Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The aerobic biological treatibility of a high strength mixed petrochemical industrial sludge Whalen, Thomas F. 1995

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata

Download

Media
ubc_1995-0575.pdf [ 10.2MB ]
Metadata
JSON: 1.0050323.json
JSON-LD: 1.0050323+ld.json
RDF/XML (Pretty): 1.0050323.xml
RDF/JSON: 1.0050323+rdf.json
Turtle: 1.0050323+rdf-turtle.txt
N-Triples: 1.0050323+rdf-ntriples.txt
Original Record: 1.0050323 +original-record.json
Full Text
1.0050323.txt
Citation
1.0050323.ris

Full Text

The A e r o b i c B i o l o g i c a l T r e a t a b i l i t y Of A H i g h S t r e n g t h Mixed P e t r o c h e m i c a l Industrial Sludge By T h o m a s F. W h a l e n B.A.Sc, McGill University,  A Thesis Submitted  In P a r t i a l  The R e q u i r e m e n t s  1993  Fulfilment  F o r The D e g r e e Of  M a s t e r s Of A p p l i e d  Science  in The F a c u l t y  Of G r a d u a t e  ( D e p a r t m e n t Of C i v i l  We a c c e p t t h i s  Engineering)  t h e s i s as  to the required  conforming  standard  The U n i v e r s i t y Of B r i t i s h October,  Science  Columbia  1995  Thomas F. W h a l e n , 1995  Of  In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the r e q u i r e m e n t s f o r an a d v a n c e d d e g r e e a t t h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , I a g r e e t h a t t h e l i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r r e f e r e n c e and s t u d y . I f u r t h e r a g r e e t h a t p e r m i s s i o n f o r e x t e n s i v e c o p y i n g o f t h i s t h e s i s f o r s c h o l a r l y p u r p o s e s may be g r a n t e d by t h e h e a d o f my d e p a r t m e n t o r by h i s o r h e r r e p r e s e n t a t i v e s . I t i s understood that copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g a i n s h a l l n o t be a l l o w e d w i t h o u t my written permission.  D e p a r t m e n t Of  Civil  Engineering  The U n i v e r s i t y o f B r i t i s h V a n c o u v e r , Canada O c t o b e r 05,  1995  Columbia  Abstract:  I n v e s t i g a t i o n s w e r e p e r f o r m e d on t h e a e r o b i c b i o l o g i c a l degradation p o t e n t i a l of a high-strength, the  Chatterton Petrochemical s i t e  industrial  i n D e l t a , BC.  l o c a t e d a t t h e b o t t o m o f one o f t h e w a s t e w a t e r e q u a l i z a t i o n l a g o o n s . The  l a g o o n was  The  sludge sludge  from was  treatment  used t o s t o r e process water  and on s i t e d r a i n a g e f r o m t h e P h e n o l p r o c e s s i n g p l a n t o p e r a t i o n s . The p l a n t had b e e n i n o p e r a t i o n f r o m 1961  t o 1991.  The  sludge  contained high concentrations of: Phenol, Diphenyl, Diphenyl E t h e r , D i p h e n y l M e t h a n e and X y l e n e and h a d a T o t a l COD 250  000 mg/L.  I t a l s o c o n t a i n e d o v e r 1000  mg/L  of over  of copper  and  cobalt.  Treatment  was  i n i t i a l l y attempted u s i n g a M o d i f i e d Batch Process  (MBP). N i n e b a t c h e s w e r e r u n , t o d e t e r m i n e t h e b e s t sludge loading l e v e l  initial  i n t h e t r e a t m e n t s y s t e m and t o a s s e s s t h e  degree of t r e a t a b i l i t y of the waste m i x t u r e . In each s e t of e x p e r i m e n t s , a c o n t r o l was  run t o determine the degree  of  v o l a t i l i z a t i o n o f t h e o r g a n i c compounds f r o m t h e w a s t e .  Twenty  l i t r e b a t c h e s , h a v i n g b e e n d i l u t e d up t o t e n t i m e s , w e r e r u n f o r more t h a n f o r t y d a y s . I n l a t e r b a t c h e s , due growth problems,  b o t h ammonia and p h o s p h o r u s  system; phosphorus  was  to microorganism were added t o t h e  needed b o t h f o r t h e growth  of  m i c r o o r g a n i s m s and t h e p r e c i p i t a t i o n o f d i s s o l v e d c o p p e r .  The  performance  Total  o f t h e s y s t e m s was  m o n i t o r e d u s i n g T o t a l COD,  BOD  5  and t h e c o n c e n t r a t i o n o f s e l e c t e d t a r g e t o r g a n i c s p r e s e n t i n  the mixture.  The  most n o t a b l e b a t c h d a t a r e s u l t e d f r o m a r e a c t o r l o a d e d w i t h  an i n i t i a l  T o t a l COD o f a p p r o x i m a t e l y 30 000 mg/L. A l l t h e  o r g a n i c compounds o f t h e s l u d g e w e r e removed f r o m t h e m i x t u r e t o b e l o w t h e d e t e c t i o n l i m i t o f t h e Gas C h r o m a t o g r a p h a n d t h e T o t a l B0D  s  was r e d u c e d  t o a n e g l i g i b l e c o n c e n t r a t i o n . The s u c c e s s o f  t h e r u n was a t t r i b u t e d ,  i n part, t o the high concentration of  phosphorus present i n t h e system.  The c o n c e n t r a t i o n was 100 mg/L  h i g h e r than t h e n u t r i e n t requirements o f t h e c u l t u r e and t h e elevated nutrient  loading apparently resulted i n the  p r e c i p i t a t i o n o f much o f t h e d i s s o l v e d c o p p e r  present i n the  reactor.  The  control  showed t h a t when t h e s y s t e m was r u n u n d e r  ideal  c o n d i t i o n s , t h e l o s s due t o v o l a t i l i z a t i o n c o u l d be l i m i t e d t o l e s s t h a n 5%, b a s e d  The  o n T o t a l COD.  s y s t e m was t h e n m o d i f i e d t o o p e r a t e a s a T r u e B a t c h  ( T B P ) . T r e a t m e n t was a t t e m p t e d run's f i n a l  product  Process  by keeping 75% o f t h e p r e v i o u s  i n t h e r e a c t o r , w h i l e i n p u t t i n g a new l o a d o f  s l u d g e and d i l u t i o n water  t o make up t h e v o l u m e  difference.  R e s u l t s f r o m t h e r u n i n d i c a t e d t h a t t r e a t m e n t k i n e t i c s o f t h e new system were t h r e e t i m e f a s t e r t h a n t h e b e s t b a t c h r u n based on T o t a l BOD  5  d e g r a d a t i o n . A l l o f t h e o r g a n i c compounds h a d b e e n  removed t o b e l o w t h e d e t e c t i o n l i m i t o f t h e Gas C h r o m a t o g r a p h i n t h e e n d p r o d u c t s l u d g e . However, q u e s t i o n s r e m a i n e d accumulation o f copper  i n a true batch treatment  P r e t r e a t m e n t o f t h e s l u d g e t o remove c o p p e r a c h i e v e t h e h i g h T o t a l BOD  5  removal  system.  iv  about t h e  system.  may be n e c e s s a r y t o  r a t e s seen  i n the true batch  T A B L E OF  CONTENTS: Page: i i  Abstract T a b l e Of C o n t e n t  v  L i s t Of T a b l e s  v i  L i s t Of F i g u r e s  x i  Acknowledgements  xv  1.  Introduction  1  2  L i t e r a t u r e Review 2.1 - O b j e c t i v e s  7 20  3.  M a t e r i a l s and Methods: 3.1 - R e a c t o r D e s i g n 3.2 - Sampling 3.3 - A n a l y t i c a l P r o c e d u r e s 3.4 - Experimental Procedures  21 25 28 31  4.  R e s u l t s and D i s c u s s i o n s 4.1 - I n i t i a l B a t c h T r e a t m e n t s 4.2 - B a t c h e s W i t h M e t a l T o x i c i t y P r o b l e m s 4.3 - O v e r c o m i n g The P r o b l e m Of H i g h Dissolved Metals 4.4 - Sequencing Batch Experiments  106 149  5.  Summary Of R e s u l t s  183  6.  Conclusions  188  7.  Recommendations F o r F u t u r e Treatment  191  8.  References  193  9.  Appendices A - Data B - GC T r a c e F o r Run 5  196 260  v  34 36 62  LIST  TABLE: Chapter  Comparison  1.2  Results of I n i t i a l Chatterton Sludge  4.1  4.2  Page  Of S l u d g e  Characteristics  Investigation  3  of 6  3:  3.1.1 Chapter  TABLES  1:  1.1  Chapter  OF  Type a n d F r e q u e n c y Of A n a l y t i c a l P e r f o r m e d On S l u d g e  Tests 27  4: I n i t i a l C h a r a c t e r i s t i c s Of The Chatterton Petrochemical Sludge A n a l y z e d a t U.B.C.  As  Initial  The  Organic  C o n s t i t u e n t s Of  34  Sludge Chapter 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7  4.1.8 4.1.9  35  4.1: C o n t e n t s O f T h e Two R u n n i n g R e a c t o r s F o r The F i r s t B a t c h T r i a l I n i t i a l A n a l y t i c a l A n a l y s i s Of The S l u d g e I n The R u n n i n g R e a c t o r s F o r Run T o t a l and Supernatant D u r i n g Run 1  37 1  37  Concentration 40  I n i t i a l C o n t e n t Of t h e R e a c t o r s F o r t h e S e c o n d B a t c h Run  44  Initial Run 2  45  COD  o f The R e a c t o r s F o r  I n i t i a l C o n d i t i o n s I n The R e a c t o r The S t a r t Of Run 4 Oxygen Uptake Rate  On D a y  47  At 50  Of  Run 4  56  R e d u c t i o n O f T h e COD D u r i n g R u n 4 R e d u c t i o n Of The T a r g e t O r g a n i c s D u r i n g Run 4  58  vi  59  L i s t Of T a b l e s (Continued)  Page  Table: C h a p t e r 4.2: 4.2.1  I n i t i a l C o n d i t i o n s I n The R e a c t o r A t The S t a r t Of Run 5  62  4.2.2  COD R e d u c t i o n D u r i n g Run 5  4.2.3  P e r c e n t R e d u c t i o n I n The T a r g e t O r g a n i c s D u r i n g Run 5  69  4.2.4  Nutrient Utilization R e d u c t i o n F o r Run 5  72  69  A n d The COD  4.2.5  R a t i o Of N i t r o g e n To P h o s p h o r u s U t i l i z a t i o n D u r i n g Run 5  73  4.2.6  I n i t i a l C o n d i t i o n s I n The R e a c t o r A t The S t a r t Of Run 6  75  4.2.7  C o m p a r i s o n B e t w e e n The S t a r t i n g A n d The End C o n d i t i o n s I n Term Of T o t a l COD F o r Run 6  84  4.2.8  P e r c e n t R e m o v a l Of T a r g e t  Organic  Compounds F o r Run 6  84  4.2.9  Nutrient Utilization  4.2.10  T o t a l COD:N:P R a t i o F o r Run 6  4.2.11  I n i t i a l L o a d i n g Of The R e a c t o r s F o r Run 7 I n i t i a l C o n c e n t r a t i o n Of T a r g e t O r g a n i c s I n Run 7  89  C o n d i t i o n s I n The R e a c t o r s A t t h e End Of Run 7  99  Change I n t h e C o n c e n t r a t i o n Of The T a r g e t O r g a n i c s D u r i n g Run 7  100  S t r a i g h t L i n e D e g r a d a t i o n R a t e s Of S p e c i f i c O r g a n i c Compounds D u r i n g Run 7  101  BOD/COD R a t i o Time F o r Run 7  103  4.2.12 4.2.13 4.2.14 4.2.15 4.2.16  F o r Run 6  vi i  86 86 88  L i s t Of T a b l e s (Continued) Table: Chapter 4.3.1  4.3.2  Page  4.3: I n i t i a l C o n d i t i o n s Of The The S t a r t Of Run 8  Reactor At 107  I n i t i a l T o t a l And S u p e r n a t a n t C o n c e n t r a t i o n Of T a r g e t O r g a n i c Compounds Of Run 8  107  C o n c e n t r a t i o n Of The T a r g e t O r g a n i c C o n c e n t r a t i o n And The S u p e r n a t a n t COD C o n c e n t r a t i o n On Two S a m p l i n g D a y s I n R e a c t o r 4 Of Run 8  119  F i n a l C o n d i t i o n s In the Reactors At The End Of Run 8  119  4.3.5  D i f f e r e n c e In the Target Organics C o n c e n t r a t i o n A t t h e End Of Run 8  121  4.3.6  Nitrogen/Phosphorous Run 8  122  4.3.3  4.3.4  4.3.7 4.3.8 4.3.9 4.3.10 4.3.11 4.3.12 4.3.13 4.3.14  Ratio During  C o m p a r i n g The P r e d i c t e d BOD5 V a l u e s The F i r s t O r d e r M o d e l s F o r Run 8 R e s u l t s Of The A l u m J a r T e s t s Remove C o p p e r I n i t i a l C o n d i t i o n s I n The The S t a r t Of Run 9  By 124  To 129  Reactor  At 131  I n i t i a l C o n c e n t r a t i o n Of The T a r g e t O r g a n i c A t The S t a r t Of Run 9  131  C o n d i t i o n s I n The End Of Run 9  138  Reactors At  The  C o n c e n t r a t i o n Of The T a r g e t O r g a n i c s I n The R e a c t o r s A t The End Of Run 9  140  K i n e t i c Constants k Determined The D e g r a d a t i o n I n Run 9  142  For  C o m p a r i s o n B e t w e e n The S t r a i g h t L i n e D e g r a d a t i o n R a t e s And The R e a c t i o n R a t e C o n s t a n t s k F o r Runs 7, 8 and 9 vi ii  145  L i s t Of T a b l e s (Continued)  Page  Table: 4.3.15  Chapter 4.4.1 4.4.2 4.4.3 4.4.4  4.4.5  C o m p a r i s o n Of The S t r a i g h t L i n e Degradation Rates And R e a c t i o n Rates Constants k For Selected Target Organic C o m p o u n d s F o r R u n s 7, 8 a n d 9  146  4.4: I n i t i a l C o n d i t i o n s I n The R e a c t o r s A t T h e S t a r t O f R u n 10  152  Initial Organic  152  C o n c e n t r a t i o n Of The T a r g e t C o m p o u n d s A t t h e S t a r t O f R u n 10  F i n a l C o n d i t i o n s I n The R e a c t o r s A t T h e E n d O f R u n 10  158  D e g r a d a t i o n Of The T a r g e t D u r i n g R u n 10  159  Organics  Reaction Rates Constants k andt h e D e g r a d a t i o n P e r Day F o r The T a r g e t O r g a n i c C o m p o u n d s D u r i n g R u n 10  161  C o m p a r i s o n Of The R e a c t i o n R a t e C o n s t a n t k F o r B a t c h And S e q u e n c i n g B a t c h Runs  162  4.4.7  BOD/COD  164  4.4.8  Use Of N u t r i e n t s And The N i t r o g e n / P h o s p h o r u s R a t i o F o r R u n 10  165  I n i t i a l C o n d i t i o n s P r e s e n t I nt h e R e a c t o r A t t h e S t a r t O f R u n 11  168  Initial Organic  168  4.4.6  4.4.9 4.4.10 4.4.11 4.4.12 4.4.13  R a t i o D u r i n g R u n 10  C o n c e n t r a t i o n Of The T a r g e t C o m p o u n d s A t t h e S t a r t O f R u n 11  D e g r a d a t i o n I n Terms Of T o t a l A n d COD D u r i n g R u n 11 D e g r a d a t i o n Of t h e T a r g e t D u r i n g R u n 11  BOD  5  Organics  R e a c t i o n Rate C o n s t a n t s k And The S t r a i g h t L i n e Decay Values F o r Target O r g a n i c s F o r R u n 11 ix  176 178  179  L i s t Of T a b l e s (Continued) Table:  Page:  4.4.14  BOD/COD R a t i o D u r i n g R u n 11  180  4.4.15  N u t r i e n t s Used And The N i t r o g e n / Phosphorous R a t i o E x h i b i t e d During R u n 11  181  Summary o f t h e R a n g e o f I n i t i a l a n d F i n a l Parameters f o r a l l Treatment Runs A t t e m p t e d  183  Summary o f t h e M o s t S u c c e s s f u l Runs i n T e r m s O f T o t a l COD a n d BOD Reduction and R e a c t i o n Rate Constant  184  Range o f t h e R e a c t i o n R a t e C o n s t a n t k for Phenol Degradation as a Single Carbon Source  185  Probable E f f l u e n t Quality of Sludge Which has Undergone t h e Ideal Treatment Process as Proposed by t h e E x p e r i m e n t a l Runs  185  Summary o f t h e N i t r o g e n / P h o s p h o r u s R a t i o f o r t h e E x p e r i m e n t a l Runs  186  Actual  187  Chapter 5.1.1  5.2.1  5.3.1  5.4.1  5.5.1  5.5.2  5:  and Corrected  C0D:N:P  x  Ratios  LIST  Figure: Chapter  OF  FIGURES  Page:  3.1:  3.1.1  Reactor  3.1.2  P i c t u r e of the Reactors Laboratory  as-Setup  P i c t u r e Of t h e R e a c t o r s P l a s t i c Cover  with Protective  3.1.3 3.1.4 Chapter 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5  Chapter 4.2.1 4.2.2  22 i n the 23 23  A e r a t i o n System P r o f i l e  26  4.1: T o t a l COD Run 1  Concentration  v s Time F o r 41  Supernatant F o r Run 1  COD  Concentration  vs  Time 41  T o t a l COD Run 2  Concentration  T o t a l COD Run 4  Concentration  v s Time F o r 47  Supernatant For  4.1.6  Profile  v s Time F o r 52  COD  Concentration  vs  Time  Run 4  52  PH v s T i m e F o r R u n 4  55  4.2: T o t a l COD C o n c e n t r a t i o n v s T i m e F o r Run 5 S u p e r n a t a n t COD C o n c e n t r a t i o n v s T i m e  64  For  64  Run  5  4.2.3  PH v s T i m e F o r R u n  4.2.4  VSS/TSS R a t i o v s Time F o r Run  4.2.5  Ammonia C o n c e n t r a t i o n  4.2.6  Phosphorus C o n c e n t r a t i o n v s Time F o r Run 5 T o t a l COD C o n c e n t r a t i o n v s T i m e F o r Run 6  4.2.7  5  65 5  v s Time F o r Run  xi  65 5  67  67 77  L I S T OF FIGURES ( C o n t i n u e d ) :  Page  Figure: 4.2.8 4.2.9  Supernatant F o r R u n 6.  COD  Concentration  77  Phosphorus Concentration Run  v s Time F o r  6  78  4.2.10  Ammonia  4.2.11  VSS  4.2.12 4.2.13  PH v s T i m e F o r R u n 6 T o t a l and D i s s o l v e d Copper vs  v s Time  Concentration  Concentration  Time F o r Run  v s Time F o r Run  6  6  78 79 79  Concentration  6  81  4.2.14  Total  4.2.15  T o t a l COD C o n c e n t r a t i o n v s T i m e F o r Run 7 S u p e r n a t a n t COD C o n c e n t r a t i o n v s T i m e  92  For  92  4.2.16  5 D a y BOD  v s Time F o r Run  Run  v s T i m e F o r Run  VSS C o n c e n t r a t i o n  4.2.18  VSS/TSS  4.2.19  PH v s T i m e F o r R u n  4.2.20  Total  v s Time F o r Run  R a t i o v s Time F o r Run  93  Concentration  Concentration  97  4.2.22  Phosphorus Concentration  4.3.4 4.3.3  7  7  Ammonia  4.3.2  93  95  4.2.21  4.3.1  7  7  and D i s s o l v e d Copper  v s Time F o r Run  Chapter  91  7  4.2.17  Run  7  v s Time F o r Run  7  98  v s Time F o r  7  98  4.3: T o t a l COD C o n c e n t r a t i o n v s T i m e F o r Run 8 S u p e r n a t a n t COD C o n c e n t r a t i o n v s T i m e  109  For  109  Run 8  Ammonia C o n c e n t r a t i o n PH v s T i m e F o r R u n 8  v s Time F o r Run xii  8  113 112  L I S T OF FIGURES Figure: 4.3.5  (Continued): Page:  Phosphorus Concentration  v s Time F o r  Run 8  113  4.3.6  VSS/TSS R a t i o v s Time F o r Run 8  115  4.3.7  VSS C o n c e n t r a t i o n  115  4.3.8  T o t a l and D i s s o l v e d  v s Time F o r Run 8 Copper  Concentration  v s Time F o r Run 8  116  4.3.9  Total  123  4.3.10  A c t u a l and Model Time F o r Run 8 A c t u a l and Model C o n c e n t r a t i o n Vs A c t u a l and Model  4.3.11 4.3.12  Ether  5 Day BOD  v s Time F o r Run 8 P r e d i c t e d T o t a l BOD  vs 125  Predicted Diphenyl Time F o r Run 8 Predicted Diphenyl  Concentration  Vs Time F o r Run 8  4.3.13  T o t a l COD Vs Time F o r Run 9  4.3.14  S u p e r n a t a n t COD C o n c e n t r a t i o n v s Time F o r Run 9 T o t a l and D i s s o l v e d Copper Concentration v s Time F o r Run 9  4.3.15 4.3.16  Phosphorus C o n c e n t r a t i o n  127 127 133 133 136  v s Time F o r  Run 9  136  4.3.17  Ammonia C o n c e n t r a t i o n  4.3.18 4.3.19  T o t a l 5 Day BOD v s Time F o r Run 9 Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l D e g r a d a t i o n Vs Time F o r R e a c t o r 2 Of Run 9  143  Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l E t h e r D e g r a d a t i o n Vs Time F o r R e a c t o r 2 Of Run 9  143  Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l M e t h a n e D e g r a d a t i o n Vs Time F o r R e a c t o r 2 Of Run 9  144  4.3.20  4.3.21  v s Time F o r Run 9  xiii  137 139  L I S T OF FIGURES  (Continued):  Page  Figure: 4.3.22  Chapter 4.4.1  Comparing F i r s t Order P r e d i c t e d Model And A c t u a l V a l u e Of D i p h e n y l Ether D e g r a d a t i o n Vs Time F o r R e a c t o r 3 Of Run 9 4.1: T o t a l a n d S u p e r n a t a n t COD vs  T i m e F o r Run  151  PH v s T i m e F o r R u n  4.4.3  VSS C o n c e n t r a t i o n  4.4.4  Phosphorus Concentration Run  Concentration  10  4.4.2  10  154  v s Time F o r Run  156  4.4.6  T o t a l and D i s s o l v e d Copper  Concentration  Time F o r Run  v s Time F o r Run  10  4.4.8  T o t a l COD C o n c e n t r a t i o n v s T i m e F o r R u n 11 S u p e r n a t a n t COD C o n c e n t r a t i o n v s T i m e F o r R u n 11 Phosphorus C o n c e n t r a t i o n v s Time F o r  v s Time F o r Run  10  160  170 170  11  172  4.4.11  Ammonia  4.4.12  T o t a l and D i s s o l v e d Copper vs  156  157  T o t a l 5 D a y BOD  Run  10  Concentration  4.4.7  4.4.10  154  10  Ammonia  vs  10  v s Time F o r  4.4.5  4.4.9  144  Concentration  Time F o r Run  v s Time F o r Run  PH v s T i m e F o r R u n  4.4.14  T o t a l 5 D a y BOD  172  Concentration  11  4.4.13  11  174 11  175  v s Time F o r Run  xiv  11  175  Acknowledgments:  The  author would l i k e t o thank  t h o s e p e o p l e who  a s s i s t a n c e t h i s t h e s i s w o u l d n o t be  Firstly,  Professors Atwater  guidance,  technical  To C o r k y ,  who  always  without  their  possible.  and M a v i n i c who  provided advice,  r e v i e w and most o f a l l e n c o u r a g e m e n t .  s u p p o r t e d me  and u n d e r s t o o d  why  I always  had  t o be a t t h e c o m p u t e r on s u n n y S u n d a y a f t e r n o o n s .  To S u s a n , P a u l a and  J u f u n g who  always  a n a l y z e s l u d g e s a m p l e s no m a t t e r how  To Dean, who  always  would t u r n a problem  p r o v i d e d a d v i c e and r e v o l t i n g they  p r o v i d e d t e c h n i c a l a d v i c e and  helped  looked.  solutions  that  i n t o e a s y s o l u t i o n s and a l s o f o r m a k i n g  those l o n g days i n the environmental  l a b a l o t more e x c i t i n g  then  t h e y s h o u l d have been.  F i n a l l y and most o f a l l , wonderful Max,  Mr.  t h a n k s t o Mom,  Dad,  B i g , Bam  and  the  recent a d d i t i o n s to the f a m i l y Nick, C r a i g , Corky, R i l e y and m i s s m u f e t t e ; who  succeed.  xv  always  believed I could  Mr.  1.Introduction: The  Chatterton Petrochemical site  Delta,  British  River.  A  was  Columbia.  phenol  was  sold  on  processing plant  i n p r o d u c t i o n on  plant  It sits  the  site  i s located  the banks of  originally  from  to a conglomerate  of  along River road  1961  to  the  Fraser  o w n e d b y Dow 1991.  companies  in  Chemical  I n 1981,  including  the B.C.  Sugar.  Two  L a g o o n s were c o n s t r u c t e d on  store  contaminated  water,  groundwater  during  the process plant's  t h e on  site  The  first  wastewater  l a g o o n was  treatment  used  The  a wastewater  constant  flow into  the n o r t h west was  designed  across  US  approximately 3 M 500  M. 2  The  and  lagoons  dewater  were p a r t  plant.  waste biomass  lagoon.  the  silt  liner  i s located  The  total  sludge area  lagoon o r i g i n a l l y  The  depth  lagoon of the  i s i n the order  r e c e i v e d process water  1  in  It  extending  I t c o u l d h o l d up  of process water. 70 M.  from  It insured a  This lagoon  impoundments.  by  of  plant.  metre compacted  the  55 M  and  generated  the Chatterton Petrochemical s i t e .  3  shape of  sludges  and  system.  equalization  G a l l o n s (7570 M )  rectangular  3  w i t h a 0.45 up  treatment  treatment  corner of  t h e base and  million  is  the  and  plant  to store  oxidation  was  i n order to treat  o p e r a t i o n s . The  the b i o l o g i c a l  second  the s i t e  and  to has  two a  lagoon of on  site  drainage.  received  In  On s o m e o c c a s i o n s  some s l u d g e s  from  t h e sumps a n d c a t c h b a s i n s .  1991, t h e C h a t t e r t o n P e t r o c h e m i c a l  phenol  processing plant.  dismantled  remediated  i n order  t o be s o l d .  operation,  treating  groundwater.  used  and h o l d i n g  o f . The s i t e  The t r e a t m e n t The second  tanks i s being  plant i s s t i l l lagoon  i n  i spresently  discharging effluent.  there  the thirty  years  lagoon.  organic chemicals  In  1994, G o l d e r  determined  1 750 M , 3  the sludge  to contain large concentrations  metals.  the lagoon  of approximately  3 500 M . 2  by Golder  by t h e C h a t t e r t o n Petrochemical  sludge  depth  Analytical  chemicals  and heavy metals  and Xylene)  contained  testing  of  i n the sludge.  t h e h i g h BTX  concentrations i n the sludge  2  o f 0.5  Corporation.  C h a t t e r t o n r e p o r t i n 1992 a t t r i b u t e d  Toluene  t o be  and had p r e v i o u s l y been  1.1 s h o w s t h e e x t r e m e c o n c e n t r a t i o n a n d d i v e r s i t y  organic  and  a t t h e bottom of the lagoon  based on an average  was p e r f o r m e d  system,  a t t h e bottom o f the  Associates Inc. investigated  M and s u r f a c e area  tested  and heavy  t h e volume o f sludge  approximately  of sludge  I t has been found  of  Table  of operation of the treatment  has been an accumulation  second  The  and disposed  down t h e  t o s t o r e g r o u n d w a t e r when t h e p l a n t i s n o t i n o p e r a t i o n o r  During  of  C o r p o r a t i o n shut  Many o f t h e b u i l d i n g  are p r e s e n t l y being  not  i t has been r e p o r t e d t h a t i t  (Benzene,  to the heavier  than water organics diphenyl  oxide,  such as phenol,  forming  heavier than water Golder Study (1994)*:  Parameter: Moisture Range Mean Standard  d i p h e n y l , methyl d i p h e n y l and  Content(%):  73.3  Deviation  oily Chatterton  - 88.4 84 6  89.9  C o p p e r (mg/Kg): Range Mean Standard Deviation  4 500 - 58 400 19 700 19 900  9300  C o b a l t (mg/Kg): Range Mean Standard Deviation  3 700 - 12 100 6 610 2 980  6900  P h e n o l (mg/Kg): Mean Standard Deviation BTX Mean Benzene Toluene Xylene  4 630 2 060  (mg/Kg):  (1992)**:  3700  13 000 92 000 18 500  Table 1.1 : Comparison Sludge C h a r a c t e r i s t i c s . * Golder A s s o c i a t e s Inc. (1994) ** C h a t t e r t o n Petrochemical C o r p o r a t i o n (1992). g l o b u l e s w h i c h w o u l d t r a p t h e BTX. I t was o b s e r v e d t h a t a n iridescent slick  f l o a t e d t o t h e s u r f a c e when t h e b o t t o m o f t h e  l a g o o n was s t i r r e d . organics  Golder  t o escape through  obtained  dragged across obtained  Therefore,  f i v e core  t h e r e was l i t t l e  chance f o r t h e  volatilization.  samples o f t h e lagoon u s i n g a boat  t h e w a t e r / s l u d g e s u r f a c e . The s a m p l e s w e r e  u s i n g a hand c o r i n g  device.  3  The  v a r i a b i l i t y of the r e s u l t s of the sludge  show t h e  u n i f o r m i t y o f t h e m i x t u r e . T h e r e e x i s t s many d i s t i n c t  non pockets  t h e s l u d g e w i t h d i f f e r e n t c o n c e n t r a t i o n s o f o r g a n i c s and E a c h s a m p l e i s i n d e p e n d e n t and be  l o o k e d on  diversity  The  sludge  content.  i n terms of showing  r e g u l a t i o n s due  a final  legally  t o t h e h i g h o r g a n i c s and disposed  in British  the  d i s p o s a l s i t e w o u l d h a v e t o be  f e e s i n t h e n e i g h b o u r h o o d o f 1000  I n M a r c h o f 1994,  dollars a  a p r o j e c t p r o p o s a l was  of the C i v i l  Columbia metal  Columbia. found  U n i t e d S t a t e s . T h i s w o u l d i n c u r h i g h t r a n s p o r t a t i o n and  Atwater  not  sludge.  I t c a n n o t be  Therefore,  but  i s c o n s i d e r e d a S p e c i a l Waste under B r i t i s h  environmental  metals.  the standard d e v i a t i o n should  i n terms of accuracy,  of the  in  i n the tipping  tonne.  presented  to Professor  E n g i n e e r i n g Department of the U n i v e r s i t y  of  B r i t i s h Columbia. I t proposed l o o k i n g at the p o s s i b l e a e r o b i c biological  treatment  organic content  o f t h e s l u d g e . The  o f t h e s l u d g e and  d i s p o s e d o f i n an i n d u s t r i a l to  The  the  hope was  enable  landfill  the f i n a l  and  product  the e f f l u e n t  the to  be  released  river.  first  s t e p was  to perform  p r e l i m i n a r y a n a l y s i s of the  i n order to c o n f i r m the f i n d i n g s of the Golder s a m p l e s w e r e t a k e n , e a c h c o n s i s t i n g o f 100 taken  to degrade  from the northwest  end  of the lagoon. 4  r e p o r t . F i v e grab  m l . The The  sludge  samples were  water l e v e l  was  l o w s o i t was p o s s i b l e t o go 1 m e t e r i n t o t h e l a g o o n .  The s a m p l e s  w e r e t a k e n a t v a r i o u s p l a c e s a l o n g t h e n o r t h w e s t edge o f t h e lagoon.  The f o l l o w i n g t a b l e shows t h e p r e l i m i n a r y r e s u l t s o f t h e  analytical  i n v e s t i g a t i o n o f the sludge.  Parameter:  U.B.C. I n i t i a l Analysis 96.9  Moisture Content (%): COD  (mg/L):  239 959  Copper C o n c e n t r a t i o n  (mg/Kg):  536  C o b a l t C o n c e n t r a t i o n (mg/Kg): T a b l e 1.2: I n i t i a l i n v e s t i g a t i o n sludge Table  276 o f the C h a t t e r t o n Petrochemical  1.2 shows t h a t t h e a n a l y t i c a l  results obtained  c o n s i d e r a b l y from those o f both Golder Petrochemical sampling  Sludge  differed  and t h e i n i t i a l  Chatterton  s t u d y . T h i s c a n p a r t i a l l y be e x p l a i n e d due t o t h e  d i f f e r e n c e s . The e a r l i e r s t u d i e s u s e d a b o a t a n d a c o r e  auger t o r e t r i e v e samples from t h e middle  o f t h e lagoon.  However,  t h e U.B.C. s t u d y u s e d a s h o v e l a n d s a m p l e s w e r e t a k e n v e r y the s i d e s o f t h e lagoon. composition  The  o f the sludge  near  I t a l s o f u r t h e r reemphasises t h a t t h e i squite variable.  a n a l y s i s gave a p r e l i m i n a r y i n d i c a t i o n s o f t h e Chemical  O x y g e n Demand o f t h e m i x t u r e .  I t r a n g e d f r o m 180 000 t o 260 000  mg/L.  The  w a s t e was a h i g h s t r e n g t h m i x e d w a s t e a n d i t ' s p o t e n t i a l  d e g r a d a t i o n w o u l d b e hampered b y t h e h i g h c o n c e n t r a t i o n o f b o t h 5  c o p p e r and indicated  cobalt. that  such  Nothing  present  a treatment  was  6  i n the  literature  possible.  search  2. The  literature  background study  was  with and  a  remotely  any  related  presented  previous  composed o f  When f a c e d w i t h t h e many r e m e d i a t i o n as:  approaches  (Prince  one  c l e a n up  physical,  treatment as  the body  dealt  T o t a l COD,  Since the  no  metals  higher  directly  literature  available  the  history  and  of  research,  w h i c h had  options  when  theory  review  treating  behind  the  study.  of  a contaminated  available.  transfer  without  industrial  They are  thermal  and  most  site  commonly  biological  acidity  results  the  volume of  and  in toxic the  the  a chemical  precipitation by  contaminated  p r o v i d i n g a permanent  usually exploits  procedure total  presented,  chemical,  solutions simply  waste such  the  this  of  1993).  medium t o a n o t h e r  Chemical  are  of  to  to the  the  in this  account  significantly  literature.  be  some o f  options  considered  Physical  can  t o add  case  range of  an  relating  investigation  compounds a r e  a b l u e p r i n t of  demonstrated  goes on In the  The  i n the  research  a h a z a r d o u s w a s t e and processes  waste.  target organic  study  area.  l o c a t e d any  similar  to present  been performed  p r o j e c t then  possible to  specific  than  is  r e s e a r c h w h i c h has  i n that particular  not  Review:  i s g e n e r a l l y used  i n q u e s t i o n . The  knowledge it  review  Literature  products  w a s t e by  dilution. 7  from  solution.  property of  potential. and  material  Often  the  this  i t usually increases The  contaminants  are  not  e l i m i n a t e d but are simply  techniques expensive (Prince  such as i n c i n e r a t i o n when  dealing with  within a matrix.  are effective  Thermal  but are often  quite  l a r g e amount o f w a s t e m a t e r i a l  1993).  Biodegradation by  entrapped  i s defined  microorganisms.  typically  defined  as the break  down o f o r g a n i c  The d e g r e e o f a l t e r a t i o n  compounds  v a r i e s and i s e i t h e r  as m i n e r a l i z a t i o n o r b i o t r a n s f o r m a t i o n  (Prince  1993). M i n e r a l i z a t i o n i s t h e complete breakdown o f t h e o r i g i n a l organic  matter  t o carbon d i o x i d e and biomass  biotransformation to  one o r more d a u g h t e r  toxic  than  the original  Bioremediation high  time  thus  (Jespersen waste,  c o m p o u n d s w h i c h may compound  1993).  Bioreactor reactor.  provides  I t also provides  long  term  treatment,  treatment  This  to other  o r may  compound  n o t be  liability  alternatives  less  potential  and  risks  treatment  (Prince  of  to  treat  1993).  technologies  increases 8  savings  liabilities  b i o v e n t i n g and b i o r e a c t o r  process  as  a permanent e l i m i n a t i o n o f t h e  i s t h e p h y s i c a l movement  treatment  such  the opportunity  transportation costs  T h e r e a r e many b i o r e m e d i a t i o n land  of a parent  While  1993).  also provides  Bioremediation  saving  reducing  include:  (Prince  relative  The t e c h n i q u e  a n d money.  site,  degradation  1992).  has been g a i n i n g p o p u l a r i t y r e c e n t l y due t o i t ' s  p u b l i c acceptance,  incineration.  on  i s the partial  (Autry  which treatment.  of the waste  into  t h e s e p a r a t i o n o f many  a  contaminants destruction  from s o i l  and r e s u l t s i n a f a s t ,  of the contaminants.  must be p h y s i c a l l y moved dewatered.  Thus,  be i n c u r r e d  and that  projects  eventually  treated  (Jespersen  growth c o n d i t i o n s  added t o t h e s i t e  This  natural  are provided  to optimize  In a recent  study,  of a petroleum  bacteria site  of the waste.  of naturally occurring  regulatory organisms involved  they are  contaminated  numbers t o c a r r y  Other  authors  the (Bradford  bacteria  soil  alter  may  bacteria to  acclimatised  f o r t h e compounds. T h i s  and i n s u f f i c i e n t  can  degradation  the process  capable of hydrocarbon degradation  degradation use  rates  costs  In controlled biodegradation,  The b i o a u g m e n t a t i o n d i d n o t s i g n i f i c a n t l y biodegradation  be  1993).  The p r o c e s s u t i l i z e s n a t u r a l l y o c c u r r i n g  degrade the waste.  this  s o l i d s must  the waste  biodegrade n a t u r a l l y unless  t o e x t r e m e pH o r t o x i c i t y .  be t o o s l o w t o be o f v a l u e .  1991).  The d r a w b a c k s a r e t h a t  m o b i l i z a t i o n and d e m o b i l i z a t i o n  f o r small  Most wastes w i l l exposed  high  effective  (Autry  were  1991).  the  implies  that  are i n the s o i l  from  out e f f e c t i v e  have i n d i c a t e d t h a t  bacteria are preferred  the  due t o t h e  d i f f i c u l t i e s i n releasing g e n e t i c a l l y engineered i n the environment.  i n bioremediation  microorganisms  (Prince  None  of the over  100 EPA  site  c u r r e n t l y uses g e n e t i c a l l y engineered  1993).  9  The  success of bioremediation r e l i e s  following  1) T h e in  limiting  toxicity  large  and  rate  the complete  2) The break ease  t y p e and  can  wastes  of  compound  of the  system  1988).  because  rates  bacteria  (Pitter  1975):  o f b i o d e g r a d a t i o n o f compounds d e c r e a s e s f o r h i g h l y  t h e more d i f f i c u l t  The  concentrations reported 1993;  1993).  concentration over  Rebhun 1988;  heavy  1500  inhibitory  components:  and  as  low  as  mg/L  the treatment process  growth  P a r k e r 1994).  (Prince  1993).  the  1991).  Phenol  200  o r g a n i c compounds and  own  (Autry  The  branched  t h e more complex  i t i s to degrade  R o z i c h 1984;  microbial to their  a general rule,  mg/L  with  metals, toxic  inhibit  As  of the waste  to interfere  the  of a  (Rebhun  itself,  at different  compound,  can  presence  to the poisoning  c o m p l e x i t y of waste  (Prince  of  The  of b i o a c t i v i t y  compounds  3)  itself:  lead  inhibition  down d i f f e r e n t  the c o n t r o l l i n g  factors:  of the waste  concentration  on  been  (Vipulanandan  High or  have  concentrations  inorganic  Many compounds  degradation at high concentrations  salts are (Grady  1990) .  4)  The  temperature,  degrees waste to  Celsius  since  (Bradford  reaction 1991):  d e g r a d a t i o n were conducted  twenty  s i x degrees  Celsius  rates  t e n d t o be  most s t u d i e s around  mixed  18  hazardous  room t e m p e r a t u r e .  i s the preferred 10  on  slow below  temperature  Twenty range  f o r o p t i m u m d e g r a d a t i o n ( B e l t r a m e 1979; Temperature  Beltrame  1980).  a f f e c t s the b i o d e g r a d a t i o n a p p l i c a t i o n  i n two  ways.  B o t h t h e s p e c i f i c g r o w t h r a t e o f t h e d e g r a d i n g o r g a n i s m s and  the  a c t i v i t y o f t h e enzymes r e s p o n s i b l e f o r c o n t a m i n a n t o x i d a t i o n l a r g e l y t e m p e r a t u r e dependent  5) The d e g r e e o f a g i t a t i o n :  (Autry  1992).  C h e m i c a l O x y g e n Demand k i n e t i c s i n a  b a t c h r e a c t o r h a v e b e e n showed t o be a f f e c t e d b y t h e d e g r e e a g i t a t i o n and  i m p e l l e r submergence. I n c r e a s e d a g i t a t i o n  c e l l s and f r o m t h e g a s p h a s e  to the bulk  A g i t a t i o n a l s o improves the performance of the r e a c t o r d i s s i p a t i n g e x c e s s h e a t and gaseous  (Deepak  and  liquid. by  i n h i b i t o r s . However, e x c e s s  a g i t a t i o n h a s b e e n shown t o p h y s i c a l l y damage c e l l s and efficiency  of  increases  t h e s u r f a c e a r e a f o r mass t r a n s f e r b e t w e e n t h e b u l k l i q u i d the b i o l o g i c a l  are  reduce  1994).  6) A c c l i m a t i o n o f m i c r o o r g a n i s m s t o a c o n t a m i n a n t c a n e n h a n c e t h e e x t e n t a n d t h e r a t e o f d e g r a d a t i o n : Many s t u d i e s h a v e shown t h a t t h e d e g r a d a t i o n r a t e o f compounds s i g n i f i c a n t l y  increase through  e x p o s u r e o f t h e b a c t e r i a t o t h e s u b s t a n c e . An o r i g i n a l c u l t u r e was  o n l y a b l e t o r e d u c e t h e T o t a l BOD  o f a benzene  b y 49%. However, t h e t h i r d s u b c u l t u r e d e g r a d e d b e l o w t h e d e t e c t i o n l i m i t o f Gas n e g l i g i b l e T o t a l BOD  Chromatography  concentration.  microbial waste  t h e compound t o and t o a  ( P a t t e r s o n 1981;  Kinannon  1983; Tabak 1 9 8 1 ) . A c c l i m a t i o n n o r m a l l y o c c u r s when b a c t e r i a exposed  are  t o t h e w a s t e . B a c t e r i a t h a t c o n t a i n enzymes c a p a b l e o f 11  breaking  down t h e s p e c i f i c  bacteria  and  waste  reproduce  d e g r a d a t i o n ( B r a n d f o r d 1991).  increases  i n the average  only  the second  (Lewandowski benzoates, However, increased  7)  The  1991):  1990).  show no  the rate  that  potential The  rate  i n water  both nitrogen  The  microorganism growth However,  as  some c o m p o u n d s  required  i s slowed  by  performed  with  and  The  (Haller  onto  n o t be  available  the s o i l  into  1978)  (Bradford  soil  due  to  colloid, organic matter  the s o l u b i l i t y  of  the  micronutrients: be  It i s essential  present i n order f o r  carbon:nitrogen:phosphorus  g e n e r a l a c c e p t e d C:N:P  ratio  d e g r a d i n g sewage i s 100:5:1  complete  low c o n c e n t r a t i o n  i s 100:10:1.  glucose  1979).  phosphorus  for it's  wastes  like  s o u r c e s u c h as  breakdown.  phenolic  ( B e l t r a m e 1979,  12  1980).  wastes, Sulfur  s o do  In  ratio  for  (Metcalf  the c o m p o s i t i o n of the waste changes,  nutrients  reported  f o r some  amount d e g r a d e d .  or dissolution  (Smith  and  have been  from the contaminated media  to take place.  waste s p e c i f i c .  ratio  the t o t a l  presence of nutrients  degradation is  of another carbon  and  fold  o f a c c l i m a t i o n when m o n i t o r e d .  hydrophobic!ty, sorption  1992).  contaminant  The  benefits  of desorption  volatilization  8)  the o t h e r hand,  bacteria  to five  i n a batch reactor  I n m a n y c a s e s t h e c o n t a m i n a n t s may  contaminant  (Autry  On  Two  degradation rates  exposure  the addition  rate  than the other  t h e p r e s e n c e o f t h e enzyme c o n t a i n i n g  s p e e d s up  after  faster  1993).  the  studies the  and  proposed trace  nutrients required  9)  (K,  (Prince  The optimal  1993).  pH f o r g r o w t h i t should  lies  b e t w e e n 6.5 a n d 7.5  generally  be maintained  (Jespersen  between 5 and  1991).  aerobic  degradation  which c a nbe d e s c r i b e d  o f a waste  W h e r e : WDR i s t h e Cw  i s the  Co Cn are  i s the  the  i s a fourth order  reaction  as follows:  WDR=KCwCoCnCp  Cp,  also  1993).  However,  9 (Bradford  The  Mg, F e , N a , C o , Z n , Mo, C u a n d M n ) a r e  (Bradford  rate  o f waste  concentration concentration  concentration  1990) destruction  o f waste o f oxygen  of nutrients  (nitrogen and  phosphorus)  In most c a s e s ,  the  reaction.  i s accomplished  This  concentrations supplied agitation  c a nreduced  i s high  needs o f the  enough t h a t  present  as follows  i n the  first  i n the  reactor  order  are  b a c t e r i a and i n s u r i n g  there  system.  (Bradford  t o a pseudo  by i n s u r i n g that t h e  o f oxygen andn u t r i e n t s  t o meet t h e  deficiencies modified  process  are  no  that  micronutrient  The e q u a t i o n  can then  1991): WDR=KCw  Therefore,  the  waste  reduction  rate 13  i s simply  a function  of the  concentration maximize the  o f t h e w a s t e . The kinetic  system should  reaction rate  (Bradford  be  designed  to  1991).  The  first  a p p r o a c h when d e a l i n g w i t h a w a s t e i s t o p e r f o r m  lab  s c a l e s t u d i e s , to determine the p o s s i b l e e f f e c t i v e n e s s  batch of  b i o r e a c t o r treatment. There are s e v e r a l types of b i o r e a c t o r s can  be  used from the  simple  The  T r u e x r e a c t o r has  beaker to the  complex Truex  been s p e c i f i c a l l y d e s i g n e d f o r  process dynamics d u r i n g  the  biodegradation  (Truex 1994). T r e a t a b i l i t y s t u d i e s are  reactor.  monitoring  of v o l a t i l e  relatively  organics  inexpensive,  a l l o w o p t i m i z a t i o n of operating  conditions  criteria  1 9 9 1 ) . However, G r a d y w a r n s  f o r s c a l e up  (Bradford  lab-scale reactors  tend to overpredict  occur at the p i l o t  and  similar  loadings.  prevalent  as  The  and  s c a l e of the  provide  the  removal t h a t  reason f o r t h i s that a i r s t r i p p i n g  c o s t and  i t i s reported  h e a t l o s s and  that excessive  tends to destroy  h e n c e l o w e r MLVSS. H i g h c o n c e n t r a t i o n s  t e n d t o change the p o p u l a t i o n  under heavy contaminant l o a d i n g  Many s t u d i e s h a v e f o c u s e d on  (Capps  the  rates  not  oxygen  be  optimum  organic  lab s c a l e environment.  an a c c l i m a t i s e d c u l t u r e o f 14  reactor  microorganisms  s t u d y n o t e d t h a t many compounds r e s i s t a n t t o d e g r a d a t i o n e a s i l y degraded using  i s more  1995).  removal r a t e s of  p r i o r i t y p o l l u t a n t compounds i n t h e  that  with  aeration  of d i s s o l v e d  dynamics which w i l l  design  will  same t y p e o f r u n  a removal mechanism i n a l a b - s c a l e a e r a t e d  (Grady 1990). A l s o , increase  full  the  and  that  Each  were  microorganisms  (Patersson focussed  1981;  on  Tabak 1981;  the degradation  Kincannon 1983). These s t u d i e s o f s i n g l e p u r e compounds i n  c o n c e n t r a t i o n g e n e r a l l y l e s s t h a n 10 mg/L. many d i f f e r e n t c h e m i c a l differently.  Initial  c o n s t i t u e n t s can  A mixed waste behave q u i t e  t e s t i n g must be done on t h e w a s t e  d e t e r m i n e i t ' s d e g r e e o f d e g r a d a b i l i t y . The determining  the p o t e n t i a l success  a b o v e 2.5 to  The  step  examination  the waste should  i n an a c t i v a t e d s l u d g e  process.  b u t w h i c h m i g h t be d e g r a d e d u n d e r a  A  be  ratio  longer  t i m e (Capps 1995).  remediation.  i n h i b i t o r y s u b s t r a t e f o r g r o w t h . The  m i c r o o r g a n i s m s c h a n g e s . Too o p t i m u m mix  r a t e of b i o d e g r a d a t i o n  i n c r e a s e s , t h e number and high a concentration  c u l t u r e should  Many r e s e a r c h e r s ,  (Autry  is  species  that  1991).  i n t h e p a s t , h a v e assumed t h a t s e q u e n t i a l 15  an  (Vipulanandan  h a v e t o be a d d e d t o t h e w a s t e s i n c e an a c t i v e a l r e a d y be p r e s e n t  the  of  leads to a l e s s  of o r g a n i s m s (Tokuz 1991). I t i s u n l i k e l y  bacteria will  as  of phenol have c r e a t e d  i n i t i a l c o n c e n t r a t i o n of the waste  the c o n c e n t r a t i o n  success  a l a g phase i n the growth of  m i c r o o r g a n i s m s . Some c o n c e n t r a t i o n s  d e p e n d e n t on t h e  i n the  High c o n c e n t r a t i o n of such chemicals  p h e n o l h a v e b e e n shown t o i n d u c e  1 9 9 3 ) . As  in  i s the  i n i t i a l c o n c e n t r a t i o n of the waste i s c r i t i c a l  of the  to  i n d i c a t e s that there are molecules which are r e f r a c t o r y  degradation;  residence  first  of treatment  o f t h e COD/BOD r a t i o . B e l o w a r a t i o o f 2.5 r e a d i l y biodegradable  with  substrate easily  removal  occur i n a multicomponent  d e g r a d a b l e compounds b e i n g u s e d  substrate system,  substrate rates.  t e n d s t o be  However,  i s increased,  there  (Grady  1989).  removal  kinetic  removal  of a single  proposed (Kim  1979;  a mixed  showing other  further  parameter  and  waste  models  compound  c a n be  models  will  Studies  waste  attack  substrate the  have  organic  compounds more  concentration  increases  been  present PCP,  i n the presence  system w i l l  have a more  of  diverse  population.  