Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structural characterisation and geochronological constraints on the Wager shear zone, northwestern Hudson… Therriault, Isabelle 2019

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2019_may_therriault_isabelle.pdf [ 30.03MB ]
Metadata
JSON: 24-1.0378539.json
JSON-LD: 24-1.0378539-ld.json
RDF/XML (Pretty): 24-1.0378539-rdf.xml
RDF/JSON: 24-1.0378539-rdf.json
Turtle: 24-1.0378539-turtle.txt
N-Triples: 24-1.0378539-rdf-ntriples.txt
Original Record: 24-1.0378539-source.json
Full Text
24-1.0378539-fulltext.txt
Citation
24-1.0378539.ris

Full Text

 STRUCTURAL CHARACTERISATION AND GEOCHRONOLOGICAL CONSTRAINTS ON THE WAGER SHEAR ZONE, NORTHWESTERN HUDSON BAY, NUNAVUT  by  Isabelle Therriault  HBSc, Lakehead University, 2010   A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF  MASTER OF SCIENCE  in  THE COLLEGE OF GRADUATE STUDIES  (Earth and Environmental Sciences)     THE UNIVERSITY OF BRITISH COLUMBIA  (Okanagan)  April 2019   © Isabelle Therriault, 2019  ii  The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis/dissertation entitled: Structural Characterisation and Geochronological Constraints on the Wager Shear Zone, Northwestern Hudson Bay, Nunavut  submitted by Isabelle Therriault                        in partial fulfillment of the requirements of   the degree of  Master of Science    Dr. Kyle Larson, I. K. Barber School of Arts and Sciences Supervisor Dr. John Greenough, I. K. Barber School of Arts and Sciences  Supervisory Committee Member Dr. Yuan Chen, I. K. Barber School of Arts and Sciences Supervisory Committee Member Dr. Deanne van Rooyen, Cape Breton University University Examiner   iii  Abstract The Proterozoic Wager shear zone (WSZ) is a major zone of high strain located on the northwestern coast of Hudson Bay, Nunavut. New geological mapping was conducted during the summer of 2017 to characterise the timing, duration and kinematics of the deformation recorded by the WSZ and to interpret this new information in the regional tectonic context. At the outcrop scale, the shear zone is marked by a steep, east-west striking mylonitic foliation and a sub-horizontal mineral-stretching lineation and displays abundant dextral shear-sense indicators. Fieldwork outlined boundaries of an apparent strain gradient within the shear zone that generally correlates with microstructural observations. Paleopiezometry investigations of feldspar suggest that deformation occurred in the dislocation creep regime for that phase, near the transition into the diffusion creep field. It also revealed that strain rates recorded by the WSZ are consistent with those from other ductile high-strain zones.  Zr-in-titanite thermometry of a suite of granodioritic rocks establish that temperatures of deformation exceeded 750°C, in good agreement with microstructural observations and results from the quartz c-axis fabric opening-angle deformation thermometer. Quartz fabrics from mylonitic specimens also indicate a local component of constrictional strain to the deformation.  The timing of deformation within the shear zone is informed by titanite petrochronology results from specimens in which cores, as well as recrystallised domains within the crystals form two age populations, a younger, ca. 1755–1740 Ma age population and an older, ca. 1815 Ma population. The younger population is only recorded in specimens from within and at the margin of the WSZ and the interval is interpreted to represent the timing of high deformation along the structure, earlier than what was previously thought.  Deformation along the WSZ is coeval with dextral strike-slip movement along the Amer mylonite zone post-1750 Ma, widespread heating across the western Churchill Province, emplacement of the Kivalliq igneous suite (1.77–1.73 Ga) and the final phase of exhumation along shear zones that make up the Snowbird tectonic zone.   iv  Lay Summary Bedrock mapping was conducted in the summer of 2017 near Wager Bay, on the northwestern coast of Hudson Bay, Nunavut. Fieldwork focused on the Wager shear zone, a large structure which extends ~450 km from Southampton Island, through Wager Bay and farther inland toward the west. Part of the work included the collection of rock specimens for various analyses, including determination of the age of the rocks and examination of the microstructures as they relate to pressure and temperature conditions during deformation. Results indicate that the Wager shear zone was actively deforming between 1740 and 1755 million years ago, which is earlier than what was previously thought but is consistent with deformation along other main structures in the northwestern Hudson Bay area.    v  Preface As part of this project and through an agreement with the Canada-Nunavut Geoscience Office (CNGO), two publications were submitted to the CNGO’s annual Summary of Activities volume.  I, Isabelle Therriault, confirm that I am the author of those publications and that I conducted the fieldwork, analysed the research data and prepared the manuscripts.  Preliminary results of fieldwork and geochronological analyses on zircon were presented in those manuscripts while the finalised data is included here in Chapter 4, Section 4.1 (Fieldwork) and Section 4.5 (Zircon Geochronology), respectively.   References:  Therriault, I., Steenkamp, H.M., Larson, K.P., 2017. New mapping and initial structural characterization of the Wager shear zone, north-western Hudson Bay, Nunavut. In: Summary of Activities 2017. Canada-Nunavut Geoscience Office, 1–12. Therriault, I., Steenkamp, H.M., Larson, K.P., Cottle, J.M., 2018. Geochronological constraints on deformation in the Wager shear zone, northwestern Hudson Bay, Nunavut. In: Summary of Activities 2018. Canada-Nunavut Geoscience Office, 1–14.    vi  Table of Contents Abstract ........................................................................................................................................................ iii Lay Summary ............................................................................................................................................... iv Preface .......................................................................................................................................................... v Table of Contents ......................................................................................................................................... vi List of Tables ................................................................................................................................................ x List of Figures .............................................................................................................................................. xi Acknowledgements .................................................................................................................................... xiv Dedication ................................................................................................................................................... xv Chapter 1: Introduction ................................................................................................................................. 1 1.1 Problem and Objectives ................................................................................................................ 3 1.1.1  Statement of Problem .................................................................................................... 3 1.1.2  Objectives...................................................................................................................... 3 1.2 Thesis Organisation ...................................................................................................................... 3 Chapter 2: Geological Background ............................................................................................................... 5 2.1 Regional Geological Setting ......................................................................................................... 5 2.1.1  Regional Geology ......................................................................................................... 5 2.1.2  Tectonic Setting ............................................................................................................ 5 2.1.3  Hudson Suite Granitoids and Kivalliq Igneous Suite.................................................. 10 2.2  Regional Major Structures .......................................................................................................... 11 2.2.1  Snowbird Tectonic Zone ............................................................................................. 11 2.2.2  Chesterfield Shear Zone .............................................................................................. 13 2.2.3  Amer Mylonite Zone ................................................................................................... 13 2.2.4  Other Shear and Fault Zones ....................................................................................... 14 2.3  Previous Work Around the Wager Shear Zone ........................................................................... 16 2.3.1  Lithology ..................................................................................................................... 16 2.3.2  Structural Geology ...................................................................................................... 18 2.3.3  Metamorphism ............................................................................................................ 19 2.3.4  Geochronology ............................................................................................................ 19 2.3.5  Geophysical studies ..................................................................................................... 20 2.3.6  The Southampton Island Segment .............................................................................. 21 vii  2.4  Regional Significance of the Wager Shear Zone ........................................................................ 22 Chapter 3: Methodology ............................................................................................................................. 23 3.1  Fieldwork .................................................................................................................................... 23 3.2  Petrography ................................................................................................................................. 23 3.2.1  QEMSCANS ............................................................................................................... 23 3.2.2  Deformation and Microstructures ............................................................................... 23 3.2.3  Paleopiezometry .......................................................................................................... 24 3.3  Quartz CPO ................................................................................................................................. 25 3.4  Titanite Petrochronological Studies ............................................................................................ 26 3.4.1  Titanite the Mineral ..................................................................................................... 26 3.4.2  Mineral Selection ........................................................................................................ 28 3.4.3  LA-MC-ICPMS Split Stream Analysis ....................................................................... 30 3.4.4  Zr-in-Titanite Geothermometry .................................................................................. 31 3.5  Zircon Geochronology ................................................................................................................ 32 3.5.1  Specimen Preparation ................................................................................................. 32 3.5.2  U-Pb Analyses............................................................................................................. 32 3.7.3.  Data Analysis .............................................................................................................. 33 Chapter 4: Results ....................................................................................................................................... 34 4.1  Fieldwork .................................................................................................................................... 34 4.1.1  Rock Types ................................................................................................................. 34 4.1.2  Structure ...................................................................................................................... 39 4.2  General Petrography and Microstructures .................................................................................. 46 4.2.1  QEMSCANS ............................................................................................................... 46 4.2.2  Microstructures ........................................................................................................... 46 4.2.3  Paleopiezometry .......................................................................................................... 51 4.3  Quartz CPO ................................................................................................................................. 60 4.3.1  Fabrics ......................................................................................................................... 60 4.3.2  Opening-Angle Thermometer ..................................................................................... 60 4.4  Titanite Petrochronological Studies ............................................................................................ 64 4.4.1  Titanite Imaging Description ...................................................................................... 64 4.4.2  Titanite Petrochronology ............................................................................................. 71 4.4.3  Zr-in-Titanite Geothermometry .................................................................................. 79 4.5  Zircon Geochronology ................................................................................................................ 84 viii  4.5.1  16WGA-M047A01 ..................................................................................................... 84 4.5.2  17SUB-T004A01 ........................................................................................................ 84 4.5.3  17SUB-T007B01 ........................................................................................................ 87 4.5.4  17SUB-T015B01 ........................................................................................................ 87 4.5.5  17SUB-T035B01 ........................................................................................................ 88 4.5.6  17SUB-T083A01 ........................................................................................................ 88 4.5.7  Th/U Ratios ................................................................................................................. 88 4.5.8  Zircon Geochronology Summary ................................................................................ 90 Chapter 5: Interpretation and Discussion .................................................................................................... 91 5.1  Fieldwork .................................................................................................................................... 91 Rock Types and Structural Analysis ........................................................................................... 91 The Western Extension ............................................................................................................... 91 5.2  Microstructural Analyses ............................................................................................................ 93 Macro- to Microscale and Apparent Strain Gradient .................................................................. 93 Quartz and Feldspar Microstructures .......................................................................................... 93 Paleopiezometry .......................................................................................................................... 93 5.3  Quartz Fabrics and Opening-Angle Thermometry ..................................................................... 94 5.4  Titanite Petrochronological and Thermometry Studies .............................................................. 95 5.5  U-Pb Zircon Geochronology ....................................................................................................... 96 5.6  Implications for the Tectonic History of the Northwestern Hudson Bay Region ....................... 97 Chapter 6: Conclusions and Further Work ................................................................................................. 99 6.1  Recommendations for Further Work ........................................................................................ 100 Field Mapping ........................................................................................................................... 100 Pressure Estimates..................................................................................................................... 100 Vorticity Studies ....................................................................................................................... 100 Deformation – Regional Correlations ....................................................................................... 101 References ................................................................................................................................................. 102 Appendices ................................................................................................................................................ 121 Appendix A: Outcrop and Station Descriptions .................................................................................. 122 Appendix B: QEMSCANS .................................................................................................................. 128 Appendix C: Thin section descriptions ................................................................................................ 129 Appendix D: Paleopiezometry ............................................................................................................. 134 Appendix E: Quartz CPO .................................................................................................................... 139 ix  Appendix F: Titanite Petrochronology ................................................................................................ 145 Appendix G: U-Pb Zircon Data ........................................................................................................... 207    x  List of Tables Table 4.1:  Average mineral grainsize from QEMSCAN ........................................................................... 46 Table 4.2:  Results of differential stress calculations .................................................................................. 55 Table 4.3:  Results of quartz c-axis fabric opening-angle measurements ................................................... 63 Table 4.4:  Results of U-Pb titanite age data ............................................................................................... 72 Table 4.5:  Summary of U-Pb zircon age data ............................................................................................ 84  Table A.1: Outcrop and station descriptions ............................................................................................. 122  Table D.1: Paleopiezometry dimeter calculations .................................................................................... 134 Table D.2: Parameters used in flow law calculations ............................................................................... 138 Table D.3: Results of strain rate calculations ........................................................................................... 138  Table E.1:  Quartz c-axis fabric descriptions ............................................................................................ 139  Table F.1:  Titanite LA-MC-ICPMS data ................................................................................................. 172 Table F.2:  Zr-in-titanite geothermometry data ........................................................................................ 205  Table G.1: U-Pb zircon data ..................................................................................................................... 207 Table G.2: U-Pb data analyses for 17SUB-T007B01 ............................................................................... 213   xi  List of Figures  Figure 1.1:    Overview of the geology of northeastern Canada ................................................................... 2  Figure 2.1:    Geology of the northwestern Hudson Bay area ....................................................................... 6 Figure 2.2:    Residual total-magnetic-field anomaly map around the Tehery-Wager area ........................ 15 Figure 2.3:    Historical U-Pb data and strain intensity interpretation along the WSZ ............................... 17  Figure 4.1:    Maps showing stations and sampling locations ..................................................................... 35 Figure 4.2:    Photographs of granodiorite orthogneiss in the vicinity of the Wager shear zone ................ 37 Figure 4.3:    Photographs of granitic dykes ............................................................................................... 38 Figure 4.4:    Photographs of large granitic intrusions ................................................................................ 40 Figure 4.5:    Contoured stereonets of foliation and lineation measurements ............................................. 41 Figure 4.6:    Field photographs of structures in the vicinity of the Wager shear zone .............................. 42 Figure 4.7:    Field photographs of outcrop 17SUB-T101 .......................................................................... 44 Figure 4.8:    Field photographs of structures north of the Wager shear zone ............................................ 45 Figure 4.9:    Photomicrographs of microstructures observed in rocks from the WSZ .............................. 48 Figure 4.10:  Photomicrographs of microstructures observed in rocks outside of the WSZ ...................... 50 Figure 4.11:  Boxplots of the grainsize distribution .................................................................................... 52 Figure 4.12:  Histograms of diameter frequency for paleopiezometry on feldspars ................................... 53 Figure 4.13:  Hypothetical grainsize distribution ........................................................................................ 54 Figure 4.14:  Strain rates for 6 specimens ................................................................................................... 56 Figure 4.15:  Influence of temperature on strain rate, wet anorthite (An100) flow law ............................... 58 Figure 4.16:  Deformation mechanism map for feldspars at 750°C ........................................................... 59 Figure 4.17:  Examples of quartz c-axis fabrics observed in specimens from the WSZ ............................ 61 Figure 4.18:  Opening-angle thermometry of quartz c-axis fabrics ............................................................ 62 Figure 4.19:  Titanite petrochronology, 17SUB-T077A01, Site B ............................................................. 65 Figure 4.20:  Titanite petrochronology, 17SUB-T077A01, Site F.............................................................. 66 Figure 4.21:  Titanite petrochronology, 17SUB-T072A01, Site B ............................................................. 67 Figure 4.22:  Titanite petrochronology, 17SUB-T069A01, Site B ............................................................. 68 Figure 4.23:  Titanite petrochronology, 17SUB-T072A01, Site F.............................................................. 69 xii  Figure 4.24:  Titanite petrochronology, 17SUB-T077A01, Site C ............................................................. 70 Figure 4.25:  Titanite U-Pb data for 17SUB-T020A01 ............................................................................... 73 Figure 4.26:  Titanite U-Pb data for 17SUB-T045B01 ............................................................................... 74 Figure 4.27:  Titanite U-Pb data for 17SUB-T069A01 ............................................................................... 75 Figure 4.28:  Titanite U-Pb data for 17SUB-T072A01 ............................................................................... 76 Figure 4.29:  Titanite U-Pb data for 17SUB-T077A01 ............................................................................... 77 Figure 4.30:  Plot of 207Pb-corrected 206Pb/238U age (Ma) vs. Zr (ppm) ...................................................... 80 Figure 4.31:  Boxplots of Zr-in-titanite (°C), Zr (ppm) and age (Ma) ........................................................ 81 Figure 4.32:  Plot of Zr (ppm) or age (Ma) vs. diameter (μm) ................................................................... 83 Figure 4.33:  Backscattered-electron (BSE) images of representative zircon grains .................................. 85 Figure 4.34:  Concordia plots of U-Pb zircon geochronology results ......................................................... 86 Figure 4.35:  Uranium and Th concentrations and Th/U ratios .................................................................. 89  Figure 5.1:    Regional geology of the northwestern Hudson Bay area ...................................................... 92  Figure B.1:   QEMSCAN thin section scans ............................................................................................. 128  Figure D.1:   Detailed histograms of diameter frequency and statistics for feldspar paleopiezometry .... 135  Figure E.1:   Stereonets of quartz c-axis fabrics observed in specimens from the WSZ .......................... 141  Figure F.1:   Titanite petrochronology, 17SUB-T020A01, Site B ............................................................ 145 Figure F.2:   Titanite petrochronology, 17SUB-T020A01, Site C1 .......................................................... 146 Figure F.3:   Titanite petrochronology, 17SUB-T020A01, Sites D1-D2 .................................................. 147 Figure F.4:   Titanite petrochronology, 17SUB-T020A01, Site G1 .......................................................... 148 Figure F.5:   Titanite petrochronology, 17SUB-T020A01, Site G2 .......................................................... 149 Figure F.6:   Titanite petrochronology, 17SUB-T020A01, Site G4 .......................................................... 150 Figure F.7:   Titanite petrochronology, 17SUB-T045B01, Site A ............................................................ 151 Figure F.8:   Titanite petrochronology, 17SUB-T045B01, Site B ............................................................ 152 Figure F.9:   Titanite petrochronology, 17SUB-T069A01, Site C ............................................................ 153 Figure F.10: Titanite petrochronology, 17SUB-T069A01, Site D ............................................................ 154 Figure F.11: Titanite petrochronology, 17SUB-T069A01, Site E2 .......................................................... 155 Figure F.12: Titanite petrochronology, 17SUB-T069A01, Site E3 .......................................................... 156 xiii  Figure F.13: Titanite petrochronology, 17SUB-T069A01, Site F ............................................................ 157 Figure F.14: Titanite petrochronology, 17SUB-T069A01, Site H1 .......................................................... 158 Figure F.15: Titanite petrochronology, 17SUB-T069A01, Site H2 .......................................................... 159 Figure F.16: Titanite petrochronology, 17SUB-T072A01, Site A ............................................................ 160 Figure F.17: Titanite petrochronology, 17SUB-T072A01, Site C ............................................................ 161 Figure F.18: Titanite petrochronology, 17SUB-T072A01, Site D ............................................................ 162 Figure F.19: Titanite petrochronology, 17SUB-T072A01, Site E ............................................................ 163 Figure F.20: Titanite petrochronology, 17SUB-T077A01, Site A1 .......................................................... 164 Figure F.21: Titanite petrochronology, 17SUB-T077A01, Site E ............................................................ 165 Figure F.22: Site locations for all specimens ............................................................................................ 166            xiv  Acknowledgements  I wish to express my thanks and appreciation to the following people for the encouragement and assistance they provided during the past two years. I would first like to thank my supervisor, Dr. Kyle Larson, for providing support, insight and guidance throughout this project. I would also like to thank Holly Steenkamp for all the help. Mapping along the Wager shear zone, living in Iqaluit for a summer and exploring a new carving stone deposit in north Baffin were all truly unique opportunities and I am very grateful I got the chance to see a part of our country many don’t. I am thankful for the support of the rest of my supervisory committee, Dr. John Greenough and Dr. Yuan Chen. I also want to extend my thanks to all the members of the Structural and Tectonics Group at UBCO for all the help, for answering all my questions and for constructive discussions, and to Dr. Mark Button and David Arkinstall from the FiLTER facilities.  I also want to say a special thank you to a few people. The first is Dr. Mary Louise Hill; thanks for your encouragement and guidance, for school but also life and existential questions, since my very first semester at Lakehead. Also from Lakehead, I would like to salute the late Dr. Graham Borradaile who was my first structural geology professor and who told me I should pursue in the field of structural geology. It was a windy and convoluted road, but I am finally there. Finally, a special thank you to Sonja Lednicky who taught me so much in terms of database management, organisation and GIS tricks at my previous job. Those skills were tremendously helpful managing such a large dataset here.  I am also deeply grateful to my friends and family for being there at all times, especially my partner Adam. The past two years have been fun and sometimes challenging, but thanks for all your help and for taking care of everything. I am very excited to be embarking on a new episode of this life adventure with you.  This project was supported by the Canada-Nunavut Geoscience Office through funding from the Canadian Northern Economic Development Agency’s Strategic Investments in Northern Economic Development program.  xv  Dedication J’aimerais dédier ce mémoire au seul et unique Peewee, qui nous a malheureusement quitté au tout début de cette aventure.   Image by author     1  Chapter 1: Introduction The Wager shear zone (WSZ) gets its name from Wager Bay, a 100-km long saltwater inlet in the Kivalliq Region of Nunavut, located on the northwestern coast of Hudson Bay (Fig. 1.1). Wager Bay was explored by Christopher Middleton in 1741–42 during an arctic voyage on a quest for the elusive northwest passage (Coats and Middleton, 1852; Hall, 1872). He gave the bay its name in honour of Sir Charles Wager, First Lord Commissioner of the Admiralty at the time (Coats and Middleton, 1852).  Wager Bay is easily recognisable on a map due to its elbow shape formed by its fairly straight and steep southern and southwestern shorelines (Fig. 1.1). At its eastern end, it is connected to Roes Welcome Sound in Hudson Bay by a polynya, a tidal channel, and is joined to the brackish Ford Lake on its western end through a reversing waterfall (Henderson et al., 1986; Jefferson et al., 1993). The southern and southwestern shorelines are fairly straight and steep and the water within the bay is generally deep although bathymetric studies are limited (Jefferson et al., 1993). Wager Bay is almost completely surrounded by Ukkusiksalik National Park (Fig. 1.1), which was named for the soapstone (steatite) found within its boundaries; in Inuktitut, ukkusiksalik means “the place where there is stone that can be used to carve pots and oil lamps” (Mouland and Manseau, 2013).  It is also interesting to note that Wager Bay is a seismic zone. In fact, a northwest-oriented seismogenic zone extends from Ungava Bay through Southampton Island to Chantrey Inlet, just south of Boothia Peninsula (Fig. 1.1), straddling Wager Bay. There have also been a number of earthquakes recorded under Roes Welcome Sound and these are thought to be the result of glacial isostatic adjustment, with slip movement often occurring on pre-existing structures (Steffen et al., 2012; Snyder et al., 2015).  The WSZ occurs along the southern boundary of the bay and was first recognised during reconnaissance-scale mapping conducted in the 1960s (Heywood, 1967a, b), where it was identified as the Meadowbank fault, and thought to be part of the larger McDonald-Amer-Meadowbank fault system (Heywood and Schau, 1978). Detailed, targeted mapping and U-Pb geochronology carried out in the late 1980s and early 1990s provided a maximum age of shearing and further information about the shear zone (Henderson et al., 1986; Derome, 1988; Henderson and Broome, 1990; Henderson and Roddick, 1990; Henderson et al., 1991). It was defined as a transcurrent, dextral zone of high strain that extends west for approximately 450 km from the northeast corner of Southampton Island, across Roes Welcome Sound, along the south coast of Wager Bay and farther inland (Fig. 1.1). Farther west its continuation is more ambiguous; drawn mostly from the interpretation of geophysical data, it has been shown as bending sharply to the southwest and connecting with the Quoich River fault zone (Fig. 1.1; Panagapko et al., 2003; Berman, 2010) and possibly linking up with the Snowbird tectonic zone (Fig. 1.1; Berman et al., 2005) or, alternatively, merging with the Amer mylonite zone (Fig. 1.1; Broome, 1989, 1990). Previous mapping 2   Figure 1.1: Overview of the geology of northeastern Canada, illustrating the distribution of the different cratons as well as major structures in the area (after Paul et al., 2002; Berman et al., 2005, 2010; Mills et al., 2007; Skulski et al., 2018). Abbreviations: AMZ, Amer mylonite zone; CSZ, Chesterfield shear zone; GSLSZ, Great Slave Lake shear zone; MIM, Meta-Incognita microcontinent; mz, magmatic zone; QRFZ, Quoich River fault zone; tz, tectonic zone; WSZ, Wager shear zone. Figure compilation by Isabelle Therriault. 3  focused along the south coast of Wager Bay broadly informed the basic geology, structural trend and geochronological relationships of the shear zone (Section 2.3) but left several questions unanswered regarding the overall timing, kinematics and magnitude of displacement along its length. 1.1 Problem and Objectives 1.1.1  Statement of Problem The origin, structural history and regional significance of the WSZ are not fully understood. As part of the Tehery-Wager geoscience mapping activity of Natural Resources Canada’s (NRCan) Geo-mapping for Energy and Minerals (GEM-2) program Rae activity, a multiyear mapping campaign was carried out in the Tehery Lake–Wager Bay region to fill a number of gaps in the geoscience knowledge of the area. Locations were visited along the WSZ between 2012 and 2016, but it became the sole focus of this MSc research project in 2017. This study seeks to examine the WSZ in detail to investigate its origin, kinematic history and timing of movement, extent, and regional significance with potential correlations in the broader region. 1.1.2  Objectives The main aims of this study were to:  (1) Conduct transects across the WSZ to describe the structural characteristics of deformed rocks, investigate a possible strain gradient and identify the boundaries of the shear zone. (2) Determine the timing of movement within the shear zone.  (3) Characterise the deformation with new field and microstructural data, both qualitative (e.g., microscope) and quantitative (e.g., fabric analyses).  (4) Determine affinities to other main structures in the area. (5) Correlate the timing of movement and exhumation of the WSZ with regional events.  These objectives were achieved by conducting geological mapping in June and July 2017 and collecting specimens for subsequent laboratory, petrographic, microstructural and geochronological analyses that were concluded in December 2018.  1.2 Thesis Organisation  The first portion of this thesis (Chapter 2) outlines the current knowledge and understanding of the regional geological evolution of the northwestern Hudson Bay region and the major structures located near the WSZ. The second portion reports on the methodologies used (Chapter 3), results (Chapter 4), and 4  discussion and interpretation (Chapter 5). Additional analytical and methodological documentation, as well as supporting data, are compiled in the Appendices.   5  Chapter 2: Geological Background The northwestern Hudson Bay region is underlain by Archean and Proterozoic rocks belonging to the western Churchill Province (WCP), which comprises the fault-separated Rae and Hearne domains and the Chesterfield block (Figs. 1.1, 2.1; Hoffman, 1988; Mahan and Williams, 2005; Berman et al., 2007; Regan et al., 2017). While the WCP records a protracted history of magmatism, metamorphism and deformation that extends back into the Archean, the 1.92–1.80 Ga Trans-Hudson Orogen (THO) was the last event to leave a major tectonometamorphic imprint on those rocks (Corrigan et al., 2009). As the Wager shear zone (WSZ) and the area surrounding Wager Bay are part of the Rae domain, the following sections present a brief overview of the geological make-up and evolution of the Rae with a focus on the most recent events that have been variously linked to the WSZ. 2.1 Regional Geological Setting  2.1.1  Regional Geology The Rae craton comprises Paleo- to Neoarchean, amphibolite- to granulite-facies tonalitic to granitic orthogneiss basement rocks unconformably overlain by supracrustal sequences of Archean metavolcanic, clastic and chemical metasedimentary rocks (Fig. 2.1; LeCheminant and Roddick, 1991; Henderson and Thériault, 1994; Zaleski et al., 2000; Skulski et al., 2003; Hartlaub et al., 2005; LaFlamme et al., 2014; Sanborn-Barrie et al., 2014; Liu et al., 2016; Hunter et al., 2018). It is also host to 2.97 Ga, 2.83 Ga and 2.74–2.70 Ga fuchsitic quartzite and komatiite-bearing greenstone belts, which distinguish it from the Hearne (Frisch, 1982; Skulski et al., 2003; Sanborn-Barrie et al., 2014; Hunter et al., 2018), and to localised 2.72–2.68 Ga tonalitic and voluminous 2.63–2.58 Ga monzogranitic plutonic rocks (Frisch, 1982; LeCheminant and Roddick, 1991; Skulski et al., 2003; Hartlaub et al., 2004, 2005; Berman et al., 2007, 2013; Hinchey et al., 2011; LaFlamme et al., 2014; Sanborn-Barrie et al., 2014; Tappe et al., 2014). 2.1.2  Tectonic Setting The Rae domain has experienced a protracted tectonic history with several circum-craton events. The earliest currently recognised tectonic activity in the Rae is dated at 2.94–2.78 Ga and is thought to be related to extension, thinning and deposition associated with a rift/drift transition during which the Rae acted as a continental hinterland to the more ensimatic Hearne domain (Aspler and Chiarenzelli, 1996; Cousens et al., 2004). The lithological and stratigraphic make-up of several of the greenstone belts in the Rae can be correlated and, as such, they are often collectively interpreted as a rifted continental shelf, with concomitant6   Figure 2.1: Geology of the northwestern Hudson Bay area, illustrating the distribution of the Rae, Chesterfield and Hearne domains as well as major structures in the area (after Paul et al., 2002; Mahan and Williams 2005; Berman et al., 2010, 2013; Rainbird et al., 2010; Pehrsson et al., 2013a; LaFlamme et al., 2014; Sanborn-Barrie et al., 2014; Steenkamp et al., 2015, 2016; Wodicka et al., 2015, 2016; Skulski et al., 2018). Abbreviations as in Fig. 1.1; CBC, Cross Bay complex; CMZ, Chantrey mylonite zone; DBC, Daly Bay complex; HI, Hanbury Island shear zone; KC, Kramanituar complex; KLD, Kummel Lake domain; LIBZ, Lyon Inlet boundary zone; sb, supracrustal belt; TSZ, Tyrrell shear zone; UC, Uvauk complex; WLSZ, Walker Lake shear zone. Figure compilation by Isabelle Therriault. 7  volcanism and hydrothermal activity at approximately 2.7 Ga (Jefferson et al., 1993; Hartlaub et al., 2004). This rifting would also correspond to the break-up of a large Paleo- to early Neoarchean supercontinent (Schau and Ashton, 1988; Hartlaub et al., 2004). Recent dating in one of the major greenstone belts in the southern Rae domain, however, yielded significantly younger ages than the other greenstone belts (Ashton et al., 2013), leading to a new tectonic interpretation whereby the belts may have been formed as part of an oceanic plateau (Hunter et al., 2018).  Chesterfield Block and MacQuoid Orogeny Previously referred to as the northwestern Hearne subdomain, the Chesterfield block comprises Neoarchean (<2.74–2.66 Ga) supracrustal and intrusive rocks (Davis et al., 2004, 2006; MacLachlan et al., 2005a; Hanmer et al., 2006) and a localised Mesoarchean crustal component (Loveridge et al., 1988). It also records deformation between 2.66–2.61 Ga (MacLachlan et al., 2005b; Davis et al., 2006). Subsequent plutonism (2.61–2.58 Ga) that is voluminous and widespread within the eastern Rae (part of the Snow Island Suite; Fig. 2.1; Peterson et al., 2015a) stitched the Chesterfield block with the Rae domain sometime after accretion (Berman et al., 2007, 2013). The accretion of the Chesterfield block with the Rae was followed by the 2.56–2.50 Ga MacQuoid Orogeny along the Chesterfield margin of the composite Rae-Chesterfield that is characterised by high-pressure metamorphism (Berman et al., 2000; Stern and Berman, 2000; Berman, 2010) and a distinct tectonic fabric/tectonometamorphic reworking (Berman et al., 2002; MacLachlan et al., 2005b; Davis et al., 2006).  