Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Computer assisted methods selection for high-rise construction Sharma, Anoop 1997

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1997-0598.pdf [ 5.33MB ]
Metadata
JSON: 831-1.0050248.json
JSON-LD: 831-1.0050248-ld.json
RDF/XML (Pretty): 831-1.0050248-rdf.xml
RDF/JSON: 831-1.0050248-rdf.json
Turtle: 831-1.0050248-turtle.txt
N-Triples: 831-1.0050248-rdf-ntriples.txt
Original Record: 831-1.0050248-source.json
Full Text
831-1.0050248-fulltext.txt
Citation
831-1.0050248.ris

Full Text

COMPUTER  ASSISTED METHODS SELECTION  FOR HIGH-RISE  CONSTRUCTION  by  ANOOP SHARMA  B.TECH., INSTITUTE  A THESIS  OF T E C H N O L O G Y , B H U , INDIA,  1992  S U B M I T T E D IN P A R T I A L F U L F I L M E N T OF  THE R E Q U I R E M E N T S F O R T H E D E G R E E OF M A S T E R OF A P P L I E D  SCIENCE  in THE F A C U L T Y OF G R A D U A T E D E P A R T M E N T OF C I V I L  STUDIES  ENGINEERING  W e a c c e p t t h i s t h e s i s as c o n f o r m i n g to t h e ^ r e q u i r e d s t a n d a r d  THE U N I V E R S I T Y OF BRITISH C O L U M B I A  O c t o b e r 1997  © A n o o p S h a r m a , 1997  in  presenting  degree freely  a\  this  the  thesis  in  partial  fulfilment  of  University  of  British  Columbia,  I agree  available for  copying  of  department publication  this  reference  thesis  or. by of  this  for  his  and study. scholarly  or  thesis  for  her  I further  purposes  C W I L  The University of British Vancouver, Canada  It  Date  DE-6 (2/88)  bCLT.  £HQ\H-£^HG,  15 ", i-'tSSf :  "  that  the  an  advanced  Library shall make  by  understood be  for  permission  granted  is  gain shall not  Columbia  that  be  permission.  Department of  requirements  agree  may  representatives.  financial  the  for  the that  allowed without  it  extensive  head  of  my  copying  or  my  written  ABSTRACT  The  intention  of  this  thesis  is  to  represent  construction  m e t h o d s a n d resources, d e t e r m i n e h o w their d e s c r i p t i o n c a n b e tailored  to  the  project  at  hand,  represent  the  construction  c o n t e x t a n d key a t t r i b u t e s of t h e design s o l u t i o n , a n d show h o w m e t h o d s a n d p h y s i c a l d e s c r i p t i o n should b e l i n k e d . A d d i t i o n a l l y , work  is d i r e c t e d  at  the  spectrum  of  issues  that  have  to  be  c o n s i d e r e d in o r d e r to j u d g e t h e feasibility of a m e t h o d for a g i v e n c o n s t r u c t i o n a n d d e s i g n c o n t e x t , a n d at h o w t h e r e a s o n i n g a b o u t t h e a p p l i c a b i l i t y of a g i v e n m e t h o d t o a s p e c i f i c can  at  least b e p a r t i a l l y a u t o m a t e d . Several of t h e  developed management  have  been  system  implemented  called  in  REPCON. The  a  context concepts  research  context  of  b u i l d i n g c o n s t r u c t i o n has b e e n used as a p r o j e c t c o n t e x t .  11  project high-rise  TABLE OF CONTENTS ABSTRACT  ii  T A B L E O F CONTENTS  iii  LIST O F FIGURES  v  ACKNOWLEDGEMENT  vii  1. INTRODUCTION  1  1.1 INTRODUCTION 1.2 THE TRADITIONAL APPROACH 1.3 RESEARCH OBJECTIVE AND METHODOLOGY 1.4 OVERVIEW OF PROBLEM DOMAIN 1.5 ORGANIZATION OF THE THESIS  1 3 5 7 8  2. LITERATURE SURVEY FOR METHODS SELECTION P R O B L E M AND C Y C L E DESIGN  2.1 INTRODUCTION 2.2 PROJECT VIEW 2.2.1 PHYSICAL VIEW 2.2.2 PROCESS VIEW  2.2.2.1 DEFINITION OF METHODS 2.2.2.2 METHODS SELECTION 2.2.2.3 CYCLE DESIGN (SCHEDULING)  9  9 9 10 13  '.  13 15 20  3. F R A M E W O R K FOR METHODS SELECTION AND C O N C E P T U A L DESIGN  23  3.1 INTRODUCTION 3.2 SYSTEM EXPECTATIONS 3.3 RESEARCH CHALLENGES 3.4 TERMINOLOGY 3.4.1 METHODS STATEMENT 3.4.2 OPERATION 3.4.3 METHOD CLASS 3.4.4 METHOD 3.4.5 RESOURCE CLASS 3.4.6 PARAMETERS/CONDITIONS 3.4.7 PROJECT 3.4.8 SUB-PROJECTS 3.4.9 SYSTEM 3.4.10 SUB-SYSTEMS 3.4.11 ELEMENTS 3.4.12 SUB-ELEMENTS 3.4.13 LOCATION SET 3.4.14 LOCATIONS 3.5 EVOLUTION OF DESIGN OF COMPUTER ENVIRONMENT 3.5.1 STANDARD LEVEL 3.5.2 PROJECT LEVEL 3.5.2.1 PHYSICAL VIEW  iii  ;  23 23 25 28 29 30 30 30 31 32 33 33 34 34 34 35 35 35 36 58 58 60  3.5.2.2 PROCESS VIEW 3.5.2.3 PERFORMANCE EVALUATION 3.5.2.4 OUTPUT  60 61 61  4. IMPLEMENTATION AND PROTOTYPE EXAMPLES 4.1 INTRODUCTION 4.2 P R O B L E M D O M A I N 4.3 S Y S T E M C O M P O N E N T S 4.3.1 S T A N D A R D L E V E L 4.3.1.1 PHYSICAL COMPONENTS BREAKDOWN STRUCTURE-PCBS 4.3.1.2 METHODS & RESOURCE BREAKDOWN STRUCTURE - M&RBS 4.3.1.3 PARAMETERS AND CONDITIONS 4.3.1.4 FRAGNETS 4.3.2 PROJECT L E V E L 4.3.2.1 PHYSICAL COMPONENT BREAKDOWN STRUCTURE - PCBS 4.3.2.2 METHODS & RESOURCE BREAKDOWN STRUCTURE (M&RBS) 4.3.3 ACTIVITIES, P L A N N I N G A N D S C H E D U L I N G V I E W 5. CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH 5.1 THESIS R E V I E W 5.2 C O N T R I B U T I O N OF T H E THESIS 5.3 R E C O M M E N D A T I O N S FOR F U T U R E W O R K  62 62 63 66 68 69 74 83 93 102 102 107 112 115 115 117 117  BIBLIOGRAPHY  121  APPENDIX A: METHODS STATEMENT REPORTS  126  APPENDIX B: M E T H O D AND RESOURCE CLASS REPORTS  132  APPENDIX C:  136  FRAGNET REPORTS  APPENDIX D: PCBS TEMPLATES  139  APPENDIX E: ACTIVITIES REPORT FOR C Y C L E DESIGN  151  iv  LIST O F FIGURES  Figure-3.1  O v e r v i e w o f M e t h o d s Selection System C o m p o n e n t  59  Figure-4.2.1  Physical Data for High-Rise C o n d o m i n i u m Project  64  Figure-4.2.2  Typical Floor Diagram  65  Figure-4.3.1  Implementation Environment  67  Figure-4.3.1.1.1  T y p i c a l standard P C B S Templates f o r F l i g h - R i s e C o n s t r u c t i o n  70  Figure-4.3.1.1.2  D e f i n i n g P C B S T e m p l a t e s and T r e e Structure  72  Figure-4.3.1.1.3  D e f i n i n g Parameters/Conditions/Multimedia Records for P C B S  74  Elements Figure-4.3.1.2.1  T y p i c a l M & R B S Templates  76  Figure-4.3.1.2.2  D e f i n i n g M e t h o d s Class T e m p l a t e  77  Figure-4.3.1.2.3  D e f i n i n g Resource Class T e m p l a t e  78  Figure-4.3.1.2.4  Contents o f W i n d o w M e n u I t e m i n M & R B S T e m p l a t e  79  Figure-4.3.1.2.5  H i e r a r c h i c a l Tree Structure i n M & R B S  80  Figure-4.3.1.2.6  A n O v e r v i e w o f M e t h o d s & Resource B r e a k d o w n Structure  82  Figure-4.3.1.3.1  W i n d o w M e n u I t e m t o define P a r a m e t e r / C o n d i t i o n  84  Figure-4.3.1.3.2  D e f i n i n g Parameter/Condition for P C B S Elements  86  Figure-4.3.1.3.3  Selecting Parameter or C o n d i t i o n f o r M & R B S C o m p o n e n t s  87  Figure-4.3.1.3.4  Selecting T y p e o f P a r a m e t e r / C o n d i t i o n f o r M & R B S C o m p o n e n t  88  Figure-4.3.1.3.5  Selecting Operator t o define P a r a m e t e r / C o n d i t i o n V a l u e s  90  Figure-4.3.1.3.6  Selecting units f o r P a r a m e t e r / C o n d i t i o n V a l u e s  91  v  Figure-4.3.1.3.7  Entering Parameter/Condition Values  92  Figure-4.3.1.4.1  Associating Fragnet to Method in Method Class Template  94  Figure-4.3.1.4.2  Adding Fragnet to Standard Fragnet Template  95  Figure-4.3.1.4.3  Window Menu Items for Constituents of Fragnet  97  Figure-4.3.1.4.4  Adding Constituent Tasks to Fragnet  99  Figure-4.3.1.4.5  Adding Fragnets under Fragnet  100  Figure-4.3.1.4.6  Defining Predecessor/Successor to Tasks  101  Figure-4.3.2.1.1  PCBS Templates at Project Level  104  Figure-4.3.2.1.2  Window Menu Items for PCBS Components at Project Level  105  Figure-4.3.2.1.3  Adding Project PCBS Templates from Standard P C B C  107  Figure-4.3.2.2.1  Window Menu Items for Project M & R B S Components  109  Figure-4.3.2.2.2  Adding standard M & R B S Templates to Project M & R B S  110  Figure-4.3.3.1  Copying Fragnet Tasks and Operations as Activities  112  Figure-4.3.3.2  Bar chart for 5-day cycle for a typical floor construction in High-Rise  113  Figure-4.3.3.3  Linear Representation of 5-days Cycle for Typical Floor in Terms of Operations; Build Verticals and Build Horizontals  114  vi  ACKNOWLEDGEMENT  I am his  greatly  invaluable  Russell  My  and  M a n a g e m e n t  I  two  widely  Asad's mine  like  criticism.  through  for  Professor  his and  supervisory  guidance, support.  committee  providing invaluable  Mr. William  W o n g  responsible  was  on  with to  and  His  for  m e m b e r  feedback.  of the writing  make In  problem  Construction the  code  for  an  high  and  effort  to  structure, for  rise  construction.  The  the  Chair  in  through  an  friend  and  individual  design  of the  my  with  a  decided  methods  underground  of  up  we  sewer  degree  and  come  underground  our  Russell,  mention  on  of  Dr.  technology.  special  domains  construction  large  a  through  Construction  trenchless  requirements  a  provided  representation  focuses  complete to  explore  selection,  namely  sewer  construction.  construction  long  hours  problem system  we  whereas spent  domains as  in  have  discussed  in  thesis. Finally,  love  Russell  appreciated.  was  Udaipurwala.  rise  the to  who  Alan  encouragement  thesis  Design  divergent  focuses  influenced  my  greatly  work  methods  thesis  discussing  the  the  also  high  much  to  constructive  contribution  for r e v i e w i n g a n d  dealing  A s a d  rigorous  of  for  would  and  and  Professor  program.  grant  colleague  that  extends  Integrated  N R G / I R A P  input  were  Laboratory,  Funding  supervisor  continuous  like to t h a n k  application  Computer  and  patience  Froese  I would  my  priceless  gratitude  T h o m a s  to  incisive  insight,  dedication  the  and  provided  knowledge,  Dr.  indebted  and  I am  grateful  to  my  friends  care.  Vll  and  family  members  for  their  1. INTRODUCTION  1.1  INTRODUCTION  Decisions  related  to  the  selection  of  key  c o n s t r u c t i o n m e t h o d s are g e n e r a l l y c r u c i a l to t h e cost a n d t i m e performance operations,  of and  a  project.  sequences  A that  particular a  set  of  contractor  resources,  selects  in  the  p r o j e c t m a k e up his p l a n for c o n s t r u c t i o n , a n d c a n b e c a l l e d a contractor's  "METHOD  OF  CONSTRUCTION".  Advances  in  c o n s t r u c t i o n m e t h o d s h a v e p r o v i d e d b e t t e r t e c h n i c a l solutions to many  p r o b l e m s a n d , in m a n y cases, h a v e r e s u l t e d in  reduced  c o n s t r u c t i o n c o s t . Several e x a m p l e s c a n b e c i t e d in this r e g a r d . The i n t r o d u c t i o n construction economical.  of flying forms d u r i n g t h e  process for high rise buildings Plastic-lined  forms  are  1970s c h a n g e d by m a k i n g  another  the  it  more  innovation  that  p r o v i d e s s m o o t h c o n c r e t e surfaces, a n d m o r e reuses of f o r m w o r k . Also,  fiberglass-reinforced  plastic  forms  provide  an  excellent  s u r f a c e , a n d m a k e possible t h e m o l d i n g of t h e most c o m p l i c a t e d s h a p e s . A c o m b i n a t i o n of slipforming w i t h lift slabs has a  good  p o t e n t i a l for l o w e r i n g t h e cost of multistory b u i l d i n g s . Finally, t h e 1  use of  pumping  to  distribute wet  concrete  has i m p r o v e d  the  impediments  to  e c o n o m y of c o n c r e t e c o n s t r u c t i o n . One implementing  new  of  the  technologies  main  is t h e  lack  of  information  for  t h o s e w h o wish to a p p l y t h e m . There is no c o o r d i n a t e d e f f o r t t o gather,  manage,  Without  being  and  provide  knowledgeable  this  information  or  even  industry-wide.  aware  of  a  new  t e c h n o l o g y , a p o t e n t i a l user c a n n o t r e c o g n i z e its a d v a n t a g e s or m a k e t h e most e f f i c i e n t a p p l i c a t i o n of it. There a r e m a n y m e a n s to  identify  new  obtained  through  laboratories,  building  technologies.  periodicals,  advertising  in  code trade  Information  can  organizations, magazines,  be  testing  specialized  consultants, and personal experience. Recent d e v e l o p m e n t s information  technology  m a k e pursuit of b e t t e r  decision-making  tools t i m e l y . Increases in c o m p u t e r p r o c e s s i n g p o w e r a n d sophisticated  s o f t w a r e systems m a k e  accessing  in  and  highly  managing  l a r g e v o l u m e s of i n f o r m a t i o n faster a n d easier t h a n e v e r b e f o r e . The g r o w t h of i n f o r m a t i o n d i s s e m i n a t i o n via t h e I n t e r n e t rapid  access  appropriate makes  it  to  data  processing  feasible,  at  as  innovations  tool, access least  in  2  to  theory,  are  made.  up-to-the for  both  allows  Given  minute clients  an data and  c o n t r a c t o r s to e f f e c t i v e l y e x p l o r e all t h e o p t i o n s a n d i d e n t i f y t h e best m e t h o d for t h e a p p l i c a t i o n u n d e r c o n s i d e r a t i o n . M a n y s o f t w a r e systems a r e a v a i l a b l e in t h e m a r k e t , w h i c h d e a l w i t h p l a n n i n g a n d c o n t r o l of t h e p r o j e c t in terms  of  scheduling,  None  of  t h e m , h o w e v e r , d e a l w i t h m e t h o d s s e l e c t i o n a n d it's i m p a c t  on  project  be  duration  resource  and  leveling, and  c o s t . This is an  area  costing.  that  needs  to  explored. Thus, t h e g o a l of this thesis is to d e v e l o p a k n o w l e d g e - b a s e d m e t h o d s - s e l e c t i o n t o o l t h a t c a n assess s p e c i f i c c o n s t r u c t i o n c o n d i t i o n s a g a i n s t t h e c a p a b i l i t i e s a n d limitations of available  techniques  to  determine  the  best  method(s)  for  a  s p e c i f i c p r o j e c t . While g e n e r a l i t y is s o u g h t for t h e d e s i g n of this t o o l , in o r d e r to help f o c u s t h e r e s e a r c h , t h e c o n s t r u c t i o n of t h e super-structure  of  high  rise  buildings  provides  the  primary  application context.  1.2 THE T R A D I T I O N A L  APPROACH  At p r e s e n t , t h e c o n s t r u c t i o n industry h e a v i l y relies  on  past  experience  to  guide  it  in  decisions  regarding  m e t h o d s . A c o n t r a c t o r t e n d s to a d o p t m e t h o d s he has a l r e a d y  3  used on previous p r o j e c t s in o r d e r to r e d u c e t h e l e a r n i n g t i m e for his c r e w , a n d to lessen risks a n d u n c e r t a i n t i e s i n v o l v e d in using n e w m e t h o d s . Since t h e r e are no d e f i n i t i v e f o r m u l a s t o d e t e r m i n e production  rate  and  hence  duration,  past  experience  familiarity with a m e t h o d provides comfort to a there  are  realized workable  many  by  cases*, w h i c h  the  in a  requirements,  contractor given  he  show  that  to  Thus to  change  c o n t r a c t o r . But  occasionally  a particular  circumstance.  needed  that  and  method meet  construction  it  was  was  not  contractual methods.  A  g o o d e x a m p l e is t h e Hibernia p r o j e c t , in w h i c h t o m a k e u p for t i m e lost, t h e c o n t r a c t o r  changed  t h e m e t h o d for f o r m i n g  the  G r a v i t y Base Structure f r o m j u m p f o r m i n g to slip f o r m i n g . A n o t h e r e x a m p l e involves t h e c o n s t r u c t i o n of t h e G r e a t Bear S n o w s h e d on the  Coquihalla  Highway  Project  (BC,  Canada).  It  was  c o n s i d e r a b l y d e l a y e d b e c a u s e of t h e w r o n g s e l e c t i o n of m e t h o d s of c o n s t r u c t i o n at t h e initial s t a g e a n d also b e c a u s e of f r e q u e n t changes  of  technologies  (Methods)  during  the  construction  b e c a u s e of c h a n g e s in W e a t h e r a n d t e c h n o l o g i c a l c o n s t r a i n t s . The f o r e g o i n g discussion helps to e x p l a i n t h e n e e d for b e t t e r tools, w h i c h c a n assist t h e c o n t r a c t o r as w e l l as "Avalanche" and other case studies, presented and discussed in the graduate course Civil 523 (Project Management for Civil Engineers), at Department of Civil Engineering, University of British Columbia.  4  t h e o w n e r (or his c o n s u l t a n t s ) in m a k i n g e f f e c t i v e d e c i s i o n s a b o u t construction methods.  1.3 RESEARCH OBJECTIVE A N D M E T H O D O L O G Y  Thorough that  research  not  many  of  people  the have  construction  literature  revealed  directed  attention  t o t h e m e t h o d s s e l e c t i o n p r o b l e m . Most  their  construction  r e s e a r c h e r s seem t o assume t h a t m e t h o d s s e l e c t i o n is t h e t e r r i t o r y of  the  contractor  consideration However,  or  the  owner,  to c r i t e r i a of m e t h o d  these  researchers  use  and  therefore,  selection method's  give  or it's  little  feasibility.  information  for  g e n e r a t i n g a c t i v i t i e s a n d p r o j e c t s c h e d u l e . D i f f e r e n t c o n c e p t s or f o r m u l a t i o n s h a v e b e e n p r o p o s e d on h o w to p r o d u c e  automated  a c t i v i t y s e q u e n c i n g or t o p r e d i c t a c t i v i t y d u r a t i o n or to e s t i m a t e c o s t , but no g e n e r a l s t a t e m e n t a n d f o r m u l a t i o n of t h e  methods  s e l e c t i o n p r o b l e m has b e e n d e v e l o p e d to d a t e . In our v i e w , w h a t makes  the  dimensionality  problem  of  methods  selection  complex  is  in terms of a l a r g e n u m b e r of q u a n t i t a t i v e  q u a l i t a t i v e a t t r i b u t e s , its c o m b i n a t o r i a l n a t u r e , a n d t h e c r i t e r i a i n v o l v e d in e v a l u a t i o n .  5  it's and  multiple  From a b o v e discussion, w e c o n c l u d e t h a t a generalized statement problem  must  be  a n d s t r u c t u r e for t h e m e t h o d s  formulated,  and  the  selection  applicability  of  a  k n o w l e d g e - b a s e d a p p r o a c h to this p r o b l e m has to b e e x p l o r e d . The i n t e n t i o n of this thesis is to d e v e l o p f r a m e w o r k in w h i c h  a  c o n s t r u c t i o n m e t h o d s a n d resources c a n b e  r e p r e s e n t e d , d e s c r i b e d , a n d their assembly t a i l o r e d to t h e p r o j e c t at h a n d . As w e l l , t h e c o n s t r u c t i o n c o n t e x t a n d key a t t r i b u t e s of t h e d e s i g n solution must b e r e p r e s e n t e d , a n d  t h e s p e c t r u m of  issues t h a t h a v e to b e c o n s i d e r e d in o r d e r to j u d g e t h e f e a s i b i l i t y of a m e t h o d for a g i v e n c o n s t r u c t i o n a n d d e s i g n c o n t e x t has t o b e a d d r e s s e d . The f r a m e w o r k should a c c o m m o d a t e at least t h e p a r t i a l a u t o m a t i o n of r e a s o n i n g a b o u t t h e a p p l i c a b i l i t y of a g i v e n m e t h o d to a s p e c i f i c c o n s t r u c t i o n c o n t e x t . The  research  methodology  included  a  t h o r o u g h r e v i e w of t h e l i t e r a t u r e to i d e n t i f y previous a p p r o a c h e s by  different  agreement project  research and  promising  management  Columbia  has  implementation  people  been of  in  order  approaches.  to  REPCON  system u n i q u e to t h e chosen  the  as  concept  6  a  identify  areas  a  research  University of  computer developed.  British  environment Also  of  a  for  specific  project  context  (construction  of t h e t y p i c a l  floors in high  rise  buildings) was s e l e c t e d as t h e a p p l i c a t i o n d o m a i n .  1.4 O V E R V I E W O F P R O B L E M  DOMAIN  Construction rise buildings was c h o s e n  of t h e s u p e r - s t r u c t u r e  for e x p l o r i n g  the  methods  of  high  selection  p r o b l e m , b e c a u s e of t h e c h a l l e n g e s o n e f a c e s in d e s i g n i n g c y c l e for a t y p i c a l floor, b e c a u s e of t h e n u m b e r of d e s i g n  a  and  c o n s t r u c t i o n a l t e r n a t i v e s a v a i l a b l e for e a c h a c t i v i t y , a n d b e c a u s e of t h e high d e p e n d e n c y  amongst different  activities,  including  their r e p e t i t i v e n a t u r e . Further t h e i n v o l v e m e n t of m a n y t r a d e s to c o n s t r u c t basic e l e m e n t s such as walls a n d c o l u m n s m a k e it m o r e c o m p l i c a t e d a n d thus c h a l l e n g i n g . To work in this p r o b l e m d o m a i n , o n e requires knowledge Slabs,  about  concrete  scheduling  of  f o r m w o r k t e c h n i q u e s for walls, c o l u m n s , placement  tasks  and  the  techniques, resources  project management.  7  the  sequencing  required,  and  and and  general  1.5 ORGANIZATION OF THE THESIS  The Chapter  presents  has  organized  research  system,  the  and  methods and  its  prototype building  definition  selection modes  principles,  use  are  illustrated  construction.  conclusions  of  conceptual  terminology  p r o b l e m . The c o m p u t e r  of  is a l s o  of  the  and  follows.  work w h i c h i n f l u e n c e d our thinking. C h a p t e r 3 describes guiding  review  as  previous  challenges,  literature  been  highlights  2  the  thesis  the  work,  described through  Chapter outlines  in it's  5  used  to  Chapter  4.  application discusses  deficiencies  of  formalize  prototype  m o d e l , a n d gives r e c o m m e n d a t i o n s for future  8  design  work.  the  developed, Use to  of  the  high  rise  findings in  the  the  and current  2. LITERATURE SURVEY FOR METHODS SELECTION PROBLEM A N D C Y C L E DESIGN  2.1  INTRODUCTION  This c h a p t e r presents previous w o r k in a r e a s r e l a t e d t o t h e m e t h o d s s e l e c t i o n p r o b l e m . The m a i n f o c u s is o n how to physically represent a project, w h a t are the factors w h i c h a f f e c t t h e s e l e c t i o n of c o n s t r u c t i o n m e t h o d s , h o w t o s t r u c t u r e t h e problem.and  represent construction methods a n d resources, a n d  issues r e l a t e d t o t h e  d e s i g n of c o n s t r u c t i o n c y c l e s for high rise  buildings.  2.2  P R O J E C T VIEW  A p r o j e c t is c o n s i d e r e d as a c o m b i n a t i o n of process  and  dimension  product,  of  a  and  to  production  assess  system,  the it  total  technological  is i m p e r a t i v e  c o n s i d e r b o t h a s p e c t s . Looking only a t t h e p r o d u c t aspect  is  complexity  not  sufficient,  because  c a n not i n d i c a t e  a  the degree 9  difference of t h e  that  we  complexity in  product  corresponding  d i f f e r e n c e in process c o m p l e x i t y (Trinh a n d N a w a z Sharif, 1996). A p r o j e c t c a n b e d e s c r i b e d using at least four views. The p h y s i c a l & environmental (geotechnical  view  deals w i t h  conditions,  (geometry/topology,  "What"  and  topography,  includes  etc.),  site  design  data data  system a t t r i b u t e s , e t c . ) , c o n t r a c t s , a n d  so  f o r t h . The process v i e w c o n c e r n e d w i t h " H o w , W h o , W h e n , W h e r e " a n d deals with planning, p r o d u c t i o n , m e t h o d s / t e c h n o l o g i e s , a n d r e s o u r c e d a t a . Third is t h e cost v i e w highlights " H o w M u c h " in terms  of  forecasts.  