of a control  in this  reactor  microorganisms  t h e s y s t e m must be  has  (Parker  as a b i o c i d e  (Lewandowski  been documented  research  s h o u l d be  to determine the f r a c t i o n  which are being a i r stripped  growth  to  to describe  t e n d t o be  the  interfere  have been done w i t h  i m p o r t a n t component o f t h e l a b s c a l e  biocide,  single  as  growth  required  of s p e c i f i c  the e f f l u e n t  1989).  contaminants. A mixed  prevails  i n a m i x t u r e . Many m o d e l s  over predict (Grady  used  waste  although at  some c o m p o u n d s  that  the  by  slower specific  proposes  the degradation rate  establishment  used  removal  t o the pathways  R o z i c h 1984). These  that  microbial  One  Grady  due  f o r the degradation rates  conservative in  giving  with  In a mixed  simultaneously,  a r e e x c e p t i o n s as  w i t h each o t h e r ' s removal them  used  media,  followed  t o use.  Simultaneous substrate  of the system  rates.  first,  p r o g r e s s i v e l y more d i f f i c u l t  different SRT  will  1994).  closely  I f copper  sulfate  monitored because  i n systems  with  copper  organics  sulfate  to prevent the growth  1990).  16  Copper  of  the  can  be  of  i s used  as  microbial  sulfate  levels  a  up t o 20  mg/L.  As t h e d e g r a d a t i o n o f t h e w a s t e p r o c e e d s , c a r b o n d i o x i d e w i l l produced  and  l o w e r t h e pH t h r o u g h t h e f o r m a t i o n o f c a r b o n i c a c i d .  The d i m i n i s h i n g pH d u r i n g e x p e r i m e n t s seems t o i n f l u e n c e p a t t e r n of the growth curves. M i c r o b i a l growth d e g r a d a t i o n r u n s was  biomass  r e a c h e d i n t h e r e a c t o r . The d e c r e a s i n g  s t a b i l i s e d when t h e compounds w e r e e x h a u s t e d  1989) . T h i s i s n o t u s u a l l y e x p e r i e n c e d a t t h e f u l l the accumulation of a c i d  the  i n p h e n o l i c waste  s l o w e d due t o t h e i n h i b i t i o n o f t h e  c a u s e d by t h e v e r y l o w pH pH was  be  (Lallai scale,  intermediates i s negligible.  since  (Chuboda  1990)  Another problem w i t h a h i g h o r g a n i c l o a d i n g r a t e , hydrocarbon,  i s that b i o f l o c s e t t l e a b i 1 i t y  i s i m p a i r e d . Some h a v e  h y p o t h e s i s e d t h a t t h e b i o f l o c becomes c o a t e d by a l a y e r , which a f f e c t s performance  (Rebhun  especially  hydrophobic  i t ' s p h y s i c a l p r o p e r t y and b i o c h e m i c a l 1988).  I n t h e c o u r s e o f t r e a t m e n t , a b s o r p t i o n by t h e m i c r o b i a l  biomass  i s an i m p o r t a n t p r o c e s s i n t h e r e m o v a l o f h a z a r d o u s o r g a n i c pollutants i n biological the process i s f u l l y may  t r e a t m e n t s y s t e m s . The  danger  r e v e r s i b l e and d e s o r p t i o n o f t h e  o c c u r f u r t h e r down t h e r o a d ( B e l l  1987). A l s o ,  i s that pollutants  i t has  been  shown t h a t t h i s p r o c e s s g r e a t l y a f f e c t s t h e s e t t l e a b i l i t y o f t h e biofloc  (Stenstrom  1989).  In  t h e d e g r a d a t i o n o f a m i x e d w a s t e , i t i s p o s s i b l e t h a t one  compound may n e e d a n o t h e r  compound t o be p r e s e n t  i n o r d e r t o be  d e g r a d e d . T h i s i s p r o b l e m a t i c b e c a u s e b o t h compounds must be present  i n the r i g h t r e l a t i v e c o n c e n t r a t i o n s t o each other i n the  w a s t e m i x . Many compounds c a n o n l y be d e g r a d e d when t h e o t h e r compounds i n d u c e enzymes t h a t a c t g r a t u i t o u s l y o n t h e p o l l u t a n t (Neufeld  1979).  To o p t i m i z e t h e d e g r a d a t i o n p r o c e s s , is  a sequencing  batch  process  o f t e n used. Not o n l y a r e t h e b a c t e r i a a b l e t o degrade t h e  waste a t a f a s t e r r a t e ( s i n c e t h e y have b e i n g a c c l i m a t i s e d t o t h e waste mixture)  b u t biomass w i t h an i n c r e a s e d s l u d g e age has been  shown t o b i o d e g r a d e age  r e f r a c t o r y o r g a n i c s f a s t e r than a low sludge  b i o m a s s ( C a p p s 1 9 9 5 ) . The i n i t i a l  l a g phase i s reduced  as t h e  b a c t e r i a a r e r e s i s t a n t t o t h e shock l o a d i n g e f f e c t s o f t h e waste a d d i t i o n . Thus, a h i g h e r i n i t i a l (Hsu  w a s t e l o a d i n g r a t e c a n be u s e d  1 9 8 6 ) . A s t u d y , u s i n g an SBR, s u c c e s s f u l l y t r e a t e d a h i g h  s t r e n g t h mixed p h e n o l i c waste w i t h i n i t i a l  phenol  concentrations  h i g h e r t h a n 2000 ppm. The t o t a l COD o f t h e m i x t u r e 7 500 mg/L.  T h i s was s e e n a s a m a j o r s t e p s i n c e a u t h o r s h a d l o n g  proposed t h a t a phenol inhibitory to  was  (Brenner  c o n c e n t r a t i o n higher than  1 9 9 1 ) . The a u t h o r  introduced anoxic  a v o i d b u l k i n g s l u d g e , w h i c h was p r e s e n t  The p r e s e n c e  100 mg/L  was  periods  in his earlier  work.  o f f i l a m e n t o u s o r g a n i s m s and t h e b u l k i n g s l u d g e were  r e s p o n s i b l e f o r poor s e t t l e a b i 1 i t y o f t h e sludge.  18  Many s t u d i e s h a v e b e e n done on t h e t r e a t a b i l i t y o f m i x e d w a s t e hazardous sludges the waste sludge and  success  i n C a n a d a and  t h e U n i t e d S t a t e s . However,  from a l l these  of treatment  sites differ,  ( S l o a n 1987;  so do  Jespersen  1 9 9 5 ) . None o f t h e s t u d i e s d e a l t w i t h a s l u d g e c o n s t i t u e n t s as c o n c e n t r a t e d  as t h e C h a t t e r t o n  s i t e . M o r e o v e r , none h a v e t h e a d d e d c o m p l e x i t y and  copper present  b e e n shown t o be  the  1993;  as  results  Capps  t h a t had  organic  Petrochemical of having  cobalt  i n h i g h c o n c e n t r a t i o n . B o t h compounds h a v e  i n h i b i t o r y to the growth of microorganisms i n  low  c o n c e n t r a t i o n s . D i s s o l v e d c o p p e r c o n c e n t r a t i o n as l o w  as  1.0  mg/L  present  has  b e e n shown t o r e d u c e t h e  i n a w a s t e w a t e r by 40 p e r c e n t vary,  Objectives:  determine the b i o d e g r a d a b i 1 i t y of the  Petrochemical  and  Chatterton  sludge.  d e t e r m i n e t h e optimum i n i t i a l  efficient 3) To  wastes  concentrations.  2.1  2) To  (Mowat 1 9 7 6 ) . However, as  so does t h e a b i l i t y of t h e m i c r o o r g a n i s m s t o p e r f o r m under  h i g h heavy metal  1) To  r a t e of degradation  e f f e c t i v e treatment  sludge  loading rate for  using a Modified Batch  e s t a b l i s h t h e q u a l i t y o f t h e e f f l u e n t and  treated  w h i c h c o u l d be e x p e c t e d f r o m t h e a e r o b i c b i o l o g i c a l  an  Process. sludge  treatment  process. 4) To m o d i f y t h e b a t c h and  m o n i t o r and  reactors to operate  observe d i f f e r e n c e s . 19  as t r u e b a t c h  reactors  5)  To  Batch  determine Process vs  the d i f f e r e n t  rates  the M o d i f i e d Batch  20  of  reaction  Process.  f o r the  True  3. 3.1  Reactor  Four  PVC  had  and  r e a c t o r s were m o d i f i e d t o be u s e d used  as l y s i m e t e r s .  i n h e i g h t and had an i n t e r n a l previously  were d r i l l e d bottom.  Methods:  Design:  They had p r e v i o u s l y cm  Materials  The u n i t s  diameter  The b o t t o m  p o r t was  15 cm,  3/4"  starting  d u r i n g s a m p l i n g due t o t h e h i g h s o l i d s  mixture.  The o t h e r p o r t s were  f r a m e was  Dayton v a r i a b l e  fabricated  speed  covered  i n diameter  a t 2 cm  content  ports  from  the  prevent of the  a s c a n be s e e n i n  plywood  be seen  a closed hazardous  frame.  onto  the middle  that  vapours  during  the aeration  i t was  t h e frame  could easily fabricated  The p u r p o s e was  and  be  from  steel  slipped 2  cm  o f the frame  o f t h e b o x was being degraded  as  to create was  necessary to take precautions to  were n o t v e n t e d of the waste.  of plastic  reactors.  o f t h e t a n k s . The  30 cm d o w n t h e s i d e  Since the waste that  i n nature,  a sheet  were mounted  The b o x was  i n F i g u r e 3.1.2.  insure  vapours,  the four  into  and extended  system.  t o encompass  by a wooden box w h i c h  on and o f f t h e s t e e l  can  mixers  rods were extended  f r a m e was  thick  bottoms  3.1.1.  A steel  mixing  The  i n order to  clogging  Figure  w e r e c u t t o 75  open. Sampling  i n diameter  1/2"  reactors.  o f 30 cm.  b e e n s e a l e d a n d t h e t o p was  and t h r e a d e d e v e r y  as b a t c h  was  To  into  the general lab area  further  prevent  the loss  v e l c r o e d t o t h e end o f t h e  21  of  sides  Figure 3.1.1  Reactor Profile  15 cm Sampling ports  Air nlet  30 cm 22  75 cm  Figure  3.1.2  Picture of  the  reactors  as  F i g u r e 3.1.3 P i c t u r e of the l a b o r a t o r y p r o t e c t i v e p l a s t i c sheet i n place 23  s e t up  reactor  i n the  setup  laboratory  with  of  t h e box and extended  sat,  thereby  creating a tent  Figure  3.1.3.  during  sampling.  System Past  to the table like  level  on which t h e r e a c t o r s  barrier.  The p l a s t i c wrap c o u l d  This  easily  c a n be s e e n i n  be removed a n d  I n t h e m i d d l e o f t h e t o p o f t h e b o x , a 15 cm  constant  speed  f a n was p l a c e d  t o remove a l l t h e  v a p o u r s c o m i n g o u t o f t h e r e a c t o r s . The fumes were t h e n through  5 cm  stored  (2") p l a s t i c pipe  into  a fumehood w h i c h  piped  vented  outside.  The  flow  pressure  of a i rinto  t h e r e a c t o r s was  regulator t o guard  The a i r l i n e was t h e n Cole  Palmer  point  stiff  valve  Lock quick output  top  of the reactor,  separate vessel.  rate using  lines.  wire  which allowed  tended  i n the circuit,  the ball valve.  were adhered  At f i r s t ,  Prior  with  onto  needle  Followed  by  t o s e t and measure to entry split  high  into into  aeration tests, 24  the two  of the with  enough t h a t i t  of the reactor.  since during  potentially  Swage  Palmer v a r i a b l e  The  operation,  wrap around t h e  t h e a i r l i n e s w e r e w e i g h e d down w i t h  rings but during  1/4"  a Whitey  facing sides  and taped  the contents  and c o u l d  fluctuations.  to the sides of the reactor  which would not corrode  to float  point,  a Cole  a  through  a i r control.  o f t h e a i r l i n e was n e c e s s a r y ,  mixers. steel  At this  t h e a i r l i n e was o n c e a g a i n  w o u l d n o t be i n c o n t a c t fixing  sudden pressure  The t u b e s were f i x e d  The l i n e s  through  two and c a r r i e d  tubing.  f l o w m e t e r t o be p l a c e d  a i rflow  they  into  f o r p i n point  f i t connectors,  the  steel  split  plastic  was u s e d  against  initially  i t was n o t i c e d  stainless that the  lines each  still line  floated  was  diffusers  c o n s i d e r a b l y . On  once a g a i n s p l i t  were p l a c e d on  obtained  from  a pet  Four  the  experiment.  seen  i n Figure  After the  diffusers  sludge. Palmer  not  Thus,  compatible  the  entire  of  reactor,  The  diffusers used  r e a c t o r s and  the  stone  in  thus  a e r a t i o n system  were fish  16  for  can  be  run,  the a e r a t i o n stones glue which  with the  set of  bound the  chemicals  stones  degraded  found  in  stones in  the  were r e p l a c e d w i t h  Cole  diffusers.  Sampling:  was  done t w i c e p e r week d u r i n g t h e  samples were t a k e n  on  were t a k e n  from  s a m p l e was  retrieved  mixed then  The  schematic  per  the  Aquarium pore  i n t e n d e d t o be  were used  first  l a b o r a t o r y grade  Sampling  of  were  s l u d g e m i x t u r e . The  t o g e t h e r was  two.  of  3.1.4.  the experiment's  chemical  3.2  A  floor  tubbing outlets.  s t o r e and  aquariums. entire  the  into  the  the  s a m p l e was be  taken.  g r a v e l was  Mondays and  lowest  obtained. A  During  the  of  were taken  t h e v a l v e s was by  out 100  ml  second  removing  p o r t . An  sample  batch  plugged not  At  t h e wood c o v e r  25  and  to  samples  500  ml  insure a  fully  would  a c o n s i d e r a b l e amount  added t o the  the o u t l e t  successful  first,  for analysis  run,  sludge  runs. U s u a l l y ,  initial  t h e v a l v e and  incorporated i n the  g r a v e l o b s t r u c t e d and  flushing  Thursdays.  sampling  to flush  batch  and  reactors.  valves. Cleaning  and  a l l f u t u r e samples  immersing  a  beaker  Figure 3.1.4 Aeration system profile  Mixer  Mixing Rod Quick release Connector Ball Valve  Pore stone diffusers <  Reactor  directly  into the tanks. This yielded  unmistakably  fully  mixed.  additional  problems.  experiment  vented  sampling,  directly  t h e a i r was s h u t protective  lab  and glasses,  respirator taking the  T h e new s a m p l i n g  length viton gloves  a 500 ml b e a k e r  sampling  reactor.  was t h e n  b o t t l e and t h e remainder  The f o l l o w i n g  t e s t s were  the obvious  and a  were worn.  was immersed  s l u d g e m i x t u r e . A 50 m l p o r t i o n  plastic  prior to  equipment had t o be worn. B e s i d e s shoulder  created  a c o n s i d e r a b l e amount o f  w i t h organic vapour c a r t r i d g e s  t h e sample,  also  was removed, t h e  into the lab. Therefore, o f f . Also,  was  technique  When t h e w o o d e n c o v e r  personal coat  a sample which  Prior to  several  transferred  times i n to a  was r e t u r n e d t o t h e  r o u t i n e l y performed  on t h e  samples: Test: Chemical  Frequency: O x y g e n Demand  5 Day B i o c h e m i c a l Demand ( B 0 D ) :  2 p e r week  (COD):  Oxygen 1 p e r week  5  Solids; T o t a l Suspended S o l i d s (TSS): V o l a t i l e Suspended S o l i d s (VSS):  2 p e r week 2 p e r week  Nutrients; Phosphorus (P04): Ammoni a (NH4 + ) :  2 p e r week 2 p e r week  pH:  2 p e r week  Metals (total Copper ( C u ) : Cobalt (Co): Gas  and d i s s o l v e d ) ; 2 p e r week 2 p e r week  Chromatography (GC):  1 p e r week  T a b l e 3.2.1: The t y p e a n d f r e q u e n c y o f a n a l y t i c a l on t h e s l u d g e .  27  tests  performed  3.3  A n a l y t i c a l  The  following  Procedures:  criteria  were f o l l o w e d i n t h e p r e p a r a t i o n and t h e  performance  of analytical  tests.  1) C h e m i c a l  O x y g e n Demand  (COD): t h e t e s t  to  t h e Hack method as o u t l i n e d  analysis, times COD  s i n c e t h e range  of the running  depending total for  the original  i n Standard  samples were d i l u t e d of the test  r e a c t o r s was  10 m i n u t e s  a glass pipette  order  t o p r o v i d e more a c c u r a t e  and d i l u t e d .  and  to the specifications  supernatant  prior  when t h e a n t i c i p a t e d  BOD  Two  The  100  total  mg/L  was  a  was c e n t r i f u g e d then  replicates  (B0D ): 5  i n Standard  removed  were done i n  The t e s t  into  low, s t r a i g h t  was  performed  Methods. Both  i n duplicate.  to addition  was  b e t w e e n 10 a n d  sample which  samples were t e s t e d  samples were d i l u t e d  to  results.  2) 5 D a y B i o c h e m i c a l O x y g e n Demand according  Methods. P r i o r  samples were a n a l y z e d ;  The s u p e r n a t a n t  using  according  b e t w e e n 2000 - 100 000  a supernatant  a t 3 0 0 0 RPM.  performed  i s 50 - 1 0 0 0 mg/L.  o n t h e r u n i n p r o g r e s s . Two  sample and a l s o  was  BOD  Most  times,  bottles.  sludge  total  However,  addition  was  done.  3) S o l i d s : and  VSS  P r e c a u t i o n s h a d t o be t a k e n when p e r f o r m i n g  tests  concentration oven  on t h e s l u d g e of v o l a t i l e  i n the environmental  t h e TSS  s i n c e the samples contained  and c a r c i n o g e n i c compounds. l a b vented 28  directly  into  high  The d r y i n g  the general  lab environment. samples.  An  lab which the  Thus,  o v e n was  was  used  high solids  determine  the  solids  was  were d i l u t e d Thus,  The  up  were let  final  removed cool  from  f o r one  left  i t was  not  hour.  sludge  clogged  and  s l u d g e was  Celsius.  The  The  samples  filter.  designed.  overnight prior  i n a decanter  a  This  the  was  to  to  e v e n when t h e  Once t h e y had  again  filters  to  sampling.  f o r one  hour.  added t o  next  day  the  then  dishes  i n the decanter  been weighed,  the  550  degrees  Celsius  f o r 30  left  to cool  and  final  the  The  the  samples were  p l a c e d once a g a i n  furnace at  possible  However,  recorded.  degrees  A l s o , due  Methods.  weighed, was  these  Standard  fired  to cool  weight  103  samples were then  the  and  the oven,  i n the  samples.  determination procedure  initially  overnight at  were f i r e d The  the  the  i t for  i n the material's  using glass fibre  attempted.  d i s h e s were used  and  fire  recommended by  solids  t o use  fumehood  sludge  to ten times,  d i s h e s were then  fired  the  content  d i s h e s were then  dishes  of  feasible  in a  initially  initially  another  Porcelain  to  as  not  installed  nature  vacuum a p p a r a t u s procedure  i t was  and  samples minutes. weight  was  recorded.  4) for  Nutrients:  running  both Ortho-Phosphate  Q u i c k c h e m AE diluted, pH  The  of  model  filtered  r e a c t o r s and (P0 )  Lachate through  3 with a ten percent  them p r i o r  to  4  and  the  Ammonia  A n a l y z e r . The W h a t m a n #4 H S0 2  4  29  were  (NH +) u s i n g 4  samples were  filters  solution  analysis.  control  and  i n order  tested the  first  acidified to  to  preserve  a  5) pH:  The  pH o f t h e m i x e d  Palmer  Chemcadet M o d e l 5986- 60 pH m e t e r .  c a l i b r a t e d w i t h 4,  6) M e t a l s : The copper  7 and  l i q u o r was  10 pH  determined  using a Cole-  The m e t e r was  standards.  samples were a n a l y z e d f o r b o t h t o t a l  and c o b a l t . The  total  routinely  and  s a m p l e s w e r e d i l u t e d and  dissolved  then  d i g e s t e d w i t h n i t r i c a c i d a c c o r d i n g t o Standard Methods. samples were t h e n f i l t e r e d  w i t h Whatman #4  d i s s o l v e d s a m p l e t h e s l u d g e was filtered  The  f i l t e r s . To o b t a i n a  f i r s t d i l u t e d and  t h r o u g h c e l l u l o s e n i t r a t e S a r t o r i u s 0.45  then  was  micron  filters  u s i n g a vacuum a p p a r a t u s . B o t h s e t s o f s a m p l e s w e r e t h e n a n a l y z e d a c c o r d i n g t o S t a n d a r d M e t h o d s u s i n g t h e V i d e o 22 m o d e l , Thermo Jarrell  7) Gas  Ash Atomic  Spectrophotometer.  C h r o m a t o g r a p h y : To m o n i t o r t h e o r g a n i c c o n s t i t u e n t s o f  w a s t e m i x t u r e t h e GC was 5 mis Methylene  used.  C h l o r i d e and  5 m i s o f raw s a m p l e was  shaken  w e r e t h e n c e n t r i f u g e d f o r 10 m i n u t e s  f o r 5 m i n u t e s . The a t 3000 RPM.  t h e n removed u s i n g a P a s t e u r p i p e t t e and Methylene  C h l o r i d e was  h y d r o x i d e was  added t o t h e t o t a l  v i a l . The  with  test  tubes  solvent  i t was  5 ml  was of  shaken,  o n c e a g a i n removed. S o d i u m s o l v e n t s a m p l e t o remove  w a t e r . U s i n g a P a s t e u r p i p e t t e , p a r t o f t h e s o l v e n t was a n d p l a c e d i n a GC  mixed  stored. Another  a d d e d t o t h e s a m p l e and  c e n t r i f u g e d a n d t h e s o l v e n t was  The  the  s a m p l e was  any  removed  then analyzed f o r the  p r e s e n c e o r g a n i c compounds w i t h t h e H e w l e t t P a c k a r d 5890 S e r i e s II  GC. 30  A  J & W Scientific  length,  DB-1 c o l u m n w a s u s e d .  had an i n t e r n a l  of  20 cm/s a n d n i t r o g e n was t h e makeup g a s a t 60 m l / m i n . T h e oven temperature  temperature  until  was t h e n  i t reached  maintained lasted  a total  was 45 d e g r e e s increased  290 d e g r e e s  at that  as the c a r r i e r  thickness  0.25 m i c r o n .  The  was u s e d  o f 0 . 3 2 mm a n d a f i l m  of  initial  Helium  diameter  I t was 30 m e t e r s i n  o f 41 m i n u t e s  Celsius  flowrate  f o r 2 minutes.  10 d e g r e e s C e l s i u s / m i n u t e ,  Celsius.  temperature  gas at a  The oven was t h e n  f o r 16 m i n u t e s .  and used  a Flame  The e n t i r e  GC r u n  Ionization  detector.  8) M a s s S p e c t r o m e t e r : identify Using be  t h emajor  experiment.  laboratory  the  5 8 3 0 A GC/MS w a s u s e d t o  o f t h e waste  would  potentially  o n t h e GC  could  t o a n a l y z e a head t o determine  be v e n t i n g i n t o  space t h evarious  thegeneral  area.  Procedure:  of Modified  batch tests  Batch Process  i nthis  most e f f e c t i v e  system.  used  peaks  mixture.  during the course o f the  the topof the reactor  Experimental  series  and monitored  T h e GC/MS w a s a l s o  components which  as  organic constituents  quantified  sample taken from  A  Packard  the instrument, thevarious specific  identified,  3.4  The H e w l e t t  thesis,  initial  I n t h e MBP s y s t e m ,  were i n i t i a l l y  sludge each  (MBP) e x p e r i m e n t s ,  loading  rate  runconsisted  referred to  r u n t o determine range  forthe  of a set of  r e a c t o r s , each of  individual  r e a c t o r was f i l l e d  v i r g i n sludge, d i l u t i o n water  a e r a t e d and mixed u n t i l  a n d s e e d . The r e a c t o r s w e r e  t h e s l u d g e was d e g r a d e d .  t h e s e t o f r e a c t o r s was c o m p l e t e l y e m p t i e d again f i l l e d  with a combination  At t h i s  then  point,  and t h e y were once  w i t h a c o m b i n a t i o n o f v i r g i n s l u d g e , seed and  d i l u t i o n w a t e r . On some o c c a s i o n s , t h e same i n i t i a l  sludge  c o n c e n t r a t i o n was r e p e a t e d i n two c o n s e c u t i v e r u n s , t o d e t e r m i n e if  t h e s u c c e s s o f a p r e v i o u s r u n c o u l d be r e p l i c a t e d . The  p r o g r e s s o f t h e v a r i o u s r u n s was m o n i t o r e d test.  I n l a t e r r u n s , t h e BOD  t a r g e t o r g a n i c s were used  5  u s i n g t h e HACH COD  and t h e c o n c e n t r a t i o n o f c e r t a i n  t o follow the progress of the run,  s i n c e t h e y p r o v i d e d more i n s i g h t  i n t o t h e degree o f treatment  accomplished.  S i n c e l i t t l e was known a b o u t t h e d e g r a d a t i o n o f t h e s l u d g e a n d t h e r e was l i t t l e i n f o r m a t i o n p r e s e n t i n t h e l i t e r a t u r e , run's  initial  s l u d g e l o a d i n g c o n c e n t r a t i o n was a n e d u c a t e d  From t h a t p o i n t , d i f f e r e n t attempted  the f i r s t  initial  s l u d g e c o n c e n t r a t i o n s were  t o optimize the degradation process. Different  c o n d i t i o n s and a e r a t i o n r a t e s were a t t e m p t e d e f f e c t on t h e degree and r a t e o f t r e a t m e n t  A c o n t r o l was e s t a b l i s h e d t o d e t e r m i n e  nutrient  t o determine the  o f t h e waste.  and minimize t h e l o s s o f  o r g a n i c c o n s t i t u e n t s due t o v o l a t i l i z a t i o n .  I t c o n t a i n e d t h e same  amount o f s l u d g e a s t h e o t h e r r e a c t o r s , b u t a d o s e o f J a v e x b l e a c h , c o n t a i n i n g 5.25% s o d i u m h y p o c h l o r i t e was u s e d 32  guess.  brand  to k i l l the  microorganisms monitor  After  present. Plate  i f bacteria  were s t i l l  t h e most e f f e c t i v e  determined,  the M o d i f i e d Batch Process  (TBP).  runs  product  were kept  desired  initial  was  made up  The  r e a c t o r was  sludge  Process  I n t h e TBP i n the  (MBP)  reactor. run,  the  reactor  was  was  removed and water.  a e r a t e d and At  that  mixed u n t i l  point,  let settle  75  m i x i n g was  33  converted to % of  the  remaining  s l u d g e and  the volume  dilution  water.  t h e o r g a n i c compounds  One  then  a  previous  D e p e n d i n g on  the  replaced with a combination A e r a t i o n and  c o n c e n t r a t i o n was  was  t h e a e r a t i o n was  f o r 2 hours.  to  control.  loading  system,  concentration f o r the  performed  i n the  of a combination of v i r g i n  been degraded.  dilution  w o u l d be  present  initial  True Batch final  counts  had  d i s c o n t i n u e d and  quarter of of v i r g i n resumed.  the  volume  sludge  and  4.Results In t o t a l , Each  11 d i f f e r e n t  individual  experiments is  sludge  Discussion:  degradation  r u n had a s p e c i f i c  formation of specific  What f o l l o w s  and  objectives  i s a detailed which  The  and  initial  f o r the next run.  r u n by r u n d e s c r i p t i o n  were attempted.  The  characteristics  rationale  lagoon  of the sludge  a t U.B.C. i n t h e s p r i n g  BOD  5  COD  from  of a l l the  behind  each  on t h e bottom o f t h e  o f 1994 w e r e a s  as  follows:  Result: 240  (mg/L)  60  (mg/L)  000 000  Metals: Total  Copper  (mg/L)  550  Total  Cobalt  (mg/L)  110  pH  6.7  Solids  3%  T a b l e 4.1: I n i t i a l c h a r a c t e r i s t i c s o f t h e C h a t t e r t o n P e t r o c h e m i c a l s l u d g e a s a n a l y z e d a t U.B.C.. As shown varied  run  the experiments  at the Chatterton Petrochemical site  Parameter: Total  attempted.  presented.  equalization analyzed  were  g o a l and i n t u r n l e d t o t h e  e x p l a i n e d and t h e i n f o r m a t i o n o b t a i n e d  analyzed  runs  i n Tables  amount  concentrations  4.1  a n d 4.2,  of chemical of copper  the sludge  constituents.  Due  i s composed o f a to the high  and t h e v a r i o u s o r g a n i c  34  compounds  i s  present, be  the  sludge  biologically  levels  w o u l d h a v e t o be  t r e a t e d , thus  w h i c h c o u l d be  Organic  greatly  reducing in a  handled  the  T o t a l COD  Diphenyl  790  95  900  219  2-Phenyl  Toluene  34  200  3-Phenyl  Toluene  11  800  4-Phenyl  Toluene  4  440  The  was  1994.  ,  sludge  overpowering the  earthy  Determining treatment  mixture.  iridescent  initial  difficult,  A l s o , no  treating  active  runoff  similar,  yet  5  system.  s l u d g e on  a distinct c o u l d be  February  chemical,  seen  concentration of was  sludge  present  in  a concentrated  and  r e s e a r c h had  been performed  in this  Department at  p o i n t . However,  f o r BTX.  c u l t u r e of  film  the  such  Chatterton Petrochemical surface  had  since l i t t l e  Engineering  to this  to  BOD  floating  on  liquid.  best  about  Environmental Columbia  the  the  was  literature  i n c o l o u r and  o d o u r . An  surface of  c o n s t jL t u e n t s o f  organic  and  000  Ether  Initial  a  1  Diphenyl  23  to  (ppm):  Phenol  T a b l e 4.2:  i n order  aerobic biological  Amount  Constituent:  diluted  site The  had  the  complex  treatment  waste  area  University  been t r e a t i n g  treatment  microorganisms  less  the  the  for  of  p l a n t on  the  groundwater  p l a n t t h e r e f o r e had  waste.  35  The  mixed  liquor  the  British  and  an  which were c o n d i t i o n e d t o  concentrated  in  treat  from  the  treatment active  p l a n t was u s e d  and p a r t i a l l y  hoped t h a t t h i s during  The  goal  Also,  the  first  the  experimental  phase,  requirements for  experimental  i t was d e s i r e d t o l e a r n i n order  required to treat  more a b o u t  some b a s i c s w o u l d  be l e a r n e d about  was n o t c o m p a t i b l e  c o u l d n o t be  problem.  the glue used  with the sludge  the sludge,  testing  r u n s i n c e l e a k s had been d e t e c t e d  reactors  the sludge.  Through t h e running of  A l l four rectors  To c o m p l i c a t e m a t t e r s ,  the  t h e needs o f t h e  s e t up and t h e m o n i t o r i n g and  vessels.  larger  r u n was t o d e t e r m i n e  t o degrade the waste.  o f t h e system.  the f i r s t  p o p u l a t i o n . I t was  of the experimental run.  c o n d i t i o n s of t h e system  bacteria  an  avoid a l a g i n the growth of the b a c t e r i a  of the f i r s t  physical  the reactors, to provide  acclimatized microbial  would  the beginning  t o seed  used  i n two o f t h e  to seals the  and c r e a t e d an even  The r e a c t o r s h a d t o be e m p t i e d ,  dried  o f f and a  new b i n d i n g a g e n t w a s s e l e c t e d .  4.1  The  Run  #1  Two  r e a c t o r s were used  process  Initial  Runs:  f o r the i n i t i a l  was s e l e c t e d b e c a u s e  information performing  on d e g r a d a t i o n batch  runs  batch  i twould y i e l d  of the sludge.  was t h a t i t u s u a l l y  36  test  r u n . The  considerable  The p r o b l e m resulted  with  i n an  batch  a c c l i m a t i z a t i o n period f o r bacteria at the beginning ofthe experiment.  The p r e s e n c e  and l e n g t h o f t h i s  acclimatization  p e r i o d would depend n o t o n l y t h e t y p e and c o n c e n t r a t i o n o f t h e waste,  but a l s o t h e type and c o n c e n t r a t i o n o f microorganisms.  A f t e r k n o w l e d g e was g a i n e d u s i n g t h e b a t c h s y s t e m , to convert t h e process t o a t r u e b a t c h system  i t was h o p e d  t o improve t h e  d e g r a d a t i o n r a t e s o f t h e b a c t e r i a and produce a b e t t e r endproduct  i n a s h o r t e r time  frame. Reactor 4  Reactor 2  Parameter  quality  S l u d g e Volume ( L )  3.0  3.0  A c t i v a t e d Seed V o l . (L)  1.5  1.5  D i l u t i o n Water V o l . (L)  5.5  5.5  10 10 T o t a l Volume T a b l e 4.1.1: Contents o f t h e two running r e a c t o r f o r t h e f i r s t batch t r i a l .  Reactor 4  Reactor 2  Parameter: T o t a l COD (mg/L) BOD (mg/L) pH  75 514  80 452  n/a*  n/a*  6.7  6.8  Solids: 9 000 5 900 TSS (mg/L) 7 000 4 000 VSS (mg/L) T a b l e 4.1.2: I n i t i a l a n a l y t i c a l a n a l y s i s o f the sludge i n the running r e a c t o r s f o r run 1. * Due t o d i l u t i o n p r o b l e m s t h e BOD o f t h e r e a c t o r s was n o t d e t e r m i n e d .  As c a n be s e e n  i n T a b l e s 4.1.1 a n d 4.1.2, a l t h o u g h t h e same  v o l u m e o f s l u d g e was u s e d  i n each  37  reactor,  t h e T o t a l COD d i f f e r e d  by  6%.  about  T h i s was due t o t h e n o n u n i f o r m i t y  the  lagoon.  and  was m i x e d  difficult  The s l u d g e was t a k e n prior  to addition  t o reach a target  chemical  makeup  greatly,  both  (and thus  concentration of both  the  first  dilution,  runs  because  the metal  t h e same a r e a  to the reactors.  COD  i n the lagoon  I t was  i n a running reactor,  the Total  horizontally  The  from  of the sludge i n  and  COD  i n the lagoon)  very  since the varied  vertically.  copper  and c o b a l t  i t was f e l t  that  c o n c e n t r a t i o n would  were n o t monitored i n  with the large be low and as  degree  of  such,  insignificant.  The  initial  problems.  BOD  f o r t h e r u n i s u n a v a i l a b l e due t o d i l u t i o n  The s a m p l e s were e i t h e r  too diluted  or not diluted  enough t o a c h i e v e an a c c u r a t e r e a d i n g .  As and  w i t h a n y new e x p e r i m e n t , modifications  Firstly,  equipment problems  had t o be p e r f o r m e d  upon t h e a c t i v a t i o n  of the mixers,  stones  i n Reactor  4 "floated"  around  the mixing  r o d . The l i n e  reactor the  once a g a i n w i t h tape  same p r o b l e m  remainder  from  was f i x e d  overcome  the start.  the a i r diffusing  and t h e a i r l i n e  wrapped  itself  to the side  of the  and w i r e . However,  r e c u r r e d . The m i x e r  was t h e n  the following  shut  day  o f f f o r the  o f t h e r u n a n d t h e a i r f l o w r a t e was i n c r e a s e d . The a i r  was s e t t o a r a t e w h i c h the tank.  right  had t o be  produced  T h i s was h i g h e r t h a n  7.5 mg/L  literature  38  of dissolved  oxygen i n  advised but produced  a  t h o r o u g h l y mixed u n i t  The  (Brenner 1992).  s e c o n d p r o b l e m was  f r o m new  t o t h e demand  experiments i n t h e e n v i r o n m e n t a l l a b , t h e main  compressor first  t h e a e r a t i o n s u p p l y . Due  h a d t r o u b l e m e e t i n g t h e s e new  week t h e m a i n c o m p r e s s o r  compressor  failed  d i d n o t come on l i n e .  needs.  Twice d u r i n g  o v e r n i g h t and t h e emergency  Thus, t h e e x p e r i m e n t d i d not  r e c e i v e a i r f o r an e x t e n d e d p e r i o d o f t i m e . A f t e r t h e  second  failure,  room  an a i r l i n e was  compressor  and was  installed  used u n t i l  the  from the a n a l y t i c a l  t h e m a i n s y s t e m c o u l d be u s e d  with  confidence.  The  l e n g t h of the experiment i n each t e s t  R e a c t o r 2 was  r e a c t o r was  r u n f o r a p e r i o d o f 30 d a y s w h i l e R e a c t o r 4 was  o p e r a t i o n f o r 20  T o t a l COD  a b l e t o reduce  o f t h e w a s t e m i x t u r e by a l m o s t 90 p e r c e n t i n a  s h o r t amount o f t i m e . As shown i n F i g u r e 4.1.1, most o f t h e r e d u c t i o n i n t e r m s o f T o t a l COD for  occurred i n the f i r s t  days  f o r the b a c t e r i a t o adapt t o the waste m i x t u r e would  be r e q u i r e d . However, a l a g p h a s e T o t a l COD the  few  R e a c t o r 2. T h i s seemed t o c o n t r a d i c t t h e n o t i o n t h a t a l a g  phase  in  days.  As c a n be s e e n i n T a b l e 4.1.3, t h e b a t c h r u n was the  different.  i s c l e a r l y apparent i n the  c o n c e n t r a t i o n g r a p h f o r R e a c t o r 4. The d i f f e r e n c e i n  two r e a c t o r c o u l d be due  to the d i f f e r e n c e i n the  39  initial  Total  COD (Inn.) mg/L  Total  COD (Final) mg/L  75  514  7  452  8  661  986  89.2  Supernatant COD (Initial) mg/L  3  909  8  847  Supernatant COD (Final) mg/L  2  431  2  083  Supernatant reduction  37.8  COD %  T a b l e 4.1.3: T o t a l and sludge dose.  76.5  Supernatant COD  the c h e m i c a l components of  possibly  different. It i s also  first  6 days  possible  remained  in  The  R e a c t o r 4.  which  resulted  indicating short  that  the  the  from  t r e a t m e n t was  be  the Total  aeration  i n a short  the q u a l i t y of which  40  2 received  a  COD slightly  a t t r i b u t e d to the extra  s a m p l e was  More s p e c i f i c a l l y :  were  microorganisms.  not  rate  fully  t h e d e g r a d a t i o n was  possible  Reactor  1.  each  actually increased  t h e d a t a seem t o i n f e r  many q u e s t i o n s a b o u t answered.  can  increased  first  a d a p t i o n phase,  indications  t h e same a n d  increase  from  of  that  of the experiment,  concentration  into  the sludge mixture  more a c t i v e / a c c l i m a t i z e d p o p u l a t i o n  the  r e d u c t i o n s d u r i n g run  A l t h o u g h s i m i l a r amounts were dosed  reactor,  of  80  89.4  % Total COD reduction  For  Reactor4  Reactor2  Parameter  (thereby mixed).  rapid.  that  treatment specific  After  the  Early  a high  amount o f  mixing  time.  degree However,  remained  to  be  chemicals remained  at  FIGURE 4.1.1 TOTAL COD CONCENTRATION VS TIME FOR RUN 1 100 i  0  ' 5  1  0  ' 10  1  '  1  15  20  1  25  1  30  35  TIME (DAYS) _B_ Reactor 4 Total  Reactor 2 Total  FIGURE 4.1.2 SUPERNATANT COD CONCENTRATION VS TIME FOR RUN 1 7  1 l 0  i  i  5  10  i  i  i  i  1  15  20  25  30  35  TIME (DAYS)  _o_ Reactor 4 Supernatant  Reactor 2 Supernatant  41  the to  end o f t h e treatment degradation  Since and  this  period,  and t h e r a t e s  was t h e f i r s t  w h i c h c h e m i c a l s were r e s i s t a n t  of  degradation.  r u n , many p r o b l e m s w i t h  a n a l y s i s were encountered.  Starting with  m e n t i o n e d BOD a n a l y s i s p r o b l e m . presence of dissolved metals significant Reactor high  error.  Discounting  that  metal  nutrient  concentration  were n o t m o n i t o r e d rich.  Chatterton  since  necessary  f o rcomplete degradation.  significant  n u t r i e n t s and that  additions  t h e on s i t e  investigation  treatment would  Therefore,  plant  believed additions  However,  limited  t o determine  that  t o be  the sludge  were n o t  i t was l e a r n e d  that done  Further  i fthe system  was  conditions.  make u p o f t h e s l u d g e ,  standards  f o r most  i n t h e m i x t u r e were n o t y e t a v a i l a b l e .  t h e Gas C h r o m a t o g r a p h y t r a c e  i t was n o t p o s s i b l e  terms o f s p e c i f i c  content.  t r e a t i n g t h e groundwater.  be n e c e s s a r y  chemical  the chemicals  organic  o f Ammonia a n d P h o s p h o r u s were b e i n g  under n u t r i e n t  Due t h e v a r i e d  Thus,  a  t h e s l u d g e was b e l i e v e d  Petrochemical  sufficient  of  was a l s o  the l a gobserved i n  and n o t t h e high  contained  running  the importance of t h e  4 was d u e t o t h e a c c l i m a t i z a t i o n o f t h e b a c t e r i a t o t h e  Nutrients  at  collection  the previously  i n the reactors  I t i s possible  data  organic  The d e g r e e o f t r e a t m e n t  could  n o t be q u a n t i f i e d .  t o determine the exact  degradation  compounds.  and t h e r a t e 42  of treatment  were  i n  impressive. was  For  occurring,  reactor  would  vessels  but  this  reason  a control  was  contain the  would  not  kill  a l l the microorganisms  volatilized aeration not  and  which  facilitate  the waste  The  plant.  I t would  The  would  be  supplied  positive  results  run.  This  treatment  biomass  the  on  c o n t a i n a dose of b l e a c h  to  control  to determine  the needs of  from  would  were  the best  s e r v e as  a  being level  the microorganisms  of  but  did  the organic constituents  of  observed  in this  treatment  of  first  the  run  sludge  indicated seemed  that  possible.  #2  first  r u n was  served  a guide  as  biological  of  the other  p r e s e n t . The  used  treatment  mixture.  and  The  also  actual  f o r the next  activated  the v o l a t i l i z a t i o n of  equipment  In  that  t h e amount o f o r g a n i c s w h i c h  the aerobic b i o l o g i c a l  Run  insure  established  c o n t a i n any  treatment  to indicate  to  same s l u d g e a s  site  guide  and  the  s e t up  a sampling  schedule  the and  i n d e t e r m i n i n g the optimum  reactors  and  procedure.  It  loading  experimental run,  for nutrients,  a l l four reactors  the aeration  of  were  t h e waste and  the d e g r a d a t i o n p r o c e s s were a l l q u e s t i o n s which  addressed  rate  also for the  system.  second  need  designed mostly to test  in this  second  run. 43  used.  the  were  success  Reactor 1 (Control)  Reactor 2 (Nutrients)  Reactor 3 (Nutrients)  Reactor 4 (No nutrients)  3  3  3  3  none  1  1  1  Dilution Water ( L )  17  16  16  16  Total Volume ( L )  20  20  20  20  Parameter  Sludge Vo1ume ( L ) Seed  Water (L)  N=850 mg/L none N=850 mg/L P = 1 7 0 mg/L P = 1 7 0 mg/L T a b l e 4.1.4: I n i t i a l c o n t e n t o f t h e r e a c t o r s f o r t h e s e c o n d r u n of t h e d e g r a d a t i o n experiments. Nutrients  A control and of  none  (seeTable  organics  load  4.1.4) was e s t a b l i s h e d  as the t e s t  a c t i v a t e d biomass and with  microorganisms were present, would  any reduction  the addition  Since  no  i n the organics  load  a p r o c e s s w h i c h was n o t a n  form o f treatment.  Reactors with  to  t h e same s o l i d s  but without  500 ml o f b l e a c h .  be a t t r i b u t e d t o v o l a t i l i z a t i o n ,  acceptable  the  reactors,  with  and without  differences  nutrient  additions  t o observe  i n t h e growth and response o f t h e microorganisms  the d i f f e r e n t environments.  I t would  may n o t b e r e q u i r e d  t e s t the theory  nutrients  additions  nutrients  were added t o t h e two r e a c t o r s ,  theoretical  were used  to treat this  approximately  5  was  estimated  the  c o n t e n t w a s d i l u t e d b y a f a c t o r o f 3. T h e r e f o r e ,  44  sludge.  The  based on t h e  r e l a t i o n s h i p C:N:P o f 1 0 0 : 5 : 1 . T h e BOD as being  that  of t h e sludge  50 0 0 0 mg/L; i n t h e r e a c t o r , the  approximate such, were  8 5 0 mg/L  i n t h e r e a c t o r was  5  Table  o f n i t r o g e n a s N a n d 1 7 0 mg/L  Total  COD  Table  Initial  4.1.5  4.1.4.  563  2  5  955  3  6  973  2  139  The  COD  of the reactor  that  the Total  than expected,  based  A l t h o u g h more d i l u t i o n run, the t o t a l  have been around  are further  method  from  collected  problem  the lagoon.  the second  occurred  i n mid August,  used  visit  10. The T o t a l  i n the sludge  COD  no w a t e r  collection  was  on t h e s u r f a c e o f  and e a s i l y  collected.  to the Chatterton Petrochemical treatment  months. The p l a n t 45  the  4.1.3.  run, the sludge  when t h e on s i t e  been o p e r a t i n g f o r s e v e r a l  t h a n was  The c o n c e n t r a t i o n  of almost  originated  s l u d g e c o u l d be s e e n  However,  was  loading i n  i n the running reactors  i n Figure  In the f i r s t  run.  of the running reactors  on t h e s l u d g e  COD  i n m i d J u n e when t h e r e was  t h e s l u d g e . The  COD  35 0 0 0 t o 4 0 0 0 0 mg/L.  emphasised  "sludge strength"  f o r the second  water  t h e r e a c t o r s were o u t by a f a c t o r  values  shown  (Mg/L): 2  i n the i n i t i a l  should  COD  1  indicates  w e r e much l o w e r Table  run are  4.1.5:  4 T a b l e 4.1.5: I n i t i a l  in  as  of phosphorus as P  of the r e a c t o r s i n the second  Reactor:  case  a s s e s s e d a t 17 0 0 0 mg/L;  required.  The a c t u a l in  BOD  treats  plant  site had n o t  surface  water  and  ground  water  during the  summer, t h e w a t e r Therefore,  i s collected  the water  summer m o n t h s . The see  the  sludge.  the  sludge  material. of  error  and The  was  to begin  spring,  level  rises  sample had  The  and  and  covers  determined.  run  The  run w i t h the  w i n t e r . In  the  was  not  amount o f lasted  the  lagoon. sludge  taken without  sample c o l l e c t e d  experimental  and  stored i n the  t o be  contained large  a new  fall  during  being able  the to  r e p r e s e n t a t i v e of  g r a v e l and  course  f o u r days before  r e a c t o r s were then  the  emptied  representative sludge  source  i n order  sample t o  be  treated.  After was  emptying  done t h a n  sludge  and  ports;  by  to  emptying this  fully the  The  of  mixed  the  the  n o t i c e d t h a t more  damage  effort  and  the  sludge used  time  had  a very  r e a c t o r s were taken pieces of plugged.  t o no  The of  the  the  d a y s and  could easily 46  be  some  the  to  be  t o p . The  top  insured that  up  side  examination and  problems  foam in  The  sampling  the  observed.  in  the units.  Subsequently,  reactors i . e . aeration rate  the u n i t s  through  top of  b e i n g o b t a i n e d . A l s o , an  sampling  contained  r e a c t o r s had  avail.  from  different  g r a v e l became l o d g e d  done from  that sampling  p r o d u c t i o n w e r e made o n  d e l a y by  v e r y g r a n u l a r and  r e a c t o r s was  s a m p l e was  i t was  contents out  f l u s h e d but  contents of the  of  the  valves then  d i l e m m a was  operation  wasted  i n so d o i n g ,  bailing  v a l v e s were then and  error.  Samples of  t h e v a l v e s . The emptied  reactors,  c o n s i s t e n c y . I t was  gravel.  sampling  the  the obvious  collection  texture large  out  the  None o f  the  a of  FIGURE 4.1.3 TOTAL COD VS TIME FOR R U N 2  0  1  2  3  4  5  Time (days) a- Reactor 1 (control)  Reactor 2(seed+nut.)  ^_ Reactor 3(seed+nut.) _g_ Reactor 4 (seed)  6  questions but  an  posed  by  important  collection  o f on  Run  3 was  Run  4:  The  results  l e s s o n was site  run were answered l e a r n e d about  in this  venture  the c a r e needed  in  the  samples!  a b o r t e d due  from  were c l o g g e d and potential  Run  rate  the degree  nutrients  on  the  would  to the s t a r t  brand  b l e a c h was  control  vessel  aeration  calibrated  by of  this  this  tanks of level  of aeration  and  I t was  the e f f e c t  a c h i e v e d and  treatment  by  the  1; of  this the  this  track.  