Arrowsmith and Thelon-Taltson Orogenies The western margin of the Rae domain (ca. 2.5–2.4 Ga) is interpreted as a continental arc setting, with an east-dipping subduction zone (Hoffman, 1988; Berman et al., 2005). Collision at ca. 2.40–2.35 Ga of a continental block ended subduction and resulted in the Arrowsmith Orogeny (Berman et al., 2005, 2013). This greenschist- to granulite-facies event had far-reaching effects across the Rae and is recorded from the Queen Maud block (Fig. 1.1; Schultz et al., 2007) to the Committee Bay belt (Fig. 2.1; Berman et al., 2005) and extended as far north as the Boothia Peninsula and the northern part of Baffin Island and south to Lake Athabasca (Fig. 1.1; Berman, 2010).  Following the Arrowsmith Orogeny, the Rae underwent a period of extension and localised rifting (Schau and Ashton, 1988; Rainbird et al., 2010; Pehrsson et al., 2013a) marked by the easterly trending 2.19 Ga Tulemalu–MacQuoid mafic dyke swarm (Fahrig et al., 1984; Tella et al., 1997, 2000; Ernst and Buchan, 2004), and the development of intracratonic sedimentary basins and deposition of the Paleoproterozoic supracrustal assemblages of the Amer, Ketyet, Chantrey and Montresor groups (grouped under Proterozoic undivided supracrustal rocks in Fig. 2.1; Rainbird et al., 2010; Percival et al., 2017). The Thelon and Taltson Orogenies followed on the western margin of the Rae between ca. 2.02–1.91 Ga (Hoffman, 1988; Ross et al., 1991; Chacko et al., 2000; De et al., 2000; McNicoll et al., 2000; Schultz et 8  al., 2007; Berman et al., 2013; Card et al., 2014; Partin and Sylvester, 2016), resulting in a 3200-km long north-trending belt that contains upper amphibolite- and granulite-facies metaplutonic and metasedimentary rocks (van Breemen et al., 1987; McNicoll et al., 2000). The orogenic segments are separated by the Great Slave Lake shear zone–McDonald transform fault system (Fig. 1.1; Hoffman, 1987; Berman and Bostock, 1997), which comprises greenschist- to granulite-facies dextral mylonites and cataclastic rocks (Hoffman, 1987; Hanmer et al., 1992; McNicoll et al., 2000) and reflects indentation of the rigid Slave into the plastic Rae ca. 1840–1735 Ma (Gibb, 1978; Henderson et al., 1990). Trans-Hudson Orogen  The Hudsonian Orogen was recognised by Stockwell (1961) as the last major event recorded in the WCP. It affected much of the geological province and is characterised by folding, metamorphism and intrusions between ca. 1850 and 1550 Ma. The term “Trans-Hudson Orogen” (THO) was later introduced by Hoffman (1981) and referred originally to the orogen between the WCP and the Superior Craton (Fig. 1.1). This definition has been extended by Corrigan et al. (2009) to include multiple accretion and collision events between Archean cratons, microcontinents and island arcs with associated intracratonic deposits that culminated in the assembly of the core of Laurentia (Hoffman 1990a, b; Berman, 2010; Berman et al., 2013; Snyder et al., 2016). The THO is the largest and best-preserved Paleoproterozoic collisional belt in the Canadian Shield (Corrigan et al., 2009). The associated mountain belt extended over 4600 km from the north-central United States, through Canada, Greenland and perhaps as far as Scandinavia (Hoffman, 1988; St-Onge et al., 2006). It evolved through a complete Wilson Cycle from the opening of the Manikewan Ocean between ca. 2.07–1.92 Ga to its closing between ca. 1.92–1.80 Ga (Stauffer, 1984; Corrigan et al., 2009) and has been regarded as an ancient analogue the Himalaya–Karakoram–Tibetan Orogen in terms of scale and gross structure (e.g., Searle and St-Onge, 2004; St-Onge and Searle, 2004; St-Onge et al., 2006; Gilligan et al., 2016; Weller and St-Onge, 2017). While the THO affected an area extending well beyond the Rae and Hearne domains, below I only describe events that directly affected the Rae.  Between ca. 1.98 and 1.92 Ga, the Rae and Hearne were separated by the Snowbird rift or Sea, part of the larger Manikewan Ocean (Corrigan et al., 2009). The THO initiated ca. 1.92 Ga, marked by the beginning of the closure of the Manikewan Ocean (Corrigan et al., 2009). The Snowbird tectonic zone is discussed in greater detail in Section 2.2.1 but is commonly viewed as the product of the final amalgamation of the Rae and Hearne domains following the closure of the Manikewan Ocean (Hoffman, 1988; Corrigan et al., 2009).  The second phase of the THO (1.88–1.865 Ga) was dominated by the accretion of various microcontinents and pericratonic terranes (Corrigan et al., 2009). For example, the Meta Incognita microcontinent (MIM; Fig. 1.1) was accreted onto the eastern margin of the Rae in what is now southern Baffin Island during the Foxe Orogeny (Corrigan et al., 2009; Wodicka et al., 2014). A slightly different 9  interpretation involves the accretion of the MIM, Sugluk and Hall Peninsula blocks (Fig. 1.1) in an intraoceanic setting to form the ‘MISH’ microcontinent, which would have then collided together with the southeastern Rae ca. 1.87 Ga (Wodicka et al., 2010; Pehrsson et al., 2013b; Snyder et al., 2013, 2015).  The third phase of the THO (1.865–1.845 Ga) involved the establishment of a subduction zone along the southern and eastern peri-Churchill margin ca. 1.865 Ga and the emplacement of significant, dominantly felsic plutons in an Andean-type continental setting (Corrigan et al., 2009). The 3.2–2.8 Ga Sugluk block (or Hudson protocontinent; Berman et al., 2005) was also accreted onto the southern margin of the MIM around the same time, which is interpreted to have had far-reaching effects within the Rae domain, including crustal thickening, low-pressure and moderate-temperature metamorphism and, possibly, the exhumation of high-pressure rocks along the Legs Lake shear zone segment of the STZ (directly north of the Athabasca Basin on Fig. 1.1); those events are all dated at ca. 1.85 Ga, marking the time of accretion of the Sugluk block (Berman et al., 2005; Mahan et al., 2006; Corrigan et al., 2009; Pehrsson et al., 2013b). Additionally, both scenarios involving the MIM (accretion with the Rae and subsequent accretion of the Sugluk block or accretion to the Rae as part of the MISH) include the formation of a ca. 1.85 Ga regional northeast-striking, northwest-verging fold and thrust belt in the central Rae (Sanborn-Barrie et al., 2002; Carson et al., 2004; Pehrsson et al., 2013b; Snyder et al., 2013). Northwest-verging structures, such as the Chesterfield shear zone (Section 2.2.2) and the Quoich River fault zone (Section 2.2.4), are thought to be part of this system (Berman et al., 2005; Pehrsson et al., 2013b). The fourth and final phase of the THO (1.83–1.80 Ga) involved terminal collisions and final closure of the Manikewan Ocean (Hoffman, 1988; Corrigan et al., 2009). It was accompanied by a tectonothermal overprint ca. 1850–1800 Ma across a significant portion of the WCP that is characterised by northwest-directed folding and thrusting as well as by the development of the transtensional Baker Lake Basin (Fig. 2.1; Rainbird et al., 2003; Corrigan et al., 2009) and emplacement of the widespread late syn- to post-orogenic Hudson granitoids (Section 2.1.3; Peterson and van Breemen 1999; Peterson et al., 2002; van Breemen et al., 2005).  Proto-Laurentia, Laurentia and Nuna/Columbia  The amalgamation of the Archean provinces of Laurentia (or Proto-Laurentia) was completed with the end of the THO (Hoffman, 2014). Further accretion and convergence migrated to the southern margin of Proto-Laurentia where juvenile early Proterozoic terranes were accreted prior to 1.6 Ga (Hoffman, 1988). The formation of Laurentia also meant the end of primary tectonic activity in the Rae and Hearne domains. Laurentia, as a stable entity, then continued within the supercontinent cycle where it formed part of the Nuna or Columbia supercontinent, Earth’s first true supercontinent, that subsequently broke up in the period 1.5–1.25 Ga (Evans and Mitchell, 2011; Pehrsson et al., 2011; Meert and Santosh, 2017).  10  2.1.3  Hudson Suite Granitoids and Kivalliq Igneous Suite  The 1.85–1.80 Ga Hudson suite granitoids are thought to derive from anatexis of lower- to middle-crustal rocks resulting from crustal thickening during the later stages of the THO (Peterson and van Breemen 1999; Peterson et al., 2002). The peak of Hudson suite plutonism is concentrated at ca. 1830 Ma (Peterson et al., 2002; van Breemen et al., 2005), coeval with the terminal collision between the WCP and Superior Craton (Orrell et al., 1999; Corrigan et al., 2009) and the brittle indentation of the Slave craton into the Thelon tectonic zone and Rae domain along the Bathurst and McDonald faults (Henderson et al., 1990; Culshaw, 1991).  The Hudson suite granitoid rocks consist of quartz monzonite to granodiorite that are typically medium-grained, equigranular, xenocrystic, calcalkaline and slightly peraluminous (Peterson and van Breemen, 1999; Peterson et al., 2002; van Breemen et al., 2005). Generally undeformed in their central portion, their margins can display an inherited foliation defined by the alignment of biotite. Their contact with the hostrock tends to be transitional and partially concordant (Peterson et al., 2002); wall rock is locally assimilated as narrow enclaves (Peterson and van Breemen, 1999; Peterson et al., 2002; van Breemen et al., 2005).  The larger plutons and thinner sill-like intrusions were emplaced near their source regions at mid-crustal levels (4–5 kbar) as sheets and plugs; the larger bodies are associated with regional magnetic anomalies (Peterson and van Breemen, 1999; Peterson et al., 2002; van Breemen et al., 2005). The granitoids appear to have intruded along pre- to syn-magmatic structures with a northeast-southwest elongation trend (Fig. 2.1), an orientation consistent with orogen-normal shortening and tectonic escape along dextral shear zones (Peterson et al., 2002). Such shear zones include the 1815–1811 Ma transtensional dextral-normal Tyrrell shear zone (Fig. 2.1; Relf et al., 1999; MacLachlan et al., 2005a), the 1850–1750 Ma dextral oblique-slip Amer mylonite zone (Tella et al., 1998; Berman et al., 2010) and the ca. 1.79 Ga Walker Lake shear zone (Johnstone et al., 2002; Berman et al., 2010). These shear zones all have a consistent east to northeast orientation and are interpreted to have been active deformational zones during the Hudson intrusive event (Peterson et al., 2002; MacLachlan et al., 2005a; Berman et al., 2010). After Hudsonian magmatism, ca. 1.76 Ga, widespread heating across the WCP resulted in the resetting of K-Ar and Rb-Sr systems and the growth of metamorphic rims on zircons in kimberlite-hosted xenoliths (Loveridge et al., 1988; Peterson et al., 2002; Petts et al., 2014). This heating event is associated with the Kivalliq igneous suite (KIS; 1.77–1.73 Ga), which includes basalt, rhyolite and pyroclastic rocks of the Pitz Formation, gabbro and anorthosite intrusions, three swarms of mafic dykes and the voluminous Nueltin (rapakivi) granite to syenogranite intrusions (Fig. 2.1; Peterson et al., 2015b, c). Rocks of this anorogenic suite were emplaced in the central portion of the WCP, in the reworked hinterland of the THO (Peterson et al., 2015b). To date, only rocks belonging to the McRae and Thelon River mafic dyke swarms 11  have been identified in the northwestern Hudson Bay region, so the KIS lithologies will not be described here; however, effects of the event are recorded across most of the WCP (Peterson et al., 2015b). The thermal event concentrated near and across the Rae-Hearne boundary and has been interpreted to reflect localised intracratonic extension (Peterson et al., 2002; Petts et al., 2014) and the development of major basins that preserve large sedimentary sequences, including the Thelon and Athabasca Basins (Fig. 1.1; Peterson et al., 2002, 2015b, c). This extension appears to have been combined with diffuse and unorganised asthenospheric upwelling beneath the supercontinent following delamination and sinking of lithospheric mantle (Peterson et al., 2002; Peterson et al., 2015b; Liu et al., 2016). Basalt injections occurred where the overlying crust was subject to brittle faulting, often re-using pre-existing faults (Peterson et al., 2002). Basaltic underplating along the crust-mantle boundary on a regional scale would have produced sufficient heat to thermally rework the lower crust across a large portion of the WCP, perhaps representing the final stage of WCP cratonization (Peterson et al., 2002; Petts et al., 2014).  2.2  Regional Major Structures  There are numerous regional-scale faults and shear zones throughout the Rae domain and along its margins (Skulski et al., 2018; Thomas, 2018). Some of the structures proximal to the WSZ are briefly reviewed below.  2.2.1  Snowbird Tectonic Zone Despite its regional extent and apparent importance, the Snowbird tectonic zone (STZ; Figs. 1.1, 2.1) remains a controversial structure in the geological community. Extensive fieldwork and detailed analytical work have been conducted within its various segments, but no unified model has been proposed that can explain the details of each locality within the context of such a large-scale feature. The original interpretation of the STZ came mainly from geophysical observations, largely related to the scale, continuity and possible significance of the structure within the WCP (Wallis, 1970; Gibb and Walcott, 1971; Goodacre et al., 1987; Sharpton et al., 1987). The zone as it is known today was described by Hoffman (1988) as a ∼2800-km long break that extends from the Rocky Mountains to the Hudson Strait (Fig. 1.1). The name originates from work conducted by Taylor (1963) around Snowbird Lake where he recognised a multi-kilometre zone of mylonitic rocks including banded gabbro-anorthosite-pyroxenite. Subsequent work made similar findings, delineating the STZ and dividing it into different segments that occur as multi-kilometre wide, dominantly mylonitic shear zones juxtaposing domains that are higher metamorphic grade on the Rae side than on the Hearne side (Tella and Eade, 1986; Hanmer et al., 1991; Bickford et al., 1994; Mahan et al., 2003; Williams and Hanmer, 2005; Martel et al., 2008). Several theories have been put forward to explain the origin and evolution of the zone and have evolved into two main 12  camps, one favouring a Proterozoic collisional suture and the other, an Archean, intracontinental origin with various degrees of Paleoproterozoic reactivation. Interpretations also diverge about how it manifests farther north around the Chesterfield block (Fig. 2.1; e.g., Hoffman, 1988; Sanborn-Barrie et al., 2001; Jones et al., 2002; Baldwin et al., 2004; Berman et al., 2005, 2007; Flowers et al., 2006; Regan et al., 2017). More recently, the northern segment of the STZ has been associated with high-pressure mafic granulite-facies complexes distributed about Chesterfield Inlet (Hanmer and Williams, 2001; Sanborn-Barrie et al., 2001, 2019; Flowers et al., 2006; Mills et al., 2007). Paleoproterozoic Suture As a suture, the STZ is thought to represent the division between the Rae and Hearne domains, two entities with distinct geological histories and tectonometamorphic features (e.g., Hoffman, 1988; Villeneuve et al., 1993; Ross et al., 1995, 2000; Aspler and Chiarenzelli, 1996; Skulski et al., 2003; Cousens et al., 2004; Hartlaub et al., 2005; MacLachlan et al., 2005a; van der Velden and Cook, 2005; Bleeker and Ernst, 2006; Davis et al., 2006; Berman et al., 2007; Martel et al., 2008; Ernst and Bleeker, 2010; Rainbird et al., 2010; LaFlamme et al., 2014). A number of problems, however, have been identified with different aspects of the model, such as the lack of evidence for foredeep sedimentation and a magmatic arc expected with a subduction zone (Regan et al., 2014).  Archean Feature The Archean setting interpretation varies for each segment of the STZ, from rift (Carolan and Collerson, 1989; Carolan et al., 1989; Flowers et al., 2006) to intracontinental shear zone (Hanmer et al., 1994, 1995). A shared history of plutonism and tectonism between the Rae and Hearne in the interval 2.60–2.55 Ga has been documented locally, implying that they were amalgamated by the end of the Archean (Regan et al., 2017). Reactivation, both in the ductile and brittle regimes, is generally interpreted to have occurred in the early Proterozoic due to the various orogenic events that affected the Rae and Hearne, such as the Thelon–Taltson, Trans-Hudson and Wopmay Orogenies (Carolan and Collerson, 1989; Carolan et al., 1989; Sanborn-Barrie et al., 2001; Mahan et al., 2003; Rainbird et al., 2003; Williams and Hanmer, 2005; Flowers et al., 2006; Corrigan et al., 2009; Mahan et al., 2011; Regan et al., 2017).  In the northern portion of the STZ, several periods of tectonic activity recorded in the Kramanituar and Uvauk complexes (Fig. 2.1), including a metamorphic event dated at ca. 1.90 Ga, indicate Paleoproterozoic reworking of an Archean crustal-scale feature that was favourably oriented, similar to other segments of the STZ (Sanborn-Barrie et al., 2001; Pehrsson et al., 2013b).  STZ – Final Words With the Thelon–Taltson Orogen on the one side and the THO on the other, it seems reasonable to think that both would have had a major influence on the amalgamation of the Rae and Hearne around 1.92 Ga (Corrigan et al., 2009). The occurrence of pre-existing Archean structural features in the area is also 13  undeniable, and so is the metamorphic component ca. 1.9 Ga. Although the interpretations about the STZ may appear to be incompatible, the elements of the two models are not mutually exclusive. It may be the case that the definition of the STZ needs to be reviewed, so it is more encompassing and is viewed as a composite feature where various segments have experienced different events, in a more atypical type of accretion or reactivation (e.g., Baldwin et al., 2003, 2004; Aspler et al., 2004).  2.2.2  Chesterfield Shear Zone The Chesterfield fault zone (or shear zone; CSZ; new nomenclature proposed by Wodicka et al., 2017; Fig. 2.1) is located between the WSZ and the Chesterfield Inlet segment of the STZ (Skulski et al., 2018). It was first described as an east-west trending reverse fault (Heywood and Schau, 1978; Schau et al., 1982; Schau, 1983) and was later redefined as a northwest-vergent thrust based on aeromagnetic data and metamorphic contrasts (Panagapko et al., 2003; Tschirhart et al., 2016). It separates high-pressure (7–12 kbar), undifferentiated foliated to gneissic granitoid rocks to the southeast from low-pressure (< 5 kbar), mixed gneisses to the northwest (van Breemen et al., 2007; Skulski et al., 2018). Rocks of the CSZ are strongly deformed and locally mylonitic; the foliation within and adjacent to the zone dips steeply to the north-northwest and highly strained rocks preserve well-developed stretching lineations that plunge shallowly to the east-northeast or west (Steenkamp et al., 2016). Its complex map pattern as well as variable dips and kinematics (Berman et al., 2007; Wodicka et al., 2016) have been interpreted to reflect folding at shallow crustal levels (Spratt et al., 2013). The CSZ may have been active as early as the MacQuoid Orogeny (Snyder et al., 2015) but is also thought to have been involved in the ca. 1.88–1.85 Ga exhumation (Berman et al., 2007) of a larger, ca. 1.90 Ga, high-pressure block comprising the Kramanituar and Uvauk complexes (Fig. 2.1; Mills et al., 2007). Such movement may have been instigated by the collision of the MIM or composite MISH microcontinent with the southeastern Rae ca. 1.87 Ga (Section 2.1.2; Corrigan et al., 2009; Pehrsson et al., 2013b).  2.2.3  Amer Mylonite Zone The Amer mylonite zone (AMZ; Fig. 2.1), also known as the Amer (Lake) shear zone, was originally considered, along with the WSZ, as a segment of the large McDonald–Amer–Meadowbank fault system (Heywood and Schau, 1978; Tella et al., 1983). It is mapped as approximately 265 km long, cutting through gneissic rocks of the Rae domain. From just northeast of the Thelon Basin, it extends to the east-northeast and then gradually turns to the east, where it bounds granulitic rocks to the south (Tella et al., 1983, 1998; Tella, 1994; Skulski et al., 2018; Thomas, 2018). The AMZ appears to splay into multiple strands at its eastern termination (Sandeman et al., 2001; Skulski et al., 2003; Skulski et al., 2018). 14  The AMZ is approximately 10 km wide and consists of amphibolite-facies foliated dioritic to granitic rocks cut by late biotite granite. The shear zone includes localised northeast trending strands of protomylonitic and occasionally cataclastic rocks, separated by lower-strain zones (Tella and Heywood, 1978). Based on field relationships as well as zircon and titanite U-Pb geochronology and disturbance of K-Ar ages in hornblende and biotite, ductile deformation and development of the mylonite zone is interpreted to have occurred between 1850 and 1827 Ma, overprinted by a brittle deformation event that produced dextral strike-slip movement post-1750 Ma; disturbance of K-Ar ages in hornblende is dated at 1.74 Ga (Tella, 1994; Tella et al., 1998; Sandeman et al., 2001).  Broome (1989, 1990) discussed the possibility of a common origin between the AMZ and the WSZ on the basis of a continuous positive gravity gradient between the two shear zones (Fig. 2.2). He proposed that the strain transfer between them was accommodated by extensional strike-slip duplexes, but this theory has yet to be tested.  2.2.4  Other Shear and Fault Zones Quoich River Fault Zone The 250-km long Quoich River fault zone (or thrust fault) is sub-parallel to the CSZ (Fig. 2.1; Skulski et al., 2018; Thomas, 2018) and is also thought to be part of a regional northwest-vergent thick-skinned fold-thrust belt associated with the collision of the MIM or MISH terrane with the Rae ca. 1.87 Ga (Section 2.1.2; Corrigan et al., 2009; Pehrsson et al., 2013b). Walker Lake Shear Zone The dextral strike-slip Walker Lake shear zone (Fig. 2.1), similar to the Amer mylonite zone, is associated with a magnetic high (Fig. 2.2; Sandeman et al., 2001; Johnstone et al., 2002). It can be divided into two distinct segments with a western portion characterised by localised zones of protomylonite and an eastern portion consisting of a single, 2-km wide mylonite zone (Johnstone et al., 2002). Both are steeply dipping, east-west striking and contain sub-horizontally lineated rocks with dextral shear-sense indicators (Johnstone et al., 2002; Sanborn-Barrie et al., 2002). Plutonic rocks deformed within the eastern segment of the Walker Lake shear zone have a strong alignment of biotite and amphibole, quartzofeldspathic mineral segregation, development of quartz ribbons and grainsize reduction of minerals contained within the matrix (Sanborn-Barrie et al., 2002; 2014). Movement along the Walker Lake shear zone is constrained by a synkinematic monazite age of ca. 1.79 Ga (Berman et al., 2010). 15   Figure 2.2: Residual total-magnetic-field anomaly map that shows the WSZ and its possible link to the Amer mylonite zone, northwestern Hudson Bay (Natural Resources Canada, 2019). Abbreviations as in Figs. 1.1 and 2.1. Figure compilation by Isabelle Therriault. 16  2.3  Previous Work Around the Wager Shear Zone  Reconnaissance geological work was conducted in 1964 by Heywood (1967a, b) at the 1:500,000-scale. The area was visited again in the late 1980s and early 1990s with projects focusing on bedrock mapping (Derome, 1988; Henderson et al., 1986, 1991; LeCheminant et al., 1987), detailed structural mapping along the south coast of Wager Bay (Henderson and Broome, 1990), surficial mapping and geochemical sampling (Smith, 1990), geophysical investigations (Broome, 1989, 1990) and resource assessment (Jefferson et al., 1991, 1993). More recently, a multiyear mapping campaign was carried out by the Canada-Nunavut Geoscience Office and the Geological Survey of Canada in the Tehery Lake–Wager Bay region to increase the geoscience knowledge of the area, specifically in terms of bedrock and structural mapping (Steenkamp et al., 2015, 2016; Wodicka et al., 2015, 2016, 2017), targeted surficial mapping and glacial-/stream-sediment sampling (Byatt et al., 2015; Dredge and McMartin, 2005; McMartin and Dredge, 2005; McMartin et al., 2015, 2016; Randour et al., 2016) and ground gravity transect studies (Tschirhart et al., 2016).  2.3.1  Lithology  Previous work along the south coast of Wager Bay assigned the various rock types to two main domains: the pink and grey gneiss terrane (PGG), located north of the WSZ (Fig. 2.3), and the patchy granulite-facies terrane (PGT) located south of the WSZ (Fig. 2.3; Henderson and Broome, 1990). The PGG is dominated by amphibolite-facies, layered > 2.7 Ga tonalite to granodiorite orthogneiss and panels of supracrustal rocks that are complexly folded and intruded by numerous early Proterozoic, weakly foliated to non-foliated granitic bodies (Henderson et al., 1986, 1991; Henderson and Broome, 1990). Sinistral shear evidence is locally recorded in mylonitic fabrics along unit contacts (Henderson et al., 1986, 1991; Henderson and Broome, 1990). The PGT is variably mylonitized and comprises granodiorite to monzogranite orthogneiss with amphibolite- and granulite-facies assemblages (Henderson et al., 1986; Henderson and Broome, 1990). The latter includes local orthopyroxene and coincides with a prominent, magnetic high anomaly (Fig. 2.2; Derome, 1988; Broome, 1989, 1990).  Within the WSZ, straight gneiss and mylonites derived from plutonic and sedimentary protoliths are present and sometimes occur as mylonitized lenses that can extend over several kilometres (Henderson et al., 1986; Wodicka et al., 2016). One of these mylonitized lenses includes the apparent southern margin of the Base Camp granite (Fig. 2.3), which has been used to interpret timing of movement along the WSZ (Section 2.3.4; Henderson and Broome, 1990).  17   Figure 2.3: Detailed map showing historical U-Pb data and strain intensity interpretation along the WSZ based on 2017 (this study) and 2012–2016 (historical) fieldwork; A to E refer to detailed map locations with stations and sampling locations (Section 4.1; Fig. 4.1). Refer to Fig. 2.1 for geological and structural legends. Abbreviations as in Figs. 1.1 and 2.1; FLB, Ford Lake batholith; PGG, pink and grey gneiss terrane; PGT, patchy granulite-facies terrane. Figure compilation by Isabelle Therriault. 18  The Western Extension The expanse of land adjacent to Wager Bay is located in the barren lands, tundra area in the continuous permafrost where rolling peneplain with marshy river valleys dominate. The Quaternary cover is more than 90%, consisting of numerous eskers and extensive glacial deposits with sparse outcrops (Jefferson et al., 1993). The western extension of the WSZ is located in especially heavily till-covered areas where the outcrop exposure is very poor, most likely due to its location within the Keewatin Ice Divide of the last glaciation (McMartin and Dredge, 2005). Information on this section is therefore based mainly on geophysical studies. The WSZ appears to step to the north in several parallel segments but then disappears near 93°W longitude (Fig. 2.2), approximately 75 km south of aeromagnetic anomalies correlated with the AMZ (Henderson and Broome, 1990; Henderson et al., 1991).  2.3.2  Structural Geology  The WSZ has been described as a dextral transcurrent ductile shear zone marked by east-west striking, vertical dipping mylonitic rocks with a shallowly plunging mineral-stretching lineation and strongly developed mesoscale, dextral shear-sense indicators (Henderson et al., 1986, 1991; Henderson and Broome, 1990). Previously described shear-sense indicators include the bending of older fabrics into the shear zone, visible on aeromagnetic maps, mesoscale δ-type porphyroclasts of microcline, asymmetrical boudins, foliation fish and shear lenses (Henderson and Broome, 1990).  Discrete conjugate ductile shear zones are present within the WSZ that are either sinistral (northeast-striking) or dextral (northwest-striking) and have been interpreted to represent a late increment of north-south shortening (Henderson and Broome, 1990; Henderson et al., 1991). This evidence, combined with in-plane tails on δ-type microcline porphyroclasts indicate that there is a minor transpressive component to the WSZ (Henderson and Broome, 1990; Jefferson et al., 1993). Additionally, discrete orthopyroxene-bearing sinistral shear zones found in the PGT have been attributed to the WSZ (Henderson and Broome, 1990; Henderson et al., 1991), yet this association remains tenuous.  Mapping the precise location of the southern boundary of the WSZ is complicated by subparallel fabrics in the PGT and limited exposure combined with lichen cover that may render the identification of delicate structures difficult (Henderson and Broome, 1990; Henderson et al., 1991). However, it appears that the strain gradient marking the southern boundary is more gradual than that to the north (Henderson et al., 1986).  The Shape of Wager Bay and Late Brittle Faults  Wager Bay is marked by straight and steep southern and southwestern shorelines. The northwestern-trending orientation of the latter also corresponds to offsets of magnetic lineaments visible on aeromagnetic maps (Broome, 1990), previously mapped faults in the area (Jefferson et al., 1993; Skulski et 19  al., 2018) and Mackenzie dykes (1267 ±2 Ma; Fig. 2.3; LeCheminant and Heaman, 1989). Jefferson et al. (1993) indicate a compound half-graben structure would explain the elbow shape of the bay, with the north and northeast sides having moved down. Jefferson et al. (1993) further suspected that minor Quaternary movement along brittle faults and ice flow parallel to the structures would have preserved the shape.  2.3.3  Metamorphism  The segment of the WSZ located directly south of Wager Bay is thought to have developed at amphibolite-facies conditions (Derome, 1988; Broome, 1990; Wodicka et al., 2016). A mineral assemblage study of the PGT led Derome (1988) to suggest that the rocks there formed at peak pressures of 7.5–9.5 kbar (25–32 km depth assuming a crustal density of 2700 kg/m3) whereas the northern portion, the PGG, records conditions 10 km shallower (Derome, 1988). This disparity in pressure may be explained by either vertical strain within the shear zone or horizontal juxtaposition of blocks formed at different levels (Broome, 1989). As no evidence of vertical strain within the WSZ was noted in the field (Henderson et al., 1986, 1991; Broome, 1989, 1990; Henderson and Broome, 1990), strike-slip juxtaposition was considered most likely. 2.3.4  Geochronology Paleoproterozoic Granitoids in the Wager Bay Area In the Wager Bay area, four U-Pb zircon-based ages, broadly contemporaneous with the 1.85–1.80 Ga Hudson suite (Section 2.1.3), have been reported from granitoid rocks that range between 1826 +4/-3 Ma and 1808 ±2 Ma (LeCheminant et al., 1987; Henderson and Roddick, 1990; Peterson and van Breemen, 1999; Skulski et al., 2003; van Breemen et al., 2005).  While the plutons near Wager Bay are largely similar in terms of age to those from the Hudson suite, they differ in their occurrence as they tend to form larger, deeper, composite intrusions. The belt of plutonic rocks that extend northeast from the WSZ, through the northwest portion of Wager Bay and towards Committee Bay is sometimes referred to as the Ford Lake suite (LeCheminant et al.,1987). In general, the plutons comprise coarse-grained granitic to monzodioritic rocks, with feldspar compositions that are more potassic than typical Hudson granitoids and can include a substantial dioritic component. The granitic rocks in the Wager area do not cluster with rocks from the Hudson suite on Y-Zr and Th-U plots (Peterson and van Breemen, 1999; Peterson et al., 2002). Moreover, preliminary data from the Ford Lake batholith (or plutonic complex; Fig. 2.3) located to the west of Wager Bay do not show evidence of Pb inheritance from an Archean source, which is characteristic of plutons found south of the WSZ (LeCheminant et al., 1987). Using the isotope dilution–thermal ionization mass spectrometry (ID-TIMS) 20  method, two granitoid specimens from the plutonic complex yielded indistinguishable U-Pb zircon crystallisation ages of 1823 ±3 Ma and 1826 +4/–3 Ma (LeCheminant et al., 1987).  The youngest age in the Wager Bay area is from the Base Camp granite (Fig. 2.3), a calcalkaline granitic plutonic body occupying the southwestern corner of Wager Bay (LeCheminant et al., 1987). Its mylonitized southern margin is interpreted to have been deformed within the WSZ (Henderson and Broome, 1990), but it was also noted to have intruded into sheared gneisses in the northern outer edge of the shear zone as concordant wedges with a massive texture (Jefferson et al., 1991). Its undeformed, central portion yielded an ID-TIMS U-Pb zircon crystallisation age of 1808 ±2 Ma (Henderson and Roddick, 1990). That age was interpreted as the maximum age of shearing along the WSZ (Henderson and Roddick, 1990) with a minimum age constraint provided by cross-cutting, undeformed 1267 ±2 Ma Mackenzie dykes (Fig. 2.3; LeCheminant and Heaman, 1989). The fourth reported age comes from the large 2610 Ma Walker Lake intrusive complex, which borders the Committee Bay supracrustal belt on its southeastern side (Fig. 2.1; Skulski et al., 2018). It is cut by a number of Hudsonian-age granitoid dykes and small plugs; a specimen from an undeformed biotite- magnetite- and fluorite-bearing monzogranite dyke yielded a U-Pb zircon crystallisation age of 1821 ±5 Ma using the sensitive high-resolution ion microprobe (SHRIMP) geochronology method (Skulski et al., 2003). Other Published Ages  A biotite-hornblende tonalite to diorite gneiss located just north of the Quoich River fault zone (Fig. 2.3) was dated at 2707 ±8 Ma (van Breemen et al., 2007). It corresponds to widespread Neoarchean volcanism and plutonism in the Rae domain (Section 2.1.1; Frisch, 1982; Skulski et al., 2003; Hartlaub et al., 2004).  The Wager pluton (Fig. 2.3), which is unrelated to either the Hudson or Ford Lake suite, includes massive to weakly foliated monzogranite to monzodiorite with magnetite and abundant, strongly deformed granulite-facies orthogneiss inclusions (Steenkamp et al., 2016; Wodicka et al., 2016). These inclusions, combined with the presence of mylonite immediately north of the intrusion, have been interpreted to indicate that the body intruded along the shear zone, implying a component of deformation for the WSZ older than the 1.83 Ga U-Pb zircon SHRIMP age for the intrusion (Wodicka et al., 2016, 2017).  2.3.5  Geophysical studies  The WSZ forms an east-west striking lineament that is visible on aeromagnetic (Fig. 2.2; Geological Survey of Canada, 1983) and regional gravity (Broome, 1990; Tschirhart et al., 2016) maps. Adjacent to the shear zone, northeast-southwest directed aeromagnetic anomalies progressively bend to the 21  right as they merge with and become parallel to the WSZ, indicating dextral net shear (Henderson and Broome, 1990; Jefferson et al., 1993).  The residual total-magnetic-field anomaly map also shows a large positive magnetic anomaly located directly south of Wager Bay (Fig. 2.2). Combined detailed geophysical and field studies have confirmed that the anomaly corresponds to rocks of the PGT, which contain abundant magnetite (Derome, 1988; Broome, 1989, 1990). North of the PGT, the WSZ manifests as a magnetic low because a body that is normally magnetised appears as a low when it is located due north of a magnetic high in northern latitudes; this effect is due to the dipolar nature of the magnetic field (Broome, 1989). It is not observed farther west along the structure as the strong magnetic high coincident with the PGT disappears around longitude ∼89°W (Fig. 2.2; Broome, 1989, 1990). Instead, north of the central segment, a magnetic high is interpreted to be broadly coincident with the Wager pluton (Fig. 2.3; Steenkamp et al., 2016; Wodicka et al., 2016) or, alternatively, include a combination of metamorphosed Paleoproterozoic cover sequence, undifferentiated Archean foliated to gneissic granitoid rocks and a granulite-facies body (Skulski et al., 2018). Beyond 93°W longitude, towards the AMZ, another major magnetic high is associated with a granulite complex (Fig. 2.1 and 2.2; Broome, 1989, 1990; Skulski et al., 2018). As mentioned in Section 2.2.3, this area has been interpreted by Broome (1989, 1990) to reflect an area of strain transfer between the AMZ and the WSZ, possibly as a strike-slip duplex. Although the anomaly coincident with the PGT and the anomaly located between the AMZ and the WSZ have both been assigned to the same unit on recent geological maps (APgr, granulite complex; Skulski et al., 2018), the relationship between those aeromagnetic anomalies and associated granulite-facies rocks remains uncertain (Wodicka et al., 2016).  Finally, the WSZ has also been investigated through a magnetotelluric survey of the Rae domain; however, the structure did not show a magnetotelluric crustal signature in either of the profiles that crossed it (Spratt et al., 2014). 2.3.6  The Southampton Island Segment The WSZ is thought to extend to Southampton Island, under the Paleozoic rocks covering most of the western portion of the island, and be exposed in the Precambrian rocks on the northeastern side (Heywood and Schau, 1978). Several major faults and shear zones were mapped initially by Heywood and Sanford (1976) while Henderson and Broome (1990) later confirmed the presence of a dextral shear-sense, steeply-dipping, east-west striking zone of mylonites in line with the WSZ. More recent mapping in the area, however, identified a sinistral transcurrent shear zone around the area of the expected trace of the WSZ (Berman et al., 2010; Rayner et al., 2011; Whalen et al., 2011; Berman et al., 2013).  22  2.4  Regional Significance of the Wager Shear Zone Because of the apparent depth and lateral extent of the anomalies south of the Amer mylonite and Wager shear zones, Broome (1989) postulated that a significant deformational event must have occurred for those structures to develop. Henderson and Broome (1990) suggested the terminal collision between the Archean Ungava (i.e., Superior) Plate and the composite western Churchill Province as a possible event. At the time, this was roughly temporally consistent with the age of the Base Camp granite (1808 ±2 Ma), and it would make the WSZ an indent-linked strike-slip fault.    23  Chapter 3: Methodology This section presents the various methods used in this research project along with a brief description of the rationale or background behind them.  3.1  Fieldwork Bedrock geology mapping took place between June 24th and July 4th, 2017 and was based out of a temporary camp adjacent to the Nanuq camp of Peregrine Diamonds Ltd. on the upper Lorillard River (Fig. 2.3). Helicopter-supported fieldwork consisted of daily traverses across the shear zone plus targeted stops covering various parts of NTS map areas 56F, G and H. Lithological descriptions, including mineralogical and textural observations, as well as structural measurements, were recorded in hand-held computers. Digital photographs of specimens and field relationships were taken and rock specimens were collected for subsequent geochronological, petrographic and microstructural analyses. Field data were then compiled and input into ArcGIS.  3.2  Petrography  Thirty-five standard 30 μm thin sections of select specimens collected across the WSZ during fieldwork were cut perpendicular to foliation (XY plane of finite strain) and parallel to the macroscopic stretching lineation (X-direction) for petrographic and structural observation and various analyses.  3.2.1  QEMSCANS QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy) analyses were performed on 12 thin sections to aid in mineral identification and quantify modal proportions.  The QEMSCAN is built on a FEI Quanta 650 scanning electron microscope (SEM) fitted with a field emission gun (10 nm resolution) and dual Bruker XFlash 5030 energy dispersive spectrometers with a maximum throughput of 1.5 Mcps. It operated at 25 kV and 10 nA beam current. Data were collected in Field Stitched Analysis mode with a point spacing of 20 μm. Raw X-ray energy spectra were compared to a database of nominal mineral compositions to identify minerals present within the thin section.  3.2.2  Deformation and Microstructures Rocks deformed in a ductile manner at high temperatures can develop crystallographic preferred orientations, microstructures and textures that can be used to interpret deformation processes and conditions as well as the strain path (Twiss, 1977; Halfpenny et al., 2006). Mineral descriptions and structural observations were completed for each thin section.  24  3.2.3  Paleopiezometry Theoretical Basis Dynamic recrystallisation occurs concurrently with deformation and involves the reorganisation of material with a change in grainsize, shape and orientation within the same mineral as well as the formation/nucleation and growth of new grains (Guillopé and Poirier, 1979; Poirier, 1985; Urai et al., 1986; Wheeler et al., 2001; Halfpenny et al., 2006; Platt and Behr, 2011). The size of recrystallised grains is a function of the critically resolved shear stress in the system at the time of deformation; higher stresses favour smaller grain sizes. With an increase in temperature, different deformation mechanisms operate and the dynamically recrystallised grains become progressively larger (Tullis, 2002; Platt and Behr, 2011; Halfpenny et al., 2012). This is the basic principle behind recrystallised grainsize piezometry that has been developed and calibrated for several minerals (e.g., Twiss, 1977; Stipp and Tullis, 2003; Holyoke and Kronenberg, 2010; Stipp et al., 2010; Behr and Platt, 2011). The empirically-derived equation can be written as:  𝜎 = 𝐾𝐷−𝑝     (1) Where σ is the differential stress (MPa), D is the root mean square (RMS) grainsize (diameter; mm) and K and p are determined experimentally or theoretically (Behr and Platt, 2011; Boutonnet et al., 2013). For feldspars, the piezometer calibration of Twiss (1977) is commonly used (e.g., Rybacki and Dresen, 2004). Once the differential stress is calculated, paleopiezometry data can be combined with derived deformation temperature and a relevant flow law to estimate strain rate (Gleason and Tullis, 1993). A flow law expresses the rheological behaviour of different minerals or rocks calibrated for different creep regimes (Tullis, 2002). The equation commonly used for feldspars is: 𝜀̇ = 𝐴𝜎𝑛𝑑−𝑚𝑒(−𝑄𝑅𝑇)     (2) Where 𝜀̇ is the strain rate (s-1), A is the prefactor (MPa-nμmms-1), σ is the differential stress (MPa), d is the RMS grainsize (diameter; μm), Q is the activation energy (kJ/mol), R is the ideal gas constant (J/mol·K) and T is the temperature (K); A, Q and the exponents n and m are determined experimentally (Gleason and Tullis, 1993, 1995; Rybacki and Dresen, 2000; Hirth et al., 2001; Rutter and Brodie, 2004). The effect of water has not been quantified for feldspar flow laws because of experimental difficulties (Tullis, 2002). Paleopiezometry data and flow laws can then be used to build deformation mechanism maps, which are helpful in assessing grain-scale deformation mechanisms (Rybacki and Dresen, 2004; Mehl and Hirth, 2008) and verifying if they match observations in thin section.  