Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Computer assisted methods selection for high-rise construction Sharma, Anoop 1997

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
831-ubc_1997-0598.pdf [ 5.33MB ]
Metadata
JSON: 831-1.0050248.json
JSON-LD: 831-1.0050248-ld.json
RDF/XML (Pretty): 831-1.0050248-rdf.xml
RDF/JSON: 831-1.0050248-rdf.json
Turtle: 831-1.0050248-turtle.txt
N-Triples: 831-1.0050248-rdf-ntriples.txt
Original Record: 831-1.0050248-source.json
Full Text
831-1.0050248-fulltext.txt
Citation
831-1.0050248.ris

Full Text

C O M P U T E R A S S I S T E D M E T H O D S S E L E C T I O N F O R H I G H - R I S E C O N S T R U C T I O N by A N O O P S H A R M A B . T E C H . , I N S T I T U T E O F T E C H N O L O G Y , B H U , I N D I A , 1992 A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F M A S T E R O F A P P L I E D S C I E N C E i n T H E F A C U L T Y O F G R A D U A T E S T U D I E S D E P A R T M E N T O F C I V I L E N G I N E E R I N G W e accept this thesis as c o n f o r m i n g to the^required s tandard T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Oc tobe r 1997 © A n o o p Sha rma , 1997 in presenting this thesis in partial fulfilment of the requirements for an advanced degree a\ the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or. by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of C W I L £ H Q \ H - £ ^ H G , The University of British Columbia Vancouver, Canada Date b C L T . 15 ",: i - ' tSSf " DE-6 (2/88) ABSTRACT The in ten t ion of this thesis is to represent cons t ruc t i on me thods a n d resources, de te rm ine how their desc r ip t ion c a n be ta i lo red to the p ro jec t at h a n d , represent the c o n s t r u c t i o n c o n t e x t a n d key a t t r ibu tes of the design solut ion, a n d show how methods a n d physical descr ip t ion should be l inked. Add i t i ona l l y , work is d i r e c t e d at the spec t rum of issues tha t have to be cons ide red in order to j u d g e the feasibi l i ty of a m e t h o d for a g iven cons t ruc t ion a n d design c o n t e x t , a n d at how the reason ing a b o u t the app l i cab i l i t y of a g iven m e t h o d to a spec i f ic c o n t e x t c a n at least be par t ia l ly a u t o m a t e d . Several of the c o n c e p t s d e v e l o p e d have b e e n i m p l e m e n t e d in a research p ro jec t m a n a g e m e n t system ca l l ed REPCON. The c o n t e x t of high-rise bu i ld ing cons t ruc t ion has been used as a p ro jec t c o n t e x t . 11 TABLE OF CONTENTS ABSTRACT ii T A B L E OF CONTENTS iii LIST OF FIGURES v ACKNOWLEDGEMENT vii 1 . INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 THE TRADITIONAL APPROACH 3 1.3 RESEARCH OBJECTIVE AND METHODOLOGY 5 1.4 OVERVIEW OF PROBLEM DOMAIN 7 1.5 ORGANIZATION OF THE THESIS 8 2. LITERATURE SURVEY FOR METHODS SELECTION PROBLEM AND C Y C L E DESIGN 9 2.1 INTRODUCTION 9 2.2 PROJECT VIEW 9 2.2.1 PHYSICAL VIEW 10 2.2.2 PROCESS VIEW 13 2.2.2.1 DEFINITION OF METHODS '. 13 2.2.2.2 METHODS SELECTION 15 2.2.2.3 CYCLE DESIGN (SCHEDULING) 20 3. FRAMEWORK FOR METHODS SELECTION AND CONCEPTUAL DESIGN 23 3.1 INTRODUCTION 23 3.2 SYSTEM EXPECTATIONS 23 3.3 RESEARCH CHALLENGES ; 25 3.4 TERMINOLOGY 28 3.4.1 METHODS STATEMENT 29 3.4.2 OPERATION 30 3.4.3 METHOD CLASS 30 3.4.4 METHOD 30 3.4.5 RESOURCE CLASS 31 3.4.6 PARAMETERS/CONDITIONS 32 3.4.7 PROJECT 33 3.4.8 SUB-PROJECTS 33 3.4.9 SYSTEM 34 3.4.10 SUB-SYSTEMS 34 3.4.11 ELEMENTS 34 3.4.12 SUB-ELEMENTS 35 3.4.13 LOCATION SET 35 3.4.14 LOCATIONS 35 3.5 EVOLUTION OF DESIGN OF COMPUTER ENVIRONMENT 36 3.5.1 STANDARD LEVEL 58 3.5.2 PROJECT LEVEL 58 3.5.2.1 PHYSICAL VIEW 60 i i i 3.5.2.2 PROCESS VIEW 60 3.5.2.3 PERFORMANCE EVALUATION 61 3.5.2.4 OUTPUT 61 4. IMPLEMENTATION AND PROTOTYPE EXAMPLES 62 4.1 INTRODUCTION 62 4.2 P R O B L E M D O M A I N 63 4.3 S Y S T E M COMPONENTS 66 4.3.1 S T A N D A R D L E V E L 68 4.3.1.1 PHYSICAL COMPONENTS BREAKDOWN STRUCTURE-PCBS 69 4.3.1.2 METHODS & RESOURCE BREAKDOWN STRUCTURE - M&RBS 74 4.3.1.3 PARAMETERS AND CONDITIONS 83 4.3.1.4 FRAGNETS 93 4.3.2 PROJECT L E V E L 102 4.3.2.1 PHYSICAL COMPONENT BREAKDOWN STRUCTURE - PCBS 102 4.3.2.2 METHODS & RESOURCE BREAKDOWN STRUCTURE (M&RBS) 107 4.3.3 ACTIVITIES, P L A N N I N G A N D SCHEDULING VIEW 112 5. CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH 115 5.1 THESIS RE VIEW 115 5.2 CONTRIBUTION OF THE THESIS 117 5.3 R E C O M M E N D A T I O N S FOR F U T U R E W O R K 117 BIBLIOGRAPHY 121 APPENDIX A: METHODS STATEMENT REPORTS 126 APPENDIX B: METHOD AND RESOURCE CLASS REPORTS 132 APPENDIX C: FRAGNET REPORTS 136 APPENDIX D: PCBS TEMPLATES 139 APPENDIX E: ACTIVITIES REPORT FOR C Y C L E DESIGN 151 iv LIST O F FIGURES Figure-3 .1 Overv iew o f Methods Select ion System Component 59 F igure-4.2.1 Physical Da ta fo r H igh-R ise C o n d o m i n i u m Project 64 F igure-4.2.2 Typ ica l F loo r D i a g r a m 65 F igure-4.3 .1 Imp lementa t ion Env i ronment 67 Figure-4.3.1.1.1 Typ ica l standard P C B S Templates fo r Fl igh-Rise Const ruc t ion 70 Figure-4.3.1.1.2 D e f i n i n g P C B S Templates and Tree Structure 72 Figure-4.3.1.1.3 D e f i n i n g Parameters /Condi t ions/Mul t imedia Records f o r P C B S 74 Elements Figure-4.3.1.2.1 Typ ica l M & R B S Templates 76 Figure-4.3.1.2.2 D e f i n i n g Me thods Class Template 77 Figure-4.3.1.2.3 D e f i n i n g Resource Class Template 78 Figure-4.3.1.2.4 Contents o f W i n d o w M e n u I t e m i n M & R B S Template 79 Figure-4.3.1.2.5 Hierarch ica l Tree Structure in M & R B S 80 Figure-4.3.1.2.6 A n O v e r v i e w o f Methods & Resource B r e a k d o w n Structure 82 Figure-4.3.1.3.1 W i n d o w M e n u I t e m to define Parameter /Condi t ion 84 Figure-4.3.1.3.2 D e f i n i n g Parameter /Condi t ion fo r P C B S Elements 86 Figure-4.3.1.3.3 Selecting Parameter or Cond i t ion f o r M & R B S Components 87 Figure-4.3.1.3.4 Selecting Type o f Parameter /Condi t ion f o r M & R B S Component 88 Figure-4.3.1.3.5 Selecting Operator to define Parameter /Condi t ion Values 90 Figure-4.3.1.3.6 Selecting uni ts fo r Parameter /Condi t ion Values 91 v Figure-4.3.1.3.7 Entering Parameter/Condition Values 92 Figure-4.3.1.4.1 Associating Fragnet to Method in Method Class Template 94 Figure-4.3.1.4.2 Adding Fragnet to Standard Fragnet Template 95 Figure-4.3.1.4.3 Window Menu Items for Constituents of Fragnet 97 Figure-4.3.1.4.4 Adding Constituent Tasks to Fragnet 99 Figure-4.3.1.4.5 Adding Fragnets under Fragnet 100 Figure-4.3.1.4.6 Defining Predecessor/Successor to Tasks 101 Figure-4.3.2.1.1 PCBS Templates at Project Level 104 Figure-4.3.2.1.2 Window Menu Items for PCBS Components at Project Level 105 Figure-4.3.2.1.3 Adding Project PCBS Templates from Standard PCBC 107 Figure-4.3.2.2.1 Window Menu Items for Project M & R B S Components 109 Figure-4.3.2.2.2 Adding standard M & R B S Templates to Project M & R B S 110 Figure-4.3.3.1 Copying Fragnet Tasks and Operations as Activities 112 Figure-4.3.3.2 Bar chart for 5-day cycle for a typical floor construction in 113 High-Rise Figure-4.3.3.3 Linear Representation of 5-days Cycle for Typical Floor in 114 Terms of Operations; Build Verticals and Build Horizontals vi ACKNOWLEDGEMENT I a m g r e a t l y i n d e b t e d t o m y s u p e r v i s o r P r o f e s s o r A l a n R u s s e l l f o r h i s i n v a l u a b l e a n d i n c i s i v e i n p u t a n d c o n s t r u c t i v e c r i t i c i s m . P r o f e s s o r R u s s e l l p r o v i d e d p r i c e l e s s c o n t r i b u t i o n t h r o u g h h i s g u i d a n c e , k n o w l e d g e , i n s i g h t , a n d c o n t i n u o u s e n c o u r a g e m e n t a n d s u p p o r t . H i s d e d i c a t i o n a n d p a t i e n c e w e r e m u c h a p p r e c i a t e d . M y g r a t i t u d e e x t e n d s t o m y t h e s i s s u p e r v i s o r y c o m m i t t e e m e m b e r D r . T h o m a s F r o e s e f o r r e v i e w i n g a n d p r o v i d i n g i n v a l u a b l e f e e d b a c k . I w o u l d l i k e t o t h a n k g r e a t l y M r . W i l l i a m W o n g o f t h e C o n s t r u c t i o n M a n a g e m e n t L a b o r a t o r y , w h o w a s r e s p o n s i b l e f o r w r i t i n g t h e c o d e f o r t h e a p p l i c a t i o n p r o g r a m . F u n d i n g f o r t h e w o r k w a s p r o v i d e d t h r o u g h D r . R u s s e l l , C h a i r i n C o m p u t e r I n t e g r a t e d D e s i g n a n d C o n s t r u c t i o n a n d t h r o u g h a n N R G / I R A P g r a n t d e a l i n g w i t h t r e n c h l e s s t e c h n o l o g y . I w o u l d a l s o l i k e t o m a k e a s p e c i a l m e n t i o n o f m y f r i e n d a n d c o l l e a g u e A s a d U d a i p u r w a l a . I n a n e f f o r t t o c o m e u p w i t h a c o m p l e t e a n d r i g o r o u s m e t h o d s r e p r e s e n t a t i o n s t r u c t u r e , w e d e c i d e d t o e x p l o r e t w o w i d e l y d i v e r g e n t p r o b l e m d o m a i n s f o r m e t h o d s s e l e c t i o n , n a m e l y t h a t o f h i g h r i s e c o n s t r u c t i o n a n d u n d e r g r o u n d s e w e r c o n s t r u c t i o n . A s a d ' s t h e s i s f o c u s e s o n u n d e r g r o u n d s e w e r c o n s t r u c t i o n w h e r e a s m i n e f o c u s e s o n h i g h r i s e c o n s t r u c t i o n . T h e l o n g h o u r s w e s p e n t i n d i s c u s s i n g t h e r e q u i r e m e n t s o f o u r i n d i v i d u a l p r o b l e m d o m a i n s h a v e i n f l u e n c e d t o a l a r g e d e g r e e t h e d e s i g n o f t h e s y s t e m a s d i s c u s s e d i n t h e t h e s i s . F i n a l l y , I a m g r a t e f u l t o m y f r i e n d s a n d f a m i l y m e m b e r s f o r t h e i r l o v e a n d c a r e . Vll 1. INTRODUCTION 1.1 I N T R O D U C T I O N Decisions re la ted to the se lec t ion of key cons t ruc t i on methods are genera l ly c ruc ia l to the cost a n d t ime p e r f o r m a n c e of a p ro jec t . A par t i cu la r set of resources, ope ra t i ons , a n d sequences tha t a c o n t r a c t o r selects in the p ro jec t make up his p lan for cons t ruc t i on , a n d c a n be c a l l e d a c o n t r a c t o r ' s "METHOD OF CONSTRUCTION". A d v a n c e s in cons t ruc t i on methods have p r o v i d e d b e t t e r t e c h n i c a l solutions to many problems a n d , in many cases, have resul ted in r e d u c e d cons t ruc t i on cost . Several examples c a n be c i t e d in this r e g a r d . The i n t r o d u c t i o n of f lying forms dur ing the 1970s c h a n g e d the cons t ruc t i on process for high rise bui ldings by mak ing it more e c o n o m i c a l . Plast ic- l ined forms are a n o t h e r i nnova t i on tha t prov ides smooth c o n c r e t e surfaces, a n d more reuses of fo rmwork . Also, f iberg lass- re in forced plast ic forms p rov ide an exce l len t sur face , a n d make possible the mold ing of the most c o m p l i c a t e d shapes. A c o m b i n a t i o n of s l ipforming wi th lift slabs has a g o o d p o t e n t i a l for lower ing the cost of mult istory bui ld ings. Finally, the 1 use of p u m p i n g to d ist r ibute we t c o n c r e t e has i m p r o v e d the e c o n o m y of c o n c r e t e cons t ruc t i on . One of the main imped imen ts to i m p l e m e n t i n g new techno log ies is the lack of i n fo rma t ion for those w h o wish to a p p l y t h e m . There is no c o o r d i n a t e d ef for t to g a t h e r , m a n a g e , a n d prov ide this in fo rmat ion indus t ry -w ide . Wi thout be ing k n o w l e d g e a b l e or even a w a r e of a new t e c h n o l o g y , a po ten t i a l user c a n n o t recogn ize its a d v a n t a g e s or make the most e f f ic ient a p p l i c a t i o n of it. There are many means to iden t i f y new bui ld ing techno log ies . In format ion c a n be o b t a i n e d th rough per iod ica ls , c o d e organ iza t ions , tes t ing labora to r ies , adver t is ing in t rade magaz ines, spec ia l i zed consu l tan ts , a n d personal expe r ience . Recent d e v e l o p m e n t s in in fo rmat ion t e c h n o l o g y make pursuit of b e t t e r dec i s ion -mak ing tools t imely . Increases in c o m p u t e r processing power a n d highly soph is t i ca ted sof tware systems make access ing a n d m a n a g i n g large volumes of in fo rmat ion faster a n d easier t h a n ever b e f o r e . The g r o w t h of in fo rmat ion d isseminat ion via the Internet al lows rap id access to d a t a as innovat ions are m a d e . Given an a p p r o p r i a t e processing too l , access to up - to - the minute d a t a makes it feas ib le, at least in theory , for b o t h cl ients a n d 2 c o n t r a c t o r s to e f fec t i ve ly explore all the opt ions a n d iden t i f y the best m e t h o d for the a p p l i c a t i o n under cons ide ra t i on . Many sof tware systems are ava i l ab le in the marke t , wh i ch dea l wi th p lann ing a n d con t ro l of the p ro jec t in terms of schedu l ing , resource leve l ing, a n d cos t i ng . None of t h e m , however , d e a l wi th methods se lect ion a n d it 's i m p a c t on p ro jec t du ra t i on a n d cost . This is an a rea tha t needs to be e x p l o r e d . Thus, the goa l of this thesis is to d e v e l o p a k n o w l e d g e - b a s e d methods-se lec t ion too l tha t c a n assess spec i f ic cons t ruc t i on cond i t ions against the capab i l i t i es a n d l imi tat ions of ava i l ab le techn iques to de te rm ine the best method(s ) for a spec i f i c p ro jec t . While genera l i t y is sought for the design of this t o o l , in order to help focus the research , the cons t ruc t i on of the super-s t ructure of high rise bui ldings provides the pr imary a p p l i c a t i o n c o n t e x t . 1.2 THE T R A D I T I O N A L A P P R O A C H At present , the cons t ruc t ion industry heav i ly relies on past exper ience to gu ide it in decisions r e g a r d i n g m e t h o d s . A c o n t r a c t o r tends to a d o p t methods he has a l ready 3 used on previous pro jects in order to r e d u c e the learn ing t ime for his c rew, a n d to lessen risks a n d uncer ta in t ies invo lved in using n e w m e t h o d s . Since there are no def in i t i ve formulas to d e t e r m i n e p r o d u c t i o n ra te a n d h e n c e d u r a t i o n , past e x p e r i e n c e a n d fami l iar i ty w i th a m e t h o d provides comfo r t to a c o n t r a c t o r . But there are many cases*, wh ich show tha t occas iona l l y it was real ized by the c o n t r a c t o r tha t a par t i cu la r m e t h o d was not w o r k a b l e in a g iven c i r c u m s t a n c e . Thus to mee t c o n t r a c t u a l requ i rements , he n e e d e d to c h a n g e cons t ruc t ion m e t h o d s . A g o o d e x a m p l e is the Hibernia p ro jec t , in wh i ch to m a k e up for t ime lost, the c o n t r a c t o r c h a n g e d the m e t h o d for fo rming the Grav i ty Base Structure f rom jump forming to slip fo rm ing . A n o t h e r e x a m p l e involves the cons t ruc t ion of the Great Bear Snowshed on the Coqu iha l l a Highway Project (BC, C a n a d a ) . It was cons iderab ly d e l a y e d because of the w rong se lec t ion of me thods of cons t ruc t i on at the init ial s tage a n d also b e c a u s e of f r equen t c h a n g e s of techno log ies (Methods) dur ing the cons t ruc t i on b e c a u s e of c h a n g e s in Wea the r a n d t e c h n o l o g i c a l const ra in ts . The fo rego ing discussion helps to exp la in the n e e d for b e t t e r tools, w h i c h c a n assist the c o n t r a c t o r as wel l as "Avalanche" and other case studies, presented and discussed in the graduate course Civi l 523 (Project Management for Civi l Engineers), at Department of Civil Engineering, University of British Columbia. 4 the owner (or his consul tants) in mak ing e f f e c t i v e decis ions a b o u t cons t ruc t i on methods . 1.3 RESEARCH OBJECTIVE A N D METHODOLOGY Thorough research of the cons t ruc t i on l i terature r e v e a l e d tha t not many p e o p l e have d i r e c t e d their a t t e n t i o n to the methods se lect ion p r o b l e m . Most cons t ruc t i on researchers seem to assume tha t methods se lect ion is the terr i tory of the c o n t r a c t o r or the owner , a n d the re fo re , g ive l i t t le cons ide ra t i on to cr i ter ia of m e t h o d se lect ion or it 's feasib i l i ty . However , these researchers use m e t h o d ' s i n fo rma t ion for g e n e r a t i n g act iv i t ies a n d p ro jec t schedu le . Di f ferent c o n c e p t s or formulat ions have been p roposed on how to p r o d u c e a u t o m a t e d ac t i v i t y s e q u e n c i n g or to p red ic t ac t i v i t y du ra t ion or to e s t i m a t e cost , but no genera l s ta temen t a n d fo rmula t ion of the me thods se lec t ion p rob lem has been d e v e l o p e d to d a t e . In our v iew, w h a t makes the p rob lem of methods se lect ion c o m p l e x is it 's d imens iona l i ty in terms of a large number of q u a n t i t a t i v e a n d q u a l i t a t i v e a t t r ibu tes , its c o m b i n a t o r i a l na ture , a n d the mul t ip le cr i ter ia invo lved in e v a l u a t i o n . 5 From a b o v e discussion, w e c o n c l u d e tha t a genera l i zed s t a t e m e n t a n d st ructure for the me thods se lec t ion p r o b l e m must be f o r m u l a t e d , a n d the a p p l i c a b i l i t y of a k n o w l e d g e - b a s e d a p p r o a c h to this p rob lem has to be e x p l o r e d . The in ten t ion of this thesis is to d e v e l o p a f ramework in wh ich cons t ruc t ion methods a n d resources c a n be r e p r e s e n t e d , d e s c r i b e d , a n d their assembly ta i lo red to the p ro jec t at h a n d . As wel l , the cons t ruc t ion c o n t e x t a n d key a t t r ibu tes of the design solut ion must be rep resen ted , a n d the s p e c t r u m of issues tha t have to be cons idered in order to j u d g e the feasibi l i ty of a m e t h o d for a g iven cons t ruc t ion a n d design c o n t e x t has to be add ressed . The f ramework should a c c o m m o d a t e at least the par t ia l a u t o m a t i o n of reasoning a b o u t the app l i cab i l i t y of a g iven m e t h o d to a speci f ic cons t ruc t ion c o n t e x t . The research m e t h o d o l o g y i n c l u d e d a t h o r o u g h rev iew of the l i terature to ident i fy previous a p p r o a c h e s by d i f fe rent research p e o p l e in order to ident i fy areas of a g r e e m e n t a n d promising a p p r o a c h e s . REPCON a research p ro jec t m a n a g e m e n t system un ique to the University of British C o l u m b i a has been chosen as a c o m p u t e r env i ronment for i m p l e m e n t a t i o n of the c o n c e p t d e v e l o p e d . Also a spec i f i c 6 pro jec t c o n t e x t (cons t ruc t ion of the t y p i c a l floors in high rise bui ldings) was se lec ted as the a p p l i c a t i o n d o m a i n . 1.4 O V E R V I E W O F P R O B L E M D O M A I N Const ruc t ion of the super-s t ructure of high rise bui ldings was chosen for explor ing the me thods se lec t ion p r o b l e m , b e c a u s e of the cha l lenges one faces in des ign ing a c y c l e for a t y p i c a l f loor, b e c a u s e of the number of des ign a n d cons t ruc t i on a l ternat ives ava i lab le for e a c h ac t i v i t y , a n d b e c a u s e of the high d e p e n d e n c y amongs t d i f fe rent ac t iv i t ies , i nc lud ing their repe t i t i ve na ture . Further the invo lvement of many t rades to cons t ruc t basic e lements such as walls a n d columns make it more c o m p l i c a t e d a n d thus c h a l l e n g i n g . To work in this p rob lem d o m a i n , one requires k n o w l e d g e a b o u t formwork techn iques for walls, co lumns, a n d Slabs, c o n c r e t e p l a c e m e n t techn iques , the s e q u e n c i n g a n d schedu l ing of tasks a n d the resources requ i red , a n d g e n e r a l p ro jec t m a n a g e m e n t . 7 1.5 ORGANIZATION OF THE THESIS T h e t h e s i s h a s b e e n o r g a n i z e d as f o l l o w s . C h a p t e r 2 p r e s e n t s t h e l i t e r a t u r e r e v i e w a n d h i g h l i g h t s p r e v i o u s w o r k w h i c h i n f l u e n c e d o u r t h i n k i n g . C h a p t e r 3 d e s c r i b e s r e s e a r c h c h a l l e n g e s , g u i d i n g p r i n c i p l e s , t h e c o n c e p t u a l d e s i g n o f t h e s y s t e m , a n d t h e d e f i n i t i o n o f t e r m i n o l o g y u s e d t o f o r m a l i z e t h e m e t h o d s s e l e c t i o n p r o b l e m . T h e c o m p u t e r p r o t o t y p e d e v e l o p e d , a n d its m o d e s o f u s e a r e d e s c r i b e d in C h a p t e r 4. Use o f t h e p r o t o t y p e is a l s o i l l u s t r a t e d t h r o u g h i t ' s a p p l i c a t i o n t o h i g h r i se b u i l d i n g c o n s t r u c t i o n . C h a p t e r 5 d i s c u s s e s f i n d i n g s a n d c o n c l u s i o n s o f t h e w o r k , o u t l i n e s d e f i c i e n c i e s in t h e c u r r e n t m o d e l , a n d g i v e s r e c o m m e n d a t i o n s f o r f u t u r e w o r k . 