- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Fan-beam optical computed tomography using solid tank...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Fan-beam optical computed tomography using solid tank designs for use in 3D radiation dosimetry Ogilvy, Andy
Abstract
Three-dimensional dosimeters have potential to advance radiation treatment through comprehensive three-dimensional dose verification. While they offer a distinct advantage, their application is intricate, requiring specialized expertise for accurate readout. Optical computed tomography (CT) stands out as a primary modality for imaging three-dimensional dosimeters used in validating complex radiotherapy treatments. The objectives of this thesis are to (1) develop a ray-tracing simulator capable of calculating an optimized optical CT geometry given the optical properties of the dosimeter and manufacturing materials, (2) design, optimize, manufacture, and commission a fan-beam solid tank optical CT scanner for use on FlexyDos3D dosimeters, and (3) update the ray-tracing simulator to enable optimization for small-detection system scanners. A ray-tracing simulator was developed to find an optimized geometry for a prototype solid tank optical CT scanner. Five geometric variables were adjusted to assess the geometry’s performance based on three properties: effective radius, magnification, and beam uniformity. The optimization workflow flexibility was demonstrated by finding optimal geometries for two optically different 3D dosimeters, FlexyDos3D and ClearView™. An optimized optical CT scanner design for FlexyDos3D dosimeters was manufactured and commissioned. The prototype scanner exhibited a maximum spatial resolution of MTF₅₀ of 0.929 mm⁻¹. Geometric distortion was evaluated, revealing a center-of-intensity needle alignment of <0.25 mm irrespective of needle location. The system’s contrast-to-noise peak varied from 65-190, depending on the sample region for background attenuation. Iterative reconstruction was performed using the FISTA algorithm with a total reconstruction time of around 3 minutes for 200 iterations. The ray-tracing simulator was adapted to facilitate the optimization of designs utilizing small-detection systems such as CCD or CMOS detectors by shaping the acrylic block rear wall as a focusing lens. A high-scoring geometry is created by perturbing the rear lens using the proposed discretized lens creation method. The resulting lens converges all rays to a singular focal point, avoiding the aberrations found in conic lenses.
Item Metadata
Title |
Fan-beam optical computed tomography using solid tank designs for use in 3D radiation dosimetry
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2024
|
Description |
Three-dimensional dosimeters have potential to advance radiation treatment through comprehensive three-dimensional dose verification. While they offer a distinct advantage, their application is intricate, requiring specialized expertise for accurate readout. Optical computed tomography (CT) stands out as a primary modality for imaging three-dimensional dosimeters used in validating complex radiotherapy treatments. The objectives of this thesis are to (1) develop a ray-tracing simulator capable of calculating an optimized optical CT geometry given the optical properties of the dosimeter and manufacturing materials, (2) design, optimize, manufacture, and commission a fan-beam solid tank optical CT scanner for use on FlexyDos3D dosimeters, and (3) update the ray-tracing simulator to enable optimization for small-detection system scanners. A ray-tracing simulator was developed to find an optimized geometry for a prototype solid tank optical CT scanner. Five geometric variables were adjusted to assess the geometry’s performance based on three properties: effective radius, magnification, and beam uniformity. The optimization workflow flexibility was demonstrated by finding optimal geometries for two optically different 3D dosimeters, FlexyDos3D and ClearView™. An optimized optical CT scanner design for FlexyDos3D dosimeters was manufactured and commissioned. The prototype scanner exhibited a maximum spatial resolution of MTF₅₀ of 0.929 mm⁻¹. Geometric distortion was evaluated, revealing a center-of-intensity needle alignment of <0.25 mm irrespective of needle location. The system’s contrast-to-noise peak varied from 65-190, depending on the sample region for background attenuation. Iterative reconstruction was performed using the FISTA algorithm with a total reconstruction time of around 3 minutes for 200 iterations. The ray-tracing simulator was adapted to facilitate the optimization of designs utilizing small-detection systems such as CCD or CMOS detectors by shaping the acrylic block rear wall as a focusing lens. A high-scoring geometry is created by perturbing the rear lens using the proposed discretized lens creation method. The resulting lens converges all rays to a singular focal point, avoiding the aberrations found in conic lenses.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2024-01-12
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0438631
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2024-02
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International