (N rH  [ Scn O N in in in in in CN rH f ~ ( S f s [ Vin N O  T t  r Ht n  CN  OH  4)  -t—» r H N c n ^ i c i v O h o o o N CO Q  c N c n T t i n N o t ^ o o o N O - — ' C N c n T t i n N o r ^ o o o N O ' - ^ H r H H H H H r H r H N N N C N N O N N N M n t n  CJ  O  153  •33 S  £fl  "  M^ooNNtNnininavoinHHTtrtrHinmiri^vOHHfnNOOvoooN K^voovO(nOHO^<t't^o^'vtc^|'^•^i•o^HmHHHr.'!trtc<^ooovo^OM C N C N e o c N c O T t c o c N c o e O C N C N c o e O c O c o c O T t T t T t T t i n c O T t c O c O c ^  O  CJ  -o  i n i n N O i n o O O O V O N O N O i n r - - i n c N C N N O C N C N O O N O O O . — ' C O O O C S O N O C X J C X D N D C N T ^ r ^ t ^ O t ^ c o O O t ^ O O T t r ^ c N r ^ O C N t ^ O C N O c x o o o e o O O c O O O r i  O  •5 o —1 O H | T3  co T t T t T t • T t oo a\ o\ o j o o  <D  ^ ^ O N r ^ O N O N O N O N O N t ^ c ^ t ^ c n r n c n c n r ^ ^  i n  0  cj  E s  es  s  i ^  v  _  +  0  N O CO T t CO  +  i n o o o o c s o o o o r-» ON CN CO C N C N  ^ H O _ 4 . ^ 4 . 0 N O N N O N o o o N o ^ H i o r ~^- r ~^ - ON ^ "^ -^  O Si O J  CW  r  S S ^ 2 ^ n - n - 2 2 2 2 2 2 2 2 ^ o N o l  ON  _  OO  O N  N O O J T 2 r ^ H V O O O c o O O N r - - T t T t  o  > - < c N c O T t i O N O r ^ 0 0 0 N  Q  >—i C N c o T t u-i  N Or ~ o o o N O ' - ^ c N c o T t i o N o r - o o o \ o ^ - ' H r H H f S N C N l N t N | ( N ( N N c N C N l n c n  ON ON  5?  CO O CJ  i n ^ i n i n - r t T t c o o C N O N O N C N — H O N N o o o i n i n c N i n < - H . C. .N r ^ _ O . N ^ o -o -^ - < O N O N CO OO c v i c > c N ^ o o o i n i n T t c o - H i n r - - e N T t o o i n c N c N O ONN c o i n ' ^ N O C N C O C O C O C O C O C O C O C O C O C O C N T t C O C O C O T t T t T t ^ C ^O ^C ~O ^ C' O^ C~O~C'O~C^O C O C O C O C O C O C O C N  w in  •m  r- co  in  O  CJ  OJ  -a  NO  CN r CN  o £ c •o CN —1 QJ  NO o CN  CO CN CN  CN CN CN  O ON CN  NO o CN  CN CN  CO CO CN  i n CO CN  CN  OO CO CN  NO o CN  CN  o C3N 1—1  CN  r o CO  CN r CN  CN  CN CN CN  i n 1—1  NO o CN  CN cCN  oo CO CN  r oo CN  NO o CN  OO CO CN  OO CO CN  i n i n CN  NO o CN  CN CN CN  NO o CN  i n t--  T3  CJ c« CJ  O N O N O N ^ ^ ^ [ ^ O N O N O N I ^ N O C O C > C ^ C O C O C O N O O N O N _ ^ O N C O C O C O C O C O H  r  t  c NON O Si O J T t T t  B Q  H  S  M  O  N  ^  N  °  H  '  *  O O N O O ^ T t O O _ . O N „ ON ^ N O c o T t N o i n ^ 2 ; > - H  '-HCNcoTtinNor^oooN  ^  N  M  N  M  M  N  '  ;  '  L  o T t T t T t T t T to O N O N O N O N O N CN CN  H  H  in  O  N O  N  '  H  O N  R  H  R  H  o T t  NO Tt  R  T  o ON T t  *  ,  L  N  T t CO ON o o  o  o  CO 00  oo r- N O in CO  T t T t  C^  c N c o T t i n N o r ~ - o o o N O ^ c N c o T t i n N o r — oo O N o H H  H  CJ CJ  a  154  H  H  H  H  H  H  N  N  N  N  (  N  |  (  N  (  N  N  t  N  C  N  l  C  n  n  2 •S3'  ui  M  5  -22  <U  TJ  as  oo oo m o n m  o  ^  oo o o o  o t—  vd vo  r-  <~i o  C N  ^f  r~-  co  in *- cn  xr\  13  rr  _  cn r— rf  cN oo cn <••; r f O CN  „  - H  oo  O CMSi  H  •S o -J  00  OJ.  1  c_j;  C N  >o o  - t C N  ' TJ  t— vo  K  cn  m  ° °  a; un  cn r f o CN  -4—>  Q  o  j? a s §  =3  i § I <8 •S l a g ^  C 5? es TJ  2  cn  a o o c vN, —  CM  n^m^nrnmmnMNnMnnrirocnm^nrincnncncnn  v  v_, v , ^  . ^ \o vi T-C as r f r— cNin«nvoocN«n'-Hr-~-r-cn  O  ,  c n O N c n r h Ou N i n c n v o  ( » c ^ l n r t l n N ^ l n l n ^ o \  a  r  ; r t ^ o c ^ c ^ ^ v o o o l n ^ • ^ ^ o o o ^ o o n l n  i  o u <D  TJ  s « .a o •J  ! O i n v o c N V O r H C N C N v O v o « n v O i n c N O i n c X 3 C N o o o o v o o o c N O O r f r f - H V O u o r f o r ^ O O N C N c N O O c ^ o t — c N v o i n c n c N c n o o c n c N c n ' - H W - j c j s O CN  cn  CN  CN  r — ; cN  CN  CN  CN  CN  r — : cN  C N  T—i CN  CN  CN  CN  CN  cn  CN  CN  CN  CN  CN  O r f  r-~ r f  rr f  1 —-1  cN  C— r f  rr f  OJ  TJ  r-- r» r-~ r r f  • 0)  r f  r f  o o o o o N O N O \ O N O r - - r - o  t—  r f  r r r f r - t r f r f c n c n c n c n r f r f r f r f  r f i n  M(NlK^o^o^^HHln .o^H^o^OH^OH^^(N^^o^nHNloco r f - H V O r f O \ O O N O O N C N C N C N ON r f r-i v o r— i n cn r—i —H r H c N CN i"™ CN CN CN CN — H r—H CN CN CN r  V O r - - c n O O V O V O V O I — OJ T* CN CN CN CN H — H — H — H -  i  —  Ct)  Q  - H C N c n r f i n v O I —  oo  o\  1  T-M  O  - H  T H  T-H  I  —  H  cNcnrfinvor--ooo\0<-HCNcnrfinvor--oo -  H  -  155  H  -  H  -  H  -  H  -  H  r  H  r  H  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  C  N  i n c n c n c :o o o c n > - H c n i n i n © i ; n \ q o q ^  r-'r-'r-r- r-'r-r-'r-t>r-'cx'.c- t—  8 8•n  o  in  50  >  o Q.  <U C_ OJ}  c "S  ^  _  2£ §  CJ  cu  1H  t/5  CN  O  cn  ON  ON VO  vo  _  VO  ON  0O  rf  OO  cn  rf  —'  CN  VO  ON  - H  cn  o _o  o O  o O  ON  § ° ,  in m vo S cn 2 r- vo O N 2  rr VO t> m  O - H ON VO NO rf  CN  cn  ON  r-  ON r cn o oo cn  cn cn vo  cn ON  _ m. vo  O ~N CN  ON  cn  in  CN  ~ ~o vo "  in  8 g °i n  _.  2  8  rf  rf r-  CN  CN  cn r-  in r-  r-  vq l—  00 rf  cn r-  in  r-  & VO l-c  cn  cn  rf  vo  cn —i  co  O o oo  -H  ON  o  cn  <*  m  oo  00  rr  c-  2  in  cn v o CN c n c n c n v o  oo  o  8  O o  o  °  CN  r- r» r-  ~  2  c- r- oo in in oo in rf vo O N  - H o . . _ . r - m o N O N m i n o o m m r r O N c N O N c N  - H  oo  ni o o cn ' r- o o i n o  oo  00  in  CN  00  CN  —H  o cn  rf  vo  CN  OO CN  00  ©  CN  —H  rf  o  ON vq  t— o cn  o cn cn  00  CN in* oo  o  H  i> oo  in oo  roo  in rf  C3N  CN  CN  CN  CN  CN  CN  CN  OO CN  o rf  O  p  o o  o  O  p  vo  m  CN  CN  CN  CN  O  O  CO  CN  vo  Os  vo  rf  cn  vq O N vq  in  CO  CN  t>  cn  00  rf r»  —H  <N  CN  rf  CN  CN  ©  O 00  ©  C>  t>  rf  CN  CN  CN  CN  CN  o  cn  cn  rf  CN  cn  in  cc O N q  c--;  N r f in rf cCnN — < cCnN © c n r f i n v o v o v o o o o o v o v o  ON © VO v d v d O N O s v p O N O N ITON Os VO VOvVd Or-  vq  CN  H  vd vd  rrf C -  crj "3  cn  r-  cn 00  S3 os 03  o <n  ONO r- vq vr-d vd vd rf  u '3  3 O _= _,  o  I  vo _ in vo cn . . O "N t- o VOz rr vo oo • o o m o vo oo —' ON — I O CN  jg . _  X co W a  cu  O  in a rr  -. O  s  g  oo  2 32 rQ  rf  in  in 00 rf  in  —H  00  cn  CN  <N  CN  CN  CN  CN)  r-  CN)  CN)  o  cn  00  00  CO  in  ©  CN*  <N  <N  rf in  O)  <N  CN  r-  IT-  © _ H  VO  vo O)  VO VOON vq ON O N v d N*vVd Os VOvO VOVOVOvo O VO O ONVO in  00  CN  r-  t>  CN  CN  CN  CN  CN  CN  CN  ©  ©  © ©  CN  cn  CN  O  in  CN  CO*  ni  cn 00 rf  00  CN  CN  <N  ©  ©  ©  r-*  CN  CN  CN  O)  in  r-  CN  •'3 cn  s  oo  2  .o Z o  CN  o  - H  00  o 00  CN  CN  CN  ON  rf cn  CN  cn  in © in in CN O N r rf* r- r- r- r- r-  IH  Es.  p  r-  p cn  '3  00 o cn  ©' o cn  o cn  vd  O 00 o cn  O 00 o cn  in  rf  cn  rf  cn  ©  ©  H HH  cn* o cn  o  O  O  ©  © rf* O  ©  CN  CN OO CN  r f  cn  Os  ©  o cn  t—  CN  o o cn  CN  cn  vd vd  O rf O cn  O  vo cn  CN  CN  <N  <N  CN  ©  O  o  p  in  ©  ©  p  ©  p  ©  ©  ©  ©  ©  ©  O  vd  CN 00 <N  00 oo  © ©  cn*  in in CN  vd  in* m CN  rf CCN  cn t> CN  rf  CN)  rf  Os  CN  O CN CN cn  C-* VO CN  CN VO CN  in VO CN  O  O  © ©  ©  cn  © o o  p  —H  o  O rf  o  ©  ©  ©  ON  p  in  in  5'  r- r-  in  CN  CN  o cn  H —H  o  rf ON ON CN CN  CN)  ON CN  rH  r-  m (N  VOr-  r- Cr-N  cn rCN  t- CN r- rrCN CN  CN  vd VOVO in  O ca ca  Q  VO  a tH O "3 cn  ©  ©  00 CN  vd  rf tCN  ©  ©  © ©  O  CN  CN  rf  © ©  © ©  CN cn  cn cn  cn  ©  © p cn  © CN t> vo CN cn  vO dN© CN  CN  CN  cn  cn  O  o ©  vd vO dNvd  © ©  cn  H  CN  cn  H  00 CN  ©  © ©  ©  ©  in*  in*  rf  in  rf  rf  CN  CN  CN  O  p  O  ©  ©  ©  oo  CN)  t~ CN  rf rCN  in r~ CN  00  CN)  vd ON  ©  OO  cn CN  rf CN  in CN  O Nr> VO CN)  *O s CN r- CN r- CN t- O r-N CN CN CN CN VO VOvo  c/5 IH  _J  o  02  ffi  03 O s  CN  00 CN  CN  ©  r-  cn  ©  ©  oo  rf  CN  ©  O cn  O - H  ©  ©  o ©  p  O  cn  tCN  Os  cn o CN  © © © © © © © © 00 00 © CN* c n —H —H —H 00 © © cn c n c n c n c n c n c n CN  HH  CN  CO  rf  p —H* —H  rr  CN ON  156  Os  in  vo  Os  00  Os ©  CN  CN)  00 CN  CN  CN CN  VO CN  rCN  o  CN)  oo CN  O NvOVO VO rf  CN  CN  ON CN  O cn  <N  cn  rf  c  p  -2 u o o c N r o > o i o o O ( ^ r n O O c ^ « « w  u  ^ '§ 1 id S °-  oo in o o t-.  *  © a  CU  g '2  o  s  m  cd cc>  « ^s in  e  Tt  a  S OH -55 r--  CA  NO  •o  CQ  J D  in  vo  0  O ONt T Tt  oo  CN NO in T t ON ON cn cn CN CN T t in m  od  oo  incn vo  CN  m  Tt  ©  r~ vd Tt Tt  o oo  CN CN  cn en n  r-  CN NO ON CN  8 8 -  ^ in £ 2 2 >n  m  VO VO  o o  in  CN  VO VO CN CN CN Os T t V_N J_N  oo  CN CN cnOOS^< > o<"~-Or--£jNO vo r~- LZvmo o oos t - - g S T t O T t ^ c N r - S o o r- oo  O  Tt r-H CN — ' _ H ' T t NO NO NO NO r-  en T t en ON ON CN CN  in  J  CN  00 ON VO  en cn  m  o  §  <  in ON CN en 00 00 00  od  s  cn 00 oo vd od CN © oo oo oo oo oo Tt  in 00  0  cn  Tt  oo p p o vo cd  r-;  VO NO CN NO NO 1—H ON in NO cn VO in r—1 ON ON ON ON Os c5 Os CN cn CN CN CN CN cn CN cn en cn  o  _  cn Os VO cn CN CN  OO 00 CN in 00 < vi in Os Tt T t NO 00 CN CN CN CN CN CN  o o o  in ON in NO CN CN  O  o p p  O  O  o  in O ON O in in d r-^ C-^ r l CN d 00 00 OO Os ON ON ON CN CN CN CN CN CN CN 00  00 cn 00 00 c5 CN cn  c~J  ^  CQ  c o • S3  O  O  p p p  oo  t-i-i  O  O  O  O  od o  O  O  in in  in in  o  o o cn  Tt  o  NO CN CN ON O ON CN CN cn CN  o p o  r-H r l in in NO d in r ^ ON T t in d ON CN r-H r—1 NO cn in ON NO 00 ON ON O CN CN CN CN CN cn cn en CN CN CN CN CN CN cn cn cn cn cn  o • CQ  en  C  c n  Os  d  00  in  d cn  cn 00 00  CN Os  O cn  ON  Tt  00  00  00 r—4  d  Os CN cn  vd  o  en NO NO 00 en NO CN cn Os ON CN cn cn CN cn  o o  o  'S  ©  es es  CN  VO  vo d  CD  . ©  CM  1  3 2  o  CN Os  O od T t cn  m  VO  CD  -*-» CO  O. c  S ©  Tt  os T t oo oo T t t--  r- T t oo in ov in T t os os <os r -  Tt VO  vo  <£, CN CN NO ^ CN CN  n  T t cn CN in CN T t CN © ON ON VO Os © 00 CN CN CN CN CN cn cn CN CN  o  03  -CU  Tt VO  n  Tt  W  XS t-  —  in  CN  cn in O oo r -  CN 00  CO CD CU oo H_I  <u c/i 3 ©  o  £8  ^  O O  o vo NO <N (N (N ^  NO "  X —1  NO  oo  O  cn NO [> r l ON CN cn  o d  O  in CN cn cn  O  00 VO  O  'o 6 OQ  O  p  o  o O in O O p o o O p O O O O o O O O O O p O p o O p p p r-H NO T t T t en H d vd ON NO vd 00 CN r - 4 T t ON vd NO NO vd in cn cn NO VO m m O o ON 00 Os Os OS Os oo ON Os ON ON ON Os Os O o o o O O Os CN CN CN CN CN cn cn CN CN CN CN CN CN CN CN CN CN CN CN CN CN cn cn cn en cn cn CN o o p o O in O O O o O o O O O O O o O O O O O p r-H T t r—4* od vd in NO vd od 00 r - 4 Os 00 t-^ oci in Os CN ON 00 r l r—1 r - H VO m oo O O oo oo 00 ON 00 Os ON ON ON OO ON ON CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN cn cn cn  Nfe  o o  CN CN NO ON ON CN CN CN cn cn cn cn cn  p O O O od d cn NO o O ON cn cn cn CN  c0  c55  m  O O O O o O O O O O O O O O O O O O O O O vd r—1 ON d NO Os 00 T t vd d CN en T t 00 , - H ON 00 cn r—« r—i OS VO NO T t in ON Os Os ON ON r—1 r—1 r—< r - H o o c— oo CN CN CN CN CN cn cn CN CN CN CN CN CN CN cn cn cn en cn cn cn  O  03 CD CO  Q  ncNenTtinNOr-oooN  O  r-H  -O <D UH  157  p in CN cn  O p O p O en r ^ CN cn NO CN CN CN CN cn en cn cn cn  O od o cn  cNcnTtinNor--ooosOr-icNcnTtinNOc---oo r^rtr-Hr-lr-lr-HT-Hr-ICNCNCNCNCNCNCNCNCN  CN  O  rf  OO  —'  o  do S  o"  o  CN  <N  o  o  in  00 00 VO  0  0  0  0  t— 0  in  p  r-;  O  '—'  O  p —H  UJ  •5? -  OO  00  c/3  u»  O  15 w  IT)  O  cn r~ O -H vo 10  ffi r r  c« ro  « & 2  cn  in  2  - H  O O  o O  cn  CN  r f  VO t in  00 ON i n - H 00 CN o c— CN O0 0O 0O  in  rf  Os  in o Os  co  in  OV  ro o f»  O ©  o o  £  cn vo C;  rr  SH SH £  _  u  rr vo  ON  r-  00 ^ 00 00  vo rin  r~ O  H  rf  1§ vo rf  rf cn  VO  ON CN  00 00  o  o o  o  - H  o  o  SH SH  *  £ 5  rrrf C-  VO  r-  CN CN CN  ON  CN OO  t>  vq  H  rf vo  °N o  rvo  o o  S  00 v o  cn vo  c—  00 00 00  2  o o m m  CN  ^  p £ 2 VO  ON  cn  vo CN  m ON  - H  CN  ON  ON  r-  00  vo cn  o o VO  o  SH  C-  00  in  r-  ON  ON  CN  ON  00 01  cn  '  rf cn m  a  C_  in  r-  8  2  rf  fi u  O  CJ CJ  It  OH  ••—>  C  es  CV3 CS  CW  ._  vq CN  CN  00 00 00 ON 0 O  o PQ  u O  vd  vq o  - H  vq  ON  cn  ON  n i  CN CN  p vd o  CN  vq  _ H  CN  ON  ON  ON  rf  in  rH  06 ON  vd 0 cn  O  in 0  in ON ON  CN  ON  rf  ON  ON  l> ON  O0  CN)  CN)  in cn CN  ON  ON  in  ni  r-;  —;  o o a s O N j r J O N O o r - v o v o v o i n r f  c n r f v q v q i n i n v q c n O N c n i n c n - H v d i n ' c N O s r ^ v d o N o o d c n c n c n r f m i n v o r - r - o o o o  X cn PJ o.  3 O CU  g  CN  cn  cn  O cn  cn i> ON  p  t-  O  rf  CN ON CN  CN ON CN  O CN ni cn  O  O  CN O cn  P rf CN  O  CN  CN CN  in  CN  r ? ?  CN  O 0 CN CN  in 0 CN n)  cn rf in  H  —H  CN)  CN)  CN)  CN)  CN  —H  rf  OO  in  in  ON  ON  l>  00  cn  in rf CN  rf CN  t> rf CN  00 CN  VO rf  p  06 m  O rf cn CN)  CN)  CN)  p  O  rf  in  l-H  CN  —H  O cn CN  ON cn CN  rf cn CN  CN  cn CN  l-H  CN  (N)  in  rH  m  rH  cn cn  in 0 CN)  0 rCN  2  es &  VO  t; ©  2 & '3  00 vd ON ON  —H  —H  CN CN  CN)  CN  CN)  O  O ON cn cn  O cn  O ON O cn  O  O  0  cn  s cn  0 0 CO  O ON ON CN  O  vd 0  cn  ss cn  00 vd 0 CN)  CN  CO CN  0  p  O  p  p  O  p  O  O  vd 0  CN O cn  _ H  cn  in 0 co  O cn  in 0 cn  vd O  00 c n cn HH C N T-H C N CN  O  p  p  O  p  in  00 vq rvd 06 00 00 CN) CN O CN  CN  O  O  O  vd cn  O Os cn CN  HN C  CN  CN  O  O  H H C-)  (N)  cn  rON  ON  rON  ON  OO  rf  cn  ON  CN  CN  in ON CN)  00 CN  vd 0 cn  O 0 cn  cn O cn  cn  ON  O  ni 0 cn  cn  O 0 cn  _  vq vq  —H  in  H  cn  in ON CN  00  ON  O  p  O  0  O  —H  00  H cn  in CN cn  vd ON  rH —H  CN  cn  O  O  0  cn  n)  CN VO CN  p  06 CN)  ON  CN  00 CN  -H_ H ON n)  HH O cn  DH  B  ©  vd —H  o  cn  m  in  —H  O O  O O  n)  CN  CN  O cn cn CN  in  O  in  in  in  —H  _ H  O)  CN CN  O)  vd CN)  CN)  CN)  ni CN ni  p  vd vd C N CN  O  O  CN cn CN  r~ CN CN  O ON CN CN  O rf VO CN  CN  in  O  CN)  O co m CN)  O ON rf CN  in  in  O  O  —H  rf cn CN  in •n CN  —H  •n CN  cn CN  0  O  O  O  vd  —H  0O  O Os Os CN  O  O  O  CN  CN cn  t—  O  c_H n ccNn  O  O  O  0  IT-" ON CN  CO ON CN  O O cn  0 0 cn  Z >  sO fa  1H ffip  cn O cn  £ o u  CS  -1  CS  a CJ  o  cn  p  O  in ~ H  —H  in in cn CN  O  in  in  p  vd CO  rf rf CN  O  CN  CN  vd CN  in  in  O  00 CO i n CN CN  CN CN  ON CN CN  vd CN  p  O  CN CN  CN  H CN  CN CN  H cn  O)  CN  CN  cn  co  O ON ON CN  in  p  O  p  O  p  O  O  O  i-H  ON cn CN  O CO  vd O  rf O cn  00  vd ON  00 00  CN  CO ON CN  ON CN  ON CN  p CN CN  O ON  O  p  0  O  0  cn rH  rH rH  vd  rH l-H  CN  CO  CO  CO  0  co co  CO  in  VO CN  pCN  00 ON O  00 vd 00 06 vd O ) c n ON O 0  —H  cn  ON CN  O  2  do IH  2  ffi «  "S d  p  —H  cHH o  i H  O od  l-H  —H  —H  CO  cn  cn  cn  cn  rf  in  VO  c-  00 O  00 • n  co  iH  -  CN cn  CN  o  in  00 O  O  in  O  H O  O CN CN  >P 00 rf CN CN  CN  vd CN  rf 00 rf cn cn cn CN  CN  O  HH  CN  CO  rf in  VO  cj ro  158  CN  CN  0 Os CN CN  rf  CN CN  VO CN  VO CN  00 O s  0 CN  CN  in c— cn rf CN  CN  0 ON r H  cn cn  n) cn rf CN  CN  CN  CN  CN  OI  CO  cn  CO  . £3  M y .2 33  cn cn vo  c3 co  « fe  o o VO CN  m §  , o o VO CN  h  NO  r H  pi  £ 2  CN  <D co  PQ  vo vo vo  OS  O O vo O CN CN  O  vo  rH  r H CN r © cn cn i n i n Os CN oo T f  oo oo  vq  N 00  cn ^  --n 00  m  S S  r*  in  cn  o VO  Os r »  00  O  o  oo Os  cn  OO  r H  VO  o o VO  O  o o  o o_ o VO  ON  o o VO  N CN CN O CN CN cn C r H r H T t CTI  CN  ^ rH rH  Os  r—1  o o o  Tt in Tt  cn  rH OO  r H  T t vo © O N CN i n OO r H vo r ~ oo VO © cn ON OO v o  oo Os  oo oo  i—i  CN v q cn CN rH Os OS r-; r - T t T t CN cn od T t i n i n i n cn CN © VO o o © © © o © © © Os OO Os o oo  r H in CN i n  cn  CN  VO  '—I  o  O  S vo S CN  O  VO IT) vo  o  VO  CN  H  r f NI . 1 NJ  NO  Tt  VO  O O  OO  en © © ON  in  Tt  oq  ON  OO  r H  ON  in  d  Tt in o cn  in  ON  ON  vd  NO  cn  ©  ©  cn CN CN  SJ  o in io  vo oo  r H  CN  o  o  r-- o o cn r~ V O  cn O N CN © CN Tt i n r OO oo TT  Tt O Tt Tt  t~: CN oo oq oq r-; CN NO r H cn od © o ©  od  PH  >n cn © cn  Os CN T t  Os vo  ©  CN v q  in vd © Os cn CN  d ON  vd  ON  Tt © © © cn cn  - H  '5 CQ NO IH  Cu)  o CQ  in  © CN CN cn  4) IH  O  CQ  vq in CN i n en © r—1 CN © Os O Os CN cn CN cn cn cn in  VO  r H  r-  Os 0 0 © Os © ©  Ov  ©  CN r> © T t cn cn Os i n  OO i n v q © en r~" i n oo oo oo oo oo Os © ON r H CN CN CN CN CN CN CN CN cn CN en  od 00  © © © T£ r H © CN O © © cn cn cn cn  ©  ©  d  vd  vd  © © p p © © O i—i v d i n r-H cn cn o O CN CN CN CN r H cn cn cn cn en cn cn cn  i—i r H  r H  ON  vq  Tt  vd  i—i  r H r H  vq  © O © © © © © cn Os i — i NO NO CN © r H CN r H CN r H r H cn en en en cn cn cn cn  © © O in CN CN © cn cn en  cn en Tt H ON © CN cn  o  ©  vd  ON  p  ON © o cn CN cn  © © © © m i en en CN i n r H r-H r H © o en en en cn cn cn  p © © © © © © © p © © p © o © © © © p p ON n r H r-H © © T t T t r H en ON cn od 0 0 rr HH e od rr HH r H r—I r H T—H © r—< i—I © © © © o . © en en en en en en en cn cn cn en en en en cn en cn cn cn en  ©  NO o  ©  O  ©  ©  ©  ©  ©  p  ©  ©  ©  ©  p  ©  ©  p  p  r H  ©  ©  d o  ON ON  od ON  vd ON  CN  od oo CN  r H  '3  ON ON  ON  od  in  vd  vd  od  rH* r H  ON o  od  r-' v d  ©  o  o CQ  T t rt CN CN © O cn cn  ©  ©  ON  en cn CN cn CN CN CN CN  X  in  .© o © en cn CN o o © © en cn en en  r H  IH  r H  r~;  p  ©  in  CN  r H  od  fe  CQ  oo  cn OO T t CN N o o © rH ©en OCN cn en cn cn cn en r H  Os CO r- p en NO ON rH T t r H ON O N ON © ON © © o © © en en en cn cn CN CN CN cn -cn en CN in  Os Os  © © Tt CN CN r H cn cn en  ©  p  o PQ  ( T t oo cn en en d cn en CN CN r H r H r H r H © © © CN cn en en cn en en cn cn en cn  vq  o  ©  ©  en cn n r H  4)  r H  r H  o  ©  C3N  O  CN cn T t  Q  ©  ©  ©  ©  oo vo in O  ©  r-H  NO r H  ©  ©  od  © in  ©  od  ©  ©  r H 1—1  H r H  ©  p  O  ©  r H r H  d  cn  ©  od  ©  ©  ©  CN Os © © © © © © © © o © © © CN CN cn en en en cn cn cn en en en en en cn cn cn en en en en  O © © CN CN CN CN cn cn cn cn T-H  ©  CN cn T t  OH <  159  ©  p © © © © © O p O © p © en en © © © od d od i n en en r H * r H * CN CN CN CN CN i — i CN r H r H r H r - H r H r H cn en en en cn cn cn cn cn cn cn en en  in NO  00  ON in  ©  ©  H  o  cn cn en  ON © CN en T t in NO r- oo Os © CN CN CN CN CN CN CN CN CN CN en  - •" a  M .2 y CO coc«  V,  iri  o o  CJ  VO CN  | *  | g  in  £  S  in  vo  o  oo  s-  S  Tt  Xk B CJ <s> CJ  '  cn  cn i>  o o  o  o cn  Os CN  vo  rH CN  Os  cd cn  •n od  CN  CN  O  m  o\  i>  'vd  o  o  >n o Os C N VO C N >n cn rH w  o  q  p  o /—s W cN  o  o  CN  cn  O Os £—„ Os VO in Nj cn  CN  CN  c5 cn  <N  CN  CN  OS in Os Os OS CN CN  CN  CN  CN  VO Tt Os r H r—<  «  CN  ^z,  VO C O in Tt Tt in c o VO  t-; C N OO VO Tt 00 t> c d C N Os 00 Os Os O  CN  <N  co  •n  Tt  co  co  CN  CN  CN  Tt •n  CN rH  CN  CN  o VO  OS C N Os Tt Os r - H CN  CN  n  M  cn  CN  co  H  N  N  O  o  o o o  o  <N oo  m  vo  vo  Tt o o  CO CN C -  OO  in  CN  CN  ts  CN  in r-  Os v o rH c d  CN  H N  c~- VO o o VO o cn in CO Os Os Os VD  in Os 00 Os C N C N c n  c o Os o Os 00 c n Tt Os Os o  'S-  m  >n 00 Os 00 VO rH Os Os Tf rc n r-1 l> Os Os TT Os c n VO  cn  ^ ©  « t>  CN  UH  u  m  co  00 r l Tt in co  co  r-H  cn CO  p od co  o o  T t v O T t v O T t T t T t T t c N  o  a  o o o  Tt  o o oo  ° Z 2  VO C N Tt in Os C N 00 C O o CN c n in  00 v q in c n CN  Tt  CN  o  O  CN  CN  r-  o t-»  co  in  iri  co  r-  in v o Tt OS in O v q Tt o C O 00 c n C N C O C N C O 00 Tt Tt Os 00 Os Os Os Os Os 00 00 Os CN  CN  CN  CN  CN  CN  vq cn  CN  CN  vd oo  cn od oo  CO  •CN  CN  Os C N Tt v d OO o o  CN  CN  -CN  CN  CN  CN  CN  od  od  CN  CN  CN  CN  CO  Tt. OO o o t> in C N c d c n OS Os Os o  8 B  t: 's  Os Tt C~  OO  oo  00 o o  OO  00 00 Os  vd oo  Os c~-  CN  CN  CN  cn  O  O  O  vd  CO  CN  p O p o O O O p O O o O O p o Os c d v d Tt C N in v d r l in o d v d 00 v d c n C N OS Os Os 00 Os Os 00 00 Os 00 Os o Os Os o  CN  CN  CN  CN  CN  o  0  i  in  o  ^  2 2  CO  •n  in © ©  cn  VO  Tt  t> VO  Tt rH Os © CO  © in  in  oo  c-  CN  CO  Os v q Tt r-' © ©  O0 C N Os - c o C O C-; ' © ' Os Tt Tt Os in in Os 00 00 o o p- 00 00 o  CN  CN  CN  CO  ^  CN  o  rH Os Tt in  Tt od  ©  —i  CN CN  Tt  cn o r~vo  cn  ©  vo  CO CO CO  in in  00  rH  P~  o  CO  oo  vq CN cn vo Tt Os in C N © o d l> Tt Tt Os Os Os Os 00 00 00 T J CN  CN  . , , in Os  ^ ^ OS  00 00  Tt Os rH r l  o  CN  CQ  CO VO  I  in  CN  CN  CN  OS VO VO Tt C N p 00 00 00 Tt CN  CO  CN  CN  p  O Tt ©  O p p © © © o Os Os C O Tt in C N © Os Os Os Os Os Tt  CN  CN  CN  CN  CN  CN  •r-H  o  CQ Os Os O  O m  CN  cn  ©' © .©  H  B  "3  CQ  CO r.  CN  SO  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  cn  CN  CN  cn  ©  ©  ©  ©  p  o  O  rH ©  ©  O  H  ©  ©  ©  ©  ©  cn  s  d  cn  ©  ©  ©  Os d r-H ©  cn  CO  co  ©  © © ©  ©  ©  ©  ©  cn  cn  vd  ©  cn  ©  rH r i  ©  cn  ©  ©  cn  ©  ©  ©  ©  ©  ©  cn  ©  rH co  co  r H  O  co  co  ©  ©  ©  s  CN  rH o d c d Os ©  ©  ©  co  CN  cn  co  co  © in ©  ©  ©  cn  © CN ©" © CO c o  ©  ©  p O p © rH c n o d Os Os Os O o  r-H  CN  •CN  CN  CO  CN CO  ©  ©  ©  ©  ©  00 c n o d Os Os Os ©  cn  cn  ©  H vd rH cn  CO  CN  CN  CN  CN  ©  ©  ©  ©  ©  CO  ©  ©  © ri  CN  CN  © © Os r - H Os © CN c n  © Os OS CN  ©  © © © © OS 00 r - H in Os Os © r H r H CN CN CO CO CO  ©  CO  © ©  ©  ©  ©  CO  CN  cd  ©  co  CO  CN  CO  CO  cn  CN  CN  ©  d Tt Os Os Os  Os in  cn  CN  CN  CN  ©  O  ©  od  i—i  od  CO  Os © CN CO  Os CN  © CO vo CN  ©  ©  ©  ©  ©  ©  in  CO  co  CO  00 c d Os ©  d  rH  CN  B in r.  K  B «  *S CQ  d  © cn  ©  ©  ©  ©  © ©  ©  ©  ©  ©  t> in — H o d T t C O C O Tt 00 00 r H C N C O © Os Os Os OS Os Os Os Os 00 00 OS OS OS ©  CO  CN  CN  CN  CN  n  CN  CO  Tt in  CN  CN  vo ^-  CN  CN  CN  CN  CN  CN  CN  CO  oc  ON  ©  r-H  CN  CO  Tt  in  SO  CO  160  o  VO  ©  ©  ©  ©  Os o d Tt Os Os C O Os Os Os Os Os © rH CN  CN  CN  CN  00 Os ©  rH  CN  CN  ©  ©  CO  CO  CO  CN CN  CO CN  Tt  in  vo  CN  CN  CN  CN  CO  ri VO  00 Os CN  CN  r~- 00 Os ©  r-H  CN  CO  CN  CN  CO  00  C  MQ .2 oo  •vf >  cd oo  CO g W  Si >  im  .o a. a> 04  i  C N  Tt oq  H  in m * «_J £ cn h fc oocn  CS  * £ 2  r-~^mr-HOooTtcnin TtNOcNONOooor-Hf<-)r-~  o o  OX)  inininNoinminTtcn  i-< p  0  C N  r-< o q T t c n o q  s  T t Tt;  r-1  in  N Op  od  oq r-"  in in in O N r ~ r-" r-" r~"  O O O O O O O O O O r - , , — ,  o o o o o o i o o o o S 2  Tt  N J OC 3 n O O - H C N C N r - i O C N O ^ ^  r-ONTtTtOO-Hr^CNCNTtcNr-lin r-~ONOoooinTtONNOinooinoNCNin r~-inoor-^r^oooooNoooooor^r-~r-  ONON O N r~ ON NO cn cn  cNt~~NOcnincNcNNONO  cn in  C N C N C N  i^r^i^Nd^^^^t^  CNON • o o o o o o o o o o o o CNNO o o o o o o o o o o o o CNCN r-TtTtTfTtTtTtONONOaNNO P- ON OOOOOOOOOOOOOOONNONONONO  « «3 rJ  ^ H  on  cn ON C N T t c n T t C N c n C N c n r h NO r^r^r^r^r^r^  O N n T t t ~ - i o r - ~ i n c N O N n o o c n c n c N  N O T t O N in C N H o o t -. C N c n >—< N O O N p ~ T t c n c n T t r Q r ^ 2 c N C N C N r 0 2 T t C » r _ 0 d ^ r ^ o d c ^ O NO N; OO N " r n l H r 1 r 1 r 1 r 1 r 1 r l O N l ^ 0 0 r ~ - N 0 l n N O r - ~ 0 0 00  —  o a> on 3 o _= _ So  r  c  •o  a,  es  CU on  es O S  © on  "cy  Z *•> ©  cn OO O T t T t rH  UH  JD  ca so CL>  Q  cn d  NO  ON  o <u CQ ,4> -B  CN  CN  oo CN  NO  O  p in r H  ON  oo CN  ON  ON  ON  cn N O in oo oo CN CN  OS  CN  d ON  CN  CN  CN  o d ON  CN  rH CN OO o o CN CN  cn O N C N r H l > cn C N o d o o O N OO o o CN CN CN CN  rH  ON  1 1  OO CN  O 00 CN  ON  rH p rH r-i OO O N CN CN  Tt CN OO CN  en rH OO CN  cn N O O N in N O C N o o OO O N CN CN CN  p  O  oq cn oo CN  CN CN  CN od OO CN  cn C N T t od ON oo NO C N Cp~ N CN  CN rH oo CN  i—i  en o d NO  CN  NO  CN  en Os C N in C N r H NO P- N O T t CN CN CN N O ON  r H in Tt* o d CN  NO  CN  en N O r i ON r- NO CN CN  NO  rH  ON  ON  Tt  NO  rC N CpN  in  Os  in C N  OO  in  p-^ (-" OO OO  ON  OO 00 00 CN CN CN CN  CN  CN  CN  OO r H C N C N ON NO C N r i cn H d OO OO r-~ OO P~ O N CN C N CN CN CN CN  p cn oo CN  p o r i NO OO o o CN CN  O  p O p o in T t c n C N o o 00 ON C N C N CpN CN  O  CN d oo CN  NO ON NO  O  CQ  in  'o  p p O in in . O N ON ON ON CN CN CN  p-  O O O O O O  JU  rH mi OO O N CN CN  IH  CQ  Tt ON  CN  O O O o o O in c n ON CN CN ON  Os oo CN  cn ON  CN  rH ON CN  cn ON CN  d  o en  p en ON  CN  Tt  ON  CN  od ON CN  p d ON  CN  P-" ON  CN  en ON CN  p p in NO ON  CN  o en  p ON ON  CN  O O O O O O  O  od  rH  ON  CN  d ON CN  Tt  od  Tt  Os 00 00 CN CN CN  p in o d oo oo CN CN  ON  CN  O o Tt o oo o c n CN  p p O p p O in o d in in in NO oo oo oo oo oo C N Cp~ N CN CN CN CN  p rH ON CN  NO r~ CN  p ON P -  CN  o  p cn oo CN  o o O Tt  Tt  CpN CN  H  OO CN  od  p ri  p en  00 C N 00 C N 00 CN  od oo CN  p rH ON CN  p cn ON  CN  O O cn ON CN  en ON  CN  03  NO C3  ON  CN  'S CQ  '3 ©  ON  O O o o O O O O O O O O O o O O O o NO NO Os O N N O in in N O N O cn en N O O N O N o d T t d d ON OO Os O N O N O N O N O N O N O N O N O N O N OS CN OO CN o cn o cn CN CN CN CN CN CN CN CN CN CN CN CN CN 00 CN  UH  JU  '3  CQ m  p p p O p O O O O cn CN T-H cn cn T t cn d cn in SO o o OO Os O N O N OO O N O N O N O N Os CN CN CN CN CN CN CN CN CN CN CN CN p rH  O O  ON  O O p o O O p p p p O p O O p o p O o O o o o O O O O O O O r~ o d o d CN r~ N O en o d o d o d Os in N O o cn CN r H o d N O N O N O CN N O in en Os en N O Os d OO O N O N O N O N Os O N O N Os O N Os O N O N ON 00 Os OO OO Os Os O N o o OO o o OO OO O N CN CN CN CN CN CN CN CN CN CN CN CN CN o en o cn o en CN CN CN CN CN CN CN CN CN CN CN CN CN CN  UH  JU  'o  OQ CD  Q  >H  C N  c nTt i n  N O  r— o o  O N  O  m c N c n T t i n N o ^ o o o N O ^  HH  161  rH rH  H rH r i  rH  H cN  |  c N c n T t i n N o r - - o o o N O  CN CN CN CN CN CN CN CN CN c n  M  -H H  cS  rr  <=> c = O §  O O  g ^ S  2 in  ©  CL. CU  •S  2£  CC 6JD  S  "S o  rT  8  CJ CJ  3  0 -5 u.  jg £  CA  os  O o o NO  IZ - H  i n oo r-  NO C N ON p  r r r-  r f r f  —  —<  oo CN NO  II 2  0 0  C N ON  NO  ro cn  o  NO  ON  r<N  co  2 2  o o  ^  NO ON  2  NO  ON  cn r r  i n r- r~  o o o m o o r - O N —< N O N O 00  o o N O c n c i n o s i n r r N r r cn — i cn - H O O C - C N  wn r - o r - r~- r r f rr r cn r r  o o m r-  i n i n NO r - vo  o 0 0 ON r T. VO NO NO  O N C N" NO r-  r ~ cn r f un  ON  o O O o O o CN  ON  NO  r»' r ~ r-° t — r~" t —  —  _  _  O v o - - o o r - - — N O O  "I co C N "*": °°. ^ P ""P ° N ^ CN ^ ! vo o\ os H c i co -H ni O N o d o o v d ni O N c n O N i n v d o vd od cn "-t c n C N ni O N t> o d o o r - i n c n v o c » v o r f n i n i - H - H c n i n r - o o a N 2 2 N v o r r c n v o r - r - t - - V  r  rF  0  VO CN 00 CN  in vd r~ CN  ro ON CN  O o  o o  o o  in CN  p 00 in (N  cn cn VO O)  in vd vo CN  o o  o o  o  o  d  d  rf.  —H —H  VO CN  cn cn vo CN  cn rf VO CN  cn in in CN  rT cn in CN  CN cn CN CN  CN rf cn CN  t— t— cn CN  o  o d  o d  o d  o d  o d  o , d  —H  CN  CN  r~ cn CN  CN CN CN  rH  rf  vo C-" o CN  rT in rT CN  oq  rCN  •n in r-  ON  o d  VO  in rCN  r~"  O O O o o o o o o o S N O N O N O O O C N O O O O ^ C N C N C N o o o o 00  n o o o - H i n O N O O — H O N - - r ~ - o o r vo ri n o i r - - v o c n l n N O O N O N O N O  C-*  CO  o ON cn CN  00 H  rT CN  oq cn CN CN  OO  rT  ON cn CN  in CN  rT  00  r~  vd cn  rr od in  CN  CN  o o c n i n o o o r h N O ' i n v o r f O N O O O O O N O  p  ^  00  VO °g in od cn CN  O cn rr CN  o vd cn CN  CN  rT  p  00  oo vd  r-' CN n)  to T3 cj  CN  od oo  03 ON  cn oo  *o  1 c  g  - H CN  r-  CO  *-  ffi  X 53 W &  cu  O CU  B  0°  11  o o o ON  r r r~- p cn cn cn r r  o d  d  o o d d  CN  - H  r?  r-  o vd cn  rr vd cn  CN  CN  CN  CN  CN CN  _H'  rf m  IT)  rr CN  _H'  cn m  CN CN  -=  O  CQ  c  m  a  ©  'o  03  co  O ON ON  p od  CN  CN  O  O  o r?  o d vo  O  <N* OO CN  O vd in  O  CN OO CN  CN  CN  CN  CN  CN  CN  CN  p in 00 CN  p cn 00 CN  O  O CN  O  O in  VO  O  O  —H  in  H in  p cn rT  CN  CN  CN  CN  O in  in  VO  O cn  CN  O od vo CN  o  o  o  m  o d  O ON  <N O)  CN CN  o ni cn CN  o rf CN CN  O cn  O d cn  H CN  O t— VO  O d VO  o vd oo  r?  