- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Ultracold nitric oxide molecular plasma : characteristic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Ultracold nitric oxide molecular plasma : characteristic response to time-varying electric fields Aghigh, Seyed Mahyad
Abstract
Not long after metastable xenon was photoionized in a magneto-optical trap, groups in Europe and North America found that similar states of ionized gas evolved spontaneously from state-selected Rydberg gases of high principal quantum number. Studies of atomic xenon and molecular nitric oxide entrained in a supersonically cooled molecular beam subsequently showed much the same final state evolved from a sequence of prompt Penning ionization and electron impact avalanche to plasma, well-described by coupled rate-equation simulations. However, measured over longer times, the molecular ultracold plasma (UCP) was found to exhibit an anomalous combination of very long lifetime and very low apparent electron temperature. In this thesis I summarize early developments in the study of UCP formed by atomic and molecular Rydberg gases, and then I detail observations as they combine to characterize properties of the nitric oxide molecular UCP that appear to call for an explanation beyond the realm of conventional plasma physics. I also explain how I leveraged a radio frequency electric field to understand the causes of classically-unexplainable behavior of our molecular system.
Item Metadata
Title |
Ultracold nitric oxide molecular plasma : characteristic response to time-varying electric fields
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Not long after metastable xenon was photoionized in a magneto-optical trap, groups in Europe and North America found that similar states of ionized gas evolved spontaneously from state-selected Rydberg gases of high principal quantum number. Studies of atomic xenon and molecular nitric oxide entrained in a supersonically cooled molecular beam subsequently showed much the same final state evolved from a sequence of prompt Penning ionization and electron impact avalanche to plasma, well-described by coupled rate-equation simulations. However, measured over longer times, the molecular ultracold plasma (UCP) was found to exhibit an anomalous combination of very long lifetime and very low apparent electron temperature. In this thesis I summarize early developments in the study of UCP formed by atomic and molecular Rydberg gases, and then I detail observations as they combine to characterize properties of the nitric oxide molecular UCP that appear to call for an explanation beyond the realm of conventional plasma physics. I also explain how I leveraged a radio frequency electric field to understand the causes of classically-unexplainable behavior of our molecular system.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-03-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0396418
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NoDerivatives 4.0 International