8 2. LITERATURE SURVEY FOR METHODS SELECTION PROBLEM A N D C Y C L E DESIGN 2.1 INTRODUCTION This c h a p t e r presents previous work in areas re la ted to the methods se lect ion p r o b l e m . The main focus is on how to physical ly represent a p ro jec t , w h a t are the fac tors w h i c h a f f e c t the se lect ion of cons t ruc t ion methods , how to s t ructure the p r o b l e m . a n d represent cons t ruc t ion methods a n d resources, a n d issues re la ted to the design of cons t ruc t ion cyc les for high rise bui ld ings. 2.2 P R O J E C T VIEW A pro jec t is cons ide red as a c o m b i n a t i o n of process a n d p r o d u c t , a n d to assess the t o t a l t e c h n o l o g i c a l d imension of a p r o d u c t i o n system, it is i m p e r a t i v e t h a t w e cons ider b o t h aspec ts . Looking only at the p r o d u c t c o m p l e x i t y a s p e c t is not suf f ic ient , because a d i f f e r e n c e in p r o d u c t comp lex i t y c a n not i n d i c a t e the d e g r e e of the c o r r e s p o n d i n g 9 d i f f e r e n c e in process comp lex i t y (Trinh a n d Nawaz Sharif, 1996). A p ro jec t c a n be desc r ibed using at least four views. The phys ica l & e n v i r o n m e n t a l v iew deals wi th " W h a t " a n d inc ludes site d a t a ( g e o t e c h n i c a l cond i t ions , t o p o g r a p h y , e t c . ) , des ign d a t a ( g e o m e t r y / t o p o l o g y , system a t t r ibu tes , e t c . ) , c o n t r a c t s , a n d so fo r th . The process v iew c o n c e r n e d wi th "How, Who, W h e n , Where " a n d deals wi th p lann ing , p r o d u c t i o n , m e t h o d s / t e c h n o l o g i e s , a n d resource d a t a . Third is the cost v iew highl ights "How M u c h " in terms of p r o d u c t i o n s tandards , es t imat ion , a n d pr ice c h a n g e forecasts . Fourth is the As-Built v i ew- "Wha t H a p p e n e d , Why & A c t i o n Taken" . (Russell a n d Froese, 1997). Since w e are look ing into the methods se lect ion p rob lem to ge t answers w h i c h t rea t w h a t , how, w h e n a n d where , we c o n c l u d e tha t the first t w o views are of c o n c e r n to us a n d there fore have focussed the l i te ra ture search on these views. 2 . 2 . 1 PHYSICAL VIEW Several a t t emp ts have b e e n m a d e to descr ibe the p r o d u c t to be c o n s t r u c t e d in terms of physical ly b reak ing it d o w n . A useful v iew in descr ib ing high rise bui ld ings is f o u n d in MONOGRAPH (1980,81). 10 High rise bui ldings are a spec ia l g r o u p of s t ructures, wh i ch have the fo l lowing charac te r i s t i cs . (1) They are c o m p o s e d of a large number of hor izonta l f loors. (2) Most of these floors are of a repe t i t i ve modu la r na tu re . O f t e n , the bu i ld ing has several d i f ferent groups of modu la r f loors, e a c h g roup wi th its own funct ions or c o n f i g u r a t i o n . (3) The bui ldings c o n t a i n a large number of m e c h a n i c a l systems for t r a n s p o r t a t i o n , c o m m u n i c a t i o n , p l u m b i n g , h e a t i n g , air c o n d i t i o n i n g a n d so o n . (4) The m e c h a n i c a l systems have ver t i ca l c o m p o n e n t s t h a t span the various f loors, hor izontal c o m p o n e n t s t h a t r e p e a t themselves on e a c h f loor a n d cen t ra l services units on one of the floors or outs ide the bu i ld ing . (5) The ver t i ca l parts of the systems are housed in ve r t i ca l shafts t ha t p e n e t r a t e the hor izontal sur face a n d isolate the s p a c e w i th in . How c a n one represent the phys ica l system or p r o d u c t to be built in a c o m p u t e r env i ronmen t . One useful v iew is p r o v i d e d by Ory a n d Warszawski (1995) as fol lows; " The user def ines all the floors of the bu i ld ing- their s e q u e n c e , a rea a n d des igna t ion - a n d assigns the repe t i t i ve floors into mul t i -modules. He also def ines the various ver t i ca l zones." 11 We e x t e n d e d their v iew to o ther c o m p o n e n t a n d systems in a bu i ld ing , a n d also to ce r ta in cond i t ions w h i c h help in descr ib ing a bui ld ing in par t i cu la r a n d pro jec ts in g e n e r a l . Other a t t e m p t s at c a p t u r i n g the essence of the phys ica l aspects of a p r o d u c t inc lude c o m p u t e r i z e d 3D models a n d d a t a ex t rac t ion f rom CAD drawings . For e x a m p l e , a var ie ty of k n o w l e d g e - b a s e d systems have b e e n d e v e l o p e d tha t use g e o m e t r i c in fo rmat ion in ferred f rom th ree-d imens iona l (3D) c o m p u t e r models , a n d i n c o r p o r a t e k n o w l e d g e a b o u t constra ints for a u t o m a t i c g e n e r a t i o n of plans a n d schedules. M o r a d a n d Bel iveau (1993) p roposed an exper t system (KNOW-PLAN) for p ro jec t p lann ing tha t utilizes g e o m e t r i c d a t a e x t r a c t e d f rom a 3D (CAD) m o d e l of a sample p ro jec t , as the pr imary source of i n fo rmat ion for reasoning to g e n e r a t e a log ic ne twork of the p ro jec t . Other such systems are SME (C lay ton et a l . 1994) a n d Design + + (Design Power 1995). In Builder (Chernef f et a l . 1991), p r e - d e f i n e d act iv i t ies are assigned to CAD e lemen t to g e n e r a t e a semant i c ne twork a n d drawings s imul taneously. It is not our in ten t ion in this thesis to g e n e r a t e act iv i t ies a n d schedu le from the drawings or to de f i ne the p ro jec t to a very f ine level of de ta i l . However , w e recogn ize the i m p o r t a n c e of k n o w l e d g e a b o u t the physical c o m p o n e n t s 12 a n d their a t t r ibu tes (parameters) in order to make m e a n i n g f u l decis ions a b o u t me thods . Thus, w e n e e d a fo rmal rep resen ta t i on of the physical fac i l i ty , a n d have a d o p t e d a Physical C o m p o n e n t s Breakdown Structure rep resen ta t ion . 2.2.2 P R O C E S S VIEW Issues such as m e t h o d s / t e c h n o l o g y a n d resource d a t a are key in the methods se lec t ion p r o b l e m . Other i m p o r t a n t issues inc lude safety regulat ions a n d qua l i ty s t a n d a r d , but they have not been t r e a t e d here in . In w h a t fo l lows, w e examine previous work re la ted to m e t h o d s / t e c h n o l o g i e s . 2.2.2.1 DEFINITION O F M E T H O D S It is hard to f ind a def in i t ion of c o n s t r u c t i o n m e t h o d in the l i terature tha t is universally a c c e p t e d in industry as wel l as by cons t ruc t ion researchers. Most of the t ime terms such as me thods a n d techno log ies are used i n t e r c h a n g e a b l y , a l t h o u g h in some cases a d is t inc t ion has b e e n m a d e b e t w e e n the t w o . 13 Halpin a n d W o o d h e a d (1976) m a d e the fo l lowing c o m m e n t in their book, Design of Cons t ruc t ion a n d Process Opera t ions ; "A basic p rob lem for the cons t ruc t ion eng ineer is the se lec t ion of the best t e c h n o l o g y ava i lab le to him a n d the de f in i t ion of the re levant cons t ruc t ion m e t h o d for e a c h work s i tuat ion he meets in the f ie ld . " However they have not b e e n consis tent in dist inguishing b e t w e e n the terms t e c h n o l o g y a n d m e t h o d . Merr i t t (1976) def ines cons t ruc t ion t e c h n o l o g y in terms of use of a v a i l a b l e mater ia ls , me thods , a n d e q u i p m e n t inc lud ing the necessary p lann ing , p r e p a r a t i o n , a n d e x e c u t i o n . A c c o r d i n g to Tatum (1987), cons t ruc t ion t e c h n o l o g y is d e f i n e d as the c o m b i n a t i o n of resources, processes, a n d cond i t ions tha t p roduces a c o n s t r u c t e d p r o d u c t . Resources c a n be e i ther mater ia ls a n d p e r m a n e n t e q u i p m e n t , or cons t ruc t i on a p p l i e d . Cons t ruc t ion processes are the methods a n d the tasks n e e d e d to bui ld a c o n s t r u c t e d p r o d u c t . Project requ i rements a n d site charac te r i s t i cs are the major cond i t ions of c o n s t r u c t i o n t e c h n o l o g y . Since resources are seemingly f u n d a m e n t a l to every w a y of descr ib ing methods , an a c c e p t a b l e de f in i t ion 14 should inc lude resources as an in tegra l c o m p o n e n t of it. 2.2.2.2 M E T H O D S SELECTION A signi f icant obs tac le to the d e v e l o p m e n t of a c o m p u t e r i z e d env i ronment for methods se lec t ion is t h a t there really is no s tanda rd l a n g u a g e in the cons t ruc t ion industry for descr ib ing methods a n d their const i tuents . Most of the t ime , methods are ind i rect ly dea l t wi th by ta lk ing a b o u t resources, W a u g h (1990) in his system ACP (A Cons t ruc t ion Planner) s tates; "Resource ava i lab i l i ty may a f f e c t cons t ruc t i on me thods se lec t ion , a n d also resource limits may a f f e c t ac t iv i t ies s e q u e n c i n g . " Hendrickson et a l . (1987) s t a t e d tha t se lec t ion of cons t ruc t ion techno log ies is par t of p lann ing as fol lows: "Cons t ruc t ion p lann ing involves the c h o i c e of cons t ruc t i on t e c h n o l o g i e s , the def in i t ion of work tasks, the es t imat ion of the requ i red resources a n d dura t ion for ind iv idua l tasks, a n d the i d e n t i f i c a t i o n of constra ints a m o n g the d i f fe rent tasks." 15 The authors fur ther s ta te t h a t i n a p p r o p r i a t e or inconsistent decisions c o n c e r n i n g a p p r o p r i a t e t echno log ies to use c a n easily result in large cons t ruc t ion cost increases or de lays . In this thesis, w e have b e e n i n f l u e n c e d by some of the th ink ing a n d c o n c e p t s in the p a p e r by Tatum (1987), w h i c h in turn make use of some of the c o n c e p t s set out by Halpin a n d W o o d h e a d (1976). Tatum's goa l was d i f fe rent t h a n ours, in t ha t he was seeking a f ramework for classifying cons t ruc t i on t e c h n o l o g i e s . The basic purpose of t echno log ies (methods) se lec t ion is to g e n e r a t e act iv i t ies a n d their s e q u e n c i n g in order to be ab le to p r o d u c e cons t ruc t ion plans, schedules, a n d es t imates . A con t roversy arises f rom the fo l lowing two v iewpo in ts . Resources are n e e d e d b e c a u s e of act iv i t ies , versus act iv i t ies exist b e c a u s e resources do someth ing . Birrell (1980) a n d Mart in Fischer (1996) a rgue in favour of the s e c o n d v iewpo in t . We a g r e e wi th t h e m in the sense tha t cons t ruc t ion methods g e n e r a t e a n d de f ine act iv i t ies based on w h a t work crews d o . In Const ruc t ion Planex (Hendr ickson e t . al 1987), the system first assigns e lement act iv i t ies to des ign e lements (p ro jec t e lements) , then a g g r e g a t e s e lemen t ac t iv i t ies into p ro jec t ac t iv i t ies , a n d finally de termines a p p r o p r i a t e 16 (cons t ruc t ion) techno log ies . Hendrickson a d o p t e d the first v i e w p o i n t . Fischer (1996), on the o ther h a n d , allows for the se lec t ion of cons t ruc t ion techno log ies be fo re the g e n e r a t i o n of ac t iv i t ies . He also asserts tha t the cons t ruc t ion me thods s e l e c t e d , a n d not the p ro jec t c o m p o n e n t s a lone , a f f e c t the g e n e r a t i o n of more d e t a i l e d act iv i t ies . The fo l lowing systems a c k n o w l e d g e the i m p o r t a n c e of cons ider ing cons t ruc t ion methods or t e c h n o l o g i e s for p lann ing a n d schedu l ing . In Const ruc t ion Planex (Hendr ickson e t . al 1987), cons t ruc t ion techno log ies assign crews ( p r e - d e f i n e d phys ica l a n d resources-re la ted s e q u e n c e relat ionships) to ac t iv i t ies . In GHOST ( N a v i n c h a n d r a et a l . 1988), a super -ac t i v i t y is g e n e r a t e d i.e. bui ld c o n c r e t e s lab, w h i c h has several sub-act iv i t ies i.e. form slab, rebar slab, pour s lab, a n d cure a n d reshore slab. The k n o w l e d g e base is m a d e up of several k n o w l e d g e sources known as cr i t ics. The cr i t ics c o n t a i n k n o w l e d g e a b o u t physics, cons t ruc t ion norms, r e d u n d a n c y in ne twork e t c . Physics cri t ics d e p i c t various constra ints a m o n g act iv i t ies based on the physical na ture of the p r o b l e m . Cons t ruc t ion crit ics i n c o r p o r a t e k n o w l e d g e of cons t ruc t i on such 17 as; (a) cur ing t ime of c o n c r e t e , (b) p lac ing of rebar be fo re pour ing of c o n c r e t e , a n d (c) p lac ing of c r a n e be fo re c o n c r e t e c a n be t ranspor ted to e l e v a t e d sites. Inher i tance a n d re f inement cr i t ics per fo rm h ie ra rch ica l re f inement of the ne twork for responsibi l i ty assignment a n d be t te r p ro jec t c o n t r o l , a n d also seek a shorter network dura t ion by de te rm in ing oppor tun i t i es for possible o v e r l a p p i n g of parts of sequent ia l ac t iv i t ies . Impor tan t f indings for our work dea l wi th the c rea t i on of super ac t iv i t ies ( m e t h o d s t a t e m e n t in this thesis) a n d sub-act iv i t ies ( O p e r a t i o n in this thesis). Jin et a l . (1992) stresses the ex is tence of process-o r i e n t e d k n o w l e d g e as methods to represent p rocess-based ac t i v i t y constra ints a n d to c o m p l e m e n t p r o d u c t - b a s e d s e q u e n c i n g k n o w l e d g e for m a i n t e n a n c e p lann ing . In MDA p lanner , J a g b e c k (1994) def ines methods "as sets of gener i c act iv i t ies requ i red to p r o d u c e a bui ld ing o b j e c t . " For the same bu i ld ing par t , several methods might be a p p l i c a b l e . These •methods suppor t the g e n e r a t i o n of ac t iv i t ies . We a g r e e wi th J a g b e c k tha t methods not only a f f e c t resource a l l o c a t i o n a n d ac t i v i t y s e q u e n c i n g , but also ac t i v i t y g e n e r a t i o n . Genera l ly , methods se lec t ion d e p e n d s on the resources ava i l ab le , the ex tent or scale of the j o b , the ava i lab i l i t y of s p a c e const ra in t a n d so fo r th . In SCaRC (Thabet 1 8 a n d Bel iveau 1997), a s p a c e - c o n s t r a i n e d a n d resource cons t ra ined p r o t o t y p e k n o w l e d g e - b a s e d system d e v e l o p e d for schedu l ing repe t i t i ve floors in mult istory p ro jec ts , resource constra ints are based on d e m a n d versus ava i lab i l i t y values for p ro jec t m a n p o w e r , e q u i p m e n t , a n d mate r ia l . Similarly, s p a c e constra ints result f rom the con f l i c t b e t w e e n ac t i v i t y s p a c e d e m a n d a n d the s p a c e avai lab i l i ty in the work a r e a . To fur ther the discussion on resource se lec t ion , Reda (1990) s t a t e d t h a t : "The se lect ion of a speci f ic q u a n t i t y of resources for a cons t ruc t i on ac t i v i t y determines the dura t ion for the ac t i v i t y a n d assoc ia ted d i rec t cost . The quan t i t y of resources for e a c h ac t i v i t y is care fu l ly se lec ted to a c h i e v e the fo l lowing goals : To ma in ta in a cons tan t p r o d u c t i o n ra te for e a c h c r e w on e a c h ac t i v i t y t h r o u g h o u t the p ro jec t ; To ma in ta in con t inu i t y of work for e a c h c rew f rom one s tage to the o ther , thus e l iminat ing idle t ime for a c rew w a i t i n g for a p r e c e d i n g c rew to finish their work; To a l low for t ime buffers b e t w e e n act iv i t ies on the same s tage -for e x a m p l e , a t ime buf fer b e t w e e n c o n c r e t i n g c r e w a n d a fo rmwork c r e w to a l low for cur ing of c o n c r e t e ; 19 To a l low for s tage buf fer b e t w e e n act iv i t ies at d i f fe ren t s tages. For e x a m p l e , br ick lay ing should be two floors lower than the f loor be ing p o u r e d to a l low c o n c r e t e to ga in s t rength ; a n d , To finish the p ro jec t at the min imum possible cost g iven a t a r g e t p ro jec t d u r a t i o n . " Halpin a n d W o o d h e a d (1976) suggest t ha t labor , e q u i p m e n t , a n d mater ia l resources are a p p l i e d to the t e c h n o l o g y (me thod) of the opera t ions . We sought more genera l i t y a n d f lexibi l i ty a n d c a m e up wi th the no t ion tha t resources c a n be a p p l i e d e i ther to techno log ies (methods) of opera t ions or d i rec t ly to opera t ions . 2.2 .2 .3 CYCLE DESIGN (SCHEDULING) H a m m a d (1991) descr ibes a cons t ruc t i on c y c l e as a s e q u e n c e d repe t i t ion of cons t ruc t ion opera t ions t h a t const ruc ts a p re-spec i f ied modu lar unit of a fac i l i ty . Though the super s t ructure of high rise bui ldings c a n be c a t e g o r i z e d into s t ruc tura l , e l e c t r i c a l , m e c h a n i c a l , a n d bu i ld ing finishes, in this thesis, modu la r units are t h o u g h t of as a t y p i c a l f loor s t ruc ture , a n d the term c y c l e design e m b r a c e s the order ing of the tasks assoc ia ted wi th the methods se lec ted to put in p l a c e all p roduc ts 20 i nvo lved in a t y p i c a l f loor s t ructure. Add i t i ona l l y , c y c l e design deals w i th decisions regard ing resource levels, a n d the use of ove r t ime a n d shift work. One of the ob jec t i ves of this thesis is to d e v e l o p a system tha t t reats methods se lec t ion , c y c l e design a n d p ro jec t p lann ing a n d schedu l ing . Ikeda et a l . (1991) po in t out t ha t cons t ruc t i on professionals lack tools tha t make their cons t ruc t i on methods a n d resources assumptions exp l ic i t . Dzeng a n d Tommele in (1995) emphasize tha t it is unreal ist ic to p r o d u c e a schedu le wi th out cons ider ing cons t ruc t ion m e t h o d s . Fondahl (1991) stresses the i m p o r t a n c e of tak ing resource ava i lab i l i t y in to a c c o u n t w h e n g e n e r a t i n g a schedu le . We a g r e e wi th the a b o v e points of v iew a n d inc lude resources ind i rec t ly t h r o u g h associat ions wi th methods in our p lann ing a n d schedu l ing system. Fischer et al (1996) make a n o t h e r in terest ing c o m m e n t : " Besides a f f e c t i n g ac t i v i t y se lect ion a n d s e q u e n c i n g , cons t ruc t i on methods , th rough their resource requ i rements a n d p r o d u c t i o n rates, also a f f e c t ac t i v i t y dura t ions . Even t h o u g h resources are cons ide red w h e n c a l c u l a t i n g dura t ions , t hey are o f ten not rep resen ted expl ic i t ly as part of the ac t iv i t ies . " 21 O A R P L A N ( D a r w i c h e e t a I, 1 9 8 9 ) d e d u c e s p r e c e d e n c e r e l a t i o n s h i p s f r o m p h y s i c a l c o n s t r a i n t s b e t w e e n o b j e c t s a n d t h e i r r e l a t i o n s h i p w i t h a c t i o n s ( c o n s t i t u e n t s o f a n a c t i v i t y ) . In t h e s a m e s p i r i t , in t h e i r H I S C H E D s y s t e m , S h a k e d a n d W a r s z a w s k i ( 1 9 9 5 ) a d d c r e w a n d w o r k f l o w c o n s t r a i n t s t o t h e t r a d i t i o n a l t y p e s o f C P M r e l a t i o n s h i p s . E c h e v e r r y e t a l . ( 1 9 9 1 ) h a v e g r o u p e d p h y s i c a l c o n s t r a i n t s i n t o c o m p o n e n t c o n s t r a i n t s a n d c o n s t r a i n t s r e s u l t i n g f r o m t r a d e i n t e r a c t i o n i n t o a c t i v i t y c o n s t r a i n t s . T h e f o r e g o i n g d i s c u s s i o n s h o w s t h a t s c h e d u l i n g is n o t s i m p l y a m a t t e r o f s e q u e n c i n g a c t i v i t i e s a n d c a l c u l a t i n g p r o j e c t d u r a t i o n , b u t a m u c h m o r e c o m p l i c a t e d c o n s i d e r a t i o n o f v a r i o u s c o n s t r a i n t s a n d a v a i l a b l e m e t h o d s a n d r e s o u r c e s . 22 3. FRAMEWORK FOR METHODS SELECTION A N D CONCEPTUAL DESIGN 3.1 INTRODUCTION This c h a p t e r descr ibes e x p e c t a t i o n s of a me thods se lec t ion system, research cha l lenges a n d gu id ing pr inciples to a c h i e v e e x p e c t a t i o n s , evo lu t ion of the c o m p u t e r -based i m p l e m e n t a t i o n of the des ign, a n d def in i t ion of useful t e rm ino logy for the methods se lect ion p r o b l e m . 3.2 SYSTEM EXPECTATIONS As m e n t i o n e d earl ier, one of the obs tac les in using new t e c h n o l o g y is the lack of readi ly ava i l ab le i n fo rma t ion a b o u t the t e c h n o l o g y , a n d it 's a d v a n t a g e s a n d d i s a d v a n t a g e s . To a c h i e v e the most e f f ic ient a p p l i c a t i o n of new t e c h n o l o g y , it is i m p e r a t i v e tha t p o t e n t i a l users are m a d e a w a r e of its previous use 23 in o rder to r e d u c e apprehens ion a b o u t the risks i n v o l v e d . Therefore the system should be ab le to t rack t e c h n o l o g i c a l d e v e l o p m e n t s , inc lud ing new techno log ies , new cons t ruc t i on e q u i p m e n t , new mater ials a n d re la ted p roduc ts , new modes of i n fo rmat ion c a p t u r e (e .g . d ig i ta l p h o t o g r a p h y ) , more power fu l c o m p u t e r a n d sof tware t e c h n o l o g y , a n d new modes of i n fo rmat ion d isseminat ion ( In ternet ) , on a wor ld w i d e basis. In the cons t ruc t ion industry, o f t en there are no pub l ic d o m a i n records of previous e x p e r i e n c e . K n o w l e d g e a n d e x p e r i e n c e is c o n f i n e d to very few p e o p l e , a n d o f ten resides only in their memory , not in wr i t ten fo rm. Therefore there is a n e e d to d o c u m e n t previous expe r ience a n d the expe r ience of others in a w a y w h i c h c a n be e n c o d e d for genera l use. Also, there is a n e e d to keep oneself wel l i n fo rmed a b o u t the rules a n d regulat ions of the env i ronment in wh ich work has to be p e r f o r m e d . If methods are chosen w h i c h satisfy t e c h n i c a l n e e d but fail to satisfy regu la to ry const ra in ts (noise, loca l union rules, safety , a n d env i ronment e tc . ) then they are in feas ib le . If this p rob lem arises a f te r s tar t ing the j o b , t hen c h a n c e s are high of incurr ing f inanc ia l a n d t ime losses. 