main  of  250  mg/L;  7 to  f o r the growth  this of  48  the  ml  of  s e r v e as  tested  aeration of  added  Javel the  w i t h ah a i r  The  10 mg/L.  i n o r d e r t o o b t a i n a D.O. 3.0  the  The  microorganisms.  would  oxygen probe. from  the  experiments.  r e a c t o r s was  ranged  ports  hoped t h a t  the e f f e c t  phase of the study,  submersible dissolved  b e t w e e n 2.5  sampling  a n y t h i n g about  waste.  p h a s e was  i n a l l the  s l i g h t l y shut,  The  r e s e a r c h back on  remainder  oxygen content o r i g i n a l l y were then  the  added t o R e a c t o r  f o r the  rate  put  treatment  of  reveal  the mixed  success of  Prior  problems.  2 were d i s a p p o i n t i n g .  t r e a t a b i l i t y of  investigated  on  to analytical  the data d i d not  of experiments  points  The  first  3:  Run  set  the  would  be  culture,  reactors The  valves  reading i n the an  adequate  while avoiding  the  needless  waste  (Grady  volatilization  extent  i n Table t h a n was  success exhibited concentration mixture, Thus,  4.1.6,  i n the f i r s t  the less treatment  i t was  concentrated  surfaced.  that  f o r the organisms  one,  treatment per  i n order  occurring.  week a n d m e t a l s ,  intervals  during  problem during present had  this  i n the test  f o r t h e COD  u p t o 100 t i m e s w h i c h was small  5  this  traces  T h e COD  a  site.  priority.  load  batch  was  too  a COD  meant  a large  49  twice various  t e s t s became  5  test,  1 0 0 0 mg/L,  100 t i m e s .  at  concentration  concentration. incur  of the  were m o n i t o r e d  a n d B0D  This  than the  were s t u d i e d  To p e r f o r m  mixed would  be m a g n i f i e d  was  understanding  a n d VSS  HACH p r o c e d u r e .  not f u l l y  e r r o r would  TSS  t o b e t w e e n 200 a n d  i t ' s original  on  the  of the waste,  organic  b a t c h due t o t h e h i g h reactors.  the  t o handle.  a n d GC  the process.  t o be d i l u t e d  range  B0D  pH,  level  this  to get a better  COD,  t o a much  of the upper  be r e q u i r e d  of t r e a t a b i l i t y  More p a r a m e t e r s were m o n i t o r e d d u r i n g previous  of the  The more c o n c e n t r a t e d  batches would  possible  loaded  run. After  run, the question  the bacteria to a toxic quite  were  i n the f i r s t  t h e maximum l e v e l  exposing  However,  the reactors  the case  of t r e a t a b i l i t y  finding  without  constituents  1990).  As c a n be s e e n higher  of the organic  of  a sludge  the samples  which  i s the  diluting  the samples  Taking  sample  error,  Also,  a  since  that  t h e day t o day  Parameter:  Reactor 1  Reactor 2  Reactor 3  Reactor  Contents  Sludge, water, bleach. (Control)  Sludge, water, nutrients, seed.  Sludge, water, nutrients, seed.  S1udge, water, seed.  Sludge V o l . (L)  5  Dilution water (L)  10  6 9 N=  Nutrient l o a d (mg/L)  P=  None  Initial T o t a l COD (mg/L) Initial Supernatant COD (mg/L)  96  350  113  8  543  9  T a b l e 4.1.6: I n i t i a l run.  variability  N= P=  332 267  856  conditions at  i n t h e COD  4  9  11  1  332 267  .113  849  6  8.67  5.98  PH  1  6  None  849  138  s t a r t of  the  840  3  513  fourth  had t o be e x a m i n e d c a r e f u l l y due  l a c k o f p r e c i s i o n o f t h e HACH t e s t .  64  6.20  8.63 the  4  test  t o the  I t w o u l d be p o s s i b l e f o r  t r e a t m e n t t o be o c c u r r i n g a t a l o w e r r a t e t h a n t h e t e s t  could  monitor.  L o o k i n g a t t h e T o t a l COD  g r a p h and S u p e r n a t a n t COD  the  p r o c e s s . F i g u r e s 4.1.4  the  general v a r i a b i l i t y  overcome t h i s problem, the  r e s u l t was  overall  used.  variability  and 4.1.5, t h e f i r s t  observation i s  o f t h e day t o day samples. two s a m p l e s  vs time f o r  To t r y and  were t a k e n and t h e a v e r a g e  I n t e r m s o f t h e T o t a l COD  graph, the lowest  c a n be s e e n i n R e a c t o r 4, w h i c h p r o c e e d s v a l u e of about  it's  i n i t i a l T o t a l COD  mg/L  a t t h e end o f t h e batch.' L o o k i n g a t t h e f i r s t 50  of  60 000 mg/L  t o below two  20  from 000  samples,  t h o s e on  day  1 and  downward t r e n d , or  bacterial  still not  had  to  appear  be  one  reduction.  the  The  up  remained  quite  day  40  rate  of  experimental to  process and  molecular weight  This  be  the  b e c a u s e most of organics  reduction.  that  the  long  batch  the  COD  the  seemed t o and  that  COD there  COD of  reactors  that  removal. the  still  Total  COD  indicate minimal In  appears  Total  Total  Total  This  control  b a t c h was  vessels.  to  the  is  leading  appears  phase  COD  i n the  COD  lag  However,  i n terms of  volatilization  appeared  low  total  decreasing.  i n a l l the  volatilization  high  but  no  does  A n o t h e r p r o b l e m was  also  volatilization  progress  that  i n terms of  extremely  downward t r e n d  considerable  occurring  aeration  no  general  resultant treatment  i n t o account  f o r the  or  high.  c o n t r o l was  Total  performing units  reason  to  days and  i n terms of  best  little  reactors  The  f o r 85  when t a k i n g  a general  was  impression  the  run  T h e r e was  was  show a  be  be  there  reactors  occurred.  seemed t o  the  a l l the  acclimatization period  true of  3,  thereby g i v i n g the  favourable  especially to  day  of  that  treatment  fact  treatment  f o r the  run.  have been slow s i n c e  the  the  of  sludge  consisted  which were r e s i s t a n t  to  volatilization.  To  examine t h i s  prepared  of  the  quite  possible  would  account  concept  further,  bacterial that  at  cultures  day  40,  in reactors  organisms were p r e s e n t  f o r the  reduction  i n Total  51  stained 1 and  i n the  COD.  slides 2.  It  control  were was which  Although bleach  had  FIGURE 4.1.4 T O T A L C O D C O N C E N T R A T I O N O V E R TIME FOR R U N 4 150 , ,  0  1  1  1  0  10  20  1  1  30  1  40  1  50  1  60  1  70  J  80  TIME (DAYS) +  R# 1 C O N T R O L  R#2 NUTRJENTS+SEED  R#3 NUTRIENTS+SEED _ ^ R#4 S E E D  52  90  originally  been added t o the c o n t r o l , i t i s p o s s i b l e  simply  slowed  slides  revealed  the  the hardier  c o n t r o l . However,  active the  bacteria  slide  Since  was  the  t h e on  simply  day  test  37,  was  performed  However,  observed  indicated proceeds  i n the Reactor  dilution enrich  the  the  addition, level  to  the  i n the Total  0.33  were  as  such as  compounds a r e b r o k e n  an  oxygen  COD  mg  0 /L 2  uptake activity min,  metabolically  of the run,  i t can  i n the running reactors  incur,  53  added  culture  of b i o l o g i c a l  profile  t h e pH  system  sludge  dilution.  P a s t e x p e r i e n c e and  drop would  was  affect  the decrease observed  that  buffered  water  2  culture  activated  manoeuvres d i d not  a t t h e pH  stable.  a pH  i n a non  the organic  and  the microorganisms  4.1.6  27  o f o x y g e n u p t a k e was  looking  fairly  that  The  the  r e s u l t s of  active microbial  t o t r y and  to determine  i n Figure  r u n was  was  since  rate  The  inconclusive.  days a f t e r the seed  The  to differentiate  reseeded with  a t t r i b u t e d to the  indicates that  active.  As  purpose  three  R e a c t o r 2.  which  the  be  was  treatment plant  occurring,  them.  m a t t e r p r e s e n t . The  t h e p r e s e n c e o f an  i n the reactor.  treatment could  difficult  the reactor  The  d i d not k i l l  d e g r a d a t i o n a f t e r day  and  site  reactor.  present  in  COD  i n question,  from  i t was  from the organic  the Total  and  this  number o f m i c r o o r g a n i s m s were p r e s e n t i n  from R e a c t o r 2 were a l s o  seemed s t a l l e d  On  a small  organisms  that  down, C0  2  over  literature  the organic this  be  one will  degradation  (Lallai be  1989).  released  into the s o l u t i o n . Since ability  t h e r e a c t o r s have l i t t l e  t h e pH w o u l d d e c r e a s e w i t h t h e f o r m a t i o n  acid. Since  t h i s p r o c e s s was n o t o c c u r r i n g ,  i n d i c a t i o n that the degradation  o r no b u f f e r i n g of  i t was  carbonic another  p r o c e s s was o c c u r r i n g a t q u i t e  a  slow r a t e .  On d a y 47, more t e s t s w e r e r u n t o t r y t o q u a n t i f y t h e l e v e l o f microbial activity.  Oxygen u p t a k e t e s t s were p e r f o r m e d on e a c h  r e a c t o r , even t h e c o n t r o l , and m i c r o b i a l p l a t e c o u n t s were p e r f o r m e d o n R e a c t o r 1 ( t h e c o n t r o l ) a n d R e a c t o r 3. The f o r c h o o s i n g R e a c t o r 3 was t h a t r a t e and t h e r e f o r e  The most s t r i k i n g  oxygen uptake  seemed t o h a v e t h e most a c t i v e b i o m a s s .  information  t h e r e was c o n s i d e r a b l e created  i t had t h e h i g h e s t  reason  provided  biological  b y T a b l e 4.1.7 was  activity  i n the control.  that This  a s i g n i f i c a n t p r o b l e m s i n c e t h e c o n t r o l was s u p p o s e d t o  be u s e d t o m o n i t o r l o s s e s due t o v o l a t i l i z a t i o n . i n t e r m s o f T o t a l COD volatilization.  c o u l d no l o n g e r  simply  A l l the losses  be a t t r i b u t e d t o  The r a t e o f o x y g e n u p t a k e shows t h a t  a c t i v i t y was o c c u r r i n g ,  although at a s i g n i f i c a n t l y  biological lower  t h a n i n t h e t e s t r e a c t o r s . The p r e s e n c e o f a c o n s i d e r a b l e o f m i c r o o r g a n i s m s was c o n f i r m e d i n t h e p l a t e  rate culture  count.  B a c t e r i a w e r e p r e s e n t o n t h e 4 t h o r t h e 10000 t h d i l u t i o n ;  while  i n R e a c t o r 3 b a c t e r i a were p r e s e n t on t h e 6 t h o r 1 m i l l i o n t h dilution.  I t t h u s a p p e a r s t h a t t h e c o n t r o l had been c o n t a m i n a t e d  and  t h e r e s u l t s were  thus,  riot  valid. 54  FIGURE 4.1.6 PH OVER TIME FOR R U N 4 10  r-  0  10  20  30  40  50  60  70  80  TIME (DAYS) B  REACTOR 1 - CONTROL  REACTOR 2 - SEED+NUT.  _ ^ REACTOR 3 - SEED+NUT. _•_ REACTOR 4 - SEED  55  90  Oxygen Uptake Rate: (mg 0 2 / L m i n )  Reactor: 1  0.15  (Control)  2  0.27  3  0.43  4 T a b l e 4.1.7: Oxygen u p t a k e R a t e d e t e r m i n e d 47 o f t h e f o u r t h r u n .  On d a y 5 0 , t o c o r r e c t  t h e problem  b l e a c h was a d d e d t o t h e r e a c t o r . in  terms  an  inhibitory  half  of Total  that  to the  improve  the microbial  concentration  uptake  1 cup of stalled  presence of  r a t e was a l m o s t  and reseeded.  2 and replaced  o f t h e organisms  reactor.  effect  10  by d i s t i l l e d  was o b s e r v e d  effects  The d i l u t i o n inhibitory not affect  sought  litres  water.  One  that  aimed  t h e growth  present and t h e rate  ofthe  t h e q u a l i t y and of degradation i n  i n the reactor  COD o f 7 0 0 0 0 t o 4 0 0 0 0 mg/L, n o i n the rate  t o reduce  compound p r e s e n t i n  t o improve  Although the concentration  from a T o t a l  possible  toxic  which would  Seeding the reactor  diversity  reduced  culture.  o f the apparent  2 to a level  culture.  was  due t o t h e p o s s i b l e  o f R e a c t o r 3, i t w a s d i l u t e d reactor  the control,  o n Day  o f t h e c o n t e n t s o f R e a c t o r 3 was added t o R e a c t o r 2 i n o r d e r  reactor  the  reduction  i n the reactors  S i n c e R e a c t o r 2 seemed  compound, a n d t h e oxygen  were removed from cup  COD  with  0.3  had been immediate  of degradation i n the reactor. I t  t h e c u l t u r e was n o t a b l e t o r e c o v e r f r o m t h e  of the inhibitory  On d a y 5 7 , t w o p a r a m e t e r s  substance.  were checked 56  t o examine  i fthey  were  interfering  with  measured. A  d e f i c i e n c y of  of  organics.  growth.  Nitrogen  in concentration  nutrient  d e f i c i e n c y as  the  f r o m 40  to  50  was  not  examined;  the  d i r e c t e f f e c t of  The  run  conclusions  The are  of  contaminated  On  day  78,  to  design  week. A t the  the  start  of  a new  large  reactors,  present  break  down  in a l l test  thus  eliminating  cobalt  However,  the  i n the  reactors  a  the  ranging  dissolved  clearer  copper  i n d i c a t i o n of  culture.  a  success  due  to  a l l the  problems  COD  reduction  was  reasonable;  however  since  the  showed a  made t o  were l e f t the  c o n t r o l was  constituents  to  of  was  contaminated.  impressive  large  but  The  even  the  reduction.  abandon p a r t Reactor  continue  remaining  reduction  the  mg/L,  the  was  i n concentrations  have g i v e n  m e t a l s on  also  set  10  c o p p e r and  batch experiment.  point,  of  reactors.  a d e c i s i o n was  that  inhibit  reactor  not  organic  control  of  would  the  Total  reactors  Although a test  i n the this  i n the  factor.  difficult  a new  remaining  i n excess  C o p p e r was  a w h o l e was  encountered.  reduction  mg/L  level  phosphorus were p r e s e n t  concentrations  were measured. T o t a l  as  a  nutrient  n u t r i e n t s would  and  reactors  Secondly,  The  of  2 was the  reactors  the  batch  emptied  run  for  and  and  the  another  were c o n v e r t e d  for  experiments.  was  q u a l i t y of  observed the 57  sludge  i n the had  Total  not  COD  markedly  of  the  Parameter:  Reactor2  Reactorl  Initial T o t a l COD: (mg/L) Final T o t a l COD: (mg/L) a f t e r 78 days  Reactor4  Reactor3  96 350  113 850  19 869  (57 483 mg/L reduction attributed to  113 850  64 850  22 926  12 227  79.9  81.1  dilution) 25 982  Q.  26.7*  79.4  Difference:  T a b l e 4.1.8: R e d u c t i o n i n T o t a l  COD d u r i n g  r u n 4 i n 78 d a y s . *  T r e a t m e n t due t o d e g r a d a t i o n a l o n e , w i t h o u t e f f e c t o f d i l u t i o n . improved  ( T a b l e 4 . 1 . 8 ) . The p h y s i c a l  characteristics ofthe  s l u d g e had n o t changed g r e a t l y d u r i n g t h e course The  sludge s t i l l  experiment.  had an e a r t h y c o l o u r . I t had a s i g n i f i c a n t , y e t  l e s s pronounced s t r o n g chemical still  of  odour and an i r i d e s c e n t  f l o a t e d on t h e s u r f a c e o f t h e s l u d g e . Table  4.1.9 i n d i c a t e s  t h a t many o f t h e t a r g e t o r g a n i c compounds w h e r e s t i l l  present i n  l a r g e c o n c e n t r a t i o n s . These were a l l i n d i c a t i o n s o f an degradation process. Sludge  s e t t l i n g problems were a l s o  experienced.  f o r a p e r i o d o f twenty  E v e n when l e f t  the sludge would n o t s e t t l e .  The l i t e r a t u r e  problem w i t h a high organic matter  loading rate,  hypothesised  t h a t t h e b i o f l o c becomes c o a t e d w i t h a  (Rebhun 1988). case,  Another  i s the presence  hours,  especially  i s that biofloc settleabi1ity  i t ' sphysical  four  incomplete  indicates that the  hydrocarbon,  layer, which a f f e c t s  film  i s i m p a i r e d . Some h a v e  and b i o c h e m i c a l  hydrophobic performance  p o s s i b l e cause f o r t h e problem, i n t h i s o f f l y a s h i n t h e s l u d g e . The p r e s e n c e o f 58  Reactor2  Reactorl  Compound:  Reactor4  Reactor3  100  100  100  100  Diphenyl  82.1  90.6  96.9  71.1  Diphenyl Ether  66.0  48.4  84.0  73.1  Diphenyl Methane  47.9  26.6  68.7  0  25.4  22.6  66.3  0  Xylene  Benzene, 1,1* Methylene B i s (dimethyl )  1,2Dimethyl-4 94.2 Benzyl 100 88.1 Benzene T a b l e 4.1.9: P e r c e n t r e d u c t i o n i n t h e 6 t a r g e t o r g a n i c f o r r u n 4 i n 78 d a y s . these It  small molecules  impedes t h e t i m e l y s e t t l i n g  i s q u i t e p o s s i b l e , however,  the  sludge  Future  were t o t a l l y degraded,  runs  Considerable run.  would be used  the  these  t o prove  this  some o c c a s i o n , contents  since  hypothesis.  from t h i s  volatilization  a i r simply  leads  of the organic  mixers  would be used  Mixing  i s one o f t h e most  unsuccessful  important.  The main  of thebacteria.  t h e a e r a t i o n system had been used  of the reactor. This  any excess  components i n  problems would n o t occur.  F i r s t l y , t h e r a t e o f a e r a t i o n was v e r y t h e requirements  compounds  of the sludge.  i ft h e o r g a n i c  i n f o r m a t i o n had been a c q u i r e d  p u r p o s e was t o s a t i s f y on  that  100  for  process  would  to the  unnecessary  However, mixing  be d i s c o n t i n u e d  constituents of t h e sludge.  t o produces a uniformly mixed important 59  parameters  The  culture.  requiredf o r  growth. and  It assures  oxygen to  Studies that  the  directly prevent  the  BOD  1976).  The  interfere  5  of  sewage s l u d g e , the  reactors  dissolved that  the  with  copper  higher  there  than  i s no  c o p p e r and  surrounding  the  identify and  insure  The  Total  the  COD  could  the A  that  40  the  in a  60  rate  in  degrading  to  i t i s quite  total  sewage  is sludge.  indicate  and on  dissolved the  problems  Constant monitoring  to  batch.  high  chemical  s h e d some l i g h t  approached  in  possible  system  to  of  the  microorganisms  literature  to  (Mowat  system  type of  both  taken  the  found  concentrated  of  said  thus  the  percent  in a  of  copper  a d a p t more r e a d i l y  i n the  t h e n be of  decrease  system degrading  might  emphasize  b a c t e r i a and  organisms found  reduction.  continuation  metals  dissolved  in this  when c o n c e n t r a t i o n s  actions  dissolved  Therefore,  monitoring  cobalt  of  can  information levels  sewage s l u d g e  are  possible  in a  1994).  of  those  level  nutrients  rate  sewage s l u d g e by mixture  (Deepak  of  g r e a t l y a f f e c t s the  been shown t o  copper concentration. inhibitory  of  sludge.  more h a r d y o r  waste.  to  has  i t i s quite  industrial  limits  the  availability  cells  growth of  g r e a t l y from  heavy metal  also  of  the  inhibitory  forms of  the  of  since  are  considerably However,  concentration  1 mg/L  differs  and  rate  heavy metals  degradation  However,  reactors  degradation  degradation  concentration Total  the  presence of  biodegradation.  distribution  growing b a c t e r i a l  analyzing  the  the  possible  might  toxic  remediate the  situation  The  presence of n u t r i e n t s i s essential  microorganisms. would  inhibit  degradation. be d o n e on  The  absence  g r o w t h and From t h i s  of either  b a s i s . Each  t h e p r e s e n c e o f n i t r o g e n and  the  n u t r i e n t s would  also indicate  the degree  bacteria.  I f n u t r i e n t s were p r e s e n t ,  then  would  indicate  the growth  The  establishment  in  r u n 4,  control or  inhibition  a high  that  of a r e l i a b l e  concentration. essential  was  f o r accurate  tested  utilization  a g e n t was  of  of the  utilized  responsible  culture.  control  was  i t i s not c l e a r  essential. present  whether  r e s p o n s i b l e f o r the change  M o n i t o r i n g and  be  of a c t i v i t y  c o n c e n t r a t i o n o f b a c t e r i a was  reactor. Therefore,  volatilization  The  would  y e t were not being  some o t h e r  of the  COD  of n u t r i e n t s would  sample taken  phosphorus.  of  phosphorus  i n the Total  point, the monitoring  a continuous  for  nitrogen of  cause a s t a l l  for  this  f o r the growth  maintenance  c o n c l u s i o n s t o be  61  However, i n the  degradation  i n the  of a control drawn about  organic was  the  process.  4B.  Results  Metal  and  Toxicity  Discussion  (Continued):  Batches  Problems.  The p u r p o s e o f t h e f o l l o w i n g s e t o f r u n s  was:  1) To e s t a b l i s h a r e p r e s e n t a t i v e c o n t r o l  f r e e from  2) To m o n i t o r  With  contamination.  more c l o s e l y t h e n u t r i e n t a n d t h e m e t a l  concentrations i n the running reactors. 3) To c u t t h e l e n g t h o f t h e b a t c h r u n s , w h i l e a c h i e v i n g a h i g h e r degree of  Run  treatment.  #5  A new  r e a c t o r was e s t a b l i s h e d f o r t h i s  run, since the previous  r u n was n o t t e r m i n a t e d f o r a l l t h e r e a c t o r s . R e a c t o r stopped  a t 78 d a y s ,  but the other three r e a c t o r s continued f o r  a n o t h e r week. Due t o s p a c e l i m i t a t i o n s , five  l i t r e bucket  2 was  which  t h e new c o n t r o l was a  c o u l d s i t between t h e l a r g e r r e a c t o r s .  The c o n t e n t s o f t h e r u n n i n g r e a c t o r s f o r r u n 5 a r e shown i n T a b l e 4.2.1: Reactor  Parameter:  2  Reactor  5 (Control)  2  0.5  D i l u t i o n Water (L)  13  4.5  T o t a l Volume ( L )  15  5 ( i n c l u d i n g 100ml bleach)  19 885  19 121  1 438  960  Sludge  Initial (mg/L)  volume (L)  Total  COD  Initial Supernatant COD (mg/L)  7.06 8.73 PH T a b l e 4.2.1: I n i t i a l c o n d i t i o n s i n the r e a c t o r s a t the s t a r t o f run 5. 62  The  first  that  observation  only  two  t o be  made w h e n l o o k i n g a t  r e a c t o r s were b e i n g  a control.  for this  reactor  and  initial  T o t a l COD  i n the  r e a c t o r s . The  c o n c e n t r a t i o n was  chosen  i n order  c o n c e n t r a t i o n of found set in  i n the  i n order the  The  to decrease the  a e r a t i o n s y s t e m was  no  more t h a n  2.5  organic  mg/L  the  initial  The  to y i e l d  various  test  starting  waste mixture.  r e s u l t e d i n the  Total  COD  over  decrease  attributed change  organics  treatment  of  vs  degradation.  reduction  T o t a l COD be  there  the  compounds tested  and  d i s s o l v e d oxygen  at was  control.  seen  i n the  changes of  graph.  Figure  4.2.3,  Figure  4.2.1,  almost  a  simply  is little  Further the  i n terms  50  pH  the  first  be overall  evidence and  of  %  reactor i n the  cannot  since there  the  to date,  running  i n T o t a l COD  of  the  of  VSS/TSS  time.  time  the  first  off.  The  rapid decrease matter  earlier,  Looking  g r a p h shows t h a t  over  organic  successful data  to v o l a t i l i z a t i o n ,  can  over  most  c o n c e n t r a t i o n of  The  i n the  pH  time  i n the  days.  the  lower  a  is  magnitude of  the  and  in  i s the  and  COD  The  batch:  metals  Total  ratio  second point  4.2.1  reactors.  run  three  the  The  run  Table  the  twenty days,  degradation  r e a c t o r and  f o l l o w e d by  i n the  degradation  was  pH  a p e r i o d of  indicates that  probably  process  normally  shows a c o n s i d e r a b l e  leads  results 63  in a  levelling  considerable  o c c u r r i n g . As to the  decrease  explained  accumulation  r e d u c t i o n of  the  of pH.  C0  2  FIGURE 4.2.1 T O T A L C O D C O N C E N T R A T I O N V S T I M E F O R R U N 5 25  20  O HH  15  O  o o Q  o o  10  "rt •<->  o H 10  20  30  40  50  DAYS REACTOR 2  REACTOR 5 CONTROL  FIGURE 4.2.2 S U P E R N A T A N T C O D C O N C E N T R A T I O N V S T I M E F O R R U N 5  O •—< H w  o o u  T3  4  g  fS3  Q O U 1=5 S3  03  C/5  10  20  30  40  DAYS REACTOR 2  REACTOR 5 CONTROL  64  50  65  The VSS/TSS ratio  graph.  as the experiment  monitor  t h e changes  increasing viable  biomass  Figures  4.2.5  different system.  the  to  during  i s used  to An  population of  the organic contents of the  terms  was  nutrient  of Total  slow,  COD  for this  i s used  that  reducing the rate  T h e s u p e r n a t a n t COD  graph  interesting  during  were  corrected.  the deprivation  The T o t a l  COD  vs  10 d a y s  time  of the ratio  but nothing conclusive.  the metabolism  of carbon  of  A l lt h e d e g r a d a t i o n  c h a n g e i n t h e VSS/TSS  though,  have caused  by t h e  run. With constant  the effect  period  a  from t h e  r e c o g n i z e d and q u i c k l y  i s a slight  phosphorus  was. However, b o t h  occurred i n the f i r s t  o f n i t r o g e n may  results  ammonia  vs  indicates  absent  d o e s n o t show a n y e f f e c t .  run. There  thus  that  graph  residual  vs time graph  had on t h e system.  over the starvation  lack  o f abundant  than phosphorus  t o determine  4.2.1  concentration  On d a y 1 8 , a m m o n i a w a s  the problem  Figure  t h e r u n c a n be o b s e r v e d i n  However, t h e ammonia  i n t h e same p r o p o r t i o n  essential  graph  i n the  i n the reactor.  an i n c r e a s i n g  are u t i l i z i n g  at a higher rate  experimental  The  that  T h i s i s due t o t h e f a c t  i s difficult  graph, in  concentration  a n d 4.2.6. The p h o s p h o r u s  situation.  monitoring,  It  indicates  of nutrients  the reactor.  added  increase  proceeds. T h i s parameter  shows t h e c o n s t a n t p r e s e n c e  system  shows a s l i g h t  as a food/carbon source.  The p r e s e n c e  in  4.2.4,  i n biomass  microorganisms  reactor  time  Figure  of the  cells  usage.  over time. Figure  4.2.2  shows  some  t h e c o u r s e o f t h e r u n . The s u p e r n a t a n t  66  F I G U R E 4.2.5 P H O S P H O R U S C O N C E N T R A T I O N V S T I M E F O R R U N 5  10  20  30  40  TIME (DAYS) REACTOR 2  R E A C T O R 5 (CONTROL)  67  50  COD  concentrations start  This the  indicates run  the  progressed.  run,  the Total.  the The  supernatant mixed  As  but  t h a t components of  c o n c e n t r a t i o n was of  o f f low  At  the  1 438  soluble  than  the  mg/L COD  or  7.2%  run  proceeded.  the  of  the  the Total  c o n s i s t e d of t o be  run,  4  118  COD.  mg/L  accumulating  the microorganisms  usage  soluble At  54.6%  in  the  rate  in  COD  the  or  as  end of  the  liquor.  noted  from  Tables  4.2.2  and  4.2.3, t h e  successful  i n degrading  the  to below the d e t e c t i o n l i m i t  sludge  D e p e n d i n g on partially Xylene,  the  which  reduction  are  then  can  be  of  in  control,  between the 42  aerated  at a  reactor  f o r 42  volatilized.  the  GC  i n 41  after  42  the  i s not  as  r e d u c t i o n can Compounds,  I t can  be  rate which days,  However,  such  a r e more  as  easily  a l l the  Xylene  test  7 days;  reactor after  d a y s t h e r e was  the  that,  2.5  a  mg/L  and  the  the  trace,  however,  residual  arithmetic  control  produces  the Xylene  still  quantifying  concluded  this  be  F r o m t h e GC  s i m p l e as  amount  of  difference test  reactor  i f the waste mixture of dissolved  0  2  in  contained i n the waste would  i s not 68  was  days.  to v o l a t i l i z a t i o n .  c o n c e n t r a t i o n i n the  days.  the  low m o l e c u l a r weight,  present. Therefore,  volatilization  of  to v o l a t i l i z a t i o n .  from  process  t a r g e t o r g a n i c compounds i n  compound,  attributed  disappeared  concentration  the  biological  h e a v i e r compounds. However, not  Xylene the  most of  specific  attributed  volatilized  after  the  s l u d g e were s o l u b i l i z i n g  beginning of  o r g a n i c s appeared  faster  c l i m b as  what o c c u r r e d . Most o f  the  is the be  Xylene  reduction  degradation, At  that  i n the test reactor  since  point,  i t disappeared  only  h a s t o be a t t r i b u t e d t o  from t h e r e a c t o r  20% o f t h e Xylene  i n o n e week.  i n t h e c o n t r o l had  volatilized. Reactor  Parameter: T o t a l COD (Initial) Total After  Reactor  2  (mg/L)  COD ( m g / L ) 41 d a y s  Reactor Percent  (Control)  19 8 8 5  19  121  7 548  17  850  62 % difference T a b l e 4.2.2: R e s u l t s o f r u n 5 i n t e r m s o f COD days.  Compound:  5  2 reduction  6.6 reduction after  Reactor Percent  5 (Control) reduction  Xylene  100  94  Diphenyl  100  48.7  Diphenyl  Ether  99.3  38.6  Diphenyl  Methane  71.2  10.2  100  48.7  100  77.7  Benzene,1 ,1' Methylene b i s (4methyl)  41  1  1,2 D i m e t h y l 4 Benzyl Benzene  T a b l e 4.2.3: P e r c e n t r e d u c t i o n o f t h e t a r g e t o r g a n i c p r e s e n t i n t h e s l u d g e a f t e r 41 d a y s .  The It  major  target  i s present  difficult  compound o f t h e w a s t e m i x t u r e  i n the largest concentration  t o degrade.  Generally,  below t h e d e t e c t i o n  will  Thus,  i t serves  i sDiphenyl  limit  of this  o f t h e GC, t h e t r a c e  a s a benchmark, 69  Ether.  and i s t h e most  when t h e c o n c e n t r a t i o n  compound f a l l s be blank.  compounds  i n d i c a t i n gthe  degree of run, the  treatment  99.3%  of  the  treatment  w a s t e was  due  to  sludge  original  process  improvement over  The  the  was  past  very  received. In the  Diphenyl not  Ether  chemical  to analyze  remainder  three sludge  GC  and  the  Looking  at  generally extract  study,  average  composed of  under  the  of  the  trace,  of  end  low  over  o n l y two  present.  The  different organics  the  low The  with the and  40  to this  an  and  problem,  the  residual  GC  trace.  do  for  not  the on  the  area  the  final  seen  the  The  c o n c e n t r a t i o n of Diphenyl  disappearance  of  reduction i n area 70  control  some l o w e r of  others. A  GC  the  trace  initial  peaks.  On  the  running  smaller area  i n A p p e n d i x B.  t r a c e f o r the  The  are  i n varying  t r a c e f o r the  significantly seen  from  of  or  unidentified  weight.  different  must  volatilize  These compounds  high molecular  compounds c o u l d be  GC  the  T o t a l COD  c o n d i t i o n s , s i n c e no  final  be  Chromatography  samples were a n a l y z e d  t h e number and  t r a c e s can  Methane.  was  u s i n g Gas  compounds w h i c h  peaks of  contained a  this  used.  a whole,  However, on  reactor,  Due  is significantly  i n terms of  trace,  Diphenyl  the  mobility  concentrations.  sludge  on  product  both  initial  was  analytical  compound shows up probably  result  t h e numbers as be  but  of  Therefore,  makeup. From week t o week,  greatly.  the  removed.  q u i t e complete,  numbers o b t a i n e d v a r i e d of  was  case  runs.  difficult  i t ' svaried  has  end  were product  Ether  i s also  and slightly  molecular key  weight  to the  next  run  w o u l d be  reduce the 6.8%  of  to  c o n t r o l the  volatilization.  the  initial  aeration rate The  Total  concentration,  COD  as  i n order  to  l o s s i n the  compared t o  further control  was  i n the  test  66%  reactor.  Qualitatively,  the  The  sludge  a  the  surface  settled  a  sludge  of  progress  Total  r e a c t o r s was  COD  not  sludge.  total  The  initial  18,  the  on  to  i n the  the  the  low  as  mg/L  the  organisms  i n the  through exposure  to  the  to  was  found  to  sludge  or  i n Reactor  d i s s o l v e d metal  type  in  of  52  but  was  the not  mg/L. by  Studies of  in  the  day done  copper  Apparently, levels, of  organisms  concentrations.  concentration 71  copper  run  should  1 mg/L,  growth.  because the  been  the  2 was  5 mg/L.  to high  copper  had  of  dilution  reached  solids  improve.  heavy metals  inhibit  the  concentration  below  on  sludge  progress  needed  initial  reactor adapted the  much o f  dissolved concentrations  were more r e s i s t a n t t o h i g h  Initially,  The  had  the  successfulness  copper concentration  have been  Also,  but  heavy metal  large  improvement.  i r i d e s c e n t hue  considerable  apparent  dissolved concentration  0.5  past,  closely.  state that  the  less apparent.  dissolved concentration  sewage s l u d g e  present  the  monitored  f a c t o r due  and  effluent s t i l l  removal,  have been a The  was  showed marked  smell  Although  the  and  sludge  chemical  better than  quality  the  terms of  the  product  i n suspension.  made, t h e  to  of  faint  little  remained  Due  had  end  below  the  as  detection limit to  and  18 d a y s l a t e r  i n d i c a t e that, at f i r s t ,  the sludge.  As  i t was  quite high. This  t h e m e t a l was  r a t e of the  metal concentrations  i n the  nutrient utilization  Nitrogen (mg/L)  Used  The  C:N:P  f o r Reactor  Nutrient u t i l i z a t i o n  run  T o t a l COD (mg/L) 12  r u n was  and  the  COD  337  reduction for  i s not  r a t i o f o r microorganisms growth  the expected r a t i o  similar  i s 1 0 0 : 5 : 1 . The  b e e n done i n t h i s a r e a and  s p e c i f i c n u t r i e n t n e e d s o f t h e m i c r o o r g a n i s m s may i s due  vary.  to the nature  r u n w e r e i n c o n c l u s i v e and  can  be  of the sludge, could not  i s not the Part  be  some BOD  r u n was  b e t w e e n 2 and 72  of as  B0D . 5  t e s t s i n the  used.  s e e n i n T a b l e 4.2.5, t h e n i t r o g e n t o p h o s p h o r o u s  f o r most o f t h e  for  t o t h e u s a g e o f T o t a l COD  t h e amount o f c a r b o n u s e d , r a t h e r t h a n t h e t r a d i t i o n a l However, due  while  ratio  t o e i t h e r model p r o p o s e d . T h i s  the reasons f o r the v a r i a n c e  run  1 8 5 . 5 : 2 . 2 9 : 1 . As m e n t i o n e d i n t h e  the acceptable  s u r p r i s i n g s i n c e no work has  As  Used  c o n c e n t r a t i o n p h e n o l i c waste s y s t e m i s 100:10:1,  i n sewage s l u d g e , this  2 a r e shown i n T a b l e 4.2.4:  66.5  l i t e r a t u r e review, i n a low  increasing dissolved  Phosphorous Used (mg/L)  r a t i o of the  into  mixture.  152.5 Table 4.2.4: 5.  released  r e l e a s e seemed s l o w e n o u g h t o  enable the microorganisms t o adapt t o the  The  bound t o compounds i n  t h e o r g a n i c s d e g r a d e d , t h e m e t a l was  t h e s o l u t i o n . The  seems  2.5.  This  ratio  i s more t h a n h a l f  of the  r a t i o n e c e s s a r y f o r bug  literature  g r o w t h , as p r e d i c t e d  f o r sewage s l u d g e ( M e t c a l f  P e r i o d of elapsed time:  N  1 9 9 1 ) . T h i s may  P used: (mg/L)  used: (mg/L)  in  the be  N/P  ratio:  7  days  15.9  6.6  2.4  7  days  54.9  26.5  2.07  7  days  30.3  6.7  4.52  7  days  27.1  11.1  2.44  1.56 10 d a y s 24.3 15.6 T a b l e 4.2.5: R a t i o of n i t r o g e n to phosphorous u t i l i z a t i o n d u r i n g run 5. a t t r i b u t e d t o phosphorous not as a r e a c t a n t information could  only being  used as a n u t r i e n t  i n t h e p r e c i p i t a t i o n o f d i s s o l v e d c o p p e r . More  on  the  p r o c e s s w o u l d be  required  before  conclusions  be made. However, i t a p p e a r e d t h a t t h e d i s s o l v e d  under the  but  right conditions, could  be  removed f r o m t h e  copper, solution  by  p r e c i p i t a t i o n as c o p p e r p h o s p h a t e .  This  run p r o v i d e d  a starting point  showed t h a t t h e d e g r a d a t i o n v o l a t i l i z a t i o n of o r g a n i c eliminated. T o t a l COD contrary  The  was  m o s t l y due  p o s s i b l e and  compounds c o u l d  be  t o the degradation  occurred  degree of treatment s t i l l product. Also,  v o l a t i l i z e d had  o f w a s t e was  t o be  had  i n previous  by  possibly  i n terms  However,  of  the  to produce a  t h e amount o f o r g a n i c  matter  f u r t h e r r e d u c e d . Many q u e s t i o n s 73  the  microorganisms,  runs.  t o be m o d i f i e d  that  r e d u c e d and  control indicated that reduction  t o what had  q u a l i t y end  for further analysis. It  better  being  remained  unanswered, m a i n l y  f o c u s i n g on t h e o p t i m u m i n i t i a l  r a t e o f t h e r e a c t o r s and growth of the  sludge  the e f f e c t of d i s s o l v e d metals  loading  i n the  culture.  RUN#6: T h i s r u n s o u g h t t o b u i l d on t h e p r o g r e s s o f t h e p r e v i o u s A g a i n , more c a r e f u l order to determine  a n a l y s i s and  m o n i t o r i n g w o u l d be n e c e s s a r y  t h e d e g r e e and  q u a l i t y of treatment  For t h i s  r u n , t h r e e r e a c t o r s were used,  control.  The  p u r p o s e o f t h e r u n was  two  t e s t v e s s e l s and  to r e p l i c a t e the  20 000  i n q u i t e a s u c c e s s f u l run; a T o t a l  r e d u c t i o n o f 66% The  and  a removal  initial  T o t a l COD  r u n was  as f o l l o w s :  t h e r e a c t o r would have t h e i d e n t i c a l  initial  sludge  s l u d g e c o u l d be  improved,  r e a c t o r w o u l d h a v e a c o n c e n t r a t i o n o f 10 000  mg/L,  differences  i n terms of the d e g r a d a t i o n  Table  shows t h e v a r i a b i l i t y o f t h e s l u d g e  and  the d i f f i c u l t i e s  Although  Reactor  COD  other  test  from  the  lagoon  loading rate.  3 w e r e s e e d e d w i t h t h e same amount o f The  pH  and  initial  i n d i c a t e t h a t t h e c o n t e n t s o f t h e r e a c t o r s were  identical.  74  the  kinetics.  sludge, the composition d i f f e r e d g r e a t l y . Total  of  i f the  to observe  i n t r y i n g to reach a designed  1 and  one  i f the  c u l t u r e d o e s n o t u n d e r g o a n i t r o g e n d e f i c i e n c y . The  4.2.6  COD  l o a d i n g as  the running r e a c t o r i n the previous run, t o observe product  of  o f m o s t o f t h e o r g a n i c compounds.  l o a d i n g of the r e a c t o r s f o r t h i s  q u a l i t y o f t h e end  a  success  p r e v i o u s r u n had  resulting  an  in  obtained.  o b t a i n e d i n r u n 5. The mg/L,  run.  not  Sludge Volume (L) Dilution water Volume (L) Total  18  Volume  two  test  Reactor  on  treatment  supernatant to  see  rate  the  of  recycled  The  other  partially should  to  given  the  the  the  while  the  i n the  waste.  seeded w i t h  activated 4 was  previous  run.  in a  the  or  higher  the  sludge  low  pH  of  pH  and  lag  not  or  eliminated  i n degrading  i n the  The  the  the  o r g a n i s m s w h i c h had  decreased  a  from  the  culture,  s e e d had  sludge  o r g a n i s m s w o u l d h a v e on  the  supernatant  activated  was  conserve  difference  the  seeded w i t h  Hypothetically,  result  to  purpose  the  be  802  5.83  reactors prior  Reactor  acclimatised  to  31  878  4 were each  compared to  p u r p o s e was successful  in  4  (including L i t r e s of activated sludge)  7.39  3 and  would  19 4  (including L i t r e s of activated sludge) 14  phase should  the  18 4  909  reactor  s e e d and  explain  16  plant,  degradation,  the  16  seeded w i t h  effect that  acclimatization  15.5  conditions  3 was  from a  being exposed  3.0  8.52  reactors,  sludge. site  2.5  16  PH T a b l e 4.2.6: I n i t i a l s t a r t of run 6.  Reactor  3  2.5  (including 500 m l of bleach)  I n i t i a l Total COD (mg/L)  The  Reactor  Reactor 1 (Control)  Parameter:  in  using  degradation  rate.  which  i n run  the no  two  was 4.  This  test  reactors,  buffering  capacity. Figures  4.2.7  and  4.2.8  are  the  Total 75  COD  and  Supernatant  COD  vs  time graphs f o r the  r u n . The  T o t a l COD  s h a p e o f t h e one  i n r u n 5.  i n t h e T o t a l COD  c o n c e n t r a t i o n of the t e s t  w h i c h has  degree of  initial  degradation  l e v e l l i n g o f f and  r u n was  extended i n order  f u r t h e r . However, as was stalled restart. and  a quick  reactors, a  The  process  a certain  run  t o t r y and  COD  reduce the T o t a l  r e d u c t i o n i t was  more s u b s t a n t i a l l y t h a n i n p r e v i o u s  5,  once the  difficult  reduction occurred runs.  4.2.10 i n d i c a t e t h e p r e s e n c e o f n i t r o g e n and  This could  phosphorus  s e e n i n F i g u r e 4.2.10, on day  almost a n i t r o g e n d e f i c i e n c y , but  a quick  system  to earlier have  l a c k o f n u t r i e n t s . However, F i g u r e s 4.2.9  t h e e n t i r e r u n . As  COD.  considerably longer than i n  h a l t i n f u r t h e r T o t a l COD  b e e n c a u s e d by  decrease  increase i n the t o t a l  t h e c a s e i n r u n 4 and  i n t e r m s o f T o t a l COD  the  date.  p e r i o d , t h e r e was  a slight  l e n g t h o f t h e e x p e r i m e n t was  5. The  t h e r e was  b e e n e x h i b i t e d i n most s u c c e s s f u l r u n s t o  Following this  The  Initially,  graph i s s i m i l a r to  and during  10 t h e r e  was  a d d i t i o n remedied  the  situation. The  VSS  c o n c e n t r a t i o n v s t i m e g r a p h , F i g u r e 4.2.11, shows a  s l i g h t d i p i n t h e amount o f b i o m a s s i n t h e r e a c t o r a t t h a t However, t h e g r a p h shows a g e n e r a l the  remainder of the  run,  time.  i n c r e a s i n g t r e n d f o r most o f  i n d i c a t i n g t h a t g r o w t h resumed  after  the n u t r i e n t a d d i t i o n .  A r o u n d day  30,  over 2 separate  t h e b i o m a s s c o n c e n t r a t i o n was sampling  t h i s p e r i o d of time, concentrations  and  periods  ( b e t w e e n day  n u t r i e n t s were p r e s e n t  t h e BOD  was  reduced 30 and  40).  in significant  g r e a t e r t h a n 2000 76  drastically  mg/L  During  F I G U R E 4.2.7  TOTAL C O D CONCENTRATION VS TIME FOR R U N 6  35  g  I  i  i  0  10  20  i  i  30  40  \  I  50  60  TIME (DAYS) ^ R E A C T O R 1 (CONTROL) ^ R E A C T O R 3 ^REACTOR 4  ^  F I G U R E 4.2.8  0  SUPERNATANT CONCENTRATION  10  20  30  C O D VS TIME FOR R U N 6  40  TIME (DAYS) _«_ R E A C T O R 1 (CONTROL)  REACTOR 3  ^REACTOR 4  77  50  60  FIGURE 4B.10 A M M O N I A C O N C E N T R A T I O N V S TIME F O R R U N 6  0  10  20  30  40  TIME (DAYS) REACTOR 1 (CONTROL) ^  REACTOR 3  REACTOR 4  78  50  60  FIGURE 4.2.11 MLVSS CONCENTRATION VS TIME FOR RUN 6 16 , =  0  10  20  30  40  50  60  TIME (DAYS) ^  R E A C T O R 1 (CONTROL)  REACTOR 3  ^REACTOR 4 FIGURE 4.2.12 PH VS TIME FOR RUN 6 10 i  4  ,  I  i  i  i  i  i  I  0  10  20  30  40  50  60  TIME (DAYS) R E A C T O R 1 (CONTROL) ^  REACTOR 3  ^REACTOR 4  79  i n t h e r e a c t o r . Thus, t h e b a s i c e s s e n t i a l were p r e s e n t . A t f i r s t ,  requirements f o r growth  i t was t h o u g h t h a t t h i s was t h e r e s u l t o f  l o w pH. E x a m i n i n g t h e pH o v e r t i m e . F i g u r e 4.2.12, i t shows t h e pH d r o p p e d q u i c k l y a t f i r s t  that  and t h e n l e v e l l e d o f f t o an  a v e r a g e v a l u e o f 5. F o r c e l l  g r o w t h , t h e g e n e r a l l y a c c e p t e d pH  r a n g e i s b e t w e e n 6.5 and 8.5  ( B e l t r a m e 1 9 7 9 ) . The pH was  w i t h soda ash. A f t e r the a d d i t i o n ,  adjusted  t h e pH was i n t h e r a n g e o f 9;  t h i s was s l i g h t l y h i g h e r t h a n d e s i r e d a n d c o u l d h a v e s h o c k e d t h e bacteria,  due t o t h e d r a m a t i c pH f l u c t u a t i o n . However, t h e g r o w t h  i n t e r m s o f VSS i n c r e a s e d a f t e r t h e a d d i t i o n a n d t h e p r o b l e m seemed t o h a v e b e e n s o l v e d .  However, u p o n c l o s e r sampling periods  inspection,  t h e system improved f o r o n l y 2  ( 1 week) i n t e r m s o f VSS i n c r e a s e and t h e n  c o n t i n u e d a downward  t r e n d . The pH a t t h i s t i m e was w i t h i n t h e  a c c e p t e d range f o r growth. N u t r i e n t s were p l e n t i f u l was s t i l l  a b o v e 2000 mg/L.  a n d t h e BOD  E x a m i n i n g t h e d a t a more c l o s e l y , i t  a p p e a r s t h a t t h e pH was n o t d i r e c t l y t h e c a u s e o f t h e g r o w t h problem but c o n t r i b u t e d t o the problem. Looking a t F i g u r e the t o t a l  a n d d i s s o l v e d c o p p e r c o n c e n t r a t i o n o v e r t i m e c a n be  o b s e r v e d . The t o t a l 80 mg/L.  4.2.13,  c o p p e r c o n c e n t r a t i o n i n R e a c t o r 4 was a b o v e  From t h e b e g i n n i n g o f t h e r u n , t h e d i s s o l v e d  c o n c e n t r a t i o n was f a i r l y c o n s t a n t , u n d e r 8 mg/L  until  copper d a y 35. A t  t h e same t i m e , a r e d u c t i o n was s e e n i n t h e VSS c o n c e n t r a t i o n . d i s s o l v e d c o p p e r c o n c e n t r a t i o n t h e n r o s e t o 14  80  mg/L.  The  FIGURE 4.2.13 COPPER CONCENTRATION (TOTAL AND DISSOLVED) VS TIME  FOR RUN 6 ioo  ,  1  0 10  20  30  40  50  TIME (DAYS) . R# 1 TOTAL  + R#4 TOTAL  _^R#1 DISSOLVED _B_ R#4 DISSOLVED  81  60  This  r i s e was a t t r i b u t e d t o t h e l o w pH i n t h e m i x e d  resulting  i n greater  metal s o l u b i l i z a t i o n .  liquor,  Increasing  p r e c i p i t a t e d much o f t h e d i s s o l v e d c o p p e r , r e d u c i n g concentration  o f a p p r o x i m a t e l y 5 mg/L.  c o p p e r was a l s o a i d e d  The p r e c i p i t a t i o n o f t h e  recovery  i n the reactor  Once  approaches  d o e s n o t a l w a y s a p p e a r t o be p o s s i b l e ; i n  t h i s case the d i s s o l v e d copper c o n c e n t r a t i o n increase  i tto a  by t h e a d d i t i o n o f sodium phosphate.  the d i s s o l v e d copper c o n c e n t r a t i o n toxic levels,  t h e pH t o 9  as t h e e x p e r i m e n t a l  continued  to  run proceeded.  