- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Online contention resolution schemes for matchings...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Online contention resolution schemes for matchings and matroids Ramezani, Iliad
Abstract
We investigate the problem of designing (preferably optimal) online contention resolution schemes (OCRSs). They are a powerful framework for optimization under various combinatorial constraints such as matroids, matchings, knapsacks and their intersections. OCRSs immediately imply prophet inequalities in Bayesian online selection problem. They also have other important applications such as stochastic probing and oblivious posted price mechanisms. We present several novel OCRSs which improve the current state-of-the-art algorithms. We design an optimal 0.5-selectable OCRS over matroids with rank 2, and another optimal 0.5-selectable OCRS over transversal matroids. Previously the best result applicable to these types of matroids was a 0.25-selectable OCRS. Furthermore, we design a 1/(k+1)-selectable OCRS over matchings in k-partite hypergraphs.
Item Metadata
Title |
Online contention resolution schemes for matchings and matroids
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
We investigate the problem of designing (preferably optimal) online contention resolution schemes (OCRSs). They are a powerful framework for optimization under various combinatorial constraints such as matroids, matchings, knapsacks and their intersections. OCRSs immediately imply prophet inequalities in Bayesian online selection problem. They also have other important applications such as stochastic probing and oblivious posted price mechanisms.
We present several novel OCRSs which improve the current state-of-the-art algorithms.
We design an optimal 0.5-selectable OCRS over matroids with rank 2, and another optimal 0.5-selectable OCRS over transversal matroids. Previously the best result applicable to these types of matroids was a 0.25-selectable OCRS. Furthermore, we design a 1/(k+1)-selectable OCRS over matchings in k-partite hypergraphs.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-09-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0401971
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International