UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

From mice to children : investigating involvement of the cerebellum in developmental coordination disorder and cerebellar changes with rehabilitation Gill, Kamaldeep

Abstract

Developmental coordination disorder (DCD) significantly impairs a child’s ability to learn motor skills and to perform everyday activities. The cause of DCD is unknown; however, evidence suggests that the cerebellum may be involved. To date, no studies have specifically examined cerebellar structure in this population. Thus, this dissertation aims to address this gap by focusing on cerebellar involvement in DCD over three studies. First, I used a mouse model as proof of principle to establish the role of the cerebellum in DCD-like motor impairments. Next, I explored structural differences in the cerebellum in children with DCD compared to typically developing children. I then investigated changes in cerebellar structure in children with DCD before and after 10 weeks of rehabilitation intervention known as Cognitive Orientation to daily Occupational Performance (CO-OP). This is one of the most effective treatments for children with DCD, but the neural mechanisms underlying this approach are largely unknown. The first study revealed that mice with smaller cerebellar volume had impairments in fine and/or gross motor coordination and motor learning. The second study showed that, compared to typically developing children, children with DCD showed less grey matter volume in affective (right VIIb lobule), cognitive (right/left crus I, right crus II), and motor regions (left VI and right VIIIa lobules) of the cerebellum. Lower grey matter volume was correlated to lower motor abilities. After CO-OP intervention, grey matter volume increased in the brainstem as well as in cognitive (right crus II) and motor (right and left lobule VIIIb and lobule IX) regions of the cerebellum Additionally, improvements in movement quality, measured by the Performance Quality Rating Scale, predicted increases in grey matter volume in the right crus II, right lobule VIIb, and right and left lobule VIIIb, and vermis IX. These are the first studies to use a mouse model of DCD and to confirm that cerebellar volume differs in children with DCD. More importantly, results also showed that CO-OP increased cerebellar grey matter volume, which was associated with improved movement quality. These novel findings contribute to our understanding of DCD and provide neuroscientific evidence for the CO-OP approach.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International