R e a c t o r 3 was r u n f o r a s h o r t e r p e r i o d o f t i m e t h a n R e a c t o r 4 b u t was more s u c c e s s f u l reduction but  i n terms of t h e degradation  of the waste.  i n T o t a l COD v s t i m e f o r t h e r e a c t o r was n o t s t a r t l i n g  r e s u l t e d i n t h e d e s t r u c t i o n o f most o f t h e o r g a n i c  c o n s t i t u e n t s o f t h e w a s t e . The pH o f t h e r e a c t o r was as  The  shown i n F i g u r e  inconsistent  4.2.12. A l t h o u g h t h e r e was a l e v e l l i n g o f f i n  T o t a l COD d e g r a d a t i o n ,  t h e GC t r a c e i n d i c a t e s t h a t  treatment s t i l l  occurred  during  this period;  was a r e d u c t i o n  i n the concentration  that  considerable i s , that  of target organic  e v e n t h o u g h t h e r e was no a p p a r e n t c h a n g e i n T o t a l COD. i n d i c a t e s t h a t e x a m i n i n g t h e T o t a l COD  there  compounds, This  a l o n e m i g h t n o t be t h e  b e s t way t o m o n i t o r t h e p r o g r e s s o f t h i s t y p e o f s y s t e m . A c o m b i n a t i o n o f d a t a must be o b s e r v e d t o u n d e r s t a n d t h e of t h e  operations  bioprocess.  The m e t a l c o n c e n t r a t i o n  was n o t o f c o n c e r n i n t h i s 82  reactor,  since  the  initial  concentration  o f t h e s l u d g e was much l o w e r t h a n i n  R e a c t o r 4. The r u n e n d e d e a r l i e r t h a n t h e was t h e c a s e f o r R e a c t o r 4, s i n c e t h e GC t r a c e i n d i c a t e d t h a t t r e a t m e n t was  almost  complete.  Through m a n i p u l a t i o n further limit  o f t h e a e r a t i o n r a t e i t was p o s s i b l e t o  the reduction  volatilization.  The T o t a l COD  o f t h e r u n was f a i r l y  Figure time.  o f T o t a l COD o f t h e c o n t r o l due t o level  i n the reactor f o r the length  stable.  4.2.8, i s t h e g r a p h o f t h e COD o f t h e S u p e r n a t a n t I t i s s i m i l a r t o t h e one f r o m t h e p r e v i o u s  proceeded, organic  r u n . As t h e r u n  compounds w e r e d i s s o l v e d i n t o s o l u t i o n . I t i s  i n t e r e s t i n g t o note that the reactor with the higher sludge concentration  initial  resulted i n the accumulation of a  s u p e r n a t a n t COD c o n c e n t r a t i o n . solubilizing  This  higher  i n d i c a t e s t h a t compounds w e r e  i n t o s o l u t i o n a t a f a s t e r r a t e t h a n c a n be u s e d b y  t h e m i c r o o r g a n i s m s . I t i s p o s s i b l e t h a t t h i s phenomenon responsible  over  f o r the cessation  dissolved concentration a toxic level  was  i n the carbon degradation.  The  o f o n e o f t h e compounds may h a v e r e a c h e d  i n t h e s u p e r n a t a n t and i n h i b i t e d t h e growth o f t h e  microorganisms.  As  T a b l e s 4.2.7 a n d 4.2.8  i n d i c a t e , R e a c t o r 3 was more  successful  a t t r e a t i n g t h e waste based on t h e removal o f o r g a n i c s . a p p e a r s t o be d u e , i n p a r t , t o t h e f a c t t h a t t h e i n i t i a l 83  This  Parameter: Length (days)  Reactor 1 (control)  Reactor  Reactor  3  4  of run 55  34  55  Initial Total COD ( m g / L )  16 9 0 9  14 8 7 8  31 8 0 2  Final Total COD ( m g / L )  16 5 6 4  9 608  21 5 2 9  35.4 32.3 2 % difference T a b l e 4.2.7: Comparison between t h e i n i t i a l c o n d i t i o n s and t h e end r e s u l t o f run 6 i n terms o f T o t a l COD.  Compound:  Reactor 1 (control) Percent removal  Xylene Diphenyl Diphenyl  Ether  Diphenyl Methane B e n z e n e , 1,1' Methylene b i s (4 m e t h y l )  Reactor Percent removal  Reactor Percent removal  3  4  100  100  100  59.4  97.5  95.3  30.8  96.5  84.8  11.3  88.3  0*  7.8  78.9  22.7  1,2-Dimethyl86.2 77 100 4-Benzyl Benzene T a b l e 4.2.8: P e r c e n t removal o f t h e t a r g e t o r g a n i c compounds d u r i n g run 6.* N o D i p h e n y l m e t h a n e w a s r e m o v e d f r o m r e a c t o r 4. concentration less  volatilization  ones.  occurred  However, t h elower  easily from  o f o r g a n i c s was l o w e r .  volatilized,  i nthis  weight  as indicated  The c o n t r o l run than  indicates  i nt h e p r e v i o u s  o r g a n i c compounds were by t h e 100% removal  still  o f Xylene  a l l o f t h e r e a c t o r s . However, o n e must remember t h a t  84  that  this  does n o t i n d i c a t e t h a t t h e removal  o f Xylene from t h e t e s t  r e a c t o r s was t h r o u g h v o l a t i l i z a t i o n ,  s i n c e t h e removal  occurred  much f a s t e r i n t h e t e s t v e s s e l s t h a n i n t h e c o n t r o l .  The  GC d a t a i n d i c a t e d t h a t t h e i n i t i a l  T o t a l COD l o a d i n g o f  32 000 mg/L  i n R e a c t o r 4 m i g h t h a v e b e e n t o o h i g h . The T o t a l  was r e d u c e d  by a l m o s t  the p e r c e n t removal  t h e same p e r c e n t a g e  a s i n R e a c t o r 3, b u t  o f t h e o r g a n i c compounds was q u i t e  A much l o w e r d e g r e e o f t r e a t m e n t ,  COD  different.  i n t e r m s o f many o f t h e t a r g e t  o r g a n i c compounds, was a c h i e v e d . T h i s c a n be p a r t i a l l y e x p l a i n e d by t h e i n i t i a l of  h i g h o r g a n i c l o a d i n g r a t e , a s w e l l a s t h e amount  d i s s o l v e d copper  p r e s e n t . The c o p p e r  was n o t o n l y p r e s e n t  from  the s l u d g e , but a l s o i n t h e seed sludge from t h e p r e v i o u s r u n . The  h i g h d i s s o l v e d metal  the growth waste.  c o n c e n t r a t i o n appears  o f t h e b a c t e r i a and reduced  This i n i t i a l  t o have  inhibited  the degradation of the  sludge l o a d i n g would thus s e r v e as a  b e n c h m a r k f o r f u t u r e r u n s . I t was s p e c u l a t e d t h a t ,  i f t h e pH w e r e  m o d i f i e d and b u f f e r e d p r i o r t o t h e s t a r t o f t h e r u n and t h a t a d d i t i o n a l phosphorus were added t o t h e system d i s s o l v e d copper,  to precipitate  t h e r e s u l t s may h a v e b e e n q u i t e d i f f e r e n t .  More  i n v e s t i g a t i o n i n t o t h i s a r e a w o u l d be n e c e s s a r y .  The  n u t r i e n t c o n c e n t r a t i o n over time f o r t h e r u n i s summarized i n  T a b l e s 4.2.9 a n d 4.2.10. The s t r i k i n g p o i n t a b o u t t h e r a t i o s i n T a b l e 4.2.10 i s t h a t t h e r e seemed t o be a h i g h c a r b o n used  f o r the microorganism  growth. 85  Again,  content  i t s h o u l d be n o t e d t h a t  Number o f Days  Reactor 3  R#3  P used (mg/L)  N used (mg/L)  R#3 N/P ratio  Reactor 4  R#4  P used (mg/L)  N used (mg/L)  R#4 N/P ratio  3  10.4  17.1  1.64  9.5  18.4  1.94  7  24.8  61.5  2.48  39.4  53.1  1.35  7  7.5  38.5  5.1  11.1  40  3.6  7  9.07  38.5  4.24  36.4  41.2  1.13  10  8.03  37.6  4.68  2.7  33.2  12.3  7.6  30.1  3.96  20.3  60.4  2.98  3 18  280.2 2.04 137.1 59.8 193.24 3.23 Total T a b l e 4.2.9: N u t r i e n t u t i l i z a t i o n f o r the two t e s t r e a c t o r s f o r run 6.  Reactor 4  Reactor 3  Parameter:  157: 2.02 :1 COD:N:P 161: 3.23: 1 T a b l e 4.2.10: T o t a l COD:N:P r a t i o f o r run 6.  T o t a l COD i s n o t u s u a l l y u s e d i n d e t e r m i n i n g t h e r a t i o . T o t a l BOD to  5  s h o u l d be u s e d . The N:P r a t i o was s t i l l  the expected l i t e r a t u r e  Rather,  l o w , compared  v a l u e o f 5:1 a n d 1 0 : 1 . T h i s c a n  p a r t i a l l y be e x p l a i n e d a g a i n b y t h e c o m p l e x i n g o f p h o s p h o r u s  with  copper and p r e c i p i t a t i n g from t h e s o l u t i o n . Not a l l t h e p h o s p h o r u s w h i c h d i s a p p e a r s f r o m s o l u t i o n was u s e d f o r microorganism growth.  The h i g h l i g h t o f t h i s  r u n was t h e s t a b i l i z a t i o n o f t h e c o n t r o l .  A l s o a p p a r e n t was t h e n e e d f o r c o n s t a n t m o n i t o r i n g o f t h e c o p p e r 86  concentration dissolved  present  i n the  metals are  more p r e v a l e n t .  p r o n o u n c e d e f f e c t on identified  by  Total  The  COD.  s y s t e m and similar  a  high  be  During periods  Therefore,  action  In  of  there  low  is a  growing c u l t u r e . These p e r i o d s i n the  r a t e of  i s prevention.  nutrient concentration  problems.  waste can  the  "stalling" best  reactors.  this  effectively  way,  A  i n the  be  i n terms  b u f f e r i n g of  initial  more  can  of  the  i s recommended t o  a higher  treated  degradation  pH,  avoid  concentration  of  reactor.  Run#7 The  purpose of  loading with  level  the  run  while  was  avoiding  dissolved metals.  acceptable  initial  unless  c o p p e r was  the  previous  run  system,  since  quickly  s l o w e d by  t o h a v e an the  I t was  loading  initial the  problems of  determined  l a y b e t w e e n 20  reduced  showed t h a t  success of  target  was  The  initial  conditions  be  observed  i n Tables  3 contained and  thus,  25  the  the  000  i t was  not  previous  threshold  000  and  30  000  pretreatment. to overload  bacteria to  mg/L  p u r p o s e was  i n c r e a s i n g the  The the be  increasing to  replicate  loading  the  slightly;  COD.  of  the  reactors  4.2.11 and  BOD  of  mg/L,  exposure of  5 while  runs  the  practical  the  COD  that  microorganisms w i l l  same i n i t i a l  initial  the  sludge  r a p i d growth of  run  the  high  i n some f o r m o f  c o p p e r d i s s o l v i n g i n t o s o l u t i o n . The relative  initial  5  run  7  can  4.2.12. A l t h o u g h R e a c t o r s  2  and  sludge  at  the  start  of  loading,  the  organic  differed slightly.  The  Total  87  contents COD  load  Parameter: Sludge (L)  Reactor  Loading  2  Reactor  3  Reactor 5 (Control)  3  3  0.75  4  4  0  21.4  21.4  30 169  29 484  28 799  1 378  1 207  1 035  I n i t i a l Total BOD (mg/L)  8 322  6 154  N/A  I n i t i a l Total c o p p e r (mg/L)  80  84  48  0  0  0  6.05  6.35  6.22  Seed V o l . ( L ) Total (L)  I n i t i a l Total COD (mg/L) Initial Supernatant COD (mg/L)  Initial Dissolved c o p p e r (mg/L) pH  T a b l e 4.2.11: I n i t i a l l o a d i n g o f t h e t e s t c o n t r o l p r i o r t o t h e s t a r t o f r u n 7.  5 (including 100 ml bleach)  r e a c t o r s and t h e  was s l i g h t l y h i g h e r t h a n t h e t a r g e t b u t c o n s i d e r e d The i n i t i a l  acceptable.  l o a d i n g and c o n c e n t r a t i o n o f o r g a n i c s once  again  reinforced the r e a l i t y of the v a r i e d nature of the sludge.  The i n i t i a l  total  was a c o n c e r n dissolved  c o p p e r l o a d i n g was q u i t e h i g h a n d t h u s  that i t could affect the degradation  there  process, as  i n t o s o l u t i o n . An e f f o r t was made t o i n c r e a s e t h e  phosphorus l o a d i n g and keep i t e l e v a t e d t o encourage t h e copper to  p r e c i p i t a t e out. Complicating matters  was t h e l o w i n i t i a l  o f t h e r e a c t o r s . The pH r a n g e d b e t w e e n 6 a n d 6.4 f o r t h e t e s t 88  pH  Reactor ppm  Compound:  2:  Reactor ppm  245.7  243.4  Xylene  1 157.1  Diphenyl Diphenyl  Ether  1  5 290  Diphenyl Methane  Reactor Control ppm  3:  205.6  257.4  1 139.5 5 071  5 690  57.4  67.3  64.2  19  21.7  20.5  B e n z e n e , 1,1' Methylene b i s (4-methyl)  1,2-Dimethyl167.2 4-Benzyl 138.4 Benzene T a b l e 4.2.12: I n i t i a l c o n c e n t r a t i o n o f t h e t a r g e t compounds a t t h e s t a r t o f r u n 7. reactors.  The lower  available  i ndissolved  buffered,  since  affected  modification  t h e pH, t h e more c o p p e r form.  The system  p r i o r attempts  t h e run.  organic  would be  was n o t  initially  at modifying  would be taken  139.5  that  t h e pH h a d n e g a t i v e l y  C l o s e m o n i t o r i n g was s e l e c t e d  actions  5:  once o t h e r  a n d pH avenues had been  exhausted.  Figure  4.2.14, t h e T o t a l  high degradation the  experiment.  shifted B0D  5  rate  rate  was b e l o w  5  f o r both  At that  t o a slow  BOD  point,  decline,  vs time  curve,  reactors,  shows a n  for the first  d a y 19, t h e d e g r a d a t i o n  until  1 0 0 mg/L. T h e d r a s t i c c h a n g e  initially,  followed  half of rate  t h e e n d o f t h e r u n , when t h e i n the degradation  c a n be a t t r i b u t e t o t h e e l i m i n a t i o n o f e a s i l y  organics,  initial  by t h e degradation  89  degraded  o f more  complex  and  resistant  compounds;  hence,  these were degraded  at a  slower  rate.  Figure  4.2.15,  the Total  s h a p e a s t h e BOD Reactor first is  2;  i n Reactor  three days,  difficult  amount that lag  graph.  COD  T h e r e was,  rapid  to explain  cultures  degradation i n f o r the  reactors contained However,  differed  for acclimatization.  3 went t h r o u g h  rapid  d e g r a d a t i o n o c c u r r e d . The  and seed.  C o n c e n t r a t i o n v s Time graph, Reactor  h a s much t h e same  at first,  since both  o f t h e same s l u d g e  phase  graph,  3, a l a g p h a s e c a n b e o b s e r v e d  then  the bacterial  vs time  This  l a g phase equal  i t i s quite  and t h a t Reactor i s supported  F i g u r e 4.2.17, w h i c h  possible  3 needed a  b y t h e VSS indicates  a period of increase i n v o l a t i l e  that  solids  levels.  In  terms of T o t a l  after off  11 d a y s ,  after  pattern  tail  21 d a y s .  a certain  end o f t h e was  The t a i l  i n previous  still  The c o n t r o l  the degradation  while degradation  as seen  t h e r e was  COD,  end o f t h e graph runs  b u t was  amount  quite  stable  reactor  levelled  exhibited  less  of rising  t h e same  pronounced. Yet,  and f a l l i n g  i n terms of Total  reduction over  The S u p e r n a t a n t  COD  pronounced  i n the past  solubilization  i n the other  2 levelled off  i n the  graph.  with only a slight  than  i n Reactor  vs time  graph.  f o r the run,  the length of the run.  F i g u r e 4B.16, was  f o r Reactor  of organics at f i r s t ; 90  COD  3. T h e r e w a s  then,  starting  more rapid on day  16,  FIGURE 4.2.14 T O T A L 5 D A Y B O D C O N C E N T R A T I O N V S T I M E F O R R U N 7 9  1  5  9  19  23  30  TIME (DAYS) BOD5 (REACTOR 2) ^ BOD5 (REACTOR 3)  91  40  FIGURE 4.2.15 TOTAL COD CONCENTRATION VS TIME FOR RUN 7  H 0 1 0  1  1  1  1  1  10  20  30  40  50  TIME (DAYS) REACTOR 2  REACTOR 3  R E A C T O R 5 (CONTROL)  TIME (DAYS) REACTOR 2 +  REACTOR 3  R E A C T O R 5 (CONTROL)  92  FIGURE 4.2.17 MLVSS CONCENTRATION VS TIME FOR RUN 7  0  10  20  30  40  50  TIME (DAYS) REACTOR 2  _ ^ REACTOR 3  ^ R E A C T O R 5 (CONTROL) FIGURE 4.2.18 VSS/TSS RATIO VS TIME FOR RUN 7  i  90  80 \-  20  1  0  ' 10  ' 20  1  1  30  TIME (DAYS) REACTOR 2  +  REACTOR 3  - ^ R E A C T O R 5 (CONTROL)  93  1  40  50  t h e compounds were q u i c k l y level  found  i n Reactor  experiment,  t h e r e was  concentration.  The  2.  removed For  The  utilize  pH  was  of  concern  the  the case  of Reactor  growth  continued fallen  initial  l o w pH  difficult  ratio an  was  rapid  rate  quite  i t was  low  of  the  Prince  the  the  COD little  of Reactor  2,  the  microorganisms  but  day  to raise  BOD  m o d i f i e d t o examine w h e r e t h e pH  pH  decrease  as  would l o n g as  i f an level  for  to  effect  time  declined.  indicating  low  pH  o f f . The  organic matter  data  graph. VSS/TSS  that  of  there  in  d i d not pH  the  data  The  present  was  the appear  reactor  p o i n t would  be  indicates  that  i s being  pH  i n the  of  t h e COD  vs  had  slightly.  The  equilibrium  94  due  resulted  and  5  organisms  4.2.18). T h e r e f o r e , the  In  range  and  t h e VSS  run,  11,  t h e pH  process. The  reactors.  p r o d u c t i o n , t h e pH  2  generally  population of v i a b l e  (Figure  On  been troublesome  to determine.  i n F i g u r e 4.2.19.  f a v o u r a b l e pH  t h u s C0  added  seen  f o r t h e two  1993).  treatment  scattered  reached will  time of  t h e r e was  d e t r i m e n t a l t o t h e d e g r a d a t i o n p r o c e s s . The not  reached  soluble  the  as  below the  increase s l i g h t l y during the  increasing  that  run,  d e g r a d a t i o n ; however,  4.2.17 was  reactor be  2,  was  i n t h e p a s t had o r end  Figure  pH  S o d a a s h was  "stalling"  indicated  at a  during this  ( M e t c a l f 1991;  t o 5.15.  was  the  since  supernatant  s l u d g e d e g r a d a t i o n and  adjustments  over  and  them.  Firstly,  cell  2,  that,  i n the  compounds were s o l u b i l i z i n g  solution  increase i n the  indicates  a c c u m u l a t i o n o f compounds  could  Reactor  a slight  data  from  degraded.  to 3  the  FIGURE 4.2.19 PH VS TIME FOR RUN 7  7.5  ,  0  10  20  30  T I M E (DAYS) _B_ R E A C T O R 2  REACTOR 3  REACTOR 5 (CONTROL)  95  40  50  The t o t a l  copper l e v e l s i n t h e r e a c t o r s were q u i t e h i g h ,  as  d e m o n s t r a t e d i n F i g u r e 4.2.20, b u t t h e d i s s o l v e d l e v e l s d i d n o t increase considerably during the run. In the test d i d n o t go h i g h e r the  t h a n 5 mg/L.  they  T h i s c a n p o s s i b l y be a t t r i b u t e d t o  fact that the nutrient concentration  kept at extremely  reactors,  i n t h e r e a c t o r s were  h i g h l e v e l s as seen i n F i g u r e s  4.2.22. The h i g h p h o s p h o r u s c o n c e n t r a t i o n  4.2.21 a n d  ( c l o s e t o 200 mg/L),  due t o a n e r r o n e o u s c a l c u l a t i o n , may h a v e k e p t t h e d i s s o l v e d copper below t h e t o x i c  l e v e l s seen i n p r e v i o u s  experiments.  The  c o n c e n t r a t i o n of d i s s o l v e d copper i n t h e c o n t r o l d i d not i n c r e a s e b e c a u s e t h e pH was s t a b l e a t a r o u n d 6.5  f o r the course  of the  r u n . S t u d i e s h a v e shown t h a t a l o w pH i n c r e a s e t h e amount o f metal found i n d i s s o l v e d form. The f i r s t  apparent c o n c l u s i o n from the data  i s the high degree of treatment  shown i n T a b l e  which occurred  i n Reactor  T h e r e was a d r a s t i c r e d u c t i o n i n t e r m s o f t h e T o t a l BOD T o t a l COD,  99.1 % a n d 8 1 . 1 % r e s p e c t i v e l y . T h i s  5  4.2.13 2.  and t h e  r e s u l t e d i n the  e l i m i n a t i o n o f a l l b u t one o f t h e t a r g e t o r g a n i c compounds t o b e l o w t h e d e t e c t i o n l i m i t o f t h e GC. F u r t h e r m o r e , t h e o n l y organic present  i n t h e r e a c t o r was a s m a l l c o n c e n t r a t i o n o f  Xylene.  The c h a n g e i n t e r m s o f t h e c o n c e n t r a t i o n o f s p e c i f i c o r g a n i c s c a n be s e e n i n T a b l e 4.2.14. E v e n t h e D i p h e n y l difficult  organic  i n the mixture  the d e t e c t i o n l i m i t .  Ether,  t h e most  t o d e g r a d e , was r e d u c e d t o b e l o w  M o s t o f t h e compounds w e r e d e g r a d e d i n t h e 96  FIGURE 4.2.20 COPPER CONCENTRATION (TOTAL AND DISSOLVED) VS TIME  FOR RUN 7 90 ,  0  10  20  30  40  TIME (DAYS) R#2 TOTAL  +  R#3 TOTAL  R#2 DISSOLVED - R#3 DISSOLVED  97  R#5 TOTAL * R#5 DISSOLVED  50  FIGURE 4.2.21 AMMONIA CONCENTRATION VS TIME FOR RUN 7 900  I  TIME (DAYS) — REACTOR 2  ^ _ REACTOR 3  REACTOR 5 (CONTROL)  98  Parameter:  Reactor  I n i t i a l Total COD ( m g / L ) Final Total COD ( m g / L ) %  difference  Reactor  2  Reactor 5 (Control)  3  30 1 6 9  29 4 8 4  28 7 9 9  5 710  9 592  25 350 12.0  67.5  81.1  Initial Supernatant COD ( m g / L )  1 378  1 207  1 035  Final Supernatant COD ( m g / L )  2 998  2 912  3 511  8 322  6 154  NA  74  191  NA  Initial (mg/L)  BOD  F i n a l BOD (mg/L)  5  5  % difference T a b l e 4.2.13: F i n a l 7.  first  12 d a y s ,  NA 96.9 99.1 c o n d i t i o n o f t h e r e a c t o r s a t t h e end o f run  i n concert with the dramatic  BOD . H o w e v e r , a t t h a t p o i n t t h e r a t e 5  days were r e q u i r e d t o achieve cannot in was  s i m p l y be a t t r i b u t e d  slowed  the final  and a f u r t h e r  result.  to volatilization  This  limited  to less  chemical  the sludge  odour,  disappeared.  graduated  than  The change  i n the control  20 % f o r m o s t c o m p o u n d s .  also  the iridescent  had markedly  settled  improved.  hue and t h e s e t t l i n g  The e n d p r o d u c t  cylinder,  30  remediation  either.  t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c compounds  Qualitatively,  all  reduction i n the  sludge,  within  99  The s t r o n g  problems had  when p l a c e d i n a  one hour and t h e e f f l u e n t had  the at  same q u a l i t y  and appearance as one c e n t r i f u g e d  f o r 5 minutes  3 0 0 0 RPM.  Compounds:  Parameter:  Xylene  Inn.  9.7  63.4  % Degrad.  95.7  96.1  69.2  Inn.  1 157  1 257  1 139  0  4.2  875  100  99.7  23.2  5 290  5 690  5 071  0  24.9  4 067  100  99.6  19.8  57.4  67.3  64.2  0  4.8  58  100  92.3  9.57  19.0  21.7  20.5  0  3.8  106  100  82.5  0  138.4  167  139.5  0  0  67.1  Cone.  Cone. Cone.  Inn.  Cone. Cone.  % Degrad. Inn. Final  Cone. Cone.  % Degrad. Inn.  Final  Cone.  Cone.  % Degrad. 1,2Dimethyl-4 Benzyl Benzene  Reactor 5 (control) (ppm)  10.4  Final  Benzene,1, 1'Methylene bis (4methyl)  3  205.6  Cone.  % Degrad.  Diphenyl Methane  Reactor (ppm) 245.7  Final  Diphenyl Ether  2  243.4  Final  Diphenyl  Reactor (ppm)  Inn.  Final  Cone.  Cone.  100 100 % Degrad. T a b l e 4.2.14: Change i n t h e c o n c e n t r a t i o n o f t h e t a r g e t at t h e end o f run 7.  100  51.9 organics  Reactor 2 Reaction rate  Reactor 3 Reaction rate  430.4  300.7  23.9  26.1  211.5  152.9  22.1  22.3  -0.35  -0.32  5.68  5.76  104.9  113.8  0.1  0.05  28.2  30.5  468.5  382.1  4.57  48.7  129  138.2  D a y 1-12  4.31  3.33  Day 13-42  0.33  0.86  Total  1.40  1.52  1.1  1.11  Day 13-42  0.23  0.19  Total  0.46  0.44  D a y 1-12  12.6  15.2  0  0  Compound:  Time  BOD  D a y 1-19  5  (mg/L D a y )  Day  20-40  Total Xylene  D a y 1-12  (ppm/day)  Day 13-42 Total Diphenyl  (ppm/day)  D a y 1-12 Day 13-42 Total  Diphenyl Ether (ppm/day)  D a y 1-12 Day 13-42 Total  D i p h e n y l Methane (ppm/day)  Benzene,1,1' Methylene b i s ( 4 M e t h y l ) (ppm/day)  1,2 D i m e t h y l s Benzyl Benzene (ppm/day)  D a y 1-12  Day 13-42  4.08 3.38 Total T a b l e 4.2.15: S t r a i g h t l i n e d e g r a d a t i o n r a t e s o f s p e c i f i c o r g a n i c compounds d u r i n g run 7 i n t h e two t e s t r e a c t o r s . The s t r a i g h t  line  degradation  emphasize the information  rates  provided 101  shown  i n Table  by the Total  4.2.15  further  COD a n d B 0 D  5  vs  t i m e g r a p h s . The s t r a i g h t  l i n e degradation rate i s the slope of  t h e l i n e c o n n e c t i n g t h e c o n c e n t r a t i o n o f a compound o v e r specific  sampling  By t h e f i r s t  days.  12 d a y s ,  been degraded.  t h e m a j o r i t y o f t h e o r g a n i c compounds h a d  The r e a c t i o n r a t e s w e r e q u i t e h i g h , a s c o m p a r e d t  t h e n e x t 30. C o m p a r i n g b o t h s y s t e m s , effect  two  i t becomes a p p a r e n t  the  t h a t t h e s h o r t l a g phase had on t h e c o n t e n t s o f R e a c t o r 3  The b r e a k d o w n p r o c e s s s t a r t e d  i m m e d i a t e l y i n R e a c t o r 2; h o w e v e r .  R e a c t o r 3 w i t h t h e same i n i t i a l T o t a l COD, the microorganisms  adapted  t o the system.  r e a c t i o n r a t e s f o r the removal  lagged f o r 3 days as For t h i s  reason, the  o f o r g a n i c compounds w e r e n o t a s  h i g h a s t h o s e f o u n d i n R e a c t o r 2. C o n v e r s e l y , t h e r e a c t i o n for  t h e n e x t 30 d a y s were s l i g h t l y h i g h e r i n R e a c t o r 3,  t h e r e was a h i g h e r o r g a n i c r e s i d u a l removal  left  i n the system.  rates  since The  r a t e s w e r e a l s o q u i t e h i g h i n t e r m s o f T o t a l B0D . I n 5  R e a c t o r 2, t h e T o t a l BOD  removal  was 400 mg/L  11 d a y s , w h i l e i n R e a c t o r 3 , i t was 300 mg/L  Day f o r t h e  first  Day f o r t h e same  period.  In g e n e r a l , b o t h systems s l u d g e . The t o t a l identical.  were e f f e c t i v e a t r e m e d i a t i n g t h e  d e g r a d a t i o n r a t e s f o r t h e systems  However, R e a c t o r 2 was more s u c c e s s f u l  the s l u d g e as a whole.  were  almost  at remediating  R e a c t o r 3 c o u l d h a v e p o s s i b l y removed a l l  the o r g a n i c c o n s t i t u e n t s  ( a s R e a c t o r 2) i f i t w e r e r u n f o r an  e x t r a week. 102  As p r e v i o u s l y m e n t i o n e d , large  concentration  favourable, The  data  t h e n u t r i e n t s were e r r o n e o u s l y  t o t h e reactors. Although,  t h e exact  q u a n t i t i e s used  further  hampered  Figures  4.2.21 a n d 4.2.22,  by t h e l a r g e d i l u t i o n  kept  above a t l e a s t  not  appear  occurring  i t may h a v e c o n t r i b u t e d  terms o f carbon  removal  As noted i n  r e a c t o r . The ammonia  t o hamper t r e a t m e n t  ironically,  concentration and  effect.  5 0 0 mg/L. T h e s e h i g h  were  t o determine.  t h e phosphorus concentration  a b o v e 2 0 0 mg/L i n e a c h t e s t was  the results  aredifficult  was q u i t e s c a t t e r e d d u e t o t h e h i g h  added i n  was k e p t  concentration  concentrations, d i d  i nthe reactors,  t o t h e most  successful  and low d i s s o l v e d copper  run i n  concentrations  through c o - p r e c i p i t a t i o n . Time  Reactor  2  Reactor  3  BOD/COD  Ratio  BOD/COD  Ratio  1  0.28  0.21  5  0.29  0.19  9  0.17  0.14  19  0.07  0.06  23  0.07  0.047  30  0.049  0.028  40  0.013  0.02  Table  4.2.16: T h e BOD/COD r a t i o  Table  4.2.16 shows  two  test  over  t h e BOD/COD r a t i o  reactors during  w h i c h was e x h i b i t e d i n t h e  r u n 7. T h e t a b l e c l e a r l y  differences  i ntheduplicate test  had  proportion  a lower  t i m e f o r r u n 7.  reactors. Reactor  o f BOD t h a n d i d R e a c t o r  been a f a c t o r i n t h e slow  start  3  2; t h i s  of the degradation  103  shows t h e originally could  process.  have The  interesting initial  This  be  that  would not  some o f  the  degrade during  reactors; after  slower  kinetics  the  run,  with  decrease graph,  This  Figure  was  error  i n the  the  removed  was  remainder could  resulted one  demand. I t  t o day low  this  19.  concentration the  This  19  in  i s due  to  the  to  Grady  mixed  but  at  a  i n the  to date,  partially  first  (1990)  organic  slower  slowdown  degrade  i n the  l a r g e r more complex  period,  but  5 to  harder  as  could  test.  were removed  However,  from  degradable,  from day  presence of  organics  an  compounds rate.  BOD  This  removal  4.2.14.  of  run  the  n u t r i e n t s . The  k e p t u n d e r c o n t r o l and  from Reactor  conditions.  occurred  from the  was  increased  standard  5  i t decreased.  echoes the  supplying  concentration  ratio  point  most s u c c e s s f u l  i n the  standard  some o f  ratio  a BOD  BOD  h i s work on  removed d u r i n g  not  there  compounds removed  the  simple  i . e . up  compound w a s t e w a t e r s , also  actually  biological  resulting  part  are  ratio  m a t e r i a l was  this  m a t e r i a l . Most  indicated  although  demand b u t  i n the  organic of  the  that,  indicates that, originally,  largest reduction  both  2 was  i n BOD,  s y s t e m e x h i b i t e d a COD  also  The  i n Reactor  large reduction  slightly. the  result  2,  except  for  have been e a s i l y  Reactor  in a high  10  week w o u l d h a v e p r o b a b l y  treatment.  kinetics,  Lengthening  r e s u l t e d i n the 104  were  The  right but  the  copper  organics  Xylene.  degraded under  3 displayed slower degree of  of  to  dissolved  a l l the  ppm  due  operating also  the  same l e v e l  run of  by  treatment  a s R e a c t o r 2. M o s t o r g a n i c compounds w e r e removed by  more t h a n 9 9 . 5 % i n R e a c t o r  3. The s u c c e s s o f t r e a t m e n t  i s best  e x h i b i t e d by a p h y s i c a l e x a m i n a t i o n o f t h e s l u d g e i t s e l f .  The  process converted a s t r o n g l y o d o r i f e r o u s chemical waste, w i t h a distinct  i r i d e s c e n t hue, t o a p r o d u c t w i t h a s l i g h t e a r t h y s m e l l  and c o l o u r a n d one w h i c h e a s i l y s e t t l e d .  The n e x t o b j e c t i v e  be t o r e p l i c a t e t h e s u c c e s s o f t h e r u n a n d i d e n t i f y initial  o r g a n i c l o a d c o u l d be  tolerated.  105  would  i f a higher  4.3 R e s u l t s a n d D i s c u s s i o n ( C o n t i n u e d ) : O v e r c o m i n g P r o b l e m Of H i g h D i s s o l v e d M e t a l Concentrations.  The  Run#8: Although  t h e p r e v i o u s runs had been s u c c e s s f u l i n d e g r a d i n g t h e  organic content  o f t h e s l u d g e , many q u e s t i o n s r e m a i n e d a b o u t t h e  process  I t was p u z z l i n g t h a t t h e T o t a l COD o f t h e r u n  itself.  decreased, for  while the supernatant  the length of the experimental  understand  t h i s phenomenon t h r o u g h  supernatant was  COD i n c r e a s e d a l m o s t  constantly  r u n . An e f f o r t was made t o the analysis of the  o n a t w i c e w e e k l y b a s i s , u s i n g Gas C h r o m a t o g r a p h y . I t  important  t o understand  w h i c h compounds w e r e d i s s o l v i n g  into  s o l u t i o n and p o s s i b l y r e a c h i n g t o x i c c o n c e n t r a t i o n s i n t h e reactor.  The  success  o f t h e p r e v i o u s r u n was n o t known a t t h e b e g i n n i n g o f  t h i s r u n . The i n i t i a l  o r g a n i c l o a d i n g o f r u n 8 was l o w t o a v o i d  problems w i t h d i s s o l v e d copper.  T h i s r u n was s t a r t e d two weeks  a f t e r t h e s t a r t o f t h e p r e v i o u s r u n . They w e r e  running  s i m u l t a n e o u s l y f o r a p e r i o d o f t i m e . The t a r g e t e d i n i t i a l for  t h i s r u n was a T o t a l COD c o n c e n t r a t i o n o f 15 000 mg/L.  experimental Reactor  The  This  p h a s e c o n s i s t e d o f two r e a c t o r s : a t e s t r e a c t o r .  4 and a c o n t r o l ,  initial  loading  Reactor  1.  s t a r t i n g p o i n t i n t e r m s o f T o t a l COD was l o w e r  d e s i r e d , a s c a n be s e e n i n T a b l e  4.3.1. However, i t w o u l d  106  than serve  as a b a s e l i n e  level,  t o f o l l o w the changing  supernatant without having t o deal  composition of the  with extremely  large  concentrations.  1.5  S l u d g e Volume ( L ) T o t a l Volume  (L)  Initial (mg/L)  COD  Total  21 ( I n c l u d i n g of bleach)  I n i t i a l Supernatant COD (mg/L) Initial (mg/L)  Reactor4  Reactorl (Control)  Parameter:  Total  BOD  5  21  1 cup  11 178  12 419  1 245  831  NA  3 353  6.54 6.35 pH Table 4.3.1: I n i t i a l c o n d i t i o n s o f the r e a c t o r s a t the beginning of run 8.  Reactor 1 Total (Control) ppm  Compound:  Reactor 1 Supernatant (Control) ppm  Reactor 4 Total  Reactor 4 Supernatant  ppm  ppm  Xylene  127  14.6  150  18.4  Diphenyl  463  6.9  520  7.63  2281  36  2552  46.5  22  0  26.4  0  14.8  0  17.3  0  Diphenyl  Ether  Diphenyl Methane Benzene,1, 1'Methylene bis (4-Methyl)  1,2-Dimethyl0 81 0 4-Benzyl 55.5 Benzene Table 4.3.2: I n i t i a l t o t a l and supernatant c o n c e n t r a t i o n o f t a r g e t o r g a n i c compounds i n the r e a c t o r s o f run8. 107  T a b l e 4.3.2  shows t h e c o n c e n t r a t i o n o f t h e t a r g e t o r g a n i c s i n  terms o f t o t a l  and s u p e r n a t a n t  c o n c e n t r a t i o n w h i c h were  present  i n t h e r e a c t o r s p r i o r t o t h e s t a r t o f r u n 8. O n l y t h e s m a l l e r , l e s s complex o r g a n i c s were p r e s e n t concentrations present.  i n the supernatant  i n the supernatant.  The  w e r e q u i t e s m a l l , when a t a l l  A r e c o r d was k e p t o v e r t h e l e n g t h o f t h e r u n , e n a b l i n g  t h e compounds w h i c h w e r e s o l u b i l i z i n g a n d a f f e c t i n g t h e supernatant  COD,  t o be  identified.  A concern at the beginning initial  of the run again  focused  on t h e l o w  pH. A d e c i s i o n was made t o l e t t h e s y s t e m r e a c h  i t ' s own  e q u i l i b r i u m i n t e r m s o f pH. I f t h e s y s t e m was s u c c e s s f u l i n t r e a t i n g the sludge, would a l s o serve enabled  t h e r e was no r e a s o n t o m o d i f y t h e pH. I t  a s a n i n d i c a t i o n o f t h e pH r a n g e w h i c h  still  a c u l t u r e of microorganisms t o f u n c t i o n i n t h i s  environment.  E x a m i n i n g t h e r u n i n t e r m s o f T o t a l COD, w h i c h was p r e s e n t  i n other  runs i s evident  t h e r e was a q u i c k T o t a l COD  having  well,  i n t h e T o t a l COD  T h e r e was  o f 8 000  d i d not d i f f e r g r e a t l y . 108  mg/L,  significant  concentration of the control,  b u t t h e e n d r e s u l t was t h a t t h e i n i t i a l  concentrations  Initially,  by t h e t w e n t i e t h day. A f t e r  concentration rose t o a l e v e l  b e e n a s l o w a s 6 000 mg/L.  variability  again.  reduction i n the test vessel; the  majority of t h i s reduction, occurred t h a t p o i n t , t h e COD  F i g u r e 4.3.1, t h e t r e n d  and t h e f i n a l  as  FIGURE 4.3.1 TOTAL COD CONCENTRATION VS TIME FOR RUN 8 15 i  6 0  10  20  30  40  50  TIME (DAYS) _ ^ R E A C T O R 1 (CONTROL)  0  10  20  REACTOR 4  30  40  TIME (DAYS) ^ R E A C T O R 1 (CONTROL)  ^REACTOR4  109  50  60  Between these  readings,  f l u c t u a t i o n s . The as 9 100  mg/L.  G e n e r a l l y , t h e GC  sampling  and  Although  analyzed,  p e r i o d to the  COD  the  as h i g h as  results  and  13 800  from these  three separate  down and  has  become q u i t e f a m i l i a r . The  was  low;  s a m p l e s show  s a m p l e s on  f o r most o f t h e r u n  r e a c h e s a maximum a t day  initial  supernatant  20.  As  can  be o b s e r v e d on  of the  the graph,  r u n . T h i s was  does not  an e x t e n t .  i n c r e a s e i n t h e COD  sludge  overall  total  negligible,  r e a c t o r i n the  last  4 had  an  low  reactor i n  I t was  c o n c e n t r a t i o n was  the increasing  previously u s e d , some  o r g a n i c compounds a c c u m u l a t e d i n s o l u t i o n a t a f a s t e r r a t e the b a c t e r i a c o u l d u t i l i z e  them. I n t h i s c a s e , 110  such  initial  r u n e x h i b i t e d an  p a t t e r n i n t e r m s o f T o t a l COD.  t h o u g h t t h a t when a h i g h i n i t i a l  or  the  a t t r i b u t a b l e i n p a r t , to the  loading r a t e . Reactor  r u n . The  supernatant  new  generally f l u c t u a t e to  c o n c e n t r a t i o n of l e s s than h a l f of the t e s t previous  initial a  of  the  periods,  c o n c e n t r a t i o n u s u a l l y i n c r e a s e d f o r the run  i n c r e a s e d then decreased but  with  concentration  t h e n d e c r e a s e back t o the  c o n c e n t r a t i o n at the beginning  initial  one  increased gradually,  i n t h e t e s t r e a c t o r . The  o n l y t o i n c r e a s e a g a i n and  was  day  concentration  c o n c e n t r a t i o n then decreased f o r 3 subsequent sampling  supernatant  any  g r a p h . F i g u r e 4.3.2, shows a p a t t e r n w h i c h  however, t h i s c o n c e n t r a t i o n  The  low  next.  supernatant  p a t t e r n . The  was  r e s u l t s d i f f e r e d g r e a t l y from  The  time,  c o n s i d e r a b l e up  c o n c e n t r a t i o n was  t h e same v a r i a b i l i t y . were t a k e n  t h e r e was  however,  than  although  the  initial  sludge  population this  COD  must not  waste.  Therefore, fast  considerable  increase  light.  the  The  identify  pH  the  Generally,  vs  periods  the  from day  change  level  10  and  17  t o day  two  samples.  were not  to COD.  when most o f  20. This  has  During  change  this  this a  T h e r e was  period,  then  indicated that  value a  the  A  of  control,  same p e r i o d .  the  ammonia c o n c e n t r a t i o n that,  f o r the  "nutrient  p e r i o d of  pH  to  used  occurred.  most  m a t c h any  day  17,  the  decreased pH  seemed  s a m p l e ' s pH i n the  process  seen  stability,  the  4.3.4,  to  from next has  i n the  values  I n t e r e s t i n g l y enough, Figure  the  large  COD  the  increase  was  system,  "active" period  degradation  shift  Time graph.  be  to  the  indicates  r e a c t o r was  running  limited".  Figures  4.3.4  present  i n the  from day  vs  similar  come  Total  of  a  details  the  slight  f o r some r e a s o n . over  On  in  supernatant.  buffered  The  treat  the  resulting  does not  little.  i n the  using  degradation  place.  however,  bacterial  i n the  i n a non  slowed the  of  4.3.3, can  the  drop  taken  increased  no  capable  many i n t e r e s t i n g Figure  pH  the  enough t o e f f e c t i v e l y  concentration  a whole,  17;  low,  were s o l u b i l i z i n g ,  i n the  that  then  off, with  day  they  l a r g e r the  in Total  slightly  as  they  time graph.  more d e g r a d a t i o n was  as  run  was  have been h e a l t h y  compounds as  Examining  concentration  17  and  to  4.3.5  system. 27  show t h e Little  (Figure  concentration  n i t r o g e n was  4.3.4). 111  This  of  present  result  nutrients i n the  seemed t o  system  stall  the  FIGURE 4.3.3  7  P H VS TIME FOR R U N 8  r-  0  10  20  30  40  TIME (DAYS) REACTOR 1 (CONTROL) REACTOR 4  112  50  60  FIGURE 4.3.4 AMMONIA CONCENTRATION VS TIME FOR RUN 8 100 r  3  6  10  13  17  20  24  27  31  34  38  41  45  48  TIME (DAYS) R E A C T O R 1 (CONTROL)  REACTOR4  FIGURE 4.3.5 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 8  3  6  10  13  17  20  24  27  31  34  TIME (DAYS) R E A C T O R 1 (CONTROL)  ^REACTOR4  113  38  41  45  48  s y s t e m i n t e r m s o f T o t a l COD r e d u c t i o n . When a d d i t i o n a l n i t r o g e n was a d d e d t o t h e s y s t e m , t h e pH c o n t i n u e d indicating  increased bioactivity.  period, the VSS/TSS  r a t i o decreased as can noted i n F i g u r e  t o d e c l i n e u n t i l a d d i t i o n a l n i t r o g e n was  of on l i n e m o n i t o r i n g ,  i n this  on t h e L a c h a t e A n a l y z e r  d e c i s i o n s h a d t o be made w i t h o u t  For this  t w i c e w e e k l y b u t were  every  access  present  of the necessity  type of research.  e x p e r i m e n t , n u t r i e n t samples were t a k e n  two w e e k s .  Often  t o t h e most r e c e n t  The d e c r e a s e a t t h e e n d o f t h e V S S / T S S r a t i o was p r o b a b l y a nutrient  4.3.6.  p o i n t : 0.9. The r a t i o  i n t h e r e a c t o r . T h i s was y e t a n o t h e r i n d i c a t i o n  only analyzed  climb  Also, during this "starvation"  On d a y 20, t h e r a t i o was a t i t ' s h i g h e s t then continued  a downward  data. due t o  limitation.  The MLVSS c o n c e n t r a t i o n d u r i n g t h e r u n c a n be s e e n i n F i g u r e 4.3.7. I t s h o u l d b e n o t e d t h a t o n d a y 27, a s i g n i f i c a n t can  decrease  be o b s e r v e d i n t h e MLVSS c o n c e n t r a t i o n o f t h e R e a c t o r  4. T h i s  was e x a c t l y t h e same t i m e t h a t t h e c o n c e n t r a t i o n o f d i s s o l v e d c o p p e r i n t h e r e a c t o r was a p p r o x i m a t e l y level  10 mg/L. When t h e c o p p e r  was r e d u c e d b y p h o s p h o r u s a d d i t i o n , t h e MLVSS c o n c e n t r a t i o n  increased  slightly.  The d i s s o l v e d c o p p e r c o n c e n t r a t i o n d u r i n g t h e r u n was k e p t u n d e r control  largely  due t o t h e l o w i n i t i a l  as shown i n F i g u r e 4.3.8. The t o t a l r e a c t o r s was a p p r o x i m a t e l y  sludge  COD l o a d i n g  copper c o n c e n t r a t i o n  40 mg/L f o r t h e t e s t 114  level, i n the  r e a c t o r and  FIGURE 4.3.7 ML VSS CONCENTRATION VS TIME FOR RUN 8  0  10  20  30  TIME (DAYS)  R E A C T O R 1 (CONTROL) ^ R E A C T O R 4  115  40  50  FIGURE 4.3.8  C O P P E R C O N C E N T R A T I O N VS TIME FOR R U N 8  BOTH DISSOLVED AND TOTAL 60  10  13  17  20  24  27  31  34  38  41  TIME (DAYS) R#l TOTAL  R#l DISSOLVED  R#4 TOTAL  ^R#4 DISSOLVED  45  48  50 mg/L copper  f o r the c o n t r o l .  c o n c e n t r a t i o n r e m a i n e d b e l o w t h e 4-5  However, on d a y mg/L.  F o r most o f t h e r u n , t h e  T h i s was  27,  the apparent  r e s u l t of a r e l a t i v e l y  range under which  5 mg/L.  the system  d a t a f r o m Run  be t h e u p p e r l i m i t  The  was  the d i s s o l v e d copper  The  i n t h e r e a c t o r . Once  s i t u a t i o n was  system pH  o p e r a t i n g . A f t e r the phosphorus  level  i n the r e a c t o r f e l l  7 indicates that this  c l o s e m o n i t o r i n g of the supernatant,  y i e l d e d some i n t e r e s t i n g d a t a . The t h a t t h e m i x t u r e o f o r g a n i c s was  level  first  u s i n g t h e GC  l e s s c o m p l e x and  i n the T o t a l samples.  Two  i n the T o t a l samples but never  supernatant,  t h e two  appears to  never present  was  i n s m a l l amounts i n t h e t e s t  system.  trace,  concentrated  present  i n the supernatant  i n the Diphenyl  of the c o n t r o l  but  reactor. It i s  i n t e r e s t i n g t o n o t e t h a t t r a c e s o f some compounds w e r e  never  f o u n d by t h e GC  still  i n the supernatant,  was  t a r g e t compounds  b e n z e n e d e r i v a t i v e compounds.  M e t h a n e was  t o below  general observation  were p r e s e n t  present  this  worsened by the low  f o r b a c t e r i a l growth i n t h i s type of  than those observed  10  low  r e c o g n i z e d , a d d i t i o n phosphorus added t o t h e  ( s e e F i g u r e 4 . 3 . 5 ) . The  addition,  threshold.  the c o n c e n t r a t i o n q u i c k l y rose to almost  c o n c e n t r a t i o n of phosphorus present s i t u a t i o n was  mg/L  dissolved  a l t h o u g h t h e y were  d e g r a d e d . T h i s i n f e r s t h a t , a s s o o n a s t h e compounds d i s s o l v e d , t h e y were u t i l i z e d  by t h e b a c t e r i a o r t h a t t h e y w e r e p r e s e n t  such small c o n c e n t r a t i o n s i n the supernatant, detectable through  t h e u s e o f Gas 117  as not t o  Chromatography.  be  in  The  purpose of the m o n i t o r i n g of the supernatant  t h e compounds p r e s e n t COD,  a s s e e n i n F i g u r e 4.3.2  thought and  i n the supernatant (and  identify  c o n t r i b u t i n g to  i n previous runs). I t  t h a t s e v e r a l compounds w e r e s o l u b i l i z i n g  t h e s e compounds c o u l d be p r e s e n t  thus e x p l a i n i n g the  "stalling"  some r u n s . T h e r e i s l i t t l e  a slight  i n no way  in toxic  was  COD.  concentrations experienced  in  t o e x p l a i n t h e phenomenon p r e s e n t t r a c e . During the run,  i n c r e a s e i n the c o n c e n t r a t i o n of Diphenyl  d r a s t i c enough t o e x p l a i n t h e s u p e r n a t a n t  is left  the  i n the r e a c t o r  i n the degradation  t h e t a r g e t o r g a n i c d a t a o r t h e GC  One  to  causing a r a p i d i n c r e a s e i n the c o n c e n t r a t i o n of the  Also,  was  and  was  in  there  Ether  COD  but  increase.  t o c o n s i d e r t h e p o s s i b i l i t y t h a t t h e i n c r e a s e was  due  t o t h e s o l u b i l i z a t i o n o f some r e f r a c t o r y o r g a n i c compounds, w h i c h a r e d e t e c t a b l e by t h e COD  The  test,  b u t n o t by t h e  GC.  a n a l y s i s o f t h e components o f t h e s u p e r n a t a n t  Table  4.3.3. The  Supernatant  COD  Table was  not as a r e s u l t o f t h e t a r g e t o r g a n i c 4.  Furthermore,  t r a c e s o f b o t h s a m p l e s a r e q u i t e d i f f e r e n t . The showed o n l y 3 p e a k s o f s m a l l a r e a . The  GC  the  t r a c e on day  Ether  peak w i t h t h e e a r l y s a m p l e h a v i n g t h e l a r g e r p e a k . From t h e  to the presence  COD  was  o f compounds n o t d e t e c t a b l e by GC 118  6  t h e r e were 7  samples c o n t a i n e d the Diphenyl  i t i s c l e a r that the Supernatant  GC 20  t r a c e f r o m t h e day  c l u t t e r e d w i t h small peaks. In t o t a l ,  peaks of v a r y i n g area. Both  traces,  in  c l e a r l y i n d i c a t e s t h a t t h e change i n the  compounds c o m i n g i n t o s o l u t i o n i n R e a c t o r  s a m p l e was  c a n be n o t e d  GC  i n c r e a s i n g due and  likely  refractory. Day 20  Day 6  Compound: S u p e r n a t a n t COD (mg/L)  1 141  3 083  X y l e n e (ppm)  0  0  D i p h e n y l (ppm)  0  0  89.3  79.6  0  3.4  0  0  D i p h e n y l E t h e r (ppm) Diphenyl (ppm)  Methane  Benzene,1,1' M e t h y l e n e b i s (dimethyl )  1,2-Dimethyl-40 0 B e n z y l Benzene T a b l e 4.3.3: Comparison o f t h e t r a c e o r g a n i c c o n c e n t r a t i o n and the Supernatant COD c o n c e n t r a t i o n on two sampling days i n run 8 i n Reactor 4.  