O in rT  O c— cn  o d in  p cn  o O C3N ON rT r r  CN  O vd o  o  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  CN  O  m  m d cn CN  o t— cn CN  in  in r~ cn CN  o vd vo CN  o vd •n CN  o vd cn CN  in rf cn CN  o  ON  ON rT CN  p od rT CN  in CN in CN  in l— rT CN  O ON VO  O  O  p  in  in  m  o  in cn  d vo  ON cn  od cn  in  —H ?r Ti  CN  CN  CN  CN  CN  CN  CN  rf m m  r f ' ? m CN  O  p  _H rT  vd rCN  O rf vO CN  O d rT CN  in ON cn CN  •n rf in (N  O CO in CN  O d vo CN  in cn in CN  O od rr CN  in rf rr CN  cn CN  rT CN  m CN  VO CN  rCN  OO CN  ON CN  o cn  cn  p  O  o  rf n)  cn  O  p od cn CN  C~"  CN  ""3 o fa  o  s  E  cn  in  H  cn CN  CN  VO CN  r r  o  CN  VO CN  O 00 vo CN  o  o  ON  H l>  VO CN  r j rT CN  — H C3N rT cn CN  CN  rr CN  _H  rT CN  o  a  Q  CJ  vo  i n vd vd O o i n d cn — i p  a O  vo ON  vd  o  H - ' . ^ ' . O M n M * !  d> d> d> d> dv oci^ dr l v d o d o d g  in  o  £  do Wi  ffi  «J  m  o  p CN  o  03  p p p p p p p p p p od vo ON r - vd i n od - H d i n i n v o v o v o i n C N r ~ r VO CN  rH  in in in CN  O Q rF CN  O rf CN CN  o vd  CN  cn  rT  ~3  162  CN  o rf cn CN  CN cn m  p cn CN CN  in ON CN CN  O cn rT CN  in  VO  r-  00  ON  o CN  i-H  •n  m  —H CN  CN  CN  M o CO  p  '3  " Si Z  im  o a. <u  OU  C  "5 _. o  2 in rf  O N  p CT\ oq  a _  o X  O N C N ( N  < o o i n o i o o o p o s c O O r f v O i n m i n i n  v o c N o o o o r r f o o c N i n m r f r f C N r - p - P - i n  vq  r-r-c-  o O o o o o o vo i n CN CN  1  2 £v—  I  oq  o o o o g g g o ° r ? ° , 2 § § § 2  >H  05  p  r^c^Ndt—NdNdNdNONdc^c—  f o N v o  -  o o o o o o CN  rf  in c o CO in C N •n i n o i n S N i n o o o N O N ~ O N  o  o o o in in  o o  m CN  o o o  O CN CN ON ~ O ON  o  o o o o CO —i O O cn vo vo ONO l ON ON ON  O N  r-  r f O N  CO O  00 or)  £ ON - H ON co in <= «5 ™ rPf- CN i n CN g N r-^ ^ ^ * n i- — i^ —2 i CO S ?2 t ^ n CN ' ' cC v i o•v n ov o mN 2 N O N r f - H 00 ~ r f i n 2 ° N v o v o i n > n i n v o r - - ^ I , O N c o r f v  H  r  2 ffi O O O N O O C O O — < C - 0 N m r - o o c o o o c o r H o o o  c - i n o o - o i n ^ ^ ^ ^ . P^ ^"*. i n r f v o o N in v o o o i — i n c N n l i n v o - . - ; ^ — : r - r - - ^ O N O N ! Z ^ i CN o i o l c o c o c o c o c o c o c o r f v o O N O N O N r  0  t  co c n d oci  rH  ea 5 ca  CO CN  o 03  cu  •*•C  '—* d  w oq  o  o o  2 2 £ S  cu  CM  o o  iS vo  in d CO CN  8 Ja  S3  03  oo ON o CN r f od ON vd CN r H CN CN CN n i O l CN  o o o rf CN CN  CN CN Ol  rf cn CN  rf _ M P-" vd CN CM CN CN  O o ON vd CN n i O l CN  vq in ni ni  CN i n CO r P- r~ vd vd o i cn i n m o i CN CN o i  ON ON o co  rf 00 poi  t-; co ON oi  P-; vq 00 0 0 o\ CN CN  CN od 00 ol  oo  p  r f CN ON vd  00 od oo Ol  rH  co  CN  CN  in oo Ol  od 00 CN  vd oo CN  rf d d ON ON rH CN CN CO  co CN  ON i n cn d CO i n CN CN  pvd in CN  o CO  r-  CN  o vd d Os p ni m  T-H  CN oi  o _H  o ON O CN  pvd o oi  VO vd  p  ON  rf  Ol  H i n rH rH rH vo CO  co  CN  ,_,  ON ON d i n rf CN O l  oo rf in ni  ON CO  CN  t~  rf CN  d rf CN  CN rf Ol  rf  CO  00  ON  00  CO VO CN  r? CN  CN in CN  P-" CO CN  ON CO Ol  p- O ON rH CO c n CN CN  p i n od CO vo CN CN  rf  oi  PCN  o 03  c .o  O O o o o o p p o p p O O o O O O O O o O O •O O O o o o O O O CN d r~ c — vd vd CO 0 0 r f CO i n d r H p ^ r H r H ON ON P ^ CN vd d ON r f i n CN r f ON ^2 vd vd rf CO CN CO CO CO CO CN CO i n i n r H OO 00 ON ON OO O s 0 0 CN r H CN i n i n CO i n CO CO r f CO VO  o 03  "3 Z  o fa  Ol  CN  Ol  Ol  O  in rf CO ni  in in CO CN  ON CO CN  £  Ol  CN  o p  p  m  rf CO CN  rf CO CO CN CN  Ol  T-H  CO CN  rH  CN  CN  CN  CO  cn  CO  CN  CN  CN  CN  CN  p o O p O p p O O p O r~ od ON r f i n CO CO r H vd i n vd c o  in rf  o  in rf  in in  O  rf  CN  CN  CN  CN  in cn in Ol  o O O CO r f v? rf rf rr CN  Ol  CN  rf CN  p od CN CO  p vd CN CO  O  o  p  O  CO  CN  in rf in CN  in  s  in pCO CN  P-" in r f rf' r f CN CN CN  CO rf CN  in rf in CN  O cn  o oi CN co  o ON ON CN  in in CO CN  p co vo CN  in co in ol  in p-" rf ol  O rf rf Ol  in rf rf Ol  in oi rf o)  p CO in CN  CN  CN Ol  co CN  rf Ol  in CN  VO CN  PCN  00 Ol  ON o O l co  co  in  in  CO CN  CN  CN  CO  in CO CN  CN  CN  Ol  CN  CN  Ol  in CN  m CN  PCN  00 CN  ON ON ON ON ON 0 0 CN CN CN CN CN CN  •n CN  p  p od 00 CN  o  O O O O O vd i n CO P-^ CO ON ON ON ON ON O s CN CN CN CN CN CN  O  VO CN  O O T—i vd VO p CN O l  O 00 in Ol  o ON in Ol  o rf Pol  p vd oo CN  o p r f —H ON ON CN O l  o vd o co  ol  CO  rf  T-H  ON VO CN  Ol  CN  CN  Ol  in  p  rH  CO m CN  o  ca u • ca Q  h vo  -  .. ffi  o i n i n i n i n o i n o o  rH  rH t—1  co  in  -  oo t-  p  ffi  H  rf  o 03  2  ol  Q  i n CN r f  co r f  in ON CO CN  in  o in Os r~ CO CO CN m  >o rf CO Ol  in vd CO CN  p—  00  ON o  vO  3 <  163  in  p od 00 Ol  o vd ON CN  o vd ON CN  o oi Os Ol  VO  r-  00  ON o CN  w-i CN  c  xCJ .2 oo ca  p  oo  «_ fe 75 es  _ o  Q. cu 0!  OA  "—S O  .s  in Tt  g?  c  ca CU  cn  ca  o  o  o §  o o  §  Tt cn  in cn N O r- cn c n cN ^ o VO r - H C n O N r H <n p- C N in r- oo T t CN r -  O N  o o VO CN  o o  O O N  O r-l O cn  O N  o'_H noooor-Ttr^'_i >  HH C N  r o  O Tt  C N  Sr^OOOOOOOOrQ  O O O O O N o O j - . c - , 0 0 0 — i O O 0 0 0 N C N l P - t N cn r ~ i n <—i o o c n U  ,  r- vo  r - < cn v o oo  rH r~  oo cn  r~  CN  5 ON T t OO  ON  vo r~vd  N O V O vd  U  N OC No r H Tt CN T t v o c n o o N « n c n o T tN NO O> cn oT o ct n ,N O^ oo ninr~O OO iT ntc nT vto r ^ H -V j c ^c^ ^ c n v o i n i o c n T t o o c N « « H vo tv r  r  o  l  o  c  r  )  a  S  O N c N l M P - h O N h C N O O i c i t S N  8  NO  JD '  ._= o -. •4—  "5: 2  r-  _  o cu  T t ; ^ r t q q H H H N r H q r H q a ^ i » q o c i r t  l O O O l O C n r H O N O O r H r - H c n O O  CJ t o o . _ X oo  CU C/3  CU  o  O o o O CN m m oo cn vo o ^ °  & _ g ca ca fc CH  cn T t cn r o -st; T J ; v q C N |  r~^r-"r~^r-^r^r^r^r-^r^r^^  cn cn CN  '3  cn vd cn CN  cn  rr-" C N  ON  ON  ON  CN  ON  CN  cd CN  cd  Os CN  NO  c--  vd  OO C N vd cn  OO 0 0 cd  rH  CN ON  ON  ON  ON  ON  CN  CN  CN  ON  CN  CN  ON  CN  Tt CN  r-H cn CN OO O N CN CN ON  00  rH  o  ON  vd  CN  00 CN  Os Os CN  CN  CN en C N cn  CN  CN od r-~ CN  cn cd o cn  vq  oq  o  i—i  p cn CN  O  p od  r -  VO  CN  CN  CN Tt CN  in r-H  Tt CN  cn CN Tt CN  5  t> <n Tt T t  CQ  CL>  ca NO  cj ,<u  Tt •n cn CN  CJ  5 CQ .2  oq  OO i n CN CN O N CN CN  in O in T t r—< r ~ OO O N o o CN CN CN  Os c n c n r—1 c n O v d i n Tt o* c d O N o o o o O N Os O N o o CN CN CN CN CN CN  v q Tt O N i n Os o o OO o o CN CN CN  Tt m r od d Tt o o O N Os CN CN CN  CN cd r- rCN CN CN  T t CN CN O N r- NO CN CN  T t N O i n c-; i n r CN O N O N Tt c n c n c n CN CN CN CN  T?5  o  CQ  in  p  o o p v d CN cn cn Os o o CN CN CN CN  IH  JD  s o  "3  O p O od ON ON oo oo oo CN CN CN  O  o O C-' T t CN o o O N Os CN CN CN  O O o o od ON Tt Tt o o OO OO OO CN CN CN CN  O vd oo CN  O CN OO CN  O o O p o in T t r H H d o o OO o CN o o CN CN cn CN CN  O O p o o cn N O O N N O CN r- r- N O T t T t CN CN CN CN CN  O r-' cn CN  O in Tt CN  O cn Tt CN  O d Tt CN  CQ  cn  z _ o E o  «H—  ca ca  Q  in O O p O p p O p p p O p p O p p P i—i v d CN o d N O N O in v d v d O N O N in N O T t r H in o d T t T t t > O N O N O N O N O N O N O N O N O N O N O N Os O N O N O N o CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN cn  IH  • H—  JU O  CQ  CJ  c CJ  ocu  VO  p  O  O  ON  ON ON  NO rH  in  p in Tt Tt CN CN  IH  JU  Os  '3 CQ  p o p O o p p O P cn T t in T t d vd vd NO ON oo o NO NO r Tt m Tt Tt CN CN CN CN CN CN CN CN CN CN CN  O p O O O O p p p O O O O O o O o O cn o d vd vd vd ON ON v d v d in cn v d cd 0 0 CN r H O N ON ON ON ON ON ON ON ON ON ON ON ON ON o o o rCN CN CN CN CN CN CN CN CN CN CN CN CN CN cn CN cn en  in d CN CN  p o O p in in v d N O in r H o o tr- r- N O T t CN CN CN CN CN  p p od ON T t in CN CN  p od Tt CN  O d m CN  p cn oo CN  in o vd vd T t in CN CN  in O vd ON Tt Tt CN CN  H-  on  in  p i n p p p p p p p p O N T t ' r ^ v d c n ' c n c n c n T t v d T t T t t*~* ON ON O N O N O N O N  IH  JU  '3  O p o p p O O o d rH T t en 0 0 Os Os 0 0 O N O N O N O N O N i—i CN CN CN CN CN CN CN CN CN CN CN o  vd  OSO N  O o cn T t  p rH  ON  ON  Os  p o p p in T t cn rH r- r - V O V O CN CN CN CN  CQ CJ H—»  ca  HH  C N  cn  i—i  CN cn T t  Q  PH CJ  00  164  in  NO  OO  ON  O rH CN cn T t m N O r - 0 0 O N O CN CN CN CN CN CN CN CN CN CN cn  M  .a  CJ  cn  C3  cn  £  CJ  £  r- O N — i >o o C N •n oq vq r f v> v o v o r - v o v o v o ; _ ; i > r - - r - - r - - - o o r~ i> r~ r~  o O o 00 r- o o  W  K  Sam <D  vq v ; co  CN  C N  m  co r f  rf  rf  r f O l CO  r~ t— t— c~  g O o >n O v> o CN C~J CN CN CN VO 0 0 O >n o vo »—i  o o o o o o .os v> co OS  Os O  vo OO CO Os — H oo CN O U~i  r„  rf  vo O oo oo vo oo co r f t — v i v i as co r-  VO  O  C— CO  -I  VO  o o o o in  O  o o o o r- © r-  o o o S o o o o C ; c ^ ^ g ^ g - ^ c o  I -  3  - I  2  CO vo vo CN OO - H cN - H oo r - r f o l  c o r f o q i n r - ^ o q v i v q vd r f H —I d d o i co  rf CN  CO CO 00  2 2  Os Os CN  r-'  £ __  S  "  Os tr>  ;vq o l oq CN vq v> r f — ; o l p v> p p i c o VO o i od r f vd r f ON r f —< r f vd vd i r f r f r f r f u - i r - o o o o O N O O V N c o c N  oq H co C N vq I- v i co v i v i v i vo o r - r -  cn  9 -a t-! r-  oo vd co CN  HH  _CJ  "3  CO  S co  O d m ol  CN r f r-H CO VI co CN <N  C-; CO CO Ol  vd 00 ON ON Ol Ol  Os oq co r H CO H co co r f r f o l o l CN Ol  CO vj rf CN  CO r H vi d r f co CN CN  CO vd Ol Ol  V) p v> o vo ON od r H r~ NP d co oo ON CO r f CN rOl Ol co CO CO CO  O p O O rH vd o i CO v i r f co CO r ? r f r f co Ol CN CN Ol Ol Ol CN  O (— CO CN  o o o  1H  -H  1  '3  CQ  v  o  i  r f  O  V  r f  o  o  ON  V) O o ON o i d r f r f r ? >o CN o l Ol Ol  o CQ  U>  i  HH  «  V; p  rr fj Ol  p vj rf rf Ol Ol r H  O  V  I  Vg  00  V<£ ON  t-H  O  p  00  V)  o  rH  rH  Nl  CO  V) r H <_l r f r f co CO CO  p 00  rf Ol  V) VI O ON ON H vd « 0 r f r f CO Ol o l Ol CN  O p o p ON od d V) rr fj <o r f Ol CN CN CN  p CO rf CN  p od rf CN  p p ON r H CO r f Ol o l  O o p p o ON 0 0 CO d Ol C~ ON CO CO Ol Ol co co  O O oi oi VN CN CN  p CO CO CO  ?  p  p V) co CO  vo C-' CO co  ON O CCO CN ON d co O ON t> co r f co CN 00  Ol r f vd ON r f V) co Ol CO CO CO r f O  00  O O O O O O r - O V ) co co r f v i r f r f co OCOCOCOCOC  p o o o p r H vi rf d d CO V) >o >o VI r f co co CO co co CO p  00  p p O O od od t> l> r H CN ON ON CN o CO Ol r H r H o Ol 00 00  CO r f CO r H r f VO co co  O O O ON r f ON od o vd vd r f d oo oo ON ON ON ON OO Ol d  O  o  ON vi t-~ co  o o o o o  V j i o O O O O O O O r f r H - H O O - C - O O C O C N c o c o r f r f c N r - O s c N c o c o CNOIOIOIOIOIOIOICNCNOICOCNCNCOCOCOC rf  C0  _CJ  O  CO r H CN l> )Q co r f r f CN CN CN  O  oq vi ON CO  o d  O  V)  rf O  O p oi oi >o CO r f  V) O p VN o ON 0 0 o i v i vd V ) ON oo CO o r H Ol o CN r H — H r f  V) _ H ON d OO ON O l CN  OO d ON Ol  VN ON VO i—( r~ r H rH d d oi 00 ON OO 0 0 CN o CO Ol Ol Ol  p  p  t—  00 00  o o  o  d  d d  d  O l O l O~l CO o Ol Ol  Ol  O  o  165  vo ON d t-- 0 0 Ol Ol 00  o  O  O  O  O  ON ON  O  O p OO 0 0 OO CO CN CN CN O l CN 00  - H  VO CO - H - H ON ON ON ON  p  p  p  rH  00  p  o  O O O p o i co r H r H ON ON ON ON ON CO o CO CN Ol CN Ol Ol 00  p p p Os od 0 0 v i Os Os Os ON U-) o CO CN CN Ol OI t>  —H  vo r - 0 0 Ol CN Ol  - H C N c o r f i o v o r - o o  VN r- o r f ON d ON oo oo CN CN Ol  p vi ON CN  Os o Ol CO CO  CN ON  v^ r f oJ vq r— v d r ^ r V r ^ r —  r f  r—  vq r f in in r^r^r~  in  r f  in  vq  ^  PQ  2 C}  >  5 ffi -g  CM  CN O  oo NO  CJ ffi CO  i§ « ft! r—  CJ  oo  2  T-H"  00  r—  o cn  ON  ON ON  O CO  r— c o in o o  ON VO  8  - i O vo  v-> r~co o\  r f O oo rj—  O vd vo  O o o O N  r—  in  rf r>  T-H  in  CO  i n  oo vo ON C N T-H  in  O i n O N  VO  O  °o  v->  o  VI  VO  O  OO  T H  ON  co  ON vo CN oo  VO CO CN r—  r f  oo  r—  r—  00  VO  r f  CO  oo r f OO  vo O VO  r> vo vo  in  oq od oo  p vd oo  r f  in od ON CN  p od oo CN  oq  CN  CO  ON CN  ON CN  CO oo CN  vo V")  °  v->  r f  VI VO  H  VI  CO ON  ,—, c o  _  T-H  °  r-  CN rf  H  ffi  o  P3  WO  ON  co OO CN  r f ON CN  ON OO CN  T-H  CO  ON  O-  CO  rf ON Ol  ON OO CN  CO ON CN  vd o CO  d o CO  d ON CN  O  rf  ON  OO  OO  CO ON CN  vd ON CN  d ON CN  rf ON CN  3 co  cj  °  §  2  OO  £2 rt  VI vo CO vo  r f v i ON  J-X  O H  vo ON  VO ON  CN r f O vo  ON v i CO  CN  T-H  *ZM  _  ° J  v  l  i n co r f oo  a c  ss  H vo  CN  O  '—* O N 0 0 OO  gj  CN  Jr? * •  CN CN •**  ca  cj  r- o o o _ o o o S  co O V)  ON ON  «> M.  o o  ON ON  oo  o v  ON  CO ON r f  r»  OO  2 2 2 2 H 2 2 » O \ C N O  00  r- o o  V~l  CN r f  co o i ~  CN  O to  _ M  V~l  °  oo  m°  »H PQ  i  ffi  2 « O OQ  H4  2  'o  OQ  vo  °. °. * r> »3j  rf  in  9 ON o o  r-  CO  r-  p  rf OO CN  CN  od 00 CN  ON CN  d OO CN  d ON CN  CO 00 CN  ON 00 CN  ON CN  p  O  o  p  o  o  p  p  O  o  o  p  O  o  O  O  O  od oo CN  o i o co  o i o cn  od ON CN  rf  00 oo Ol  ON ON Ol  cn ON CN  d ON Ol  ON ON Ol  in  o cn  d o cn  CN ON CN  T-H  cn  CN o cn  ON CN  ON ON CN  oo CN  O  p  p  O  in  CO ON Ol  v i ON Ol  vd ON CN  p p p  T-H  p  o  o  o  p  O  O  O  p  O  r f rCN  cn ON CN  o i ON Ol  vd ON Ol  vd ON Ol  ON CN  vd ON CN  ON CN  d o CO  C-" ON CN  ON CN  O  o  O  p o o  H  ON CN  00 ON CN  O cn  od ON CN  p  o  O  o o  O  vd r04  mi ON CN  cn ON CN  vd ON CN  vd ON CN  od ON CN  o  o  o  p  p  o  o  p  CN 00 CN  CN o cn  d o cn  cn o cn  cn o cn  s  vd o CO  o cn  OQ  in  cn  in  CJ c N c n r f i n N o o - o o o N  O  ON CN  O  O  vd ON Ol  vd ON CN  v i ON CN  v i ON CN  o  p  o  O  O  O  CN o cn  ON ON CN  Os ON CN  ON ON CN  ON ON CN  o cn  CO  Q  vo  vd 00 CN  o  ta  in  d ON Ol  rf OO CN  '3 CQ  rf  d O CO  o  2  rf  od oo CN  CO ON CN  H  in >-  oo  00 CN  CN CN  oo CN  o  d ON CN  ON  i «  CN  CN ON CN  oo OO  p o p  UH  2 '5  CO  TH  ON CN  p p p T-H C O H o CO  ON CN  e a  in  O  O  ON CN  d o cn  O  o  p  O  O  o  p  o  d ON CN  CN ON CN  cn ON CN  d ON CN  r H  ON CN  vd OO Ol  ON Ol  >n  d ON CN  O  p  O  O  p p p  O  O o o  O  CO ON Ol  T-H  TH  T-H  in oo CN  ON OO CN  od ON CN  ON CN  O vd o cn  p  O  O  p  cn o cn  vd ON CN  v i ON CN  r-' ON CN  ON Ol  p od ON CN  ON Ol  00 oo Ol  ON Ol  o  O  vd ON CN  TH  in  ON CN  roo CN  vd ON CN  O ON CN  -  ON CN  ON CN  CN ON CN  vd ON CN  cn  o  o  p  p  8  NO ON CN  ON CN  p od O cn  cn  o  cn  o cn  c N c o r f i n N O r ^ o o c ? \ O T H 0 4 c n r f i n v o o - o o o N O H H H H H H H T - H CN CN CN CN CN CN CN O l CN CN c n  > o  166  x .2 y  O N c n c n c N O — < c n c n c » N q - H p r i _ p p o q c >  co  on  Q  ° o — i o o O_ O _O _ 2g~ooS<'""?ooin  co  rJr-  •s _ ffi r-' o -sf  vo °  —  ON Tf  ON  2  "  o o o o CN r-i i  o o  «D  "  r- -st- o\ r~ o\ o  r i  o o O O O o o o o o o o N i s ° °  m CN N cn O Tf  NO  Tf  O  CT  cn  l-'tcooinNOHh  , ., Tj" . NO S ^ O i n O N v O O N O \ 0 \ N S r H O N ^ T f C » - H r H T f i n O O O t~-Cn T f N O r - - H - H 0 O O O O O  c n r - o o - H i o o o Tf O O 00 l > cn T t r- t--  CN NO NO NO  O ON CN - H  n  Q  o o o o o CO <n cr ns o < M cn o C N NO C N H. ooo ZH  oo O N >n c n O N * , V D \ t h m O O r H C ) O N O C n C n O ' T f O O T f r H O O N O r  J  n P  ir, c Tf g  8 _  CO co CO . _ , X co pq  a. o CO  03 NO •s CO  1  t o ir '5 m  CQ  O  CQ  ir PH o NO « CO O N  CN  03  B -a S rH CQ C CQ  O  p 00  ON  ON  CN  CN  p rH  O  o NO ON  CN  O CN  O  O NO ON  H ON  O r-H d  O in  O in  p cn  O rH  ON  H ON  O CN  ON  ON  CN  CN  CN  CN  CN  CN  ON  ON  ON  ON  CN  CN  CN  ON  CN  CN  O od 00 CN  p in  O d  p d  O 00  O 00  O  O  o  ON  ON  ON  ON  ON  ON  ON  ON  ON  CN  CN  CN  CN  CN  CN  CN  O CN O cn  p cn O cn  p CN O cn  p 00  O d  O d  O  O  ON  ON  CN  CN  CN  ON ON  ON  ON  O  O  O  O  NO ON  NO ON  ON  Tf  CN  CN  CN  CN  d O cn  o o o o  p r i O cn  o  p rH O cn  d O cn  O  CQ rH  O 00  O cn  ON  rH* o o cn o cn  d I—J r<i c n  tn PH _ - CQ  p od  d O cn  o  c N c n T f i n NO r ^ - o o  p  O  CN  CN  p rH O cn  p r-H O cn  ON  O  ON  CN  o Tf ON CN  CN  p od  O  ON  ON ON  CN  CN  rH  d  Tf  CN  o  O 00 00 CN  O rH  O rH  ON  ON  CN  CN  d 00 CN  O  O  O  o o  in  d  ri OTfN  CN  o cn  O cn  ON  CN  p rH O cn  O  Tf r-N C  ON  00 CN  p •n ON  CN  o  O  CN  p od 00 CN  O <n  O CN  p  cd ON  o cn o cn  O od O cn  o  NO O cn  Tf ON CN  r-" ON  O in  O  Tf  O d  O <n  O  ON  ON  ON  ON  ON  CN  CN  CN  CN  CN  p 00  O  O od  O i>  O  t>  ON  ON  d  t"-°  ON  ON  ON  CN  CN  CN  CN  p cn O cn  p cn O cn  o o p o cn d o o o 3 cn cn cn cn  CN  CN  cNcnTfinNor-ooo\0'-HCNcnTfinNOi~~oooNOrH r H - H r H r t r l r H r H r H C N C N C N C N C N C N C N C N C N C N C n C n  CO CO  Q  167  O ca  do  a  .a  N  cn 05  H  O  H  m  iri  O O o CN  <u  vo ^ rf oo  CN  Os CN  •. o  • a  t  O  ^  q  N  O  M  -  f  -  H  H  O  H  -  I  O H q o N i n o q v q o q q o o t - ;  H  s o  CN rO  •sag >n c 2 | o cn  in  s  oo cn VO r-  O M  st  O —c in r r CO  -H  o in * oo  rH  m  o O  En ^  Os  cn oo i n os H - H  S  2  ^ o in rf  If)  vo  r-  »-H  r~ r-  8  cn vo  >n os rf rf  O O CN  2  o o cn VO  8 § § S n) vo  vo os r - vo oo oo ° t> r f  -H  Os m rf  >S  2  0  ZTJ « n t-  vo r-  rf  Os  oo  — i — i C N  O o o ° OO  vo O cn r—  rH  vo cn c-  o o V_O Os  r f vo os vo  o ~  O  o o  OO  m  '—'  COO vo vo  o o  o  _ o_ _o °  ? vo  Os v o  00  Os  OS  -  Os  C N  m  Os  VO  rH  VO  OV cn  00 vo  0O H vo cn  CN °  -+  in  S  Os VO  J 1  cu  cc  S am « « j  OX)  ™  s "S  X  o  s  H  3" '© J3  Os i o j  o d o cn  o d o cn  O  o  OS  OS  CN  CN  o rf O cn  p  O  o  CN  ON Os  o rf  o  Os Os rf  vq p H cn i n — ; cn i n i n r - ^ r - ^ d o d d i n O O - H O O O - H c n  ni cn oo  O  m  ni o  oo o  cn  cn  Os v q p p rf cn cn cn vd od § oo C N o v o o o o r ^ o s ~ ~ o o o o  g  rf 00  *  ffi  a  ca  •s  u  cu  TS co  o  es es  rf ;  t> cn  o CO  co  C  p  am  V  CO  M  ffi  i i ex  Im  CH  ca  \Z  ;  S -3 o  vO  s°„  CO  CO  c  1H  ffi  am o PQ  o  —  "5  Z U  o fa o  p in o cn  p cn o cn  o vd o cn  O d o cn  O 00 Os  o vd Os  O cn Os  o r~ Os  o vd Os  p 00 Os  O 00 Os  O 00 Ov  CN  O)  CN  CN  CN  CN  CN  CN  o r-' r-  o i> Os  O in Os  O od Os  p 00 Os  p rH  CN  CN  CN  O)  CN  CN  o d o cn  rH  CN  o d o cn  O  o cn  p 00 Os  CN  p od o cn  o  ON Os  o cn  O 00 o cn  O cn O cn  o  p  p  o  in 00  cn 00  CN  00  o Os r-  p  in r-  O Os O  p  vd o cn  cn oo  O cn oo  o rf OO  CN  CN  CN  CN  CN  CN  CN  CN  CN  p in o cn  O  p  p  o cn  o cn  o cn  p od O cn  p in o cn  o  o cn  vd o cn  p in 00  p  O  in 00  CN  CN  CN  CN  O rf d cn  CN  o Os O cn  p cn O cn  p od Os  o Os Os  p od Os  O t-" Os  O vd Os  p cn Os  p cn Os  p  p  rH  H  Os  Os  CN  CN  CN  CN  CN  CN  CN  CN  CN  p od o cn  O  p in o cn  o d o cn  o d o cn  p 00 Os  O od Os  p 00 Os  p  o CN  O od Os  O od Os  CN  CN  CN  d o cn  CN  CN  p  o  o  p cn o cn  O  rH  cn  p in o cn  O  cn o cn  CN  cn  p cn o cn  p  vd  p cn O cn  O  CN  p od o cn  O  rH r H  OS Os  ^  ^  ^  ^  ^  ^  H—  CS H-  es Q  c  VO tH  oa "o  a  do  O cn  CN  CN rH  cn  O cn  CQ •n H  a  'S ca  rH  CN r H  cn  cn  ^ H  M  ^ ^ ^ v o r - ~ c » a s H o i c n r r i n v  0  r  u  t  r  OS  rH  cn  C N c n r f i n v o r ~ o o o s o - H n l c ^ ^ c x j a s ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^  in es es  168  O cn  ^  ^  CN  O cn  ^  o cn  CN  ^  v q ^ r ^ v q v q p i o o q o N  so\o<5sdsc^sD'sosdsDsoso'^  "O  UH  <**  to  2 2  K ^  o o  o o  8  ©  Os ON  §  2  NO  CN  o o Tt oo  £  §  ?  Tt  •r>  s©  a  > -  <u _Cr-~cN « ft  « Ss S  r-- r-  O  O  C  N  O  O  N  C N N O N O in  oo cn •n in oo  o o o m 8 S 8 O O CN 0 SO t — o os  ON  T t o s o o o o  T t o o N O  C N N O N O in  T t N O o o  o  o  CN in  CN  00  Tt ^H  m N o c n > j n o o N D r H O N  in in  2  r-  00 00  2  - N  NO £  oo 2  T t v o r - r H C N N O N O i n  2  NO  00  cn  NO  m os  cu  05 " ' S  'S • o cu cn  I/O  Tt <2  m _ m  JU  co  _J  X  to  *  co  3  O N „ , u . <^ ^ oq - O.N O CO ° ! ^ ^ ° ^ CO P NVO "1 O O .' -rH O O,N ^Tf CN^ T t ^r--. O IC1 OO CS I—--. in CN Tt o o ' i N ' O N O g c n ^ o o ^ ^ g o J t N i i r i d H H u  _3  CO  ft-., -a  II  3 es  ft  E'  NO  •»a$«  r H •rH  o CQ  CS  m  *3  «2  H  CQ  Z  es fa es • M  Q  41  •«  •rl o CQ  ©  o o  CN  -3  UH  CU  O a  C M  ;  4EI  fe CQ  CA  HM _  N  o CQ  u O  l  UH  O  cu Et  s  o o O O O O O O O o o o O O O O O O O O O O © O o O o NO © CN i — i r H r-H 00 NO CO CO CN d vd no 00 od NO vd NO H rH in d r H v00d NO ON Os Os Os Os Os ON Os o T t CN ON ON ON ON Os Os O N Os ON ON ON ON ON ON CN CN CN CN CN CN CN CN CO CO CO CN CN CN CN CN CN CN CN CN CN CN CN oo CN CN CN  C  o  c cu  O E  NO  p OS OS  UH  u •rH  o CQ  p o O O O O O O O O O O O o O O O O O p vd T t CO Tt vd CO CO 00 oo Tt O 8 8 8 o o O CN 00 CN NO Os CN ON i—i ON Os ON ON ON Os CN oo 00 CO CO CO CO CO CO  p  o  ON  oo r-- oo  r-H  p o ON T t  p p o CO CO vd Os ON ON  r-H CN C N CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN CN  c0  cu  HH  00  p p O O p O o O 00 r-H r-H r-H H NO NO co ON o o o o o o o CN CO CO CO CO CO CO c n  cu  o CQ  2 cO  Q  p p CO in  m rH cn  cn  rHcNcoTfinvot-~ooON  O  p  r*  cn cn  rH  O o  p O p o p O p O o p O O O O Os vd in ON od rH vd ri r-' O o o o O o o o 8 o o 8 ON ON o s o CO CO CO CO CO CO CO CO CO CO CO CO CN CN vd  p  vd  cNcoTtinvor--oooNO^cNcOTtinNOr--oo  rlrHrlrHrtrHrHrHCNCNCNCNCNCNcNCNCN  UH  169  y 03  .1 yh co £3 g I  O  NO  co  1  r—  f"  H  §1£  co  S i s  O O  rH  rH  °.  00  N  O  H  o  S  0  0\ OO  n "  co C/i  —< _  o a.  "5  <u s  6  ~ S  Q- £  25 N O  rr* f—  2  OD  c  'S _. o  IT)  cu  3 O  JS Um  cu  o CM  e CS C/2  cs  JU  rH-tO  0  C O  •  . uo t-. co  uo  N O  S3 «n  «j d  CO __, o TJ; co wo fO oo uo 5? J_ O ~ oo oo O co  DH  H  o _y  CD H—»  rH  HH  u-» DC  C/i  o  „  5  03 SC S3 co Sco pa, CD co CD 0,3 ,„  Tt  in  CU  OS  co  -t  "1  CN  CQ  m  r-  UH  ca  ^  o PQ  o  5  2  uo UH  3H PQ  o  rH  S  m  NO  cN  r-  tn O  H  US  rH  co O co rH  CO CN N O  o £ CQ  C  rH  CN _ >  00  C O  J) CD pQ  N O C O  o  3  CN  - 2 CO c5  c/i C O  J»  ""CU So  o. c— fa  cs Q  c  rH  PQ  p  in  O 00  o  O Tt  CN CN  —  O  oo o oo co CN T f  o £ CQ  *H-*  ca vo UH  CD J UH a O PQ CD "3 rj  a  e  03 CD  -*-» C O  CQ  uo UH  JU O  PQ  ON  O  CN  Tf  UO CNO CN CN CN O rH O NO O CN  H H  oq  U 0  ON  T f UO CN N t-"-O. C N oo uo C CN COCN CO T f  3H PQ  N>  p  Tf  c/i CD  ca CU Q H  s a >  oi  C 3  CD > - _: E 5 o3 U •3 < ca T3 CD _ CJ u rj  O  O  cu  00  o 170  T3 O  vo v q a n ^ m ON o Os vq xt q r> •<*' c i —<•—<• vd x t oi oi c i xt v i ^ ^ ^ c x i c « c i o o \ c ^ " o \ o \ o > a a o N O N rot i H r t —H rH  M O \ r n t < i * O N O \ i n r - i N i r i  w Oro a  d d d d  r-  oo  oo  vs  vq  CO CO ci vi CN CN  ci  o  . o  3•_ o  ON  S  -H os O N c i vq - i od r n N iri o i  V O C N C N c o a s r H O O - H x t x t v s v o O s i O i n o O C N O s Os O p o p xt xt c i vd c i VS V) VS CO CO  r~ p  x t xt; os  C N  co oq  C N  V ) r H r H r > O S - H O ' - H  xtxtcN-HrHCNCNCN  Os CN CO CO  x t p i > C N oq vs x t - H vq vs r-; x t v s H H v d d v i x t o s v d c i c i v i - H c o c i v d c i - H C N C N r H r H O r H - H - H C N x t x t x t - H r H C N  xt  r-  CN xt Os OS  2  a. <u  OS  co  OA  #  CN CO  C  co co t~~ c i x t H p p p o s v q v ^ v s o q c N - H _ c N O s p p v s v ^ p o q c N o q p c o CN o i CN C—* O c N o s o s o s c o o s o i c N C - ^ o s c N r ^ v i c o c o ' v d v d ^ CO CO 0 0  0 0 C"-  t> vi co  ^ f": °°.  '5  V ^ x t x t x t V ^ x t V O V O V I x t x t x t x t x t V ^ r ^ r ^ r ^ C O x t x t C I C O C O C O  u o «5  vi co  CU CU  o  ^P *P °°.  ^ ~;  """i cn co "~: c o c o v o r ^ © o > n x t x t - x t d d cd  O; vi r i x t oi H *—< H oi oi v i v i x t oi c d ci r H H CO OO OO OO O S r H r-1 c d co d x t x t c o c o c o c i c i c o c o c o c i c n c s c n c s c s c n c o c s c o c o c N c o c s c s c s  CM  es  E  c/a CS  •a  vo vo vo c v dv dv d OS OS OS  n r t ^ c c l 1 • ^ 1 • H H c o o o ^ o o ^ l n \ 0 ^ c ^ N N ^ o c ^ l o o l n o ^ o ^ c ^  u  O  s  ci ci o o  o  oo xt  _cg  co C N vs r-- x t vq oq os oq o co oo oo co VO o xt OO CN r H OO 0 0 vs c i d d - - < r H ( > i > v d o d o o CO O O H O o rH' OS _ - H - H - H — 1 - H r H r H O O O O co: OS  vo  r-  oq x t OJ vs vi  S £ r~ od r~ o o o  os 2 UJ  "S z  u o fa o  vq co  CO CO x t x t p M H i n i f i ^ o s h s q c s i t N O x t CN x t O oi o i v i o i v i c. ^cNOsosasccxt'ostrjco x t x t x t x t x t C O C O x t x t COCOCOOOOOVSVSCOCOO  3'  VO VS  O  rS P P ° . O  O  O  O  od CO  o  r> H  ' $•3  co co co r ~ od od od CO CO CO CO  CS  es Q  xt CN 0 0 x t CN OJ OJ O xt; C~; CO CO ON CN CN OJ O xt O- 0 0 vi vi vi d _ O> O r i r i Oi Ol" Oi — —<' « rH C H Xt CN r H r H r H Ol' r - i CN CO CO CO x t x t c o c o c o c o c o c o c o c o c o c o c o c o c o c o c o 2  o o o d  vo VO C~ p O S O c O O S O S O S r H c O x t p p p p i n — ; o - _ ; CNcocoosr^o-'r-'vdci r ^ v i o i v d r ^ v d v d o i r ^ : vd vd OS r H - H r H O O r H r H r H j ^ Os Os Os  o o o o d d  vo vo vo  1  a  S3  &  o d>  O O vs xt xt xt OS rH* r H ' O 0 0 O Ol CO CO CO CO CO CO  OS vs t — 00 O  rH -H rH  IT)  vo os os os vo r- r> r~ o o o o  o £ Q  CSJ  CO s t  i n co s  oo c t  ( v n ^ i n c o s c o o i o r N c o s t m c i i s o j c s o T -  ' - T - r - i - r r r r C s l N C V I W C S I C V I C M C S I C M C V i n C O  xt o> O o> o  171  -H NO l> r od ON co ON •> 0 0 0 0 0 0 o  ON CN CN V)  ONUoodc<Jo\odo\o'o'r-'t--'  CN  rH rH  —<  - H p c » c » T t v > - H p c N N q o q - H ^ p V* CO V* r H CN* CN r H IS i n [s QQ QX* ^ r H ON NO r i r i '—' CO CN r i r H r l r l r H o l c o e N C N C N C N c o c o o l o l o l o l o l c o c o o i c o c n c o c o c o c o c o c o c o c o c o e ^  NO  QN C**  r H  V N 0 N N 0 C ^ T t - H C N C ^ O t ^ - H 0 0 C N C < ! t ^ C O C O O - H N 0 r ~ C > V l i T t NO O 0 0 0 0 C— OO ON O N O — l O r H O O - H O C O O O T t l n V N N O r - V N O r H C-* r-*ON rH O r-* r—t CZ> —* O O O O O O O O ON ON ON ON ON o OOO  .a  rt  CO TJ- t > p CN v i cn —' c o T t  H rH  ON O  2 2  . CO ON ON  u  o a. CU  OS-  CO 00  f"; r H C ^ CO CO CO O N O C N N O C N V ^ N O N O C ~ C N O O C ~ - N 0 i > - C N C N C N > 0 0 NO V ) T t V ) NO C ~ 0 0 0 0 O O O O r H C 0 e N l > - C - - - N 0 V N N 0 N 0 O ) C N O N r - -  d  O  v> ir, — <  ex  ON OI  NO ON CO O I  r i  c i cs  o cn cn CU  -H* O  ON OO ON O  O  d  O  O  H m ci N ci H H N n  O  H H ci d  6  .o u  CM -M  C cn  ca CJ  •a  O s v q p p p p p O N V ^ o q c > q o q c x 5 o q r H o q r - ~ C*"* NO NO NO NO NO NO C""~ od ON ON ON ON ON CO ON* T t rf- ^ i - rf* *H-* co CZ* c d •—| >  "I  2  2  2  2  2  2  2  2  2  2  2  2  2  S3  ^  r  ;  r  i  r  5  r  5  2  2  2  ^  Lrl  Tt *  *  "  r  ;  »  CJ  c  ON oo oo **i ' ' l " 1 *! ? ""': *•"••. ^ ^ o p o q N N o q c o r i o q q i n r i e e CO O I NO NO V ) O CN C- ON' H H r ' « d d o N O N ' d H ' d o \ 0 \ c c ' 5 ' ^ i n ' h m ; oo m i oo y iod i v > N n \ « V)) r—< a  -o cn  z o  oc  t  w  CN  ON ON  ^ r<  NO T t c~; co r-; c~- p NO CN NO oq oq NO NO i> CN c» oq VN T t oj o) c^J CN VN p ON p oq d 0 0 0 0 ON* ON O 0 0 0 0 Q Q Q - i t - H CO CN CO - H a ON O ON c i c i ON K t-i c i m c i CN CN CN OI CN CO CO CO T t T t T t T t T t T t T t T t T t CO CO TJ" CO CO CO CN CN CN CO V I VN  o  2  2  2  2  r  Z  _  :  2  2  r  :  _  :  -  :  2  2  2  2  2  2  2  2  ^  c  ^  c  >  o  ;  o  N  S  -  -  H  C_  ca cs  O  p O  l  r  M O V)  p l> p T t NO - H r H T t 0 0 T t o oq VN ON T t CO ON NO V ) CN ON ON o ON T t p p T t d d d ON* 0 0 ON ON* d o d d r i CO CN* CO* CN* - — i i—( CN CO r H r i CN cd o rH* V ) V ) CN CN CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO  >o ^ P NO ON O ON ON O  ^ O O  CN  ''i *1 °) "~i °°. °°. °9' . O O O O V N O N O N O N O C O C O NO O Tt c ~ a 3 0 N O N O - H O N O O N O N O N r - ~ c - - t > N o o o •> d O O O O O O r H r l O r H O O O O O O O O O ON ON H  NO d ON  ON  CJ r w o ^ t m c o N c o o i  O r - w o ' t i n c o s c o c t o r w n ' t  > o  172  uo CO CM CNI  CNI  CO  Tt  x t ; H « o o ^ i f l M O N v q ^ H O N i f i O CN /-H co o oo xt r-; —< H r> CN p ^ oq v> as co v i vd c i ON d CN cn v i d d CN 06 2 od od xt xt xt vd CN H xt r — d os v i as r H ONONONOSOOOOOOOOOOOOOOOOOO^ONONONONON^ONOOOOOOOOOOONOOOOC^ON  v q x t c n o \ < r > v q v q p r ^ H H \ q v q c N o > c n ' r ~ ^ x t d < N o 6 c o ' x t d d o d c >  ^ cn x t  ir,! N -H - p v> V) C- xt O N W I O N O N O N —< oq O xt xt S t — v i x t ^ i vd : -c ' !i^ ON - . .00 ^.H ^ v o v d r S r - o d i n v i c N v d - H 2 O N O N O N O N O N 2 2 2 ONOOOOOOOOOOOOONONON  2 u o Q.  vq H r~; CN VO VO VI co in vs co coCN CN rt  CU X  c n c o c o o o o o o o c o o  DX)  O  r - r - oo r > CN  i n c N x t v ^ o N c N v q c o v q v q i n x t ' v d v d c o O N c x i i n i n v i v i v d P xtC ' ICNCNOCNCNCNCNCNCNCNO  3"  CN CN CN CN CN C l  r-H  O  O  O  O o  oo o  o  <n vo oo >n vo voO vo ON od od S S xt d  vd d vo in x ?  