- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Epigenomic programming in early fetal brain development
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Epigenomic programming in early fetal brain development Li, Luolan
Abstract
A comprehensive understanding of gene regulatory networks in the developing human brain provides a foundation for interpreting pathogenic deregulation. Here we analyzed the complete epigenomes and transcriptomes of dissected brain regions and primary neural progenitor cells (NPCs) derived from cortex and ganglionic eminence (GE) of four human fetuses including a pair of monozygotic twins. Epigenetic regulatory states were compared between NPCs derived from cortex and GE, across developmental stages, and between monozygotic twins. Comparisons across developmental stages reveal an increase in active epigenetic states, transcription factor activities and gene transcription with increasing developmental stage. NPCs derived from different brain regions retained brain region and gestational week specific regulatory states. We also found evidence of divergent epigenetic signatures between monozygotic twins before midgestation.
Item Metadata
Title |
Epigenomic programming in early fetal brain development
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2022
|
Description |
A comprehensive understanding of gene regulatory networks in the developing human brain provides a foundation for interpreting pathogenic deregulation. Here we analyzed the complete epigenomes and transcriptomes of dissected brain regions and primary neural progenitor cells (NPCs) derived from cortex and ganglionic eminence (GE) of four human fetuses including a pair of monozygotic twins. Epigenetic regulatory states were compared between NPCs derived from cortex and GE, across developmental stages, and between monozygotic twins. Comparisons across developmental stages reveal an increase in active epigenetic states, transcription factor activities and gene transcription with increasing developmental stage. NPCs derived from different brain regions retained brain region and gestational week specific regulatory states. We also found evidence of divergent epigenetic signatures between monozygotic twins before midgestation.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-11-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0422008
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2023-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International