25  Methodology Applied The grainsizes of feldspar crystals were measured directly on 6 thin sections. The long and short axes were measured optically using the measuring tools under the Analysis section of the Leica Application Suite software and recorded in an Excel spreadsheet. Recrystallised grains were distinguished from porphyroclasts visually and grains bounded by micas were not included because of potential problems associated with pinning (Hunter et al., 2016).  Between 125 and 307 grains were measured for each thin section. The diameter of each recrystallised grain was assumed to be equal to the diameter of a circle with the same area as an ellipse constructed from the short and long axes of the measured feldspar grains. The grainsize for each specimen, in turn, was calculated as the root mean square diameter from all measured recrystallised grains in that specimen (Stipp and Tullis, 2003). Grainsize distribution was evaluated for each specimen by plotting the data as histograms (Stipp et al., 2010).  The piezometer of Twiss (1977) was used to calculate the differential stress for each specimen, using the following parameters: K = 7.8 (anorthite) and p = 0.68. Three flow laws were used to calculate strain rates that were derived from different plagioclase aggregates: dry and wet anorthite (An100) and labradorite (An60) in the dislocation and diffusion creep regimes (Rybacki and Dresen, 2000, 2004). Using strain rate results, deformation mechanism maps were constructed for each flow law in the dislocation and diffusion creep regimes (e.g., Rahl and Skemer, 2016).  3.3  Quartz CPO Theoretical Basis Intracrystalline slip and recrystallisation can result in the development of crystallographic preferred orientations (CPO), also known as fabrics, due to the progressive rotation of the crystal lattice (Lister et al., 1978; Lister, 1982; Stel and Breedveld, 1990). CPO patterns vary by the mineral involved, the slip systems active in those minerals, and the deformation conditions experienced. Fabric characteristics are controlled by factors such as temperature, dynamic recrystallisation mechanisms and rate of recrystallisation, active slip plane, slip direction as well as strain magnitude, geometry and path or kinematic framework (Lister et al., 1978; Schmid and Casey, 1986; Law et al., 1990; Kruhl, 1996; Barth et al., 2010; Faleiros et al., 2010). When combined with microstructural observations, they can be used to infer strain symmetry, shear sense, vorticity or deformation temperature (Lister et al., 1978; Bouchez et al., 1983; Schmid and Casey, 1986; Law, 1990; Killian et al., 2011; Nie and Shan, 2014; Faghih and Soleimani, 2015).  CPO data can be presented in an orientation distribution function diagram or an inverse pole diagram but are most commonly displayed on a stereonet. In these diagrams, the Y-axis of the finite strain ellipse is typically vertical and the X- and Z-axes are parallel with the E-W and N-S axes, respectively. In 26  such a reference frame, the foliation approximates an E-W trending vertical plane and the lineation follows a horizontal line contained in the foliation plane (Passchier, 1983; Lloyd et al., 1992; Passchier and Trouw, 2005). Contoured quartz c-axis orientation fabrics are interpreted in terms of their internal (shape of fabric itself) or external (with respect to a reference frame) asymmetry (Passchier and Trouw, 2005). Patterns can appear as point maxima or as small- or great circle girdles, characteristic of the flow conditions that imparted them (Lister, 1977). With well-defined fabrics that exhibit two girdles or 4-point maxima, it is possible to estimate the temperature of deformation using the opening-angle (OA) deformation thermometer, assuming natural strain rates, plane strain and degree of hydrolytic weakening as described by Kruhl (1998) and modified by Faleiros et al. (2016), using the following equations: 𝑇(°𝐶) = 6.9 𝑂𝐴 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) + 48 (250°𝐶 ≤ 𝑇 ≤ 650°𝐶 𝑎𝑛𝑑 𝑂𝐴 ≤ 87°)   (3) 𝑇(°𝐶) = 4.6 𝑂𝐴 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) + 258 (650°𝐶 ≤ 𝑇 ≤ 1050°𝐶 𝑎𝑛𝑑 𝑂𝐴 ≥ 87°) (4) Because pressure has a secondary effect, particularly for temperatures above 650°C, fixed pressures are considered in the following equation, which is valid for temperatures in the range 250–1050°C (Faleiros et al., 2016): 𝑇(°𝐶) = 410.44 𝑙𝑛𝑂𝐴 (𝑑𝑒𝑔𝑟𝑒𝑒𝑠) + 14.22𝑃 − 1272      (5) The approximate uncertainty of the calculated temperatures is ±50°C (Faleiros et al., 2016). Methodology Quartz c-axis investigations were conducted on 27 specimens, specifically targeting dynamically recrystallised quartz grains and quartz ribbons. Thin sections were scanned using a G60+ fabric analyser (Russell-Head Instruments) and quartz grains, from which to extract orientation data, were selected using the thin section maps produced by the fabric analyser. The resulting data were plotted using the Orient software package as lower hemisphere, equal area (Schmidt net) projections. Contouring was also done using the Orient software, using the probability density method with 100 nodes and 10 levels. Additionally, the temperature of deformation was calculated where suitable fabrics occurred.  3.4  Titanite Petrochronological Studies  3.4.1  Titanite the Mineral  Certain accessory minerals can incorporate radioactive elements such as U and Th and various trace elements such as rare-earth elements (REEs) into their crystal structures. Trace element and/or isotopic zoning can then be linked to their time-temperature history as determined through geochronological and geochemical analysis (Cherniak, 1993) through the emerging field of petrochronology (Papapavlou et al., 2017). Titanite (or sphene, CaTiSiO5, alternatively CaTi[SiO4](O,OH,F); Bonamici et al., 2015; Kirkland 27  et al., 2016) is a widespread accessory mineral present in igneous (metaluminous, I-type granitoids of intermediate SiO2 composition such as granodiorite) and metamorphic rocks (Frost et al., 2000; Kohn, 2017) that has a number of petrochronological applications. It is part of the monoclinic crystal system and incorporates significant uranium (U) in its structure as well as zirconium (Zr) and REEs (Gascoyne, 1986; Kohn, 2017), making it a viable recorder of geochemical change through time. Substitutions are commonly the following: Ca (Na, REEs, Mn, Sr, Ba, Pb, U), Ti (Al, Fe2+, Fe3+, Mg, Nb, Ta, U, Cr, Zr) and O (OH, F, Cl) (Gascoyne, 1986; Kohn, 2017). Titanite petrochronology has been used to resolve questions related to the timing of deformation (e.g., Bonamici et al., 2015; Papapavlou et al., 2017) but is typically used to date the most recent metamorphic or orogenic event (Gascoyne, 1986). Indeed, compared to zircon, titanite is more reactive and therefore commonly recrystallises (Bonamici et al., 2015) such that U-Pb ages obtained on titanite generally represent ages of metamorphic (re)crystallisation (Frost et al., 2000) in rocks with such a history. In metamorphic rocks, rutile and titanite can form through replacement of ilmenite (Angiboust and Harlov, 2017; Kohn, 2017). Rutile is generally stable at high pressure and low temperature while ilmenite is stable at low pressure and high temperature; titanite is stable at intermediate pressure and temperature conditions, generally below 1 GPa (Kohn, 2017). The relative mineral stability also depends on whole-rock Ca activity where, for low-Ca activities, the stability of rutile may extend to lower pressures (0.7 GPa and possibly lower) and, conversely, for high-Ca activities, stability of titanite may extend to higher pressures (1.3 GPa and possibly higher) (Frost et al., 2000; Angiboust and Harlov, 2017). Other factors having an influence on which Ti-bearing mineral is stable include the partial pressure of CO2, oxygen fugacity and the concentrations of trace elements such as REEs (Angiboust and Harlov, 2017).  Common and radiogenic lead Common lead (Pb) is non-radiogenic Pb present within a U-bearing mineral. The inclusion of common Pb during initial growth or subsequent recrystallisation varies between minerals based largely on their crystal structure (Kirkland et al., 2016, 2018). Titanite frequently incorporates substantial amounts of common Pb (Gascoyne, 1986; Simonetti et al., 2006; Marsh and Smye, 2017; Kirkland et al., 2018) and, because of slow diffusion, it is generally believed that the majority of the common Pb is accommodated during crystallisation rather than through subsequent redistribution (Gascoyne, 1986; Kirkland et al., 2018). The potential complication of common Pb can be dealt with through correction (e.g., Stacey and Kramers, 1975) with several assumptions (Schoene and Bowring, 2006; Marsh and Smye, 2017; Kirkland et al., 2018) or used to help define the actual age of the specimen being investigated if variably incorporated (e.g., Larson et al., 2013). 28  Closure temperature  The diffusion of Pb, both radiogenic and non-radiogenic (or common), can occur within titanite, but there is uncertainty over the temperature sensitivity of this diffusion process and the effective ‘closure temperature’ to Pb mobility (Kirkland et al., 2016; Marsh and Smye, 2017). The closure temperature is the temperature a system cools to at which significant diffusion of parent or daughter isotopes no longer occurs (Dodson, 1973). The closure temperature of a mineral for a given isotope depends on internal properties of the crystal lattice itself such as activation energy and frequency factor (e.g., Harrison et al., 2009; Kirkland et al., 2016) and external properties such as the effective diffusion radius and cooling rate (Cherniak, 1993). There is a discrepancy about closure temperature for intercrystalline diffusive Pb-loss in titanite in the literature (Marsh and Smye, 2017). Published values range from as low as 500°C (Gascoyne, 1986), to ∼700°C (Scott and St-Onge, 1995; Frost et al., 2000), or even as high as 800°C (Gao et al., 2012). Most recent titanite studies, however, indicate a closure temperature of > 750°C (Kohn and Corrie, 2011; Spencer et al., 2013; Stearns et al., 2015, 2016; Kohn, 2017). Zoning  Partitioning of trace elements into a mineral is typically assumed to take place at equilibrium with variations in melt chemistry and/or mineral-melt interactions reflected as compositional zoning (Paterson and Stephens, 1992). Titanite can also experience disequilibrium partitioning resulting in sector zoning that is linked to crystallography, as distinct crystal faces can partition trace elements differently during growth (Paterson et al., 1989; Paterson and Stephens, 1992; Kohn, 2017). The {111} sectors are normally morphologically dominant in titanite and Al and Fe will preferentially be incorporated in those faces whereas Y and Nb will reside preferentially in the minor {100} sectors (Paterson and Stephens, 1992). The non-{111} sectors can also host higher Zr, U, Pb and REEs (Kohn, 2017). This can have significant implications on data interpretation as the Zr-in-titanite thermometer (Section 3.4.4) is calibrated for the {111} faces (Kohn, 2017); other sectors may have higher Zr content and therefore yield higher, invalid temperatures. Moreover, because the non-{111} sectors tend to have the highest U, they typically result in better age precision (Kohn, 2017). It can therefore be difficult to establish a link between ages and temperatures without clear knowledge of Zr partitioning, which is not fully understood at the moment (Cherniak, 2006; Kohn, 2017).  3.4.2  Mineral Selection  Titanite grains were first identified using transmitted light microscopy. Selected grains were mapped with the electron microprobe (EMP) to investigate elemental distribution. The crystal lattices of the grains were further analysed using electron backscatter diffraction (EBSD) to quantitatively investigate 29  internal lattice misorientations. The combined information allowed targeting of specific elemental and crystal orientations during petrochronological analyses.  Optical Microscopy Titanite was present as an accessory phase in several thin sections. Five thin sections were selected that contained several large crystals that showed possible subgrains or recrystallised domains as indicated by varied extinction in different portions of the mineral. Three thin sections were selected from the moderate- to high-strain portion of the shear zone while the fourth comes from the low-strained, northern margin of the WSZ and the fifth was taken from an outcrop located south of the shear zone.  Electron Microprobe  EMP analyses were carried out using a Cameca SXFive Field Emission Electron Probe Microanalyzer located in the Fipke Laboratory for Trace Element Research (FiLTER) of The University of British Columbia, Okanagan. The EMP was used to produce backscatter (BSE) and qualitative element imaging of gadolinium (Gd), niobium (Nb), yttrium (Y) and zirconium (Zr, 2 spectrometers). An accelerating voltage of 15 kV, a beam current of 200 nA, a step size of 2 or 3 μm and a dwell time of 60 ms were used. The image processing software ImageJ was used to combine Zr spectrometer images and enhance zoning patterns where applicable. Electron Backscatter Diffraction EBSD can be used to determine crystallographic orientations of mineral grains in thin section at a sub-micron resolution (Halfpenny, 2010). Standard 30 μm polished thin sections cut perpendicular to foliation and parallel to the stretching lineation were vibratory polished with an ATM Saphir Vibro polisher, using a 0.06 μm solution of colloidal silica for a minimum of 3 hours. They were then carbon coated at 10 nm thickness with a Cressington Carbon Coater 208carbon to prevent charging.  EBSD data were acquired with a Tescan Mira 3 XMU SEM equipped with an Oxford Instruments Nordlys EBSD detector in the FiLTER facility, using the Oxford Instruments Aztec 2.4 software. Maps were acquired from thin sections tilted at 70° and pattern acquisition was performed with a 17 mm working distance, a beam current of 20 nA, an accelerating voltage of 20 kV and a chamber pressure of 8.7x10-2 Pa. EBSD patterns were collected on free drawn grids by moving the electron beam at a variable (pixel) step size between 0.5 and 3.5 μm (depending on grainsize and size of area).  The EBSD data were processed using the Oxford Instruments HKL software package Channel 5 and MTEX through Matlab. Post-analysis included noise reduction processing where wild spikes, which are isolated, incorrectly indexed points or lone pixels (Fukuda et al., 2012; Miranda et al., 2016), were removed (extrapolated) and replaced with a zero solution (non-indexed electron backscatter pattern). Further processing was performed in some cases to reduce mis-indexing problems using interpolation through nearest neighbour filter. For those, non-indexed pixels were filled based on the dominant 30  orientation of neighbouring points, only where at least 6 of 8 neighbours had the same orientation (e.g., Miranda et al., 2016; Kirkland et al., 2018). Orientation maps were constructed with Channel 5 and MTEX and misorientation analysis was performed with Channel 5.  3.4.3  LA-MC-ICPMS Split Stream Analysis U-Pb Geochronology Basic Theory Three isotopes of lead (206Pb, 207Pb and 208Pb) accumulate in the same mineral grain in a time-dependent manner from the radioactive decay of 238U, 235U and 232Th, respectively (Gascoyne, 1986). The age of the mineral is then determined based on an equation involving the decay constant (λ) and the isotope abundance ratios of the parent nuclide (Gascoyne, 1986), with the 238U-206Pb and the 235U-207Pb systems (Scott and St-Onge, 1995).  Titanite crystals that showed elemental zonation and/or variations in crystallographic orientations were selected for geochronological analysis. A total of 496 spot locations were investigated at the University of California, Santa Barbara by Dr. Mathieu Soret in August 2018. A Nu Instruments Multicollector-Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) was used with a Photon Machines excimer laser (193 nm wavelength) ablation system to collect U-Pb isotopic data from titanite. The ablated material was split between the MC-ICP-MS and an Agilent 7800 quadrupole ICP-MS, which was used to measure trace element concentrations at the same time. The ICP-MS was operated at 4 Hz repetition rate, 100% of 1.2 mJ energy set point. A 25 μm diameter laser spot size was used with a fluence of 6 J/cm2, a 1.0 kV voltage and 80 shots. The following elements were measured: Pb, U, Th, Al, Si, Ca, Ti, V, Fe, Rb, Sr, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta.  Titanite unknowns were bracketed by analyses of primary and secondary standards. BHVO was used as a monitor for trace elements (Wilson, 1997) and MKED was used as a primary standard with expected ages of (ID-TIMS) 206Pb/207Pb: 1521.02 ±0.55 Ma; 207Pb/235U: 1518.87 ±0.31 Ma; 206Pb/238U: 1517.32 ±0.32 Ma (Spandler et al., 2016). BLR (Bear Lake Road; 1047 ±1 Ma (ID-TIMS); Aleinikoff et al., 2007) was used as a secondary reference material and returned a weighted-mean 206Pb/238U age of 1063 ±2 Ma (2σ, mean squares weighted distribution (MSWD) of 0.64, n = 56). Finally, 28 repeat analyses of the in-house titanite standard Y1710C5 (388.6 ±0.5 Ma (ID-TIMS); Spencer et al., 2013) yielded a weighted-mean 206Pb/238U age of 385 ±1 Ma (2σ, MSWD = 0.69). Where reported, common Pb correction for titanite 238U/206Pb age data followed the approach of Stacey and Kramers (1975) as implemented in IsoplotR (Vermeesch, 2018). 31  Geochronological Data Processing IsoplotR (Vermeesch, 2018) was used to generate concordia plots of the data resulting from in-situ spot laser isotopic analysis; two different methods were used. First, a regression of uncorrected data plotted on a 207Pb/206Pb- vs. 238U/206Pb-ratio (Tera-Wasserburg total Pb plot; Tera and Wasserburg, 1972) was performed, where the age of the specimen is represented by the lower intercept on concordia. Next, a common Pb correction for 238U/206Pb age data was applied, using the Stacey and Kramers (1975) approach in IsoplotR (Vermeesch, 2018). Results of the two methods were then compared in terms of uncertainty and MSWD to select the most appropriate one in the context of this study.  The 496 spot analyses were divided into spatial categories described in Section 4.4.2 that were used to compare age data and temperature calculation results.  3.4.4  Zr-in-Titanite Geothermometry  Theoretical Basis The main constituents of titanite participate in chemical reactions with other major minerals and can be used for quantitative thermometry (Frost et al., 2000; Kohn, 2017). The Zr-in-titanite thermometer is based on the direct substitution of Zr4+ for Ti4+ and can be described as follows (Hayden et al., 2008):  CaTiSiO5 (titanite) + ZrSiO4 (zircon) = CaZrSiO5 (titanite) + TiO2 (rutile) + SiO2 (quartz)    (6)   The equation is (Hayden et al., 2008): (𝑍𝑟𝑡𝑖𝑡𝑎𝑛𝑖𝑡𝑒 , 𝑝𝑝𝑚) = 10.52(±0.10) −7708(±101)𝑇(𝐾)− 960(±10)𝑃(𝐺𝑃𝑎)𝑇(𝐾)− log(𝑎𝑇𝑖𝑂2) − log(𝑎𝑆𝑖𝑂2)     (7)  And can be re-written as (Hayden et al., 2008): 𝑇(℃) =7708+960×𝑃(𝐺𝑃𝑎)10.52−log(𝑎𝑇𝑖𝑂2)−log(𝑎𝑆𝑖𝑂2)−𝑙𝑜𝑔(𝑍𝑟𝑡𝑖𝑡𝑎𝑛𝑖𝑡𝑒,𝑝𝑝𝑚)− 273                 (8)  The thermometer applies to a wide range of temperatures (∼600–1000°C) and pressures (0.2–2.4 GPa), and has a moderate pressure dependence (Hayden et al., 2008). The approximate uncertainty of the calculated temperatures is ±20°C (Hayden et al., 2008). The thermometer has been calibrated for rocks where zircon, quartz and rutile crystallised at saturated conditions (Hayden et al., 2008), however, titanite and rutile rarely coexist. It is still possible to use the thermometer in the absence of rutile with a lower effective Ti activity, in the range 0.75–0.85, which is applicable for most metamorphic rocks (Kapp et al., 2009). 32  Methodology Zr-in-titanite temperatures were calculated using the equation of (Hayden et al., 2008) and compiled in an Excel spreadsheet. Boxplots were also created in Excel to help display differences and investigate possible trends within the data.  3.5  Zircon Geochronology  A suite of pre- and synkinematic granitoid specimens was collected during the summer of 2017 from several different locations for U-Pb zircon geochronology to bracket the timing of shearing along the WSZ.  3.5.1  Specimen Preparation  Overburden Drilling Management Limited conducted the initial specimen preparation where rock-sample fragments were broken down using electronic-pulse disaggregation, a process that separates mineral components along grain boundaries with minimal physical abrasion. The separation of heavy mineral concentrates from lighter minerals was achieved through heavy-liquid separation (methylene iodide [MEI], > 3.3 g/mL) and the resulting concentrates were sorted by magnetic susceptibility using a Frantz isodynamic separator; zircon grains were dominantly isolated into one nonmagnetic fraction. At the University of California, Santa Barbara, the zircon concentrates from 5 specimens were mounted in epoxy and imaged using cathodoluminescence (CL) to guide laser spot placement during analyses. The inadvertent presence of apatite grains in the mounts (a bright phase under CL) unfortunately meant that zircon morphology and growth-zoning textures could not be resolved in most CL images. One additional specimen was also prepared and analysed in FiLTER at UBCO. Zircon concentrates were mounted in epoxy and imaged using an SEM. Representative backscattered-electron (BSE) images of zircons from the 6 specimens that were analysed were acquired with a Tescan FEG SEM in FiLTER and are presented in Section 4.5.  3.5.2  U-Pb Analyses Analyses of U and Pb isotopes for 5 specimens were performed using laser-ablation MC-ICP-MS (LA-MC-ICP-MS) at the University of California, Santa Barbara following the basic analytical approach outlined in Cottle et al. (2012, 2013). In cases where zircons showed zoning, their rims were targeted for analysis. A laser spot diameter of 25 µm was used with a repetition rate of 4 Hz, a laser energy of 100% of 5 mJ and 80 shots. The zircons were normalised against the 91500 zircon as the primary reference material with expected ages of (ID-TIMS) 206Pb/238U: 1062.4 ±0.4 Ma and 207Pb/206Pb: 1065.4 ±0.3 Ma (Wiedenbeck et al., 1995, 2004). GJ-1 (ID-TIMS; 207Pb/206Pb: 607.70 ±0.67 Ma; 207Pb/235U: 603.11 ±0.30 Ma; 206Pb/238U: 33  601.86 ±0.37 Ma; Horstwood et al., 2016) was employed as the secondary standard. Eighteen repeat analyses of GJ-1 yielded a weighted-mean 206Pb/238U age of 601 ±1 Ma (2σ, MSWD of 0.68). Data were processed with Iolite.  A Thermo Scientific X series 2 Quadrupole ICP-MS was used with a Photon Machines Analyte 193 nm Excimer laser ablation system to collect U-Pb isotopic data for one other specimen at FiLTER. Argon was used as the auxiliary, specimen and can cool gas at flow rates of 1.05, 0.75, and 13.0 L/min, respectively; helium was used as the carrier gas at a flow rate of 0.4 L/min. The ICP-MS was run at 1400 W and a laser spot diameter of 20 microns was used with a rep rate of 12 Hz, a fluence of 5.6 J/cm2, a 20 second ablation time and 30 seconds on background. Analyses of unknown zircon grains were bracketed and interspersed (every 5 unknowns) with analyses of the 91500 zircon (primary reference material) and the Plešovice zircon (secondary reference material). Ten repeat analyses of Plešovice zircon (ID-TIMS, 206Pb/238U 337.13 ±0.37 Ma; Sláma et al., 2008) returned a weighted-mean 206Pb/238U age of 341 ±1 Ma (2σ, MSWD of 3.30). Data were processed with Iolite.  3.7.3.  Data Analysis Analysis of the processed data was conducted using IsoplotR (Vermeesch, 2018). For each specimen, Wetherill (Wetherill, 1956) concordia plots (207Pb/235U- vs. 206Pb/238U-ratio) of the resulting data were generated. Weighted-averages were calculated only for those analyses that have more than 95% concordance. Results are presented in Section 4.5; error ellipses represent 2σ and all uncertainties are reported at the 2σ level. A common-Pb correction for weighted-mean 206Pb/238U age data was applied, following the approach of Stacey and Kramers (1975) as implemented in IsoplotR (Vermeesch, 2018).   34  Chapter 4: Results This chapter presents the results of fieldwork and laboratory analyses, organised as per Chapter 3. Representative figures and tables are presented herein with the full dataset presented in the Appendices.  4.1  Fieldwork 4.1.1  Rock Types The quality of rock exposure varied considerably across the study area, from large continuous outcrops to extensive boulder fields and till veneer cover. Along the westernmost portion of the WSZ located within the study area, outcrops are generally sparse, likely due to the Keewatin Ice Divide of the last glaciation leaving large amounts of till on the landscape (Section 2.3.1; McMartin and Dredge, 2005). Overall, rocks present in the vicinity of the WSZ consist dominantly of variably deformed orthogneiss. Most orthogneiss outcrops are described as granodiorite in the field. As the aim of this project is to investigate the structural evolution of the WSZ, focus was placed on structural observations rather than mineralogical studies, although local variations are noted. A brief description of outcrop station data is presented in Appendix A. Figs. 4.1a to e show the distribution of stations and sampling locations, with the corresponding areas A to E appearing in the overview map on Fig. 2.3. Granodioritic rocks contain quartz, plagioclase and alkali feldspar as well as variable amounts of biotite (Fig. 4.2a, b). Amphiboles are locally present (up to 5%) as disseminated crystals or as porphyroclasts that occasionally also include biotite. Trace amounts of magnetite, garnet, chlorite, apatite and orthopyroxene are noted locally. The granodiorite normally presents as a moderately to strongly foliated unit with feldspar porphyroclasts (Fig. 4.2c) and often contains well-formed quartz ribbons (Fig. 4.2d) and rare cm-scale quartz horizons. Deformed granodiorite is generally fine grained, locally mylonitic and in one location the rock displays ultramylonite textures (Fig. 4.2b). The average grainsize was calculated for thin sections analysed with QEMSCAN (Section 4.2.1) and was found to vary between 228 and 703 μm for quartz (excluding the coarse-grained 17SUB-S006A01 which has an average of 3671 μm) and between 29 and 613 for μm feldspar.  Granitic, locally pegmatitic, dykes are common across the field area. They consist of medium- to very coarse-grained feldspar and quartz with variable amounts of biotite and trace magnetite (Fig. 4.3a). Such dykes tend to be slightly more abundant north of the WSZ where they appear chaotically distributed in granodiorite outcrops (Fig. 4.3b) Despite the spatial variation, there are no important lithological differences between the dykes located south, within and north of the WSZ, though detailed geochemical analyses may be able to distinguish different magmatic suites (see Sections 2.1.3 and 2.3.4).35   Figure 4.1 continued on next page.  36   Figure 4.1: a) to e) Maps showing stations and sampling locations with preliminary geology and strain intensity interpretation. Only historical station numbers mentioned in the text are included; the prefix ‘17SUB-’ has been removed from 2017 station and specimen numbers for brevity; the suffix A01 or B01 corresponds to a specimen number. Geology as in Fig. 2.1. Abbreviations as in Fig. 1.1. Figure compilation by Isabelle Therriault. 37    Figure 4.2: Photographs of granodiorite orthogneiss in the vicinity of the Wager shear zone (WSZ; scale bar in photos a, b and d is 1 cm; hammer for scale in photo c is 39 cm long): a) detailed view of granodiorite, in a low-strain portion of the WSZ, 17SUB-T036; b) detailed view of ultramylonite, in a high-strain portion of the WSZ, 17SUB-T016; c) feldspar porphyroclasts, in a low-strain portion of the WSZ, 17SUB-T080 d) quartz ribbons, in a moderate-strain portion of the WSZ, 17SUB-T065. 38   Figure 4.3: Photographs of granitic dykes (scale bar in photos a, c and e is 5 cm; geologist for scale in photo b (red ellipse); hammer for scale in photos d and f is 39 cm long): a) detailed view of granitic pegmatite dyke, 17SUB-T007A; b) abundant dykes in granodiorite outcrop, north of the WSZ, 17SUB-T020; c) detailed view of contact granodiorite host-dyke, 17SUB-S005; d) C’-type shear band affecting a granitic dyke, indicating dextral shear, in a high-strain portion of the WSZ, later discordant dyke in top-right corner (outlined by dashed white lines), 17SUB-T015; e) folded and boudinaged pegmatite dyke, inset shows detail of foliation deflected into a boudin-related flanking-fold, in a high-strain portion of the WSZ, 17SUB-T019; f) deflection of foliation (solid white lines) around a partially crosscutting pegmatite dyke (outlined by dashed white lines) that itself is deformed and abruptly cut-off at its eastern end, 17SUB-T035. 39  The contact between the dykes and the country rocks is generally sharp (Fig. 4.3c) with no observable chilled margins and no preferred orientation (Fig. 4.3c-f). Within the WSZ, dykes are often folded, locally boudinaged (Fig. 4.3d-e), and the foliation of the hostrock is commonly deflected around them (Fig. 4.3f). A more detailed description of six dyke specimens analysed for zircon geochronology is presented in Section 4.5.  Two large granitic intrusions occur within the study area. The central portion of the Base Camp granite was visited and sampled by a team in 2016; a close-up photo of the mineralogy of the intrusion is shown in Fig. 4.4a and the specimen 16WGA-M047A01 (Fig. 4.1d) was analysed as part of this project (Section 4.5.1). The interpreted southern margin of the Base Camp granite, located at the southwest corner of Wager Bay (Fig 4.1d), was observed at stations 17SUB-T004 (Figs. 4.1d, 4.4b) and 17SUB-T072 (Figs. 4.1d, 4.4c-d). At both locations, the granitic rock is weakly to moderately foliated and occurs as larger pods and dykes coalescing and becoming more voluminous towards the main portion of the intrusion (mapped as part of station 17SUB-T005, Appendix A). The other large granitic intrusion is located near the confluence of the WSZ and Chesterfield shear zone (CSZ); it is a coarse-grained, magnetic, mostly massive, crumbly and weathered unit (Fig. 4.4e). The granite appears to have intruded parallel to the granodiorite foliation; the margins of the body are undeformed.  Dioritic pods are also often included in granodiorite outcrops. They usually occur as boudins, with the granodiorite foliation wrapping around them. Additionally, variably deformed meta-sedimentary panels consisting of quartzite, psammite, semi-pelite, meta-ironstone, meta-pyroxenite or amphibolite are intercalated with granodiorite within the WSZ (Appendix A). 4.1.2  Structure  A strain-intensity map for the WSZ is presented in Fig. 2.3. It is based on qualitative observations collected in the field during the summer of 2017, as well as those collected by other researchers between 2012 and 2016 as part of the GEM and GEM-2 programs. A preliminary version of this map appeared in Therriault et al. (2017). The zones of low, moderate and high strain are based on the intensity and orientation of the foliation, the definition and orientation of the lineation (Figs. 4.5 and 4.6) and the presence, abundance and quality of shear-sense indicators (Fig. 4.6).  Foliation in the rocks located south of the WSZ is weakly to moderately well-developed. It commonly strikes east-northeast or west-southwest with variable, moderate dips (Fig. 4.5a). The transition into sheared rocks at the southern margin of the WSZ is gradational over 2–3 km, often coincident with the presence of decimetre to metre scale discrete zones of high strain that are characterised by grainsize reduction and a steeper, well-defined and more intense foliation than in adjacent rocks (Fig. 4.6a).   40    Figure 4.4: Photographs of large granitic intrusions (scale bar in photo a is 1 cm; people for scale in photo b; hammer for scale in photos c, d and e is 39 cm long): a) detailed view of the mineralogy of the Base Camp granite, 16WGA-M047, photo by O. Weller; b) overview of the southern margin of the Base Camp granite, 17SUB-T004, photo by H. Steenkamp; c) and d) southern margin of the Base Camp granite, with numerous granitic dykes and pods (in light pink in photo d), 17SUB-T072; e) granitic intrusion at the junction of the WSZ and CSZ, photo northeast of 17SUB-T083A01 sampling site.41    Figure 4.5: Contoured stereonets showing foliation and lineation measurements taken between 2012 and 2017; note that measurements outside of the WSZ are limited to within 5 km of the interpreted boundary of the shear zone: a) foliations (pole to planes) measured outside of the WSZ; b) lineations measured outside of the WSZ; c) foliation (pole to planes) taken within the WSZ; d) lineation taken within the WSZ. Plotting and contouring with Orient software, contouring at 10 levels.42    Figure 4.6: Field photographs of structures in the vicinity of the Wager shear zone (hammer for scale in photos a, b, e, f and g is 39 cm long; scale bar in photos c and d is 1 cm): a) discrete, steeply dipping, high-strain zones (left of hammer and white line) in contact with lower strain zones with a shallower dipping, more variable foliation (foliation outlined by dashed white lines), south of the WSZ, 17SUB-T032; b) granodiorite outcrop with well-developed, continuous foliation, 17SUB-S006; c) δ-type type mantled porphyroclast with stair-stepping to the right, indicating dextral shear, in a moderate-strain portion of the WSZ, 17SUB-T112; d) σ-type mantled porphyroclast, indicating dextral shear, in a moderate to high-strain portion of the WSZ, 17SUB-T069; e) C-S-type fabric band in outcrop, indicating dextral shear, in a moderate- to high-strain portion of the WSZ, 17SUB-T069; f) C’-type shear band in outcrop, indicating dextral shear, in a low-strain portion of the WSZ, 17SUB-T037; g) isoclinal folding in outcrop, in a low-strain portion of the WSZ, 17SUB-T053.   43   Within the WSZ, the mylonitic foliation is near vertical and east-west striking (Figs. 4.5c, 4.6b), subhorizontal lineations (Fig. 4.5d) are prominent and shear-sense indicators, typically in the form of winged porphyroclasts (Fig. 4.6c-d) and shear-band cleavages (Fig. 4.6e-f), are ubiquitous and almost exclusively dextral. A combination of dextral and sinistral shear indicators was noted in a few locations; Fig. 4.7 presents one example. Close to and within the shear zone, tight to isoclinal folds (Fig. 4.6g) are abundant and the mylonitic foliation variably deflects around pegmatitic dykes (Fig. 4.3e-f) and diorite pods.  Where observed, the transition out of the shear zone into unaffected rocks to the north is typically abrupt, generally occurring over distances of 700 m or less. For example, stations 17SUB-T019 and 17SUB-T020 are 675 m apart with the former having a foliation oriented at 282°/70° with a strong lineation at 06°→280° and several dextral shear-sense indicators, whereas the latter has a variable foliation strike (075–104°), with shallow dips (26–50°) oriented north or south and several sinistral shear-sense indicators (Appendix A). Rocks north of the WSZ are characterised by a foliation that generally strikes west to west-southwest but is locally chaotic with dips varying from shallow to steep and localised, intense folding (Fig. 4.8a). These rocks are cut by abundant pegmatite dykes (Fig. 4.3b). Where present, shear-sense indicators, predominantly in the form of shear bands (Figs. 4.8b-d) and occasional porphyroclasts (Fig. 4.8e), record what appear to be dominantly sinistral deformation fabrics, although shallow dips made it difficult to view the shear zone in the XZ plane of finite strain, rendering the interpretation of shear-sense less certain.  Approximately 150 km west of the Wager Bay coastline (∼93°W longitude; 525000 mE; Figs. 2.2, 2.3), bedrock exposure becomes sparse due to heavy till cover and even where rocks do crop out, evidence of high strain is lacking. Overall, the foliation is still east-west, but the dips tend to be shallower (∼75° versus sub-vertical). Moreover, a subhorizontal lineation is only weakly developed and shear-sense indicators are typically absent.  One of the traverses carried out focused on the area where the WSZ and CSZ meet (Fig. 4.1). In the vicinity of the CSZ, rocks are characteristically coarser grained. The foliation in the area was typical of the WSZ (average 264°/81°), but the outcrops recorded a mix of dextral and sinistral shear-sense indicators (17SUB-T077, 17SUB-T078, 17SUB-T080; Appendix A). Moreover, one location had two visible lineations, 01°→070°, typical of the WSZ, and 55°→205°. Tectonic lineations in the highly strained units of the CSZ have been reported to be shallowly plunging (Wodicka et al., 2016); however, examination of historical data reveals a large range of lineations associated with the CSZ. The second lineation may therefore be related to movement on the CSZ.   44   Figure 4.7: Field photographs of outcrop 17SUB-T101, which is located in a moderate-strain portion of the WSZ and records dextral and sinistral shear-sense indicators (hammer for scale in photos a, b and c is 39 cm long; scale card in photo d): a) quartz-filled tension gash indicating dextral shear; b) C’-type shear band in outcrop indicating sinistral shear; c) σ-type mantled mafic porphyroclast indicating dextral shear; d) several σ-type mantled feldspar porphyroclasts indicating dextral shear.   45   Figure 4.8: Field photographs of structures north of the Wager shear zone (hammer for scale in photos a, b and d is 39 cm long; notebook in photo c is 21 cm long; scale card in photo e): a) folding in outcrop, 17SUB-T022; b) C-S fabrics in outcrop indicating sinistral shear, 17SUB-T022; c) C’-type shear band in outcrop indicating sinistral shear, 17SUB-T038; d) C’-type shear band in outcrop indicating sinistral shear, 17SUB-T022; e) σ-type mantled porphyroclast indicating sinistral shear, 17SUB-T022.   46  4.2  General Petrography and Microstructures  4.2.1  QEMSCANS Twelve thin sections were analysed using QEMSCAN: 17SUB-S002A01, 17SUB-S004A01, 17SUB-T002A02, 17SUB-T011A01, 17SUB-T015A01, 17SUB-T016A01, 17SUB-T054A01, 17SUB-T062A01, 17SUB-T065A01, 17SUB-T069A01, 17SUB-T072A01. Thin section scans are presented in Appendix B, with all slides oriented with north to the top of the page; the actual orientation appears at the bottom left of each slide.  A modal mineralogy estimation was conducted as part of the scans, calculated from the combined analysis of BSE images and mineral identification through Energy Dispersive Spectra data. Difficulties occurred, however, when distinguishing between certain minerals, such as the different types of feldspars, which are subdivided into plagioclase, albite and orthoclase. Feldspars are dominant in 10 out of 12 thin sections while quartz is the main phase in 17SUB-S006A01 and 17SUB-T002A02. Biotite percentages vary from virtually absent to between 3–7.5% for 17SUB-S002A01, 17SUB-T015A01, 17SUB-T016A01, 17SUB-T062A01, 17SUB-T065A01, 17SUB-T069A01 and 17SUB-T072A01 and up to 21% in T054A01. Hornblende also ranges from absent in most specimens to between 5–7% for 17SUB-S002A01, 17SUB-S004A01 and 17SUB-T072A01. Other minerals include rare muscovite but close to 1% in 17SUB-S006A01, 17SUB-T015A01 and 17SUB-T054A01, and trace titanite, apatite, zircon, garnet, ilmenite, pyrite, hematite, rutile and monazite. The average mineral grainsize was also evaluated. It represents an estimate of the diameter of the mineral particles, based on the length of contiguously touching pixels of the same mineral. The results are summarised in Table 4.1. Table 4.1: Average mineral grainsize in microns for thin sections analysed with QEMSCAN; sample numbers are abbreviated, the prefix ‘17SUB-’ and suffix ‘A01’ (‘A02’ for T002) were removed for brevity. Mineral S002 S004 S006 T002 T011 T015 T016 T054 T062 T065 T069 T072 Quartz 459 238 3671 703 306 400 228 445 498 284 351 367 Plagioclase 528 312 449 143 242 563 286 377 613 359 393 569 Orthoclase 176 163 190 117 320 177 172 59 122 146 206 211  4.2.2  Microstructures Brief thin section descriptions are presented in Appendix C. In thin section, quartz often displays undulose extinction and internal subgrain formation across the low- to high-strain portions of the shear zone (Fig. 4.9a, b). Quartz frequently occurs as aggregates with a ribbon-shaped geometry, with minor variation between the low- to high-strain portions (Fig. 4.9c, d). 47  In the high-strain portion of the WSZ, quartz has weakly sutured or interlobate and locally sub-polygonal grain boundaries (Fig. 4.9d) and forms both continuous or discontinuous ribbons ∼500 μm wide (Fig. 4.9e, f) and pockets, up to 2 mm in width, with variable grainsize (Fig. 4.9d). Grain bulging is rarely observed although it is present in 17SUB-S006A01, a quartzite specimen which also displays square internal subgrains, a pattern known as chessboard extinction (Blumenfeld et al., 1986; Passchier and Trouw, 2005); grain-boundary migration recrystallisation is indicated by irregular grain boundaries (Fig. 4.9g). Rare mafic porphyroclasts, dominantly composed of hornblende, have also been observed (Fig. 4.9e, f). In the high and moderate strained portions of the WSZ, plagioclase commonly has tapered or bent twins (Fig. 4.9h, i). Additionally, myrmekite is present locally throughout the WSZ (Fig. 4.9j).  In the moderate-strain portion of the WSZ, quartz forms ribbons (generally thin, around 500 μm but locally up to 2 mm) that tend to be more continuous than in the high-strain zone (Fig. 4.9c). Quartz grain boundaries are typically more serrated (Fig. 4.9k), but they vary between slightly undulating to lobate or amoeboid; bulging textures are also more common (Fig. 4.9l). Feldspar porphyroclasts, some displaying undulose extinction, with core-and-mantle structures have been observed (Fig. 4.9m).  