production  standards,  estimation,  Fourth is t h e As-Built v i e w - " W h a t  and  price  change  Happened,  A c t i o n T a k e n " . (Russell a n d Froese, 1997). Since w e a r e  Why  &  looking  i n t o t h e m e t h o d s s e l e c t i o n p r o b l e m to g e t answers w h i c h  treat  w h a t , h o w , w h e n a n d w h e r e , w e c o n c l u d e t h a t t h e first t w o views a r e of c o n c e r n to us a n d t h e r e f o r e h a v e f o c u s s e d t h e l i t e r a t u r e s e a r c h on these views.  2 . 2 . 1 PHYSICAL VIEW  Several describe the product  attempts  have  to b e c o n s t r u c t e d  been  in terms of  made  to  physically  b r e a k i n g it d o w n . A useful v i e w in d e s c r i b i n g high rise b u i l d i n g s is f o u n d in MONOGRAPH (1980,81).  10  High rise buildings  are a s p e c i a l g r o u p  of  structures, which have the following characteristics. (1)  They a r e c o m p o s e d of a l a r g e n u m b e r of h o r i z o n t a l floors.  (2)  Most  of these  floors are  of a r e p e t i t i v e  modular  nature.  O f t e n , t h e b u i l d i n g has several d i f f e r e n t g r o u p s of m o d u l a r floors, e a c h g r o u p w i t h its o w n f u n c t i o n s or c o n f i g u r a t i o n . (3)  The buildings c o n t a i n a l a r g e n u m b e r of m e c h a n i c a l systems  for  transportation,  communication,  plumbing,  heating,  air  c o n d i t i o n i n g a n d so o n . (4)  The m e c h a n i c a l systems h a v e v e r t i c a l c o m p o n e n t s t h a t s p a n  t h e various floors, h o r i z o n t a l c o m p o n e n t s t h a t r e p e a t  themselves  on e a c h floor a n d c e n t r a l services units on o n e of t h e floors or outside the building. (5)  The v e r t i c a l parts of t h e systems are h o u s e d in v e r t i c a l shafts  that  penetrate  the  horizontal  surface  and  isolate  the  space  within. How c a n o n e r e p r e s e n t t h e p h y s i c a l system or p r o d u c t  to b e built in a c o m p u t e r e n v i r o n m e n t . O n e  useful  v i e w is p r o v i d e d by Ory a n d Warszawski (1995) as follows; "  The  user  defines  all  the  floors  of  the  building-  their  s e q u e n c e , a r e a a n d d e s i g n a t i o n - a n d assigns t h e r e p e t i t i v e floors i n t o m u l t i - m o d u l e s . He also d e f i n e s t h e various v e r t i c a l z o n e s . "  11  We e x t e n d e d their v i e w to o t h e r c o m p o n e n t a n d systems in a b u i l d i n g , a n d also to c e r t a i n c o n d i t i o n s  which  h e l p in d e s c r i b i n g a b u i l d i n g in p a r t i c u l a r a n d p r o j e c t s in g e n e r a l . O t h e r a t t e m p t s at c a p t u r i n g t h e e s s e n c e of the  physical  aspects  of  a  product  include  computerized  3D  m o d e l s a n d d a t a e x t r a c t i o n f r o m CAD d r a w i n g s . For e x a m p l e , a v a r i e t y of k n o w l e d g e - b a s e d systems h a v e b e e n d e v e l o p e d  that  use g e o m e t r i c  (3D)  information inferred from three-dimensional  c o m p u t e r models, and incorporate knowledge about for a u t o m a t i c Beliveau  generation  (1993)  of  proposed  constraints  plans a n d s c h e d u l e s . M o r a d  an  expert  system  (KNOW-PLAN)  and for  p r o j e c t p l a n n i n g t h a t utilizes g e o m e t r i c d a t a e x t r a c t e d f r o m a 3D (CAD)  model  information  of  a sample  for r e a s o n i n g  project,  as t h e  to g e n e r a t e  primary  a logic  source  network  of  of  the  p r o j e c t . O t h e r such systems are SME ( C l a y t o n et a l . 1994)  and  Design + + (Design Power 1995). In Builder ( C h e r n e f f et a l . 1991), p r e - d e f i n e d a c t i v i t i e s are assigned to CAD e l e m e n t t o g e n e r a t e a semantic network a n d drawings simultaneously. It  is  not  our  intention  in  this  thesis  to  g e n e r a t e a c t i v i t i e s a n d s c h e d u l e from t h e d r a w i n g s or t o d e f i n e t h e p r o j e c t to a very fine level of d e t a i l . H o w e v e r , w e r e c o g n i z e the importance  of k n o w l e d g e  about  12  the  physical  components  a n d their a t t r i b u t e s  (parameters)  in o r d e r t o m a k e  meaningful  decisions a b o u t m e t h o d s . Thus, w e n e e d a f o r m a l r e p r e s e n t a t i o n of t h e p h y s i c a l f a c i l i t y , a n d h a v e a d o p t e d a Physical C o m p o n e n t s Breakdown Structure representation.  2.2.2  P R O C E S S VIEW  Issues  such  as  methods/technology  and  r e s o u r c e d a t a a r e key in t h e m e t h o d s s e l e c t i o n p r o b l e m . O t h e r i m p o r t a n t issues i n c l u d e s a f e t y r e g u l a t i o n s a n d q u a l i t y s t a n d a r d , but  they  have  not been  treated  h e r e i n . In w h a t  follows, w e  e x a m i n e previous w o r k r e l a t e d to m e t h o d s / t e c h n o l o g i e s .  2.2.2.1  DEFINITION O F M E T H O D S  It is h a r d t o find a d e f i n i t i o n of c o n s t r u c t i o n m e t h o d in t h e l i t e r a t u r e t h a t is universally a c c e p t e d in industry as well as by c o n s t r u c t i o n r e s e a r c h e r s . Most of t h e t i m e terms such as m e t h o d s a n d t e c h n o l o g i e s a r e used i n t e r c h a n g e a b l y , a l t h o u g h in s o m e cases a d i s t i n c t i o n has b e e n m a d e b e t w e e n t h e t w o .  13  Halpin following  comment  and  in their  Woodhead  book,  Design  (1976)  of  made  the  Construction  and  Process O p e r a t i o n s ; "A  basic  problem  for  selection  of  the  best  definition  of  the  relevant  the  construction  technology  engineer  available  construction  to  method  him  is  the  and  the  for e a c h  work  s i t u a t i o n he meets in t h e f i e l d . " H o w e v e r t h e y h a v e not b e e n c o n s i s t e n t  in  distinguishing b e t w e e n t h e terms t e c h n o l o g y a n d m e t h o d . Merritt (1976)  defines  construction  technology  available  materials,  necessary  planning, preparation, and  Tatum  (1987),  methods,  construction  combination  of  resources,  produces  a  constructed  materials  and  permanent  and  terms  equipment  processes,  is and  Resources  equipment,  of  use  including  defined  as  conditions can  be  or c o n s t r u c t i o n  of the  execution. According  technology  product.  in  to the that  either  applied.  C o n s t r u c t i o n processes are t h e m e t h o d s a n d t h e tasks n e e d e d to build  a  constructed  characteristics  are  product. the  Project  major  requirements  conditions  of  and  site  construction  technology. Since resources are s e e m i n g l y  fundamental  to e v e r y w a y of d e s c r i b i n g m e t h o d s , a n a c c e p t a b l e  14  definition  should i n c l u d e resources as a n i n t e g r a l c o m p o n e n t of it.  2.2.2.2 M E T H O D S  SELECTION  A s i g n i f i c a n t o b s t a c l e to t h e d e v e l o p m e n t of a c o m p u t e r i z e d e n v i r o n m e n t for m e t h o d s s e l e c t i o n is t h a t really is no s t a n d a r d describing methods  methods are  language and  indirectly  in t h e c o n s t r u c t i o n  their c o n s t i t u e n t s . dealt  with  Most  by t a l k i n g  there  industry of t h e  about  for  time,  resources,  W a u g h (1990) in his system ACP (A C o n s t r u c t i o n Planner) s t a t e s ; "Resource selection,  and  availability also  may  resource  affect  construction  limits  may  affect  methods activities  sequencing." Hendrickson selection  of  construction  et  technologies  al.  (1987)  is p a r t  stated  of  planning  that as  follows: " C o n s t r u c t i o n p l a n n i n g involves t h e c h o i c e of  construction  t e c h n o l o g i e s , t h e d e f i n i t i o n of w o r k tasks, t h e e s t i m a t i o n of t h e required  resources  and  duration  for i n d i v i d u a l  tasks, a n d  i d e n t i f i c a t i o n of c o n s t r a i n t s a m o n g t h e d i f f e r e n t tasks."  15  the  The authors further s t a t e t h a t  inappropriate  or i n c o n s i s t e n t decisions c o n c e r n i n g a p p r o p r i a t e t e c h n o l o g i e s to use c a n easily result in l a r g e c o n s t r u c t i o n cost increases or d e l a y s . In this thesis, w e h a v e b e e n i n f l u e n c e d  by  s o m e of t h e t h i n k i n g a n d c o n c e p t s in t h e p a p e r by T a t u m (1987), w h i c h in turn m a k e use of some of t h e c o n c e p t s set o u t by Halpin and Woodhead that  he was  (1976). Tatum's g o a l was d i f f e r e n t t h a n ours, in  seeking  a  framework  for  classifying  construction  technologies. The basic p u r p o s e of t e c h n o l o g i e s ( m e t h o d s ) s e l e c t i o n is t o g e n e r a t e a c t i v i t i e s a n d their s e q u e n c i n g in o r d e r to b e a b l e t o p r o d u c e c o n s t r u c t i o n plans, s c h e d u l e s , a n d e s t i m a t e s . A c o n t r o v e r s y arises f r o m t h e f o l l o w i n g t w o v i e w p o i n t s . Resources a r e n e e d e d b e c a u s e of a c t i v i t i e s , versus a c t i v i t i e s exist b e c a u s e resources d o s o m e t h i n g . Birrell (1980) a n d M a r t i n Fischer  (1996)  a r g u e in f a v o u r of t h e s e c o n d v i e w p o i n t . We a g r e e w i t h t h e m in the  sense  that  construction  methods  generate  and  define  a c t i v i t i e s b a s e d on w h a t work crews d o . In C o n s t r u c t i o n 1987),  the  elements into  system  first  assigns  Planex  element  (Hendrickson activities  to  et.  al  design  (project elements), then aggregates element activities  project  activities,  and  finally  16  determines  appropriate  (construction) viewpoint.  technologies.  Fischer  (1996),  Hendrickson  on  the  other  adopted hand,  the  allows  first  for  the  s e l e c t i o n of c o n s t r u c t i o n t e c h n o l o g i e s b e f o r e t h e g e n e r a t i o n  of  a c t i v i t i e s . He also asserts t h a t t h e c o n s t r u c t i o n m e t h o d s s e l e c t e d , a n d not t h e p r o j e c t c o m p o n e n t s a l o n e , a f f e c t t h e g e n e r a t i o n of more d e t a i l e d activities. The  following  systems  acknowledge  the  i m p o r t a n c e of c o n s i d e r i n g c o n s t r u c t i o n m e t h o d s or t e c h n o l o g i e s for p l a n n i n g a n d s c h e d u l i n g . In C o n s t r u c t i o n 1987),  construction  physical  and  Planex  technologies  resources-related  (Hendrickson  assign  crews  sequence  et.  al  (pre-defined  relationships)  to  activities. In super-activity  GHOST  is g e n e r a t e d  (Navinchandra  et  i.e. build c o n c r e t e  al.  1988),  a  slab, w h i c h  has  s e v e r a l s u b - a c t i v i t i e s i.e. f o r m slab, r e b a r slab, p o u r slab,  and  c u r e a n d reshore slab. The k n o w l e d g e base is m a d e up of s e v e r a l knowledge knowledge network activities  sources about  etc.  physics,  Physics  based  known  on  critics the  as  critics.  construction  The  critics  norms,  depict  various  physical  nature  redundancy  constraints of  contain  the  among problem.  C o n s t r u c t i o n critics i n c o r p o r a t e k n o w l e d g e of c o n s t r u c t i o n  17  in  such  as;  (a)  curing  time  of  concrete,  (b)  placing  of  rebar  p o u r i n g of c o n c r e t e , a n d (c) p l a c i n g of c r a n e b e f o r e  before  concrete  c a n b e t r a n s p o r t e d to e l e v a t e d sites. I n h e r i t a n c e a n d r e f i n e m e n t critics  perform  responsibility  hierarchical  assignment  refinement  and  better  of  the  project  network  for  control, and  also  seek a shorter n e t w o r k d u r a t i o n by d e t e r m i n i n g o p p o r t u n i t i e s for possible o v e r l a p p i n g of parts of s e q u e n t i a l a c t i v i t i e s .  Important  findings for our work d e a l w i t h t h e c r e a t i o n of super  activities  ( m e t h o d s t a t e m e n t in this thesis) a n d s u b - a c t i v i t i e s ( O p e r a t i o n in this thesis). Jin et a l . (1992) stresses t h e e x i s t e n c e oriented  knowledge  activity  constraints  sequencing planner,  as  and  knowledge  Jagbeck  methods  (1994)  to  for  to  represent  defines  methods  product-based  planning. "as  process-  process-based  complement  maintenance  of  In  sets of  MDA  generic  a c t i v i t i e s r e q u i r e d to p r o d u c e a b u i l d i n g o b j e c t . " For t h e building •methods  part,  several  support  the  methods generation  might of  be  applicable.  activities.  We  same These  agree  with  J a g b e c k t h a t m e t h o d s not only a f f e c t r e s o u r c e a l l o c a t i o n  and  a c t i v i t y s e q u e n c i n g , b u t also a c t i v i t y g e n e r a t i o n . Generally, the  resources  available,  the  methods extent  or  selection  depends  scale  the  of  a v a i l a b i l i t y of s p a c e c o n s t r a i n t a n d so f o r t h . In SCaRC  18  job,  on the  (Thabet  and  Beliveau  1997),  a  space-constrained  constrained  prototype  knowledge-based  scheduling  repetitive  floors  in  and  resource  system d e v e l o p e d  multistory  projects,  resource  c o n s t r a i n t s are b a s e d on d e m a n d versus a v a i l a b i l i t y values project  manpower,  constraints  result  equipment, from  the  for  for  and  material.  Similarly,  space  conflict  between  activity  space  d e m a n d a n d t h e s p a c e a v a i l a b i l i t y in t h e w o r k a r e a . To f u r t h e r t h e discussion on r e s o u r c e s e l e c t i o n , Reda (1990) s t a t e d t h a t : "The  selection  of  a specific  quantity  of  resources  for  a  c o n s t r u c t i o n a c t i v i t y d e t e r m i n e s t h e d u r a t i o n for t h e a c t i v i t y a n d a s s o c i a t e d d i r e c t c o s t . The q u a n t i t y of resources for e a c h a c t i v i t y is c a r e f u l l y s e l e c t e d to a c h i e v e t h e f o l l o w i n g g o a l s : To m a i n t a i n a c o n s t a n t p r o d u c t i o n r a t e for e a c h c r e w on  each  activity throughout the project; To m a i n t a i n c o n t i n u i t y of work for e a c h c r e w f r o m o n e s t a g e to the  o t h e r , thus e l i m i n a t i n g  idle t i m e for a c r e w w a i t i n g  for  a  p r e c e d i n g c r e w to finish their w o r k ; To a l l o w for t i m e buffers b e t w e e n a c t i v i t i e s on t h e s a m e s t a g e for  example,  a  time  buffer  between  concreting  f o r m w o r k c r e w to a l l o w for c u r i n g of c o n c r e t e ;  19  crew  and  a  To a l l o w for s t a g e b u f f e r b e t w e e n a c t i v i t i e s at d i f f e r e n t  stages.  For e x a m p l e , b r i c k l a y i n g should b e t w o floors l o w e r t h a n t h e floor b e i n g p o u r e d to a l l o w c o n c r e t e to g a i n s t r e n g t h ; a n d , To finish t h e p r o j e c t at t h e m i n i m u m possible cost g i v e n a t a r g e t project duration." Halpin a n d W o o d h e a d labor,  equipment,  technology generality  and  (method) and  resources c a n  material of  flexibility be applied  the and  resources operations.  came  up  (1976) s u g g e s t are  applied  We  with  to  sought  the  e i t h e r to t e c h n o l o g i e s  that the more  notion (methods)  that of  o p e r a t i o n s or d i r e c t l y to o p e r a t i o n s .  2 . 2 . 2 . 3 CYCLE DESIGN ( S C H E D U L I N G )  Hammad  (1991)  describes  a  construction  c y c l e as a s e q u e n c e d r e p e t i t i o n of c o n s t r u c t i o n o p e r a t i o n s  that  c o n s t r u c t s a p r e - s p e c i f i e d m o d u l a r unit of a f a c i l i t y . T h o u g h t h e super s t r u c t u r e  of high rise buildings  structural, electrical, mechanical, and  can  be categorized  building  finishes, in  into this  thesis, m o d u l a r units are t h o u g h t of as a t y p i c a l floor s t r u c t u r e , a n d t h e t e r m c y c l e d e s i g n e m b r a c e s t h e o r d e r i n g of t h e tasks a s s o c i a t e d w i t h t h e m e t h o d s s e l e c t e d to put in p l a c e all p r o d u c t s  20  i n v o l v e d in a t y p i c a l floor s t r u c t u r e . A d d i t i o n a l l y , c y c l e  design  deals w i t h decisions r e g a r d i n g r e s o u r c e levels, a n d t h e use of o v e r t i m e a n d shift w o r k . One  of  the  objectives  of  this  thesis  is  to  d e v e l o p a system t h a t t r e a t s m e t h o d s s e l e c t i o n , c y c l e d e s i g n a n d project planning and scheduling. that  construction  I k e d a et a l . (1991) p o i n t  professionals  lack  tools  that  make  out their  c o n s t r u c t i o n m e t h o d s a n d resources assumptions e x p l i c i t . Dzeng a n d T o m m e l e i n (1995) e m p h a s i z e t h a t it is unrealistic to p r o d u c e a schedule with out considering construction methods. (1991) stresses t h e i m p o r t a n c e of  Fondahl  taking resource availability into  a c c o u n t w h e n g e n e r a t i n g a s c h e d u l e . We a g r e e w i t h t h e a b o v e points  of  view  and  include  resources  indirectly  through  a s s o c i a t i o n s w i t h m e t h o d s in our p l a n n i n g a n d s c h e d u l i n g s y s t e m . Fischer et al (1996) m a k e a n o t h e r i n t e r e s t i n g comment: "  Besides  construction production  affecting  activity  selection  and  sequencing,  m e t h o d s , t h r o u g h their r e s o u r c e r e q u i r e m e n t s rates,  also  affect  activity  durations.  resources a r e c o n s i d e r e d w h e n c a l c u l a t i n g  Even  21  though  durations, they  o f t e n not r e p r e s e n t e d e x p l i c i t l y as p a r t of t h e a c t i v i t i e s . "  and  are  OARPLAN precedence  relationships  objects  their  and  activity).  In t h e  Warszawski traditional have and  (1995)  grouped  add of  crew  CPM  with  and  1989)  deduces between  (constituents  of  HISCHED s y s t e m , S h a k e d work  constraints from  a I,  constraints  actions  flow  relationships.  resulting  et  physical  s p i r i t , in t h e i r  physical  constraints  from  relationship  same  types  (Darwiche  constraints  Echeverry  into  trade  et  component interaction  to  al.  an and the  (1991)  constraints into  activity  constraints. The scheduling calculating  is  not  simply  project  consideration  of  foregoing a  matter  duration,  various  but  constraints  resources.  22  discussion  of a  sequencing much  and  more  available  shows activities  that and  complicated methods  and  3. FRAMEWORK FOR METHODS SELECTION A N D C O N C E P T U A L DESIGN  3.1 I N T R O D U C T I O N  This methods  selection  chapter  system,  describes  research  expectations  challenges  and  p r i n c i p l e s to a c h i e v e e x p e c t a t i o n s , e v o l u t i o n of t h e based  implementation  of  the  design, and  definition  of  a  guiding  computerof  useful  t e r m i n o l o g y for t h e m e t h o d s s e l e c t i o n p r o b l e m .  3.2 SYSTEM EXPECTATIONS  As m e n t i o n e d earlier, o n e of t h e o b s t a c l e s in using n e w t e c h n o l o g y is t h e lack of r e a d i l y a v a i l a b l e i n f o r m a t i o n a b o u t t h e t e c h n o l o g y , a n d it's a d v a n t a g e s a n d  disadvantages.  To a c h i e v e t h e most e f f i c i e n t a p p l i c a t i o n of n e w t e c h n o l o g y , it is i m p e r a t i v e t h a t p o t e n t i a l users a r e m a d e a w a r e of its p r e v i o u s use  23  in  order  to  Therefore  reduce  the  apprehension  system  developments,  should  including  new  be  about  able  to  the  risks  track  technologies,  involved.  technological  new  construction  e q u i p m e n t , n e w materials a n d r e l a t e d p r o d u c t s , n e w m o d e s of information computer  capture and  (e.g. digital  software  photography),  technology,  and  more  new  powerful  modes  of  i n f o r m a t i o n d i s s e m i n a t i o n ( I n t e r n e t ) , on a w o r l d w i d e basis. In t h e c o n s t r u c t i o n industry, o f t e n t h e r e a r e no p u b l i c d o m a i n r e c o r d s of previous e x p e r i e n c e . K n o w l e d g e a n d e x p e r i e n c e is c o n f i n e d to very f e w p e o p l e , a n d o f t e n resides only in their m e m o r y , not in w r i t t e n f o r m . Therefore t h e r e is a n e e d to d o c u m e n t previous e x p e r i e n c e a n d t h e e x p e r i e n c e of others in a w a y w h i c h c a n b e e n c o d e d for g e n e r a l use. Also, t h e r e is a n e e d to k e e p oneself  well  i n f o r m e d a b o u t t h e rules a n d r e g u l a t i o n s of t h e e n v i r o n m e n t w h i c h w o r k has to b e p e r f o r m e d . If m e t h o d s a r e c h o s e n satisfy t e c h n i c a l  need  but  fail to satisfy r e g u l a t o r y  in  which  constraints  (noise, l o c a l union rules, s a f e t y , a n d e n v i r o n m e n t e t c . ) t h e n t h e y are i n f e a s i b l e . If this p r o b l e m arises a f t e r s t a r t i n g t h e j o b , t h e n c h a n c e s are high of i n c u r r i n g f i n a n c i a l a n d t i m e losses.  24  The  above  view  can  be  extended  to  s t a k e h o l d e r s ' p e r s p e c t i v e s . It is i m p o r t a n t to k n o w f r o m s o c i a l a n d p o l i t i c a l points of v i e w w h i c h m e t h o d s a r e not f e a s i b l e .  Many  p r o j e c t s a r e t e r m i n a t e d in t h e feasibility s t a g e or s t o p p e d d u r i n g construction  because  of  the  pressure  from  one  or  more  stakeholder groups.  3.3 RESEARCH CHALLENGES  The methods selection useful  definition  of  most  important  p r o b l e m is to c o m e method.  