The Open Collections site will undergo maintenance from 4:00 PM - 6:00 PM PT on Wednesday, April 2nd, 2025. During this time, images and the IIIF service will not be available.
- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Integrating representative and non-representative survey...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Integrating representative and non-representative survey data for efficient inference Dyrkton, Nathaniel Wu
Abstract
Non-representative surveys are commonly used and widely available but suffer from selection bias that generally cannot be entirely eliminated using weighting techniques. Instead, we propose a Bayesian method to synthesize longitudinal representative unbiased surveys with non-representative biased surveys by estimating the degree of selection bias over time. We show using a simulation study that synthesizing biased and unbiased surveys together out-performs using the unbiased surveys alone, even if the selection bias may evolve in a complex manner over time. Using COVID-19 vaccination data, we are able to synthesize two large sample biased surveys with an unbiased survey to reduce uncertainty in now-casting and inference estimates while simultaneously retaining the empirical credible interval coverage. Ultimately, we are able to conceptually obtain the properties of a large sample unbiased survey if the assumed unbiased survey, used to anchor the estimates, is unbiased for all time-points.
Item Metadata
Title |
Integrating representative and non-representative survey data for efficient inference
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2024
|
Description |
Non-representative surveys are commonly used and widely available but suffer from selection bias that generally cannot be entirely eliminated using weighting techniques. Instead, we propose a Bayesian method to synthesize longitudinal representative unbiased surveys with non-representative biased surveys by estimating the degree of selection bias over time. We show using a simulation study that synthesizing biased and unbiased surveys together out-performs using the unbiased surveys alone, even if the selection bias may evolve in a complex manner over time. Using COVID-19 vaccination data, we are able to synthesize two large sample biased surveys with an unbiased survey to reduce uncertainty in now-casting and inference estimates while simultaneously retaining the empirical credible interval coverage. Ultimately, we are able to conceptually obtain the properties of a large sample unbiased survey if the assumed unbiased survey, used to anchor the estimates, is unbiased for all time-points.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-04-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-ShareAlike 4.0 International
|
DOI |
10.14288/1.0442057
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2024-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-ShareAlike 4.0 International