- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Energy-based segmentation methods
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Energy-based segmentation methods Zhong, Jiatao
Abstract
This paper proposes an energy-based segmentation method facilitated by the change point detection. We apply the Kullback-Leibler (KL) divergence to demonstrate the feasibility of our method for non-Gaussian noisy images. Notably, the algorithm automatically determines whether the model is solvable using a Gaussian approach and, if not, effortlessly switches to a non-Gaussian alternative. It can also automatically determine the optimal number of classifications. Furthermore, its iterative nature enables the detection and segmentation of small regions that other methods often fail to capture. Compared to the traditional maximum between-class variance technique and recent statistical approaches, this method provides improved thresholding accuracy for bimodal grayscale images. Moreover, in the context of multiple threshold identification, the proposed method outperforms Subtractive Clustering K-Means with Filtering, Sparse Graph Spectral Clustering, Gaussian mixture on Markov random field, and Adaptive Thresholding in segmenting multimodal grayscale images.
Item Metadata
| Title |
Energy-based segmentation methods
|
| Creator | |
| Supervisor | |
| Publisher |
University of British Columbia
|
| Date Issued |
2025
|
| Description |
This paper proposes an energy-based segmentation method facilitated by the change point detection. We apply the Kullback-Leibler (KL) divergence to demonstrate the feasibility of our method for non-Gaussian noisy images. Notably, the algorithm automatically determines whether the model is solvable using a Gaussian approach and, if not, effortlessly switches to a non-Gaussian alternative. It can also automatically determine the optimal number of classifications. Furthermore, its iterative nature enables the detection and segmentation of small regions that other methods often fail to capture. Compared to the traditional maximum between-class variance technique and recent statistical approaches, this method provides improved thresholding accuracy for bimodal grayscale images. Moreover, in the context of multiple threshold identification, the proposed method outperforms Subtractive Clustering K-Means with Filtering, Sparse Graph Spectral Clustering, Gaussian mixture on Markov random field, and Adaptive Thresholding in segmenting multimodal grayscale images.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2025-09-16
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0450150
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2025-11
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International