Quartz ribbons are also present in the low-strain portion of the WSZ and vary from thin, continuous and straight to locally discontinuous and undulating. Quartz grain boundaries are often serrated with bulging textures, similar to the moderate-strain zone. Feldspars locally occur as sigma-type porphyroclasts, commonly with undulose extinction, from which shear-sense can be deducted (Fig. 4.9n); core-and-mantle structures are uncommon. Finally, plagioclase only rarely displays bent or tapered twins. Rocks from north and south of the WSZ tend to have a higher proportion of alkali feldspars in the matrix (Fig. 4.10a, b); quartz ribbons are developed locally and vary between continuous (Fig. 4.10b, c, d) or discontinuous and more pocket-shaped (Fig 4.10a, c). Quartz locally displays internal subgrains, although they tend to be poorly developed (Fig 4.10d), with grain boundaries varying between interlobate to sub-polygonal (Fig. 4a to d). Bulging textures are rarely observed (Fig. 4.10b) and only minor myrmekite has been noted (Fig. 4.10e). Overall, there are observable variations between the microstructures observed within the different portions and outside of the WSZ that generally correlate with observations made in the field.   48   Figure 4.9: Photomicrographs showing some of the microstructures observed in rocks from the WSZ; all cross-polarised light except e, in plane-polarised light. All thin sections are oriented parallel to the lineation and normal to the foliation; the black arrow and associated number in the top right corner of each image indicate the foliation strike; note that some thin sections have been rotated to best display the minerals: a) internal subgrain development in quartz (marked by orange arrows) that are approximately perpendicular to the long axis of the grain; from a low-strain portion of the WSZ, 17SUB-T054; b) internal subgrain development in quartz (marked by black arrows) that are approximately parallel to the long axis of the grain; from a low-strain portion of the WSZ, 17SUB-T054; c) quartz ribbons (indicated by orange arrows) in granodiorite; from a localised high-strain portion of an otherwise moderate-strain outcrop, 17SUB-T065; d) quartz pocket with sub-polygonal grain boundaries (triple junctions marked by orange arrows); from a high-strain portion of the WSZ, 17SUB-T019; e) and f) hornblende porphyroclast surrounded by quartz ribbons in a matrix of quartz and feldspars; from a high-strain portion of the WSZ, 17SUB-S002. 49    Figure 4.9 (continued): g) high-temperature fabric chessboard extinction in large, central, dark quartz grain from a quartz-rich layer of a granodiorite; detail of bulging along grain boundary (marked by black arrow) in red box; from a high-strain portion of the WSZ, 17SUB-S006; h) tapered twins in plagioclase (marked by red arrow), from a moderate-strain portion of the WSZ, 17SUB-T078; i) bent twins in plagioclase (marked by red arrows); from a high-strain portion of the WSZ, 17SUB-S002; j) myrmekite formation, from a low- to moderate-strain portion of the WSZ, 17SUB-T100; k) serrated grain boundaries in quartzite; from a moderate-strain portion of the WSZ, 17SUB-T101; l) bulging along quartz grain boundaries (marked by red arrows), same specimen as k; m) feldspar porphyroclast with core-and-mantle structure; detail of mantle in red box; from a localised high-strain portion of an otherwise moderate-strain outcrop, 17SUB-T065; n) σ-type mantled feldspar porphyroclast indicating dextral shear-sense; from an outcrop located in a low-strain portion of the WSZ, 17SUB-T054. Abbreviations: Bt, biotite; Fsp, feldspar; Hbl, hornblende; Ms, muscovite; myrm, myrmekite; Pl, plagioclase; Qz, quartz.  50    Figure 4.10: Cross-polarised photomicrographs showing some of the microstructures observed in rocks outside of the WSZ: a) discontinuous quartz ribbons and abundant alkali feldspars; from an outcrop located north of the WSZ, 17SUB-T022; b) continuous quartz ribbons locally occurring as aggregates in a quartz and feldspar matrix detail of bulging along grain boundary (marked by black arrows) in red box; from an outcrop located south of the WSZ, 17SUB-T045; c) continuous and discontinuous quartz ribbons surrounding a feldspar porphyroclast; from an outcrop located south of the WSZ, 17SUB-T098; d) internal subgrain development in quartz (marked by red arrows); from an outcrop located south of the WSZ, 17SUB-T098; e) myrmekite developed in alkali feldspar; from an outcrop located south of the WSZ, 17SUB-T098. 51  4.2.3  Paleopiezometry Six specimens were selected for paleopiezometric investigations on feldspars: four of them belong to one transect, 17SUB-T062 (low-strain zone, southernmost), 17SUB-T065 (moderate-strain zone), 17SUB-T069 (high-strain zone) and 17SUB-T072 (moderate- to high-strain zone, northernmost; Fig. 4.1d; Appendix A) and two more from the high-strain portion of the WSZ, 17SUB-S002 (Fig. 4.1d; Appendix A) and 17SUB-T015; Fig. 4.1b; Appendix A).  An example of diameter calculation is presented in Appendix D. Fig. 4.11 presents a comparison, in the form of boxplots, of the grainsize distribution. Specimens 17SUB-T062A01, 17SUB-T065A01, 17SUB-T069A01 and 17SUB-S002A01 have very similar distribution of grainsizes even though they were taken from different portions of the WSZ, with approximately 75% of the data falling below 150 μm. The other two specimens have larger apparent diameters; 17SUB-T072A01 was collected from an outcrop close to the southern margin of the Base Camp granite, therefore possibly subjected to conditions different from other specimens. 17SUB-T015A01 is spatially close to the ultramylonite 17SUB-T016A01 (Section 4.1.1), so a finer grainsize would be expected under such high strain.  Histograms were also made for each thin section to illustrate the grainsize distribution data in more details (Fig. 4.12, Appendix D), created using the GrainSizeTools Python script (Lopez-Sanchez and Llana-Fúnez, 2015). Histograms from all specimens are positively (right) skewed. In quartz paleopiezometry, this departure from a normal distribution has been linked to different mechanisms of dynamic recrystallisation (Stipp et al., 2010). The development of microstructures and fabrics in a rock are controlled by the mechanism of dynamic recrystallisation (Drury and Urai, 1990). For quartz and feldspar, there are three dominant mechanisms recognised, including, with increasing temperature and decreasing strain rate: bulging (BLG) recrystallisation, subgrain rotation (SGR) recrystallisation and high-temperature grain boundary migration (GBM; Hirth and Tullis, 1992; Stipp et al., 2002; Passchier and Trouw, 2005; Stipp and Kunze, 2008; Faleiros et al., 2010). Those three mechanisms are directly related to the size of recrystallised grains. Detailed work in quartz has linked the transition between the mechanisms to frequency transitions in grainsize distribution histograms (Fig. 4.13; Stipp et al., 2010; Boutonnet et al., 2013). The same detailed work has not been carried out in feldspar, however, given the similarity in dynamic recrystallisation mechanisms, it follows that histograms of feldspar grainsize should show the same characteristics. On each histogram, therefore, the interpreted upper limit for the use of the piezometer (between the SGR and GBM fields) is marked and this value is used for piezometric calculations.   52    Figure 4.11: Boxplots comparing the grainsize distribution (as apparent diameter, Section 3.2.3) for the 6 specimens analysed. Note that the specimens are arranged as they would be encountered in the field, with north at the top of the page. The prefix ‘17SUB-’ was removed from specimen names.   53    Figure 4.12: Histograms (5.0 bin size) for the 6 specimens analysed for paleopiezometry on feldspars. Apparent diameter refers to a diameter that is assumed to be equal to the diameter of a circle with the same area as an ellipse constructed from the short and long axes of the measured feldspar grains. The maximum grainsize used for paleopiezometric calculation is indicated.   54   Figure 4.13: Hypothetical grainsize distribution of paleopiezometry study with dynamic recrystallisation mechanisms (BLG, bulging; SGR, subgrain rotation; GBM, grain boundary migration) divided based on where a frequency transition occurs.   55  Calculated differential stresses vary between 38 MPa and 56 MPa for the specimens analysed (Table 4.2). Those values were used for the calculation of strain rates, using three flow laws: dry and wet anorthite (An100) and labradorite (An60). Results are presented in Fig. 4.14, where the left to right position on the graph corresponds to the south to north distribution of the specimens in the field. A summary of the values and parameters used for the three flow laws as well as the results of calculations are included in Appendix D; all values were taken from Rybacki and Dresen (2004) with reference to the original flow law source in the figures and tables.  Table 4.2: Results of differential stress calculations for 6 specimens using the Twiss (1977) feldspar paleopiezometer. The RMS diameter used is also included.  Specimen d-RMS (μm) n σ (MPa)   17SUB-S002A01 72.452 199 46   17SUB-T015A01 98.557 41 38   17SUB-T062A01 61.433 205 52   17SUB-T065A01 54.819 188 56   17SUB-T069A01 65.259 224 50   17SUB-T072A01 74.126 83 46   The three flow laws have been calibrated to use in the dislocation and diffusion creep regimes (e.g., Rybacki and Dresen, 2000; 2004; Mehl and Hirth, 2008; Viegas et al., 2016). Dislocation creep generally occurs at lower temperatures than diffusion creep and is associated with the three dynamic recrystallisation mechanisms described above (Post and Tullis, 1999). In feldspar, characteristic microstructures include the development of internal subgrains, core-and-mantle structures and myrmekite (Hanmer, 1982; Tullis and Yund, 1987; Simpson and Wintsch, 1989; Hirth and Tullis, 1992; Post and Tullis, 1999; Kruse et al., 2001; Rosenberg and Stünitz, 2003; Stünitz et al., 2003; Passchier and Trouw, 2005; Miranda et al., 2016). Unlike dislocation creep, diffusion creep is grainsize-sensitive (Gower and Simpson, 1992; Passchier and Trouw, 2005) and the transition between the two can be initiated by, for example, myrmekite formation (Mehl and Hirth, 2008; Fukuda et al., 2012). An important type of grainsize-sensitive mechanism is grain boundary sliding (accommodated by either dislocation motion or diffusion, Miranda et al., 2016), a deformation process which occurs in fine-grained recrystallised aggregates whereby grains can slide past each other (Behrmann and Mainprice, 1987; Knipe 1989; Lloyd et al., 1992). There are some differences between dislocation and diffusion creep, where strain rates for the former are slightly faster (Fig. 4.14). However, the relative patterns for dislocation and diffusion creep are similar; results from the An100, dry flow law (Rybacki and Dresen, 2000) are characterised by much slower strain rates in both cases. Despite the variation in differential stress, there is little variation in strain rate  56    Figure 4.14: Strain rates calculated for the six specimens of this study using the Rybacki and Dresen (2000) dry anorthite (An100) flow law, the Rybacki and Dresen (2000) wet anorthite (An100) flow law, and the Dimanov et al. (unpublished) labradorite (An60) flow law in the: a) dislocation creep regime; b) diffusion creep regime.    57  between the specimens, regardless of the creep type or flow law, which may reflect the use of a constant temperature for all specimens. Strain rates were calculated using the paleopiezometric data and an estimated deformation temperature of 750 ±20°C (Sections 4.3.2, 4.4.3). The estimated strain rates, therefore, do not consider potential variations in deformation temperatures that could have affected spatially distinct parts of the shear zone. The flow laws used here to calculate strain rates are sensitive to temperature variation. Indeed, a difference of 100° can result in a change in strain rate of approximately 2 orders of magnitude. An example of this variation is presented in Fig. 4.15 for wet anorthite (An100) in the dislocation creep regime, using 650°C, 750°C and 850°C. Finally, deformation mechanism maps (Fig. 4.16) were constructed based on those of Rybacki and Dresen (2004). Each map contains two separate fields, grain boundary diffusion-controlled creep and dislocation creep (power law) with a grainsize-sensitive transition zone. On each map, the grey rectangle sitting on the Twiss piezometer line marks the range of grainsizes measured in this study (using the interpreted upper limit for the use of the piezometer from the histograms, Fig. 4.12). In all three maps, grainsize measurements plot within the field of dislocation creep, near the transition zone toward the field of diffusion creep (Rybacki and Dresen; 2000). It is possible, however, that some deformation was accommodated through specific processes not included in the maps such as grain boundary sliding in the fine-grained aggregates (Behrmann and Mainprice, 1987; Lloyd et al., 1992; Miranda et al., 2016).    58   Figure 4.15: Comparison of strain rates obtained for the wet anorthite (An100) flow law in the dislocation creep regime, using 650°C, 750°C (this study) and 850°C.59   Figure 4.16: Deformation mechanism map for feldspars at 750°C, calculated using the Twiss (1977) piezometer for feldspars (dashed line) and flow laws from a) and b) Rybacki and Dresen (2000); c) Dimanov et al. (unpublished). The fields of dislocation and diffusion creep are separated by a grainsize-sensitive transition zone (solid line). The range of grainsizes measured in this study is indicated by a grey rectangle on the piezometer line.60  4.3  Quartz CPO  4.3.1  Fabrics  Quartz c-axis investigations were conducted on thin sections from 27 specimens as described in Section 3.3. Examples of the resulting stereonet contoured data are presented in Fig. 4.17, while the complete results, including both point plots and contoured data, are presented in Appendix E and arranged by traverse (Fig. 4.1; displayed as on the map with north at the top). Appendix E also includes a table summarising the findings.  Overall, the quartz c-axis fabrics are poorly developed; two of the specimens analysed yield fabrics that resemble a Type II crossed-girdle pattern (Fig. 4.17a). Most fabrics are characterised by single girdles (Fig. 4.17b), cleft girdles on great circles (apparent or possibly relict; Fig. 4.17c), point maximum in the Y finite strain axis direction (Fig. 4.17d), or maxima along the primitive (Fig. 4.17d, e).  Cleft girdles and point maximum in Y commonly occur in specimens from across the low- to high-strain zones while several maxima distributed about the primitive typically occur in low- and moderate-strained rocks and those external to the WSZ. Cleft girdles are noted in nearly half of the specimens from within the WSZ (11 out of 23) but do not occur outside of the shear zone. This type of fabric is indicative of constrictional strain (Schmid and Casey, 1986; Barth et al., 2010). Type II crossed-girdles, which also indicate constriction (Schmid and Casey, 1986; Barth et al., 2010), were observed in two specimens, one collected from the moderate-strain zone and one from the high-strain zone, while single girdles were observed only in specimens from the high-strain zone. The sense of shear based on c-axis fabric asymmetry was difficult to assess, but tentative interpretations have been made for 16 fabrics (Appendix E); 10 specimens from the WSZ record dextral shear-sense (low to high-strained rocks) whereas 2 appear to have asymmetries consistent with sinistral shear (moderate and high-strain zones). Of the 4 specimens examined from outside of the WSZ, 2 record apparent dextral shear and 2 record apparent sinistral shear.  4.3.2  Opening-Angle Thermometer As described in Section 3.3, it is possible to estimate the temperature of deformation using the opening-angle (OA) of well-defined quartz c-axis fabrics (Kruhl, 1996, 1998; Law, 2014; Faleiros et al., 2016). Example of such measurements are presented in Fig. 4.18a-c. Only four specimens had c-axis fabrics from which a reliable OA could be measured (Fig. 4.18d-g); a summary of the results is presented in Table 4.3.   61   Figure 4.17: Stereonets (contoured data) showing examples of quartz c-axis fabrics observed in specimens from the WSZ: a) Type II crossed-girdles; b) single girdle; c) great circle cleft girdles; d) Y-maximum; e) asymmetrical point maxima; f) several maxima distributed about the primitive. Typical CPO patterns of quartz c-axes shown in a to e on the right (patterns after Law, 1986; Schmid and Casey, 1986; Passchier and Trouw, 2005).   62   Figure 4.18: Examples of measurement of the opening-angle for patterns found in the WSZ: a) point maxima at low angles to the stretching lineation; b) Type II crossed-girdles; c) Y-maximum and intermediate position between X and Z (patterns after Faleiros et al., 2016). Opening-angle calculation for 4 specimens: d) range is 288°–45°, with a resulting OA of 117°; e) range is 125°–210°, with a resulting OA of 85°; interpreted Type II crossed-girdle drawn in red; f) range is 290°–29°, with a resulting OA of 99°; g) range is 294°–30°, with a resulting OA of 96°.   63   Table 4.3: Results of quartz c-axis fabric opening-angle measurements. Fig. 4.18 Specimen OA T (°C),  Equation 3 T (°C),  Equation 4 T (°C),  Equation 5 d 17SUB-T011A01  (low- to moderate-strain) 117° N/A 796 ±50°C 811 ±50°C e 17SUB-T077A01  (moderate-strain) 85° 635 ±50°C 649 ±50°C 679 ±50°C f 17SUB-T078A01  (moderate-strain) 99° N/A 713 ±50°C 742 ±50°C g 17SUB-T105A01  (moderate-strain) 96° N/A 700 ±50°C 715 ±50°C  Three specimens had a quartz fabric OA > 87°, so Equation 4 (Section 3.3) was used (calibrated for temperatures between 650 and 1050°C; Faleiros et al., 2016). Temperature of deformation was calculated using both Equations 3 and 4 for 17SUB-T077A01 (OA of 85°) because the OA is within uncertainty of the transition point at 87°. The resulting temperatures are similar, within error of each other, however, to maintain consistency with the other specimens, the result from Equation 4 is preferred. The estimated temperatures of deformation range between 649 and 796°C, with 3 specimens in the range of 649 to 713°C. While the quartz fabric OA thermometer has been shown to have a minor pressure dependency, pressure constraints have not been firmly established for the WSZ and therefore the pressure-dependent equations of Faleiros et al. (2016) is not used here.    64  4.4  Titanite Petrochronological Studies  4.4.1  Titanite Imaging Description  Compilation Figures  Five thin sections were selected for titanite petrochronological studies: 17SUB-T020A01 (from the northern margin of the WSZ), 17SUB-T045B01 (from south of the WSZ), 17SUB-T069A01 (from the high-strain zone), 17SUB-T072A01 (from the moderate- to high-strain zone) and 17SUB-T077A01 (from the moderate-strain zone). Compilation figures were made for all titanite grains analysed; 6 examples are presented here (Figs. 4.19 to 4.24) while the other 21 are included in Appendix F. A ‘site’ represents a specific mineral grain or close group of mineral grains within a thin section where analyses were conducted. Each figure includes a photomicrograph (plane-polarised or cross-polarised) and a backscatter (BSE) image. As described in Section 3.4.2, the EMP was used to acquire Gd, Nb, Y and Zr qualitative images. The titanite compilation figures include the two element maps that show the most variation, typically Nb and Y. The other four images that make up the summary figures are derived from EBSD analyses. The first is a band contrast map with colour-coded grain boundaries (e.g., Prior et al., 2002). As small differences in lattice angles are not necessarily reliably identified using EBSD, the minimum angle difference is 2° (Prior, 1999). Deformation and recrystallisation processes can divide regions with the same composition into regions separated by new intergranular high-angle grain boundaries, with crystal misorientations that are > 10–15° (Bouchez, 1978; Poirier, 1985; Drury and Urai, 1990; Lloyd et al., 1997). In the case where the misorientations are smaller, ∼5–15°, they develop into intragranular, low-angle or subgrain boundaries, with respect to their neighbour subgrain or host grain (Bouchez, 1978; Poirier, 1985; Lloyd et al., 1997). The second EBSD image is a local misorientation map wherein a rotation axis and a rotation angle are used to express misorientation between two crystal lattices (Wheeler et al., 2001). The software calculates the average misorientation between every pixel and its surrounding pixels and produces a misorientation map displaying the data. The rainbow colour scheme highlights the variations within and between each crystal. The third EBSD image is an orientation map of one of 3 possibilities (x- y- or z-vector); the one that shows the most variation is presented. The orientation maps are colour-coded according to the inverse pole figure (IPF) key included in each figure, as applicable to monoclinic crystal symmetry. The three IPFs also show which crystal direction is parallel to the reference frame direction to which the IPF is assigned to; for example, red colouring means that the direction [001] of the crystal is parallel to the specified thin section direction (X, Y or Z). Note that the EBSD reference frame directions Y and Z are opposite of that from the typical geological reference frame, where the XY plane of the strain ellipsoid corresponds to the foliation, the X-direction marks the stretching lineation and the critical reference frame for kinematic studies is represented by the XZ plane. 65  Figures 4.19–4.23 (next 6 pages): Compilation of titanite microscope, EMP and EBSD data; each figure comprises a photomicrograph (plane-polarised or cross-polarised), a backscatter image, two images acquired with the EMP (selected from Gd, Nb, Y or Zr), an EBSD colour-coded grain boundary map on band contrast, an EBSD local misorientation map where each pixel represents the average misorientation between the pixel and its surrounding pixels, an EBSD orientation map for the direction showing the most variation, colour-coded according to the included inverse pole figure (IPF) key; IPF plots for the X, Y and Z directions (Z out of page); the figures are presented in order of appearance in the text.                Figure 4.19: Titanite with several low- and high-angle grain boundaries; the main core is also brighter in the EMP Nb and Zr spectrometers, 17SUB-T077A01, Site B. 66   Figure 4.20: Titanite showing some zonation in Nb and Y, with brighter areas associated with higher local misorientations; the lower portion of the crystal includes a low-angle grain boundary and it is separated from the higher portion by a high-angle grain boundary, 17SUB-T077A01, Site F.    67   Figure 4.21: Titanite showing a high degree of local misorientations, 17SUB-T072A01, Site B.   68   Figures 4.22: Strong contrast visible in the EMP Nb and Y spectrometers, 17-SUB-T069A01, Site B.   69   Figure 4.23: Titanite showing zonation in Y and higher local misorientations associated with brighter Y areas, 17SUB-T072A01, Site F.    70   Figure 4.24: Euhedral titanite with zonation observable in Nb and Y, 17SUB-T077A01, Site C.   71  Microscope  Titanite occurs as individual anhedral to nearly euhedral crystals, ranging between 25 μm and 2 mm in size. In some cases, microscope examination of thin sections revealed the presence of internal domains that correlated with low- or high-angle grain boundaries (Figs. 4.19, 4.20) or varying local misorientations (Fig. 4.21).  EMP and EBSD BSE images rarely showed zonation, but, where present, it typically correlated with elemental distribution of Nb and Y (e.g., 17SUB-T069A01, Site B; Fig. 4.22). Chemical zoning was observed in a number of minerals (Figs. 4.19, 4.20, 4.22, 4.23) often best defined by Nb and Y and locally Zr. Zonation was variable with element concentrations sometimes higher at grain rims (Figs. 4.22, 4.23) and sometimes higher in grain cores (Figs. 4.21, 4.24), with no consistent correlation with crystal orientation or local misorientations (Figs. 4.22, 4.24) unless the chemical zoning corresponds to variations in local misorientations across the grain itself (Figs. 4.21, 4.23).  A comparison of all IPF diagrams reveals that titanite crystals are not consistently aligned in any one particular direction. Crystals with the best-developed euhedral faces, however, are aligned parallel with the foliation direction (Fig. 4.19), which is expected as they were cut perpendicular to their long axis. It is interesting to note, however, that no strong Zr zonation was observed in those crystals as might be expected when considering sector zoning (Section 3.4.1; Kohn, 2017).  4.4.2  Titanite Petrochronology  For the combined U-Pb geochronology and Zr-in-titanite geothermometry, 496 spot locations distributed across 27 sites in 5 thin sections were analysed. These spots targeted cores, rims, subgrains (defined here as > 2°), grains separated by a high-angle grain boundary (defined here as > 10°, referred herein as new grains) and variations in local misorientations across grains.  Each petrochronology spot analysis location was classified visually based on its spatial position within the titanite grain (Appendix F), as either core, rim, subgrain, subgrain rim, new grain or subgrain of a new grain. A modifier can be attached to each category, such as yttrium-rich (core, rim or subgrain; based on EMP imaging and examination of Y data) or zirconium-rich (core or rim; based on EMP imaging), or high misorientation density (based on EBSD data). Those categories are used throughout this work in order to examine potential variations and establish relationships within the data.  Figs. 4.25 to 4.29 present a summary of the U-Pb geochronology results (raw data in Appendix F, Table F.1). Each figure shows a Tera-Wasserburg (207Pb/206Pb- vs. 238U/ 206Pb-ratio; Tera and Wasserburg, 1972) plot in which a linear regression was performed, where the lower intercept represents the 238U-206Pb age; only those data points falling close to or on the discordia line were included in the age calculations. The 72  figures also include Tera-Wasserburg plots of all the data and of the data divided by category of occurrence (core, rim, etc., as described above). Variations in misorientations were studied but found to be indistinguishable from the other categories. Conventional Wetherill (1956) concordia diagrams (207Pb/235U- vs. 206Pb/238U-ratio), in which the Stacey and Kramers (1975) two stage isotope evolution model common-Pb correction was applied, are also shown with a 206Pb/238U weighted-mean age calculated from this corrected data. All uncertainties are reported at the 2σ level. Table 4.4 presents a summary of the U-Pb age data for the 5 specimens, including results from the Tera-Wasserburg lower intercept method and from the common-Pb corrected weighted-mean 206Pb/238U method. When comparing results from the two methods, the uncertainty range is similar, but there are some differences when considering the mean square of weighted deviates (MSWD; Wendt and Carl, 1991). In some cases, such as for 17SUB-T020A01, 17SUB-T072A01 and 17SUB-T077A01 (main discordia), the calculated ages are not within uncertainty of each other. However, as the accuracy limit of titanite U-Pb data is around 2%, which represents approximately 35 Ma for an age of 1755 Ma (Storey et al., 2006), those ages are effectively indistinguishable. Because common-Pb corrected data spread along both axes when plotted on Concordia, the weighted-mean of those ages may not be the most appropriate method to determine the actual age of the specimen (Spencer et al., 2016). Therefore, the preferred ages in this study are those obtained from lower intercepts on Tera-Wasserburg plots and will be used for further discussion. Table 4.4: Results of U-Pb titanite age data. Abbreviations: T-W, Tera-Wasserburg. Specimen T-W lower intercept age MSWD, n Weighted-mean 206Pb/238U age MSWD, n 17SUB-T020A01 1746 ±6 Ma MSWD = 1.4, n = 54 1779 ±5 Ma MSWD = 1.4, n = 49/54 17SUB-T045B01 1817 ±9 Ma MSWD = 2.0, n = 11 1818 ±8 Ma MSWD = 1.0, n = 8/11 17SUB-T069A01 1741 ±4 Ma MSWD = 2.7, n = 88 1738 ±5 Ma MSWD = 2.4, n = 87/88 17SUB-T072A01 1751 ±2 Ma MSWD = 3.1, n = 139 1774 ±4 Ma MSWD = 5.3, n = 137/139 17SUB-T077A01 (main discordia) 1755 ±3 Ma MSWD = 1.9, n = 91 1742 ±3 Ma MSWD = 2.5, n = 89/91 17SUB-T077A01 (secondary discordia) 1816 ±5 Ma MSWD = 0.4, n = 30 1809 ±4 Ma MSWD = 0.2, n = 28/30  The data outline two distinct age groups, a younger ca. 1755–1740 Ma population and an older population at ca. 1815 Ma. Detailed investigation of the data separated into categories reveals similar patterns. For 17SUB-T020A01 (Fig. 4.25c-h) and 17SUB-T072A01 (Fig. 4.28c-h), the lower intercept age of all types of titanite occurrences, except for the Y-rich cores of the latter (Fig. 4.28g), are within uncertainty of the younger group. This is also the case for 17SUB-T077A01 (Fig. 4.29e-i), but it should be noted that only data points plotting on the main discordia are considered in those detailed plots. Cores of 73  Figures 4.25–4.29 (next 5 pages): Compilation of titanite U-Pb data; each figure comprises a Tera-Wasserburg plot fitted with a discordia line, the lower intercept of which representing the U-Pb age, and a conventional concordia diagram in which the Stacey and Kramers (1975) common-Pb correction was applied and from which a weighted-mean age was calculated. Figures also include Tera-Wasserburg plots with calculated discordia lower intercepts of the data divided by occurrence within the titanite crystals (see text for more details). Abbreviations: MSWD, mean square of weighted deviates; NG, new grain; NG-SG, subgrain of new grain; SG, subgrain.               Figure 4.25: Titanite U-Pb data for 17SUB-T020A01: a) Tera-Wasserburg plot of the data used in age calculations; inset plot shows all the data with analyses not used in green; b) conventional plot of all the data with associated weighted-mean diagram. Tera-Wasserburg plots of: c) cores only; d) rims only; e) subgrains only; f) new grains only; g) data from Site C only, combination of cores (blue ellipses) and rims (white ellipses); h) all data for the specimen, but excluding Site C.    74   Figure 4.26: Titanite U-Pb data for 17SUB-T045B01: a) Tera-Wasserburg plot of the data used in age calculations, with the only rim as a black ellipse; inset plot shows all the data with analyses not used in green; b) conventional plot of all the data with associated weighted-mean diagram.    75    Figure 4.27: Titanite U-Pb data for 17SUB-T069A01: a) Tera-Wasserburg plot of the data used in age calculations; inset plot shows all the data with analyses not used in green; b) conventional plot of all the data with associated weighted-mean diagram. Tera-Wasserburg plots of: c) cores only; a secondary discordia is visible on the left (red ellipses); lower intercept includes all the data; d) rims only; e) subgrains only; f) Y-rich cores only; g) Y-rich subgrains only; h) combination of Y-rich cores (white ellipses) and Y-rich subgrains (blue ellipses).     76   Figure 4.28: Titanite U-Pb data for 17SUB-T072A01: a) Tera-Wasserburg plot of the data used in age calculations; inset plot shows all the data with analyses not used in green; b) conventional plot of all the data with associated weighted-mean diagram. Tera-Wasserburg plots of: c) cores only; d) combination of rims (white ellipses) and subgrain rims (blue ellipses); e) combination of subgrains (white ellipses) and Y-rich subgrains (blue ellipse); f) combination of new grains (white ellipses) and subgrains of new grains (blue ellipses); g) Y-rich cores only; h) Y-rich rims only.    77   Figure 4.29 continued on next page.    78   Figure 4.29: Titanite U-Pb data for 17SUB-T077A01; key plot shows all the data separated into a main discordia (pink) and a secondary, parallel discordia (blue); analyses not used in purple: a) Tera-Wasserburg plot of the data, main discordia; b) conventional plot of the data (from a) with associated weighted-mean diagram; c) Tera-Wasserburg plot of the data, secondary discordia; d) conventional plot of the data (from c) with associated weighted-mean diagram; note that the outliers have been removed from the concordia and weighted-mean diagrams. Tera-Wasserburg plots (only including data from the main discordia) of: e) cores only; f) combination of rims (white ellipses), subgrain rims (blue ellipses) and subgrain rims of new grains (blue ellipses); g) subgrains only; h) combination of new grains (white ellipses) and subgrains of new grains (blue ellipses); i) Y-rich cores only.     79  17SUB-T069A01 (Fig. 4.27c) appear to be slightly older at 1775 ±10 Ma, but upon close examination of the data, it is possible to distinguish a secondary discordia line (red ellipses on the figure) that, if plotted separately, would yield a main lower intercept age of 1757 ±10 Ma (MSWD = 1.3, n = 21) and a secondary lower intercept age of 1817 ±42 Ma (MSWD = 0.36, n = 8). For the same specimen, rims, subgrains, and Y-rich cores and subgrains, are all similar to the first age population when considering 2% uncertainty.  In summary, the elemental variation and misorientations mapped within the grains do not correlate with significant differences in age within the titanite crystals studied here. The data show, however, two main populations: a younger ca. 1755–1740 Ma group that is the dominant age recorded in titanites from within and at the margin of the WSZ and an older group, dated at ca. 1815 Ma, that occurs as a secondary discordia for two specimens and as a primary lower intercept age for 17SUB-T045B01, a specimen collected south of the WSZ.  4.4.3  Zr-in-Titanite Geothermometry Results of temperature calculations for all spot locations are included in Appendix F. The Zr-in-titanite thermometer has a moderate pressure dependence (Section 3.4.4; Hayden et al., 2008). Pressure constraints have not been formally established for the WSZ, but previous studies based on mineral assemblages have argued that rocks south of the shear zone may have experienced pressures of up to 9.5 kbar (Section 2.3.3; Derome, 1988) A pressure of 9 kbar was used for the calculations here.  The different categories of titanite materials, as outlined in the previous Titanite Petrochronology section, were maintained in the examination of the titanite geothermometry data. The compiled data are presented in two separate figures: Fig. 4.30 shows plots of 207Pb corrected 206Pb/238U age (Ma) vs. Zr (ppm), divided by specimen (Fig. 4.30a) and divided by category (Fig. 4.30b) and Fig. 4.31 presents a compilation of Zr-in-titanite temperature results and Zr concentrations (Fig. 4.31a) and 207Pb corrected 206Pb/238U age (Fig. 4.31b) in the form of boxplots. The uncertainty associated with temperature estimates is ±20°C. Zr concentrations vary between 29 and 4060 ppm for all 5 specimens. Values above 721 ppm were only found at Site C of 17SUB-T020A01, which also shows the strongest zonation for that element. The average Zr concentration for the whole dataset is 264 ppm; at 9 kbar, this yields a temperature of ∼770°C. Higher Zr content may be due to sector zoning related to crystal faces (Section 3.4.1) and, as it is advisable to use sectors with lower Zr for Zr-in-titanite temperature calculations (Kohn, 2017), results from 17SUB-T020A01, Site C are not considered. The average Zr concentration of the data then becomes 234 ppm, corresponding to a temperature of ∼765°C. Examination of the distribution of Zr, divided either by specimen (Fig. 4.30a) or by category (Fig. 4.30b) versus age, does not reveal a clear pattern as most of the data cluster in the 50–400 ppm Zr and 1700–1825 Ma area. Note that only data associated with analyses that yielded a reliable age and Zr value are plotted on those figures (n = 447).  80   Figure 4.30: Plot of 207Pb-corrected 206Pb/238U age (Ma) vs. Zr (ppm), divided by: a) specimen/thin section (prefix ‘17SUB-’ removed for brevity); b) category, as defined in Section 4.4.2.   81   Figure 4.31: Boxplots of Zr-in-titanite (°C), Zr (ppm) and age (Ma). Specimens are organised as they appear in the field, with S on the left-hand side; see key at the top right (prefix ‘17SUB-’ removed for brevity). Categories are presented in order of the legend: a) boxplots of Zr-in-titanite temperature results (°C), calculated at a constant pressure of 9 kbar (see text for details); graph also includes corresponding Zr concentrations (ppm); b) boxplots of 207Pb corrected 206Pb/238U age (Ma).  82  There are temperature variations within and between each specimen when only considering results that are contained within the interquartile range (Fig. 4.31a). However, when comparing the full range of data and combining it with the ±20°C uncertainty, patterns become obscure and most of the data overlap.  For 3 specimens, rim analyses show a range of temperatures that are generally lower (excluding uncertainty) than those from the cores (Fig. 4.31a). The only specimen for which there is a significant difference beyond the uncertainty is 17SUB-T077A01, and that may be due to the titanite grains in this specimen being much larger than in others, making it easier to specifically target rims during analyses. Rim analyses for smaller titanite grains may actually represent a mixed core-rim measurement, perhaps a complication leading to overlapping temperatures. For larger crystals in other specimens, where a subgrain rim could be identified and targeted, there is a similar pattern where they returned lower Zr values and associated temperatures.  The influence of size was investigated by measuring the diameter of the grain or subgrain where each spot analysis is located (Fig. 4.32). The diameter was assumed to be equal to the diameter of a circle with the same area as an ellipse constructed from the short and long axes of the measured titanite grains and subgrains, similar to paleopiezometry studies (Section 3.2.3). There is no trend in Zr distribution (Fig. 4.32a) or age (Fig. 4.32b) with respect to grain or subgrain diameter although the plots highlight well the much larger grainsize of 17SUB-T077A01.  For locations that are enriched in Y, associated analyses generally returned higher temperatures than all other categories in a specific specimen (Fig. 4.31a) but still overlap with the other analyses when considering the uncertainty.  The data that form the ca. 1815 Ma (Section 4.4.2) age group come from all textural/spatial/elemental categories including cores, Y-rich cores, rims, subgrain rims and new grains. Temperature results from this population are indistinguishable from those of the younger population. In summary, there are small variations in Zr-in-titanite geothermometry results within and between each specimen, but, when considering the ±20°C uncertainty, patterns become obscure and most of the data overlap. The average temperature of the dataset is ∼765°C.   83   Figure 4.32: Plot of a) Zr (ppm); b) 207Pb-corrected 206Pb/238U age (Ma) vs. diameter (μm) divided by specimen/thin section (prefix ‘17SUB-’ removed for brevity).    84  4.5  Zircon Geochronology  Specimens were collected for U-Pb zircon geochronology from 6 granitoids variably affected by WSZ-related deformation to help bracket the timing of deformation. In this section, field relationships, zircon characterisation and details of geochronological results are presented for each specimen. Table 4.5 presents a summary of finalised age data (raw data in Appendix G) and Figs. 4.32 and 4.33 show representative zircon SEM images and concordia, respectively. All uncertainties are reported at the 2σ level and only 207Pb-corrected 206Pb/238U ages are discussed in the text. Preliminary results for 5 of the specimens have been previously reported (Therriault et al., 2018) whereas the results for 17SUB-T007A01 are presented herein for the first time.  Table 4.5: Summary of U-Pb zircon age data (Ma) for the 6 specimens of this study. Specimen 207Pb-corrected 206Pb/238U age (Ma) Upper-intercept (Ma) 16WGA-M047A01 1840 ±7 Ma  (MSWD = 1.5; n = 16) N/A 17SUB-T004A01 1887 ±5 Ma  (MSWD = 1.0, n = 8) N/A 17SUB-T007B01 1908 ±14 Ma  (MSWD = 0.9, n = 4) N/A 17SUB-T015B01 N/A 1834 ±7 Ma (MSWD = 5.6, n = 7) 17SUB-T035B01 1822 ±5 Ma  (MSWD = 1.2, n = 8) N/A 17SUB-T083A01 1840 ±6 Ma  (MSWD = 1.5, n = 13) N/A  4.5.1  16WGA-M047A01  Specimen 16WGA-M047A01 was collected from the central portion of the Base Camp granite intrusion (Fig. 4.1d), well outside of the WSZ, near the reported sampling location for a specimen previously dated by Henderson and Roddick (1990; Section 2.3.4). It is a biotite- and magnetite-rich, massive to weakly foliated, medium-grained monzogranite (Fig. 4.4a). Zircons extracted contain sparse inclusions, are locally fractured, and are generally euhedral but tend to vary in shape and size (50–200 μm). The BSE images reveal faint core and rim domains in many grains (Fig. 4.33a). The majority of the U-Pb analyses cluster into a single group along concordia while a few data points are strongly discordant (Fig. 4.34a). Sixteen concordant analyses from the main cluster yield a weighted-mean 207Pb-corrected 206Pb/238U age of 1840 ±7 Ma (MSWD = 1.5; n = 16). Uranium concentrations vary from 27 to 1008 ppm for the 16 analyses used in the age calculation and the Th/U ratios range between 0.021 and 1.880.  4.5.2  17SUB-T004A01 Specimen 17SUB-T004A01 comes from the apparent southern margin of the Base Camp granite, which is interpreted to have been affected by WSZ-related deformation (Fig. 4.1d, 4.4b). At the sampling  85   Figure 4.33: Backscattered-electron (BSE) images of representative zircon grains (dark rimmed holes with light centres correspond to analysis locations; darker minerals are apatite and titanite): a) several zircons showing faint zoning and some fractures, 16WGA-M047A01; b) two representative euhedral zircons with prominent zoning, 17SUB-T004A01; c) several zircons showing example of faint zoning, alteration or fracturing, 17SUB-T007B01; d) two representative altered zircons with many inclusions, 17SUB-T015B01; e) three representative zircons with faint zoning, 17SUB-T035B01; f) several zircons showing faint zoning, 17SUB-T083A01.   86   Figure 4.34: Conventional concordia plots displaying uncorrected U-Pb geochronology results, with a close-up plot of analyses used for age calculation (blue ellipses) and 207Pb-corrected 206Pb/238U weighted-mean age diagrams for each sample for a, b, c, e and f: a) 16WGA-M047A01; b) 17SUB-T004A01; c) 17SUB-T007B01; d) discordia with upper-intercept, 17SUB-T015B01; e) 17SUB-T035B01; f) 17SUB-T083A01. All error ellipses represent 2σ. Abbreviations: MSWD, mean square of weighted deviates. 