Other  challenge  in  the  u p w i t h a flexible  and  challenges  deal  with  the  r e p r e s e n t a t i o n of c o n s t r u c t i o n m e t h o d s , r e s o u r c e s , a n d issues t h a t have  to  be  considered  in o r d e r  to j u d g e  the  feasibility  of  a  m e t h o d for a g i v e n c o n s t r u c t i o n a n d d e s i g n c o n t e x t . The task of evaluating cost,  as  a method statement well  as  other  and method  dimensions  also  in terms of  poses  a  significant  challenge. Research c h a l l e n g e s c a n b e listed as follows: •  D e f i n i t i o n of m e t h o d s a n d resources;  •  R e p r e s e n t a t i o n of c o n s t r u c t i o n m e t h o d s a n d r e s o u r c e s ;  25  time,  •  R e p r e s e n t a t i o n of t h e c o n s t r u c t i o n c o n t e x t a n d key a t t r i b u t e s of t h e d e s i g n s o l u t i o n ;  •  I d e n t i f i c a t i o n of t h e r a n g e of issue t h a t has t o b e c o n s i d e r e d in order  to  judge  the  feasibility  of  a  method  for  a  given  construction a n d design c o n t e x t ; •  A u t o m a t i o n of t h e r e a s o n i n g a b o u t t h e a p p l i c a b i l i t y of a g i v e n m e t h o d for a s p e c i f i c c o n t e x t ; a n d ,  •  Role of t h e user in t h e system Principles a n d d e s i g n g u i d e l i n e s  that  have  e v o l v e d d u r i n g t h e r e s e a r c h w o r k are d e s c r i b e d b e l o w . Initially  we  tried  to  differentiate  between  m e t h o d s a n d t e c h n o l o g i e s , w h e r e t e c h n o l o g y was d e s c r i b e d as t h e b a s i c b u i l d i n g b l o c k t h a t c o n s u m e s resources a n d m e t h o d as t h e process of c a r r y i n g out t e c h n o l o g y . however,  that  no  significant  benefit  Eventually w e r e a l i z e d , was  derived  from  d i s t i n g u i s h i n g b e t w e e n t h e t w o a n d thus w e m e r g e d b o t h terms i n t o a single i d e n t i t y c a l l e d m e t h o d s (Thus t h e terms m e t h o d a n d t e c h n o l o g y a r e used i n t e r c h a n g e a b l y t h r o u g h o u t this thesis). Another  interesting  point  that  came  d u r i n g t h e r e s e a r c h was t h e a b s e n c e of a n y a g r e e m e n t  out as t o  w h a t level of d e t a i l to use for p l a n n i n g a n d s c h e d u l i n g a p r o j e c t . M a n y c o n t r a c t o r s or owners p r e f e r to work at a h i g h e r level of  26  a c t i v i t y d e f i n i t i o n ( a g g r e g a t i o n of lower level a c t i v i t i e s ) for cost and  duration  calculations,  whereas  others  like  to  work  at  d e t a i l e d l e v e l . T h e r e f o r e , a m e t h o d m o d e l i n g system s h o u l d  a be  flexible e n o u g h to a c c o m m o d a t e various user p e r s p e c t i v e s . For  evaluation  m e t h o d s , the design environment planning  and  scheduling  system,  of  alternative  construction  should b e i n c o r p o r a t e d which  includes  in a  some  cost  e s t i m a t i n g c a p a b i l i t i e s , in o r d e r to p r o v i d e e v a l u a t i o n d a t a  on  project duration a n d cost. The p l a n n i n g a n d s c h e d u l i n g system s h o u l d a l l o w a c c e s s to an i n f e r e n c e e n g i n e for purposes of  reasoning  a b o u t feasibility, as well as for a u t o m a t e d s e t u p of p h y s i c a l a n d possibly  methods  breakdown  structures  at  the  project  b a s e d on structures d e f i n e d at t h e s t a n d a r d s l e v e l .  level,  We d o  not  b e l i e v e t h a t a k n o w l e d g e b a s e system should serve as t h e c o r e system, b e c a u s e of t h e n e e d to s u p p o r t d i f f e r e n t m o d e s of use. The r e q u i r e m e n t to s u p p o r t d i f f e r e n t  modes  of use m e a n s t h a t t h e d e s i g n of t h e system must b e very f l e x i b l e . Basically, t h e r e is no s t a n d a r d w a y of t h i n k i n g in t h e c o n s t r u c t i o n industry.  Thus, t h e system has to s u p p o r t m e t h o d s a n d  r e p r e s e n t a t i o n s at d i f f e r e n t levels of d e t a i l .  27  physical  The system a n d s u p p o r t i n g tools s h o u l d  be  o r g a n i z e d in such a w a y t h a t helps g e n e r a t e n e w i d e a s - i.e. n e w c o m b i n a t i o n s of resources, n e w a p p l i c a t i o n s of existing m e t h o d s , a n d , t h e f o r m u l a t i o n of " n e w " m e t h o d s . S t a t e d a n o t h e r w a y , t h e system should s u p p o r t " b r a i n s t o r m i n g " a n d c r e a t i v i t y . The  system  should  have  a  very  a r c h i t e c t u r e , a n d should a l l o w t h e user to i n c o r p o r a t e learned from ongoing a n d c o m p l e t e d projects.  open lessons  As m u c h of t h e  " k n o w l e d g e a n d e x p e r t i s e " as possible should b e in t h e f o r m of data  t h a t t h e user c a n m o d i f y at will. That is, workings of  the  system should b e as t r a n s p a r e n t as possible, a n d t h e " b l a c k b o x " a s p e c t of t h e system should b e m i n i m i z e d . To breakdown  structures  ease required  the  maintenance  should  be  burden,  formulated  so as  the to  minimize t h e a m o u n t of r e d u n d a n c y in t h e system.  3.4  TERMINOLOGY  For  describing  and  manipulating  the  c o m p o n e n t s of a m e t h o d s d e s i g n a n d s e l e c t i o n e n v i r o n m e n t , w e h a v e a d o p t e d some of t h e v o c a b u l a r y d e s c r i b e d by Halpin a n d W o o d h e a d (1976) a n d t h e n m o d i f i e d a n d e x t e n d e d it. A c c o r d i n g  28  to  them  an  activity  segment  of  the  deals project,  with and  r e s o u r c e u s a g e . An operation  the  attainment  is f o c u s e d  on  of  cost,  a  physical  time,  has a c o n s t r u c t i o n method  and  focus,  a n d is c o n c e r n e d w i t h t h e m e a n s of a c h i e v i n g c o n s t r u c t i o n . It i n c l u d e s a n i t e m i z e d r e s o u r c e list a n d represents a synthesis of w o r k processes. A process has a basic t e c h n o l o g i c a l f o c u s , a n d is r e p r e s e n t e d by a l o g i c a l c o l l e c t i o n of work  sequence tasks.  A  process is a r e c o g n i z a b l e p o r t i o n of a c o n s t r u c t i o n o p e r a t i o n . A work  task  c o r r e s p o n d s to a f u n d a m e n t a l field a c t i o n a n d  work  unit.  describing  methods  The  vocabulary  and  resources  we at  both  have  adopted  for  the standards  and  p r o j e c t levels is as follows.  3.4.1 METHODS STATEMENT  Methods statement describes how a physical component using  a  of a p r o j e c t will b e c o n s t r u c t e d .  tree  structure.  The  basic  o p e r a t i o n s , m e t h o d s , a n d resources. scheduling  level, operations  map  building  It is r e p r e s e n t e d blocks  At t h e p r o j e c t p l a n n i n g a n d one-to-one  to  activities.  m e t h o d s s t a t e m e n t c a n i n v o l v e o n e or m o r e o p e r a t i o n s .  29  include  A  /  3 . 4 . 2 OPERATION  Operation Methods Statement.  exists only  in t h e  context  of  a  An o p e r a t i o n is c o n s i d e r e d to b e a n o n -  divisible p i e c e of w o r k . An o p e r a t i o n is d e s c r i b e d by a set of tasks o r d e r e d in t h e f o r m of a p l a n n i n g t e m p l a t e , w i t h t h e tasks b e i n g t h e u n i o n of t h e tasks t h a t b e l o n g to its c o n s t i t u e n t m e t h o d s plus any  tasks  required  to  connect  the  methods  into  a  unified  o p e r a t i o n . Below it is a t r e e s t r u c t u r e , t h e c o m p o n e n t s of w h i c h a r e m e t h o d s a n d / o r resources.  3 . 4 . 3 METHOD CLASS  M e t h o d class is a d e v i c e for o r g a n i z i n g o n e ' s k n o w l e d g e a b o u t m e t h o d s in t h e m e t h o d s & r e s o u r c e b r e a k d o w n s t r u c t u r e (M&RBS) t e m p l a t e list.  3 . 4 . 4 METHOD  M e t h o d consists of a p r o c e d u r e or process for e x e c u t i n g p a r t or all of a n o p e r a t i o n . 30  This is d e s c r i b e d in t h e  form  of  a  set  of  ordered  tasks.  method  may  consist  of  a  building  component,  a  novel  technology.  The  terms  interchangeably. structure method  to  a  deal  construction  used  meaning  the  (physical at h a n d .  for  many  when  different  for  definition,  a  constructing  a  a  proprietary  technology  attached  Conditions  in  a  associated  feasibility attributes,  of  a  site  are  used  hierarchical directly  method  with  for  conditions  productivity  rates, a n d  productivity  only  to a m e t h o d  ( i . e . p r o d u c t i v i t y is c o n t e x t  the  number  Note that since a resource  tasks,  the and  Resource attributes defined at  a r e s o u r c e is a t t a c h e d  can  takes  or d i r e c t l y  on to  sensitive).  RESOURCE CLASS  Resource resources  for  easy  specialty  trades).  resource  subclass  Pumps  be  units to b e a s s i g n e d .  an operation  3.4.5  can  of  or i n d e e d  and  level d e a l with s t a n d a r d  of r e s o u r c e be  approach,  assessing  context  purposes  approach  method  method.  project requirements) methods  standard  Resources  with  For  etc.).  access  A resource  class (e.g.  is  labor,  class c a n  - (e.g. equipment  A Resource  deals  with  31  a  device  for  classifying  equipment,  materials,  be further divided  subclass - Cranes, physical  inputs  into  a  Concrete  required  to  c a r r y o u t tasks, m e t h o d s a n d o p e r a t i o n s .  The a t t r i b u t e s a t t a c h e d  d i r e c t l y to a r e s o u r c e d e a l with a single i n s t a n c e of t h e r e s o u r c e . The c h a r a c t e r i s t i c s of a r e s o u r c e are d e s c r i b e d in terms of user defined parameters and conditions and multi-media records.  No  a t t e m p t is m a d e at t h e r e s o u r c e level w i t h i n t h e r e s o u r c e class s t r u c t u r e to d e f i n e t h e various uses to w h i c h a r e s o u r c e c a n  be  put.  3.4.6  PARAMETERS/CONDITIONS  Parameters/Conditions  are  devices  for  classifying d i f f e r e n t feasibility dimensions ( e . g . s p a c e a v a i l a b i l i t y , physical  capacity,  environmental  impact)  and  corresponding  condition definitions. A c o n d i t i o n at t h e m e t h o d s s t a t e m e n t  and  m e t h o d s level deals w i t h user d e f i n e d feasibility c o n d i t i o n s  that  must b e satisfied for e i t h e r a m e t h o d or m e t h o d s s t a t e m e n t to b e feasible.  They  Technical  have  feasibility,  been  classified  Environmental  Conditions.  32  into  three  feasibility,  and  categories; Regulatory  The  vocabulary  used  for  describing  the  p h y s i c a l v i e w of a p r o j e c t , i n c l u d i n g site c o n d i t i o n s is d e s c r i b e d in the following subsections.  3 . 4 . 7 PROJECT This  encompasses  the  physical  c h a r a c t e r i s t i c s of t h e f a c i l i t y . Its c o n s t i t u e n t s c a n b e S u b - p r o j e c t , System,  Location  project  can  be  Sets, Element, described  Hotel T o w e r ) , Systems Physical  or  Drawings),  Process Elements  and  as S u b - p r o j e c t s  (Mechanical,  (Typical Third (Floor  Sub-element.  Slab,  High-rise  (Residential  Electrical),  Floor,  A  Tower,  Locations  Review/Approve  Columns,  Walls),  Sets; Shop  and  Sub-  A project c a n be d i v i d e d into many  small  e l e m e n t s (Round C o l u m n s , Square C o l u m n s ) .  3 . 4 . 8 SUB-PROJECTS  projects  for  better  understanding  and  control  purposes.  For  e x a m p l e , c o n s t r u c t i o n of a t y p i c a l high rise b u i l d i n g c a n h a v e a under  ground  parkade  facility  and superstructure  as t w o  sub-  p r o j e c t s . A s u b - p r o j e c t c a n consist of System, L o c a t i o n s , E l e m e n t , a n d Sub-elements  33  3.4.9 SYSTEM  Examples of systems in a high rise include  Enclosure  system,  Mechanical  system,  and  building Electrical  system. Systems m a y h a v e u n d e r t h e m Sub-systems, Elements, a n d S u b - e l e m e n t s as a t r e e s t r u c t u r e .  3 . 4 . 1 0 SUB-SYSTEMS  Each system m a y or m a y not h a v e a subsystem. For e x a m p l e , in high rise c o n t e x t m e c h a n i c a l system c a n have  the  following  subsystems; Elevator,  Fire c o n t r o l ,  Heating,  V e n t i l a t i o n & Air C o n d i t i o n i n g , Supply W a t e r , a n d W a s t e w a t e r . Its t r e e has Elements a n d / o r S u b - e l e m e n t in h i e r a r c h y .  3 . 4 . 1 1 ELEMENTS  An  element  refers  to  a  specific  physical  c o m p o n e n t . Floor slabs, c o r e walls, e n d walls, c o l u m n s , a n d stairs are e x a m p l e s of e l e m e n t s in a high rise super s t r u c t u r e . Under t h e Elements t h e r e c a n only b e S u b - e l e m e n t s . 34  3 . 4 . 1 2 SUB-ELEMENTS  A s u b - e l e m e n t refers to a p a r t i c u l a r t y p e of physical c o m p o n e n t  or e l e m e n t . For e x a m p l e , a n e l e m e n t  columns c a n further be c a t e g o r i z e d  into A r c h i t e c t u r a l ,  Square a n d Rectangular columns, with e a c h t y p e  like  Round,  corresponding  t o a s u b - e l e m e n t . S u b - e l e m e n t is t h e lowest level c o m p o n e n t a n d t h e r e f o r e d o e s n ' t has a n y t r e e s t r u c t u r e b e n e a t h it.  3 . 4 . 1 3 L O C A T I O N SET  Instead of d e f i n i n g a L o c a t i o n system u n d e r system, all l o c a t i o n s w h e t h e r p h y s i c a l or processes are classified u n d e r a l o c a t i o n set c o m p o u n d in t h e t r e e s t r u c t u r e . L o c a t i o n set c a n be defined under project and sub-project. Beneath location set i n d i v i d u a l l o c a t i o n c o m p o n e n t s c a n b e d e f i n e d .  3.4.14 LOCATIONS  Similar to s u b - e l e m e n t ,  location  is also  i n d e p e n d e n t c o m p o n e n t and doesn't have tree structure  an  below  it. In a n y p r o j e c t , l o c a t i o n s c a n b e p h y s i c a l l o c a t i o n s or process locations  35  3 . 5 EVOLUTION OF DESIGN OF COMPUTER ENVIRONMENT The d e s i g n of t h e c o m p u t e r i z e d e n v i r o n m e n t has  been  divided  into  standard  and  project  aspects  system. The s t a n d a r d side deals w i t h storing previous and  knowledge  projects  faster  in a r e a d i l y and  more  usable  easily.  form  The  to  help  project  side  of  the  experience define  new  deals  with  p l a n n i n g a n d s c h e d u l i n g a n d p r o j e c t m e t h o d s s e l e c t i o n to m e e t s p e c i f i c p r o j e c t r e q u i r e m e n t s , e i t h e r w i t h t h e assistance f r o m t h e standard  side, or i n d e p e n d e n t l y .  Thus, t h e  Interface  between  t h e s e t w o sides is a n i m p o r t a n t a s p e c t of t h e system e n v i r o n m e n t . K e e p i n g all of t h e f o r e g o i n g c h a l l e n g e s a n d o b j e c t i v e s in m i n d w e r e a c h e d t h e c o n c l u s i o n t h a t a h i e r a r c h i c a l t r e e s t r u c t u r e for r e p r e s e n t i n g m e t h o d s a n d resources w o u l d best suit our n e e d s . How to n a m e t h e root of this s t r u c t u r e b e c a m e a n issue. The o b j e c t i v e of a n y p r o j e c t or p a r t t h e r e o f in terms of a n action  on a p h y s i c a l c o m p o n e n t ,  for e x a m p l e ; Build High Rise  Building, Build S u p e r s t r u c t u r e , or Build Walls a n d C o l u m n s is to b u i l d a P r o d u c t by some m e c h a n i s m g e n e r a l l y r e f e r r e d to as a m e t h o d or t e c h n o l o g y . We thus o p t e d to c a l l t h e ROOT of t h e h i e r a r c h i c a l s t r u c t u r e by t h e n a m e : M e t h o d s S t a t e m e n t , corresponds  to a set of m e t h o d s 36  to a c h i e v e  which  a n o b j e c t i v e . To  m a i n t a i n flexibility a n d to c a t e r to t h e n e e d t o w o r k at d i f f e r e n t levels  of  detail,  few  restrictions  were  imposed  on  the  user.  A l t h o u g h w e p r e f e r t h e user to d e f i n e a M e t h o d s s t a t e m e n t at a h i g h e r level of d e t a i l ( e . g . Build t y p i c a l floor of s u p e r s t r u c t u r e ) , t h e user c a n work at a n y level ( e . g . M e t h o d s t a t e m e n t  could  f o c u s on Build C o l u m n s ) . The next step was to i n t r o d u c e m e t h o d s as t h e next b l o c k in t h e h i e r a r c h i c a l t r e e s t r u c t u r e . This c r e a t e d c o n f u s i o n in expressing a m e t h o d s s t a t e m e n t e x p l i c i t l y as a set of m e t h o d s . A m e t h o d m a y h a v e m a n y a p p l i c a t i o n s . For e x a m p l e , the  method  gang  forming  can  be  used  for  forming  slabs  or  f o r m i n g walls & c o l u m n s . Also, t h e n a t u r e of p h y s i c a l c o m p o n e n t s and  related  processes  in  the  construction  industry  is  very  c o m p o s i t e . For e x a m p l e , t h e process to build c o l u m n s involves a forming  crew,  a  rebar  crew,  and  a  placement  crew,  thus  e m p h a s i z i n g t h e n e e d for further d e c o m p o s i t i o n . To resolve t h e above  p r o b l e m s , it was  felt  that  a link was  missing  between  m e t h o d s s t a t e m e n t a n d m e t h o d s . Thus, t h e d e c i s i o n was t a k e n t o b r e a k d o w n a m e t h o d s s t a t e m e n t into smaller chunks or p i e c e s " c a l l e d " O p e r a t i o n s " . For e x a m p l e , a m e t h o d s  "work  statement  for Build slab consists of t h e o p e r a t i o n s ; f o r m / s t r i p slab, r e b a r slab, a n d p l a c e / f i n i s h slab. Since a n o p e r a t i o n is c o n t e x t sensitive a n d c a n b e d e f i n e d at d i f f e r e n t level of coarseness d e p e n d i n g o n t h e  37  user's v i e w , it has not b e e n t r e a t e d as a basic b u i l d i n g b l o c k in t h e s a m e w a y as a m e t h o d s s t a t e m e n t , m e t h o d s a n d r e s o u r c e s . Since o p e r a t i o n s i n v o l v e processes, a set of m e c h a n i s m ( m e t h o d s ) to p e r f o r m , m e t h o d s c a n n o w b e i n s e r t e d below  operations  methods  and  as t h e  resource  next  lower  breakdown  level  in t h e  structure.  hierarchical  Each  of  these  o p e r a t i o n s involves zero to several m e t h o d s , as well as resources r e q u i r e d for t h e s e m e t h o d s . During  testing  of  our  structure,  we  came  across m a n y o p e r a t i o n s w h i c h a r e very m e c h a n i z e d or d o  not  i n v o l v e a s p e c i f i c m e t h o d e . g . p l a c i n g r e b a r for slabs or walls & c o l u m n s m a y not h a v e a n y s p e c i a l m e t h o d or m e t h o d s . They m a y simply b e r e s o u r c e i n t e n s i v e , so w e d e c i d e d not t o i m p o s e restriction  that  operation  Therefore,  resources  can  have be  one  directly  or  methods  assigned  under  beneath  the it. an  o p e r a t i o n d e p e n d i n g on t h e o p e r a t i o n . In o r d e r ,  to  generate  a  project  plan  we  n e e d a c t i v i t i e s . Since a n a c t i v i t y deals w i t h t h e a t t a i n m e n t of a p h y s i c a l s e g m e n t of a p r o j e c t , a n d is f o c u s e d on c o s t , t i m e , a n d r e s o u r c e u s a g e , an o p e r a t i o n is i d e n t i c a l in m a n y r e s p e c t s t o a t r a d i t i o n a l a c t i v i t y . The d e c i s i o n was t h e r e f o r e t a k e n t o h a v e a n  38  o p e r a t i o n m a p o n e - t o - o n e to a n a c t i v i t y . Thus a c o n s t r a i n t  has  b e e n i m p o s e d t h a t an o p e r a t i o n must b e a n o n - d i v i s i b l e p i e c e of w o r k i.e. it is not i n t e r r u p t i b l e e x c e p t b e t w e e n w o r k l o c a t i o n s . It is acknowledged  that  some  planning  and  scheduling  systems  a c c o m m o d a t e work interruption. We will n o w e x a m i n e f r a g n e t s a n d r e s o u r c e s , a n d their i m p o r t a n c e for d e s c r i b i n g m e t h o d s . A method  is c o m p r i s e d  of  a  set  of  tasks  c a r r i e d o u t in a p r e d e f i n e d s e q u e n c e w i t h t h e h e l p of r e s o u r c e s . Since no t w o m e t h o d s c a n h a v e t h e s a m e set of tasks in t h e s a m e s e q u e n c e , while r e m a i n i n g d i s t i n c t , w e c a l l e d t h e c o l l e c t i o n  of  tasks a task t e m p l a t e , w h i c h is c o m m o n l y c a l l e d a f r a g n e t - i.e. a little  network  of tasks a n d  logic, which  is u n i q u e  for a  given  m e t h o d . A f e a t u r e a d d e d to f o r m u l a t i n g task t e m p l a t e s , in o r d e r to  increase  flexibility,  was  to  allow  a  task  template  c o n s t i t u t e d f r o m o t h e r task t e m p l a t e s . For e x a m p l e , a  to  be  method  Form/Strip Walls a n d Columns is basically t w o m e t h o d s Form/Strip Walls a n d Form/Strip C o l u m n s , a n d t h e r e f o r e t h e task t e m p l a t e for  39  the method  Form/Strip Walls a n d Columns consists of t w o Task  templates*. Since all of t h e tasks u n d e r a task t e m p l a t e h a v e p r e c e d e n c e relationships, t h e s a m e must b e true for a task template operations  composed may  of  have  more more  than then  one one  task  template.  method  under  Also them.  T h e r e f o r e task t e m p l a t e s a s s o c i a t e d w i t h t h e s e m e t h o d s n e e d to b e " R o l l e d - u p " to m a k e t h e o p e r a t i o n u n i f i e d p r o c e s s . Based on the  foregoing,  decision  was  taken  to  treat  fragnets  as  "OBJECTS"** . This m e a n s a f r a g n e t is a i n t e g r a t e d b o d y in t h e sense t h a t w h a t e v e r is true for it, is true for its c o n s t i t u e n t Tasks. For e x a m p l e , if F r a g n e t l  has m tasks a n d Fragnet 2 has n tasks,  a n d a r e l a t i o n s h i p b e t w e e n t w o f r a g n e t s has b e e n d e f i n e d , say Finish-to-Start, t h e n all t h e m tasks of Fragnet  1 will h a v e Finish-to-  Start r e l a t i o n s h i p w i t h all t h e n tasks of Fragnet 2. Of c o u r s e , it is  * Significant flexibility has been built into the system in order not to constrain the user. For the forgoing example, it would be preferable for the user to define an operation as Form/strip walls and columns. Then the operation could be described in terms of four distinct methods- Form walls, Form columns, Strip walls, and Strip columns. ** In designing the system, we made use of hierarchical as well as object-oriented programming concepts, the later for it's ability to arrange objects into classes according to common attributes and also it's ability to inherit attributes from a higher level of objects or classes.  40  possible to refine t h e relationships b e t w e e n f r a g n e t tasks w h e n g e n e r a t i n g the project plan a n d schedule. Basically, about  h o w to e x e c u t e  these  fragnets  have  information  a m e t h o d , or, in o t h e r w o r d s t h e y  are  i n h e r e n t c h a r a c t e r i s t i c s of a m e t h o d . For e x a m p l e , a f r a g n e t for t h e m e t h o d fly f o r m i n g , will h a v e tasks, Roll out of b a y , C l e a r b a y , M o v e u p , G u i d e to n e w b a y , Close in to n e w b a y , a n d Rest in n e w b a y , all in an o r d e r e d s e q u e n c e . This will always b e true no m a t t e r w h e r e a n d w h e n this m e t h o d is b e i n g u s e d . T h e r e f o r e , f r a g n e t s a r e not i n d e p e n d e n t b u i l d i n g blocks in t h e M e t h o d s a n d Resource B r e a k d o w n S t r u c t u r e , but h a v e a d i r e c t a s s o c i a t i o n w i t h m e t h o d s . N o w w e c a n m a k e a n O p e r a t i o n a n o n - d i v i s i b l e p i e c e of w o r k by d e f i n i n g e x t r a tasks n e e d e d to link t h e various m e t h o d  fragnets  for t h e m e t h o d s d e f i n e d b e n e a t h t h e o p e r a t i o n . As  described  previously,  methods  are  p r o c e d u r e s or processes to e x e c u t e o p e r a t i o n s , a n d t h e y r e q u i r e t h e use of resources. These resources c a n b e e i t h e r (cranes,  pumps,  trowels,  etc.),  materials  labourers,  etc.),  labour  (concrete,  (foreman,  aggregates,  equipment carpenters, sand,  etc.),  s p e c i a l t y t r a d e s ( e l e c t r i c a l c r e w , r e b a r c r e w , p i p i n g c r e w , e t c . ) or any  other  category  of  inputs.  