cn cn cn cn cn CN  in  s-  O C-; d d  CO CU  u o ca  E  •a 3  Vi ct  CN CN| CN vq — . i f - ; vq 00 ON CO CO © 00 HH <-H HH CN *H HH CN co x t ON ON vd c i d ON r — od od od  o q c N O N i n v q o q i n v q v q o q - H  COCOCICOCOCOCOCOCOCNCNCOCOCOCNCNCNCNCN  VO rH in Xt C i CN CN rH ri CN VS c N x t c o c o c o c o c o c o c o c o c o  vo vo vo vo vOvo r- ON r - ; v q v q v q v q O N v q i n i n i n x t vo VO VO VO vo _ ovvdvdvdvdtNvd^hhcc O N O N O N O N O N 2 -H ONONONONONONONONONONON  VN vq CNp p p p p p o i i n _ j m xt . Ndvdvdvdvdvd_;vi £ < N - H O O O O O O ~ - H  d  n  O  , oc  r~ v i  oq - H in -. O ^N - _  r- x t VO xt xt O O CN r- C N vo vo o OO O NVr H o ,. r.H. vd - xt . C l H a i n ^ ' r i N N N CN N ON ^ mc im m ^ ^V V OOvr -O l C NOK  Z  o fa  xt c i ON ON ON c i v i oo CN v i c i H od ON i n x t x t x t c-~ CN ON OO c i r — i n i n x t x t x t i n i n c N r - o o c i o r - i n c N c N c N c N c N c N v o i n c N x t x t  x f  t-; vq vi i n c i c i ON ON  vo d.  V) x t CO CO  ca H«  Q  v q c - ; C N O N i n c N v q r H t - - - c o V) ON CO CO o OO rH -H -H xt 00 CN in r-; in vq O N vq vq oo rH vd in x t c i c i rH CN c i od v i v i vd c i d ON 00 00 00 c i vd CN v i c i CN rH rH rH rH CN v i xt CO CO o CN CN CN CN CN CN CN CO CO CO CO CO CO CO CO CO CO  •a 3  <n  xt xt v> in oq co r~ v i v i v i rH co  in ci  i - C V I C O x t U O C D r ' - . C O O N  rH  ON  O  r -  oq VO VO VO vo cod vd vd vd vd ON ON ON ON ON ON ON  CM COxt  uo CO h- 00  00  CN VO O N v o v q - H r - o N O N O N i n r ~ c n c n c N r H t ~ r ~ t - v i  O T - w n \ t i f l ( D N c o o i o r CM CNJ CNI CNJ CNJ CNJ CVI CVI CVI CNI CO  O CD Q  173  CO  —<  T t i O C N r - O s T t r H C N . - H r t H N q i n i p i p h i n N i n ^ i n a ^ M i n q o e v q ON cn C N Tt' r H O r H O T t c n T f i o O O c n T r s u v u ' n v u i ^ r H ^ c n c n c n v u c w c j s O N O N O N O N O N O N O N O O O O O O O O O O O O O O O O O O O N O N O N O N O N O N O O O O O O ON ON ONON ON ON  - i CN o i cn p CN p p p p O — i -H -H H rt CN t ~ H N n « i n c < i n n m o d » o o c f l c c r » H N c n n N n c c i c n m c n N c N c N l N c i N M N N N C N l N C N ' N r t H H H H H r t CN  C NH N ( N r t r t r t r t q O \ a O \ O N  vo^Mv6hM»dr>^d6d6io'  1  epTf—C  "3  in  H O N oq —; C N p O N Tt C N p cn O N I > O N N O T t N OTt O ON t - ON r-i d c n d od —im i r i m ^ i ' w o o o ' d o d n c N i i n N B i m H d H rH O O rH O O C ^ O N C ? * " " " " ' " " " " ' ^  N O  0  0  0  0  0  0  0  0  0  NO NO NO NO O OO 'CN O I c-; q i n O c N p p p N q i o - H o q c N c n o q N q d d d d d ON l > T t C Od d d d o K w o i o N o i o N M in in >n m m T ? T ? cn c n co T t >oTf i n i o m i n T t T t c n c n c n c o c o _,  rH  0  0  0  NO -H H CN  C O C N  o  o  o  I - ; C O CN 0 0 C N p od cn Tt CO T? T? Tt -  NO Cn rH rH o o  r - >o cn  rH rH rH l O IO <0 rH NO T t o o i n i f ] i n i n i n H H i n ^ H H h a c N N » N n o \ cn . TJ- Tt' Tt* Tt* Tt* in in in in in cn Tt* Tt* Tt* C"-*  in >o in in Tt* Tt* Tt* cn cn  NO NO  C N  NO  NO NO  ininininincnr---H-Hvqr^inr-^i^ ini in >n in in C N - H ^ ^ r H - H ^ - H i n i n i n i n - H N O T t T t T t T t T t T t T t N O N O N O T t O — ' O O O — . - H - H r H - H r H - H r H O O O O O O O O O O O O O  NO  M . . C-N NO  t  invoooTtONONO NOC~--HCNTtONlnt-~rHTtONTtONO  cn d So^SS S » o» S N i d in>didt^^>>nTt'id H  H  H  A  H  H  A  ^  H  O  ,  ^  ^  *  *  c  >  O  N  a  o  N  »  a  a  - H O O c o c n e o c o i o a \ t - ^ o o c o o o o o o o o o c N O \ r H O N r H - H C N C O O l - H r H C O T t O O P r H O O N O N i n r H O O O O N T t r t - p O N C - O t - o o o o c N o l - ^ r H i n o c n c N c N c N c N c n c n c n c o c n c o c o T t T t Tt T t cn C N C N cn T t T t in c o T t T t T t c n c n c o o i  rHoqcncninininONNqr-^r^ojcNini^ in cn cn* cn T t T t Tt* cn cn r i d o i C N C N C N C N * H d cn Tt* in in T t cn co cococncncncncncncncnc^cncncncncncncncocncncncncnc^  1 *  t  o  o  o  o  oo oo  SH  -H  NO  NO  NO  O*  d  d  d  ON ON  ON  ON  o  CNI  CO  O  NO c -  o  o  C N CN*  o  u Q  T - c \ i c o T t m c o i ^ . c o O T  r-  in cn cn  174  T r i n c o r ^ o o o o T - c M c O T i - m c o i ^ .  T t in" d  cn rH o  00 CM  o d o  rH rH  cn o CNI CO  d  cn cn rH  T—  00  o E  v q o q c o c n v q v q o q o q i n c n r-< C N H C O p H C N c n — *< H O N C N H Tf c n C O • ~ c o c d c n c n *—< C N " o i Tt' c n o i o d c n Tf o d T T ' O N o i c d O N c d c d i n v d o i C N tn C N O N co T < O \ 0 N O N 0 N 0 0 0 0 0 0 0 0 0 0 C > a N O N O N a N 0 0 a N O N 0 0 O N O v 0 0 0 0 0 0 0 0 0 0 0 0 O \ 0 0 CO f£  g O 2  ON 0 N V 0 v 0 O s O N O \ 0 N O N 0 N 0 N 0 v 0 N O l c N C N 0 0 c n 0 0 0 0 i n v 0 C N VO OO 0 0 0 0 OO O O T f o O O C N r H r H r H r H r H r - H r H r H V O V O V O V O O O C N C N O C N O O N N t S N N ^ M H N c n n c o m m n m n c n N N t N t N i H H r t o t m c l  ON  in - 1 "t p ON Tt T t T t CN h CO c n c n rH r-H O 0 0 V O O NCN O c o d d st O C N ~ ON ON 2 » ° ° O N O N O N O \ » O V O \ ° ° 2 2 2 S n  cd d oo o m  42 u  o a. cu OS ex e  vq  CN CN CN  co  T? ^  o o  Tf Tj  5  oo in vo•"I  r~; C N p o d r-i c n  v o v o r H O O N v o v o o l O N — i r- r - i r ^ c n c n - H C N vq vq O ON C n l O r H r H r - l O N O l C n or-cocNt^Or-Hr-'cNcCNCNcncncnNONONONOin Tt c nc n c n c n c n c n c o T t T t r  55  © ^ q q q c « » M i n i q r ; n i o i ^ q o c i n M H q q q ^ M C A ( ' i o i o o v d o d o d o d o d r-i — i r i d c n — i — i d C N o i c n T t i n -H* H - - i d d C N * c n Tt* o d o d c o c o c o c o c n T t T t T t c n c n c o c o c o c o c n c o c o c o c o c n c n c o c n c o c o c n ^ cn  co  i  CO CU U  O S  cs CQ CS  •a  CN CN  CN O J CN CN CN" ^ v o v o O N c n c n c n v q o q o q o q o q ^ o i o i o i o io i ^ d d — Q S S t r O N O N O N O N  o o o o o o o o o o o o  1  vo  c N c N c n o o o o o o c n c n  u  s o  Tt r - rH i n r-H C N C N T t o q C N c n i n o q C N i n i n o q v q i n i n rH oq cn CN ON * CN d r-i - H C N o i o o Tt* v d v d i n T t C N c n c d i n c n c d c d r i i n i n c_d o- i c n O N /-—v / - - j /—, c d T t — C ^ O N O N O N O N ~ ~ ~ O N C > C > C > O \ O N O N O N O \ O N O N O N O \ O N O \ O N O N O N 0 O 0 0  CA  ~u  z  rw Im  cnONTtTtr-oivooinr--ino)TtocN  o fa  O N O N O N O N O N O N O o r - c n o s O N C N T t T t c N c N c N c n i n i n m i n T t c n c n c n  Tt C N C N T t Tt; r-; O N Tt; T tC N c n i n c n r - ~ r ~ o d o s O N d c N - H c n r - ~ i n o \ T t c n c n c n c N c N c n c n c n c n c n c n c N c N  cs CS  Q  in CO  1% Si c3 Q  0 0 in O rH rH 0 0 Tt Tt c n  CN 0 0 rH o O 0 0 o d ON CN o i Tt c n CN CN CN c n c n  c n rH CN p P p t> 0 0 CO c n CN rH rH* rH d d c n c n c n CO CO c n c n c n  cn cn cn  0 0 o o CN o q n CN* CN d c n c n c n Tt  vo d ON  NO d ON  vo d ON  i n T f o o i n i n i n r ~ - - H T t O T f r H r H O  CNI  CO  Tf  uo co r - co a)  i  CN Tf Tf l>  O r C M C O T f l O C O I ^ C O O l  o cu  175  00 oi cn  rl CO cn  CN ri cn  in  VO VO r l r l VO QQ  O i - C M C O T f L O C O h - C O CVI CNI CNI CNI CM CM CN CM CM  1e CO  .3 ro  2  ro cS  , „ Ol OO H  oo  vq v->  3  1e cn  T j  * 5 * r-^ °-o  ^  °°  ?o -  "° Vj  *5  O  X?  o  ro «3  xt  _ H  j Xt  _ H  0  ro Q c 'ro ui  a ffi  °  oo oa 2 o  SH  H H  oo p cn cn  1  1e cn  ro c2 2  V )  5 2  vi  2  m  °  ©  VI  02  0O  Vl  -t o  ^  rH  V)  vi  O rH ON •  2  V)  00 cn —  "3 si  CN  O P ~^H xt O  q vp t-: x ? o o —  xt U c '3  CN  <=> ^  * H  O  cn  V)  o r- rH  cn  1  o H  H  V)  00 0O rH  ON VO  r l in v> d -  NO  1  1 ffi  V) vi  P  xf  00  ^ o • -i o — 22 o 1  £ > si  ro Q  D J  = < 0)  > O  E  co 'c  _  v,  c D  O -o > o "O co "o OJ  ™  •o c co  co  176  2  TJ p  Ely cn  ea  CN CO NO CN f j s t s t vq V vq V) vq CN r f p d o d o v i o d c o ' c N r - o d v i v i o v J c ^  O] CO »-H V} .—< CO V) OS  H x t CO rH c—; O  V V ) V r f r f V V V V ) V > v o v s v o v o v v > v > v o v > V v o v v s v s v V V O V s v ^  o cn  O  §  c q n co os H H c o ^ f •  f - h N t N N o o r— H N C ^ m N v c o v o r f r H © o ) ^ ^ ^ ^ ^ ^ ^ ^  o o O H © v o v o o o o s r f r H o o H O ^ O ^ \ O V O N O ^ « ) V l c o o s © o o r - s t o ) H H r H o ) © ^ o o M M c o c o o o ! l O  r - r - v s o i t - - - v s r r o t ^ O O ^ O ^ ^ O N o O c o s o s o o o o — i r H r H o s ( » w ^ ^ ^ ^ M c c M  o v > « ^ o s o ^ ^  v C s ^  o v o V O o s ^  to  1 e coovjcovovjc^rNvjcorHcoc^  CN — ; CN  CN CO r f Os Os rH co vd vd o i os *H r * o o © so -*r v Osr -od rO f SH C ~ rr^f0>0 f !s O - 0d0 0 r0 f0 r 0f 00 0 0vOiS o0 i0 cd od 00 Os 00 od 00 oo 0 0 O Sa s 0 v© 0 0 0 ^ ~ ^ O N 0 0 O N O © S O rH N 0rH N 0O0 0 ca  O  < UJ  c '  t  ©  ©  r-H  vi ' '—ios C N  C N ^ ^1 ^1 P ^ "1 "1 °°. "I °^ °°. °°. °^ co °9 °^ os os os os os vd v j v j od o i co os IH co* o i H C*- v i v i co r — c— c i H *—< .—I H oo © © © © r H c N o l r f r f c o c o c o o l c o c o c o v i v s r f c o c o c o c o c o c o c o OO OS  — -H  . — <  *—I  Q TS  o  ca  O <  Q  © St  OS rH VO r f -H r t d oo oo oo r f =  vo ©  V) r f vo co oo vs OS r f v o o o O r H c N - H c o c - o o v i r f r f o o v o r f o o oo © N i n ^ c s i O \ v i ( < i t o vi'csi n n c o ^ o S S v o ^ i f i ^ S i c i r s i "° O v r - ' r - o o o o o s o o a N O \ o s o s o s o s o s o s o N ~ ~ ~ o s o s o s . o s o s o s a s  vo• r f co c— c—  CN  VO Os r f  OSVSV)Vqr-;r-;COONOS©rHrHrHrHON  2 r 5 r 2 « « i c o ^ r « : 2 2 S S 5 3 H  H  H  OS »  OS'ON »  ^  H  rl  ri  2  2  Oi VO r> OO rH rH C~! rH rH rH V) rH rH rH rH -H rH COCOCOCNCOCOCOVSVSVICOCOCOCOCOCOCO  TS  p  UH  cj  2 Q  v o v > v > v > r r o f - o o r r o s © v O O O v o c N v o t - - c o o o o o r r r~ o co os r - <-H © C O C O H H O S O ) H H 0 1 t ~ - O O I > V ) © V ) C O C N C O O C O r H CO r f r f ©* CN o i © OOOSOSVir-OOOOOOOOOOONOSOsONOsOSOSOSOO r - O s ^ - H r H O v O s O s O s O s O s O S  t~- © vi  -  vq  vd r f  ^ r f r H O s © r H o o - H V ) V s v s r ~ - C N O s V ) V O r f o o o o o o o s c o O © © a s O s O S 0 0 © O S O C N C N V O r H - H | > l O r H r f V ) 0 0 - H V O V O r f V O C O C O C O r - l r H O r H © r H r H O ) 0 ) r f r f c O C O C O C O C N © 0 ) V ) V ) V ) C O C O C O C O C O C O  2 _- Ss  r N c o s t i n i o s c o o )  rt  ^  cn  o  orojnstioicN  177  c o o i O r N n s t m i D s c o o i O r ^^C\IC\IC\ICSJC\I<NC>ICV1CS1CSJC0C0  o  e  NJ co *g CH  E2  fc. o  COO-VOr^-ONOOOOOOOOONOOOOOOONOOOOOOr-r-r-OOOOr^r— r— VOVOr— OVO  M N o r i H i n q q r f O ON ui r\i ci C N cn d d c n o \ o o o o x o o o \ 0 ahs ' Oos N o r-r-r--o-r---r--r---oo H  </}  a. cu  o v b o \ c N r t r t r ~ v d c « o < ? i  O  H  H  CO V )  C O  CN CO v d c n CN v i r f CN CN v d CN r f ON CN v i  o o o o o ^ o o o o o o N O N c o c o i n c o c o c o  do  vq o; CNi O N v q r-; rf CNi C N r~; r-; rf; vs C N  vqiqqi^t^cnr<cnino\o\cnos(NiH  O N r f O H O N o i CN T-H r f CO o i CO CO r f co CO CO H V h N c n ' r n ' t n ' c N O N ' d d " h  OX)  'e 'S  O-  fc.  CKONONOOONaNONONONONONONaNONONONONOOOOONONONONONOOONONONOO  o  ONONOOOOOOOOOOOOOOOONONONONONONONONOSONONONONON ^^t<d>d<d><d><dd>d><ddd>ci<d>d>~^  c« CU U  COCOCNCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC^  fc. o  CH  C  vot-Hpr^rfr>c^c»cot-H\opwo c d CN CO d v d vi CN r f r f vi CO r f CO r f CO CN O O O N O N O N O N O N O N O N O N O N O N O N O N O N O N O N  H O N O N - C O  CN  T—H  v d C~-  vi r f  O NO S O S O S O S O S  v d CN CO r f r f CO O SO N  O N  O N  O N O N  CO  cd O a ©  OO C D r f T - H T - H C D C D C D . C D C D ON ON ON ON r f H ON ON ON ON ON ON ON ON ON ON ON ON ON ON VO H VO 0 ~ VO CO CO CO CO CO T - H T - H T - H T - H ON OO T - H * - H T - H T - H H H H H ,—4 H H H H H CNCOCOCOCOCOCOCOCOCOCOCOCOCOOJOJCOCOCOCOCOCOCOCOCOC^  CO  © fa  v s v o c o o q v o r f c N c N c o v s ' c o ON r f T - H d f - c i r f O O *-< O O O O ON ON T H ' H r f CN CN CN r f CO r f CO v i v d Q d O- O N O N O N O O O N O N O N O N O N O N O N O N O N O O O O O N O N C ^ O N C J S O N O N O S O S O S O N O N r t O S  © OS  a  Q  <  v s p v q p p p p p p p p p p p p p o q o N O N O N O N O N O s O N O S O N O ^ o i co O N c d c d c d c d C D C D C D C D C D C D C D C D C D C N H T-H T-H H T - H T - H T—H T - H r ~ i I H H  I - H  O N C N  C O C S C N C S C S C S C O C O C S C O C O C O C S C O C O C O C S C S C O C O C I C I C O C O C O C ^  Q  ' ~.  CD  ,  n  „„OT-N(0'tmONC0010T-N(i)stiniBNCOCI)0  Q > o  178  _o  OH  H  co  73  r>  O v « n > o , p > o . c N - H p e » ^ N q o \ o q O N  TJ =2 B CO  H  co  K  I  c o " r - « < n T t T f \ d c » d > n ' > n c » T t T t © o ^ o c ^ M ^ l n ^ c < l ^ c < ! \ o ^ ^ o o ^ ^ o ^ ^ o ^ M • * l n l n ^ o ^ o ^ ^ ^ « ^ l c < !  H C N O N i n O N r-^ os co C N Tf rH rH co o d c » c > c ~ - ^ c » c o o ' o c N c O ' ^ r ~ v i o  o  ri  vq vq ©  i n vq  p  C N  oq T f  co <n i n oq  C N  c N c o c n c N r H O r H r ~ o O N O r - r H T f r t o o o o o o O v c o O O o o t ^ v o r ~ v o r ~ r - - v o o ( ! o c < J c e M ( » l ! O M ^ ( » ^ M c < ) o o o o o o ^ ^ ^ ^ ^ o o c « ^ ^ ^ ^ ^ ^ ^ ^ o o  c/5  O  a.  cu  c u  </~1 ON CO CO NO r~- CN| CO 0 0 O I C~; O CN 0 1 H r t r t O N t O 1 c > l C i q C A i n H ^ O \ C O \ t r ; C N r i co o i os u-i d C N os co od O N <-" T f >n t ~ h c n v o G o ^ v d h M d m H c i n c i c i O N O N O N O N 0 0 0 0 O N O N 0 0 O N C « 0 0 C > O N O \ O N O N O N O N r | O N 0 0 0 0 0 0 O N O N O N O N O N O N O N (  " CO  CHO *H  os '3  o  O N O N O N O N Tf O p Tf r , —i rH rtrtrtHH'addc^Mwc«^mvii>3odo6i»ci  ON  c«  Q  CU cu  o u  0-  C  cs  CO  — .  —i lO r i H T-H H  in  c n c O C O C O C O C N C O C O O l C N C N C N c O T f c O C N C N C N C N T f  1  H-i  C N  eC O t ^ O f ~ - O O N C O C - - T f C O r l T f T f — I ^ T f T f O O O  T—H  t-;  00  r i  i n CN CN CN CN CN CN  CN  TfTfodr~ivdvdvdvdvdvdvd T f c O C N C N C N C N C N C N C N C N C N  o  * ! ' * . Tf i n p C N vq r i C N C N "O r-i o \ d d d o N O N o d — i Tf C > O N O N O N O N O O O N O N r ~ O O O O O N O N O NC ^N ' O^ 'N ^ O \ N0 ' \^ H^ ^ ( J C O O N O \ O M J O C C C < ! 0 \ 0 \ r  0  ,  1  CS  C5  c o  c  2 O N O N O N O \ O N O N O v t ^ r i p i n p i n c o T f ^ r  H  i r Hr  i r i r Hr - i  d  CN CO  U"i d  d  V) CO  CO  CO  CO  O N C O C O i n T f C N O N O O C > c d T f d  CO  c c i m m m m m m M H H c i m t f i ^ i - T f N t N t l - T r T t o i H H H H H p i N M N  z rJ  o  1  fa  E o «_ CS HM»  CS  Q  CO  e  o  TH  C  N  C  N  O  O  N  O  O  V  O  C  O  O  C  O  P CN  ^  ^ S S ^ N h N a « h N f ' i n ' d «  O H Q  . M V CO ^  a  -  O H ^ O O O vrj oo" ON O N  -  ^  -  O C N  O  CO  C N  Tt d  -  C N  -  C O  T t  C"*i d  -  C O  l >  oi  * n co  t > C N  od  O N r H r H ^ ^ C ^ O N O O O O O O O O O O O N r H r H r H ^ ^ ^ r H ^ ^ ^  PH H  I  3  ^ "~i °i ^ ^ ^ ^ ^ °°. ° i ° i ° ^ ° i °°. "~! c i P CO r-i rH Tf' N O rH Q N V O i n oJ CN T f O O N CO r i i—i i—i CN r i 00 V O CN CN CN CN CN CN CN T f l n i O T f c O C O O l C N C N O l O l O l C O T f T f c O C O C O C O T f c O O l O l C N O l C N C N C N C N O l C N  Q_i -  i  ~. ~ N n  -n. - m  i  ,~ ^ l l S  C  „ „ O r - N ( " ) ^ l l ) ( D S C O O ) O r ( v n < f l 0 1 0 S C O O ) O r O O l r r r r T - ^ r - r - r r - N N N N N N N N N N n n  CJ CD  Q  179  s o  .2 j -  00  00  CO  v>  xt o co cn C N r-~ d Os r- x t vi x t x t i n d oi co - H x t oi d oi o ^ o ^ ^ ^ c ^ M ^ l n « m v o ^ o ^ ^ ^ c C l ( ! O M ^ ^ ^ ^ v o l n v ^ l n l n « ^ l n v ^ l n  o  r ^ r ^ r ^ c » \ q p c N r H O \ c o c N r t C N C N xt C N co —< r~ cd vd oci —< d vd —< r~ © y d ^ N " H H ' 6 H ' o \ h t 3 \ i f i ^ o I c i O N O N O N O N O o o N r - v o c o x t v s x t v o v o v o r - r H O O N O O O O o o r - r - o o o s o o o o ^ ^ ^ ^ c o o o ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ c o ( ! o ^ o o oo oo o o o - r - r - t " - r - ~ r - - c - -  o H  o  a -  TS O  CU  OS  OJD  c o u ^ c ~ x t o q o q c > o i x t r < c n v q o ^ CO C N C N H CN* o i H r-H x t CO 00 CO* C5 H *-H C N x t VO x t C N C N x t x t —< — ; ri C N o' cdI C A d OsONONONONONONONONoOOOOsONONONONONONONONONONONONONONONONONOOON  CO  X .3 a CO  CO CO CU CU  Si  CN CN x t x t x t x t —< — ; O l V ) 00 C-; C-; x t x t x tp c > O N V > o q p p p p p p p p v s o l VO VO CN CN 0 0 0 0 0 0 0 0 VO O CN ui IT) CN CN CN x .t ' r J r J c N c N c o c o c o c o c o c o c o c o o d_v d_ O) CN CN CN O) CN O) O) O l O) — i - H - H o l O l O I O l c O C O C O C O C O C O C O C O C O C O C O C O C N C N  o  s  •H  es CO  C5  oo  oS f-»  1  Id  c o co  Z  u. O fa  o  M *H  t> t> xt  C N  vi vi vi  co  in  xt, co oq oq oq O N C N O N vq p r-; vq o r-; co oo co oi co co co C N O N od d Os _ O_N co co C N ONONONONONONONONON00 00ONO000000O0O vi  od Os  §  §  oi'  ON  N i n o s o s o i c j s o j ' O j q H O j  vd r> ^ H H >-! H r i H v! -H —< o i co co co co vi  vivicocococorHododoocdcod  C N C N C O C O C O C O C O C O C O C N C O C O C O C O C O C O C O C O C O C O C O C O C O C O C O C N C N C ^  TS p  HH  (3  C N x f c O - H C O O N O N V O C N O ) 0 1 V ) O s V ) C O  0; C N H C - ; rH Xt C O C N 0 0 0 0 O O x t C O C N VO d ^od ^ l n l n l n l n ^ n v O O ^ C f t C ^ f t o O N m v o ^ ^oiT t ^ ^ vd o co o M c o o ^ H ( < l o ^  m CN co vd O N O N O N O N O N O N O N O O O N O O O O O O O O O N O N O N O N O N O N O N O N O N O N O N O O O O O O O O O N O N O O  es es  Q  3  oi oi oi oi ^ r4 oi od t> xt oi oi oi oi oi oi vd H od ^ —I ^  — i c o d d d d d d d  O l O l O ) 0 4 0 ) 0 4 0 J H H - H r < T H r H r H r H r H - H - H C O O ^ O l O l 0 4 0 l O l O l O l O l O ^ O l O l 0 4  m  H  .  ,  n  ,  n  ^  _  m  O  r  -  C  m  180  s  l  C  O  s  t  U  )  (  D  N  0  0  1  0  T  -  W  C  O  s  t  l  0  1  D  N  C  O  O  )  O  T  -  TO  CO  r O  H  Q  T-<TtrNcopvO\Ov^c>q\OpM  C_  tn h « o\ vd vd  T t O N c o vo 00 vo O O 00 CN 00 T t CN u o TTf t T Tf TT f f i n c o T f T t c o i n u o t T onui on i n u o m i uo UO cn UO T I/O uot co uo uo uo uo uo  VJ " CO c o s i n c o c o c ^ i ^ a D c o c N O s o s c o c o o d ^ T T t u o u o T t T t u o u o u o r ^ u o r ^ v D r s i n v D u o C/3 T r T TtTtininTf-rtUOUOUOt~~in(---VOt^inVOi  co g O 2  ininininininuoininuoininuouovouou  CO  D C/3  o H  o  00  CN Os O O '—; Os T t *—< O © © Os ' — i 1/0 CN Os T t — i < uo uo CO © CN UO oq r-~ uo in vo r--- O Os 00 t > O s O s O O O O O O O O O U O V O V O V O T t U O V O t - - o b v O t> r- ic— n t— ^ ' c ^ oo u o o s cr~n ord-u o c n v d i ^ u o r ^  O S  i^t^i^i^cx>cx>cx>ccoor^t^t^r----t^  C/5  Q. CU  TO O  OSS  CN r*-^ T t C N *—* i n ro^ C N © r*^ uo C N C N V O V O O S v q co C N O r - ^ V O O S U O U O . uo T t os C N co r - n i > os co co i-H T t T t T t co r - i od od od cos O N od ^ c^ os od uo uo' o o o s o s o s o o o o o s o s o s o s o s o s os, os o o o o o o o o o o o o o o o o o o t - - r - i ~ - o o o o  VH  Of)  'a  CN  e _CO  C M  «5 CO  'S _o  .£5 o  C/3 C/3 CU CJ  <  CO  Os CN CN CN CN CN CNI CNj CN| CN| CN| CN| V O CNI CN CN CN| CN| CN CN CN CN O 00 00 00 OO 00 Tt'vOVDvdvdvdvDVDvDoJvd C N C N C N C N C N C N C N C N C N r - i c N -CN C N c N C N C N C N C N C N C N C N C N — < r - < r r r — t r - H r r i  Q  o _  CU  e  H—  03 -_  °5  co  "I ^  ""'i  M  " * - ~ : ~ : ' ^ ' . °*" ""I od od "-""i T t v d v d T t C N  O N  T t i—* i—i v d \d s d » » » a o s c > »  o  r  v  r  2  *  *  o  o  a  o  s  a  t J ) 0 0 C N H r H \ t h H ( S O \ t ( S c d od o s C N C N " C N C O r^- od od v d uo o o M O \ o s o s oo oo oo r - oo oo  C O  »  CA  CU v_3  C  o  <  "oS Z  Q  + J  u  CCJ +H  C3  Q  Tt'. T f ' r ^ r H r ^ C N C N C O C O C O C O C O C O C O C O C O C O C O C O C O C N C N C N C N r ^ r ^ C N C N C N C N  w  : CA  o fa E o  vOvqvqcOTtCNCNpOsa>OsOSCOOsOSOSOS 00 00 00 Tt" OS UO UO r - i r - i CN r i r i CN r-H* r l rl* r<' r i VO VO VO VO OO CN - —J CN  T3 O  oor-cNosr--r-ioocN ^ v q o o ^ ^ ( S O l n s q ^ r ^ v q ^ « 3 H ^ q ^ c 7 ^ ^ l O N T t v o u o c N T t T t r r vs doccoo\ o v »o ni 'nc co oi nu oo6or oH rCr"c" ^K rt ^^ ri ^^ T t c ^ r ^ i n u o o o v o c ^  VH OH C/3  PH  .s  CO  CO00C»CX>0000CO00  O  t ^  00OsCX)asasOsCX>as00C»  CO  c^cx3oqcqc<)oqcx3oqc»uoos CO CN CN CN CN CN CN CN CN uo r i r i r i  < Q  CN rH rH rH rH rH rH rH rH CN  C O  C O  C O  CN r i r i r i r i CN CN CNi CNi  C O  C O  C O  C O  C O  OCi 00 r-i cd cd  CN CN CN CN rH rH CN CN CN  Q CD  r  W  n  ^  i  n  C  D  S  C  O  r  o  181  ^  ^  ^  r  r  -  r  r  r  r  r  W  W  W  W  W  W  C  V  I  W  W  00  r—I  £  r-  <P lO O cN OS <N CO • VO  C/5  o  t-  ffi cd  DO OO O  CO  J  oo oo r-  9 o  IT)  00  O  a, a>  OX  8  c  OS  o £ ,~ 2 D 2 ^ vd  d  » o in d  cd  H c/i  <  CU  Q  CA  o s_  in vo j - . „ ^ K §  W  CN  '  >n  g  o r°9 o OO  1  O  CM —i  s  C3  vo q 2 o  £ ^  -  C/2  a  O c  ©  OS  C/5  (NI  z  °g 1 - 1  H  2  O  cd '—  1  u  o o  CN  VD  os  3 Q  _ r- r8  «> <=> >n  vo  o  OS c^ <*> CN  °  CO  •*-» cd  Q _ >© =  75 < <D >  o  52 d  1—1  E  E  •= •= CO  -n  cc  ^  o  iS O  GO  182  in xt  —H oq O) cn cn  c r-  « cn oo cn 00 O N ^  (N h \ D O oo cn ON ON C O O O 00 O N  in »n oo < N C N u-i T t ' i n c>o 6 CN CN —« —-  ON xt in CN  ON xt in CN  in m vo CN  •n r— xt VO r H 00 ON xt CN cn o f— i—1 ON cn cn xt CN CN CN CN CN  00 t— xt CN  m in vo CN  m CN r H IC) o vo XT cn CN CN CN  OO 00 o CN  CN cn 00 CN  ON xt IT) CN  in in vo CN  •n in vo CN  m •n vo CN  r H ON o r H VD T—t00 t~~ cn X ? so CN xt xt cn  rH VD t~~ CN  oo rxt CN  00 t~xt CN  O ON m i n ON in VO VO vo vo CN CN CN CN  rH O to cn r CN *  00 txt CN  00 cn ON CN  ON O o cn  CN cn 00 CN  Xt t~CN »-H  CN cn 00 CN  OO m oo cn  00 in 00 cn  cn vo cn cn  cn vo cn cn  ON o o cn  ON CN ON cn  in vo ON cn  t-~ rH rcn  CN in Ccn  rH o cn CN  m VO CN CN  rH VO cCN  00 t~xt CN  •n xt CN O m cn cn in VO 00 00 CN 00 CN CN CN CN 00  cn ON m rH  Xt CN rH CN  cn m o CN  t~~ xt ON rH  t~~ xt ON rH  o cn CN CN  o ON cn OS 00 o x? cn x? cn cn cn cn  t~~ CN cn cn  o •n i—i cn  oo cn ON CN  m 00 o o VO r— t~o ON •n xt xt cn cn CN  rH O cn CN  00 r— xt CN  =» o  3  < 3 vo  'c a O H O 1 0  E cu -w on  >.  V) DC  o PC tr  6t  s  co  o  a IS UH O T 3 pq -  Um CU CJ O.  o 00 o cn  cn t0N CN  CN cn 00 CN  !—  CN cn oo CN  CN cn 00 CN  m tin cn  IT) CN xt xt  r - ON i n •n m CN VD VD cn CN CN  \ q t v i q o > h c o q p » cNOCNcNodor-cNCNrc n i n i n x t c n r H c n x t x t c n  - H t n c N c n c n c N r H O N C N O o m O N - H O O C N C N O N O N O  o o o o o o o o o o dddddddddd  p o  xt  p q q o o o  cn cN cn  xt  x t x t x t cn cn  o o o o o o o o o ddddddddd  p o  o o c A h i c i ^ N h i ^ u s H h ^ ; C C M r n ^ t ^ ^ c n o o ^ i n o q o 3 H C N c c i o o o N m o o ' o o ' r H O r H c s c N x t t n c n c n i n v o x i - x t x i i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n i n x t i n i n x t x t  o  £ ©  1^  o o c N o q x t p i n v q r H g j j ^ rHxtvo'xtrncnoo'vo,-;,,; r H r H r H r H r H r H C N r H ^  ^3 S til  »—i i n ON vq cn x t v o o N x t o o o i n o c N r H CN CN H r i d c N o d o d d d d d d  0  0  cn o r H i n cn  oo —I cs  CN O N i n m  0  cn  es  cu  Z  o m xt  so• E o  50  r H vq cn SD cn ON oo 00 xt p SO t-~ od in od t~~ xt xt in in in in m m m m m m m m  si  ON m m oo xt vq p l~~ t~- xt in xt xt xt vd r~- t~~ vd vd in m m m in m in in in in in  CN d  H  Cn t~~ X t r H Xt -H d o o d a d  in CN 00 xt xt p xt xt ON xt xt cn cn cn cn xt xt m •n in in in in in  cn C N in x t  3  S  ON  CS  o  vq x t p x t oo C Nr H d d d d C N C Nd  2  c  o ON d  rH m rH o rH o q q q CN ON ON t~- ON od d ON ON ON ON ON ON o d d  xt vq oo i— od in ON ON ON ON  o t~~ m oo xt xt t-~ oo o rcn 00 00 t~~ 00 t~ON ON ON ON ON ON ON  _  s  CN ON r H t-~ cn r H in m o CN OO Xt CN r H ON ON ON C- xt in in oo CN o xt cn CN d os vd t~~ xt xt CN d in t-~ t~~ cn 00 C~ d CN CN r H t~~ xt CN CN CN CN 1—1 rH CN CN CN CN CN CN CN rH  '•as ~h o m xt  9  r H 00 in CN vq vd vd i-~ 00 od  ON qoqxtr~.t-~.vD ^ ^ ^ ^ ^ v q c N c n q c N o q o s o q © r r - o q o N c n c N x t o q ^ ^ C. N ^ . - . r - c ^ c n c c i n c n c ^ x t i n ' x t i n ' o d x t t~-cNr~ ONrHxtsdin ON t-~ v o v o v o vin o vro;v ovd c — r -CcN— inc - c — o o r — v o i n i n i n i n v o x t r H o o t~~t— v o v o t ~ - v o v o i n  a  :  r H C N c n x t i n v o t - o o O N  3  xtinsDt~~oooNOrHcNcnxtinvot~~oooNOrH r H r H r H r H r H r H C N C N C N C N C N C N C N C N C N C N C n C n  a  183  in Tt  CN u o - H CN  o o  vo d  c o oo r o p h *  r-  os ci t  oo CN CN  CO  CS  uo ON  d  ~ ^  VD  r i ON ON  X  C  <-  * Ja  -§ «  VD CO 00 VO 1—1 CO CO r o  CO t - vo rH UO Tt Tt VD ON rH g T t o ON CN CN O UO Tt vo r o oo O CN CN r o CN CN CN CN r H r o  O 00 o CO  rCN ro ro  CN rH T t r o rH r o o o V D Tt CN r o r o  CN  CN VD O  CN CN CO 00 00 CN CN CN CN VD UO V0 VD O N uo VD VD VD VD r o ON uo o O UO uo r H o o o 00 r ~ VD CN CN CN  rH O CO CN  CN rH ON rH  CN u o 00 UO V D 00 UO uo rH CN rH CN O 00 CN O N ro NO uo O N r~ N O uo CN O N UO uo ON O N O 00 V D Tt V D T t V O v o CN CN o t - rH CO CN o CN <N CN CN CN <N CN CN CO r o Tt r o r o r o CO r o  uo  CN ro oo CN  CN ro 00 CN  00 ro ON CN  CO VD ro ro  Tt O UO ro  ro VD ro ro  CN ro 00 CN  rH CN ON CN Tt rH Tt r00 ON NO r o rH rH CN CN  U0 <N CO T t ON VD .