24 The a b o v e v iew c a n be e x t e n d e d to s takeho lders ' perspec t ives . It is impor tan t to know f rom socia l a n d po l i t i ca l points of v iew wh ich methods are not feas ib le . Many pro jec ts are t e r m i n a t e d in the feasibi l i ty s tage or s t o p p e d dur ing cons t ruc t i on b e c a u s e of the pressure f rom one or more s takeho lder groups. 3.3 RESEARCH CHALLENGES The most impor tan t c h a l l e n g e in the me thods se lec t ion p rob lem is to c o m e up wi th a f lexible a n d useful de f in i t ion of m e t h o d . Other cha l lenges d e a l wi th the rep resen ta t ion of cons t ruc t ion methods , resources, a n d issues tha t have to be cons ide red in order to j u d g e the feasibi l i ty of a m e t h o d for a g iven cons t ruc t ion a n d design c o n t e x t . The task of e v a l u a t i n g a m e t h o d s ta temen t a n d m e t h o d in terms of t ime , cost , as wel l as o ther dimensions also poses a s ign i f icant c h a l l e n g e . Research cha l lenges c a n be listed as fol lows: • Def in i t ion of methods a n d resources; • Representa t ion of cons t ruc t ion methods a n d resources; 25 • Representa t ion of the cons t ruc t ion c o n t e x t a n d key a t t r ibu tes of the design solut ion; • I den t i f i ca t ion of the range of issue tha t has to be c o n s i d e r e d in order to j u d g e the feasibi l i ty of a m e t h o d for a g iven cons t ruc t i on a n d design c o n t e x t ; • A u t o m a t i o n of the reasoning a b o u t the app l i cab i l i t y of a g iven m e t h o d for a speci f ic c o n t e x t ; a n d , • Role of the user in the system Principles a n d design guidel ines tha t have e v o l v e d dur ing the research work are desc r ibed be low. Initially we t r ied to d i f f e ren t i a te b e t w e e n methods a n d techno log ies , where t e c h n o l o g y was d e s c r i b e d as the basic bu i ld ing b lock tha t consumes resources a n d m e t h o d as the process of car ry ing out t e c h n o l o g y . Eventual ly w e rea l ized, however , t ha t no s igni f icant benef i t was d e r i v e d f rom dist inguishing b e t w e e n the two a n d thus we m e r g e d b o t h terms into a single ident i ty ca l l ed methods (Thus the terms m e t h o d a n d t e c h n o l o g y are used i n t e r c h a n g e a b l y t h roughou t this thesis). Ano ther interest ing po int t ha t c a m e out dur ing the research was the a b s e n c e of any a g r e e m e n t as to w h a t level of de ta i l to use for p lann ing a n d schedu l ing a p r o j e c t . Many c o n t r a c t o r s or owners prefer to work at a h igher level of 26 ac t i v i t y de f in i t ion ( a g g r e g a t i o n of lower level act iv i t ies) for cost a n d d u r a t i o n ca lcu la t ions , whereas others like to work at a d e t a i l e d level . Therefore, a m e t h o d mode l ing system should be f lexible e n o u g h to a c c o m m o d a t e various user perspec t ives . For eva lua t i on of a l te rna t i ve cons t ruc t i on m e t h o d s , the design env i ronment should be i n c o r p o r a t e d in a p lann ing a n d schedul ing system, wh ich inc ludes some cost es t imat ing capab i l i t i es , in order to p rov ide e v a l u a t i o n d a t a on p ro jec t du ra t i on a n d cost . The p lann ing a n d schedu l ing system should a l low access to an in fe rence eng ine for purposes of reason ing a b o u t feasibi l i ty , as wel l as for a u t o m a t e d setup of phys ica l a n d possibly methods b r e a k d o w n structures at the p ro jec t level , based on structures d e f i n e d at the s tandards level . We do not be l ieve tha t a k n o w l e d g e base system should serve as the co re system, b e c a u s e of the n e e d to support d i f fe rent modes of use. The requ i rement to suppor t d i f fe ren t modes of use means tha t the design of the system must be very f lex ib le. Basically, there is no s tandard w a y of th inking in the c o n s t r u c t i o n industry. Thus, the system has to support methods a n d phys ica l representa t ions at d i f ferent levels of d e t a i l . 27 The system a n d suppor t ing tools should be o rgan ized in such a w a y tha t helps g e n e r a t e new ideas - i.e. new c o m b i n a t i o n s of resources, new app l i ca t ions of exist ing m e t h o d s , a n d , the fo rmu la t ion of " n e w " methods . S ta ted a n o t h e r w a y , the system should support "b ra ins to rm ing" a n d c rea t i v i t y . The system should have a very o p e n a r c h i t e c t u r e , a n d should al low the user to i n c o r p o r a t e lessons lea rned f rom o n g o i n g a n d c o m p l e t e d pro jec ts . As m u c h of the " k n o w l e d g e a n d exper t ise" as possible should be in the form of d a t a tha t the user c a n modi fy at wil l . That is, workings of the system should be as t ransparent as possible, a n d the " b l a c k box" a s p e c t of the system should be min imized. To ease the m a i n t e n a n c e b u r d e n , the b r e a k d o w n structures requ i red should be f o r m u l a t e d so as to minimize the a m o u n t of r e d u n d a n c y in the system. 3 .4 T E R M I N O L O G Y For descr ib ing a n d m a n i p u l a t i n g the c o m p o n e n t s of a methods design a n d se lec t ion env i ronmen t , w e have a d o p t e d some of the v o c a b u l a r y desc r i bed by Halpin a n d W o o d h e a d (1976) a n d then mod i f i ed a n d e x t e n d e d it. A c c o r d i n g 28 to t h e m an activity deals wi th the a t t a i n m e n t of a physical segment of the p ro jec t , a n d is focused on cost , t ime , a n d resource usage. An operation has a cons t ruc t ion method focus , a n d is c o n c e r n e d wi th the means of a c h i e v i n g c o n s t r u c t i o n . It inc ludes an i temized resource list a n d represents a synthesis of work processes. A process has a basic t e c h n o l o g i c a l s e q u e n c e focus, a n d is rep resen ted by a log ica l co l l ec t i on of work tasks. A process is a recogn izab le por t ion of a cons t ruc t i on o p e r a t i o n . A work task cor responds to a f u n d a m e n t a l f ie ld a c t i o n a n d work uni t . The v o c a b u l a r y w e have a d o p t e d for descr ib ing methods a n d resources at bo th the s tandards a n d p ro jec t levels is as fol lows. 3.4.1 METHODS STATEMENT Methods s ta temen t descr ibes how a phys ica l c o m p o n e n t of a p ro jec t will be c o n s t r u c t e d . It is rep resen ted using a t ree s t ructure. The basic bu i ld ing blocks i n c l u d e opera t i ons , me thods , a n d resources. At the p ro jec t p lann ing a n d schedu l ing level , opera t ions m a p o n e - t o - o n e to ac t iv i t ies . A methods s ta temen t c a n involve one or more opera t ions . 29 / 3.4.2 OPERATION Opera t i on exists only in the c o n t e x t of a Methods S ta temen t . An o p e r a t i o n is cons ide red to be a non-divisible p i e c e of work. An o p e r a t i o n is desc r i bed by a set of tasks o r d e r e d in the form of a p lann ing t e m p l a t e , w i th the tasks be ing the union of the tasks tha t be long to its cons t i tuen t me thods plus any tasks requ i red to c o n n e c t the methods into a uni f ied o p e r a t i o n . Below it is a t ree s t ructure, the c o m p o n e n t s of w h i c h are me thods a n d / o r resources. 3.4.3 METHOD CLASS M e t h o d class is a d e v i c e for organiz ing one 's k n o w l e d g e a b o u t methods in the methods & resource b r e a k d o w n st ructure (M&RBS) t e m p l a t e list. 3.4.4 METHOD M e t h o d consists of a p r o c e d u r e or process for e x e c u t i n g par t or all of an o p e r a t i o n . This is d e s c r i b e d in the 30 f o r m o f a s e t o f o r d e r e d t a s k s . For p u r p o s e s o f d e f i n i t i o n , a m e t h o d m a y c o n s i s t o f a s t a n d a r d a p p r o a c h f o r c o n s t r u c t i n g a b u i l d i n g c o m p o n e n t , a n o v e l a p p r o a c h , o r i n d e e d a p r o p r i e t a r y t e c h n o l o g y . T h e t e r m s m e t h o d a n d t e c h n o l o g y a r e u s e d i n t e r c h a n g e a b l y . R e s o u r c e s c a n b e a t t a c h e d in a h i e r a r c h i c a l s t r u c t u r e t o a m e t h o d . C o n d i t i o n s a s s o c i a t e d d i r e c t l y w i t h m e t h o d d e a l w i t h a s s e s s i n g t h e f e a s i b i l i t y o f a m e t h o d f o r t h e c o n s t r u c t i o n c o n t e x t ( p h y s i c a l a t t r i b u t e s , s i t e c o n d i t i o n s a n d p r o j e c t r e q u i r e m e n t s ) a t h a n d . R e s o u r c e a t t r i b u t e s d e f i n e d a t t h e m e t h o d s l e v e l d e a l w i t h s t a n d a r d p r o d u c t i v i t y r a t e s , a n d n u m b e r o f r e s o u r c e u n i t s t o b e a s s i g n e d . N o t e t h a t s i n c e a r e s o u r c e c a n b e u s e d f o r m a n y d i f f e r e n t t a s k s , p r o d u c t i v i t y o n l y t a k e s o n m e a n i n g w h e n a r e s o u r c e is a t t a c h e d t o a m e t h o d o r d i r e c t l y t o a n o p e r a t i o n ( i . e . p r o d u c t i v i t y is c o n t e x t s e n s i t i v e ) . 3 .4 .5 R E S O U R C E C L A S S R e s o u r c e c l a s s is a d e v i c e f o r c l a s s i f y i n g r e s o u r c e s f o r e a s y a c c e s s ( e . g . l a b o r , e q u i p m e n t , m a t e r i a l s , s p e c i a l t y t r a d e s ) . A r e s o u r c e c l a s s c a n b e f u r t h e r d i v i d e d i n t o a resource subclass - ( e . g . e q u i p m e n t s u b c l a s s - C r a n e s , C o n c r e t e P u m p s e t c . ) . A Resource d e a l s w i t h p h y s i c a l i n p u t s r e q u i r e d t o 31 carry out tasks, methods a n d opera t ions . The a t t r ibu tes a t t a c h e d d i rec t ly to a resource d e a l wi th a single ins tance of the resource . The charac te r is t i cs of a resource are desc r i bed in terms of user d e f i n e d paramete rs a n d cond i t ions a n d mu l t i -med ia records . No a t t e m p t is m a d e at the resource level wi th in the resource class s t ructure to de f ine the various uses to wh ich a resource c a n be put . 3 .4 .6 P A R A M E T E R S / C O N D I T I O N S Parameters /Cond i t ions are dev ices for classifying d i f fe rent feasibi l i ty dimensions (e .g . s p a c e ava i lab i l i t y , phys ica l c a p a c i t y , env i ronmenta l i m p a c t ) a n d c o r r e s p o n d i n g c o n d i t i o n def in i t ions. A cond i t i on at the methods s t a t e m e n t a n d methods level deals wi th user d e f i n e d feasibi l i ty cond i t ions tha t must be sat isf ied for e i ther a m e t h o d or methods s t a t e m e n t to be feas ib le . They have been classif ied into three c a t e g o r i e s ; Techn ica l feasibi l i ty, Envi ronmental feasibi l i ty, a n d Regula tory Cond i t ions . 32 The v o c a b u l a r y used for descr ib ing the phys ica l v iew of a p ro jec t , inc lud ing site cond i t ions is d e s c r i b e d in the fo l lowing subsect ions. 3 . 4 . 7 PROJECT This encompasses the phys ica l charac te r i s t i cs of the fac i l i ty . Its const i tuents c a n be Sub-p ro jec t , System, Loca t ion Sets, Element, a n d Sub-e lement . A High-rise p ro jec t c a n be desc r ibed as Sub-projects (Resident ial Tower, Hotel Tower) , Systems ( M e c h a n i c a l , E lect r ica l ) , Locat ions Sets; Physical or Process (Typical Third Floor, R e v i e w / A p p r o v e Shop Drawings) , Elements (Floor Slab, Columns, Walls), a n d Sub-e lements (Round Columns, Square Columns) . 3 . 4 . 8 SUB-PROJECTS A pro jec t c a n be d i v i d e d into many small p ro jec ts for be t te r unders tand ing a n d con t ro l purposes. For e x a m p l e , cons t ruc t ion of a t yp i ca l high rise bu i ld ing c a n have a under g round p a r k a d e fac i l i ty a n d superst ructure as t w o sub-pro jec ts . A sub-pro jec t c a n consist of System, Locat ions, Element, a n d Sub-elements 33 3.4.9 SYSTEM Examples of systems in a high rise bu i ld ing i nc lude Enclosure system, M e c h a n i c a l system, a n d Elect r ica l system. Systems may have under t h e m Sub-systems, Elements, a n d Sub-e lements as a t ree s t ructure. 3.4 .10 SUB-SYSTEMS Each system may or may not have a sub-system. For e x a m p l e , in high rise c o n t e x t m e c h a n i c a l system c a n have the fo l lowing subsystems; Elevator, Fire c o n t r o l , Hea t i ng , Ven t i l a t ion & Air C o n d i t i o n i n g , Supply Water , a n d Waste w a t e r . Its t ree has Elements a n d / o r Sub-e lement in h ie rarchy . 3.4.11 ELEMENTS An e lement refers to a spec i f ic phys ica l c o m p o n e n t . Floor slabs, core walls, e n d walls, co lumns, a n d stairs are examples of e lements in a high rise super s t ruc ture . Under the Elements there c a n only be Sub-elements. 34 3.4.12 SUB-ELEMENTS A sub-e lement refers to a par t i cu la r t y p e of phys ica l c o m p o n e n t or e lement . For e x a m p l e , an e l e m e n t like co lumns c a n fur ther be c a t e g o r i z e d into A r c h i t e c t u r a l , Round, Square a n d Rec tangu la r co lumns, wi th e a c h t y p e c o r r e s p o n d i n g to a sub-e lement . Sub-e lement is the lowest level c o m p o n e n t a n d the re fo re doesn ' t has any t ree st ructure b e n e a t h it. 3.4 .13 LOCATION SET Instead of de f in ing a Loca t ion system under system, all locat ions w h e t h e r physical or processes are classi f ied under a l o c a t i o n set c o m p o u n d in the t ree s t ruc ture . Loca t ion set c a n be d e f i n e d under p ro jec t a n d sub-p ro jec t . Beneath l o c a t i o n set ind iv idua l l oca t i on c o m p o n e n t s c a n be d e f i n e d . 3.4 .14 LOCATIONS Similar to sub-e lement , l o c a t i o n is also an i n d e p e n d e n t c o m p o n e n t a n d doesn ' t have t ree s t ructure b e l o w it. In any p ro jec t , locat ions c a n be physical locat ions or process locat ions 35 3 .5 EVOLUTION OF DESIGN OF COMPUTER ENVIRONMENT The design of the c o m p u t e r i z e d env i ronmen t has b e e n d i v i ded into s tandard a n d p ro jec t aspec ts of the system. The s tandard side deals wi th storing previous e x p e r i e n c e a n d k n o w l e d g e in a readi ly usable form to help de f i ne new pro jec ts faster a n d more easily. The p ro jec t side deals wi th p lann ing a n d schedu l ing a n d p ro jec t methods se lec t ion to mee t spec i f ic p ro jec t requ i rements , e i ther wi th the assistance f rom the s t a n d a r d side, or i n d e p e n d e n t l y . Thus, the In te r face b e t w e e n these two sides is an impor tan t aspec t of the system env i ronmen t . Keeping all of the fo rego ing cha l lenges a n d ob jec t i ves in mind we r e a c h e d the conc lus ion tha t a h ie ra rch ica l t ree s t ructure for represent ing methods a n d resources w o u l d best suit our needs. How to n a m e the root of this s t ructure b e c a m e an issue. The o b j e c t i v e of any p ro jec t or par t the reo f in terms of an a c t i o n on a physical c o m p o n e n t , for e x a m p l e ; Build High Rise Bui lding, Build Superstructure, or Build Walls a n d Columns is to bui ld a P r o d u c t by some mechan ism genera l ly re fer red to as a m e t h o d or t e c h n o l o g y . We thus o p t e d to ca l l the ROOT of the h ie ra rch ica l s t ructure by the n a m e : Methods S t a t e m e n t , w h i c h cor responds to a set of methods to a c h i e v e an o b j e c t i v e . To 36 main ta in f lexibi l i ty a n d to c a t e r to the n e e d to work at d i f fe ren t levels of d e t a i l , few restr ict ions were imposed on the user. A l t hough w e prefer the user to de f ine a Methods s t a t e m e n t at a higher level of de ta i l (e .g . Build t yp i ca l f loor of supers t ruc ture) , the user c a n work at any level (e .g . M e t h o d s t a t e m e n t c o u l d focus on Build Columns) . The next step was to i n t r o d u c e me thods as the next b lock in the h ie ra rch ica l t ree s t ruc ture . This c r e a t e d confus ion in expressing a methods s ta temen t expl ic i t ly as a set of m e t h o d s . A m e t h o d may have many app l i ca t i ons . For e x a m p l e , the m e t h o d g a n g forming c a n be used for fo rming slabs or fo rming walls & co lumns. Also, the na ture of physical c o m p o n e n t s a n d r e l a t e d processes in the cons t ruc t ion industry is very c o m p o s i t e . For e x a m p l e , the process to bui ld columns involves a fo rming c rew, a rebar c rew, a n d a p l a c e m e n t c r e w , thus emphas iz ing the n e e d for fur ther d e c o m p o s i t i o n . To resolve the a b o v e prob lems, it was felt tha t a link was missing b e t w e e n methods s t a t e m e n t a n d methods . Thus, the dec is ion was taken to break d o w n a methods s ta temen t into smaller chunks or "work p ieces " c a l l e d " O p e r a t i o n s " . For e x a m p l e , a methods s t a t e m e n t for Build slab consists of the opera t ions ; form/st r ip slab, rebar s lab, a n d p lace / f in ish slab. Since an o p e r a t i o n is c o n t e x t sensit ive a n d c a n be d e f i n e d at d i f ferent level of coarseness d e p e n d i n g on the 37 user's v iew, it has not been t r e a t e d as a basic bu i ld ing b lock in the same w a y as a methods s ta temen t , me thods a n d resources. Since opera t ions involve processes, a set of mechan ism (methods) to per fo rm, methods c a n now be inser ted b e l o w opera t ions as the next lower level in the h ie ra rch ica l me thods a n d resource b r e a k d o w n s t ructure. Each of these opera t ions involves zero to several methods , as wel l as resources requ i red for these methods . During test ing of our s t ruc ture , w e c a m e across many opera t ions wh ich are very m e c h a n i z e d or do not involve a spec i f ic m e t h o d e .g . p lac ing rebar for slabs or walls & co lumns may not have any spec ia l m e t h o d or me thods . They may simply be resource intensive, so we d e c i d e d not to impose the restr ic t ion tha t o p e r a t i o n have one or me thods under it. Therefore, resources c a n be d i rec t ly assigned b e n e a t h an o p e r a t i o n d e p e n d i n g on the o p e r a t i o n . In order, to g e n e r a t e a p ro jec t p lan w e n e e d ac t iv i t ies . Since an ac t i v i t y deals wi th the a t t a i n m e n t of a phys ica l segment of a p ro jec t , a n d is focused on cost , t ime , a n d resource usage, an o p e r a t i o n is i den t i ca l in many respects to a t rad i t i ona l ac t i v i t y . The dec is ion was there fo re taken to h a v e an 38 o p e r a t i o n m a p o n e - t o - o n e to an ac t i v i t y . Thus a cons t ra in t has b e e n imposed tha t an o p e r a t i o n must be a non-div is ib le p i e c e of work i.e. it is not in ter rupt ib le e x c e p t b e t w e e n work loca t ions . It is a c k n o w l e d g e d tha t some p lann ing a n d schedu l ing systems a c c o m m o d a t e work in te r rup t ion . We will now examine f ragnets a n d resources, a n d their i m p o r t a n c e for descr ib ing me thods . A m e t h o d is compr i sed of a set of tasks ca r r ied out in a p r e d e f i n e d s e q u e n c e wi th the help of resources. Since no two methods c a n have the same set of tasks in the same s e q u e n c e , whi le remain ing d is t inct , we ca l l ed the c o l l e c t i o n of tasks a task t e m p l a t e , wh ich is c o m m o n l y ca l l ed a f ragne t - i.e. a l itt le ne twork of tasks a n d log ic , wh i ch is un ique for a g iven m e t h o d . A fea tu re a d d e d to fo rmu la t ing task t e m p l a t e s , in order to increase f lexibi l i ty, was to a l low a task t e m p l a t e to be c o n s t i t u t e d f rom other task temp la tes . For e x a m p l e , a m e t h o d Form/Strip Walls a n d Columns is basical ly two methods Form/Strip Walls a n d Form/Strip Columns, a n d there fo re the task t e m p l a t e for 39 the m e t h o d Form/Strip Walls a n d Columns consists of two Task temp la tes* . Since all of the tasks under a task t e m p l a t e have p r e c e d e n c e relat ionships, the same must be true for a task t e m p l a t e c o m p o s e d of more than one task t e m p l a t e . Also opera t ions may have more then one m e t h o d under t h e m . Therefore task temp la tes assoc ia ted wi th these methods n e e d to be "Ro l led-up" to make the o p e r a t i o n uni f ied process. Based on the f o r e g o i n g , dec is ion was taken to t rea t f ragnets as "OBJECTS"** . This means a f ragne t is a i n t e g r a t e d b o d y in the sense tha t w h a t ever is t rue for it, is t rue for its cons t i t uen t Tasks. For e x a m p l e , if F ragnet l has m tasks a n d Fragnet 2 has n tasks, a n d a re lat ionship b e t w e e n two f ragnets has b e e n d e f i n e d , say Finish-to-Start, then all the m tasks of Fragnet 1 will have Finish-to-Start re lat ionship wi th all the n tasks of Fragnet 2. Of course , it is * Significant flexibility has been built into the system in order not to constrain the user. For the forgoing example, it would be preferable for the user to define an operation as Form/strip walls and columns. Then the operation could be described in terms of four distinct methods- Form walls, Form columns, Strip walls, and Strip columns. ** In designing the system, we made use of hierarchical as well as object-oriented programming concepts, the later for it's ability to arrange objects into classes according to common attributes and also it's ability to inherit attributes from a higher level of objects or classes. 