Resource  inputs  constitute  an  i m p o r t a n t d e s c r i p t o r of m e t h o d s . Of p a r t i c u l a r c o n c e r n a r e key  41  inputs,  and  the  attributes  that  describe  them,  such  as  the  p r o d u c t i o n rate that c a n be a c h i e v e d under s t a n d a r d conditions or t h e c o n d i t i o n s t h a t  n e e d to b e present t o p e r m i t  resource (e.g. space requirements). the productive (i.e. w h a t Therefore  use of  a  It is i m p o r t a n t to n o t e t h a t  c a p a b i l i t i e s of a r e s o u r c e a r e c o n t e x t  sensitive  task or tasks is t h e r e s o u r c e g o i n g t o b e used f o r ) . it is not  possible  to s p e c i f y  a standard  productivity  i n d e p e n d e n t of a p p l i c a t i o n . For e x a m p l e p r o d u c t i v i t y of a c r a n e in p l a c i n g c o n c r e t e for slab will b e d i f f e r e n t f r o m t h e p r o d u c t i v i t y of t h e s a m e c r a n e in p l a c i n g Attention maintenance  of  flying forms. is  now  all of t h e f o r e g o i n g  directed  at  i n f o r m a t i o n in t h e  the most  e f f e c t i v e w a y so t h a t t h e u p d a t i n g b u r d e n is m i n i m i z e d . Since for a p a r t i c u l a r process t h e r e c a n b e a d e c i d e d to a l l o w  numbers of m e t h o d s , it was  similar m e t h o d s to b e g r o u p e d by c l a s s - e . g .  c o n c r e t e p l a c e m e n t , slab f o r m i n g , e t c . form/strip  floor slab  may  be any  one  For e x a m p l e , m e t h o d s for of f l y f o r m i n g ,  f o r m i n g , j o b - b u i l t f o r m i n g , c o r r u g a t e d steel f o r m i n g ,  fiberglass suspended  f o r m i n g , a n d C e c o f l a n g e f o r m i n g . Thus, in our M&RBS t e m p l a t e , i n s t e a d of h a v i n g n numbers of m e t h o d t e m p l a t e s for t h e s a m e p r o c e s s , w e h a v e o n e t e m p l a t e c a l l e d m e t h o d class t e m p l a t e in w h i c h all m e t h o d s of similar types are r e p r e s e n t e d in t h e f o r m of a  42  tree  structure.  We  are  still a b l e  to  maintain  our  hierarchical  s t r u c t u r e a n d c a n d e f i n e a p p r o p r i a t e resources for a  particular  m e t h o d inside t h e m e t h o d class. While  going  through  a  similar  process for resources, w e f o u n d t h e c l a s s i f i c a t i o n  of  thought resources  i n t o e q u i p m e n t , l a b o r , m a t e r i a l , a n d s p e c i a l t y t r a d e , or a n y o t h e r r e s o u r c e class s t r u c t u r e t h e user c a r e s to d e f i n e , a n d in n e e d of  to be too b r o a d  f u r t h e r r e f i n e m e n t . For e x a m p l e t h e r e a r e s e v e r a l  classes of c r a n e - e . g . t o w e r c r a n e , r o u g h t e r r a i n , c r a w l e r ,  etc.  Under e a c h , a n u m b e r of c r a n e s c a n b e i d e n t i f i e d . Thus a t h r e e level h i e r a r c h y is used to d e s c r i b e resources, w i t h t h e t h r e e levels corresponding  to  resource  class,  resource  subclass,  and  r e s o u r c e itself. This allows us to o r g a n i z e our k n o w l e d g e resources equipment  into  a  more  resource  accessible  class  can  now  form. be  For  about  example,  subdivided  the  into  the the  e q u i p m e n t sub-classes; c r a n e s , p u m p s , t r o w e l s , a n d f l o a t s . Based on t h e f o r e g o i n g discussion, w e  can  n o w summarize t h e d e s c r i p t i o n of our r e p r e s e n t a t i o n f r a m e w o r k or M e t h o d s a n d Resource B r e a k d o w n Structure (M&RBS). It consists of t h r e e t y p e s of t e m p l a t e s ; M e t h o d s S t a t e m e n t , M e t h o d Class, a n d Resource Class, e a c h o n e of w h i c h  is d e f i n e d in t h e f o r m of  a t r e e s t r u c t u r e . In d e f i n i n g a m e t h o d s s t a t e m e n t , c e r t a i n rules or 43  restrictions a p p l y . For e x a m p l e , a r e s o u r c e c a n b e a t t a c h e d t o a m e t h o d or d i r e c t l y to a n o p e r a t i o n . An o p e r a t i o n c a n only b e l o n g to a m e t h o d s s t a t e m e n t a n d a m e t h o d c a n only b e l o n g to a n operation.  The  hierarchy  for  a  method  statement  is  Method  S t a t e m e n t as t h e Root, t h e n O p e r a t i o n s , M e t h o d s , a n d Resources as sub-levels, r e s p e c t i v e l y . As s t a t e d  previously,  an  operation  n e e d not h a v e m e t h o d s b e l o n g i n g to it a n d t h e r e f o r e  resources  c a n b e a s s o c i a t e d d i r e c t l y w i t h a n o p e r a t i o n . The h i e r a r c h y for a Method  Class is M e t h o d  Class as Root a n d t h e n M e t h o d s  and  Resources as sub-levels r e s p e c t i v e l y . The h i e r a r c h y of a Resource class is. Resource Class as Root a n d t h e n Resource  Sub-classes  a n d Resources as sub-levels r e s p e c t i v e l y . We f o u n d it very d i f f i c u l t if not impossible to p r o v i d e a u t o m a t e d assistance for v e r i f y i n g t h a t t h e  right m e t h o d  b e l o n g s to t h e right m e t h o d class or t h a t t h e right f r a g n e t  has  b e e n a s s o c i a t e d w i t h t h e right m e t h o d , a n d so f o r t h . T h e r e f o r e , t h e user has t o b e very c a r e f u l w h e n e n t e r i n g d i f f e r e n t d a t a into the system. Our next step in f o r m u l a t i n g a system is to d e t e r m i n e h o w to e q u i p t h e system w i t h k n o w l e d g e in o r d e r to h e l p t h e user in assessing w h e t h e r or not  a m e t h o d s t a t e m e n t or  its c o m p o n e n t s are f e a s i b l e for a g i v e n c o n s t r u c t i o n c o n t e x t . The 44  f o l l o w i n g p a r a g r a p h s d e s c r i b e t h e t h o u g h t process s u g g e s t e d for tackling  problems  of  feasibility  and  the  types  of  information  n e e d e d t o r e a c h c o n c l u s i o n s a b o u t feasibility. The m e t h o d s s e l e c t i o n p r o b l e m c a n b e d e a l t w i t h a t t w o levels; t h e m i c r o level a n d t h e m a c r o l e v e l . A m e t h o d can  be  discarded  resource  at  a  lower  level  of  r e a s o n i n g , say  l e v e l . For e x a m p l e , if t h e r e is i n s u f f i c i e n t  at  space  the at  a  c o n s t r u c t i o n site, a flying f o r m i n g m e t h o d m a y not b e f e a s i b l e , or if t h e h e i g h t to w h i c h c o n c r e t e must b e p l a c e d is m o r e t h a n t h e p u m p i n g c a p a c i t y of a p u m p , t h e n a c o n c r e t e p l a c i n g t h a t uses a p u m p m a y not b e f e a s i b l e . At a hierarchy,  say  the  methods  statement  may  be r e j e c t e d  statement  because  h i g h e r level in t h e level,  it d o e s  l o c a l b y - l a w s . To b e a b l e to p e r f o r m this  method  not  the  methods  comply  with  kind of r e a s o n i n g , w e  n e e d s p e c i f i c i n f o r m a t i o n at d i f f e r e n t levels in t h e h i e r a r c h y . The s o u r c e a n d r e p r e s e n t a t i o n of this i n f o r m a t i o n p r o v i d e c h a l l e n g e s . A g o a l is h o w to s t r u c t u r e t h e i n f o r m a t i o n in a w a y t h a t allows t h e s p e e d y p r u n i n g of i n f e a s i b l e m e t h o d s s t a t e m e n t s , m e t h o d s , a n d resources. Reflection  on  these  t h a t m u c h of t h e i n f o r m a t i o n r e q u i r e d  challenges  revealed  comes from the physical  d e s c r i p t i o n of t h e p r o j e c t . Thus t h e r e is a n e e d to b e a b l e 45  to  r e p r e s e n t these c h a r a c t e r i s t i c s of a p r o j e c t , w h i c h a r e essential to decision  making about  m e t h o d s , as well as o t h e r  construction  m a n a g e m e n t f u n c t i o n s . Building u p o n t h e t e r m i n o l o g y i n t r o d u c e d in sections 3.4.7 to 3.4.14, a p r o j e c t c a n b e d e f i n e d in terms of its l o c a t i o n s , w h i c h c o u l d b e p h y s i c a l or p r o c e d u r a l (Typical u p p e r floor,  Approvals/Permits  etc.),  its  elements,  (Slab,  Walls,  and  C o l u m n s e t c . ) a n d systems ( M e c h a n i c a l , E l e c t r i c a l e t c . ) . O f t e n it is useful to d i v i d e a p r o j e c t into several s u b - p r o j e c t s to f a c i l i t a t e m o n i t o r i n g a n d c o n t r o l , a n d also to d e c o m p o s e systems i n t o subsystems b e c a u s e of t h e d i f f e r e n t s p e c i a l t y c o n t r a c t o r s i n v o l v e d in installing a n o v e r a l l system - e . g . Elevator, H V A C , a n d Sprinkler sub-systems  under  made  Elements,  for  differentiate  Mechanical where  between  system. A similar the  contractor  Rectangular,  Circular,  case  can  be  want  to  Hexagonal  or  may  A r c h i t e c t u r a l c o l u m n s - thus t h e n e e d to c o n s i d e r s u b - e l e m e n t s . The formulation  of  a  foregoing  Physical  reasoning  Components  has  led  Breakdown  to  the  Structure  (PCBS) for d e s c r i b i n g a p r o j e c t . Similar to our M&RBS s t r u c t u r e , t h e PCBS  is  templates  comprised can  be  of  templates  Project,  and  Sub-project,  tree  structures.  System,  PCBS  Sub-system,  Elements, S u b - e l e m e n t s , L o c a t i o n set a n d L o c a t i o n s . E x c e p t  for  t h e l o c a t i o n a n d S u b - e l e m e n t c o m p o n e n t s , all o t h e r c o m p o n e n t s  46  of t h e PCBS c a n h a v e a with limited  hierarchical tree structure under t h e m ,  restrictions. These restrictions i n c l u d e ; y o u c a n  not  d e f i n e s u b - e l e m e n t s or subsystem w i t h o u t first d e f i n i n g e l e m e n t or system levels, r e s p e c t i v e l y . The PCBS h i e r a r c h y under  project;  subsystem only project,  system  under  either  is: s u b - p r o j e c t  project  or  sub-project;  u n d e r system; e l e m e n t u n d e r a n y of P r o j e c t , sub-  system,  and  sub-system;  and  sub-element  beneath  e l e m e n t o n l y . Sometimes it is useful to h a v e a l o c a t i o n set for a p r o j e c t , so i n s t e a d of d e f i n i n g l o c a t i o n s o n e a t a t i m e in o r d e r  to  d e f i n e all t h e l o c a t i o n s , w e c a n use a l o c a t i o n set t e m p l a t e w h i c h consists  of  all  locations  in t h e  form  t e m p l a t e c a n t h e n b e inserted d i r e c t l y  of  a  tree  structure.  This  into t h e p r o j e c t PCBS.  A r a n g e of i n f o r m a t i o n is r e q u i r e d f r o m t h e PCBS  in  order  functions. elements activity  to  support  various  construction  management  First, w e r e q u i r e q u a n t i t y t a k e - o f f d a t a f r o m (slab, c o l u m n s e t c . )  durations  e.g.  to b e a b l e to c a l c u l a t e  fragnet  task  duration  can  be  various task  or  defined  d i r e c t l y by t h e user or their c o m p u t a t i o n c a n b e a u t o m a t e d  by  considering the  of  quantity involved and the production rate  various resources. Such d a t a has b e e n d e s c r i b e d in t h e f o r m of p a r a m e t e r s in t h e PCBS. S e c o n d , p r o j e c t r e q u i r e m e n t s in t h e f o r m of c o n t r a c t u a l c o n s t r a i n t s , f e d e r a l or p r o v i n c i a l b y - l a w s , a n d site  47  conditions  n e e d to b e s u p p o r t e d . This t y p e of i n f o r m a t i o n  b e e n l a b e l e d as c o n d i t i o n s . P a r a m e t e r s a n d c o n d i t i o n s in c h e c k i n g  t h e feasibility of a m e t h o d or m e t h o d s  Parameters a n d conditions example,  similar  resources  have  to  the  has  a r e used statement.  are a p p l i c a b l e to t h e M&RBS also. For physical  attributes,  characteristics  which  are  inherent  of to  a  project,  them,  for  e x a m p l e t h e lifting c a p a c i t y of c r a n e s , t h e p u m p i n g c a p a c i t y of pumps,  and  the  area  or  number  of  flying  forms,  and  also  c o n s t r a i n t s of m e t h o d s a n d m e t h o d s s t a t e m e n t s w h i c h h a v e to b e surpassed to m a k e t h e m w o r k . Initially attributes  of t h e various  Conditions  were  parameters  were  thought  PCBS a n d M&RBS c o m p o n e n t s ,  treated  as  a  separate  component  h i e r a r c h y of b o t h structures. H o w e v e r w e e v e n t u a l l y that  feasibility  regulatory) therefore  are  conditions really  decided  to  of  (technical,  context treat  or them  in  while in  the  concluded  environmental,  application a  and  specific,  manner  as  and  similar  to  parameters. Parameters c o m p o n e n t in t h e well  as t h e  means  that  can  be  defined  for  every  Physical C o m p o n e n t B r e a k d o w n S t r u c t u r e as  Methods Project,  and  Resource  Sub-project, 48  Breakdown  Structure.  System, Sub-System,  This  Element,  S u b - E l e m e n t , a n d L o c a t i o n c o m p o n e n t s in t h e PCBS a n d  Method  S t a t e m e n t , O p e r a t i o n , M e t h o d , a n d Resource c o m p o n e n t s in t h e M&RBS h a v e  parameters  associated with  them, which  i n h e r i t e d f r o m u p p e r levels in t h e s t r u c t u r e s . Similarly c a n b e d e f i n e d for a n y of t h e PCBS c o m p o n e n t s a n d  can  conditions inherited  d o w n w a r d . For t h e M&RBS t h e y a p p e a r at all levels, e x c e p t the  Resource  class  structure,  because  unless  be  resources  for are  a t t a c h e d to m e t h o d s w e d o not k n o w w h a t t h e resources a r e to b e used for. Parameters  and  conditions  can  be  Q u a n t i t a t i v e ( e . g . 100 c u b i c meters, 1,000 s q u a r e f e e t ) , B o o l e a n ( e . g . yes or n o , true or false) or Linguistic ( e . g . g o o d , b a d , l a r g e , small). As been  classified  into  mentioned three  previously,  categories:  conditions  Technical  have  Feasibility  Conditions; Environmental Conditions; a n d , Regulatory Conditions.  49  TECHNICAL FEASIBILITY CONDITIONS These  are  lower  level  conditions  and  are  m a i n l y a s s o c i a t e d w i t h resources a n d m e t h o d s . They d e a l m a i n l y with  technical  specifications  and  operating  requirements  e q u i p m e n t . C o n s i d e r , for e x a m p l e , t h e c a s e of c o n c r e t e  for  pumps.  Some p u m p s are r a t e d up to 100 or m o r e c u b i c yards p e r hour a n d e f f e c t i v e p u m p i n g d i s t a n c e s vary f r o m a b o u t 300 t o 1000 ft. horizontally  and  from  100  to  300  ft  vertically.  In  checking  t e c h n i c a l feasibility use is m a d e of PCBS a n d M&RBS c o m p o n e n t a t t r i b u t e s . T e c h n i c a l feasibility c h e c k s are m a d e at t h e r e s o u r c e , m e t h o d a n d m e t h o d s s t a t e m e n t levels.  ENVIRONMENTAL/ REGULATORY CONDITIONS Environmental are  treated  and  Regulatory  t o g e t h e r . They d e a l w i t h t h e s t a t u t o r y  Conditions conditions,  w h i c h are e n f o r c e d through Federal, Provincial, a n d  Municipal  laws, by-laws a n d r e g u l a t i o n s . Example i n c l u d e s m a x i m u m  noise  level a l l o w e d , a l l o w a b l e dust l e v e l , s a f e t y r e q u i r e m e n t s , a n d so forth. Thus, t h e r e is a c l e a r n e e d for a n a s s o c i a t i o n b e t w e e n t h e PCBS a n d M&RBS in o r d e r to e f f e c t i v e l y e v a l u a t e t h e rules n e c e s s a r y to c o n f i r m feasibility of m e t h o d s c h o s e n .  50  Since hierarchical  tree  both  structures,  it  the  PCBS  is very  and  tempting  M&RBS to  are  allow  an  a s s o c i a t i o n of a n y of t h e c o m p o n e n t s in t h e PCBS w i t h a n y of t h e c o m p o n e n t s in t h e M&RBS. In establishing rules for a s s o c i a t i n g t h e PCBS and  M&RBS, several  issues  must  be  addressed.  First,  for  p h y s i c a l e l e m e n t a t a g i v e n p r o j e c t l o c a t i o n , only o n e statement  can  any  methods  be assigned, though a methods statement  can  h a v e m o r e t h a n o n e PCBS t e m p l a t e a s s o c i a t e d w i t h it. S e c o n d , if PCBS t e m p l a t e s  are  associated  at  lower  levels  in a n  M&RBS  t e m p l a t e w i t h o u t a n y r e f e r e n c e to a h i g h e r l e v e l , t h e n m a n a g i n g d a t a b e c o m e s very d i f f i c u l t . A n o t h e r issue involves t h e flexibility g i v e n t o users. If w e a l l o w t h e user to work at a n y l e v e l , he m a y pick  the  same  transferring example,  from  element the  with  two  different  standard  side  to  for s t a n d a r d  PCBS t e m p l a t e s ,  the  methods project  there  may  while  side. be  a  For sub-  e l e m e n t t e m p l a t e for r e c t a n g u l a r c o l u m n s , w h i c h is a t t a c h e d to a method  called  modular  panels  forms,  and  another  w h i c h has C o l u m n s as an e l e m e n t w i t h t h e m e t h o d  template Adjustable  w r a p a r o u n d forms. If t h e user c o p i e s o v e r M&RBS t e m p l a t e s f r o m t h e s t a n d a r d to t h e p r o j e c t for p l a n n i n g p u r p o s e s , our element  column  has t w o m e t h o d s a s s o c i a t e d w i t h it. C h e c k i n g for this  51  duplication  and  possible  inconsistency  is q u i t e  difficult,  and  c o m p l i c a t e s t h e task of p e r f o r m i n g a feasibility c h e c k . K e e p i n g t h e f o r e g o i n g in m i n d , w e to m a k e t h e a s s o c i a t i o n  between  PCBS a n d M&RBS  decided somewhat  rigid or r e s t r i c t i v e a n d pass m u c h of t h e b u r d e n of c h e c k i n g to the  user. A s s o c i a t i o n  between  the  f o r g e d at the methods statement  PCBS a n d  M&RBS must  l e v e l . This m e a n s t h a t  be  unless  a n d until o n e or m o r e PCBS t e m p l a t e s h a v e b e e n a t t a c h e d t o a m e t h o d s s t a t e m e n t , no c o m p o n e n t s of t h e PCBS t e m p l a t e c a n b e a s s o c i a t e d to lower levels in t h e M&RBS. Since t h e user has t h e flexibility of w o r k i n g at a n y level in b o t h t h e PCBS a n d M&RBS, he can  pick  different  levels f r o m t h e  PCBS to a s s o c i a t e  with  the  methods statement. The problem  is d e f i n i n g these  rule  final sets  rules  step for  have  in use  the in  already  methods feasibility been  selection reasoning.  Arguments  for  identified  as  parameter  a n d c o n d i t i o n values in previous p a r a g r a p h s . These  values c a n e i t h e r b e q u a n t i t a t i v e , B o o l e a n , or Linguistic in n a t u r e a n d c o m e f r o m p a r a m e t e r s a n d c o n d i t i o n s values a t t a c h e d different  components  of t h e PCBS a n d M&RBS. These rules  to are  b a s i c a l l y e l i m i n a t i o n rules r a t h e r t h a n s e l e c t i o n rules. Unlike o t h e r e x p e r t systems, h o w e v e r , these rules are m e a n t to b e d y n a m i c a l l y  52  specified  by t h e user a n d not h a r d c o d e d  in t h e s y s t e m . The  r e a s o n for our p r e f e r e n c e to use e l i m i n a t i o n rules is t h a t for a s e l e c t i o n a p p r o a c h , w e w o u l d n e e d a h u g e d a t a b a s e of d i f f e r e n t m e t h o d s , a n d d e p e n d i n g on t h e c o n d i t i o n s p r e s e n t , a s e a r c h has to  be  performed  criteria.  For  find  a  method  elimination  that  on r e s o u r c e a v a i l a b l e or f a m i l i a r i t y w i t h a  method,  and  conduct  on  the  select  search  depending  screening  we  the  method  a  approach,  matches  a  then  an  to  basis  of  the  actual  c o n d i t i o n s present in o r d e r to find out w h e t h e r m e t h o d c a n used or n o t . We b e l i e v e t h a t t h e l a t t e r a p p r o a c h was a choice  because  cumbersome updating  the  maintaining  j o b , but  database  also a s p a c e  database  methods b e c o m e  a  to  crucial.  is  consuming  incorporate  new  not one  be  better  only too.  a Also  technologies  Rules c a n only b e a t t a c h e d  to  or the  methods statement, m e t h o d , a n d resource (having a t t a c h e d  a  r e s o u r c e to a m e t h o d in a m e t h o d s t a t e m e n t allows o n e t o assign feasibility rules to resources as well) level b e c a u s e o p e r a t i o n s a r e context  sensitive  and  conditions/parameters  associated  t h e m c a n b e t a k e n c a r e of by rules at t h e m e t h o d s and  method  l e v e l . The r e f e r e n c i n g  with  statement  system for P a r a m e t e r s  and  C o n d i t i o n s in t h e rules is simply their n a m e s , no m a t t e r h o w l o n g their n a m e is. To t a k e c a r e of a n y c o n f u s i o n c r e a t e d b e c a u s e of  53  t h e d u p l i c a t i o n of these n a m e s , a restriction has b e e n  imposed  t h a t t h e y should b e u n i q u e , w h i c h m e a n s t h a t no t w o p a r a m e t e r s or c o n d i t i o n s c a n h a v e t h e s a m e d o m a i n n a m e . There are t w o ways of firing t h e s e rules. The first is f r o m t h e lower level to t h e higher level - w h i c h  means  c h e c k i n g feasibility at t h e m e t h o d s level first a n d t h e n a t  the  m e t h o d s s t a t e m e n t l e v e l . The s e c o n d w a y is f r o m t h e h i g h e r level to  the  process  lower at  level -  the  which  methods  means  statement  performing  the  level first a n d  elimination then  at  the  m e t h o d s l e v e l . From a p r a c t i c a l a n d l o g i c a l p o i n t of v i e w , t h e s e c o n d s c e n a r i o makes m o r e sense. For e x a m p l e , first w e fire rules at t h e m e t h o d s s t a t e m e n t l e v e l , a n d t h e n if all of t h e  attached  c o n d i t i o n s a r e s a t i s f i e d , w e h a v e survived at t h e h i g h e r level a n d thus c a n p r o c e e d to verify lower level feasibility c o n d i t i o n s a t t h e m e t h o d s l e v e l . Thus, if m o r e t h a n o n e m e t h o d fails t h e y c a n  be  r e p l a c e d without altering the methods s t a t e m e n t . Now, imagine t h e first s c e n a r i o w h e r e y o u h a v e all of t h e l o w e r level feasibility conditions,  but  at t h e  methods  statement  conditions  are  not  s a t i s f i e d , thus  elimination  of  the  methods  resulting  statement.  