87  location, near its contact with the host mylonitic granodiorite, the medium-grained granite contains biotite and is locally foliated. Zircons are euhedral, rarely contain inclusions or fractures and are up to 100 μm long; prominent concentric growth-zoning in several of the larger grains, as well as cores with rim overgrowths, are visible under BSE (Fig. 4.33b). The spread in U-Pb analyses is significant, with a majority of the data points being discordant (Fig. 4.34b). Considering only the 8 analyses that form part of the main cluster near concordia, the data yield a weighted-mean 207Pb-corrected 206Pb/238U age of 1887 ±5 Ma (MSWD = 1.0, n = 8). The U concentrations from the 8 analyses used to constrain the age of the specimen vary between 863 and 1990 ppm, and the Th/U ratios range between 0.037 and 0.763. 4.5.3  17SUB-T007B01 The outcrop from which 17SUB-T007B01 was collected is located just south of the WSZ (Fig. 4.1b). Numerous large granitic pegmatite dykes intrude in the granodiorite outcrop at varying orientations with sharp contacts with the hostrock. No deflection of foliation around the dykes was noted. At the sampling location, the medium- to coarse grained granite is massive and contains magnetite (Fig. 4.3a). Zircon grains vary in shape and size (up to 175 μm) but are generally euhedral. Inclusions occur locally and some zircon grains are heavily fractured. A portion of the grains have visible core-rim overgrowth textures in BSE images while others have patchy alteration related to fluid movement through ‘punky’ material (Fig. 4.33c). Most of the U-Pb data measured in this specimen are discordant. To estimate an age for the specimen, three non-concordant analyses that form a small cluster near a single concordant analysis were selected to define a weighted-mean 207Pb-corrected 206Pb/238U age of 1908 ±14 Ma (Fig. 4.34c; MSWD = 0.9, n = 4). The range of U concentrations from the 5 analyses used to constrain the age varies between 1100 and 2810 ppm and the Th/U ratios range between 1.46 and 21.7.  4.5.4  17SUB-T015B01 The outcrop from which 17SUB-T015B01 was collected is located in a high-strain portion of the WSZ (Fig. 4.1b). It contains numerous granitic pegmatite dykes that occur at varying orientations and have sharp contacts with the hostrock. Dykes that are foliation-parallel are deformed and cut by dextral C'-type shear bands (Fig. 4.3d) while those occurring at high-angles to the foliation cut these fabrics and the deformed dykes. Specimen 17SUB-T015B01 comes from a granitic pegmatite dyke that cuts the strongly foliated and deformed granodiorite hostrock. Average zircon grains are 100–300 μm long and have irregular grain margins but are otherwise generally euhedral and host to many inclusions and fractures. Grains are partially metamict and there is no preserved growth zoning visible in BSE images (Fig. 4.33d). Of the 20 analyses that were carried out on zircons, 13 had anomalous U and Pb concentrations that did not yield usable age data. Only one of the remaining seven analyses is concordant (207Pb-corrected 206Pb/238U age of 88  1844 Ma), while the other six outline a Pb-loss chord with an upper-intercept age of 1834 ±7 Ma (Fig. 4.34d; MSWD = 5.6). Uranium concentrations range between 865 and 3514 ppm for the seven usable analyses (865 ppm U for the only concordant analysis). Th/U ratios vary between 0.033 and 0.769 for the same seven analyses, with the concordant data point yielding a Th/U ratio of 0.033.  4.5.5  17SUB-T035B01 This specimen comes from an outcrop located in a low-strain portion of the WSZ (Fig. 4.1a) where both dextral and sinistral shear-sense indicators are present (Section 4.1.2). 17SUB-T035B01 was collected from a granitic pegmatite dyke that has sharp contacts with the hostrock. The foliation in the granodiorite host deflects around the pegmatite dyke (Fig. 4.3f) while the dyke itself is discontinuous. Zircon grains are 90–250 μm long and contains inclusions and fractures concentrated at their cores. Only faint concentric growth-zoning is visible in BSE images, but thick, compositionally homogeneous rims are clear in most of the grains (Fig. 4.33e). A cluster of 8 concordant analyses yields a weighted-mean 207Pb-corrected 206Pb/238U age of 1822 ±5Ma (Fig. 4.34e; MSWD = 1.2, n = 8). The range of U concentrations from the 8 analyses used to constrain the age of the specimen varies between 363 and 1617 ppm and the Th/U ratios range from 0.293 to 0.958. 4.5.6  17SUB-T083A01 This specimen was collected from a medium- to coarse-grained, massive to weakly foliated and strongly magnetic granitic intrusion within the WSZ (Fig. 4.1c). At the sampling location, near the southern contact of the intrusion with the host granodiorite gneiss, the rock is undeformed, even though the contact of the intrusion is parallel to the fabric of the hostrock. Zircon grains are 50–250 μm long and subhedral to euhedral. A portion of the grains have visible concentric growth-zoning in BSE images and fractured cores with inclusions, while others have faint compositional transitions from core to rim domains in BSE images and are inclusion and fracture free (Fig. 4.33f). Considering only the 13 analyses that form part of the main cluster, the data yield a weighted-mean 207Pb-corrected 206Pb/238U age of 1840 ±6Ma (Fig. 4.34f; MSWD = 1.5, n = 13). Uranium concentrations for the 13 analyses that form the weighted-mean age are 73–1040 ppm and the Th/U ratios are 0.049–2.048. 4.5.7  Th/U Ratios  A compilation diagram of U versus Th concentrations and Th/U ratios presents data for the analyses from all 6 specimens used for age determination with previously published geochemistry of the Hudson suite granitoids (Fig. 4.35). The new data follow 2 main fields, the Hudson NW (analyses from the Rae and Chesterfield; Fig 2.1) and Hudson SE (analyses from the Hearne; Fig. 2.1; van Breemen et al., 2005).   89    Figure 4.35: Uranium and Th concentrations and Th/U ratios for specimens in this study plotted against the Hudson NW (Rae and Chesterfield) and SE (Hearne) granitoid rocks (outlined in black; after van Breemen et al., 2005); field for Hudson NW rocks from just west of the Snowbird tectonic zone is outlined by grey dashed lines (data from van Breemen et al., 2005); field for the Ford Lake batholith outlined by orange dashed lines (data from LeCheminant et al., 1987).   90   Results from 16WGA-M047A01 dominantly overlap with the Hudson NW field, with most points clustering near the field of Hudson suite granitoid rocks from the Rae domain located west of the Snowbird tectonic zone (van Breemen et al., 2005). Conversely, specimen 17SUB-T004A01, which was collected from the interpreted southern margin of the same mapped body as 16WGA-M047A01, does not plot in the same area on the graph. All data points but one from 17SUB-T004A01 plot within the Hudson SE granitoid field (van Breemen et al., 2005). The five data points for 17SUB-T007B01 do not cluster in any specific field on the U versus Th diagram (Fig. 4.35); however, the only concordant analysis plots in the Hudson SE field, but more data are required to confirm any sort of affinity. Only the one concordant analysis (865 ppm U and Th/U ratio of 0.033) from 17SUB-T015B01 was plotted on Fig. 4.35 as the rest of the data are highly discordant. The data point falls near the Hudson SE and Ford Lake batholith fields; however, as only one analysis has been plotted, again, more data are required to better establish an affinity to either the Ford Lake batholith or the Hudson SE field. On Fig. 4.35, the data for 17SUB-T035B01 plot within the field for the Hudson NW granitoid rocks, but generally separate from specimens 16WGA-M047A01 and 17SUB-T083A01. Most of the analyses for the latter plot in the Hudson NW field close to those from 16WGA-M047A01 while a few data points appear to follow the Ford Lake batholith field.  4.5.8  Zircon Geochronology Summary  In summary, zircon U-Pb geochronology results range between 1908 ±14 and 1822 ±5 Ma. The older ages come from a dyke in an outcrop south of the WSZ (17SUB-T007B01; 1908 ±14 Ma) and the interpreted deformed margin of the Base Camp granite (16WGA-M047A01; 1887 ±5 Ma). The Base Camp granite itself was dated at 1840 ±7 Ma, similar to a larger intrusion near the CSZ (17SUB-T083A01; 1840 ±6 Ma). Specimens yielding younger ages are from dykes located in outcrops within the WSZ, 17SUB-T015B01 at 1834 ±7 Ma and 17SUB-T035B01 at 1822 ±5 Ma.  Specimens 16WGA-M047A01, 17SUB-T035B01 and 17SUB-T083A01 show affinities with the Hudson NW granitoid field in U vs. Th space whereas analyses from 17SUB-T004A01 and the only concordant analysis from 17SUB-T007B01 all plot within the Hudson SE granitoid field. Finally, the one concordant analysis from 17SUB-T015B01 falls near the Hudson SE and Ford Lake batholith fields.      91  Chapter 5: Interpretation and Discussion 5.1  Fieldwork Rock Types and Structural Analysis  Rocks within the Wager shear zone (WSZ) consist dominantly of deformed granodiorite gneiss (Fig. 4.2) and pegmatitic granitic intrusions (Figs. 4.3, 4.4). At the outcrop scale, the shear zone is characterised by a steep, east-west striking mylonitic foliation and a subhorizontal mineral-stretching lineation with abundant, almost exclusively dextral, shear-sense indicators. An apparent strain-intensity map, divided into zones of low, moderate and high strain (Fig. 2.3), was established based on field observations of the intensity and orientation of the foliation, the definition and orientation of the lineation and the presence, abundance and quality of shear-sense indicators (Figs. 4.5, 4.6). These field observations are broadly consistent with previous detailed work within the shear zone along the south coast of Wager Bay (Section 2.3; Henderson et al., 1986, 1991; Derome, 1988; Broome, 1989, 1990; Henderson and Broome, 1990).  The area previously mapped as the Wager pluton (Fig. 2.3; Sections 2.3.4, 2.3.5; Steenkamp et al., 2016; Wodicka et al., 2016) was not visited as the apparent northern boundary of the WSZ falls south of the body. The 1.83 Ga pluton was previously interpreted to have intruded along the shear zone, but deformation within the WSZ is now thought to be younger, ca. 1755–1740 Ma (Section 5.6). An examination of historical data showed no indication of WSZ-related deformation of the Wager pluton, but, as a rigid body, it could have contributed to focusing the deformation south of its margin.  The Western Extension  Investigation of the western extension of the WSZ was complicated by sparse bedrock exposure due to heavy till cover. Where rocks do crop out, the foliation is still east-west striking but dips tend to be shallower, the subhorizontal lineation is only weakly developed and shear-sense indicators are typically absent. It was, therefore, not possible to establish in the field whether the WSZ either connects with the Quoich River fault zone (Fig. 5.1; Panagapko et al., 2003; Berman, 2010) or merges with the Amer mylonite zone (Fig. 5.1; Broome, 1989, 1990). It does, however, appear that the nature and character of the WSZ changes significantly to the west as there is also no interpreted zone of high-strain west of ∼580000 mE (Fig. 2.3).   92   Figure 5.1: Regional geology of the northwestern Hudson Bay area (as per Fig. 2.1). Abbreviations: AMZ, Amer mylonite zone; CBC, Cross Bay complex; CMZ, Chantrey mylonite zone; CSZ, Chesterfield shear zone; DBC, Daly Bay complex; HI, Hanbury Island shear zone; KC, Kramanituar complex; KLD, Kummel Lake domain; LIBZ, Lyon Inlet boundary zone; sb, supracrustal belt; QRFZ, Quoich River fault zone; TSZ, Tyrrell shear zone; UC, Uvauk complex; WLSZ, Walker Lake shear zone; WSZ, Wager shear zone. Figure compilation by Isabelle Therriault. 93  5.2  Microstructural Analyses  Macro- to Microscale and Apparent Strain Gradient  The ubiquitous shear-sense indicators observed in the field are present but not as common at the microscopic scale. Moreover, the overall apparent strain gradient observed in the field correlates approximately with differences in microstructures, including the shape of grain boundaries, quartz ribbon geometries, deformation twinning in feldspar, and core-and-mantle structures around feldspar porphyroclasts. Quartz and Feldspar Microstructures Quartz and feldspar in rocks from the WSZ have been dynamically recrystallised at high temperatures. Lobate or amoeboid grain boundaries and chessboard extinction in quartz (Fig. 4.9g) are consistent with deformation temperatures in excess of 650°C (Blumenfeld et al., 1986; Stipp et al., 2002; Passchier and Trouw, 2005). In feldspar, the presence of subgrains, core-and-mantle structures (Fig. 4.9m) and the occurrence of myrmekite (Fig. 4.9j) are all indicative of deformation at temperatures above 600°C (Hanmer, 1982; Simpson and Wintsch, 1989; Pryer, 1993; Tullis, 2002; Passchier and Trouw, 2005).  Bulging recrystallisation is noted in rocks from both the WSZ (Figs. 4.9g, l) and from outside of the shear zone (Fig. 4.10b). This recrystallisation mechanism is typically associated with temperatures between ∼300–400°C or fast strain rates (Avé’Lallement and Carter, 1971; Stipp et al., 2002, Passchier and Trouw, 2005; Stipp and Kunze, 2008). Because bulging textures have been found on quartz grains that also display chessboard extinction, bulging in the WSZ is interpreted to represent later overprinting. Paleopiezometry  Paleopiezometric investigations of feldspar were conducted on six specimens using the Twiss (1977) feldspar paleopiezometer and three different flow laws (e.g., Rybacki and Dresen, 2004). The presence of syn-deformational hydrous minerals such as amphibole, biotite and chlorite indicates that rocks were likely deformed under wet conditions, so the wet anorthite (An100) flow law is favoured over that for dry anorthite. Moreover, because all of the results fall within the dislocation creep field, only results from the wet anorthite and labradorite flow laws under that regime are discussed here. As there is not significant variation between the specimens, an average strain rate of the 6 specimens for a specific flow law was made. The strain rates estimated for the WSZ in this way vary between 1.83 x 10-10 (wet anorthite) and 2.19 x 10-8 (labradorite) s-1. These results are consistent with strain rates observed within other ductile high-strain zones, which typically range between 10-13 and 10-8 s-1 (Boutonnet et al., 2013; Viegas et al., 2016; Fagereng and Biggs, 2018).  94  5.3  Quartz Fabrics and Opening-Angle Thermometry  Examination of quartz crystallographic preferred orientations for 27 thin sections revealed poorly developed fabrics. The general poor development of quartz c-axis fabrics may reflect the effect of grain boundary sliding (GBS) deformation, which has been associated with the destruction of quartz fabric patterns (Simpson 1986; Krabbendam et al., 2003; Passchier and Trouw, 2005; Halfpenny et al., 2012; Rahl and Skemer, 2016). In fine-grained aggregates, grains with high-angle grain boundaries newly formed by dynamic recrystallisation processes may be able to undergo GBS; this mechanism contributes to weakening the CPO of the new grains (Bestmann and Prior, 2003). Microstructures associated with GBS include straight, smooth grain boundaries, square or rectangular grain shapes that are parallel to the main foliation and voids along grain boundaries (Halfpenny et al., 2012). It can be difficult, however, to establish the occurrence of GBS based solely on microstructures, as similar structures can result from other dynamic or static recrystallisation processes (Takahashi et al., 1998; Passchier and Trouw, 2005). As such, misorientation analyses are required to fully investigate the contribution of GBS (Miranda et al., 2016). It is possible, therefore, that GBS operated in rocks of the WSZ and contributed to the destruction of quartz fabrics; more detailed microstructural work may confirm this hypothesis. During previous structural mapping conducted along the south coast of Wager Bay in the late 1980s and early 1990s, a late increment of north-south shortening was documented in the form of discrete conjugate dextral and sinistral ductile shear zones (Section 2.3.2; Henderson and Broome, 1990; Henderson et al., 1991). Although the specimens investigated did not lend themselves to a study of vorticity, constrictional quartz fabrics such as cleft girdles and Type II crossed-girdles, combined with field observations of minor sinistral shear-sense indicators within the dextral WSZ (Fig. 4.7) and in-plane tails on microcline porphyroclasts (Fig. 4.6d), also recognised by Henderson and Broome (1990), are consistent with a minor transpressive component to the WSZ (Hanmer and Passchier, 1991).  The quartz c-axis opening-angle (OA) thermometer (Kruhl, 1998; Faleiros et al., 2016) results vary between 649 and 796 ±50°C, with 3 specimens in the range of 649–713 ±50°C. The high temperatures recorded are consistent with evidence of prism <c> slip, with maxima located near the lineation direction, which generally occurs above 650°C (Blumenfeld et al., 1986; Faleiros et al., 2016). Chessboard extinction, which combines basal <a> and prism <c> slip (Kruhl, 1996), was indeed observed in the specimen that yielded the highest temperature. Because quartz fabrics typically record the later stages of the strain history (e.g., Law et al., 2004) the absolute temperatures calculated should be considered minimums. These estimated temperatures are consistent with the quartz and feldspar microtextural observations outlined above and the temperatures derived from Zr-in-titanite thermometry as described below. 95  5.4  Titanite Petrochronological and Thermometry Studies  The results of titanite petrochronology demonstrate that elemental variation and structural domains identified with the EBSD in mineral grains do not correlate with age. The age data do, however, form two different populations: a younger, ca. 1755–1740 Ma age population and an older, ca. 1815 Ma population. The younger population is recorded in specimens from within and at the margin of the WSZ while the older population occurs as a secondary discordia for two specimens, one from the moderate-strain zone and one from the high-strain zone, and as the primary lower intercept age for a specimen collected south of the WSZ. The younger population overlaps in age with the Kivalliq igneous suite (KIS; 1.77–1.73 Ga; Section 2.1.3) while the older population is coeval with various events in the Rae, including deformation along the Tyrrell shear zone (Section 2.1.3; Fig. 5.1; MacLachlan et al., 2005a) and local deformation in the MacQuoid supracrustal belt related to the Trans-Hudson Orogen (Fig. 5.1; Hanmer et al., 2006) or tectonometamorphism in the Committee Bay belt area (Fig. 5.1; Berman et al., 2010). The older population is also coeval with monazite ages between ca. 1818 and 1815 Ma from specimens from north of the WSZ (17SUB-T106, Fig. 4.1c, Appendix A), from the Lorillard supracrustal belt (Fig. 5.1) and from the Kummel Lake domain (Fig. 5.1; H. Steenkamp, pers. comm., 2018). Applying the Zr-in-titanite thermometer of Hayden et al. (2008) with a TiO2 activity of 0.75, a SiO2 activity of 1.00 and a pressure of 9 kbar (Section 2.3.3; Derome, 1988) to the full dataset gives temperatures that range between 660 and 945 ±20°C with an average temperature of ∼765°C. Maintaining all parameters but decreasing the pressure to 6 kbar results in a similar average temperature of ∼730°C. Those two temperatures are indistinguishable from each other, given the uncertainty of the method, highlighting the minor dependence of pressure in Zr-in-titanite temperature calculations. No correlation was found between the temperature and age data and no significant spatial trends within grains were recognised. It is interesting to note, however, that 17SUB-T077A01, the specimen with the coarsest grainsize, does show core to rim trends beyond the uncertainty and does not preserve ages as old as the other specimens; the oldest age visible on Fig. 4.30a is 1916 Ma whereas the 4 other specimens preserve older ages, as old as 3008 Ma. As shown on Fig. 4.32, there is no trend in Zr distribution (Fig. 4.32a) or age (Fig. 4.32b) vs. grain or subgrain diameter, but it is possible that the grainsize of 17SUB-T077A01 may have had an influence on not preserving older ages. The average Zr-in-titanite temperatures are comparable to results from quartz fabric OA temperature calculations and microstructural observations and indicate that titanite in rocks of the WSZ exceeded their closure temperature, > 750°C (Kohn and Corrie, 2011; Spencer et al., 2013; Stearns et al., 2016; Kohn, 2017), between ca. 1815 and 1740 Ma.  96  5.5  U-Pb Zircon Geochronology Previous U-Pb zircon geochronology reported the age of the Base Camp granite to be 1808 ±2 Ma (Section 2.3.4; Henderson and Roddick, 1990). The new age of 1840 ±7 Ma for sample 16WGA-M047A01, which comes from the same mapped body, is older but within the typical range of crystallisation ages of the Hudson suite granite, 1845–1795 Ma (Section 2.1.3; Peterson and van Breemen, 1999). This contrasts with results from 17SUB-T004A01, collected from the apparent southern margin of the Base Camp granite and interpreted to have been deformed by the WSZ, that yields a weighted-mean age of 1887 ±5 Ma, outside the typical age range for Hudson suite granite crystallisation. The disparity in ages from the Base Camp granite, 1887, 1840 and 1808 Ma, may indicate protracted crystallisation of the body or, alternatively, the existence of a Base Camp granite complex that comprises multiple intrusions. Partial inheritance is possible but considered unlikely as most reported inherited ages in zircon are generally in the range 2.72 to 2.65 Ga (van Breemen et al., 2005), and the data selected to determine the age are concordant, spatially resolved laser-based data. Interestingly, analyses for 16WGA-M047A01 and 17SUB-T004A01 do not overlap in U vs. Th space (Fig. 4.35), which may indicate that they possibly have a unique magmatic source, although further geochemical analyses are required to verify this inference. Field characteristics and Th/U affinities, however, point to a possible link between the Base Camp granite (16WGA-M047A01), specimen 17SUB-T083A01, which is within the typical range for Hudson suite crystallisation at 1840 ±6 Ma, and the Hudson NW granitoid rocks (Fig. 4.35; van Breemen et al., 2005). 17SUB-T007B01 yielded a poorly defined U-Pb age of 1908 ±14 Ma. The only concordant analysis from this specimen plots very close to analyses from 17SUB-T004A01, which are similar in age and in U vs. Th space (Fig. 4.35). However, any potential genetic relationship must be demonstrated through further geochemical investigation.  Specimen 17SUB-T015B01 was collected from a granitic pegmatite dyke that cuts the foliation in its host granodiorite. It yields an upper-intercept age of 1834 ±7 Ma while specimen 17SUB-T035B01, from a dyke that locally cuts the foliation but is itself cut at both ends, returned a weighted-mean age of 1822 ±5 Ma; both ages are close to peak Hudson suite plutonism at ca. 1830 Ma (van Breemen et al., 2005). Field relationships were interpreted as indicating postkinematic and synkinematic origins for the dykes, respectively. The apparent dichotomy in temporal constraints on deformation between the two specimens may reflect the resolution of the age data, local strain partitioning, or a function of the scale of observation. If observed across a larger area, 17SUB-T015B01 may become concordant with the deformation fabrics, just as 17SUB-T035B01 does at the smaller scale.  97  5.6  Implications for the Tectonic History of the Northwestern Hudson Bay Region  The current interpretation of the dextral, east- to northeast-oriented shear zones that are located in the northwestern Hudson Bay region (Amer mylonite zone (AMZ), Walker Lake shear zone, Tyrrell shear zone, and WSZ) attributes them to active deformational zones during the Hudson intrusive event along which tectonic escape was accommodated (Peterson et al., 2002; MacLachlan et al., 2005a; Berman et al., 2010). The results of this study indicate that the U-Pb and Zr systematics of titanite in rocks from the WSZ were reset between ca. 1815–1740 Ma. Given that rocks just outside of the boundary of the shear zone were not similarly affected (the titanite outside the zone exclusively recorded a metamorphic age of ca. 1815 Ma), the approximate interval, ca. 1755–1740 Ma, is interpreted to represent the timing of high deformation along the structure. The occurrence of deformation at temperatures high enough to promote Pb diffusion in titanite is consistent with estimates of deformation temperatures from microstructural textures and quartz c-axis fabrics and may indicate shear heating within the WSZ (Brun and Cobbold, 1980; Platt, 2015).  Even though a common origin between the AMZ and the WSZ has been proposed on the basis of a continuous positive gravity gradient between the two shear zones (Fig. 2.2; Broome, 1989, 1990), their character is very different. The AMZ (Section 2.2.3; Fig. 5.1) includes localised northeast-trending strands of protomylonitic and occasionally cataclastic rocks, separated by lower-strain zones (Tella and Heywood, 1978), as opposed to the WSZ, which is a continuous zone of high strain. Moreover, the WSZ only records ductile deformation, whereas the mylonite zone of the AMZ is interpreted to have developed between 1850 and 1827 Ma and was then overprinted by a brittle deformation event that produced dextral strike-slip movement post-1750 Ma (Tella, 1994; Tella et al., 1998; Sandeman et al., 2001). The temporal association is, however, interesting to note. The strike-slip movement post-1750 Ma and disturbance of K-Ar ages in hornblende dated at 1.74 Ga (Tella, 1994; Tella et al., 1998) are both coeval with the approximate ca. 1755–1740 Ma interval of deformation along the WSZ.  The dextral strike-slip Walker Lake shear zone (Fig. 5.1) can be divided into two distinct segments with a western portion characterised by localised zones of protomylonite and an eastern portion consisting of a single mylonite zone (Johnstone et al., 2002). Both are steeply dipping, east-west striking and contain sub-horizontally lineated rocks with dextral shear-sense indicators (Johnstone et al., 2002; Sanborn-Barrie et al., 2002). The eastern portion therefore presents some affinities with the WSZ. Movement along the Walker Lake shear zone is dated by a synkinematic monazite age that yielded a weighted-mean 207Pb/206Pb age of 1788 ±6 Ma (MSWD = 1.11, n = 18; Berman et al., 2010). It is, however, interesting to note that the apparent 206Pb/238U ages of 7 out of 18 analyses are in the range 1756–1727 Ma and that they return a 98  206Pb/238U weighted-mean age of 1740 ±9 Ma (MSWD = 0.19), also overlapping with the interval 1755–1740 Ma.  The transtensional dextral-normal Tyrrell shear zone is often mentioned as part of the group of structures in the northwestern Hudson Bay area but is slightly different in character. It represents a late Archean thrust fault along which Paleoproterozoic transtensional shearing was localised. The timing of movement is bracketed by granitoid dykes and was focused in the interval 1815–1811 Ma (MacLachlan et al., 2005a). This age is coeval with the older age population from titanite data as well as monazite ages in the Tehery-Wager area (Section 5.4) and coincides with terminal collision in the Trans-Hudson Orogen (Section 2.1.2; Hoffman, 1988; Corrigan et al., 2009). In the broader region, the WSZ has been variably connected with the Snowbird tectonic zone (STZ; Section 2.2.1) through the Quoich River fault zone (Chapter 1; Fig. 5.1), although the northern segment of the STZ has been recently associated with high-pressure mafic granulite-facies complexes distributed about Chesterfield Inlet (e.g., Sanborn-Barrie et al., 2001, 2019). The age of the STZ is generally considered in terms of metamorphism, with the main high-pressure event dated at ca. 1.9 Ga (e.g., Berman et al., 2007), but it locally records younger deformation. In the southwestern part of the STZ, the final phase of exhumation of the Legs Lake shear zone occurred after 1.78 Ga, facilitated by extensional faulting, and before initiation of deposition of the Athabasca Basin (Fig. 1.1) ca. 1.7 Ga (Mahan et al., 2003, 2006). This event may also be coeval with reactivation of a shear zone along the Black Lake–Bompas Lake fault, in the same region (Mahan et al., 2003, 2006). More detailed work is required to define and constrain the post-1780 Ma event and determine if deformation is related to movement along shear zones in the northwestern Hudson Bay region. If high deformation along the WSZ, and possibly the AMZ and Walker Lake shear zone, indeed occurred in the interval 1755–1740 Ma, it is, however, inconsistent with the shear zones being active during intrusion of the Hudson suite granitoids (1845–1795 Ma; Peterson and van Breemen, 1999). It also implies that deformational events would have occurred after what is generally considered the final amalgamation of the Archean provinces of Laurentia at the end of the Trans-Hudson Orogen (Hoffman, 2014). A widespread heating event is documented across the western Churchill Province (WCP) following the emplacement of the Hudson suite rocks that resulted in the resetting of K-Ar and Rb-Sr systems and the growth of metamorphic rims on zircons in kimberlite-hosted xenoliths at ca. 1.76 Ga (Loveridge et al., 1988; Peterson et al., 2002; Petts et al., 2014). Rocks of the Kivalliq anorogenic igneous suite were emplaced in the central portion of the WCP, in the reworked hinterland of the Trans-Hudson Orogen, during that same time period ca. 1.77–1.73 Ga (Peterson et al., 2015b), and possibly coeval with deformation in shear zones in the northwestern Hudson Bay region.    99  Chapter 6: Conclusions and Further Work Many consider the Arctic the last frontier in Canadian geoscience, owing to its remoteness and lack of infrastructure. In this vast region, several large-scale geological features have only been documented at a reconnaissance-scale level and thus their tectonic significance is poorly understood. One such feature is the Wager shear zone (WSZ), located on the northwestern coast of Hudson Bay, Nunavut. It extends from possibly as far as Southampton Island, through Wager Bay and farther inland to the west. It cuts through Archean and Paleoproterozoic rocks of the Rae craton that record regional-scale metamorphic and deformational events. Previous work in the area identified only the basic characteristics of the region and therefore the kinematic history and timing of movement along the WSZ have not been fully investigated. Because of the lack of characterisation, potential regional correlations with other structures are speculative at best, leaving a major hole in our understanding of the assembly of the crustal components that comprise the present-day Arctic. This project examined the WSZ in detail with specific goals to conduct transects across it to describe the structural characteristics of the rocks therein, investigate a possible strain gradient and identify its boundaries, determine the timing of movement within the shear zone, and characterise the deformation with new field and microstructural analyses.  At the outcrop scale, the WSZ is characterised by a steep, east-west striking fabric with evidence of sub-horizontal shear-sense indicators displaying dextral sense of movement. Fieldwork outlined boundaries of an apparent strain gradient within the shear zone that generally correlates with microstructural observations. Paleopiezometry work revealed that strain rates recorded by the WSZ are consistent with those from other ductile high-strain zones, while study of quartz crystallographic preferred orientations indicate a local transpression component to the deformation. Zr-in-titanite calculations show that the WSZ deformed at high temperatures, above 750°C, consistent with microstructural observations and quartz crystallographic preferred orientations. This study also presents the first direct dating of deformational events that affected rocks of the WSZ through petrochronological studies of titanite. Dextral deformation is interpreted to have occurred ca. 1755–1740 Ma, earlier than what has been previously thought.  The WSZ has often been correlated to other high-strain east- to northeast-trending major structures in the northwestern Hudson Bay region, including the Amer mylonite zone and the Walker Lake shear zone. The Amer mylonite zone comprises strands of high-strain mylonitic zones separated by low-strain zones and records ductile deformation overprinted by an episode of brittle deformation and the Walker Lake shear zone includes two main segments, one of localised protomylonites and one continuous mylonite zone. While their field characteristics may be different, possibly due to lithologies through which the structures cut, there may be temporal overlap between the three structures as the second phase of deformation of the Amer mylonite zone and monazite ages of the Walker Lake shear zone appear to be coeval with deformation 100  within the WSZ. Movement on these structures also overlaps with widespread heating across the western Churchill Province, emplacement of the Kivalliq igneous suite and the final phase of exhumation along shear zones that make up the Snowbird tectonic zone.  6.1  Recommendations for Further Work  There are several studies and projects that would add to this work and complement its results. Field Mapping The western and eastern extensions of the WSZ remain speculative at this point; it is unknown whether the WSZ connects with either the Amer mylonite zone or the Quoich River fault zone at its western end or does extend all the way across Roes Welcome Sound to Southampton Island. More detailed mapping, combined with geophysical interpretation of high-resolution data is required to determine the nature of the deformation at the two extremities of the WSZ.  Pressure Estimates Time constraints prevented the determination of pressure conditions experienced by the WSZ during deformation. However, rock assemblages from the WSZ would enable the use of titanium-in-quartz thermometry to intersect with Zr-in-titanite temperatures to determine a pressure of deformation (e.g., Wark and Watson, 2006; Bestmann and Pennacchioni, 2015) or the use of the amphibole-plagioclase geothermometer on syntectonic phases (e.g., Blundy and Holland, 1990; Scheuvens and Zulauf, 2000).  Vorticity Studies  Strain can be divided into two end-member flow types, pure shear (coaxial flow) and simple shear (non-coaxial flow; Ramsay and Graham, 1970; Means et al., 1980; Ramsay, 1980; Hanmer and Passchier, 1991; Xypolias, 2009, 2010; Fossen and Cavalcante, 2017). Most shear zones will depart from these ideal models and include a component of both, which is referred to as general shearing (Hanmer and Passchier, 1991). Early work suggested a transpressional component to the WSZ and more evidence in favour of this proposition was found through the work presented here. Further work could focus on better understanding the contributions of pure shear and simple shear to deformation within the WSZ, particularly through the detailed study of the localised high-strain dextral and sinistral zones that occur along the southern boundary of the WSZ. Those are particularly well exposed along the south coast of Wager Bay, which was inaccessible during the 2017 field mapping season because of Ukkusiksalik National Park.  101  Deformation – Regional Correlations  Often, the timing of movement of other shear zones is bracketed through interpreted field textural relationships such as cross-cutting granitoid dykes, which can be problematic, rather than through direct dating of deformational events. Similar in-situ deformation dating could be applied to other shear zones to better constrain the timing of shear deformation to help enable more informed correlations and interpretations.   102  References Aleinikoff, J.N., Wintsch, R.P., Tollo, R.P., Unruh, D.M., Fanning, C.M., Schmitz, M.D., 2007. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England. American Journal of Science 307, 63–118. Angiboust, S., Harlov, D., 2017. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. American Mineralogist: Journal of Earth and Planetary Materials 102, 1696–1708. Ashton, K.E., Hartlaub, R.P., Bethune, K.M., Heaman, L.M., Rayner, N., Niebergall, G.R., 2013. New depositional age constraints for the Murmac Bay group of the southern Rae craton, Canada. Precambrian Research 232, 70–88.  Aspler, L.B., Chiarenzelli, J.R., 1996. Stratigraphy, sedimentology and physical volcanology of the Henik Group, central Ennadai–Rankin greenstone belt, Northwest Territories, Canada: late Archean paleogeography of the Hearne Province and tectonic implications. Precambrian Research 77, 59–89. Aspler, L.B., Chiarenzelli, J.R., Cousens, B.L., 2004. Fluvial, lacustrine and volcanic sedimentation in the Angikuni sub-basin, and initiation of ∼1.84–1.79 Ga Baker Lake Basin, western Churchill Province, Nunavut, Canada. Precambrian Research 129, 225–250. Avé’Lallement, H.G., Carter, N.L., 1971. Pressure dependence of quartz deformation lamellae orientations. American Journal of Science 270, 218–235. Baldwin, J.A., Bowring, S.A., Williams, M.L., 2003. Petrological and geochronological constraints on high pressure, high temperature metamorphism in the Snowbird tectonic zone, Canada. Journal of Metamorphic Geology 21, 81–98. Baldwin, J.A., Bowring, S.A., Williams, M.L., Williams, I.S., 2004. Eclogites of the Snowbird tectonic zone: Petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contributions to Mineralogy and Petrology 147, 528–548. Barth, N.C., Hacker, B.R., Seward, G.G.E., Walsh, E.O., Young, D., Johnston, S., 2010. Strain within the ultrahigh-pressure Western Gneiss region of Norway recorded by quartz CPOs. In: Law, R.D., Butler, R.W.H., Holdsworth, R.E., Krabbendam, M., Strachan, R. (Eds), Continental Tectonics and Mountain Building: The Legacy of Peach and Horne. Geological Society, London, Special Publications 224, 663–685. Behr, W.M., Platt, J.P., 2011. A naturally constrained stress profile through the middle crust in an extensional terrane. Earth and Planetary Science Letters 303, 181–192. Behrmann, J.H., Mainprice, D., 1987. Deformation mechanisms in a high-temperature quartz-feldspar mylonite: evidence for superplastic flow in the lower continental crust. Tectonophysics 140, 297–305. Berman, R.G., 2010. Metamorphic map of the western Churchill Province, Canada. Geological Survey of Canada, Open File 5279, 55p. Berman, R.G., Bostock, H.H., 1997. Metamorphism in the northern Taltson magmatic zone, Northwest Territories. The Canadian Mineralogist 35, 1069–1091. Berman, R.G., Ryan, J.J., Tella, S., Sanborn-Barrie, M., Stern, R.A., Aspler, L.B., Hanmer, S., Davis, W.J., 2000. The case of multiple metamorphic events in the Western Churchill Province: evidence from linked thermobarometric and in-situ SHRIMP data, and jury deliberations (abstract). In: GeoCanada 2000 Meeting, Calgary, Alberta, Abstract # 836. 103  Berman, R.G., Davis, W.J., Aspler, L.B., Chiarenzelli, J.R., 2002. SHRIMP U-Pb ages of multiple metamorphic events in the Angikuni Lake area, western Churchill Province, Nunavut. Geological Survey of Canada, Current Research 2002-F3, 11p. Berman, R.G., Sanborn-Barrie, M., Stern, R.A., Carson, C.J., 2005. Tectonometamorphism at ca. 2.35 and 1.85 Ga in the Rae domain, western Churchill Province, Nunavut, Canada: insights from structural, metamorphic and in situ geochronological analysis of the southwestern Committee Bay Belt. The Canadian Mineralogist 43, 409–442. Berman, R.G., Davis, W.J., Pehrsson, S.J., 2007. Collisional Snowbird tectonic zone resurrected: Growth of Laurentia during the 1.9 accretionary phase of the Hudsonian orogeny. Geology 35, 911–914. Berman, R.G., Sandeman, H., Camacho, A., 2010. Diachronous Palaeoproterozoic deformation and metamorphism in the Committee Bay belt, Rae Province, Nunavut: insights from 40Ar-39Ar cooling ages and thermal modelling. Journal of Metamorphic Geology 28, 439–457. Berman, R.G., Pehrsson, S.J., Davis, W.J., Ryan, J.J., Qui, H., Ashton, K.E., 2013. The Arrowsmith orogeny: Geochronological and thermobarometric constraints on its extent and tectonic setting in the Rae craton, with implications for pre-Nuna supercontinent reconstruction. Precambrian Research 232, 44–69. Bestmann, M., Pennacchioni, G., 2015. Ti distribution in quartz across a heterogeneous shear zone within a granodiorite: The effect of deformation mechanism and strain on Ti resetting. Lithos 227, 37–56. Bestmann, M., Prior, D.J., 2003. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. Journal of Structural Geology 25, 1597–1613. Bickford, M.E., Collerson, K.D., Lewry, J.F., 1994. Crustal history of the Rae and Hearne provinces, southwestern Canadian Shield, Saskatchewan: constraints from geochronologic and isotopic data. Precambrian Research 68, 1–21. Bleeker, W., Ernst, R., 2006. Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga. In: Hanski, E., Mertanen, S., Rämö, T., Vuollo, J. (Eds), Dyke Swarms – Time Markers of Crustal Evolution. A.A. Balkema Publishers, Rotterdam, 1–24. Blumenfeld, P., Mainprice, D., Bouchez, J.-L., 1986. C-slip in quartz from subsolidus deformed granite. Tectonophysics 127, 97–115. Blundy, J.D., Holland, T.J., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to mineralogy and petrology 104, 208-224. Bonamici, C.E., Fanning, C.M., Kozdon, R., Fournelle, J.H., Valley, J.W., 2015. Combined oxygen-isotope and U-Pb zoning studies of titanite: New criteria for age preservation. Chemical Geology 398, 70–84. Bouchez, J.-L., 1978. Preferred orientations of quartz axes in some tectonites: kinematic inferences. Tectonophysics 49, T25–T30. Bouchez, J.