UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Timing pulsars and detecting radio transients with CHIME Good, Deborah C.

Abstract

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit telescope located at the Dominion Radio Astrophysical Observatory in Kaleden, BC. Though initially designed to map redshifted neutral hydrogen and constrain dark energy, it also supports several commensal science projects. This thesis focuses on work conducted with the CHIME/FRB fast radio burst searching backend and the CHIME/Pulsar pulsar timing backend. This thesis focuses on pulsars and fast radio bursts. Pulsars are rapidly rotating, highly magnetized neutron stars, the remnants of massive stars following their supernova explosions. Fast Radio bursts are mysterious millisecond duration radio transients, originating from outside the Milky Way Galaxy. Although their origin is still unknown, evidence is mounting that FRBs also originate from highly magnetized neutron stars known as magnetars. First, we discuss ongoing efforts to integrate CHIME/Pulsar daily cadence pulsar timing data into large-scale pulsar timing datasets maintained by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is engaged in a long-term effort to detect gravitational wave signals from supermassive black hole mergers via pulsar timing. The full NANOGrav array consists of approximately 70 sources; in this initial work, we present timing solutions from CHIME/Pulsar data eight sources. These initial results are promising and suggest a bright future for CHIME/Pulsar-NANOGrav data combination. We then discuss new pulsars and rotating radio transients (RRATs) discovered via detection of single pulses by CHIME/FRB. CHIME/FRB is ideally situated to detect sources with substantial periods of intermittency or high levels of transience. CHIME/Pulsar's ability to track sources digitally allows us to follow-up initial detections with more conventional search mode observations. The combined effect has allowed us to discover and characterize seven new sources so far. Finally, we discuss observations conducted with the Arecibo Observatory's 300-m single dish radio telescope, following-up low declination FRBs discovered with CHIME/FRB. This work focused on better understanding repeating FRBs by observing a small number of known repeater and some bursts with repeater-like structure in-dept. It did not result in the detection of new bursts from these sources, but it allows us to constrain the repetition rate of these sources.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International