level, one in t h e  Thus,  all  or  rejection of  the  r e a s o n i n g has b e e n w a s t e d . H e n c e , t h e s e c o n d a p p r o a c h been a d o p t e d .  54  more or  prior has  As  mentioned  earlier,  arguments  for  the  feasibility rules are p a r a m e t e r a n d c o n d i t i o n values d e f i n e d e i t h e r a t t h e PCBS level or M&RBS l e v e l . Rules m a y f o l l o w a n y o n e of t h e f o l l o w i n g forms to c h e c k feasibility; Yes or n o :  Test B o o l e a n v a r i a b l e s  [>, <, =, <=, = > ] :  To test a n expression or v a r i a b l e a g a i n s t a numerical value  Is a n d ls_not:  Test string t y p e d a t a versus r e s e r v e d keywords  Name:  E v a l u a t e a n expression a n d / o r v a r i a b l e a n d assign it to a n o t h e r v a r i a b l e  Reset:  Reset t h e v a l u e of a n a t t r i b u t e t o t h e  default  Equal or Not e q u a l :  C o m p a r e a n expression  Retrieve:  Allows t h e system to r e a d a file of values s t o r e d on disk a n d / o r q u e r y a d a t a b a s e 55  M e m b e r a n d Not m e m b e r : Test w h e t h e r a p a r t i c u l a r o b j e c t b e l o n g s to a g i v e n list of o b j e c t s by p a t t e r n m a t c h i n g , or verify t h a t an o b j e c t d o e s not b e l o n g to a list  Here a r e s o m e e x a m p l e s of possible rules. Rules at M e t h o d s Level (1)  IF s p a c e a r o u n d site N_E (not e q u a l to) E n o u g h Then  (2)  METHOD Flying f o r m i n g c a n not b e USED.  IF C o n c r e t e p l a c e m e n t l o c a t i o n is GJ. ( g r e a t e r t h a n ) X f e e t HORIZONTAL a n d Y f e e t VERTICAL Then  METHOD P u m p i n g C o n c r e t e c a n not b e USED.  Rules at M e t h o d s S t a t e m e n t Level (1)  IF PRODUCTION RATE r e q u i r e d for c o n c r e t e p l a c e m e n t is GT  ( g r e a t e r t h a n ) X c u b i c yards per hour Then  METHODS  pumping  C o n v e y o r c a n not b e USED.  56  concrete  or  Placement  by  (2)  IF NOISE level is G E . ( g r e a t e r t h a n or e q u a l to) X dB Then  METHODS STATEMENT is not f e a s i b l e .  A very i m p o r t a n t system d e s i g n issue in terms of its f u n c t i o n , is t h e w a y y o u m o v e f r o m t h e s t a n d a r d t o  the  p r o j e c t side. Because of t h e very o p e n a n d flexible structures at t h e PCBS a n d M&RBS levels, t h e r e are m a n y o p p o r t u n i t i e s for t h e user t o  go  a s t r a y . T h e r e f o r e , if t h e  user w a n t s  help  from  the  system, it is necessary t h a t t h e y c o p y b o t h t h e PCBS a n d M&RBS f r o m t h e s t a n d a r d to t h e p r o j e c t side w i t h all of t h e r e a s o n i n g a n d l o g i c a l links i n t a c t . Then t h e only j o b f a c i n g t h e user is to p r o v i d e a c t u a l values for p r o j e c t p a r a m e t e r s a n d c o n d i t i o n s . A s e c o n d a p p r o a c h s u p p o r t e d is to c r e a t e a p r o j e c t by s e l e c t i n g d i f f e r e n t sized " c h u n k s " f r o m t h e PCBS a n d M&RBS s t a n d a r d  templates.  H o w e v e r , for this a p p r o a c h , no help is o f f e r e d f r o m t h e system in terms of c h e c k i n g feasibility. A third w a y of c r e a t i n g a p r o j e c t is to start f r o m s c r a t c h on t h e p r o j e c t side a n d d e f i n e d i r e c t l y b o t h t h e PCBS a n d M&RBS s t r u c t u r e w i t h no r e f e r e n c e w h a t s o e v e r  to  t h e s t a n d a r d side of t h e system. We c o n c l u d e an  overview  of  the  Methods  our discussion  selection  57  System  by  presenting  Components  (Fig.3.1). The m a i n c o m p o n e n t s of system at s t a n d a r d a n d p r o j e c t levels a r e as f o l l o w .  3.5.1 STANDARD LEVEL  The s t a n d a r d s level treats b o t h t h e Physical a n d Process views of a p r o j e c t in a b s t r a c t e d or g e n e r i c f o r m . The g o a l is t o h a v e t h e i n f o r m a t i o n s t r u c t u r e d in such a w a y t h a t it is d i r e c t l y a p p l i c a b l e to most p r o j e c t s w i t h little or no r e f i n e m e n t . Two c o m p o n e n t s at t h e s t a n d a r d s level a r e ; •  Physical C o m p o n e n t B r e a k d o w n S t r u c t u r e (PCBS)  •  M e t h o d s & Resource B r e a k d o w n S t r u c t u r e (M&RBS)  3 . 5 . 2 PROJECT LEVEL  The  second  important  aspect  of  the  c o m p u t e r i z e d e n v i r o n m e n t for t h e m e t h o d s s e l e c t i o n p r o b l e m is t h e p r o j e c t level w h e r e w e d e a l w i t h a s p e c i f i c p r o j e c t  58  context  59  (e.g.  while  all  high  rise  building  projects  have  some  c o m m o n a l i t y a m o n g t h e m , site c o n d i t i o n s , o w n e r e x p e c t a t i o n s , s p e c i a l d e s i g n f e a t u r e s e t c . c o n t r i b u t e to e a c h p r o j e c t  being  unique). The  project  level  is c o m p r i s e d  of  four  m o d u l e s , as d e s c r i b e d b e l o w .  3 . 5 . 2 . 1 PHYSICAL VIEW  The p h y s i c a l v i e w of t h e p r o j e c t d e s c r i b e d in  terms  of  the  Physical  Component  Breakdown  Structure,  i n c l u d e s not only a d e s c r i p t i o n of p h y s i c a l c o m p o n e n t s of t h e facility,  but  also a d e s c r i p t i o n  of  project  requirements  and  a n t i c i p a t e d site C o n d i t i o n s .  3 . 5 . 2 . 2 PROCESS VIEW  The process v i e w is d e f i n e d in t h e f o r m of a M e t h o d s a n d Resource B r e a k d o w n S t r u c t u r e , a n d d e a l s w i t h t h e r e p r e s e n t a t i o n of m e t h o d s a n d resources to c a r r y o u t t h e p r o j e c t in terms of M e t h o d s s t a t e m e n t ( s ) , O p e r a t i o n s , M e t h o d s , a n d Resources. At t h e p r o j e c t level O p e r a t i o n s m a p one  to  activities,  allowing  an i n t e g r a t e d  60  cycle  one-to-  design  and  project  planning  and  scheduling  environment  to  be  with  the  developed.  3 . 5 . 2 . 3 PERFORMANCE E V A L U A T I O N  This Process  view  environmental  to  project  assess  impacts  on  module  cost,  interacts  time,  the  project  safety,  risk,  depending  and  on  the  m e t h o d s s e l e c t e d to e x e c u t e t h e p r o j e c t .  3 . 5 . 2 . 4 OUTPUT  Findings f r o m t h e p e r f o r m a n c e e v a l u a t i o n process a r e set o u t t h r o u g h t h e o u t p u t m o d u l e d e s c r i b i n g t h e methods expectations  used (cost  (methods  statements),  evaluation,  plan  and  performance schedule,  cycle  d e s i g n ) , a n d a t r a c e of t h e r e a s o n i n g used by t h e s y s t e m , if o n e or m o r e k n o w l e d g e - b a s e d c o m p o n e n t s are u s e d . At  present  a  limited  number  of  (methods statements, cycle design, and scheduling) taken  out  (See  Appendices)  because  e v a l u a t i o n p a r t has not b e e n i m p l e m e n t e d .  61  the  reports can  be  Performance  4. IMPLEMENTATION A N D PROTOTYPE EXAMPLES  4.1  INTRODUCTION  In this c h a p t e r , t h e c o m p u t e r  prototype*,  its c o m p o n e n t s , a n d d i f f e r e n t processes a r e d e s c r i b e d . For a c l e a r u n d e r s t a n d i n g of t h e system a n d it's various c o m p o n e n t s , a n e x a m p l e of t h e c o n s t r u c t i o n of a t y p i c a l floor in a high rise b u i l d i n g will b e u s e d . Not all of t h e c o m p o n e n t s of t h e system design  described  in date.  the  previous  Attention  chapter  implemented  to  has  been  implementing  t h e PCBS a n d M&RBS structures  have  been  directed at  both  at the  s t a n d a r d a n d p r o j e c t levels. I m p l e m e n t a t i o n of t h e r e a s o n i n g a n d e v a l u a t i o n c o m p o n e n t s has y e t t o b e d o n e .  Programming of the concepts discussed herein was done by William Wong of the Construction Management Laboratory.  62  4.2 PROBLEM D O M A I N  To d e m o n s t r a t e t h e various  implemented  c o m p o n e n t s of t h e system a n d also to v a l i d a t e t h a t t h e results o b t a i n e d a r e s a t i s f a c t o r y , some d a t a f r o m a p r o j e c t , w h i c h has already  successfully  been  commissioned  in  the  city  of  V a n c o u v e r , h a v e b e e n used w i t h slight m o d i f i c a t i o n . For t h e p u r p o s e of r e f e r e n c e w e will call t h e p r o j e c t U l t i m a t e Plaza, a high rise c o n d o m i n i u m p r o j e c t . The a c t u a l p r o j e c t consists of four  parkade  amenities penthouse  levels, o n e  floor,  twenty  floors. For our  Main four  floor, t w o  office  condominium  purposes, w e  floors  have  floors,  one  and  two  considered  s u p e r s t r u c t u r e of t w e n t y - f i v e floors ( t w e n t y - f o u r  a  condominium  floors a n d o n e p e n t h o u s e ) . D a t a d e s c r i b i n g floor p l a t e a r e a , v o l u m e of c o n c r e t e in slabs a n d walls a n d c o l u m n s , q u a n t i t y of r e b a r in various c o m p o n e n t s , a n d t h e f o r m w o r k  involved  in  slabs a n d walls a n d c o l u m n s are set out in Figure. 4.2.1 a n d a d i a g r a m of t y p i c a l floor p l a t e is shown in Fig.-4.2.2.  63  A DESCRIPTION  B  C  LOCATION FLOOR (feets) PLATE Height above A R E A (sql) ground  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  MAIN L E V E L L E V E L 2 FLOOR (OFFICES) L E V E L 3 FLOOR (OFFICES) L E V E L 4 FLOOR (AMENITIES) LEVEL 5 TYPICAL L O W E R FLOOR - 6 TYPICAL L O W E R FLOOR - 7 TYPICAL L O W E R FLOOR - 8 TYPICAL L O W E R FLOOR - 9 TYPICAL L O W E R FLOOR - 10 TYPICAL L O W E R FLOOR - 11 TYPICAL L O W E R FLOOR - 12 TYPICAL L O W E R FLOOR - 14 TYPICAL L O W E R FLOOR - 15 TYPICAL L O W E R FLOOR - 16 TYPICAL L O W E R FLOOR - 17 TYPICAL MID FLOOR -18 TYPICAL MID FLOOR -19 TYPICAL MID FLOOR -20 TYPICAL MID FLOOR -21 TYPICAL MID FLOOR -22 TYPICAL MID FLOOR -23 TYPICAL UPPER FLOOR - 24 TYPICAL UPPER FLOOR - 25 TYPICAL UPPER FLOOR - 26 TYPICAL UPPER FLOOR - 27 TYPTCATTDPPER FLOOR - 28  25 26 27 "28 29 TYPICAL UPPER FLOOR - 29 30 L E V E L 30 (LOWER PENTHOUSE)  D E F C O N C R E T E CONCRETE R E B A R (SLAB) (cbf) (W/C)(cbf) (SLAB) (kgs)  G REBAR  H F/W (W/C) (kgs) (SLAB) (sql)  1 F/W (W/C) (sqf)  0.00 12.00 21.33 30.50 46.00 54.63 63.25 71.88 80.50 89.13 9775 106.38 115.00 123.63 132.25 140.88 149.50 158.13 166.75 175.38 184.00 192.63 201.25 209.88 218.50 227.13 235.75  6844 6844 6844 6844 6844 6844 6844 6844 6844 6844 6844 6844 7125 6794 6794 6794 6794 6794 6998 6737 6737 6737 6/37 6737 6708  3990 3990 3990 3990 3990 3990 3990 3990 3990 3990 3990 3990 4154 3961 3961 3961 3961 3961 4080 3928 3928 3928 3928 3928 3911  1997 1997 1997 1997 1997 1997 1997 1997 1997 1832 1832 1832 1800 1800 1800 1800 1800 1800 1612 1612 1612 1612 1612 1581 1381  13349 13349 13349 13349 13349 13349 13349 13349 13349 13349 13349 13349 1389/ 13252 13252 13252 13252 13252 13650 13141 13141 13141 13141 13141 13084  6681 6681 6681 6681 6681 6681 6681 6681 6681 6129 6129 6129 6022 6022 6022 6022 6022 6022 5393 5393 5393 5393 5393 5289 4620  7069 7069 7069 7069 7069 7069 7069 7069 7069 7069 /06y 706y 7350 7019 7019 7019 7019 7019 7223 . 6962 6962 6962 6962 6962 6933  3385 3385 3385 3385 3385 3385 3385 3385 3385 3385 3385 3385 3359 3359 3359 3359 3359 3359 3359 3359 3359 3359 3359 3226 3020  244.38 253.00  677U 5542  3947 3696  1568  13205 12365  5246 0  6995 5767  2859 2471  Figure-4.2.1 Physical D a t a f o r H i g h - R i s e C o n d o m i n i u m Project  64  urns .9  Figure-4.2.2  Actual Typical Floor Diagram  65  4 . 3 SYSTEM C O M P O N E N T S  The  three  major  components  of  our  computerized environment are; •  S t a n d a r d Level  •  Project Level  •  I n t e r f a c e b e t w e e n S t a n d a r d a n d Project Levels For b o t h t h e S t a n d a r d a n d Project l e v e l , a significant  r e s e a r c h c h a l l e n g e is to f o r m u l a t e  structures t h a t range  of  representation  are sufficiently flexible to d e s c r i b e  construction  projects  and  methods,  as  a  diverse well  as  a c c o m m o d a t e t h e desire for m o r e or less d e t a i l on t h e p a r t of t h e system user. As d e s c r i b e d in t h e previous c h a p t e r , w e h a v e found  that  hierarchical  structures  based  on  a  rather  terse  l a n g u a g e a r e useful for d e s c r i b i n g b o t h w h a t is to b e built a n d h o w t o b u i l d it. REPCON has b e e n used as t h e i m p l e m e n t a t i o n  66  platform  (Fig. 4.3.1)  into  which  both  the  PCBS a n d  structures h a v e b e e n a d d e d .  REPCON 4 Educational and Research Version J-PROJECT LEUEL PROJECT FILES PROJECT SETUP & MISCELLANEOUS PROCESS UIEUCHOU, UHO, UHEN, UHERE) OST UIEU(HOU MUCH) PHYSICAL UIEUtUHAT, UHERE & SITE COMDITIOMS) UALITY VIEU(REQUIRED, ACHIEVED, 8 ACTIONS TAKEN) S-BUILT UIEUtUHAT HAPPENED, UHV, S ACTIONS TAKEN) CHANGE MANAGEMENT UIEUtUHAT CHANGED) J-STANDARDS Standard Physical Breakdown Structure(PCBS) I—Standard Fragnets tandard Method, Resource Breakdown Structure(M&RBS) Standard Calendars |—Standard Procurement/Process Macros Standard Schedule of Ualiie P r o f i l e s I—Standard Summary Schedule Breakdowns k-Standard GC General Expense Breakdowns Set up standard method, resource breakdown structure. Current Project: C:\REPC0N4\PR0J09\THESIS (c) Copyright Alan D. Russell  1985-1997  Fl:Help Alt-X:Exit  Figure-4.3.1  Implementation Environment  67  M&RBS  4 . 3 . 1 STANDARD LEVEL  The  construction  industry  is  n u m e r o u s heuristic p r i n c i p l e s , r u l e s - o f - t h u m b , a n d that  is o f t e n d o c u m e n t e d  in m e m o r y  rather  than  based  on  knowledge on  paper  (Fayek, 1992). This shows c l e a r l y t h e n e e d for s t a n d a r d i z a t i o n of t h e various f u n c t i o n s of c o n s t r u c t i o n process. At s t a n d a r d l e v e l , t w o c o m p o n e n t s  have  b e e n r e c o g n i z e d . They a r e : •  Physical C o m p o n e n t s B r e a k d o w n S t r u c t u r e - PCBS  •  M e t h o d s A n d Resource B r a k d o w n Structure - M&RBS Physical  Breakdown  structure  describes  p h y s i c a l c h a r a c t e r i s t i c s of s e l e c t e d a s p e c t s of d i f f e r e n t of  project,  whereas  Methods  and  Resource  the types  Breakdown  s t r u c t u r e l a y o u t t h e means for c a r r y i n g o u t t h e w o r k for t h e s e a s p e c t s . These t w o structures also exist at t h e p r o j e c t l e v e l .  68  4 . 3 . 1 . 1 PHYSICAL C O M P O N E N T S BREAKDOWN STRUCTURE-PCBS  The p h y s i c a l d e s c r i p t i o n of a p r o j e c t  has  d i f f e r e n t m e a n i n g s for d i f f e r e n t p a r t i c i p a n t s in t h e p r o j e c t . For t h e o w n e r , t h e p r o j e c t m e a n s t h e o v e r a l l f a c i l i t y in b r o a d terms ( e . g . a fifty story b u i l d i n g w i t h 150 c o n d o m i n i u m s units), for t h e project  manager  it m e a n s q u a n t i t i e s of various  components  (4000 c u b i c f e e t of c o n c r e t e in slab, 2000 c b f of c o n c r e t e in walls a n d c o l u m n s e t c . ) , a n d for t h e c o n t r a c t o r t h e  physical  b r e a k d o w n m e a n s b o t h q u a n t i t i e s a n d t h e d e t a i l s of j o b (size a n d s h a p e of slab, n u m b e r a n d t y p e of c o l u m n s per floor e t c . ) . The Physical v i e w is d e s c r i b e d in t h e f o r m of a h i e r a r c h y . The user is p r o v i d e d w i t h  a "language"  classifying p h y s i c a l c o m p o n e n t s of t h e w o r k to b e (both  permanent  and  temporary  works),  and  performed  site  i n f o r m a t i o n . As d e s c r i b e d in t h e previous c h a p t e r ,  for  context  depending  on t h e user's c h o i c e or c o n v e n i e n c e , a p r o j e c t c a n b e d e f i n e d using  the  Systems,  following Sub-systems,  building  blocks;  Elements,  Projects,  Sub-elements,  a n d L o c a t i o n s in a Project (See A p p e n d i x D).  69  Sub-projects, Location  set,  User  can  define  standard  physical  b r e a k d o w n t e m p l a t e s t o d e s c r i b e a n y of t h e a b o v e . A t y p i c a l roster of PCBS t e m p l a t e s for high rise c o n s t r u c t i o n is s h o w n in Figure-4.3.1.1.1.  jSTflHDflRD/'PGBSIDEFINE/EDIT PCBS S PARAMETERS/CONDITIONS Delete Edit Moue Contents Record L i s t Report IrPCBS Templates & Tree Structures [^Ultimate High Rise Project Itimate Residential Tower fl Itimate Hotel Tower B r o j e c t Physical Location System r o j e c t Process Location System r o j e c t Superstructure System r o j e c t Substructure System r o j e c t Mechanical System r o j e c t E l e c t r i c a l system legators Typical Mid Floor - 10 euieu/Approue Shop Drawings uperstructure Columns r c h i t e c t u r a l Concrete Columns  C:SREPC0M4 eXit  Type Project Subproject Subproject Location Set Location Set System System System System Subsystem Location Location Element Subelement  PCBS Template: 1 Type: Project  4|  Fl:Help FZ:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print  Figure-4.3.1.1.1 Standard PCBS Templates for High-Rise Construction  The d e f a u l t screen for t h e Physical  Breakdown  S t r u c t u r e a t t h e S t a n d a r d s Level consists of a title b a r a t t h e  70  top, a menu  b a r , a display a r e a , a n d  a status  bar at  the  b o t t o m . M e n u b a r items are A d d , D e l e t e , Edit, M o v e , C o n t e n t s , R e c o r d List, Report a n d eXit. PCBS t e m p l a t e s c a n e i t h e r b e t r e e structures  (Project t e m p l a t e  can  h a v e S u b - p r o j e c t s , Systems,  a n d Elements in f o r m of a t r e e structure) or i n d i v i d u a l  items  (Location  single  or  Sub-element  templates  consist  of  only  i t e m s ) . To a v o i d a n y c o n f u s i o n , for t h e c a s e of L o c a t i o n S u b - e l e m e n t , a m e s s a g e is shown t h a t these items d o n ' t  and have  any tree structure under t h e m . To d e f i n e PCBS t e m p l a t e s , t h e A d d i t e m from  the  menu  bar  is s e l e c t e d  which  pops  up  a  window  c o n t a i n i n g t w o fields for e n t e r i n g t h e d e s c r i p t i o n for a n d t y p e of t e m p l a t e (Fig.-4.3.1.1.2). The d e s c r i p t i o n field is an e d i t a b l e field w h e r e a s t h e t y p e field is a s c r o l l a b l e o n e , w h i c h limits t h e c h o i c e s to P r o j e c t , S u b - p r o j e c t , System, Sub-system, E l e m e n t , Sub-element, and Location.  After a d d i n g the t e m p l a t e ,  the  user selects C o n t e n t s f r o m t h e b a r m e n u , w h i c h o p e n s a n o t h e r w i n d o w to a l l o w t h e user to d e f i n e a n d m o d i f y t h e c o n t e n t s of templates  (Fig .-4.3.1.1.2)  and  also  to  attach  r e c o r d s t o d i f f e r e n t c o m p o n e n t s (Fig.-4.3.1.1.3).  71  multi-media  STANDARD/PCBS1DEFIME^EDIT PCBS & PARAHETERS/CONDITIONS Add Delete E d i t Moue Contents Record L i s t Report IrPCBS Templates & Tree Structures nil Itimate High Rise Project  Type — Project  nr  Type: System  i t Pro ject Superstructure System Uindou eXit rp ro SSTRTSYS  C:\REPC0N4 eXit  Project Superstructure System System TYPICAL FLOOR SLAB Element Element TYPICAL FLOOR COLUMNS Subelement RECTANGULAR COLUMNS Subelement SQUARE COLUMNS Subelement ROUND COLUMNS Subelement ARCHITECTURAL COLUMNS Element CORE WALLS Element TYPICAL FLOOR WALLS Element STAIRS Element CURTAIN UALL/CLADDING  STRTSYS.2 F3:Data Uindou Ctrl-F5:Ins template a t subleuel Ctrl-F9:Ins at same leuel  Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete FS:Insert at same leuel Figure-4.3.1.1.2  D e f i n i n g P C B S Templates and Tree Structure  To d e s c r i b e  the tree  structure  in  this  w i n d o w , t h e F5 key is used t o insert a c o m p o n e n t a t a s u b - l e v e l a n d t h e F9 key t o insert a t t h e s a m e level ( C t r l - F 5 a n d C t r l - F 9 keys a r e d e f i n e d t o insert t e m p l a t e s a t t h e Sub-level or s a m e level,  respectively).  accesses  window  By pressing  in w h i c h  he  either  F5 or  defines  the  F9, t h e path  for  user that  c o m p o n e n t for r e f e r e n c i n g purposes, a d e s c r i p t i o n , a n d t y p e  72  of c o m p o n e n t . The first t w o fields a r e e d i t a b l e o n e s , w h i l e t h e t h i r d is a s c r o l l a b l e field w h i c h p r o v i d e s t h e user w i t h a c c e s s t o the  types  of c o m p o n e n t s  he c a n p u t b e n e a t h  the  already  d e f i n e d c o m p o n e n t . Also, in this w i n d o w t h e user c a n w r i t e a memo a n d can define Parameters/Conditions associated with this c o m p o n e n t using t h e F3 key p r o v i d e d in t h e w i n d o w (for d e t a i l s on P a r a m e t e r s / C o n d i t i o n s , refer t o s e c t i o n 4.3.1.3). The status b a r gives a listing of all t h e a v a i l a b l e c o m m a n d s for t h e active  windows.  Important  among  them  are  F10  for  c o n f i r m a t i o n , F8 t o d e l e t e , Alt-S for s e a r c h i n g , E s c for exit, a n d Enter for s e l e c t i o n .  73  STANDARD/PCBSiDEFINE/EDIT PGBS & PARAMETERS^CONDITIONS Add Delete Edit Moue Contents Record L i s t Report PCBS Templates S Tree Structures TUltimate: High Rise Project  C:\REPC0N4 eXIt  Type Project  r  " itr it Project  Physical Location System | E d i t Uindou | eXit  'ro 'ro 'rp * i 'ro 'ro Me  |  | Define/Edit PCBS S Parameters/Cond i t ions | Def ine/Uieu Multi_Media Records  1~  up lArc  Type: Location Set  PR -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 r-  ion Systen Location Location Location Location Location Location Location Location Location Location  PARKADE LEUEL PARKADE LEUEL PARKADE LEUEL PARKADE LEUEL PARKADE LEUEL PARKADE LEUEL MAIN LEUEL LEUEL 2 FLOOR LEUEL 3 FLOOR LEUEL 4 FLOOR  6 5 4 3 2 1 (OFFICES) (OFFICES) (AMENITIES)  Fl:Help U-»*:Scroll Enter:Select Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit  Ti,PgUp,PgDn  Figure-4.3.1.1.3 Defining Parameters/Conditions/Multimedia Records for PCBS Elements  4 . 3 . 1 . 2 METHODS & RESOURCE BREAKDOWN STRUCTURE - M&RBS  As i d e n t i f i e d in t h e previous c h a p t e r , t h e main constituents  of t h e M e t h o d s  a n d Resource  Breakdown  Structure are Methods statement, Operations, Methods  class,  M e t h o d s , a n d Resources. This h i e r a r c h i c a l t r e e s t r u c t u r e has b e e n i m p l e m e n t e d as follows  74  At  the  top  of  the  tree  is t h e  s t a t e m e n t , w h i c h is a c o l l e c t i o n of o n e or m o r e Each  operation  in  the  tree  defined  under  methods  operations.  