Initial (mg/L)  Total  Reactor 4  Reactor 1 (Control)  Parameter: COD  11 178  12 419  10 984  8 149  % difference  1.7  34.3  Initial (mg/L)  T o t a l BOD  NA  3 353  Initial (mg/L)  Final  NA  623  F i n a l T o t a l COD (mg/L)  BOD  81.4 NA % Difference T a b l e 4.3.4: F i n a l c o n d i t i o n s o f the r e a c t o r s a f t e r 48 days i n run 8. The i n t e r e s t i n g r e s u l t s o f t h i s r u n was t h e i n a b i l i t y o f t h e s y s t e m t o r e d u c e t h e BOD down t o a n e g l i g i b l e  concentration  ( T a b l e 4 . 3 . 4 ) . The r e d u c t i o n i n T o t a l COD was a l s o much l e s s  119  than  anticipated lasting sludge  48 d a y s ,  was  l o a d i n g was  monitoring the  according  to previous longer  lower.  and c o n t r o l  than  s u c c e s s f u l runs. i n r u n 7, a l t h o u g h  The p r o b l e m s o b s e r v e d  problems.  The d e l a y  n i t r o g e n d e f i c i e n c y and t h e h i g h  concentrations  ultimately  inhibited  less  treatment.  Although  effective  suspect,  show  both  t h e BOD  an i n c o m p l e t e  Table  4.3.5  clearly  was  little  was  t h e most  study, the  partially  a result  high v a r i a b i l i t y  success  of this  concentration experiment,  unit  r u n was  compounds  observed  low. There  the confidence  remaining  at  t h e e n d o f t h e r u n may  were reduced  that the high metal  process.  120  there  Due  to  i n the  residual  a t t h e end o f t h e  treatment  have i n t e r f e r e d  in  run. This  a e r a t i o n procedure.  process.  c o n c e n t r a t i o n ; however, t h e r e s i d u a l I t appears  treatment  during the  their  quite high.  data  as such,  as Diphenyl  was  organic  i n this  t o date  i s a large  an i n c o m p l e t e Ether  negligible  Compounds s u c h original  in a  are  compounds  i n the control;  data,  of target organics  indicating  results  of refractory  of a careful  o f t h e GC  and r e s u l t e d  t h e T o t a l COD  of organic  stable control  both  process.  compounds  volatilization  initial  i n t h e r u n were  the process  shows t h a t t h e r e was  terms of t a r g e t organic  the  i n identifying  and t h e t a r g e t o r g a n i c  degradation  process,  d i s s o l v e d copper  due t o t h e p o s s i b l e p r e s e n c e  compounds,  The  b y more  than  98% o f  concentration  concentration  with the  treatment  Compound:  Sample:  Xylene  Day  1  Day  48  (ppm)  % Diphenyl  (ppm)  Diphenyl  Ether  (ppm)  1  Day  48  Methane  (ppm)  the  carbon  runs,  3.64  0  99.3  0  98.4  Day  1  22  26.4  Day  48  22  9.8  0  62.8  14.8  17.3  14  8.1  0  33.8  degradation  4:  1 48  degradation 1 48  degradation  i n this  55.5  81.1  53  0  4.6  100  Contrary  ( t h e N/P  to the previous run,  l o w c o m p a r e d t o t h e amount o f  C0D:N:P  consumed  organic concentration  r u n was 35.8:1.51:1  4.3.6).  The o v e r a l l  t h e COD  463  degradation  c o n s u m p t i o n was q u i t e  phosphorous used. previous  i n Table  520.9  40.5  T a b l e 4.3.5: The d i f f e r e n c e i n the t a r g e t a t the b e g i n n i n g and the end o f run 8.  a r e shown  463.3  2280  %  Ratios  100  48  Day  ratio  53.4  Day  Day  5  0  2552  %  B0D :N:P  59.4  2281  Day  The o v e r a l l  150.1  degradation  Day  1,2 D i m e t h y l - 4 - B e n z y l Benzene(ppm)  127.4  1  % Benzene,1,1' Methy1ene b i s ( 4 - m e t h y l ) (ppm)  Reactor  Day  % Diphenyl  degradation  Day  %  Reactor 1 (control):  ratio  had always  121  was 5 0 . 7 : 1 . 5 1 : 1 . I n larger  than t h e  Days  Time (days)  N used (mg/L)  P used (mg/L)  0-3  3  4.2  5.28  0.79  4-6  3  13.6  10.4  1.31  7-10  4  8.1  8.4  0.97  11-13  3  11.4  5.6  2.04  14-17  4  8.95  18-21  3  0  0.33  0  22-24  4  2.43  1.2  1.95  25-27  3  0.2  6.15  0.03  28-31  4  4.68  9  0.52  32-34  3  5.21  2.7  1.96  35-38  4  0  0  39-41  3  19.2  7  2.75  42-45  4  10.3  10.8  0.95  46-48  3  38.6  12.7  3.04  4.8  N/P  ratio  1.85  127 Total 48 84.3 1.51 Table 4 . 3 . 6 : Nitrogen/phosphorous r a t i o s e x h i b i t e d d u r i n g run 8 i n Reactor 4. theoretically specified the previous  runs,  100. ( M e t c a l f 1 9 9 1 ; B e l t r a m e 1979) A s i n  t h e h i g h P u t i l i z a t i o n was p r o b a b l y  the result  of t h e b i n d i n g o f phosphorus w i t h d i s s o l v e d copper, t o form Copper Phosphate.  E x a m i n i n g t h e B0D  5  graph v s time,  F i g u r e 4.3.9, t h e f i r s t  t h e g r a p h seems t o f i t t h e p a t t e r n o f a f i r s t reaction quite well. step process.  The d e g r a d a t i o n  Initially,  order  decay  p a t t e r n a p p e a r e d t o be a two  t h e r e was r a p i d d e g r a d a t i o n ,  122  part of  f o l l o w e d by  FIGURE 4.3.9 T O T A L 5 D A Y B O D C O N C E N T R A T I O N VS TIME F O R R U N 8  10  20  24  31  TIME (DAYS) REACTOR 4  123  41  a l e v e l l i n g o f f . B a s e d on f i r s t  o r d e r d e c a y e q u a t i o n o f C/Co=  E X P - ( k t ) , t h e c o n s t a n t k f o r t h e e n t i r e r e a c t i o n was t o be 0.036 D a y s - 1 . The in  Table  determined  q u a l i t y of f i t of t h i s d a t a i s summarized  4.3.7.  Days  Actual BOD 5 Concentrat i o n (mg/L)  BOD5 P r e d i c t e d u s i n g f i r s t order reaction f o r e n t i r e r u n (mg/L)  B0D5 P r e d i c t e d using f i r s t order r e a c t i o n up t o day 24  1  3305  3305  3305  10  1100  2367  1618  20  561  1634  732  24  533  1409  533  31  685  1087  41  566  749  46  623  623  Table 4.3.7: proposed.  Examining  Comparing the  T a b l e 4.3.7  and  p r e d i c t e d BOD5 v a l u e s f o r  levelled first The  24 d a y s .  the p a t t e r n of a f i r s t  o r no  5  t o m o d e l t h e B0D  model i s b a s e d on t h e BOD  d a y o f t h e r u n . The  5  5  decay  process  f u r t h e r r e d u c t i o n i n BOD .  o r d e r models are p r e s e n t e d  first  order  At t h i s p o i n t , the degradation  off with l i t t l e  models  t h e a c c o m p a n y i n g F i g u r e 4.3.10, i t i s  c l e a r that the r e a c t i o n f i t s for the f i r s t  the  Two  degradation.  c o n c e n t r a t i o n on t h e  last  r e a c t i o n r a t e c o n s t a n t f o r t h i s model i s  0.036 D a y s - 1 . I t i s c l e a r f r o m e x a m i n i n g  F i g u r e 4.3.10 t h a t t h e  a c t u a l d a t a d o e s n o t f i t t h i s m o d e l . The  BOD  r a p i d t h a n p r e d i c t e d and  t h e end  second  model i s p r o p o s e d ,  l e v e l s o f f near  b a s e d on t h e BOD  124  5  5  d e g r a d a t i o n i s more of the run.  c o n c e n t r a t i o n on  A day  FIGURE 4.3.10 ACTUAL AND FIRST ORDER MODEL PREDICTED TOTAL BOD VS TIME  FOR RUN 8 3500 i  0  1  10  20  30  40  TIME (DAYS) ~» ACTUAL DATA  MODEL BASED ON (k=0.0371)  MODEL BASED ON (k=0.793)  125  50  24.  This  off.  i s the  p o i n t were the  T h i s model,  D a y s -1  The  fits  data  waste.  with a reaction d a t a more  closely.  clearly  indicates  a problem  initial  degradation  The  rapid,  i n the  degradation  point  of  run,  the  a slower  reactor. time,  At  process, first,  due  complex of  the  of  this  There  of  the  system run  i s no  the  rapid  effect  as  Day  0.793  after  observed  rapid  Modelling  the  Diphenyl  the  The  the  problem  vs  5  and  first  the  than  Diphenyl  4.3.12,  of Diphenyl  and  The  reaction  Diphenyl 126  Ether  system. of  5  (Figure  had  a  greater  thought.  breakdown can  respectively. the  case  Thus, i t  originally  order models p r e d i c t  i n the  graph  system  Ether  kinetics  T o t a l B0D  run.  same  most  "stalled"  time  The  be  Figures  degradation  of  rate constants are  way  slow  down. The  w i t h the  was  gave  the  the  A  mid  down; a t  to a  b a s e d on  T o t a l B0D  the waste mixture.  removal  g a v e way  days.  the  even the  broken  this  in  p r e v i o u s l y . However,  process  i n F i g u r e s 4.3.11 and  compound from  t o be  20  degradation  enabled  of  at the  composition  absence of n i t r o g e n i n the  treatment  the  run  degradation  indicates  the  for  noted  20.  on  closely  the  degradation  substantial  that the  of  the mixture  changed,  reactor, after  appears  how  of  levelled  biotreatment  slowed  usually  changing  k,  o r g a n i c s were broken  tailend  compounds o f  4.3.9) c l e a r l y  seen  was  initial  to the  simple  i n the  run  some c o m p l e x o r g a n i c s w e r e s l o w l y r e m o v e d . The  degradation  the  r a t e was  whereby the  i n the  rate constant  the  shift  to  degradation  0.40  and  show the k, 0.11  FIGURE 4.3.11 Modeling the degradation of Diphenyl in run 8  First order decay model 600  0  5  10  15  Time (days) Actual Diphenyl concentration  Model predicted concentration  FIGURE 4.3.12 Modeling the degradation of Diphenyl Ether inranI  First order decay model 3000  10  20  30  Time (days)  . Actual Diphenyl Ether concentration  . Full model predicted concentration  . 40 day predicted model of Diphenyl Ether cone.  127  Days-1, r e s p e c t i v e l y .  Overall, final  this  product.  organics not  r u n was  residual  of  a success,  the  i n the any  end  product.  additional  r e a c t o r had  I t i s probable  not  of  l a c k of n i t r o g e n f o r a 7 day  concentration. i n the  The  and the  s i n c e the  that the  failure  was  p e r i o d and  p h o s p h o r u s c o n c e n t r a t i o n was  previous  5  a n a l y s i s of  changed g r e a t l y i n the  run.  as  the  Lengthening  treatment,  of the the  b a s e d on  T h e r e r e m a i n e d a c o n s i d e r a b l e BOD  have p r o v i d e d  results  not  trace run  would  analytical last  7  a combined the  the  high  days  result  metal  a l s o not  as  high  run.  Run#9:  To  continue  higher  the  quality  progress end  product  the  reactor contents  The  purpose of  total  copper  opportunity the to the  achieved  the  at the  a l u m was  levels to treat  sludge end to  i n run and  of  7 and  effluent  run  reduce both  remainder of  the  the  mg/L  were p e r f o r m e d on  dosage which would  Table  4.3.8  proportion  result  shows t h a t t h e of  the  original  the  1000  mg/L  best  obtained, alum.  constituents in  ranging  removal  the  better  to of  from  200  determine copper.  dosage removed the  copper present. 128  a  treated sludge,  i n the  i f a  d i s s o l v e d and  organic  r e a c t o r . J a r t e s t s w i t h alum c o n c e n t r a t i o n s 1000  c o u l d be  7 were dosed w i t h  to a l l o w the microorganisms the  t o examine  However, t h e  largest dosage  Alum Dosage: (mg/L)  R e s u l t a n t T o t a l Copper C o n c e n t r a t i o n (mg/L)  0  27.6  200  17.4  400  13.8  500  13.2  600  9.1  800  5.52  Table 4 . 3 . 8 :  w o u l d n o t be p r a c t i c a l involved.  Thus,  i fthe bacteria  copper  The  levels  outlet (from  in was pH  were  test  on a l a r g e  to determine  scale  basis,  r e m o v a l was d e s i r e d  have  t o be s e l e c t e d .  would  copper  i n a separate  on t h e bottom  was u s e d .  r u n 7) were added  pH was m o d i f i e d order  to fall  at the full  and a l k a l i n i t y  vessel  reactor  sodium  COD  of the solution. to settle.  jugwith  an  sludge  and dosed  t h e alum.  with  and sodium  o f t h e alum  hydroxide,  modification  depends  on t h e  The c o n t e n t s were shaken f o r 12 L i t r e s  and were used  b e k n o w n a s R e a c t o r 3.  129  w i t h 1000  of the treated  bicarbonate  the effectiveness  i f insitu  runs.  t h e r a n g e o f 7.5 - 8 . 5 . T h i s  were c o l l e c t e d  would  16 l i t r e s  scale  The p u r p o s e h e r e was t o  A 25 l i t r e  to the clarifier  with  within  necessary, since  clarifier.  removal.  due t o t h e c o s t s  remove more o f t h e T o t a l  lower than i n previous  10 m i n u t e s a n d a l l o w e d the  jar  c o n t e n t s o f t h e R e a c t o r 3, f r o m r u n 7, w e r e d o s e d  mg/L o f a l u m  The  the  i fcopper  a n o t h e r method would see  4.53  1000 Results of  taken from t h e t o po f  f o rt h e n e x t r u n .  This  Reactor  2 was  investigate sludge the  loaded with  the  observe  of  the  can  be  noted  of  of  the  point  of  in quite  low  components had origin be  of  the  from the  been  GC  organic  added t o  the  original  o r g a n i s m s had  4.3.10,  other  to  treated  low  and the  to  system,  a  i t was  This  present  been removed  reactors.  7.  was  run.  that  from the  the  end  a l l the  organic  limit.  in this  in this  chemical  expected,  At  detection  feared  organic  less-diverse  i n run  below the  target  i n a l l the  indicated that  seed u t i l i s e d  system because  initial  o b j e c t i v e was  the  reactors.  c o m p o u n d s now  wastewater  to  constituents  "under-loaded"  3 contained  trace  reduced  an  The  concentration  the  low  organic  improve.  and  previously  the  a very  sludge,  runs.  4.3.9  i n Reactor  run,  i f the  of  waste m i x t u r e were q u i t e  previous  s l u d g e was that  the  r e a c t i o n of  makeup, when c o m p a r e d t o since  system to  hoped t h a t  i n Tables  waste mixture  the  concentration  system would  those of  compounds were The  the  rates  compared t o  As  I t was  concentration  bio-kinetics  small  response of  loading.  metal  a  A  The  reactor seed  most of  would  was  the  system with  the  copper.  Reactor to  date.  2 was This  concentration total  copper  loaded with was of  the  confirmed target  level  found  lowest  by  both  organics. i n any  the  This  run.  130  initial Total  sludge COD  resulted  The  effect  loading  and i n the of  this  rate  the lowest low  level  Parameter:  R e a c t o r 2:  Sludge loading vol. (L)  0.7  Seed water vol. (L)  3  3  0  Total v o l . (L)  21  20  5  I n i t i a l Total COD (mg/L)  4 227  4 058  17 588  1 Oil  1 044  3 724  627  202  NA  Initial supernatant COD (mg/L) I n i t i a l Total BOD (mg/L) 5  R e a c t o r 3: Alum A d d i t i o n 12 l i t r e s o f a l u m t r e a t e d sludge from f i n a l product of run 7 i n Reactor 3  R e a c t o r 5: Control 0.5  8.54 7.57 pH 5.89 T a b l e 4.3.9: I n i t i a l c o n d i t i o n i n t h e r e a c t o r s a t the b e g i n n i n g of run 9.  Compound:  Xylene Diphenyl Diphenyl  Ether  Diphenyl Methane Benzene,1,1* Methylene b i s (4-methyl)  Reactor 2 (ppm)  Reactor 3 A l u m sweep (ppm)  Reactor 5 Control (ppm)  108  18.4  68.4  463.3  7.0  945.5  2 240  77.7  4 395  17.1  0  62.7  10.8  0  115.1  1,2-Dimethyl4-Benzyl 49.6 0 72.5 Benzene T a b l e 4.3.10: C o n c e n t r a t i o n o f t a r g e t o r g a n i c s i n t h e r e a c t o r s p r i o r t o run 9.  131  w o u l d be  closely  Over the  course  of  occurred  i n the  two  Figure  monitored  4 . 3 . 1 3 , was  expected.  of  curve  rise  d i d not  run  25  days  did  not  case,  was  not  the  runs  e x h i b i t the  overall  typical  initial  Total  as  small  r e a c t o r s . The  the  an  compared t o p r e v i o u s  a very  i t has  the  one  of  the  tail  runs.  long  as  48  slow  Little  end  graph,  in of  time  ran  the for than  control  in  this  trend  overall  the  frame  The  However rising  be  for less  days).  pattern either.  stability.  time  COD  come t o  The  reactors  control exhibited a general,  t r e n d was  vs  downward t r e n d  i n previous since  runs.  in Total  shape w h i c h had  however,  l a s t e d f o r as expected  reduction  T o t a l COD  general,  COD;  quite different,  (other  the  run,  test  T h e r e was  concentration  the  the  and  but  change  the  was  exhibited.  The  supernatant  COD  shown i n F i g u r e concentration degradation slight point  until  was  the  little initial the  change Total  pattern  the  final  i n the this  days of  until i n the COD  found  the  followed  end  overall  of  the  the  over by  a  was  supernatant  132  At  this  Reactor  The  end  there the  result  I t appears  as  in  point,  the  was  half  increase,  determining  COD.  3,  time u n t i l slight  run.  the  slow decrease  run.  concentration.  concentration i n the  rather uneventful,  case of  concentration was  also  2 displayed a  more r a p i d . I n t h e  run;  then decreased  t i m e g r a p h was  4.3.14. R e a c t o r  decrease of  vs  a way  and was  that  the  factor for  FIGURE 4.3.13 T O T A L COD CONCENTRATION VS TIME FOR RUN 9  10  15  20  TIME (DAYS) . REACTOR 3 (DRAWDOWN WITH ALUM)  REACTOR 2 REACTOR 5 (CONTROL)  FIGURE 4.3.14 S U P E R N A T A N T C O D C O N C E N T R A T I O N V S TIME F O R R U N 9 5  I  4  O r—I  ^  « 3  g  3  g  ^2  O  Q  O U  1 h  10  20  15  25  TIME (DAYS) . REACTOR 2  . REACTOR 3 (DRAWDOWN WITH ALUM)  . REACTOR 5 (CONTROL)  133  30  As  discussed previously,  COD  of  the  supernatant.  concentrated breaking  down t h e m a t e r i a l .  microorganisms accumulation  can  of  demonstrated was  supernatant toxicity  i n the  degraded  the  i n the not  last  accumulate  microorganisms  are not  was  no  COD  s i n c e none of  the  lack  mixture  total  can  be  reactor This  copper  seen  form.  rate  be  are being The  an  low  the  the  in  through  i s the  the  materialized.  the  metal  same;  because  concentration of  as  initial  the  degrade the waste.  There  supernatant  In this  supernatant  case,  COD  c o n c e n t r a t i o n of  was  the  waste  reactor.  concentration i n Reactor  that over It also  does not  ( e v i d e n t from  accumulation  result  initial  than  i s considerable  inhibited  increase i n the  the  rate  high,  other p o s s i b i l i t y ,  supernatant  situations  r o s e a b o v e 5 mg/L  dissolved  still  i n F i g u r e 4.3.15. The  indicates  loading  of  added t o the  The  the  from  loading i s too  i s t h a t even though the  i n the  of a s i g n i f i c a n t  The  supernatant  in  too  inhibited  there  i n the  these  result  initial  able to actively  noticeable rise  the  were b e i n g  COD).  rise  l o a d i n g was  them. Thus,  deficiency.  compounds w i l l  initial  f o r the  at a faster  run,  bacteria  causes  supernatant  h i g h t h e r e can  i f the  two  When t h e  supernatant  or nutrient  probably  the  compounds i n t h e  value of  loading  Either  or the microorganisms  compounds s o l u b i l i z e  rising  there are  dissolved  during the half  of  suggests  2 was  the  only  concentration in  course  of  the  copper  p r e s e n t was  t h a t even u s i n g a  necessarily 134  10 mg/L,  guarantee  as this  experiment.  low  that the  found sludge  run  will  in  a v o i d p o s s i b l e c o p p e r t o x i c i t y p r o b l e m s . The in  R e a c t o r 3 were s l i g h t l y  concentration t o be due  i n the  to the  R e a c t o r 3 was of the  run,  significantly  r e a c t o r was  seen i n F i g u r e high  utilised).  This  again  i n reducing  found i n the  reactors  considerable  dissolved  form).  T h e r e was  little  As  and  thus l i t t l e  i n run  concentration  total  variation  t o be  copper l e v e l  i n t h e pH  7 and  degradation  but  seen i n F i g u r e  concentration  and  t h a t none o f t h e o r g a n i c there. not  The  three  efficient  not  a l u m a d d i t i o n was  t r a c e was  are copper 7  found i n  over  loading  5  successful  was  s l u d g e was  was  blank.  135  of  was  reduced to This  s u c c e s s f u l , but already  in  i n T o t a l COD  a  indicates  compounds i n i t i a l l y p r e s e n t w e r e  s t e p p r o c e s s was  s i n c e the  been  occurred.  4.3.18, t h e BOD  t h e GC  little  s l u d g e COD  producing a sludge i n which f u r t h e r reduction  small  large  i t had  of d i s s o l v e d  a  o r MLVSS c o n c e n t r a t i o n  expected s i n c e the  n o t e d i n T a b l e 4.3.11, t h e  p o s s i b l e . As  in  ( a l s o , p r e v i o u s l y demonstrated i n run  w h i c h had  T h i s was  the  appears  3 contained  of phosphorus s i n c e a  vessel  copper  f o u n d i n R e a c t o r 2 f o r most  i n d i c a t e s t h a t phosphorus l e v e l s  instrumental  levels  lower. This  4.3.16. ( R e a c t o r  concentration  been added t o t h i s  low  considerably  f a c t that the phosphorus c o n c e n t r a t i o n  amount had  time.  copper  l o w e r . However, t h e d i s s o l v e d  n e a r l y 4 t i m e s t h e one  as  total  still  t h e method  "good q u a l i t y "  was at  FIGURE 4.3.15 COPPER CONCENTRATION VS TIME FOR RUN 9  BOTH TOTAL AND DISSOLVED 60  -I  r  3  6  10  13  17  20  24  TIME (DAYS) REACTOR 2 (TOTAL) _Q_ REAC 3 (DISSOLVED)  REAC 2 (DISSOLVED)  REACTOR 3 (TOTAL)  REACTOR 5 (TOTAL)  REAC 5 (DISSOLVED)  136  3  S  FIGURE 4.3.16 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 9 90 |  o  1  ^  1  0  5  1  1  10  15  TIME (DAYS)  REACTOR 2  1  20  REACTOR 3 (ALUM DRAGDOWN)  -± REACTOR 5 (CONTROL) FIGURE 4.3.17 AMMONIA CONCENTRATION VS TIME FOR RUN 9 300  0  5  10  15  20  25  TIME (DAYS) _a_ REACTOR 2  REACTOR 3 (ALUM DRAGDOWN)  REACTOR 5 (CONTROL)  137  Parameter:  Reactor 2  Reactor 3 a l u m sweep  Reactor 5 control  I n i t i a l Total COD (mg/L)  4 227  4 058  17 588  Final Total COD (mg/L)  1 950  2 606  17 588  % difference  53.8  35.8  0  I n i t i a l Total BOD (mg/L)  627  202  NA  Final Total BOD (mg/L)  211  67  NA  66.4  70.0  NA  5  5  %  difference  T a b l e 4.3.11: F i n a l 9.  c o n d i t i o n s i n t h e r e a c t o r s a t t h e end o f run  the end o f t h e i n i t i a l  degradation process. I t i squestionable i f  the q u a l i t y o f the f i n a l  s l u d g e was i n c r e a s e d w i t h t h i s  r e d u c t i o n i n T o t a l COD. The o n l y r a t i o n a l e f o r u s i n g procedure  w o u l d be t o r e d u c e  t h e copper  slight  this  l e v e l s below t h e  d i s c h a r g e l i m i t o r a r e d u c t i o n i n r e f r a c t o r y o r g a n i c s was necessary.  R e a c t o r 2 was n o t a b l e t o e l i m i n a t e a l l t h e t a r g e t o r g a n i c s ( s e e T a b l e 4.3.12) f r o m t h e i n i t i a l r e s u l t o f t h e e l e v a t e d copper frame o f t h e experiment.  s l u d g e m i x t u r e . T h i s was p a r t l y a l e v e l s as w e l l as t h e s h o r t time  The d a t a f r o m t h e p r e v i o u s  i n d i c a t e d t h a t Diphenyl E t h e r i s always r e m o v e d . Had t h e r u n b e e n l e n g t h e n e d , all  runs  t h e l a s t compound t o be  i t i squite probable that  compounds w o u l d h a v e b e e n removed t o b e l o w t h e d e t e c t i o n  limit.  The r u n was more s u c c e s s f u l  t h a n R e a c t o r 4 i n r u n 8, i n  t e r m s o f p e r c e n t r e d u c t i o n o f t a r g e t o r g a n i c s , s i n c e i t removed 138  700  Q  FIGURE 4.3.18 TOTAL 5 DAY BOD CONCENTRATION VS TIME FOR RUN 9 i  [_J 1  I 3  I  10  I 20  TIME (DAYS) REACTOR 2  139  REACTOR 3  L_ 24  Xylene  Reactor 3 alum sweep (ppm)  Reactor 5 control (ppm)  107.9  18.4  68.5  0  0  43  100  100  37.2  463.3  7  945.5  Cone.  11.2  0  730.7  Reduction  97.6  100  22.7  2 240  77.7  4 394  Cone.  78.3  0  3 298  Reduction  96.5  100  24.9  17.1  0  62.7  0  0  47.3  100  NA  24.7  10.8  0  115.1  0  0  115  100  NA  0  49.6  0  72.5  0  0  72.5  NA  0  Parameter  Compound:  Inn. Final %  Diphenyl  Final  Diphenyl Ether  Inn. Final %  Diphenyl Methane  Inn. Final %  Benzene,1,1' Methylene b i s (dimethyl )  Final  1,2Dimethyl-4Benzyl Benzene  Final  2  Cone.  Cone. Cone.  Cone.  Cone.  Reduction  Inn.  %  Cone.  Reduction  Inn.  %  Cone.  Reduction  Inn.  %  Cone.  Reactor (ppm)  Cone.  Cone.  Reduction  100 T a b l e 4.3.12: C o n c e n t r a t i o n o f the t a r g e t r e a c t o r s a t the end o f run 9. all  o f t h e t a r g e t o r g a n i c compounds,  Diphenyl  Ether. A higher phosphorus  produced a larger  o r g a n i c s i n the  except  f o rDiphenyl  loading could probably  gradient f o rt h e formation of copper 140  and have  phosphate,  thereby The  f u r t h e r reducing the c o n c e n t r a t i o n o f d i s s o l v e d copper.  low o r g a n i c l o a d i n g d i d n o t improve t h e b i o l o g i c a l  r a t e , c o m p a r e d t o t h e p r e v i o u s much h i g h e r  Reactor  systems.  5, t h e c o n t r o l , p e r f o r m e d r e l a t i v e l y w e l l ,  l o s s due t o v o l a t i l i z a t i o n .  Xylene  25% o f t h e i r o r i g i n a l  little  value.  was t h e compound w h i c h e x h i b i t e d t h e l a r g e s t c h a n g e  i n c o n c e n t r a t i o n . However, t h e r e was s t i l l quantities  showing  The t a r g e t o r g a n i c compounds f o r t h e  most p a r t w e r e r e d u c e d b y l e s s t h a n Again,  loaded  treatment  left  considerable  i n t h e r e a c t o r a t t h e end o f t h e r u n . T h i s  compound was o n l y r e d u c e d b y 3 7 . 2 % ; h o w e v e r , i t was a m a r k e d improvement o v e r p r e v i o u s  runs.  C o m p a r i n g t h e two s y s t e m i n t h e r u n , t e r m s o f BOD  reduction. Reactor  5  i t becomes c l e a r t h a t , i n  3 performed s l i g h t l y b e t t e r .  E v e n t h o u g h t h e r e a c t o r was l o a d e d w i t h a much l o w e r  organic  load, the degradation  constant  c a n be n o t e d  4.3.13. T h i s c a n be a t t r i b u t e d t o t h e f a c t  i n Table  k was l a r g e r f o r t h e p r o c e s s  t h a t t h e p h o s p h o r u s l o a d was l a r g e r a n d r e s u l t e d i n a  as  lower  d i s s o l v e d c o p p e r c o n c e n t r a t i o n . The o t h e r p o i n t t o remember i s t h a t t h e organisms i n t h e r e a c t o r were p r e v i o u s a c c l i m a t i z e d t o the mixture. last  The r a t e o f b i o - d e g r a d a t i o n was a l s o l a r g e r t h a n t h e  run, both  i n terms o f t h e degradation  i n terms o f a s t r a i g h t  line decline.  141  constant  k, b u t a l s o  Compound:  Parameter:  Reactor  2  Reactor  3  A l u m sweep BOD  Dx/Dt (ppm/d) k  Diphenyl  Dx/Dt (ppm/d) k  Diphenyl  Ether  Diphenyl Methane  (day-1)  Dx/Dt k  T a b l e 4.3.13: K i n e t i c r u n 9.  (ppm/d)  (day-1)  Dx/Dt k  The  (day-1)  (ppm/d)  (day-1)  diversity kinetics  7.58  0.0474  0.0583  24.4  1.39  0.333  NA  83.1  6.47  0.434  0.189  0.90  NA  0.311  NA  constants determined f o r the degradation i n  low r e a c t i o n r a t e c o n s t a n t s i n Reactor  are a l i k e l y  18.1  3 f o r target organics  r e s u l t o f t h e low o r g a n i c l o a d i n g and t h e l a c k o f  o f t h e waste mixture. Curve f i t t i n g u s i n g f i r s t  order  c a n be s e e n i n F i g u r e s 4.3.19 t o 4.3.22. The r e a c t i o n  r a t e s f o r d e g r a d a t i o n o f some compounds a r e r e p o r t e d t o be dependent on t h e p r e s e n c e mixture  ( C a p p s 1995)  A comparison initial  o f o t h e r o r g a n i c compounds i n t h e  of the previous three runs, t o determine  the best  s l u d g e l o a d i n g c a n be s e e n i n t h e T a b l e s 4.3.14 a n d  4.3.15.  142  FIGURE 4.3.19 Comparing the actual data and model predicted values of Diphenyl vs time For reactor2 in run 9  13  Time (days) Actual Diphenyl Data Model based on Cone, on Day 12 (k=0.333) FIGURE 4.3.20 Comparing First Order Models and Actual Concentration of Diphenyl Ether vs Time For reactor 2, in run 9 2500  e  cu  S> 2000 h  c o  • »-l  a 1500  %  <a o a a 1000 o  O 500  13  Time (days) Diphenyl Ether Data  Model Based on Day5 Cone. (k=0.434)  Model based on 12 days Cone. (k=0.285)  143  FIGURE 4.3.21 Actual Concentration and 1ST Order model of Diphenyl Methane vs time  For reactor2 in run 9  6  13  Time (days) Actual Diphenyl Methane Data Model based on Cone. Day5 (k=0.311) FIGURE 4.3.22 Actual and model predicted Diphenyl Ether Concentration vs Time  For reactor3 in run 9  1  6  13  20  Time (days) _ a _ Actual Diphenyl Ether Data Model based on Day5 Conc.(k=0.189)  144  Reactor  Parameter:  Reactor  2  Reactor  4  7  8  9  40  46  25  I n i t i a l Total COD ( m g / L )  30 1 6 9  12 4 1 9  4 227  I n i t i a l Total BOD (mg/L)  8 322  3 305  627.2  430.4  120.5  28.0  23.9  0  11.71  211.5  59.6  18.1  Run Length  (days)  5  2  BOD removal k i n e t i c s (mg/L day) : 5  Dx/Dt(1st half) Dx/Dt ( 2 n d Half) Dx/Dt  (Total)  Reaction rate 0.047 0.121 0.0793 constant k (Days -1) T a b l e 4.3.14: C o m p a r i s o n between t h e s t r a i g h t l i n e BOD d e g r a d a t i o n r a t e s and t h e r e a c t i o n r a t e c o n s t a n t k f o r t h e p a s t three runs. As  t h e numbers  i n the Tables  the  degradation,  the  r u n . However,  indicate,  the largest  i n terms o f mass, o c c u r r e d t h e second  i n the first  p a r t was n e c e s s a r y  more complex o r g a n i c s a n d t o c r e a t e a c l e a r l y Examining 20  days,  fell  As  the Diphenyl  Ether degradation  the reduction rate  average  t o b e l o w 0.1 f o r t h e r e m a i n i n g  Table  efficient system  4.3.14 i n d i c a t e s ; at degrading  t o degrade t h e  polished effluent.  was o v e r twenty  1 0 0 mg/L D a y b u t  days o f t h e batch.  systems were n o t as  i n t e r m s o f B0D  w i t h a more c o n c e n t r a t e d w a s t e m i x t u r e  145  part of  f o r r u n 7, i n t h e f i r s t  the underloaded  t h e waste  proportion of  5  r e d u c t i o n . The  enjoyed  a higher  d e g r a d a t i o n c o n s t a n t k and was Parameter:  Compound:  thus capable of r e d u c i n g the waste  Period:  Reactor 2  Dx/Dt(mg/L Day)  (Day  9  104.9  21.7  37.8  0.1  0*  0**  Total  28.2  10.9*  24.4**  Total  0.541  0.4  0.33  1st Half  468,5  97.3  180.5  4.57  7.38  0  Total  129  53.4  83.1  Total  0.332  0.11  0.43  1st Half  -1)  Dx/Dt(mg/L Day)  Diphenyl Ether Removal:  2nd  k  (Day  Reactor 2  8  2nd  k  4  7  Run Diphenyl Removal:  Reactor  -1)  Half  Half  T a b l e 4.3.15: C o m p a r i s o n o f t h e s t r a i g h t l i n e d e g r a d a t i o n r a t e s and r e a c t i o n c o n s t a n t s k f o r s e l e c t e d t a r g e t o r g a n i c compounds i n  r u n s 7 , 8 , 9 . * D e g r a d a t i o n r a t e 0 s i n c e none r e m a i n i n g . ** D e g r a d a t i o n r a t e 0 due t o t h e " s t a l l i n g " o f t h e d e g r a d a t i o n t h i s compound. f a s t e r and systems. r a t e s was  t o a l a r g e r extent than the other lower  The  Reactor  loaded system this  best p e r f o r m i n g system,  of  loaded  i n t e r m s o f B0D  5  reduction  2 i n r u n 7. A c h i e v i n g t h e h i g h e s t p o s s i b l e  capable of degrading  t h e w a s t e was  a priority  r e s e a r c h , s i n c e i t r e p r e s e n t s t h e most e f f i c i e n t  in  and  e f f e c t i v e u s e o f r e s o u r c e s . T h u s , t h e w a s t e s l u d g e c a n be t r e a t e d i n l a r g e r batches, and  It  resulting  i n l e s s time to remediate  t h e r e b y s a v i n g money t o t h e o w n e r s o f t h e  i s i n t e r e s t i n g t o note  site,  site.  t h a t a h i g h T o t a l B0D  5  degradation  c o n s t a n t k does not n e c e s s a r i l y i n s u r e t h a t the r a t e of 146  the  degradation the rate  case  of the specific  r u n 9, t h e r e a c t o r w i t h t h e l o w e s t  constant  Diphenyl better  t a r g e t compounds w i l l  k had t h e highest constant  Ether  sludge  specific  from  t h e system.  mixture,  thus  This  promoting  T o t a l BOD  removed  considerable  from  t h e system,  5  reaction  f o r t h e removal  of  c a n be a t t r i b u t e d  to a  the degradation  ofthe  compounds. However, even t h o u g h D i p h e n y l  efficiently  be h i g h . As i s  Ether i s  t h e r e was s t i l l  amount o f o r g a n i c m a t e r i a l r e m a i n i n g  a  a t t h e end o f  the r u n .  The  key t o a s u c c e s s f u l run,  appears  t o depend on t h e presence  seemed t o be t h e l a r g e s t bacterial low, not  culture.  successful.  of dissolved  i n the Reactor  T h e r e was a r e s i d u a l  T o t a l BOD  seems t o be t h e most e f f e c t i v e  apparent  copper  toxicity  process,  increasing  considerably.  5  was  and t h e target  this  way o f a v o i d i n g  t h e copper  through  requires a three  step  t h e cost and t h e complexity o f t h e o p e r a t i o n ,  R u n 7, t h e m o s t  increase  i n degradation  however,  p h o s p h o r u s was a d d e d  required  for cell  producing  Removing  However,  prosperous  degraded. Modifying t h e  levels  i spossible.  I t alone  l o a d i n g r a t e was v e r y  nutrient  problems.  rate,  2 o f r u n 9, t h e t r e a t m e n t  compounds were n o t c o m p l e t e l y  alum a d d i t i o n  copper.  deterrent t o t h e growth o f a  E v e n when t h e s l u d g e  a s was t h e c a s e  organic  i n terms o f a high degradation  successful run t o date,  r a t e s and q u a l i t y  growth.  i n 5 times  o f t h e end product; larger  This step appears  the highest degradation 147  showed an  quantities  than  t o be r e s p o n s i b l e f o r  r a t e s i n any system  observed,  almost  twice  as  large  as  any  other  removal.  148  run  i n terms of  Total  BOD  5  4.4  Results  and  Discussion  (Continued):  True  Batch  Runs  Run#10  This  run presented  Batch  Process  to a True  (MBP)  Batch  of  first  Only  (TBP),  25%  s l u d g e . The  as  system's  biotreatment performance  problem  f o r t h e new  of  the endproduct  be  a  in  the  The than  larger  dissolved  previously  the contents of quarters  the  to the addition made up  the of  with improve  the  adequately  Process  copper  of the  treatment  r e a c t o r were removed and in this  levels  the  the vessel  was  case  only a  fraction  in dissolved  sludge  could potentially  encountered.  be  remained 149  then,  into  the  form, units.  much g r e a t e r  I f , f o r example,  r e a c t o r were removed, load  phase,  removed. T h i s meant t h a t t h e r e c o u l d  t o t h e d o s i n g o f new  of the copper  reactors at  run.  concentration, especially  copper  and  w i t h the accumulation of d i s s o l v e d a t t h e end  Batch  b a t c h . However,  prior  the  process would  the previous  converted  around  s l u d g e was  copper  reactor,  any  the  was  centred  Usually,  contents of  prepared  from  the Modified  i n the Materials  i n employing  i n s w i t c h i n g t o the True  the system.  entire  hoped t h a t t h i s  organisms  the p o t e n t i a l in  outlined  system  v o l u m e d i f f e r e n c e was  water.  A concern  treatment  harvested, prior  dilution  acclimatised  I t was  The  t o d e v i a t e from  of the contents of  t h e p r e v i o u s r u n was  more v i r g i n  attempt  treatment.  Process  Methods s e c t i o n . end  the  one  quarter of  possibly,  i n the system.  Thus,  three the  copper  level  of  the  copper  load  from  next  the  sludge.  concern  next  treatment  had  concern with  This  run  and  the  i n run  initial  include three  would  phase of  been used the  would  previous  incoming v i r g i n f o r the  run  a  full  9,  copper  definitely study. to  quarters  be  was  the  from  aspect  the  of  because  reduce copper  copper concentration  load  an  However,  of  alum  levels,  the  considerably  reduced.  Five run  litres 9 and  as  high but  as  using  run  the  COD 7.  pattern  in  Table  load  vs  one  were of  removed  virgin  for this  i n the the  hoped t o Process  from Reactor  sludge.  Table  3  of  4.4.1  run.  r e a c t o r was total  organic  replicate  treatment  much l e s s  than  the  shows t h e  initial  relatively  the  l o a d was success  system. 30  000  low, not  of  However,  mg/L  as  run  7  the  experienced  concentration  of  target  10.  time graph,  is similar  terms of  the  was  4.4.2  i n run  with  I t was  True Batch  level  to  the  exception.  Total  concentration of  copper  hoped.  T o t a l COD  runs,  1 litre  conditions  total  was  organics  The  with  sludge  been p r e d i c t e d ; however,  initial in  initial  initial had  endproduct  replaced  shows t h e  The  of  COD  one  that  T h e r e was  f o r the  v a r i e d but  i s shown i n F i g u r e  first  had an  150  The  been e x h i b i t e d i n initial  s i x days;  rapid after  d i d generally decrease  run.  4.4.1.  previous  degradation that,  f o r the  the  remainder  F I G U R E 4.4.1 C O D C O N C E N T R A T I O N V S T I M E F O R R U N 1 0  BOTH TOTAL AND SUPERNATANT  0  10  20  30  TIME (DAYS) B  REACTOR 3 TOTAL  . R E A C T O R 3 SUPERNATANT  151  40  50  Reactor  Parameter: New s l u d g e Old  Volume ( L )  Sludge (L)  Seed Volume ( L ) Total Initial Initial  Volume ( L )  Total  COD  supernatant  Initial  Total  BOD  5  None  2  None  21.4  21.4 25  317  (mg/L)  conditions  1 856  2 481  4 584  NA  22.5  48.9  3.6  9.1 7. 15  6.58 i n the reactor prior  to the start  Reactor 3 I n i t i a l Concentration (ppm)  Reactor 5 Control (ppm)  Xylene  78.3  187.1  Diphenyl  289.2  738.4  1 549  3 494  Diphenyl  Ether Methane  Benzene,1,1' Methylene b i s ( 4 methyl) 1,2 D i m e t h y l - 4 Benzyl Benzene T a b l e 4.4.2: I n i t i a l t o r u n 10. endpoint  point  12  Compound:  Diphenyl  The  1.5  (mg/L)  I n i t i a l T o t a l C o p p e r (mg/L) I n i t i a l D i s s o l v e d Copper (mg/L) pH T a b l e 4.4.1: I n i t i a l o f r u n 10.  1  13 7 8 8  (mg/L) COD  R e a c t o r 5: Control  3:  32.7  7.71  28.8  25.8  107.4  concentration of the target  c o n c e n t r a t i o n i n terms o f Total  i n theentire  Perhaps,  11.4  a well  run,  a r e s u l t n o t seen  acclimatised  culture 152  organics  prior  COD, w a s t h e l o w e s t  i nearlier  developed  runs.  during this run,  enabled  a breakdown of  indicated  i n h i s work w i t h  wastewater, results  an  increased  i n the  from previous g r a p h was  runs  a  low  sludge  degradation  of  in this  not  supernatant  this  was  also  that  the  initial  Previous  runs  conditions,  over  Total  study,  time,  COD  the  by  little  of  a generally i n run  Figure  generally  the  under these increase  noted  Total  COD  10.  very  i t should of  As  increasing  4 . 4 . 1 , was  However,  (1990)  phenolic  biomass  tailend  concentration  indicated that, was  the  Grady  more r e f r a c t o r y o r g a n i c s .  somewhat u n u s u a l .  there  of  a d e c r e a s e s u c h as  COD  As  concentration age  usually characterized  concentration,  The  more r e f r a c t o r y o r g a n i c s .  stable,  be  remembered  s l u d g e was  low  i n the  COD  quite  low.  loading  COD  of  the  supernatant.  Examining the rapid the  and  pH  was  reactor short pH  severe  fell  action  to  of  variable after  day  time graph,  f o r the  first  3 units  taken  to  raise  the  pH  to  target,  at  5.88.  the  r u n s w o u l d be the  vs  more t h a n  slightly,  after  pH  increase  4.4.2, t h e  10  days.  from  7.15  the  6.5.  pH.  I t was  Over t h i s to  3.68.  Soda ash  However,  pH  the  hoped  At  was  avoided.  Initially,  the  f r o m one was  after  continued  day  20,  the  to  the  next.  sampling period insignificant.  153  pH  point,  pH  the fell  i n modifying  problems e x h i b i t e d  but  period,  added t o  resulting  that  was  this  "stalling"  pH  drop  time  treatment  modification  20  Figure  was The  in  the  previous  i t ' s decline quite net  change  FIGURE 4.4.2 PH VS TIME FOR RUN 10  0  10  20  TIME (DAYS)  Reactor 5 (Control)  30  40  50  Reactor 3  FIGURE 4.4.3 VSS/TSS RATIO VS TIME FOR RUN 10 0.75  0.5  i  1  1  0  10  ' 20  1  TIME (DAYS) REACTOR 3  154  1  30  40  The  VSS/TSS r a t i o .  modification. during was  the  An  decline  actively  degraded  modified  by  Thus,  affected  r e i n f o r c e s the  increase  i n the  VSS/TSS r a t i o  3.68  possible  halted.  4.4.3,  p e r i o d when t h e  r a i s e d from  was  Figure  the  to  5.88,  i n the the  pH  not  the  ratio  waste under a  more t h a n  b a c t e r i a as (Figures  modified.  2 units, the  low the  and  pH  both  seen  mg/L.  I t has  4.4.4  and  been shown t h a t ,  phosphorus concentration, During 3.58  the  mg/L  run, as  initially  the  low  and  copper  attempt,  much o f  the  4.4.6  content  of  run  the  as  solution.  the  copper  i n d i s s o l v e d form,  previous  lower  the  organic  initially the  r e l e a s i n g copper  r e a c t o r was  not  pH  a  bacteria  the  pH  degradation negatively  Total  during  COD  the  the  and  the  as  can  runs,  the  the  than  higher  present had  was  20 the  level.  initially  concentration  since this  degraded was  was and  a true  i n the  reactor  batch was  b e e n b r o k e n down  s o l u t i o n and  removed a f t e r  155  lower  m a t t e r was  sludge into  run,  phosphorus  concentration  However,  since  The  d i s s o l v e d copper  shows. U s u a l l y ,  increased  to  i n previous  the  COD  s o m e p o i n t s , was  d i s s o l v e d copper  Figure  released  found  at  when t h e  showing  change  4.4.5. However,  system,  observed  4.4.3).  be  i n the  Yet,  pH  However, when t h e  Total  severe  i n d i c a t e d by  4.4.1  pH.  n u t r i e n t d e f i c i e n c i e s were experienced  concentration  be  decreased,  No  i n Figure  can  v i a b l e biomass p o p u l a t i o n .  i t appears that  VSS/TSS R a t i o  was  problems with  the  the  last  entire  run.  in  FIGURE 4.4.4 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 10 70 ,  0  10  20  30  40  50  T I M E (DAYS) REACTOR 3 FIGURE 4.4.5 AMMONIA CONCENTRATION VS TIME FOR RUN 10 100  0  I  I  i  0  10  i 20  i  i  30  40  T I M E (DAYS) REACTOR 3  156  i  50  F I G U R E 4.4.6 C O P P E R C O N C E N T R A T I O N V S T I M E F O R R U N 10  BOTH TOTAL AND DISSOLVED  25  1  3  6  10  13  17  21  24  27  31  34  TIME (DAYS) H  REACTOR 3 (TOTAL)  ^ R E A C T O R 3 (DISSOLVED)  157  38  41  47  The  d i s s o l v e d copper c o n c e n t r a t i o n  was r a t h e r s t a b l e f o r t h e  e n t i r e r u n e x c e p t f o r d a y 38, when i t was m e a s u r e d a t a concentration preparation  a b o v e 10 mg/L. T h i s was p r o b a b l y a n e r r o r i n t h e  o f t h e sample, s i n c e  other  measurements. A l s o ,  point  should  BOD  in  Figure  5  t h e phosphorus c o n c e n t r a t i o n  at this  h a v e b e e n h i g h e n o u g h a t 50 mg/L, t o p r e c i p i t a t e t h e  extra dissolved  The  i t was n o t i n l i n e w i t h a n y  copper.  was r e d u c e d t o w e l l b e l o w 100 mg/L, a s c a n be o b s e r v e d 4.4.7, a n d i n T a b l e 4.4.3. The t a r g e t o r g a n i c s  reduced t o below t h e d e t e c t i o n  were  l i m i t o f t h e GC i n 34 d a y s  4 . 4 . 4 ) . The r u n was c o n t i n u e d  past t h i s point  i n order  (Table  t o t r y and  remove t h e r e s i d u a l T o t a l COD. Parameter I n i t i a l Total (mg/L) Final Total (mg/L) %  COD COD  Degradation  Reactor 3  Reactor 5 Control  13 788  25 317  5 443  21 023  60.5  I n i t i a l T o t a l BOD (mg/L) F i n a l T o t a l BOD (mg/L)  5  5  4 584 83.7  17.0 NA NA  98.2 NA % Degradation T a b l e 4 . 4 . 3 : F i n a l c o n d i t i o n s i n the r e a c t o r s a t the end o f run 10.  T a b l e s 4.4.3 a n d 4.4.4 show t h a t the waste sludge,  i n terms o f t h e degradation  of  r u n 10 was q u i t e s u c c e s s f u l . The i n t e r e s t i n g  parameter i s t h e length o f time that 158  i t took f o r t h e degradation  Compound:  Parameter:  Xylene  Inn.  Cone.  Final % Diphenyl  Inn.  Diphenyl  Ether  Inn.  Diphenyl  Methane  Inn.  Cone.  Benzene,1,1' Methylene b i s (4methyl)  Inn.  1,2 D i m e t h y l - 4 Benzyl Benzene  Inn.  (mg/L)  Degradation Cone.  (mg/L)  Cone.  (mg/L)  Degradation Cone.  (mg/L)  Cone.  (mg/L)  Degradation Cone.  Final %  (mg/L)  Cone.  Final %  (mg/L)  Degradation  Final %  (mg/L)  Cone.  Final %  Reactor  (mg/L)  Cone.  (mg/L)  Degradation Cone.  Final  (mg/L)  Cone.  (mg/L)  % Degradation T a b l e 4.4.4: D e g r a d a t i o n o f the t a r g e t days o f run 10. process. the  The e n t i r e  biotreatment  process  took  less  than  indicate  t h a t t h e r e may b e a n a d v a n t a g e  Process,  mainly  for  the degradation  degradation  improved  process i n this  Reactor  78  187  0  82  100  55.8  289  738  0  738  100  0  1548  3493  0  3493  100  0  11.4  32.7  0  32.7  100  100  7.71  28.8  0  28.7  100  34.7  25.79  107.4  0  74.9  34 d a y s ,  five  days.  w i t h most o f This  seemed t o  i n using t h e True  Batch  reduction i n the length of  t o occur.  