- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- On amortized inference in large-scale simulators
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
On amortized inference in large-scale simulators Naderiparizi, Saeid
Abstract
Motivated by the problem of amortized inference in large-scale simulators, we introduce a probabilistic programming library that brings us closer to this goal. This library enables us to perform Bayesian inference on any simulator written in a wide variety of programming languages, with minimal modification to the simulator's source code. However, there are challenges in achieving this goal in its most general meaning. In particular, we address the obstacles caused by unbounded loops. Existing approaches to amortized inference in probabilistic programs with unbounded loops can produce estimators with infinite variance. An instance of this is importance sampling inference in programs that explicitly include rejection sampling as part of the user-programmed generative procedure. We develop a new and efficient amortized importance sampling estimator. We prove finite variance of our estimator and empirically demonstrate our method's correctness and efficiency compared to existing alternatives on generative programs containing rejection sampling loops and discuss how to implement our method in a generic probabilistic programming framework.
Item Metadata
Title |
On amortized inference in large-scale simulators
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
Motivated by the problem of amortized inference in large-scale simulators, we introduce a probabilistic programming library that brings us closer to this goal. This library enables us to perform Bayesian inference on any simulator written in a wide variety of programming languages, with minimal modification to the simulator's source code. However, there are challenges in achieving this goal in its most general meaning. In particular, we address the obstacles caused by unbounded loops. Existing approaches to amortized inference in probabilistic programs with unbounded loops can produce estimators with infinite variance. An instance of this is importance sampling inference in programs that explicitly include rejection sampling as part of the user-programmed generative procedure. We develop a new and efficient amortized importance sampling estimator. We prove finite variance of our estimator and empirically demonstrate our method's correctness and efficiency compared to existing alternatives on generative programs containing rejection sampling loops and discuss how to implement our method in a generic probabilistic programming framework.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-01-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0388330
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2020-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International