the  methods  s t a t e m e n t has zero to N numbers of M e t h o d s a s s o c i a t e d w i t h it. At t h e p r o j e c t a n d s c h e d u l i n g l e v e l , o p e r a t i o n s by map  one-to-one  to  activities  (for  current  definition  implementation,  f r a g n e t s tasks m a p o n e - t o - o n e to a c t i v i t i e s ) . The next level in t h e h i e r a r c h i c a l s t r u c t u r e is Resource, w h i c h c a n b e a s s o c i a t e d w i t h m e t h o d s or d i r e c t l y w i t h o p e r a t i o n s . Recall t h a t t h e d i r e c t a s s o c i a t i o n of resources  to a n o p e r a t i o n is a l l o w e d  because  o f t e n t h e r e is no s p e c i f i c m e t h o d w i t h w h i c h to c a r r y o u t t h e operation.  For  example,  Placing  of  Reinforcement  has  no  s p e c i f i c m e t h o d (See A p p e n d i x A ) . The template  default  screen  for  the  consists of Title bar, Bar m e n u , d i s p l a y  M&RBS  area,  and  Status b a r . The items on t h e b a r m e n u a r e ; A d d , D e l e t e , Edit, M o v e , C o n t e n t s , R e c o r d List, Report, a n d eXit, w h i c h is similar to t h e s t a n d a r d PCBS t e m p l a t e a n d thus p r o v i d e s a c o n s i s t e n t i n t e r f a c e to t h e user (Fig.-4.3.1.2.1).  75  |S TAHDARD/MSRBS! Delete Edit  G:SREPG0N4| Moue  Contents  Record L i s t  fflSRBS Templates & Tree Structures ti I MS TALL ELECTRICAL SYSTEM INSTALL MECHANICAL SYSTEM BUILD UALLS AND COLUMNS BUILD TYPICAL FLOOR SLAB BUILD TYPICAL SUPERSTRUCTURE FORM/STRIP FLOOR SLAB PLACING CONCRETE FINISH FLOOR SLAB I FORM/STRIP COLUMNS FORM/STRIP UALLS FINISH UALLS & COLUMNS EQUIPMENT ^MATERIALS ABOURES  Report  eXit  Type Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Method Class Method Class Method Class Method Class Method Class Method Class Resource Class Resource Class Resource Class :  7a——  M&RBS Template: j__ Type: Methods Statement l\  Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print Figure-4.3.1.2.1 T y p i c a l M & R B S Templates  As d e s c r i b e d earlier in t h e s t a n d a r d PCBS t e m p l a t e , t h e A d d key g e n e r a t e s t w o fields, a n e d i t a b l e f i e l d for n a m i n g t h e M&RBS t e m p l a t e a n d a s c r o l l a b l e field f o r t h e t y p e . The l a t t e r o n e has t h r e e o p t i o n s ; M e t h o d s Methods  Class  (Fig.-4.3.1.2.2),  and  4.3.1.2.3) also, refer t o A p p e n d i x B.  76  Resource  Statement, Class  (Fig .-  STANDARD/M&RBSi DEFINE/EDIT M&RBS PARAMETERS/CONDITIQMS Add Delete Edit Moue Contents Record L i s t Report  C:SREPCDN4 eXit  SRBS Templates 8 Tree Structures Type INSTALL ELECTRICAL SYSTEM Methods Statement INS| Ul FORM/STRIP COLUMNS Type: Method Class Ul Uindou Check Logic eXit Ul OR LA IN Method Class FORM/STRIP COLUMNS -F/SCOL Quick S t r i p Metal Column Forms -1 Method One-Piece Round Fiberglass Column Forms -2 Method OR Spring-Open Round Fiberglass Column For -3 Method |FIN P l a s t i c Round Column Forms Assembled By -4 Method sEQU One-Piece Steel Round Column Forms -5 Method >>IAT Fiber Tubes For Round Columns -6 Method BLAB Adjustable Urap-Around Column Forms -7 Method Modular Panels For Column Forms ^-8 Method Al 1-Metal Nodular Concrete Column Forms -9 Method Column Forms Using Jahn Brackets & Corn -10 Method /SCOL F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins a t same leuel  Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert a t same leuel Figure-4.3.1.2.2  D e f i n i n g M e t h o d s Class Templates  77  ISTANDARD/M&RBS!DEFINE/EDIT MSRBS PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report SRBS Tehplates & Tree Structures INSTALL ELECTRICAL SYSTEN EQUIPMENT Uindou  C:\REPC0N4l eXit  Type Methods Statement Type: Resource Class  eXit  Resource Class EQUIPMENT Resource SubCIass CRANE Resource SubCIass PUMPS Callaghn Resource Resource Callaghn Resource Callaghn Resource * Callaghn Callaghn Resource Resource Subclass FLOAT Resource SubCIass TROUEL Resource SubCIass SCREED  S-ZQQ T r a i l e r S-100 T r a i l e r 32 metre boom 36 metre boom 42 metre boom  Pump Pump cone. Pump cone. Pump cone. Pump  QUP.2.1 F3:Data Uindou Ctrl-F5:Ins template a t subleuel Ctrl-F9:Ins a t same leuel  Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete FS:Insert a t same leuel Figure-4.3.1.2.3  D e f i n i n g Resource Class Templates  A f t e r c o n f i r m i n g it, t h e user c h o o s e s t h e C o n t e n t s i t e m f r o m t h e b a r m e n u t h a t p r o v i d e s him w i t h a c c e s s to a n o t h e r w i n d o w in o r d e r t o d e f i n e t h e t e m p l a t e  contents.  Bar m e n u items for this w i n d o w a r e Edit, W i n d o w , C h e c k L o g i c , and  eXit. The W i n d o w  i t e m has a d r o p - d o w n  menu  which  f e a t u r e s D e f i n e / E d i t M&RBS P a r a m e t e r s / C o n d i t i o n s , D e f i n e / E d i t  78  Feasibility Rules, D e f i n e / E d i t Fragnets, D e f i n e / V i e w  Multimedia  Records, a n d A s s o c i a t e PCBS t e m p l a t e (Fig.-4.3.1.2.4).  STAMDARD/M8RBSiDEFIME/EDIT MSRBS FARAMETERS/COMDITIUMS Add Delete Edit Moue Contents Record L i s t Report itl&RBS Tehplates 8 Tree Structures TINSTALL ELECTRICAL SYSTEM  C:SREPG0M4 eXit  Type - — Methods Statement  BUILD TYPICAL SUPERSTRUCTURE Uindou Check Logic eXit  Type: Methods Statement  Def ine/Edit MSRBS Parameters/Cond i t ioris Define/Edit MSRBS Fragnet | Define/Edit F e a s i b i l i t y Rules Def ine/Uieu MultiJIedia Records Associate u i t h PCBS Template  ted Uibrating Screed  k -3 -4  r  —2  Resource Resource Operation Method Resource Resource Method  Ppuer Operating Troueling Machine Labourers Form/Strip Ualls & Cols. Adujustable Urap-Around Column Form PSH OMEGA E35 Crane Labourers E l l i s Quick-Lock Ualls Fornuork  STRT.4.1 F3:Data Uindou Ctrl-F5:Ins template a t subleuel Ctrl-F9:Ins a t same leuel  Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert at same leuel Figure-4.3.1.2.4  Contents o f W i n d o w M e n u I t e m i n M & R B S T e m p l a t e  79  To c o m p l e t e t h e p i c t u r e of t h e M&RBS w e n o w t r e a t O p e r a t i o n s a n d Fragnets  (Fig.-4.3.1.2.5).  5TANDARD/M&RBSIDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report SRBS Templates & Tree Structures INSTALL ELECTRICAL SYSTEM Si INS Ul BUILD TYPICAL SUPERSTRUCTURE Ul Uindou Check Logic eXit  C:\REPC0N4 eXit  Type Methods Statement Type: Methods Statement  Ij2  ="0R 'LA IN ?TJR :0H  IN SQU  1AT AB  Methods Statement BUILD TYPICAL SUPERSTRUCTURE Operation Form/Strip Slab Operation Rebar Slab Operation Pour/Finish Slab Operation Form/Strip Ualls S Cols. Method Adujustable Urap-Around Column Form Method E l l i s Quick-Lock Ualls Formuork Resource PSH ONEGA E35 Crane Resource Labourers Operation Rebar Ualls & Cols. Operation Pour/Finish Ualls & Cols, STRT.4.2 F3:Data Uindou C t r l - F 5 : I n s template at subleuel C t r l - F 9 : I n s at same leuel  Fl:Help E s c : E x i t F5:Insert neu subleuel F8:Delete FS:Insert at same leuel Figure-4.3.1.2.5  H i e r a r c h i c a l Tree Structure i n M & R B S  80  Operations determined  by  operations  for t h e  be  different  are  not  the  from  part  of  Methods  methods the  are  tree  sensitive  Statement.  For  statement  methods  the  context  methods  associated. level and  hence  Tasks  along logic  and  with can  can  their also  the  be  but  are  operations  defined  duration  be  and  defined  to  example,  Build Slab.  with  directly logical link  (Section defined  4.3.1.4), for  user  can  duration,  different  level, selection  of  define  described  which  at  the  tasks.  F3  To  define  provides  domain  access  name,  tasks to  check the  logic,  logic  which  defined  enables amongst  the all  user of  f r a g n e t s as w e l l as tasks d e f i n e d f o r  81  the  to  Tasks  operation.  section  successors the  a window  duration,  s u c c e s s o r s f o r t a s k s . In t h e m a i n m e n u w e  at  are  fragnets  fragnets and  out  operation  relationships.  the  predecessors,  with  they  the  together  in  Fragnets  to carry  d e f i n e d for the m e t h o d s t h a t are a s s o c i a t e d with a n  As  will  associated  m e t h o d s a n d c o n s t i t u t e t h e d e t a i l e d tasks n e e d e d the  are  Build S u p e r s t r u c t u r e  statement-  structure,  and  are  operation where  the  predecessors, have  check  tasks  in  operations.  an item the  and  called  validity  fragnets,  of  inter  A graphical representation structure showing the  hierarchy  and  different  of t h e M&RBS components  t h e t r e e s t r u c t u r e is p r e s e n t e d in Fig.-4.3.1.2.6.  i i i >f  >f  f  Operation_2  Operationl  • • •  Operation_n-x • • • •  Task_l Task_z-x Task z  Method_l OR Resource 1  Fragnet_l Fragnet_2 Fragnet_p-x Fragnet_p  Method_m-x OR Resource m-x  Method_2 OR Resource 2  Operationn  Method_m OR Resource m  i  Resource a  Figure-4.3.1.2.6  Resource_q-x  Resource b  Resource_q  A n Overview of Methods & Resource Breakdown Structure  82  in  In this f i g u r e P/C represents P a r a m e t e r / C o n d i t i o n s a t t a c h e d t o various  components  and the double-headed  arrows  signify  different associations.  4 . 3 . 1 . 3 PARAMETERS A N D C O N D I T I O N S  Parameters  and  conditions  s o m e w h a t from the physical c o m p o n e n t  breakdown  differ structure  in t h a t M e t h o d s a n d Resource b r e a k d o w n s t r u c t u r e p a r a m e t e r s are  inherent  attributes  of  components  to  which  they  are  a t t a c h e d , w h e r e a s c o n d i t i o n s d e a l w i t h feasibility r e a s o n i n g . The conditions  is a c h i e v e d  definition through  of  parameters  use of t h e f o l l o w i n g  (See figure-4.3.1.3.1 for t h e start of t h e p r o c e s s ) .  83  and screens  STANDARD/tl&RBSIDEFINE/'EDIT M&RBS PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report rfl&RBS Templates & Tree Structures tINSTALL ELECTRICAL SYSTEM  Type — — Methods Statement  LABOURES | E d i t Uindou | eXit  1 —RC  C:\REPC0N4 eXit  Type: Resource Class |  | Def ine/Edit M&RBS Parameters/Cond i t ions | Define/Uieu Multi_Media Records  —1  Resource SubClass General Contractor Labours Resource Foreman Resource Carpenter Resource Labourers Resource SubClass Mech Sub-contractor Labours Resource Foreman Resource Welders Resource Labourers Resource SubClass Elect Sub-contractor Labours Foreman Resource  L-3 -2  |j H  1  Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn  Figure-4.3.1.3.1  Window menu item to define parameter/condition  After which  could  be Quantitative,  parameter  or c o n d i t i o n ,  parameter  or c o n d i t i o n  class.  This  selecting  is  helpful  the type  Boolean,  a description  organizing  descriptor,  or Linguistic is g i v e n  c a n b e assigned for  of  to a one's  for a  t o it. Each user-defined knowledge,  p a r a m e t e r / c o n d i t i o n values c a n b e d e s c r i b e d in terms of t h e  84  o p e r a t o r s , EQ (Equal To), NE (Not Equal To), GT ( G r e a t e r T h a n ) , GE ( G r e a t e r Than Or Equal To), LT (Less T h a n ) , LE (Less Than Or Equal To), WR (Within R a n g e ) , a n d NR ( O u t s i d e R a n g e ) . The next t w o fields are m e a n t for e n t e r i n g s t a n d a r d v a l u e s . M o r e t h e n o n e v a l u e c a n b e assigned t o a p a r a m e t e r or c o n d i t i o n by using t h e o p t i o n A N D / O R in g i v e n f i e l d . There are also p r e d e f i n e d s t a n d a r d units for L e n g t h , A r e a , V o l u m e , W e i g h t , a n d Time. They c a n b e used a l o n e or t o g e t h e r by c o m b i n i n g o n e or more  units  operators.  by  using  This  the  field  parameters/conditions.  multiplication is  visible  (*)  only  and for  division  (/)  quantitative  Eventually t h e g o a l is t o a l l o w t h e user  to d e f i n e formulas for b o t h P a r a m e t e r s a n d C o n d i t i o n s . Since PCBS a n d M&RBS b o t h s u p p o r t i n h e r i t a n c e of p a r a m e t e r s  and  c o n d i t i o n s , a g g r e g a t i o n of these values is q u i t e d e s i r a b l e . At present  this  feature  is  only  supported  P a r a m e t e r s w h i c h use t h e = o p e r a t o r .  85  for  quantitative  The  input  screen  for  parameters  and  c o n d i t i o n s consists of a title b a r a t t h e t o p , a b a r m e n u , a d i s p l a y a r e a , a n d a status b a r a t t h e b o t t o m . Bar m e n u items a r e A d d , D e l e t e , Edit, Sort, a n d Exit. As soon as y o u hit A d d , a list of t y p e options  pops  up for t h e PCBS c a s e , w h i c h  Quantitative,  Boolean,  and  Linguistic  consists type  of,  (Fig.-  4.3.1.3.2).  ETANDARD/PCBS!DEFINE/EDIT PCBS 8 PARAMETERS/CONDITIONS Add Delete E d i t Moue Contents Record L i s t Report PCBS Templates 8 Tree Structures tSeiier P i p e l i n e I n s t a l l a t i o n Project (Conventional) r  Add | Delete  Edit  D:\REPC0N4  eXit  Type Project  Define Parameter/Cond i t ion Moue eXit  Boolean(B) Quant i tat i ue (Q) Linguistic(L)  Class QAREA  B/Q/L Uni Q ftZ  Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit  Fl:Help Alt-S:Search Enter:Select Esc:Exit T  Figure-4.3.1.3.2  PgUp, PgDn, Bck Tab, Tab  Defining Parameter/Condition for PCBS Elements  86  For  t h e M&RBS  condition  first  it asks  user  a n d then  whether  it's t y p e  it is a  parameter  (Fig.-4.3.1.3.3  and  or Fig .-  4.3.1.3.4).  ISTAMDARD/M&RBS 1 DEFIME/EDIT MSRBS PARAMETERS/COMDITIONS Add Delete Edit Moue Contents Record L i s t Report eXit I M&RBS Templates & Tree Structures tPeuatering Techniques gen|  Add | Delete pSp it 'o i P 4 Ty a a iTo  Edit  D:SREPC0M4  Type Method Class  Def ine Parameter/Condition Moue eXit  Parameter | b Pumps Condition P/C Class  Inherited Paraneter/Condition  P/C:  Parameter/Condition  Fl:Help f W : S c r o l l Enter: Select Esc: Ex i t  Figure-4.3.1.3.3  Selecting Parameter or Condition for M & R B S Components  87  B/Q/L-i  STANDARD/M&RBSiDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report  Type — Method Class  pM&RBS Templates & Tree Structures TDeuatering Techniques peril  N  Add [Delete  Edit  D:SREPC0N4 eXit  Define Parameter/Cond i t ion Moue eXTT  Parameter | e Pumps P/C P P P  Boolean(B) Quantitati ue(Q) Linguistic(L)  Class QPSPEC QSPEC QSPEC  B/Q/L Q Q Q  Fl:Help U-«-: S c r o l l Enter: Select Esc: Ex i t  Fl:Help A l t - S : Search Enter: Select Esc: Ex i t t  Figure-4.3.1.3.4  PgUp, PgDn, Bck Tab, Tab  Selecting Type of Parameter/Condition for M & R B S Component  88  The user selects t h e a p p r o p r i a t e o n e a n d t h e n a n o t h e r w i n d o w o p e n s u p . The first field is D e s c r i p t i o n a n d t h e s e c o n d o n e is Class. As d e s c r i b e d  earlier,  the description  is used  as t h e  r e f e r e n c i n g in t h e feasibility rules by t h e system, w h i l e Class is used  to  sort  the  conditions  and  parameters  into  different  c a t e g o r i e s . The next field is a n u n - e d i t a b l e o n e t h a t t h e t y p e of p a r a m e t e r / c o n d i t i o n  displays  (Quantitative, Boolean e t c . ) .  The o p e r a t o r field p r o v i d e s a list of all t h e a l l o w a b l e o p e r a t o r s m e n t i o n e d a b o v e w h e n t h e F2 key is pressed The user scrolls t h e list a n d press  (Fig.-4.3.1.3.5).  to select the desired  Enter  o n e . The next t w o fields a r e for e n t e r i n g a c t u a l v a l u e s . M o r e t h e n o n e v a l u e c a n b e assigned t o a p a r a m e t e r / c o n d i t i o n by using  the AND/OR  option  in t h e v a l u e  field  (Fig.-4.3.1.3.7).  A g a i n t h e user hits t h e F2 key t o p r o v i d e a list of s e l e c t a b l e items, w i t h t h e r e l e v a n t o n e b e i n g p i c k e d by using t h e key.  Abbreviated  units  field  appears  only  in  Enter  case  of  q u a n t i t a t i v e p a r a m e t e r s / c o n d i t i o n s . P r e - d e f i n e d s t a n d a r d units for l e n g t h , a r e a , w e i g h t , a n d t i m e show up in a w i n d o w w h e n F2 is pressed defined  for  multiplication  (Fig.-4.3.1.3.6). Single or M u l t i p l e parameters/conditions  by  units c a n b e  using  operators,  (*) or division (/) or b o t h , i. e. C b m / h r  89  (cubic  meter per hour). Parameters/conditions  can have a  formula  a t t a c h e d a n d t h e r e f o r e a field is p r o v i d e d t o e n t e r a f o r m u l a .  STANDARD/M&RBS1DEFINE/EDIT MSRBS PARAMETERS/COMDITIOMS Add Delete Edit Moue Contents Record L i s t Report ,MSRBS Templates S T TJDeuatering Techniqu  Condition Key  IEQ IE 5T M&RBS: Concrete AE ,T LE JR Description: 1R Class: fjSPEC Delete  D:SREPG0N4 eXit  E  lass  = Ualue <> Ualue > Ualue >= Ualue < Ualue <= Ualue Uithin Range [Ualue 1, Ualue 21 Outside Range [Ualue 1, Ualue 2]  1  ue  B/Q/L-| Q Q  Unit Abbreua Cond Std Ualue 1  =Jrid11 E§ [  Std Ualue 2  ~  Q  y  Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn  Figure-4.3.1.3.5  At  present  Selecting an Operator to Define Parameter/Condition Values  this field  has b e e n  greyed  f o r m u l a s has n o t b e e n fully i m p l e m e n t e d ) .  90  out (i.e. support  for  ISTANDARD/PCBS!DEFINE/EDIT PCBS & PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report  eXit  [rPCBS Templates & Tree| [fSeuer P i p e l i n e Instal Unit of Measurement  fct  ieu|  3e 1a  La  Se  Ja  £  le iTr  la >r '1  piTn Edi I in 1ft PCBS: Floor Slab jjyd §in2 §r-tz pd2 Description: u l i i i 3 Class: qUOL Irt3 |fijd3 Unit Abbreuati  metric ton inches feet yards square inc square fee square yar cubic inch cubic feet] cubic yard  Delete  D:\REPC0N4l  B/Q/L Uni Q ft2 itiue  Cond SI  Q  Fl:Help Alt-S:Search Enter:Select Esc:Exit U,PgUp,PgDn Figure-4.3.1.3.6  Selecting U n i t s f o r P a r a m e t e r / C o n d i t i o n V a l u e s  91  ft2  STANDARD/MfiRBSiDEFIME/EDIT MSRBS PARAMETERS/CONDITIONS Add Delete Edit Moue; Contents Record L i s t Report jM&RBS Tehplates & Tree TJDeuatering Techniques Gen Eq Sp  ot Fo Li Sp Eq Ty La Ma To  Delete  Edit  Structures  D:\REPC0N4 eXit  Type — Method Class  Define Parameter/Cond i t ion Moue eXit  M&RBS: Concrete Pumps Parameter Description: Concrete Output Class: QSPEC |  Ualue Type:  :| Quantatitive  B/Q/L Q Q  Unit Abbreuation: yd3/hr Cond Std Ualue 1  Std Ualue 2  rj  Fl:Help F2:List FlQ:Confirm Esc:Exit  Figure-4.3.1.3.7  | F7:Log Alt-P:Print  Entering Parameter/Condition Values  92  y  4 . 3 . 1 . 4 FRAGNETS  In a d d i t i o n to t h e t r e e s t r u c t u r e d e s c r i b e d a b o v e , t h e r e are task t e m p l a t e s , w h i c h are c a l l e d  fragnets.  The tasks in these f r a g n e t s r e p r e s e n t t h e lowest a t o m s in t h e M&RBS s t r u c t u r e . Fragnets c a n b e d e f i n e d a n d a t t a c h e d m e t h o d s . They are not a basic b u i l d i n g b l o c k in t h e  to  M&RBS  h i e r a r c h y . Fragnets consist of a set of o r d e r e d tasks n e c e s s a r y to  perform  a  method.  Several  methods  fragnets  can  be  l o g i c a l l y d e f i n e d t o c r e a t e a u n i f i e d f r a g n e t for a n o p e r a t i o n (See A p p e n d i x c ) . As  described  in  the  definition  of  an  o p e r a t i o n , t h e g o a l is to h a v e an o p e r a t i o n m a p o n e - t o - o n e to a c t i v i t i e s at t h e p r o j e c t  l e v e l . At p r e s e n t , h o w e v e r , tasks of  f r a g n e t s are c o p i e d o v e r to t h e p r o j e c t side as a c t i v i t i e s . Extra a c t i v i t i e s a n d relationships c a n also b e d e f i n e d a t t h e p l a n n i n g a n d s c h e d u l i n g level on t h e p r o j e c t side. Fragnets methods  and  operations.  can  only  A particular  be  associated  method  fragnet  to can  h a v e only o n e a s s o c i a t i o n w i t h a m e t h o d at t h e M&RBS l e v e l . T h e r e f o r e , as soon as a user makes an a s s o c i a t i o n , t h e d o m a i n n a m e ( r e f e r e n c e n a m e s p e c i f i e d by t h e user) of t h a t  93  method  appears  in t h e f r a g n e t  template  list b e s i d e t h e f r a g n e t . To  d e f i n e a f r a g n e t , t h e user has t o g o t o t h e M&RBS t e m p l a t e a n d s e l e c t a m e t h o d class, using t h e C o n t e n t i t e m o n t h e b a r menu.  ETANDARD/N&RBSiDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record L i s t Report IrM&RBS Tenplates & Tree ItJBUILD CURTAIN UALL/CLA Fragnet Ul INS| FORM/STRIP FLOOR S jtFTying Forms I Concreting ( Bucket & Crane) 'inishing Slab Concrete Jails ( E l l i s Quick-Lock) Forn M&RBS PATH: F/SFLSLA 'ouring By Pumps Description: Flying Columns (Adj. Wrap) Formwork JalIs/CoIs Cone. F i n i s h Type: Method Jails Cone. F i n i s h Columns Cone. F i n i s h Jal Is/Columns Fl^rmuork  C:SREPC0N4 eXit as Statement Ljpe:  Method Class  emo his i s an example  Associated Fragnet: Flying Forms F3:Define Fragnet  Fl:Help Alt-S:Search Enter:Select Esc:Exit U,PgUp,PgDn Figure-4.3.1.4.1  Once  inside  A s s o c i a t i n g a Fragnet to M e t h o d i n M e t h o d Class T e m p l a t e  the methods  class  template,  the choice  D e f i n e / E d i t Fragnets is m a d e in t h e W i n d o w d r o p - d o w n  94  of  menu  f r o m t h e b a r m e n u . This o p e n up a w i n d o w w h i c h has a f i e l d c a l l e d A s s o c i a t e d Fragnet (Fig.-4.3.1.4.1). On h i t t i n g t h e F2 k e y , a list of p r e - d e f i n e d Fragnets a p p e a r s f r o m w h i c h a s e l e c t i o n  jSTANDARD/FRAGNETS Delete Edit  C:SREPG0N4 Moue  Constituents  lpFragnet  % lying  Forms pricreting ( Bucket & Crane) inishirig Slab Concrete a l l s ( E l l i s Quick-Lock) Form ouring By Pumps olumns (Adj. Wrap) Fprmuprk a 1 Is/CoIs Cone. F i n i s h a l l s Cone. F i n i s h olumns Cone. Finish 1^ lUa1 Is/Co limns Formwork  Check Logic  Report  eXit  MSRBS Template FORM/STRIP FLOOR SLAB PLACING CONCRETE FINISH FLOOR SLAB FORM/STRIP WALLS PLACING CONCRETE FORM/STRIP COLUMNS FINISH WALLS & COLUMNS  FORM/STRIP FLOOR SLAB  ROOT.1  Fragnet Name: P  Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print  Figure-4.3.1.4.2  Adding Fragnet to Standard Fragnet Template  C a n b e m a d e by using t h e Enter key. The F3 key e n a b l e s t h e user t o d e f i n e a n e w f r a g n e t , w h i c h c a n b e a s s o c i a t e d w i t h a method. 95  The d e f a u l t screen for a f r a g n e t t e m p l a t e consists of a title b a r , a b a r m e n u , display a r e a , a n d status b a r . M e n u b a r items a r e A d d , D e l e t e , Edit, M o v e , C o n s t i t u e n t s , C h e c k  Logic,  Reports, a n d eXit (Fig.-4.3.1.4.2). The user selects A d d f r o m t h e m e n u i t e m a n d a w i n d o w p o p s up w h i c h has a n e d i t a b l e f i e l d for t h e f r a g n e t d e s c r i p t i o n . A f t e r c o n f i r m i n g it, t h e next s t e p is t o s e l e c t t h e C o n s t i t u e n t s i t e m f r o m t h e b a r m e n u . This will l e a d to a w i n d o w , w h o s e m e n u items are Edit, W i n d o w , A d d , D e l e t e , M o v e , a n d eXit. The W i n d o w i t e m has a d r o p - d o w n m e n u w i t h t h e o p t i o n s , D e s c r i p t i o n , D u r a t i o n , Predecessor, a n d Successor (Fig.