time  Also, the rate of the  r u n . The r a p i d  159  5  100 30 o r g a n i c s d u r i n g the 41  occurring i n the f i r s t  i n t h e apparent  3  r e d u c t i o n i nt h e  FIGURE 4.4.7 T O T A L 5 D A Y B O D C O N C E N T R A T I O N V S TIME F O R R U N 10  1  5  13  21  27  TIME (DAYS) (31  REACTOR 3  160  34  41  47  BOD  5/  t h e r e d u c t i o n i n t a r g e t o r g a n i c s and t h e subsequent  r e d u c t i o n i n t h e pH, i n d i c a t e s t h a t t h e r a t e was c o n s i d e r a b l y more r a p i d t h a n t h o s e e s t a b l i s h e d i n p r e v i o u s r u n s a p p r o x i m a t e l y t h e same COD l o a d i n g l e v e l .  with  These improvements were  a t t r i b u t e d t o t h e p r o d u c t i o n o f a s t r o n g e r , more a c c l i m a t i z e d c u l t u r e o f microorganisms. attempt  i n which  This represented the f i r s t  t h e b a c t e r i a were i n i t i a l l y  present  treatment i n the  r e a c t o r i n l a r g e , a c c l i m a t i z e d n u m b e r s , t h u s p r o d u c i n g a more a c t i v e and v i a b l e p o p u l a t i o n . I n t h e o t h e r runs, t h e c u l t u r e would have t a k e n time t o e s t a b l i s h i t s e l f  and a c c l i m a t e waste  m i x t u r e . The s p e c i f i c d e g r a d a t i o n r a t e s f o r t h e p r o c e s s c a n be s e e n i n T a b l e 4.4.5. Time  Reactor 3  Reactor 3  Days  Dx/Dt mg/L d a y  Reaction constant k day-1  40  112.7  0.334  Xylene  13  6.52  0.710  Diphenyl  24  12.6  0.565  Ether  34  46.9  0.310  Methane  34  0.345  0.143  24  0.335  No F I T  5  5.15  1.963  Compound:  BOD  Diphenyl Diphenyl  5  Benzene,1,1' Methylene b i s (4methyl) 1,2 D i m e t h y l - 4 B e n z y l Benzene Table target  4.4.5: R e a c t i o n r a t e s a n d t h e d e g r a d a t i o n p e r d a y f o r t h e o r g a n i c compounds d u r i n g r u n  10.  T a b l e 4.4.5 shows t h e r e a c t i o n r a t e s f o r t h e d e g r a d a t i o n o f s p e c i f i c t a r g e t o r g a n i c compounds, 161  a s w e l l a s t h e T o t a l BOD . The 5  first  o r d e r d e c a y m o d e l s f i t some o f t h e d a t a p e r f e c t l y . The  d e g r a d a t i o n o f most o r g a n i c compounds f o l l o w s t h e p a t t e r n e s t a b l i s h e d i n the modified batch runs. I n i t i a l l y ,  a large  r e d u c t i o n i n t h e c o n c e n t r a t i o n o f t h e o r g a n i c compounds was observed,  f o l l o w e d by a dramatic decrease  d e g r a d a t i o n i n t h e second  p a r t o f t h e r u n . However, d u e t o t h e  s l o w i n g o f t h e d e g r a d a t i o n i n t h e second tail  i nthe rate of the  end o f t e n d e v i a t e d s l i g h t l y  part o f t h e run, t h e  from a f i r s t  o r d e r model.  T a b l e 4.4.6 c o m p a r e s t h i s r u n t o t h e b e s t b a t c h r u n i n t e r m s o f organic reduction. Compound  Parameter  Reactor 2  Reactor 4  Reactor 3  Run  7  8  10  Setup  Modified Batch  Modified Batch  True  Batch  COD  Initial  (mg/L)  30 169  12 419  13 788  T o t a l BOD  Initial  (mg/L)  8 322  3 305  4 584  Reaction Constant k ( d a y s -1)  0.121  0.079  0.334  Diphenyl  Reaction Constant k ( d a y s -1)  0.54  0.4  0.565  Diphenyl Ether  Reaction Constant k ( d a y s -1)  0.332  Total  BOD  5  5  0.108  0.31  T a b l e 4 . 4 . 6 : The c o m p a r i s o n o f t h e r e a c t i o n r a t e c o n s t a n t k f o r the s e v e r a l m o d i f i e d b a t c h and t h e t r u e b a t c h r u n s .  Table  4.4.6 shows t h e e f f e c t t h a t t h e T r u e B a t c h P r o c e s s h a d o n  the treatment almost  k i n e t i c s o f t h e s l u d g e . Run 10, i s c o m p a r e d t o a n  identically  loaded m o d i f i e d b a t c h system, 162  r u n 8, a n d t o  t h e most Process  successful modified batch had a r e l a t i v e l y  t e r m s o f T o t a l BOD rate  constant  almost  five  batch  system.  5  high degradation  r e d u c t i o n , almost  times  greater than  target chemical  identical  t o those  true batch  early  three times  the identically  Also, the degradation  results  kinetics  compounds  observed  system  was l i k e l y  clearly  indicated  f o r t h e most  t h a t True Batch  relatively  end product  i n less  up more at the  than  first,  reactor. After  mentioned e a r l i e r ,  of  the  the residual  BOD  5  indicates  explaining the slight  free  from  present.  However,  time.  initially  hinder  163  made  rapidly from  As  t o t r y a n d remove that,  a  more  i n t h e e n d , some 5  removal  was  increase i n the ratio. At thereby  i sa possibility  could actually  could  decreased  producing  t h e t a r g e t o r g a n i c compounds there  The  m a t e r i a l was removed  5  t h e r u n was l e n g t h e n e d The r a t i o  case.  was q u i t e s t a b l e .  t h e GC t r a c e w a s b l a n k ,  effluent  time  degradable  however,  and produce  T o t a l COD w a s r e m o v e d w h i l e t h e BOD  thus  same t i m e ,  retention  t h e T o t a l BOD  day 13, t h e r a t i o  compounds.  negligible,  sludge  3 3 % o f t h e T o t a l COD. T h e r a t i o  as the e a s i l y  refractory  4.4.7,  almost  Process  liquor  i n Table  were  i nthis  r a t e s i n t h e mixed  As c a n be observed  modified  modified batch;  underloaded  than t h e  run, and  loaded  improve t h e degradation high quality  k, i n  larger  i n the mixture  i n t h e best  Batch  rate constant  i n t h e most s u c c e s s f u l m o d i f i e d b a t c h  prominent  the  r u n , r u n 7. T h e T r u e  an  initially  that the additional  the quality  of the final  Day  BOD/COD R a t i o  1  0.332  5  0.129  13  0.05  21  0.06  27  0.019  34  0.021  41  0.013  47  0.015  T a b l e 4.4.7: BOD/COD r a t i o d u r i n g r u n 1 0 .  effluent  by degrading  more c o p p e r  into  t h e remain  solution;  this  organic matter would  effect  and releasing  thequality  o ft h e  effluent.  The  nutrient  overall ratio  this  N/P r a t i o  theoverall  9, t h e r e b y , specific  ratio  further  ( M e t c a l f 1992;Beltrame  i si nline  emphasizing  1979).  w i t h t h e one observed  thenutrient  for  requirements o f  culture.  The  last  was  a high use of nutrients,  However,  4.4.8. The  f o r t h e r u n w a s 2 . 5 1 ; o n c e a g a i n t h e BOD5:N:P  a t 63.5:2.51:1 was a t y p i c a l  However, run  u s e d u r i n g r u n 10 i s s h o w n i n T a b l e  s i x days o f t h e experiment  t h e r e was l i t t l e  VSS/TSS R a t i o ( F i g u r e t h e amount o f b i o m a s s .  were q u i t e  both n i t r o g e n and  d e g r a d a t i o n i n terms  4.4.3) d o e s n o t i n d i c a t e I t i spossible  164  that>  interesting;  there  phosphorus. of Total  B0D . The 5  a g r e a t change i n  i n t h e breakdown o f  used  N/P  Ratio  N i t r o g e n used (mg/L)  2  14.6  4.75  3.08  3  35.7  8.9  4.01  4  30.9  7.5  4.1  3  23.0  5.73  4.01  4  14.6  2.5  5.83  4  7.2  6.56  1.1  3  6.43  4.55  1.41  3  6.91  5.83  1.19  4  4.62  0  NA  3  12.7  8.24  1.54  4  0  0.8  0  3  1.66  0  NA  6  19.55  15.51  1.26  Total Table 4.4.8: the l e n g t h of  70.9 N u t r i e n t use run 10.  some r e f r a c t o r y some o f  the  overpowering  sludge  settled  sludge  i n run  treatment  2.51 177.8 Nitrogen/Phosphorus Ratio  the  organic material,  the  sludge  chemical  floating  appeared  and  the nutrients  complexed  over  with  r e l e a s e d compounds.  Qualitatively,  film  Phosphorous (mg/L)  Time Days  t o be  on  the  the  improved  s m e l l was top of  i n less 7 took  had  than  almost  b e s t end  the 30 two  no  minutes hours  phases.  165  The  strong  l o n g e r p r e s e n t . The  sludge  product  markedly.  had  also  iridescent  disappeared.  while the  endproduct  to settle.  Therefore,  generated  from  a l l of  The  this  the  The  r u n a s a w h o l e was  system  a s a t r u e b a t c h c o u l d p r o d u c e a more e f f i c i e n t  e f f e c t i v e process end  s u c c e s s f u l i n showing t h a t o p e r a t i n g the  f o r the remediation of the sludge. A c l e a n e r  product, w i t h a lower d i s s o l v e d copper  concentration,  obtained i n l e s s time u s i n g the t r u e batch procedure. questions s t i l l  and  However,  arose about the p r o c e s s , namely the e f f e c t  h i g h e r d i s s o l v e d copper  l e v e l s and h i g h e r i n i t i a l  c o n c e n t r a t i o n s on t h e q u a l i t y o f t h e end  This run, the l a s t P r o c e s s and  i n a s e r i e s , was  COD  product.  s t a r t i n g COD  i n c r e a s e d t o see the e f f e c t final  a l s o o p e r a t e d as a True  s o u g h t t o a n s w e r q u e s t i o n s and p r o b l e m s w h i c h  i n t h e p r e v i o u s r u n . The  product  and  c o n c e n t r a t i o n , would  be  i t w o u l d h a v e on t h e q u a l i t y o f  the  the degradation rates. Also, the r e a c t o r s '  run would s i m u l a t e expected possible  Batch  came up  c o n t e n t w o u l d n o t be p r e t r e a t e d w i t h a l u m t h i s t i m e . T h u s , c o n d i t i o n s i n the f i e l d  and  this  flag  problems.  r u n c o n s i s t e d o f t h r e e r e a c t o r s , two  c o n t r o l . The of  of  #11  Run  The  was  f i r s t test  approximately  r e a c t o r was  30 000 mg/L,  enable d i r e c t comparisons  t e s t r e a c t o r s and  a  t o have a t a r g e t o r g a n i c l o a d  i n t e r m s o f T o t a l COD.  T h i s would  t o be made w i t h t h e most s u c c e s s f u l  m o d i f i e d b a t c h r u n . C o n c l u s i o n s c o u l d be d r a w n on t h e r a t e s o f r e a c t i o n and w o u l d be  t h e q u a l i t y o f t h e end  p r o d u c t . The  second  vessel  l o a d e d t o a c o n c e n t r a t i o n o f a p p r o x i m a t e l y 40 000 166  mg/L  COD.  In a l l likelihood,  t h e c o p p e r and o r g a n i c  w o u l d be t o o c o n c e n t r a t e d treatment  should  fail,  concentrations  f o r t h e system t o h a n d l e and t h e  although  t h e r e was a p o s s i b i l i t y  that the  a c c l i m a t i z e d organisms would enable t h e system t o w i t h s t a n d  these  new o p e r a t i n g c o n d i t i o n s . I m p o r t a n t i n f o r m a t i o n a b o u t t h e r u n n i n g o f an on s i t e  Reactor  full  s c a l e s y s t e m w o u l d be l e a r n e d  2 was o r i g i n a l l y  u s e d i n r u n 9. I t was l o a d e d  concentration of organic sludge end  of the process,  total  the sludge  i n that particular had low l e v e l s  c o p p e r c o n c e n t r a t i o n o f 10 mg/L  Reactor  4 was o r i g i n a l l y  w i t h a 15 000 mg/L  c o n c e n t r a t i o n o f 40 mg/L.  sludge,  anticipated total  and t o t a l  present  to a Total  i n the reactor  sludge,  was  performance, s i n c e the  copper c o n c e n t r a t i o n The i n i t i a l  loaded  copper  T h i s r e a c t o r w o u l d be l o a d e d  the biotreatment  and a  remaining.  The c o p p e r o r i g i n a l l y  b e t w e e n 80 a n d 90 mg/L.  run. At the  of organics  c o m b i n e d w i t h t h e a d d e d amount f r o m t h e v i r g i n expected t o effect  step.  w i t h a low  u s e d i n r u n 8. I t was o r i g i n a l l y  T o t a l COD  COD o f 40 000 mg/L.  from t h i s  for this  r e a c t o r w o u l d be  loading of the reactors i s  shown i n T a b l e 4.4.9. From T a b l e 4.4.9, i t i s c l e a r t h a t t h e t a r g e t o r g a n i c r e a c h e d a s c l o s e a s c a n be e x p e c t e d . higher  t h a n t h e p r o j e c t e d 30 000 mg/L  reached the expected l e v e l initial  Reactor  2 was  o f T o t a l COD  o f 40 000 mg/L.  concentration of target organic  l o a d s were  slightly but Reactor  4  T a b l e 4.4.10 shows t h e  compounds i n t h i s r u n .  Reactor 1 Control  Parameter Original Sludge present from p r e v i o u s run (L) New s l u d g e Total  added ( L )  Volume ( L )  I n i t i a l Total (mg/L)  COD  BOD  2  Reactor  0  14  12  1.0  1.5  2.0  25  25  25  25 3 1 7  Initial supernatant COD ( m g / L ) I n i t i a l Total (mg/L)  Reactor  32  40  153  4  356  2 481  1 712  1 712  NA  8 117  12 2 5 6  5  Total  Copper Cone. (mg/L) D i s s o l v e d Copper Cone. (mg/L) PH T a b l e 4.4.9: I n i t i a l s t a r t o f r u n 11.  56.8  9.12  6.04  5.56  7.15  4.93  4.74  conditions present  i n the reactor at the  Reactorl Control (ppm)  Reactor2 (ppm)  Reactor4 (ppm)  Xylene  187  257  676  Diphenyl  738  949  2 334  3 494  4 425  11 0 1 6  Diphenyl  Ether Methane  Benzene,1,1" Methylene bis (4-methyl) Dimethyl-4-Benzyl Benzene  T a b l e 4.4.10: I n i t i a l s t a r t o f r u n 11. Initial  47.9  Compound:  Diphenyl  1,2  48.9  concerns  concentrations  32.7  37.4  105.6  28.8  24.3  74.7  107  64.1  341  concentration of the target organic at the  focused  o n t h e l o w pH a n d t h e h i g h  of dissolved  copper. 168  T h e pH i n b o t h  test  reactors  was b e l o w all of  5. T h i s c l e a r l y  the existing t h e system  sludge  demonstrates  from  concentration usually  first,  and then  case,  dissolved limit  In  form.  on t h e sludge  concentration  From p r e v i o u s r u n s , growth  the other test  The  COD  stable.  Total  COD,  organically  Reactor  near  a s was t h e c a s e  from  constant  d i dexhibit  larger  degradation of Total  i n many p r e v i o u s r u n s ,  was  169  i n Reactor  of the sludge  s h o w s some  rapid  few runs  was  i nthe  increasing 2, t h e l o w e r p a t t e r n as  t h e r e was r a p i d i n the reactor; Total  from  interesting  decline  the classic  COD  Ether  than  Reactor  Initially,  extremely  was n o t d r a s t i c a l l y  the pattern of  d a y 17, t h e p a t t e r n o f f l u c t u a t i n g  present  COD  i n the past  t h e end o f t h e r u n .  previous runs.  5 mg/L i n  as t h e t o x i c i t y  the Diphenyl  4 showed an i n i t i a l  loaded vessel,  at  microorganisms.  F i g u r e 4.4.8,  b u t does n o t e x h i b i t  concentration  after  v s Time graph.  The c o n t r o l ,  quite  almost  dissolved  concentration. In  was s e e n  the variability  points i n the lagoon.  expected  of  reactor,  different  results.  this  i n t h e r e a c t o r was 3 t i m e s  This again demonstrates  Total  The  o f f a t higher than  the concentration of Total  then  removing  The b u f f e r i n g c a p a c i t y  4, t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c s w a s  Although  different  2.  grew depending  f o r any s u b s t a n t i a l  of not  was b e l o w t h e d e t e c t a b l e l i m i t  the concentration started  Reactor  high.  the reactors.  was c o m p r o m i s e d d u e t o t h e c y c l i n g .  copper  this  the result  and however,  COD c o n c e n t r a t i o n ,  demonstrated.  FIGURE 4.4.9 S U P E R N A T A N T C O D C O N C E N T R A T I O N V S T I M E F O R R U N 11  1  3  6  10  14  17  20  24  TIME (DAYS) REACTOR 1 (CONTROL)  REACTOR 2  REACTOR 4  170  27  31  34  40  The  supernatant  greatly  during  generally  i n Reactor  initial  increased  experience the  COD  with  the  Figure  consecutive time.  This  previous  runs.  When t h e  supernatant  occur;  COD  4.4.9, f l u c t u a t e d  sampling  over  phenomenon d i d not  with  4,  was  reactor  periods,  the  pattern expected  s y s t e m was  2 followed  concentration  but  "under  this  from  loaded"  pattern,  increasing l i t t l e  over  the  run.  Excess n u t r i e n t s were present experimental and  run,  with  4.4.11. R e a c t o r  sampling  period.  corrected.  An  The  that  initial  concentration  For  was  the  most of  5 mg/L.  only  the  of  of  early  i n the  run.  Prior  4 was  10  concentration  and of  of  the  effect  i n Figures  a l s o came up from  mg/L  this since  i n the batch the  f o r a l l the  The  between 6 and the  concentration  t o a b o v e 40  the  analysis. It  contained  7 mg/L.  The  seen  171  was  a  sampling  clearly  control.  was  be  i n c r e a s i n g the  below  seen  in  a dissolved day  in  periods.  level  However, on  Reactor  copper 3,  total  dissolved concentration  i n Figure  high  concentration  phosphorus  result  system,  mg/L. as  3,  one  and  n u t r i e n t p o s s i b l e f o r the  t o day  dropping.  b e l o w 2 mg/L,  4.4.10  deficiency for  adding phosphorus could  added t o  fell  the  d i s s o l v e d copper concentration  p h o s p h o r u s was  copper  10  seen  a nitrogen  phosphorus,  source  run,  as  during  quickly identified  sludge  around  The  mg/L,  item  original  c o n t r o l hovered  This  exception  p r o b l e m was  interesting the  a l l times  4 experienced  appears  the  one  at  4.4.12. A g a i n ,  of the  FIGURE 4.4.10 PHOSPHORUS CONCENTRATION VS TIME FOR RUN 11  o  1  '  '  '  '  0  10  20  30  40  TIME (DAYS) ^  R E A C T O R 1 (CONTROL)  REACTOR 2  ^REACTOR 4  172  1  50  importance of monitoring s y s t e m was  the concentration of n u t r i e n t s i n the  demonstrated.  The pH was a m a j o r s t u m b l i n g first  sampling  block during the run. During  p e r i o d , t h e pH i n R e a c t o r  the  4 h a d f a l l e n t o b e l o w 4,  as c a n be s e e n i n F i g u r e 4.4.13. The l o w pH a l s o c a u s e d more c o p p e r t o d i s s o l v e i n t o s o l u t i o n . A t t h a t p o i n t , a d e c i s i o n was made t o a d d s o d a a s h t o r a i s e t h e pH, t o a p p r o x i m a t e l y r a i s i n g o f t h e pH was a l s o p a r t i a l l y in  the copper  Modifying  seemed  as had been e x p e r i e n c e d  point should  The  responsible f o r the decrease  concentration.  The a b r u p t pH c h a n g e a g a i n process,  7.  to " s t a l l " i n previous  the  degradation  runs.  As s u c h ,  this  have been a d d r e s s e d e a r l i e r d u r i n g t h e e x p e r i m e n t .  o f t h e pH o r b u f f e r i n g t h e s y s t e m s h o u l d  p r i o r to the s t a r t of a run. Modifying usually led to a "stalling"  h a v e b e e n done  t h e pH d u r i n g t h e r u n  of the biotreatment  s y s t e m . The pH o f  7 was n o t d e t r i m e n t a l t o t h e c u l t u r e b u t t h e e f f e c t o f t h e r a p i d c h a n g e o f pH,  i n c r e a s i n g more t h a n 3 u n i t s was. The T o t a l COD  vs  T i m e g r a p h s ( F i g u r e 4.4.8) showed no r e d u c t i o n a f t e r t h e pH m o d i f i c a t i o n was made.  The pH i n R e a c t o r was  initially  2, c o n t r a r y t o t h e t r e n d o b s e r v e d i n R e a c t o r  4,  s t a b l e . A f t e r 6 d a y s , t h e pH d r o p p e d a t a r a p i d and  almost constant  r a t e . On d a y 14, t h e pH was e x t r e m e l y  3.60 a n d was o n l y m o d i f i e d  low, a t  s l i g h t l y t o a v o i d the problems 173  FIGURE 4.4.12 COPPER CONCENTRATION VS TIME FOR RUN 11  BOTH TOTAL AND DISSOLVED 70 i  ,  1  3  6  10 14 17 21 24 27 31 34 40  TIME (DAYS) _ H _ REACTOR 1 (TOTAL) _B_ REAC 2 (DISSOLVED)  REAC 1 (DISSOLVED) REACTOR 4 (TOTAL)  174  REACTOR 2 (TOTAL) REAC 4 (DISSOLVED)  175  e x p e r i e n c e d b y a l a r g e pH c h a n g e s e e n i n R e a c t o r 4.  Unfortunately, day  t h e change observed  17 was s t i l l  was t o o s m a l l s i n c e t h e pH o n  o n l y 3.78. A n o t h e r  d o s e o f s o d a a s h was a d d e d t o  t h e r e a c t o r ; r a i s i n g t h e pH t o 6.59. A g a i n , higher than planned "stalling" and  a n d seemed t o h a v e r e s u l t e d o n c e a g a i n i n a  o f t h e BOD  a n d T o t a l COD d e g r a d a t i o n  5  4 . 4 . 1 4 ) . The s y s t e m  modification; problem  t h i s was s l i g h t l y  was n e v e r  a b l e t o r e c o v e r f r o m t h e pH  t h e h i g h r e s i d u a l T o t a l BOD  w i t h t h e system,  ( F i g u r e s 4.4.8  5  was a n i n d i c a t i o n o f a  a s shown i n T a b l e 4.4.11.  T a b l e 4.4.12 shows t h a t t h e c o n t r o l was s t a b l e i n t e r m s o f t h e l o s s o f t a r g e t o r g a n i c compounds d u e t o v o l a t i l i z a t i o n . in  The l o s s  t e r m s o f t h e m a j o r c h e m i c a l compound p r e s e n t , D i p h e n y l  was n e g l i g i b l e .  Ether  T h i s f u r t h e r e m p h a s i z e s t h e p r o g r e s s made i n  m o d i f y i n g t h e a e r a t i o n system,  thus l e a d i n g t o a s i g n i f i c a n t  Reactor 1 Control  Reactor 2  I n i t i a l Total COD (mg/L)  25 317  32 153  40 356  Final Total COD (mg/L)  21 023  9 428  17 762  17.0  70.7  56.0  I n i t i a l Total BOD (mg/L)  NA  8 117  12 256  Final Total BOD (mg/L)  NA  781  2 085  Parameter:  %  Degradation  5  5  %  Degradation  90.4  NA  T a b l e 4.4.11: Change i n t h e T o t a l r u n 11.  176  COD  a n d BOD  Reactor  4  83.0 over the course o f  reduction  of loss  due t o v o l a t i l i z a t i o n .  Any decrease  concentration  o f t h e o r g a n i c compounds i n t h e t e s t  be  to the microbial  attributed  The  r u n was n o t a s u c c e s s  sludge 40  days  degradation.  i n terms o f t h e f i n a l  quality  t o remediate  this  not  t o have gone t o c o m p l e t i o n  The  pH s h o u l d h a v e b e e n m o d i f i e d p r i o r would have avoided  the  pH c o r r e c t i o n  the  degradation  remained  should  The r u n a p p e a r s  to the start  the culture.  was u n f a v o u r a b l e  of therun;  The magnitude o f  t o the microorganisms,  t h e pH a d j u s t m e n t (Table  w e r e much  had p r e v i o u s l y been e x h i b i t e d  high  c o n c e n t r a t i o n o f p h o s p h o r u s may h a v e p r e v e n t e d copper  after  b e c a u s e o f p r o b l e m s w i t h t h e pH.  shocking  rates after  sludge.  than  dissolved  of the  4.4.12). The l e n g t h o f t h e e x p e r i m e n t  have been s u f f i c i e n t  this  r e a c t o r s must  s i n c e many o f t h e t a r g e t o r g a n i c c o m p o n e n t s (see Table  i nthe  concentration, thus  4.4.13).  improving  since lower  Likewise,  a  the rise of  biotreatment  efficiency.  If  proper  control  is  probable  As  seen  of  t h e T o t a l B0D  from  and monitoring  c o n d i t i o n s had been observed, i t  t h a t t h e two systems w o u l d  Table  disappointing.  5  4.4.13, t h e k i n e t i c and t a r g e t o r g a n i c s  Only  some o f t h e d a t a  h a v e f a r e d much  models  degree of c e r t a i n t y ;  thus,  fits  a first t o apply  i n that case,  177  f o r the degradation  f o r t h e r u n were  m o d e l . Much o f t h e d a t a was t o o v a r i a b l e any  better.  order  decay  t o a model  a n NA o r n o t  with  Compound:  Xylene  Parameter:  Inn. Final %  Diphenyl  Inn. Final %  Diphenyl Ether  Inn. Final %  Diphenyl Methane  Inn. Final %  Benzene,1,1' Methylene b i s (4-methyl)  Inn.  Final % 1,2 D i m e t h y l 4-Benzyl Benzene  Inn.  Final  Cone. Cone.  (mg/L) (mg/L)  Degradation Cone. Cone.  (mg/L) (mg/L)  Degradation Cone. Cone.  Cone.  (mg/L)  (mg/L) (mg/L)  Degradation Cone.  Cone.  Cone.  Reactor 4  187  257  676  70.5  6.4  5.6  62.3  97.5  99.2  738  949  2 334  685  37.3  28.2  7.24  96.1  98.8  3 494  4 425  11 0 1 6  3 494  301  863  0  93.2  92.2  32.7  37.4  106  32.7  8.1  22.0  0  76.2  79.2  28.8  24.3  74.7  12.5  8.6  25.7  56.6  64.8  65.5  107  64.1  341  61.2  0  5.5  (mg/L)  (mg/L)  Degradation Cone.  Reactor 2  (mg/L)  Degradation Cone.  Reactor 1 Control  (mg/L)  (mg/L)  98.4 % Degradation 43.0 100 T a b l e 4.4.12: Change i n t h e c o n c e n t r a t i o n o f t a r g e t o r g a n i c over the c o u r s e o f run 11.  178  Parameter:  Compound: BOD  Dx/Dt  5  K Xylene  Dx/Dt K  Diphenyl  Dx/Dt K  Diphenyl  Ether  Dx/Dt K  Diphenyl  Methane  Dx/Dt K  Benzene,1,1' Methylene b i s (4methyl)  Dx/Dt  K 1,2 D i m e t h y l - 4 Benzyl Benzene  Dx/Dt  Reactor  (mg/L d a y ) (Day -1) (mg/L d a y ) (Day -1) (mg/L d a y ) (Day -1) (mg/L d a y ) (Day -1) (mg/L d a y ) (Day -1) (mg/L d a y )  (Day -1)  2  188.1  260.8  0.08  NA  6.42  17.2  0.157  NA  23.4  59. 1  0.104  0.201  105.7  260.3  0.086  0.117  0.73  2.14  0.048  0.096  0.4  1.26  NA  0.09  2.47  8.59  was c i t e d  i n the table.  was c o n s i d e r a b l y h i g h e r was e x p e c t e d in  Reactor  come c l o s e attempt  The  since  2 after t o those  initial  BOD/COD  range o f those  Overall,  f o r Reactor  t h e treatment  4, t h a n  process  t h e pH a d j u s t m e n t . experienced  u s i n g t h e True Batch  ratio  observed  4  (mg/L d a y )  0.076 K (Day -1) T a b l e 4.4.13: R e a c t i o n r a t e c o n s t a n t s a n d s t r a i g h t v a l u e s f o r t a r g e t o r g a n i c s i n r u n 11. applicable  Reactor  0.235 line  the rate  constant  f o r Reactor  "stalled"  The v a l u e s  decay  2;  k  this  considerably  presented  i n r u n 10, t h e f i r s t  do n o t  remediation  Process.  (shown i n T a b l e  f o r previous  179  runs.  4.4.14) were i n t h e The e n d r e s u l t .  Day  Reactor 2 BOD/COD R a t i o  Reactor 4 BOD/COD R a t i o  1  0.252  0.304  6  0.305  14  0.173  20  0.129  0.347  27  0.110  0.232  34  0.099  0.130  40  0.083  0.117  T a b l e 4.4.14: BOD/COD R a t i o s f o r t h e r u n n i n g r e a c t o r s o f r u n 11.  h o w e v e r , was a h i g h  r e s i d u a l BOD/COD r a t i o ;  the result of the  i n c o m p l e t e breakdown o f t h e s l u d g e .  The  "stalling"  well in  i n R e a c t o r 4 was e s p e c i a l l y p u z z l i n g .  t o t h e pH m o d i f i c a t i o n ,  p r o b a b l y b e c a u s e i s was done e a r l y  t h e r u n . However, t h e s y s t e m s t i l l  could  I t responded  s t a l l e d and i t ' s demise  p o s s i b l y be a t t r i b u t e d t o a c o m b i n e d e f f e c t o f t h e  i n i t i a l l y high loading  d i s s o l v e d copper and t h e i n i t i a l  i n the reactor.  high  sludge  The k i n e t i c r a t e s w e r e n o t v e r y h i g h i n  this p a r t i c u l a r reactor.  F o r much o f t h e r u n t h e N i t r o g e n  t o Phosphorus r a t i o ,  as seen i n  T a b l e 4.4.13, was n o t d e t e r m i n a b l e , s i n c e o n e o f t h e n u t r i e n t s was n o t u t i l i s e d d u r i n g ratios arequite  one s a m p l i n g p e r i o d  t o t h e n e x t . The  l o w , e s p e c i a l l y f o r R e a c t o r 2, b u t t h i s i s  p o s s i b l y a t t r i b u t e d t o t h e use o f phosphorus f o r t h e p r e c i p i t a t i o n o f t h e d i s s o l v e d c o p p e r . The r a t i o 180  further  emphasises t h e p o i n t where growth p h o s p h o r u s was  used  stopped  i n the reactors.  i n t h e l a s t 25 d a y s o f t h e r u n ,  i n d i c a t e d t h a t t h e b a c t e r i a were not v e r y a c t i v e . t h e B0D5:N:P r a t i o was was  which  For Reactor  1 1 7 : 1 . 8 9 : 1 , w h i l e i n R e a c t o r 4,  266:3.07:1. I n b o t h c a s e s , the o v e r a l l  Little  the  2,  ratio  r a t i o seemed l o w i n  t e r m s o f t h e u t i l i z a t i o n o f n i t r o g e n and p h o s p h o r o u s f o r t h e amount o f BOD  consumed c o m p a r e d t o p r e v i o u s r u n s .  Time (Days)  Reactor 2 N Used (mg/L)  Reactor 2 P Used (mg/L)  N/P Ratio  Reactor 4 N Used (mg/L)  Reactor 4 P Used (mg/L)  N/P Ratio  2  0  2.7  0  19.2  4.42  4.35  3  15.7  10.4  1.51  12.6  5.35  2.35  4  10.7  12.5  0.86  12.33  0  NA  4  24.3  10.8  2.24  10.6  3.71  2.86  3  20.2  8.9  2.27  13.12  4.88  2.69  3  18.2  11.9  1.53  6.63  0  NA  4  4.73  0  NA  3.59  1.83  1.96  3  7.8  0  NA  5.77  5.89  0.98  4  4.62  0  NA  0  0  NA  3  3.48  0  NA  5.69  2.6  2.23  6  8.82  5.6  1.58  27.59  9.8  2.81  Total  118.5  62.8  1.89  117.1  38.2  3.07  T a b l e 4.4.13: N u t r i e n t s u s e d by t h e r u n n i n g r e a c t o r s and n i t r o g e n / p h o s p h o r u s r a t i o s e x h i b i t e d d u r i n g run 11.  Overall,  t h i s r u n was  advantages  not s u c c e s s f u l at demonstrating  of the t r u e batch system.  the p o t e n t i a l  I t d i d , however,  problems w i t h the o p e r a t i o n : a h i g h  d i s s o l v e d metal  c o n c e n t r a t i o n and 181  l o w e r pH  the  the demonstrate  initial  i n the system.  The  operating  conditions can possibly  m o n i t o r i n g and  Run  improve t h e degradation  remediation process.  experienced batch of  treating  metal is  system  process  kinetics  appears  problem  was n o t a d d r e s s e d  p o s s i b l e that pretreatment rate  of the sludge larger  than  those  r u n . Thus, t h e t r u e  t o be a more e f f i c i e n t  the Chatterton Petrochemical  same d e g r a d a t i o n  c o u l d be u s e d t o  The r a t e s were t h r e e t i m e s  i n t h e most s u c c e s s f u l b a t c h  toxicity  proper  control.  10 s h o w e d t h a t t h e t r u e b a t c h  greatly  be overcome w i t h  and e f f e c t i v e  sludge.  means  However, t h e  i n r u n 10. T h e r e f o r e , i t  may b e r e q u i r e d t o a c h i e v e d t h e  kinetics.  182  5. 5.1  Range  Table  Of  Summary  Treatment  Of  Results:  Parameters  5.1.1 i s a summary o f t h e r a n g e o f t h e i n i t i a l  and f i n a l  c h a r a c t e r i s t i c s and t h e k i n e t i c d e g r a d a t i o n c o n s t a n t s  observed  during treatment  Sludge.  runs o f t h e C h a t t e r t o n P e t r o c h e m i c a l Modified  Parameters:  o f Runs  Range o f I n i t i a l T o t a l COD (mg/L)  Runs:  15 - 81  32 - 41  4 058 - 113 850 1 950 - 22 928  Range o f % T o t a l COD Degradation  32.3 - 81.1  5  Range Of F i n a l T o t a l BOD (mg/L) Range Of % T o t a l Degradation  BOD  201.7 - 8322 66.6 - 623  5  5  Runs:  2/5  Range o f F i n a l COD (mg/L)  Range Of I n i t i a l T o t a l BOD (mg/L)  True Batch  9/27  Number o f R u n s / R e a c t o r s Range Of L e n g t h (Days)  Batch  13 788 - 40 356 5 443 - 17 762 56.0 - 70.7 4 584 - 12 256 83.7 - 2 085  66.4 - 99.1  83.0 - 98.2  Range Of I n i t i a l D i p h e n y l (mg/L)  7 - 1 157  289.2 - 2 334  Range Of F i n a l D i p h e n y l (mg/L)  0 - 11.2  0 - 37.3  Range Of % D i p h e n y l Degradation  90.6 - 100  Range Of I n i t i a l D i p h e n y l E t h e r (mg/L)  77.7 - 5 690  548 - 11 016  Range Of F i n a l D i p h e n y l E t h e r (mg/L)  0 - 78.3  0 - 863.4  Range Of % D i p h e n y l Ether Degradation  48.4 - 99.3  92.2 - 100  96.1  - 100  T a b l e 5.1.1: Summary o f t h e r a n g e o f t h e i n i t i a l a n d f i n a l parameters f o r a l l t h e treatment runs attempted.  183  5.2  The  Profile  of  the  Most  Successful  Runs  most s u c c e s s f u l m o d i f i e d b a t c h and t r u e b a t c h runs t h a t were  e x p e r i e n c e d d u r i n g t h e s t u d y a r e shown i n T a b l e 5.2.1.  7  Setup  Modified Batch  Length  42  COD  Initial  Total  COD  Final  Total  COD  31 13  788  60.5  8 322  4 584  (mg/L)  74  83.7  Reduction  99.1  98.2  5 290  3 494  0  0  100  100  Reaction Rate Constant k ( D a y s -1)  0.121  0.334  Reaction Rate Constant k ( D a y s -1)  0.54  0.565  R e a c t i o n Rate Constant k ( D a y s -1)  0.332  0.31  Reduction  T o t a l BOD  5  Final  T o t a l BOD  5  %  Diphenyl  Ether  Initial  Diphenyl  Ether  Final  Diphenyl  Ether  Ether  Batch  81.1  %  Initial  Diphenyl  True  30 169  %  (mg/L)  (mg/L)  (mg/L) (mg/L)  Reduction  3  10  5 443  5  Diphenyl  (mg/L)  Reactor  5 710  T o t a l BOD  5  2  Run  Total  BOD  Reactor  Parameter:  Compound:  T a b l e 5.2.1 Summary o f t h e most s u c c e s s f u l s l u d g e t r e a t m e n t r u n s i n t e r m s o f T o t a l BOD and COD r e m o v a l and R e a c t i o n R a t e Constants. 5  5.3 C o m p a r i s o n O f Theoretical Model  For comparison, c a n be e q u a t e d Phenol  The  Of  Reaction With  a  t h e r a t e s o f r e a c t i o n o b t a i n e d d u r i n g t h e runs t o t h e range o b t a i n e d f o r t h e d e g r a d a t i o n o f  as a s i n g l e carbon  shown i n T a b l e  Rates  source, under l a b o r a t o r y c o n d i t i o n s ,  5.3.1 ( L e w e n d o w s k i 1 9 9 0 ) . 184  I t s h o u l d be n o t e d  that  the  degradation  Phenol  was  bacteria  i n that study  t h e o n l y compound  occurred under ideal c o n d i t i o n s ; present,  no m e t a l s  were a c c l i m a t i z e d t o t h e m i x t u r e .  a c o n c e n t r a t i o n g e n e r a l l y u n d e r 1 0 0 ppm concentration  o f u n d e r 250  were p r e s e n t ,  Phenol  was  present  and a t a T o t a l  the in  COD  mg/L.  Parameter:  Value:  Range Of k i n e t i c c o n s t a n t k d u r i n g l a b o r a t o r y d e g r a d a t i o n ( D a y s -1)  3.12  -  24  T a b l e 5.3.1 Range o f t h e r e a c t i o n r a t e c o n s t a n t k f o r P h e n o l d e g r a d a t i o n as s i n g l e carbon s o u r c e under l a b o r a t o r y c o n d i t i o n s (Lewendowsk i 1990). 5.4. Predicted Effluent Treatment Conditions Under  ideal  shown  that the effluent  loaded  Characteristics  operating c o n d i t i o n s , experiments  w i t h 30 0 0 0 mg/L  approximately  from  a modified batch  T o t a l COD  T o t a l COD  Final  T o t a l B0D  Total Final  reactor,  i n Table  5.4.1.  have  initially  have  40 -  (Days)  (mg/L)  Copper Cone.  75 -  (mg/L)  D i s s o l v e d Copper Cone.  45  5 000 - 6  (mg/L) 5  study  Final Product property  Process  Final  i n this  should  Parameter: Of  Ideal  of sludge  t h e p r o p e r t i e s shown  Length  Under  (mg/L)  Cone. Of: X y l e n e ; D i p h e n y l ; D i p h e n y l Ether; Diphenyl Methane; Benzene,1,1'Methylene b i s (4-Methyl); 1,2-Dimethyl-4 Benzyl Benzene  60 -  100 80  2 - 5  Final  I n d i c a t i o n s F r o m GC T r a c e t h a t a n y o t h e r compounds a r e p r e s e n t i n t h e f i n a l product T a b l e 5.4.1 P r o b a b l e e f f l u e n t undergone t h e i d e a l treatment experimental runs.  0  NO  q u a l i t y o f s l u d g e which has p r o c e s s a s p r o p o s e d by t h e  185  000  It  should  be n o t e d  t h a t , due t o t h e v a r i a b i l i t y  components i n t h e lagoon,  Indications that  from t h e l i m i t e d  t h e same h i g h  period  of time,  increased  the  5.5  Process  r e a c t o r work a r e  c a n be o b t a i n e d  using this  process.  However, t h e q u e s t i o n o f t h e  level  i n such  a s y s t e m was n o t  i n a shorter  fully  Thus, i t i s p o s s i b l e t h a t t h e h i g h d i s s o l v e d copper  might  Summary  True Batch  slightly.  effluent  could potentially  process  may v a r y  quality  copper  investigated. level  the results  of the organic  short c i r c u i t  require the sludge  of  any treatment  attempt  and  t o be p r e t r e a t e d .  the Nitrogen:Phosphorus  ratio N/P  Run  ratio  11  1.89:1 3.07:1  10  2.51:1  8  1.51:1  6  3.23:1 2.02:1  5  2.29:1  2.36:1 Average T a b l e 5.5.1 Summary o f t h e n i t r o g e n / p h o s p h o r u s r a t i o f o r experimental runs. The g e n e r a l l y a c c e p t e d growth the  i s 5:1 a n d t h u s ,  experimental  study  p h o s p h o r u s was u s e d precipitate  nitrogen/phosphorus t h e a v e r a g e N/P i s considered  ratio  ratio  f o r bacterial  demonstrated  l o w . I t must be n o t e d ,  during that  f o r the growth of the b a c t e r i a but a l s o t o  d i s s o l v e d copper and t h e r e f o r e t h e experimental  186  ratio  presented  i smisleading.  copper p r e c i p i t a t i o n . determines  f o rt h e phosphorus  T a b l e 5.5.2 a s s u m e s a N/P r a t i o  t h e COD:N:P r a t i o  based  on t h i s  used f o r o f 5:1 a n d  value.  Run  A c t u a l C0D:N:P Ratio  C o r r e c t e d COD:N:P Ratio  11  361:1.89:1 591:3.07:1  136:5:1 362:5:1  10  118:2.51:1  59:5:1  8  50.7:1.51:1 35.8:1.51:1  15:5:1 10:5:1  6  161:3.23:1 157:2.02:1  104:5:1 63:5:1  5  186:2.29:1  85:5:1  Average  195:2.25:1  104:5:1  As c a n be s e e n copper  To c o r r e c t  i n T a b l e 5.5.2, when t h e p h o s p h o r u s  precipitation  C0D:N:P r a t i o  i svery  i seliminated close  from t h e r a t i o ,  to the literature  100:5:1.  187  used f o r t h e average  predicted  ratio of  6. 1)  The  Chatterton  readily  and  1.1)  The  kept  i n excess  order has  Petrochemical  biodegradable  monitoring  under  of  the  to precipitate  N u t r i e n t and  start the  of  the  ultimately  slows  modifications  during  1.3)  the  the  pH  at  initial  control  degrade the  below  5  hinders  and  stalls  the  beginning  has can  treatment  culture in  sludge  the the  The  culture  when t h e d i s s o l v e d  be  growth of  the  degradation of  made p r i o r  to  the  the C0  run 2  culture  process.  should  which w i l l  and  pH  take be  into produced  process.  minimized  In a  a l l exhaust  the  must  operating conditions during  shown t h a t t h e be  of  system  mg/L.  Modifying  run  T o t a l COD.  capture  be  loading,  d i s s o l v e d copper present.  large concentration of  volatilization, terms of  proper  modifications should  the degradation  The  been shown t o  n u t r i e n t requirements  experiment.  experimental  account  has  phosphorus c o n c e n t r a t i o n i n the  been shown t o a c t i v e l y  1.2)  the  sludge  operating conditions.  c o p p e r c o n c e n t r a t i o n was  to  Conclusions:  full  to  organics less  than  scale process,  g a s e s and  scrub  fiIter.  188  loss 5%  due of  i t may  them t h r o u g h  to  treatment, be a  in  necessary carbon  1.4)  The  most e f f e c t i v e  technique to monitor  treatment  i s to observe  reduction  i n the c o n c e n t r a t i o n of Diphenyl  Diphenyl  Ether  shown t o be  2)  The  is  a Total  should  i s removed  optimum  initial  COD  system  the  runs,  the detection  limit  However,  the  loading  run,  from  ideal  treatment  has  been  for a modified batch 000  removal of  the  mg/L.  copper  treatment,  the  final  a l l organic constituents.  system This  that  the  product  t h e GC  was  shown t o be  still  of copper.  be  possible  below  in  41  considered a special  I f phosphorus  levels  concentration of dissolved  has  In  o f a l l o r g a n i c compounds t o  s l u d g e may  to the presence the  the  handle.  sludge undergoes  successful  during  sludge  can  free  due  the  E t h e r . When a l l t h e  i n a c o n c e n t r a t i o n o f o r g a n i c s and  b e e n shown t o be  days.  solution,  combined w i t h  c o n c e n t r a t i o n o f a p p r o x i m a t e l y 30  result  I f the  from  i n t h e pH,  of  complete.  biolological  3)  the decrease  the progress  waste  are kept  copper  will  high  be  low.  4)  The  True  Modified Batch  Batch  Process  concentration  (TBP).  i s required  However,  the  required  f o r treatment  during  this  Process  true  The  (MBP)  easily  same e l e v a t e d  t o a v o i d copper  b a t c h p r o c e s s has by  can  at  least  study.  189  be  converted to  phosphorus  toxicity  problems.  been shown t o r e d u c e ten days,  a  in limited  the  time  testing  5)  The True B a t c h  to  speed  constant to  k was t h r e e t i m e s  indicates  larger run,  i nthis  The r e a c t i o n  system,  i n terms o f T o t a l  that t h e organisms  which  about  of in-situ  thepotential  treatment  system.  t h e copper  rates  acclimatization.  of  accumulation  o f copper  190  5  rate  compared reduction.  having  i n the true  of the sludge  t o achieve  removal.  BOD  However, q u e s t i o n s  Thus, p r e t r e a t m e n t  may b e n e c e s s a r y  when  way  had been a c c l i m a t i s e d t o  sludge, were a b l e t o degrade t h e waste w i t h o u t  period  of  h a s been shown t o be a n e f f e c t i v e  t h e degradation o f t h e waste sludge.  the best modified batch  This the  Process  a  remain batch  t o remove  the high Total  BOD  part 5  7. In order  to  successfully  sludge  the  1)  initial  The  reactor  2)  To  following  a  i n the  f o r every  nitrogen  and  3)  The  pH  to  the  start  during and  of  run  ultimately noted  thus,  The  GC  mg/L  of  be  i n excess  used  of  or  Total  true  batch  COD.  phosphorus  kept  i n excess  of  the  In experimental  runs,  the  amount r e q u i r e d f o r  to maintain  the  d i s s o l v e d copper  i t i s possible that The  experimental  T o t a l COD  nutrients should  lower runs  b r o k e n down,  be  Modifying  the  stalling  that, during  the  run,  a  of  added the  to the  indicated  3 mg/L  of  the  system  reactor  prior  operating conditions the  remediation.  r e d u c t i o n i n pH  added t o the  levels  required.  been shown t o n e g a t i v e l y a f f e c t  m u s t be  to:  of  phosphorus were  process.  the  adhered  batch  bacteria.  led to  soda ash  buffering  growth of  mg/L  the has  problems,  the  Petrochemical  be  a modified  b a s e d on  same r e s u l t s .  120  the  mg/L  however,  1 mg/L  and  the  100  5 mg/L; the  Chatterton  reactor should  successfully  would produce that,  000  required f o r the  below  the  l o a d i n g of  toxicity  c o n c e n t r a t i o n of  levels  4)  30  avoid copper  g r o w t h was  be  be  treat  Recommendations s h o u l d  sludge  should  concentration amount  Recommendations:  to  will  process It  should  occur;  improve i t ' s  ability.  and  the  pH  should  be  used  to monitor  the  progress  of  the  run.  Diphenyl  concentrated It  has  and  Ether  resistant  been observed  remediation process  5)  The  time  b e t w e e n 40  and  up  45  days. the  system  The  batch use  time  of  a true batch  r e q u i r e d , but  remains unanswered.  optimizing  the  The  prevent runs  a e r a t i o n of the  of  t h e w a s t e must be  needless  the  the  T o t a l COD  most  mixture.  the  sludge,  the  sludge  the  the  of  system  this  will  question of  Thus,  the  is  copper  sludge  p o i n t , as  may  well  as  i s required.  h a v e shown t h a t ,  conditions,  sludge  from  degradation  p r e t r e a t e d . F u r t h e r r e s e a r c h on  6)  i s the  complete.  h a v e t o be  TBP,  i n the  t h a t when i t d i s a p p e a r s is essentially  reduce  in this  o r g a n i c compound w h i c h  to degradation  required f o r the  considerably build  i s the  volatilization under the  volatilization  carefully of  proper can  degradation.  192  be  the  monitored  sludge.  Experimental  o p e r a t i o n and minimized  to  to  monitoring  less  than  5%  8.  References:  1. A u t r y , A n d r e w R. a n d E l l i s , G a r y M. ( 1 9 9 2 ) " B i o r e m e d i a t i o n : A n E f f e c t i v e Remedial A l t e r n a t i v e For Petroleum Hydrocarbon C o n t a m i n a t e d S o i l . " E n v i r o n m e n t a l P r o g r e s s , V o l . 1 1 , 4, p p 318323. 2. B e l l , J o h n P. a n d T s e z o s , M a r i o s ( 1 9 8 7 ) " R e m o v a l O f H a z a r d o u s O r g a n i c P o l l u t a n t s By B i o m a s s A b s o r b t i o n . " J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 5 9 , 4, p p 1 9 1 - 1 9 7 . 3. B e l t r a m e , P., B e l t r a m e , P . L . , C a r n i t i , P. a n d P i t e a D. (1979) " K i n e t i c s Of P h e n o l D e g r a d a t i o n B y A c t i v a t e d S l u d g e : V a l u e Of M e a s u r e m e n t s I n B a t c h R e a c t o r . " W a t e r R e s e a r c h , V o l . 13, pp 13051309. 4. B e l t r a m e , P., B e l t r a m e , P . L . , C a r n i t i , P. a n d P i t e a D. (1980) " K i n e t i c s Of P h e n o l D e g r a d a t i o n By A c t i v a t e d S l u d g e I n C o n t i n u o u s l y S t i r r e d Reactor." J o u r n a l Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 5 2 , 1, p p 1 2 6 - 1 3 3 . 5. B r a d f o r d , M.L. a n d K r i s h n a m o o r t h y R. ( 1 9 9 1 ) " C o n s i d e r B i o r e m e d i a t i o n F o r S i t e C l e a n Up." C h e m i c a l E n g i n e e r i n g P r o g r e s s , pp 8 0 - 8 5 . 6. B r e n n e r A., C h o z i c k R. a n d I r v i n e R. ( 1 9 9 2 ) " T r e a t m e n t O f A H i g h - S t r e n g t h , M i x e d P h e n o l i c W a s t e I n A n SBR." Water Environment R e s e a r c h , V o l . 6 4 , 2, p p 1 2 8 - 1 3 3 . 7. C a p p s R., M a n t e l l i G. a n d B r a d f o r d M.L. (1995) " D e s i g n C o n c e p t s F o r B i o l o g i c a l T r e a t m e n t Of I n d u s t r i a l W a s t e w a t e r . " E n v i r o n m e n t a l P r o g r e s s , V o l . 14, 1, p p 1-8. 8. C h u b o d a , J . ( 1 9 9 0 ) , "Comment On T h e PH V a r i a t i o n D u r i n g B i o d e g r a d a t i o n I n M i x e d C u l t u r e s Of M i c r o o r g a n i s m s . " W a t e r R e s e a r c h , V o l . 24, 12, pp 1 5 5 5 - 1 5 5 6 .  Phenol  9. D e e p a k D., G u p t a R . J . a n d B h a t t a c h a r y a S.D. (1994) "COD R e d u c t i o n K i n e t i c s I n A B i o l o g i c a l B a t c h R e a c t o r : E f f e c t Of I m p e l l e r S u b m e r g e n c e and S p e e d . " The C h e m i c a l E n g i n e e r i n g J o u r n a l , V o l . 56, pp B43-B48. 10. G r a d y C . P . L . J r . ( 1 9 8 9 ) " B i o d e g r a d a t i o n Of T o x i c O r g a n i c s : S t a t u s And P o t e n t i a l . " J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l 1 1 6 , 5, p p 8 0 5 - 8 2 5 . 11. G o l d e r R e p o r t on t h e P r e l i m i n a r y S i t e I n v e s t i g a t i o n o f t h e C h a t t e r t o n P e t r o c h e m i c a l S i t e ( 1 9 9 4 ) , pp 4 9 - 5 2 , G o l d e r A s s o c i a t e s Inc., B u r n a b y , BC. 12.  