UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Predicting occlusal force and area through a biomechanical simulation of mastication and controlled study Borgard, Heather

Abstract

Currently, most evaluations of patient outcome following mandibular reconstructive surgery are defined by a combination of qualitative analyses consisting of patient-reported functional ability and masticatory performance. Metrics such as occlusal pressure and jaw kinematics provide quantitative assessments of masticatory function, facilitating a more comprehensive evaluation of patient outcomes. This thesis proposes a novel virtual mastication framework for evaluating occlusal force and area based on metrics of masticatory force and kinematics taken in a clinical setting. Statistical shape modeling was used to develop a mandible atlas based on the morphological averages which contribute to both universal model creation and prediction of missing anatomy. The simulation was able to predict clinically verified maximum occlusal forces and contact areas based on data inputs of intraoral dentition scans and jaw constraints provided through a controlled study of healthy volunteers. In assembly with this framework, a validation study of an occlusal force and contact area measurement system (Dental Prescale II) was performed to gain principal masticatory function information with measured accuracy. This work serves as a foundation for implementing virtual tools within the maxillofacial reconstructive surgery clinical workflow.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International