UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Pelvic floor muscle activity during exoskeleton-assisted walking in controls and individuals with motor-complete spinal cord injury : feasibility considerations and characterization Zhou, Xueqing

Abstract

Background: The pelvic floor muscles (PFM) are important for maintaining continence and a potential therapeutic target for bladder management after spinal cord injury (SCI). Locomotor training could be beneficial for bladder outcomes in people with motor-complete SCI (mcSCI), but it remains unclear if reported improvements are related to the PFM. The PFM are co-activated with abdominal and gluteal muscles, and active during regular walking in able-bodied controls; however, we do not fully understand if exoskeletons used for gait rehabilitation that require more active engagement of the trunk muscles (e.g., the Ekso), could elicit more PFM activity compared to the Lokomat, which restricts trunk movement. Further, considering the invasiveness of the necessary procedures to record PFM activity, establishing the feasibility of the surface PFM electromyography (EMG) self-setup for dynamic tasks in controls will facilitate work in this area. Objectives: To (1) determine the feasibility of PFM EMG self-setup in controls; (2) characterize PFM activation patterns with respect to exoskeleton device (Lokomat vs. Ekso) in controls; and (3) explore the presence of PFM activity during exoskeleton-assisted walking in people with mcSCI. Methods: Eleven able-bodied adults and 3 SCI participants enrolled in this within-subject, cross-sectional study. We recorded EMG from the PFM and lower back, abdominal, gluteal, and leg muscles, as well as pelvis acceleration, during walking in the Lokomat and Ekso at different speeds. Control participants completed a survey on their experiences related to the PFM EMG self-setup. Results: In controls, all except one had a left-right difference in signal quality during walking with the PFM EMG self-setup. PFM activity was 53% and 63% higher during walking in the Ekso than Lokomat at the slow and fast speeds, respectively. Visual inspection revealed higher PFM EMG amplitude with greater pelvis acceleration and trunk and gluteal muscle activation. Both the Lokomat and Ekso elicited PFM activity in SCI participants. Conclusion: PFM EMG setup by a trained professional might be necessary to ensure signal quality during dynamic tasks. The Ekso is more effective in eliciting PFM activity in controls, and further investigation is needed to better understand this phenomenon in people with mcSCI.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International