-L., Lister, G.S., Nicolas, A., 1983. Fabric asymmetry and shear sense in movement zones. Geologische Rundschau 72, 401–419. Boutonnet, E., Leloup, P.H., Sassier, C., Gardien, V., Ricard, Y., 2013. Ductile strain rate measurements document long-term strain localization in the continental crust. Geology 41, 819–822. Broome, H.J., 1989. Processing and interpretation of regional geophysical data from the Amer/Wager Bay area, District of Keewatin. M.Sc. thesis, Carleton University, Ottawa, ON, 191p. 104  Broome, H.J., 1990. Generation and interpretation of geophysical images with examples from the Rae Province, northwestern Canada shield. Geophysics 55, 977–997. Brun, J.P., Cobbold, P.R., 1980. Strain heating and thermal softening in continental shear zones: a review. Journal of Structural Geology 2, 149–158. Byatt, J., LaRocque, A., Leblon, B., McMartin, I., Harris, J., 2015. Mapping surficial materials south of Wager Bay, southern Nunavut, using RADARSAT-2 C-band dual-polarized and Landsat 8 images, a digital elevation model and slope data: preliminary map and summary of fieldwork. In: Summary of Activities 2015. Canada-Nunavut Geoscience Office, 135–144. Card, C.D., Bethune, K.M., Davis, W.J., Rayner, N., Ashton, K.E., 2014. The case for a distinct Taltson orogeny: Evidence from northwest Saskatchewan, Canada. Precambrian Research 255, 245–265. Carolan, J., Collerson, K.D., 1989. Field relationships and kinematic indicators in the Virgin River shear zone. In: Summary of Investigations 1989. Saskatchewan Geological Survey, Saskatchewan Energy and Mines, Miscellaneous Report 89-4, 98–101. Carolan, J., Crocker, C.H., Collerson, K.D., 1989. Structural relationships of the Western Granulite domain and the Virgin River shear zone. In: Summary of Investigations 1989. Saskatchewan Geological Survey, Saskatchewan Energy and Mines, Miscellaneous Report 89-4, 102–104. Carson, C.J., Berman, R.G., Stern, R.A., Sanborn-Barrie, M., Skulski, T., Sandeman, H.A., 2004. Age constraints on the Paleoproterozoic tectonometamorphic history of the Committee Bay region, western Churchill Province, Canada: evidence from zircon and in situ monazite SHRIMP geochronology. Canadian Journal of Earth Sciences 41, 1049–1076. Chacko, T., De, S.K., Creaser, R.A., Muehlenbachs, K., 2000. Tectonic setting of the Taltson magmatic zone at 1.9-2.0 Ga: a granitoid-based perspective. Canadian Journal of Earth Sciences 37, 1597–1609. Cherniak, D.J., 1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chemical Geology 110, 177–194. Cherniak, D.J., 2006. Zr diffusion in titanite. Contributions to Mineralogy and Petrology 152, 639–647. Coats, W., Middleton, C., 1852. The geography of Hudson's Bay: Being the remarks of Captain W. Coats in many voyages to that locality between the years 1727 and 1751; with an appendix, containing extracts from the log of Capt. Middleton on his voyage for the discovery of the North-west Passage, in HMS" Furnace," in 1741–2. In: Barrow, J. (Ed.), Vol. 11, Hakluyt Society, London.  Corrigan, D., Pehrsson, S.J., Wodicka, N., de Kemp, E., 2009. The Palaeoproterozoic Trans-Hudson Orogen: a prototype of modern accretionary processes. In: Murphy, J.B., Keppie, J.D., Hynes, A.J. (Eds), Ancient Orogens and Modern Analogues. Geological Society, London, Special Publications 327, 457–479. Cottle, J.M., Kylander-Clark, A.R., Vrijmoed, J.C., 2012. U–Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS). Chemical Geology 332, 136–147. Cottle, J.M., Burrows, A.J., Kylander-Clark, A.R., Freedman, P.A., Cohen, R.S., 2013. Enhanced sensitivity in laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 28, 1700–1706. Cousens, B.L., Aspler, L.B., Chiarenzelli, J.R., 2004. Dual sources of ensimatic magmas, Hearne domain, Western Churchill Province, Nunavut, Canada: Neoarchean “infant arc” processes? Precambrian Research 134, 169–188. Culshaw, N., 1991. Post-collisional oblique convergence along the Thelon Tectonic Zone, north of the Bathurst Fault, NWT, Canada. Journal of Structural Geology 13, 501–516. 105  Davis, W.J., Hanmer, S., Sandeman, H.A., 2004. Temporal evolution of the Neoarchean Central Hearne supracrustal belt: rapid generation of juvenile crust in a suprasubduction zone setting. Precambrian Research 134, 85–112. Davis, W.J., Hanmer, S., Tella, S., Sandeman, H.A., Ryan, J.J., 2006. U-Pb geochronology of the MacQuoid supracrustal belt and Cross Bay plutonic complex: Key components of the northwestern Hearne subdomain, western Churchill Province, Nunavut, Canada. Precambrian Research 145, 53–80. De, S.K., Chacko, T., Creaser, R.A., Muehlenbachs, K., 2000. Geochemical and Nd-Pb-O isotope systematics of granites from the Taltson Magmatic Zone, NE Alberta: Implications for early Proterozoic tectonics in western Laurentia. Precambrian Research 102, 221–249. Derome, I., 1988. Evolution of the Wager Bay shear zone, District of Keewatin, N.W.T., Canada. M.Phil. thesis, University of Exeter, Exeter, UK, 190p. Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology 40, 259–274. Dredge, L.A., McMartin, I., 2005. Glacial lakes in the Wager Bay area, Kivalliq, Nunavut. Geological Survey of Canada, Current Research 2005-B1, 7p. Drury, M.R., Urai, J.L., 1990. Deformation-related recrystallization processes. Tectonophysics 172, 235–253. Ernst, R., Bleeker, W., 2010. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Canadian Journal of Earth Sciences 47, 695–739. Ernst, R.E., Buchan, K.L., 2004. Igneous rock associations in Canada 3. Large Igneous Provinces (LIPs) in Canada and adjacent regions: 3 Ga to present. Geoscience Canada 31, 103–127. Evans, D.A., Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39, 443–446. Fagereng, Å., Biggs, J., 2018. New perspectives on ‘geological strain rates’ calculated from both naturally deformed and actively deforming rocks. Journal of Structural Geology. doi.org/10.1016/j.jsg.2018.10.004 Faghih, A., Soleimani, M., 2015. Quartz c-axis fabric development associated with shear deformation along an extensional detachment shear zone: Chapedony Metamorphic Core Complex, Central-East Iranian Microcontinent. Journal of Structural Geology 70, 1–11. Fahrig, W.F., Christie, K.W., Eade, K.E., Tella, S., 1984. Paleomagnetism of the Tulemalu dykes, Northwest Territories, Canada. Canadian Journal of Earth Sciences 21, 544–553. Faleiros, F.M., Campanha, G.A.C., Bello, R.M.S., Fuzikawa, K., 2010. Quartz recrystallization regimes, c-axis texture transitions and fluid inclusion reequilibration in a prograde greenschist to amphibolite facies mylonite zone (Ribeira Shear Zone, SE Brazil). Tectonophysics 485, 193–214. Faleiros, F.M., Moraes, R., Pavan, M., Campanha, G.A.C., 2016. A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer. Tectonophysics 671, 173–182. Flowers, R.M., Bowring, S.A., Williams, M.L., 2006. Timescales and significance of high-pressure, high-temperature metamorphism and mafic dike anatexis, Snowbird tectonic zone, Canada. Contributions to Mineralogy and Petrology 151, 558–581. Fossen, H., Cavalcante, G.C.G., 2017. Shear zones – A review. Earth-Science Reviews 171, 434–455. 106  Frisch, T., 1982. Precambrian geology of the Prince Albert hills, western Melville Peninsula, Northwest Territories. Geological Survey of Canada, Bulletin 346, 79p. Frost, B.R., Chamberlain, K.R., Schumacher, J.C., 2000. Sphene (titanite): phase relations and role as a geochronometer. Chemical Geology 172, 131–148. Fukuda, J.I., Okudaira, T., Satsukawa, T., Michibayashi, K., 2012. Solution–precipitation of K-feldspar in deformed granitoids and its relationship to the distribution of water. Tectonophysics 532, 175–185. Gao, X.Y., Zheng, Y.F., Chen, Y.X., Guo, J., 2012. Geochemical and U–Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen. Lithos 136, 93–108. Gascoyne, M., 1986. Evidence for the stability of the potential nuclear waste host, sphene, over geological time, from uranium-lead ages and uranium-series measurements. Applied Geochemistry 1, 199–210. Geological Survey of Canada., 1983. Magnetic anomaly map, Quoich River, Northwest Territories. Geological Survey of Canada, National Earth Science Series, Magnetic Anomaly Map NQ-15-16-17-M, 1 sheet, scale 1:1,000,000. Gibb, R.A., 1978. Slave–Churchill collision tectonics. Nature 271, 50–52. Gibb, R.A., Walcott, R.I., 1971. A Precambrian suture in the Canadian Shield. Earth and Planetary Science Letters 10, 417–422. Gilligan, A., Bastow, I.D., Darbyshire, F.A., 2016. Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America. Geochemistry, Geophysics, Geosystems 17, 2421–2433. Gleason, G.C., Tullis, J., 1993. Improving flow laws and piezometers for quartz and feldspar aggregates. Geophysical Research Letters 20, 2111–2114. Gleason, G.C., Tullis, J., 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247, 1–23. Goodacre, A.K., Grieve, R.A.F., Halpenny, J.F., Sharpton, V.L., 1987. Horizontal gradient of the Bouguer gravity anomaly map of Canada. Geological Survey of Canada, Canadian Geophysical Atlas Map 5, scale 1:10,000,000. Gower, R.J., Simpson, C., 1992. Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks: evidence for diffusional creep. Journal of Structural Geology 14, 301–313. Guillopé, M., Poirier, J.P., 1979. Dynamic recrystallization during creep of single‐crystalline halite: An experimental study. Journal of Geophysical Research: Solid Earth 84, 5557–5567. Halfpenny, A., 2010. Some important practical issues for the collection and manipulation of electron backscatter diffraction (EBSD) data from geological samples. In: Forster, M.A., Fitz Gerald, J.D. (Eds), Journal of the Virtual Explorer, Vol. 35, paper 3, 1–18. doi: 10.3809/jvirtex.2011.00272 Halfpenny, A., Prior, D.J., Wheeler, J., 2006. Analysis of dynamic recrystallization and nucleation in a quartzite mylonite. Tectonophysics 427, 3–14. Halfpenny, A., Prior, D.J., Wheeler, J., 2012. Electron backscatter diffraction analysis to determine the mechanisms that operated during dynamic recrystallisation of quartz-rich rocks. Journal of Structural Geology 36, 2–15. Hall, C.F., 1872. Geographical discoveries in the Arctic regions. Journal of the American Geographical Society of New York, 216–221. Hanmer, S.K., 1982. Microstructure and geochemistry of plagioclase and microcline in naturally deformed granite. Journal of Structural Geology 4, 197–213. 107  Hanmer, S., Passchier, C. W., 1991. Shear sense indicators: a review. Geological Survey of Canada, Paper 90-17, 81 p. Hanmer, S., Williams, M.L., 2001. Targeted fieldwork in the Daly Bay Complex, Hudson Bay, Nunavut. Geological Survey of Canada, Current Research 2001-C15, 26p. Hanmer, S., Ji, S., Darrach, M., Kopf, C., 1991. Tantato domain, northern Saskatchewan: a segment of the Snowbird tectonic zone. In: Current Research, Part C. Geological Survey of Canada, Paper 91-1C, 121–133. Hanmer, S., Bowring, S., van Breemen, O., Parrish, R., 1992. Great Slave Lake shear zone, NW Canada: mylonitic record of Early Proterozoic continental convergence, collision and indentation. Journal of Structural Geology 14, 757–773. Hanmer, S., Parrish, R.R., Williams, M.L., Kopf, C., 1994. Striding-Athabasca mylonite zone: Complex Archean deep-crustal deformation in the East Athabasca mylonite triangle, northern Saskatchewan. Canadian Journal of Earth Sciences 31, 1287–1300. Hanmer, S., Williams, M.L., Kopf, C., 1995. Striding-Athabasca mylonite zone: implications for the Archean and Early Proterozoic tectonics of the western Canadian Shield. Canadian Journal of Earth Sciences 32, 178–196. Hanmer, S., Tella, S., Ryan, J.J., Sandeman, H.A., Berman, R.G., 2006. Late Neoarchean thick-skinned thrusting and Paleoproterozoic reworking in the MacQuoid supracrustal belt and Cross Bay plutonic complex, western Churchill Province, Nunavut, Canada. Precambrian Research 144, 126–139. Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., Heizler, M.T., 2009. Diffusion of 40Ar in muscovite. Geochimica et Cosmochimica Acta 73, 1039–1051. Hartlaub, R.P., Heaman, L.M., Ashton, K.E., Chacko, T., 2004. The Archean Murmac Bay Group: Evidence for a giant Archean rift in the Rae Province, Canada. Precambrian Research 131, 345–372. Hartlaub, R.P., Chacko, T., Heaman, L.M., Creaser, R.A., Ashton, K.E., Simonetti, A., 2005. Ancient (Meso- to Paleoarchean) crust in the Rae Province, Canada: Evidence from Sm-Nd and U-Pb constraints. Precambrian Research 141, 137–153. Hayden, L.A., Watson, E.B., Wark, D.A., 2008. A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology 155, 529–540. Henderson, J.B., Thériault, R.J., 1994. U-Pb zircon evidence for ancient crust south of the McDonald Fault, northwestern Canadian Shield, Northwest Territories. In: Radiogenic Age and Isotopic Studies: Report 8. Geological Survey of Canada, Current Research 1994-F, 43–47. Henderson, J.R., Broome, H.J., 1990. Geometry and kinematics of Wager shear zone interpreted from structural fabrics and magnetic data. Canadian Journal of Earth Sciences 27, 590–604. Henderson, J.R., Roddick, J.C., 1990. U-Pb age constraint on the Wager shear zone, District of Keewatin, N.W.T. In: Radiogenic Age and Isotopic Studies: Report 3. Geological Survey of Canada, Paper 89-2, 149–152. Henderson, J.R., LeCheminant, A.N., Jefferson, C.W., Coe, K., Henderson, M.N., 1986. Preliminary account of the geology around Wager Bay, District of Keewatin. In: Current Research, Part A. Geological Survey of Canada, Paper 86-1A, 159–176. Henderson, J.B., McGrath, P.H., Thériault, R.J., van Breemen, O., 1990. Intracratonic indentation of the Archean Slave Province into the Early Proterozoic Thelon Tectonic Zone of the Churchill Province, northwestern Canadian Shield. Canadian Journal of Earth Sciences 27, 1699–1713. 108  Henderson, J.R., Jefferson, C.W., Henderson, M.N., Coe, K., Derome, I., 1991. Geology of the region around Wager Bay, District of Keewatin (Parts of 46E and 56H). Geological Survey of Canada, Open File 2383, 2 sheets. Heywood, W.W., 1967a. Geological notes northeastern District of Keewatin and southern Melville Peninsula, District of Franklin, Northwest Territories (parts of 46, 47, 56, 57). Geological Survey of Canada, Paper 66-40, 29p. Heywood, W.W., 1967b. Geology of northeastern District of Keewatin and southern Melville Peninsula, Districts of Franklin and Keewatin. Geological Survey of Canada, Open File 1, scale 1:506,880.  Heywood, W.W., Sanford, B.V., 1976. Geology of Southampton, Coats, and Mansel Islands, District of Keewatin, Northwest Territories. Geological Survey of Canada, Memoir 382, 47p. Heywood, W.W., Schau, M., 1978. A subdivision of the northern Churchill Structural Province. In: Current Research, Part A. Geological Survey of Canada, Paper 78-1A, 139–143. Hinchey, A.M., Davis, W.J., Ryan, J.J., Nadeau, L., 2011. Neoarchean high-potassium granites of the Boothia mainland area, Rae domain, Churchill Province: U–Pb zircon and Sm–Nd whole rock isotopic constraints. Canadian Journal of Earth Sciences 48, 247–279. Hirth, G., Tullis, J., 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology 14, 145–159. Hirth, G., Teyssier, C., Dunlap, J.W., 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences 90, 77–87. Hoffman, P.F., 1981. Autopsy of Athapuscow Aulacogen: A failed arm affected by three collisions. In: Campbell, F.H.A (Ed.), Proterozoic Basins of Canada. Geological Survey of Canada, Paper 81-10, 97–102. Hoffman, P.F., 1987. Continental transform tectonics: Great Slave Lake shear zone (ca. 1.9 Ga), northwest Canada. Geology 15, 785–788. Hoffman, P.F., 1988. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543–603. Hoffman, P.F., 2014. The origin of Laurentia: Rae craton as the backstop for proto-Laurentian amalgamation by slab suction. Geoscience Canada, 41, 313–320. Holyoke III, C.W., Kronenberg, A.K., 2010. Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics 494, 17–31. Horstwood, M.S., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., 2016. Community‐derived standards for LA‐ICP‐MS U‐(Th‐) Pb geochronology – Uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research 40, 311–332. Hunter, N.J., Hasalová, P., Weinberg, R.F., Wilson, C.J., 2016. Fabric controls on strain accommodation in naturally deformed mylonites: The influence of interconnected micaceous layers. Journal of Structural Geology 83, 180–193. Hunter, R.C., Lafrance, B., Heaman, L.M., Zaluski, G., Thomas, D., 2018. Geology, lithogeochemistry and U-Pb geochronology of the Aberdeen Lake area, Nunavut: New insights into the Neoarchean tectonic evolution of the central Rae domain. Precambrian Research 310, 114–132. 109  Hoffman, P.F., 1990a. Subdivision of the Churchill Province and Extent of the Tran-Hudson Orogen. In: Lewry, J.F., Stauffer, M.R. (Eds), The early Proterozoic Trans-Hudson orogen of North America. Geological Association of Canada, Special Paper 37, 15–39. Hoffman, P.F., 1990b. Dynamics of the tectonic assembly of Northeast Laurentia in geon 18 (1.9–1.8 Ga). Geoscience Canada 17, 222–226. Jefferson, C.W., Smith, J.E.M., Hamilton, S.M., 1991. Preliminary account of the resource assessment study of proposed national park, Wager Bay–Southampton Island areas, District of Keewatin. Geological Survey of Canada, Open File 2351, 47p. Jefferson, C.W., Chandler, F.W., Hulbert, L.J., Smith, J.E.M., Fitzhenry, K., Powis, K., 1993. Assessment of mineral and energy resource potential in the Laughland Lake terrestrial area and Wager Bay marine area, N.W.T. Geological Survey of Canada, Open File 2659, 62p. Johnstone, S., Lin, S., Sandeman, H.A., 2002. Significance of the Walker Lake shear zone with respect to regional deformation in the Committee Bay belt, central mainland, Nunavut. Geological Survey of Canada, Current Research 2002-C15, 12p. Jones, A.G., Snyder, D.B., Hanmer, S., Asudeh, I., White, D., Eaton, D.W., Clarke, G., 2002. Magnetotelluric and teleseismic study across the Snowbird Tectonic Zone, Canadian Shield: A Neoarchean mantle suture? Geophysical Research Letters 29, 10-1–10-4. Kapp, P., Manning, C.E., Tropper, P., 2009. Phase‐equilibrium constraints on titanite and rutile activities in mafic epidote amphibolites and geobarometry using titanite–rutile equilibria. Journal of Metamorphic Geology 27, 509–521. Kirkland, C.L., Spaggiari, C.V., Johnson, T.E., Smithies, R.H., Danišík, M., Evans, N., Wingate, M.T.D., Clark, C., Spencer, C., Mikucki, E., McDonald, B.J., 2016. Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research 278, 283–302. Kirkland, C.L., Fougerouse, D., Reddy, S.M., Hollis, J., Saxey, D.W., 2018. Assessing the mechanisms of common Pb incorporation into titanite. Chemical Geology 483, 558–566. Kilian, R., Heilbronner, R., Stünitz, H., 2011. Quartz microstructures and crystallographic preferred orientation: Which shear sense do they indicate? Journal of Structural Geology 33, 1446–1466. Knipe, R.J., 1989. Deformation mechanisms – recognition from natural tectonites. Journal of Structural Geology 11, 127–146. Kohn, M.J., 2017. Titanite petrochronology. Reviews in Mineralogy and Geochemistry 83, 419–441. Kohn, M.J., Corrie, S.L., 2011. Preserved Zr-temperatures and U-Pb ages in high-grade metamorphic titanite: evidence for a static hot channel in the Himalayan orogen. Earth and Planetary Science Letters 311, 136–143. Krabbendam, M., Urai, J.L., van Vliet, L.J., 2003. Grain size stabilisation by dispersed graphite in a high-grade quartz mylonite: an example from Naxos (Greece). Journal of Structural Geology 25, 855–866. Kruhl, J.H., 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581–589. Kruhl, J.H., 1998. Reply: prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 16, 142–146. Kruse, R., Stünitz, H., Kunze, K., 2001. Dynamic recrystallization processes in plagioclase porphyroclasts. Journal of Structural Geology 23, 1781–1802. 110  LaFlamme, C., McFarlane, C.R.M., Corrigan, D., Wodicka, N., 2014. Origin and tectonometamorphic history of the Repulse Bay block, Melville Peninsula, Nunavut: exotic terrane or deeper level of the Rae craton? Canadian Journal of Earth Sciences 51, 1097–1122. Larson, K.P., Gervais, F., Kellett, D.A., 2013. AP–T–t–D discontinuity in east-central Nepal: Implications for the evolution of the Himalayan mid-crust. Lithos 179, 275–292. Law, R.D., 1986. Relationships between strain and quartz crystallographic fabrics in the Roche Maurice quartzites of Plougastel, western Brittany. Journal of Structural Geology 8, 493–515. Law, R.D., 1990. Crystallographic fabrics: a selective review of their applications to research in structural geology. In: Knipe, R.J., Rutter, E.H. (Eds), Deformation Mechanisms, Rheology and Tectonics. Geological Society Special Publication 54, 335–352. Law, R.D., 2014. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: a review. Journal of Structural Geology 66, 129–161. Law, R.D., Schmid, S.M., Wheeler, J., 1990. Simple shear deformation and quartz crystallographic fabrics: a possible natural example from the Torridon area of NW Scotland. Journal of Structural Geology 12, 29–45. Law, R.D., Searle, M.P., Simpson, R.L., 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. Journal of the Geological Society 161, 305–320. LeCheminant, A.N., Heaman, L.M., 1989. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening. Earth and Planetary Science Letters 96, 38–48. LeCheminant, A.N., Roddick, J.C., 1991. U-Pb zircon evidence for widespread 2.6 Ga felsic magmatism in the central District of Keewatin, N.W.T. In: Radiogenic Age and Isotopic Studies: Report 4. Geological Survey of Canada, Paper 90-2, 91–99. LeCheminant, A.N., Roddick, J.C., Tessier, A.C., Bethune, K.M., 1987. Geology and U-Pb ages of early Proterozoic calc-alkaline plutons northwest of Wager Bay, District of Keewatin. In: Current Research, Part A. Geological Survey of Canada, Paper 87-1A, 773–782. Lister, G.S., 1977. Discussion: crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics 39, 51–54. Lister, G.S., 1982. A vorticity equation for lattice reorientation during plastic deformation. Tectonophysics 82, 351-366. Lister, G.S., Paterson, M.S., Hobbs, B.E., 1978. The simulation of fabric development in plastic deformation and its application to quartzite: the model. Tectonophysics 45, 107–158. Liu, J., Riches, A.J., Pearson, D.G., Luo, Y., Kienlen, B., Kjarsgaard, B.A., Stachel, T., Armstrong, J.P., 2016. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Research 272, 168–184. Lloyd, G.E., Law, R.D., Mainprice, D., Wheeler, J., 1992. Microstructural and crystal fabric evolution during shear zone formation. Journal of Structural Geology 14, 1079–1100. Lloyd, G.E., Farmer, A.B., Mainprice, D., 1997. Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279, 55–78. Lopez-Sanchez, M.A., Llana-Fúnez, S., 2015. An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies. Solid Earth 6, 475–495. Loveridge, W.D., Eade, K.E., Sullivan, R.W., 1988. Geochronological studies of Precambrian rocks from the southern district of Keewatin. Geological Survey of Canada, Paper 88-18, 42p. 111  MacLachlan, K., Davis, W.J., Relf, C., 2005a. Paleoproterozoic reworking of an Archean thrust fault in the Hearne domain, Western Churchill Province: U-Pb geochronological constraints. Canadian Journal of Earth Sciences 42, 1313–1330. MacLachlan, K., Davis, W.J., Relf, C., 2005b. U-Pb geochronological constraints on Neoarchean tectonism: multiple compressional events in the northwestern Hearne Domain, Western Churchill Province, Canada. Canadian Journal of Earth Sciences 42, 85–109. Mahan, K.H., Williams, M.L., Baldwin, J.A., 2003. Contractional uplift of deep crustal rocks along the Legs Lake shear zone, western Churchill Province, Canadian Shield. Canadian Journal of Earth Sciences 40, 1085–1110. Mahan, K.H., Williams, M.L., Flowers, R.M., Jercinovic, M.J., Baldwin, J.A., Bowring, S.A., 2006. Geochronological constraints on the Legs Lake shear zone with implications for regional exhumation of lower continental crust, western Churchill Province, Canadian Shield. Contributions to Mineralogy and Petrology 152, 223–242. Mahan, K.H., Smit, C.A., Williams, M.L., Dumond, G., van Reenen, D.D., 2011. Heterogeneous strain and polymetamorphism in high-grade terranes: Insight into crustal processes from the Athabasca Granulite Terrane, western Canada, and the Limpopo Complex, southern Africa. In: van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L. (Eds), Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa. Geological Society of America Memoir 207, 269–287. Marsh, J.H., Smye, A.J., 2017. U-Pb systematics and trace element characteristics in titanite from a high-pressure mafic granulite. Chemical Geology 466, 403–416. Martel, E., van Breemen, O., Berman, R.G., Pehrsson, S.J., 2008. Geochronology and tectonometamorphic history of the Snowbird Lake area, Northwest Territories, Canada: New insights into the architecture and significance of the Snowbird tectonic zone. Precambrian Research 161, 201–230. McMartin, I., Dredge, L.A., 2005. History of ice flow in the Schultz Lake and Wager Bay areas, Kivalliq region, Nunavut. Geological Survey of Canada, Current Research 2005-B2, 10p. McMartin, I., Byatt, J., Randour, I., Day, S.J.A., 2015. Report of 2015 activities for regional surficial mapping, till and stream sediment sampling in the Tehery-Wager GEM 2 Rae Project area. Geological Survey of Canada, Open File 7966, 14p. McMartin, I., Day, S.J.A., Randour, I., Roy, M., Byatt, J., LaRocque, A., Leblon, B., 2016. Report of 2016 activities for the surficial mapping and sampling surveys in the Tehery-Wager GEM-2 Rae Project area. Geological Survey of Canada, Open File 8134, 16p. McNicoll, V.J., Thériault, R.J., McDonough, M.R., 2000. Taltson basement gneissic rocks: U Pb and Nd isotopic constraints on the basement to the Paleoproterozoic Taltson magmatic zone, northeastern Alberta. Canadian Journal of Earth Sciences 37, 1575–1596. Means, W.D., Hobbs, B.E., Lister, G.S., Williams, P.F., 1980. Vorticity and non-coaxiality in progressive deformations. Journal of Structural Geology 2, 371–378. Meert, J.G., Santosh, M., 2017. The Columbia supercontinent revisited. Gondwana Research 50, 67–83. Mehl, L., Hirth, G., 2008. Plagioclase preferred orientation in layered mylonites: Evaluation of flow laws for the lower crust. Journal of Geophysical Research: Solid Earth 113, 19p. Mills, A.J., Berman, R.G., Davis, W.J., Tella, S., Carr, S.D., Roddick, J.C., Hanmer, S., 2007. Thermobarometry and geochronology of the Uvauk complex, a polymetamorphic Neoarchean and Paleoproterozoic segment of the Snowbird tectonic zone, Nunavut, Canada. Canadian Journal of Earth Sciences 44, 245–266. 112  Miranda, E.A., Hirth, G., John, B.E., 2016. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase. Journal of Structural Geology 92, 30–45. Mouland, G., Manseau, M., 2013. Inuit Knowledge of Ukkusiksalik National Park. Parks Canada, 72p. Natural Resources Canada 2019: Canadian aeromagnetic database; Natural Resources Canada, Lands and Minerals Sector, Geoscience Data Repository, URL <http://gdr.agg.nrcan.gc.ca/gdrdap/dap/search-eng.php> [February 2019]. Nie, G., Shan, Y., 2014. Development of quartz c-axis crossed/single girdles under simple-pure shear deformation: Results of visco-plastic self-consistent modeling. Journal of Structural Geology 66, 261–270. Orrell, S.E., Bickford, M.E., Lewry, J.F., 1999. Crustal evolution and age of thermotectonic reworking in the western hinterland of the Trans-Hudson Orogen, northern Saskatchewan. Precambrian Research 95, 187–223. Panagapko, D., Pehrsson, S.J., Pilkington, M., Currie, M., 2003. Geoscience data compilation: Tehery Lake–Wager Bay area, Nunavut (NTS 56 B, C, F, and G), part 1 – base data themes. Geological Survey of Canada, Open File 1809. doi:10.4095/214767 Papapavlou, K., Darling, J.R., Storey, C.D., Lightfoot, P.C., Moser, D.E., Lasalle, S., 2017. Dating shear zones with plastically deformed titanite: New insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada). Precambrian Research 291, 220–235. Partin, C.A., Sylvester, P.J., 2016. Variations in zircon Hf isotopes support earliest Proterozoic Wilson cycle tectonics on the Canadian Shield. Precambrian Research 280, 279–289. Passchier, C.W., 1983. The reliability of asymmetric c-axis fabrics of quartz to determine sense of vorticity. Tectonophysics 99, T9–T18. Passchier, C.W., Trouw, R.A., 2005. Microtectonics (2nd Ed.) Springer, Berlin, 366 p.  Paterson, B.A., Stephens, W.E., 1992. Kinetically induced compositional zoning in titanite: implications for accessory-phase/melt partitioning of trace elements. Contributions to Mineralogy and Petrology 109, 373–385. Paterson, B.A., Stephens, W.E., Herd, D.A., 1989. Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. Mineralogical Magazine 53, 55–61. Paul, D., Hanmer, S., Tella, S., Peterson, T.D., LeCheminant, A.N., 2002. Compilation bedrock geology of part of the western Churchill Province, Nunavut–Northwest Territories. Geological Survey of Canada, Open File 4236, scale 1:1,000,000. Pehrsson, S.J., Eglington, B.M., Evans, D.A.D., 2011. The United Plates of Laurentia and beyond: the Paleoproterozoic orogenic record and assembly of Earth’s first true supercontinent (abstract). In: Geological Society of America Annual Meeting, Minneapolis, Minnesota, Abstracts with Programs 43, 323. Pehrsson, S.J., Berman, R.G., Eglington, B.M., Rainbird, R.H., 2013a. Two Neoarchean supercontinents revisited: The case for a Rae family of cratons. Precambrian Research 232, 27–43. Pehrsson, S.J., Berman, R.G., Davis, W.J., 2013b. Paleoproterozoic orogenesis during Nuna aggregation: A case study of reworking of the Rae craton, Woodburn Lake, Nunavut. Precambrian Research 232, 167–188. 113  Percival, J.A., Davis, W.J., Hamilton, M.A., 2017. U–Pb zircon geochronology and depositional history of the Montresor group, Rae Province, Nunavut, Canada. Canadian Journal of Earth Sciences 54, 512–528. Peterson, T.D., van Breemen, O., 1999. Review and progress report of Proterozoic granitoid rocks of the western Churchill Province, Northwest Territories (Nunavut). In: Current Research 1999-C. Geological Survey of Canada, 119–127. Peterson, T.D., van Breemen, O., Sandeman, H.A., Cousens, B.L., 2002. Proterozoic (1.85-1.75 Ga) igneous suites of the Western Churchill Province: Granitoid and ultrapotassic magmatism in a reworked Archean hinterland. Precambrian Research 119, 73–100. Peterson, T.D., Jefferson, C.W., Anand, A., 2015a. Geological setting and geochemistry of the ca. 2.6 Ga Snow Island Suite in the central Rae Domain of the Western Churchill Province, Nunavut. Geological Survey of Canada, Open File 7841, 29p. Peterson, T.D., Scott, J.M., LeCheminant, A.N., Jefferson, C.W., Pehrsson, S.J., 2015b. The Kivalliq igneous suite: anorogenic bimodal magmatism at 1.75 Ga in the western Churchill Province, Canada. Precambrian Research 262, 101–119. Peterson, T.D., Scott, J.M.J., LeCheminant, A.N., Tschirhart, V.L., Chorlton, L.B., Davis, W.J., Hamilton, M.A., 2015c. Nueltin granites and mafic rocks in the Tebesjuak Lake map area, Nunavut: new geochronological, petrological, and geophysical data. Geological Survey of Canada, Current Research 2005-5, 23p. Petts, D.C., Davis, W.J., Moser, D.E., Longstaffe, F.J., 2014. Age and evolution of the lower crust beneath the western Churchill Province: U–Pb zircon geochronology of kimberlite-hosted granulite xenoliths, Nunavut, Canada. Precambrian Research 241, 129–145. Platt, J.P., 2015. Influence of shear heating on microstructurally defined plate boundary shear zones. Journal of Structural Geology 79, 80–89. Platt, J.P., Behr, W.M., 2011. Grainsize evolution in ductile shear zones: Implications for strain localization and the strength of the lithosphere. Journal of Structural Geology 33, 537–550. Poirier, J.-P., 1985. Creep of crystals: high-temperature deformation processes in metals, ceramics and minerals. In: Cook, A.H., Harland, W.B., Hughes, N.F., Putnis, A., Sclater, J.G., Thomson, M.R.A. (Eds), Cambridge University Press, 260p.  Post, A., Tullis, J., 1999. A recrystallized grain size piezometer for experimentally deformed feldspar aggregates. Tectonophysics 303, 59–173. Prior, D.J., 1999. Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. Journal of Microscopy 195, 217–225. Prior, D.J., Wheeler, J., Peruzzo, L., Spiess, R., Storey, C., 2002. Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology 24, 999–1011. Pryer, L.L., 1993. Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of structural Geology 15, 21–36. Rahl, J.M., Skemer, P., 2016. Microstructural evolution and rheology of quartz in a mid-crustal shear zone. Tectonophysics 680, 129–139. Rainbird, R.H., Hadlari, T., Aspler, L.B., Donaldson, J.A., LeCheminant, A.N., Peterson, T.D., 2003. Sequence stratigraphy and evolution of the Paleoproterozoic intracontinental Baker Lake and Thelon basins, western Churchill Province, Nunavut, Canada. Precambrian Research 125, 21–53. 114  Rainbird, R.H., Davis, W.J., Pehrsson, S.J., Wodicka, N., Rayner, N., Skulski, T., 2010. Early Paleoproterozoic supracrustal assemblages of the Rae domain, Nunavut, Canada: Intracratonic basin development during supercontinent break-up and assembly. Precambrian Research 181, 167–186. Ramsay, J.G., 1980. Shear zone geometry: a review. Journal of structural geology 2, 83–99. Ramsay, J.G., Graham, R.H., 1970. Strain variation in shear belts. Canadian Journal of Earth Sciences 7, 786–813. Randour, I., McMartin, I., Roy, M., 2016. Study of the postglacial marine limit between Wager Bay and Chesterfield Inlet, western Hudson Bay, Nunavut. In: Summary of Activities 2016. Canada-Nunavut Geoscience Office, 51–60. Rayner, N., Chakungal, J., Sanborn-Barrie, M., 2011. New U-Pb geochronological results from plutonic and sedimentary rocks of Southampton Island, Nunavut. Geological Survey of Canada, Current Research 2011-5, 23p. Regan, S.P., Williams, M.L., Leslie, S., Mahan, K.H., Jercinovic, M.J., Holland, M.E., 2014. The Cora Lake shear zone, Athabasca granulite terrane, an intraplate response to far-field orogenic processes during the amalgamation of Laurentia. Canadian Journal of Earth Sciences 901, 877–901. Regan, S.P., Williams, M.L., Chiarenzelli, J.R., Grohn, L., Mahan, K.H., Gallagher, M., 2017. Isotopic evidence for Neoarchean continuity across the Snowbird Tectonic Zone, western Churchill Province, Canada. Precambrian Research 300, 201–222. Relf, C., MacLachlan, K., Irwin, D., 1999. Tectonic assembly and Proterozoic reworking of the northern Yathkyed greenstone belt, Northwest Territories (Nunavut). In: Current Research 1999-C. Geological Survey of Canada, 139–146.  Rosenberg, C.L., Stünitz, H., 2003. Deformation and recrystallization of plagioclase along a temperature gradient: an example from the Bergell tonalite. Journal of Structural Geology 25, 389–408. Ross, G.M., Parrish, R.R., Villeneuve, M.E., Bowring, S.A., 1991. Geophysics and geochronology of the crystalline basement of the Alberta Basin, western Canada. Canadian Journal of Earth Sciences 28, 512–522. Ross, G.M., Milkereit, B., Eaton, D.W., White, D., Kanasewich, E.R., Burianyk, M.J.A., 1995. Paleoproterozoic collisional orogen beneath the Western Canada Sedimentary Basin imaged by Lithoprobe crustal seismic-reflection data. Geology 23, 195–199. Ross, G.M., Eaton, D.W., Boerner, D.E., Miles, W., 2000. Tectonic entrapment and its role in the evolution of continental lithosphere: An example from the Precambrian of western Canada. Tectonophysics 19, 116–134. Rutter, E.H., Brodie, K.H., 2004. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. Journal of Structural Geology 26, 259–270. Rybacki, E., Dresen, G., 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research: Solid Earth 105, 26017–26036. Rybacki, E., Dresen, G., 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics 382, 173–187. Sanborn-Barrie, M., Carr, S., Thériault, R.J., 2001. Geochronological constraints on metamorphism, magmatism and exhumation of deep-crustal rocks of the Kramanituar Complex, with implications for the Paleoproterozoic evolution of the Archean western Churchill Province, Canada. Contributions to Mineralogy and Petrology 141, 592–612. 115  Sanborn-Barrie, M., Skulski, T., Sandeman, H.A., Berman, R.G., Johnstone, S., MacHattie, T.G., Hyde, D., 2002. Structural and metamorphic geology of the Walker Lake-Arrowsmith River area, Committee Bay belt, Nunavut. Geological Survey of Canada, Current Research 2002-C12, 13p. Sanborn-Barrie, M., Davis, W.J., Berman, R.G., Rayner, N., Skulski, T., 2014. Neoarchean continental crust formation and Paleoproterozoic deformation of the central Rae craton, Committee Bay belt, Nunavut. Canadian Journal of Earth Sciences 51, 635–667. Sanborn-Barrie, M., Camacho, A., Berman, R.G., 2019. High-pressure, ultrahigh-temperature 1.9 Ga metamorphism of the Kramanituar Complex, Snowbird Tectonic Zone, Rae Craton, Canada. Contributions to Mineralogy and Petrology 174, 26p. Sandeman, H.A., Brown, J., Studnicki-Gizbert, C., MacHattie, T.G., Hyde, D., Johnstone, S., Greiner, E., Plaza, D., 2001. Bedrock mapping in the Committee Bay Belt, Laughland Lake area, central mainland, Nunavut. Geological Survey of Canada, Current Research 2001-C12, 28p. Schau, M., 1983. Geology, Baker Lake, District of Keewatin, map and notes. Geological Survey of Canada, Open File 883, scale 1:250,000. Schau, M., Ashton, K.E., 1988. The Archean Prince Albert Group, northeastern Canada: evidence for crustal extension within a > 2.9 Ga continent (abstract). In: Geological Society of America Annual Meeting, Abstracts with Programs 20, A50.  Schau, M., Tremblay, F., Christopher, A., 1982. Geology of Baker Lake map area, District of Keewatin: a progress report. In: Current Research, Part A. Geological Survey of Canada, Paper 82-1A, 143–150. Scheuvens, D., Zulauf, G., 2000. Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). International Journal of Earth Sciences 89, 617–630. Schmid, S.M., Casey, M., 1986. Complete fabric analysis of some commonly observed quartz c‐axis patterns. In: Hobbs, B.E., Heard, C. (Eds), Mineral and rock deformation: laboratory studies: the Paterson Volume. Geophysical monograph series 36, 263–286. Schoene, B., Bowring, S.A., 2006. U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40 Ar/39 Ar standard MMhb. Contributions to Mineralogy and Petrology 151, 615–630. Schultz, M.E.J., Chacko, T., Heaman, L.M., Sandeman, H.A., Simonetti, A., Creaser, R.A., 2007. Queen Maud block: A newly recognized Paleoproterozoic (2.4-2.5 Ga) terrane in northwest Laurentia. Geology 35, 707–710. Scott, D.J., St-Onge, M.R., 1995. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations. Geology 23, 1123–1126. Searle, M.P., St-Onge, M.R., 2004. The Trans-Hudson Orogen of North America and the Himalaya-Karakoram-Tibetan Orogen of Asia, part 2: Structural and thermal evolution of the upper plate (abstract). In: Geological Society of America Annual Meeting, Denver, Colorado, Abstracts with Programs 36, 408. Sharpton, V.L., Grieve, R.A.F., Thomas, M.D., Halpenny, J.F., 1987. Horizontal gravity gradient: an aid to the definition of crustal structure in North America. Geophysical Research Letters 14, 808–811. Simonetti, A., Heaman, L.M., Chacko, T., Banerjee, N.R., 2006. In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation-MC-ICP-MS. International Journal of Mass Spectrometry 253, 87–97. 116  Simpson, C., 1986. Fabric development in brittle-to-ductile shear zones. Pure and Applied Geophysics 124, 269–288. Simpson, C., Wintsch, R.P., 1989. Evidence for deformation‐induced K‐feldspar replacement by myrmekite. Journal of Metamorphic Geology 7, 261–275. Skulski, T., Sandeman, H.A., Sanborn-Barrie, M., MacHattie, T.G., Young, M., Carson, C.J., Berman, R.G., Brown, J., Rayner, N., Panagapko, D., Byrne, D., Deyell, C., 2003. Bedrock geology of the Ellice Hills map area and new constraints on the regional geology of the Committee Bay area, Nunavut. Geological Survey of Canada, Current Research 2003-C22, 13p. Skulski, T., Paul, D., Sandeman, H., Berman, R.G., Chorlton, L., Pehrsson, S.J., Rainbird, R.H., Davis, W.J., and Sanborn-Barrie, M., 2018. Bedrock geology, central Rae Craton and eastern Queen Maud Block, western Churchill Province, Nunavut. Geological Survey of Canada, Canadian Geoscience Map 307, scale 1:550,000. doi.org/10.4095/308348 Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., 2008. Plešovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249, 1–35. Smith, J.E.M., 1990. The glacial history of the Wager Bay area, District of Keewatin, N.W.T. Carleton University, Ottawa, ON, 127p. Snyder, D.B., Kjarsgaard, B.A., 2013. Mantle roots of major Precambrian shear zones inferred from structure of the Great Slave Lake shear zone, northwest Canada. Lithosphere 5, 539–546. Snyder, D.B., Craven, J.A., Piklington, M., Hillier, M.J., 2015. The 3-dimensional construction of the Rae craton, central Canada. Geochemistry, Geophysics, Geosystems 16, 3555–3574. Snyder, D.B., Humphreys, E., Pearson, D.G., 2016. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485. Spandler, C., Hammerli, J., Sha, P., Hilbert-Wolf, H., Hu, Y., Roberts, E., Schmitz, M., 2016. MKED1: a new titanite standard for in situ analysis of Sm–Nd isotopes and U–Pb geochronology. Chemical Geology 425, 110–126. Spencer, K.J., Hacker, B.R., Kylander-Clark, A.R.C., Andersen, T.B., Cottle, J.M., Stearns, M.A., Poletti, J.E., Seward, G.G.E., 2013. Campaign-style titanite U–Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chemical Geology 341, 84–101. Spencer, C.J., Kirkland, C.L., Taylor, R.J., 2016. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. Geoscience Frontiers 7, 581–589. Spratt, J.E., Roberts, B., Kiyan, D., Jones, A.G., 2013. Magnetotelluric Soundings from the Central Rae Domain of the Churchill Province, Nunavut. Geological Survey of Canada, Open File 7323, 34p. Spratt, J.E., Skulski, T., Craven, J.A., Jones, A.G., Snyder, D.B., Kiyan, D., 2014. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland Nunavut, Canada. Journal of Geophysical Research: Solid Earth 119, 2415–2439. Stacey, J.T., Kramers, 1., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and planetary science letters 26, 207–221. Stauffer, M.R., 1984. Manikewan: an early Proterozoic ocean in central Canada, its igneous history and orogenic closure. Precambrian Research 25, 257–281. Stearns, M.A., Hacker, B.R., Ratschbacher, L., Rutte, D., Kylander‐Clark, A.R.C., 2015. Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics 34, 784–802. 117  Stearns, M.A., Cottle, J.M., Hacker, B.R., Kylander-Clark, A.R.C., 2016. Extracting thermal histories from the near-rim zoning in titanite using coupled U-Pb and trace-element depth profiles by single-shot laser-ablation split stream (SS-LASS) ICP-MS. Chemical Geology 422, 13–24. Steenkamp, H.M., Wodicka, N., Lawley, C.J.M., Peterson, T.D., Guilmette, C., 2015. Overview of bedrock mapping and results from portable X-ray fluorescence spectrometry in the eastern part of the Tehery Lake–Wager Bay area, western Hudson Bay. In: Summary of Activities 2015. Canada-Nunavut Geoscience Office, 121–134. Steenkamp, H.M., Wodicka, N., Weller, O.M., Kendrick, J., 2016. Overview of bedrock mapping in the northern and western parts of the Tehery Lake–Wager Bay area, western Hudson Bay, Nunavut. In: Summary of Activities 2016. Canada-Nunavut Geoscience Office, 27–40. Steffen, R., Eaton, D.W., Wu, P., 2012. Moment tensors, state of stress and their relation to post-glacial rebound in northeastern Canada. Geophysical Journal International 189, 1741–1752. Stel, H., Breedveld, M., 1990. Crystallographic orientation patterns of myrmekitic quartz: a fabric memory in quartz ribbon-bearing gneisses. Journal of structural geology 12, 19–28. Stipp, M., Kunze, K., 2008. Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates. Tectonophysics 448, 77–97. Stipp, M., Tullis, J., 2003. The recrystallized grain size piezometer for quartz. Geophysical Research Letters 30, 3-1–3-5. Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology 24, 1861–1884. Stipp, M., Tullis, J., Scherwath, M., Behrmann, J.H., 2010. A new perspective on paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism changes. Geology 38, 759–762. Stockwell, C.H., 1961. Structural provinces, orogenies and time classification of rocks of the Canadian Shield. In: Lowdon, J.A. (Ed.), Age determinations by the Geological Survey of Canada: Report 2 Isotopic ages. Geological Survey of Canada, Paper 61-17, 108–118. Stern, R.A., Berman, R.G., 2000. Monazite U–Pb and Th–Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rock. Chemical Geology 172, 113–130. Storey, C.D., Jeffries, T.E., Smith, M., 2006. Common lead-corrected laser ablation ICP–MS U–Pb systematics and geochronology of titanite. Chemical Geology 227, 37–52. St-Onge, M.R., Searle, M.P., 2004. The Trans-Hudson Orogen of North America and the Himalayan Orogen of Asia, part 1: Structural and thermal evolution of the lower plate (abstract). In: Geological Society of America Annual Meeting, Denver, Colorado, Abstracts with Programs 36, 408. St-Onge, M.R., Searle, M.P., Wodicka, N., 2006. Trans-Hudson orogen of North America and Himalaya-Karakoram-Tibetan orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics 25, 1–22. Stünitz, H., Gerald, J.F., Tullis, J., 2003. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372, 215–233. Takahashi, M., Nagahama, H., Masuda, T., Fujimura, A., 1998. Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter. Journal of Structural Geology 20, 269–275. 118  Tappe, S., Kjarsgaard, B.A., Kurszlaukis, S., Nowell, G.M., Phillips, D., 2014. Petrology and Nd–Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles. Journal of Petrology 55, 2003–2042. Taylor, F.C., 1963. Snowbird Lake map-area, District of Mackenzie. Geological Survey of Canada, Memoir 333, 35p. Tella, S., 1994. Geology, Amer Lake (66H), Deep Rose Lake (66G) and parts of Pelly Lake (66F) Geological Survey of Canada, Open File 2969, scale 1:250,000. Tella, S., Eade, K.E., 1986. Occurrence and possible tectonic significance of high-pressure granulite fragments in the Tulemalu fault zone, District of Keewatin, N.W.T. Canadian Journal of Earth Sciences 23, 1950–1962. Tella, S., Heywood, W.W., 1978. The structural history of the Amer Mylonite Zone, Churchill Structural Province, District of Keewatin. In: Current Research, Part C. Geological Survey of Canada, Paper 78-1C, 79–88. Tella, S., Ashton, K.E., Thompson, D.L., Miller, A.R., 1983. Geology of the Deep Rose Lake map area, District of Keewatin. In: Current Research, Part A. Geological Survey of Canada, Paper 83-1A, 403–409. Tella, S., LeCheminant, A.N., Sanborn-Barrie, M., Venance, K.E., 1997. Geology and structure of parts of MacQuoid Lake map area, District of Keewatin, Northwest Territories. In: Current Research 1997-C. Geological Survey of Canada, 123–132.  Tella, S., Roddick, J.C., Davis, W.J., 1998. Geochronological constraints on the multiple displacement history of the Amer mylonite zone, Churchill Structural Province, District of Keewatin, Northwest Territories, Canada. In: Geological Society of America Annual Meeting, Toronto, Ontario, Abstracts with Programs 30, A-176. Tella, S., Hanmer, S., Ryan, J.J., Sandeman, H.A., Davis, W.J., Berman, R.G., Wilkinson, L., 2000. 1:100,000 scale bedrock geology compilation map of the MacQuoid Lake-Gibson Lake-Cross Bay-Akunak Bay region, western Churchill province, Nunavut, Canada (abstract). In: GAC-MAC, Program with Abstracts 25, 4p.  Tera, F., Wasserburg, G.J., 1972. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 14, 281–304. Therriault, I., Steenkamp, H.M., Larson, K.P., 2017. New mapping and initial structural characterization of the Wager shear zone, north-western Hudson Bay, Nunavut. In: Summary of Activities 2017. Canada-Nunavut Geoscience Office, 1–12. Therriault, I., Steenkamp, H.M., Larson, K.P., Cottle, J.M., 2018. Geochronological constraints on deformation in the Wager shear zone, northwestern Hudson Bay, Nunavut. In: Summary of Activities 2018. Canada-Nunavut Geoscience Office, 1–14. Thomas, M.D., 2018. Definition of magnetic domains within the Rae Craton, mainland Canadian Shield, Nunavut, Northwest Territories, Saskatchewan, and Alberta: their magnetic signatures and relationship to geology. Geological Survey of Canada, Open File 8343, 100p. Tschirhart, V.L., Wodicka, N., Steenkamp, H.M., 2016. Shallow crustal structure of the Tehery Lake–Wager Bay area, western Hudson Bay, Nunavut, from potential-field datasets. In: Summary of Activities 2016. Canada-Nunavut Geoscience Office, 41–50.  Tullis, J., 2002. Deformation of granitic rocks: experimental studies and natural examples. Reviews in Mineralogy and Geochemistry 51, 51–95. 119  Tullis, J., Yund, R.A., 1987. Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology 15, 606–609. Twiss, R.J., 1977. Theory and applicability of a recrystallized grain size paleopiezometer. PAGEOPH 115, 224–227. Urai, J.L., Means, W.D., Lister, G.S., 1986. Dynamic recrystallization of minerals. In: Hobbs, B.E., Heard, C. (Eds), Mineral and rock deformation: laboratory studies: the Paterson Volume. Geophysical monograph series 36, 161–199. van Breemen, O.V., Thompson, P.H., Hunt, P.A., Culshaw, N.G., 1987. U-Pb zircon and monazite geochronology from the northern Thelon Tectonic Zone, District of Mackenzie. In: Radiogenic Age and Isotopic Studies: Report 1. Geological Survey of Canada, Paper 87-2, 81–93. van Breemen, O.V., Peterson, T.D., Sandeman, H.A., 2005. U Pb zircon geochronology and Nd isotope geochemistry of Proterozoic granitoids in the western Churchill Province: intrusive age pattern and Archean source domains. Canadian Journal of Earth Sciences 42, 339–377. van Breemen, O.V., Pehrsson, S.J., Peterson, T.D., 2007. Reconnaissance U-Pb SHRIMP geochronology and Sm-Nd isotope analysis from the Tehery-Wager Bay gneiss domain, western Churchill Province, Nunavut. Geological Survey of Canada, Current Research 2007-F2, 15p. van der Velden, A.J., Cook, F.A., 2005. Relict subduction zones in Canada. Journal of Geophysical Research 110, B08409, 17p. Viegas, G., Menegon, L., Archanjo, C., 2016. Brittle grain-size reduction of feldspar, phase mixing and strain localization in granitoids at mid-crustal conditions (Pernambuco shear zone, NE Brazil). Solid Earth 7, 375–396. Villeneuve, M.E., Ross, G.M., Thériault, R.J., Miles, W., Parrish, R.R., Broome, H.J., 1993. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta basin, western Canada. Geological Survey of Canada, Bulletin 447, 95p. Wallis, R.H., 1970. A geological interpretation of gravity and magnetic data, northwest Saskatchewan. Canadian Journal of Earth Sciences 7, 858–868. Wark, D.A., Watson, E.B., 2006. TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology 152, 743–754. Weller, O.M., St-Onge, M.R., 2017. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience 10, 9p. Wendt, I., Carl. C., 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology 86, 275–285. Vermeesch, P., 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers 9, 1479-1493. doi:10.1016/j.gsf.2018.04.001. Wetherill, G.W., 1956. Discordant uranium‐lead ages, I. Eos, Transactions American Geophysical Union 37, 320–326. Whalen, J.B., Sanborn-Barrie, M., Chakungal, J., 2011. Geochemical and Nd isotopic constraints from plutonic rocks on the magmatic and crustal evolution of Southampton Island, Nunavut. Geological Survey of Canada, Current Research 2011-2, 11p. Wheeler, J., Prior, D., Jiang, Z., Spiess, R., Trimby, P., 2001. The petrological significance of misorientations between grains. Contributions to mineralogy and petrology 141, 109–124. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–187. 120  Wiedenbeck, M.A.P.C., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F.V., Quadt, A.V., Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses. Geostandards newsletter 19, 1–23. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., 2004. Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28, 9–39. Williams, M.L., Hanmer, S., 2005. Structural and metamorphic process in the lower crust: evidence from a deep-crustal isobarically cooled terrane, Canada. In: Brown, M., Rushwer, T. (Eds), Evolution and Differentiation of the Continental Crust. Cambridge University Press, Chapter 7, 37p. Wilson, S.A., 1997, Data compilation for USGS reference material BHVO-2, Hawaiian Basalt. U.S. Geological Survey, Open File Report. <https://crustal.usgs.gov/geochemical_reference_standards/basaltbhvo2.html> [February 2019]. Wodicka, N., Whalen, J.B., St-Onge, M.R., Corrigan, D., 2010. Meta Incognita microcontinent revisited: insights from U-Pb geochronology and Nd isotopes. In: GeoCanada 2010 Meeting, Calgary, Alberta, Abstract, 1p. Wodicka, N., St-Onge, M.R., Corrigan, D., Scott, D.J., Whalen, J.B., 2014. Did a proto-ocean basin form along the southeastern Rae cratonic margin? Evidence from U-Pb geochronology, geochemistry (Sm-Nd and whole-rock), and stratigraphy of the Paleoproterozoic Piling Group, northern Canada. GSA Bulletin 126, 1625–1653. Wodicka, N., Steenkamp, H.M., Lawley, C.J.M., Peterson, T.D., Guilmette, C., Girard, É., 2015. Report of activities for the bedrock geology and economic potential of the Tehery-Wager area: GEM-2 Rae Project. Geological Survey of Canada, Open File 7970, 14p. Wodicka, N., Steenkamp, H.M., Weller, O.M., Kendrick, J., Tschirhart, V.L., Peterson, T.D., Girard, É., 2016. Report of 2016 activities for the bedrock geology and economic potential of the Tehery-Wager area, GEM-2 Rae Project. Geological Survey of Canada, Open File 8149, 21p. Wodicka, N., Steenkamp, H.M., Peterson, T.D., McMartin, I., Day, S.J.A., Tschirhart, V.L., 2017. Report of 2017 activities for the geology and economic potential of the Tehery-Wager area, Nunavut: GEM-2 Rae Project. Geological Survey of Canada, Open File 8318, 20p. Xypolias, P., 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology 31, 3–10. Xypolias, P., 2010. Vorticity analysis in shear zones: a review of methods and applications. Journal of Structural Geology 32, 2072–2092. Zaleski, E., Pehrsson, S.J., Duke, N., Davis, W.J., L'Heureux, R., Greiner, E., Kerswill, J.A., 2000. Quartzite sequence and their relationships, Woodburn Lake group, western Churchill Province, Nunavut. Geological Survey of Canada, Current Research 2000-C7, 10p.   121  Appendices122  Appendix A: Outcrop and Station Descriptions Table A.1: Summary description of outcrops visited in June and July 2017. The prefix ‘17SUB-’ was omitted in front of all station names; UTM coordinates in NAD 1983, zone 15N; Fig. column refers to figures in this thesis, where applicable. Structural measurements all taken using right-hand rule. The strain column refers to the interpreted strain gradient within the Wager shear zone as low (L), moderate (M), high (H) or the location of the outcrop south (S) or north (N) of the shear zone. Abbreviations (mineral abbreviations after Whitney and Evans, 2010): AMP, amphibolite; boud, boudinaged; Bt, biotite; DIO, diorite; fol, foliation; Fsp, feldspar; GDR, granodiorite; GRA, granite; Grt, garnet; Hbl, hornblende; hor, horizontal; Kfs, K-feldspar; lin, lineation; litho, lithology, loc, locally/localised; Mag, magnetite; MIS, meta-ironstone; mod, moderate; MPX, meta-pyroxenite; MZG, monzogranite; Opx, orthopyroxene; peg, pegmatite; POC, porphyroclast; PSA, psammite; Qz, quartz; QZT, quartzite; SPL, semi-pelite; ssi, shear-sense indicator; TON, tonalite.  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain S002 688451 7246541  GDR Mylonitic fol is steeply dipping, sub-hor lin; contains large dextral Kfs POC and deformed, elongate Qz blebs; transposed GRA injections Fol 280/86 Lin 04→281 H S003 688459 7246807  GDR Litho similar to S002, mylonitic fol not as steep, sub-hor lin; contains numerous isoclinal folds Fol 292/74 Lin 02→273 H S004 688510 7246950  GDR Litho similar to S002-3, fol strike consistent with typical WSZ, increased folding, loc intrafolial folds Fol 103/74 H S005 688401 7247872  GDR Fol GDR, similar to S002-4, contains Kfs POC Fol 294/87 Lin 01→290 H     DIO  Boud diorite pods hosted in GDR, later dilated and filled with Qz veins (dominant strikes 118-298 and 33-213, average dip 80)       GRA  GRA peg dyke, cross-cuts fol in GDR and slightly folded; GDR fol deflected around intrusions   S006 688357 7248009  GDR Similar to S002-5 GDR, contains Qz-rich layers parallel to fol Fol 112/81 H T002 687650 7248883  GDR Similar to S002-5 GDR, well fol with quartzite horizons; contains Kfs POC, on south side of large ridge, near mag high on map Fol 256/80 H T003 687480 7248968  GDR Similar to S002-5 and T002 GDR, lin slightly steeper than previous; contains dextral Qz-Kfs POC Fol 264/85 Lin 15→264 H T004 687440 7249157  GRA Transition to GRA; weakly fol, loc massive; contains Qz-Kfs-Bt; possible late synkinematic intrusion (S margin of Base Camp GRA?), at base of mag high Fol 261/76 M     GDR Loc pockets of fol GDR, similar to S002-5 and T002-3   T005 688161 7249830  GRA At base of prominent hill, N side, in mag high; litho similar to T004 meta-GRA, weak to mod fol Fol 260/75 N T007 603252 7248426  GDR Undeformed basement rock, mod foliated, no deflection in fol of host; no visible lin or ssi  Fol 234/52 S 123  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain     GRA  Large massive GRA peg dykes similar to S005, mostly cross-cutting, loc parallel to fol, contacts very sharp, no chill noted; loc graphic texture, med-coarse Mag   T008 603110 7248803  GDR Poorly deformed, shallow dipping with increasing Bt from T007; sinistral shear-sense Fsp POC Fol 256/19 Lin 06→062 S T009 603048 7248928  GDR Mod, shallow fol, lin appears sub-hor; sinistral POC; contains Qz veins and peg dykes Fol 245/57 S     DIO Bt-Hbl diorite pod/enclave with fol wrapping around    T010 602630 7249284  GDR Fol now sub-vertical, loc deflected, faint lin sub-hor to hor, abundant Qz and Fsp dextral POC  Fol 249/88 Fol 057/47 L T011 601924 7249815  GDR Very large outcrop; mod fol, loc wavy, lin weak, not well defined; loc isoclinal folding and z-folds (loc as quarter folds); outcrop-scale dextral peg POC  Fol 080/76 Lin 04→078 L-M     DIO Loc layers of diorite   T012 601903 7249912  GDR Outcrop continued from T011; C' in peg dyke, dextral shear-sense  L-M T013 602310 7251158  GDR Small outcrop, similar to T011-T012 Fol 264/85 L-M T014 601971 7251907   Outcrop to subcrop with variable dip; lin is strike-parallel; nice Qz ribbons, dextral Fsp POC Fol 099/62 Fol 275/90 M T015 601943 7252253  GDR Deformation getting stronger; several ssi, isoclinal folding; loc apatite   H     GRA Several small to large GRA peg dykes, sharp contacts; diff orientations: C' in dyke parallel to fol, other at 45° is folded   T016 601522 7253591  GDR Ultramylonite, finest grainsize yet; lin strike parallel; contains Hbl pods, possible Grt in hand specimen Fol 268/78 H T017 600447 7250418  Note Aerial observation: lineament on ground marked by dykes  N/A T019 582844 7256229  GDR-TON Abundant dextral ssi (POC and shear bands); larger grainsize than T016; contains boud peg dyke with deflected fol and Bt-rich mafic bands Fol 282/70 Lin 06→280 H T020 583068 7256868  GDR Fol variable throughout, shallow dip (26-50°), poorly developed lin; not many ssi, tend to be sinistral, isoclinal folding present; loc Hbl pods in stretched melt pockets Fol 274/26 Fol 075/49 Lin 09→255 L     GRA Unusually large amount of GRA peg dykes, average orientation (014/90) roughly perpendicular to average fol (92 or 272/44)   T021 582810 7257216  GDR Slightly coarser grainsize than T020; fol mod, only loc variable; not many ssi; rare folding (passive, non-cylindrical fold), minor Grt Fol 250/71 Fol 274/81 N     GRA GRA peg dykes are cm-scale, cross-cutting fol, some Qz-rich in centre, generally undeformed   T022 582521 7257473  GRA Large outcrop, GRA peg dyke dominant by volume, cross-cut fol   N 124  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain     GDR Fol variable at outcrop scale, folding with axes E-W roughly; sinistral ssi (POC and shear bands); likely deformed previous to WSZ Fol 276/84 Fol 322/19 Lin 06→261  T023 582636 7257762  GDR No dykes noted here, foliation very variable  N T024 582578 7257967  GDR Shallow dip; deformation likely pre-WSZ; contains a dextral shear band at 190/90 (does not correspond to typical WSZ) Fol 251/41 N T025 582606 7258068  GDR Fairly coarse grainsize; 10m large shear zone (140°), not as tabular as WSZ  N T026 582570 7258356  GDR Fol is variable, very chaotic Fol 289/85 Fol 337/56 N     DIO Occurs as pods, fol wrapping around them        GRA Dykes partially cross-cut and partially entrained in fol, leucogranite   T032 575625 7254036  GDR Contains discrete high-strain zones with steeper fol separated by low-strain, slightly coarser grained zones shallower, more variable fol; loc folded; similar to station S005; nice quartz ribbons Fol 081/86 Lin 06→269 Fol 226/67 L T033 575629 7254161  GDR Larger outcrop not far from T032, start to see some possible C' shear bands and POC, high-strain zones wider  L T034 574075 7254809  GDR Contains dextral ssi, POC and possible C-S fabrics; compositional layering, localised Bt-rich layers Fol 060/85 Lin 02→059 M T035 571909 7257556  GDR Mod fol outcrop; shallow dipping areas have C' bands indicating sinistral movement; large portion of WSZ under a sea of till veneer Fol 086/65 Lin 10→265 L     GRA Ductile and brittle conditions recorded by dyke – dyke ends abruptly at both ends and fol of GDR is deflected around it, sharps contacts   T036 571822 7257982  GDR Fol tends to be fairly consistent, weak lin; rare isoclinal folds, shear bands and one possible dextral POC; more homogeneous than T035; in weak portion of WSZ Fol 068/90 Lin 05→068 L T037 571579 7258230  GDR Similar to T036, but fol more chaotic; rare ssi, one dextral C’ shear band Fol 264/78 L T038 571188 7258812  GDR Several sinistral ssi, C' shear bands and sigma POC; likely sinistrally deformed pre-WSZ Fol 268/78 N     GRA Outcrop occurs as long bands capped by fol parallel peg layers   T042 593510 7249424  GDR Mostly undeformed; fol is weak; start to see dm-scale bands that are mod fol towards N end of outcrop Fol 244/54 S T044 593271 7250243  GDR Flat slabs of Hbl-rich GDR, fol getting stronger (no reliable dip); possible sigma POC but not well formed Fol 072/## S T045 592766 7250779  GDR Fol is mod-strong with variable strike and shallow dip; contains quartz-rich layers; several WSZ strike-parallel valleys and ridges in area Fol 066/57 Fol 080/46 S T046 592552 7251018  GDR Mod fol, still quite shallow Fol 088/68 S 125  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain T047 592550 7251086  GDR Fol GDR, capped by GRA unit  Fol 078/57 S     GRA Peg capping GDR and as dykes cross-cutting and parallel to fol   T048 592451 7251163   frost heaved subcrop with dextral POC  L T050 592396 7251158  GDR Mod to strong fol, still shallow; rare ssi but one nice dextral sigma POC, contains Qz veins Fol 075/70 Fol 085/51 L     PSA Occur as pod and as layer N of outcrop, strike parallel; contains Grt Fol 264/70  T051 592267 7251334  GDR Contains numerous cross-cutting peg dykes  L T052 592045 7251704  GDR Mod fol, contains z-folds  L     GRA GRA peg dykes, cross-cutting fol; dykes start to be deformed (folded)   T053 591556 7252025  GDR Fol stronger than T052 and previous, fairly consistent and generally not deflected by dykes; S portion of outcrop is less deformed, several folds in central and N portion (gentle, isoclinal and z) Fol 088/71 L     GRA GRA peg dykes are cross-cutting and parallel to fol   T054 590741 7252680  GDR Contains boud layer with dextral POC/sigmoids  Fol 285/71 L T062 681070 7244423  GDR Possible Opx (consistent with granulite-grade terrane)  Fol 110/70 L T063 681338 7244703  GDR Small outcrop similar to T062 Fol 279/76 L T064 681675 7245392  GDR Start to see some discrete high-strain zones; overall mod to strong fol; isoclinal fold in outcrop between T064 and T065 Fol 119/78 M T065 681898 7245621  GDR Not very deformed; loc quartz ribbons and delta/sigma POC, loc discrete high-strain zones, irregular in strike; possible Opx; on N edge of mag high Fol 130/90 Fol 081/90 M T066 682005 7245972  GDR Similar to T065, fol curving around outcrop Fol 280/80 M T067 682338 7246568   Fol is steeper and stronger, weak sub-hor lin; isoclinal folds noted, fol parallel and cross-cutting dykes; dextral mafic POC; in mag low Fol 282/89 Lin 05→102 H     AMP Outcrop contains layers of amphibolite with pods of coarse grained HBl   T068 682319 7246849  GDR Fol very variable, mod, overall quite messy; outcrop-scale and dm-scale isoclinal folding; possible large sigma dextral clasts but not well formed Fol 091/79 H T069 682308 7247107  GDR Strong fol; slightly wavy; dextral c-s and large POC, abundant folding Fol 276/86 H T070 682045 7247560  GDR Mod-strong fol Fol 267/83 H T071 681563 7248079  GDR Fol wavy; dextral shear bands; isoclinal folds; contains Hbl and mafic layers Fol 086/90 H T072 681891 7248804  GDR GDR dominant on E side but on W portion of exposure GDR occurs as layers within the more dominant GRA; isoclinal folding Fol 085/84 Lin 05→080 M-H     GRA S edge of Base Camp granite, similar to T005     126  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain T077 670626 7247695  GDR Coarser grained than typical GDR; fol weak to mod; 2 possible lin (sub-hor WSZ strongest, other possibly Chesterfield shear zone) Fol 264/81 Lin 01→070 Lin 55→205 M T078 670979 7247595  GDR Fol very messy, deflected around peg; sub-hor lin; folding throughout, loc isoclinal; sinistral C’ shear band and sigmoid peg POC Fol 077/80 Lin 06→080 M     GRA Peg sills, dykes and pods with fol deflected around them   T079 671255 7247209  GDR Fol becoming stronger; POC present and stretched but not well developed Fol 070/80 M T080 671407 7247162  GDR Abundant dextral sigma POC Fol 078/73 M T081 671505 7247294  GDR Outcrop to subcrop, sub-hor lineation visible  M T082 671678 7247405  GDR Fol similar to previous, sub-hor lineation visible  M T083 671937 7247938  GRA Large intrusion (Hudson?), magnetic, mostly massive, weathered unit  L     GDR In S portion of outcrop, GRA has intruded parallel to fol, not much defo at margins, appears late   T084 672345 7248155  GRA Similar to T083 GRA but weak to mod fol  Fol 070/76 L T085 672962 7248252  GDR Fol is quite weak and outcrop is rather jointed Fol 245/68 L T086 673783 7248255  GDR Weak fol, no visible lin Fol 083/62 L T087 673902 7248259  GDR Very weathered  L T088 673927 7248233  GDR Fol much stronger on this outcrop, no reliable dip Fol 068/## L T089 674152 7248263  GRA Massive, magnetic, coarse grained, rounded outcrop; less weathered than those to the W  N T093 537355 7257411  TON Fol is weak to mod, loc deflections; one sinistral shear band C’ Fol 276/82 L T094 537338 7257588  GDR N extension of T093; undeformed dykes present, fol not deflected   L T095 546893 7257041  Note Aerial observation: N-S fault   N/A T096 555538 7257630  GDR Felsenmeer with chaotic injections and some folding, loc boud  L T097 555709 7257701  GDR Outcrop hard, rounded and poorly foliated, no evidence of shearing  L T098 556533 7254016  GDR Stronger fabric than T096-7, loc folding; weak ssi, generally sinistral Fol 060/82 Lin 09→064 S T099 589162 7255725  GDR N of T054; fine grained; folding at outcrop-scale, cm-scale s-folds; GDR and PSA wrapping around ultramafic pods; rodding visible in GDR layer  L-M     PSA Equigranular, folded, interbedded with GDR   T100 589363 7255752  GDR At base of T099, no supracrustal rocks here; sub-hor lin; minor folding Fol 084/79 L-M T101 590213 7253345  GDR Mylonitic; matrix is fairly fine grained; dextral and sinistral Fsp POC and C’ shear bands; dextral m-scale mafic POC   M     QZT Layer of quartzite with sillimanite defining fol (contact with GDR fol parallel)  Fol 082/75 Lin 07→260  127  Station UTM mE UTM mN Fig. Litho Brief description Structure Strain T102 600787 7252857  GDR Near T016, mylonitic but not as fine grained as T016; weak lin; contains stretched POC, not very well developed, indicate dextral movement  Fol 290/78 Lin 01→290 H     MIS GDR contains pods of meta-ironstone   T105 662922 7247350  TON Medium to coarse grained with weak-mod fol defined by Bt; fol loc wrapping around intrusions and mafic pods; contains loc higher strain zones Fol 267/85 Lin 07→090 M T106 663782 7251917  MZG N of T105; folded at outcrop-scale, lin plunge changes with folding Fol 217/66 Fol 285/74 N     SPL Rusty semi-pelite layer on N side of folded MZG; contains Grt   T107 643756 7247457  GDR Typical Qz-Fsp; fol mod to strong, mod lin defined by Bt; ssi dextral (sigmoid, boud Qz vein) Fol 255/84 Lin 08→076 H     MPX Boudin wrapped by iron formation; injected with quartz veins; loc pyrite, dextral shear band       MIS Contains silica-Mag-grunerite, local Grt   T108 626902 7246316  GDR Fol quite strong, deflected, lin sub-hor; shear and kink bands, loc boud, dextral and sinistral shear bands Fol 096/73 M T112 614659 7250202  GDR Mod-strong fol, wavy, deflected around dykes; sub-hor lin defined by Bt; abundant dextral POC; outcrop-scale folding; weakly deformed late dykes Fol 094/86 Lin 05→080 H T113 614615 7250060  GDR Just S of T112; fol is strong, several dextral POC; fairly homogeneous Fol 090/80 H T114 614383 7253473  GDR Mod-strong fol, GDR with rusty boulders and plates of supracrustals  L T115 614687 7253600  GDR Well fol  L     GRA 10x20m intrusion, massive; contact slightly undulating, no chill margin   T116 614692 7253521  GDR Well fol Fol 087/79 L T118 614597 7253172  GDR Mod-strong fol; minor folding Fol 090/89 L     DIO Outcrop contains several DIO/mafic layers and pods, latter often deformed as sigma lenses (dextral), pods also have fol wrapping around   T119 614583 7253297  GDR Little outcrop, GDR and rusty supracrustals  L T120 689373 7246439  GDR Station in between S002 and S003 with dextral mafic sigma POC  H    128  Appendix B: QEMSCANS  Figure B.1: QEMSCAN thin section scans.129  Appendix C: Thin section descriptions Appendix C.1: Summary description of thin sections. Abbreviations as in Table A.1; Amp, amphibole; gb, grain boundary(ies); Mc, microcline; Ms, muscovite; Pl, plagioclase; Ttn, titanite; Zrn, zircon.   17SUB-S002A01 Medium-grained Qz forming nice Qz ribbons with variable grainsize; gb locally sutured or polygonal; fine grained Qz-Fsp matrix; Amp forming poor dextral sigma POCs within or at margins of Qz ribbons. Bent twins and kinks in several Pl grains. Bt and Amp occur together in fol parallel bands. 17SUB-S004A01 Finer grained than S002; alternating bands of Qz-Fsp and Amp-Fsp-minor Cal; matrix fine-grained and appears recrystallised, sub-polygonal grains; narrow fine to medium Qz ribbons present but not extensive, sutured gb. 17SUB-S006A01 Medium to very coarse grained (rarely fine-grained) Qz with localised chessboard extinction; no Qz ribbons; all Qz grains very irregular and gb tend to be serrated to sutured, with multiple evidence of bulging; minor Grt. 17SUB-T002A01 and 17SUB-T002A02 Fine to medium grained Qz, Bt and minor Fsp; rare pockets of medium-coarse grained Qz±Fsp; Qz is irregular, locally near polygonal. Two fol visible; dominant is macroscopic outcrop-scale and other at ~30° counter-clockwise. 17SUB-T011A01  Fine-medium grained Qz and Fsp (abundant Mc); matrix fairly homogenous and equigranular. No Qz ribbons, local aggregates but no preferred orientation; gb are slightly irregular, generally interlobate. Chessboard extinction noted in larger grains (more than 1 mm). 17SUB-T015A01 Fine to medium-coarse grained Qz and lesser amounts of Fsp (also finer grained); there are some local, often discontinuous Qz ribbons; gb are slightly irregular, somewhat subrounded to sutured and locally sub-polygonal.  17SUB-T016A01 and 17SUB-T016A02 Fine- to medium- grained Qz and lesser amounts of Fsp; finer grained than T015; fine-grained Qz ribbons; gb tend to be straight to slightly rounded, sub-polygonal. This specimen was described in the field as an ultramylonite; the grainsize is indeed fine, but not quite typical of an ultramylonite.  17SUB-T019A01 Specimen from high-strain portion of WSZ. Contains continuous to discontinuous Qz ribbons and larger pockets. Gb are slightly interlobate to sub-polygonal and grainsize is variable. Contains Bt disseminated throughout, partly defines the fol. Some Pl with bent twins and kinks.   130  17SUB-T020A01 Medium-grained Qz and Fsp rich rocks; Qz forms discontinuous ribbons or aggregates. Approx. 5% Bt, aligned with fol. Minor Hbl and Ms. Internal subgrains visible in Qz that tend to be perpendicular to long axis of grains.  17SUB-T022B01 Specimen interpreted to be outside (north) of the WSZ. Also contains Qz and Fsp, but alkali Fsp dominant. Qz displays internal subgrains but do not form well-developed ribbons; they are more discontinuous or pocket-shaped. Minor myrmekite. Gb are interlobate and grainsize is inequigranular.  17SUB-T032A01 Specimen in interpreted low strain portion of WSZ (outcrop contains discrete zones of high strain). Macroscopic sample had good Qz ribbons and this is true at the microscopic level – the ribbons are set in a matrix of Qz and Fsp. Ribbons are continuous, elongate and Qz grains have a large aspect ratio (1:4 approx. average). Nice elongate subgrains in Qz ribbons, but not for a majority. Grains in the matrix are fairly coarse, do not appear recrystallised or aligned. Ribbons not well-developed. Edges of Qz in ribbons are straight to undulating, only locally weakly serated. Minor bulging. Fsp commonly altered but do not appear deformed. A few POCs but no core-and-mantle structures. No evidence of brittle fracturing. Minor Bt. 17SUB-T034A01 Specimen in interpreted to be in moderate strain portion of WSZ, coarser grained than T032. Qz form ribbons to aggregates, contains internal subgrains. One instance of chessboard extinction noted. Grain edges tend to be more serrated than in T032 and there are many instances of bulging. Matrix in between ribbons is composed of Qz and Fsp, fine to coarse grained plus minor Bt. A few kinks in Fsp; rare tapered twins observed. 17SUB-T035A01 Specimen interpreted to be towards the northern edge of the WSZ (but still within), ductile and brittle deformation in outcrop. Slightly smaller grainsize than T034. Qz dominant over Fsp; Qz form ribbons to mostly aggregates and contains internal subgrains. Gb for Qz are very irregular, similar to T034; they are more serrated than T032 with serration and sometimes actual bulging (T034 bulging was better defined). 5% Bt, trace Ms. Kinks in Pl and bent twins common.  17SUB-T036A01 Similar to T035, specimen from towards the northern edge of the WSZ, but considered to be in low-strain zone. Finer grained than T035. Qz forms discontinuous ribbons; gb are similar to T034. A few Fsp POCs, some with bent or tapered twins. There is a higher than usual proportion of microcline in the matrix. This is more typical of rocks from outside of the WSZ such as T022B01. Fsp are sericitized. Contains 2% Bt, minor Ms. A few grains with chlorite, possibly after Amp. Good instances of myrmekite.  17SUB-T045B01 Specimen interpreted to be out (south) of the WSZ. Contains Fp POCs; finer-grained Fp tend to be altered and they are dominantly alkali Fp. Qz forms continuous ribbons; local bulging observed; gb are interlobate. Grainsize is seriate. Also contains minor Zrn and Ttn. Internal subgrains in Qz and some grains forming extinction islands.   131  17SUB-T054A01 and 17SUB-T054A02 Two thin sections from same specimens. They contain abundant Qz, Fsp and Bt. Qz forms nice continuous ribbons; internal subgrains well-developed, both parallel and perpendicular to long axis of grains. Bt occurs as bands, fol parallel. Fsp occur mainly as dextral sigma-type POCs, with Qz ribbons and Bt wrapping around them; some displays undulose extinction. Minor Ms. Twins locally slightly bent in Pl. 17SUB-T062A01 Porphyritic Qz (medium to coarse grained) in a matrix of fine to medium grained dominantly Qz plus Fsp, Bt; Qz gb are irregular, tend to be subrounded to subangular (sutured); no Qz ribbons. Elongate subgrains present in Qz and bulging noted along several gb. A few grains have a poorly to locally moderately-well developed chessboard extinction. Several Pl with tapered twins. 2% Bt, minor opaques.  17SUB-T065A01 Qz ribbons are now visible, fine ribbons, generally continuous, gb are slightly undulating, interlobate. Set in a matrix of fine grained Qz (dominant) and Fsp plus minor Bt and opaques; localised coarse-grained Qz and Fsp; undulose extinction. One large Fsp POC with core-and-mantle structure, also displays undulose extinction.  17SUB-T069A01 Specimen in interpreted to be in high-strain portion of WSZ. Wavy Qz ribbons, sometimes discontinuous, locally blebs; sutured to amoeboid gb within the ribbons, subgrains visible. Larger blebs occasionally have polygonal triple junctions. The ribbons are generally made of smaller, square Qz, generally up to 200 to 300 μm. This contrasts with other ribbons that have long Qz grains. A few Fsp POCs; Fsp tend to be altered in central portion. Bent and tapered twins common. Matrix is mostly Qz, minor Fsp-Bt; Fsp POCs. Minor Amp. 3% Bt, aligned with fol. Good Ttn grains, minor Amp.  17SUB-T072A01 Coarser grained than T069; contains fine-medium to coarse grained Qz plus lesser Fsp and Hbl, Bt; some ribbons, not well developed; Qz gb tend to be fairly regular and smooth, polygonal to interlobate; internal subgrains visible. Ribbons are same size as rest of matrix. Fsp POC with tapered and bent twins. Contains coarse Amps and finer grained Ttn. 17SUB-T077A01 Coarse-grained specimen with abundant Fsp. Qz occurs as discontinuous ribbons and pockets with inequigranular and interlobate grains; tend to be undulating, roughly fol parallel. Contains Bt and a fair amount of coarse-grained Ttn.  17SUB-T078A01 Specimen in interpreted zone of moderate strain. Mix of fine to medium-coarse grained Fsp, fine to medium grained Qz and Bt, generally more or less defining the fol but appears to have grown in between the Fsp and Qz; mostly present as Bt-rich bands. A few Amp scattered throughout. Clusters of a few Qz grains common with only a few continuous ribbons; internal subgrains present in Qz, elongate. No chessboard noted. Gb generally undulating, lobate to undulating but rare instances of bulging. Fsp POCs present and the majority are deformed: discontinuous (tapered) twinning in Pl, bent twins, some Pl contain albite and pericline twins; kinks in POCs.  132  17SUB-T098A01 Specimen interpreted to be outside of the WSZ. Contains fine to medium-coarse grained Qz and Fsp with a fair amount of microcline. Minor Bt and some Amps. A few larger Zrn and some apatite. Coarser grained Qz forms ribbons that tend to be discontinuous; grainsize within the ribbons is variable but less than what appears typical for the WSZ. Gb in ribbons tend to be undulating, slightly polygonal (between lobate and polygonal). Large internal, elongate subgrains in ribbons. No bulging noted. The matrix doesn’t appear as recrystallized as in other specimens, gb tend to be slightly more angular and the grainsize is not as homogenous. 2 felspar POC with ribbon around, appears as sigma shaped, dextral. One Pl with bent twin planes, one with tapered twins. A few localized spots with myrmekite.  17SUB-T100A01 Specimen interpreted to be in weakly strained portion of WSZ. Contains fair amount of Bt (15%) with several pleochroic haloes surrounding Zrn inclusions. Bt is overall fol parallel but is wrapping around the Qz ribbons and Fsp POCs. Qz ribbons to local aggregates, dominated by Qz but generally polymineralic (Pl and K-Fsp); gb within ribbons are lobate with local bulges. Qz contain internal elongate subgrains. A few Pl grains with bent twin planes and tapered deformation twins (albite twins). Minor myrmekite developed on the edge of K-Fsp crystals. Several FP POCs, with Bt and/or Qz ribbons wrapping around; most are symmetrical or rotated with no marked asymmetry around them, but there is one instance of a large-scale sigma clast (pic). One example of a possible POC that has been replaced by a combination of Pl with subgrains plus a few small new grains.  17SUB-T101B01 Quartzite with coarse- to very coarse-grained Qz; gb are serrated with beautiful bulging. Contains minor Fsp and Ms. Superb chessboard extinction! Sillimanite was noted on outcrop, but here only Ms visible with minor alkali Fsp and very rare Pl.  17SUB-T105A01 Specimen in interpreted zone of moderate strain. It contains medium grained Qz generally forming ribbons set in a matrix of fine to medium grained Qz, Fsp and Bt (7%). Qz and Fsp generally around 500 μm. Fol was weak to moderate at the outcrop-scale, similar in thin section, partly defined by Bt. Other accessory minerals: apatite, Amps, Ttn. Elongate subgrains in Qz very well-developed, rare ribbons formed. Mostly monomineralic ribbons but occasionally include Fsp; they are discontinuous and roughly aligned with fol. A few Fsp POC but no shear sense indication; rare ones with bent twins, sweeping extinction, small kinks. A few with flame twinning. Gb of Qz and Fsp together are generally interlobate to weakly polygonal.  17SUB-T106A01 Specimen interpreted to be outside of the WSZ (north). The outcrop was folded (outcrop-scale folding) and although we were quite further north the thin section did not look that different. It contains Qz ribbons set in a Fsp-rich matrix with minor Qz (if this specimen is indeed outside of the WSZ the only striking difference is the composition of the matrix). Fsp are strongly altered and microcline appears to dominate. Monomineralic Qz ribbons are nicely developed with subgrains (although not very pronounced everywhere). Minor Bt, Ms.  17SUB-T106A02 Similar to T106A01 (other limb) but Qz ribbons are not as nicely developed and there is more Qz in the matrix. The ribbons are wavier and tend to be discontinuous. They also display subgrains that are not very prominent. Qz grains inside ribbons are weakly polygonal. 2 Pl POCs with Qz ribbons bending around 133  it and showing dextral movement. There is also slightly more Bt, chloritized (Amp?); there is also minor Zrn, apatite. The matrix also has a large amount of microcline but there are other varieties of Fsp present as well such as Pl and the Fsp are generally less altered; Pl locally are bent with sweeping extinction. 17SUB-T107A01 Specimen in interpreted high strain portion of the WSZ. Thin section contains 5% Bt, roughly defining the fol. There is also about 2% of opaques, likely magnetite; minor Ttn and apatite. Similar to T108A01, but slightly coarser grained and Qz does not tend to form ribbons; Qz occur as clusters of grains or discontinuous ribbons; subgrains present in Qz; in discontinuous ribbons/clusters Qz gb are weakly interlobate to polygonal. Bulging visible in a few rare spots. Pl with bent twins are rare; one band has loc small myrmekitic grains; there are 2 major Fsp POCs but no core-and-mantle structure developed.  17SUB-T108A01 Specimen in interpreted mod strain portion of the WSZ. Typical thin section of the WSZ – discontinuous Qz ribbons set in a matrix of mostly medium grained Qz and Fsp, sometimes forms quartz pockets rather than ribbons. Gb are straight to undulating, locally weakly interlobate; a few examples of bulging. Internal subgrains in Qz; 2, possibly more example of extinction island for Qz grains. Looks disorganised, massive, fol appears to be only defined by the ribbons. 3% Bt disseminated throughout; a few opaque minerals (probably some ilmenite with associated Ttn), rare Ttn, chloritized grains. Myrmekite identified in one location. Fsp twins tend to be growth style, but there are a few flame ones and bent ones.  17SUB-T112A01 From high-strain portion of WSZ. There were abundant dextral POC on the outcrop; there are a few Fsp POCs in thin section but no shear sense can be deducted. Qz forms continuous thin ribbons, up to 500 μm large and has interlobate gb. Internal subgrains in Qz, minor bulging. Bent twins and kinks present in Fsp. Fair amount of alkali Fsp in matrix. Coarse grained Ttn, minor Bt and opaques. 17SUB-T118A01 From low-strain portion of WSZ. Contains continuous to locally discontinuous Qz ribbons (occasional pockets) with wavy to interlobate gb; Qz has internal subgrains. Qz, Pl and alkali Fsp matrix, much finer grained than ribbons. Rare tapered twins noted in Pl. 5% Bt.  12WGA-K019A01, 12WGA-K019A02 and 12WGA-K019A03 Thin sections from the moderate-strain portion of the WSZ. K19A01 (felsic mylonite) contains numerous Fsp POCs, indicating dextral shear-sense. Matrix contains nicely formed, continuous Qz ribbons that are waving around POCs; matrix also contains Fsp and 15% Bt. Qz has internal subgrains. Some Pg POC with bent and tapered twins. K19A02 comes from a deformed pegmatite, Fsp dominant with sericite alteration. Qz has internal subgrains (not chessboard), nice local bulging and interlobate gb. Thin section K19A03 is a quartzite and also includes 2 main Fsp POCs and a larger elongate pocket of Ms. Ms also disseminated along Fol planes. Qz forms continuous ribbons with straight gb along the long axis of the ribbons (often bound by Ms). Internal subgrains not well developed. Within ribbons, gb are straight to interlobate. Grain shapes often jigsaw puzzle like. Bulging very rare.     134  Appendix D: Paleopiezometry Table D.1: Example of diameter calculations, the long and short axes are measured under the microscope and computed in an Excel spreadsheet.  # Long (μm) Short (μm) Ratio Area of ellipse (μm²) Diameter of circle (μm) Diameter of circle (mm) Diameter² (mm²) 1 47.477 25.434 1.867 948.392 34.750 0.035 0.001 2 57.112 34.998 1.632 1569.858 44.708 0.045 0.002  Formulas: To calculate the diameter of grains:  Ratio =long(μm)short (μm) Area of ellipse (μm2) =  π ×long(μm)2×short(μm)2  Diameter of circle (μm) = 2√Area (μm2)𝜋  Diameter of circle (mm) =  Diameter of circle (μm)1000  To calculate differential stress:  RMS (D) = √Average Diameter² (mm²)   𝜎 = 𝐾𝐷−𝑝  where K = 7.8 (anorthite) and p = 0.68 135   Figure D.1 continued on next page.   136   Figure D.1 continued on next page.   137   Figure D.1: a) to f): detailed histograms of grainsize variation and statistics for the 6 specimens analysed for paleopiezometry on feldspars (histograms with 5.0 bin size are presented in Fig. 4.12). Apparent diameter refers to a diameter that is assumed to be equal to the diameter of a circle with the same area as an ellipse constructed from the short and long axes of the measured feldspar grains.   