—1 ON VD u o CN CN uo VD CN Tt rH T—1 CN  "s o  5  S3 vo  CN CTv O ro O oo r o CN  CO t r- ON rH T t o CN CN u o ON  o uo rH ro  ON  o o ro  uo VD ON  ro  m m 3 O 3 VO  O J3  O  u S  Tt  oo  o  Tt CO 00 r H UO r~ T t r H O N 00 00 1—1 r ~ O r» T t UO uo Tt CO Tt CN OO CN CN CN CN CN r H r H r H  CO r H uo o o ro CN CN  VD r H r H 00 r H O ro O o o 00 r o CO r o o CO CN CN CN CN r H  p » C T \ 0 0 \ O N r ~ r H C N C N r o o o r ~ v o O N v D u o v D o o v o r ~ r - - o o u o  H  UO T t T tr o  r o Tt r o r o r o  T t T t r o r o c o c o r o c N r o r o r o c o r o r o c N  o  6D S  I  E _ W es  o o o o o o o o o o o o o o o o o o o o  T;  a s  o  PU O  -  r- co o i ON Tt T t  uo  a.  o  o  N  O  O  o  o  o  o  o  o  o  o  o o o o o o r  ~  o  o  o o o o o o o o o o o o o o o o o o o  r  ~  o  o  o  o  o  o  o  o  o  vooocNrHcocororovDrHuouooououououoc^TtTtrHcnooOTfrHco o d o o o i o a s O N O N o d o d c N C N C N C N r o r o c o T t T t T t U O T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t T t  E •o O e EC  ON  I * 8  00  r-° d  13 o  Tt ON  O N t~; T t O N O N O CN CO T t UO 00 T t H . H r o p CN CO r - ; p CN VD t-^ c o ON OO r i o CN Tt '—i <—i CN O N CN CN O T t 00 CZ) O N C"- CN T t UO T t UO CO H r H r H - H — H r H C O r O T t U O r O r H r H — - r H r H  d r-' uo  c« CO  o  rHOvooONCNO\voovDOuorHcNTtr~r-~rorocNTtrH  O O O O O r H p O O r H O p p T t p r H O T t r H C N r O r H  s  o o o o o o o o o o o d d d o d d d d d d d o o o o o  o cn  "ai o  X  00 T t Tt UO UO u o  Si 53 GO H  Z E o  2 Q  i °^  UO ON Tt UO  as  ON  r o Tt u o ON od uo uo uo  VD r H p as r o 00 ON CO od 00 uo T t uo T f Tt  v q v q UO uo uo ON Os ON r H  o o  uo Os v q v d CN r o  O Tt  p  p  O  od Tt  p  d d o o d  UO UO r o 00 r-' od 00 Tt Tt Tt Tt  Tt ro  i—I  CN CN UO  rH  ON  CN  ON  ON  ON  00 Tt  ON  Tt  Tt  ON  Tt  ON  Tt  Tt  Tt  r o uo © ON uo T t  UO CN ON  Tt  d  uo  ON  Tt  00 00 Tt  UO ON  Tt  r~ r-°  00 ON 00 r H 00 00 CO v q o UO CO VD r o Tt r H r H Tt CN r H v d od ON 00 ON O ON ON ON ON uo VO O as OS as OS ON ON CTv as ON ON ON Os ON  £  CO  £ uo  m  CN - i  ON as O CO CN CN UO r o CN  00 vd  ON VD VD CN VD 00 00 ON 00 t~i o d v d  o Tt  Tt  O CN O UO UO  -  Tt  o u o r ^ c N u o o u o r H O N r H O N v o o v D O N O v o u o c N o o o C T v O u o r ^ r ^  C N r O T t u o v o r ^ c o O N  a OS  as  184  Xt  00  Vi VI  1*  V  £  P  I  £  r-  x?  £ 2 <r>  o  cn  rm  ro\  xt r-  xt  as  3  x* ?  o N  ?J  as  as  g  m  in  00 VO ON CN ON NO x t m vO in CN x t H vg o  •8 « =£ o  s j§ O  VO JH PQ  O _cCin PQ 3  o o C cn in t-N H  3  o  T  Mi  CJ m ca  o o •n vd  CN cn  oo "1  _ £  CA O 6i H oci  o  X  5  .  CN  -o  rl  r—< oo in _ v o o as rn ^ d -n  •o  a  o  1  as io  ,H  o •  E  £g g 1 •8 » -  RT  CN  _  vo  m  ON  in" m  -  ^  ON — r^, X t OS _ • ON CN i o O ON m xt • rm xt xt O  u  22  ~5" 0  1  xt  o  O in  °N  r—  cn  _  ON  d rl ^  xt  • ON O O ON ~- z- m  i—i oo  cn m in  H  P  •5  1 - 1  •n cn  Q  O  xt  i-^ CN  Bi «  xt  rH  n  oo  r~-  vo  cn  o  £  as  in cn O_N vq q  " " m o  r  •n xt  xt in od v o oo  ,BH  cj  a  t-H  •O c  vo q  o d  4>  oe  « 2 *•*  ON  ,  o  cu  o  o  U  185  APPENDIX B WATER BALANCE EQUATIONS AND ASSUMPTIONS  186  GENERAL 8 psi steam balance: Venting  t  Raw water  Treated Water  Hot Lime Treater  8 psi steam  Blowdown Given:  Amount of 8 psi steam condensed in Hot Lime Treater = 20 % of raw water volume Volume of 8 psi steam generated by deaerators = 50.2 K L B H or 547 m /day 3  Treated water losses from plant (excluding 8 psi steam) = 44.1 K L B H or 480 m /day 3  Hot L i m e Treater blowdown =1.5 K L B H or 16.3 m /day 3  x = volume of 8 psi steam condensing in teh Hot Lime Treater Then: Raw water flow Venting Treated water flow  =44.1 + (50.2 - x) = 50.2 - x = (44.1 + (50.2 - x)) * 1.2 - 1.5  Since, Total incoming flow  = Total outgoing flow  (44.1 + 50.2 - x)+ 50.2 = (50.2 - x) + ((44.1 + 50.2 - x) * 1.2 - 1.5) + 1.5 94.3 = (94.3 - x) * 1.2 1.2x = 18.9 x = 15.7 So,  8 psi condensate = 15.7 K L B H or 171 m /day 3  Raw water flow  = 78.9 K L B H or 859 m /day 3  93.2 K L B H or 1.01e3 m-Vday Venting 8 psi steam = 34.5 K L B H or 376 m /day Treated water flow  =  3  187  #3 Hot Lime Treater blowdown: . The Water Treatment Manual (WTM) indicates that the blowdown rate = 8-10% of the recirculating sludge. By design, the sludge should be recycled at a rate of 30 gpm. Blowdown from the treater = 10% of 30 gpm = 3 gpm or 16.3 m /day. 3  Softener regeneration brine: Regenerating a zeolite softener requires the following water volumes (from WTM): Flow rates (gpm)  Time (minutes)  Total flow (gallons)  10 12  4950 312  - dilution water  495 26 36.5  Brine displacement Fast Rinse Service Rinse  36.5 200 200  20 30 15 Grand total:  438 730 6000 3000 15430  Operation Backwash Brine injection  These waters are discharged to the lime pond and the #3 Hot Lime Treater as detailed below: Given:  Capacity of each softener = 20 000 grains/ft  3  Volume of each softener =132 ft  3  1 grain is = equivalent to 17.1 ppm of hardness*US gal Inlet water contains 40.5 mg/L of Ca & 1.2 mg/L of Mg Flow through all three filters = 9.31e3 Igal/h. Each unit can filter: = (20 000 grains/ft x 132 ft ) x 17.1 ppm*US gal/grain x 106 mg/L as CaC0 3  3  3  = 4.25e5 USgal of water before regeneration Time until softener needs regenerating: = 4.25e5 USgal / (9.3le3 Igal/h x 1.2 USgal/Igal x 1/2*) = 76.1 hours (* assuming only 2 filters running at any given time) Assuming: - backwash water returned to #3 treater - all other regeneration water (listed above) discharge to lime pond 188  Amount of water going back to #3 treater: = 4950 USgal/regeneration/exchanger = 65.0 USgal/h/exchanger = 195 USgal/h or  17.7 m /day 3  Amount of water to lime pond: = 10480 USgal/regeneration/exchanger = 138 USgal/lVexchanger = 413 USgal/h or  37.6 m /day 3  But using a sodium and chloride balance on the lime pond: brine concentration = brine mass needed balance = require flow =  Chloride 5.49e3  Sodium 3.56e3  mg/L (see Appendix D)  2.15e8 3.91e4  1.39e8 3.91e4  mg/day L/day  39.1  m /day 3  Domestic filter backwash: It was assumed that the equivalent of 3 volumes of treated water are used to backwash each of the 2 domestic.filters. They measure 30" (ID) by 60" (height), and are cleaned every 24 hours.  Turbines: It was assumed that all of the turbines within the F N G P were loosing 0.1% of their incoming steam through venting.  Steam tracing: It was assumed that 1% of the steam used for steam tracing escaped through leaks in the piping.  Treated water cleaning: Assumed that a total of 2 K L B H or 21.8 m /day of treated water were used for cleaning 3  vessels, floors ... in the 6 process trains.  Water lost in sweet gas: Assumed a loss of 4 lb of water/mmscf of processed gas. The average gas production for January 1995 was 201.4 and 367.8 mmscf/day for the C / D & E / F / G / H trains, respectively.  189  Flare water: Assumed a loss of 80 lb of water/mmscf of processed gas. The average gas production for January 1995 was 201.4 and 367.8 mmscf/day for the C / D & E / F / G / H trains, respectively.  Water vapour lost with the acid gas: Given:  acid gas mixture contains H S , C 0 and water 2  2  % of H2S in acid gas from process = 11.2% Gas law: P  AG  X  = ( H2S + C 0 2 + H 2 0 ) n  V  n  n  x  R  x  T  P ^ G = c i d gas pressure (atm)  where:  a  V  = acid gas volume (L)  n  = moles of gas  R  = gas constant = 0.08206 (L*atm)/(mol*K)  T  = temperature (Kelvins)  So n  H20  = ( P A G V / R T ) " ( H 2 S + C02> n  n  But n  H2s/ AG N  =  % H S content 2  and N  AG  =PAGV/RT  So n  H 2 S  =(%H S)(P 2  A G  V/RT)  Since V is measured in scf - actual volume has been transformed into equivalent volume at 1 atm. of pressure and a temperature = 293 kelvins. 11H2S = 11.2 % x ( l atm. x 113.2 mmscfdx 28.3168 f t / L ) / 3  (0.08206 L*atm/mol*K x 293 K ) = 1.47e7 mol/day Assuming: - C 0 content in raw gas = 13.5 % (as indicated in Sulphur Plant Operating Manual) 2  - A l l of the C 0 in the raw gas ends up on the acid gas stream 2  190  B y similar steps: n  C 0 2  =%C0 x(P 2  R G  V  R G  /RT)  = 13.5 % x (1 atm. x 682.5 mmscfd x 28.3168 f t / L ) / 3  (0.08206 L*atm/mol*K  293 K )  x  = 1.09e8 mol/d Now n 20 H  = [(1 atm. x 113.2 mmscfd x 28.3168 f t / L ) / (0.08206 L*atrn/mol*K 3  293 K)] - (1.41 el mol/d + 1.09e8 mol/d) = 9.87e6 mol/d Mass of water: = "H20 x 18 g/mol x kg/lOOOg x 2.2046 lb/kg x day/24 h  = 16300 lb/h or 178 m /day 3  Water formed within the Sulphur Plant: Given:  mol of incoming H2S = 1.49e7 mol/d (see "water vapour in acid gas") average mass of sulphur leaving stack = 15.4 tonnes/d  M o l of sulphur leaving the stack: = mass S x 1000 kg/tonne x 1000 g/kg x 1/32 mol/g = 15.4 x 1000 x 1000 x 1/32 = 4.8le5 mol/d M o l of H S converted into elemental sulphur: 2  = incoming mol - outgoing mol = 1.49e7 mol/d - 4.8le5 mol/d = 1.45e7 mol/d Conversion reaction: 2H S + S 0 2  2  = 3S + 2 H 0 2  So: mol H 0 2  = mol H S 2  = 1.45e7 mol/d Mass of water formed: = 1.45e7 mol/d x 18 g/mol x kg/lOOOg x 2.2046 lbs/kg x klb/lOOOlb  - 23.9 K L B H or 260 m /day 3  191  x  UNIT SPECIFIC Powerhouse Treated water to process: This value is the sum of all of the treated water demands from the 6 process trains.  Process . Cleaning solution make-up: Sum of water lost in sweet gas, acid gas and to the flare pits  Sulphur Plant . - Individual blowdowns: Values taken off of a schematic diagram Boiler feedwater distribution: The volumes of B F W going to the individual condensers and the reaction furnace were calculated as follows: Given:  Total volume of B F W to Sulphur Plant = 160 K L B H or 1.74e3 m /day 3  5 condensers produce 37.2 K L B H or 378' m /day of condensate 3  15 psi condensers produce 34.7 K L B H or 378 m /day of condensate 3  Reaction furnace blowdown = 2.0 K L B H or 21.8 nvtyday B l o w d o w n from #1 condensers =1.5 K L B H or 16.3 m / d a y 3  B l o w d o w n from #2 condensers = 3.0 K L B H or 32.7 m /day 3  150 psi steam to Petrosul = 1.8 K L B H or 19.7 m /day 3  45 psi steam from #2 condenser = 41.0 K L B H or 446 m /day 3  B F W to reaction furnace: = 5 psi condensate + Petrosul + blowdown + venting = 37.2 + 2 . 0 + 1 . 8  = 41.0 K L B H or 446 m /day 3  B F W to #2 condensers: = 15 psi condensate + blowdown + 45 psi steam = 34.7 + 3.0 + 41.0  = 78.7 K L B H or 857 m /day 3  B F W to #1 condensers: = 160 - ( B . F . W . to #2 condensers + B . F . W . to reaction furnace) = 160- (78.7 +41.0)  192  = 40.3 K L B H or 438 m /day 3  45 psi steam from #1 condensers: = B . F . W . to #1 condensers - blowdown = 40.3 - 1.5  = 38.8 K L B H or 422 m /day 3  Effluent Plant: Dirty raw water: Assumed that 137 of the 159 incoming units was dirty raw water used either for cleaning within the domestic system. Sour water: Assumed that the amount of sour water traveling to the effluent plant is negligible  193  APPENDIX C WATER CHEMISTRY DATA  194  Fort Nelson River  Parameter General  No-Name Creek  Date of sample collection June * Avg. July  March  May  7.8 571  7.3 300  7.6 430  7.7 358  M Total  141 141  76.0 76.0  114 114  Total Suspended Dissolved  380 1.25 379  266 174 92.2  Carbon content Total 35.9 Organic 0.5 Inorganic 35.4 Metals Calcium Magnesium Sodium Iron Inorganics Phosphates Chlorides Sulphates Silica  pH Conductivity  April  July  Avg.  7.6 415  7.6 393  7.8 405  7.7 399  106 106  109  93.0 93.0  155 155  116  5365 4316 1049  734 512 222  1686 1251 435  659 395 265  442 206 236  880 591 289  30.9 12.1 18.8  32.8 3.8 29.0  34.4 8.3 26.1  33.5 6.2 27.3  28.4 5.5 22.9  63.7 25.2 38.5  40.0 11.3 28.7  73.8 23.6 11.4 0.13  38.2 8.2 7.6 2.46  114 29.5 6.1 28.0  54.9 13.6 5.1 5.03  70.1 18.7 7.6 8.90  45.0 10.8 9.0 6.36  61.1 14.2 5.4 3.14  57.8 14.4 6.8 5.86  0.05 2.2 129 4.1  0.05 1.7 43.6 2.8  0.07 1.0 82.8 3.8  0.08 1.3 49.0 3.6  0.06 1.6 76.0 3.6  0.05 1.6 62.9 0.6  0.05 2.4 21.0 7.5  0.06 1.7 52.2 3.8  Alkalinity P  Solids  Units : pH = pH units Conductivity = |J.S/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  June sample collected after heavy rainfall 195  Raw water header  Parameter General  Sample dropped from final data set Date of sample collection ^ 10-May 15-May 17-May 24-May 12-Jul Avg.  3-May  8-May  8.0 571  7.8 666  8.0 658  7.9 476  7.9 489  8.0 518  7.6 792  7.9 563  i M Total  202 202  201 201  200 200  169 169  158 158  155 155  139 139  181  Total Suspended Dissolved  452 9.88 443  419 4.02 414  241 4.67 237  564 4.60 559  345 14.33 331  354 0.56 353  709 1.91 707  396 6.34 389  Carbon content Total Organic Inorganic  60.1 9.2 50.9  61.3 9.1 52.2  62.0 9.8 52.2  46.4 8.3 38.1  72.0 9.5 62.5  52.6 9.8 42.8  170 135 35.0  59.1 9.3 49.8  Metals Calcium Magnesium Sodium Iron  97.3 21.4 17.7 0.39  90.3 21.0 12.1 0.40  92.2 20.0 11.6 0.38  70.9 16.7 10.6 0.31  68.4 15.1 11.2 0.67  68.4 15.5 11.8 0.21  66.7 16.9 37.4 0.42  81.3 18.3 12.5 0.39  Inorganics Phosphates Chlorides Sulphates Silica  0.05 3.5 ,81.6 5.3  0.05 2.1 100.3 5.3  0.05 2.0 100.8 5.9  0.05 3.6 81.1 5.0  0.05 3.9 77.5 5.3  0.05 2.1 79.3 4.5  0.11 82.7 85.9 3.1  0.05 2.9 86.8 5.2  pH Conductivity Alkalinity P  Solids  Units : pH = pH units Conductivity = uS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids — Carbon content — mg/L Metals —  196  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Reservoir water Sample dropped from final data set ^ Date of sample collection Parameter 3-May 8-May 10-May 15-May 17-May General pH 7.5 No No No No Conductivity 89.6 Sample Sample Sample Sample  24-May  12-Jul  Avg.  8.2 504  7.9 523  8.1 514  Alkalinitv PI  M Total  37.0 37.0  151 151  136 136  144  Total Suspended Dissolved  92.5 1.27 91.2  331 4.79 327  297 1.85 296  314 3.32 311  Carbon content Total Organic Inorganic  10.6 2.8 7.8  51.3 10.4 40.9  45.1 11.2 33.9  48.2 10.8 37.4  Metals Calcium Magnesium Sodium Iron  15.4 2.8 2.6 0.10  65.2 15.2 12.0 0.14  62.6 16.3 11.1 0.20  63.9 15.8 11.5 0.17  Inorganics Phosphates Chlorides Sulphates Silica  0.05 0.5 13.2 1.0  0.05 2.3 87.8 4.5  0.08 1.3 69.8 3.6  0.06 1.8 78.8 4.0  Solids  Units : pH = pH units Conductivity = |iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  197  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Treater system outlet  Parameter General  3-May  Date of sample collection 8-May. 10-May 15-May  17-May  24-May  Avg.  No Sample  11.0 1124  9.9 311  9.4 229  10.1 365  9.8 324  10.4 327  P M Total  7.0 14.5 21.5  16.5 7.5 24.0  10.5 20.5 31.0  23.5 11.0 34.5  186 140 326  27.8  Total Suspended Dissolved  222 23.4 199  201 3.14 198  54 1.52 52  420 2.19 418  541 14.5 527  288 8.95 279  Carbon content Total Organic Inorganic  9.8 5.8 4.0  8.8 5.2 3.6  11.4 5.4 6.0  2.4 5.3  52.8 8.1 44.7  20.7 6.1 14.6  Metals Calcium Magnesium Sodium Iron  1.5 1.2 45.2 0.04  0.2 0.3 51.5 1.78  0.1 0.1 54.8 0.35  0.1 0.3 50.6 0.86  5.0 0.5 180 0.04  1.4 0.5 50.5 0.61  Inorganics Phosphates Chlorides Sulphates Silica  0.05 1.7 102 0.5  0.11 2.1 84.0 0.2  0.05 2.1 79.6 1.8  0.06 2.4 68.8 0.2  0.06 3.7 74.9 1.8  0.07 2.4 81.9 0.9  pH Conductivity Alkalinity  Solids  Units : pH = pH units Conductivity = |J.S/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  198  i l l l l l l l l  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L = dropped samples  Softener regeneration brine  Parameter  Hot Lime Treater  Date of sample collection 3-May  8-May  10-May  15-May  17-May  24-May  Avg.  12-Jul  •11.2 1324  11.1 1184  11.4 2050  10.4 316  No Sample  11.3 2006  11.1 1376  9.7 321  P M Total  230 138 368  156 58.0 214  330 156 486  23.0 9.5 32.5  321 167 488  318  14.0 21.0 35.0  Total Suspended Dissolved  131 1.76 129  436 1.95 434  565 2.67 562  430 2.33 428  785 84.3 701  470 18.6 451  1.26E+5 1.54E+5  Carbon content Total Organic Inorganic  57.1 15.4 41.7  37.1 14.1 23.0  75.0 14.0 61.0  1.3 5.5 -  73.8 15.9 57.9  48.9 13.0 45.9  32.5 28.5 4.0  Calcium Magnesium . Sodium Iron  3.4 1.1 252 0.56  2.8 0.7 164 0.46  7.4 0.5 280 0.09  0.2 0.3 50.4 0.04  68.0 6.3 249 0.14  16.4 1.8 199 0.26  42.0 7.0 10.1 0.32  Inorganics Phosphates Chlorides Sulphates Silica  0.07 31.4 110. 1.4  0.05 0.2 89.8 2.3  0.05 17.0 98.6  0.05 3.2 66.9 0.4  0.05 8.1 76.5 1.2  0.05 12.0 88.3 1.3  0.05 2.8 74.2 0.4  General p'H Conductivity Alkalinity  Solids  -  Metals  1-1  Units : pH = pH units  Phosphates = m g o f P / L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Conductivity = |lS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals  199  Condensate return Date of sample collection Parameter  3-May  8-May  10-May  15-May  17-May  24-May  Avg.  8.9 13.0  8.0 12.4  8.9 18.0  9.0 18.3  9.2 22.4  8.1 11.8  8.7  P M Total  11 4.4 5.5  -  1.5 4.3 5.8  1.8 4.5 6.3  -  4.0 4.0  0.7 4.0 4.8  4.8 4.8  5.2  Total  66.3  27.5  0.0  238.4  63.8  30.5  71.1  Suspended Dissolved  0.17 66.1  0.00 27.5  0.00 0.0  0.40 238.0  0.63 63.1  0.00 30.5  0.20 70.9  5.8 4.3 1.5  5.7 4.3 1.4  4.2 3.2 1.0  0.0 4.3  8.4 4.2 4.2  5.6 4.2 1.4  5.0 4.1 1.9  0.4  0.3  0.3 0.2  0.1  0.2  0.3  0.3 0.2  0.1  0.1  1.1 0.04  0.0 0.22  3.1  0.7  0.59  1.5 0.15  0.18  1.6 0.04  0.2 0.2 1.3 0.20  0.05  0.05  0.05  0.05  0.05  0.05  Chlorides Sulphates  0.1 2.1  0.1 1.9  0.1 1.7  0.1  0.1  0.1  Silica  0.1  0.1  0.1  1.0 0.1  1.9 0.1  1.0 0.1  General pH Conductivity  16.0  Alkalinitv  Solids  Carbon content Total Organic Inorganic  -  Metals Calcium Magnesium Sodium lion  0.1  Inorganics Phosphates  Units : p H = p H units Conductivity = | i S / c m @ 25 C Alkalinity = m g / L as C a C 0 3 Solids Carbon content — m g / L Metals — —  200  0.05 0.1 1.6 0.1  Phosphates = mg of P / L Chlorides = mg of C l / L Sulphates = mg of S 0 4 / L Silica = mg of S i 0 2 / L  Boiler blowdown  Parameter General pH Conductivity  3-May  Date of sample collection 8-May 10-May 15-May  17-May  24-May  Avg.  11.6 3602  11.4 2799  11.5 3288  292 68.0 360  224 64.0 288  304  11.4 2084  11.5 3853  11.6 4724  11.5 2666  P M Total  167 45.0 212  230 78.0 308  306 72.0 378  222 58.0 280  Total Suspended Dissolved  1265 4.29 1261  1910 19.6 1890  2080 43.9 2036  1558 1.18 1557  1702 0.30 1702  1320 18.5 1301  1639 14.6 1625  Carbon content Total Organic Inorganic  48.2 37.8 10.4  77.8 57.6 20.2  93.4 60.9 32.5  44.2 37.6 6.6  73.8 46.6 27.2  63.5 44.5 19.0  66.8 47.5 19.3  Metals Calcium Magnesium Sodium Iron  2.9 1.0 358 0.95  1.2 1.0 603 1.08  2.0 1.2 676 5.55  0.1 0.4 417 0.08  0.1 0.2 503 0.17  1.0 0.7 397 0.48  1.2 0.8 492 1.39  Inorganics Phosphates Chlorides Sulphates Silica  6.24 15.5 613 5.5  10.4 21.8 963 6.7  7.02 24.5 1134 8.0  7.65 15.1 656 7.2  8.32 17.8 756 8.6  8.59 15.6 579 6.5  8.04 18.4 783 7.1  Alkalinity v  Solids  Units : pH = pH units Conductivity = (iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  201  Phosphates = mg of P/L Chlorides - mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Sulphur Plant blowdown  Parameter General pH Conductivity  3-May  Date of sample collection 8-May 10-May 15-May  17-May  24-May  Avg.  11.0 1120  11.0 1665  11.0 1451  11.2 1399  11.2 1466  11.1 1478  11.1 1430  P M Total  94.5 34.5 129  106 35.0 141  105 36.0 141  128 38.0 166  127 39.0 166  122 40.0 162  151  Total Suspended Dissolved  849 0.33 848  843 0.00 843  609 0.89 608  1013 1.21 1011  764 1.41 762  679 0.32 678  793 0.69 792  Carbon content Total 40.5 Organic 33.0 Inorganic 7.5  48.9 36.3 12.6  49.3 32.9 16.4  40.7 35.2 5:5  46.3 35.1 11.2  48.5 34.5 14.0  45.7 34.5 11.2  Metals Calcium Magnesium Sodium Iron  1.3 0.5 207 0.31  0.3 0.4 241 0.25  0.3 0.3 223 0.68  0.3 0.4 234 0.23  0.3 0.4 218 0.17  0.2 0.5 194 0.07  0.4 0.4 219 0.29  Inorganics Phosphates Chlorides Sulphates Silica  4.88 8.8 360 3.1  5.47 8.7 441 3.4  4.95 8.3 418 3.4  6.52 9.6 362 4.0  6.57 8.9 355 3.5  7.09 8.2 276 3.7  5.91 8.8 369 3.5  Alkalinity  Solids  Units : pH = pH units Conductivity = (iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids — Carbon content — mg/L Metals —  202  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Lime Pond discharge  Parameter General pH Conductivity  3-May  Date of sample collection 8-May 10-May 15-May  17-May  24-May  Avg.  9.6 4256  9.9 431  9.9 5327  10.1 4652  10.4 4478  10.4 5543  10.0 4114  P M Total  21.8 45.5 67.3  33.0 50.0 83.0  27.5 33.0 60.5  35.5 41.0 76.5  36.0 30.0 66.0  46.0 35.5 81.5  72.5  Total Suspended Dissolved  2663 2.44 2660  2205 4.67 2200  2515 12.5 2503  2896 2.65 2894  2343 11.4 2331  2739 7.84 2731  2560 6.91 2553  Carbon content Total Organic Inorganic  24.9 13.7 11.2  31.8 15.7 16.1  26.5 15.2 11.3  20.4 15.2 5.2  25.7 18.2 7.5  30.7 19.4 11.3  26.7 16.2 10.4  Metals Calcium Magnesium Sodium Iron  260 22.2 622 0.17  159 17.5 570 0.16  261 19.5 672 0.40  241 26.5 639 0.04  198 17.8 568 0.20  207 15.8 683 0.04  221 19.9 626 0.17  Inorganics Phosphates Chlorides Sulphates Silica  0.16 918 792 4.3  0.24 682 615 4.5  0.05 914 601 4.4  0.05 1034 578 3.5  0.05 898 579 3.0  0.05 1017 550 ' 2.8  0.10 911 619 3.8  Alkalinity  Solids  Units : pH = pH units Conductivity = |J.S/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  203  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Effluent Plant discharge  Parameter General pH Conductivity  3-May  Date of sample collection 8-May 10-May 15-May  17-May  24-May  Avg. 7.4  7.4 3316  7.9 4456  7.8 4390  7.7 3999  7.5 4513  6.0 4694  4228  P M Total  121 121  274 274  249 249  241 241  161 161  23.0 23.0  178  Total Suspended Dissolved  2003 14.9 1988  2849 6.15 2843  2828 8.55 2819  3280 5.96 3274  3009 6.44 3002  3201 24.7 3177  2862 11.1 2850  Carbon content Total Organic Inorganic  197 156 41.3  220 131 89.1  212 128 84.5  192 123 69.7  182 129 53.0  209 192 17.0  202 143 59.1  Metals Calcium Magnesium Sodium Iron  56.6 17.5 499 3.14  53.4 16.8 596 3.11  54.4 16.7 599 3.31  54.9 17.1 580 3.28  53.4 16.8 561 3.42  62.7 18.0 516 4.88  55.9 17.2 558 3.52  Inorganics Phosphates Chlorides Sulphates Silica  0.69 209 323 7.3  0.05 194 309 6.9  0.05 187 340 7.5  0.05 217 326 7.2  0.05 199 326 6.6  0.05 211 326 5.8  0.16 203 325 6.9  Alkalinity  Solids  Units : pH = pH units Conductivity = |iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  204  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Polishing Pond discharge  Parameter General pH Conductivity  3-May  Date of sample collection 8-May 10-May 15-May  17-May  24-May  Avg.  7.3 3846  7.8 4471  7.9 4519  7.8 4341  7.6 4868  7.1 4985  7.6 4505  P M Total  73.0 73.0  119 119  125 125  119 119  116 116  51.0 51.0  101  Total Suspended Dissolved  2655 18.0 2637  2585 10.3 2575  2480 33.0 2447  3074 41.7 3032  2919 12.2 2907  2914 47.1 2867  2771 27.1 2744  Carbon content Total Organic Inorganic  95.6 73.7 21.9  105 74.7 30.7  107 69.3 37.3  90.6 61.3 29.3  93.3 59.2 34.1  94.8 75.5 19.3  97.7 69.0 28.8  Metals Calcium Magnesium Sodium Iron  146 21.7 567 1.89  134 19.9 578 1.66  137 19.0 580 1.68  157 22.2 604 1.51  157 21.5 596 1.48  146 19.1 578 1.98  146 20.6 584 1.70  Inorganics Phosphates Chlorides Sulfates Silica  0.51 606 539 5.2  0.47  0.35 538 526 5.8  0.11 703 558 5.4  0.11 686 574 5.2  0.06 602 546 4.4  0.27 627 543 5.2  Alkalinity  Solids  ?  515 5.5  Units : pH = pH units Conductivity = |iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids — Carbon content — mg/L Metals —  205  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L  Flared water  Parameter General  Date of sample collection 8-May 10-May 15-May  3-May  pH Conductivity  6.0 60.2  5.4 5.4 Not measured  17-May  24-May  Avg.  5.2  4.8  No Sample  1.8 1.8  1.8 1.8  2.1  301 • 58.3 . 243  22.8 1.68 21.1  115 68.8 98  205 211  700 559 142  5.4 60.2  Alkalinitv P i  M Total  3.9 3.9  1.5 1.5  1.8 1.8  Total Suspended Dissolved  125 8.75 116  12.5 0.00 12.5  ?  Carbon content Total Organic Inorganic  94.0 97.7  1481 1255 226  433 330 103  187 91.5 95.5  Metals Calcium No Magnesium Sample Sodium Iron  0.3 0.1 0.9 1.93  0.2 0.1 0.1 2.05  2.8 0.3 4.6 7.14  0.1 0.1 0.6 4.51  0.9 0.1 1.5 3.91  Inorganics Phosphates Chlorides Sulphates Silica  0.05 1.9 3.8 0.6  0.05 0.8 6.4 0.4  0.05 1.2 5.6 17.2  0.05 1.8 2.0 1.8  0.05 1.8 4.4 4.1  Solids  llllillli  0.05 3.2 4.1 0.7  7.31  llllllllll  Units : pH = pH units Conductivity = |iS/cm @ 25 C Alkalinity = mg/L as CaC03 Solids Carbon content — mg/L Metals — —  206  iiiiiiiiii  Phosphates = mg of P/L Chlorides = mg of Cl/L Sulphates = mg of S04/L Silica = mg of Si02/L I = dropped samples  APPENDIX D MASS BALANCE EQUATIONS AND ASSUMPTIONS  207  Treater System: The following streams were used in the mass balance: Incoming  Outgoing  -Raw water header  -Treater water  -Fresh brine solution  -#3 Hot Lime Treater blowdown  -8 psi steam  -Spent regeneration brine -Vented steam  The fresh brine solution was never sampled. It was assumed to be identical in chemical composition to the treated water, except for sodium and chloride levels. These values were calculated independently from figures given in the Water Treatment Manual: Use &  7921b. of N a C l 10480 USgal of water to regenerate 1 softener  Concentration of: NaCl  = (792 lb x 0.4536 lb/kg x 1 000 000 mg/kg)/(10480 U S g a l x 3.7854 L/gal) = 9055.8 m g / L  Na  = [NaCl] x 23/58.45 = 3563 m g / L  Cl  = [NaCl] - [Na] = 5492 m g / L  The 8 psi steam entering the system and the vented vapour leaving it were assumed to be identical not only to one another, but also to the condensate sampled elsewhere in the F N G P (see Appendix C ) .  Boiler System The following streams were used in the mass balance: Incoming  Outgoing  -Boiler feedwater  -450 psi steam -Boiler blowdown  Chemical characteristics of the boiler feedwater (BFW) were derived from the treated water and condensate return flows, which mix in the deaerators prior to entry into the boilers. A sample calculation is shown below:  208  Total solids in B F W : = ((ConcentrationyyY x Flow-i-yy) + ( C o n c e n t r a t i o n (Flowxw + F l o w  C o n d  Cond  x Flow  G o n d  )) /  )  The 450 psi steam leaving the boilers was assumed to have the same chemistry as the condensate return samples collected elsewhere in the F N G P . The flow of boiler feedwater into the boilers was assumed to be = to the flow of 450 psi steam and blowdown exiting the boiler.  Lime Pond The following streams were used in the mass balance: Incoming  Outgoing  -#3 Hot lime treater blowdown  -Lime pond discharge  -Boiler blowdown -Softener regeneration blowdown -Sulphur plant blowdown Water samples were collected from each of these streams, so it was simply a case of multiplying know concentrations by the respective flow rates.  Composite Discharge: The following streams were used in the mass balance: Incoming  Outgoing  -Effluent plant discharge  -Polishing pond discharge  -Lime pond discharge Water samples were collected from each of these streams, so it was simply a case of multiplying know concentrations by the respective flow rates.  