-4.3.1.4.3).  96  STANDARD/FRAGNETS Add Delete Edit  C:\REPC0N4 Moue  Constituents  Check Logic  Report  eXit  .j-Fragnet MSRBS Template uFlying Forms Concreting ( Bu Fragnet: Ualls ( E l l i s quick-Lock) Form 'inishing Slab U a l l s ( E l l i s Q CONSTITUENT/DESCRIPTION UIMDOU ouring By Pimp I Edit I Uindou I Add Delete Moue eXit olumns (Adj. U a1 Is/CoIs Cone r Cons | Description Duration la l i s Cone. F i nT D r i l l Duration Id Sheets 0/0/30 olumns Cone. F et P Predecessor ine 0/0/45 iUalIs/Columns F rect Successor D d sheets 0/1/45 ecur[ J Brackets 0/1/20 l i p Loop & Tie in D r i l l Holes 0/0/25 FORM/STRIP UALLS Ittach Q-L Bkt On q-L Ties 0/1/15 jlnstall Ualers in Q-L Bkts ft 0/1/45  Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit  Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn  Figure-4.3.1.4.3  Window Menu Items for Constituents of a Fragnet  97  S e l e c t i o n of A d d f r o m t h e b a r m e n u queries t h e user for a s e l e c t i o n b e t w e e n task a n d f r a g n e t * . A c h o i c e of t h e f o r m e r item  generates  two editable  fields,  task  description  and  d u r a t i o n , w h e r e a s a c h o i c e of t h e l a t t e r p r o d u c e s a list of p r e defined  fragnets  confirming  (Fig.-4.3.1.4.4  all t a s k s / f r a g n e t s ,  relationships  amongst  and  t h e user  different  Fig.-4.3.1.4.5). c a n define  tasks/fragnets  by  After logical  choosing  Predecessor or Successor f r o m t h e W i n d o w d r o p - d o w n  menu.  C h o o s i n g o n e yields a c c e s s t o a n o t h e r w i n d o w , w h i c h has t h e following  fields  t o fill  in (Fig.-4.3.1.4.6);  Predecessors/Successors,  Scrollable  Number  Field  of  Type  Typical  (Task  or  F r a g n e t ) , P r e d e c e s s o r / S u c c e s s o r C o n s t i t u e n t s ( t h e F2 key gives a listing of p r e - d e f i n e d  Tasks as well as F r a g n e t s ) ,  Relation  ( d e f a u l t is FS - Finish t o S t a r t ) , Lag ( d e f a u l t is z e r o ) , a n d Offset ( d e f a u l t is z e r o ) . After providing the foregoing information, t h e user returns t o t h e main screen for t h e f r a g n e t t e m p l a t e s , a n d c a n c h e c k t h e v a l i d i t y of t h e logic d e f i n e d b e t w e e n all of t h e tasks a n d f r a g n e t s by s e l e c t i n g t h e C h e c k Logic i t e m f r o m the bar menu.  * Fragnets can be inserted under Fragnet.  98  ISTANDftRD/FRftGNETS (fold He lute E d i t  OOoue  C:SREPC0N4 Constituents  Check ILogic  iBeport  [Fragnet M&RBS Template 'lying Forms Concreting ( BujFragnet: U a l l s ( E l l i s Quick-Lock) Form 'inishing Slab ISOR UINDOU U a l l s ( E l l i s Q CONSTITUENT/PREDECESSOR ouring By Pump I Kdit Window E Jfelete Hove e S i t piumns (Rdj. U a l l s / C o l s Cone Constituent Duration a l l s Cone, F i n r i l l Stacked Plywood Sheets 0/0/30 piumns Cone, F Set Plate To Chalk Line 0/0/45 !UalIs/Columns F Erect V e r t i c a l Plywood sheets 0/1/45 Secure Sheets By Q-L Brackets 0/1/20 H i p Loop 8 Tie in D r i l l Holes 0/0/25 FORN/STRIP UALLS 15 Constituent Task: ~1 5 DuratIon: F  Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print  Figure-4.3.1.4.4  Adding Constituent Tasks to Fragnet  99  ej^it  Pr  1  ISTANDARD/FRAGNETS Add Delete E d i t -Fragnet 'lying Forms Concreting ( Bu 'inishing Slab Jails ( E l l i s Q Pouring By Pump Columns (Adj. U a l l s / C o l s Cone J a i l s Cone. Fin Columns Cone. F Jails/Columns F  C:SREPC0N4 Moue  Constituents  Check Logic  fieport  eXit  MSRBS Template Fragnet: UalIs/CoIs Cone. F i n i s h COMSTITUENT/PREDECESSOR UINDOU | E d i t Uindou: Delete Moue r Constituent QlUalls Coric. Finish] [Columns Cone. F i n i s h !  eXit Duration  FINISH UALLS & C Fragnet L i s t J a i l s ( E l l i s Quick-Lock) Form Pouring By Pumps Columns (Adj. Urap) Formuork JalIs/CoIs Cone. F i n i s h J a i l s Cone. F i n i s h iColumns Cone. F i n i s h  Enter:Add E s c : E x i t  Fl:Help Alt-S:Search Enter:Select E s c : E x i t Ti,PgUp,PgDn  Figure-4.3.1.4.5  Adding Fragnets Under a Fragnet  100  |S TANDARD/FRAGNE TS Add Delete Edit  C:SREPC0N4 Moue  Constituents  Check Logic  Report  HSRBS Template pFragnet tJFlying Forms f ^oncr Finis Constituent Task: Erect V e r t i c a l Plywood sheets Ualls No. of Typical Predecessors: j{~ Rel Lag Type Pred Constituent jfj (Talk" ~j Set Plate To Chalk Line  E3  eXit  Offset  o o  FORM/S  F 8 / F 9 ( - / « • ) : D e l / I n s Predecessor F4:Switch to Succ  Fl:Help F 2 : L i s t F10:Confirm Esc:Exit | F7:Log A l t - P : P r i n t Figure-4.3.1.4.6  D e f i n i n g Predecessors/Successors to Tasks  101  4 . 3 . 2 PROJECT LEVEL Most concentrated  on the  performed  the  of t h e  on  physical  of p l a n n i n g  and  the  implementation  standards side. However,  project  and  of  side, w h i c h  process  scheduling  aspects and  helps  some work  in t h e  of a p r o j e c t  description  m o d u l e s a t t h e p r o j e c t l e v e l is g i v e n  for  was  purposes  a  detailed  sequence.  of  the  following  main  below;  •  Physical C o m p o n e n t  •  M e t h o d s & R e s o u r c e B r e a k d o w n Structure - M&RBS  •  was  formulation  a l s o in d e v e l o p i n g  c y c l e design for a repetitive c o n s t r u c t i o n A  effort  Breakdown Structure -  Activities, Planning a n d Scheduling  PCBS  View  4 . 3 . 2 . 1 PHYSICAL C O M P O N E N T BREAKDOWN STRUCTURE - PCBS The structure Standards values  at  the  level.  entered  project at  project The  only  at the  physical level  is  component similar  difference  project  is  to  the  that  level reflect  breakdown one  the  the  at  the  parameter  features  of  the  hand. There  are  several  c a n c r e a t e a p h y s i c a l d e s c r i p t i o n of t h e  102  ways  in  project:  which  a  user  •  The  user  can  copy  a  complete  standard  Project  t e m p l a t e f r o m t h e S t a n d a r d level to t h e p r o j e c t and  then  provide  project  level  specific  p a r a m e t e r s / c o n d i t i o n values. •  The user c a n c o p y " c h u n k s " of k n o w l e d g e in t h e f o r m of s t a n d a r d  templates  or t r e e c o m p o n e n t s  from  s t a n d a r d s level to t h e p r o j e c t l e v e l , a n d t h e n  the  provide  p r o j e c t s p e c i f i c p a r a m e t e r values. •  The user c a n c r e a t e his/her o w n p h y s i c a l  description  w i t h o u t a n y assistance f r o m t h e s t a n d a r d side by using t h e basic b u i l d i n g blocks in t h e f o r m of a h i e r a r c h i c a l tree  structure.  relevant  This is f o l l o w e d  by  the  definition  of  P a r a m e t e r s , their values, a n d c o n d i t i o n s  for  t h e various c o m p o n e n t s . The Component  default  screen  for  the  Physical  B r e a k d o w n Structure at t h e p r o j e c t level consists  of a title b a r at t h e t o p , a b a r m e n u , a d i s p l a y a r e a , a n d a status b a r at t h e b o t t o m  (fig.-4.3.2.1.1). The b a r m e n u  a r e : Edit, W i n d o w , Report, a n d eXit. The c o n s t i t u e n t s Window  item  are  Define/Edit  PCBS  items of  the  Parameters/Conditions,  Assign P a r a m e t e r / C o n d i t i o n Values, V i e w M u l t i _ m e d i a R e c o r d s , A s s o c i a t e w i t h A c t i v i t i e s , A s s o c i a t e w i t h Pay Items, A s s o c i a t e  103  with  Quality  Management,  Associate  with  Changes,  and  A s s o c i a t e w i t h Project Records. The c o n s t i t u e n t s of t h e Report item  a r e Define  Content  Profile a n d P r o d u c e  Reports  (Fig.-  4.3.2.1.2).  jPRO JECT/PCBSiDEFIME/EDIT PCBS & PARAME TERS/CONDITIQMS C:SREPC0N4SPR0J09\THESIS filtl Uindou Report eXit  IRISE-A  3 4 3 -S  -6 -7  -8 _g L-10  Subproject Ultimate Residential Touer A System Project Superstructure System Element TYPICAL FLOOR SLAB Element TYPICAL FLOOR COLUMNS Subelement RECTANGULAR COLUMNS Subelement SQUARE COLUMNS Subelement ROUND COLUMNS Subelement ARCHITECTURAL COLUNNS Element CORE UALLS Element TYPICAL FLOOR UALLS Element STAIRS Element CURTAIN UALL/CLADDING Element ELEU ROOM SLAB/ROOF/UALLS/COLUMNS Element MECHANICAL ROOM UALLS & COLUMNS Element V DRY UALLS Element DOORS AND UINDOUS FRAHES Location Set Project Physical Location System Subsystem Elevators Element ELEU MECH ROOM EQUIPMENTS Element ELEUATOR PLATFORMS  HIRISE-A.3 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert a t same leuel Figure-4.3.2.1.1  P C B S Templates at Project L e v e l  104  [PROJECT/PCBS i DEFINE/EDIT PCBS & PARAMETERS/CONDITIQMS Uindou Report eXit  -HI  D e f i n e / E d i t PCBS & P a r a m e t e r s / C o n d i t i o n s A s s i g n Parameters/Cond i t i ons Values Uieu M u l t i - M e d i a Records Associate U i t h A c t i v i t i e s A s s o c i a t e U i t h Pay Item A s s o c i a t e u i t h Q u a l i t y Management A s s o c i a t e U i t h Changes A s s o c i a t e U i t h P r o j e c t Records h6 7 8 9 10  Duer  C: SREPC0N4SPR0JQ9\THESIS  A  re System INS  Element CURTAIN UALL/CLADDING Element ELEV ROOM SLAB/ROOF/UALLS/COLUMNS Element MECHANICAL ROOM UALLS & COLUMNS Element DRV UALLS Element DOORS AND UINDOUS FRANES L o c a t i o n Set P r o j e c t P h y s i c a l L o c a t i o n System Location PARKADE LEVEL 6 Location PARKADE LEVEL 5 Location PARKADE LEVEL 4 Location PARKADE LEVEL 3 Location PARKADE LEVEL 2 Location PARKADE LEVEL 1 Location MAIN LEVEL  2 3 1-4 5 6 h-7 HIRISE-A.3 F3:Data Uindou C t r l - F 5 : I n s t e m p l a t e a t s u b l e u e l C t r l - F 9 : I n s a t same l e u e l F l : H e l p E s c : E x i t F 5 : I n s e r t neu s u b l e u e l F 8 : D e l e t e F 9 : I n s e r t a t same l e u e l  Figure-4.3.2.1.2  Window Menu Items for PCBS Components at Project Level  105  To d e f i n e a p r o j e c t PCBS, t h e user selects Edit,  and  standard  by  using  templates  the at  C t r l - F5  the  or  same  keys,  Ctrl-F9  level  or  a  can  insert  lower  level,  r e s p e c t i v e l y (Fig.-4.3.2.1.3). If t h e user d o e s not w a n t a n y h e l p f r o m t h e s t a n d a r d s side he uses t h e F5 or F9 keys to  define  PCBS c o m p o n e n t s at t h e s a m e or lower l e v e l , r e s p e c t i v e l y . To d e f i n e p a r a m e t e r s a n d c o n d i t i o n s a n d their v a l u e s , p e r t i n e n t items f r o m t h e W i n d o w m e n u c a n b e s e l e c t e d . To assist in assigning users  have  direct  access  to  multi-media  parameter records  values,  that  may  consist of d i g i t a l p h o t o g r a p h s of site c o n d i t i o n s , site p l a n s , a n d p r o j e c t plans a n d s p e c i f i c a t i o n s . The  user  can  also  associate  c o m p o n e n t s to p r o j e c t a c t i v i t i e s . T h e r e f o r e , f r o m t h e  PCBS activity  w i n d o w he has a c c e s s to all of t h e p a r a m e t e r s a n d c o n d i t i o n s that describe the physical c o m p o n e n t s  associated with  that  a c t i v i t y . This helps t h e user in d e t e r m i n i n g r e l e v a n t q u a n t i t a t i v e information  for  tasks/activities  activities, depends  e.g. on  assigning quantity  the  durations  take-off  data  for and  m u l t i m e d i a r e c o r d s of site c o n d i t i o n s a n d / o r d e s i g n c o m p l e x i t y of p h y s i c a l e l e m e n t s .  106  jPROJECT/PCBSiDEFINE/ED IT PCBS & PARAMETERS/CQNDITIOMS E d i t Uindou Report eXit  C: SREPC0M4SPR0JQ9\THESIS  PCBS Template  Type Project Subproject Subproject Location Set| Location Set System System System System Subsystem  TJU Itimate High Rise Project §U Itimate Residential Touer ft §U Itimate Hotel Touer B •Project Physical Location System p r o j e c t Process Location System p r o j e c t Superstructure System IProject Substructure System jProject Mechanical System IProject E l e c t r i c a l system IjE levators ^  Element DOORS AMD UINDOUS FRAMES Location Set Project Physical Location System Location PARKADE LEUEL 6 Location PARKADE LEUEL 5 Location PARKADE LEUEL 4  T-10  HIRISE-A.3 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins a t same leuel Fl:Help Alt-S:Search Enter:Select Esc:Exit Ti,PgUp,PgDn Figure-4.3.2.1.3  A d d i n g Project P C B S Templates f r o m Standard P C B S  4 . 3 . 2 . 2 METHODS & RESOURCE BREAKDOWN STRUCTURE ( M & R B S )  Similar breakdown methods project  structure,  there  a n d resource level.  They  to  the  are three  breakdown  are:  By 107  physical ways  structure  copying  component of  defining  (M&RBS)  complete  a  at the methods  s t a t e m e n t s f r o m t h e s t a n d a r d s level to t h e p r o j e c t level w i t h all the  associations  with  PCBS;  by  picking  selected  M&RBS  t e m p l a t e s f r o m t h e s t a n d a r d s level a n d f o r m u l a t i n g t h e p r o j e c t M&RBS; a n d , by s t a r t i n g f r o m s c r a t c h w i t h out a n y r e f e r e n c e to s t a n d a r d M&RBS side of t h e system. For t h e first t w o c a s e s , t h e user  defines  actual  parameter  and  condition  values  p r e d e f i n e d p a r a m e t e r s a n d c o n d i t i o n s , w h e r e a s for t h e c a s e , t h e user has to d e f i n e b o t h p a r a m e t e r s a n d along  with  their  values  that  are  applicable  to  to third  conditions the  actual  project. The d e f a u l t screen for t h e p r o j e c t M&RBS consists of a title b a r , a b a r m e n u , a display a r e a , a n d a status bar.  The  menu  bar  items  Report,  and  M&RBS  Parameters/Conditions,  Values, Rules,  eXit. The  are:  Define/Edit View  Window  M&RBS  Multi_media  Edit, W i n d o w , item Assign  Fragnets,  Records,  Check  consists  of  Define/Edit  Parameters/Conditions Define/Edit  Associate  with  A s s o c i a t e w i t h Pay items, A s s o c i a t e w i t h Q u a l i t y  Feasibility Activities,  Management,  A s s o c i a t e w i t h C h a n g e , a n d A s s o c i a t e w i t h Project  Records.  C o n t e n t s of t h e Report m e n u i t e m are Define C o n t e n t a n d P r o d u c e Reports (Fig.-4.3.2.2.1).  108  Logic,  Profile  PROJECT/M&RBS iDEFINE/EDIT M8RBS PARAMETERS/COMDITIQMS E d i t Uindou | Check Logic Report eXit Define/Edit M8RBS Parameter S/'Condit ions | Assign Paraneters/Cond i t ions Values | - s u Define/Edit M&RBS Fragnets Define/Edit F e a s i b i l i t y Rules Vieu Multi-Media Records Associate Uith A c t i v i t i e s Associate Uith Pay Iten Associate uith Quality Management Associate Uith Changes Associate Uith Project Records  I  m  •—3 3 —1 1 1-1 1—2 [ "—3 —2 —1 —2 —3 —4  Resource Operation Method Resource Resource Resource Method Resource Resource Resource Resource  *  C :\REPC0N4SPR0J09STHESIS  PERSTRUCTURE b E35 Crane  Steel rebars Pour/; ish Slab Pour by Crane & Bucket P&H OMEGA E35 Bucket Labourers U-3 F i n i s h Hand Operated Vibrating Screed Pouer Float Pouer Operating Troweling Machine Labourers  Fl:Help t i - * * : S c r o l l Enter:Select Esc:Exit  Figure-4.3.2.2.1  Window Menu Items for Project M & R B S Components  To c r e a t e  the project  M&RBS, t h e user  selects t h e Edit i t e m f r o m t h e b a r m e n u a n d by using t h e C t r l F5 or C t r l - F9 keys, c a n pick s t a n d a r d M&RBS t e m p l a t e s t o insert  at t h e s a m e level or a lower l e v e l , r e s p e c t i v e l y (Fig.-4.3.2.2.2).  109  To start f r o m s c r a t c h t h e user makes use of t h e F5 a n d F9 keys t o d e f i n e M&RBS c o m p o n e n t s  a t t h e s a m e level a n d l o w e r  l e v e l , r e s p e c t i v e l y . Also, t o d e f i n e p a r a m e t e r s a n d c o n d i t i o n s a n d their v a l u e s , t h e user c a n e i t h e r s e l e c t o p t i o n s u n d e r t h e W i n d o w m e n u i t e m or m a k e use of t h e F3 k e y . To d e f i n e or e d i t Fragnets, use has t o b e m a d e of t h e Fragnet o p t i o n u n d e r t h e |PR0JECT/r1&RBS iDEFIME/EDIT M&RBS PARAMETERS/CONDITIONS Uindou Check Logic Report eXit  C:SREPCQN4SPRQJQ9STHESIS  Type  M&RBS Template tj INS TALL HUAC SYSTEM §INSTALL ELECTRICAL SYSTEM IINSTALL MECHANICAL SYSTEM (BUILD UALLS AND COLUMNS IBUILD TYPICAL FLOOR SLAB IBUILD TYPICAL SUPERSTRUCTURE |FORN/STRIP FLOOR SLAB IPLACING CONCRETE •FINISH FLOOR SLAB EFORH/STRIP COLUMNS  It  Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Method Class Method Class Method Class | Method Class  Method U-3 F i n i s h Resource Hand Operated Uibrating Screed 1 Resource Ppuer Float 1-2 Resource Pouer Operating Troueling Machine 3 Resource Labourers 4 SUPSTRCT.3.2 F3:Data Uindou Ctrl-F5:lns template at subleuel Ctrl-F9:Ins at same leuel  Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn  Figure-4.3.2.2.2  Adding Standard M & R B S Templates to Project M & R B S  110  w i n d o w m e n u i t e m . Also to c h e c k t h e logic d e f i n e d  between  f r a g n e t s , a m o n g s t t h e tasks in a f r a g n e t or b e t w e e n t h e e x t r a tasks d e f i n e d at t h e o p e r a t i o n l e v e l , t h e user has t o s e l e c t t h e C h e c k Logic i t e m f r o m t h e b a r m e n u . Implementation  of  the  association  of  M&RBS c o m p o n e n t s w i t h PCBS c o m p o n e n t s a n d t h e d e f i n i t i o n s of  rules  for  methods  statements  and  a t t e m p t e d . The only assistance o f f e r e d project fragnet  methods at  present  M&RBS is in t h e g e n e r a t i o n of a c t i v i t i e s by tasks  onto  activities.  d e t a i l e d c y c l e designs.  Ill  This  permits  one  to  was  not  from  the  mapping develop  4 . 3 . 3 A C T I V I T I E S . P L A N N I N G A N D S C H E D U L I N G VIEW  The c o p y i n g o v e r of f r a g n e t tasks e n a b l e s t h e user t o g e n e r a t e a p r o j e c t p l a n a n d s c h e d u l e ( F i g . - 4 . 3 . 3 . 1 ) .  IACTIUITY DA TA/DESCRIP TI ON UINDOU E d i t Uindou Add Delete Renumber r Code t GOO100 G00200 G00300 G00400 G00500 G00600 G00700 G00800 G00900 G01000 GO1100 GO1200 GO1300 GO1400 GO1500 GO1600 GO1700 GO1000 GO1900 G020OO  Frag |; Options  C:SREPC0N4SPR0J18S5DCVL| Prog_Date Execute E x i t  p Phase Description FragnetT M&RBS Operation pour slab cast precast s t a i r s 0 rotor trouel 0 cure slab f o r post tensioning 0 slab s e t time-start next cycle 0 layout column & u a l l lines 0 s t r i p slab edges 0 place column & u a l l rebar 0 form columns & u a l l s 0 pour columns & u a l l s 0 cure columns & Ualls 0 s t r i p columns & u a l l s 0 post-tension slab 0 suruey leuel lines 0 form s l a b ( f l y form) 0 layout control line 0 reshore slab 0 layout slab rebar d place plumbing cans 0 form slab edges  Fl:Help U * * : S c r o l l Enter:Select Figure-4.3.3.1  Esc:Exit  Copying Fragnet Tasks and Operations as Activities  112  W h e n c o p y i n g t h e tasks, all p r e - d e f i n e d along  with  complete  them the  and  assume  plan  and  the  relationships  status  schedule  of  extra  come  activities. activities  To and  relationships c a n . b e d e f i n e d at t h e p r o j e c t l e v e l . The user t h e n executes  the  plan  to  obtain  times,  float  values,  etc.  R e f i n e m e n t s c a n t h e n b e m a d e in an i t e r a t i v e fashion in o r d e r to a c h i e v e a d e s i r a b l e a n d w o r k a b l e p l a n a n d s c h e d u l e (Fig.4.3.3.2 a n d Fig.-4.3.3.3).  Window Cursor Select Activities Execute Act Filter nOde Zoom eXit T  an pn "project start an pn an pn- an pn an pn an pn l l layout colunri & wall lines :place colunn S ual 1 rebar Build Verticals: I • forn columns & walls l | cast precast stairs I I pour columns & walls cure- cblunns S Walls 4pn  •W3029B0  «G00600 *G00800 G0Z800 «G00900 G00200 *G01000 G01100 G01Z00 •301400 G01500 Lggj strip colupins & walls| G03100 survey level lines G01600 * \3 V<%\ forn I slab<fly I forn) G0Z000 ia ifZZ G01800 J . ' i i layout control line * G02900 project; start *lct/Sch/Ear1y: < 06JAN 97 7:00an J ZZra forii slab edgIes. I ~j.: layout FHHelp t *-»*• :Scrol 1 Enter! Select Ex it slab; ..rebar If Esc •i - • "  - ' '  i  "  I  • _  I  i  • _  I  I  I  •  •  ..  '  i'  •. .-  I  •  I  i  •..  i .  •- ,  I  I  '  I  i  '  /•• -  Figure-4.3.3.2  I  I  I  Bar Chart for 5-day Cycle for a Typical Floor Construction in High-Rise  113  Wn idow Cursor Select Activities Enecuteftct_FilternQde Zoom eXit Conpletion: 1am l Du rat i on < 8 d/1TJU t/VLi9>7 :7:0176/0/' LOCN 16 15 14 13 12 11 10  ^ G02800 Build Verticals 169/6/30 P^ct/Scli/Ear 1 u : < 06JAN97 7:00an Z4JUN97 1:30pm Fi:i-Ielp ti*«-:Scroll Enter! Select Esc: EH it  Figure-4.3.3.3 Linear Representation of 5-day Cycle for Typical Floor in Terms of Operations: Build Verticals and Build Horizontals  114  5. C O N C L U S I O N A N D R E C O M M E N D A T I O N S FOR FURTHER RESEARCH  5.1 THESIS REVIEW  The o b j e c t i v e of this thesis was to d e v e l o p a l a n g u a g e a n d s t r u c t u r e for t h e m e t h o d s s e l e c t i o n area,  and  environment Chapter  based to  on  assist  them in  to  develop  tracking  and  a  problem  computerized  selecting  methods.  1 reveals t h a t t h e p r o b l e m of c o n s t r u c t i o n  selection  is a c o m p l e x  and  ill-structured  methods  o n e . There a r e  no  universally a c c e p t e d terms w i t h w h i c h to d e f i n e m e t h o d s . Most of  the  time  the  methods  selection  problem  is  treated  in  p r a c t i c e t h r o u g h p e o p l e w h o h a v e e x p e r i e n c e . Little a t t e m p t is m a d e t o d o c u m e n t a n d formalize t h e r e a s o n i n g p r o c e s s . In this w o r k , a n a t t e m p t was m a d e to set out  a  common  literature  vocabulary  in  r e v i e w as d e s c r i b e d  part  through  in C h a p t e r  an  extensive  2. As p a r t  of  this  r e v i e w , a s e a r c h was m a d e for a p p r o a c h e s for i n c o r p o r a t i n g  115  m e t h o d s s e l e c t i o n into t h e p l a n n i n g a n d s c h e d u l i n g especially  in r e g a r d  to t h e  detailed  design  of  process,  construction  c y c l e s , w i t h s p e c i f i c r e f e r e n c e to high rise c o n s t r u c t i o n . A c o n c e p t u a l design of a environment  was  described  in  Chapter  3.  computerized The  language  a d o p t e d for t h e m e t h o d s s e l e c t i o n p r o b l e m i n c l u d e d M e t h o d s s t a t e m e n t s , O p e r a t i o n s , M e t h o d s , Resources, a n d F r a g n e t s . To represent construction developed  methods, a hierarchical structure  and called a Methods  and  Resource  was  Breakdown  S t r u c t u r e (M&RBS). To assist in t h e m e t h o d s s e l e c t i o n p r o c e s s , r e a s o n i n g was a d d e d in t h e f o r m of Feasibility C o n d i t i o n s a n d a c c o m p a n y i n g rules. In o r d e r to fire t h e rules, their a r g u m e n t values must b e o b t a i n e d in p a r t f r o m a p h y s i c a l d e s c r i p t i o n of t h e p r o j e c t at h a n d . This d e s c r i p t i o n is in t h e f o r m of a Physical C o m p o n e n t B r e a k d o w n Structure (PCBS). A implement reasoning  and  test  aspect  outlines s e l e c t e d  prototype the  has  concept  yet  aspects  to  be  system  was  developed,  developed although  incorporated.  