40 possible to ref ine the relat ionships b e t w e e n f r a g n e t tasks w h e n g e n e r a t i n g the p ro jec t p lan a n d schedu le . Basically, these f ragnets have in fo rmat ion a b o u t how to e x e c u t e a m e t h o d , or, in o ther words they are inherent charac ter is t i cs of a m e t h o d . For e x a m p l e , a f r a g n e t for the m e t h o d fly fo rming , will have tasks, Roll out of bay , Clear b a y , Move up , Gu ide to new bay , Close in to new bay , a n d Rest in new b a y , all in an o rde red s e q u e n c e . This will a lways be true no m a t t e r where a n d w h e n this m e t h o d is be ing used. Therefore, f ragnets are not i n d e p e n d e n t bu i ld ing blocks in the Methods a n d Resource Breakdown Structure, but have a d i rec t assoc ia t ion wi th m e t h o d s . Now w e c a n make an O p e r a t i o n a non-div is ib le p i e c e of work by de f in ing ext ra tasks n e e d e d to link the various m e t h o d f ragnets for the methods d e f i n e d b e n e a t h the o p e r a t i o n . As desc r ibed previously, me thods are p rocedures or processes to e x e c u t e opera t ions , a n d they requi re the use of resources. These resources c a n be e i ther e q u i p m e n t (c ranes, pumps, t rowels, e t c . ) , labour ( f o r e m a n , c a r p e n t e r s , labourers, e t c . ) , mater ia ls ( c o n c r e t e , a g g r e g a t e s , sand , e t c . ) , spec ia l ty t rades (e lec t r i ca l c rew, rebar c rew, p ip ing c rew, e tc . ) or any o ther c a t e g o r y of inputs. Resource inputs cons t i t u te an i m p o r t a n t descr ip tor of me thods . Of par t i cu la r c o n c e r n are key 41 inputs, a n d the a t t r ibu tes tha t descr ibe t h e m , such as the p r o d u c t i o n ra te tha t c a n be a c h i e v e d under s t a n d a r d cond i t i ons or the cond i t ions tha t n e e d to be present to permi t use of a resource (e .g . s p a c e requ i rements) . It is i m p o r t a n t to no te tha t the p r o d u c t i v e capab i l i t ies of a resource are c o n t e x t sensit ive ( i .e. w h a t task or tasks is the resource go ing to be used for ) . Therefore it is not possible to speci fy a s t a n d a r d p r o d u c t i v i t y i n d e p e n d e n t of a p p l i c a t i o n . For examp le p roduc t i v i t y of a c r a n e in p l a c i n g c o n c r e t e for slab will be d i f ferent f rom the p r o d u c t i v i t y of the same c r a n e in p lac ing f ly ing forms. A t t e n t i o n is now d i r e c t e d at the m a i n t e n a n c e of all of the fo rego ing in fo rmat ion in the most e f f e c t i v e w a y so tha t the u p d a t i n g burden is min imized. Since for a pa r t i cu la r process there c a n be a numbers of m e t h o d s , it was d e c i d e d to a l low similar methods to be g r o u p e d by c lass-e.g. c o n c r e t e p l a c e m e n t , slab fo rming , e t c . For e x a m p l e , me thods for form/s t r ip f loor slab may be any one of f l y fo rming , f iberglass fo rm ing , job-bu i l t fo rming , c o r r u g a t e d steel fo rm ing , suspended fo rm ing , a n d C e c o f lange fo rming . Thus, in our M&RBS t e m p l a t e , ins tead of hav ing n numbers of m e t h o d temp la tes for the same process, we have one t e m p l a t e ca l led m e t h o d class t e m p l a t e in wh ich all methods of similar types are rep resen ted in the form of a 42 t ree s t ruc ture . We are still ab le to ma in ta in our h ie ra rch ica l s t ructure a n d c a n de f ine a p p r o p r i a t e resources for a pa r t i cu la r m e t h o d inside the m e t h o d class. While go ing th rough a similar t h o u g h t process for resources, we found the c lass i f icat ion of resources into e q u i p m e n t , labor , mate r ia l , a n d spec ia l ty t r a d e , or any o ther resource class st ructure the user cares to de f i ne , to be t o o b r o a d a n d in n e e d of fur ther re f inement . For e x a m p l e there are several classes of c r a n e - e . g . tower c r a n e , rough te r ra in , c rawler , e t c . Under e a c h , a number of cranes c a n be i d e n t i f i e d . Thus a th ree level h ierarchy is used to descr ibe resources, wi th the th ree levels co r respond ing to resource class, resource subclass, a n d the resource itself. This allows us to organize our k n o w l e d g e a b o u t resources into a more access ib le fo rm. For e x a m p l e , the e q u i p m e n t resource class c a n now be subd iv ided into the e q u i p m e n t sub-classes; c ranes, pumps, t rowels, a n d f loats. Based on the fo rego ing discussion, w e c a n now summarize the descr ip t ion of our represen ta t ion f ramework or Methods a n d Resource Breakdown Structure (M&RBS). It consists of th ree types of t emp la tes ; Methods S ta temen t , M e t h o d Class, a n d Resource Class, e a c h one of wh ich is d e f i n e d in the form of a t ree s t ruc ture . In def in ing a methods s t a t e m e n t , ce r ta in rules or 43 restr ict ions app l y . For e x a m p l e , a resource c a n be a t t a c h e d to a m e t h o d or d i rec t ly to an o p e r a t i o n . An o p e r a t i o n c a n only b e l o n g to a methods s t a t e m e n t a n d a m e t h o d c a n only b e l o n g to an o p e r a t i o n . The h ierarchy for a m e t h o d s t a t e m e n t is M e t h o d S t a t e m e n t as the Root, then Opera t ions , Me thods , a n d Resources as sub-levels, respect ive ly . As s ta ted previously, an o p e r a t i o n n e e d not have methods be long ing to it a n d the re fo re resources c a n be assoc ia ted d i rec t ly wi th an o p e r a t i o n . The h ie rarchy for a M e t h o d Class is M e t h o d Class as Root a n d then Methods a n d Resources as sub-levels respect ive ly . The h ierarchy of a Resource class is. Resource Class as Root a n d then Resource Sub-classes a n d Resources as sub-levels respect ive ly . We f o u n d it very d i f f icu l t if not impossible to p rov ide a u t o m a t e d assistance for ver i fy ing tha t the r ight m e t h o d belongs to the right m e t h o d class or t ha t the r ight f r a g n e t has b e e n assoc ia ted wi th the right m e t h o d , a n d so fo r th . Therefore, the user has to be very care fu l w h e n en ter ing d i f fe rent d a t a into the system. Our next step in fo rmu la t ing a system is to d e t e r m i n e how to equ ip the system wi th k n o w l e d g e in o rder to help the user in assessing w h e t h e r or not a m e t h o d s t a t e m e n t or its c o m p o n e n t s are feasib le for a g iven cons t ruc t ion c o n t e x t . The 44 fo l lowing pa rag raphs descr ibe the t h o u g h t process sugges ted for tack l i ng problems of feasibi l i ty a n d the types of i n fo rmat ion n e e d e d to r each conclusions a b o u t feasibi l i ty . The methods se lect ion p rob lem c a n be dea l t w i th at t w o levels; the micro level a n d the m a c r o level . A m e t h o d c a n be d i s c a r d e d at a lower level of reason ing , say at the resource level . For e x a m p l e , if there is insuf f ic ient s p a c e at a cons t ruc t i on site, a f ly ing forming m e t h o d may not be feas ib le , or if the he ight to wh ich c o n c r e t e must be p l a c e d is more t h a n the p u m p i n g c a p a c i t y of a p u m p , then a c o n c r e t e p l a c i n g m e t h o d t h a t uses a p u m p may not be feasib le. At a h igher level in the h ie rarchy , say the methods s ta temen t level , the me thods s t a t e m e n t may be r e j e c t e d b e c a u s e it does not c o m p l y wi th loca l by- laws. To be ab le to per form this kind of reason ing , w e n e e d spec i f ic in fo rmat ion at d i f fe rent levels in the h ie rarchy . The source a n d represen ta t ion of this in fo rmat ion p rov ide cha l lenges . A g o a l is how to st ructure the in fo rmat ion in a w a y tha t al lows the speedy pruning of infeasib le methods s ta tements , m e t h o d s , a n d resources. Ref lect ion on these cha l lenges r e v e a l e d tha t m u c h of the in fo rmat ion requ i red comes f rom the phys ica l descr ip t ion of the p ro jec t . Thus there is a n e e d to be a b l e to 45 represent these charac ter is t i cs of a p ro jec t , wh i ch are essent ial to dec is ion mak ing a b o u t me thods , as wel l as o ther cons t ruc t i on m a n a g e m e n t func t ions . Building upon the te rm ino logy i n t r o d u c e d in sect ions 3.4.7 to 3.4.14, a p ro jec t c a n be d e f i n e d in terms of its loca t ions , wh ich c o u l d be physical or p r o c e d u r a l (Typical uppe r f loor, Approva ls /Permi ts e t c . ) , its e lements , (Slab, Walls, a n d Columns e tc . ) a n d systems ( M e c h a n i c a l , Electr ical e t c . ) . O f t e n it is useful to d iv ide a p ro jec t into several sub-pro jects to f a c i l i t a t e mon i to r ing a n d c o n t r o l , a n d also to d e c o m p o s e systems into sub-systems b e c a u s e of the d i f ferent spec ia l ty c o n t r a c t o r s invo lved in instal l ing an overal l system - e .g . Elevator, HVAC, a n d Sprinkler sub-systems under M e c h a n i c a l system. A similar case c a n be m a d e for Elements, where the c o n t r a c t o r may w a n t to d i f f e ren t i a te b e t w e e n Rectangu la r , Circular , Hexagona l or A r c h i t e c t u r a l co lumns- thus the n e e d to cons ider sub-e lements . The fo rego ing reasoning has led to the fo rmu la t ion of a Physical C o m p o n e n t s Breakdown Structure (PCBS) for descr ib ing a p ro jec t . Similar to our M&RBS s t ruc ture , the PCBS is compr i sed of t emp la tes a n d t ree st ructures. PCBS t e m p l a t e s c a n be Project, Sub-pro jec t , System, Sub-system, Elements, Sub-e lements, Locat ion set a n d Locat ions. Except for the l o c a t i o n a n d Sub-e lement c o m p o n e n t s , all o ther c o m p o n e n t s 46 of the PCBS c a n have a h ie ra rch ica l t ree s t ructure under t h e m , wi th l imi ted restr ict ions. These restr ict ions i nc lude ; you c a n not de f ine sub-e lements or subsystem w i thou t first de f in ing e lemen t or system levels, respect ive ly . The PCBS h ierarchy is: sub-p ro jec t under p ro jec t ; system under e i ther p ro jec t or sub -p ro jec t ; subsystem only under system; e lement under any of Project , sub-p r o j e c t , system, a n d sub-system; a n d sub-e lement b e n e a t h e lemen t only. Sometimes it is useful to have a l o c a t i o n set for a p r o j e c t , so ins tead of de f in ing locat ions one at a t ime in order to de f ine all the loca t ions , w e c a n use a l o c a t i o n set t e m p l a t e w h i c h consists of all locat ions in the form of a t ree s t ruc ture . This t e m p l a t e c a n then be inserted d i rec t ly into the p ro jec t PCBS. A range of in fo rmat ion is requ i red f rom the PCBS in order to support various cons t ruc t ion m a n a g e m e n t func t ions . First, w e require quan t i t y take-o f f d a t a f rom various e lements (slab, columns e tc . ) to be ab le to c a l c u l a t e task or ac t i v i t y durat ions e .g . f ragne t task du ra t ion c a n be d e f i n e d d i rec t ly by the user or their c o m p u t a t i o n c a n be a u t o m a t e d by cons ider ing the q u a n t i t y invo lved a n d the p r o d u c t i o n ra te of various resources. Such d a t a has been desc r i bed in the form of pa ramete rs in the PCBS. Second , p ro jec t requ i rements in the form of c o n t r a c t u a l constra ints , federa l or p rov inc ia l by- laws, a n d site 47 cond i t ions n e e d to be s u p p o r t e d . This t y p e of i n fo rmat ion has b e e n l a b e l e d as cond i t ions . Parameters a n d cond i t ions are used in c h e c k i n g the feasibi l i ty of a m e t h o d or methods s t a t e m e n t . Parameters a n d cond i t ions are a p p l i c a b l e to the M&RBS also. For e x a m p l e , similar to the physical charac ter is t i cs of a p r o j e c t , resources have a t t r ibu tes , wh i ch are inherent to t h e m , for e x a m p l e the l i f t ing c a p a c i t y of c ranes, the p u m p i n g c a p a c i t y of pumps , a n d the a rea or number of f lying forms, a n d also constra ints of methods a n d methods s ta tements w h i c h h a v e to be surpassed to make t h e m work. Initially parameters were t h o u g h t of as a t t r ibu tes of the various PCBS a n d M&RBS c o m p o n e n t s , whi le Cond i t ions were t r e a t e d as a separa te c o m p o n e n t in the h ie rarchy of bo th structures. However we even tua l l y c o n c l u d e d tha t feasibi l i ty cond i t ions ( t e c h n i c a l , e n v i r o n m e n t a l , a n d regu la tory ) are really con tex t or a p p l i c a t i o n spec i f i c , a n d the re fo re d e c i d e d to t rea t t h e m in a manner similar to p a r a m e t e r s . Parameters c a n be d e f i n e d for every c o m p o n e n t in the Physical C o m p o n e n t Breakdown Structure as wel l as the Methods a n d Resource Breakdown St ruc ture . This means tha t Project , Sub-pro jec t , System, Sub-System, Element , 48 Sub-Element, a n d Loca t ion c o m p o n e n t s in the PCBS a n d M e t h o d S t a t e m e n t , O p e r a t i o n , M e t h o d , a n d Resource c o m p o n e n t s in the M&RBS have parameters assoc ia ted wi th t h e m , w h i c h c a n be inher i ted f rom upper levels in the structures. Similarly cond i t ions c a n be d e f i n e d for any of the PCBS c o m p o n e n t s a n d inher i ted d o w n w a r d . For the M&RBS they a p p e a r at all levels, e x c e p t for the Resource class s t ructure, b e c a u s e unless resources are a t t a c h e d to methods we do not know w h a t the resources are to be used for. Parameters a n d cond i t ions c a n be Q u a n t i t a t i v e (e .g . 100 c u b i c meters, 1,000 square f e e t ) , Boo lean (e .g . yes or no, t rue or false) or Linguistic (e .g . g o o d , b a d , la rge, small) . As m e n t i o n e d previously, cond i t ions have b e e n classif ied into three c a t e g o r i e s : Techn ica l Feasibil i ty Cond i t ions ; Envi ronmenta l Cond i t ions ; a n d , Regulatory Cond i t ions . 49 TECHNICAL FEASIBILITY CONDITIONS These are lower level cond i t ions a n d are mainly assoc ia ted wi th resources a n d me thods . They d e a l mainly w i th t e c h n i c a l spec i f ica t ions a n d o p e r a t i n g requ i rements for e q u i p m e n t . Consider, for e x a m p l e , the case of c o n c r e t e pumps. Some pumps are r a t e d up to 100 or more c u b i c yards per hour a n d e f f e c t i v e p u m p i n g d is tances vary f rom a b o u t 300 to 1000 f t . hor izontal ly a n d f rom 100 to 300 ft ver t ica l ly . In c h e c k i n g t e c h n i c a l feasibi l i ty use is m a d e of PCBS a n d M&RBS c o m p o n e n t a t t r i bu tes . Techn ica l feasibi l i ty checks are m a d e at the resource , m e t h o d a n d methods s ta temen t levels. ENVIRONMENTAL/ REGULATORY CONDITIONS Envi ronmental a n d Regulatory Cond i t ions are t r e a t e d t o g e t h e r . They d e a l wi th the s ta tu to ry cond i t i ons , w h i c h are e n f o r c e d th rough Federal , Provincia l , a n d Mun ic ipa l laws, by- laws a n d regulat ions. Example inc ludes max imum noise level a l l o w e d , a l l owab le dust level , safety requ i rements , a n d so fo r th . Thus, there is a c lear n e e d for an assoc ia t ion b e t w e e n the PCBS a n d M&RBS in order to e f fec t i ve ly e v a l u a t e the rules necessary to conf i rm feasibi l i ty of methods c h o s e n . 5 0 Since bo th the PCBS a n d M&RBS are h ie ra rch ica l t ree structures, it is very t e m p t i n g to a l low an assoc ia t ion of any of the c o m p o n e n t s in the PCBS wi th any of the c o m p o n e n t s in the M&RBS. In establ ishing rules for assoc ia t ing the PCBS a n d M&RBS, several issues must be addressed . First, for any phys ica l e lement at a g iven p ro jec t l o c a t i o n , only one me thods s t a t e m e n t c a n be ass igned, t h o u g h a methods s t a t e m e n t c a n have more than one PCBS t e m p l a t e assoc ia ted wi th it. S e c o n d , if PCBS t e m p l a t e s are assoc ia ted at lower levels in an M&RBS t e m p l a t e w i thou t any re fe rence to a higher level , then m a n a g i n g d a t a b e c o m e s very d i f f icu l t . Ano ther issue involves the f lexibi l i ty g iven to users. If w e al low the user to work at any level , he may pick the same e lement wi th two d i f fe rent me thods whi le t ransferr ing f rom the s tandard side to the p ro jec t s ide. For e x a m p l e , for s tanda rd PCBS temp la tes , there may be a sub-e lemen t t e m p l a t e for r e c t a n g u l a r co lumns, wh ich is a t t a c h e d to a m e t h o d ca l l ed modu lar panels forms, a n d a n o t h e r t e m p l a t e w h i c h has Columns as an e lement wi th the m e t h o d Ad jus tab le w r a p a r o u n d forms. If the user cop ies over M&RBS t e m p l a t e s f rom the s t a n d a r d to the p ro jec t for p lann ing purposes, our c o l u m n e lemen t has two methods assoc ia ted wi th it. C h e c k i n g for this 51 d u p l i c a t i o n a n d possible inconsis tency is qu i te d i f f i cu l t , a n d c o m p l i c a t e s the task of per fo rming a feasibi l i ty c h e c k . Keeping the fo rego ing in m ind , w e d e c i d e d to make the assoc ia t ion b e t w e e n PCBS a n d M&RBS s o m e w h a t r igid or restr ic t ive a n d pass much of the bu rden of c h e c k i n g to the user. Associat ion b e t w e e n the PCBS a n d M&RBS must be f o r g e d at the methods s ta temen t level . This means tha t unless a n d unti l one or more PCBS temp la tes have b e e n a t t a c h e d to a me thods s t a t e m e n t , no c o m p o n e n t s of the PCBS t e m p l a t e c a n be assoc ia ted to lower levels in the M&RBS. Since the user has the f lexibi l i ty of work ing at any level in bo th the PCBS a n d M&RBS, he c a n pick d i f fe rent levels f rom the PCBS to assoc ia te wi th the me thods s t a t e m e n t . The f inal step in the me thods se lec t ion p r o b l e m is de f in ing rule sets for use in feasibi l i ty reason ing . Arguments for these rules have a l ready b e e n iden t i f i ed as p a r a m e t e r a n d c o n d i t i o n values in previous p a r a g r a p h s . These values c a n ei ther be q u a n t i t a t i v e , Boo lean, or Linguistic in na tu re a n d c o m e from parameters a n d cond i t ions values a t t a c h e d to d i f fe rent c o m p o n e n t s of the PCBS a n d M&RBS. These rules are basica l ly e l iminat ion rules rather than se lect ion rules. Unlike o ther exper t systems, however , these rules are m e a n t to be d y n a m i c a l l y 52 spec i f i ed by the user a n d not hard c o d e d in the system. The reason for our p r e f e r e n c e to use e l iminat ion rules is t ha t for a se lec t ion a p p r o a c h , w e wou ld need a huge d a t a b a s e of d i f fe ren t m e t h o d s , a n d d e p e n d i n g on the cond i t ions present , a search has to be p e r f o r m e d to f ind a m e t h o d tha t m a t c h e s the search c r i te r ia . For an e l iminat ion a p p r o a c h , w e select a m e t h o d d e p e n d i n g on resource ava i lab le or fami l iar i ty w i th a m e t h o d , a n d then c o n d u c t a screening on the basis of the a c t u a l cond i t ions present in order to f ind out w h e t h e r m e t h o d c a n be used or not . We be l ieve tha t the la t ter a p p r o a c h was a b e t t e r c h o i c e b e c a u s e ma in ta in ing a d a t a b a s e is not only a c u m b e r s o m e j o b , but also a s p a c e consuming one t o o . Also u p d a t i n g the d a t a b a s e to i n c o r p o r a t e new t e c h n o l o g i e s or methods b e c o m e c ruc ia l . Rules c a n only be a t t a c h e d to the me thods s t a t e m e n t , m e t h o d , a n d resource (hav ing a t t a c h e d a resource to a m e t h o d in a m e t h o d s t a t e m e n t allows one to assign feasibi l i ty rules to resources as well) level b e c a u s e opera t ions are c o n t e x t sensitive a n d c o n d i t i o n s / p a r a m e t e r s assoc ia ted w i th t h e m c a n be taken ca re of by rules at the methods s t a t e m e n t a n d m e t h o d level . The re fe renc ing system for Parameters a n d Cond i t ions in the rules is simply their names, no m a t t e r how long their n a m e is. To take ca re of any confus ion c r e a t e d b e c a u s e of 53 the d u p l i c a t i o n of these names, a restr ict ion has b e e n imposed tha t they should be un ique, wh ich means tha t no two pa ramete rs or cond i t ions c a n have the same d o m a i n n a m e . There are two ways of f ir ing these rules. The first is f rom the lower level to the higher level - wh i ch means c h e c k i n g feasibi l i ty at the methods level first a n d then at the me thods s t a t e m e n t level . The s e c o n d w a y is f rom the h igher level to the lower level - wh ich means per fo rming the e l im ina t ion process at the methods s t a t e m e n t level first a n d then at the me thods level . From a p r a c t i c a l a n d log ica l po in t of v iew, the s e c o n d scenar io makes more sense. For e x a m p l e , first w e fire rules at the me thods s t a t e m e n t level , a n d then if all of the a t t a c h e d cond i t ions are sat isf ied, we have survived at the h igher level a n d thus c a n p r o c e e d to veri fy lower level feasibi l i ty cond i t ions at the me thods level . Thus, if more than one m e t h o d fails they c a n be r e p l a c e d w i thou t a l ter ing the methods s t a t e m e n t . Now, i m a g i n e the first scenar io where you have all of the lower level feasibi l i ty cond i t i ons , but at the methods s t a t e m e n t level , one or more cond i t ions are not sat is f ied, thus result ing in the re jec t ion or e l im inat ion of the methods s t a t e m e n t . Thus, all of the prior reasoning has b e e n w a s t e d . Hence , the s e c o n d a p p r o a c h has b e e n a d o p t e d . 