ESTIMATED HOT LIME TREATER AND ION-EXCHANGER BLOWDOWN CHARACTERISTICS Hot Lime Treater Blowdown: The water treatment manual stipulates that the hot lime tteater removes calcium, magnesium, silica and carbonate. It also indicates that if the total hardness of the inlet water is larger than the inlet M alkalinity, the lime treater effluent will have the following characteristics: CO3  = 25 m g / L as C a C 0 3  209  OH  = 5 m g / L as C a C 0 3  Total alk. = 30 m g / L as C a C 0 3 Mg  = 5 m g / L as C a C 0  Ca  = (raw water hardness - hardness reduction) - final [Mg],  3  where hardness reduction = alkalinity reduction G i v e n that the inlet and outlet waters from the front-end softening system were observed to contain: Influent  Outlet  F l o w (m3/day)  1030  975  C a (mg/L)  67.8  1.4  M g (mg/L)  15.3  0.5  Fe (mg/L)  0.4  0.6  SO4 (mg/L)  72.7  81.9  S i 0 (mg/L)  4.4  0.9  0.06  0.07  Q (mg/L)  2.4  2.4  N a (mg/L)  10.6  50.5  D O C (mg/L)  8.4  6.1  pH  8.1  9.9  M . A l k (mg/L as CaC03)  133  18.4  T . A l k (mg/L as CaC03)  133  27.8  CO3 (mol/L)  1.6 x 10-5  1.0 x 10-4  C  3.1 x 10-3  3.7 x 10-5  2  P0  T  (mg/L)  4  (mol/L)  Product water from the hot lime treater should have contained: Ca  = 42.5 m g / L  - hardness - alk. reduction - [Mg]  Mg  = 1.2 m g / L  - 5 mg/L as C a C 0 3 = 1.2 m g / L  Fe  = 0.6 m g / L  - assumed to be identical to the outlet water  SO4  = 81.9 m g / L  - assumed to be identical to the oudet water  Si0  = 0.9 m g / L  - assumed to be identical to the outlet water  PO4  = 0.07 m g / L  - assumed to be identical to the outlet water  Cl  = 2.4 m g / L  - assumed to be identical to the outlet water  Na  = 10.1 m g / L  - assumed to be identical to the [Na] observed in the single  2  blowdown sample DOC  =6.1 m g / L  - assumed to be identical to the outlet water  210  pH  = 10.0  - [OH] of 5 mg/L as CaC0 = pH of 10.0 3  T. alk. = 30 mg/L CaC03  - as stipulated by water treatment manual  CO3  = 1.2 x 10-4 mol/L  - 25 mg/L as CaC03 = 1.2 x 10-4 mol/L  Cj  =3.8X10-4 mol/L  - calculated from total alkalinity and pH  And the blowdown stream which flowed at 16.3 m3/day, would have had the following characteristics: Ca Mg  = 1640 mg/L = 887 mg/L  - (1030 m3/day x 67.8 mg/L - 42.5 mg/L x 1014 m3/day) - (1030 m3/day x 15.3 mg/L - 1.2 mg/L x 1014 m3/day)  Fe  = 0.3 mg/L  - observed [ ] in single blowdown sample  = 74.2 mg/L  - observed [ ] in single blowdown sample  = 219 mg/L  - (1030 m3/day x 4.4 mg/L - 1014 m /day x.0.9 mg/L)  = 0.05 mg/L  - observed [ ] in single blowdown sample  Cl  = 2.8 mg/L  - observed [ ] in single blowdown sample  Na  = 10.1 mg/L  - observed [ ] in single blowdown sample  DOC pH  = 28.5 mg/L  - (1030 m3/day x 8.4 mg/L -1014 m3/day x 6.1 mg/L)  = 10.0  - assumed to be the same as the lime treater effluent  C  = 1.7 x 10-1 mol/L  - (1030 m3/day x 3.1 x 10-3 mol/L - 1014 m /day x 3.8 x 10-4 mol/L)  = 1.7 x 10-1 mol/L  - [H C0 ] + [HC0 ] « < [C0 ], so [C ] = [CO3]  S0  4  Si0 P0  2  4  T  C0  3  3  3  2  3  3  3  Ion-exchange blowdown: Given the following data: Lime treater effluent 1014  Outlet water 975  Ca (mg/L)  42.5  1.4  Mg(mg/L)  1.2  0.5  Fe (mg/L)  0.6  0.6  SO4 (mg/L)  81.9  81.9  Si0 (mg/L)  0.9  0.9  P0 (mg/L)  0.07  0.07  Cl (mg/L)  2.4  2.4  Na (mg/L)  10.1  50.5  DOC (mg/L)  6.1  6.1  pH(mg/L)  10.0 30  10.1  Flow (m3/day)  2  4  T.Alk (mg/L as CaC03)  27.8 211  T  C0 C  (mol/L)  3  (mol/L)  T  1.2 x 10-4  1.0 x 10-4  3.8 x 10-4  3.7 x 10-4  A n d that the brine used to regenerate the ion-exchangers consisted of 792 lbs of N a C l dissolved in 10480 USgal of treated/outlet water.  The ion-exchanger blowdown should have had die following characteristics: Ca  = 1070 mg/L  - (1014 m3/day x 42.5 m g / L - 975 m3/day x 1.4 mg/L)  Mg  = 19.9 m g / L  - (1014 m3/day x 1.2 m g / L - 975 m3/day x 0.5 mg/L)  Fe  = 0.6 m g / L  - assumed to be identical to the oudet water  =81.9 m g / L  - assumed to be identical to the oudet water  = 0.9 m g / L  - assumed to be identical to the outlet water  PO4  = 0.07 m g / L  - assumed to be identical to the outlet water  Cl  = 5490 m g / L  - [Cl] in brine used to regenerate the ion-exchangers  Na  =2331 m g / L  - [Na] in brine used to regenerate the ion-exchanger + 2 x  S0  4  Si0  2  (equivalent mass of calcium magnesium removed by the ion-exchangers) DOC  =6.1 m g / L  - assumed to be identical to the outiet water  pH  = 11.0  - average value from 5 blowdown samples  T. alk. =318 m g / L C a C 0 3  - average value from 5 blowdown samples  CO3  = 2.4 x 10-3 mol/L  - calculated from p H and total alkalinity readings  CT  = 2.9 x 10-3 mol/L  - calculated from p H and total alkalinity readings.  212  APPENDIX E EQUATIONS USED IN THE COMPUTER SIMULATOR  213  S a (15  SO c/5 Vi Vi  on _  cu  CD c/i  Q  H  PN  D  PH  *H CU  + lH Vi  OH ON  CU NO >  co cu Q D+ ,  ON + CO ON  <L>  cu - S •C C H  3 c C  i  3O  fa fa  fa H CO  NO  -H  cd  S ^ aa-s cU  CU C  o  < + H  *  Vi  X!  cji Cd  Vi  Vi  CU  ^ f j  - b  -5  U  rCN  cj  "o 5  e cu  JS  ll  c o  •4-»  53  < o  cd c«  cu T3  r-H w NO r "NO"  CU  ^  i  C  O  s r t '  _o  fa  a  jO  TH  y ?? _O  CL 3  V2  5  CD CU cd  ^ 3  3  5  I i i O  ^1 r-T  -  5  r  C CD  5  5 S.2  cd • >  Jm o  cd T3  CN  "cd  U  •a  O i—i  cd  bfl C  • rH  13  >  < o  a. i  O -  I  0 0  t— NO ON O ^  CN  u  < o  + x ?r r—I  ^  1  m  o u  CN  X x  C cd  H »  on C O CJ 3  X  a. o  |  28  3  cr  " r^  CD co  O  CN NO  D. ^O  HH^ ^ta, Cr ON  o  5  0 u  X  0 0  co u  1  CO  o u  JS bO 3 O  CN  X 8?0 o o o8 ? u O cd o o o o o 8 ( 5 r^T<N 3 §8 CH^ IT) r H coU OO SO  r-H  CN NO  <  0  CN CN <  O  3  X CN  S 2 6  o o*o  ^ W ' I  II  II  cN  >0  3  CD ( £  00  Z  •  NO  fa  r=l  U  i—I  <D  U  CN  U <^ i  CN  oo o U  o CO  U  CO  U  CN  co U  ^H  cu  -ZS03  j- fa 3 a  co  I  Cd  u  CO  O u  214  o u  X  3  CO CO  <  fa  U  o ."2 coV5? $^ ^ s s  o * O r2 CO O 3 S o O cf O (  CO HC  u -  ° T H  tH U <1  <=>  3  IS  l  < o  28  a <  CU  U  DH  o o+" o  o  S «  O U  S  T3  S > •<DrHon gXcd)  cy  O  g  J;  CU  < o  C  gl  rS <»^1i  II  l  o  CN  o X + I o  < o  cd  ri  .a  U  23 So,  3rHoo r S  o o cj o  +  (D  o  cd  S3 °  CN  0  +  1  ^  0  O  CN  a.  <u ^ c CD  bfiCN  r°i C  -° o  P H CU D , CJ fa T3  O /~-  "c3 >  Cfa H  i  Q. / - N  Vi  3  CO  a S-3 vi  CN CN C > cu « rO  ~  «  Tt *  X  ox)  +  ON + co W C O t  CD r—I  X  c« -y +  cd C cd  Hi X  w  X  U  H § ^ O  u  *  CN  i  CU  vi  < o  u  CN  cd  co  0  *  Vi  3 a CU  I CO  Tt  +  < o  co  O u  1—I  o  CU >~>  P  <  •~-  »| o  c3  CO  o  fa  Of! fa > O  0  X +  < + H  fa fa  > 3 «  CU  o o O 'I 3 _ ON ON ^ c •~ CO CO +U + S c CU r- + NO * ° •d n" 8 3« r & 2 cd  H  GO  3  bp Q g^cs r5 NO + Q £ § +  <  O  all s§ *  % sO c  Q  U co  Q  G  co  o o  CN  X  u  Si  3  O  CN T3 ! 7 OJ r H  S  c-> CU rl  oo  O >H  -S  s  cn  c 3  U PQ vo 5  H W W ffi  CU  CJ 00  - «-.  oo CU cu CU 3 -G OO  H  cn  Q  o  <  ss ^ c o  cu  S -S  E S  O H  * B  cu  .a  "on 4H O £>  OO -  B  • rH -4—*  CO O  e i n  ir  H r*  C/5  ON  W H  00  Pr  cj oo  CU  <u  ON  £  cn o  -  CU  00  =3  r-  CU  cu -C  3 —  CU  U 00 cj  <U I T ! r-J  = e II a E 13  >  o "c3 >n > oi Do  -  00  c o  CU oo fU  X!  SS  3,  *->  O  VH  _H  cn 8 oj ° o C/3 ON  m ffi  H  W  CM  CN cn  Q  CJ  vo  U  oo  O0  CN  W  O N  CN w  vo  O  i—i  cn  rH  CU  T3  o  u  CU  C T3  cCU  bac  Ct r H  cu T3  cj M»  C  -Ifu  JU  Rec  CJ z fa  o  CU  c  e  C/5  CU (U  D18 -D32  o  00  s  Lscharge reuse scenai D 16  CC  CU CJ  — tH  u 1  o E  If using direct composi Flow  l-H  c«  sU O  E  CU  H  C3  u 1  cj  ffi I  cd  " S r H  u 215  u  ct  cn  cn  o u  o u ffi  CU  u  o a E  oo  cd td T3  .S bo  •c o  T3 CD  c  o  c o o  H ti ti ffi  C/3  CO O cd  Q  X> on  ti OS  3  CM CC  ti  CO  X> O  as ti >  Cfl  (U  3  o  13. > o  ti  o  CU  H  PH  CO  CC  fx C/3 ti  r-  H  o z ti  CN  O m PL,  PH  CU  u  OO I—I  PH  ON CN  CN cn  Pi  CN NO  O  o oo T-H  PH  CN oo CN  o  ON  rs  o  o  CN  cn  cn  o  cn ffi •  oo  O  o C/l  o  cn  cu  H  ffi OH l  cd  U  o ffi  o u  ffi  cn  u  5 o  216  I  cd  u  o u ffi  H  cn  OH  <  8  | 3 cc  CD C CD  HH  Icq in  o H  ti ti s  co Q < ti 06 0-  CO  ti r >  H-H o <D  tH CD  HH  c _o *-»-»  'cd  c J3  X CD T3 C  cd  ti o  (D ^3  ti H co  • i-H  Id >  c/a  C  CO  -ocd t-> 3 O  W  _. ti  <N hH  H  NO CD  u  CO CN  CN  HH  ON CN  o  CN  CN CN  00  VO  ON CN  CN  CN  HH  rH  co  CN K,-  o a$ c n  v„  cn  rO h—I  O  z ti C  it o  •o CD <3  cn  ffi  s  .5 fc  U  o  ©  li  o u  CN  ffi  cd  <%  CM  cd U  *J CD fc  o u ffi cn  o  co  217  CN  o CO  o u  cn  u  co  u-co CD CD  o u o u  0  o  DH  HH""  -a  <D  '3  c o u  03  H  W fa  X  CO  Q  < fa tf fa  co  O  cd ;_; cj on Id 5  o <D  s  U  +-»  IH  c _o  o  cd  q=l  '*-»  "Hi X  tf fa  >  O  T3  c  O  03 c/l  <D  J3  o  13 >  co CO  O '-»-*  NO  £  O  O  W  £  <£§ •-H  ed  o u  O  •-H  UO CN  O  r^  O  •xs o g c W rrH cd on  +  CD  SJ  r-  -g  i—i  CN  O.  ON  0  X  oo"  a  1  Hc  U X  uo  23  r <  o  c*s  °  tb o  < °1H H  E  W  E  £  S3  rT  3  o .-2 co O -3 © 3 O  -H E  O cr O <o C D £ J  ©  o u X  ° ^ '  cd  3  E  o cr o «n cu 4-j  6  r=H C O W 3  "2  S  NO  U  . S  CU  3 -4-»  TJ O u  cd  .5 fa  <u -3 XJ cd >  Z  -o  ^  r2  +  -O  X  C  'rC CD  cd  on  r-H  X  -o  'SH  CD SH SH  cd  C CD CD 3  <=? o © (j.,  °  r l  cd on >-y  rE  3  O  PH  P H Q /  &  C  O  o  •a  T3 0D 2 <D  cd on  PH  2  ^ fc  >  co  o u  Q £ X o © G  S °  on  ^ cd D ^ M  cS  OB cT S3 E  on on cd  O  E  «^  S3  cd -TH W) >  -sja -S2  NO <N  oo  c3 r-  CN  CN  CN  ON CN  O CO  r-H  CN  co  co  ON  3  oo I—,  CD  00  CD C  c o rH  Q  3  CD  O CN  E  3  HO  3 cr CD co 1  o u X  CO  U  S  co  o u  o u  o ^  X  H  1  rH  S  03"  ON CN  s ^  o  on U CD CU -H  <? fa 4?  O  O  CO  CN  (D  > S  fa R  CO  o u  co  O  bfl Q  fa-3  218  CN  JS  « «  co  C CN CD i  CN  Q  U  e . X  CN  u o  •=) I £_,  -8 S  co CN CN  C CD  i  O  <u  -x  -*-» o  •3 °  u ° «>  on  o < on r •  •-H  Cli  OC  CD  CN  c  3  O  U  E  CO  <J  U rl  -5  11  P  O  CD CD on > »-i CD « SH  A  'In NO C O O  ^  r  >o II  g>4  CD  ^  c«  I £  fa  O  on  II ft  on ucd  r2 CO  CD C  <  X  O  CO  II  on on  a  CN  CO  X  o u  co  to  CD  8 g 3 OH  oo  -  8  CD rC •*-»  CO  o u  o S3 o  E  on on  u  o  CD cd  1  <D co  PH  Iw on  a  CO  CN  1  V  ©  NO ON  cd  S3 cr  NO  ©  O  03 e oo -a t - OH O E 1) on 03 on O O cd  •8  ~ -  -4H  • r-H  i—i  • 8  cd  *= 5  co  1  © £©  SH  O  r-H o  03 3  OS fa H  Z fa  on  .s u03  on  S  cd on  T3  C  fa H  CD  c o  C  <D  fa i—i  n. o  CH  S 1  (U  E  O  n  j-J  a o o  o  3 T3  CH  • T—I  +  -t-H  c/5  o "i  I  X x  on >.  C^  cd  CN  cd  ^ Z  4H -  o u  +  C/i  <u  1  «  VH  JH  m  r-H J-^ OH  U  u  CN  X x  on o^  cd  CO  (Tl  O  3  ^ C5  <+H E tf "7  PH  <  a  z  3  <D  cn  0  u  ffi  1 cn  o u +  '£ =  o  . O  OO  ^  'oo  •3  CU  cr  1/3  DC  <D 3  OO ON  cn  C  cd  (N  CD  o u  T3  O  cd  CN  Hi  I  r—H  13 o o .y > r-H  c * ^  cd  3  •a  r H  w 3  q_, CD <L>  ux =3CQ  s a  fc  •8£  h—I  <u  si  1  —  1  X  o  ffi  C+H O cu  O  cd  ^  >  / - N  o  3 CU  OH  CO  tH  &  PH  tH  tH  B  cd  CU  CU CU  a T3 O  r ,  ffi  - 2  •s 00  § 3  CD  c > cd O  tn  CU,  00  CU OD  3  cd  r?r, ^  o  O  ^  cd  a  cd  O  3  O  CD cU  o  i 'ii  cu bfi  -*->  cd  £  ON  3  3  Si  a  ON'  V  O  CU  T3  fa «' DHU^  ffi  OH  os ti  a  T3  cu 00  3 '  C O  a -  3  fc  pq  o  c  <U  -rH  tH  cu 0 0 *-> cd cd O  CN  CU  3  3  O  a-  XI ?  ^H  3 o  ^ "S  O  3 O H  00 00  3  v g ON  NO  s cd  £  <ffi  Cl  3  . 2  0.  O  O  3  g  3 «S c=  CO  3  c  <+H  Q  +-»  Cu cu ^ X  3  * r 2  cd  r-H  3  I S S  tH O H tH  cu 52  a cu  CU CU  ^-^  tH  cd .O  tH O H  1> 3  < z~  B  •_  CU  "J3  ffi  tH  3  rt  Sr  0  . 2  JU  CU  ^  u ~  00  >  00  II  5.1 In  cd  Q fc  o=  rn  cu t cu 00 -o . o  £ j  3 T3  T3  u  13  o  cd  o  o  si  00 00  a  cu  Ti-  £>  O H  ffi «) • >  C N  13  O  O  ye U  a  cd  'od  cu  1  cu  HH  j*  o  00  CU  cd  T3  O  3  00  cn  3  >> cd  3  o  0  S  00  r>  O  CU  'bfi  cd  si  3  CU  >  I s  s o  x  8. oo  C  • r-H  CD  cu 00  cd  _00  CU >  cd  o  2  3  <D Si  > N  cu •3  cu bfi  cd  00  B  1  o  si  •rj  in o v  'S3  00  0  tH  C  Z &e  O  V  <u  T3  o  oo  cd  •a  3  + e  CD  feein  s  1—I  o  3  in o  O  U  "cd  Z  cr  a  VH  ed  T3  fer>  *3  o  cd  cn  • 1—1  in  cu 00  CN O  Z' ,.5 _ ,  •^t FT ^ CN (iJl , CN r ,  CN  fc  N  NO CN  T3 3  CU  o CU  cn  r-H  u  c>  I  £>  r4  Q '  r j  «  o u ffi  cn  o ffi u  OX) ,  ON  <S4  cn  CN  CN  in CN  o CN  tH  CU  00  CU  bfi  C«  -£. G  CO  3  cd  CU  cu •o X <u O u 1  O  U  1  "-  c5  L a  bfi cu .3 c  cu  SO  CO  Q  CN  1  cu Nj  o  3  si  3  03 cn  0O  cu  SI  I  N O  3  ti  •o s ti  cd  OO  _ r 5 M  M o  cn -J  «^  CN  cn cn  1  CN  0  E  CO  219  OH O  bo  fc  cd  z  P  bO  P  £  G a  Cd r |  3  0  cu •~  X  P  CU  "3  1  G o  cr  3  I  H  od  y Id U  r^r-j  CO  11  u CO  p  ^ o  G o  bi)  o  O  ^  XJ G cd cd  co  o u  u  DC  CD CD  &  cu _cd  -4—>  VH  |  B  cd XJ G 03 X , xJ <D cd  cd  a  o  cd oo  CD J3  "cd  >  s  p  OH  a  cs  + G  CD  G  p  O  si 8  CO  3  O  a «£  •c SH CD 3 CD  1  <4H  O  c  cS -  V X  PQ  a,  CO  0 XJ  *  3  _o o  s  CO  3  CN OO ON  o u  cd  CN  X % 5 % P  C+H  cu  3 p  ,  ^  "co  O  o  Id  cn cn O SH cu cd cn O  *  PQ  >  8  A  G  o  p  t  S  «  o 3  XJ O  #  ffi .s  ON  53  ^ < 4 H  bD  P  r <  c  NO  •5 .  8_  cd  ON * U OO 5,  u ° su u  \_i  b £  scd o  r-(  r-H  A  W  bfi  . P P-HT -  u  XJ r  CD  u XJ  ^ H  5  O  1  .2  O cn g .<« CN  8 4=  p  a  s 3 3 <D  u  O  O  co  o uX  00 ON  cd  -»  P  CN  r H r—  o u  co  CN  co O X O P  0  G X cd 1 -C m CD  DC  3 CD  bi)  rH Cd  c3 g  CD co  cr  CD  'I o u  0  CD  r-H  CU  .5 o  PH  G  G O  cd tn  -g  CN J H  00  •D P  -G  G cd  3  G  B  1 « Tt Tt  NO g  c oy u 00 J5 co .3 j O CN  ON  rH  P  rH  ^— H I Cd rS S P cd r ^ r G f i  ON  ^-J r-H Cd r-» P  „ 43  U  cd  ^ ^ PQ ro cu r-n  V3  o  "•*-» CU P SH P H  V £ cd cu r~| o G .3 2;TJ _2 bo P  ' — ' cd +  w  o  -4—>  CU  cn  G  +  43  I  o u + ^—I  CU  PH  1  o  a> -DC  +->  CO  0  X  C/3  _T <o O O .3 O r-H cu U w  bO  cd  U  O  ^ -5 A  cn XJ cd  cd  CU CO  3  P  - G m N O cu 0  p  c  — i  cr  HH  'cd  w>  +  cn ' | G O '3 o  „ cfa -3  +  .o  G  ON  00 SH P  X <-> OH  a c  lr8 |  X  o  cu  p c  CU  O  '3 cr  *—I  <+H  CN  X  o u  CO  X  ' 3 p  X  o u  =3  PQ X  « S S  PH  0  CD  4H  NO CN  ON  CN  0  CO  P  r-H CN  CO  00 1—I 1—I  CO  2: £  u  ON  2  ««  tn CN  co CN Tt  CN  ON CN  0  CO  CO  CN  O  CN  c  u o  o  •o  Q  o  p  PQ  ~2 CO  X  PH  o o u u X CO  X o u ^  (5  CO  CN  t-H  cd co  CH  SE  6  220  r UH 1 0  u  PH  O  o u CO  CO  o u  CN  o *  °3  E 3  &S ~  o 1 3 >  ° ^  • i-H  3 CU  *->  cu o =  • H  bfi  0  s CU oo  oo  cd U  O  •n 'Eft o B  a  Q  <d  fa  CM CM  CZ)  W  oo /  •+-»  CZ)  >< CZ)  A  o u ffi  00  cu 13 cu  Es  (U  bfi  x  cn  SH  3  cd  fe  CU  3  cu  ed P i  X CU  £  -O  Cd  (_1  "S ^  > c o .£  00  3 CU  o  CU J3  o  O  00  cd  "cd >  o  to 00  OO  X  '£3 CN cd  V  3 cn a W * H CO  o  3 CD  PH  SH  PH  CD  bfi & J3  Was »  & -3  -O  O  •  •H  ti  P<  cd  3  ^  X  VO  PH  jo  O  C/3  —L.  3 oo  O  Sfi  O  P H  ON  £  °3  O  CN  un t~-  CN CN  z  00  c^  a  < H  bfi  OO ON  u  r-H  O cd  CN  CN +  2^ rH  I  ffi  r—,  CH  cn  *  o o cu O vo rH ^ CU H  3  (J  rH  CU  1= 3  E  cd  CD >  3 oo o 'C W ffi x>  CD CD  3  CU T3  2  PH  *  3  ON ,  cd  ON U  H cn  ^  0O oo  cd cn  ON  cn  rH  CN  VO  z  rH  cn cn  z  oo  z  B  CN  z  o bfi  cd  •5 B fe co a> ^ C4H  , CO  [L  <=3 cd U  0 PH  Q  o  Q cu  u o  o  U  "°  3  H U  z  CN  ^  • H  13  z  z  § 2  (U  cn  o  CN  * 1 cu 3 3  JT cd CD  CN  I  l-H  cd  S3  z  CN  <U bfi 3 X  S  NO CN  u CN  CD HTh  U 3 K_  u  cn O  PH  .  CD  U W—  C->  1  ffi O 5 o ' • ' — i cu J-j  O N  CN  wn N>  0  C/3 tH  NO *-*  NO rH  "rH  ffi « T CN * cd <-  PH  O  ^  CO  o  _ S  «H  4H  o  00  T3  3 O  £  i—i  3  *  <U  ^  W  CD  CU TS 3  O >  cu  CN  cu cn  2  CVD  E3  rH  00  13 U  'rH Cd  » r-H  O  < H  P NO  3  is  &  <D NO CU r H X  s  cn  y  <D  E  rH  CQ tH (U 3  H  CO c/i  s ° o ffi  3  •c  O  H—»  E o 3  cu  o  X  O O  rH  O  •  3 c« 3  <D w  NO CN  PH  O  O  Id  CU X (D i 3  3 '3 cr  E 53  -H  y CN  CN  oo  X)  O  cu ^ -J; a , cu T3 3 cd — ' 3 6 o  f3  •a  Ifi wo  C H - 3 _g  T-H  O  cu cn U Z  il  C  11  Cd cu ^  00  CN  £ r r CU  3  CD  o  o  W B ^ . &- = 0  •8  H  z fa  PH  s  fa  C3  cd cu  •n  CM  CM  rH  _o '-4—» a  C  fa H  O  C  cd  O  ~  X  r>  >  +  cd  00  o Si cu  c  fa  PH  O  T3  O0  cd X  J-T <->  c/3  > 1  ii s ^  <+H  rH  OS  CD CD  3  H  3  ^ o  X!  PH  bfi  1  3  o u  fa fa  '  CU  CO  <u  2  tH  u ffi  tH  c  •3  cn  _s  ftMH  <U <U XI oo  • T-H  00  cn  cd w  Z  221  PH  cn O  O U  U ffi  o u ^ cn  CN  H  ffi u  r £  M  CQ  JL,  r2  §PH  g Cd  U  6 CM  cd  z  PH  0  a  N O  r-H  •T—I  <N  Z  • rH  -8  Z  CN  CN  u  u X + a. o ~* + u cd  8  I  3  _o cd  o  s  3i x  -3  XJ 3  2  cu  <u  -S  cE  cd oo <D  <4H  _3  K  CH  s  c o •  c  CU .3  T—I  a fc  1  c  a 3 r-i  •-3 =1 CD  o u  O  bfl cu O  ^z  o O  1-H  cd  Z  CN  o  oo u  o  X  XJ O  o  cd  u^  o  oo.g  w  „  <—I  3 3  CU  <4H  S a  r-H  "CU  "cu  o ft  o ft  CU  CD CD  o  Tt  Tt  CU  &  Q  Q  UO  r-"  B  s CN  cn  ON  r-l  > ^  rH  o  o  Tt  „  z  X  CU  oi  ON CN  O CO  z z  U  r-H  CN  co co  z z  CN CO  3  CN  co  z  .2 3  N O  CU  r <  cd  N O  z  CD -»-» cn rO  CN  CN  co  cn j-»  co Z  3  N O  r-H  cd  z 3  o XJ CD  XJ CD cn  .HJJ  cn  3  O  c o  fc £  cu CO  O o u u Da CO  ft  CO  o u  CN  i  ^  H  Da u  r-H ©  N O  CD  3  NO  i  CD  ' f t  _3  -  u  * §! ^  fir2  . CO  222  rH rH  CD  rSU  o ,  s^ O  faEJH  Z  cn O ft  C+H  O G  ^  TJ ^  5  TJ  to  O I-  Z  <M CS  fc.  ei>  ctirS VI  TJ  1  C% O fc  i  CU  H  O  o ^  §\I  3  o 5H  Q Q Z  2 rS C3  O  SJfc  ^  11  £•3.  *  3  > o  -5  o  •  a  & ^  bB  V  CD  Z <  <  Z  2  CD CD CD cd bfl  cd  £  •-H  CD  III  rH  o  O  O  <  CU  U  H3 CU  -  fc  CU  O  33  13  Tt  Z  bo  CU  o  U  II II  fcT  bo  -*-» CN cn  CU  U _s Q Q  'cn  CD " t l  II &  = "U  rJ  DC  ^ 8 ^  fc  wo  Tt  a^  i—t  i—I  a  1  o  U  <4H  o  C J  o  cu  CU NO 'cn i O K> O ft^  a  U  X  3  a  >  cn  rH ft,  CO  <- CU CN — ™ ft ft XJ  "  3  CN  cu CO  r-H  cd  •5  CU _> '-*-» CD CU ft  CO  3  3  _G  DC  cr  fc  Z  cu __  3  fc  o  cd bO  .3  CD -*-> 'cn O  O  ON  3  cu cn  3  ON  m  0 u  • r-H  r-H  cn  3  1  ^ CO  O  CD co  3  r3  3  • r-H • r-H  O CU  O  c o  CU  .O  3  . p-H  a  1  3  _o  -3  O  Z  o c  ft  rH  • rH  cn  cd  • r-H  cd  O CU  a  <D J3 +—»  8 ft  3  Z  cn  XJ cd  cn  CD  bo  JZ  CJO  3  X  •M  cu CU  rS  o  0  CD CD  CD CU  I co  o  cd  r3  3  CN 1—I  ,o  o  • 3  CD cn  CU co  <4H  <D bXJ  a.  r-H  3  cr  cn  SH  O  N O  rH  + - » H—I  cn  CU O 3 cn  3 ^3  8 rH  O H  S  s B  _r ° * s 8 2^ tf-|  cd  3 ^  <D  <4H  O cn  3  :3  :d  CU  >  •a  CD  O <D  tu  X3  S-l  SH  CU CD  ft on  cn  V5-  w  0  £  ^ o  O X3  s  > •tf  CD  -I—»  cn cn  > o  -H  CD »  3 £  O  cd  Ed  fc  H  L_J  o z  co  -  >*  CO  3  o z  "3  ^  CO  L_I fc  u  cd  ^  "cd  ri  £  o 3  P  3 -3.  'CTON  go cn cn g  O X> & O  £ ^  S  CD > cu rH  •C »-D > cn .  rO  8  Vi  ^ 2 -*-» 5 cd  cd  ji*  m  «ON ON CDO  cu 2.  CU CD 3 ft cd  a  3  -2.3  CD cu CD cn  fc  _O  & ON  "T^oo « O  CD  oo  O r2 x) r- XJ r o  3  cd cd  |  CO  rH  ON .  °s cd  2  W  -2  -2 £ r2  -o £ <S o -2 eQuo  CO  cn  «5 5 OM - . -a  2F  =5 O W)  tf cu  •s  :  o  V5- O  CD . CD  -3  ft  NO OS ON U  O ON  3  «< Ed  SH  (D  cd  fc 5  fc  tH,  -  -4-»  cd  $  =5  o . a znr. g« z s >  -  cd  CO  >  fc  a z fc  C O  fc  tf fc H  o  VO  <N  o  z to  O  6.2 o 13 T t  Q  O  ON  cd  C O  0-  ON <*J  io x | oo oo £  o  cn  -3  cu  H  CD CD ft  cU  CL)  CO  •5  cn  cd  -s o  CD  ft  cn T3  <D  u  I  oo  o  r-H  ON OI  o  o  o CO  o  H  CO  o  CN CO  ON  CO  o  U  uo U ,  r ^  Tt  u  CO  in U  CN  wo U  uo uo U  ON CO  Q  c o r i  •o l i ©  c o  5 co  o CO  co  cd  x  o  ft  u  o  u  0  u CN  1  223  u  §5  co  X  ft.  H  u  _r2  c  co  Cd  o fc U 03  o  u  3  0-r2 3fc CO  <u  >  <u  Z  cu >  CH oo  •a o  2  „  OO  T3  SH c/3  e  CH OO  '6  O CU  c  l/T. O  c O  ON  • T-H H—»  cd C  "o  «13  X  cu cn c T ^ oo 3 OO T3 3 00 , cd  a  oo CU CU  oo CU  oo  CU oo  o  tH  cd  P  "cu  OH  cy . :  <u  CH  o O 3 cu s o  Vi  cd  Z fc  _oo  OO tH  CU  CU  OO  td  " rt  cd ^ C d  £  00  00  3T  X bfi  ON  tH  tH  II  O N  CU  CN  I—(  1  cu o  T~H  13 o  13 o  OO  Vi  CU  CU  3 cd CN cd  "  >  S  CM  o  t_H  6 00  CU  CU  cu 0 0 cd L _ H cd "  00  "  cd  ° -5  cd  co  cd ^0  2i CO  o  tH  CU X)  cu  £ 3 3  bfi  3  •Bfi  bfi  AN  <+H  Vi  O in O  & oo ;5 >  3  •H  x«  3,  CN  *  CN"  r-  p  i—i  4H  y  VO CN  OH Vi  H  CN  oo  CN  E  3  S p  «3 O H « to CU -H^ > > E  O N  5  CO  r H  ON  cn  t r r H  > ^  -  cd  H-H  CU  C  H X  O h  T3 cu  2 !3  cd  fc fi  Q  |  co  H  z  rt  o  r H  sis  o o o  gz oo  oo  Q  cn >o  Q i  CU  _  ^  cd 3  O  OH Vi  CN  o H3  o" cn o  bfi  3  O  O  o  J3  3 cd  r >  ON CN O  OO  OQ CU CU oo  cu  >  CU  cu oo  cd cu 3 CN CN Id  P. > o  cd cu _3 Id >  cu 6N a cd oo a £ cd CN O £  <u  oo r N rt  CN  Q  ON  o  cn  fc  W  cn  Q  O N  u CU  cn fc  CN  PJ  Q  un u-, fc fc  PJ  go X) r  c r o  cn  CU  H  a  3  «-t  CN  cn n  PH  o  •d  00  <4H  oo o J3 + tH  cd Q  CU .> '•*-»  OH  o  * £  . S o X>  o  i—i X o ffi  bfi  > ,  3 II cu i > CU x !  CU 00  cj  cu > •d o cu  3 cd  X  cu > 3  fe  00 -t—>  £  c  00  00  cd  cd  oo cU  >—H  .  O 3 , 3 CU « CU OHMTJ -Sw -S oo £ P £ cu d bfi 3  00  O N  -5  fc 38a  -S  O -l-H  cu cu 3 Id 3 gi3 >  O  a° 1=1  .^1  3 o  00  VO  rNS  z  cn r—1  X bfi =5  £  00  cd  cu  X!  bfi CU  "oo X t  O  £a  CM cu  o "cd3fe  CN  rH  ' O N  tH  tH  CN  -5 o £m  „N  CU  tH  £  X!  g  ~1  00  (U  §& 3S .3 00  H  .23 -S x  OH  cn  o cu  ^  3 > - ' 00 PH « ^  •d cu cu  CU  "cd  '  >  •d  =-• cd  o =  •*-*  OO  13  >  v*.2  rrNO  "  cd cd cu 3 "cd CM fe O cu  e  U  -J =  - °^ fe.S II .2 T3  •t-H  _3 "cd fe  T3  &  cd  CU X!  OH  - d  3  00  O «->  gl SI  oo CU X)  cd r - i  cu  M  oo T3 ^ 1 3 fe v b U  *  s° s «>cu =P1  X  «r>  _  E  OH  O N  cu  O  <U  cu • i> ON cd r-.  °  - X  •s  CH  cd  CU  -O  z cu°  _  cd  > N  °  Q 3  H-H  s§  <U  Vi  3  H-H  o  3 ^  -  O H  fe  o  o  bfi  cu 3  c  cu  CU tU  '•s a  tH  vo  •d o  ffi O H  I  cd  U  o u ffi  •a  o  5  $  cn  o u  u  il  ffi OH  cd  .5 fc u  u I  o u 224  ea  s o  oo ca  o  cu ca  o un  O  o  ts  5  x o  s fc  ffi  u I  cd  u  O H  o fc Q  O  CN  un O  un un O  cn  -3 H  cn un  cd U  o u ffi $  cn  o  u  f r  u  cd cd  xs SH  &  cd  ed  CO  "cd  a  3  bO  2 3  •c o  *(—<  cn SH CD  CD  43 3 3  too  X J CD  3  •a  c o u  T t  *  C N  H  Sd  W S Q  < W  C. CH  CO  CN  o  i—i  a  CD  NO  43  CN  "-4—»  c  Os  ed  CO  T t  "p X  i—I  X J  cd 00 CD  o 6 o © o o  co  o  =3 CD CD  3 oo "cd ed > CD  CD  cn  8  43 O  w  C  H  cd  »  >  SH  _>>  O  o  <D  •a  r-  CD CD  cn  <4H  3 O  43  o"  3 O  X  3  cd  43  W  oo cd  CO  •3  X  CD CD  oo  bfl  o  oo  OH  W  > 3 O  CD  CD >  OH  X J CD  ON  m  j  2  m w  ^ H  oo ed 3  a W  CO  •oo  CD CD  oo cd O H  cn  -O O  33  CD  i n  CD  W  CD CD  CD CD  co  H H  CD  I:  CN  CN  W  Sag  CD  3 O  >  * s N O •3 6 o + NO 6  3  00  CO  ed  CN  . C  co  T t  o  3  c  CD  > o  t -  -*-»  oo cd  <D  CD  "cd >  a  J3  3  Id  cd  W>  o o  >  CN  g  co  E  CD  PH CO  fc «S fc ed cn 1  w  os: H  '< ON  CM  zfc  co X  <D  U  o  CO  UO  X  T t  DC  o  uo  uo uo  uo  uo uo  ON CO  CN UO  CO  uo  uo uo  CN UO  X  c«  c CO  co  CD  C3  •zs  CU  CO  a 15 3 fc  CM  0  u fc i  ed  u  o  c  1  a *  CO  o u  u  o cu fc  z 225  X PH  I  cd  u  o u  CO  o u X  «3U  u  Si ' -5 os co  bX) 3 O  bo  CD cd  Q  /•-N / — N  O  C H  < ©  <=  CD  fa W  C/3  8 2 2 £ O N  X  CO  <D  Q  fa  o s CM  CO  r r  c/3  o CD •4—»  ffi  oo  o  cd  <  r H  l-H  >  OS  fa ;> o fa H CZ)  >> cz) OS  X cj  ON  cn cu o C/3 cd  CO  <0 -3  Id >  ID 3  3  >  *-*-» cd 3  o o o  o  OO C/3  in  cd  33  s  *  too  ON  3  ' <D CD 00  ON 5t .  cn  o  O3  3  N>\J  3  3  cn  in  -3  rS  3  *  cr  <  H H  1) 3  in  0 u  oo  S^  1  cn  O U  o  ffi  o  oo 3  o m  CO  O  CD  cd  +  © in r J  CD CD  CN  cn  oo  o u  O N  CN  cd  CH  T3  O  CD  r H  — CD «  3  ON  J  cn  2  o CN  in  ^ffi  o in  "  x  ^  o\ cn  ^ * ICQ S, a i n P 3 S * U 5 5 2.6 » 3  1  tH  JD cd  CD , H  II  II  O  o  00  r H  a  X  oo cd r.  § ©  O  rH  CD  X  00  <  323  6  © o  CD  O  -  ©  3  r^8  §  -3  in  id  r>  Mr  ^  © * ©  / - N  S^;  ft CZ)  •o  N O O N  1  A  CM  O  z fa  ON ON  O in  cn  CD  rS  U  CN in W  in  in  in in  rS  rS  rS  1—I ON  1  rJ  cn  m  J  +  o  <  °ZH  2  ^  © © •n  co r.  3 S cr o CD43  r H  m  CN  J  CN  rH-i£ <:  O  O ©  -a  US  3 &  o  13 u  o  rH  1  cd  U  cn  o u  cn  ffi O H  cn  o U  o u ffi  CN ffi  226  c ^  cn in - J  cn  ^ r? P=r2 O 9  £ E fa  u  B  *^ ©  >< ©  gs  H  I*  u O' Q  > ,  ^  3  U  cd  O  o 7*  | Si.  * " V ©O r2 3  o  CD 0)  © © ©  in  3  3  ©  © o  o  c  C H O N  r H  C  J6  ©  ©  r J  rS  x / - N  9-ffi g2  I  <  W r H  CN  5  c^  ffi  in  in  cn  r  1  ©  3 N—' © © S o ©  6 © ."3  *  CD  W  r^  fa H  <  ©  r~, C N  NO  > CD  1  ^  3  + x o ^ a  ° +  r H  8  ©  5b ©  |  C/3  ffi  •3 <  O  r  ^8 •©  O  r H  w  Sffi £  ©  C  rZ <-> ^ cN  ffi o a. o  I  < ©  OH  o  O  iP ffi  ffi  i  cd  o i  < o  o > ,  cn  cr <D  I  c3  CD 3  1  CN  ffi x CS +  1  °  i n '—  o u  QH  r>  H  CO  *  CN-  ffi"  3  +  rH~  1  T-H  * r-  X  <  cn  r H  0 u ffi  < ©  CN  1  • QH © ©  cn  0 u  o  W ffi ffi  w  " c / 3  W  ©  3 > * X  KU  O  O  CN  2 s ^  cd  u  ++  cn  1  CO  I  OO  o  l  c  -o c • cd  i—t *  < ©  * * in  O  <  in  "D  fa  ,  cn  '-4—»  +  oo oo  cd  -3  3 _o  _cd  O  I  <  ,  n Sb J—s  HH  wO > N J ffi ^ + a,  X!  H  bX)  3 cr CD cn  o O m U W ffi  T3 3  o  o  cd  O  0 u ffi  <  O  3  3  cn  oo  s  • i-H  o u ffi  >o  3  co  f-  S  cr 0 u<tH  cd  H-H  XJ CD 3  3 CD 3  ' 3  ^  P  CS 3  S  O  3  <  x '  3  ocj  O CD  H  W to'  X  co  3  o X  CD  w  X)  •tf' Ed  oo . CD  o to H  co  Tt'  c  a  cn  fc  O N  c^  n  O N C O  O  % ^ ^  §^8  s  X  O N  co -J OO  O N C O  C N ' £ O i  31  a fc  =d CD  1  £ so  • cd  £  cn oo cd  S  C-  O N . C O  p—I  3 §  oo  +  O N  3  -sd  C O  3  *  3  U O  ?-s , — L  o  O CD  T  3  >8  O N  - 3O CD  CO  is  U O  *  (J  C N  C N  Tt  X  O — i C O co  •xx o -' L  C/l  °  (-H  p CD  O <D ~ S Or2  o u  oo  O N Tt  -4—*  co  u  oo  -3  <D  5:1  1  CD  rO  cr  £  *  O  O  3  co  3  £ H  3  3  O g o O P uo X < U *%X * 2 ^ *0 0 ic o *^uo. > 3 § < fc uo o u 3 E 2 b O . c o ? Tt O N Tt  a  OO  •>> ^ -c oS uo X * o* 7 K a •» r3 S fc C O  * O N  P  cd  O r-H  3  r-H  in  rH  v< ° h £ •2 S 5  P  o  cd  +  >  .2  T  ouo to2  O N  o u  E  3  H->  co  CN  * CO oo  L—1 + X , ,  s p  CD  < o  CU  r >  cr  4—>  +  X  O N  3  co  fc  • r-H  CD  •<<  XJ 3  o o o  XJ  O  6  o u  cd  |  rH  .3  tf  T3 3  3 <H-H O (D  Q  W  CD  £  +  X!  3  OH  £  •c o p  O OH P.  " f t  oo  bo  XJ 3 cd Xi 3  r S  3 CD 3  • r-H  CD  o O  H—»  z  3  <4-H  co  O N Tt  "cd  £  cr  O  CD  -4—*  - O  CD  rH  "BH  •c  O  3  cd  3 r 3  3  O N S  oo cd  O  X J CD  >  S ' p *o^S13 U O U O  CD 00  *  J O O  --H  CD X >  oo  6 SB'S fc o +  *O N  T!  C O *  U O  2  O N Tt  CD _ P  3  O N Tt  13 >  CD  oo  Z" 2o  CD  <4-H  i—i *—i  'o 3  CD  o  C O  O N  co  Tt  Z  fc O Safe  P H  tf to  o  <  fc  cu  Tt CD  z• u  •J  wo in  fc  O N  wo  uo uo CN  uo  co  CO  uo  Tt  uo  O N C O  O  Tt  CU  o Tt  o  z  cu to  to  O N Tt  z  uo uo  r5  CD  •zi  o u  s  co  CN  ac  u  oE cu  o  c  c o fc  3  CO  O U  T3  X  fc cd  u  o u  CO  o u X  227  1—  co  o  cu N J u ,  9 ««  CO  * 0 \  tSco  CO  H  > < O  o  CU H^  cd  3 & o  o  U  fc  Q  cd  U  B O O  H to to  Q to CM  fc to r—I  OS  to o to H  cc I* cc OS  to H fc CM  z  U  o in O  CN co in in O O  Tt  uo  o  in in O  to  •zi co  X  o u  o o  cn  o u  CN  u 228  p  < O  3  r-H  * Tt *  •8  <N  © CN  3  cd  Q < o  3 43  r-H  •3  cn  XJ  t-H  3  cd  0  CN  II w  a  cc Q  < tf  CM CC  Z  o  53  o  ON  l  _cn  cn  *B  XJ  "3  •g  3  o  CN  o  S wo  -rH  CU - 3  ~ £ P __ P XJ 43 P  O  W  Q  T3  fc  B  + o o  p  r-;  o BC  PQ  3  CN  o  *  o  o o in  cn  cd r5  CU fc  CC  "  CO <D •  o  o So  -J ca  cn  cu 3 '  13  u p  u  CN  O  oo U  '>  w  i  o  cn  CN  CN  U  U  T—I  u  H  Tt  CN  u  CN  U  oo  Q  Q  CN CN  o  Q  cc  cn O U  ,  cc - S i i> cc o cu tf  td  -J » MM  O CQ H  p Z •Z3  •4-.  <4H  °  ^  °  O  cn  O  .3  fc cd fc cu  fc tf tf .2 p P E5 P u  o VO  >  CU 4 3  Cn  O  P  •3 g cn  >  9  2 < 5b ©  p  o o o  n3 X )  •g  o  6  o  XJ  Tt  r-H  _3  'cd <D  > 3  fc  cd  3 "cd  z  cd cd O X J . CN  X> . 3 cn S XJ ^ J-J  cn (U  s o  CN  3*  s  U  o cu  3  CU  cd  CN  O  a  43 3, x  < <i  r-H  3  P  o  Tt NO  1  O  c _o *o> cd s  XJ  U -J  •*-> 3  o p  MM  H  l  <  CN  p B  W  CN  Q  £•*  H  o  Tt  cd  s  scu TJ  CU CU fc  3  S-  *J  CU  u  tf  CU  ca fc  CU  s_ TJ CU  «  O  "5 2ifc  cc Q H  cn O U PC  cn O U  CQ  cn O U  CN  Da  03 CA  ^ H  u  3  CU  TJ  3 O  u 229  fc iP  ^ ^  1  "8 < o  m O  3  U •  cn O  cn O  *  CN  *  X  x  CN  4H cn  o o u  w  a CO  Q «!  Cu •  C O  Z  •OH  <J  -J P  U.  -J «!  u z  sX  .21  cd  -a K  CD  T3 3  cd  O H  < o  V O  ^  .2  O CN  X O H  Q  o 3^ o c3 CD m c  CD  CD  3  Id >  fe  !  