- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Heat flow and late-stage volcanism at Aramaiti Corona,...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Heat flow and late-stage volcanism at Aramaiti Corona, Venus Russell, Megan B.
Abstract
In this thesis, an investigation of volcanism associated with Aramaiti Corona, Venus, is presented. Two features were identified in images and altimetry data collected during the NASA Magellan mission, which orbited Venus 1990–1994, and are studied here using higher resolution topography later derived from stereo SAR images. The first is Narina Tholi, a steep-sided volcanic dome located on the western fracture annulus of Aramaiti Corona. Around this dome is a topographic moat characteristic of a lithospheric flexural signature. By modelling lithospheric flexure on terrestrial planets and icy moons, subsurface heat flow, which is an important metric in investigating a thermal history, can be estimated. The topographic signature is compared with models for the flexure of a thin elastic shell to estimate the lithospheric thickness and the associated heat flow. The results for Narina Tholi indicate a thinner lithospheric thickness and correspondingly higher heat flow than previously estimated regionally from flexure around Aramaiti Corona. This implies a locally higher heat flow, consistent with the emplacement of Narina Tholi late in the corona’s evolution. The second feature is associated with the north portion of Aramaiti Corona and is inferred to be the result of volcanism associated with the corona fracture annulus. This suggests a different style of volcanism at Aramaiti Corona than has been previously observed, one that is possibly late-stage.
Item Metadata
Title |
Heat flow and late-stage volcanism at Aramaiti Corona, Venus
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
In this thesis, an investigation of volcanism associated with Aramaiti Corona, Venus, is presented. Two features were identified in images and altimetry data collected during the NASA Magellan mission, which orbited Venus 1990–1994, and are studied here using higher resolution topography later derived from stereo SAR images. The first is Narina Tholi, a steep-sided volcanic dome located on the western fracture annulus of Aramaiti Corona. Around this dome is a topographic moat characteristic of a lithospheric flexural signature. By modelling lithospheric flexure on terrestrial planets and icy moons, subsurface heat flow, which is an important metric in investigating a thermal history, can be estimated. The topographic signature is compared with models for the flexure of a thin elastic shell to estimate the lithospheric thickness and the associated heat flow. The results for Narina Tholi indicate a thinner lithospheric thickness and correspondingly higher heat flow than previously estimated regionally from flexure around Aramaiti Corona. This implies a locally higher heat flow, consistent with the emplacement of Narina Tholi late in the corona’s evolution. The second feature is associated with the north portion of Aramaiti Corona and is inferred to be the result of volcanism associated with the corona fracture annulus. This suggests a different style of volcanism at Aramaiti Corona than has been previously observed, one that is possibly late-stage.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-03-23
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0389618
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2020-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International