54 As m e n t i o n e d earl ier, a rguments for the feasibi l i ty rules are p a r a m e t e r a n d c o n d i t i o n values d e f i n e d e i ther at the PCBS level or M&RBS level . Rules may fo l low any one of the fo l lowing forms to c h e c k feasibi l i ty ; Yes or no: Test Boolean var iables [>, <, =, <=, =>] : To test an expression or va r iab le aga ins t a numer ica l va lue Is a n d ls_not: Test string t y p e d a t a versus reserved keywords N a m e : Evaluate an expression a n d / o r va r iab le a n d assign it to a n o t h e r var iab le Reset: Reset the va lue of an a t t r i b u t e to the de fau l t Equal or Not e q u a l : C o m p a r e an expression Retr ieve: Allows the system to read a file of values stored on disk a n d / o r query a d a t a b a s e 55 M e m b e r a n d Not m e m b e r : Test whe the r a par t i cu la r o b j e c t be longs to a g iven list of ob jec ts by p a t t e r n m a t c h i n g , or verify tha t an o b j e c t does not b e l o n g to a list Here are some examples of possible rules. Rules at Methods Level (1 ) IF s p a c e a r o u n d site N_E (not e q u a l to) E n o u g h Then METHOD Flying forming c a n not be USED. (2) IF C o n c r e t e p l a c e m e n t l oca t ion is GJ. (g rea te r than) X fee t HORIZONTAL a n d Y fee t VERTICAL Then METHOD Pumping C o n c r e t e c a n not be USED. Rules at Methods S ta tement Level (1) IF PRODUCTION RATE requ i red for c o n c r e t e p l a c e m e n t is GT (g rea te r than) X c u b i c yards per hour Then METHODS p u m p i n g c o n c r e t e or P lacemen t by C o n v e y o r c a n not be USED. 56 (2) IF NOISE level is G E . (g rea ter than or e q u a l to) X dB Then METHODS STATEMENT is not feas ib le . A very impor tan t system design issue in terms of its f u n c t i o n , is the w a y you move f rom the s t a n d a r d to the p ro jec t side. Because of the very o p e n a n d f lexible structures at the PCBS a n d M&RBS levels, there are many oppor tun i t i es for the user to go ast ray. Therefore, if the user wants help f rom the system, it is necessary tha t they c o p y b o t h the PCBS a n d M&RBS f rom the s t a n d a r d to the p ro jec t side wi th all of the reason ing a n d log ica l links i n t a c t . Then the only j ob f a c i n g the user is to p rov ide a c t u a l values for p ro jec t parameters a n d cond i t i ons . A s e c o n d a p p r o a c h s u p p o r t e d is to c r e a t e a p ro jec t by se lec t ing d i f fe ren t sized "chunks" f rom the PCBS a n d M&RBS s t a n d a r d t e m p l a t e s . However , for this a p p r o a c h , no help is o f fe red f rom the system in terms of c h e c k i n g feasibi l i ty . A third w a y of c r e a t i n g a p ro jec t is to start f rom sc ra tch on the p ro jec t side a n d de f ine d i rec t ly b o t h the PCBS a n d M&RBS structure wi th no re fe rence w h a t s o e v e r to the s t a n d a r d side of the system. We c o n c l u d e our discussion by present ing an overv iew of the Methods se lect ion System C o m p o n e n t s 57 (Fig.3.1). The main c o m p o n e n t s of system at s t a n d a r d a n d p ro jec t levels are as fo l low. 3.5.1 STANDARD LEVEL The s tandards level t reats b o t h the Physical a n d Process views of a p ro jec t in a b s t r a c t e d or gener i c fo rm. The g o a l is to have the in fo rmat ion s t ruc tured in such a w a y t h a t it is d i rec t ly a p p l i c a b l e to most pro jects w i th l itt le or no re f i nemen t . Two c o m p o n e n t s at the s tandards level are ; • Physical C o m p o n e n t Breakdown Structure (PCBS) • Methods & Resource Breakdown Structure (M&RBS) 3.5.2 PROJECT LEVEL The second impor tan t a s p e c t of the c o m p u t e r i z e d env i ronment for the methods se lec t ion p r o b l e m is the p ro jec t level where w e dea l wi th a spec i f ic p ro jec t c o n t e x t 58 59 (e .g . whi le all high rise bui ld ing pro jects have some c o m m o n a l i t y a m o n g t h e m , site cond i t ions , owner e x p e c t a t i o n s , spec ia l design features e t c . c o n t r i b u t e to e a c h p ro jec t be ing un ique ) . The p ro jec t level is compr i sed of four modu les , as desc r ibed be low. 3.5.2.1 PHYSICAL VIEW The physical v iew of the p ro jec t d e s c r i b e d in terms of the Physical C o m p o n e n t Breakdown St ruc ture , inc ludes not only a descr ip t ion of physical c o m p o n e n t s of the fac i l i t y , but also a descr ip t ion of p ro jec t requ i rements a n d a n t i c i p a t e d site Condi t ions . 3.5 .2 .2 PROCESS VIEW The process v iew is d e f i n e d in the form of a Me thods a n d Resource Breakdown Structure, a n d deals w i th the rep resen ta t ion of methods a n d resources to carry out the p ro jec t in terms of Methods s ta tement (s ) , Opera t ions , M e t h o d s , a n d Resources. At the p ro jec t level Opera t ions m a p o n e - t o -one to ac t iv i t ies , a l lowing an i n t e g r a t e d c y c l e design a n d 6 0 pro jec t p lann ing a n d schedul ing env i ronment to be d e v e l o p e d . 3.5 .2 .3 PERFORMANCE EVALUATION This p ro jec t modu le in terac ts w i th the Process v iew to assess cost , t ime, safe ty , risk, a n d e n v i r o n m e n t a l impac ts on the p ro jec t d e p e n d i n g on the me thods se lec ted to e x e c u t e the p ro jec t . 3.5.2 .4 OUTPUT Findings f rom the p e r f o r m a n c e e v a l u a t i o n process are set out th rough the o u t p u t modu le descr ib ing the me thods used (methods s ta tements ) , p e r f o r m a n c e e x p e c t a t i o n s (cost e v a l u a t i o n , p lan a n d schedu le , c y c l e des ign) , a n d a t r a c e of the reasoning used by the system, if one or more k n o w l e d g e - b a s e d c o m p o n e n t s are used. At present a l imi ted number of reports (methods s ta tements , c y c l e des ign, a n d schedul ing) c a n be t a k e n out (See Append ices ) b e c a u s e the Per fo rmance e v a l u a t i o n par t has not been i m p l e m e n t e d . 61 4. IMPLEMENTATION A N D PROTOTYPE EXAMPLES 4.1 I N T R O D U C T I O N In this c h a p t e r , the c o m p u t e r p r o t o t y p e * , its c o m p o n e n t s , a n d d i f fe rent processes are d e s c r i b e d . For a c lear unders tand ing of the system a n d it 's various c o m p o n e n t s , an e x a m p l e of the cons t ruc t ion of a t y p i c a l f loor in a high rise bu i ld ing will be used. Not all of the c o m p o n e n t s of the system design d e s c r i b e d in the previous c h a p t e r have b e e n i m p l e m e n t e d to d a t e . A t t e n t i o n has b e e n d i r e c t e d at i m p l e m e n t i n g the PCBS a n d M&RBS structures at b o t h the s t a n d a r d a n d pro jec t levels. Imp lemen ta t i on of the reason ing a n d e v a l u a t i o n c o m p o n e n t s has yet to be d o n e . Programming of the concepts discussed herein was done by William Wong of the Construction Management Laboratory. 62 4.2 PROBLEM D O M A I N To d e m o n s t r a t e the various i m p l e m e n t e d c o m p o n e n t s of the system a n d also to v a l i d a t e tha t the results o b t a i n e d are sat is fac tory , some d a t a f rom a p r o j e c t , w h i c h has a l ready successful ly been commiss ioned in the c i ty of V a n c o u v e r , have b e e n used wi th slight m o d i f i c a t i o n . For the purpose of re fe rence we will cal l the p ro jec t Ul t imate Plaza, a high rise c o n d o m i n i u m p ro jec t . The a c t u a l p ro jec t consists of four p a r k a d e levels, one Main f loor, two o f f i ce f loors, one ameni t ies f loor, t w e n t y four c o n d o m i n i u m floors a n d two pen thouse floors. For our purposes, w e have c o n s i d e r e d a superst ructure of twen ty - f i ve floors ( twenty - four c o n d o m i n i u m floors a n d one pen thouse ) . Da ta descr ib ing f loor p la te a r e a , vo lume of c o n c r e t e in slabs a n d walls a n d co lumns, q u a n t i t y of rebar in various c o m p o n e n t s , a n d the formwork invo lved in slabs a n d walls a n d columns are set out in Figure. 4.2.1 a n d a d i a g r a m of t y p i c a l f loor p la te is shown in Fig.-4.2.2. 63 A B C D E F G H 1 1 DESCRIPTION LOCATION (feets) Height above ground FLOOR PLATE AREA (sql) CONCRETE (SLAB) (cbf) CONCRETE (W/C)(cbf) REBAR (SLAB) (kgs) REBAR (W/C) (kgs) F/W (SLAB) (sql) F/W (W/C) (sqf) 2 MAIN L E V E L 0.00 3 LEVEL2 FLOOR (OFFICES) 12.00 4 L E V E L 3 FLOOR (OFFICES) 21.33 6844 3990 1997 13349 6681 7069 3385 5 L E V E L 4 FLOOR (AMENITIES) 30.50 6844 3990 1997 13349 6681 7069 3385 6 L E V E L 5 46.00 6844 3990 1997 13349 6681 7069 3385 7 TYPICAL LOWER FLOOR - 6 54.63 6844 3990 1997 13349 6681 7069 3385 8 TYPICAL LOWER FLOOR - 7 63.25 6844 3990 1997 13349 6681 7069 3385 9 TYPICAL LOWER FLOOR - 8 71.88 6844 3990 1997 13349 6681 7069 3385 10 TYPICAL LOWER FLOOR - 9 80.50 6844 3990 1997 13349 6681 7069 3385 11 TYPICAL LOWER FLOOR - 10 89.13 6844 3990 1997 13349 6681 7069 3385 12 TYPICAL LOWER FLOOR - 11 9775 6844 3990 1997 13349 6681 7069 3385 13 TYPICAL LOWER FLOOR - 12 106.38 6844 3990 1832 13349 6129 7069 3385 14 TYPICAL LOWER FLOOR - 14 115.00 6844 3990 1832 13349 6129 /06y 3385 15 TYPICAL LOWER FLOOR - 15 123.63 6844 3990 1832 13349 6129 706y 3385 16 TYPICAL LOWER FLOOR - 16 132.25 7125 4154 1800 1389/ 6022 7350 3359 17 TYPICAL LOWER FLOOR - 17 140.88 6794 3961 1800 13252 6022 7019 3359 18 TYPICAL MID FLOOR -18 149.50 6794 3961 1800 13252 6022 7019 3359 19 TYPICAL MID FLOOR -19 158.13 6794 3961 1800 13252 6022 7019 3359 20 TYPICAL MID FLOOR -20 166.75 6794 3961 1800 13252 6022 7019 3359 21 TYPICAL MID FLOOR -21 175.38 6794 3961 1800 13252 6022 7019 3359 22 TYPICAL MID FLOOR -22 184.00 6998 4080 1612 13650 5393 7223 . 3359 23 TYPICAL MID FLOOR -23 192.63 6737 3928 1612 13141 5393 6962 3359 24 TYPICAL UPPER FLOOR - 24 201.25 6737 3928 1612 13141 5393 6962 3359 25 TYPICAL UPPER FLOOR - 25 209.88 6737 3928 1612 13141 5393 6962 3359 26 TYPICAL UPPER FLOOR - 26 218.50 6/37 3928 1612 13141 5393 6962 3359 27 "28 TYPICAL UPPER FLOOR - 27 227.13 6737 3928 1581 13141 5289 6962 3226 TYPTCATTDPPER FLOOR - 28 235.75 6708 3911 1381 13084 4620 6933 3020 29 TYPICAL UPPER FLOOR - 29 244.38 677U 3947 1568 13205 5246 6995 2859 30 L E V E L 30 (LOWER PENTHOUSE) 253.00 5542 3696 12365 0 5767 2471 Figure-4.2 .1 Physical Data for High-Rise C o n d o m i n i u m Project 64 urns .9 Figure-4.2.2 Actual Typical Floor Diagram 65 4.3 SYSTEM COMPONENTS The three major c o m p o n e n t s of our c o m p u t e r i z e d env i ronment a re ; • S tandard Level • Project Level • I n te r face b e t w e e n S tandard a n d Project Levels For bo th the S tandard a n d Project level , a s ign i f icant research c h a l l e n g e is to fo rmu la te rep resen ta t i on structures tha t are suff ic ient ly f lexible to descr ibe a diverse range of cons t ruc t ion pro jects a n d me thods , as wel l as a c c o m m o d a t e the desire for more or less de ta i l on the par t of the system user. As desc r ibed in the previous c h a p t e r , w e have f o u n d tha t h ie ra rch ica l structures based on a ra ther terse l a n g u a g e are useful for descr ib ing b o t h w h a t is to be buil t a n d how to bui ld it. REPCON has been used as the i m p l e m e n t a t i o n 66 p la t fo rm (Fig. 4.3.1) into wh ich bo th the PCBS a n d M&RBS structures have b e e n a d d e d . REPCON 4 Educational and Research Version J-PROJECT LEUEL PROJECT FILES PROJECT SETUP & MISCELLANEOUS PROCESS UIEUCHOU, UHO, UHEN, UHERE) OST UIEU(HOU MUCH) PHYSICAL UIEUtUHAT, UHERE & SITE COMDITIOMS) UALITY VIEU(REQUIRED, ACHIEVED, 8 ACTIONS TAKEN) S-BUILT UIEUtUHAT HAPPENED, UHV, S ACTIONS TAKEN) CHANGE MANAGEMENT UIEUtUHAT CHANGED) J-STANDARDS Standard Physical Breakdown Structure(PCBS) I—Standard Fragnets tandard Method, Resource Breakdown Structure(M&RBS) Standard Calendars |—Standard Procurement/Process Macros Standard Schedule of Ualiie Profiles I—Standard Summary Schedule Breakdowns k-Standard GC General Expense Breakdowns Set up standard method, resource breakdown structure. Current Project: C:\REPC0N4\PR0J09\THESIS (c) Copyright Alan D. Russell 1985-1997 Fl:Help Alt-X:Exit Figure-4.3.1 Implementation Environment 67 4.3 .1 STANDARD LEVEL The cons t ruc t ion industry is based on numerous heurist ic pr incip les, ru les-o f - thumb, a n d k n o w l e d g e tha t is o f t en d o c u m e n t e d in memory ra ther than on p a p e r (Fayek, 1992). This shows c lear ly the n e e d for s tandard i za t i on of the various funct ions of cons t ruc t ion process. At s tandard level , two c o m p o n e n t s h a v e b e e n r e c o g n i z e d . They are : • Physical C o m p o n e n t s Breakdown Structure - PCBS • Me thods And Resource Brakdown Structure - M&RBS Physical Breakdown st ructure descr ibes the phys ica l charac ter is t i cs of se lec ted aspects of d i f fe rent types of p r o j e c t , whereas Methods a n d Resource Breakdown st ructure layout the means for car ry ing out the work for these aspec ts . These two structures also exist at the p ro jec t level . 68 4.3 .1 .1 PHYSICAL COMPONENTS BREAKDOWN STRUCTURE-PCBS The physical descr ip t ion of a p ro jec t has d i f fe ren t meanings for d i f fe rent par t i c ipan ts in the p r o j e c t . For the owner , the p ro jec t means the overal l fac i l i ty in b r o a d terms ( e . g . a f i f ty story bu i ld ing wi th 150 condomin iums units), for the p ro jec t m a n a g e r it means quant i t ies of various c o m p o n e n t s (4000 c u b i c fee t of c o n c r e t e in slab, 2000 cb f of c o n c r e t e in walls a n d columns e t c . ) , a n d for the c o n t r a c t o r the phys ica l b r e a k d o w n means bo th quant i t ies a n d the detai ls of j ob (size a n d shape of slab, number a n d t y p e of co lumns per f loor e t c . ) . The Physical v iew is desc r i bed in the form of a h ie rarchy . The user is p r o v i d e d wi th a " l a n g u a g e " for classifying physical c o m p o n e n t s of the work to be p e r f o r m e d (bo th p e r m a n e n t a n d t e m p o r a r y works), a n d site c o n t e x t i n f o r m a t i o n . As desc r ibed in the previous c h a p t e r , d e p e n d i n g on the user's c h o i c e or c o n v e n i e n c e , a p ro jec t c a n be d e f i n e d using the fo l lowing bui ld ing blocks; Projects, Sub-pro jec ts , Systems, Sub-systems, Elements, Sub-e lements, Loca t ion set, a n d Locat ions in a Project (See A p p e n d i x D). 69 User c a n de f ine s t a n d a r d phys ica l b r e a k d o w n temp la tes to descr ibe any of the a b o v e . A t y p i c a l roster of PCBS temp la tes for high rise cons t ruc t ion is shown in Figure-4.3.1.1.1. jSTflHDflRD/'PGBSIDEFINE/EDIT PCBS S PARAMETERS/CONDITIONS C:SREPC0M4 Delete Edit Moue Contents Record List Report eXit IrPCBS Templates & Tree Structures [^Ultimate High Rise Project Itimate Residential Tower fl Itimate Hotel Tower B roject Physical Location System roject Process Location System roject Superstructure System roject Substructure System roject Mechanical System roject Electrical system legators Typical Mid Floor - 10 euieu/Approue Shop Drawings uperstructure Columns rchitectural Concrete Columns Type Project Subproject Subproject Location Set Location Set System System System System Subsystem Location Location Element Subelement PCBS Template: 1 Type: Project 4| Fl:Help FZ:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print Figure-4.3.1.1.1 Standard PCBS Templates for High-Rise Construction The de fau l t screen for the Physical B reakdown Structure at the Standards Level consists of a t i t le bar at the 70 t o p , a menu bar, a display a r e a , a n d a status bar at the b o t t o m . Menu bar i tems are A d d , Dele te , Edit, M o v e , Con ten ts , Record List, Report a n d eXit. PCBS temp la tes c a n e i ther be t ree structures (Project t e m p l a t e c a n have Sub-pro jects , Systems, a n d Elements in form of a t ree structure) or ind iv idua l i tems (Loca t ion or Sub-e lement temp la tes consist of only single i tems) . To a v o i d any confus ion , for the case of Loca t ion a n d Sub-e lement , a message is shown tha t these i tems d o n ' t have any t ree s t ructure under t h e m . To de f ine PCBS temp la tes , the A d d i tem f rom the menu bar is se lec ted wh ich pops up a w i n d o w c o n t a i n i n g two fields for en ter ing the descr ip t ion for a n d t y p e of t e m p l a t e (Fig.-4.3.1.1.2). The descr ip t ion f ie ld is an e d i t a b l e f ie ld whereas the t y p e f ield is a scrol lable one , wh i ch limits the cho ices to Project , Sub-pro jec t , System, Sub-system, Element, Sub-e lement , a n d Loca t ion . Af ter a d d i n g the t e m p l a t e , the user selects C o n t e n t s f rom the bar menu , wh ich opens a n o t h e r w i n d o w to a l low the user to de f ine a n d modi fy the c o n t e n t s of t e m p l a t e s (Fig .-4.3.1.1.2) a n d also to a t t a c h mu l t i -med ia records to d i f fe rent c o m p o n e n t s (Fig.-4.3.1.1.3). 71 STANDARD/PCBS1DEFIME^EDIT PCBS & PARAHETERS/CONDITIONS C:\REPC0N4 Add Delete Edit Moue Contents Record L i s t Report eXit IrPCBS Templates & Tree Structures nil Itimate High Rise Project nr i t rp ro Type — Project Pro ject Superstructure System Type: System Uindou eXit SSTRTSYS System Element Project Superstructure System TYPICAL FLOOR SLAB Element TYPICAL FLOOR COLUMNS Subelement RECTANGULAR COLUMNS Subelement SQUARE COLUMNS Subelement ROUND COLUMNS Subelement ARCHITECTURAL COLUMNS Element CORE WALLS Element TYPICAL FLOOR WALLS Element STAIRS Element CURTAIN UALL/CLADDING STRTSYS.2 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete FS:Insert at same leuel Figure-4.3.1.1.2 De f in ing PCBS Templates and Tree Structure To descr ibe the t ree s t ructure in this w i n d o w , the F5 key is used to insert a c o m p o n e n t at a sub- level a n d the F9 key to insert at the same level ( C t r l - F 5 a n d C t r l - F 9 keys are d e f i n e d to insert t emp la tes at the Sub-level or same level , respec t i ve ly ) . By pressing ei ther F5 or F9, the user accesses w i n d o w in wh ich he def ines the p a t h for t ha t c o m p o n e n t for re fe renc ing purposes, a desc r ip t i on , a n d t y p e 72 of c o m p o n e n t . The first two fields are e d i t a b l e ones, whi le the th i rd is a scrol lable f ield wh ich provides the user w i th access to the types of c o m p o n e n t s he c a n put b e n e a t h the a l r e a d y d e f i n e d c o m p o n e n t . Also, in this w i n d o w the user c a n wr i te a m e m o a n d c a n de f ine Parameters /Cond i t ions assoc ia ted w i th this c o m p o n e n t using the F3 key p r o v i d e d in the w i n d o w (for detai ls on Parameters /Cond i t ions , refer to sec t ion 4.3.1.3). The status bar gives a listing of all the ava i lab le c o m m a n d s for the a c t i v e w indows . Impor tan t a m o n g t h e m are F10 for c o n f i r m a t i o n , F8 to d e l e t e , Alt-S for search ing , Esc for exi t , a n d Enter for se lec t ion . 73 STANDARD/PCBSiDEFINE/EDIT PGBS & PARAMETERS^CONDITIONS C:\REPC0N4 Add Delete Edit Moue Contents Record List Report eXIt rPCBS Templates S Tree Structures TUltimate High Rise Project " itr : it Type Project Project Physical Location System Type: Location Set | Edit Uindou | eXit | * i 1 ~P R | Define/Edit PCBS S Parameters/Cond i t ions | ion Systen Def ine/Uieu Multi_Media Records 'ro 'ro 'rp 'ro 'ro Me up lArc r--1 Location PARKADE LEUEL 6 - 2 Location PARKADE LEUEL 5 - 3 Location PARKADE LEUEL 4 -4 Location PARKADE LEUEL 3 - 5 Location PARKADE LEUEL 2 -6 Location PARKADE LEUEL 1 -7 Location MAIN LEUEL - 8 Location LEUEL 2 FLOOR (OFFICES) - 9 Location LEUEL 3 FLOOR (OFFICES) -10 Location LEUEL 4 FLOOR (AMENITIES) Fl:Help U-»*:Scroll Enter:Select Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit Ti,PgUp,PgDn Figure-4.3.1.1.3 Defining Parameters/Conditions/Multimedia Records for PCBS Elements 4.3 .1 .2 METHODS & RESOURCE BREAKDOWN STRUCTURE - M&RBS As iden t i f i ed in the previous c h a p t e r , the main const i tuents of the Methods a n d Resource Breakdown Structure are Methods s t a t e m e n t , Opera t ions , Methods class, M e t h o d s , a n d Resources. This h ie ra rch ica l t ree s t ructure has b e e n i m p l e m e n t e d as follows 74 At the t o p of the t ree is the me thods s t a t e m e n t , wh ich is a co l l ec t ion of one or more ope ra t i ons . Each o p e r a t i o n in the t ree d e f i n e d under the me thods s t a t e m e n t has zero to N numbers of Methods assoc ia ted wi th it. At the p ro jec t a n d schedul ing level , opera t ions by de f in i t i on m a p o n e - t o - o n e to act iv i t ies (for current i m p l e m e n t a t i o n , f ragnets tasks m a p o n e - t o - o n e to ac t iv i t ies) . The next level in the h ie ra rch ica l s t ructure is Resource, wh i ch c a n be assoc ia ted wi th me thods or d i rec t ly wi th opera t ions . Recal l tha t the d i rec t assoc ia t ion of resources to an o p e r a t i o n is a l l o w e d b e c a u s e o f ten there is no speci f ic m e t h o d wi th wh ich to carry ou t the o p e r a t i o n . For e x a m p l e , Placing of Re in fo rcement has no spec i f ic m e t h o d (See A p p e n d i x A) . The de fau l t screen for the M&RBS t e m p l a t e consists of Title bar, Bar menu , display a r e a , a n d Status bar . The items on the bar menu are ; A d d , De le te , Edit, M o v e , Con ten ts , Record List, Report, a n d eXit, w h i c h is similar to the s t a n d a r d PCBS t e m p l a t e a n d thus provides a consis tent i n t e r f a c e to the user (Fig.