s  o o o o •3 CBO 3 o  cr o  o © © ©  uo  © © © i—I  vo  CN CN  © © © © UO  <  Q °1 © * x © ^ © © © cf § wo  »—I  cr  CN CN  cn O ^ I  ^ >^ * 5  X  CN  HH  2 *Q  i C O  3  CN  *  Qx  E is ©  cr o  +  X+ Tt  CN CN CN  Q  2 3 ©  CN  cn O  3  O O  r^  •Q +  •  3  --H  cd  U <D  cd  +  oo ?2  Tn  v-^  ¥ OU  CD  + -§  3  CN  3 g  o  1 1  SI cn 33  aI  D * i t %r-H\ Ccn © < o  i w  U CN || O  r Z  PQ  r-H  oo o  C O  II  X  + CD  T3 CN cn <« fc CD cd • • T 3  u  r—,  CD  cd  cn O  CN  cn cn O S3 CN od?i o rH Q y  X *-l  cn O U  U  cd  ^  U  -HTS?  O  oo 2 W cn cn  CD  x  cn  8  3  vo  3  N—'  cd  HH  *—i  O O  ©  ©  2 §  vo ON I < 6 ^ o  cn  u|  *  I  o o o o  C H  CD  DC  < o  H  X  cd  O  Q  ft  cn 3  ©  CD  T3  O  I  CD  3  CN  X  'S -O  cd  cd  w cn  _4>  3  +  a  CN  rH  X CN  cd  U  ©  <4H  X  cn  cn O  CD  CN  CN  .-3 3  cd  u  Tt  • r-H  CD •4-)  •  r-H  U  rO  H  U  < o  •c  8  cn  O  3  < © U ~ +  O  CD  ^  rH +  cd  I  < ©  So g  S 8 +" S + T  PQ  3  -rH lH  r- 33 cr  ©  < ©  CN  CD  CN  cn O  CN  oo ON  U ©  CN  •3  CN  w <  O H  2 ©  u  X  OO X c^ *uo Tt O CN fc Q  « u  W  CN CN  cn  i=H  ft  oo W U o  OO 2 Q * CN  T3  r-H  +  —.  CD • 0 0  ©  *H  1 3  3  3S O  O  U  u  o  o _  pa  ©  cn CD  u  Tt  CN  uo  CN  CN  CN  Q  Q  Q  oo  m i  W  O  i—i  CN  W  fc PQ cu  ca  rS •o  _CD| H >  H  cn O U  a  cn O  X '  ft  CU CU  U  CN  X  fc  -  r 2  "o tu PQ  u 230  co Q t— 1  cn O U  cn O U  a  c &s  W fd « r S CD ,<D  S3  rH  cd CD  S o  CN  fc  Q fc  O  m  CN  cd % C O  TO  CO  TO  o u  O U  TO  U CO  CN ffi X  CN  Ci ffi~  ffi"  +  +  1  ffi  CN,  o u  uT  X  x  CH  o u  O U  0  CN  co  CO  co  O U  O U  CN ffi X  OH  X CN  CH  3  +  oo C  O  cd  -4—» OO  3 O CD  0  X  a  X  ^ o  CH  o o  CD  B  •si  3  cd  T3  Id 3  -  ' O  2 o '  '  r-H MH  OH 1  O  o  O  VO  -.OO I—~  -vo O N  'To^  5b + X o ° ^ a o  ,*H CD 3  13 >  wo  o  • H  o  <u  cd  OH CO  § * §  ^  0  tH  ID  vo  U  U  oo  co  i  CO  2  0  rS CO § ' 3 S O cr o  CD  CO CO  2"  S  oo  cd  O  u CO ffi o 1  co  o  I/I  1 <  P  r—,  -  ffi  +  CO  2 ^ 2 => m 5  CO  a  ffi OH  o  +  VO CO  r H MH O1 H  O VO  H ^ C X J  O ,<H HH OO  CD 3  13 >  CD  ' O  o <  r~-  ON  c d  £ 0 CD \ £  co  O U  'o CD  CH  CO  II  £  O r9 CO 2 3 £ o cr o uo <u£ II  3  o  •a  2  _o cr  O  *—I  CD CO  < N  cN  ffi £ °< ffi  00  ON  O  OH  o 2 o o  -> 3 U  uo HH  b  ^  H —» S c>o  kj  3 O - CD CD > N  £ 3  2 2 ^ o uo cr  o u ffi CO co o Ou u CN CN  cd o  X  r—i  oo •  • r-i  O  ' o  o vq '5b + X '  X.  2 o  3  CN  §  > N  13  U  * o o u CD ffi o  cd -4-> oo  b| £ bI O  O N  cr  o ffi u ..ffi o <z? E (N 2  1  CN  ;  oo r-  OH  rH  .  3  * Affi O  °  • r-H  CN CN  X  ^  X>  vo CN  ffi  OH  •c  O  r H  ffi  3  CO  ffi  ffi  r - i  +  O U ffi  co  CO  x  ffi"  O U ffi  L—J  +  OH  To O U  rH  CN  PJ  PJ  O  fc  oo  o PJ  PJ  rH  CN  u-> in PJ  U  PJ  PH VO CO PH  ON PJ  o uo PJ  uo uo  <u  CD C  C/3  Ofl  03  i r ^  c<  u I  "5fa IM  cd  PH  u  o ,  !f o  ait  co  co  O U  O O ffi  231  co  O U  CN ffi-,-  a £ o  co  CO  O  u  O U ffi  co  O  * ffi  H U  co  O CJ  co  O CJ  CN  DC  bp  x  ^P  <N  CD  DC~ OH  O >  +  cd  O  1  &3 O  c CD  H  W W  S  CO  Q  < W CC Cu  CO  z  o  HM  H  CJ - J  u z  DC OH  e  o  o o o  cd <H-H o  VO  ft CO o co  CD  43  . J—»  3  _o  3  cd  c  55 od  _cd  "o x  CD  cd p  C O  .CD  T3 3  Co ro  CD  3 Id >  Tt NO ro PU  3  _o '-t-H  + S3  Tt  % o  S i  cd  3 a  W PQ  Tt  O-  CO  -3.  pa.  cd  CJ w  00 co  O © O O O  -a v i 5  od  CN CD  *  3  £  vo ^  o  oo  PLl . .  r -  52 £  co pq  co  DC * cd  XB  3  a cc 52  bO  cd  CN WO  _ , £  od od cd  DC  3  cd  3  pq  >  8  ^  £  „  co  3 13 >  CD  CD  P H  CD  od  13 >  U  <4-H Od  od  CD  3  o  CD CD  .8  O  "C o  pq  £ O t+Q •*->  O H©  'So +  • r-1  Od  '  T3  O  3  II II  m  3  bfi  n  ~~  o  3 * \Z  od  43  cd T3 13 cd  od od  co fc  CD  pq  C/J  cd  y-~.  PH V O  LL, >  Vj  od od  *5 2 o £  o ^ PL, wo  cd  wo  C  --H  cd  pq  co  CD CD P H  C O  © © © © wo  <  o -J  CQ  ro  CD  O  U  vo  Tt  O  DC  i  OO CO  oo co  a  r -  Tt  DC  Tt  CN wo  CN  VO  CO  wo  DC  fc  oo  CO  DC  CN WO  oo  oo  VO  wo  CO  CU  OX)  3  o  c  E-H  H ^  3  o& o  "S fc  U •  cd  CJ  CU  cs  Q  U  c« V3  CS  1  cd  DC P H  TH  fc U •  Cd  cd  s DC CS P H -e , 6  CJ  H U  X  U  CJ  z 232  1  U  col CQ  fc  u  co H  -1.  CO  a £ O o  Tt  O N  ^  cd «->  |S  C O  Tt  CO  ©  © o •TH © ©3  Tt  fc  V O  CD  o  CN WO  V O  3  fc  Q fc  © © © ©  CJ  cr.  £ o  cn O U OH  cn O U CN ffi  cn O U •  cn O U CN  -s  cn O U  CN,  ffi"  co  CO  i  X  OX) CO  ffi  cn O U  OX) .3 %->  'x  CN  ffi  OH  CO  ^ B  X  CN  3  ed  3  3  CN  o >  oo  +  *  X 0  _D '3 CT CO  i—I  OH  OO  X O H  o o o  S  <  B O c ^  CN ffi ffi  cn O  U  o O  un  1  •5 un  o O r  o<  +  i — i  cn  NO  cn  o  NO  in  a  cd  3  CO  un  CN  NO  in  cn O  3  cd  T3 "cd  3  NO  ^  fe  oo  PHH r H  OH 1  o o O VO  -7  rl  3  <  '—-  c  cd U  o co  OH  CO  o  o  rH  O  -HT~  NO  ©  CN  ^  O  0  ^  ^  ^  CO  S O  o «c d < H  00  2 r5  < - co o  c r  0  o o —  1  £  CN un O •  00  OH  ON  © un  00  VO  OH  OH  fe cd . „ CO  ^3  H  3  B  c r  o  cn O U ffi.  •  cn O U CN ffi r r cn cn n  o U ffi  ffi OH I o  cd  r-H  0X> B  S  - a  CO  UH  r  3  3  CN  ON"  c r  O  2  o  J/J  cn O  «  «  * -13  X) ' f—t  ^ ffi _ o o o o  Ci  •c  K e  o r  oo cn >—I  O  >n  13 fe • r l  ^  cd  ^ 13  3  00 r -  0 0  " I  O vo O N  oo co  CQ N*O  00  '  o O B © o  -1  s  2  •c  C> cn  •a r H  r-H  8  O  a g  un  ©  CO  oo  pa + + +  cn co J r> £"  ^  cd  r  U  O  NO  i t  ffi <-r>H -~ .2 fe~> fe =X ' ffi' fe id x O .-3 0 0 ffi cn + OH o O 3 B o CT  I  o  trj  cn  ffi  OH  co cn  6 ^ Oo uO rr > N  O  cd  cn O U ffi  CN CN  ffi  _3 •w CO 3  •c  O  r—I  rr  o  3  © 2  r-H  O  O O  tr,  3  CN  3  O  CO  CN  ^  00  O  cd  —: co r H  O  cn O  'So  O  OH  O  o  r~' un * ^  u  CO  00 cd  TJ "cd  3  CN  ffi+  o  ra  + iQ  1—1  cn cn O U ffi  ON  _ J rH r t  B  CN'2  +  -<t o  Tn O U  r-l  >  00  cd  rr  O W [ - H  00 co 3  > 0  'o co OH CO  00 r H  un  OH  CN  NO  OH  a  un  cn  cn  OH  a 1  00  cn  O  HH  S  a»  T3  c  o  J r  cn O U ffi  cn O U CN ffi  o  c c  H U  fe o  *H  r H  V PH  z  u I  u  U  0, 1 *  cd  z BQ  233  0  cn O U  cn O U ffi  cn O U CN  ffi  •o c CS  H U  H cd  « PH CO  u  eo  0  u  OX)  1  CO  o u  CO  tU  0  u  CN  s  1  ffi  3  co  o  • X  O >  U  O  CN ffi X  ffi~ CH  3 O HH  CU  3 cd  CS +  3  C/3  3  O  CO  ffi  c o  *  a  a CZJ  Q  w C_  CM  OO  Z  o  MM  H  O  CO  u z  H  5  o o o s _o ffi o VO CL a I s o VO X.  JS  3, x CO  TJ  C  cd oo <U _3  •13 > C  _o cd 3 O  T-H  ©  00  f-  O N  —  I/O  <  J3 o  ic s  o=y  i oo  © © U0  UJ  &  ©  ©  •3 £  r-  ON  cr o  c^ U cd CO o  CO  B £  2  ^  © un  1  co O U  cr cu  •5  CO  3 CU  TJ  CN CN ffi ffi  r—,  3  o  c/3  NO  a  +  OH  To O  J2  00  oo  3  OO  \  cn  _  ^  c/3  CN  8  s  un O  oo co O  LH  co  cn  OO  cd  u  3  c  CN un  OO oo  OO  co  co cd  OH  _b  3  o  OH  P *  ^  VO  o  o-  *OH  FJ co >  DH  N O  CO  CO  00  cu  N O  N O  N O  o.s *  V *  a 66 a+  g  VO CO /->  CTI oo  co  CO  c  c?"S  23 *  O O  o u o ffi U OH  NO C CO  +  CO  ffi  2  cn  o u  t>X)  2  cd  ffi cd on  TJ  ©  N O  U ffi  3  2 2  3 cd  0  un C/3 c  b  O TJ  CO  © 2 ©  O  cr <u  A oo  ffi  3  '3  CN  P H  cu  x -a  O  5  ffi  TJ  x>  1  + o S i o o o  ?  O  H-»  oo  U MJ  © 2  r-H  3 CU  3  °  cu  H  00  ffi  CH  cd  OH  e  CN T H un  1  r)  —  1  VO  os y,  °o cn oo  i  3 oo  cd  un  00  22 S a  Q CN U-3 O N  N H  CQ  1)  u  0-  © uo OH  T-H  UO DH  CN U-3  •<ct 00  CO  Oi  OH  vo  N O  Oi  N O  00 CO  oo co  01  00  CN  un  I  oo cn H  00  CN  un E-  cu OJD  o CO  co O U  O U ffi  CO  O U  CN ffi  3 «  5=  U c  -OH  3  U  o *  i  cd U  o HPH  *-H  CU PH  z  234  60  vi  1  cd  2  CS Q  U  Cd  oo oo  CN cd  o o  3 O  H U  B  bo CD  fc PQ  ^ fc .2 3  3  o  XJ  tn JD  CD  cn cd  40  § S  cn  CD  -4—»  3  CD CD  cd  43  cn  XJ cd OH  cn  S3 43  o c o  o u H  Ed Ed  s  CO  Q  Ed  as  _cd  o  43 OH  3  3  _cd  MM  •• cn CD J3  H  U -J  < u z  =d  cn ON  cd _CD  cd  -O  CD  XJ  *  -2  CN  3  §• pq  cn CD CD  43  cn  fc  Q fc  <: =. B  fc O  O  H  Cd H  CJ MM  Q  Ed  04  Om  C3  XJ xJ ^ cd 5 O  CD  CQ  Q  U  II  IfCD  VO  — cn  c CQ fc  >  r-  CD  %  3-3 43  >  r-H  CD  VO  or  ir^iO  C ^  ^  >  *  O  Tt  «  II  fc2  •w  r-H  CD 3  i—i  r-  P 5  Q  S O C  s^  c ^ ^  OH  r--  SH  vo B  33  CD CD  <HH  o cn  CD 3  CD  r-H  •3 B O  TJ  Cd  CJ cd  VO  + "8  cn ^  CD O  r-H  cn  VO  > 3 cd n  -  ^  PQ  0 0  t-i  +  22  < o CN  .2 SH  ^  3  C M  cN  O  pq <  *  Z ^ ! wn B 3 cd i? 2 .CHD fc Tt o  3! fc  g  Q  o 3 ^  ^  vo N O  c3 o 2-5H'2 & > o O > (3 cd ^ o O CH O o fc cl- r = H <D O 8  ° o sz  >  3 r-H  IT? q S td-cj Cn  < o cn *  cd  Tt  o*^ 73 ON~  g Q,  cn  ON  £  CD  B  CN  £c  CD >  <+H  C *inN  CN CH?T CN fs ^°  -5  cn cn O ,_,  3  Tj"'  b  r-H  Tt  rQ; CN  3  cn O  v< CoJ  O ¥  • • cn r - H fc cn cn oo cn  ^  < ^  i—t  o cd 2 v r> U £ T^t O U W  Cd  CD  hd Z  fc r--  3  cn  *  fc  8  Tt  cd fc^J cn &  H  CD  bO  <N  vb  13  CN fc l < o  CD >  o  MM  3  t-- r >  -t-H  CQ  ti  w  cn  o hd u  CD  I - * g a  CM  c  43  ^  X  3  <^r-l  2 ^ "S 3 + CN  'o  "cd >  r-H r-H  cn  SH  cd  II  o CD B 2 e cd XJ  c  CD  CO  Z O  p  ^. rcn CN g XJ *d o  fc PQ  fc 1 in  CD  s cn  3  3 >  z  •s  in  —CD  XJ  3  0  3 «S > cn •ri CN  Tf  cd  xJ c  CM  »  43 -4-»  CD  £ _3  in o  fc  CN V=t r• . • • .8 o fc2  c  CD  CD O *! *  5; ^ CN c  15  3  CD  cn 52  XJ  o  C bfi's C cd tn  CD  CN Tt'  oo Z  B  fc  cd  CD  •a  PQ  CD  *-*—»  cn  X  SH  EH  c  CD  o g o  cn >> C cd  •S-g CD  cd  1  o-  i  NO  cn  Q  vo U  CN  Q  W V O  cn  m  VO  Q  i  CN  pq  in pq  cn  O  Tt  NO  PH-  fc fc CQ  2  c u  3  !_  H—  es CU TJ es CU CU  fc S-  fc TJ CU  o cu "5 fc — es  1  U  SM  CQ  H  CU  04 CD  U • cd U  H^  es cn  _o cu TJ fc 3 3  O  u  235  H  X  U  fc  i  cd  u  fc fc CQ  I  cd CJ  O CJ  cn  CJ  X  B  co oo  3  •s  III  X)  bh c o  r 3  • rH  3  cr  CD  CD CO  J3  5  0 u X  "o >  1  co  o o  2  X  43  co  Q <  x CH  CO  Z  o r-H  H <! -J  U _  u  cn  o  8 B 3 CD  3 . 2  •s  CD TJ 3 Cd cn  CD _3  '3  "c3 >  cl  O  cd  yuo  3  CD  TJ  r-  O  PJ  cn cn  •5  OO ON  X  TTJJ  2  CN + VO W CD  Q ft  B  *£ ^  Tj  O  TJ  -s f td  is  • — CD ^ 3  P =3 S PQ  e  3  C  VO u Q,o —<  *  +  r-  o o O  M-H  £ /is  O  CD CD  "S  co  g  OO  *5  Q  cn  <D cn  II  «J  3  2  I  CO  '  o  tn  + ft po L Wm 1  ^  3 "cd  ON  £  CD TJ  o  13 CD O  td 3 cd  Tj 3 cd  <4H  cn  cn  r-  w  cn  b 13 r l  TJ  ft VcoO + m  cn CD  o *  cd  bO  CD  0  P  cn  oo co  cd  53 >  O CO  n  ro oo  Z <->  O 40  8  <£ cd  cn O  CD >  43 N—'  -  ciS  43  cn  O  00  cn cn O  > cd  CD ft  (J  p  -3  CD 3  _> '+-» o  C cd  CN  CN  H U  8  3  a  • rH  w O  CD CO  X ft  CN  3 CD TJ  •a.s  r g  c cr x  cn  cd  CO OO  -Y. CO  J-H  &  8  *  r 2  cd  O  W  'cn  r-  3  o  -  2  cn  H --  OQ  3 cd -3  O u + +  uo  o oo CS Q +  B  ft x V  U  UO  oo  U  co PQ •r,  cn cn  cd  ON  Q UO 00  Q  CO  z fc  o  ON ON  Q fc  o J  CQ  co OO  CD  U  u  ON ON  U •  ON ON  Q  CO oo  uo oo  uo oo  w  CO  oo PL,  I  uo oo W  Q  U  CO ON  PH  Tf ON  uo oo  PH  PH  03 CU  P -4-»  H  fc * "o CQ  o  CQ  UH  U i  cd  U  2  H  .SJu  E• cu  u 236  cd  o  c  o  :—'  CU PH  z  u o  CO  U, i!  a & o  cd'  U  PH  Tt  Q cd  X ft  B 3  •a -O • rH  3  cr CU  eo  O U ffi  •  CO  a  O ffi OH  U +  cd  i—i  cn  + *->  P H  O  1/1  3  co  O o SH cu  U ffi  sz o  T-H -t—»  3  cd  o  O  c _£d  "9  3 |  *s "3 cd cn cu 3  CT <U.  co  > O c/2  3  O  • i—I td  w  3  O O  o Tj  a  U ffi i  co  O U  cr  co  CU  PH  B  CN oo  O U  ON  CN  •7-1  ffi  cd  ffi ffi ft & I  I  O w  O  4>  T_J  T-H 7 !  cu  ^  1 - 1  c/3  3  Q  ON =2 Os 33 ON <U  PJ „  ii n n  O CO CU  oo  u  .<*J  cd CN cd Q  ^ PQ  H U  a B  PJ t>  £  §  U  O N  PH  cd cd Tj  P—H 11  13  X ! W>  u3  3  •d  O  o  lU  co  -s  NO  a pq  tH  a  <u  cd  CO to  T-H  *  W  _3  B  v B  OS . O Os  0  3  -I^  O H  13 > cu  o cU  -3  CH  0-iO >  00  Cd  v>  ON ON  ON VO ON PH  CU GO  Tj  - cn  -t_>  ° P  cu  CN OO  H  3  cd  CO  CU  OH  + r~-  ON  co  II  8 8  '3  *  CU .>;  cn  •d  c  X cu  3  3  -tn  •  cd cn  tH  co oo  ON ON PH  O  O I  io oo  N O O N  O  t -  ON  ON  O  O  o  O N O N  co  o  HJ  -J  co oo  OO  1/1 00  =1  I  I  o o  5 <u  u o  "O H—  CO  CO  O U  O U ffi  .2 £  U  TJ  O  Q • cd  £  9 CO  CO  ffi  U  237  OH  O  o u u ffi  CU  5 ^1 fa  CQ  PH  co U  1 / 3  s>  cd  u  u o PH  CO  SH  +  od  s-  X) CD  3  CO  -3 !H  oo  cd  00  cd  T3 O  3  on O  WO Tf CD  CO  Tj CD  od  Tj  od  3  o  H o  od  cd  t3 Tj  od  cd  "  + £  O  PH  TJ  CO cd OO  3  cd od  ?0  PH  CD  CD CD  O CO  ON ON  *T" WO Tt  2  - "# CO  II ° °  S  cd •  CD  P H  bo 3  •*-)  6  4^  CM  CD  X  3  CM  O  ON ON  +  X i ON cd wo S oo <2 Z wo  3  B  od  o  —1  od  33  cd  <» <  3 cd od  CD od Cd  ON ON  £ g  -°£  " co oo  <> PH a 00 II  *^  •SCON ON  •*-)  CD  CD  wo oo  43  od , — ^ od -*H  O  oo  td  •si  J  CM  8  g s  2) B Z g w> + s+ 'cd  ON  cd  C -  co  CO  ON  CO ON  ON  z  co 00  o  wo oo  wo  _l  y^ s cd  OO  WOO  ON  00  CO  O CD  3  -4—*  i  cd  ° cl  7 . £ cu  3  rt  od ' 3 od  *  cd -*-» od  H  5>- c o  3  od •»->  Z L  CO ON *  8  wo  oo cd -*-»  c-ii r  o.S  CO  ^  "cd  E?  wo oo  ON ON  PH  ON  od  * ON  CM O  Tt  oo PH  o  o  od  ON ON  CO  —1 ^  ID  .2 B  oo  3 P oo ^ . 3 _ 3 ,—) co  CD > O  cd SuO  CD 3 ••-' . 3  oo CD PQ  cd  a *  CO  wo oo .CO  +  +  +  ON  43  s<2  ON  ON  +  CO  "cd > cd  CM  cd  'ed  *  CD  *  3  CO  cd > IH  3  o  Q  &  cd  oo  O  WO  3  od od Cd  CO od  wo oo  c#  Tj CD O  X  CD  J  a P  3  PQ ^ 3 "a? 3  Od  43  ON  •s  cd  "3  oo * co  'o  CD cd  _CM  CO  4H  od  3 43  z  0  1  wo oo  ^  ON  CO  ON  ON  oo  O  CM  O  O  OH WO  oo  Tt ON  OH  OH  0>  • M  cd  Od  -<  CO  G  C  CO  TJ G  ct  U cd  CJ  <3CJ  -; co  CD o  u o  o I—I  •a c  *  o  "5 E Z  U  Q  cd  U  X CM  238  u  s * « PH CO  CJ  o  Q • cd  CJ  X CM  s  =5  O  3  •c  3  cr  O  '3  (U cn  o  O U ffi  _3 3  cn  O  O  ffi  3 cd  cn  8 CO  O U ffi  x  H S  H—»  3,  3  -ol s cd  C/3  <u  13 O •  T-H  H—»  Cd 3  O  3  3  cr <u  cn  O U ffi i  en  O U  ON  a  •d  SQ 3  '3  cr <u  o  cn  CN  ^ "n  ON  CN  00  O  u CN  13  ffiffi ffi  cu  QH  PH  CTC ON "a5 <u  ON  T J  CN  3  Q  P SE S 2  ON ON  -t-t  fi .2 u  o  „ cd  6 6 13 i/n H  C  V  w  rr,  cd  5 <+H  D  S  cd  i-H on  NO U  cn  3  PJ  CU  s  O  o  o  K <u  cd  3  O  "I e  cd  +  PH  o  C/3  U  r-  ON  ON  CH  DH  ON ON CH  cn cn O U  O U  ffi  U  fe,  8  o cn • -cHn P 43  33 -  33  -5 ° S3 cn tj  r  2  5go P  Tj  cd J-> cu  P cn a P  P CM O  s«  co  Q  cd  peS  c o  P  ON  ^ _o2 cd 1 %  H  H H  £ CA fe,  CO  cu  O Z ta  s CA  cu s-  CU DX)  c  4P- .  £  o  3?  <+i T j O  3  o  i_ CU  a  s cn P cn P  P  "*-*  '-»-> cd 3 cd  53 P  £1 P  8-1 P  CD  •s  CD  <+H  CU  o  CS  c?  3  cn  _ P  o 3 P P  O cn -fi TJ cd CH  cn  •43  3  • iH 4-H  cn > fe ©  ft  cd  C  *  P  43  "+H  ^  O  P  • § OH  X  1  P TJ  ^  P  3  Id  *S £  C  3 O  43 P c3^ w\^43 *  3  a U  1  G « o o S ••c S S cd  ^^,. 22 Jft S hd x  O CU  fe, M3  ^  ° cd p  es CD  Um  J  J TJ CU  TJ CU  u CU  CN r--  p  u  U  CO  « 43  : ,P 1  s  43 fn  ?  p  u  P  H  es  IH  CD  O O  3  O • SH  _P  cn  p CD >H 43 p  o ft  'TJ  TJ  P  P P  o  P  £ o cn • T3  <+H  W  33  cn  a  o  5  CD _p  -  cn •M  iH  P >r  P  = 43  cPd t5 4H P 5 cn ?  OO  U  &2c3  cu  H CD  fe2  CU  3  43  TJ  &  <  < OH'  CD es cu u H  |l  -J 240  ^ H  ro P VD cn O u. 2 cn  cn  p  TJ  ^ £ 3  >  SH  ^  sll  ed cn  ^ °  O  ^ * 2  3  .1? 3 TJ  13  cd 3 cd  cn | 8 o 3  II O  cd ho 3 s a"  p > 43  cd i P  3  P 43 *H  * f—I  V, P cn  -s  •5  O  £ 3  p 43  p 'Z3  4->  H  H Q  V  fe'S  a  P  .£  .2 PIS  9 3  cn  -a 8  P H3  C  O  3  I_3  ,<D  Sr! T J  tf ta  £-2  O HO  o cn  -s  CD  cd fe  P  43 P  P  CD  C O  ta tf  P  *H  : 43  cd  t3  <Cta  P .  p  CD  Id >  0  cd P  S  * -S TJ  3  cD  £  cd  S  2  n> cn P M  cd O  Z cd * 3  cn  P  -<HTJ  H ta ta  " f t  cd  fe,  Tj Tj  p TJ  13-a _So ed  Scd i  cd  £  P  c  S  CH-3 P ^  3  cn cn cd  O *  ^  Tj  < o  E«  >4=-  £ o cn 3 CD o <=>  cd  cd . X _-  8 & i <u  •Is CU Cu,  •5 o •S  o B  X> 3  X -4—»  • •—I  T3 <U c/3  T3 3  <u  cd  •a - 3  CJ X CJ I  o 1—I  X! O 3  O  H ti ti  a C/3  Q <! ti C_ 0-  e cj o va - 3 cd •*-» is c  3 JO  o o  S-H  cu 3  C/3  c_ ti Z ti H ti  .3  C U O  Tj  <u 3 c/3  3 O  O  •cs  C/3  JJ  O TJ O  3 o  xt 13 o cu  •S CJ CJ X C/3  cd  <U  o cj  13 B . U cd <J+H U fe  tr  3  <-»  cd Cl.  00  r r  8  s 9 Cd  C  fe  CJ  •s I * ^ 3 c/3  o 3 3 £  241  CD  X!  3  cd  i—i  >.  4—*  o  Tj  3 -*-»  C/3  00  <D  _3  C/3  3 >  3-*-»  X! bfi 3  E 3  6  UO  3  cd  X HH c o •H  H—»  ffi cd c cn cd  Q  <: ti  cc  3.1 X (D  -o c  CM  cd  C/3  <D j3  CO  OS 3 > ti H s C/3  -  i—i  ti O  z «< z  _o cd  »  cd  -*-» PH  CD  M  o  " CH  03  3  CD CD C/3  •  O HH O  3 3  PH  3 O  Tj <D  3  3  X  X  g  B cd  3  cd  cd  • i-H  X  CD  -4—>  O  3 O  3  -4—>  O  3  3  3  DH  PH  PH  OH  CD  CD  3 >  o  JD  CD  o  JD  fe fe II  II  CD  43 £ 3H O  O  3 ep  X  n-> CD  fi -23  CD  CDH O  o  3  TI  o £>  JD  CD 'oo  © >  3  O  ^O,  3 O •  II  c/3 ' —  X >  3  3  CD  OH  3  CD CD  ?! O  cd cd  M  3 *  O  "  fi S  E3 U  _  OH  ° g  J D -H  3 gT3 cd  00  5£  »H  C/3  cd (D  rt  «->  '5  3 -  §g  gg  HH  CD _,  O CO  ID T j < h  ^ 3 ^  § 8  C/3  -3  i  1  "S c/i 3  I-  g-E  <p  tH  t-  <D CD  tH  T3  3  (D  O  TJ CD  CD 'fe  •d  cd  3 .&  cci CD  cd  •H3  cd  g 3  bfi  1  •  > II  2 CD  J3  3 fe  3 fe O  o  <a  CD J3  CD J3  <D  E  o  an  &  'fe  t-H  o  CD  H  fe  3  3  3 fe  c>  bO t> bo  ON  cd  cd  II II  ti  . TJ CD & JD  CD •  CP  00  CD *3  fe H >  II  S3  T3  3  8  P H C/3  •fir  o  . „ CD £ - N cd  bfi  -°  cd  1  O  M  3 fe  .s  Bfc o 2 T J <D 3 CD fi rfi  T-H  cd  1  3 CD  <D  -t-»  3O H TCDJ  CD J3  . fe  ° >  ' f l  fe  O  <u  HH O  X ) OH cd O  •§rH  .5 ^  3  I I afe 3 g3  3cd 3cd 3cd  CD  cd  3  r3  * z  C H  3  u  o o  ^ p :  | s  ' 3 «  O  -4—*  3  II  3  O  c/3  bX)^ -O  3  w  •Si  3  .»-  O  <D  bX)  CD 3  cr<« 3  3  "  £.3  X)  CD  o JH o o  O  bX)  PH fc „N  bx> CD  03 O  . «-.  II  O  >.vo  3  <D  fe  XI  5 / 3  3  >  &X) bX> b  ggg o  O  O  PJ  Tj  43 43 43 3P H 3C H 3P H '3 3 3 cd cd cd  3 .& 3CC3  >  g  fro  TJ  <D  X  3  o o  173  Z o  co cd  3  •a •o •a  Jd  3 _cd  3  r- r-  > 3  CD  X>  00  £  MH HH  CD bX> cd  £  <D CD  e  1  Z  CD  cd  C/3  3 'fi CP rr, X!  3  X!  3 o o  _o ' H  o  cn  3  .3  &  3  I/O  -tn  cd  CD CD cn  C/3  '>  3  a  2  00  c/3  Tj cd  mani arge i  W ti  g3 •g i-H 3 g X  respe  H  CD O cn  <H-H  T3  CD  3 3  s egg g  E  o  O  3 3  -£5  '%  <HH  _o  irect  Tj  ing  ro"  CD bX)  Tj CD  vo  e  • CD  r~- >  ON cd  cd CD " f l fi  CXD PH  s ©  CD  U  <HO  PJ  P J PH  >HO  VO  VO  PH  PJ  PH  uo  VO  PH c«  3 cu CXI  a ti Z CP  4U  E 3  z  B  C/3  _cu  H  "3  u.  !-CU u  H  cu  3>.  VS  B  > o cu cu -t-  0JD  cu  •H 3  CN CO ."fi  3  .-fi  3  D HJ  cu cu Um  C  t3  HH  B O £2  jU  CN  3  •CffiPQ  CU  co  OX)  3 >>CN  H — > • H 3  cu  HD  U  J cu • H 3  242  CO -4-* • rH  3  i3  c  •3  B <u  Z  CU  ca m.  3  JP  o 3  ca -  <  42 3  <U 00  CD  4H cd fe  bX)  6  a  cu tu cu  HH  CS  3 cn  s  CD  43  O0  3  .3  CD CD CD  • r-H  43 O  C  &  8  • i-H  cd oo VO  2  co Q <  ta tf OH  CO .  tf ta J  ta O Z  *—-s  3  CD CD  3  o  CD  >  "cd  +  CD  *H  cd oo "I  CD  oo  t*  CD  rr3  w 3  O  3  3  CD  o §• 8  a  In cd  •a'8 *H TJ  DH  4D  ^  i  cn  O  uo  s  JJ  PH  cd  cd - ' fd oo £ £ C*D CD 33  &l  •8  ~  >  „ CD 2 6 2  CD  cd  £ 8-S  CD  £  O  M  e  fc  O  ?F 'cd c t 5 ' | I—I  -  o  CD  fc  u  c o  *-3 cs t_  * H  C  CD CD  CD  c o CD  DC j2 O B *bO cS  j2 43  © bO 3 K r  CD o •H  •33 ca  H  o  Tt  U  •o  SO-5  CD  Q  HO  O CD  3  3  3  3 cd  Od  3  °  O-  °  88  i  Si u B co  oU CO  U  VO  Q  U  i—i  <D -r"  t n£ CD >  O rH  «J >  2  .  H  *rH  cn  o  3 CD P trt O 5 33  oo « cHg cd bfifc ' "  00  CD  oo  J \  CD  oo  O  >> 3  >,  oo T j rH  g  oo rH  CD CD *-» tfc! n -t-H 00 cd CD cd  > o tf  >  fc \- fc  o  O-S Z  TJ  1  Z  £ ( 3 fc  o CD CD  Q  VO  i—i  Q  cd  Q  vo T-H  u  fc  cn  3  —  M  !3  rH  3  •r s3 .o <S • PH  VO  O  CH  o fe o S Tj .. fc. o £>,cn fc s i a 'C  CD  CO  KH  fee  2 o  oo r~\ >  co  cd  cs DC  CD  "5  C/5  , ,o  o fc  i—i  o  *  S o £ o^  CD  3  CD •r"  CD • rH  fc  11 11  r-H  rH  CD fee-  fee  rn  o T f  CD  |-5  CD 3  ed^  TJ  VO  P,  fe S fe- fea cd  — P CD . H •*-» 43  r—I  V5-  cd  ^  W N  I  CH  S 6  o Q  ON  !H  oo 3 So-3 43 oo oo  £S "5  43  -rt  ' cr • OO CD oo  vo i—i  SH  c o-S  fc ^ J3  z  0 \ r-H  CD  0043  u  u l  .3  in E° fc O  VO  CN co &  2 *3 S| > 2 §3 SI So > o ° SHc Cl Dc r—1  CD  cd  cd  & £  CD  CD _ C D  H  IH  2  fee ' &e fee 2 5* 2  h  P4.2  Id >  oo -S s  VO  V5-  CD cd B  TJ C  cr  3  1  o •so cs 8 cd  c  8  cr u CD 8  cd  X  u  3  42  .§  '3 >  c5  .s  TJ  TJ  .2  ¥ cd  CH  3  O  TJ  3  8  ta ta  CH  00  CD  H  3  CD  -*-»  .&  CD  <D CD  3  • r-H  43  TJ  -t-H  3  o CD  "8  |o "cd o  3  cn  DC m  o  o  CN  DC  rH  3  o co  o u  cd  fe  C O  CD  «S <4H  H ta  S>5 fc  o oo cd  ta ^ s i Z C8 HH fc tf'T 243  O  3  oo  3  cd  oo  CD  oo 3  cd  U  u  3  .2 ^ M-H  fc  cd  U  CD  3  •a  3  JO CN  CD  3  JH  r-H  1j  So  • rH "cd  8  cd cn  .a 6-  3  SO  8  1  * >  M  *  •c  cn  CD  3  B  * 1—(  co  cd - >  •3 3 <+H  T J  O  rt  >-I  *  CO TJ  3  cd CN  *  3  3  T ? r-H  * ,/5  PH  .tn  * S Tt CN PH  CD J3 CD CD  3  * T t  CD  .e  3  T J  i |  rH  ,rH O <4H ^—> P > s  •|  T t  CN  |  uo  u  E-a  CD n j cn 1 3  •c  K- cn  *  JO T J _P  "o  S o VO CD , H  cd  s + o  " C  3 + PJ + t r-H  >  *  _ l  Tt  2  r-H  Cd  Q £  *3 * g  2S  Tt  CN  ^  Q.S cd  3 cd tn VH  co  co  Q p  u  co co  CO  CO Tt  3  I  Q  PJ  T t  r-H  I  PH  VO  S CN  Q S  T p r-H  PL,  in  PH  PH  *  C  I  u fe QQ  O  3  CU  +  Tt r-H  Q  * uo  C  -4-»  i—I  PQ  *  3  T ? + cd  St  °X  rH  PHXJ  <HH J . CD O + .3  x  * uo G CN  CN  Tt  I  a  VD  o  Q  i—H  a  PH  uo CN  a  T t  CN  u  P  u I  cd  U  U  o  H  tf  « £ C r2 •EPH  PQ  244  O i  cd  U  c  p •oi  Z  cu fa  fe  3  Q cd  U  OH  CD  >  g  B  P cn O  3 So CD CD  JH  cd  Tt CN  PH  H-»  OH\3  3  c  So CD CD CD S>  ^  s  Tt «n  UO CD 3 • CN - H . S CS JO CD PH 3 (JH  cu  u  +  f3 *  P  bfl c3  P  "o  TJ  2cO  -t-»  PH cn  Z  CO,  P  P  *  £  CD  UO CN PH  -*-t  cd  T J , P <4H  tt  + •33 - «3  T t r-H  cd &  PH  =1  CN 3  fe  -r->  Tt"  • ss*  *  (X  T—I  Onj3 + CO + JO Tt 3 r-H " —H  X  vd •  <+H ^ O CD  OH  S ° P>  fe OH  cu  si  E 3 •d X> ,3  ti °  3  3 >  cr cu CO O U ffi i CO O OH  CO  O  u ffi  o  tU •— CU _5 •*—»  c o  o  _3 3 , ^UO •£3 x  CU CN T3 0 3 i 03  3 > oo 3  3 03  S 8  • 1—1 . r—i  3  5. £  cr cu CO  3  o  r3  I  1 i-y  O  * '•3a ^ a o  ^ cr + cu co  CN  oo ON  <j  3 a? ffi co CN  ° r ^  .ffixt'  '  3H  ffi -  a  ffi *—i — i © cu 1  W  "  '  '  > H  PH  * H  *->  3  *  O U ffi  •rj" r H  PJ *  3  CO  ^ 3 PJ  HH  4+  "rH  £  rH  3  CCj  ^  1  —  1  u  *  4H  ON  CU  u  CN  o  O  co O  SH .OH  O  *  OH  cU fe  o  cu 2H  CU  J-  SH  03  -O  a_, Q  ^* Q £ * c  r-H  ^j  1  I—-I  +  a *  * * * *  +  CJ  O ' CN  o o o T3  HH CU  i .eu oo oo cd rH  r-H ' *  _ j .  ^ rH  NO  VO  ffi  < ©  CU  O  00 ci  rH  3  l  M3 03  _ j .  OfiUO  ^ rH  r-,  0  Tt i—i  O  ' f f i  CN ffi i  cn  o u  o u ffi  CU  cn CN  VO  ffi  6  HH»  ea u  1  +*  ffi ^  PH  ass-  cu CU  rH  uo , © -st CO rH  ffiO  CO CN  ffi  *i CN CN  •"cjCN  r- oo  U0 N O CN CN  S  CU  P.  245  03  ffiffi  ffi  3 •d X) -3  3  "Cj  _r:§  03  u  OH  3  o u  l-H  - H  03  _r:g  cn  I  CJ  ©  CN CO  ffi ffi  DH  * fc  ON  CN CN  ffiffi  ffi  3  o u  -  ffi3 OH  3 3 cn  H  1  3  H  ffi  uo o uo " ^0 3 co  cu  ffi  -4-1  3  © © O  ©  *  0 5 0 5 0  CO CO  _cu  o  o  HH oo  CN  O  CN  cd T3  .<u  CU  is ON  CN  ffi  O  un T3  * _+ T3 ^ r H CU r H  .  a  co ffi + un CO  C  CN CN  vb ;  *  HH ffi  Si  CN  3  II II CN  3  o  . H  \Z  °cci  co  3  o T3  bO o3 oo oo o3  O  -1  OH  C/3  3  < °< CO E cu o o Q ^ £ n co r <HH H oo pu rl-) V«, ^ 3  t/3  O  *- 3 -c CU  03 co oo o3  OH  §  03 SH  bO 03 03  *  O  'a? oo  .OH  c  3  -ct  HH  3  CU  CO C  SH .OH  SH  ^-3co  fc3 un U + CN  3  -d o  • £  I  3  - O O  H-» CU  CJ * ^- ^ . 3 rH  HH CU  o  O  o  o  O  ^ CN UO "TH CN  co  U ffi CO  3  Cd  CC,  < H  •a  jO  O  fe  'is  3  a  -C r2 o  3  cu  =3  ^  cu  -4—*  9/js c + 3 o  4—I 03 C  _3  E2  O  O '  VO  • r-H  cu  '§3  3  s  3 .3  H  oo  CN  3  g  *  CJ +  ffi  3  *  3 3 3 3 cn  o  O ffi  c_T3  ©  NO  ffi  0  CO  + CN  *  *  CN <  co ffi  1  »/0  N O  i  o  *  NO CN  O  CN <^ UO  -  o  + >. CO o  +  NO CN ffi CN < O  ffix  o u  cn  c o o  H.  W W  S  CO  Q < ti  CM  co CM  ti  H  ti ti  o  o B  cu  -.3  c  '-4-4  X  cd oo cu  o  0  13  > C  '-4-4  cd 3  O"  PJ  ffi  < +©  ffi  +  ffi-3  CN ffi  VO CN  3 vo m o•5 CN ' d CO  ffi^  T-H  ^ *  00  i  < <N © ffi  ++ 3 < ^ O CO CO +X © vo •d •a © ^ CN ffiffi cd cd 3 ffi u + ffi § + + 3 O  O  3 •a cd oo  T  V O  o Co u O ffi CN  3  3  ©  3 co + ffi cn +  -4—1  T3  CN  3 +  H3  1)  + CO oo  ffi  <4H  CN  1  TH  3  cd  _cd  3 X cu  CN  T-H  co co  <D CU oo  + 3"  & oo .3 cu  © CO  CN . 3  8 ffi 3  ' <  3 X «  oo ©  CN CO ffiffi  v  <u  w  <U s_L,* C/3  W  Z Z T-H  cN  co co  CU  ffiffi  u  co co  ffi  T t  co  ffi  uo CO  ffi  cn  0  u ffi  3  1  o  3-1  cU  —3  u  o u  cn  CS  ffi  CN  ffi  _r:§  o u o u ffi cn  cn  <d  3 U  oo  246  CN  © ^  cn CD _3  CD  73 >  oo  CD CN  JO +  X  3  Tt  CN  T3  OH  i  cd  8 Cu)  X  CN  •S c  JO  JO  Tt  OH  + JO  T3  ©  r-H  + I  CN'  u  CN  C  CD  JO  +1  cn  fe>  o DC ft  §•  CN  O  3  ^  +i  + + CN CN  Tj  II  fe>  DC  ft  <u oi (N T t , <—( 1  N  cj r-^  U  N 1  CD  l C N Tt CN D C Tt,  ©  CD  +  o  DC ft  CD r - H 0 0 r-H  ©  T t CD  +  So  jo + jo DC 1  ©  JO JO  r-f  2  ©  +  +  b  Tt  cd  +  O  ^  o  lved  31  a W cn  CD  J3  O H  o  ref  o  •s • rH  j-  r-!  Tt  w  ©  CD  +  CD  OO  U i  cn  O u  DC  3  t> cd  O  o  8  j y o  cd  X  Tt  • rCD H  cn  O  * C Tt r-H  TJ  CD  0<8 n II  11  O  r-H  r-H  r - CT)  CN B CN 013  a  N O |  ( N  '—' CN m  TJ  .CD  Tt  cn * cd T t  r-H  JH  *  o  3  .J OO  +  fe.  CN  3  O  r-H  13 c3  CD <D  NO  :_CD a o  CD  3  >  cn  IH  •33  o  a  cn C  CD  ,-H  ^  O >H  <~ - .2 ° T J *3 cn <D r 3 .55 cn JO  r-H  i w  w  cn J 3 CD 15  T t  r-H CD  1^ ^ - ? CD  3  ©  T F ^ H  8 8 cn  1  Tt  * Z * * © ©  X  a^ S3 $3 3 CD D O CO  00  JO  fe.  CD fe  73  CD  C  o  ^ +  8  o o 13 13  H  A  • 3!  rO  o cn  J3  a  U X  *H J_  T% J  r - l  O  d  o  O  cd £3 3 CD  +  CN Y  o • rH -4H -  g DC U  CD ,  cn  CJO N  C/2 C«  O  oo oo i—i  cd  ft  'a'  fe cn £ O cn  CN  CD CD  Tj  a  OO  8  CJ -3 CD CD 3  n«a ^  ft I  +  CD  +  3  TJ  cd  C °  w  +  r-H  JO  rH  CD HH  + £ ©DC - ° o CH u + © fe. DC ^ cl £ + X  „  o  r-H  Z + CD fe,JO" o +1  'CD  CH'  a  Tt  + ^ +  cn  L_J  cn cd  CD  co  U  +  fe\  "33  ^  DC ft 3-  II  CD  O + -° ^ ^ O £ + DC £ +  JO JO  X)  ft  CO  C? + T f DC  <u fe. Id + + + fe  CD  pq  +  ft • ftio o  •3  c  CD  CU C N  Tt  DC DC  3  cd cn  C*H  o +  i> JO  + CN  x* DC  CD  JO  13  I  o  c  cd  ft  I  -4->  CD  feCD 3  °°. ©  4-H  X  OH  J3  »  +  o  •33  CD  Tt  O  1 1S3  OO ON  •4-H o  3  CD  CD CN  CN  3 0  J3  CN  CN  •  > cd  oo  Tt' I N  o  CD  ©  I  cd  cd  H  JH  ,0  cn  CN r-H  *i C CN N  JO  cn -3  O  a  CD  OO  •o 3 O  o 73 \o  -rH  • rH  T J HS S3  cn CD  cr  ft  CD  ^ Tt"  J3  -5 °  2  O  Z co  DC  °  r ^ J3  o o 13 Z  C o  'C  PQ  247  I H  PH  Cd  u  z ^  r_  u  < o  o  co  *  o  0  CO  *  CN CO r—I  CN  O  VO  <  in  +  o 3  Tj  "tf o co  HH  cd s •_cd  3  O  X  <u *  Tj 3 cd  oo o (U  ca cd "S 3  I——I  OO  3  .cu  a  cu U  O CU  2  + o  +  O  s°  CO  O  VO c^ CN  * *  1  +  £  §cg VO r-H  '  r-H  Tj  <  <D  o  <HH  O  00  CN  o £  O  O  •d  ^  cd 3 cd  " +  IHO  "Cl  1  S co O J2  —  W  *  1  •d  \J-j  cd 3 , cd  cd  "  CN  CH  n)  co  S O  00  W  CN  a+  +1?  2o  +->  r- oo  ON O CN CO  rH  CN  co co  co co  BO  g  °  rC  ^  CU >H  + * -d ^- 22  co vo S  CO  +  1  H  B  r^  PH  3  CU  ^  CU.  