- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Development of materials exhibiting thermally activated...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Development of materials exhibiting thermally activated delayed fluorescence and room-temperature phosphorescence Xu, Pengfei
Abstract
Materials with interesting optical properties are a critical area of study, owing to the dire demand from optoelectronic and therapeutic applications. Three donor-acceptor compounds based on the imidazo-pyrazine-5,6-dicarbonitrile (IPDC) acceptor were synthesized. The IPDC emitters exhibit blue to near-infrared (NIR) emission with up to 54% photoluminescent quantum yield. 9,9-Dimethyl-9,10-dihydroacridine (ACR), phenoxazine (POX), and phenothiazine (PTZ) served as electron donors. IPDC-POX displayed NIR emission in toluene solution, while showing room-temperature phosphorescence in the solid state. IPDC-ACR exhibited yellow thermally activated delayed fluorescence. Interestingly, dual-emissive behavior as well as excitation-dependent thermally activated delayed fluorescence (TADF) was found for IPDC-PTZ, arising from the two conformers of phenothiazine derivatives. Overall, this work describes a novel strong electron acceptor from the fusion of imidazole, pyrazine, and nitrile functional groups into one conjugated heterocycle for materials exhibiting NIR emission, TADF, and/or room-temperature phosphorescence (RTP).
Item Metadata
Title |
Development of materials exhibiting thermally activated delayed fluorescence and room-temperature phosphorescence
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2023
|
Description |
Materials with interesting optical properties are a critical area of study, owing to the dire demand from optoelectronic and therapeutic applications. Three donor-acceptor compounds based on the imidazo-pyrazine-5,6-dicarbonitrile (IPDC) acceptor were synthesized. The IPDC emitters exhibit blue to near-infrared (NIR) emission with up to 54% photoluminescent quantum yield. 9,9-Dimethyl-9,10-dihydroacridine (ACR), phenoxazine (POX), and phenothiazine (PTZ) served as electron donors. IPDC-POX displayed NIR emission in toluene solution, while showing room-temperature phosphorescence in the solid state. IPDC-ACR exhibited yellow thermally activated delayed fluorescence. Interestingly, dual-emissive behavior as well as excitation-dependent thermally activated delayed fluorescence (TADF) was found for IPDC-PTZ, arising from the two conformers of phenothiazine derivatives. Overall, this work describes a novel strong electron acceptor from the fusion of imidazole, pyrazine, and nitrile functional groups into one conjugated heterocycle for materials exhibiting NIR emission, TADF, and/or room-temperature phosphorescence (RTP).
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2023-12-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0437991
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2024-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International