-4.3.1.2.1). 75 |S TAHDARD/MSRBS! G:SREPG0N4| Delete Edit Moue Contents Record List Report eXit fflSRBS Templates & Tree Structures ti I MS TALL ELECTRICAL SYSTEM INSTALL MECHANICAL SYSTEM BUILD UALLS AND COLUMNS BUILD TYPICAL FLOOR SLAB BUILD TYPICAL SUPERSTRUCTURE FORM/STRIP FLOOR SLAB PLACING CONCRETE FINISH FLOOR SLAB I FORM/STRIP COLUMNS FORM/STRIP UALLS FINISH UALLS & COLUMNS EQUIPMENT ^MATERIALS 7 a — — ABOURES Type : Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Method Class Method Class Method Class Method Class Method Class Method Class Resource Class Resource Class Resource Class M&RBS Template: j__ Type: Methods Statement l\ Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print Figure-4.3.1.2.1 Typ ica l M & R B S Templates As desc r ibed earl ier in the s t a n d a r d PCBS t e m p l a t e , the A d d key genera tes tw o fields, an e d i t a b l e f ie ld for n a m i n g the M&RBS t e m p l a t e a n d a scrol lable f ie ld for the t y p e . The la t ter one has three opt ions ; Methods S t a t e m e n t , Me thods Class (Fig.-4.3.1.2.2), a n d Resource Class (Fig .-4.3.1.2.3) also, refer to A p p e n d i x B. 76 STANDARD/M&RBSi DEFINE/EDIT M&RBS PARAMETERS/CONDITIQMS C:SREPCDN4 Add Delete Edit Moue Contents Record List Report eXit SRBS Templates 8 Tree Structures INSTALL ELECTRICAL SYSTEM INS| Ul Ul Ul OR LA IN Type Methods Statement OR |FIN sEQU >>IAT BLAB FORM/STRIP COLUMNS Type: Method Class Uindou Check Logic eXit -F/SCOL Method Class FORM/STRIP COLUMNS -1 -2 -3 -4 -5 -6 -7 -^8 -9 -10 Method Method Method Method Method Method Method Method Method Method Quick Strip Metal Column Forms One-Piece Round Fiberglass Column Forms Spring-Open Round Fiberglass Column For Plastic Round Column Forms Assembled By One-Piece Steel Round Column Forms Fiber Tubes For Round Columns Adjustable Urap-Around Column Forms Modular Panels For Column Forms Al 1-Metal Nodular Concrete Column Forms Column Forms Using Jahn Brackets & Corn /SCOL F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert at same leuel Figure-4.3.1.2.2 De f in ing Methods Class Templates 77 ISTANDARD/M&RBS!DEFINE/EDIT MSRBS PARAMETERS/CONDITIONS C:\REPC0N4l Add Delete Edit Moue Contents Record List Report eXit SRBS Tehplates & Tree Structures INSTALL ELECTRICAL SYSTEN Type Methods Statement EQUIPMENT Type: Resource Class Uindou eXit Resource Class EQUIPMENT Resource SubCIass CRANE Resource SubCIass PUMPS Resource Resource Resource Resource * Resource Resource Subclass FLOAT Resource SubCIass TROUEL Resource SubCIass SCREED Callaghn S-ZQQ Trailer Pump Callaghn S-100 Trailer Pump Callaghn 32 metre boom cone. Pump Callaghn 36 metre boom cone. Pump Callaghn 42 metre boom cone. Pump QUP.2.1 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete FS:Insert at same leuel Figure-4.3.1.2.3 De f in ing Resource Class Templates After con f i rming it, the user chooses the Conten ts i tem f rom the bar menu tha t provides him wi th access to a n o t h e r w i n d o w in order to de f ine the t e m p l a t e c o n t e n t s . Bar menu items for this w i n d o w are Edit, Window, C h e c k Logic, a n d eXit . The Window i tem has a d r o p - d o w n menu w h i c h features Def ine/Edi t M&RBS Parameters /Cond i t ions , Def ine/Edi t 78 Feasibil i ty Rules, Def ine/Edi t Fragnets, De f ine /V iew Mu l t imed ia Records, a n d Associate PCBS t e m p l a t e (Fig.-4.3.1.2.4). STAMDARD/M8RBSiDEFIME/EDIT MSRBS FARAMETERS/COMDITIUMS C:SREPG0M4 Add Delete Edit Moue Contents Record List Report eXit itl&RBS Tehplates 8 Tree Structures TINSTALL ELECTRICAL SYSTEM Type - — Methods Statement BUILD TYPICAL SUPERSTRUCTURE Type: Methods Statement Uindou Check Logic eXit Def ine/Edit MSRBS Parameters/Cond i t ioris Define/Edit MSRBS Fragnet | Define/Edit Feasibility Rules Def ine/Uieu MultiJIedia Records Associate uith PCBS Template -3 -4 r —2 Resource Resource Operation Method Resource Resource Method ted Uibrating Screed k Ppuer Operating Troueling Machine Labourers Form/Strip Ualls & Cols. Adujustable Urap-Around Column Form PSH OMEGA E35 Crane Labourers E l l i s Quick-Lock Ualls Fornuork STRT.4.1 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert at same leuel Figure-4.3.1.2.4 Contents o f W i n d o w M e n u I tem in M & R B S Template 79 To c o m p l e t e the p ic tu re of the M&RBS w e now t rea t Opera t ions a n d Fragnets (Fig.-4.3.1.2.5). 5TANDARD/M&RBSIDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS C:\REPC0N4 Add Delete Edit Moue Contents Record L i s t Report eXit Si SRBS Templates & Tree Structures INSTALL ELECTRICAL SYSTEM INS Ul Ul Type Methods Statement Ij2 ="0R 'LA IN ?TJR :0H IN SQU 1AT AB BUILD TYPICAL SUPERSTRUCTURE Type: Methods Statement Uindou Check Logic eXit Methods Statement BUILD TYPICAL SUPERSTRUCTURE Operation Operation Operation Operation Method Form/Strip Slab Rebar Slab Pour/Finish Slab Form/Strip Ualls S Cols. Adujustable Urap-Around Column Form Method E l l i s Quick-Lock Ualls Formuork Resource Resource Operation Operation PSH ONEGA E35 Crane Labourers Rebar Ualls & Cols. Pour/Finish Ualls & Cols, STRT.4.2 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete FS:Insert at same leuel Figure-4.3.1.2.5 Hierarchical Tree Structure i n M & R B S 80 O p e r a t i o n s a r e c o n t e x t s e n s i t i v e a n d a r e d e t e r m i n e d b y t h e M e t h o d s S t a t e m e n t . For e x a m p l e , o p e r a t i o n s f o r t h e m e t h o d s s t a t e m e n t B u i l d S u p e r s t r u c t u r e w i l l b e d i f f e r e n t f r o m t h e m e t h o d s s t a t e m e n t - B u i l d S l a b . F r a g n e t s a r e n o t p a r t o f t h e t r e e s t r u c t u r e , b u t a r e a s s o c i a t e d w i t h m e t h o d s a n d c o n s t i t u t e t h e d e t a i l e d t a s k s n e e d e d t o c a r r y o u t t h e m e t h o d s a n d h e n c e t h e o p e r a t i o n s w i t h w h i c h t h e y a r e a s s o c i a t e d . Tasks c a n b e d e f i n e d d i r e c t l y a t t h e o p e r a t i o n l e v e l a l o n g w i t h t h e i r d u r a t i o n a n d l o g i c a l r e l a t i o n s h i p s . Tasks a n d l o g i c c a n a l s o b e d e f i n e d t o l ink t o g e t h e r t h e f r a g n e t s d e f i n e d f o r t h e m e t h o d s t h a t a r e a s s o c i a t e d w i t h a n o p e r a t i o n . As d e s c r i b e d in t h e f r a g n e t s s e c t i o n ( S e c t i o n 4 . 3 . 1 . 4 ) , d u r a t i o n , p r e d e c e s s o r s , a n d s u c c e s s o r s a r e d e f i n e d f o r d i f f e r e n t t a s k s . To d e f i n e t a s k s a t t h e o p e r a t i o n l e v e l , s e l e c t i o n o f F3 p r o v i d e s a c c e s s t o a w i n d o w w h e r e t h e u s e r c a n d e f i n e d o m a i n n a m e , d u r a t i o n , p r e d e c e s s o r s , a n d s u c c e s s o r s f o r t a s k s . In t h e m a i n m e n u w e h a v e a n i t e m c a l l e d c h e c k l o g i c , w h i c h e n a b l e s t h e u s e r t o c h e c k t h e v a l i d i t y o f t h e l o g i c d e f i n e d a m o n g s t a l l o f t h e t a s k s in f r a g n e t s , i n t e r f r a g n e t s as w e l l as t a s k s d e f i n e d f o r o p e r a t i o n s . 81 A g r a p h i c a l represen ta t ion of t he M&RBS st ructure showing the h ierarchy a n d d i f fe rent c o m p o n e n t s in the t ree st ructure is p resented in Fig.-4.3.1.2.6. f > f i i i > f Operationl Operation_2 Operation_n-x Operationn • Task_l • Task_z-x • Task z • Fragnet_l • Fragnet_2 • Fragnet_p-x • Fragnet_p Method_l OR Resource 1 Method_2 OR Resource 2 Method_m-x OR Resource m-x Method_m OR Resource m Resource a Resource b Resource_q-x i Resource_q Figure-4.3.1.2.6 An Overview of Methods & Resource Breakdown Structure 82 In this f igure P/C represents Paramete r /Cond i t i ons a t t a c h e d to various c o m p o n e n t s a n d the d o u b l e - h e a d e d arrows signify d i f fe rent associat ions. 4.3 .1 .3 PARAMETERS A N D CONDITIONS Parameters a n d cond i t ions di f fer s o m e w h a t f rom the physical c o m p o n e n t b r e a k d o w n s t ructure in tha t Methods a n d Resource b r e a k d o w n st ructure pa ramete rs are inherent a t t r ibu tes of c o m p o n e n t s to w h i c h they are a t t a c h e d , whereas cond i t ions dea l wi th feasibi l i ty reason ing . The def in i t ion of pa ramete rs a n d cond i t ions is a c h i e v e d th rough use of the fo l lowing screens (See figure-4.3.1.3.1 for the start of the process) . 83 STANDARD/tl&RBSIDEFINE/'EDIT M&RBS PARAMETERS/CONDITIONS C:\REPC0N4 Add Delete Edit Moue Contents Record List Report eXit rfl&RBS Templates & Tree Structures tINSTALL ELECTRICAL SYSTEM Type — — Methods Statement LABOURES Type: Resource Class | Edit Uindou | eXit | | Def ine/Edit M&RBS Parameters/Cond i t ions | 1 —RC Define/Uieu Multi_Media Records — 1 L-3 -2 |j H 1 Resource SubClass Resource Resource Resource Resource SubClass Resource Resource Resource Resource SubClass Resource General Contractor Labours Foreman Carpenter Labourers Mech Sub-contractor Labours Foreman Welders Labourers Elect Sub-contractor Labours Foreman Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn Figure-4.3.1.3.1 Window menu item to define parameter/condition After se lec t ing the t y p e of descr ip to r , wh i ch c o u l d be Q u a n t i t a t i v e , Boolean, or Linguistic for a p a r a m e t e r or c o n d i t i o n , a descr ip t ion is g iven to it. Each p a r a m e t e r or c o n d i t i o n c a n be assigned to a user -de f ined class. This is helpful for organiz ing one 's k n o w l e d g e , p a r a m e t e r / c o n d i t i o n values c a n be desc r ibed in terms of the 84 opera to rs , EQ (Equal To), NE (Not Equal To), GT (Grea te r Than), GE (Grea ter Than Or Equal To), LT (Less Than), LE (Less Than Or Equal To), WR (Within Range) , a n d NR (Outs ide Range) . The next t wo fields are m e a n t for en te r ing s t a n d a r d values. More then one va lue c a n be assigned to a p a r a m e t e r or c o n d i t i o n by using the op t i on AND/OR in g iven f ie ld . There are also pre-d e f i n e d s t a n d a r d units for Length , A rea , Vo lume, We igh t , a n d Time. They c a n be used a lone or t o g e t h e r by c o m b i n i n g one or more units by using the mul t ip l i ca t ion (*) a n d division (/) ope ra to rs . This f ie ld is visible only for q u a n t i t a t i v e p a r a m e t e r s / c o n d i t i o n s . Eventual ly the goa l is to a l low the user to de f i ne formulas for bo th Parameters a n d Cond i t ions . Since PCBS a n d M&RBS b o t h support i nhe r i tance of pa ramete rs a n d cond i t i ons , a g g r e g a t i o n of these values is qu i te des i rab le . At present this fea tu re is only s u p p o r t e d for q u a n t i t a t i v e Parameters wh ich use the = ope ra to r . 85 The input screen for pa ramete rs a n d cond i t ions consists of a t i t le bar at the t o p , a bar m e n u , a display a r e a , a n d a status bar at the b o t t o m . Bar menu items are A d d , De le te , Edit, Sort, a n d Exit. As soon as you hit A d d , a list of t y p e pops up for the PCBS case, wh ich consists of, opt ions Q u a n t i t a t i v e , Boolean, a n d Linguistic t y p e (Fig.-4.3.1.3.2). ETANDARD/PCBS!DEFINE/EDIT PCBS 8 PARAMETERS/CONDITIONS Add Delete Edit Moue Contents Record List Report eXit rPCBS Templates 8 Tree Structures Type tSeiier Pipeline Installation Project (Conventional) Project D:\REPC0N4 Define Parameter/Cond i t ion Add | Delete Edit Moue eXit Boolean(B) Quant i tat i ue (Q) Linguistic(L) Class QAREA Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit B/Q/L Uni Q ftZ Fl:Help Alt-S:Search Enter:Select Esc:Exit T PgUp, PgDn, Bck Tab, Tab Figure-4.3.1.3.2 Defining Parameter/Condition for PCBS Elements 86 For the M&RBS it asks user w h e t h e r it is a p a r a m e t e r or c o n d i t i o n first a n d then it 's t y p e (Fig.-4.3.1.3.3 a n d Fig .-4.3.1.3.4). ISTAMDARD/M&RBS 1 DEFIME/EDIT MSRBS PARAMETERS/COMDITIONS Add Delete Edit Moue Contents Record List Report eXit I M&RBS Templates & Tree Structures tPeuatering Techniques Type Method Class D:SREPC0M4 g e n | pSp it 'o i P 4 Ty a a iTo Def ine Parameter/Condition Add | Delete Edit Moue eXit Parameter | b Pumps Condition P/C Class B/Q/L-i Inherited Paraneter/Condition P/C: Parameter/Condition Fl:Help f W : S c r o l l Enter: Select Esc: Ex i t Figure-4.3.1.3.3 Selecting Parameter or Condition for M & R B S Components 87 STANDARD/M&RBSiDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS D:SREPC0N4 Add Delete Edit Moue Contents Record List Report eXit pM&RBS Templates & Tree Structures TDeuatering Techniques peril N Type — Method Class Define Parameter/Cond i t ion Add [Delete Edit Moue eXTT Parameter | e Pumps Boolean(B) Quantitati ue(Q) Linguistic(L) P/C Class -P QPSPEC P QSPEC P QSPEC Fl:Help U-«-: Scroll Enter: Select Esc: Ex i t Fl:Help A lt-S: Search Enter: Select Esc: Ex i t t PgUp, PgDn, Bck Tab, Tab B/Q/L Q Q Q Figure-4.3.1.3.4 Selecting Type of Parameter/Condition for M & R B S Component 88 The user selects the a p p r o p r i a t e one a n d then a n o t h e r w i n d o w opens up . The first f ie ld is Descr ipt ion a n d the s e c o n d one is Class. As desc r i bed earl ier, the descr ip t ion is used as the re fe renc ing in the feasibi l i ty rules by the system, whi le Class is used to sort the cond i t ions a n d parameters into d i f fe ren t c a t e g o r i e s . The next f ie ld is an un -ed i tab le one tha t displays the t y p e of p a r a m e t e r / c o n d i t i o n ( Q u a n t i t a t i v e , Boolean e t c . ) . The o p e r a t o r f ie ld provides a list of all the a l l owab le opera to rs m e n t i o n e d a b o v e w h e n the F2 key is pressed (Fig.-4.3.1.3.5). The user scrolls the list a n d press E n t e r to se lect the desi red o n e . The next two fields are for en te r ing a c t u a l va lues. More then one va lue c a n be assigned to a p a r a m e t e r / c o n d i t i o n by using the AND/OR op t i on in the va lue f ie ld (Fig.-4.3.1.3.7). Aga in the user hits the F2 key to p rov ide a list of s e l e c t a b l e i tems, w i th the re levant one be ing p i c k e d by using the E n t e r key. A b b r e v i a t e d units f ie ld appears only in case of q u a n t i t a t i v e p a r a m e t e r s / c o n d i t i o n s . Pre-def ined s t a n d a r d units for l e n g t h , a r e a , w e i g h t , a n d t ime show up in a w i n d o w w h e n F2 is pressed (Fig.-4.3.1.3.6). Single or Mul t ip le units c a n be d e f i n e d for p a r a m e t e r s / c o n d i t i o n s by using opera to rs , mu l t ip l i ca t ion (*) or division (/) or b o t h , i. e. C b m / h r ( c u b i c 89 meter per hour) . Parameters /cond i t ions c a n have a t t a c h e d a n d there fo re a f ield is p r o v i d e d to en ter a a fo rmu la fo rmu la . STANDARD/M&RBS1DEFINE/EDIT MSRBS PARAMETERS/COMDITIOMS D:SREPG0N4 Add Delete Edit Moue Contents Record List Report eXit ,MSRBS Templates S T TJDeuatering Techniqu Delete E M&RBS: Concrete Description: Class: fjSPEC Unit Abbreua Condition Key IEQ = Ualue I E <> Ualue 5T > Ualue AE >= Ualue ,T < Ualue LE <= Ualue JR Uithin Range [Ualue 1, Ualue 21 1R Outside Range [Ualue 1, Ualue 2] Cond Std Ualue 1 =Jrid11 E§ [ ~ Std Ualue 2 lass 1 ue B/Q/L-| Q Q Q y Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn Figure-4.3.1.3.5 Selecting an Operator to Define Parameter/Condition Values At present this f ie ld has been g r e y e d out ( i .e. suppor t for formulas has not b e e n fully i m p l e m e n t e d ) . 90 ISTANDARD/PCBS!DEFINE/EDIT PCBS & PARAMETERS/CONDITIONS [rPCBS Templates & Tree| [fSeuer Pipeline Instal D:\REPC0N4l Add Delete Edit Moue Contents Record List Report eXit i eu | 3e 1a La Se Ja £ le iTr la >r '1 Delete Edi PCBS: Floor Slab Description: u Class: qUOL Unit Abbreuati Cond SI Unit of Measurement piTn metric ton I in inches 1 f t feet jjyd yards §in2 square inc §r-tz square fee p d 2 square yar liii3 cubic inch I r t 3 cubic feet] |fijd3 cubic yard fct B/Q/L Uni Q ft2 itiue Q ft2 Fl:Help Alt-S:Search Enter:Select Esc:Exit U,PgUp,PgDn Figure-4.3.1.3.6 Selecting Uni ts for Parameter/Condi t ion Values 91 STANDARD/MfiRBSiDEFIME/EDIT MSRBS PARAMETERS/CONDITIONS D:\REPC0N4 Add Delete Edit Moue; Contents Record List Report eXit jM&RBS Tehplates & Tree Structures TJDeuatering Techniques Type — Method Class Gen Eq Sp ot Fo Li Sp Eq Ty La Ma To Define Parameter/Cond i t ion Delete Edit Moue eXit M&RBS: Concrete Pumps Parameter Description: Concrete Output :| Class: QSPEC | Ualue Type: Quantatitive Unit Abbreuation: yd3/hr Cond Std Ualue 1 Std Ualue 2 B/Q/L Q Q rj y Fl:Help F2:List FlQ:Confirm Esc:Exit | F7:Log Alt-P:Print Figure-4.3.1.3.7 Entering Parameter/Condition Values 92 4.3 .1 .4 FRAGNETS In a d d i t i o n to the t ree st ructure d e s c r i b e d a b o v e , there are task temp la tes , wh ich are c a l l e d f ragne ts . The tasks in these f ragnets represent the lowest a toms in the M&RBS st ructure. Fragnets c a n be d e f i n e d a n d a t t a c h e d to m e t h o d s . They are not a basic bu i ld ing b lock in the M&RBS h ie rarchy . Fragnets consist of a set of o r d e r e d tasks necessary to per fo rm a m e t h o d . Several methods f ragnets c a n be log ica l ly d e f i n e d to c r e a t e a uni f ied f ragne t for an o p e r a t i o n (See A p p e n d i x c ) . As desc r ibed in the de f in i t ion of an o p e r a t i o n , the goa l is to have an o p e r a t i o n m a p o n e - t o - o n e to act iv i t ies at the p ro jec t level . At present , however , tasks of f ragnets are c o p i e d over to the p ro jec t side as ac t iv i t ies . Extra act iv i t ies a n d relat ionships c a n also be d e f i n e d at the p lann ing a n d schedu l ing level on the p ro jec t side. Fragnets c a n only be assoc ia ted to me thods a n d opera t ions . A par t i cu la r m e t h o d f r a g n e t c a n have only one assoc ia t ion wi th a m e t h o d at the M&RBS leve l . Therefore, as soon as a user makes an assoc ia t ion , the d o m a i n n a m e ( re fe rence n a m e spec i f ied by the user) of t ha t m e t h o d 93 appears in the f ragne t t e m p l a t e list beside the f r a g n e t . To de f ine a f r a g n e t , the user has to go to the M&RBS t e m p l a t e a n d select a m e t h o d class, using the Con ten t i tem on the bar m e n u . ETANDARD/N&RBSiDEFINE/EDIT M&RBS PARAMETERS/CONDITIONS IrM&RBS Tenplates & Tree ItJBUILD CURTAIN UALL/CLA Ul C:SREPC0N4 Add Delete Edit Moue Contents Record List Report eXit INS| I FORM/STRIP FLOOR S M&RBS PATH: F/SFLSLA Description: Flying Type: Method emo his is an example Fragnet as Statement jtFTying Forms Concreting ( Bucket & Crane) 'inishing Slab Concrete Jails ( E l l i s Quick-Lock) Forn 'ouring By Pumps Columns (Adj. Wrap) Formwork JalIs/CoIs Cone. Finish Jails Cone. Finish Columns Cone. Finish Jal Is/Columns Fl^rmuork Ljpe: Method Class Associated Fragnet: Flying Forms F3:Define Fragnet Fl:Help Alt-S:Search Enter:Select Esc:Exit U,PgUp,PgDn Figure-4 .3 .1.4.1 Associat ing a Fragnet to Me thod i n M e t h o d Class Template O n c e inside the methods class t e m p l a t e , the c h o i c e of Def ine/Edi t Fragnets is m a d e in the Window d r o p - d o w n menu 94 f rom the bar m e n u . This o p e n up a w i n d o w wh ich has a f ie ld c a l l e d Assoc ia ted Fragnet (Fig.-4.3.1.4.1). On h i t t ing the F2 key, a list of p r e - d e f i n e d Fragnets appears f rom wh ich a se lec t ion jSTANDARD/FRAGNETS C:SREPG0N4 Delete Edit Moue Constituents Check Logic Report eXit lpFragnet % lying Forms pricreting ( Bucket & Crane) inishirig Slab Concrete a l l s ( E l l i s Quick-Lock) Form ouring By Pumps olumns (Adj. Wrap) Fprmuprk a 1 Is/CoIs Cone. Finish a l l s Cone. Finish olumns Cone. Finish 1^  lUa1 Is/Co limns Formwork MSRBS Template FORM/STRIP FLOOR SLAB PLACING CONCRETE FINISH FLOOR SLAB FORM/STRIP WALLS PLACING CONCRETE FORM/STRIP COLUMNS FINISH WALLS & COLUMNS FORM/STRIP FLOOR SLAB ROOT.1 Fragnet Name: P Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print Figure-4.3.1.4.2 Adding Fragnet to Standard Fragnet Template Can be m a d e by using the Enter key. The F3 key enab les the user to de f ine a new f ragne t , wh i ch c a n be assoc ia ted w i th a m e t h o d . 95 The de fau l t screen for a f ragne t t e m p l a t e consists of a t i t le bar , a bar m e n u , display a r e a , a n d status bar . Menu bar i tems are A d d , Dele te , Edit, M o v e , Const i tuents , C h e c k Logic, Reports, a n d eXit (Fig.-4.3.1.4.2). The user selects A d d f rom the menu i tem a n d a w i n d o w pops up wh ich has an e d i t a b l e f ie ld for the f ragne t desc r ip t ion . Af ter con f i rming it, the next s tep is to se lect the Const i tuents i tem from the bar m e n u . This will l ead to a w i n d o w , whose menu items are Edit, Window, A d d , De le te , M o v e , a n d eXit . The Window i tem has a d r o p - d o w n menu wi th the op t ions , Descr ip t ion, Dura t ion , Predecessor, a n d Successor (Fig.-4.3.1.4.3). 