S c O  +  OO ^ HHCO  °  3  3  <U  3  3  uo co  CU  HH  «  H3  >H  <T< T J  cu  P H ^  CT)  £  3  r3 3  o u  1  3  cd  •d _r:§  o o ffi CO  cn  PH  * 1—( I  3  ET3  _r:s  -3!  IS  _ 3 cd  11  cu  E  3  3 3 3 3 cn _r:§  o u  C N ffi  248  ffi  u  -3  oo  3  oo  0 3  cd  E  OJ)  ^.-2 •s  3  =  ^ c ^  33  TJ3  E  <M  cC t i > fi  X! CU  u ffi o uC N  T3  o <u  " :2  O r — I  S3  co cd  • r—I  c^ -3 cd 3  1  * cu sc2 •d * a s cu o  e 433 d2 o  rt  3  8*  cd —  3  cd oo  g CO CN  1  CN CN  .2 u  1  H H O  3 ^  j d HH -—•  <  + .3 „ o ^ H . S  ffi, co  .P , 0 o T3  o  U0  +  00 §  vj  3 > cu  £  ^ VO VO CN CN rH  Ci  O  -4-»  O <U  ?"  VO CN H r J  co  co ^  VO C O  +  <  ^  PH  • 3 +  J3 co  co  §o 8  ao§  uo vo  O  rH  rH  CN CN  rH i rH  CO  • cd  cu  3  2^2  c  rH  1  CN  8-B  3  .2 W cu on  II  O  >  _H  5 / 3  o un ffi O  CN  00  =3  5/5  r-3d  CO  3  fajjUO  cd O II II  O  +  ^t co  ^  ss -e  oo uo  M  So  O  3  '-»—»  o C  CO  3 •d o  _o  CN - -  VO CN  <  3  <u __ 3CU c > o o + • r-H  O +  ffi  o  &3  H—I  cn  »H  r>H  < O  Co  o uC N  »  E S  VO CN  CN <  ca  *H—» CU CU  - H  O  o  o  r-H  cu ^ > cu cu 3 3 'A 3 J=> •d cu  I  * -4—»  c  • 33 * O  1  +  '1  cu cu "23  VO  O  U  I  m  o u ffi ss 00  Z  H  c«  cu cr 3 3 3 cu cd ' PH >  -< Z  W  SH  3  1  S fi 3  2 c3 3  I-  > oo  a  cu o  <HH  ti PPH ''rfi o 00  CM cd ^ to X! CU CU _3  X ti  ra  3 >  o  o  3  3  bO C  bi)  bx>  s •d  •o  s  td  !&  ft CD X  CD X  cd  s  co  Tt  0  G O o  H ta ta X co  Q <  ta X PH  co  CD  ta O Z  A  §  ^ VO ON  O C  c  O U  r3  2  1 cd  -J cn  K  CO cd  CD T3 3 cd cn CD  o  A  CD  A  cn c n CD  r^ SH  cd  X  X  * ^ f e opg  73 >  oOg O O  o  1  CO — CD 1  vo 1 'cd . S — U -S  'ii  o U ^ O — <D 1  1  g  2  S?  3  •c  i?i  CNS  C  CO ^  ° *  Tt  •a  CN CN ?g  X  *  ffi  -< U -3  .s T3  3  o ffi  cr  2'  5  X  cd  ft £  CD  CD UO  *3  *  vd ^ ' fe  ft  CD 3  3  O „ -o c ~ \ i—J  vd  fc  o cd  VO  CN '  •a J  -° T—H  O -  0  cd  -l-i  ap  VO  3  ^ *  CD*  5  S  S i cn 3 O CD  o  CD  3  8  rH  K  3 cn cd  VO .g 8 ° H° r—I > Q " 3 C J H t ln H^ d ' r ^ ^ d J t H r S ^ ^ d ^ ^ ^ f c  §'  cd  •a  O S U  z  T?  X  3  X  fc  cn 3  CN  co  -4-* •r-H  3 3  CD 3  * Sfc  7d  3  O Cd  CD  2  CN *  =5  c o cn  w  O U +  ft  33  7 j i 3  O <D U s * bo 2 ^ 5 x CN H  1  co  0-°P  2H  CO r < Tt" A M,—i  As  Tt-  CN  vo"r3  3 cj  in  S-3  •r-H  X  <^  3  3  P S3  U  A CN  bX) C  s  cd  CO  0  rfc  -*-> cn  co  co oCD  g  °  • rH -r->  *  r.  C  cn  * •£ O r2  .3  X  ta H P  •4—»  S  P Scd -  o s  cd  —1  "bO  CD -G  3 CD sr3  CD  oa? s^  s  u  cd _r-3  cr  \x  bfl  cd  33 '3  -o cd  w s  co  o u  -CO cd  ^ ^  o u  s  PS  X CD X  CD X >> cd  >.  cd  =  'ft 'o ft  CD  ft  3  •c  $  • r-H  ^ s in  CN  + B  +z 3  UO  .  ."3  S  N!T  CN  y  2 « * VO  S O  CN  CN 00  ov  1 X 1  4->  TT CD O cb o ^2 CD <  1—1  *  1—1  <4d  II  CN  ^  *^ UO  S 5 HH^ CD  PQ  co  °  m  O 73 a?  T-i  3  II  g  CO  » o u -a o ^ CN S~s  3  < o  o  z  oo  VO  cn So cn +-> 3 CD  ON  uo CN  s  CD  u  UO CN  CN  ON  CN  VO r-H  cd CD «  co  cD -3  CD CD  •s cn 3 cn  dl CD CD  CN co  H  O CO cd  e3<->  CO  u  cd  u  CO  o u  bo  o  3 CD  3 3  ^  - H  .•= A  Q  _  CO  &  ©  cufc  P i , ta 249  s  U  o  ^ fe  cd  U  X  ft  X  ft  co  o u  o u X  CO  o u  CN S3  +  3  •d  o cd  X) XI  CD  • T-H  3  HH cd  cr  CD  CD  cn  O U ffi  CD PH  •  cn  *  c O O  un cn ffi  3  •c -O  a  O  3  bO  3  U i  cn  O  •Cd  U  s  O  CN  S  CD ffi.  >  cd  <D CD oo cd  00  00  00  O  _o  O  3  CD  3) CD  "cd  "cd  <D  ecd  CD  3  cu  X) 92  cd  cd  00  00  II II  cd  X)  X>  • l-H  X,  +  NO  cd  r—I J +  SCd  "^t  PH^  NO  un cn  cn  I  3  un cn  <D  a  un cn  un cn  un * cd '3 § ffi 3 5  CN  J r +  ^ *  ^ r-l  .tH  3  3  ffiD  ON  rH  < * ST  S w  cn  o ffi  Q >s  un 0  P  U  Tt  ^—I  NO  z  T3  .2 ffi 3 9,  PH  B  Z  PH  CD  3  U  O  I *  O  CU  CQ  NO  o  ON  CN  o  U  3 3  I  t  CN  x  3  < w CJ ea '  o  cu o>  CD oo  u  o  I  _B  H  CN  Z  I r-H  cu r j HH V "  U i  n *c ea • B B  O  cu  CO  O  SJ E CM  250  £  pa  E  .ti oo .S-S cu , c^ CM O u  HM'S  -a u  L. CU •HH  ea fc  1*  T3  C O  CH  O  ffi PH  I  cd  CJ  cn  o  cn  u  U  cn  O  0  CN  X  H  oo  O  HH  QH  CN IT  cn cn cn  OH  2 *  Cd  un  X)  CN  NO  •d  un  r—I  - J  )  CD  i—I  H  a  +  3  cd  J  U  u  1  3  ffi £'3  cn cn  <D •H3  +1  HP*  cd CD ffi  3 O O  r-H  CD / - ^  *ffi  oo  ^ .3  e  +  oo  CD  x  1  < O  r—1 on cd HJ  HH  CD  'oo cd  u ffi  2.1  •a  CD  "cd  CD  o o ~  * . HH  un  S  CN  cn  CN  rH  S +  un t-j  PH  +  CN  o cd  CD  _o  cd  cd  CD  CN *  'M "3  cd  • rH 00  CL,  SH  3  *H*  o o  ffi '  CD CD oo  13  U ^  cd  1  - J  PH  i< 3  33  <D O oo cd  cd  77  CD  *-4-»  C  1 PH  *HH  T3 O 3 O  3  r-H  ffi  NO  3  cd "3, >? fficn  cd  s  ffi  ffi  s  CS  oa  cn  CD  cd CD  cd  X  r—I  X  3  CT CD  0  cn  O  3  ON  IT)  -3 bO 3  • rH • i-H  o  ^J-  / - N  CJ  ffi  2  C  <+H  O  's  cd OO  o  u ffi  + o CD CD CD P H  5fc c  c  3  CD  cd oo  3 cd  O  o  CD  a  CD  3S  uo co  DC  P H  •c  iH  '3  P  cr  CD  JS  '-4—»  cd C3  Ploo X ON CD  xJ 3  cd cd •4—»  •3  73 >  DC  DC •  Tp P ,  O)  CD O CD  •J  * CN CO  DC O U DC  CO  6  CD  CD  pq £ o  PH  ml ,  II  o II  fe  SH  oo cd  .  Tt  >H  ^  P H ^  ^  1  hrt K  -  cd  OH  o  CN  3  8 *  cd t-;  r-H  SN§1  O  0  tt  r-H  *  a ^  73  DC cn  CD  7D CD  cn cd  cd  cn  3" co 3  co O O CD NO r-H  &0  II II  •rH  3  CD  35 CD  3  7o3  . o cd ' o cS ^ -t-n P CD 3  E  H  •l-H  UH  JD  cd  CD  a cd  H ^ C .  bfl 3  Tt i—l  CD  O  Tt  -C O  3  3! CD  co co  3  uo CO r-H  r g  r i -e cn  -3  42  * o  <*H  SH  B  C+H  3  P  CD  CO  uo O O U  O  cd > ID cd ^-vM-  o  o U  • 3  tt  XJ  CO  3  3  CD  3  CD  •4—1  CD  P  3  bfl  XJ  cd & -*-> o  - O  O  -3  cn cd  O  o  HO  8 cd  cn  oo  <D O  oo cd oo 3 O  'M 73 CD  73 oo C D cd  HO  42  42  cd cn  cd oo  a  CD  cd  CD  CD  rO  cn  u  r-H  CO  co O  co O  CO CO  3  T f  CD  i—I  cd  a  8  uo  UO  co  a i  N O  Tt i—(  00  CO  N O  CO H  I  1—I  1—I  a  CO  H  UO CO  Tt  3 3  o u  CN  DC  U  3  CD  P  g  u  'S fe  'TP  u  CO  *J ^  I  tr*  CO CO  O  born  u  a  3  I  £ u  -4—» CO  uo co  [IH  .tt  UH  co co  CD  p  CD  _s cn  i3  HS  •s  CD XJ  rO 00 3  a  CD  B 00  cd  o  B  CD  o UH  cd U  H a> (J CS '  S B fcE  0-  251  * O  H  U  °3 O  I  u E  B  —  rn°S?  H O '  .S=n= >  TP "a  <+H  SI  U  • o l cuE  E  Plfa  a  * H  "go  •a  CHVO  cr  3  O  cd aiH «D  3  Tt  CD  C N  HO  •— . • cd  3  ry  tt 03 -a ^  CD CO  Tj  0  CD >+H  tt  U DC  ^  CO  *  Tt  j_>  1  DC  C O VD  cd  ON  •t-»  43  cd  bfl  3  o CD  o H  ta W  s  co Q < ta tf CH CO  43  ta O Z  73 CO  -4-»  c  3 3  cn  33  . 2  03 ,  CD  cn  *! o  03  CO CO  3  0  cn O  Tj  C  .13 u 73  cn CD  j3  o  Tt  fc]  *a o> w  CD  So  TJ  co . O U b DC  a. S3 3!  03  3  73  Tt  >  H  g  P H  3  a  3 O  o  cd cn  3  •c  3  8  rO  cr  H  cn cn  cd b f l CO >  O CD  CD  as  3  V O  C O  0  u  + -a - &  DC 1  + <u H ^2 UO 3 ^ CO co 'id o ° 3 f-i 0 r2 ^ C N fe a - i 33 C O HH M  g * cd CD  P H § C N  co<id g  •«8«  uo fe DC  1 I<  § i s cn • H^ -r+ cn — cd C D T t  a  u  z  cn  < a  Y CO uo U c . o c o B O DC  + a  CD  cn  3  *%  cn  803  §•  ^  73 o  03 43  cd  uo O  cn  3  3  •a  Tt  cn  o  >  ' 2  cn  co *  1  'jd  cd  CO  + +  o  C  tf ta H  ,2  O i-H 4 3 -4—1  K  *  O  OH  co O U +  *  1  n  °8 • IS H-t  IH  PH  ^ o o . r-H r-H  *  x  r- TZ, uo V r  II  II  O^ 3  co C N O O O ON uo UC N q DC cd uo m co O «> TJ U DC co — C D uo x CD 3 U O . DC"  C O C O  E-  o  s a °  2  O  Cfc  33 <D O  _3 cn  <  ^  CD  o  o  73  3  uo  in  UO  co  co H CD  u  l  I  i—I  i—I  >  CS  UH  C N  Tt  I  VD  H  0  ruo  O N  i—i  > -< CJ CU  o  C N  Tt  CD  UH  3 T3 O u CH  3 . 2  u  S o s_ EC  cu CH  .2 DC .tS  o  "C CQ  bfl  3  CU  o  c o  C O  03 CO  o  Tt Tt  CD  3  f-  3  u  a  U  1  HH  CO 3  ta 2  Z  1  *  ^  CD  * - 43  'mm  S  bfl  5 si 252  C N  Tt  3 O  o  o  PH  O  bfl  3  3 T3 3  Tt  CU  1  uo O •  vo uo O  bfl  3  Q •J  u  uo O  uo uo  o  u  «  Tt  OH  43  <u  co uo O  T3 3  u <**  r 2  rO  DC P H I  cd  u  CO  co  o u  o u  DC  CO  o u  CN  DC  . 2  cn  3  (J '  cn cn sz  OX) 3 O  l-H  SZ  o T3 ID  o d  O  d OH  31  1>  2  CD  OH 35 CD  CD  3  CD r ^ r «•>  CD  3  m m  OH  rr.  ^ +  CO  « o  13 c  O  CD  3 CD  3  oo CD  rin  ffi l  in O  in  ffi  3 O  3 O  O  Cr  I  3  oo CD  3  >  CN in ffi cn cn  in  in in  C/3  3  C/3  13  CD  CN  CN _ H  CD CD  CD  in  m  SH  °  LLJ  cd cd > >  i  bX>  w>  j  CD  CD  n3>  43  SZ  T3  31  CN ffi ffi  PJ  HH  •n HH O  .3  00  > II  CN in ffi cn cn CN ffi ffi  Cd  13  >  cd cd > >  1  ^ L L  CD  oo  cd 31  '  H  C  Ti  i n cd O ffi  ffi  cn cn  H  cn cn  B cd  3  CN  cd  CD  •  oo  cd  T?  fc  "3 O <HH  CD  3  +  3 O  3  OO  2 cn in  CD  _>>  CD  I  Z  SZ  3  PH  PH  CD  -3  1  eg  OH  cd CD > cd  in  OX)  ffi  •ffi  CN  CD  '—!  OO  CD  3  CD  r<H  -3  ©  r*  HH  CD O  CD CD  c/3  c/5  Id >  CD  3 "cd  J3  >  "cd >  in J  m  in  >n J  CN  CN  CN  1  l  l  PJ  m  pa  CN  3  ffi  3 3  C/3  CD  CD  II  ffi  CD  O  3 3  PH 3 3  o u  3  < * H  et  CU  3 l-O  §8 3 3 1 / 3  ld/7  ' > O 3 ^  oo 3  u I  m  ffi ffi OH  OH  3  8u  CD  o u  C/3  3  3  '  •a I fc  o  CD  J3O  ffi OH  ¥ ffi OH  z  u I  co  o u 253  CU HH  =5  z  SH  u  cw •w o to• S E  Z  PH  HH  t« r>  3 3  o  3 Q, 3  u I rS  o  sE  ou CD  3 O  •a "3  CD CD  J3  OXJ  £  1  •3 ^ 00 3  O " ^ o _ o E! M H E H 7 7  SB r-j  c  DO  CD  >> X) Tj  TJ  cn TJ  H-4  B _cd CD  OO OO  73  1-  CD -4-4  cd & H-. CN O  3 Tj  1  o  CU  H  r3 CD  '-4-4  •'SB co Q ^ W tf Cu GO CO  u  pa Q  z «<  o X  3  • r-H  CD  CD cd oo CD  O ,*H <+H  _3  CD  3 >  _3  cn  3 _o '-4-4  cd  3  ON  O  '>  CD  CD  B  B  -g  CD  3  3 >  £  cd  cd  -4-*  3  O O  3  o d  2  .cd  &S  cy-  H  0  X  cd  OO ON  cd  >  © ON  5?  s"  T i l  r—  3  ON w CD _ • ON ON  W  °  3  d CD  if cn  CD  O  3  CD  !>  rH  O  d  •g 73 >  3 3 O  E-H  CD  U S3  fc;B a  3 >  cn CN O  CD  £  ON CN  3  cn oo cd  -5  o  ON  TJ  JH,  •si  TJ  CD  _S  Cd - 3 jH  CD •~  3  oo  . CD  73 cn u  O  CD T J  9  U  CD  cn  3  CD > <  5 CN PQ X  CN  3  NJ  3  CD  isu W  3  CT CD  CD P H  Tj  -  •OH  O  o  3  43  O CD  O  rH  cr  CD  CD  OH  II  <D fe  KH  §•5  <in,  H  8  S3  O  CD  <D  O  CNf LO  ON  cn"  o  + -4->  cn oo  CD O Tt ©  CN  3 2^-832 1  PH  3 O  W  O  ^ 3 oo• -."d  up CD  3  i-  cn b f l  ifl  CD CD fefl CD  £  o o  in  CD cn CD T J O  + OQ  CD  CD  CD  4  73 4-: cr "  o ©  3  3  3  ^  cn CN  £  H  >  ON  3  O H  r—I  cd  OO  uo  cd  CD  U  3  -4-4  3CJ H  cd  "8 cd  vo  3  1  S  Tt  3  JS  rH  Tt  o  3  4—t  oo soo" 2 - 3 N O ON CN • r-H  CD  O  3  2  CD H3  cd  3  CD  -3  -4-4  OO  CD CD J3  8  r3  8  TJ  cd CD fe  J  CD CD  O O  3  £  o  ,w fc  H-H  OO  £  o  CD  H 39H <+r H *J P , o 3 NO" CD, £ wo 3 3 wo  3  TJ 3  3£  2cN'  CD  3  M-H  O H  -4-4 CD  WH  CD  3  . CD 3 ^3  ^  3  Id  CD  <+H  O  3  > CD  cn  CD  o  • r«H  •3  CD  "cd > CD bfl  3 r2  >  3  Tj 3  cd  CD  CD  • r-H  >  a  cd  CD  CD CD  cd  r3  _ ? Tj  -3 Tj  73  _o  3 3  •—  CD  r-H  8  1  cd  td  1-  _c •1—1 c  ON ON  •> £  S  OO  TJ  U o m  3  cd  CD  cd  cd  6, < O+ H  O  OH  rH  3  -4—4  cd  CD  3  •a  8  3  3  O  JS bfl  PH'  P H  «  r-H NO  Q  CD  u  NO  W  NO  NO  NO UH  Q  O  NO  <^  S3  NO  NO  NO  cn  "3  s  Vi  CD OX  CD !§  &  CD  H  o  CS  oo  3  CD  c- -Si, 3 H CO u d  5-9  O 13 tf U co  s es  CD  Im  ^CD  o  3  3  CD  3 >  3  cn  O tf  O  3  3  Q)  rO  x 3 3  oo  CO  H_>  cn  B  i_  z  •<-> O  3  254  S O  S cD£  CD  U OQ  Vi  -tH  O-  cd bfl  -w  ri"  cd  CM  U PQ  cd •4-4  cn  cn  3 O  o cn  CD CD O  W  es gj C cn o O JS Im U es S3 U  3 O O  cn  O  U cn  O  U  CN  S3  c  es Vi  G O  CD • -  Tt  cn  •S O  oU  U  U  •3S cocd  •S CO  cd  2 H <D  tu  bfi  °  on TJ cd  T3  SH  3  cd  c cr  O( DH cn  .a 8 CO  O --•  on  1-2 3 (U rrH  bfi S3 T J cn .ft  CD  CD C^  bX)T3 O  i  s Oao ^  •2, r 2  ^ E  o u  2  tu  -fi « S  s r d 3 4 3 CD ^ CD c  ° '2 >-> Vs  H  cn  ID  W o fi  W W  &  X C O  Q  O 5- bO  <  as  =1  CH C O  u  Q  E  3 3 •3  >  CD  bfi  § CD 3 - 3 II  J!,  £ cd' cd  cu  HH  Z  CD  Q SE  2  CQ  "8  CD  4  o 2  C O  3  8 .S £ § 4 3  ,3  <  cu 3 PH  E  CU ft  fi /*\ O  O0  fi  CD  CD  cu  H-S  R fi CD  (U  E  E  fe  CU ID X  oo T3  cd  £  P H c/3  oS TS  cd cu  CD 3  i  rt  rj cu ^  CD  ' . 3  U  fe  -S  T 3  CD  V O  TJ  * X.s,  • H  > CD  CU  *1i 4 3  cd  cd fe OH  CU T 3 3 CU  to  O  au tin  T3  oo  3  .2 O CH Z  in -P  43 3  ^  fe  ^  Ire  3  <U 4 3  s  cd  5  o  CD CD  oo s-  •tu -> CU  O I S  > ID  s  +3  w  XP rt  i n s* *  VO CN  CD HH cn  in cd  > N  cn  " fe Q  H-»  d ffi ° II  cd  -7  CM  o zPH  CU  S i p. CU  A  r°H  Tj  .2 ~E  cd  Id cu oo cd CD • "  ^  l> to >~> cn  3 3  H  V*  ?  3 CD  O  O  in  CD  cu S  H-I  h  O II  "H  00  $ O  E  T 3 J3  O  oo^  3 3 bo « rcd - , 2 oo -  cd  P H  tu •*-»  43  H-H  o r- p  4 3  oo  II cd  •rH  T3 t cu  T3  ^ 3 .rH  J  CD bXJ  3  S •i-H  " 3 O  CD  od P H Z.  TJ  E §  oo3 C  °  oo  2  J  t-  >  fc-3 1  vo CN CD  U  vo vo  s z  Q  U  in  CN  *—i  Q  U  Q  HH  cd ft  HM.  B  0-  a  bfi  S bfi  a  T3  CU ft  "5  cu  Q  T3  at CU  cu  255  S  T3  JR, OX) ft  «l  TS  CD  bfi CD  i  O  U  '  3 •HH 00 ,mm  B  U  3  0>  S  CU CD  <N  i  oo  Q  B  CD T 3  a  1—I  B  CD  CD  c« S i  l  W  OO  cd  cd  cu cd .tj  Xi  mmm  TS  a X  a  « > •fi a. fe S  ftn  O  "7 U  PL,  c  .3 13 U  3 .-H  r-i  0*  in  CD CD  ii  DH  O  ON  CD >  g fem- Om 5 o >• o  J 2 * ft 4 CD3  II  g  tH  o •s  <D  fi 5  13 CD  C  in  E ^ 3  "g §  o Z ft .2 fc CU  os  SH^O H O r  fe h ^  Q %  "  fi O Z7 cd  >  s .sa  3 "S ^  O  60-  i n oo fed* i n o in VO  • :  P H HH CD  •s o  cU -4—»  cd  3 O  2  X>  cd  +  DH  -t-H  O  cd cn  UH  3 3  CU  O O  H—»  s  O  cn OH  3  •a  o.  2*  - O  r3  O CD  CU cd  3  3 O  o  -3  CD •~ CD  PC.  J3  ^  -4—»  e  3  s -5 03  cd  I—I  cn  r-H  3 O  VO  Q  CD  <  3 o > cn o  C cn  _g Q cd * 3 *•*->  O  VO  IH HH  ^ ^ IH  I  3  <^  O  "— -a 1  VO  •a  CN  9  J O  .-3  2- < « g cr o E £ 2 0  1  CD CD cd  o o  r-H  w <C  i"^  Tt  c3 cn  o  •f-  1  3  fill  4  s - 1  2  .3  1 o  V O  Io  ^ 3  5  O  U W  CU  Q  si  3  cn  Q u  ^  33  vo '—' <N X  2  II  OH  6 II  O  rlOS  2 "11 ^  VO  O  Cn  Ss  2  3  2  cn  2  £  SH  3  OH  3  UH  II  -  PH  3  3  3 >  >> >.  cn cn  O  •r-j  3  CD  CN  u Q  Q  N O  CU  Q  cn  Q  Tt  CN  f—t  CU  m t—  -3  Q Q  r-H  1—I  Q  o  00  cN cn  Q Q  cn  CN T t cn cn  UJ I  Q Q  in  O  UJ  cn  2 cn O  s  OH  cn  i3  2  cd  3 O  O  1 U  i3  CD  3  0  .2 PQ  1  U  O - O  £3  CD CD & t n cn  cU cn  Tt  CD  UH  TJ  CU  3  CN cn  & CD  M  o o  O  o cn  CN  ^  cd  cd  cd  2  lO r-H  >-.*-H  CD  00  cd DH  £Z 2 fe  o CU >  9K o <  CU  H — >  ' r H - '  cu  3  C3  I  OH  00  1O cd  r-H  OH  O N  cd  CU  r-1  HH  O  VO^  o  C/l  cd  O O  OH  H->  t> Tj 3  CN  J O ^  U  cn  3  cr  O  4H  cn  3  E  cU CU  3  O  o  cn  o O  H J  CD  CD  •3  3  cd  O  .3  -  S a c 2  CD  3  O H H  .5 UH  U  <D  o  cd  I 3 O  ©  5  S J o "2  •P  =3  S u m  cd  U  O  H  42  r-7  o ^ CO  256  2  CD  S.8  Ml  -4-*  ra  OO  - 3  1 0  43  ^ - 3  O  + 3  3  <u - a  «3 in ^ PJ  <-i 43 +3 *-> O O f  CN g X ft" CN O  O T j *c> T J CO 00 tU •4—» CU 00 > cd CU  i—( CD  *-> a  CU o CD to 43  >  0 1  co 43  3CD C  a cu cu * <HH PH o OO m 6 WH a C 0 SH o o ft p 2; cu CD PH to bfiS 43 W) o 3 ^ a O cd c3 00 o • i-H fi 3  o  HH cd  a  _cd X  *  <u a  TJ  cd 00 CU J3  33 >  H O  oo cd cd 43 CU -H 3  CU  a  in  cN PJ  3  CD  PJ  + in  Q x  * cd H H  a o  m in  '•fi 3 cd °  + 3  °  3  CT cd cu cu oo t o  m  3 fi -5 - H  n  cd 3  CN O  «o  cd  3 3; fe ftH  «  3  O  ^  c & 8 o o fi CD II  •g 00 •H  O  •43 ^ II P H CU • H  cd  > g  >  H H  CN PH  rH PH  o  -fi &  3  CN cr OO CD  J-J  ON  S o  CD  2< ffi w  o  =3  cu O fi .3 _T_Ji  g  ._g x3  3 CD cr,cd co "r-  0 3  uo  cd  fi -5I • cd PH HH  § 3  CN  I-H € T3H  cr  1  3  <u (D  IS 3  - H . 3H  cr  CD CD td 3 O HO sa CD  r-,  H1 00 CD 33 c/0 OCD cd 3 3 O  e  1  CD H 3  3  Q  cu  CD 3 CD PQ  B m Cd rH a tin O  \  -° ^ ^  X  O U  +  o ffi m  «fcl x Q cd ffi x 3  CO  Q  £  CD CD ft a  >  o  ^°  © © 1—I  vo  00 cd T J >> cd TJ JH •ft  PJ  HH  00 00  3  !i b  oS  r 3  1  © © ©  co b CD  3  •S3  a O  - 3 ^3 3 CD PHTJ  cd _Cj> U  PH  rH  »  3  X M  Scl •3 3 cd 73 3  S  U  <u  o  CO  3  cr ?  3 cd HH 00 3 O CD  • H  in  RT  3  7^ fi 0  >  O  i—i PH  / - N  CU  l  "I  cr  ^ C M  II  in  +-> PH CD CD X <D  o o © X  O  ffi •a 4t> o  3  11  3  PH  3  3  s  3 ft  ' H  CD  3 O CU oo ft  fe3 3 cu 3 3 -fi  > 00 CD cu - f i CD 3 CU 43 oo M HH ft - oo cd O cu cu 3 3 3 O" PJ  *fe  CD  HO ^ *—i T J PH 3 cd in OfeO i—i 3 PJ 3 CD x _o C3D  3 8" 3CD 3  co  3 >  _B  X  >n  -fi  - H oo cd  3  O  fV  3 cd HH 00 3 O CD  CD  r-H  rt  Ss •a CD  PH CD 43 HH WH O 3 O  + -3  ?<u '-a  c  o.«  rH +  ffi  -—' 00 \ O /-^ O H  cd fe  CD  TJ cd  oM  oo  w  oo  w  oo - t j  Tiro PJ <D 3 . O 43  CU -H-> cd 3 O 4O  3 CD  d  x  in 0  H  cd  o  3  fe  S3  ft CN CN ft PH cu • . > rO.rH  * H  a  -8 •H3 3 CD 00 00 1)  cd fe CO X  -a 3 •9 3 T J  m O  . 2 f i S  c3  B  fc  cu  ^> H H H H  ftCD  coi CU U  CN CN  in  CD  CN  3  uo i—I  m e  fc l  fc r-. Tj  NO  CN PH  00 O  CN CO PH  PH  CN T f co co PH PH  in O  co rH  1—I  o  PC  a  o  cd ON 00 =3 cu o cd  3  00 CU HH cd CD  3  a  tU HH cd 43  ea ft  Z P  o  U  O  Q  QcS  HHH  2  43  ft SQ 3 <u OS CS O H fe T3 3 cd CO CU PH O  I i-H  ffi PH  257  u m  ^  TJ  cd  3  g  •3  c3  §  r^  "Hi 3 U  ^  o H  >. ft CU > O cu CU  ft ft  CU HH ea  9<  O 43 PH 43  cu fe  bO  cu  3 TJ 3 O  ft  OH  PH  3 O  etl U  +  co  O U  co co  O x  CN  X  VO  "cd  •o  +  CN VO i—»  Tn  O  +  u  CN  a  X  o +  uo co  o  r-H  1—I  NO  a  a  o o  o o  CN  a  5 CO Q <  VO CO  0  Ed 06  CM  \a cd  O  CO  u  II  c  r-H  cd  CO  O  CQ  a z  PH  +  X  cd  •ri  v©  PL,  CN  o  O  ©  o  II  co  II  co  o  X  +  D  uo  uo  CO  ^  a o  "EH X  CD  (U  H-l • 1—I  -rH  II  II  BH X  r-H  O  CO  p  CO  X  CO  §. §.  CD CD CD  + Co  CN  a  o  CO  TJ  co  o  ©~ II  r 3  O H  CO  X  1—I  CD  H  CO  —i  cd  7 3  <D  4H  -CN  a2 o s  Q  © 6 II  X  a  r-H  CM  Tt  CN  u  CO  CN  o  uo  vo  CN  0 0 ON  r-  o  O  CN CN  CN CN  CO  CN  CO  co  co  a a  a a  a o  a a  H  CO  Tt co  a  uo co  a  CO  0 U 1  i  6  3  3  'rg • rH CD  •33  U  «  7 3  cd  X OH  33  1 u 258  a  a  3  3  •e  . r—(  cd  2H :  cd 3  O -O  o •r-i  PQ  T3 CD  3  O  1 u  -9  co  O cd  •33  2 cd  u  O  X  3  "I CD  *  CO w  CM  a •  —  CO  o  CD  uo  n •i O  o  O  on  CN  O  CO  .y  <u O  o  CD  co co  cd  o "  EH X  CO  a o o fa •n ©  O  3  c£  +  1  r-H  -s  CO  0  o  r—,  N  i—i  uo co  o" o"•o cd 3 o " o " II II _cd  -S  O  •Q  a fe,  3  co  'a Q w +  +  •a a  +  r-H  Ov  •O  o  - „ o  o  o  _CL>  CO  O  1c  O  uo  3  O 2  vO~ VO CO  +  H W  ^1 to  1—I  O  CD  + a  uo  UO  CN  -3 CD  3  O  U  o  u  co _ 'ri cd S3  HH  PH  X  CO  cu c/3  T3 cu  3  3  •d  SO  4 3  r—I  8^  4 3  CN  0  o  CN  NO  o  cu tu P c ^ fe fi  -o  in CD  CM  CU Tj  CN  •a  cd oo CU  J3  Id  a o d  >  3  a  _o *HH  +  r-H  1  3 O  \d cd 3  II CD cd  CD rH  oo  + 0  o  ft'  cd  O U l-H  a  rn-,  •5  Tj'fi  <U  33  a o  T3 fc CU r-H  £  M  r  CD  CD  cu  3 3 id  3 o  A  cd 4 3  _o ft -ft  k " § _ g 2 - £  S3  43  S a 3 -«• s  3  1  cd (D  § g  "ffi  X ^ =  +  « a  cd 3 O  U  ffi  +  1  DH rH  CU  / - ^  t^-  CN  ffi  +  OH I  m  +1  (D  o 7 r-Tffi X3  +  +  D H O H  ^ffi  + + + HH^ OH O  >> W  W  + CN  X) X)  rQ  O  O rH  -O  - O  si  + CN  rH  CN T3  O ,  CN  i  CN  Pffi ID CN  OH l  ©  au +  >  oo  •  w  2  M  8  *H  i  N  3 + CN  CD CN  <N -nf  4D  H  1  K  rt  x  259  rH  tU cu  l  U  CD CN  i  -D  ffi  "P § • rj C/3 cd.fi © bfl £ « r3 D H c3 o CD m a c3 cd CD C/3 " 3 3 ^ « . 5 2 t3 U N b -fi aa-> ->3 T3.a 3 _ ^ fi ^ af CN CD T3 T3 ft CD 3 § . 2 ^ £ H = § CU . cd < H 3 ffi 3 a 2 3 • l-H s 2 O ter t fi CD O 3 £ §.2 c CN _ 3 3 0 0 TJ & 2 rO O oo O cU 33 13 S ?3 00 £ a 3 E £ '33 ^O roo, 3 | o- 3o m 3 o ft X) z 3 ^ •a • r-H •d r-T a HD ° c3 S3 •ft 3 II cd o cd T3 3 cOft 3 fin 53 40 cd Tj 3 2 H o 3 CU 2 § - O -rH cr 3 HH & 3 U "ft « a a § 3cd C O z •H-3 cd o O 3 c 3 x O (D £ «< cd t5 a 43 •ft cu 3 Cd U Vi o -J • r- 0 0 " f i 3 CN 3 O oo cd M) Z OH <2 -o H 3 u o cd 3 H X I ' l bfi id 3 3 o to CD CD r-H  X  X r—, D H ffi  +  P  CD . x> •rj-' w (SI  ffi ffi  a XJ J U CCd D fi a 3 oo cd Z -fi Vi .N cd 2 HCHU •-ft rH  OH HH  CN X)  X U  rQ  q  o a o  X )  +  £ +  43 CD• f t  a  + CN X )  tn  H -  « o •O  OH  o u  o u ffi  ffi  DH  e  cd  +  ffi  CU 3 CU  ?  G  CD CN Tf  cd be tu  3  CD CN  -O  43  O 3 •ft O 0 3 B  CN  cd  '5 ^  ° r ^  M  o u o u a  Os  cd  rt  fi O  U  a  oo  '«£ S3 3 3 i3 - ° X a2 a >•> cd ^ o » r H oo 3 s a S HH 2 43 cd £ 3 H3 T 3 i 3 oo c d x o a <U ? £> 3 .2 ° «u 3 ^ £ r i y CD oo ti ft C/3 Tj TJ T) •H  •ft  CD  TJ  CN  CU CU  O  3  >; § °  2  cu  DH  OH  J  O  so  ffi  ft 3 3 2 ^ 38 c8d <^> 4? ( D "SI > £ -.a t d - ° > r23 cd 3 ^ ft 43 3 ° a ^ « 3 2_g CU CT33 • 13 U O 3 I "5 >H O d H « CU 3 3 43 <« ^v-ft « g a ^ ftcd -cd r> 3  ft  3  a UJ  CD CN  N  CN  in CD  •  cu c3  CO  oo T-j (U c/3 r; Tu C U J o- T.a 3 3 - 8 oft „  + o fe  CA CN  au  EH  0 3  + O cd in a CD Os jd X  c- CU 3  irT  cd -4H 00  2 3 2 3 HS-2 o s£ 3 o > H i 00 '—^-T-J ft .a a '-fi • 2 CU C N 2 O CO fi CL, ° fi *3 3 O  a +  a  =  JO  >,0 Cfi 3 ° 3 3 ^ "O 34 3 3 ffi cu 3 cd cr ft CU oo ft ft<U CU 3 3 O  °-8o  ti  CU  3 2 -* ^ ft o °  CN  CU -fi  5 U  " H  -° £  WH  cu  --•Si  «  iH-rO  °  ft O  H  2 § S o  *-»n  3  H CD • XH O H  Os  _o  K  .3a i S * o TJ • CU O O C ° tH U cu § 3 - cd fi  O +  3  M  5 £ O  3 -fi  cu  co  X HH  CU  -O  o> cd -a 0 0 HH 43 ti £ <D tU CU CU-2 S  in  tu ft <u  b  >r»  O  T3  tu cd- CU fi cd g  3 = ' •33 C U«  +  +  CU c  3  r.ss  O  O  rr oo O oo oo 5  3 ft ^  6  3  +  O  00  ,  oo  3 % CU  T3 <U  3  00  CD  2  -fi  . O «•>  xs  a  2 H  VO CO  . DC  +  0  m co  cu SH CU  43  DC  +  -4-4  3  _o  c--  '-4-4  CN  c<3 .3 .03  DC  3, X  CU T3  bfl O  C  03 oo CU 3  CN  73 >  1  o" II  CO  O  vo  KO CN  vo  r-  DC  DC DC  '•4—»  03 3  Of W  (N CN  13 U  CO  i n DC  HC  oo  DC r -  o  DC  T T  CN DC t  CO CN  CN CN  DC  cu •4-4  CCJ  43  w  OH  3  00  ro O U  O  43 OH  CU ' <*H  43  03  u. S  U  O  TJ  3  * J  CU  s o U  260  UH  3H  bfl  U  3 03 o3  2;  3  DC OH  "=3 d  CO  O  u  HH  »H  „^  o  co DC  CU  4i  ,  x  . 33 *  VO  o  i—i  a  rt'I 3  CO  CO H-l  CO CO  •rH  O  cu S  U  =S U  rrl rH  .a d rH  °  T j CU CU H 3  3  3  cn • rH  O  O N  VO CO  X  ,  a  NOX ro X  UO CO  O  4-  4-  8  x  1—I hH  |J  -  UH  O  cd  uo  1  DC •  CO CO  DC  O x  CN  o_  co  o d c5  UH  o~  || UH _cd CO X O H  X  II  co  X  0 0  i—i  CU  O  3  O UJ  CU  CIH  -5  o  ro  VO  JS o \d  +  vo  CN  cd  CN VO  4uo  4-  CO  H^  r-  5  x  cu cu fe  ° M * 73d  PH  X  CO  ° O -tt 6  cTf  c  3  O  •d  <+H  <+H  rrj  £ p  cn  O  CN CN DC  r-H  CN CO  CO CO  co co DC DC  DC X  X  Tt  co DC  4-  DC,  cn  OH  ,—i  4-  2  CU  CN /-s  co  CN  >n"  X  o  3 u ? cd  r~-  wCN  ODC  +  >t CN  v  %  uo CO  DC  O o  e 3 •a JO  O  PH  sj  1 3  cd  3  O  O  42 13  CU CU U cn  .2  pq  •13 ST I S  O  £  3  4~H  - equi  lana  •13  U DC ro  cU  cu  CO  cu  DC HH  © ^  cd  cn  O  rH  OH  CU  •B •S  3  i3  •e TJ  0  -°  111  1  .2  CU  § •• •t  u CN  CO  r3  cn  cj 3 O  CU  O I  O  U DC  DC  U  U  • V—I  d cn  6 3  O  U  3  z o  .1  H  z  -  tf  73  d  O  CU  3 .2 3  r 3 73  S  £  *?  X ' 3  CU CU  H  . .  CU bfl  cn  3  sJ  •in  S •2 ;d  °  TJ  s J3  3 cn cd _« cr 3cu 2 X cu cd CU > > X  O H  % c3 cn r O  <*H  x o cd cn 2  tn  cu  ,2  8 C  .2 3  «  £  T3  cn  <H  .2,  73  1  3  3  O  3  bfl  O  *  o  H-H  -3  e > 261  cu C H  O  % -3  DC  CO  C  -8d  VO CO  u  *  3 3 •SH -3o  ^  <4H  O O  uo  1  ^  CU  cd  —  cu  3  CN  O 1  ,cu  a o TJ CU  O  OS  O  cd  •d o cd 73 o d  O  rH  O  3  -d  CO  rOl  o-d  3  r — i  HH,  cd  cd cu  73  •TH  2  -3 o  =1  DC  uo co r - H w DC ON  « DCcu cu O cn  DC 4-  o CN  JS ^+ 3 CN d  CO  r-  o  PH  DC  u  O H CU  uo  cd  +  O  3  4-  O  co  33 4—» 2  8  CO  73 x3  -3  cU cd CU  o  oo o\  2 a  DC  CN  -H  -3  H  fQ  DC 4Os  t-  _ CN  •7:  DC  T o CN O DC U  CO UH  2 3  3-S  HH  x  H-H  5tH  ffi  ^  >  73-O •d cu  CN  DC  CO  CO  O  X UH /-v uo  ro  ^  CU CU  o& X tf 2 + DC 3 o^ vo 4tf co HH  - 2 £ co  •2  DC 1 . 2  CO  o  g  r Q  -2  CN uo  DC  QJ  N  — < CH  8 -rH  3  •a  s M O  O  CN  O  o  W -° A  Co  o CD H td  S  CO  c  .2 *a K  o  C  Tt  <J  cd  U  SS  Q Z «!  o  o o o  CU J3  co  CQ  y  5  o u  bo  o  3  U DC •  <N  UH  NO  X  X  cn  cn  CN  o o o o o  Tt  CN  X  o o o  O  00  00  r-H  r-H  3  • r-H  • r-H  II  O U  O  CD  L_i  ca •a  cn  3  D  cd  o  ca  C  CU 3 KO CN  cu  •S-s CU cd  3  oo  T? cd  KO N  DC  Is  3  CD  DC  3  m  *H  3  cd  a  u  .  H  3  H-»  3 CU  >  KO  OH l  DC  E  OH  CH  CU 3  CU 3  X  O  CU H H  CU 3  r-(  3 cd  X  H-»  cn  • r-H  '3  cr  3  O o  CU cn  O U DC  33 S + CT 3  ^  NO r->  DC 2 < -  a  < ""I X  1  NO ••r*H-> NO v o *-> 3  § CN  HH OH  3 cd 3  3  3  •a  -4—»  3  O H  cn  3  O  5 SE  3  X  P  ^ '  DC, o  cU 3  £3  73  3  +  CO NO  M  3  Tt  II  U  1  5  DC DC <HST <JH"  —  • r-H  cn  i—i  .2* 1  H-»  O U +  OH  ^ E  3 cd  CO  DC  . • r-H  o  Tt  3  z r x- 7<D S  A  DC  Tt  _o '-3 cd 3 1  CO  o  - i-H  3  NO" NO CN  X X Xo  cn  3 >  co  O  £DC  CU  73  a CL,  " f i  cd  1  cU  g .2-o2  c o NO  © =o O VO * ^ JA A 5°  JS  Q  Ed  x  cr  * r-H  <N  U  0  3  •a  DC A cn  CO cd  ON  • r-H  3  X)  Tt  ^  X -3  2  CN DC co DC D DC II II II II II  3  Cd  O  £ :3  CU CU / - ^ CH O cn c n I) n3  r—>  *  NO  pq  O o C 3  NO  ^  •a ~-  i& CU <  u  ^  DC  ^  cn * o ^ II  H->  II  cn  CU  cn  CN OO  O U  O N  CN  DC  3  NO ^  5° o  DTDT OH  o S  U  i  1  +  o  OH  73  H,  3 *  O U CN DC r-.  CO  o u  DC  3  x  | HH  CD ^ ca CQ  <  CD NO © 3 CN  o  DC OH  Tt  co DC  HH  cd  C<  S Q  w t—  oo  ON  cu  o  KO  CU X  CN  U  KO CN  N  r-  NO CN  NO CN  OO CN  © co  CN CO  Tt  CO  73 CU cn 3  u  CU  3 3  s  o CM  CD  'ci. 04  H3  H  «  Tt  0,0  13 o CO  3 CD  £1  HH  E o R- o u £ CO  vj  IP  Vfl  w  z p  o  5-  3  cn  U O T3  o  CD  UH  262  3  '•3  Q i  cd  U  DC O H  < DC O H  CO  CO  O  u  co  O  O O  DC  DC  u  CN  H  U  NO  NO  O  EE  ro X.  bfi  3  o CD •*H  's o C  "Si X CU TJ  3  cd C/3  CU  _3  3  CU  3  •c  c  X)  • i-H HH  o  *  • 3  •  cd O  W  O  xi  UO  uo  r-H  i—i  C/3  00  1—I  -*—> t-H  e cd  00  3  O  O  •i-H  3 3  cd  3  err CD CD 'oo cd  3  B  CD  cd  e cd  CD  B  CO  •rH  CD  ^  UO rH  H  3  ffi  •  OH  <D  3  HJ  *  OH I  HH  CN  1  X)  CD  od  CH  O  00  X)  O  3  CD  CD  cd  CD  3  cd  ffi  oo  j£  cS  0  HH  3  T3  HH  3 D  CH  •a  cd 1  3 3  00  «U.  CO *  O  •a  cd  • H  <U CD 'oo cd  3  00  3  3  3  CD CD  cd  cd  CD  CU  X  c/3  O  X)  cS  C/3  CD CD  3  O  s  ffi  (U CD oo cd  CT  3  ft  HH  3  H CJ  3  ft  r-H  cd  ft X w>  bfi  O  o  • rH HH  CN  X  3  HH  s  o  ro  3  O H  NO cd C N  cd HH  3  O  CJ  cd  % I  NO CN  3  'S X) ro  oo uo  NO CN  CO  3  3  3 NO  CO  VO CO  NO  ro  H H  CD  U  I  in  VO CO  >o T-H  J  B  £  O  u-,  uo r H  <—>  00  CJ CN  O ffi <3 O  00  1 3  CU HH  ea  CD  s ft cu Pu  ea ft  ft  HH  C  CU  CU  c o U  CU  bfi  a  HH  3  HH  _>>  3 •a  ea  'oo  3 o  ft  • H 1  cu  TS CU CU  to  © ft  z  ea  <u  ea ft CU  cu C O  CJ  CM  i  O co cd  ea CJ CO  H  z  1  -s  o  o  cu CU  ft  .