Haller  H.D.  "Degradation  Of  Mono-Substituted 193  Benzoates  And  Phenol By Wastewater." (1978) J o u r n a l F e d e r a t i o n , pp 2771-2777  Water P o l l u t i o n  Control  1 3 . H a r t m a n , R.B., S m i t h , D.G. a n d L i n s t e d t , K.D. ( 1 9 7 9 ) " S l u d g e S t a b i l i z a t i o n Through Aerobic Degradation" J o u r n a l Water P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 51, 10, pp 2353-2365 1 4 . H s u , E.H. ( 1 9 8 6 ) " T r e a t m e n t O f A P e t r o c h e m i c a l W a s t e w a t e r I n A Sequencing Batch Reactors." Environmental P r o g r e s s , V o l . 5, 2, pp 7 1 - 8 0 1 5 . J a s p e r s e n , C , J e r g e r , D. a n d E x n e r , J . ( 1 9 9 3 ) " B i o r e m e d i a t i o n T a c k l e s Hazardous Waste." Chemical pp 1 1 6 - 1 2 2 .  Engineering,  1 6 . K i m , B . J . , G e e C . S . , B a n d y , J . T . , H u a n g , C. a n d G u z e w i c h D.C. (1990) " H a z a r d o u s W a s t e s T r e a t m e n t T e c h n o l o g i e s . " J o u r n a l Of Environmental E n g i n e e r i n g , V o l . 6 2 , 4, p p 5 1 1 - 5 1 5 . 1 7 . K i m , W.J., H u m e n i c k M . J . a n d A r m s t r o n g N. E . ( 1 9 8 1 ) "A C o m p r e s s i v e S t u d y On T h e B i o l o g i c a l T r e a t a b i l i t i e s O f P h e n o l A n d M e t h a n o l - I A n a l y s i s Of B a c t e r i a l G r o w t h And S u b s t r a t e Removal K i n e t i c s By A S t a t i s t i c a l Method." Water R e s e a r c h , V o l . 15, pp 1221-1231. 1 8 . K i n n a n o n , D.F., S t o v e r , E . L . , N i c h o l s V. a n d M e d l e y D. ( 1 9 8 3 ) "Removal Mechanisms F o r T o x i c P r i o r i t y P o l l u t a n t s . " J o u r n a l Of Environmental E n g i n e e r i n g , V o l . 5 5 , 2, p p 1 5 7 - 1 6 3 . 1 9 . L e w n a d o w s k i , G.A. ( 1 9 9 0 ) " B a t c h B i o d e g r a t i o n O f I n d u s t r i a l O r g a n i c C o m p o u n d s U s i n g M i x e d L i q u o r F r o m D i f f e r e n t POTW's." J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 6 2 , 6, p p 8 0 3 - 8 0 9 . 20. M e t c a l f & Eddy, I n c . , W a s t e w a t e r E n g i n e e r i n g : T r e a t m e n t , D i s p o s a l , R e u s e , 3 r d E d i t i o n , New Y o r k , M c G r a w H i l l , 1 9 9 1 2 1 . M o w a t , A. ( 1 9 7 6 ) " M e a s u r e m e n t O f M e t a l T o x i c i t y B y B i o l o g i c a l O x y g e n Demand." J o u r n a l W a t e r P o l l u t i o n C o n t r o l F e d e r a t i o n , V o l . 4 8 , 5, p p 8 5 3 - 8 6 5 . 2 2 . N e u f e l d , R.D. a n d V a l i n a c , T. ( 1 9 7 9 ) " I n h i b i t i o n O f P h e n o l B i o d e g r a d a t i o n By T h i o c y a n a t e " J o u r n a l Of Environmental E n g i n e e r i n g , V o l . 5 1 , 9, p p 2 2 8 3 - 2 2 9 1 . 2 3 . P a r k e r W.J., B e l l J . P . a n d M e l c e r H. ( 1 9 9 4 ) " M o d e l l i n g T h e F a t e Of C h l o r i n a t e d P h e n o l s I n W a s t e w a t e r T r e a t m e n t P l a n t s . " Environmental P r o g r e s s , V o l . 1 3 , 2, p p 9 8 - 1 0 4 . 2 4 . P a t t e r s o n , J.W. a n d K o d u k a l a P . S . ( 1 9 8 1 ) " B i o d e g r a d a t i o n O f Hazardous Organic P o l l u t a n t s . " Chemical Engineering Progress, A p r i l 1981, pp 48-55. 194  2 5 . P i t t e r , P., ( 1 9 7 5 ) " D e t e r m i n a t i o n O f B i o l o g i c a l Of O r g a n i c S u b s t a n c e s . " W a t e r R e s e a r c h , V o l . 10, pp  Degradabi1ity 231-235.  2 6 . P r i n c e , M. a n d S a m b a s i v a m ( 1 9 9 3 ) , Y. " B i o r e m e d i a t i o n P e t r o l e u m W a s t e s From The R e f i n i n g Of L u b r i c a n t O i l s . " E n v i r o n m e n t a l P r o g r e s s , V o l . 1 2 , 1, p p 5 - 1 1 .  Of  2 7 . R e b h u n , M. a n d G a l i l N. ( 1 9 8 8 ) " I n h i b i t i o n B y H a z a r d o u s Compounds I n An I n t e g r a t e d O i l R e f i n e r y . " J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 60, 11, pp 1953-1959. 2 8 . R o z i c h , A . F . , G a u d y A . F . a n d D'Amamo P.C. ( 1 9 8 5 ) " S e l e c t i o n Of G r o w t h R a t e M o d e l F o r A c t i v a t e d S l u d g e s T r e a t i n g P h e n o l . " W a t e r R e s e a r c h , V o l . 1 9 , 4, p p 4 8 1 - 4 9 0 . 2 9 . S k e e n , R.S., T r u e x M . J . , P e r t e r s e n , J . N . a n d H i l l J . S . ( 1 9 9 4 ) " A B a t c h Reactor For M o n i t o r i n g Process Dynamics D u r i n g B i o d e g r a d a t i o n Of V o l a t i l e O r g a n i c s . " E n v i r o n m e n t a l P r o g r e s s , V o l . 1 3 , 3, p p 1 7 4 - 1 7 7 . 3 0 . S l o a n S. ( 1 9 8 7 ) " R e m e d i a t i o n O f J o u r n a l Of O i l and Gas, S e p t . 1987,  An O i l C o n t a m i n a t e d pp 61-67.  31. S t a n d a r d Methods f o r t h e E x a m i n a t i o n o f Water and (1993). 17th ed., American P u b l i c H e a l t h A s s o c i a t i o n , D.C.  Site."  Wastewater Washington,  3 2 . S t e n s t r o m , M.K., C a r d i n a l L. a n d L i b r a J . ( 1 9 8 9 ) " T r e a t m e n t Of H a z a r d o u s S u b s t a n c e s I n W a s t e w a t e r T r e a t m e n t P l a n t s . " E n v i r o n m e n t a l P r o g r e s s , V o l . 8, 2, p p 1 0 7 - 1 1 . 3 3 . T a b a k , H.H., Q u a v e , S.A., M a s h n i , C . I . a n d B a r t h E . F . ( 1 9 8 1 ) "Biodegradabi1ity Studies With Organic P r i o r i t y Pollutants Compounds." J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 53, 10, pp 1503-1517. 3 4 . T h o m a s J . A . , G a n a p a t h i , G. a n d S t o v e r E . L . ( 1 9 9 1 ) " P e t r o l e u m P r o c e s s i n g And S y n t h e t i c F u e l s . " J o u r n a l Of E n v i r o n m e n t a l E n g i n e e r i n g , V o l . 6 3 , 4, p p 4 7 5 - 4 7 9 . 3 5 . T o k u z , Y.R. ( 1 9 9 1 ) " The R e s p o n s e Of A c t i v a t e d To H a z a r d o u s O r g a n i c W a s t e s . " H a z a r d o u s W a s t e s A n d M a t e r i a l s , V o l . 8, 3, 2 4 5 - 2 5 6 .  Sludge Process Hazardous  3 6 . V i p u l a n a n d a n C. a n d K r i s h n a n S. ( 1 9 9 3 ) " L e a c h a b i l i t y A n d B i o d e g r a d a t i o n O f H i g h C o n c e n t r a t i o n s O f P h e n o l AND oC h l o r o p h e n o l . " H a z a r d o u s W a s t e s And H a z a r d o u s M a t e r i a l s , V o l . 10, 1, p p 2 7 - 4 7 .  195  9. Analytical  Performed  in  COD  1 to  11  BOD  7 to  11  Solids  4 to  11  5 to  11  4 to  11  4 to  11  4 to  11  Nutrient Metals GC PH  Data  Test:  Appendix  Analysis  Concentration  196  A Runs  Run 1 COD Reactor2 (TOTAL) Test samples Sample num abs. IIT1 61 25 IIT2 20 IIT3 IIT4 18 25 IIT5 NTS 17 IIT11 27 20 IIT15 IIT19 16 IIT24 23 44 IIT30  Cone. Act. Cone. 755.1364 75513.64 310.692 31069.2 248.9636 24896.36 224.2722 22427.22 31069.2 310.692 211.9265 21192.65 442.2146 17688.58 277.7778 6944.444 222.2222 5555.556 319.4444 7986.111 611.1111 15277.78  TIME 1 2 3 4 5 8 11 15 19 24 30  Reactor2 Supernatant Sample num abs. 18 IIS1 3 IIS2 3 IIS4 4 IIS5 IIS8 2 IIS11 4 10 IIS15 12 IIS19 IIS24 14 16 IIS30  Cone. Act. Cone. 39.08 3908 4352.06 43.5206 42.0672 4206.72 51.43272 5143.272 26.74136 2674.136 65.78864 3289.432 138.8889 1736.111 166.6667 2083.333 194.4444 2430.556 222.2222 2777.778  TIME 1 2 4 5 8 11 15 19 24 30  Reactor4 Total Sample num IVT1 IVT2 IVT3 IVT4 IVT5 IVT8 IVT11 IV15  abs. 65 65 72 60 55 30 39 25  Cone. Act. Cone. 804.5191 80451.91 804.5191 80451.91 890.9389 89093.89 742.7907 74279.07 681.0623 68106.23 372.4204 37242.04 638.6107 25544.43 347.2222 8680.556  TIME 1 2 3 4 5 8 11 15  Reactor4 Supernatent Sample num abs. IVS2 7 IVS4 4 IVS5 3 IVS8 3 IVS11 5 12 IVS15  Cone. Act. Cone. 63.5235 6352.35 51.43272 5143.272 39.08704 3908.704 39.08704 3908.704 82.15499 4107.749 166.6667 2083.333  TIME 2 4 5 8 11 15  197  Run 2 COD Reactor 1 Total (control) Sample: Abs.  Cone. Actual Cone. mg/L mg/L 6 102.5449 2563.623 5 85.58744 2139.686 11 187.3324 2341.655  Time Days 1 3 5  Reactor 1 Supernatant (control) Sample. Abs. Cone. Actual Cone. mg/L mg/L IS1 12 204.2899 408.5797 IS3 26 441.6947 441.69 IS5  Time Days 1 3 5  IT1 IT3 IT5  Reactor 2 Total Sample: IIT1 IIT3 IIT5  Abs.  Cone. Actual Cone. mg/L mg/L 14 238.2048 5955.121 13 221.2473 5531.183 25 424.7372 5309.215  Reactor 2 Supernatant Sample: Abs. IIS1 IIS3 IIS5 Reactor 3 Total Sample: IIIT1 IIIT3 IIIT5  Cone. Actual Cone. mg/L mg/L 1018.249 1018.2 1119.994 1120  Time Days 1 3  Cone. Actual Cone. mg/L mg/L 15 255.1623 6379.058 11 187.3324 4683.309 29 492.5671 6157.089  Time Days 1 3 5  60 66  Abs.  Reactor 3 Supernatant Sample: Abs. IIIS1 Reactor 4 Total Sample: IVT1 IVT3 IVT5  Cone. Actual Cone. mg/L mg/L 1221.739 1221.7  Time Days 1  Cone. Actual Cone. mg/L mg/L 85.58744 2139.686 85.58744 2139.686 153.4174 1917.717  Time Days 1 3 5  Cone. Actual Cone. mg/L mg/L 12 204.2899 2042.899 11 187.3324 1873.324 9 153.4174 1917.717  Time Days 1 3 5  72  Abs. 5 5 9  Reactor 4 Supernatant Sample: Abs. IVS1 IVS3 IVT5  Reactor 4 Supernatant Sample: Abs. IVS1 IVS3  Cone. Actual Cone. mg/L mg/L 12 204.2899 2042.899 11 187.3324 1873.324  Reactor 4 Supernatant Sample: Abs. IVS1 IVS3  Time Days 1 3 5  Cone. Actual Cone. mg/L mg/L 12 204.2899 2042.899 11 187.3324 1873.324  Time Days 1 3 Time Days 1 3  198  C O D Data V s Time For Run 4 Reactor 1 Total (control) Sample: Abs.  % IT1 IT3 IT6 IT9 IT13 IT15 IT19 IT22 IT25 IT29 IT33 IT37 IT41 IT44 IT47 IT50 IT54 IT57 IT61 IT64 IT67 IT74 IT78 IT82 IT85 Reactor 2 Total Sample:  55 31 57 31 20 26 33 43 20 34 31 34 30 26 19 14 14 14 27 32 35 30 26 28 27  Abs.  % IIT1 IIT3 IIT6 IIT9 IIT13 IIT15 IIT19 IIT22 IIT25 IIT29 IIT33 IIT37 IIT41 IIT44 IIT47 IIT50 IIT54 IIT57 IIT61 IIT64 IIT67 IIT74 IIT78  65 63 64 57 82 77 82 60 55 62 60 33 35 40 40 34 22 21 43 67 60 48 34  Diluted Cone. Act. Cone. mg/L mg/L 963.4976 96349.76 543.4986 54349.86 998.4975 99849.75 547.0814 54708.14 336.9623 33696.23 437.571 43757.1 554.9478 55494.78 692.8408 69284.08 50000 500 607.1429 60714.29 507.0082 50700.82 602.2282 60222.82 523.9534 52395.34 434.3582 43435.82 329.0611 32906.11 242.9376 24293.76 262.9147 26291.47 277.7509 27775.09 539.7851 26989.26 580.1101 23204.41 572.4286 22897.14 512.0922 20483.69 496.7235 19868.94 469.8546 18794.18 17621.89 440.5472  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 .74 78 82 85  Diluted Cone. Act. Cone. mg/L mg/L 113849.7 1138.497 1103.497 110349.7 1120.997 112099.7 1003.911 100391.1 1376.585 137658.5 1292.745 129274.5 1376.585 137658.5 966.2802 96628.02 1375 137500 1107.143 110714.3 981.3061 98130.61 584.5156 58451.56 611.279 61127.9 668.1357 66813.57 693.6444 69364.44 590.8484 59084.84 412.8089 41280.89 416.3263 41632.63 859.4207 42971.04 1214.168 48566.72 981.3061 39252.24 819.1075 32764.3 649.5615 25982.46  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78  199  COD Data Vs Time For Run 4 (Continued) Reactor 3 Total Sample: IIIT1 IIIT3 IIIT6 IIIT9 IIIT13 IIIT15 IIIT19 IIIT23 IIIT25 IIIT29 IIIT33 IIIT37 IIIT41 IIIT44 HIT47 IIIT50 IIIT54 IIIT57 IIIT61 IIIT64 IIIT67 IIIT74 IIIT78 IIIT82 IIIT85 Reactor 4 Total Sample: IVT1 IVT3 IVT6 IVT9 IVT13 IVT15 IVT19 IVT22 IVT25 IVT29 IVT33 IVT37 IVT41 IVT44 IVT47 IVT50 IVT54 IVT57 IVT61 IVT64 IVT67 IVT74 IVT78 IVT82 IVT85  Abs. % 65 64 61 28 48 49 52 48 26 50 52 39 39 45 45 45 36 27 52 68 51 32 30 30 32  Diluted Cone. mg/L 1138.497 1120.997 1068.497 494.3703 806.4695 823.2376 873.5419 773.2641 650 892.8571 850.4653 690.7912 681.1394 751.6277 780.45 782.1993 675.1236 535.1053 1039.216 1232.284 834.1102 546.205 573.1425 503.3156 522.0189  Act. Cone. mg/L 113849.7 112099.7 106849.7 49437.03 80646.95 82323.76 87354.19 77326.41 65000 89285.71 85046.53 69079.12 68113.94 75162.77 78045 78219.93 67512.36 53510.53 51960.79 49291.36 33364.41 21848.2 22925.7 20132.63 20880.76  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78 82 85  Abs. % 37 36 36 34 32 32 30 18 17 26 31 27 30 22 20 14 12 11 21 22 21 17 16 16 18  Diluted Cone. mg/L 648.4984 630.9984 630.9984 599.7926 538.1796 538.1796 504.6434 290.7241 425 464.2857 507.0082 478.2401 523.9534 367.5647 346.4222 242.9376 225.4412 218.3614 419.9217 398.9507 343.4571 290.3589 305.676 269.0883 293.8981  Act. Cone. mg/L 64849.84 63099.84 63099.84 59979.26 53817.96 53817.96 50464.34 29072.41 42500 46428.57 50700.82 47824.01 52395.34 36756.47 34642.22 24293.76 22544.12 21836.14 20996.09 15958.03 13738.29 11614.36 12227.04 10763.53 11755.93  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78 82 85  200  C O D Data Vs Time For Run 4 (Continued) Reactor 1 Supernatant Sample: Abs.  % IS1 IS3 IS6 IS9 IS13 IS15 IS19 IS22 IS25 IS29 IS33 IS37 IS41 IS44 IS47 IS50 IS54 IS57 IS61 IS64 IS67 IS74 IS78 IS82 IS85  39 37 45 20 9 11 9 13 21 11 31 16 19 9 11 17 22 39 27 39 42 44 54 49 65  Reactor 2 Supernatant Sample: Abs.  % IIS1 IIS3 IIS6 IIS9 IIS13 IIS15 IIS19 IIS22 IIS25 IIS29 IIS33 IIS37 IIS41 IIS44 IIS47 IIS50 IIS54 IIS57 IIS61 IIS64 IIS67 IIS74 IIS78  45 44 42 42 20 20 32 24 40 41 59 35 50 23 24 14 14 33 30 38 44 44 45  Diluted Cone. mg/L 683.4983 648.4984 788.498 353.8074 152.513 186.0493 152.513 210.3007 525 196.4286 507.0082 283.4015 331.8372 150.4855 190.1722 295.1242 412.8089 772.6632 539.7851 706.9217 686.9143 750.8818 1031.657 821.1956 1059.732  Act. Cone. mg/L 8543.729 8106.23 9856.225 4422.592 3812.826 4651.231 3812.826 5257.518 6562.5 4910.714 6337.602 3542.519 4147.964 3762.139 4754.306 7378.104 10320.22 9658.29 6747.314 8836.522 8586.429 9386.023 12895.71 10264.94 10597.32  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78 82 85  Diluted Cone. mg/L 788.498 770.9981 735.9982 740.3555 336.9623 336.9623 538.1796 387.2321 1000 732.1429 964.951 619.9408 873.2557 384.2631 415.8667 242.9376 262.9147 653.8842 599.7168 688.8058 719.6245 750.8818 859.7138  Act. Cone. mg/L 9856.225 9637.476 9199.977 9254.444 8424.057 8424.057 13454.49 9680.802 12500 18303.57 12061.89 7749.26 10915.7 9606.576 10396.67 6073.439 6572.869 8173.553 7496.46 8610.072 8995.306 9386.023 10746.42  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78  201  COD Data Vs Time For run 4 (Continued) Reactor 3 Supernatant Sample: Abs. % IIIS1 28 IIIS3 28 29 IIIS6 IIIS9 27 IIIS13 15 16 IIIS15 IIIS19 23 18 IIIS22 IIIS25 40 IIIS29 24 IIIS33 60 IIIS37 40 52 IIIS41 IIIS44 25 30 IIIS47 IIIS50 18 IIIS54 20 IIIS57 35 IIIS61 34 IIIS64 35 IIIS67 48 IIIS74 48 IIIS78 48 24 IIIS82 70 IIIS85  Diluted Cone. mg/L 490.9988 490.9988 508.4987 476.8 253.1217 269.8898 387.2666 290.7241 1000 428.5714 981.3061 708.5038 908.1859 417.6598 520.0333 312.5197 375.3353 693.4772 679.6257 634.458 785.0449 819.1075 917.0281 402.9325 1141.204  Reactor 4 Supernatant Sample: Abs. % IVS1 16 IVS3 15 19 IVS6 IVS9 11 IVS13 IVS15 10 IVS19 11 10 IVS22 IVS25 20 IVS29 19 IVS33 30 IVS37 25 IVS41 29 IVS44 12 IVS47 11 IVS50 9 11 IVS54 IVS57 22 IVS61 24 IVS64 22 IVS67 23 IVS74 23 IVS78 26 IVS82 18 IVS85 23  Diluted Cone. Act. Cone. mg/L mg/L 3512.491 280.9993 3293.742 263.4993 4168.74 333.4992 186.0493 169.2811 186.0493 162.0467 500 339.2857 490.6531 442.8149 506.4883 200.5807 190.1722 155.9599 206.7044 436.1228 479.8534 398.9507 376.1673 392.6973 496.7235 302.5494 375.3698  Act. Cone. mg/L 6137.485 6137.485 6356.234 5960 6328.043 6747.246 9681.665 7268.101 12500 10714.29 12266.33 8856.298 11352.32 10441.5 13000.83 7812.993 9383.384 8668.465 8495.321 7930.725 9813.061 10238.84 11462.85 5036.656 11412.04  4651.231 4232.028 4651.231 4051.167 6250 8482.143 6133.163 5535.186 6331.104 5014.518 4754.306 3898.996 5167.611 5451.535 5998.168 4986.884 4702.092 4908.717 6209.044 3781.867 3753.698  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78 82 85  Time Days 1 3 6 9 13 15 19 22 25 29 33 37 41 44 47 50 54 57 61 64 67 74 78 82 85  202  COD VS Time For Run 5 Reactor 2 Total SAMPLE ABS IIT1 IIT4 IIT7 IIT11 IIT14 IIT18 IIT21 IIT25 IIT27 IIT32 IIT35 IIT42  Reactor 5 Total SAMPLE VT1 VT4 VT7 VT11 VT14 VT18 VT21 VT25 VT27 VT32 VT35 VT42  26 15 S 11 11 12 11 12 15 14 14 11  ABS 25 26 24 28 26 25 26 30 24 25 26 26  Reactor 2 Supernatant ABS SAMPLE IIS1 IIS4 IIS7 IIS11 IIS14 IIS18 IIS21 IIS25 IIS27 IIS32 IIS35 IIS42  6 6 12 19 18 17 19 24 25 22 30 24  Reactor 5 Supernatent SAMPLE ABS VS1 VS4 VS7 VS11 VS14 VS18 VS21 VS25 VS27 VS32 VS35 VS42  4 11 23 19 14 24 22 24 28 28 31 35  CONC Total CONC. mg/L mg/L 497.1235 19884.94 252.3578 10094.31 147.2491 5889.963 182.1475 7285.9 185.8917 7435.668 193.7706 7750.824 185.6537 7426.147 195.5321 7821.284 258.0604 10322.42 240.8697 9634.79 240.526 9621.041 188.7246 7548.983  TIME Days 1 4 7 11 14 18 21 25 27 32 35 42  CONC Total CONC. mg/L mg/L 478.0188 19120.75 436.3936 17455.74 391.6642 15666.57 463.3391 18533.56 438.2895 17531.58 403.2554 16130.22 438.5451 17541.8 488.8302 19553.21 412.7767 16511.07 429.9674 17198.7 446.0055 17840.22 446.0762 17843.05  TIME Days 1 4 7 11 14 18 21 25 27 32 35 42  CONC Total CONC. mg/L mg/L 115.0285 1437.856 101.7831 1272.289 196.1321 1961.321 314.473 3144.73 303.6773 3036.773 274.3417 2743.417 320.5291 3205.291 391.0642 3910.642 429.9674 4299.674 377.5123 3775.123 514.4986 5144.986 411.7627 4117.627  TIME Days 1 4 7 11 14 18 21 25 27 32 35 42  CONC Total CONC. mg/L mg/L 76.81901 960.2376 185.4357 2317.947 375.3698 3753.698 314.473 3144.73 236.3713 2363.713 387.1412 3871.412 371.1074 3711.074 391.0642 3910.642 481.5395 4815.395 480.2521 4802.521 531.6219 5316.219 600.4873 6004.873  TIME Days 1 4 7 11 14 18 21 25 27 32 35 42  203  COD vs Time For Run 6 Reactor 1 Total (Control) SAMPLE ABS %  IT1 IT3 IT6 IT10 IT13 IT17 IT19 IT24 IT27 IT35 IT37 IT41 IT45 IT48 IT52 IT55 Reactor 3 Total SAMPLE  25 25 25 24 28 26 23 22 24 24 24 24 22 23 21 20  ABS %  IIIT1 IIIT3 IIIT6 IIIT10 IIIT13 IIIT-IT IIIT19 IIIT24 IIIT27 IIIT35 Reactor4 Total SAMPLE  22 21 15 16 15 14 17 14 15 14  ABS %  IVT1 IVT3 IVT6 IVT10 IVT13 IVT17 IVT19 IVT24 IVT27 IVT35 IVT37 IVT41 IVT45 IVT48 IVT52 IVT55  47 30 38 28 28 28 33 33 32 33 35 34 34 35 27 26  CONC. TOT. CONC mg/L mg/L 422.7121 16908.48 413.717 16548.68 421.4347 16857.39 387.1412 15485.65 472.2639 18890.56 424.2529 16970.11 15823.44 395.586 378.3953 15135.81 411.7589 16470.36 16470.51 411.7627 16470.36 411.7589 435.1826 17407.3 424.2065 16968.26 18285.97 457.1492 16750.74 418.7685 16564.41 414.1104  TIME Days 1 3 6 10 13 17 19 24 27 34 37 41 45 48 52 55  CONC. TOT. CONC mg/L mg/L 371.9386 14877.55 347.5543 13902.17 253.1808 10127.23 258.2275 10329.1 253.0914 10123.66 228.7208 9148.831 292.4418 11697.67 240.8697 9634.79 10305.97 257.6493 9607.796 240.1949  TIME Days 1 3 6 10 13 17 19 24 27 35  CONC. TOT. CONC mg/L mg/L 795.0507 31802.03 496.4205 19856.82 640.1647 25606.59 451.5981 18063.92 472.2639 18890.56 18273.66 456.8415 22699.72 567.493 567.493 22699.72 548.7452 21949.81 566.1737 22646.95 600.1151 24004.6 616.342 24653.68 26219.31 655.4827 695.2444 27809.78 21534.38 538.3595 538.2235 21528.94  TIME Days 1 3 6 10 13 17 19 24 27 34 37 41 45 48 52 55  204  COD Vs Time For Run 6 (continued) Reactor 1 Supernatant (control) SAMPLE ABS CONC. TOT. CONC % mg/L mg/L IS1 11 185.7693 1857.693 IS3 17 281.3916 2813.916 IS6 17 286.8316 2868.316 14 IS10 225.999 2259.99 IS13 20 337.3885 3373.885 IS17 24 391.6642 3916.642 IS19 23 395.586 3955.86 IS24 16 274.7726 2747.726 IS27 24 411.7589 4117.589 IS35 30 514.7034 5147.034 IS37 19 326.1425 3261.425 IS41 20 362.7188 3627.188 16 308.5683 3085.683 IS45 IS48 12 238.8952 2388.952 IS52 14 279.2457 2792.457 IS55 12 248.6262 2486.262 IS35 30 514.7034 5147.034 IS37 19 326.1425 3261.425 IS41 20 362.7188 3627.188 16 308.5683 3085.683 IS45 IS48 12 238.8952 2388.952 14 279.2457 2792.457 IS52 IS55 12 248.6262 2486.262  TIME Days 1 3 6 10 13 17 19 24 27 34 37 41 45 48 52 55 34 37 41 45 48 52 55  Reactor 3 Supernatant SAMPLE ABS % IIIS1 17 IIIS3 19 HISS 19 IIIS10 23 IIIS13 30 IIIS17 27 IIIS19 33 IIIS24 31 IIIS27 24 IIIS35 31  CONC. TOT. CONC mg/L mg/L 287.3162 2873.162 314.473 3144.73 320.4823 3204.823 371.027 3710.27 505.9828 5059.828 440.5472 4405.472 567.493 5674.93 531.6219 5316.219 411.7589 4117.589 531.8601 5318.601  TIME Days 1 3 6 10 13 17 19 24 27 35  Reactor4 Supernatant SAMPLE ABS % IVS1 18 IVS3 20 16 IVS6 IVS10 18 IVS13 27 IVS17 22 IVS19 21 IVS24 27 IVS27 30 IVS35 35 IVS37 37 IVS41 40 IVS45 40 IVS48 44 IVS52 46 IVS55 43 IVS48 44 IVS52 46 IVS55 43  CONC. TOT. CONC mg/L mg/L 304.2407 3042.407 331.0136 3310.136 270.0062 2700.062 290.4559 2904.559 455.4045 4554.045 359.0755 3590.755 361.2046 3612.046 463.1288 4631.288 514.4986 5144.986 600.4873 6004.873 634.3616 6343.616 725.0377 7250.377 771.1209 7711.209 873.8159 8738.159 917.0643 9170.643 889.8773 8898.773 873.8159 8738.159 917.0643 9170.643 889.8773 8898.773  TIME Days 1 3 6 10 13 17 19 24 27 34 37 41 45 48 52 55 48 52 55  205  COD vs Time Data for Run 7 SAMPLE IIT1 IIT5 IIT9 IIT12 IIT16 IIT19 IIT23 IIT26 IIT30 IIT33 IIT37 HT40  ABS.  SAMPLE IIIT1 IIIT5 IIIT9 IIIT12 IIIT16 IIIT19 IIIT23 IIIT26 IIIT30 IIIT33 IIIT37 IIIT40  ABS.  CONC. TOT. CONCTIME 44 754.2247 30168.99 25 453.2986 18131.94 12 231.4763 9259.05 8 159.5302 6381.206 9 179.5865 7183.46 20 414.1104 8282.207 16 331.3683 6627.366 13 296.422 5928.441 18 325.0095 6500.189 15 346.5084 6930.167 21 361.2046 4816.062 25 428.2822 5710.429  1 5 9 12 16 19 23 26 30 33 37 40  CONC. TOT. CONCTIME 43 737.1014 29484.05 40 725.0377 29001.51 27 520.5716 20822.86 21 417.4667 16698.67 16 319.1093 12764.37 30 620.9655 12419.31 23 476.1669 9523.338 23 524.2851 10485.7 28 504.6814 10093.63 18 415.77 8315.4 37 636.2558 8483.41 42 719.3781 9591.708  1 5 9 12 16 19 23 26 30 33 37 40  206  COD Data vs Time For Run 7 (Continued) SAMPLE VT1 VT5 VT9 VT12 VT16 VT19 VT23 VT26 VT30 VT33 VT37 VT40  ABS.  SAMPLE IIS1 IIS5 IIS9 IIS12 IIS16 IIS19 IIS23 IIS26 IIS30 IIS33 IIS37 IIS40  ABS.  SAMPLE IIIS1 IIIS5 IIIS9 IIIS12 IIIS16 IIIS19 IIIS23 IIIS26 IIIS30 IIIS33 IIIS37 IIIS40  ABS.  SAMPLE VS1 VS5 VS9 VS12 VS16 VS19 VS23 VS26 VS30 VS33 VS37 VS40  ABS.  42 44 40 38 36 33 34 28 35 29 37 37  CONC. TOT. CONC.TIME 719.9781 28799.12 797.5014 31900.06 30844.83 771.1209 754.7683 30190.73 717.746 28709.84 683.0221 27320.88 28148.3 703.7076 638.2167 25528.67 630.4517 25218.07 669.7295 26789.18 25450.23 636.2558 633.7616 25350.47  1 5 9 12 16 19 23 26 30 33 37 40  8 8 8 7 12 13 12 7 12 9 14 35  TOT. CONC.TIME CONC. 137.7863 1377.863 145.3275 1453.275 154.3842 1543.842 139.6889 1396.889 2393.82 239.382 269.3117 2693.117 248.6262 2486.262 159.7042 1597.042 217.2063 2172.063 207.985 2079.85 1204.349 240.8697 599.5151 2997.575  1 5 9 12 16 19 23 26 30 33 37 40  7 20 17 15 40 21 18 10 11 9 38 34  CONC. TOT. CONC.TIME 1206.63 120.663 362.7188 3627.188 327.8414 3278.414 298.419 2984.19 797.4733 7974.733 434.7959 4347.959 372.7393 3727.393 228.0631 2280.631 199.2391 1992.391 2079.85 207.985 653.4465 3267.232 2911.959 582.3918  1 5 9 12 16 19 23 26 30 33 37 40  6 7 7 9 12 13 8 8 22 18 53 41  TOT. CONC.TIME CONC. 103.5397 1035.397 127.2116 1272.116 135.1112 1351.112 179.3714 1793.714 239.382 2393.82 269.3117 2693.117 165.8841 1658.841 1824.905 182.4905 396.8782 3968.782 4157.7 415.77 4556.535 911.3069 702.2548 3511.274  1 5 9 12 16 19 23 26 30 33 37 40  207  COD vs Time Data For Run 8 Reactor 1 Total (Control) SAMPLE ABS. %  IT1 IT3 IT6 IT10 IT13 IT17 IT20 IT24 IT27 IT31 IT34 IT38 IT41 IT45 IT48 Reactor 4 Total SAMPLE  27 26 30 28 22 40 40 58 60 63 61 60 58 55 62  ABS. %  IVT1 IVT3 IVT6 IVT10 IVT13 IVT17 IVT20 IVT24 IVT27 IVT31 IVT34 IVT38 IVT41 IVT45 IVT48  30 24 21 22 15 31 28 45 42 42 43 44 48 48 46  CONC. TOT. CONC mg/L mg/L 558.909 11178.18 538.2235 10764.47 683.7893 13675.79 504.6814 10093.63 508.1189 10162.38 687.8279 9171.038 685.1315 9135.087 982.3343 9823.343 1049.997 10499.97 1096.319 10963.19 1043.321 10433.21 1069.052 10690.52 1007.144 10071.44 972.2296 9722.296 1098.381 10983.81  TIME Days 1 3 6 10 13 17 20 24 27 31 34 38 41 45 48  CONC. TOT. CONC mg/L mg/L 620.9655 12419.31 496.8524 9937.049 478.7125 9574.25 396.8782 7937.564 346.5084 6930.167 533.1116 7108.155 479.6521 6395.361 761.8869 7618.869 734.9982 7349.982 731.0127 7310.127 735.1014 7351.014 783.918 7839.18 833.5333 8335.333 848.4913 8484.913 814.9794 8149.794  TIME Days 1 3 6 10 13 17 20 24 27 31 34 38 41 45 48  208  C O D vs Time Data For Run 8 (Continued) Reactor 1 Supernatant (Controi) SAMPLE ABS. C O N C . TOT. C O N C % mg/L mg/L 6 124.5131 1245.131 IS1 -7 IS3 1 145.1986 1451.986 IS6 5 114.1315 1141.315 7-3 ACQ-7-7 A 11 A C 5 7 7 IS 10 t I sJ.*-HJU / / 1 J4.UU / / IS 13 3 69.46167 694.6167 i \j IS 17 1290.302 IS20 20 342.6658 1713.329 IS24 19 320.9923 1604.961 IS27 24 419.999 2099.995 IS31 18 313.5197 1567.599 1S34 O/D.O1Z3 1877.562 IS38 20 356,2173 1781,086 IS41 24 416.8667 2084.333 IS45 23 406.5687 2032,844 •ie.io loto 27 478.4401 2392.2  Reactor 4 Supernatant w# uvii  IVS1 iVS3 IVS6 IVS10 IVS13 IVS17 IVS20 IVS24 IVS27 IVS31 IVS34 IVS38 IVS41 IVS45 IVS48  i—i—  ARC  % 4 7 5 s 9 30 36 33 28 26 39 35 33 26 12  nn*K\rT O T nr*K\r mg/L mg/L ft^1 49IV7 83.14207 145.1986 1451.986 114.1315 1141.315 163.3047 1633:047 207.985 2079.85 515.9209 2579.604 616.6384 3083.192 558.3971 2791.985 489.9988 2449.994 452.684 2263.42 666.6082 3333.041 623.5303 3117.651 573.1167 2865.583 459.5994 2297.997 212.7511 1063.756  209  TIME Days 1 n  O  6 n 1w  A  13 17 20 24 27 31  ^  38 41 45 48  TIME Days i  3 6 TO 13 17 20 24 27 31 34 38 41 45 48  C O D Data V s Time For Run 9  Reactor 2 Total SAMPLE IIT1 IIT3 IIT6 IIT10 IIT13 IIT17 IIT20 IIT24 IIT27  ABS. % 25 19 17 10 13 11 13 10 11  Sample CONC. TOT.CONC. mg/L mg/L 422.7372 4227.372 320.9923 3209.923 297.4993 2974.993 174.3554 1743.554 222.4027 2224.027 195.8295 1958.295 225.8944 2258.944 176.769 1767.69 195.0385 1950.385  TIME Days 1 3 6 10 13 17 20 24 27  ABS. % 24 22 19 14 16 13 15  Sample CONC. TOT.CONC. mg/L mg/L 405.7797 4057.797 371.8647 3718.647 332.4992 3324.992 243.9376 2439.376 273.7726 2737.726 231.4712 2314.712 260.6167 2606.167  TIME Days 1 3 6 10 13 17 20  Sample CONC. TOT.CONC. mg/L mg/L 439.6947 17587.79 439.6947 17587.79 18899.95 472.4988 487.4751 19499 513.4986 20539.95 570.0677 22802.71 503.6722 20146.89 459.5994 18383.98 567.0031 22680.12  TIME Days 1 3 6 10 13 17 20 24 27  Reactor 3 Total SAMPLE 111X1 IIIT3 IIIT6 IIIT10 IIIT13 IIIT17 IIIT20  Reactor 5 Total (Control) SAMPLE VT1 VT3 VT6 VT10 VT13 VT17 VT20 VT24 VT27  ABS. % 26 26 27 28 30 32 29 26 32  210  C O D Data V s Time For Run 9 (Continued) Reactor 2 Supernatant Sample CONC. TOT.CONC. SAMPLE ABS. mg/L % mg/L 1011.449 IIS1 12 202.2899 IIS3 10 168.3749 841.8744 104.9997 524.9987 IIS6 6 IIS10 6 104.7732 523.8662 IIS13 9 153.9096 769.5479 IIS 17 11 195.8295 979.1476 15 260.6167 1303.083 IIS20 1060.614 IIS24 12 212.1228 IIS27 4 71.05038 355.2519  TIME Days 1 3 6 10 13 17 20 24 27  Reactor 3 Supernatant Sample CONC. TOT.CONC. mg/L mg/L 388.8222 1944.111 1689.749 337.9498 349.9991 1749.996 278.7286 1393.643 359.389 1796.945 195.8295 979.1476 208.5333 1042.667  TIME Days 1 3 6 10 13 17 20  Reactor 5 Supernatant (Control) Sample CONC. TOT.CONC. SAMPLE ABS. % mg/L mg/L VS1 44 744.9295 3724.647 VS3 44 744.9295 3724.647 VS6 46 804.998 4024.99 VS10 44 765.8038 3829.019 VS13 44 753.2247 3766.123 VS17 45 801.7389 4008.695 45 781.45 3907.25 VS20 760.1068 3800.534 VS24 43 VS27 53 938.9676 4694.838  TIME Days 1 3 6 10 13 17 20 24 27  SAMPLE  ABS.  % IIIS1 IIIS3 IIIS6 IIIS10 IIIS13 IIIS17 IIIS20  23 20 20 16 21 11 12  211  C O D Data V s Time For Run 10 Reactor 3 Total SAMPLE IIIT1 IIIT3 NITS IIIT10 IIIT13 IIIT17 IIIT21 IIIT24 IIIT27 IIIT31 IIIT34 IIIT38 IIIT41 IIIT48  ABS. % 39 32 33 25 15 23 21 20 19 17 19 17 17 15  Sample C O N C . TOT. C O N C mg/L mg/L 13787.98 689.3992 565.6609 11313.22 584.7156 5847.156 427.8482 8556.964 262.5039 6562.598 412.8454 8256.908 365.7127 7314.254 348.3168 6966.337 337.6202 6752.405 291.1288 5822.575 325.3086 6506.172 302.1234 6042.467 291.8959 5837.918 272.1391 5442.783  TIME Days 1 3 6 10 13 17 21 24 27 31 34 38 41 47  Sample C O N C . TOT. C O N C mg/L mg/L 365.47 1827.35 406.5687 2032.844 248.1763 1240.882 222.7691 1113.845 315.0047 3150.047 323.0095 1615.047 174.3584 1743.584 156.9626 1569.626 319.8718 3198.718 171.4993 1714.993 171.4993 1714.993 177.8843 1778.843 206.2795 2062.795 109.0957 1090.957  TIME Days 1 3 6 10 13 17 21 24 27 31 34 38 41 47  Reactor 3 Supernatant SAMPLE IIIS1 IIIS3 IIIS6 IIIS10 IIIS13 IIIS17 IIIS21 IIIS24 IIIS27 IIIS31 IIIS34 IIIS38 IIIS41 IIIS47  ABS. % 23 14 13 18 18 10 9 18 10 10 10 12 6  212  COD DATA VS TIME FOR RUN 11 SBR OF RUN 8 (REACTOR4) AND RUN 9 (REACTOR2) Reactor 1 Total (Control) SAMPLE ABS. CONC. TOT. CONC % mg/L mg/L IT1 37 632.9273 25317.09 IT3 36 615.8374 24633.5 IT6 51 892.4978 22312.44 62 1113.566 22271.32 IT10 IT14 62 1078.942 21578.84 IT17 60 1044.151 20883.01 IT20 60 1065.306 21306.12 IT24 61 1043.086 20861.71 IT27 59 1008.906 20178.11 IT31 57 1012.061 20241.21 IT34 58 993.9507 19879.01 IT40 58 1051.125 21022.49 Reactor 2 Total SAMPLE IIT1 IIT3 IIT6 IIT10 IIT14 IIT17 IIT20 IIT24 IIT27 IIT31 IIT34 IIT40 Reactor 4 Total SAMPLE  ABS.  %  47 34 40 33 27 24 36 40 27 27 34 26 ABS. %  IVT1 IVT3 IVT6 IVT10 IVT14 IVT17 IVT20 IVT24 IVT27 IVT31 IVT34 IVT40  59 48 53 57 54 52 53 53 51 48 49 49  TIME Days  1 3 6 10 14 17 20 24 27 31 34 40  CONC. TOT. CONC mg/L mg/L 803.8266 32153.06 581.6575 23266.3 699.9983 17499.96 592.5173 11850.35 470.0877 9401.755 417.9002 8358.004 639.3436 12786.87 684.1971 13683.94 462.028 9240.561 479.6077 9592.154 582.9918 11659.84 471.4145 9428.29  TIME  CONC. TOT. CONC mg/L mg/L 1008.906 40356.23 820.9165 32836.66 927.4977 23187.44 1023.73 20474.6 939.7755 18795.51 904.9838 18099.68 941.067 18821.34 906.3661 18127.32 872.1863 17443.73 852.3248 17046.5 839.8411 16796.82 888.0812 17761.62  TIME  213  Days  1 3 6 10 14 17 20 24 27 31 34 40  Days  1 3 6 10 14 17 20 24 27 31 34 40  COD Data Vs Time For run 11 (Continued) Reactor 1 Supernatant (Control) SAMPLE ABS. CONC. TOT. CONC % mg/L mg/L IS1 29 496.2079 2481.039 IS3 30 513.2978 2566.489 IS6 19 332.4992 3324.992 25 448.7798 4487.798 IS10 IS14 19 330.921 3309.21 21 3657.127 365.7127 IS17 IS20 22 390.8655 3908.655 IS24 22 376.5784 3765.784 IS27 20 342.3985 3423.985 IS31 22 390.8655 3908.655 IS34 20 343.2658 3432.658 IS40 24 435.1826 4351.826  TIME Days 1 3 6 10 14 17 20 24 27 31 34 40  Reactor 2 Supernatant SAMPLE ABS. % 20 IIS1 IIS3 15 13 IIS6 13 IIS10 IIS14 3 4 IIS17 6 IIS20 IIS24 10 IIS27 12 IIS31 14 IIS34 15 IIS40 18  CONC. TOT. CONC mg/L mg/L 342.3985 1711.993 256.9489 1284.745 227.4994 2274.994 233.1735 2331.735 52.58753 525.8753 69.98337 699.8337 106.8906 1068.906 171.4993 1714.993 205.6791 2056.791 248.8781 2488.781 257.6493 2576.493 326.487 3264.87  TIME Days 1 3 6 10 14 17 20 24 27 31 34 40  Reactor 4 Supernatant SAMPLE ABS. % IVS1 20 IVS3 15 IVS6 28 IVS10 42 IVS14 21 IVS17 23 IVS20 50 IVS24 25 IVS27 23 IVS31 27 IVS34 28 IVS40 33  CONC. TOT. CONC mg/L mg/L 342.3985 1711.993 256.9489 1284.745 489.9988 4899.988 754.2221 7542.221 365.7127 3657.127 400.5044 4005.044 887.8217 8878.217 427.8482 4278.482 393.6683 3936.683 479.6077 4796.077 480.2521 4802.521 598.2261 5982.261  TIME Days 1 3 6 10 14 17 20 24 27 31 34 40  214  BIOLOGICAL O X Y G E N For Reactor 2 Disolved Oxygen in Blank Originally SAMPLE DObi mg/L IIT1 9.2 9.2 IIT1 9.01 IIT5 9.01 IIT5 9.01 IIS5 IIT9 8.78 IIT9 8.78 IIT19 8.94 IIT19 8.94 IIT23 8.94 IIT23 8.94 9.53 IIT30 IIT30 9.53 IIS30 9.53 8.45 IIT40 IIT40 8.45 8.45 IIT40 8.45 IIS40  For Reactor 3 SAMPLE IIIT1 llltl IIIT5 IIIT5 IIIS5 IIIT9 IIIT9 IIIT19 IIIT19 IIIT23 IIIT23 IIIT30 IIIT30 IIIS30 IIIT40 IIIT40 IIIS40  DObi mg/L 9.2 9.2 9.01 9.01 9.01 8.78 8.78 8.94 8.94 8.94 8.94 9.53 9.53 9.53 8.45 8.45 8.45  DEMAND RUN7 Disolved Oxygen in Blank After 5days DObf mg/L 9 9 9.5 9.5 9.5 8.47 8.47 8.78 8.78 8.78 8.78 9.42 9.42 9.42 8.56 8.56 8.56 8.56  Disolved Oxygen in Sample Initially DOsi mg/L 9.2 9.2 9.01 9.01 9.01 8.17 8.34 8.94 8.94 8.94 8.94 9.12 9.28 9.33 8.29 8.06 8.45 8.3  DObf mg/L 9 9 9.5 9.5 9.5 8.47 8.47 8.78 8.78 8.78 8.78 9.42 9.42 9.42 8.56 8.56 8.56  DOsi mg/L 9.2 9.2 9.01 9.01 9.01 8.17 8.34 8.94 8.94 8.94 8.94 9.21 9.29 9.37 8.3 8.05 8.3  Disolved Oxygen in Sample After 5days DOsf mg/L 5.53 2.07 0.83 4.99 5.27 5.22 6.75 7.85 6.81 8.1 7.07 7.17 3.65 7.12 7.6 6.08 6.1 7.72  215  Amount Sample is 5 Day B O D Amount Of Diluted Of Sample Sample Prior to In B O D being put Bottle Bottle in bottle AMT. S A M P DIL. SAM. B O D ml mg/L 5 40 208.2 10 40 207.9 40 130.05 20 135.3 10 40 45 10 28.2 20 40 39.6 10 40 38.4 20 40 13.95 14.775 40 40 40 20 10.2 40 40 12.825 50 20 11.04 20 20.7 80 50 10 12.6 4.8 50 13.33333 100 13.33333 6.27 10 1 73.8 4.6 45 5  DOsf AMT. S A M P mg/L ml 6.44 5 10 3.86 0.05 20 4.94 10 1.3 45 3.02 20 5.5 10 20 7.66 6.09 40 8.18 20 6.96 40 6.91 50 80 5.19 5.98 50 6.13 50 3.18 100 6.28 45  5 Day B O D Of Sample Waste In Reactors TOT. B O D mg/L 8328 8316 5202 5412 282 1584 1536 558 591 408 513 220.8 414 126 64 83.6 73.8 23  DIL. SAM. B O D TOT. B O D mg/L mg/L 40 153.6 6144 40 154.2 6168 40 141.75 5670 136.8 5472 40 10 54.66667 546.6667 2904 40 72.6 40 75.9 3036 40 16.8 672 807 40 20.175 9 360 40 40 13.65 546 20 13.14 262.8 20 14.9625 299.25 10 19.68 196.8 13.33 13.68 182.3544 13.33 14.94 199.1502 5 14.2 71  BIOLOGICAL O X Y G E N DEMAND RUN8 Disolved 02Disolved 02Disolved 02Disolved 02Amount Of Dilution BOD5 Of Total BOD5 Sample Of Waste In Sample In Sample Sample In Prior To In Blank In Blank After 5days Initially After 5days BOD Bottle BOD Bottle Bottle Initially DOsi DOsf AMT. S A M P DIL. SAM. B O D TOT. BOD SAMPLE DObi DObf mg/L ml mg/L mg/L mg/L mg/L mg/L IVT1 8.9 9 2 25 40 82.8 3312 9 82.5 3300 30 40 IVT1 9 8.9 9 0.65 1100.4 20 55.02 IVT10 9.42 9.28 0 50 9.53 33.6375 672.75 0 80 20 IVT10 9.53 9.42 9.37 38.28 382.8 2.59 50 10 IVS10 9.53 9.42 9.31 38.88 518.2704 5.73 25 13.33 IVT20 8.45 8.56 8.45 603.849 40 13.33 45.3 IVT20 8.56 8.45 2.93 8.45 5 48.2 241 8.3 1.74 45 IVS20 8.45 8.56 10 67 670 8.9 2.27 30 IVT24 8.92 8.55 44.85 448.5 0 60 10 IVT24 8.92 8.55 8.64 35.34 176.7 3.08 50 5 IVS24 8.92 8.55 8.9 68.5 685 8.78 2.12 30 10 IVT31 8.87 8.45 538.2 50 10 53.82 8.45 8.71 0 IVT31 8.87 336.375 80 10 33.6375 IVT31 8.87 8.45 8.63 0 45.72 190.5 1.35 50 4.166667 IVS31 8.87 8.45 8.65 1 549 549 8.64 8.49 7.14 1 IVT41 8.88 1 544.5 544.5 8.64 8.48 5.34 2 IVT41 8.88 1 605.25 4 605.25 8.64 8.45 0.9 IVT41 8.88 1 538.2 538.2 0 5 IVT41 8.88 8.64 8.45 1 234.6 234.6 8.64 8.47 5.06 5 IVS41 8.88 1 636 636 6.85 1 IVT46 9.15 9.21 9.19 1 609 609 9.2 2.88 3 IVT46 9.15 9.21 1 282.6 5 282.6 IVT46 9.21 9.14 4.26 9.15  216  BIOLOGICAL O X Y G E N DEMAND RUN9 For Reactor 2 BOD5 BOD5 Of Dissolved Dissolved Amount Of Amount Of Of Dillution Sample 0 2 In 0 2 In Sample In Dissolved Dissolved Waste Prior Bottle Sample BOD5 Bottle Sample 0 2 In Blank 0 2 In Blank To Test Initially After 5Days Initially After 5Days DOsf AMT. S A M P PIL. SAM. B O D TOT. BOD DObf SAMPLE DObi DOsi mg/L mg/L mg/L ml mg/L mg/L mg/L 9.1 9.2 3.8 50 20 31.8 636 IIT1 9.2 616 20 30.8 1.4 75 9.1 9.2 9.2 IIT1 469.5 10 46.95 8.9 2.26 40 8.92 8.54 IIT3 269.1 100 10 26.91 8.75 0 IIT3 8.92 8.54 33 165 50 5 8.9 3.47 8.92 8.54 IIS3 1 269.1 10 269.1 0 8.87 8.45 8.8 IIT10 1 134.55 134.55 20 8.71 0 IIT10 8.87 8.45 1 132 132 7.65 3 IIS10 8.87 8.45 8.82 1 290.4 290.4 8.44 4.13 5 IIT20 8.88 8.64 1 269.1 10 269.1 8.64 8.35 0 IIT20 8.88 1 131.4 131.4 5 8.64 8.48 6.78 IIS20 8.88 1 204 204 5 9.21 9.1 5.57 IIT24 9.15 1 218.4 218.4 9.05 1.69 10 IIT24 9.15 9.21 181.2 181.2 2.93 10 IIS24 9.21 9.04 9.15 1  For Reactor 3 SAMPLE IIIT1 IIIT1 IIIT3 IIIT3 IIIT3 IIIS3 IIIT10 IIIT10 1IIS10 IIIT20 IIIS20  DObi mg/L 9.2 9.2 8.9 8.9 8.9 8.9 8.87 8.87 8.87 8.88 8.88  DObf mg/L 9.1 9.1 8.54 8.54 8.54 8.54 8.45 8.45 8.45 8.64 8.64  DOsf AMT. S A M P ml mg/L 5.7 50 100 2.3 7.66 25 50 6.56 4.24 100 50 6.32 10 6.35 4.72 15 6.41 50 10 6.75 5 8.2  DOsi mg/L 9.2 9.2 8.9 8.9 8.9 8.9 8.81 8.81 8.74 8.46 8.52  217  DIL. SAM. B O D TOT. B O D mg/L mg/L 10 20.4 204 200.1 10 20.01 105.6 10 10.56 144.6 10 14.46 10 14.19 141.9 15.9 79.5 5 78.6 78.6 1 85 1 85 64 4.166667 15.36 66.6 1 66.6 1 46.2 46.2  Run 10 BOD Data Vs time For Reactor 3 Dissolved Dissolved Dissolved Dissolved Oxygen In Oxygen In Sample Sample 0 2 In B l a n k 0 2 In Blank Initially After 5days Initially After 5days DObi DObf DOsi DOsf SAMPLE mg/L mg/L mg/L mg/L IIIT1 IIIT1 IIIT5 111X5 IIIS5 IIIT13 111X13 IIIS13 111X21 111X21 IIIX27 IIIX27 HIX34 IIIX34 IIIS34 111X41 111X41 I1IS41 IHX47 IIIX47 IIIS47  9.15 9.15 9.15 . 9.15 9.15 9.12 9.12 9.12 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.3 9.3 9.3 9.94 9.94 9.94  9.21 9.21 9.21 9.21 9.21 8.91 8.91 8.91 8.73 8.73 8.73 8.73 8.06 8.06 8.06 8.38 8.38 8.38 8.92 8.92 8.92  9.19 9.2 9.19 9.2 9.13 9.12 9.12 9.12 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.3 9.3 9.3 9.94 9.94 9.94  0 1.57 6.52 8.04 2.93 7.75 8.03 5.8 5.84 3.93 8.02 7.23 6.87 5.58 7.21 7.47 6.68 7.83 7.46 6.26 8.44  s  218  Dilution BOD5 Of Prior Xo BOD5 Of Sample Waste Entry Into BOD Bottle Bottle DIL. SAM. BOD XOX. BOD AMX. S A M P mg/L mg/L ml Amount Of Sample In B O D Bottle  1 0.5 1 0.5 5 1 0.8 5 2 3 2 3 3 5 5 4 6 5 5 10 5  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  2763 4584 807 702 376.8 348 330 186.6 433.5 480 106.5 150 119 148.8 51 68.25 85 33 87.6 79.8 28.8  2763 4584 807 702 376.8 348 330 186.6 433.5 480 106.5 150 119 148.8 51 68.25 85 33 87.6 79.8 28.8  BOD Data For Run 11 For Reactor 2 Dissolved Dissolved 0 2 In Blank 0 2 In Blank Initially After 5Days SAMPLE DObi DObf mg/L mg/L 8.91 IIT1 9.12 IIT1 8.91 9.12 IIT6 9.12 8.91 IIT6 9.12 8.91 IIS6 9.12 8.91 IIT14 9.07 8.73 IIT14 9.07 8.73 IIT20 9.07 8.73 IIT20 9.07 8.73 IIT27 9.07 8.06 IIT27 9.07 8.06 IIS27 9.07 8.06 IIT34 9.3 8.38 IIT34 9.3 8.38 IIS34 9.3 8.38 IIT40 9.94 8.92 IIT40 9.94 8.92 IIS40 9.94 8.92 For Reactor 4 SAMPLE IVT1 IVT1 IVT6 IVT6 IVS6 IVT14 IVT14 IVT20 IVT20 IVT27 IVT27 IVT27 IVT27 IVS27 IVT34 IVT34 IVS34 IVT40 IVT40 IVS40  DObi mg/L 9.12 9.12 9.12 9.12 9.12 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.3 9.3 9.3 9.94 9.94 9.94  DObf mg/L 8.91 8.91 8.91 8.91 8.91 8.73 8.73 8.73 8.73 8.06 8.06 8.06 8.06 8.06 8.38 8.38 8.38 8.92 8.92 8.92  Dissolved Dissolved Amount Of 0 2 In 0 2 In Diluted Sample Sample Sample In Initially After 5Days BOD Bottle DOsi DOsf AMT. S A M P mg/L mg/L ml 9.12 3.62 10 6.22 5 9.12 9.12 0 0.5 9.12 0 1 9.12 1.19 5 9.07 1 4.83 9.07 3.17 0.8 9.07 2.06 1 9.07 2 0 9.07 4.69 1 9.07 1.29 2 9.07 2.77 5 9.3 3.48 1 9.3 0 3 9.3 3.7 5 9.94 6.28 1 9.94 3.79 2 9.94 4.14 5  DOsi mg/L 9.12 9.12 9.12 9.12 9.12 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.3 9.3 9.3 9.94 9.94 9.94  219  DOsf AMT. S A M P mg/L ml 0.93 10 4.9 5 0 0.5 0 1 0 5 0 1 0 0.5 0 1 0 0.8 0.55 0.5 0 1 0 2 1.53 0.3 0 5 4.75 0.5 0 1 0.83 4 4.14 0.5 1.97 1 0.1 5  Dilution Of Waste Prior To BOD 5 Of In B O D Sample Total BOD5 Bottle Bottle Of Waste DIL. SAM. B O D TOT. B O D mg/L mg/L 50 158.7 7935 50 161.4 8070 1 5346 5346 1 2673 2673 1 463.2 463.2 1 1170 1170 1 2085 2085 1 2001 2001 1 1309.5 1309.5 1 1011 1011 1 1015.5 1015.5 1 317.4 317.4 1 1470 1470 1 838 838 1 280.8 280.8 1 792 792 1 769.5 769.5 286.8 286.8 1  DIL. SAM. B O D TOT. B O D mg/L mg/L 50 239.4 11970 50 240.6 12030 1 5346 5346 1 2673 2673 1 534.6 534.6 1 2619 2619 1 5238 5238 1 2619 2619 1 3273.75 3273.75 1 4506 4506 1 2418 2418 1 1209 1209 1 6530 6530 1 483.6 483.6 1 2178 2178 1 2514 2514 1 566.25 566.25 1 2868 2868 1 2085 2085 1 529.2 529.2  Run 4 PH VS TIME TIME R#1 Days 1 5.98 6.26 6 9 5.86 13 5.38 15 6.19 19 6.12 22 6.09 25 6.03 29 6.07 33 6.49 37 6.4 6.53 41 44 6.42 47 6.83 50 6.64 54 7.06 57 6.86 6.71 61 64 6.8 74 7.6 78 7.45 7.84 82 85  R#2  R#3  R#4  8.67 8.67 9.14 9 9.03 8.54 8.53 8.95 8.54 8.39 8.58 8.9 8.69 8.78 8.75 8.51 8.96 8.81 8.33 8.49 8.73  8.63 8.53 8.72 8.33 8.46 8.48 8.46 8.5 8.53 8.77 8.8 8.74 8.55 8.687 8.44 8.39 8.84 8.66 8.62 8.36 8.4 8.66 8.66  6.2 6.19 6.58 6.29 6.29 6.53  220  6.4 6.88 6.61 6.87 6.83 6.77 7.05 6.75 6.73 6.75 6.41 6.61 6.85 7.06 6.95 6.59  P H vs Time Data For Specific Runs FOR R U N 5 TIME Days 1 4 7 11 14 18 21 25 27 32 35 42  pH R#2 7.59 7.59 7.29 7.47 6.65 6.67 6.6 6.99 6.75 6.65 6.56 7.25  pH R#5 7.06 6.77 6.91 6.93 6.95 6.74 7.4 8.34 7.8 8.28 8.22 7.91  FOR R U N 6 Days TIME 1 3 6 10 13 17 19 24 27 34 37 41 45 48 52 55  PH R#1 8.52 7 7.43 7.36 7.01 7.14 7.69 7.71 7.6 7.49 7.46 8.12 7.55 7.4 6.82 7.76  pH R#3 7.39 7.58 6.75 6.92 6.91 6.69 7.89 9.1 9.2 9.14  pH R#4 5.83 6.64 5.09 5.1 5.34 5.06 5.13 4.66 4.88 4.83 7.1 8.85 8.61 8.4 7.43 8.27  221  FOR RUN 7 Days TIME 1 5 9 12 16 19 23 26 30 33 37 40  PH R#2 6.05 6.37 5.56 5.15 5.64 6.43 5.99 6.34 6.27 6.46 6.35 6.29  pH R#3 6.35 6.67 6.43 5.87 5.39 5.86 5.58 5.52 4.92 5.28 4.91 4.86  FOR RUN 8 Days TIME 1 3 6 10 13 17 20 27 31 34 38 41 45 48  pH R#1 6.35 6.51 6.51 7.72 6.94 6.85 6.77 7.18 7.12 7.03 7.18 7.23 7.07 7.43  pH R#4 6.54 6.53 6.36 6.36 6.07 5.44 5.45 5.88 5.73 5.43 5.35 4.77 4.56 4.11  pH R#5 6.22 6.22 6.28 6.68 5.94 6.42 6.2 6.36 6.57 6.7 7.06 6.74  222  PH vs Time (Continued) FOR RUN 9 TIME Days 6 10 13 17 20 24 27  pH R#2 5.89 5.56 5.97 6.21 6.11 6.15 6.11  pH R#3 8.54 8.35 8.21 8.18 8  PH R#3 7.17 6.58 5.12 3.68 5.84 5.45 5.14 5.6 5.59 5.84 5.23 5.84 5.44  pH R#1 7.15 7.24 7.41 7.48 7.33 7.4 7.25 7.24 7.22 7.24 7.09  pH R#1 7.15 7.24 7.41 7.48 7.33 7.4 7.25 7.24 7.22 7.24 7.09  PH R#2 4.93 4.83 5.08 4.38 3.6 3.78 6.59 7.03 6.96 7.03 7.14  pH R#5 7.57 7.55 7.4 7.75 7.45 7.66 7.25  FOR RUN 10 TIME Days 1 3 6 10 13 17 21 24 27 31 34 38 41  FOR RUN 11 TIME Days 1 3 6 10 14 17 20 24 27 31 34  pH R#4 4.74 3.98 7.17 6.9 6.58 6.72 6.58 6.65 6.58 6.65 6.56  223  SOLIDS FOR RUN5 DAY4 REACTOR 2 5 DAY11 REACTOR 2 5 DAY 14 REACTOR 2 5 DAY 18 REACTOR 2 5 DAY 21 REACTOR 2 5 DAY 25 REACTOR 2 5 DAY 27 REACTOR 2 5 DAY 32 REACTOR 2 5 DAY 35 REACTOR 2 5 DAY 42 REACTOR 2 5  DISH W . 9 44.2582 40.4559  T. WEI. 9 64.2342 64.0804  110C. g 44.3436 40.6355  550C. 9 44.2902 40.5862  TS 9 0.0854 0.1796  %TS % 0.427513 0.760228  VS 9 0.0534 0.0493  % V S VS/TS (%) % % 0.267321 62.52927 27.44989 0.208682  DISH W . g 47.1613 45.2187  T. WEI. 9 65.078 61.694  110C. 9 47.3006 45.421  550C. g 47.2184 45.3392  TS g 0.1393 0.2023  %TS % 0.777487 1.227899  VS g 0.0822 0.0818  % V S VS/TS (%) % % 0.45879 59.00933 40.435 0.496501  DISH W. 9 40.4674 47.5523  T. WEI. 9 66.4677 70.2158  110C. 9 40.6643 47.737  550C. g 40.5398 47.671  TS g 0.1969 0.1847  %TS % 0.757299 0.814967  VS 9 0.1245 0.066  % V S VS/TS (%) % % 0.478841 63.23007 0.291217 35.73362  DISH W. 9 45.1855 46.4047  T. WEI. 9 61.594 69.9725  110C. 9 45.3053 46.8701  550C. g 45.2278 46.7622  TS g 0.1198 0.4654  %TS % 0.730109 1.974728  VS 9 0.0775 0.1079  % V S VS/TS (%) % % 0.472316 64.69115 23.18436 0.457828  DISH W . g 47.5393 47.4367  T. WEI. 9 77.2117 70.3587  110C. g 47.744 47.7982  550C. g 47.6048 47.7123  TS 9 0.2047 0.3615  %TS % 0.689867 1.577088  VS 9 0.1392 0.0859  %VS % 0.469123 0.374749  DISH W. g 40.4531 40.6986  T. WEI. g 64.932 60.7767  110C. g 40.6415 41.2397  550C. 9 40.5177 41.1615  TS 9 0.1884 0.5411  %TS % 0.769642 2.694976  VS g 0.1238 0.0782  % V S VS/TS (%) % % 0.505742 65.71125 0.389479 14.45204  DISH W . g 45.0516 48.5593  T. WEI. g 64.7798 68.3395  110C. g 45.2207 48.9979  550C. 9 45.1041 48.9129  TS g 0.1691 0.4386  %TS % 0.857149 2.217369  VS g 0.1166 0.085  %VS % 0.591032 0.429723  DISH W . g 40.7054 46.4049  T. WEI. g 67.0655 72.4985  110C. g 40.8947 46.9976  550C. g 40.7546 46.9185  TS g 0.1893 0.5927  %TS % 0.718131 2.271438  VS g 0.1401 0.0791  % V S VS/TS (%) % % 0.531485 74.00951 0.303139 13.34571  DISH W. g 43.8413 46.4328  T. WEI. 9 66.2173 64.1652  110C. g 43.9912 46.9025  550C. g 43.8806 46.8149  TS g 0.1499 0.4697  %TS % 0.669914 2.648824  VS g 0.1106 0.0876  % V S VS/TS (%) % % 0.49428 73.78252 0.494011 18.6502  DISH W. g 43.6826 47.4441  T. WEI. g 68.5466 60.3028  110C. g 43.8303 47.9418  550C. g 43.7092 47.8117  TS g 0.1477 0.4977  %TS % 0.594032 3.870531  VS g 0.1211 0.1301  % V S VS/TS (%) % % 81.99052 0.48705 1.011766 26.14025  224  VS/TS (%) % 68.00195 23.7621  VS/TS (%) % 68.95328 19.37984  SOLIDS FOR RUN6 DAY3 REACTOR 1 3 4 DAY6 REACTOR 1 3 4 DAY10 REACTOR 1 3 4 DAY13 REACTOR 1 3 4 DAY 17 REACTOR 1 3 4 DAY19 REACTOR 1 3 4 DAY24 REACTOR 1 3 4  DISHW. 9 39.9723 45.1845 40.7032  T. WEI. 9 59.1532 64.4878 59.834  110C. 9 40.1998 45.3051 40.9316  550C. 9 40.1335 45.2346 40.7946  TS 9 0.2275 0.1206 0.2284  %TS % 1.186076 0.624764 1.193886  VS 9 0.0663 0.0705 0.137  %VS VS/TS(%) % % 0.345656 29.14286 0.365223 58.45771 0.716123 59.98249  DISH W. 9 44.2792 46.4104 47.4092  T. WEI. 9 59.6708 70.4471 67.1023  110C. 9 44.4393 46.5484 47.5761  550C. 9 44.4024 46.4566 47.4634  TS g 0 1601 0 138 0 1669  %TS % 1.040178 0.574122 0.847505  VS g 0.0369 0.0918 0.1127  %VS VS/TS(%) % % 0.239741 23.04809 0.381916 66.52174 0.572282 67.52546  DISH W. 9 44.2633 40.4724 40.7036  T. WEI. 9 66.7764 61.6139 64.0783  110C. 9 44.5331 40.587 40.9608  550C. 9 44.4748 40.5019 40.7914  TS 9 0.2698 0.1146 0.2572  %TS % 1.198413 0.542062 1.100335  VS 9 0.0583 0.0851 0.1694  %VS VS/TS (%) % % 21.6086 0.25896 0.402526 74.25829 0.724715 65.86314  DISHW. 