96 STANDARD/FRAGNETS C:\REPC0N4 Add Delete Edit Moue Constituents Check Logic Report eXit .j-Fragnet uFlying Forms Concreting ( Bu 'inishing Slab Ualls ( E l l i s Q ouring By Pimp olumns (Adj. U a1 Is/CoIs Cone la l i s Cone. Fin olumns Cone. F iUalIs/Columns F MSRBS Template FORM/STRIP UALLS Fragnet: Ualls ( E l l i s quick-Lock) Form CONSTITUENT/DESCRIPTION UIMDOU I Edit I Uindou I Add Delete Moue eXit r Cons | Description TDrill Duration Id Sheets et P Predecessor ine rect Successor Dd sheets ecur[ J Brackets l i p Loop & Tie in D r i l l Holes Ittach Q-L Bkt On q-L Ties jlnstall Ualers in Q-L Bkts ft Duration 0/0/30 0/0/45 0/1/45 0/1/20 0/0/25 0/1/15 0/1/45 Fl:Help t i * * : S c r o l l Enter:Select Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn Figure-4.3.1.4.3 Window Menu Items for Constituents of a Fragnet 97 Select ion of A d d f rom the bar menu queries the user for a se lec t ion b e t w e e n task a n d f ragnet * . A c h o i c e of the former i tem genera tes two e d i t a b l e f ields, task descr ip t ion a n d d u r a t i o n , whereas a c h o i c e of the la t ter p roduces a list of pre-d e f i n e d f ragnets (Fig.-4.3.1.4.4 a n d Fig.-4.3.1.4.5). A f te r con f i rm ing all tasks/ f ragnets , the user c a n de f ine log ica l relat ionships amongs t d i f ferent tasks/ f ragnets by choos ing Predecessor or Successor f rom the Window d r o p - d o w n m e n u . Choos ing one yields access to ano the r w i n d o w , wh ich has the fo l low ing fields to fill in (Fig.-4.3.1.4.6); Number of Typ ica l Predecessors/Successors, Scrol lable Field Type (Task or Fragnet ) , Predecessor/Successor Const i tuents ( the F2 key gives a listing of p re -de f i ned Tasks as wel l as Fragnets) , Relat ion (de fau l t is FS - Finish to Start) , Lag (defau l t is zero) , a n d Offset (de fau l t is zero) . Af ter p rov id ing the fo rego ing i n f o r m a t i o n , the user returns to the main screen for the f ragne t t e m p l a t e s , a n d c a n c h e c k the val id i ty of the logic d e f i n e d b e t w e e n all of the tasks a n d f ragnets by se lect ing the Check Logic i tem f rom the bar m e n u . * Fragnets can be inserted under Fragnet. 98 ISTANDftRD/FRftGNETS (fold He lute Edit OOoue C:SREPC0N4 Constituents Check ILogic iBeport ej^it [Fragnet 'lying Forms Concreting ( Buj 'inishing Slab Ualls ( E l l i s Q ouring By Pump piumns (Rdj. U alls/Cols Cone a l l s Cone, Fin piumns Cone, F !UalIs/Columns F M&RBS Template Fragnet: Ualls ( E l l i s Quick-Lock) Form ISOR UINDOU Jfelete Hove eSit CONSTITUENT/PREDECESSOR I Kdit Window E Constituent Duration r i l l Stacked Plywood Sheets 0/0/30 FORN/STRIP UALLS Set Plate To Chalk Line Erect Vertical Plywood sheets Secure Sheets By Q-L Brackets Hip Loop 8 Tie in D r i l l Holes Constituent Task: DuratIon: F 0/0/45 0/1/45 0/1/20 0/0/25 15 ~ 1 5 Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt-P:Print Pr1 Figure-4.3.1.4.4 Adding Constituent Tasks to Fragnet 99 ISTANDARD/FRAGNETS C:SREPC0N4 Add Delete Edit Moue Constituents Check Logic fieport eXit -Fragnet 'lying Forms Concreting ( Bu 'inishing Slab Jai ls ( E l l i s Q Pouring By Pump Columns (Adj. U a l l s /Co l s Cone Jai ls Cone. Fin Columns Cone. F Jails/Columns F MSRBS Template Fragnet: UalIs/CoIs Cone. Finish COMSTITUENT/PREDECESSOR UINDOU | Edit Uindou: Delete Moue eXit r Constituent QlUalls Coric. Finish] [Columns Cone. F in ish! Duration FINISH UALLS & C Fragnet L i s t Jai ls ( E l l i s Quick-Lock) Form Pouring By Pumps Columns (Adj. Urap) Formuork JalIs/CoIs Cone. Finish Jails Cone. Finish iColumns Cone. Finish Enter:Add Esc:Exit Fl:Help Alt-S:Search Enter:Select Esc:Exit Ti,PgUp,PgDn Figure-4.3.1.4.5 Adding Fragnets Under a Fragnet 100 |S TANDARD/FRAGNE TS C:SREPC0N4 Add Delete Edit Moue Constituents Check Logic Report eXit pFragnet tJFlying Forms f HSRBS Template ^oncr Finis Ualls Constituent Task: Erect Vertical Plywood sheets No. of Typical Predecessors: j{~ Type Pred Constituent jfj (Talk" E3 ~j Set Plate To Chalk Line Rel Lag FORM/S F 8 / F 9 ( - / « • ) : D e l / I n s Predecessor F4:Switch to Succ Fl:Help F2:List F10:Confirm Esc:Exit | F7:Log Alt -P:Print Offset o o Figure-4.3.1.4.6 De f in ing Predecessors/Successors to Tasks 101 4.3 .2 PROJECT LEVEL M o s t o f t h e i m p l e m e n t a t i o n e f f o r t w a s c o n c e n t r a t e d o n t h e s t a n d a r d s s i d e . H o w e v e r , s o m e w o r k w a s p e r f o r m e d o n t h e p r o j e c t s i d e , w h i c h h e l p s in t h e f o r m u l a t i o n o f t h e p h y s i c a l a n d p r o c e s s a s p e c t s o f a p r o j e c t f o r p u r p o s e s o f p l a n n i n g a n d s c h e d u l i n g a n d a l s o in d e v e l o p i n g a d e t a i l e d c y c l e d e s i g n f o r a r e p e t i t i v e c o n s t r u c t i o n s e q u e n c e . A d e s c r i p t i o n o f t h e f o l l o w i n g m a i n m o d u l e s a t t h e p r o j e c t l e v e l is g i v e n b e l o w ; • P h y s i c a l C o m p o n e n t B r e a k d o w n S t r u c t u r e - PCBS • M e t h o d s & R e s o u r c e B r e a k d o w n S t r u c t u r e - M & R B S • A c t i v i t i e s , P l a n n i n g a n d S c h e d u l i n g V i e w 4.3 .2 .1 PHYSICAL COMPONENT BREAKDOWN STRUCTURE - PCBS T h e p h y s i c a l c o m p o n e n t b r e a k d o w n s t r u c t u r e a t t h e p r o j e c t l e v e l is s i m i l a r t o t h e o n e a t t h e S t a n d a r d s l e v e l . T h e o n l y d i f f e r e n c e is t h a t t h e p a r a m e t e r v a l u e s e n t e r e d a t t h e p r o j e c t l e v e l r e f l e c t t h e f e a t u r e s o f t h e p r o j e c t a t h a n d . T h e r e a r e s e v e r a l w a y s in w h i c h a u s e r c a n c r e a t e a p h y s i c a l d e s c r i p t i o n o f t h e p r o j e c t : 102 • The user c a n c o p y a c o m p l e t e s t a n d a r d Project t e m p l a t e f rom the S tandard level to the p ro jec t level a n d then prov ide p ro jec t spec i f i c p a r a m e t e r s / c o n d i t i o n values. • The user c a n c o p y "chunks" of k n o w l e d g e in the form of s tanda rd temp la tes or t ree c o m p o n e n t s f rom the s tandards level to the p ro jec t level , a n d then p rov ide p ro jec t spec i f ic p a r a m e t e r values. • The user c a n c r e a t e his/her own phys ica l desc r ip t ion w i thou t any assistance f rom the s t a n d a r d side by using the basic bui ld ing blocks in the form of a h ie ra rch ica l t ree s t ructure. This is fo l l owed by the de f in i t ion of re levant Parameters, their values, a n d cond i t ions for the various c o m p o n e n t s . The de fau l t screen for the Physical C o m p o n e n t Breakdown Structure at the p ro jec t level consists of a t i t le bar at the t o p , a bar menu , a display a r e a , a n d a status bar at the b o t t o m (f ig.-4.3.2.1.1). The bar menu items are : Edit, Window, Report , a n d eXit . The const i tuents of the W i n d o w i tem are Def ine/Edi t PCBS Paramete rs /Cond i t i ons , Assign P a r a m e t e r / C o n d i t i o n Values, View Mul t i_media Records, Assoc ia te wi th Act iv i t ies, Associate wi th Pay Items, Assoc ia te 103 with Qual i ty M a n a g e m e n t , Associate wi th C h a n g e s , a n d Assoc ia te wi th Project Records. The const i tuents of the Report i tem are Def ine Con ten t Profile a n d Produce Reports (Fig.-4.3.2.1.2). jPRO JECT/PCBSiDEFIME/EDIT PCBS & PARAME TERS/CONDITIQMS C:SREPC0N4SPR0J09\THESIS filtl Uindou Report eXit IRISE-A 3 4 3 -S -6 - 7 -8 _g L-10 Subproject Ultimate Residential Touer A System Project Superstructure System Element TYPICAL FLOOR SLAB Element TYPICAL FLOOR COLUMNS Subelement RECTANGULAR COLUMNS Subelement SQUARE COLUMNS Subelement ROUND COLUMNS Subelement ARCHITECTURAL COLUNNS Element CORE UALLS Element TYPICAL FLOOR UALLS Element STAIRS Element CURTAIN UALL/CLADDING Element ELEU ROOM SLAB/ROOF/UALLS/COLUMNS Element MECHANICAL ROOM UALLS & COLUMNS Element V DRY UALLS Element DOORS AND UINDOUS FRAHES Location Set Project Physical Location System Subsystem Elevators Element ELEU MECH ROOM EQUIPMENTS Element ELEUATOR PLATFORMS HIRISE-A.3 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Esc:Exit F5:Insert neu subleuel F8:Delete F9:Insert at same leuel Figure-4.3.2.1.1 PCBS Templates at Project Leve l 104 [PROJECT/PCBS i DEFINE/EDIT PCBS & PARAMETERS/CONDITIQMS C: SREPC0N4SPR0JQ9\THESIS - H I Uindou Report e X i t D e f i n e / E d i t PCBS & Parameters /Condi t ions Assign Parameters/Cond i t i ons Values Uieu Mu l t i -Med ia Records Assoc ia te U i t h A c t i v i t i e s Assoc ia te U i t h Pay Item Assoc ia te u i t h Q u a l i t y Management Assoc ia te U i t h Changes Assoc ia te U i t h P r o j e c t Records Duer A re System INS h 6 7 8 9 10 2 3 1-4 5 6 h-7 Element CURTAIN UALL/CLADDING Element ELEV ROOM SLAB/ROOF/UALLS/COLUMNS Element MECHANICAL ROOM UALLS & COLUMNS Element DRV UALLS Element DOORS AND UINDOUS FRANES Loca t ion Set P r o j e c t Phys ica l Loca t ion System Loca t ion Loca t ion Loca t ion Loca t ion Loca t ion Loca t ion Loca t ion PARKADE LEVEL 6 PARKADE LEVEL 5 PARKADE LEVEL 4 PARKADE LEVEL 3 PARKADE LEVEL 2 PARKADE LEVEL 1 MAIN LEVEL HIRISE-A.3 F3:Data Uindou C t r l - F 5 : I n s templa te a t sub leue l C t r l - F 9 : I n s a t same l e u e l F l : H e l p E s c : E x i t F 5 : I n s e r t neu sub leue l F8:Delete F 9 : I n s e r t a t same l e u e l Figure-4.3.2.1.2 Window Menu Items for PCBS Components at Project Level 105 To de f ine a p ro jec t PCBS, the user selects Edit, a n d by using the C t r l - F5 or C t r l - F 9 keys, c a n insert s t a n d a r d temp la tes at the same level or a lower leve l , respec t ive ly (Fig.-4.3.2.1.3). If the user does not w a n t any help f rom the s tandards side he uses the F5 or F9 keys to d e f i n e PCBS c o m p o n e n t s at the same or lower level , respec t ive ly . To de f i ne pa ramete rs a n d cond i t ions a n d their values, pe r t i nen t i tems f rom the Window menu c a n be s e l e c t e d . To assist in assigning p a r a m e t e r values, users have d i rec t access to mul t i -med ia records t h a t may consist of d ig i ta l p h o t o g r a p h s of site cond i t ions , site plans, a n d p ro jec t plans a n d spec i f i ca t ions . The user c a n also assoc ia te PCBS c o m p o n e n t s to p ro jec t act iv i t ies . Therefore, f rom the a c t i v i t y w i n d o w he has access to all of the parameters a n d cond i t ions tha t descr ibe the physical c o m p o n e n t s assoc ia ted w i th t h a t ac t i v i t y . This helps the user in de te rmin ing re levant q u a n t i t a t i v e in fo rmat ion for ac t iv i t ies , e .g . assigning the dura t ions for tasks/act iv i t ies d e p e n d s on q u a n t i t y take-o f f d a t a a n d mu l t imed ia records of site cond i t ions a n d / o r design c o m p l e x i t y of phys ica l e lements . 106 jPROJECT/PCBSiDEFINE/ED IT PCBS & PARAMETERS/CQNDITIOMS C: SREPC0M4SPR0JQ9\THESIS Edit Uindou Report eXit PCBS Template Type TJU Itimate High Rise Project §U Itimate Residential Touer ft §U Itimate Hotel Touer B Project Subproject Subproject •Project Physical Location System Location Set| project Process Location System project Superstructure System IProject Substructure System jProject Mechanical System IProject Electrical system IjE levators ^ Location Set System System System System Subsystem T-10 Element DOORS AMD UINDOUS FRAMES Location Set Project Physical Location System Location Location Location PARKADE LEUEL 6 PARKADE LEUEL 5 PARKADE LEUEL 4 HIRISE-A.3 F3:Data Uindou Ctrl-F5:Ins template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Alt-S:Search Enter:Select Esc:Exit Ti,PgUp,PgDn Figure-4.3.2.1.3 A d d i n g Project PCBS Templates f r o m Standard PCBS 4.3 .2 .2 METHODS & RESOURCE BREAKDOWN STRUCTURE (M&RBS) Similar to the physical c o m p o n e n t b r e a k d o w n s t ructure, there are three ways of de f in ing a methods a n d resource b r e a k d o w n st ructure (M&RBS) at the p ro jec t level . They are : By c o p y i n g c o m p l e t e me thods 107 s ta tements f rom the s tandards level to the p ro jec t level w i th all the associat ions wi th PCBS; by p ick ing se lec ted M&RBS t e m p l a t e s f rom the s tandards level a n d fo rmu la t ing the p ro jec t M&RBS; a n d , by star t ing f rom scra tch wi th out any re fe rence to s t a n d a r d M&RBS side of the system. For the first two cases, the user def ines a c t u a l p a r a m e t e r a n d c o n d i t i o n values to p r e d e f i n e d parameters a n d cond i t ions , whereas for the th i rd case , the user has to de f ine bo th parameters a n d cond i t ions a long wi th their values tha t are a p p l i c a b l e to the a c t u a l p r o j e c t . The de fau l t screen for the p ro jec t M&RBS consists of a t i t le bar , a bar menu , a display a r e a , a n d a status bar . The menu bar items are : Edit, Window, C h e c k Logic , Report , a n d eXit . The Window i tem consists of Def ine/Edi t M&RBS Parameters /Cond i t ions , Assign Paramete rs /Cond i t ions Values, Def ine/Edi t M&RBS Fragnets, Def ine/Edi t Feasibil i ty Rules, View Mul t i_media Records, Associate wi th Act iv i t ies , Assoc ia te wi th Pay i tems, Associate wi th Qual i ty M a n a g e m e n t , Assoc ia te wi th C h a n g e , a n d Associate wi th Project Records. Con ten ts of the Report menu i tem are Def ine C o n t e n t Profile a n d Produce Reports (Fig.-4.3.2.2.1). 108 PROJECT/M&RBS iDEFINE/EDIT M8RBS PARAMETERS/COMDITIQMS C :\REPC0N4SPR0J09STHESIS Edit Uindou | Check Logic Report eXit Define/Edit M8RBS Parameter S/'Condit ions I - s u | Assign Paraneters/Cond i t ions Values | PERSTRUCTURE b E35 Crane Define/Edit M&RBS Fragnets Define/Edit Feasibility Rules Vieu Multi-Media Records Associate Uith Activities Associate Uith Pay Iten Associate uith Quality Management Associate Uith Changes Associate Uith Project Records m •—3 Resource Steel rebars 3 Operation Pour/; ish Slab — 1 Method * Pour by Crane & Bucket 1 1-1 Resource P&H OMEGA E35 1—2 Resource Bucket [ "—3 Resource Labourers —2 Method U-3 Finish —1 Resource Hand Operated Vibrating Screed —2 Resource Pouer Float — 3 Resource Pouer Operating Troweling Machine —4 Resource Labourers Fl:Help ti-**:Scroll Enter:Select Esc:Exit Figure-4.3.2.2.1 Window Menu Items for Project M & R B S Components To c r e a t e the pro jec t M&RBS, the user selects the Edit i tem from the bar menu a n d by using the C t r l -F5 or C t r l - F9 keys, c a n pick s tandard M&RBS t e m p l a t e s to insert at the same level or a lower level , respect ive ly (Fig.-4.3.2.2.2). 109 To start f rom sc ra tch the user makes use of the F5 a n d F9 keys to de f i ne M&RBS c o m p o n e n t s at the same level a n d lower level , respec t ive ly . Also, to de f ine parameters a n d cond i t i ons a n d their values, the user c a n ei ther select opt ions under the W i n d o w menu i tem or make use of the F3 key. To de f ine or ed i t Fragnets, use has to be m a d e of the Fragnet o p t i o n under the |PR0JECT/r1&RBS iDEFIME/EDIT M&RBS PARAMETERS/CONDITIONS C:SREPCQN4SPRQJQ9STHESIS Uindou Check Logic Report eXit M&RBS Template Type tj INS TALL HUAC SYSTEM §INSTALL ELECTRICAL SYSTEM IINSTALL MECHANICAL SYSTEM (BUILD UALLS AND COLUMNS IBUILD TYPICAL FLOOR SLAB IBUILD TYPICAL SUPERSTRUCTURE It |FORN/STRIP FLOOR SLAB IPLACING CONCRETE Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Methods Statement Method Class Method Class •FINISH FLOOR SLAB Method Class | EFORH/STRIP COLUMNS Method Class 1 1-2 3 4 Method Resource Resource Resource Resource U-3 Finish Hand Operated Uibrating Screed Ppuer Float Pouer Operating Troueling Machine Labourers SUPSTRCT.3.2 F3:Data Uindou Ctrl-F5:lns template at subleuel Ctrl-F9:Ins at same leuel Fl:Help Alt-S:Search Enter:Select Esc:Exit ti,PgUp,PgDn Figure-4.3.2.2.2 Adding Standard M & R B S Templates to Project M & R B S 110 w i n d o w menu i t em. Also to c h e c k the logic d e f i n e d b e t w e e n f ragne ts , amongs t the tasks in a f ragne t or b e t w e e n the ext ra tasks d e f i n e d at the o p e r a t i o n level , the user has to se lect the C h e c k Logic i tem f rom the bar m e n u . Imp lemen ta t i on of the assoc ia t ion of M&RBS c o m p o n e n t s wi th PCBS c o m p o n e n t s a n d the def in i t ions of rules for methods s ta tements a n d methods was not a t t e m p t e d . The only assistance o f fe red at present f rom the p ro jec t M&RBS is in the g e n e r a t i o n of act iv i t ies by m a p p i n g f r a g n e t tasks on to act iv i t ies . This permits one to d e v e l o p d e t a i l e d c y c l e designs. I l l 4.3 .3 ACTIVITIES. P L A N N I N G A N D S C H E D U L I N G VIEW The c o p y i n g over of f ragne t tasks enab les the user to g e n e r a t e a p ro jec t p lan a n d schedu le (Fig . -4 .3 .3.1) . IACTIUITY DA TA/DESCRIP TI ON UINDOU C:SREPC0N4SPR0J18S5DCVL| Edit Uindou Add Delete Renumber Frag |; Options Prog_Date Execute Exit r Code - Description t GOO100 pour slab G00200 cast precast stairs G00300 rotor trouel G00400 cure slab for post tensioning G00500 slab set time-start next cycle G00600 layout column & uall lines G00700 strip slab edges G00800 place column & uall rebar G00900 form columns & ualls G01000 pour columns & ualls GO1100 cure columns & Ualls GO1200 strip columns & ualls GO1300 post-tension slab GO1400 suruey leuel lines GO1500 form slab(fly form) GO1600 layout control line GO1700 reshore slab GO1000 layout slab rebar GO1900 place plumbing cans G020OO form slab edges FragnetT M&RBS Operation p Phase 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d 0 Fl:Help U**:Scroll Enter:Select Esc:Exit Figure-4.3.3.1 Copying Fragnet Tasks and Operations as Activities 112 When c o p y i n g the tasks, all p re -de f ined relat ionships c o m e a long wi th t h e m a n d assume the status of ac t iv i t ies . To c o m p l e t e the p lan a n d schedu le extra act iv i t ies a n d relat ionships can. be d e f i n e d at the p ro jec t leve l . The user then execu tes the p lan to o b t a i n t imes, f loat values, e t c . Ref inements c a n then be m a d e in an i te ra t i ve fashion in order to a c h i e v e a desi rable a n d workab le p lan a n d schedu le (Fig.-4.3.3.2 a n d Fig.-4.3.3.3). Window Cursor Select Activities Execute Act Filter nOde Zoom eXit p n T an pn an pn an pn- an pn an pn an pn •W3029B0 «G00600 *G00800 G0Z800 «G00900 G00200 *G01000 G01100 G01Z00 •301400 G01500 G03100 G01600 G0Z000 G01800 "project start l l layout colunri & wall lines :place colunn S ual 1 rebar •i - • " - ' ' i ' i ' Build Verticals: I " I •. .-• forn columns & walls • _ I i l | cast precast stairs • _ I I I I pour columns & walls I • I • I cure- cblunns S Walls 4-• .. i • . . i . Lggj strip colupins & walls| survey level lines I ' •- , I * \3 V<%\ forn slab<fly forn) I I I i f Z Z J . ' i i i layout control line J ' I I ZZra forii slab edges I . /•• - I .. I .. If ~j layout slab; rebar ia * G02900 project; start *lct/Sch/Ear1y: < 06JAN97 7:00an FHHelp t *-»*• :Scrol 1 Enter! Select Esc : Ex it Figure-4.3.3.2 Bar Chart for 5-day Cycle for a Typical Floor Construction in High-Rise 113 Window Cursor Select Activities Enecute ftct_Filter nQde Zoom eXit LOCN 16 15 14 13 12 11 10 Conpletion: 81JUL97 7:01am Du rat i on < d/Tt/Vi > : 176/0/'l ^ G02800 Build Verticals P^ ct/Scli/Ear 1 u : < 06JAN97 7:00an Z4JUN97 1:30pm 169/6/30 Fi:i-Ielp ti*«-:Scroll Enter! Select Esc: EH it Figure-4.3.3.3 Linear Representation of 5-day Cycle for Typical Floor in Terms of Operations: Build Verticals and Build Horizontals 114 5. C O N C L U S I O N A N D RECOMMENDATIONS FOR FURTHER RESEARCH 5.1 THESIS REVIEW The o b j e c t i v e of this thesis was to d e v e l o p a l a n g u a g e a n d st ructure for the methods se lec t ion p r o b l e m a r e a , a n d based on t h e m to d e v e l o p a c o m p u t e r i z e d env i ronmen t to assist in t rack ing a n d se lec t ing m e t h o d s . C h a p t e r 1 reveals tha t the p rob lem of cons t ruc t i on me thods se lec t ion is a c o m p l e x a n d i l l -structured o n e . There are no universally a c c e p t e d terms wi th wh ich to de f ine m e t h o d s . Most of the t ime the methods se lect ion p rob lem is t r e a t e d in p r a c t i c e th rough p e o p l e who have e x p e r i e n c e . Little a t t e m p t is m a d e to d o c u m e n t a n d formal ize the reasoning process. In this work, an a t t e m p t was m a d e to set out a c o m m o n v o c a b u l a r y in par t t h rough an extensive l i terature rev iew as desc r ibed in C h a p t e r 2. As par t of this rev iew, a search was m a d e for a p p r o a c h e s for i n c o r p o r a t i n g 115 methods se lec t ion into the p lann ing a n d schedu l ing process, espec ia l ly in rega rd to the d e t a i l e d design of cons t ruc t i on cyc les , w i th spec i f ic re fe rence to high rise c o n s t r u c t i o n . A c o n c e p t u a l design of a c o m p u t e r i z e d env i ronmen t was desc r ibed in C h a p t e r 3. The l a n g u a g e a d o p t e d for the methods se lect ion p rob lem i n c l u d e d Me thods s ta temen ts , Opera t ions , Methods , Resources, a n d Fragnets. To represent cons t ruc t ion methods , a h ie ra rch ica l s t ructure was d e v e l o p e d a n d ca l l ed a Methods a n d Resource Breakdown Structure (M&RBS). To assist in the methods se lec t ion process, reasoning was a d d e d in the form of Feasibility Cond i t ions a n d a c c o m p a n y i n g rules. In order to fire the rules, their a r g u m e n t values must be o b t a i n e d in par t f rom a physical desc r ip t ion of the p ro jec t at h a n d . This descr ip t ion is in the form of a Physical C o m p o n e n t Breakdown Structure (PCBS). A p r o t o t y p e system was d e v e l o p e d to i m p l e m e n t a n d test the c o n c e p t d e v e l o p e d , a l t h o u g h the reasoning a s p e c t has yet to be i n c o r p o r a t e d . C h a p t e r 4 outl ines se lec ted aspects of the system as i m p l e m e n t e d to d a t e , w i th the help of an examp le of high rise c o n s t r u c t i o n . 