—i  VO CN  VO CN  z  Z  o  00 3 3  S u o Q  Pf5 bfi  3  CU HH  EH*  263  3  ft  bfi  CU cu ft  0 w  HH  c  z  cu  X  tU bO cd  CU  i—i  cd  N  CU  oC  HH  UO  Q  -a cu  o  cd  CN  CU  fi  H4  >,  r H  UO  3 CO  00  (U  HH  CN  •J  I  a  o  NO CO  ea  ft  JU H H CU rft  ',  to  H  t  cd  CJ  3 3 < ffi  1  ffi OH  OH  3  •rj X>  -3  '3  cr CD CD  0  u ffi 1  3  CD  DC OH  ^  O  ^  r-H  CN  "co  ft CJ  ffi  x:  c _o •4—»  t_j  s S  '-4H  cd  C  •a cd  C/3  CD  _3 Id >  i  OO  iri i  II ^o (M ffi fc II  OH  I  ffi ft < DH CD  C  •c  1 cn  2 o Cd  rH  CD £"> CD © CD 1  <+H  fc  cd  tT> " II 3  oo (D  U  CN  fc  oo  3  3  o  CD CD  O  grl, CD  u fc  o CD  fc  1  o  x  H U i — i  ft  X  CD  >D  O u ffi  o  oo  CD  CN  oo ON  3  VO  DH I  o  |  S o  o u  13 O  oo cd oo  CN  ffi cr?  ffi  OH  3  O  CD  CN  O ffi" ffi"  bX)  cr  II u cr <  o X  X)  cd  HH  0  1  NO CD  3 •£  c  '3 + + <o cr  '  wi  E  CD  r3 3  00  O CD  vo •d  SH  §! W  3  CD  CD ft * .2 3HH S vo O '-4H  00  ^ o 3  U", ^-v  1  CD  8  oo  cd  I  fc  °^  0 CJ  cd  VO  "-^  ^  o u +  4H  3  TC Dn  o u ffi  r-  U  <D  3  NO CN  fc ffi I  < o  OH  •a  o rH  CD  CN *  CN CD  0  0  "ct  CD  O  vo ffi  Ml 3  cd  *n  ffi  =3  13  <D CD  00 cd 00  3  CD  3  oo cd  oo cd  a  CO  CD  VO CD  fc  OH  VO CD  O  U")  u-.  a 1  Ul  '3 3  cu  O <X  X U  CN  CD  o u  o u ffi  CN  ffi  ca cu  H U  ft CU  CL.  264  HH  C  CU  CU  on  HH  ea fe  c 'oo  3 >>  HH  cu  3O TJ CU  o  <HH  C  U  1  O ffi  ft  r H  CU  a  CU  ft O  CD  VO CN  r-  CN  o u  CN  CN  00  CD  •  o  HH  ca ft  vo &  cd  VO CD DH  CU  to  CU  3  T3 © ft  0-  •H3 CU  HH  ea ft  c CD CU  S  o U  ea  O w  .ti w> CU 1  £ o * o CO  co  8  CD  CO  1  U",  oo  U", T J  a  o II  NO CD  CU  X  cd  X)  cd  HH  ft <D  3  I  fc fc  CD .CD  CD  CD  a  cd ?i TJ  cd  X>  CO  HH  O  3  <D  DH  oo cd 00  _o  CD  3 ffi  oo  OO  3  O  oo  »  cr  VO CD  _o  3  O  cr  cd  (D  be  O  ft X  ea  X) CD  In  X  cd  3  ID  r ^  •n  •rH  TJ  CN  X  rH  H  O +H  o  CD  s CU  C<0  3 •-^ TJ  ea ffi  o.  2  c/o  2d  ^  CD  Cd r> i—1  + .tl  3 3  cf>  S  8 K  Tt CO  p  tn  I  uo  CD  c o o  H td  o <u  Q  < tf cu co  co U CQ  Q Z  < o cc  U O  cn  33  SH  s  4=  H-»  c _o  3  cn So cn  '4-1  a  o tf  cd  CD  43  X CD T3  c cd  3  cn  0 <D  3  C+H  CD  §•§ S  CD  3  o 83  CD •  tf  cn  C 0 • r-(  0  -t->  a 0  cd CD  M  *  < * T ? <D = 3  * fa  1  PLl  •H  cn  CD  s" O  •a _cd On  3  cd  o  PH  C O  Da  I  CO  1  uo PH  ^—i  O cn  DC CD  CD CD  CD CD  3 3  3 3  tf tf IH  O  SH  B  cd cn 3 O  *H->  CD  cd  OH CD  O  3  JO cd  cd fa 3 CD CD  3 O  CD  IH  CD  3  H2  3  3 CD  CO  CN VO  VO  3 JO  •1—I  1  §  vo  v—H  .IH  CD  CD  3 >  3  -4-»  CD CD  s w -2 s 3 co  O  OH  tn CD  c#  &  c3 CD  •c  cd cn 3 O *-*-> cd  <+H  Er CD  S3'  3 CD  33  O 3 O  e  • TH  =3 >  CD  HJ  Tt  cn  CN  co UO  3  CD  tf  vo CN  tf tf  u  00  CN tf  Tt  Tt  co H • uo  + OH  Tt  w  o  00  g  O bO JO  J3  H  CC  w co  tf Q  H Z  w O  Tt  CN VO  CN VO  PH  HH  CO  CO Tt  2  DC  < CC  H P  CO  CN VO  CO Tt  U O  CN  co ><  Q  I  tf  H P  CN VO  co p  o o  £3 3 SH  5  « U  o h  co O U CN  DC • co O U  ca  tf  W  3 CN  CD  "u  O  CQ ca  OB  u  CD  o  P 265  u z o u w ca z •a  CD  r->  tf  CQ  CD CD fa  CD j>  O CD CD  H^  ea CD  CD  W  CD  3 •O  o  u tf  ca CD CD  c  o U  •> tf Q  s-  CD  HH  ca tf tf •o COl HCD H CD  cd  00  bO <D  C .HH  ffi  HH  cd  cd  CD  fi  CD  O  IS  s  cn cd ^t X  S  cd  CD  ^ CH  o  (U  CJ  H ti ti  ffi  co  •~  CD X •*->  cd  3 in 3i  x  CD  Q «<  TJ 3  cu  _3  co co U CQ  Q  Z  cd oo CD  Id  >  00  O  CS  CD  O0  fi O  fe  CD  cd fe  r—>  HH  CD  X  _o  o cCD  cd  o  3  CD  1  HH  2  O  cd  OH  Cd  CD  O cd  cd  T3  o  CD > O  £  cn  oo  <D  r-i  CD C •ft  00  Is  H  O  DH  3  TJ O ft  O H H  o  s fi  00  ,  > 3 fi ~ -  c/3  m  Hft  o  ft  cd &  cd  o  C IH X X _ H CD CD T j CD  Cd  « fe 00  *^  CD  ^  •- oo V, ^ o o "ft CD oo O H CO U  CQ  OH  H H * H  X  s  OH C3  •ft-  DH  O  r: 2  2 B •3 aC H  (D  o ffi  c^ "fi cd ,  HH  x  52 aj fi ST ?d  w  HH  cD O  S il  1  2 fi  CD & CD 3  -  IS  H H  c £ fi< CD cd c CD co 2 C HCD U 5 o H CQ c CD o  CD  B 2 B  o m 3 3  X>  ft T0j0 2  O VO  o ca m c o  II  3• f .t 5 DH 3  CD X  cd  cn cn  cd o  cd o  s •a 3H cd cd CD  C  0  CD  cd >  .CD  <D  CD  (D  I  1  B  3  -3  ft 2 o  oo HH  _o  CD  3  H-»  O  C  '-*H  cd  HH  X)  DH  <D X  00  II  nc  o  oo  cl  cn  CD  ft  sCD XDH e ft  H H  OH  O  3  •ft C >,'ft HO  2 2 C  3 T3  9  00  >  c  • f t fV> OO  -*H  c o ft o CD  O  DH ft  .SU  XI CD .CD.  CD >  cd fe  ^ T3  *->  CD CD  TJ  CD CD H-»  > 1  u  .s  DH  >.HH  o H H ^  -3  cd -ft £3"d s HH T D ft CD  CD" (D ft  g  rt  •i -  §  ."2  CN VO  o CD  u  cn ^rt  VO ^  ti CN  > vo  ^-j ^t  H,  H Tt m  CO  cn •rt  >n  z  H J  CO  Z O  Z o + VD cn "^t z in >n Z Z VO i •n in Z  o cn -ftCU  >n Tt  cu  Z  HH H  «!  ti  in -i—»  U ti  ft  CU  HH  CS  c- fe X ti H-^ CD H  3  "O O ft  CU  H U + U  ft  c  HH  «  CD  fe  C/3  3  HH  8 fe  T3  C3  ffi a.  T3 QH  266  O  cn O U CN  ffi  o  I CO  Q ffi P •  cd  u  OH  U  vo -ct CU  Tt  S ffia <  cu  VO  E3  cu > oo C3  O  3  'I u  o OH  o CD  NO  OH  cd  3  o  £ cd  c o  JO  u CD  o  H  267  APPENDIX F SIMULATOR SUMMARY SHEETS  268  A summary sheet was made every time a different scenario was tested with the computer simulator. A s a result, more than 100 summary sheets were generated over the course of this study. W h i l e all of them are included on the computer disk accompanying this document, only a few were converted into hard copies and included in this appendix to illustrate the type of information that was inputted into the simulator.  269  =©8®§]<i m© , ! © i  ill(gfe°®01Ksl  s  D  ffU® LT@©^(gO@  Test Conditions Raw water origin:  No name creek  Volume 8# vented:  0.0  Softener type: Water recycling:  lon-X  -Brine disposal -Water recycled?  Evaporated no  Water recovery Brine recycle % recycle  m3/day  # stages Water temp (C)  NF  R.O.  N/A  1  B/C 1  N/A  35  25  Removal monovalent divalent TOC  N/A N/A  unit 1 50%  unit 1 N/A  Nanofiltration unit 2 N/A  unit 3 N/A  N/A  N/A  N/A  -  N/A  N/A N/A  96% 98% N/A 90% Water recovery:  99.99% 99.99% 99.99% 90%  Reverse Osmosis  Of no use % of product from #1+2 into #3 Feedwater pH N/A N/A adjustment N/A N/A Feedwater Ca N/A Not important adjustment N/A Not available Blending  unit 2 N/A  unit 3 N/A  Not avaifa ale •• Of rto U$e  N/A N/A  5.8  N/A  N/A  -  1.8  N/A  N/A  60  Not important  53  Not avartabte  Results Solubility Check  Nanofiltration unit 1  CaSCM  unit 2 N/A  Reverse Osmosis unit 3  unit 1  unit 2  unit 3  ok  N/A  N/A N/A  ok  N/A N/A  N/A N/A  CaC03  N/A N/A  MgC03  N/A  N/A  N/A  ok  N/A  N/A  Mg(OH)2  N/A  N/A  N/A  ok  N/A  N/A  F.E.T. inlet  Lime blow.  Soften blow.  T.water  R.O. inlet  578.3  13.9  19.0  545.3  281.6  Water flows m3/day  Water quality  R.O. waste B/C feed 140.8  140.8  Raw  Water from  Treated  Current  Final waste  water  RO & B/C  water  T. water  m3/day  407.4  267.5  545.3  -  Solid -  Ca  mg/L  81.3  1.3  1.4  1.4  3.2E+01  kg/day  Mg  mg/L  18.3  0.3  0.5  0.5  4.2E+00  kg/day  Fe  mg/L  0.39  0.0  0.6  0.6  4.2E-01  kg/day  S04  mg/L  86.8  7.4  61.6  81.9  9.6E+01  kg/day  Si02 P04-P  mg/L mg/L  5.2  0.1  0.9  1.2E+00  kg/day  0.01  mg/L mg/L  19.2 20.3  2.1 49.5  0.07 2.4  9.1E-02  Cl Na  0.06 2.9 12.5  0.9 0.07  1.2E+02  kg/day kg/day  50.5  1.3E+02  kg/day  DOC  mg/L  9.3  8.4  6.0  6.1  2.0E+01  kg/day  7.9  4.7  10.0  10.1  Flow Chern.  pH C03  mol/L  1.4E-05  2.1E-06  1.4E-04  1.2E-04  mol/L  3.6E-03  1.4E-03  3.0E-04  2.0E-04  7.6E-04 7.2E+00  kg/day  HC03 H2C03  mol/L  1.0E-04  1.0E-04  7.1E-08  3.7E-08  1.3E+00  kg/day  mol/L •  3.7E-03  1.5E-03  4.4E-04  3.1E-04  414.8  kg/day  Ctot  Required pH adjustments:  2.8  for recyc. H20 pH=7.5  270  Total  kg/day  H=@ficH§@ [R © 8  \0K, ir@(g^©l@  Test C o n d i t i o n s Raw water origin: No name creek Volume 8# vented: 0.0 m3/day  Softener type: Water recycling:  lon-X  -Brine disposal -Water recycled?  Evaporated yes  unit 1 N/A  # stages Water temp (C) Removal monovalent divalent TOC  Nanofiltration unit 2 N/A N/A N/A  Water recovery Brine recycle % recycle Blending Of no use % of product from #1+2 into #3 Feedwater pH N/A N/A adjustment N/A N/A Feedwater Ca N/A Not tmportant adjustment N/A Not available  unit 3 N/A N/A N/A N/A N/A N/A -  NF N/A N/A N/A N/A N/A  R.O. 1 35  B/C 1 100  96% 98% 90% Water recovery:  99.99% 99.99% 99.99% 90%  Reverse Osmosis . unit 1 unit 2 unit 3 50% N/A N/A Not avaHa ale / Of OP U$e  5.8  N/A  N/A  1.8  N/A  N/A  62  0  Not important Not available  Results Solubility Check CaS04 CaC03 MgC03 Mg(OH)2  Water flows m3/day  Water quality Flow Chern. Ca Mg Fe S04 Si02 P04-P  ;  m3/day mg/L mg/L mg/L mg/L mg/L mg/L  unit 1 N/A N/A N/A N/A F.E.T. inlet 536.6 Raw water 137.8  81.3 18.3 0.39 86.8 5.2 0.06 Cl mg/L 2.9 Na mg/L 12.5 DOC mg/L 9.3 pH 7.9 C03 mol/L 1.4E-05 HC03 • mol/L 3.6E-03 H2C03 mol/L 1.0E-04 Ctot mol/L 3.7E-03 Required pH adjustments:  Nanofiltration unit 2 N/A N/A N/A N/A  unit 3 N/A N/A N/A N/A  Lime blow. Soften blow. 7.2 3.8 Recycled Water 227.9 1.3 0.2 0.0 5.8 0.1 0.01 7.9 14.7 9.7 7.5 2.2E-06 1.5E-03 1.1E-04 1.6E-03  2.8  Treated water. 525.5  unit 1 ok ok ok ok T.water 525.5  R.O. inlet 239.9  R.O. waste B/C feed 119.9 119.9  Current T. water  Final waste  -  -  1.4 1.4 0.5 0.5 0.3 0.6 25.3 81.9 0.9 0.9 0.04 0.07 4.2 2.4 16.6 50.5 6.0 6.1 10.0 10.1 7.0E-05 1.2E-04 1.5E-04 2.0E-04 3.5E-08 3.7E-08 2.2E-04 3.1E-04 for recyc. H20 pH=7.5  271  Reverse Osmosis unit 2 unit 3 N/A N/A N/A N/A N/A N/A N/A N/A  Solid  Total  1.4E+01 2.6E+00 3.9E-01 6.4E+01 8.8E-01 9.0E-02 4.3E+01 8.0E+01 2.0E+01  kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day  7.8E-04 6.5E+00 1.2E+00  kg/day kg/day kg/day  233.7  kg/day  Test C o n d i t i o n s Raw water origin: Volume 8# vented:  No name creek 0.0 m3/day  Softener type: Water recycling:  NF  -Brine disposal -Water recycled?  Evaporated no  unit 1 75%  # stages Water temp (C) Removal monovalent divalent TOC  Nanofiltration unit 2 50% no 20%  Water recovery Brine recycle % recycle . . . -• Blending Of no use % of product from #1+2 into #3 Feedwater pH 6.5 6.0 adjustment 2.7 0.8 Feedwater Ca 35.0 Not important adjustment 0.0 Not available  unit 3 75% yes 1 00% no 50% 6.2 -  NF 3 40 67% 94% 98%  RO. 1 35  B/C 1 25  96% 98% 90% Water recovery:  99.99% 99.99% 99.99% 90%  Reverse Osmosis unit 1 unit 2 unit 3 50% N/A N/A Not avallalal i? • 01 HP Use  5.8  N/A  N/A  1.8  N/A  N/A  65  Not important  50  Not avaiJa|)fe : : : : : : x : : :&  unit 1 ok ok ok ok  Reverse Osmosis unit 2 unit 3 N/A N/A N/A N/A N/A N/A N/A N/A  :  :  :  :  :  :  :  :  :  Results Solubility Check CaS04 CaC03 MgC03 Mg(OH)2  Water flows m3/day  Water quality Flow Chern. Ca Mg Fe S04 Si02 P04-P Cl Na DOC  m3/day mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L  unit 1 ok ok ok ok F.E.T. inlet 576.1 Raw water 405.1  81.3 18.3 0.39 86.8 5.2 0.06 2.9 12.5 9.3 7.9 PH C03 mol/L 1.4E-05 HC03 mol/L 3.6E-03 H2C03 mol/L 1.0E-04 Ctot mol/L 3.7E-03 Required pH adjustments:  Nanofiltration unit 2 ok ok ok ok  unit 3 ok ok ok ok  Lime blow. Soften blow. 13.9 89.9  T.water 472.2  RO + B/C Water  Treated water  Current T. water  265.4  472.2  -  1.38 0.33 0.03 7.67 0.09 0.01 3.54 ' 10.81 8.30 4.7 2.1E-06 1.4E-03 1.0E-04 1.5E-03  2.8 4.2  0.28 1.4 0.01 0.5 0.00 0.6 0.50 81.9 0.01 0.9 0.00 0.07 0.71 2.4 3.15 50.5 0.01 6.1 10.0 10.1 8.1E-05 1.2E-04 1.7E-04 2.0E-04 4.0E-08 3.7E-08 2.5E-04 3.1E-04 for recyc. H20 pH=7.5 for T.W. from NF = 10.0  272  R.O. inlet 279.3  R.O. waste B/C fe 139.7 139.  Final waste Solid • -  Total  3.2E+01 4.2E+00 4.3E-01 9.9E+01 1.2E+00 9.0E-02 2.2E+01 6.9E+01 2.0E+01  kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day  7.6E-04 7.2E+00 1.3E+00  kg/day kg/day kg/day  256.3  kg/day  HJ®©te=©[rQc^l wb@$®% = H=@{lca<p E©, BO®, IMF, ir@cg^c@l® Test C o n d i t i o n s Raw water origin:  No name creek  Volume 8# vented:  0.0  Softener type: Water recycling:  NF  -Water recycled?  R.O.  B/C  3  1  40  35  1 25  monovalent  67%  96%  99.99%  divalent  94%  98%  TOC  98%  Water temp (C) Removal  Evaporated yes  -Brine disposal  NF # stages  m3/day  unit 1  Nanofiltration unit 2  unit 3  75%  75%  75%  -  no  yes  % recycle  -  20%  100%  Blending  Of no use  Water recovery Brine recycle  adjustment  Feedwater Ca adjustment  90%  Reverse Osmosis unit 1 50%  3le  NiS  unit 2  unit 3  N/A  N/A  Of rto y$<j  no  % of product from #1+2 into #3  Feedwater pH  99.99% 99.99%  90% Water recovery:  50%  6.5  6.0  6.2  5.8  N/A  N/A  2.7  0.8  -  1.8  N/A  N/A  6.0  Not important  0.0  Not available  Results Solubility Check  68  Not important  Not availabie  0  Nanofiltration  Reverse Osmosis  unit 1  unit 2  unit 3  unit 1  unit 2  unit 3  CaS04  ok  ok  ok  ok  N/A  N/A  CaC03  ok  ok  ok  ok  MgC03  ok ok  ok  ok  ok  N/A N/A  N/A N/A  ok  ok  ok  N/A  N/A  F.E.T. inlet  Lime blow.  Soften blow.  T. water  R.O. inlet  521.2  7.4  41.9  471.8  224.5  Mg(OH)2  Water flows m3/day  Water quality  R.O. waste B/C feed 112.2  112.2  Flaw  Recycled  Treated  Current  Final waste  water  Water  water  T. water  Solid  m3/day  137.0  213.3  471.8  -  -  Ca  mg/L  81.3  1.43  0.04  1.4  1.4E+01  kg/day  Mg  mg/L  18.3  0.26  0.01  0.5  2.7E+00  kg/day  Fe  mg/L  0.39  0.04  0.00  0.6  4.0E-01  kg/day  S04  mg/L  86.8  6.34  0.19  81.9  6.6E+01  kg/day  Si02  mg/L  5.2  0.09  0.01  0.9  8.9E-01  kg/day  P04-P  mg/L  0.06  0.01  0.00  0.07  8.9E-02  kg/day  Cl  mg/L  2.9  4.43  0.82  2.4  2.3E+01  kg/day  Na  mg/L  12.5  13.36  2.88  50.5  6.8E+01  kg/day  DOC  mg/L  2.0E+01  kg/day  Flow Chern.  pH C03  mol/L  HC03  mol/L  H2C03  mol/L  Ctot  mol/L  :  9.3  10.23  0.01  6.1  7.9  7.5  10.0  10.1  1.4E-05  2.4E-06  6.2E-05  1.2E-04  6.7E-04  kg/day  3.6E-03  1.6E-03  1.3E-04  2.0E-04  6.6E+00  kg/day  1.0E-04  1.2E-04  3.1E-08  3.7E-08  1.2E + 00  kg/day  1.7E-03  1.9E-04  3.1E-04 202.6  kg/day  3.7E-03  Req uired pH adjustments:  2.8 4.2  for recyc. H20 pH=7.5 for T.W. from NF = 10.0  273  Total  ESs](§fc=(i[n)d] mni©(a]@l = 11= Test  Conditions  Raw water origin: Volume 8# vented:  Softener type: Water recycling: -Brine disposal -Water recycled?  No name creek 0.0 m3/day  lon-X Deep well no  unit 1 N/A N/A  # stages Water temp (C) Removal monovalent divalent TOC  Nanofiltration unit 2 N/A N/A N/A  Water recovery Brine recycle % recycle Blending Ol no use % of product from #1+2 into #3 Feedwater pH N/A N/A adjustment N/A N/A Feedwater Ca N/A Not fmportant adjustment N/A Not av$ia&|$  Results Solubility Check CaSC4 CaC03 MgC03 Mg(OH)2  Water flows m3/day  Water quality Flow Chern. Ca Mg Fe S04 Si02 P04-P Cl Na DOC  m3/day mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L  unit 1 N/A N/A N/A N/A F.E.T. inlet 578.3 Raw water 407.4  81.3 18.3 0.39 86.8 5.2 0.06 2.9 12.5 9.3 7.9 PH C03 mol/L 1.4E-05 HC03 mol/L 3.6E-03 H2C03 mol/L 1.0E-04 Ctot mol/L 3.7E-03 Required pH adjustments:  Nanofiltration unit 2 N/A N/A N/A N/A  unit 3 N/A N/A N/A N/A N/A N/A -  NF N/A N/A N/A N/A N/A  R.O. 1 35 96% 98% 90% Water recovery:  Reverse Osmosis unit 2 unit 3 N/A N/A Not avatlable / Of rtO  5.8  N/A  N/A  1.8  N/A  N/A  65  Lime blow. Soften blow. 13.9 19.0 Recycled Water 0.0  Not important Not £v«iabte  unit 1 ok ok ok ok  Reverse Osmosis unit 2 unit 3 N/A N/A N/A N/A N/A N/A N/A N/A  T.water 545.3  Treated Current water T. water 545.3 % of wastewater not recovered 0 1.4 1.4 0.0 0.5 0.5 0.0 0.6 0.6 0 61.6 81.9 0.0 0.9 0.9 0.00 0.07 0.07 0 2.1 2.4 0 49.5 50.5 0.0 6.0 6.1 0.0 10.0 10.1 0.0E+00 1.4E-04 1.2E-04 0.0E+00 3.0E-04 2.0E-04 0.0E+00 7.1E-08 3.7E-08 0.0E+00 4.4E-04 3.1E-04 2.7 for recyc. H20 pH=7.5  274  N/A N/A N/A N/A  unit 1 50%  48  unit 3 N/A N/A N/A N/A  B/C N/A N/A  R.O. inlet 281.6  R.O. waste B/C fe 140.8 N/A  Final waste Liquid 140.8 50.0% 2.2E+02 3.0E+01 3.0E+00 6.8E+02 8.3E+00 6.5E-01 8.7E+02 9.2E+02 1.4E+02 6.1 5.5E-08 8.3E-04 1.5E-03 2.3E-03  Total  Solid -  3.2E+01 4.2E+00 4.2E-01 9.6E+01 1.2E+00 9.1E-02 1.2E+02 1.3E+02 2.0E+01  kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day  4.6E-04 7.2E+00 1.3E+01  kg/day kg/day kg/day  426.3  kg/day  LSii(gk=@[ni(a]TOdlcit]-H-sttag® m©, © W 1 s  Test C o n d i t i o n s Raw water origin: Volume 8# vented:  Softener type: Water recycling: -Brine disposal -Water recycled?  No name creek 0.0 m3/day  lon-X Deep well yes  unit 1 N/A N/A  # stages Water temp (C) Removal monovalent divalent TOC  Nanofiltration unit 2 N/A N/A N/A  Water recovery Brine recycle % recycle Blending Of no use % of product from #1+2 into #3 Feedwater pH N/A N/A adjustment N/A N/A Feedwater Ca N/A Not important N/A adjustment Not available  Results Solubility Check CaS04 CaC03 MgC03 Mg(OH)2  Water flows m3/day  Water quality Flow Chern. Ca Mg Fe S04 Si02 P04-P  m3/day mg/L mg/L mg/L mg/L mg/L mg/L  unit 1 N/A N/A N/A N/A F.E.T. inlet 559.2 Raw water 257.1  81.3 18.3 0.39 86.8 5.2 0.06 Cl mg/L 2.9 Na mg/L 12.5 DOC mg/L 9.3 pH 7.9 C03 mol/L 1.4E-05 HC03 mol/L 3.6E-03 H2C03 mol/L 1.0E-04 Ctot mol/L 3.7E-03 Required pH adjustments:  Nanofiltration unit 2 N/A N/A N/A N/A  unit 3 N/A N/A N/A N/A N/A N/A -  unit 3 N/A N/A N/A N/A  Lime blow. Soften blow. 10.1 11.1  NF N/A N/A N/A N/A N/A  R.O. 1 35 96% 98% 90% Water recovery:  unit 1 50%  N/A N/A N/A N/A  Reverse Osmosis unit 2 unit 3 N/A N/A J : Of no u$<*  5.8  , N/A  N/A  1.8  N/A  N/A  75 11  Not avaa&bte  unit 1 ok ok ok ok  Not important  Reverse Osmosis unit 2 unit 3 N/A N/A N/A N/A N/A N/A N/A N/A  T.water 538.0  Recycled Treated Current Water water T. water 131.3 538.0 % of wastewater not recovered 3 1.4 1.4 0.5 0.5 0.5 0.1 0.4 0.6 1 2 43.3 81.9 0.2 0.9 0.9 0.01 0.05 0.07 26 7.5 2.4 34 37.2 50.5 17.4 7.4 6.1 7.5 10.0 10.1 2.2E-06 1.4E-04 1.2E-04 1.4E-03 3.0E-04 2.0E-04 1.1E-04 7.1E-08 3.7E-08 1.5E-03 4.4E-04 3.1E-04 2.7 for recyc. H20 pH=7.5  275  B/C N/A N/A  R.O. inlet 262.5  R.O. waste B/C feed 131.3 N/A  Final waste Liquid 131.3 50.0% 1.7E+02 2.6E+01 3.1E+00 6.1E+02 7.7E+00 6.9E-01 6.3E+02 8.1E+02 1.6E+02 6.1 5.6E-08 8.5E-04 1.5E-03 2.3E-03  Total  Solid -  2.2E+01 3.4E+00 4.0E-01 8.0E+01 1.0E+00 9.1E-02 8.3E+01 1.1E+02 2.1E+01  kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day kg/day  4.4E-04 6.8E+00 1.2E+01  kg/day kg/day kg/day  335.2  kg/day  , PW, ftW,  ou® m©y©i®  Test C o n d i t i o n s Raw water origin:  No name creek  Volume 8# vented:  0.0  Softener type: Water recycling:  NF  -Brine disposal -Water recycled?  m3/day  # stages Water temp (C) Removal monovalent divalent TOC  Deep well no  NF  R.O.  B/C  3  1  N/A  40  35  N/A  67% 94%  96% 98% 90%  N/A N/A N/A  98%  Water recovery: Nanofiltration unit 1 Water recovery Brine recycle  75%  Reverse Osmosis  unit 2 50%  -  no  % recycle  -  20%  Blending  Of no U&B  unit 3  unit 1  unit 2  75% yes  50%  N/A  adjustment  Feedwater Ca  Not available i Of fto uss  no 50%  6.5  6.0  6.2  5.8  N/A  N/A  2.7  0.8  -  1.8  N/A  N/A  Not important  65  Not important  0.0  Not available  50  Net avaiJabte  unit 1  Nanofiltration unit 2  CaS04  ok  ok  CaC03  ok  MgC03 Mg(OH)2  adjustment  35.0  Results Solubility Check  Water flows m3/day  Water quality Flow  unit 3 N/A  1 00%  % of product from #1+2 into #3  Feedwater pH  N/A  m3/day  Reverse Osmosis unit 2 unit 3  unit 3  unit 1  ok ok  ok ok  N/A  N/A  ok  N/A  N/A  ok  ok  ok  ok  N/A  N/A  ok  ok  ok  ok  N/A  N/A  F.E.T. inlet  Lime blow.  Soften blow.  T.water  R.O. inlet  576.1  13.9  89.9  472.2  279.3  R.O. waste B/C fe 139.7  Final waste  Raw  Recycled  Treated  Current  water  Water  water  T. water  Liquid  Solid  405.1  0.0  472.2  -  139.7  -  Chern.  % of wastewater not recovered  N/A  50.0%  Ca  mg/L  81.3  1.4  2.3E+02  3.2E+01  kg/day  mg/L  18.3  0.00 0.00  0.3  Mg  0.0  0.5  3.0E+01  4.2E+00  kg/day  Fe  mg/L  0.39  0.00  0.0  0.6  3.1E+00  4.3E-01  kg/day  S04  mg/L  86.8  0.00  0.5  81 .9  7.1E+02  9.9E+01  kg/day  Si02  mg/L  5.2  0.00  0.0  0.9  8.3E+00  1.2E+00  kg/day  P04-P  0.06  0.00 0.7  0.07 2.4  9.0E-02  kg/day  2.9  0.00 0.00  6.4E-01  Cl  mg/L mg/L  1.6E+02  2.2E+01  kg/day  Na  mg/L  12.5  0.00  3.2  50.5  4.9E+02  6.9E+01  kg/day  DOC  mg/L  9.3  0.00  0.0  6.1  1.4E+02  2.0E+01  kg/day  7.9  0.0  10.0  10.1  6.1  pH C03  mol/L  1.4E-05  0.0E+00  8.1E-05  1.2E-04  5.5E-08  4.6E-04  kg/day  HC03  mol/L  3.6E-03  0.0E+00  1.7E-04  2.0E-04  8.4E-04  7.2E+00  kg/day  H2C03  mol/L  1.0E-04  0.0E+00  4.0E-08  3.7E-08  1.5E-03  1.3E+01  kg/day  Ctot  mol/L  3.7E-03  0.0E+00  2.5E-04  3.1E-04  2.3E-03 267.8  kg/day  Required pH adjustments:  2.7 4.2  for recyc. H20 pH=7.5 for T.W. from NF = 10.0  276  Total  iSKS^®^ m©$®i ° H=ttiiKg® ©, ^ PW, Test C o n d i t i o n s Raw water origin: Volume 8# vented:  Softener type: Water recycling: -Brine disposal -Water recycled?  No name creek 0.0 m3/day  NF  NF  R.O.  3 40  1  B/C N/A  35  N/A  monovalent  67%  96%  N/A  divalent  94%  98%  N/A  TOC  98%  90%  N/A  # stages Water temp (C) Removal  Deep well yes  Water recovery: Nanofiltration  N/A  Reverse Osmosis  unit 1  unit 2  unit 3  unit 1  unit 2  unit 3  75%  65%  75%  50%  N/A  N/A  Brine recycle no % recycle 20% Blending! Of no use % of product from #1+2 into #3 Feedwater pH 6.5 6.0 adjustment 2.7 0.8  yes 100% no 50%  Water recovery  Feedwater Ca adjustment  19.8  0.0  6.2  Nqt avaitable .' Of no u$e  5.8  N/A  1.8  Not important Not available  N/A  N/A Not important Nol awaiafete  70  21  N/A  Results Solubility Check  Reverse Osmosis  unit 2  unit 3  unit 1  unit 2  unit 3  CaS04 CaC03 MgC03  ok ok ok  ok ok ok  ok ok ok  ok ok  Mg(OH)2  ok  ok  ok  ok ok  N/A N/A N/A N/A  N/A N/A N/A N/A  F.E.T. inlet  Lime blow.  Soften blow.  T.water  R.O. inlet  542.8  10.1  60.4  472.2  246.1  Water flows m3/day  Water quality Flow  Nanofiltration unit 1  m3/day  R.O. waste B/C feed 123.0  Final waste  Raw  Recycled  Treated  Current  water  Water  water  T. water  Liquid  Solid  248.8  123.0  472.2  -  123.0  -  Chern.  % of wastewater not recovered  N/A  50.0%  Ca  mg/L  81.3  2.80  0.15  1.4  1.8E+02  2.2E+01  kg/day  Mg  mg/L  18.3  0.55  0.01  0.5  2.7E+01  3.3E+00  kg/day  Fe  mg/L  0.39  0.07  0.00  0.6  3.4E+00  4.1E-01  kg/day  S04  rhg/L  86.8  13.47  0.33  81.9  6.6E+02  8.1E+01  kg/day  Si02  mg/L  5.2  0.17  0.01  0.9  8.2E+00  1.0E+00  kg/day  P04-P  mg/L  0.06  0.00  0.07  mg/L  2.9  1.02  2.4  7.3E-01 1.9E+02  8.9E-02 2.3E+01  kg/day  Cl  0.01 7.77  Na  mg/L  12.5  23.57  3.74  50.5  5.7E+02  7.0E+01  kg/day  DOC  mg/L  2.0E+01  kg/day  pH  9.3  18.33  0.01  6.1  1.6E+02  7.9  7.5  10.0  10.1  6.1  kg/day  C03  mol/L  1.4E-05  2.3E-06  7.9E-05  1.2E-04  5.9E-08  4.4E-04  kg/day  HC03  mol/L  3.6E-03  1.5E-03  1.6E-04  2.0E-04  9.0E-04  6.8E+00  kg/day  3.9E-08  3.7E-08  1.6E-03  1.2E+01  kg/day  2.4E-04 3.1E-04 for recyc. H20 pH=7.5  2.5E-03 239.8  kg/day  H2C03  mol/L  1.0E-04  1.1E-04  Ctot  mol/L  3.7E-03  1.6E-03  Required pH adjustments:  2.7 4.2  for T.W. from NF = 10.0  277  Total  APPENDIX G COST ESTIMATES  278  COST ESTIMATING FACTORS Reverse osmosis systems According to Osmonics, Inc. (located in Minnetonka, Minnesota), R O systems generally cost U S $ 2 000 per gpm of produced permeate. Given their price estimate for a 360 m /day R O filter 3  system (listed below), it was assumed that a dual-media filter in any R O assembly would account for 14.9 % of the total cost. The remaining 85.1 % would be involved in purchasing the R O membranes and associated support equipment. Equipment  Price (US$)  Dual-media  filter  Chemical injection system  17 500 4 000  ROskid  80 000  Cleaning system  9 250  Membranes  7_5QQ  Total  H 8 250  Nanofiltration costs Nanofiltration system generally cost 85 % of the R O assemblies (Osmonics, Inc., personal com.). When no pretreatment equipment is required for the N F filters, as is the case when they are used in place of the ion-exchangers, they were assumed to cost 72.3 % of R O systems.  BCS assembly B C S unit prices for three different flow rates were provided by Resources Conservation Company (located in Bellevue, Washington): Flow rate (m /dav)  Cost (US$)  200  1 650 000  360  1 900 000  500  2 250 000  3  F r o m a regression analysis on the three figures, B C S costs were estimated using the following equation: price = 1 990*feedwater flow + 1 230 235  279  Ion-exchangers Nalco Canada Inc. representative indicated that an ion-exchange unit would cost between $50 000 and $100 000 Canadian dollars, regardless of the particular ZED configuration. A price of $50 000 US dollars was used in the cost estimates.  COST ESTIMATES Closed-Loop Designs 1-stage RO systems BE, BCS, IXa Flow Cost Equipment (m /day) (US$) b  3  RO filters  BE, BCS, NF Flow Cost (m /day) (US$) a  b  3  CD, BCS, IXa Flow Cost (m /day) (US$) b  3  CD, BCS, NF Flow Cost (m /day) (US$) a  b  3  120  37 453  112  35 049  269  83 992  257  80 245  Ca removal  -  50 000  -  50 000  -  -  -  -  Sand filter  -  6 558  -  6 137  -  - -  -  -  120  1.47e6  112  1.45e6  269  1.77e6  257  1.74e6  -  -  472  125 156  -  -  478  126 906  RO pretreat:  BCS NF filters  a  Total  1.57e6  1.67e6  1.85e6  1.95e6  with initial flows  1.61e6  1.73e6  1.85e6  1.95e6  BE = back-end, CD = composite discharge, IX = ion-exchange, NF = nanofilters, BCS = brine concentrator and spray dryer  b  flow = produced permeate for RO and NF, and feedwater for the BCS unit  280  2-stage RO models BE, BCS, IX Flow Cost Equipment (m /day) (US$)  BE, BCS, NF Flow Cost (m /day) (US$)  a  a  b  b  3  3  CD, BCS, IX Flow Cost (m /day) (US$) a  b  3  RO filters RO pretreat: Ca removal Sand filter  146  45 711  135  42 171  397  -  50 000 8 004  -  50 000 7 384  BCS NF filters  97.6 -  1.42e6  90.0 472  1.41e6 125 262  132 -  Total with initial flows  1.53e6 1.57e6  a  b  -  -  1.63e6 1.69e6  3  119 196  -  -  -  -  -  -  1.49e6 -  127  1.48e6  486  128 976  1.62e6 1.77e6  1.73e6 1.87e6  BE = back-end, CD = composite discharge, IX = ion-exchange, NF = nanofilters, BCS = brine concentrator and spray dryer flow = produced permeate for RO and NF, and feedwater for the BCS unit  BE, BCS, IX Flow Cost (m /day) (US$) a  b  Equipment BCS  3  219 -  NF filters  b  a  b  123 880 . 382  BCS only configurations  a  CD, BCS, NF Flow Cost (m /day) (US$)  BE, BCS, NF Flow Cost (m /day) (US$) a  b  3  1.67e6  223  1.67e6  -  471  125 050  Total  1.67e6  1.80e6  with initial flows  1.79e6  1.91e6  BE = back-end, IX = ion-exchange, NF = nanofilters, BCS = brine concentrator and spray dryer flow = produced permeate for NF, and feedwater for the BCS unit  281  Deep well configurations 1-stage RO options BE, I X Flow Cost Equipment (m /day) (US$) a  b  3  RO filters RO pretreat:  131  40 981  Ca removal Sand filter NF filters  BE, NF Flow Cost (m /day) (US$) a  b  3  50 000 7 175 -  38 421  123  CD, IX Flow Cost (m /day) (US$) a  b  3  514  50 000 6 727 125 262  -  472  160 474  CD, NF Flow Cost (m /day) (US$) a  b  3  490  152 871  -  -  -  -  -  -  -  -  -  -  480  127 331  Total  98 156  220 410  160 474  280 202  with initial flows -  101 660  226 500  161 582  281 257  a  b  BE = back-end, CD = composite discharge, IX = ion-exchange, NF = nanofilters flow = m /day of produced permeate 3  2-stage RO designs BE, IX Flow Cost Equipment (m /day) (US$) a  b  3  RO filters  158  BE, NF Flow Cost (m /day) (US$) a  b  3  CD, IX Flow Cost (m /day) (US$) a  b  3  CD, NF Flow Cost (m /day) (US$) a  b  3  49 346  148  46 105  518  161 817  496  155 002  50 000 8 640  -  -  -  -  -  -  50 000 8 072  -  -  -  -  -  472  125 262  -  -  487  129 082  RO pretreat: Ca removal Sand filter NF filters Total with initial flows a  107 986 111 992  229 439 236 770  161 817  284 084  164 287  286 099  BE = back-end, CD = composite discharge, IX = ion-exchange, NF = nanofilters  282  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
Turkey 7 1
United States 6 0
Japan 4 0
China 2 1
Colombia 2 0
Bangladesh 2 0
Morocco 1 3
Unknown 1 0
Netherlands 1 0
City Views Downloads
Unknown 7 15
Ashburn 4 0
Adana 4 1
Tokyo 4 0
Dhaka 2 0
Mountain View 1 0
Shenzhen 1 1
Istanbul 1 0
Beijing 1 0
Menlo Park 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share