Chapter  of t h e system as i m p l e m e n t e d  d a t e , w i t h t h e h e l p of an e x a m p l e of high rise c o n s t r u c t i o n .  116  to the 4 to  5.2 CONTRIBUTION OF THE THESIS  The m a i n c o n t r i b u t i o n s of this thesis a r e in t h e a r e a of s t r u c t u r i n g t h e p r o b l e m of m e t h o d s s e l e c t i o n  by  s e t t i n g out g e n e r a l i z e d d e f i n i t i o n s of t h e c o n s t r u c t i o n m e t h o d s selection  problem  and  its  various  components  which  can  a c c o m m o d a t e a diverse r a n g e of m e t h o d s s e l e c t i o n p r o b l e m s , a n d in c o n c e p t u a l i z i n g  a model involving  reflects  approach  a  practical  for  knowledge  screening  which  potential  alternatives.  5.3 R E C O M M E N D A T I O N S FOR FUTURE WORK  To  fully  utilize  the  potential  of  the  p r o t o t y p e m o d e l d e s c r i b e d in this thesis, f u r t h e r d e v e l o p m e n t s a l o n g w i t h t h e resolution of several issues are i m p o r t a n t . In  the  system  at  present,  to  maintain  c o n s i s t e n c y a n d for ease in c o d i f y i n g p a t h s in t h e rules, e a c h  117  a n d e v e r y m e t h o d a n d r e s o u r c e must h a v e a r e f e r e n c e , w h i c h m e a n s t h e y must h a v e b e e n e n t e r e d in t h e m e t h o d s class a n d resource  class  templates.  This  makes  the  entry  of  a  new  m e t h o d or r e s o u r c e impossible in t h e M&RBS while d e f i n i n g t h e t r e e s t r u c t u r e (i.e. t h e y must b e p r e d e f i n e d first in their  own  class). It w o u l d b e useful to h a v e t h e c a p a b i l i t y in t h e system w h e n o n d e f i n i n g a n e w m e t h o d or r e s o u r c e , it p r o m p t s to user t h a t this i t e m d o e s not h a v e any r e f e r e n c e p a t h a n d t h e r e f o r e w o u l d y o u like to a d d it to list a n d if yes, t h e n w h e r e . At resource  subclasses;  Resources  defined  m e t h o d s . It w o u l d define  Crews  present  we  Equipment,  under  them  be convenient  (Rebar  mostly  crew,  deal  Labor,  can and  Forming  only  with  and be  three  Material.  attached  to  useful to b e a b l e  to  crew,  and  Concrete  p l a c e m e n t c r e w e t c . ) as a sub-class, w i t h e a c h m e m b e r of t h e subclass consisting of a n u m b e r of resources. Then t h e  crew  w o u l d b e a t t a c h e d d i r e c t l y to a m e t h o d . The system s h o u l d b e i n t e l l i g e n t e n o u g h to r e c o g n i z e t h e c r e w subclass, a n d  hence  should b e a b l e to refer t o all of t h e resources u n d e r it. O f t e n a p a r a m e t e r or c o n d i t i o n c a n b e well  in  terms  of  a  mathematical  118  formula.  expressed  Therefore,  a  s i g n i f i c a n t b e n e f i t w o u l d b e a c h i e v e d if t h e a b i l i t y to s u p p o r t f o r m u l a s w e r e a d d e d to t h e system. A n o t h e r d e s i r a b l e f e a t u r e for t h e  system  w o u l d b e t h e a b i l i t y to c a l c u l a t e t h e d u r a t i o n s of tasks  and  operations,  the  because  all of  the  information  needed  for  c a l c u l a t i o n is present in t h e system, i.e. q u a n t i t i e s of d i f f e r e n t processes f r o m t h e p h y s i c a l c o m p o n e n t b r e a k d o w n  structure,  t h e resources r e q u i r e d to p l a c e t h e q u a n t i t y , a n d  standard  p r o d u c t i v i t y measures for t h e resources f r o m t h e M e t h o d s a n d Resource B r e a k d o w n S t r u c t u r e . A d d i t i o n a l l y , b e c a u s e w e h a v e d u r a t i o n s at a m i c r o level ( d u r a t i o n s of f r a g n e t tasks) a n d also p r e c e d e n c e relationships d e f i n e d b e t w e e n t h e m , t h e d u r a t i o n s of f r a g n e t c o u l d b e c a l c u l a t e d , a n d for t h a t r e a s o n , so c o u l d t h e d u r a t i o n of o p e r a t i o n s . For t h e c u r r e n t i m p l e m e n t a t i o n , tasks of fragnets design,  map  one-to-one  operations  map  onto  a c t i v i t i e s . In t h e  one-to-one  onto  conceptual  activities.  Since  f r a g n e t tasks are very low level a c t i v i t i e s , a n d most of t h e t i m e p e o p l e in t h e c o n s t r u c t i o n industry d o not w a n t to d e a l w i t h such  a  low  level  of  activities,  it  would  be  desirable  to  i m p l e m e n t a c o p y i n g o v e r f e a t u r e for o p e r a t i o n s as a c t i v i t i e s  119  w i t h o p e r a t i o n d u r a t i o n s b e i n g d e r i v e d f r o m solving t h e fragnet.  120  task  BIBLIOGRAPHY  A l - H a m m a d , Ibrahim (1991). "A K n o w l e d g e - B a s e d f o r C o n s t r u c t i o n M e t h o d s S e l e c t i o n . " , Ph. D. Thesis, of Civil Engineering, The University of British Vancouver, Canada. Ashley, D. B. (1980). "Simulation of Construction.", Journal of Construction Management, Vol.106, N o . C 0 2 , p p . 185-195.  Framework Department Columbia,  Repetitive Engineering  A s h l e y , D. B. e t . A l . ( 1 9 8 3 ) . " C r i t i c a l D e c i s i o n M a k i n g Construction.", Journol of Construction Engineering Management, V o l . 109, N o . 2 , p p . 146-162.  Unit and  During and  A y y u b , B. a n d H a i d e r , A . ( 1 9 8 5 ) . " D e c i s i o n s i n Construction Operations.", Journol of Construction Engineering and Management, Vol. I l l , No.4, p p . 343-357. Barry, Science  R. ( 1 9 9 6 ) . " T h e C o n s t r u c t i o n Ltd., C a m b r i d g e , M A , U S A .  B i r r e l l , G . S. ( 1 9 8 0 ) . C r i t i c a l P a t h . " , Journol 106(3), p p . 389-407.  of  Buildings",  Blgckwell  "Construction Planning - Beyond the of the Construction Division, ASCE,  C a r r , R. I. a n d M e y e r , W . L. ( 1 9 7 4 ) . " P l a n n i n g C o n s t r u c t i o n o f R e p e t i t i v e B u i l d i n g U n i t s . " , Journal of the Construction Division, ASCE, 100(3), p p . 403-412. C h a t t e r t o n , M. a n d N e v i l l e , A. M. ( 1 9 7 8 ) . T e c h n o l o g i e s a n d B u i l d i n g D e s i g n . " , Longman NY, USA.  "New Inc.,  Concrete N e w York,  C h e r n e f f , J . , L o g c h e r , R. a n d S r i r a m , D. ( 1 9 9 1 ) . "Integrating CAD with Construction-Schedule Generation.", Journal of Computing in Civil Engineering, ASCE, 5(1), p p . 64-84.  121  Clayton, (1994). Proceedings  M. J., Fruchter,  R., K r a w i n k l e r ,  H., a n d T e i c h o l z ,  P.  " I n t e r p r e t a t i o n O b j e c t s for Multi-Disciplinary D e s i g n . " Artificial  Intelligence  in Design  Sudweeks, F. (eds.), Kluwer N e t h e r l a n d s , p p . 573-590.  94.  Academic  G e r o , J.S.  Publishers,  and  the  "OARPLAN: G e n e r a t i n g Project Plans by Reasoning a b o u t O b j e c t s , A c t i o n s a n d R e s o u r c e s . " , Artificicl Intelligence in Engineering Division and Manufacturing, Al EDAM, 2(3), p p . 1 69-181. Darwiche,  Design  Power,  A., Levitt,  Power  R. a n d H a y s - R o t h ,  Design++  (1995).  B. ( 1 9 8 9 ) .  User M a n u a l V4.0.,  Design  Inc., C u p e r t i n o , C A .  D o n g , V . , S a l o m o n , AA., S a h l s t r o m D. a n d M a c f a r l a n e  D. ( 1 9 8 8 ) .  " E c o n o m i c Analysis of A l t e r n a t i v e M e t h o d s in C o n s t a n t C o n s t r u c t i o n . " , Civil 445 project. The University Of Columbio, Vancouver, Canada. Dzeng,  R.  J.  Scheduling Congress  and  Using on  Computing  in  British  (1995). "Case-based M o d e l s . " , Proceeding Second Civil Engineering, Atlanta, GA,  Tommelein,  Product  Cycle  I.  D.  ASCE, p p . 1 63-1 70. Echeverry,  D.,  Knowledge  Ibbs,  for  Construction  W.  (1991). "Sequencing Scheduling.", Journal of Management, ASCE, 117(1), p p .  and  K i m , S.  Construction  Engineering  and  1 18-130. Fayek,  A.  Selection Engineering,  "An Automated  (1992).  Corrective  Assistant.", Mgster Thesis, Department The University of British C o l u m b i a ,  Action of  Civil  Vancouver,  Canada. Fischer,  M.  A.  and  Aalami,  Computer-lnterpretable Journol  of Construction  Fondahl,  Engineer: Construction  F.  Engineering  "Scheduling with Methods Models.",  (1996).  Construction  a n d Mgnggement,  ASCE,  " D e v e l o p m e n t of t h e C o n s t r u c t i o n Past progress a n d Future p r o b l e m s . " , Journal of Engineering and Management, ASCE, 117(3), p p .  J.  W.  (1991).  380-392.  122  "A S y s t e m a t i c A p p r o a c h t o t h e C r a n e for a C o n s t r u c t i o n s i t e . " ,  G r a y , C . A. a n d Little, J. ( 1 9 8 5 ) .  S e l e c t i o n of a n A p p r o p r i a t e Journal  pp.  of  Construction  Management  and  Economics,  No.  3,  121-144.  Gray,  C.  A.  Analysis.", Economics,  "Intelligent  (1986). Journal  of  Construction  Construction  Time a n d Cost  Management  and  N o . 4, p p . 135-150.  Halpin,  D.  W.  and  Woodhead,  C o n s t r u c t i o n a n d Process N e w York, NY, USA.  R.  W. ( 1 9 7 6 ) . o p e r a t i o n s . " , John Wiley  "Design and  of Sons,  H e n d r i c k s o n , C , Z o z a y a - G o r o s t i z a , C , R e h a k , D., B a r a c c o M i l l e r , E. a n d L i m , P. ( 1 9 8 7 ) . "Expert System for C o n s t r u c t i o n P l a n n i n g . " , Journal of Computing in Civil Engineering, ASCE,  1 (4), p p . 253-269. I k e d a , M . , O h k u r a , Y., a n d W a k u , A . ( 1 9 9 1 ) . "The D e v e l o p m e n t of K n o w l e d g e - I n t e n s i v e S c h e d u l i n g System." Tronsgction of the Construction Monggement Committee, V o l . 4, J a p a n S o c i e t y of Civil Engineers, Tokyo, J a p a n , p p . 187-193.  " M D A Planner: I n t e r a c t i v e Planning Tool Using P r o d u c t M o d e l s a n d C o n s t r u c t i o n M e t h o d s . " , Journol of Computing in Civil Engineering, ASCE, 8(4), p p . 536-554. Jagbeck,  A. (1994).  "Design of Project Plans f r o m F u n d a m e n t a l K n o w l e d g e of E n g i n e e r i n g S y s t e m . " , Proceeding AAAI Fgll Symposium Design from Physical Principles, C a m b r i d g e , M A , p p . 149-154. Jin,  Y . , K u n z , J . , L e v i t t , R. E. a n d W i n s t a n l e y , G . ( 1 9 9 2 ) .  "An Integrated M a n a g e m e n t System for C o n s t r u c t i o n P r o j e c t s . " , Journal of the Construction Division, ASCE, 103(1), p p . 101-112. Kouskoulas,  V.  and  Grazioli,  L a w , G . K. ( 1 9 8 7 ) . " D e c i s i o n C y c l e D e s i g n . " , Master Thesis,  M.  (1977).  Support System for C o n s t r u c t i o n Department  of Civil  Engineering,  The university of British C o l u m b i a , V a n c o u v e r , C a n a d a . Levitt, Journol  R. R. ( 1 9 7 4 ) .  of the  "New Methods  Construction  Division.  123  in C o n s t r u c t i o n S y s t e m . " , ASCE, 100(3), p p . 21 1-222.  "An Interactive Planning E n v i r o n m e n t for C r i t i c a l O p e r a t i o n s . " , Journal of Construction Engineering and Management, ASCE, 122(3), p p . 212-222. Lin,  K.  and  Haas,  C.  (1996).  L u t z , J . D . , C h a n g , L. a n d N a p i e r , T. ( 1 9 9 0 ) .  " E v a l u a t i o n of N e w  Building T e c h n o l o g y . " , Journol of Construction Management, V o l . 1 16, N o . 2 , p p . 281-299. Meritt,  Engineering  and  " S t a n d a r d H a n d b o o k for Civil E n g i n e e r i n g ,  R. S. ( 1 9 7 6 ) .  N e w York, McGraw-Hill  Book  Company.  M o n o g r a p h o n Planning a n d E n v i r o n m e n t a l C r i t e r i a for Tall Buildings. (1981). Van Nostrand Reinhold, N e w York, N. Y. Monograph on Nostrand Reinhold,  Morad,  A.  Tall Buildings a n d N e w York, N. Y.  and  Beliveau,  Y.  Concepts.  (1980).  Van  (1993).  "Geometric Based R e a s o n i n g System for Project P l a n n i n g . " , Journal of Computing in Civil Engineering, ASCE, 8(1), p p . 52-71. N a v i n c h a n d r a , D . , S r i r a m , D. a n d L o g c h e r , R. D. ( 1 9 8 8 ) . Project N e t w o r k G e n e r a t o r . " , Journol of Computing  Engineering, Peurifoy,  Book  R. T. ( 1 9 9 6 ) .  "Handbook  R. M . ( 1 9 9 0 ) . of Construction  N e w York, N. Y.  Company,  R. L. a n d O b e r l e n d e r ,  C o n s t r u c t i o n . " , McGraw-Hill Reda, Journal  Civil  R. L. ( 1 9 7 0 ) . " C o n s t r u c t i o n P l a n n i n g , E q u i p m e n t , a n d  C o n c r e t e S t r u c t u r e s . " , McGraw-Hill N. Y. Ratay,  in  ASCE, 2(3), p p . 239-254.  M e t h o d s . " , McGraw-Hill Peurifoy,  "GHOST:  Book  G.  D. ( 1 9 9 6 ) . " F o r m w o r k for Book Company, N e w York,  of  Temporary  "RPM: R e p e t i t i v e Engineering  and  Structures  in  N e w York, N. Y.  Company,  Project  Modeling.",  Management,  ASCE,  106(2), p p . 316-330. Reda,  R. a n d C a r r ,  R. I. ( 1 9 8 9 ) . "Time-Cost Journal of Construction  Related Activities.", Mgnaaement, ASCE, 115(3), p p . 475-486.  124  Trade-off  Among  Engineering  and  R u s s e l l , A . D. ( 1 9 8 5 ) . " M i c r o c o m p u t e r s , M a n a g e m e n t , a n d HighRise C o n s t r u c t i o n : The Next S t e p . " , Canadian Journol of Civil  Engineering,  V o l . 12, p p . 396-414.  R u s s e l l , A . D . , a n d F r o e s e , T. ( 1 9 9 7 ) . " C h a l l e n g e s a n d a vision for C o m p u t e r - I n t e g r a t e d M a n a g e m e n t Systems for M e d i u m Sized C o n t r a c t o r s . " Cgngdign Journol of Civil Engineering, Vol. 24, No.2, April 1997, p p . 180-190. R u s s e l l , A . D., G u i n d y ,  K., a n d A l l d r i t , M . ( 1 9 9 7 ) .  "Computer  System for t h e S e l e c t i o n of Trenchless a n d C o n v e n t i o n a l M e t h o d s for U n d e r g r o u n d Utilities.", North Americon NO-Dig'97 Conference  Papers,  Shaked,  System  O.  and  for  Journol  of  p p . 357-370. Warszawski,  Construction  Construction  A.  "Knowledge-Based High-rise Buildings.",  (1995).  planning  Engineering  of  a n d Mgnggement,  ASCE,  121 (2), p p . 172-182. "Classification  System  for  T a t u m , C . B. Technology.".  (1987). Journol  Management,  ASCE, V o l . 1 14, N o . 3, p p . 344-363.  Thabet,  W.  Constrained Journol  Y.  and  of  Construction  Beliveau,  Y.  J.  Resource-Constrained  of Computing  in Civil  Engineering,  Construction  Engineering  and  "SCaRC: S p a c e Scheduling System.", ASCE, V o l . 1 1 , N o . 1,  (1997).  p p . 48-59.  Trinh,  "Assessing C o n s t r u c t i o n by Integrating Constructed Product and Process Complexities: A Case Study of Dams in T h a i l a n d . " , Journol of Construction  T. T. P. a n d S h a r i f ,  Technology Construction  Embankment Monggement a n d Economics,  N. ( 1 9 9 6 ) .  14, p p . 467-484.  W a u g h , L , M. (1990). "A C o n s t r u c t i o n Planner." Report 32, Center for I n t e g r a t e d Facility Engineering,  CA.  125  Technicol  Stanford,  APPENDIX A: Methods Statement Reports  126  cn - -  !3S  \  m E3  §  EC • EC2 • •—i Bw CD •Q ~ CD EQ 3 § * 1  U  C  ,_3  B S  a-  6-H  H  •  Q 2  O  u  o cc c a -3  .8  EC  EX t_ Q. CO - EL- t_ S  6—I  ca CD  CD  ucket  BC—O i  i-*->  a  Bu  oC ED  C W C QJ  ••->  -a £3 o  a.  c2 s  B C E—<  <r  m D  127  LD  U  ) Cr;  >< E->  g  >ane  •< O  Labour  O  m  Cappen  E-<  =  B S  W Pi D  SUJO  o  •—< a -  =  03  Flying F  •< z.  BU  B B  H Q & OS f-> <n  Slab  w w o  i—i  w es  L SUPERS!  H Z  g-1 => 3  m  2  m <:  8  E-H O  i  Cl n  CD  a §3  i—i  z: <  e  PsJ  L2&  m  129  APPENDIX B: Method and Resource Class Reports  132  z o u PH  w Pi  r— cn -r3-  m  - § . 8 . S . £ . g . 2 . S . £ . S . g . S . £ . g  ^.^^•j_i_z__^i__^_____^__  « EH  Z W O «< Z -<  J  2 z o  o Q C O £>  "S Jb  c3  Q. OS  as  ca cu  o  = £3  E—  a  fc.  '£  8  8  8  8  8  8  8  8  8  -•->  tft) .—• 3  Cn c -—< t/j =3  *  H £  g  OJ —  rd eu  fd -M  I_ fd  <x I n. fd  -  O  H  o  8  3 3  J P <s JS  H O P  Z  3  a a  a  t. a Li_ M  —H  rd  OJ  »  B. = rd  c  5 Cn c -«-> rd  to Lb, c  S  "3  *  §  a  I  a  3  _j  _J  _i  CO DI *-H *-H 8  8  8  8  _i  8  E3  £i  •£3 £  CO  W  w  S3  %  Si  « < H Z w  S w o -< z z o H 0 P  01 H  03  Z o o  o m  PS Z w  p. cr  a  §  S  a  as 5 S3  i2J3 S I  s " 5  1 |  3" B  B  B  B  B  Ba s s  -  E-i  CX)  £  £  H  B  E  B  IJ3 O.  u  O  S3  BD  to  ss i §s s g ^ S ^ g °= s a  8  B  B 55  °-  z  SaC  =  to  B-  5  =3  K3  E-t  CJ  «—I =tf  O X  S3 rsJ L D  _ g a x:  to  o t o c a e - H - J o t o  —  £S £ £  B  S  B  B  S  B  B  B  B  B  S  S  E  8  —H  8  O  —  —H  OS  s  -a  s  as  E3 =  3  3  3  S  B  B  3  B  (S  B  5  B  B  B  E  B  B  S  B  S  1^5  B  B  APPENDIX C: Fragnet Reports  136  O - •  £2  e  E M  £2  e  tfl  a!  £2  1*51  z o o  CH  W  r-  cn - O  un  - .  o o a. o.  i3~ E3  < EH  z w S w o <: z z o M  EH  P  03 H  CO  Z  o o  «  p  U  w  >—  (A E E 3  <A —  8  5 3  APPENDIX D: PCBS Templates  139  E3P3  o o 13. t=L.  CO CO  w  S s 3 3 3 3 3 3  S  .3  3  3  a s  3 3  3 S S S S 3 3 3 3 3 3 3 3  H 2  ~  o 2  03 J3  2  O M  EH  o  03 H  CO  2  O  ,3  •a  E3  1  e— co  5 ca  c2 z:  §2  5  <J3  LT)  1  Ck-  TJ- 1  m  E3  E3  1  CO ca  CO ea  CO ca  CO ca  1 § s s  r-j  CO ca  s  i—>  ca as  G3  c_> ca  ca  «  £3  S  CJ>  CJ  »—.  E  EI!  5  CD  cr»  1  1  S  2  S E  CC  S  ~ i3  E3  FLOOR  w  FLOOR  W  8 _  CO CO a-H c a  1^0  CO «-*  3  CJu  ES  §  3  S  S  E—1  E—  3  S  3  3  3  3  3 3 3 3 3 3 3 3 3 3 3 3  § i ca _ lE:  e s  i  W  rS  R  I  t  I  3  §  §  3  3  3  S3  2  s 3 CSS  n  Du s  3  3  3  3  N  M  S  3  3  3  3  S3  3  CO  u  £  s  CO  1  8  3  3  3  S3  * I CO  <X  £  CO  EJ  ce  8  s  CO  5  5 S  3  •—. u 3 g  3  S  1  I  3  3  3  a  s s n  3  3  8  5  s  si  ca  ;*2 8. _J E  3  S  8  8  S  3 8  8  I S  Q  J  O  J  f  D  O  j  B  S  w  5  -u>  S  3  I B  I  eg  § 1 1  3 8  8  3 8  S  3  3  ati  £3 5  BC Lu  CP  CD  -t-J  CO  3  £  S3  e d  5  FT  CO QJ  &  5 3  8 8 S  3  § 8  s  f/i t/i  ten  tft  5T  c  8  BT  CO 3 CO CO  u  g  ¥ E3  s  tu  E  OJ  to  -a  3"  BV  _a  S  1  s  Si  ft  -a  of  _d  E3  _o  CO Bf _o  s  E3  ^ o  3  M  G  G g  •a o s-  ag  D3 ca  QC  C J  —  CO CO 1^3  g  5  S £3  _a  s  B  E—I  =>  BT  s  E3  G  CO  .3  E.  £  z:  5  3 3 3 31 1 O3J s co CO _30 CO CO CO 3 3 3 3 CCL. CO CO CO CO CO BP  3 3  CO  ten  CO  §  5  tew  bsys  L3  s  ten  enen  enen  enen  enen  enen  enen  W Ci3 t±3 U U  s  8  U  £  §  | E  S 8  £3  CC X  E3  I 8  s s  .3  .3  3  3  3  3  3 3 3 3 3 3 3 3  E  3  3  3  3  3  3 3 3 3 3 3  - iS 3 5 E  s 3  <=>  3  o  3 Du n  d  d  3  S  S  3  S  3  3  S  e  3  3 3  3 3 3 3 3 3 3  s  s  Fd  fa  S3  i  i  BC  3  Lu  S  3  d  S3  S  J  3  3  3  3 3 3 3 3 3 3  s  3  3 -3  g  i  1^ gg  3  °•24 S3  S  "  3 .3  £3  8  CL,  e  3  3 <~  ex,  3  8  si  1^5  t/1  ci?  E—IiSM COa  s  ~  £  s  I  CO  ;£3  CJ  .3  =3  3  5  S  CJ  .3  3 3 3 3 3  13 g g  co ce Ba  a  S  §  £ S3  I  3 8  -a  S '—'  6—  \ S-i =J  E  £3 E  Gil  g CL,  8  8 8  £ E 5  8  -a £E  8  £ K  Q  5!  i  "a) -a  "oJ  -a  'a! _e>  3 8  1  £3 -J  S  C* l> ft 5  55. i  s  s  § « s «  OJ  s  QJ  Si  Si  5  -M  5i  £  E  0 0  B  S3  E .3  5 O  S  *e  CO E3  C  ;i2 8  s COs CO E—•  Oi  3  ee co 63  exa  a?  NJ  =3  CLH  S  o_  CO CO  Qj  §  5  s s s  s  s  3 3  3  3  a a a  a s  a a a  3 3 3 3 3  S  a  3 3 3 3  ^  a  3  a s  s  P3  3  3  3 3  a a  a a a a  "J  s  3 3 3 3 3 3  £3  s  5  CO  E3 E—i CO  5  o : ca < ae •  &\  -2 E—i  6—1  5 3  S  1  3  ES 3  S  ES 3  £  ES  £  £  £  £  £  £  £  CM — —  d  d  d  5 E3  s O  s  CO  & O  CO  3 E  3  =1  3  <r ce ca  to  cu  cp  S  §2  CO S  8  3  3  s  3 3  3  3  ^  S  cu  r-3  5  8  PJ  £ cu  3  s  E  fa E  8  8  S  E  E  8  8  -  S  "c  cD  3 8  S3 _o  53  a3  .a  _o  "c  53  "c  "c  "c  "c=  53  5J  53  S3  8 5  ES 8  1 _\  ca  I  S  CO 5  H 8  B i l l  3 8  Cu  f3  5  s CC  Cu  8  £  £  8  S  §  53  Q3  Q3  U  U  QJ  .£3  -*-» tfl  S C)  §  -t-> tfl  ft ft ft ft  u  S  t/l  £3  e so  z: ca c=> t c i—i  as:  £3 5  0 0  s  •8  S3  3  3  si  S3  CC CO  g  CO  S  E—I  5  3 8  S  E3  5 CO  ft  s  B  S  S  S  -t-J  60  ft  Qu a CJ  CO1  5?  s  -t->  £3  3= oa  5  £2  az — i ac  •^-i  —  fe CO CO  ISO  TH  rvj  APPENDIX E: Activities Report for C y c l e Design  151  z o o W  -23 ^ -  OJ OJ OJ  c  ae  r z z z z z z  CO  £2  £2  CD  CD  as ££ £2 £2 £2  as es £3Et:  ac 3=: as es  2= BS  CO Ci-i£2 CD  EI.  as  ac: 3= as as  CD  CD  £2  £2fc  ac  2=  3=  as es  CD  £2£2B=  B/Z/B  z  CD  as  CD  B/Z/B B/Z/B  £2 £2 £2 £2 £2 £2 £2  CO  CD  B/T/B BE/B/B  EH  BS  C CO C bO dE2 CO  1 1  CO  B/T/B  w > w  CO  o  EH  < Pi  w  CH  o  H O W  —i —«  OJ  Hi  rd  m  i-j  o  3  .8 if •  Pi CH a  Z O  coE2  CO  w Q  DO  W  £3ua  a  O >•  8  OJ  § -a  •—' ™ — •  8rd  cu b  a  •—i  o.«u  —- OJ  to  rO  a-  o  a.  8  3  O  rsi  8 3 3 8 3 3 8  ~  —  8 8  3  -=  CA E -t-» 3 £-  3  a- aSS  S  S  w  w  —  S  rs) S 333  co s i un m es es  co co  CD  es  ca es  co  co es  \JD ss  S3  U3  CD  S  3  S3 SS  s  la  31 X oB oB  S3  fl  if rd  IS *-H  L  -=  O S-  as rsj rsj rsj t—i rsl rsl  (A XA  le  2  fd  o  8 8 o  3  rd  2 "to  C  ?p ^ s  lis  £/)  to "rd 3 oO to  i i i 8 8 8  .—iB -  Q£_ £_  o'%-  "to  "to  w  §8  s  >-< Q m -<  •H"  z  w  w  a  a  KI  K3  w  s  w o  •< z z  IT £3  o M  H  o £> Bj  H  to  Z o  o o  CQ  2 S  a-, -T3  •a -a  .13-S 1A a>  £3  &i -*-»  3  »  -  S  S  §3  rd  1A  .5-  c  3  —•  S g  8  i  S_  OJ =3  8  S  -i—( S_  3 4i  i—> u  s  CD  s  S  152.  CD  5-H  §  8  S3  s  s  s  s  CD CD CD CDCD CD CD CD CD CD •»—1CDCDCOCD ( S 3 D D CD CO COCOEL- CuCOCO CD CD C OC CD OC __ U_ z: z:  a  o  sss  ss  ss  LT)  un  <r ca  CD  E—•  "a  ~ i  a  a  . 8 3 8 8  S3 73 •5 =  3i m ra  un uo uouo t*^ co cn cn S S  8 S 8f5  a  m  CD  un  m  CD  CD  i  a  a  a  a  i  i  i  i ^  -  -  fv]i—i unrPsvij CD C D  BD  SC S D * H  s  s  s  CN)  rvJCNjrn  PS] CN] S S S  v  CD  a i  ^  a a t  i rt  „  dJ} _rO£  £3  s  S  ^  •a  s  8 8 8  CD  CD  i  ~  3 ca  CD CD C D CD  PX?  a  ~  tA tA o a a D.  s  ccslvjrsr]-j rsjpsj S S  CNI PS) S S  s  s  <x  <x  S S  CD  r-t  -t-> Cfc-  r s e s CD CD  C DC D S 3 C DC D C DC D to  CD  s- •*->  o  S S  ^  oj  m en  f3  s  a s  153  C D m  CO  Zl C D CD CD  ^  a  a  i  i  3  •e  CD  CD  s  s  a  a  <x  <r  CD  S  ~Z. OS  ~Z. CD  a ~ a a ^i  ^i  t H  E-  ^i  £3 •—9  a !§  Build Slab  a  Cu Cu  Cu Cu  3*  3  8  -MS  C  s  OJ  ect  o  O  projec ;t sta  —s  layoi  o  Cu C u  fell  Cu  Build Uerti cals  s- %-  -zn a _a  c rC -E QdJ E rd O O E~  tn vi  Cuu - —  i2 a  lace post. tension ducts/uii lace posl tension d ucts/uii  o  place elect rical  CU  o  "Vi  ,i2 E3  o  psi  E—i  E—  27BB  Cu Cu  a  E-H E—• E—« E—<  cvi  place vents  E EE E-s £ 3 1 31 3i 31 3131-t->Ca ra ra ra ra s s In E E-InE_InE£_InrdInrdIn"rd t- K EE a  CNI CNI  t tension ducts/uii t tension ducts/uii ast stairs  E-H e-H  o  CN] CN)  c  E  s  .5 S3 -3  *H  place top r  Cu  m  cast precas forn slabCf  oo u_  n  fora slab e place botto  CO t  CD CD  lace posli tension d ucts/uii lace posl. tension ducts/uii  B/B/38 B/2/B  3  cu c C D C D C D DC Psi CD m 9 9 s C cPrsD >i S-  Cu  CD  S  m  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050248/manifest

Comment

Related Items