116 5.2 CONTRIBUTION OF THE THESIS The main cont r ibu t ions of this thesis are in the a r e a of s t ructur ing the p rob lem of methods se lec t ion by set t ing out genera l i zed def in i t ions of the cons t ruc t i on me thods se lec t ion p rob lem a n d its various c o m p o n e n t s w h i c h c a n a c c o m m o d a t e a diverse range of methods se lec t ion p rob lems, a n d in c o n c e p t u a l i z i n g a mode l involv ing k n o w l e d g e w h i c h ref lects a p r a c t i c a l a p p r o a c h for screening p o t e n t i a l a l te rna t i ves . 5.3 RECOMMENDATIONS FOR FUTURE WORK To fully utilize the p o t e n t i a l of t he p r o t o t y p e m o d e l desc r ibed in this thesis, fur ther d e v e l o p m e n t s a long wi th the resolut ion of several issues are i m p o r t a n t . In the system at present , to ma in ta in cons is tency a n d for ease in cod i f y ing paths in the rules, e a c h 117 a n d every m e t h o d a n d resource must have a r e f e r e n c e , w h i c h means they must have been e n t e r e d in the methods class a n d resource class temp la tes . This makes the entry of a new m e t h o d or resource impossible in the M&RBS whi le de f in ing the t ree s t ructure (i.e. they must be p r e d e f i n e d first in their own class). It w o u l d be useful to have the c a p a b i l i t y in the system w h e n on de f in ing a new m e t h o d or resource, it p rompts to user t h a t this i tem does not have any re fe rence p a t h a n d the re fo re w o u l d you like to a d d it to list a n d if yes, then w h e r e . At present we mostly d e a l w i th th ree resource subclasses; Equipment , Labor, a n d M a t e r i a l . Resources d e f i n e d under t h e m c a n only be a t t a c h e d to m e t h o d s . It w o u l d be c o n v e n i e n t a n d useful to be a b l e to de f ine Crews (Rebar c rew, Forming c rew, a n d C o n c r e t e p l a c e m e n t c rew etc . ) as a sub-class, wi th e a c h m e m b e r of the subclass consist ing of a number of resources. Then the c r e w w o u l d be a t t a c h e d d i rec t ly to a m e t h o d . The system should be in te l l igent e n o u g h to recogn ize the c r e w subclass, a n d h e n c e should be ab le to refer to all of the resources under it. O f ten a p a r a m e t e r or c o n d i t i o n c a n be expressed wel l in terms of a m a t h e m a t i c a l fo rmu la . Therefore, a 118 s ign i f icant benef i t w o u l d be a c h i e v e d if the abi l i ty to suppor t formulas were a d d e d to the system. Ano ther desi rable fea tu re for the system w o u l d be the abi l i ty to c a l c u l a t e the durat ions of tasks a n d opera t i ons , b e c a u s e all of the in fo rmat ion n e e d e d for the c a l c u l a t i o n is present in the system, i.e. quant i t ies of d i f fe ren t processes f rom the physical c o m p o n e n t b r e a k d o w n s t ruc ture , the resources requ i red to p l a c e the q u a n t i t y , a n d s t a n d a r d p r o d u c t i v i t y measures for the resources f rom the Me thods a n d Resource Breakdown Structure. Add i t iona l l y , b e c a u s e w e have dura t ions at a micro level (durat ions of f ragne t tasks) a n d also p r e c e d e n c e relat ionships d e f i n e d b e t w e e n t h e m , the dura t ions of f r a g n e t c o u l d be c a l c u l a t e d , a n d for tha t reason, so c o u l d the du ra t i on of opera t ions . For the current i m p l e m e n t a t i o n , tasks of f ragnets m a p o n e - t o - o n e on to ac t iv i t ies . In the c o n c e p t u a l des ign , opera t ions m a p o n e - t o - o n e on to ac t iv i t ies . Since f r a g n e t tasks are very low level act iv i t ies , a n d most of the t ime p e o p l e in the cons t ruc t ion industry do not w a n t to d e a l w i th such a low level of ac t iv i t ies , it w o u l d be des i rab le to i m p l e m e n t a c o p y i n g over fea tu re for opera t ions as ac t iv i t ies 119 wi th o p e r a t i o n durat ions be ing der i ved f rom solving the task f r a g n e t . 120 BIBLIOGRAPHY A l - H a m m a d , I b r a h i m ( 1 9 9 1 ) . " A K n o w l e d g e - B a s e d F r a m e w o r k f o r C o n s t r u c t i o n M e t h o d s S e l e c t i o n . " , Ph. D. Thesis, Department of Civil Engineering, T h e U n i v e r s i t y o f Br i t i sh C o l u m b i a , V a n c o u v e r , C a n a d a . A s h l e y , D. B. ( 1 9 8 0 ) . " S i m u l a t i o n o f R e p e t i t i v e U n i t C o n s t r u c t i o n . " , Journal of Construction Engineering and Management, V o l . 1 0 6 , N o . C 0 2 , p p . 1 8 5 - 1 9 5 . A s h l e y , D. B. e t . A l . ( 1 9 8 3 ) . " C r i t i c a l D e c i s i o n M a k i n g D u r i n g C o n s t r u c t i o n . " , Journol of Construction Engineering and Management, V o l . 1 0 9 , N o . 2 , p p . 1 4 6 - 1 6 2 . A y y u b , B. a n d H a i d e r , A . ( 1 9 8 5 ) . " D e c i s i o n s in C o n s t r u c t i o n O p e r a t i o n s . " , Journol of Construction Engineering and Management, V o l . I l l , N o . 4 , p p . 3 4 3 - 3 5 7 . B a r r y , R. ( 1 9 9 6 ) . " T h e C o n s t r u c t i o n o f B u i l d i n g s " , Blgckwell Science Ltd., C a m b r i d g e , M A , USA. B i r r e l l , G . S. ( 1 9 8 0 ) . " C o n s t r u c t i o n P l a n n i n g - B e y o n d t h e C r i t i c a l P a t h . " , Journol of the Construction Division, A S C E , 1 0 6 ( 3 ) , p p . 3 8 9 - 4 0 7 . C a r r , R. I. a n d M e y e r , W. L. ( 1 9 7 4 ) . " P l a n n i n g C o n s t r u c t i o n o f R e p e t i t i v e B u i l d i n g U n i t s . " , Journal of the Construction Division, A S C E , 1 0 0 ( 3 ) , p p . 4 0 3 - 4 1 2 . C h a t t e r t o n , M . a n d N e v i l l e , A . M . ( 1 9 7 8 ) . " N e w C o n c r e t e T e c h n o l o g i e s a n d B u i l d i n g D e s i g n . " , Longman Inc., N e w Y o r k , NY , USA. C h e r n e f f , J . , L o g c h e r , R. a n d S r i r a m , D. ( 1 9 9 1 ) . " I n t e g r a t i n g C A D w i t h C o n s t r u c t i o n - S c h e d u l e G e n e r a t i o n . " , Journal of Computing in Civil Engineering, A S C E , 5 ( 1 ) , p p . 6 4 - 8 4 . 1 2 1 C l a y t o n , M . J . , F r u c h t e r , R., K r a w i n k l e r , H. , a n d T e i c h o l z , P. ( 1 9 9 4 ) . " I n te rp re ta t i on Objec ts for Mult i -Discipl inary Des ign. " Proceedings Artificial Intelligence in Design 94. Gero , J.S. a n d Sudweeks, F. (eds.) , Kluwer A c a d e m i c Publishers, the Nether lands, p p . 573-590. D a r w i c h e , A . , L e v i t t , R. a n d H a y s - R o t h , B. ( 1 9 8 9 ) . "OARPLAN: G e n e r a t i n g Project Plans by Reasoning a b o u t Ob jec ts , Ac t ions a n d Resources." , Artificicl Intelligence in Engineering Division and Manufacturing, Al EDAM, 2(3), p p . 1 69-181. D e s i g n P o w e r ( 1 9 9 5 ) . Design++ User M a n u a l V4.0., Design Power, Inc., Cuper t i no , CA. D o n g , V . , S a l o m o n , AA., S a h l s t r o m D. a n d M a c f a r l a n e D. ( 1 9 8 8 ) . " Economic Analysis of A l te rna t ive Methods in Cons tan t Cyc le C o n s t r u c t i o n . " , Civil 445 project. The University Of British Columbio, V a n c o u v e r , C a n a d a . D z e n g , R. J . a n d T o m m e l e i n , I. D. ( 1 9 9 5 ) . " C a s e - b a s e d Schedu l ing Using Product Models . " , Proceeding Second Congress on Computing in Civil Engineering, A t l a n t a , GA, ASCE, p p . 1 63-1 70. E c h e v e r r y , D., I b b s , W. a n d K i m , S. ( 1 9 9 1 ) . " S e q u e n c i n g K n o w l e d g e for Const ruc t ion Schedu l ing . " , Journal of Construction Engineering and Management, ASCE, 117(1), p p . 1 18-130. F a y e k , A . ( 1 9 9 2 ) . "An A u t o m a t e d Cor rec t i ve A c t i o n Select ion Assistant.", Mgster Thesis, Department of Civil Engineering, The University of British C o l u m b i a , V a n c o u v e r , C a n a d a . F i s c h e r , M . A . a n d A a l a m i , F. ( 1 9 9 6 ) . "Schedu l ing w i th C o m p u t e r - l n t e r p r e t a b l e Const ruc t ion Methods Mode ls . " , Journol of Construction Engineering a n d Mgnggement, ASCE, F o n d a h l , J . W. ( 1 9 9 1 ) . " D e v e l o p m e n t of the Cons t ruc t ion Engineer: Past progress a n d Future p rob lems. " , Journal of Construction Engineering and Management, ASCE, 117(3), p p . 380-392. 122 G r a y , C . A . a n d L i t t l e , J . ( 1 9 8 5 ) . "A Systemat ic A p p r o a c h to the Select ion of an A p p r o p r i a t e Crane for a Cons t ruc t ion s i te . " , Journal of Construction Management and Economics, No. 3, p p . 121-144. G r a y , C . A . ( 1 9 8 6 ) . " In te l l igent Cons t ruc t ion Time a n d Cost Analysis." , Journal of Construction Management and Economics, No. 4, p p . 135-150. H a l p i n , D. W. a n d W o o d h e a d , R. W. ( 1 9 7 6 ) . "Design of Cons t ruc t ion a n d Process opera t ions . " , John Wiley and Sons, New York, NY, USA. H e n d r i c k s o n , C , Z o z a y a - G o r o s t i z a , C , R e h a k , D., B a r a c c o -M i l l e r , E. a n d L i m , P. ( 1 9 8 7 ) . "Expert System for Cons t ruc t ion P lann ing . " , Journal of Computing in Civil Engineering, ASCE, 1 (4), p p . 253-269. I k e d a , M . , O h k u r a , Y. , a n d W a k u , A . ( 1 9 9 1 ) . "The D e v e l o p m e n t of Knowledge- In tens ive Schedul ing System." Tronsgction of the Construction Monggement Committee, Vol . 4, J a p a n Society of Civil Engineers, Tokyo, J a p a n , p p . 187-193. J a g b e c k , A . ( 1 9 9 4 ) . "MDA Planner: In te rac t i ve Planning Tool Using Product Models a n d Const ruc t ion M e t h o d s . " , Journol of Computing in Civil Engineering, ASCE, 8(4), p p . 536-554. J i n , Y . , K u n z , J . , L e v i t t , R. E. a n d W i n s t a n l e y , G . ( 1 9 9 2 ) . "Design of Project Plans f rom Fundamenta l Knowledge of Engineer ing System." , Proceeding AAAI Fgll Symposium Design from Physical Principles, C a m b r i d g e , MA, p p . 149-154. K o u s k o u l a s , V . a n d G r a z i o l i , M . ( 1 9 7 7 ) . "An I n t e g r a t e d M a n a g e m e n t System for Const ruc t ion Projects." , Journal of the Construction Division, ASCE, 103(1), p p . 101-112. L a w , G . K. ( 1 9 8 7 ) . "Decis ion Support System for Cons t ruc t ion Cyc le Design." , Master Thesis, Department of Civil Engineering, The university of British C o l u m b i a , V a n c o u v e r , C a n a d a . L e v i t t , R. R. ( 1 9 7 4 ) . "New Methods in Cons t ruc t ion System." , Journol of the Construction Division. ASCE, 100(3), p p . 21 1-222. 123 L i n , K. a n d H a a s , C . ( 1 9 9 6 ) . "An In te rac t i ve Planning Environment for Cr i t ica l Opera t ions . " , Journal of Construction Engineering and Management, ASCE, 122(3), p p . 212-222. Lu tz , J . D., C h a n g , L. a n d N a p i e r , T. ( 1 9 9 0 ) . "Eva lua t ion of New Building Techno logy . " , Journol of Construction Engineering a n d Management, Vol . 1 16, No.2, p p . 281-299. M e r i t t , R. S. ( 1 9 7 6 ) . "S tandard H a n d b o o k for Civil Engineer ing, New York, McGraw-Hill Book Company. M o n o g r a p h on Planning a n d Envi ronmenta l Cr i ter ia for Tall Buildings. (1981). Van Nostrand Reinhold, New York, N. Y. M o n o g r a p h on Tall Buildings a n d C o n c e p t s . (1980). Van Nostrand Reinhold, New York, N. Y. M o r a d , A . a n d B e l i v e a u , Y. ( 1 9 9 3 ) . " G e o m e t r i c Based Reasoning System for Project P lann ing. " , Journal of Computing in Civil Engineering, ASCE, 8(1), p p . 52-71. N a v i n c h a n d r a , D., S r i r a m , D. a n d L o g c h e r , R. D. ( 1 9 8 8 ) . "GHOST: Project Network Genera to r . " , Journol of Computing in Civil Engineering, ASCE, 2(3), p p . 239-254. P e u r i f o y , R. L. ( 1 9 7 0 ) . "Cons t ruc t ion Planning, Equ ipment , a n d M e t h o d s . " , McGraw-Hill Book Company, New York, N. Y. P e u r i f o y , R. L. a n d O b e r l e n d e r , G. D. ( 1 9 9 6 ) . "Formwork for C o n c r e t e Structures." , McGraw-Hill Book Company, New York, N. Y. R a t a y , R. T. ( 1 9 9 6 ) . " H a n d b o o k of Temporary Structures in C o n s t r u c t i o n . " , McGraw-Hill Book Company, New York, N. Y. R e d a , R. M . ( 1 9 9 0 ) . "RPM: Repet i t ive Project M o d e l i n g . " , Journal of Construction Engineering and Management, ASCE, 106(2), p p . 316-330. R e d a , R. a n d C a r r , R. I. ( 1 9 8 9 ) . "Time-Cost Trade-of f A m o n g Rela ted Act iv i t ies . " , Journal of Construction Engineering and Mgnaaement, ASCE, 115(3), p p . 475-486. 124 R u s s e l l , A . D. ( 1 9 8 5 ) . " M i c r o c o m p u t e r s , M a n a g e m e n t , a n d High-Rise Cons t ruc t i on : The Next S tep. " , Canadian Journol of Civil Engineering, Vol . 12, p p . 396-414. R u s s e l l , A . D., a n d F r o e s e , T. ( 1 9 9 7 ) . "Cha l lenges a n d a vision for C o m p u t e r - I n t e g r a t e d M a n a g e m e n t Systems for M e d i u m -Sized Con t rac to rs . " Cgngdign Journol of Civil Engineering, Vo l . 24, No.2, Apri l 1997, p p . 180-190. R u s s e l l , A . D., G u i n d y , K., a n d A l l d r i t , M . ( 1 9 9 7 ) . " C o m p u t e r System for the Select ion of Trenchless a n d C o n v e n t i o n a l Me thods for Underground Util i t ies.", North Americon NO-Dig'97 Conference Papers, p p . 357-370. S h a k e d , O . a n d W a r s z a w s k i , A . ( 1 9 9 5 ) . "Know ledge-Based System for Const ruc t ion p lann ing of High-rise Bui ldings.", Journol of Construction Engineering a n d Mgnggement, ASCE, 121 (2), p p . 172-182. T a t u m , C . B. ( 1 9 8 7 ) . "Classi f icat ion System for Cons t ruc t ion Techno logy . " . Journol of Construction Engineering and Management, ASCE, Vol . 1 14, No. 3, p p . 344-363. T h a b e t , W. Y. a n d B e l i v e a u , Y. J . ( 1 9 9 7 ) . "SCaRC: S p a c e -Cons t ra ined Resource-Const ra ined Schedul ing System." , Journol of Computing in Civil Engineering, ASCE, Vo l . 11, No. 1, p p . 48-59. T r i n h , T. T. P. a n d S h a r i f , N. ( 1 9 9 6 ) . "Assessing Cons t ruc t ion Techno logy by In tegra t ing Cons t ruc ted Product a n d Cons t ruc t ion Process Complex i t ies : A Case Study of Embankment Dams in Tha i land. " , Journol of Construction Monggement a n d Economics, 14, p p . 467-484. W a u g h , L , M . ( 1 9 9 0 ) . "A Const ruc t ion Planner." Technicol Report 32, Center for I n t e g r a t e d Facility Engineering, S tan fo rd , CA. 125 APPENDIX A: Methods Statement Reports 126 c n - -! 3 S \ m m <: H Z w w o •< z. o E-< O 2 O u m D w es H Q & OS f-> <n 03 W Pi D m •< O >< E-> Q B—i COCD B C E—< <r -EL-EC • EQ ,_3 •—i Bw CD B S 3 § * 1 C H EC • -a- • m •Q~ CD 2U E-H 6-H O E3 § 8 g-1 i—i B U •—< a - o cc i—i e => 3 = = ca -3 z : < B B B S 2 .8 g EC >ane L SUPERS! Slab SUJO a C ••-> W C-QJ S Et_ X6—I ca Q. i--*-> COs t_ Flying F Bu Cappen Labour CD c2 ucket ED oC U LD ) Cr; i - a £3 o a . Cl n CD §3 a 127 PsJ L2& m 1 2 9 APPENDIX B: Method and Resource Class Reports 132 z o u PH w Pi r— r3 cn - -m « EH Z W O «< Z -< 2 z o H O P H Z o o Q CO £> - § . 8 . S . £ . g . 2 . S . £ . S . g . S . £ . g ^.^^•j_i_z__^i__^_____^__ o fc. a s ca cu = £3 3 8 J a a a J P <s JS O Q. OS '£ 8 3 3 "S c3 -Jb t . Cn <x a t- c I Li_ ft) -—< n . .—• t/j fd M 3 =3 * H £ g OJ rd t-— e u —H o rd Lb, fd I_ -M fd OJ c S "3 * § a I a 3 -•-> » 5 B . = Cn rd c -«-> c rd E — a 8 8 8 8 8 8 8 8 CO DI *-H *-H _j _J _ i _ i 8 8 8 8 8 E3 £i •£3 £ CO W w « < H Z w S w o -< z z o H 0 P 01 H 03 Z o o o m Z § w S p. cr a s 5 S3 i2-J3 S I S3 % Si 3 " a s " 5 a 1 | B a IJ3 O. O ss i §s s g S ^ g °= s -PS u to S3 BD =3 K3 5 s s - a B ° - z E-i CX) 55 SaC = £ £ H 8 £S £ £ B- E-t CJ O «—I S3 X =t f rsJ LD to -^ _ g a x: to — o t o c a e - H - J o t o B B B B B B E B B B S B B S B B B B B S S E s as E3 = 8 8 — H — O OS — H s -a 3 3 3 3 (S 5 S B B B B B B B E B B S B S B B 1^5 APPENDIX C: Fragnet Reports 136 O - • £2 e E £2 e £2 M tfl a! 1*51 z o o CH W r -cn - -O - . un o o a. o. < EH z w S w o <: z z o M EH P 03 H CO Z o o « p i3~ E3 8 U w >— (A E <A E — 3 5 3 APPENDIX D: PCBS Templates 139 E3P3 o o 13. t=L. CO CO w s 3 3 3 S 3 3 3 S 3 .3 3 a s 3 3 3 S 3 3 3 3 3 S S S 3 3 3 H 2 W w o 2 2 O M EH o 03 H CO 2 O 03 J3 E3 e— co 5 c a z : § 2 S E C  i—> c a a s c_> G3 c a c a 8 _ ,3 S •a 5 1 1 c2 Ck-2 <J3 LT) TJ- 1 m r - j E31 E3 CO CO CO CO CO CO c a e a c a c a c a «-* 1 § s s s ~ ~ i3 E3 £3 S CJ> CJ »—. E EI! 5 CD 1 cr» 1 FLOOR FLOOR S § 3 S S E—1 E— 3 CJu ES « CO CO a-H c a 1 ^ 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 S e s § i i ca lE: _ W rS R I t I § § 3 3 3 S3 3 CSS n 2 s Du s 3 C O u C O s s 5 5 £ 1 8 C O S3 8 3 S3 * I C O <X £ C O •—. u 3 g E J ce 3 S N M S S1 I I I 3 3 3 a s s n 3 3 3 3 S S Q J O J f D O j B S w S s 5 f/i -u> t/i 5 si s ca 8 S 8 I B eg 8 8 3 8 3 8 § 1 1 3 8 S e d 3 8 ati 3 £3 5 5 FT B C CO L u QJ C P S3 & 5 CD -t-J CO 3 £ 3 8 S 3 8 § 8 ;*2 8 . _ J E s s ten 5 § s tu E OJ ten s Si tew ten •a OJ enen enen enen enen enen enen bsys 5T tft c BT 8 ¥ BP -a 3" _0 to BV _a CO S1 -a 5 of _d 1 ft _o CO Bf _o CO BT _a o s-CL. W Ci3 t±3 U U L3 CO CO 3 CO CO u E3 co 3 CO 3CO 3 CO 3 CO 31 CO 3 CO E3 3 CO 3 CO 3 CO 3C s s s .3 .3 .3 3 £ E—I 3 ag D3 Q C C J ca z : — CO CO G ^ => o E3 3 g E . M G G g E3 S 5 £3 8 U s B g | £ § E 8 £3 C  X s S E3 s I 8 1 ^ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 - - iS E 3 E <=> o 3 Du n d 5 d d 3 3 S S 3 S 3 3 S e 3 s s s Fd 3 L u S fa S3 i i B C 3 S3 S 3 J 3 3 3 3 3 3 3 3 3 3 3 -3 3 3 .3 3 3 3 3 3 3 CJ CJ t/1 .3 .3 ci? £ Q "a) "oJ ' a ! S3 5 ! - a - a _e> 1^ g g s C L , e g i £3 8 •24 S3 3 S 3 °- " <~ ex, 5 CO 3 S Ba S a § =3 SM I CO E—i I 13 co ce g 8 C L , '—' 6— £3 a s ~ g g I £ s -a \ S-i =J £ -a £ 5 £ K S E E 8 8 E E 8 8 Gil 3 3 8 8 i 1 £3 - J S ;£3 8 s i 1^5 55. s s § « s « i OJ s QJ Si Si 5i 5 -*> Cl 5 - M ft 5 O C a? E S3 .3 =3 *e S CO E3 3 £ E 0 0 B ee co 63 S exa o_ CO CO ;i2 8 NJ E—• s s CO CO Oi CLH Qj § 5 s s s s s 3 3 3 3 a 3 a a 3 3 a s 3 3 a 3 a a 3 3 a 3 a 3 a s 3 3 3 3 a a 3 3 a 3 a 3 a a 3 3 E3 E—i CO 5 o : ca < ae • &\ -2 E—i 5 3 S 1 3 S ^ P3 s s ES ES ES 3 S 3 £ £ £ £ £ £ d d d £3 5 "J 5 E3 s s C O 6—1 O £ CO £ & C M O — — C O 3 E s 3 3 3 3 s s 3 3 3 3 =1 "c S3 53 a3 "c "c "c "c "c= cu cD _o .a _o 53 53 5J 53 S3 8 5 ^ r-3 B i l l § 2 <r t o c e c a P J c u c p S £ CO c u S 3 8 fa S E E 8 8 E 8 E 8 S 5 - S 3 8 8 H 1 8 _ \ c a I S 3 8 ES C C C u 8 £ s 5 CO C u f3 5 S £ 8 8 53 Q3 Q3 U U QJ .£3 u § S § S -*-» -t-> tfl C) tfl t/l ft ft ft ft S ft CO 5? 5 CO S1 e £3 5 S s o z : ca c=> tc i—i as: az — i a c — fe CO CO •8 s 3 3 si 0 0 S3 S3 g C C CO CO S £3 B E—I 5 3 8 S s Qu -t-J 60 ft a E3 3= oa 5 C J -t-> £2 s £3 • ^ - i T H rv j ISO APPENDIX E: Activities Report for Cycle Design 151 z o o W -23 ^ -OJ OJ OJ c m -< •H" z w s w o •< z z o M H o £> Bj H to Z o o o CQ w > w EH z o EH < Pi w CH o H O W i-j o Pi CH Z O CO w Q W O >• >--< Q £3 2 .13-S S a-, a> -T3 3 4i coE2 DO £3ua a 8 £3 i—> u r z z z z z z C O ae B S 1 1 C D C D as ac 3=: as es B S 2= as ac: 3= as as 2= ac 3= as es C O C O B/T/B C D C O C D as C D as es B/T/B BE/B/B C D C D C D C D B/Z/B B/Z/B B/Z/B £2 £2 £2 £2 £2 £2 £2 CO CO bdE2 £2 £2 ££ £2 £2 £2 £3Et: CO Ci-i  EI. £2 £2 £2fc £2£2B= CO .8 i f • —i —« OJ Hi 3 3 rd m § -a to —- OJ fd a OJ •—' ™—• rO o 8 rd •—i o 8 8 o ~ — 3 3 8 8 8 -= -= cu b a o.«u a- a. rsj rsj rsj t—i rsl rsl rsi 8 3 3 8 3 3 8 3 O O S -a- a-S S a s c o s i c o * - H u n m c o — e s e s rs) C D c a e s e s U3 \JD S S S 3 3 3 S S 3 c o c o C D e s ss CA 2 E -t-» 3 £-IS L S3 i f rd rd .—i 2 "to C S 3 S 3 s S S ?p ^ s l i s w w w w a KI a IT s C D s 1A &i -*-» 3 » -S S S §3 •a c -a 3 rd —• 1A S .5- g 8 8 S S_ OJ -i—( i =3 S_ C D 5-H S3 § 8 s s (A XA to le la 31 X "rd 3 oB oB oO f l £/) to i i i 8 8 8 B- Q- o-£_ £_ '%-w "to "to § 8 s K3 s s 1 5 2 . 3 CO s ,i2 E3C 3* <r ca E—• s 3 £3 t o o CO CO Cu CO c u _ Cu CO EL- CO E .5 S3 -3 s s s z : z : CD CD CD CD CD CD CD CD CD B/B/38 B/2/B CD CD n CD m CD CD B/B/38 B/2/B •»—1CD(S3 CD CD CO DCD CD CD CO CO U_ _ _ E-H e-H E-H E—• E—« E—< E — E— i * H CN] CN) CNI CNI c v i psi i2 a E E E E s- %--s £ u - — o a a o o o C u 31 31 zn 3i 31 31 31 O C u C u CU s s C u -t-> —s C ra ra - a _a ra ra rd rd "rd S In "Vi In In In In In -M E E t- K-o o C u C u E E _ £_ a a C u C u E E o o C u C u layoi a 8 tn vi fell OJ m en oj a a s- •*-> . 8 3 8 8 3i m ra r s e s CD CD c rd QJ C-O E- E E~ rd S3 73 • 5 = rd O -t-> Cfc-fora slab e place botto cast precas forn slabCf ucts/uii ucts/uii ucts/uii ucts/uii ucts/uii ucts/uii t tension d t tension d ast stairs i tension d . tension d . tension d tension d tA tA 3 o a c-a D. a 8 8 8 lace posl lace posl lace post lace posl s s s s LT) un un uo uouo t*^  co cn cn C D * H S S S S 8 S 8 f 5 S S CD CD fv]un BD i—i S S rvj r v J C N j r n csl rs] rsjpsj Psi PS] CN] CN) cvj r-j CNI PS) S S S S S S S S •a s s s s s s f3 a s s s s ^ to r-t m un m PX? ^ v m ^ <x <r <x <x CD CD CD CD CD S3 CD CD CD CD CD CD Zl ~Z. ~Z. CD CD CD CD CD CD CD CD CD CD CO CD CD CD OS CD "a a a a a a a a a a a a a ~ a a i i i i i i i i t i i i i i t i ~ - ~ ~ - - ^ ^ rt „ ^ ^ H ^ rd _£} OJ 3 •e rical cals E- ect top r vents elect Uerti ;t sta •—9 a S-cu Slab place place place Build projec !§ c C u Build CD a CD a 27BB CD C D Psi CD CD cr> Psi D CD m CD m s s S S 9 9 s £3 153 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.831.1-0050248/manifest

Comment

Related Items