9 47.4002 48.5569 45.0493  T. WEI. 9 71.6632 69.3717 69.7387  110C. 9 47.7436 48.705 45.319  550C. 9 47.6463 48.6026 45.1382  TS 9 0.3434 0.1481 0.2697  %TS % 1.415324 0.711513 1.092372  VS 9 0.0973 0.1024 0.1808  %VS VS/TS (%) % % 28.3343 0.401022 0.491958 69.14247 0.732298 67.03745  DISH W. 9 47.5332 46.3974 44.2595  T. WEI. 9 73.7459 71.3312 74.4626  110C. 9 47.8725 46.5857 44.6783  550C. 9 47.7904 46.4645 44.4059  TS g 0.3393 0.1883 0.4188  %TS % 1.294411 0.7552 1.386613  VS g 0.0821 0.1212 0.2724  %VS VS/TS (%) % % 0.313207 24.19688 0.486087 64.36537 0.901894 65.04298  DISH W. g 39.971 45.1863 47.4003  T. WEI. g 59.3688 72.727 67.4907  110C. 9 40.2929 45.5101 47.7572  550C. g 40.2232 45.3332 47.5207  TS g 0.3219 0.3238 0.3569  %TS % 1.659467 1.175714 1.77647  VS g 0.0697 0.1769 0.2365  %VS VS/TS (%) % % 0.359319 21.65269 0.642322 54.63249 1.177179 66.26506  DISH W. g 47.5372 40.4618 44.2658  T. WEI. g 70.5593 62.272 65.2575  110C. 9 47.8631 40.6816 44.6177  550C. g 47.8031 40.5701 44.3865  TS 9 0.3259 0.2198 0.3519  %TS % 1.415596 1.007785 1.676377  VS g 0.06 0.1115 0.2312  %VS VS/TS (%) % % 0.260619 18.41056 0.511229 50.72793 1.101388 65.70048  225  Solids Data For Run 6 Continued DAY27 T. WEI. DISH W. REACTOR g 9 1 58.136 43.2525 3 64.0729 46.8709 4 61.3418 44.8775 DAY34 T. WEI. DISH W . REACTOR g 9 1 52.8941 41.1113 61.2159 3 46.9378 56.682 4 40.6921 DAY37 REACTOR 1 4 DAY41 REACTOR 1 4 DAY45 REACTOR 1 4 DAY48 REACTOR 1 4 DAY52 REACTOR 1 4 DAY55 REACTOR 1 4  110C. g 43.4584 47.0192 45.1601  550C. g 43.4221 46.9336 44.9646  TS g 0.2059 0.1483 0.2826  %TS % 1.383411 0.862109 1.716441  VS 9 0.0363 0.0856 0.1955  % V S VS/TS (%) % % 17.62992 0.243894 0.497617 57.72084 1.187418 69.17905  110C. g 41.2975 47.0774 41.0388  550C. g 41.2353 46.9906 40.8095  TS g 0.1862 0.1396 0.3467  %TS % 1.58027 0.977721 2.168244  VS g 0.0622 0.0868 0.2293  % V S VS/TS (%) % % 0.527888 33.40494 62.17765 0.607924 1.43403 66.13787  DISH W. g 44.2652 47.5373  T. WEI. g 74.0288 80.2747  110C. g 44.7074 48.1356  550C. g 44.624 47.7723  TS g 0.4422 0.5983  %TS % 1.485707 1.827573  VS g 0.0834 0.3633  % V S VS/TS (%) % % 0.280208 18.86024 1.10974 60.72205  DISH W . g 44.8774 40.7045  T. WEI. 9 69.2246 63.5064  110C. S 45.2648 41.0546  550C. 9 45.2016 40.8547  TS g 0.3874 0.3501  %TS % 1.591148 1.535398  VS g 0.0632 0.1999  % V S VS/TS (%) % % 0.259578 16.31389 0.876681 57.09797  DISHW. 9 46.4222 40.4586  T. WEI. g 65.8878 60.2604  110C. g 46.7005 40.8602  550C. 9 46.6525 40.6197  TS 9 0.2783 0.4016  %TS % 1.429702 2.028098  VS 9 0.048 0.2405  % V S VS/TS (%) % % 0.246589 17.24757 1.214536 59.88546  DISH W . 9 48.1027 43.8347  T. WEI. g 67.2778 65.2372  110C. g 48.3738 44.2958  550C. g 48.3101 44.0054  TS g 0.2711 0.4611  %TS % 1.413813 2.154421  VS g 0.0637 0.2904  %VS VS/tS(%) % % 0.332202 23.49686 1.356851 62.97983  DISH W . g 41.1031 40.4579  T. WEI. g 59.7805 57.6381  110C. g 41.3701 40.723  550C. g 41.3184 40.5593  TS g 0.267 0.2651  %TS % 1.429535 1.543055  VS g 0.0517 0.1637  % V S VS/TS (%) % % 0.276805 19.3633 0.952841 61.75028  DISH W . 9 46.934 43.253  T. WEI. g 64.7345 63.0143  110C. g 47.1877 43.5322  550C. 9 47.144 43.3688  TS g 0.2537 0.2792  %TS % 1.425241 1.412863  VS g 0.0437 0.1634  % V S VS/TS (%) % % 0.245499 17.22507 0.826869 58.52436  226  SOLIDS DATA FOR RUN7 Dish Weight DAY1 REACTOR 2 3 5 DAY5 REACTOR 2 3 5 DAY9 REACTOR 2 3 5 DAY 12 REACTOR 2 3 5 DAY16 REACTOR 2 3 5 DAY19 REACTOR 2 3 5 DAY23 REACTOR 2 3 5  DISH W . 9 46.8694 43.2505 39.9691  Weight Of Weight Of Total % Total Volatile % Volatile Total Sample AfterSample AfterSolids Of Solids Of Solids In Solids In Weight Drying at Drying at Sample Sample Sample Sample Dish+Sample110C 550C %VS VS T. WEI. 110C. 550C. %TS TS % % g g 9 g g 0.591957 79.3042 47.194 0.192 0.3246 1.000777 47.002 65.157 43.50058 0.14488 0.661356 0.25008 1.141579 43.3557 0.30662 64.2337 40.1053 0.0744 0.1362 0.561312 40.0309  Ratio Volatile To Total Solids VS/TS (%) % 59.14972 57.93346 54.62555  DISH W . g 40.6847 45.0548 43.6843  T. WEI. g 65.3388 70.1234 70.4452  110C. g 40.8365 45.2997 43.8043  550C. g 40.7378 45.1495 43.7387  TS g 0.1518 0.2449 0.12  %TS % 0.615719 0.976919 0.448415  VS g 0.0987 0.1502 0.0656  % V S VS/TS (%) % % 0.400339 65.01976 0.599156 61.33116 0.245134 54.66667  DISH W. g 46.4036 41.1073 46.9352  T. WEI. g 64.1387 60.6154 66.3704  110C. g 46.5237 41.3231 47.0978  550C. g 46.448 41.1868 47.0065  TS 9 0.1201 0.2158 0.1626  %TS % 0.677188 1.106207 0.836626  VS g 0.0757 0.1363 0.0913  % V S VS/TS (%) % % 0.426837 63.03081 0.698684 63.16033 0.469766 56.15006  DISH W. 9 47.4001 48.5595 45.1856  T. WEI. 9 65.8603 67.3763 67.1259  110C. 9 47.5106 48.7852 45.5076  550C. g 47.435 48.6336 45.3222  TS g 0.1105 0.2257 0.322  %TS % 0.598585 1.19946 1.467619  VS g 0.0756 0.1516 0.1854  % V S VS/TS (%) % % 0.40953 68.41629 0.805663 67.16881 0.84502 57.57764  DISH W. g 46.4003 47.4003 43.8351  T. WEI. g 66.3305 64.6242 63.8134  110C. g 46.549 47.5772 44.0889  550C. g 46.4555 47.4641 43.9721  TS g 0.1487 0.1769 0.2538  %TS % 0.746104 1.027061 1.270378  VS g 0.0935 0.1131 0.1168  % V S VS/TS (%) % % 0.469137 62.87828 0.656646 63.93443 0.584634 46.02049  DISH W. g 45.1848 39.9695 45.0573  T. WEI. g 69.0958 61.981 65.147  110C. g 45.3716 40.1814 45.3259  550C. g 45.2591 40.0472 45.2025  TS g 0.1868 0.2119 0.2686  %TS % 0.78123 0.962679 1.337004  VS g 0.1125 0.1342 0.1234  % V S VS/TS (%) % % 0.470495 60.22484 0.609681 63.33176 0.614245 45.94192  DISH W . 9 43.6824 40.709 40.6876  T. WEI. 9 61.2965 59.786 58.9077  110C. g 43.7974 40.8676 40.8589  550C. g 43.7254 40.7697 40.7802  TS g 0.115 0.1586 0.1713  %TS % 0.652886 0.831368 0.94017  VS 9 0.072 0.0979 0.0787  % V S VS/TS (%) % % 0.408763 62.6087 0.513183 61.72762 0.431941 45.94279  227  Run 7 Solids (Continued): DAY26 DISH W . REACTOR g 2 40.4632 3 47.4039 5 43.837 DAY30 REACTOR 2 3 5 DAY33 REACTOR 2 3 5 DAY37 REACTOR 2 3 5 DAY40 REACTOR 2 3 5  T. WEI. 9 55.202 65.4227 57.094  110C. 3 40.5604 47.5769 44.029  550C. g 40.5014 47.4556 43.9277  TS 9 0.0972 0.173 0.192  %TS % 0.659484 0.960108 1.448291  VS g 0.059 0.1213 0.1013  % V S VS/TS (%) % % 0.400304 60.69959 0.673186 70.11561 52.76042 0.764125  DISH W . 9 43.2549 46.9357 40.7039  T. WEI. g 58.1111 67.0196 61.2025  110C. 9 43.3515 47.0846 40.9915  550C. 9 43.2938 46.9878 40.8817  TS g 0.0966 0.1489 0.2876  %TS % 0.650234 0.74139 1.403023  VS g 0.0577 0.0968 0.1098  % V S VS/TS (%) % % 0.38839 59.73085 65.01007 0.481978 0.535646 38.17803  DISH W. g 46.4043 43.6892 45.1923  T. WEI. g 66.026 64.0575 64.7658  110C. g 46.5212 43.8279 45.4101  550C. g 46.4483 43.7353 45.3008  TS g 0.1169 0.1387 0.2178  %TS % 0.595769 0.68096 1.112729  VS g 0.0729 0.0926 0.1093  % V S VS/TS (%) % % 0.371527 62.36099 66.7628 0.454628 50.18365 0.558408  DISH W . 9 43.6885 45.1864 40.7059  T. WEI. g 62.258 64.8301 60.6906  110C. 9 43.7803 45.3382 40.9163  550C. 9 43.7154 45.2361 40.8526 •  TS g 0.0918 0.1518 0.2104  %TS % 0.494359 0.772767 1.052805  VS 9 0.0649 0.1021 0.0637  % V S VS/TS (%) % % 0.349498 70.69717 0.51976 67.25955 0.318744 30.27567  DISH W. g 43.836 46.4081 46.9376  T. WEI. g 66.4546 62.1139 66.2667  110C. g 43.9348 46.5187 47.0967  550C. g 43.869 46.4334 47.0521  TS g 0.0988 0.1106 0.1591  %TS % 0.436809 0.704198 0.823111  VS g 0.0658 0.0853 0.0446  % V S VS/TS (%) % % 0.290911 66.59919 0.543111 77.12477 0.23074 28.03268  228  SOLIDS DATA FOR RUN8  Dish Weight DAY1 REACTOR DISH W. g 1 46.8662 4 44.2694 DAY3 REACTOR 1 DAY6 REACTOR 1 4 DAY 10 REACTOR 1 4 DAY13 REACTOR 1 4 DAY17 REACTOR 1 4 DAY20 REACTOR 1 4  % Total Volatile % Volatile Ratio Of Total Sample Sample Total Solids In Solids In Solids In Volatile To Weight Of Weight AfterWeight AfterSolids In Sample Sample Sample Total Solids Sample+disrDrying At Drying At Sample 110C 550C %VS VS/TS (%) %TS VS 550C. TS T. WEI. 110C. % % % g g g g g 0.470656 0.0444 0.210021 44.62312 0.0995 46.9213 68.0069 46.9657 0.35407 55.51537 0.637787 0.0307 0.0553 44.294 52.94 44.3247  DISH W. g 47.5412 44.8795  T. WEI. 9 64.2477 61.1273  110C. 9 47.5805 44.9447  550C. 9 47.5644 44.9036  TS g 0.0393 0.0652  %TS % 0.235238 0.401285  VS 9 0.0161 0.0411  %VS VS/TS (%) % % 0.09637 40.96692 0.252957 63.03681  DISH W. g 46.4033 41.1078  T. WEI. g 57.7806 59.1414  110C. g 46.4894 41.214  550C. g 46.4393 41.1393  TS g 0.0861 0.1062  %TS % 0.75677 0.588901  VS g 0.0501 0.0747  %VS VS/TS (%) % % 0.440351 58.18815 0.414227 70.33898  DISH W. g 44.8784 46.8676  T. WEI. g 58.185 63.3498  110C. g 44.9253 46.9396  550C. g 44.9118 46.893  TS g 0.0469 0.072  %TS % 0.352457 0.436835  VS g 0.0135 0.0466  %VS VS/TS (%) % % 28.78465 0.101453 64.72222 0.282729  DISH W. g 44.2665 43.8366  T. WEI. g 64.3785 64.0742  110C. g 44.4069 43.9356  550C. g 44.3467 43.8664  TS g 0.1404 0.099  %TS % 0.698091 0.489188  VS g 0.0602 0.0692  %VS VS/TS (%) % % 0.299324 42.87749 0.341938 69.89899  DISH W. g 46.8663 44.877  T. WEI. g 67.8255 67.3762  110C. g 46.9812 44.9814  550C. g 46.9314 44.9026  TS g 0.1149 0.1044  %TS % 0.548208 0.464016  VS 9 0.0498 0.0788  %VS VS/TS (%) % % 0.237604 43.34204 75.47893 0.350235  DISH W. g 43.2577 44.2662  T. WEI. g 60.3421 54.9943  110C. g 43.324 44.3134  550C. g 43.2917 44.2726  TS g 0.0663 0.0472  %TS % 0.388073 0.439966  VS g 0.0323 0.0408  %VS VS/TS (%) % % 0.189061 48.71795 0.38031 86.44068  229  Dish Weight Weight Sample+dish DISHW. T. WEI. 9 g 48.1064 68.3504 48.5753 58.1601  Weight After Drying At 110C 110C. g 48.1969 48.6065  Weight After Drying At 550C. 550C.  Total Solids Of Sample  % Total Solids Of Sample  Volatile Solids Of Sample  9 48.1449 48.5875  TS 9 0.0905 0.0312  %TS % 0.447046 0.325515  VS g 0.052 0.019  % Volatile Ratio Solids Of Volatile To Sample Total Solids % V S VS/TS (%) % % 0.256866 57.45856 0.198231 60.89744  DISH W. g 40.4659 40.6895 46.4272  T. WEI. g 60.4957 62.4966 65.4672  110C. g 40.4984 40.7873 46.9702  550C. g 40.4767 40.745 46.8499  TS g 0.0325 0.0978 0.543  %TS % 0.162258 0.448478 2.851891  VS g 0.0217 0.0423 0.1203  % V S VS/TS (%) % % 0.108339 66.76923 0.193974 43.25153 0.631828 22.1547  DISH W. g 46.8681 44.2673 40.7024  T. WEI. 9 68.8505 64.3266 60.3131  110C. g 46.9189 44.3585 41.092  550C. g 46.8866 44.3196 41.066  TS g 0.0508 0.0912 0.3896  %TS % 0.231094 0.454652 1.986671  VS g 0.0323 0.0389 0.026  % V S VS/TS (%) % % 0.146936 63.58268 0.193925 42.65351 0.132581 6.673511  DISH W . 9 43.2541 44.8777 43.696  T. WEI. g 66.9559 66.9075 62.2049  110C. g 43.2893 44.9697 43.9617  550C. g 43.2668 44.9323 43.9133  TS g 0.0352 0.092 0.2657  %TS % 0.148512 0.417616 1.435526  VS g 0.0225 0.0374 0.0484  % V S VS/TS (%) % % 0.094929 63.92045 0.16977 40.65217 0.261496 18.21603  DISH W . g 47.5424 40.6869 48.565  T. WEI. g 63.8477 60.1743 68.4526  110C. g 47.5725 40.7677 48.8453  550C. g 47.5522 40.7333 48.7895  TS g 0.0301 0.0808 0.2803  %TS % 0.184603 0.414627 1.409421  VS g 0.0203 0.0344 0.0558  % V S VS/TS (%) % % 0.124499 67.44186 0.176524 42.57426 0.280577 19.90724  DISH W. g 44.881 41.1135 45.0594  T. WEI. g 64.6897 57.358 62.206  110C. g 44.9145 41.1733 45.306  550C. g 44.8915 41.1455 45.2308  TS g 0.0335 0.0598 0.2466  %TS % 0.169118 0.368125 1.438186  VS g 0.023 0.0278 0.0752  % V S VS/TS (%) % % 0.116111 68.65672 0.171135 46.48829 0.438571 30.49473  DISH W . g 46.4251 44.2694 43.8428  T. WEI. 9 63.1832 60.417 58.8989  110C. g 46.4536 44.3339 44.0546  550C. 9 46.4329 44.3055 43.9722  TS g 0.0285 0.0645 0.2118  %TS % 0.170067 0.39944 1.406739  VS g 0.0207 0.0284 0.0824  % V S VS/TS (%) % % 0.123522 72.63158 0.175878 44.03101 0.547286 38.90463  DISH W . g 46.8705 46.4123  T. WEI. g 64.9563 59.6933  110C. 9 46.8959 46.6024  550C. g 46.8767 46.5701  TS g 0.0254 0.1901  %TS % 0.140442 1.431368  VS g 0.0192 0.0323  % V S VS/TS (%) % % 0.106161 75.59055 0.243205 16.99106  SOLIDS DATA FOR RUN 9  DAY1 REACTOR 2 3 5 DAY3 REACTOR 2 3 5 DAY6 REACTOR 2 3 5 DAY10 REACTOR 2 3 5 DAY13 REACTOR 2 3 5 DAY17 REACTOR 2 3 5 DAY20 REACTOR 2 3 5 DAY24 REACTOR 2 5  230  SOLIDS DATA FOR RUN10  DAY1 REACTOR  DAY3 REACTOR  DAY6 REACTOR  DAY10 REACTOR 3 DAY13 REACTOR 3 DAY17 REACTOR 3  Total Weight AfterWeight AfterTotal Solids Dish Weight Of Drying At Drying At In Sample Weight Dish+Sample 110C 550C. DISH W . T. WEI. 110C. TS 550C. g g g 9 40.4647 54.7167 40.5427 0.078 40.5009  %Total Solids In Sample %TS % 0.547292  Volatile Solids In Sample VS g 0.0418  Ratio %Volatile Solids Volatile To In Sample Total Solids % V S VS/TS (%) % % 0.293292 53.58974  DISH W . g 40.7056  T. WEI. g 56.1338  110C. g 40.7766  550C. g 40.7353  TS g 0.071  %TS % 0.460196  VS g 0.0413  % V S VS/TS (%) % % 0.267692 58.16901  DISH W. g 46.8701  T. WEI. g 65.8366  110C. g 46.9558  550C. g 46.9058  TS g 0.0857  %TS % 0.451849  VS g 0.05  % V S VS/TS (%) % % 0.263623 58.34306  DISH W. g 48.1035  T.WEI. g 65.9582  110C. g 48.2035  550C. g 48.1413  TS g 0.1  %TS % 0.560077  VS g 0.0622  % V S VS/TS (%) % % 0.348368 62.2  DISHW. g 40.7015  T.WEI. g 55.4219  110C. g 40.7886  550C. g 40.7377  TS g 0.0871  %TS % 0.591696  VS g 0.0509  % V S VS/TS (%) % % 0.345779 58.43858  DISH W . g 46.8696  T.WEI. g 64.258  110C. g 46.973  550C. 9 46.9096  TS 9 0.1034  %TS % 0.594649  VS g 0.0634  % V S VS/TS (%) % % 0.364611 61.31528  231  Run 10 Solids Continued: DAY21 REACTOR DISHW. 40.4634  T.WEI. g 56.1501  110C. g 40.5441  550C. g 40.4902  TS g 0.0807  %TS % 0.514449  VS 9 0.0539  % V S VS/TS (%) % % 0.343603 66.79058  DISHW. 9 48.5627  T.WEI. 9 61.0188  110C. 9 48.6304  550C. 9 48.5831  TS g 0.0677  %TS % 0.543509  VS g 0.0473  % V S VS/TS (%) % % 0.379734 69.86706  DISH W . 9 40.6985  T. WEI. 9 55.5358  110C. 9 40.7855  550C. 9 40.7325  TS g 0.087  %TS % 0.58636  VS g 0.053  % V S VS/TS (%) % % 0.357208 60.91954  DISHW. g 48.1007  T.WEI. g 61.8015  110C. g 48.1771  550C. g 48.1308  TS g 0.0764  %TS % 0.557632  VS 0.0463  % V S VS/TS (%) % % 0.337936 60.60209  DISH W . g 41.1062  T.WEI. g 56.355  110C. g 41.1956  550C. g 41.1396  TS g 0.0894  %TS % 0.586276  VS 9 0.056  % V S VS/TS (%) % % 0.367242 62.63982  DISHW. g 43.8393  T.WEI. g 57.471  110C. 9 43.9094  550C. 9 43.865  TS g 0.0701  %TS % 0.514243  VS 9 0.0444  % V S VS/TS (%) % % 0.325711 63.33809  9  3 DAY24 REACTOR 3 DAY27 REACTOR 3 DAY31 REACTOR 3 DAY34 REACTOR 3 DAY38 REACTOR 3  232  SOLIDS DATA FOR  RUN11  1 2 4  9 43.2529 40.4622 44.2672  9 59.1823 58.1971 61.0468  Weight After Drying At 110C. 110C. 9 43.4696 40.6191 44.5811  DAY3 REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  9  9 46.6723 40.767 45.3417  9 46.5862 40.7269 45.2433  9 0.2453 0.0604 0.1511  %TS % 1.524663 0.493323 1.258988  0.0861 0.0401 0.0984  DAY1 REACTOR  Total Dish Weight Weight Sample+Dish DISHW. T. WEI.  Weight After Drying At 550C. 550C. 9 43.4021 40.5263 44.3939  Total Solids Of Sample TS 9 0.2167 0.1569 0.3139  % Total Solids Of Sample %TS  % 1.360378 0.884696 1.870724  Volatile Solids Of Sample VS 9 0.0675 0.0928 0.1872  % Volatile Ratio Solids Of Volatile To Sample Total Solids % V S VS/TS (%)  %  %  0.423745 0.523262 1.11564  31.14905 59.14595 59.63683  %VS % 0.535155 0.327521 0.819884  VS/TS (%) % 35.09988 66.39073 65.12244  %VS % 0.470294 0.427647 0.796732  VS/TS (%) % 33.96401 58.92351 61.00659  %VS % 0.50717 0.358024 0.950421  VS/TS (%) % 34.51327 65.46448 62.14286  9 0.045 0.0468 0.1124  %VS % 0.301518 0.365534 0.744904  VS/TS (%) % 22.57903 74.88 68.49482  VS  %VS  VS/TS (%) % 28.02521 66.42512 66.47324  VS  1 2 4  46.427 40.7066 45.1906  9 62.5158 52.9501 57.1923  DAY6 REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  %TS  VS  9 58.9021 63.7238 63.2141  9 43.469 44.4097 47.1477  9 43.3954 44.3265 47.018  9 0.2167 0.1412 0.2126  %  1 2 4  9 43.2523 44.2685 46.9351  9 0.0736 0.0832 0.1297  DAY10 REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  2 4  9 48.1043 46.4243 45.1888  9 62.7148 63.155 62.5811  9 48.319 46.5158 45.4548  9 48.2449 46.4559 45.2895  9 0.2147 0.0915 0.266  DAY 14 REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  1 2 4  9 41.1062 43.8426 40.687  9 56.0307 56.6458 55.7762  9 41.3055 43.9051 40.8511  9 41.2605 43.8583 40.7387  9 0.1993 0.0625 0.1641  REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  1 2 4  9 45.057 47.5403 44.8803  9 59.9019 60.343 60.0669  g 45.295 47.6231 45.0354  g 45.2283 47.5681 44.9323  g 0.238 0.0828 0.1551  %TS % 1.603244 0.646739 1.021295  9 0.0667 0.055 0.1031  0.449313 0.429597 0.678888  DAY20 REACTOR  DISH W.  T. WEI.  110C.  550C.  TS  %TS  VS  %VS  g 46.864 46.4187 45.1852  g 59.3992 59.4553 59.7332  9 47.1149 46.5359 45.3824  9 47.0333 46.4658 45.2536  9  %  0.2509 0.1172 0.1972  2.001564 0.899007 1.355513  9 0.0816 0.0701 0.1288  1  1.384682 0.725766 1.305977  %TS % 1.469491 0.546899 1.529412  %TS % 1.335388 0.488159 1.087533  9  VS 9 0.0741 0.0599 0.1653  VS  DAY17  1 2 4  233  %  % 0.650967 0.537717 0.885345  VS/TS (%) % 32.52292 59.81229 65.3144  Solids Run 11 (Continued) DAY24 REACTOR DISH W . 9 44.2661 43.2499 46.9354 DAY27 REACTOR 1 2 4 DAY31 REACTOR 1 2  T.WEI. g 58.7794 57.2888 59.058  110C. g 44.5107 43.3858 47.0553  550C. g 44.4428 43.3012 46.9784  TS g 0.2446 0.1359 0.1199  %TS % 1.685351 0.968025 0.989062  VS g 0.0679 0.0846 0.0769  % V S VS/TS (%) % % 0.467847 27.75961 0.602611 62.25166 0.634352 64.13678  DISHW. g 48.562 47.5394 45.0581  T.WEI. g 62.2466 63.2145 58.0788  110C. g 48.8542 47.6339 45.2163  550C. g 48.7491 47.5686 45.1143  TS g 0.2922 0.0945 0.1582  %TS % 2.135247 0.602867 1.214988  VS g 0.1051 0.0653 0.102  % V S VS/TS (%) % % 0.768017 35.96851 0.416584 69.10053 0.783368 64.47535  DISH W. g 40.6862 40.4629 44.8793  T. WEI. g 55.1312 52.1807 67.6041  110C. g 40.9556 40.5371 45.132  550C. g 40.8692 40.4873 44.9679  TS g 0.2694 0.0742 0.2527  %TS % 1.865005 0.633225 1.112001  VS g 0.0864 0.0498 0.1641  % V S VS/TS (%) % % 0.598131 32.07127 0.424994 67.1159 0.722119 64.93866  234  METAL CONCENTRATION FOR BOTH TOTAL AND DISOLVED COPPE FOR RUN 6 REACTOR1SAMPLE TOTAL SAMPLE DISOLVED SAMPLE CONC.(T) TOT. CONC D. CONC. TOT DIS. Days mg/L mg/L mg/L mg/L 19 0.8 32 4 24 0.8 32 0.1 27 0.7 28 0.3 12 34 0.2 8 0.8 32 37 1 40 0.2 8 41 1.1 44 0.2 8 45 0.7 28 0.56 5.6 48 0.17 6.8 0.8 32 52 0.8 32 0.67 6.7 55 32 0.23 9.2 0.8 REACTOR2 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT. DIS. Days mg/L mg/L mg/L mg/L IIT26 0.95 38 IIT32 0.95 38 0.1 4 IIT35 0.7 28 0.1 4 IIT42 4 0.8 32 0.1  REACTOR3 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT DIS. Days mg/L mg/L mg/L mg/L 11IT19 1 40 0.1 4 IIIT24 0.7 28 0.1 4 IIIT27 1 4 40 0.1 IIIT34 0.7 28 0.2 8 REACTOR4 SAMPLE CONC.(T) TOT. CONC D. CONC. TOT. DIS. Days mg/L mg/L mg/L. mg/L IVT19 2.1 84 0.2 8 IVT24 84 8 2.1 0.2 IVT27 8 2 80 0.2 IVT34 88 0.2 8 2.2 IVT37 12 2.2 88 0.3 IVT41 2.2 88 0.4 16 IVT45 1.9 76 0.438 4.38 IVT48 2.2 0.2 8 88 IVT52 5.3 1.9 76 0.53 IVT55 0.23 9.2 72 .1.8 235  METAL CONCENTRATION F O R BOTH TOTAL A N D DISOLVED C O P P E F FOR R U N 7 REACTOR2 SAMPLE DAYS 1 5 9 12 16 19 22 26 30 33 37 40  C O N C . ( T ) TOT. C O N C D. C O N C . mg/L mg/L mg/L 2 80 0 2 80 0.1 1.8 72 0.32 1.9 76 0.14 1.8 0.2 72 1.7 68 0.2 1.8 72 0.12 1.8 72 0.16 1.7 68 0.295 1.75 70 0.202 1.7 68 0.203 1.7 68 0.219  TOT. DIS. mg/L 0 4 3.2 5.6 2 2 2.4 3.2 5.9 4.04 2.706667 2.92  SAMPLE DAYS IIIT1 IIIT5 IIIT9 IIIT12 IIIT16 IIIT19 IIIT22 IIIT26 IIIT30 IIIT33 IIIT37 IIIT40  C O N C . ( T ) TOT. C O N C D. C O N C . mg/L mg/L mg/L 2.1 84 0 2 80 0.1 1.9 76 0.51 2 80 0.17 1.9 76 0.63 2 80 0.27 1.9 76 0.2 1.9 76 0.26 1.8 72 0.239 1.85 74 0.186 2 80 0.26 2 80 0.222  TOT. DIS. mg/L 0 4 5.1 6.8 6.3 5.4 4 5.2 4.78 3.72 3.466667 2.96  R E A C T O R 5 (Control) S A M P L E C O N C . ( T ) TOT. C O N C D. C O N C . DAYS mg/L mg/L mg/L VT1 1.2 48 0 VT5 1.2 48 0.1 VT9 1.3 52 0.38 VT12 1.4 56 0.15 VT16 1.4 56 0.49 VT19 1.4 56 0.16 VT22 1.3 52 0.16 VT26 1.5 60 0.15 VT30 1.4 56 0.28 VT33 1.5 60 0.23 VT37 1.55 62 0.232 VT40 1.5 60 0.247  TOT. DIS. mg/L 0 4 3.8 6 4.9 6.4 6.4 6 5.6 4.6 3.093333 3.293333  236  B O T H DISSOLVED A N D T O T A L C O P P E R C O N C E N T R A T E FOR R U N 8 For Reactor 1 (Control) TOTAL T O T A L DISSOLVE (DISSOLVE C Time SAMPLE mg/L S A M P L E mg/L Days CONC. TOT. CONC CONC. TOT. CONC 1 2.4 48 0.2 2 3 2.5 50 0.123 2.46 6 2.5 50 0.124 2.48 10 2.52 50.4 0.268 5.36 13 2.51 50.2 0.227 4.54 17 2.47 49.4 0.207 2.76 20 2.42 48.4 0.326 4.346667 24 2.51 50.2 0.18 1.8 27 2.53 50.6 0.285 2.85 31 5.1 51 0.39 3.9 34 5.2 52 0.209 2.09 38 0.347 5.1 51 3.47 41 4.785 47.85 0.462 4.62 45 4.716 47.16 0.461 4.61 48 5.1 51 0.449 4.49  Reactor 4 Time Days 1 3 6 10 13 17 20 24 27 31 34 38 41 45 48  TOTAL T O T A L DISSOLVELTJISSOLVEL" SAMPLE mg/L S A M P L E mg/L CONC. TOT. CONC CONC. TOT. CONC 2.1 42 0.11 1.1 1.9 38 0.145 2.9 42 0.106 2.1 2.12 1.9 38 0.143 2.86 1.9 38 0.115 2.3 2.1 42 0.201 2.68 2.07 41.4 0.143 1.907 2 40 0.129 1.29 2.1 42 0.1 1 4.05 40.5 0.655 6.55 4.11 41.1 0.328 3.28 4.051 40.51 0.409 4.09 3.952 39.52 0.288 2.88 3.896 38.96 0.318 3.18 3.961 39.61 0.343 3.43  237  Copper Concentrations Both Dissolved And Total For Run 9 For Reactor 2 Dil. Sample Dil. Sample Reactor 2 DISOLVED Reactor 2 Time Total DAY CONC. TOT. CONC CONC. TOT. CONC mg/L mg/L mg/L mg/L 0.7 0 0.07 1 0 0.115 1.15 0.709 7.09 3 6.17 0.105 1.05 6 0.617 0.126 10 0.916 9.16 1.26 9.7 0.142 1.42 13 0.97 17 0.854 8.54 0.212 2.12 0.269 2.69 20 0.73 7.3 0.194 24 8.22 1.94 0.822 0.156 27 0.732 7.32 1.56 For Reactor 3 Dil. Sample Dil. Sample Time Total Reactor 2 DISOLVED Reactor 2 DAY CONC. TOT. CONC CONC. TOT. CONC mg/L mg/L mg/L mg/L 0.976 9.76 0.086 0.86 1 2.22 3 0.883 8.83 0.222 11.34 0.147 1.47 6 1.134 10.79 0.393 3.93 10 1.079 12.74 0.439 4.39 13 1.274 0.199 1.99 17 1.163 11.63 0.55 5.5 20 1.032 10.32 For Reactor 5 (Control) Dil. Sample Dil. Sample Total Reactor 2 DISOLVED Reactor 2 Time DAY C O N C . TOT. C O N C CONC. TOT. CONC mg/L mg/L mg/L mg/L 0.243 1 0.958 38.32 9.72 38.32 0.243 9.72 3 0.958 0.947 37.88 0.519 20.76 6 0.516 10 1.087 43.48 20.64 0.448 13 1.196 47.84 17.92 17 1.056 42.24 0.509 20.36 20 1.145 45.8 0.481 19.24 37.84 0.492 19.68 24 0.946 0.437 27 1.254 50.16 17.48  238  B O T H T O T A L A N D DISOLVED C O P P E R C O N C E N T R A T I O N F O R R U N 10  REACTOR3 DAY 1 3 6 10 13 17 21 24 27 31 34 38 41 47  DILUTED DILUTED SAMPLE SAMPLE TOTAL DISSOLVECDISSOLVED C O N C . TOT. C O N C CONC. TOT. C O N C mg/L mg/L mg/L mg/L 1.125 22.5 0.179 3.58 0.869 17.38 0.211 4.22 1.929 19.29 0.422 4.22 0.955 19.1 0.289 5.78 0.755 18.875 0.125 3.125 0.946 18.92 0.15 3 0.989 19.78 0.155 3.1 1.093 21.86 0.084 1.68 1.052 21.04 0.157 3.14 1.115 22.3 0.121 2.42 0.928 18.56 0.194 3.88 0.974 19.48 0.508 10.16 0.922 18.44 0.228 4.56 0.866 17.32 0.189 3.78  239  TOTAL AND DISOLVED COPPER CONCENTRATION FOR RUN 11 For Reactor 1 (Control) Diluted Diluted Sample Sample me TOTAL Reactorl DISOLVED YS CONC. TOT. CONC CONC. rrig/L mg/L mg/L 1 1.223 48.92 0.228 3 1.348 53.92 0.219 6 1.771 44.275 0.102 10 2.685 53.7 0.202 14 2.52 50.4 0.626 17 2.218 44.36 0.305 21 2.566 51.32 0.524 24 2.368 47.36 0.44 27 2.693 53.86 0.546 31 2.725 54.5 0.65 34 2.643 52.86 0.397 40 2.413 48.26 0.661 For Reactor 2 Time DAYS 1 3 6 10 14 17 21 24 27 31 34 40 For Reactor 4 me YS 1 3 6 10 14 17 21 24 27 31 34 40  Reactorl Dissolved Cone. mg/L 9.12 8.76 2.55 4.04 12.52 6.1 10.48 8.8 10.92 13 7.94 13.22  Diluted Diluted Sample Sample TOTAL Reactor2 DISOLVED CONC. TOT. CONC CONC. mg/L mg/L mg/L 1.197 0.151 47.88 0.997 0.136 39.88 1.866 0.081 46.65 2.164 0.033 43.28 1.996 0.184 39.92 2.175 0.081 43.5 2.013 0.105 40.26 2.313 0.112 46.26 2.221 0.296 44.42 2.202 0.214 44.04 2.295 0.124 45.9 2.2 0.135 44  Reactor2 Dissolved Cone. mg/L 6.04 5.44 2.025 0.66 3.68 1.62 2.1 2.24 5.92 4.28 2.48 2.7  Diluted Diluted Sample Sample TOTAL Reactor4 DISOLVED CONC. TOT. CONC CONC. mg/L mg/L mg/L 2.839 56.78 0.139 1.567 62.68 0.227 2.545 63.625 0.119 3.331 66.62 0.163 3.164 63.28 0.165 2.942 58.84 0.122 2.969 59.38 0.133 2.755 55.1 0.158 3.119 62.38 0.208 2.939 58.78 0.299 2.941 58.82 0.16 2.942 58.84 0.292  Reactor4 Dissolved Cone. mg/L 5.56 9.08 2.975 3.26 3.3 2.44 2.66 3.16 4.16 5.98 3.2 5.84  240  NUTIENT ANALYSIS  FOR RUN 5  Phosphorous Concentration Vs Time Reactor2 Reactor2 ReactorS Reactor5 TOTAL ORTHO-P TOTAL TIME ORTHO-P mg/L Days Diluted mg/L Diluted 4 0.526 5.26 0.391 3.91 0.382 3.82 11 6.176 61.76 3.53 35.3 0.502 5.02 18 6.51 8.5 85 0.651 25 7.3932 73.932 0.435 4.35 32 5.54 8.989 89.89 0.554 42 Ammonia Concentration Vs Time Reactor2 Reactor2 Reactor5 Reactor5 NH4+ TOTAL NH4+ TOTAL TIME mg/L Days Diluted mg/L Diluted 4 0.109 1.09 0.429 4.29 55.69 0.179 1.79 11 5.569 0.078 0.78 0.369 3.69 18 0.77 25 5.583 55.83 0.077 0.631 6.31 32 2.877 28.77 6.08 42 8.643 86.43 0.608 Nutrient Analysis For Run 6 Phosphorous Concentration Vs Time Reactorl Reactorl Reactor3 Reactor3 Reactor4 Reactor4 TOTAL TOTAL ORTHO-P TIME ORTHO-P TOTAL ORTHO-P Diluted mg/L Days Diluted mg/L Diluted mg/L 3 0.723 7.23 6.464 64.64 5.052 50.52 10 0.732 7.32 3.98 39.8 1.11 11.1 54.5 7.74 9.015 90.15 5.45 17 0.774 1.808 18.08 24 0.62 6.2 8.113 81.13 105.17 1.543 15.43 34 0.41 4.1 10.517 7.81 0.781 37 0.431 4.31 27.36 2.736 48 0.7 7 37.84 3.784 55 0.996 9.96  Ammonia Concentration Vs Time Reactorl Reactorl Reactor3 Reactor3 Reactor4 Reactor4 NH4+ TOTAL NH4+ TOTAL Time NH4+ TOTAL Di luted mg/L Days Diluted mg/L Diluted mg/L 3 0.529 5.29 6.287 62.87 5.461 54.61 1.54 0.166 1.66 0.133 1.33 0.154 10 4.407 44.07 17 0.216 2.16 5.014 50.14 0.284 2.84 24 3.13 11.62 0.313 1.162 59.57 24.02 5.957 34 1.39 13.9 2.402 2.954 29.54 37 0.219 2.19 57.86 55 0.848 8.48 5.786  241  NUTRIENT ANALYSIS F O R R U N 7 Phosphorous Concentration vs Time For Run 7 Reactor5 Reactor5 Time Reactor2 Reactor2 Reactor3 Reactor3 DAYS Sample Con Tot. Cone. Sample C o n Tot. Cone. Sample Con Tot. Cone. mg/L mg/L mg/L mg/L mg/L mg/L 1.78 0.533 0.178 2.7 5.33 1 0.27 5.25 0.525 125.93 17.735 177.35 12 12.593 7.42 232.57 19.839 198.39 0.742 23.257 19 0.437 4.37 228.29 19.697 196.97 23 22.829 5.57 17.67 176.7 0.557 26 21.231 212.31 13.74 17.811 178.11 1.374 30 22.107 221.07 165.71 1.401 14.01 213.79 16.571 33 21.379 6.155 7.192 179.8 1.231 37 8.825 220.625 8.835 1.767 9.637 160.6167 40 13.432 223.8667  Ammonia Concentration Vs Time For Run 7 Reactor5 Reactor3 Reactor3 Reactor5 Reactor2 Time Reactor2 DAYS Sample Con Tot. Cone. Sample Con Tot. Cone. Sample Con Tot. Cone. mg/L mg/L mg/L mg/L mg/L mg/L 0.193 1.93 8.5 0.548 5.48 1 0.85 2.1 736.75 51.435 514.35 0.21 12 73.675 0.092 0.92 43.166 431.66 19 61.149 611.49 1.1 553.34 39.08 390.8 0.11 23 55.334 1.94 42.773 427.73 0.194 26 63.351 633.51 0.831 8.31 625.69 42.799 427.99 30 62.569 0.395 3.95 619.64 41.241 412.41 33 61.964 0.367 1.835 794.9 18.385 459.625 37 31.796 0.185 0.925 738.4 26.674 444.5667 40 44.304  242  NUTRIENT ANALYSIS F O R R U N 8 Phosphorous Concentration vs Time REACTOR1 REACTOR 'REACTOR4REACTOR 4 Total Total Sample Sample Cone. Cone. Cone. Time Cone. mg/L DAY mg/L mg/L mg/L 0.528 5.28 0.152 1.52 3 4.988 49.88 6 0.431 4.31 4.149 41.49 0.358 3.58 10 3.105 3.59 35.9 13 0.621 7.114 35.57 17 0.552 2.76 3.715 4.923 30.76875 20 0.743 5.904 29.52 24 0.767 3.835 4.674 23.37 27 0.833 4.165 3.805 8.878 44.39 31 0.761 34 0.914 4.57 12.345 61.725 4.105 10.948 54.74 38 0.821 10.958 54.79 0.944 4.72 41 3.335 8.799 43.995 45 0.667 4.74 6.258 31.29 48 0.948 Ammonia Concentration V s Time  Time DAY 3 6 10 13 17 20 24 27 31 34 38 41 45 48  REACTOR1 REACTOR 'REACTOR4REACTOR 4 Total Sample Total Sample Cone. Cone. Cone. Cone. mg/L mg/L mg/L mg/L 1.42 0.418 4.18 0.142 0.89 3.058 30.58 0.089 2.245 22.45 0.226 2.26 0.287 1.435 1.103 11.03 0.416 2.08 0.125 0.625 0.563 0.078 0.39 3.51875 0.875 0.173 1.08125 0.175 1.375 0.142 0.8875 0.275 0.5 8.992 56.2 0.1 0.81 14.558 90.9875 0.162 0.27 14.908 93.175 0.054 0.445 11.832 73.95 0.089 0.695 10.179 63.61875 0.139 1.345 3.997 24.98125 0.269  243  NUTRIENT ANALYSIS F O R RUN9 Phosphorous Concentration Vs Time  SAMPLE Days 3 6 10 13 17  Dil. Sample REACTOR2DH. Sample REACTOR3DH Sample R E A C T O R 5 C O N C . TOT. C O N C C O N C . TOT. C O N C CONC. TOT. CONC mg/L mg/L mg/L mg/L mg/L mg/L 19.46 3.892 14.951 74.755 1.713 8.565 4.438 22.19 14.587 72.935 2.204 11.02 27.265 5.453 14.556 72.78 2.162 10.81 8.59 42.95 15.884 79.42 1.561 7.805 45.66 13.086 1.837 9.185 9.132 65.43  mmonia Concentration Vs Time  SAMPLE Days 3 6 10 13 20  Dil. Sample REACTOR2DH. Sample REACTOR3Dil Sample R E A C T O R 5 C O N C . TOT. C O N C C O N C . TOT. C O N C CONC. TOT. CONC mg/L mg/L mg/L mg/L mg/L mg/L 14.947 74.735 47.975 239.875 0.37 1.85 14.27 71.35 45.023 225.115 1.15 5.75 13.612 68.06 38.091 0.585 2.925 190.455 18.752 93.76 38.193 190.965 2.685 13.425 26.789 133.945 34.011 1.188 5.94 170.055  244  NUTRIENT ANALYSIS F O R RUN10 Phosphorous Concentration Vs Time Diluted Time Sample R E A C T O R 3 Days C O N C . TOT. CONC mg/L mg/L 1 44.1 8.82 3 7.871 39.355 30.455 6 6.091 10 4.587 22.935 47.41 13 4.741 17 44.9 4.49 21 3.834 38.34 24 63.99 6.399 27 58.16 5.816 58.66 31 5.866 34 50.42 5.042 38 4.962 49.62 41 5.099 50.99 47 3.548 35.48 Ammonia Concentration Vs Time Diluted Time Sample R E A C T O R 3 Days C O N C . TOT. C O N C mg/L mg/L 1 18.009 90.045 15.09 75.45 3 39.74 6 7.948 10 1.777 8.885 13 3.352 33.52 17 1.889 18.89 21 1.17 11.7 24 6.067 60.67 27 5.376 53.76 31 5.914 59.14 34 4.643 46.43 38 46.43 4.643 41 4.477 44.77 47 2.522 25.22  245  NUTRIENT ANALYSIS F O R RUN11 Phosphorous Concentration Vs Time R#1 Diluted R#2 Diluted R#4 Diluted Sample R E A C T O R 4 Time Sample R E A C T O R 1 Sample R E A C T O R 2 C O N C . TOT. CONC CONC. TOT. CONC Days CONC. TOT. CONC mg/L mg/L mg/L mg/L mg/L mg/L 9.84 1 0.896 4.48 3.834 19.17 1.968 3 5.05 3.29 16.45 1.085 5.425 1.01 25.08 6 0.615 6.15 4.659 46.59 2.508 10 0.906 9.06 3.408 34.08 2.968 29.68 14 25.97 1.022 10.22 2.325 23.25 2.597 17 9.72 3.985 3.659 36.59 0.972 39.85 39.36 20 0.88 8.8 2.796 27.96 3.936 9.25 37.53 24 0.925 3.363 33.63 3.753 3.639 3.164 31.64 27 0.852 8.52 36.39 39.22 31 0.87 8.7 3.844 38.44 3.922 34 8.63 3.907 3.667 36.67 0.863 39.07 3.348 2.687 26.87 40 0.991 9.91 33.48 Ammonia Concentration Vs Time  Time Days 1 3 6 10 14 17 20 24 27 31 34 40  R#1 Diluted R#2 Diluted R#4 Diluted Sample R E A C T O R 4 Sample R E A C T O R 1 Sample R E A C T O R 2 CONC. TOT. CONC CONC. TOT. CONC CONC. TOT. CONC mg/L mg/L mg/L mg/L mg/L mg/L 1.29 9.298 4.105 20.525 0.258 46.49 0.144 0.72 9.505 47.525 0.264 1.32 3 8.876 88.76 45.65 0.3 4.565 0.022 0.22 7.806 78.06 3.332 33.32 0.316 3.16 5.376 2.272 22.72 53.76 0.32 3.2 10.337 103.37 6.94 69.4 0.215 2.15 8.516 85.16 6.277 62.77 0.173 1.73 8.043 80.43 5.918 59.18 1.43 5.341 53.41 0.143 7.263 72.63 0.192 1.92 6.801 68.01 5.447 54.47 0.186 1.86 6.453 64.53 4.878 48.78 0.289 2.89 5.571 55.71 2.122 21.22  246  G C Area Data For Run 6 Compound :Xylene Area Day R#1 1 26085 6 10288 13 8539 34 8971 37 8466 48 0  R#3 32760 9928 0 0  R#4 9350 14845 850 0 0 0  Compound Diphenyl Area R#1 Day 1 612795 543082 6 13 34 264414 37 229000 48 249027  R#3 1028183 255835 35371 25468  R#4 1080678 499029 501822 337915 80360 50733  Compound Diphenyl Ether Area R#3 Day R#1 1 3072504 6064720 6 2852054 2447160 13 3470630 371987 34 1709155 211206 37 1490319 48 2125884  R#4 1080678 6856301 2195869 2511867 639461 163770  247  G C Data Continued Run 6 Compound Diphenyl Methane Area R#3 Day R#1 100874 1 43458 6 45567 71759 13 125105 27193 34 29651 11839 37 26593 48 38532  R#4 99031 186183 80656 137093 103314 157618  Compound Benzene, 1,1' Methylene bis (4-methyl) Area Day R#1 R#3 R#4 1 40441 71386 74258 138725 6 45669 53996 13 135817 27393 60774 34 30264 51288 15089 37 28149 40832 48 37283 57366 Compound :1,24Dimethyl-4-Benzyl Benzene Area Day R#1 R#3 R#4 1 57929 133146 83000 6 61021 17629 42278 13 164066 0 18232 34 27798 0 32212 37 23568 10015 48 13308 11437  248  GC Data For Run 7 Compound Xylene Area Day REACTOR2 REACTOR3 REACTOR5 1 601124 606692 507598 12 0 0 88705 33 21620 26238 174597 42 27785 25874 169060  GC Target Organics Concentration For Run 7 Xylene ppm ppm ppm REACTOR2REACTOR3 REACTOR5 243.43 245.6848 205.5559 0 0 35.9218 8.755192 10.62529 70.70445 10.41398 9.697724 63.36466  Compound Diphenyl Area Day REACTOR2 REACTOR3 REACTOR5 1 2857254 3104883 2813771 12 7366 13985 1528158 33 12519 0 1978840 42 0 11102 2334758  Diphenyl ppm ppm ppm REACTOR2REACTOR3REACTOR5 1157.068 1257.347 1139.459 2.98292 5.663337 618.8398 5.069669 0 801.3471 0 4.161093 875.0807  Compound Diphenyl Ether Area Day REACTOR2 REACTOR3 REACTOR5 1 13063536 14050811 12522000 12 338863 3672268 7389715 33 82952 25897 9236297 42 0 66325 10851424  Compound Diphenyl Ether ppm ppm ppm REACTOR2REACTOR3REACTOR5 5290.183 5689.988 5070.884 137.2253 1487.114 2992.524 33.59207 10.4872 3740.312 0 24.85899 4067.176  Compound Diphenyl Methane Area Day REACTOR2 REACTOR3 REACTOR5 1 141741 166077 158577 12 24745 75611 101010 33 13564 14774 131798 42 0 12753 154933  Compound Diphenyl Methane ppm ppm ppm REACTOR2REACTOR3 REACTOR5 57.39915 67.25421 64.21702 10.02069 30.61928 40.90481 5.49285 5.982849 53.37265 0 4.779898 58.06978  Compound Benzene, 1,1' Methylene bis (4-methyl) Area Day REACTOR2 REACTOR3 REACTOR5 1 46849 53602 50678 16987 23453 49703 12 33 10717 14314 119230 42 0 10139 284277  Compound Benzene, 1,1' Methylene bis (4-meth ppm ppm ppm REACTOR2REACTOR3 REACTOR5 18.97188 21.70656 20.52246 6.879021 9.49748 20.12763 4.339935 5.796569 48.28314 0 3.800155 106.5487  Compound :1,2-Dimethyl-4-Benzyl Benzene Area Day REACTOR2 REACTOR3 REACTOR5 1 341776 412960 344486 12 0 0 22516 33 0 0 131109 42 0 0 179021  Compound :1,2-Dimethyl-4-Benzyl Benzene ppm ppm ppm REACTOR2REACTOR3 REACTOR5 138.4049 167.2314 139.5024 0 0 9.118034 0 0 53.09364 0 0 67.0981  249  G C Data Vs Time For Run 10  G C Conscentration Of target Organics V s Time  FOR RUN10 Compound :  R U N 10 Compound :  Day 1 6 13 24 27 34 41  Compound : Day 1 6 13 24 27 34 41  Xylene Area R#3 177852 5125 0 0 143290 0 0  Diphenyl Area R#3 657054 38916 12177 0 0 0 0  Compound Diphenyl Ether Area R#3 Day 1 3518673 6 724409 13 94426 24 60904 27 61670 34 0 41 0  Day 1 6 13 24 27 34 41  Compound : Day 1 6 13 24 27 34 41  Xylene ppm R#3 78.2861 2.2559 0 0 45.73525 0 0  Diphenyl ppm R#3 289.2191 17.12987 5.275719 0 0 0 0  Compound Diphenyl Ether ppm Day R#3 1 1548.834 6 318.8671 13 40.91032 24 20.54485 27 19.68381 34 0 41 0  250  Run 10 G C Data and Concentration (Continued) Compound Diphenyl Methane Compound Diphenyl Methane Area ppm Day R#3 Day R#3 1 25868 1 11.38646 13840 6 6 6.09203 13 7.984848 13 18430 24 24 4.075305 12081 27 3.435969 27 10765 34 0 34 0 41 41 0 0  Compound .Benzene, 1,1" Methylene bis (4-methBenzene, 1,1' Methylene bis (4-meth Area ppm R#3 Day R#3 Day 1 7.712756 1 17522 6 9823 6 4.323845 13 14696 13 6.367082 24 0 24 0 27 0 27 0 34 34 0 0 41 41 0 0  Compound :1,2Dimethyl-4-Benzyl Area Benzene Day R#3 1 58588 6 0 13 0 24 0 27 0 34 0 41 0  Day 1 6 13 24 27 34 41  251  1,2-Dimethyl-4-Benzyl Benzene ppm R#3 25.78901 0 0 0 0 0 0  G C Data Vs Time For Run 11  G C Concentration Data Vs Time For Run 11  Compound :  Compound Xylene  Xylene Area R#1 431888 163959 106078 188469 265748 81400 190545  ppm R#1 187.1167 71.03569 35.78348 60.15547 82.76147 27.56929 70.50944  PPm R#2 256.8985 82.97223 24.76892 52.44504 4.381174 6.805279 6.354342  PPm R#4 675.9601 20.27883 16.43986 60.18994 10.08841 7.302136 5.629062  Compound Diphenyl PPm R#1 R#4 Day 1 738.3887 5386252 650.334 1911125 6 277663 17 281.4312 418201 20 432.6917 27 825.2849 503320 34 656.4021 323951 684.858 76277 40  ppm R#2 949.382 527.8097 121.8783 171.6787 63.61018 75.00269 37.29938  PPm R#4 2333.608 828.0001 93.66455 133.4812 156.7481 109.7187 28.22561  Compound Diphenyl Ether Compound Diphenyl Ether Area PPm ppm R#2 R#1 R#4 Day Day R#1 R#2 1 3493.886 4424.775 1 8064313 10212919 25425872 6 3750.887 3230.994 8657503 7457528 10564312 6 5012795 17 1664.227 818.0595 17 4933501 2425089 2777.35 1083.686 7302680 20 8701526 3395222 20 27 5190.939 472.7551 5556599 27 16668164 1518022 34 3155.469 550.3277 4214936 34 9316714 1624876 2333167 40 4186.893 301.1071 813713 40 11314676  ppm R#4 11015.83 4577.017 1690.975 2330.867 1730.483 1427.553 863.3672  Day 1 6 17 20 27 34 40  Compound : Day 1 6 17 20 27 34 40  Diphenyl Area R#1 1704291 1501050 834286 1355637 2649999 1938067 1850763  R#2 592953 191510 73426 164312 14068 20093 17172  R#2 2191289 1218249 361301 537875 204253 221450 100798  R#4 1560198 46806 48735 188577 32394 21560 15212  252  Day 1 6 17 20 27 34 40  G C Concentration Data Vs Time For Run 11 G C Data Vs Time For Run 11 (Continued) Compound Diphenyl Methane Compound Diphenyl Methane ppm ppm ppm Area R#2 R#4 R#1 Day R#4 R#2 R#1 Day 1 32.66552 37.42394 105.6448 86379 243841 75396 1 34.65329 29.04916 51.84779 6 119671 67049 79984 6 17 14.25733 11.01928 22.57998 66937 32666 42265 17 29.79318 15.87759 40.55847 20 127071 49745 93343 20 51.10695 7.834915 28.67975 27 92091 25158 164105 27 34 51.57625 15.70704 22.51503 66477 46376 152282 34 40 47.68532 8.916875 22.02298 59515 24097 128865 40 bis (4-metr ppm R#4 74.70967 37.78007 17.82461 27.27964 8.681377 8.019141 25.74708  Compound Benzene, 1,1' Methylene bis (4-methyl) Area R#4 R#2 Day R#1 172439 56182 1 66403 87201 46047 6 83694 52840 28428 17 47938 85468 37776 20 85382 27876 5588 27 60357 23677 35407 34 49524 69579 23140 40 33745  Benzene, 1,1' Methylene ppm ppm R#2 R#1 Day 1 28.76928 24.34101 6 36.26065 19.94999 17 16.17101 9.589667 27.2522 12.05733 20 I. 740262 18.79688 27 II. 99196 16.77324 34 8.562746 12.48703 40  Compound :1,2-Dimethyl-4-Benzyl Benzene Area R#4 R#2 R#1 Day 147980 786422 247929 " 1 251996 78824 161707 6 23702 56446 103352 17 24505 54804 128067 20 23055 0 240563 27 18381 0 163454 34 14917 0 165412 40  :1,2-Dimethyl-4-Benzyl BCompound : ppm ppm ' ppm R#2 R#4 R#1 Day 1 107.4159 64.11274 340.7195 109.178 70.06 34.15071 6 17 34.86391 19.04103 7.995437 20 40.87638 17.49232 7.821497 0 7.179981 27 74.91814 0 6.225443 34 55.36008 5.5199 0 61.2092 40  253  FOR RUN8 GC Data Compound :Xylene Area Day R#1S R#1T R#4S R#4T 1 35824 314482 45529 370582 0 5292 3 9068 5292 6 10851 195738 0 6834 6089 10 11056 23935 0 35474 20465 13 53742 223943 0 17 10995 56290 0 20 8949 16118 0 0 24 40844 78419 26775 29149 18069 27 18069 128196 0 12273 0 0 31 150198 0 34 165226 41 18196 0 48 12154 134954 0 0 Compound :Diphenyl Area Day R#1S R#1T R#4S R#4T 1 16969 1144097 18847 1286241 3 11541 245177 24574 577366 6 14762 1838567 0 135926 10 19096 248291 0 28939 13 25634 1257860 0 10643 17 16549 426219 0 0 20 10904 215658 0 0 24 31649 769005 0 6549 27 39137 - 1018529 0 90139 31 29445 1468000 0 13500 34 12946 1623063 41 230163 48 49711 1577825 0 8283  Compound : Diphenyl Ether Area R#1S R#1T R#4S R#4T 114824 6302583 1 91234 5633244 3 72804 1505417 147511 3032592 125904 9714849 220602 3669137 6 241631 1646734 134987 1863057 10 176599 1964704 13 145695 6426396 17 185769 2664412 360330 1404930 739967 20 140448 1505772 221520 24 193509 4227287 110943 579730 27 221976 5323431 156731 1252524 137000 374074 31 254021 8035526 34 191506 8876656 90432 41 1489324 92105 48 294467 8507148 0 254  GC Data Continued (Run8): • Day  Diphenyl Methane Area R#1S R#1T R#4S R#4T 1 0 54354 0 65255 3 0 13424 0 34911 6 0 100662 0 45208 10 0 15174 0 23543 13 0 67423 0 31822 17 0 29600 10096 42460 20 0 17152 9449 27285 24 0 31818 0 22740 27 0 59505 0 31214 31 0 82665 12000 21668 34 92728 24589 41 15120 25322 48 0 96002 0 22303  Compound : Benzene, 1,1' Methylene bis (4-methyl) Area Day R#1S R#1T R#4S R#4T 1 0 36548 0 42620 3 0 9142 0 23742 6 0 71481 0 30339 10 0 13714 0 20052 13 0 53372 0 24273 17 0 24994 9888 32534 20 0 12227 0 25998 24 0 77260 0 0 27 0 58339 0 29371 31 0 87836 11550 21668 34 104029 23610 41 23721 24891 48 0 122900 0 18491  Compound : 1,2-Dimethyl-4-Benzyl Benzene Area R#1S R#1T R#4S 1 137170 0 3 0 32892 0 207560 6 10 0 27025 13 0 144229 17 0 25098 20 0 9509 24 0 109323 27 0 103160 31 0 103160 34 145360 41 21810 48 0 120382  R#4T 200277 58894 16536 17951 3517 12904 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0  255  GC Concentration vs Time For Run 8 Compound :Xylene PPM R#1S R#1T R#4S R#4T 14.50721 127.352 18.43733 150.0701 3.672159 2.143038 0 2.143038 4.394199 79.26567 0 2.767483 4.477215 9.692669 0 2.465789 21.76325 90.68751 14.36548 8.287465 3.951754 20.2314 0 0 3.216394 5.793031 0 0 15.30857 29.39189 10.03542 10.92521 6.772365 48.0486 0 6.772365 4.661195 57.0441 0 0 0 62.75162 0 0 0 6.906354 0 0 5.349894 59.40345 0 0 Compound :Diphenyl PPM R#1S R#1T R#4S R#4T 6.871732 463.3112 7.632243 520.8736 4.67362 99.28638 9.951437 233.809 5.97799 744.5424 0 55.04432 7.733078 100.5474 0 11.71908 10.38069 509.3804 0 4.309968 0 5.947938 153.189 0 3.919047 77.51045 0 0 11.86223 288.2275 0 2.454603 14.66877 381.7505 0 33.78461 11.183 557.5356 0 5.127201 0 616.4274 0 4.916796 0 87.35916 0 0 21.88157 694.52 0 3.645974  Compound Diphenyl Ether PPM R#1S R#1T RMS R#4T 36.94594 2281.227 46.4989 2552.281 29.48256 609.6306 59.73576 1228.072 50.98583 3934.106 89.33454 1485.846 97.8504 666.8581 54.66406 754.4598 2602.42 71.51517 795.6226 59.00035 66.76793 957.6263 129.5076 504.9511 50.47894 541.1951 79.61733 265.9543 72.52828 1584.411 41.58207 217.2861 83.19788 1995.252 58.74368 469.4532 52.0316 142.0706 96.47532 3051.834 3371.289 0 72.73258 0 565.278 0 34.32378 0 0 40.54237 129.6172 3744.639  256  GC Concentration Continued(Run8) Diphenyl Methane PPM R#1S R#1T R#4S R#4T 0 22.01109 0 26.42553 0 5.436156 0 14.13749 0 40.76388 0 18.30734 0 6.144832 0 9.533926 0 27.30348 0 12.88657 0 10.63865 3.628641 15.26071 0 6.164664 3.3961 9.806604 0 11.92557 0 8.523082 0 22.30282 0 11.69919 0 31.39556 4.557512 8.229348 0 9.338722 0 35.21742 0 5.738848 0 9.611052 0 42.25773 0 9.817236  Compound Benzene, 1,1' Methylene bis (4-methyl) PPM R#1S R#1T R#4S R#4T 0 14.8004 0 17.25931 0 3.702126 0 9.614512 0 28.9468 0 12.28602 0 5.553594 0 8.120217 0 21.61342 0 9.829545 0 8.983187 3.553883 11.69317 0 4.394552 0 9.344038 0 28.95749 0 0 0 21.86579 0 11.00842 0 33.35947 4.386605 8.229348 0 39.50945 0 8.966905 0 9.003387 0 9.447464 0 8.139286 0 54.09758  Compound :1,2-Dimethyl-4-Benzyl Benzene PPM R#1T R#4S R#4T 0 55.54809 0 81.10377 0 13.31988 0 23.8496 0 84.05308 0 6.696385 0 7.269401 0 10.94399 0 58.40668 0 1.424237 0 4.637875 0 9.020566 0 3.417665 0 0 0 39.29219 0 0 0 38.66496 0 0 0 38.66496 0 0 0 55.20666 0 0 0 8.27806 0 ' 0 0 52.98921 0 0 257  GC Data For Run 9 Compound :Xylene Day  GC Data On Concentration Of Target Organic Compounds For Run 9 Xylene Area ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 266633 45515 169060 107.9752 18.43166 68.4622 6 40518 0 169060 16.40809 0 68.4622 99381 0 0 37.74418 13 0 0 0 0 47903 0 0 18.18175 20 97741 0 0 43.0232 27 0  Diphenyl Compound Diphenyl Area ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 Day 1144032 17217 2334758 463.2849 6.972162 945.4789 1 0 945.4789 73963 0 2334758 29.95191 6 0 661.5962 22498 0 1741993 8.544576 13 0 312.5626 0 0 823501 0 20 0 730.6884 25418 1659993 11.18838 27 Compound Diphenyl Ether Compound Diphenyl Ether Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 77.6673 4394.371 5531308 191791 10851424 2239.947 1 10851424 255.6812 30.19043 4394.371 631377 74552 6 7945759 73.17427 0 3017.741 192669 0 13 3870408 33.54038 0 1469.027 88368 0 20 7494024 78.27246 0 3298.686 177821 27 Compound Diphenyl Methane Compound Diphenyl Methane Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5REACTOR2 REACTOR3 REACTOR5 0 154933 17.08801 0 62.74135 1 42197 0 154933 3.61668 0 62.74135 6 8931 0 117002 1.756161 0 44.4365 13 4624 0 56655 0 0 21.5036 20 0 107379 0 0 47.26561 27 0 Compound Benzene, 1,1' Methylene bis (4-methCompound Benzene, 1,1' Methylene bis (4-metlr Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 26564 0 284277 10.7573 0 115.1202 6 0 0 284277 0 0 115.1202 13 0 0 354193 0 0 134.5199 20 0 0 162823 0 0 61.80003 27 0 442849 0 0 194.9313 Compound :1,2-Dimethyl-4-Benzyl Benzene Compound :1,2-Dimethyl-4-Benzyl Benzene Area ppm ppm ppm Day REACTOR2 REACTOR3 REACTOR5 REACTOR2 REACTOR3 REACTOR5 1 122482 0 179022 49.60006 0 72.49639 0 0 72.49639 6 0 0 179022 0 0 117363 0 0 44.57361 13 0 26.29698 20 0 0 69284 0 0 0 50.33804 27 0 114359  258  G C Data On Concentration Of Target Organic Compounds For Run 9 Xylene ppm ppm ppm REACTOR2 REACTORS REACTORS 107.9752 18.43166 68.4622 16.40809 0 68.4622 0 0 37.74418 0 0 18.18175 0 0 43.0232 Diphenyl ppm ppm ppm REACTOR2 R E A C T O R 3 R E A C T O R 5 463.2849 6.972162 945.4789 29.95191 0 945.4789 8.544576 0 661.5962 0 0 312.5626 11.18838 0 730.6884 Compound iDiphenyl Ether ppm ppm ppm REACTOR2 REACTOR3 REACTOR5 2239.947 77.6673 4394.371 255.6812 30.19043 4394.371 73.17427 0 3017.741 33.54038 0 1469.027 78.27246 0 3298.686 Compound Diphenyl Methane ppm ppm ppm REACTOR 2 REACTOR 3 R E A C T O R 5 17.08801 0 62.74135 3.61668 0 62.74135 1.756161 0 44.4365 0 0 21.5036 0 0 47.26561 Compound Benzene, 1,1' Methylene bis (4-meth ppm ppm ppm REACTOR2 R E A C T O R 3 R E A C T O R 5 10.7573 0 115.1202 0 0 115.1202 0 0 134.5199 0 0 61.80003 0 0 194.9313 Compound :1,2-Dimethyl-4-Benzyl Benzene ppm ppm ppm REACTOR2 R E A C T O R 3 REACTOR5 49.60006 0 72.49639 0 0 72.49639 0 0 44.57361 0 0 26.29698 0 0 50.33804  2  Appendix The i n i t i a l  and f i n a l  B  Gas C h r o m a t o g r a p h t r a c e s f o r r u n  260  i  i  s  .  u  s  I U !-•  Initial  GC  trace 261  for  run  5  't . ^ 5 1  1 Z .fat b  )  it) . 1 b 1  U . ob1  i b .but  I  [  •i  . b f  c: >j  The  uy  Final  GC  trace  for  262  run  5  (Day  41).  

Cite

Citation Scheme:

    

Usage Statistics

Country Views Downloads
United States 37 0
China 7 5
Canada 2 0
Russia 2 0
Japan 2 0
India 1 0
Netherlands 1 1
City Views Downloads
Seattle 12 0
San Jose 12 0
San Francisco 4 0
Ashburn 4 0
Hangzhou 4 0
Unknown 4 0
Wilmington 3 0
Tokyo 2 0
Guangzhou 2 0
Amsterdam 1 1
Dallas 1 0
Sunnyvale 1 0
Shaoxing 1 0

{[{ mDataHeader[type] }]} {[{ month[type] }]} {[{ tData[type] }]}
Download Stats

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050323/manifest

Comment

Related Items