138  Table D.2: Parameters used in flow law calculations. Aggregate n Q (kJ mol-1) log A (MPa-nμmms-1) m H2O wt.% Reference Dislocation creep regime   An100 3.0 ± 0.4 648 ± 20 12.7 ± 0.6 0 0.004 Rybacki and Dresen (2000) An100 3.0 ± 0.2 356 ± 9   2.6 ± 0.3 0 0.07 Rybacki and Dresen (2000) An60 3 235 ± 13  -1.5 ± 0.5 0 0.3 Offerhaus et al. (2001) Diffusion creep regime   An100 1.0 ± 0.1 467 ± 16 12.1 ± 0.6 3 0.004 Rybacki and Dresen (2000) An100 1.0 ± 0.1 170 ± 6   1.7 ± 0.2 3 0.07 Rybacki and Dresen (2000) An60 1 153 ± 15   1.1 ± 0.6 3 0.3 Offerhaus et al. (2001)   Table D.3: Results of strain rate calculations (s-1).  Dislocation creep regime Diffusion creep regime Specimen An100 (dry) An100 (wet) An60 An100 (dry) An100 (wet) An60 17SUB-S002A01 + 3.299E-13 7.202E-10 7.656E-08 9.387E-17 1.174E-11 1.391E-10 ± 4.125E-16 2.659E-11 3.183E-09 5.742E-19 1.468E-12 3.378E-12 - 4.438E-19 9.122E-13 1.221E-10 3.030E-21 1.737E-13 7.400E-14 17SUB-T015A01 + 1.619E-13 3.686E-10 4.087E-08 2.962E-17 3.706E-12 4.481E-11 ± 2.202E-16 1.419E-11 1.699E-09 1.850E-19 4.730E-13 1.089E-12 - 2.576E-19 5.077E-13 6.516E-11 9.972E-22 5.715E-14 2.385E-14 17SUB-T062A01 + 4.830E-13 1.031E-09 1.072E-07 1.742E-16 2.179E-11 2.552E-10 ± 5.775E-16 3.722E-11 4.457E-09 1.054E-18 2.693E-12 6.199E-12 - 5.941E-19 1.249E-12 1.709E-10 5.499E-21 3.152E-13 1.358E-13 17SUB-T065A01 + 6.286E-13 1.321E-09 1.352E-07 2.670E-16 3.340E-11 3.881E-10 ± 7.285E-16 4.696E-11 5.623E-09 1.602E-18 4.096E-12 9.427E-12 - 7.266E-19 1.551E-12 2.156E-10 8.298E-21 4.756E-13 2.065E-13 17SUB-T069A01 + 4.201E-13 9.041E-10 9.476E-08 1.389E-16 1.737E-11 2.043E-10 ± 5.105E-16 3.291E-11 3.940E-09 8.436E-19 2.156E-12 4.963E-12 - 5.339E-19 1.113E-12 1.511E-10 4.420E-21 2.534E-13 1.087E-13 17SUB-T072A01 + 3.129E-13 6.852E-10 7.307E-08 8.617E-17 1.078E-11 1.278E-10 ± 3.937E-16 2.538E-11 3.038E-09 5.279E-19 1.349E-12 3.106E-12 - 4.262E-19 8.733E-13 1.165E-10 2.790E-21 1.599E-13 6.803E-14 139  Appendix E: Quartz CPO Table E.1: Quartz c-axis fabric descriptions. Abbreviations: Qz, quartz. Specimen WSZ strain gradient Quartz selection  Description  of fabric type Interpretation, slip system and temperature Shear- sense Opening- angle 17SUB-S002A01 High Qz ribbons Cleft girdles (great circles, slightly inclined) with minor Y-maximum Constrictional strain, minor prism <a>; low to med T Coaxial to dextral noncoaxial N/A 17SUB-S004A01 High Quartz ribbons Large dominant Y-maximum, possible relict cleft girdle or Type II crossed-girdle Mostly prism <a>, basal <a>; low to med T Dextral shear (?) N/A 17SUB-S006A01 High Grains in quartzite Remnants of two cleft girdles on great circles, inclined Constrictional strain Dextral shear N/A 17SUB-T002A02 High Coarser-grained area Single girdle, central, curved Mostly prism <a>, some rhomb <a>; low to med T Dextral shear N/A 17SUB-T011A01 Low to moderate No ribbons, Qz in matrix 4-point maxima on primitive, strongest at SE-NW Prism <c>; high T Dextral shear 117° 17SUB-T015A01 High Qz ribbons, Qz in matrix 1 point maximum (W); minor point maximum (E) Prism <c>; high T Coaxial N/A 17SUB-T016A01 High Qz ribbons Dominant Y-maximum, possible relict cleft girdles Prism <a>; low to med T; possible constrictional strain  N/A 17SUB-T019A01 High Qz ribbons and pockets Almost complete single girdle, with Y-maximum and N-S point maxima; slight asymmetry Prism <a> and basal <a>; low to med T Sinistral shear N/A 17SUB-T020A01 Northern margin Qz ribbons and pockets Several point maxima on primitive, dominant N-S Possible GBS; possible basal <a>  N/A 17SUB-T022B01 Outside – north Qz pockets, Qz in matrix Dominant Y-maximum, other point maximum at SE Mostly prism <a>, basal <a>; low to med T Sinistral shear (?) N/A 17SUB-T032A01 Low Qz ribbons Dominant Y-maximum, possible relict cleft girdles Prism <a>; low to med T; possible constrictional strain  N/A 17SUB-T034A01 Moderate Qz ribbons, aggregates One cleft girdle on great circle and several point maxima around primitive Constrictional strain; possible GBS  N/A 17SUB-T035A01 Low Qz ribbons, aggregates Several point maxima around primitive; dominant maxima at SE-NW Possible GBS; maybe prism <c> causing dominant maxima Dextral shear N/A 17SUB-T036A01 Low Qz ribbons, aggregates Several point maxima around primitive; possible relict cleft girdles Possible GBS; possible constrictional strain  N/A 140  Specimen WSZ strain gradient Quartz selection Description of fabric type Interpretation, slip system and temperature Shear- sense Opening- angle 17SUB-T045B01 Outside – south Qz ribbons Dominant point maximum in NW quadrant Prism <a> and basal <a>; low to med T Sinistral shear N/A 17SUB-T054A01 Low Qz ribbons Dominant Y-maximum, possible relict cleft girdles Prism <a>; low to med T; possible constrictional strain  N/A 17SUB-T062A01 Low Qz in matrix, aggregates Several point maxima around primitive Possible GBS  N/A 17SUB-T065A01 Moderate Qz ribbons Dominant Y-maximum, cleft girdles visible Prism <a>; low to med T; constrictional strain  N/A 17SUB-T069A01 High Qz ribbons, aggregates Large maximum in SW quadrant Prism <a> and basal <a>; low to med T Dextral shear (?) N/A 17SUB-T072A01 Moderate to high Qz ribbons, aggregates Possible cleft girdles, Y-maximum, several maxima around primitive Prism <a>, maybe basal <a>; possible constrictional strain  N/A 17SUB-T077A01 Moderate Qz ribbons and pockets Y-maximum with possible Type II crossed-girdle, slightly asymmetrical Prism <a> and basal <a>; low to med T Dextral shear 84° 17SUB-T078A01 Moderate Qz ribbons and pockets, Qz in matrix Y-maximum and maxima in NE-SW Prism <a> and basal <a>; low to med T Dextral shear  17SUB-T098A01 Outside – south Qz ribbons Slight Y-maximum and 4-point maxima on primitive, strongest at NE-SW Prism <a> and basal <a>; low to med T Dextral shear  17SUB-T100A01 Low to moderate Qz ribbons and pockets Y-maximum, 2 maxima NE-SW, possible relict cleft girdles Prism <a> and basal <a>; low to med T Dextral shear N/A 17SUB-T101B01 Moderate Grains in quartzite Point maximum in upper quadrant, may need rotation    17SUB-T105A01 Moderate Qz ribbons Y-maximum and 4-point maxima on primitive, strongest at SE-NW Prism <a> and basal <a>; low to med T Sinistral shear 96° 17SUB-T106A01 Outside – north Qz ribbons Central maximum just off Y Mostly prism <a>, basal <a>; low to med T Dextral shear N/A    141   Figure E.1 continued on next page.   142   Figure E.1 continued on next page.   143   Figure E.1 continued on next page.     144   Figure E.1: Stereonets (point plots and contoured data) of all the specimens analysed as part of this study (lower hemisphere, equal area (Schmidt net) projections; contouring was done using the Orient software, with the probability density method with 100 nodes and 10 levels). Data organised by traverse (Fig. 4.1). Refer to Fig. 4.17 for examples of typical CPO patterns.     145  Appendix F: Titanite Petrochronology  Figure F.1: 17SUB-T020A01, Site B.  146   Figure F.2: 17SUB-T020A01, Site C1.   147   Figure F.3: 17SUB-T020A01, Sites D1-D2.   148   Figure F.4: 17SUB-T020A01, Site G1.   149   Figure F.5: 17SUB-T020A01, Site G2.   150   Figure F.6: 17SUB-T020A01, Site G4.   151   Figure F.7: 17SUB-T045B01, Site A.   152   Figure F.8: 17SUB-T045B01, Site B.   153   Figure F.9: 17SUB-T069A01, Site C.   154   Figure F.10: 17SUB-T069A01, Site D.   155   Figure F.11: 17SUB-T069A01, Site E2.   156   Figure F.12: 17SUB-T069A01, Site E3.   157   Figure F.13: 17SUB-T069A01, Site F.   158   Figure F.14: 17SUB-T069A01, Site H1.   159   Figure F.15: 17SUB-T069A01, Site H2.   160   Figure F.16: 17SUB-T072A01, Site A.   161   Figure F.17: 17SUB-T072A01, Site C.   162   Figure F.18: 17SUB-T072A01, Site D.   163   Figure F.19: 17SUB-T072A01, Site E.   164   Figure F.20: 17SUB-T077A01, Site A1.   165   Figure F.21: 17SUB-T077A01, Site E.   166   Figure F.22 continued on next page.    167   Figure F.22 continued on next page.   168    Figure F.22 continued on next page.  169   Figure F.22 continued on next page.    170   Figure F.22 continued on next page.   171   Figure F.22: Site locations for all specimens (prefix ‘17SUB-’ removed for brevity).    172   Table F.1: Titanite LA-MC-ICPMS data. Abbreviation: i-rim, inner rim; Misori, misorientations (higher amount); NG, new grain; NG-SG, subgrain of new grain; SG, subgrain; o-rim, outer rim. Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T020A01-B-01 CoreC-Misori 110.915 26 78 55 0.71 0.1911 1.771 9.5630 3.000 0.3631 2.421 0.81 2752 29 T020A01-B-02 CoreC-SG1 88.244 10 83 51 0.62 0.1266 1.607 5.5453 3.248 0.3179 2.822 0.87 2050 28 T020A01-B-03 CoreC-SG1 88.244 10 82 51 0.65 0.1250 1.604 5.4640 3.368 0.3172 2.962 0.88 2031 28 T020A01-B-04 CoreA-NG3 45.207 18 22 16 0.66 0.3210 3.458 20.7041 5.540 0.4680 4.328 0.78 3552 53 T020A01-B-05 CoreA-o-rim 448.375 39 74 54 0.75 0.2374 1.763 13.2933 3.361 0.4063 2.861 0.85 3100 28 T020A01-B-06 CoreA-i-rim 448.375 11 73 54 0.76 0.1269 1.615 5.7115 3.205 0.3266 2.769 0.86 2054 29 T020A01-B-07 CoreA 448.375 12 86 64 0.76 0.1257 1.614 5.5523 3.016 0.3204 2.548 0.84 2039 29 T020A01-B-08 CoreA 448.375 10 81 51 0.65 0.1235 1.644 5.4737 3.091 0.3217 2.617 0.85 2005 29 T020A01-B-09 CoreA-Misori 448.375 9 81 50 0.63 0.1250 1.598 5.4541 3.465 0.3167 3.075 0.89 2027 28 T020A01-B-10 CoreA-o-rim-Misori 448.375 9 66 50 0.75 0.1265 1.644 5.5871 3.011 0.3205 2.523 0.84 2050 29 T020A01-B-11 CoreA-o-rim 448.375 2 3 4 - - - - - - - - - - T020A01-B-12 CoreA 448.375 9 81 49 0.59 0.1240 1.630 5.4451 3.076 0.3186 2.609 0.85 2015 29 T020A01-B-13 CoreA 448.375 9 77 51 0.65 0.1250 1.619 5.5511 3.011 0.3222 2.539 0.84 2028 29 T020A01-B-14 CoreA-Misori 448.375 9 76 48 0.62 0.1249 1.616 5.4532 2.906 0.3169 2.416 0.83 2027 29 T020A01-B-15 CoreA-o-rim 448.375 13 82 67 0.80 0.1289 1.593 5.7824 2.881 0.3255 2.400 0.83 2083 28 T020A01-B-16 CoreA-Misori 448.375 14 80 51 0.63 0.1475 1.595 6.8991 3.282 0.3395 2.868 0.87 2316 27 T020A01-B-17 CoreB 115.108 12 77 49 0.61 0.1388 1.631 6.3221 2.846 0.3304 2.332 0.82 2213 28 T020A01-B-18 CoreB 115.108 9 79 50 0.63 0.1249 1.616 5.4708 3.275 0.3179 2.849 0.87 2028 29 T020A01-B-19 CoreA 448.375 13 77 51 0.65 0.1444 1.641 6.6057 3.256 0.3320 2.813 0.86 2280 28 T020A01-B-20 CoreA-i-rim 448.375 9 76 49 0.63 0.1245 1.614 5.5562 3.219 0.3239 2.785 0.87 2020 29 T020A01-B-21 CoreA-o-rim 448.375 8 80 46 0.57 0.1243 1.611 5.4283 3.074 0.3169 2.618 0.85 2018 29 T020A01-B-22 CoreA-SG1 96.409 12 79 63 0.78 0.1295 1.608 5.7254 3.325 0.3207 2.911 0.88 2091 28 T020A01-B-23 CoreA-SG1 96.409 12 67 61 0.89 0.1309 1.620 5.8334 3.092 0.3234 2.633 0.85 2109 28 T020A01-B-24 CoreA-NG1 80.989 3 21 11 0.60 0.1580 2.090 7.1902 3.928 0.3302 3.325 0.85 2428 35 T020A01-B-25 CoreA-NG1 80.989 12 27 10 5.00 0.2456 1.669 14.3854 3.986 0.4250 3.620 0.91 3156 26 T020A01-B-26 CoreA-NG1 80.989 4 25 21 0.61 0.1463 1.743 6.3392 3.647 0.3144 3.204 0.88 2302 30 T020A01-B-27 CoreA-NG2 101.116 1 5 3 - - - - - - - - - - T020A01-B-28 CoreA-NG2 101.116 1 4 3 - - - - - - - - - - T020A01-C-01 CoreA-rim 344.052 446 84 166 1.99 0.5151 1.736 141.2702 5.524 1.9900 5.244 0.95 4285 26 T020A01-C-02 CoreA-rim-Zr 344.052 3340 241 359 1.50 0.5868 1.538 417.2975 2.893 5.1600 2.451 0.85 4475 22 T020A01-C-03 CoreA-Zr 344.052 2681 232 314 1.36 0.5881 1.524 347.3025 3.131 4.2850 2.735 0.87 4479 22 T020A01-C-04 CoreA-Zr 344.052 1552 155 334 2.19 0.5617 1.611 288.3611 3.249 3.7250 2.821 0.87 4411 24 T020A01-C-05 CoreA-Zr 344.052 5453 442 454 1.06 0.5864 1.525 390.3436 3.771 4.8300 3.449 0.91 4475 22 T020A01-C-06 CoreA-Zr 344.052 5870 623 487 0.79 0.5816 1.598 306.9935 6.885 3.8300 6.698 0.97 4463 23 T020A01-C-07 CoreA-rim 344.052 33 64 172 2.71 0.1271 1.649 5.7368 3.492 0.3274 3.078 0.88 2057 29 T020A01-C-08 CoreA-rim-Zr 344.052 4700 428 431 1.02 0.6094 1.520 353.9182 2.905 4.2140 2.476 0.85 4531 22 T020A01-C-09 CoreA-rim 344.052 41 74 173 2.39 0.1749 2.501 8.8945 5.225 0.3690 4.588 0.88 2599 42 T020A01-C-10 CoreA-rim 344.052 33 73 174 2.37 0.1320 1.680 6.0070 3.286 0.3302 2.824 0.86 2123 29 T020A01-C-11 CoreA-Zr 344.052 28 64 150 2.31 0.1321 1.660 5.9833 3.536 0.3287 3.122 0.88 2126 29 T020A01-C-12 CoreA-Zr 344.052 28 65 153 2.33 0.1338 1.663 6.0926 3.668 0.3305 3.269 0.89 2146 29 T020A01-C-13 CoreA-Zr 344.052 15 41 79 1.87 0.1347 1.745 6.2654 3.433 0.3375 2.957 0.86 2160 30 T020A01-C-14 CoreA-rim-Zr 344.052 29 62 159 2.54 0.1338 1.711 6.0115 3.819 0.3260 3.415 0.89 2151 30 T020A01-C-15 CoreA-rim 344.052 14 35 72 2.00 0.1394 1.766 6.4936 3.758 0.3380 3.317 0.88 2219 31 173  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T020A01-C-16 CoreA-rim 344.052 14 32 75 2.31 0.1407 1.726 6.3273 3.654 0.3263 3.221 0.88 2237 30 T020A01-C-17 CoreA-rim 344.052 26 35 74 2.07 0.2610 1.667 15.8990 3.521 0.4420 3.102 0.88 3252 26 T020A01-D-01 Group5-SG 43.114 2 11 6 2.50 0.1721 2.129 8.2540 6.837 0.3480 6.497 0.95 2578 36 T020A01-D-02 Group5-Core 58.380 21 14 21 1.41 0.3898 2.042 38.8943 8.008 0.7240 7.743 0.97 3869 31 T020A01-D-03 Group4-rim 168.148 1 2 0 - - - - - - - - - - T020A01-D-04 Group4-rim 168.148 1 1 0 - - - - - - - - - - T020A01-D-05 Group4-rim 168.148 26 9 5 4.17 0.4758 1.576 90.4919 10.376 1.3800 10.255 0.99 4168 23 T020A01-D-06 Group4-Core 168.148 2 7 9 2.27 0.2141 3.261 14.7534 40.161 0.5000 40.028 1.00 2931 53 T020A01-D-07 Group4-Core 168.148 21 6 6 2.63 0.4858 1.917 97.0804 19.463 1.4500 19.369 1.00 4198 28 T020A01-D-08 Group2-Core 68.174 5 22 21 0.79 0.1421 1.919 6.4823 4.120 0.3310 3.646 0.88 2248 33 T020A01-D-09 Group2-Core 68.174 3 11 10 1.56 0.1782 2.255 8.7922 10.145 0.3580 9.891 0.97 2638 37 T020A01-D-10 Group2-Core 64.347 224 24 26 1.05 0.5569 1.534 253.2778 4.486 3.3000 4.215 0.94 4399 22 T020A01-D-11 Group1-Core 124.544 7 3 3 4.17 0.4550 1.886 -6.2707 1200.00 -0.1000 1200.00 1.00 4102 28 T020A01-D-12 Group2-Core 67.317 1 3 1 - - - - - - - - - - T020A01-D-13 Group2-Core 51.188 1 2 1 - - - - - - - - - - T020A01-D-14 Group1-rim 124.544 1 2 2 - - - - - - - - - - T020A01-D-15 Group1-Core 124.544 1 3 3 - - - - - - - - - - T020A01-D-16 Group3-Core 240.045 2 3 1 - - - - - - - - - - T020A01-D-17 Group3-Core 240.045 5 14 23 1.37 0.1614 1.986 7.3849 5.158 0.3320 4.761 0.92 2468 34 T020A01-D-18 Group3-rim 240.045 3 9 9 1.61 0.1891 2.465 9.3300 8.863 0.3580 8.513 0.96 2729 41 T020A01-D-19 Group3-rim 240.045 3 2 2 - - - - - - - - - - T020A01-D-20 Group3-rim 240.045 1 2 0 - - - - - - - - - - T020A01-G1-01 CoreB-rim 131.356 1 1 1 - - - - - - - - - - T020A01-G1-02 CoreB 131.356 2 3 7 - - - - - - - - - - T020A01-G1-03 CoreB-rim 131.356 7 4 3 4.17 0.4961 1.842 56.0646 41.531 0.8200 41.491 1.00 4230 27 T020A01-G1-04 CoreA-NG1 82.779 3 10 12 1.18 0.1797 2.503 8.8414 8.895 0.3570 8.536 0.96 2653 42 T020A01-G1-05 CoreA-NG1 82.779 1 2 2 - - - - - - - - - - T020A01-G1-06 CoreA-SG 46.617 2 5 10 - - - - - - - - - - T020A01-G1-07 CoreA-rim 137.980 3 3 9 - - - - - - - - - - T020A01-G1-08 CoreA 137.980 4 8 19 2.07 0.2071 2.296 10.7033 11.272 0.3750 11.036 0.98 2879 37 T020A01-G1-09 CoreA-rim 137.980 6 3 4 5.56 0.4757 2.072 32.7800 82.040 0.5000 82.014 1.00 4172 31 T020A01-G1-10 CoreA-rim 137.980 1 3 1 - - - - - - - - - - T020A01-G1-11 CoreA-rim 137.980 1 5 1 - - - - - - - - - - T020A01-G1-12 CoreA-rim 137.980 3 5 11 - - - - - - - - - - T020A01-G2-01 CoreA-SG1 155.638 30 12 4 1.25 0.5831 1.586 69.9950 5.293 0.8710 5.050 0.95 4467 23 T020A01-G2-02 CoreA 155.638 5 11 20 1.47 0.2241 2.436 11.3348 6.642 0.3670 6.179 0.93 3002 39 T020A01-G2-03 CoreA 155.638 6 16 24 1.33 0.1907 1.801 9.4089 5.046 0.3580 4.714 0.93 2748 30 T020A01-G2-04 CoreA-SG2 60.722 6 18 29 1.51 0.1600 1.838 7.4091 4.539 0.3360 4.150 0.91 2455 31 T020A01-G2-05 CoreA-SG2 60.722 3 8 12 1.89 0.2119 2.266 11.4770 9.799 0.3930 9.534 0.97 2920 37 T020A01-G2-06 CoreA 155.638 2 3 5 - - - - - - - - - - T020A01-G2-07 CoreA-rim 155.638 4 4 2 -33.33 0.4098 2.096 41.2288 23.430 0.7300 23.336 1.00 3948 31 T020A01-G2-08 CoreA-rim 155.638 1 2 3 - - - - - - - - - - T020A01-G2-09 CoreB-SG1 53.768 6 19 19 0.73 0.1985 1.807 9.8211 4.552 0.3590 4.178 0.92 2813 30 T020A01-G2-10 CoreB-SG1 53.768 10 15 20 1.05 0.2957 2.286 17.4014 6.041 0.4270 5.591 0.93 3443 35 T020A01-G2-11 CoreB 110.782 3 6 12 1.96 0.2402 2.737 14.0029 20.336 0.4230 20.150 0.99 3134 44 T020A01-G2-12 CoreB-rim 110.782 2 4 5 - - - - - - - - - - 174  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T020A01-G4-01 CoreA-o-rim-Misori 200.488 3 16 13 0.85 0.1607 1.989 7.6187 5.276 0.3440 4.887 0.93 2459 34 T020A01-G4-02 CoreA-o-rim-Misori 200.488 3 12 14 1.10 0.1795 1.902 8.3121 5.343 0.3360 4.993 0.93 2650 32 T020A01-G4-03 CoreA-o-rim-Misori 200.488 2 5 4 - - - - - - - - - - T020A01-G4-04 CoreA-Misori 200.488 4 21 18 0.70 0.1541 1.901 7.0509 4.104 0.3320 3.637 0.89 2393 32 T020A01-G4-05 CoreA-Misori 200.488 4 21 16 0.70 0.1535 1.865 6.8754 4.145 0.3250 3.702 0.89 2384 32 T020A01-G4-06 CoreA-o-rim 200.488 3 9 7 10.00 0.2187 1.972 11.8152 7.802 0.3920 7.548 0.97 2968 32 T020A01-G4-07 CoreA 200.488 6 5 3 5.56 0.4142 2.102 39.9590 47.214 0.7000 47.167 1.00 3959 32 T020A01-G4-08 CoreA-o-rim 200.488 3 5 7 2.22 0.2586 2.795 16.7507 23.618 0.4700 23.452 0.99 3237 44 T020A01-G4-09 CoreA-i-rim 200.488 3 6 7 0.86 0.2393 2.606 12.8951 14.635 0.3910 14.401 0.98 3111 41 T020A01-G4-10 CoreA-SG1 200.488 4 17 18 0.83 0.1632 1.937 7.2424 4.722 0.3220 4.307 0.91 2485 33 T020A01-G4-11 CoreA-o-rim 200.488 2 5 2 - - - - - - - - - - T020A01-G4-12 CoreA-SG1 200.488 18 13 11 1.09 0.4287 1.792 41.7714 7.987 0.7070 7.784 0.97 4012 27 T045B01-A-01 CoreA 163.216 759 48 36 0.75 0.8562 1.509 526.2790 3.257 4.4600 2.887 0.89 5090 21 T045B01-A-02 CoreA 163.216 15 40 25 0.58 0.2424 1.674 13.9976 4.848 0.4190 4.550 0.94 3135 27 T045B01-A-03 CoreA 163.216 4 62 17 0.24 0.1247 1.682 5.6903 2.950 0.3311 2.423 0.82 2024 30 T045B01-A-04 CoreA 163.216 34 61 18 0.26 0.3490 5.647 22.0772 7.557 0.4590 5.022 0.66 3695 86 T045B01-A-05 CoreA-Misori 163.216 11 102 24 0.22 0.1462 3.486 6.7942 4.556 0.3372 2.933 0.64 2308 60 T045B01-A-06 CoreA-rim 163.216 171 94 13 0.15 0.6053 1.646 65.4857 4.205 0.7850 3.869 0.92 4521 24 T045B01-A-07 CoreA 163.216 9 45 21 0.39 0.1810 2.115 8.9603 3.548 0.3592 2.849 0.80 2675 35 T045B01-A-08 CoreA 163.216 1740 93 48 0.50 0.8799 1.525 680.3026 3.856 5.6100 3.542 0.92 5143 22 T045B01-A-09 CoreA-rim 163.216 2041 118 63 0.53 0.8758 1.507 636.0943 3.116 5.2700 2.727 0.88 5134 21 T045B01-B-01 CoreA 153.527 85 82 52 0.63 0.4717 1.778 37.4450 4.036 0.5760 3.624 0.90 4155 26 T045B01-B-02 CoreA 153.527 13 65 70 1.06 0.1300 1.630 5.9101 2.634 0.3300 2.068 0.79 2096 29 T045B01-B-03 CoreA 153.527 8 46 40 0.86 0.1454 1.650 6.6929 2.808 0.3340 2.272 0.81 2292 28 T045B01-B-04 CoreA-Misori 153.527 5 23 19 0.68 0.1643 1.822 7.9343 3.573 0.3504 3.074 0.86 2497 31 T045B01-B-05 CoreA 153.527 4 17 15 0.70 0.1819 1.797 8.9747 4.320 0.3580 3.929 0.91 2673 30 T045B01-B-06 CoreA-Misori 153.527 2607 178 118 0.65 0.8690 1.503 525.2540 2.670 4.3860 2.207 0.83 5119 21 T045B01-B-07 CoreA 153.527 2560 183 115 0.63 0.8664 1.503 505.7959 2.691 4.2360 2.232 0.83 5113 21 T045B01-B-08 CoreA 153.527 89 16 21 1.43 0.7499 1.818 205.6659 12.782 1.9900 12.652 0.99 4850 26 T045B01-B-09 CoreA 153.527 126 20 25 1.26 0.7652 1.593 224.6263 6.927 2.1300 6.742 0.97 4884 23 T069A01-B-01 CoreB-Y 86.761 76 34 133 3.85 0.6216 1.591 58.7680 4.376 0.6860 4.076 0.93 4559 23 T069A01-B-02 CoreB-Y 86.761 48 39 37 0.88 0.4713 1.723 34.1656 3.958 0.5260 3.563 0.90 4153 26 T069A01-B-03 CoreA-Y 230.873 49 72 143 2.00 0.2670 2.068 13.8689 3.271 0.3769 2.535 0.77 3286 32 T069A01-B-04 CoreA-Y 230.873 33 56 95 1.69 0.2772 1.732 14.2498 3.157 0.3730 2.639 0.84 3347 27 T069A01-B-05 CoreA-Y 230.873 18 51 50 0.96 0.2167 1.980 10.3393 3.131 0.3462 2.426 0.77 2959 32 T069A01-B-06 CoreA-Y 230.873 53 90 121 1.35 0.2786 1.619 14.2949 2.935 0.3723 2.447 0.83 3355 25 T069A01-B-07 CoreA 230.873 32 25 28 0.89 0.4858 1.673 37.2923 4.236 0.5570 3.891 0.92 4198 25 T069A01-B-08 CoreA 230.873 21 22 19 0.88 0.4316 2.159 28.4325 4.765 0.4780 4.249 0.89 4022 32 T069A01-B-09 CoreA 230.873 11 21 20 0.49 0.2705 1.724 15.0237 4.368 0.4030 4.013 0.92 3309 27 T069A01-B-10 CoreA 230.873 22 16 19 0.80 0.5022 1.680 39.1049 4.498 0.5650 4.173 0.93 4248 25 T069A01-B-11 CoreA-Y 230.873 7 40 26 0.59 0.1527 1.725 6.9848 3.570 0.3319 3.125 0.88 2378 29 T069A01-B-12 CoreA-Y 230.873 22 60 65 1.09 0.2170 1.692 10.6647 3.286 0.3566 2.816 0.86 2957 27 T069A01-B-13 CoreA-Y 230.873 16 81 79 0.97 0.1349 1.619 6.0902 2.829 0.3277 2.320 0.82 2162 28 T069A01-B-14 CoreA 230.873 9 16 15 0.28 0.3083 1.771 17.2931 4.994 0.4070 4.670 0.94 3514 27 T069A01-B-15 CoreA 230.873 8 20 13 0.56 0.2598 1.762 13.8566 4.294 0.3870 3.916 0.91 3247 28 T069A01-B-16 CoreA 230.873 4 17 14 - 0.1929 1.823 9.4643 4.587 0.3560 4.209 0.92 2769 30 175  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T069A01-B-17 CoreA-SG1-Y 55.729 29 104 138 1.33 0.1486 1.610 6.7153 3.024 0.3279 2.559 0.85 2329 28 T069A01-B-18 CoreA-SG1-Y 55.729 36 74 122 1.66 0.2298 1.879 11.3444 3.134 0.3582 2.508 0.80 3049 30 T069A01-C-01 CoreA-SG2 74.096 3 15 4 5.00 0.2099 1.945 9.7487 5.084 0.3370 4.697 0.92 2908 32 T069A01-C-02 CoreA-SG2 74.096 3 17 5 0.59 0.1977 1.868 9.6998 4.367 0.3560 3.948 0.90 2806 31 T069A01-C-03 CoreA-SG1 49.398 10 24 8 0.53 0.3266 1.713 17.1493 3.475 0.3810 3.023 0.87 3601 26 T069A01-C-04 CoreA-Y-Misori 296.190 15 58 31 0.45 0.2218 1.645 10.7966 2.717 0.3532 2.162 0.80 2994 26 T069A01-C-05 CoreA-Y 296.190 8 61 27 0.43 0.1573 1.744 7.0044 2.937 0.3231 2.363 0.80 2430 30 T069A01-C-06 CoreA-Y 296.190 9 38 21 0.50 0.1992 1.726 9.4302 3.182 0.3435 2.673 0.84 2819 28 T069A01-C-07 CoreA-Y 296.190 8 50 29 0.52 0.1590 1.708 7.3102 2.899 0.3336 2.342 0.81 2443 29 T069A01-C-08 CoreA 296.190 4 41 13 0.43 0.1557 1.749 7.0254 3.061 0.3274 2.513 0.82 2413 30 T069A01-C-09 CoreA-Y 296.190 7 53 28 0.47 0.1427 1.633 6.3549 2.739 0.3232 2.200 0.80 2261 28 T069A01-C-10 CoreA-Y 296.190 6 45 23 0.40 0.1525 1.725 6.9000 3.189 0.3283 2.682 0.84 2376 29 T069A01-C-11 CoreA-Y 296.190 7 57 23 0.36 0.1541 1.661 6.8407 2.932 0.3221 2.416 0.82 2390 28 T069A01-C-12 CoreA-rim 296.190 9 14 6 - 0.3904 1.940 24.5347 6.006 0.4560 5.684 0.95 3872 29 T069A01-D-01 CoreA-rim 325.223 31 16 13 0.49 0.6425 1.910 66.8538 5.470 0.7550 5.125 0.94 4606 28 T069A01-D-02 CoreA-rim 325.223 3 19 6 1.00 0.1917 1.798 8.7978 4.049 0.3330 3.628 0.90 2758 30 T069A01-D-03 CoreA-Y 325.223 5 44 16 0.24 0.1465 1.677 6.4286 2.935 0.3184 2.409 0.82 2304 29 T069A01-D-04 CoreA-Y 325.223 5 48 18 0.34 0.1470 1.647 6.4890 2.993 0.3203 2.499 0.83 2310 28 T069A01-D-05 CoreA 325.223 4 29 10 0.27 0.1642 1.789 7.4452 3.619 0.3290 3.147 0.87 2502 30 T069A01-D-06 CoreA-Y 325.223 32 55 29 0.50 0.3621 1.572 21.3189 2.946 0.4272 2.492 0.85 3761 24 T069A01-D-07 CoreA 325.223 4 35 12 0.59 0.1560 1.716 6.9422 3.145 0.3229 2.636 0.84 2411 29 T069A01-D-08 CoreA-Y 325.223 10 62 41 0.67 0.1506 1.668 6.7932 2.840 0.3273 2.298 0.81 2353 29 T069A01-D-09 CoreA-Y-Misori 325.223 6 53 23 0.30 0.1427 1.686 6.3012 2.893 0.3204 2.351 0.81 2260 29 T069A01-D-10 CoreA-Misori-rim 325.223 19 16 10 0.70 0.5249 1.674 40.5831 4.676 0.5610 4.366 0.93 4312 25 T069A01-D-11 CoreA-Misori-rim 325.223 3 10 3 -14.29 0.2592 1.783 14.1461 6.493 0.3960 6.243 0.96 3243 28 T069A01-D-12 CoreA-Misori-rim 325.223 12 21 11 0.49 0.3550 1.708 21.2336 3.760 0.4340 3.350 0.89 3731 26 T069A01-D-13 CoreA 325.223 4 20 6 0.50 0.1939 1.850 9.4065 3.929 0.3520 3.466 0.88 2777 30 T069A01-D-14 CoreA-Y 325.223 6 54 20 0.35 0.1441 1.633 6.3326 2.753 0.3188 2.216 0.81 2278 28 T069A01-D-15 CoreA-rim 325.223 3 18 6 0.77 0.1906 1.893 9.2464 4.653 0.3520 4.251 0.91 2744 31 T069A01-D-16 CoreA-rim 325.223 3 14 4 1.11 0.2081 1.952 10.3535 4.362 0.3610 3.901 0.89 2891 32 T069A01-D-17 CoreA-rim 325.223 4 29 10 0.67 0.1692 1.805 7.6299 3.547 0.3272 3.053 0.86 2551 30 T069A01-E2-01 CoreB-Y 37.556 6 45 11 0.91 0.1707 1.834 7.4435 3.074 0.3164 2.468 0.80 2562 31 T069A01-E2-02 CoreD-Y 85.445 6 37 11 -2.50 0.1869 2.010 8.7063 3.469 0.3380 2.827 0.82 2713 33 T069A01-E2-03 CoreD 85.445 3 18 3 -3.33 0.1966 1.966 10.0523 4.972 0.3710 4.566 0.92 2794 32 T069A01-E2-04 CoreA-Y 153.321 8 103 30 0.25 0.1365 1.592 5.9112 2.904 0.3142 2.428 0.84 2183 28 T069A01-E2-05 CoreA-SG1-Y 33.055 10 45 11 0.22 0.2242 1.896 11.3337 3.293 0.3668 2.692 0.82 3008 30 T069A01-E2-06 CoreA 153.321 6 8 3 -3.03 0.4281 1.832 38.2909 13.916 0.6490 13.795 0.99 4011 27 T069A01-E2-07 CoreA 153.321 2 8 -3 2.50 0.3140 5.925 17.7427 37.092 0.4100 36.616 0.99 3534 91 T069A01-E2-08 CoreA 153.321 2 4 0 - - - - - - - - - - T069A01-E2-09 CoreA 153.321 28 8 0 -3.23 0.7870 3.172 187.6406 15.433 1.7300 15.104 0.98 4933 45 T069A01-E2-10 CoreA 153.321 2 10 2 16.67 0.2528 2.041 15.4691 10.447 0.4440 10.246 0.98 3200 32 T069A01-E2-11 CoreC 96.980 3 31 5 0.59 0.1654 1.753 7.8575 3.594 0.3447 3.138 0.87 2512 29 T069A01-E2-12 CoreC 96.980 4 21 3 1.67 0.2064 2.228 10.0413 4.558 0.3530 3.976 0.87 2871 36 T069A01-E3-01 CoreA-SG2 165.131 12 12 8 0.97 0.4786 1.748 34.2331 5.866 0.5190 5.600 0.95 4180 26 T069A01-E3-02 CoreA-SG2 165.131 5 44 16 0.37 0.1561 1.716 6.8821 3.315 0.3199 2.836 0.86 2415 29 T069A01-E3-03 CoreA-SG2-Y 165.131 6 71 19 0.25 0.1426 1.638 6.4256 2.901 0.3270 2.394 0.83 2258 28 176  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T069A01-E3-04 CoreA 182.987 3 14 -1 5.00 0.2139 1.931 10.8779 6.194 0.3690 5.885 0.95 2936 31 T069A01-E3-05 CoreA 182.987 6 14 2 1.25 0.3191 1.896 19.3502 7.020 0.4400 6.759 0.96 3564 29 T069A01-E3-06 CoreA-SG1 50.404 5 25 7 1.43 0.2133 1.769 10.0360 3.645 0.3414 3.187 0.87 2929 29 T069A01-E3-07 CoreB-Y 167.200 10 72 22 0.25 0.1732 1.793 7.3210 3.752 0.3067 3.296 0.88 2587 30 T069A01-E3-08 CoreB 167.200 5 26 5 1.11 0.2005 1.983 9.6161 3.800 0.3480 3.242 0.85 2828 32 T069A01-E3-09 CoreB 167.200 2 7 1 4.00 0.2749 2.115 23.4894 27.542 0.6200 27.460 1.00 3330 33 T069A01-E3-10 CoreB 167.200 5 25 4 3.33 0.2142 3.385 10.3027 5.053 0.3490 3.751 0.74 2937 55 T069A01-E3-11 CoreB 167.200 3 13 0 -2.00 0.2529 2.267 13.4189 5.863 0.3850 5.407 0.92 3196 36 T069A01-E3-12 CoreB-SG1 49.024 6 23 4 - 0.2408 3.721 12.1795 5.176 0.3670 3.597 0.70 3129 59 T069A01-F-01 CoreA 197.737 14 7 7 1.41 0.6310 1.847 73.7448 10.073 0.8480 9.902 0.98 4581 27 T069A01-F-02 CoreA 197.737 14 8 6 2.27 0.6144 2.201 69.4338 20.902 0.8200 20.786 0.99 4544 32 T069A01-F-03 CoreA 197.737 6 6 6 1.56 0.4932 2.239 48.9397 15.514 0.7200 15.351 0.99 4217 33 T069A01-F-04 CoreA 197.737 3 7 6 -16.67 0.3184 2.241 19.8343 10.956 0.4520 10.725 0.98 3560 34 T069A01-F-05 CoreA 197.737 4 9 9 1.92 0.2937 2.269 17.0814 10.318 0.4220 10.065 0.98 3436 35 T069A01-F-06 CoreA 197.737 3 4 4 - - - - - - - - - - T069A01-F-07 CoreA-SG1 36.471 21 10 7 0.63 0.6631 1.768 72.8355 8.238 0.7970 8.046 0.98 4654 25 T069A01-F-08 CoreA 197.737 5 10 3 - 0.3703 2.228 22.7101 8.311 0.4450 8.007 0.96 3792 34 T069A01-F-09 CoreB 43.119 4 11 4 2.50 0.3118 1.913 17.0597 6.750 0.3970 6.473 0.96 3531 29 T069A01-H1-01 CoreC-Y 46.295 4 28 8 0.42 0.1727 1.763 8.1186 3.712 0.3411 3.267 0.88 2585 29 T069A01-H1-02 CoreD-Y 43.121 7 69 30 0.42 0.1394 1.622 5.9646 2.715 0.3104 2.178 0.80 2219 28 T069A01-H1-03 CoreA-SG1-Y 23.675 19 47 25 0.49 0.3026 1.712 15.8891 2.925 0.3810 2.372 0.81 3482 27 T069A01-H1-04 CoreA-Y 144.758 4 34 14 0.43 0.1614 1.703 7.3138 3.070 0.3288 2.555 0.83 2471 29 T069A01-H1-05 CoreA-Y 144.758 14 78 40 0.49 0.1781 1.602 8.1712 2.659 0.3329 2.123 0.80 2635 27 T069A01-H1-06 CoreA 144.758 6 16 7 0.65 0.2740 1.857 14.8028 4.510 0.3920 4.110 0.91 3327 29 T069A01-H1-07 CoreA-Y 144.758 3 20 5 3.33 0.1846 1.819 8.8027 3.958 0.3460 3.515 0.89 2693 30 T069A01-H1-08 CoreA-Y 144.758 3 28 8 1.00 0.1650 1.786 7.5338 3.490 0.3313 2.998 0.86 2507 30 T069A01-H1-09 CoreB 104.602 3 19 8 0.63 0.1861 1.877 9.1563 4.132 0.3570 3.681 0.89 2705 31 T069A01-H1-10 CoreB-Y 104.602 5 33 13 0.36 0.1660 1.665 7.7647 2.910 0.3394 2.387 0.82 2518 28 T069A01-H1-11 CoreB-Y 104.602 7 46 31 0.63 0.1550 1.688 7.0067 3.025 0.3280 2.510 0.83 2400 29 T069A01-H2-01 CoreA-Misori-Y 77.960 27 45 23 0.43 0.3688 1.624 22.2573 2.957 0.4379 2.471 0.84 3788 25 T069A01-H2-02 CoreA-Misori 77.960 10 25 15 0.60 0.2915 1.839 16.0294 3.638 0.3990 3.139 0.86 3426 29 T069A01-H2-03 CoreB-Y 126.250 5 51 15 0.34 0.1459 1.679 6.5370 3.073 0.3251 2.574 0.84 2298 29 T069A01-H2-04 CoreB-Y 126.250 5 60 15 0.19 0.1426 1.633 6.2876 2.749 0.3200 2.211 0.80 2259 28 T069A01-H2-05 CoreB-rim 126.250 3 7 1 2.56 0.3267 2.232 24.8539 14.206 0.5520 14.030 0.99 3601 34 T069A01-H2-06 CoreB-rim 126.250 3 10 3 -2.17 0.2513 1.869 12.9876 5.847 0.3750 5.540 0.95 3190 30 T069A01-H2-07 CoreC 65.475 4 15 4 1.20 0.2316 2.039 12.5440 5.233 0.3930 4.820 0.92 3061 33 T069A01-H2-08 CoreC 65.475 3 11 3 3.33 0.2499 2.283 13.9485 7.205 0.4050 6.833 0.95 3186 36 T072A01-A-01 CoreB-Y 232.395 47 590 264 0.45 0.1160 1.519 5.1005 3.061 0.3191 2.657 0.87 1896 27 T072A01-A-02 CoreB-Y 232.395 35 392 187 0.48 0.1180 1.526 5.3437 2.893 0.3287 2.458 0.85 1926 27 T072A01-A-03 CoreB-Y 232.395 181 518 214 0.41 0.2219 1.705 11.5049 2.987 0.3762 2.453 0.82 2994 27 T072A01-A-04 CoreB-Y 232.395 118 508 221 0.43 0.1804 3.103 8.7366 4.084 0.3514 2.655 0.65 2637 51 T072A01-A-05 CoreB-Y 232.395 45 654 249 0.38 0.1164 1.522 5.2455 2.796 0.3271 2.346 0.84 1901 27 T072A01-A-06 CoreB-Y 232.395 143 482 213 0.44 0.2036 2.103 10.2783 3.490 0.3663 2.786 0.80 2849 34 T072A01-A-07 CoreA-rim 343.938 571 451 255 0.56 0.4356 2.052 33.1985 3.342 0.5530 2.638 0.79 4036 31 T072A01-A-08 CoreA-rim 343.938 201 267 222 0.83 0.3209 1.690 19.5478 3.362 0.4420 2.906 0.86 3573 26 T072A01-A-09 CoreA-Y 343.938 67 566 274 0.48 0.1301 1.552 5.9322 2.879 0.3308 2.424 0.84 2099 27 177  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T072A01-A-10 CoreA-Y 343.938 83 619 287 0.46 0.1388 1.808 6.4503 3.194 0.3372 2.634 0.82 2209 31 T072A01-A-11 CoreA-Y 343.938 43 596 231 0.38 0.1182 1.520 5.3359 2.814 0.3275 2.368 0.84 1930 27 T072A01-A-12 CoreA-Y 343.938 44 563 228 0.40 0.1201 1.533 5.3925 3.057 0.3259 2.645 0.87 1958 27 T072A01-A-13 CoreA-rim 343.938 37 144 76 0.53 0.1849 1.881 8.7380 3.156 0.3429 2.533 0.80 2696 31 T072A01-A-14 CoreA-rim 343.938 129 160 100 0.62 0.3416 2.075 21.7974 3.643 0.4630 2.995 0.82 3668 32 T072A01-A-15 CoreA 343.938 43 79 65 0.81 0.2724 1.611 13.8529 3.491 0.3690 3.097 0.89 3319 25 T072A01-A-16 CoreA-rim 343.938 19 131 78 0.59 0.1353 1.577 6.1945 3.136 0.3322 2.711 0.86 2168 27 T072A01-A-17 CoreA-rim 343.938 215 217 128 0.57 0.3950 2.361 26.2936 4.659 0.4830 4.017 0.86 3887 36 T072A01-A-18 CoreA-Y 343.938 165 466 224 0.47 0.2228 3.401 11.2537 4.324 0.3665 2.671 0.62 2990 55 T072A01-A-19 CoreC 184.329 616 173 86 0.49 0.6260 1.585 92.2270 3.629 1.0690 3.265 0.90 4569 23 T072A01-A-20 CoreC 184.329 58 152 54 0.34 0.2366 1.835 12.4235 2.999 0.3810 2.372 0.79 3098 29 T072A01-A-21 CoreC-Y 184.329 104 368 217 0.58 0.1908 4.158 9.3455 4.923 0.3554 2.635 0.54 2734 68 T072A01-A-22 CoreC 184.329 177 264 190 0.71 0.3027 3.213 18.2723 4.481 0.4380 3.123 0.70 3477 50 T072A01-A-23 CoreC 184.329 77 350 210 0.60 0.1666 2.039 7.7882 3.322 0.3392 2.623 0.79 2526 34 T072A01-A-24 CoreC 184.329 12 115 37 0.31 0.1359 1.586 6.1751 3.131 0.3297 2.700 0.86 2177 28 T072A01-A-25 CoreD 154.648 798 360 121 0.33 0.5624 1.717 57.1240 3.341 0.7370 2.866 0.86 4412 25 T072A01-A-26 CoreD-Y 154.648 54 531 296 0.56 0.1187 1.536 5.3748 2.919 0.3285 2.483 0.85 1937 27 T072A01-B-27 CoreA-rim-Y 361.336 44 428 219 0.51 0.1239 1.670 5.6278 3.049 0.3295 2.551 0.84 2012 30 T072A01-B-28 CoreA-rim-Y 361.336 285 434 223 0.51 0.3040 3.917 18.3507 5.138 0.4380 3.326 0.65 3517 61 T072A01-B-29 CoreA-Y 361.336 41 427 225 0.53 0.1173 1.529 5.2828 3.008 0.3267 2.590 0.86 1916 27 T072A01-B-30 CoreA-Y 361.336 87 369 213 0.58 0.1773 2.098 8.5254 3.587 0.3489 2.910 0.81 2622 35 T072A01-B-31 CoreA-Y 361.336 38 456 204 0.45 0.1184 1.529 5.2829 3.088 0.3237 2.683 0.87 1932 27 T072A01-B-32 CoreA-Y 361.336 250 427 212 0.50 0.2884 1.887 16.8327 3.137 0.4235 2.506 0.80 3406 29 T072A01-B-33 CoreA-rim 361.336 23 128 52 0.40 0.1605 2.254 7.5141 3.475 0.3397 2.645 0.76 2460 38 T072A01-B-34 CoreA-Y 361.336 39 430 209 0.49 0.1177 1.528 5.2327 2.796 0.3225 2.342 0.84 1922 27 T072A01-B-35 CoreA 361.336 35 333 185 0.56 0.1164 1.535 5.1031 2.921 0.3180 2.485 0.85 1902 28 T072A01-B-36 CoreA-NG1 110.481 36 100 116 1.18 0.1865 1.844 8.7442 3.364 0.3402 2.814 0.84 2712 30 T072A01-B-37 CoreA-NG1-SG1 26.924 204 160 84 0.53 0.4403 1.621 33.4961 3.099 0.5520 2.641 0.85 4053 24 T072A01-B-38 CoreA-NG1 110.481 17 116 59 0.51 0.1431 3.484 6.4963 4.521 0.3294 2.880 0.64 2239 60 T072A01-B-39 CoreA-NG1 110.481 12 110 51 0.46 0.1292 1.614 5.7367 3.117 0.3221 2.666 0.86 2086 28 T072A01-B-40 CoreA-SG1-Y 218.227 983 418 175 0.43 0.6012 1.766 66.2849 4.951 0.8000 4.625 0.93 4510 26 T072A01-B-41 CoreA-SG1-rim 218.227 21 104 73 0.71 0.1515 1.631 7.0157 3.568 0.3361 3.174 0.89 2363 28 T072A01-B-42 CoreA-SG1 218.227 47 219 181 0.84 0.1491 1.735 6.7502 3.090 0.3285 2.556 0.83 2338 30 T072A01-B-43 CoreA-SG1 218.227 36 245 204 0.84 0.1184 1.543 5.1693 3.153 0.3169 2.749 0.87 1931 28 T072A01-B-44 CoreA-SG1 218.227 34 260 184 0.71 0.1184 1.563 5.2136 3.015 0.3194 2.579 0.86 1933 28 T072A01-B-45 CoreA-SG2 42.932 21 122 95 0.79 0.1321 1.583 5.9710 3.294 0.3281 2.889 0.88 2125 28 T072A01-C-01 CoreA-SG1-rim 189.789 24 86 44 0.50 0.2101 1.682 10.2792 3.832 0.3550 3.443 0.90 2905 27 T072A01-C-02 CoreA-SG1 189.789 18 73 88 1.20 0.1369 1.653 6.3168 3.162 0.3349 2.695 0.85 2187 29 T072A01-C-03 CoreA-SG1 189.789 15 64 77 1.15 0.1341 1.646 6.1557 3.739 0.3330 3.357 0.90 2152 29 T072A01-C-04 CoreA-SG1 189.789 19 96 98 1.00 0.1320 1.581 5.8783 3.095 0.3231 2.661 0.86 2126 28 T072A01-C-05 CoreA-SG1 189.789 22 80 107 1.33 0.1403 1.620 6.4481 3.349 0.3336 2.931 0.88 2230 28 T072A01-C-06 CoreA 310.872 20 73 107 1.43 0.1319 1.645 5.9843 3.016 0.3293 2.528 0.84 2122 29 T072A01-C-07 CoreA 310.872 24 103 127 1.22 0.1261 1.586 5.6129 3.165 0.3230 2.738 0.87 2044 28 T072A01-C-08 CoreA 310.872 24 92 131 1.42 0.1293 1.597 5.7407 2.937 0.3221 2.465 0.84 2088 28 T072A01-C-09 CoreA 310.872 13 67 62 0.93 0.1343 1.631 6.1001 3.378 0.3295 2.958 0.88 2155 28 T072A01-C-10 CoreA 310.872 15 60 73 1.22 0.1396 1.641 6.3216 3.143 0.3286 2.681 0.85 2221 28 178  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T072A01-C-11 CoreA-rim 310.872 15 134 63 0.46 0.1330 1.571 5.7808 3.268 0.3154 2.865 0.88 2138 27 T072A01-C-12 CoreC 181.057 12 62 23 0.29 0.1739 1.606 8.3068 3.024 0.3466 2.562 0.85 2596 27 T072A01-C-13 CoreC 181.057 12 71 44 0.61 0.1484 1.613 6.9113 3.321 0.3379 2.903 0.87 2327 28 T072A01-C-14 CoreC 181.057 6 52 23 0.30 0.1398 1.641 6.3051 3.282 0.3272 2.842 0.87 2225 28 T072A01-C-15 CoreC 181.057 15 49 64 1.31 0.1563 1.715 7.3325 3.337 0.3404 2.863 0.86 2416 29 T072A01-C-16 CoreC 181.057 14 57 23 0.35 0.1938 1.712 9.3375 3.373 0.3496 2.906 0.86 2773 28 T072A01-C-17 CoreC 181.057 19 55 97 1.77 0.1405 1.648 6.5351 3.065 0.3374 2.584 0.84 2235 29 T072A01-C-18 CoreA 310.872 76 100 138 1.37 0.3154 2.006 18.6477 3.584 0.4290 2.971 0.83 3543 31 T072A01-C-19 CoreD 99.460 21 89 116 1.30 0.1301 1.610 5.8340 3.368 0.3255 2.958 0.88 2098 28 T072A01-C-20 CoreD 99.460 23 110 123 1.12 0.1254 1.584 5.6216 3.242 0.3252 2.829 0.87 2034 28 T072A01-C-21 CoreD 99.460 23 91 119 1.30 0.1352 1.706 6.1079 3.312 0.3278 2.839 0.86 2164 30 T072A01-C-22 CoreD-NG1 168.378 23 115 119 1.05 0.1256 1.574 5.6206 2.719 0.3246 2.217 0.82 2037 28 T072A01-C-23 CoreD-NG1-SG1 145.837 24 93 104 1.11 0.1509 1.605 6.9778 3.286 0.3355 2.868 0.87 2355 27 T072A01-C-24 CoreD-NG1-SG1 145.837 21 86 110 1.28 0.1291 1.606 5.7634 3.237 0.3239 2.811 0.87 2086 28 T072A01-C-25 CoreD-NG1-SG1 145.837 14 71 67 0.92 0.1334 1.615 6.1079 3.155 0.3322 2.711 0.86 2142 28 T072A01-C-26 CoreD-NG1-SG1 145.837 11 64 50 0.78 0.1549 1.660 6.3788 3.167 0.2988 2.698 0.85 2402 28 T072A01-C-27 CoreB 144.704 24 81 126 1.55 0.1327 1.617 5.9620 3.299 0.3260 2.876 0.87 2133 28 T072A01-C-28 CoreB 144.704 18 96 91 0.94 0.1291 1.614 5.7371 3.115 0.3225 2.664 0.86 2084 28 T072A01-C-29 CoreB 144.704 21 64 113 1.74 0.1381 1.641 6.2081 3.176 0.3263 2.719 0.86 2202 28 T072A01-C-30 CoreB 144.704 19 61 100 1.64 0.1372 1.617 6.2773 3.565 0.3321 3.177 0.89 2191 28 T072A01-C-31 CoreB 144.704 7 47 19 0.36 0.1590 1.652 7.2817 3.110 0.3323 2.635 0.85 2444 28 T072A01-D-01 CoreA 413.226 9 123 39 0.29 0.1307 1.641 5.4723 2.806 0.3038 2.276 0.81 2107 29 T072A01-D-02 CoreA 413.226 7 45 15 0.27 0.1840 1.791 8.2111 3.246 0.3238 2.708 0.83 2693 30 T072A01-D-03 CoreA 413.226 74 170 63 0.37 0.2533 2.236 13.2306 3.137 0.3790 2.200 0.70 3198 35 T072A01-D-04 CoreA 413.226 40 262 265 1.01 0.1192 1.535 5.1205 2.679 0.3118 2.196 0.82 1945 27 T072A01-D-05 CoreA 413.226 43 218 227 1.03 0.1372 1.652 6.0986 2.615 0.3226 2.027 0.78 2190 29 T072A01-D-06 CoreA 413.226 143 215 228 1.05 0.2808 2.169 16.1144 3.425 0.4164 2.651 0.77 3369 34 T072A01-D-07 CoreA 413.226 30 231 101 0.44 0.1425 1.602 6.1819 2.747 0.3148 2.231 0.81 2257 28 T072A01-D-08 CoreA-Y 413.226 39 505 254 0.50 0.1162 1.521 5.1495 2.624 0.3215 2.138 0.81 1899 27 T072A01-D-09 CoreA-Y 413.226 46 505 304 0.60 0.1168 1.523 5.0997 2.567 0.3167 2.066 0.80 1908 27 T072A01-D-10 CoreA 413.226 39 293 241 0.82 0.1180 1.529 5.2448 2.574 0.3224 2.070 0.80 1927 27 T072A01-D-11 CoreA 413.226 39 293 250 0.85 0.1184 1.554 5.3709 3.139 0.3292 2.728 0.87 1933 28 T072A01-D-12 CoreB 315.671 31 152 196 1.30 0.1252 1.580 5.5569 2.555 0.3220 2.008 0.79 2031 28 T072A01-D-13 CoreB 315.671 130 217 319 1.47 0.2505 1.970 13.3502 2.882 0.3867 2.103 0.73 3186 31 T072A01-D-14 CoreB 315.671 26 152 168 1.09 0.1232 1.561 5.3399 2.648 0.3146 2.140 0.81 2003 28 T072A01-D-15 CoreB-Y 315.671 188 405 497 1.22 0.2202 3.433 11.0040 4.165 0.3626 2.359 0.57 2956 55 T072A01-D-16 CoreB 315.671 39 219 257 1.17 0.1224 1.542 5.2484 2.474 0.3111 1.934 0.78 1992 27 T072A01-D-17 CoreB 315.671 40 226 269 1.18 0.1213 1.538 5.2158 2.485 0.3120 1.953 0.79 1975 27 T072A01-D-18 CoreB 315.671 44 233 277 1.18 0.1251 1.554 5.4266 2.490 0.3147 1.946 0.78 2032 28 T072A01-D-19 CoreB 315.671 60 187 122 0.64 0.1970 2.287 9.4075 3.506 0.3465 2.657 0.76 2798 37 T072A01-D-20 CoreB 315.671 70 269 255 0.94 0.1638 1.973 7.3458 3.089 0.3254 2.377 0.77 2493 33 T072A01-D-21 CoreA 413.226 64 324 253 0.77 0.1498 1.922 6.9615 3.090 0.3372 2.419 0.78 2342 33 T072A01-D-22 CoreA-Y 413.226 55 414 352 0.84 0.1197 1.537 5.2250 2.665 0.3167 2.178 0.82 1952 27 T072A01-D-23 CoreA 413.226 18 131 49 0.36 0.1512 1.697 6.6619 2.788 0.3197 2.213 0.79 2362 29 T072A01-D-24 CoreA-Y 413.226 51 429 317 0.73 0.1182 1.649 5.1555 2.751 0.3164 2.202 0.80 1928 30 T072A01-D-25 CoreA-Y 413.226 66 479 306 0.63 0.1442 1.604 6.4798 2.501 0.3261 1.918 0.77 2278 28 179  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T072A01-D-26 CoreA 413.226 17 161 62 0.38 0.1359 1.640 5.8208 2.635 0.3109 2.062 0.78 2177 29 T072A01-D-27 CoreA 413.226 10 131 38 0.28 0.1297 1.594 5.6181 2.706 0.3142 2.187 0.81 2094 28 T072A01-D-28 CoreA 413.226 142 130 35 0.27 0.3946 1.717 26.4301 3.213 0.4860 2.715 0.85 3888 26 T072A01-E-01 CoreA 297.354 13 182 72 0.39 0.1203 1.559 5.1305 2.520 0.3095 1.980 0.79 1960 28 T072A01-E-02 CoreA 297.354 20 342 119 0.35 0.1149 1.527 4.8433 2.616 0.3058 2.124 0.81 1878 28 T072A01-E-03 CoreA 297.354 85 203 259 1.27 0.2049 2.423 10.0728 3.152 0.3567 2.015 0.64 2855 39 T072A01-E-04 CoreA 297.354 34 209 185 0.89 0.1314 1.544 5.7646 2.721 0.3183 2.241 0.82 2117 27 T072A01-E-05 CoreA 297.354 37 177 196 1.11 0.1374 1.582 6.0539 2.578 0.3197 2.036 0.79 2194 27 T072A01-E-06 CoreA 297.354 34 223 214 0.96 0.1218 1.543 5.2507 2.588 0.3129 2.078 0.80 1982 27 T072A01-E-07 CoreA 297.354 41 194 202 1.05 0.1455 2.550 6.5772 3.248 0.3280 2.012 0.62 2281 44 T072A01-E-08 CoreA-SG1 210.484 40 198 251 1.28 0.1286 1.601 5.6702 2.676 0.3200 2.144 0.80 2078 28 T072A01-E-09 CoreA-SG1 210.484 30 201 205 1.03 0.1196 1.559 5.0727 2.594 0.3077 2.072 0.80 1952 28 T072A01-E-10 CoreA-SG1 210.484 29 191 202 1.06 0.1201 1.550 5.1021 2.623 0.3083 2.116 0.81 1957 28 T072A01-E-11 CoreA 297.354 37 203 257 1.28 0.1196 1.546 5.1562 2.663 0.3129 2.168 0.81 1950 28 T072A01-E-12 CoreA-SG1 210.484 39 182 214 1.18 0.1401 1.626 6.0006 2.592 0.3108 2.019 0.78 2228 28 T072A01-E-13 CoreA-SG1 210.484 42 181 229 1.27 0.1391 1.614 6.2482 2.633 0.3260 2.081 0.79 2216 28 T072A01-E-14 CoreA-SG1 210.484 32 187 217 1.16 0.1207 1.565 5.1617 2.721 0.3103 2.225 0.82 1966 28 T072A01-E-15 CoreA-SG1 210.484 37 188 222 1.19 0.1293 1.566 5.6297 2.594 0.3159 2.069 0.80 2090 28 T072A01-E-16 CoreA-SG1 210.484 40 191 231 1.21 0.1318 1.572 5.7381 2.564 0.3159 2.026 0.79 2122 28 T072A01-E-17 CoreB 121.335 33 208 211 1.02 0.1221 1.551 5.2313 2.496 0.3109 1.955 0.78 1987 28 T072A01-E-18 CoreB 121.335 34 201 205 1.03 0.1253 1.561 5.3494 2.589 0.3097 2.066 0.80 2034 28 T072A01-E-19 CoreB 121.335 33 200 214 1.07 0.1207 1.550 5.1409 2.515 0.3091 1.981 0.79 1967 28 T072A01-E-20 CoreB 121.335 26 231 167 0.73 0.1172 1.548 4.9413 2.488 0.3060 1.947 0.78 1913 28 T072A01-F-01 CoreA-SG1 92.055 46 222 66 0.30 0.1783 2.936 8.4605 3.889 0.3443 2.550 0.66 2620 49 T072A01-F-02 CoreA-SG1 92.055 11 74 42 0.55 0.1477 1.739 6.7418 3.183 0.3312 2.666 0.84 2321 30 T072A01-F-03 CoreA-SG1 92.055 22 112 44 0.38 0.1721 1.630 7.9765 2.736 0.3363 2.197 0.80 2578 27 T072A01-F-04 CoreA 273.918 10 80 46 0.56 0.1288 1.626 5.7620 2.825 0.3246 2.309 0.82 2081 29 T072A01-F-05 CoreA-rim-Y 273.918 43 111 44 0.39 0.2405 1.978 12.8637 3.362 0.3881 2.719 0.81 3123 31 T072A01-F-06 CoreA 273.918 11 93 47 0.49 0.1322 1.663 5.8931 2.928 0.3234 2.410 0.82 2127 29 T072A01-F-07 CoreA 273.918 14 111 57 0.50 0.1324 1.612 5.9467 3.076 0.3259 2.620 0.85 2129 28 T072A01-F-08 CoreA 273.918 17 122 62 0.50 0.1411 1.584 6.2889 2.785 0.3234 2.291 0.82 2240 27 T072A01-F-09 CoreA-Y 273.918 74 303 90 0.29 0.2000 1.616 9.4488 3.451 0.3428 3.049 0.88 2826 26 T072A01-F-10 CoreA-rim-Y 273.918 12 119 37 0.28 0.1363 1.593 6.0406 2.702 0.3215 2.183 0.81 2180 28 T072A01-F-11 CoreA-Y 273.918 16 229 81 0.35 0.1202 1.578 5.2638 3.009 0.3177 2.562 0.85 1960 28 T072A01-F-12 CoreA-rim-Y 273.918 14 72 20 0.21 0.1766 1.880 8.2970 3.201 0.3409 2.591 0.81 2620 31 T072A01-F-13 CoreA-rim-Y 273.918 13 54 11 0.13 0.1943 1.943 9.6454 3.148 0.3602 2.477 0.79 2779 32 T072A01-F-14 CoreA-rim-Y 273.918 184 185 56 0.29 0.3898 1.941 26.6136 3.151 0.4954 2.483 0.79 3866 29 T072A01-F-15 CoreA 273.918 216 295 95 0.31 0.3354 1.574 20.5882 2.953 0.4454 2.499 0.85 3641 24 T072A01-F-16 CoreA 273.918 21 92 116 1.23 0.1336 1.602 5.8763 2.849 0.3191 2.357 0.83 2145 28 T072A01-F-17 CoreA 273.918 25 104 115 1.09 0.1447 1.572 6.5851 3.056 0.3303 2.621 0.86 2284 27 T072A01-F-18 CoreA 273.918 11 76 50 0.64 0.1345 1.661 6.0220 3.044 0.3248 2.551 0.84 2158 29 T072A01-F-19 CoreA-rim-Y 273.918 12 65 16 0.17 0.1768 1.696 8.2139 3.092 0.3371 2.586 0.84 2621 28 T077A01-A1-01 CoreA-Misori 8242.21 5 31 18 0.53 0.1617 1.797 7.2717 3.457 0.3263 2.953 0.85 2473 30 T077A01-A1-02 CoreA-Misori 8242.21 29 120 164 1.36 0.1303 1.571 5.6881 2.841 0.3168 2.367 0.83 2101 28 T077A01-A1-03 CoreA-Misori 8242.21 30 103 164 1.59 0.1310 1.558 5.9999 2.876 0.3323 2.418 0.84 2112 27 T077A01-A1-04 CoreA 8242.21 2 86 2 0.25 0.1224 1.600 5.0699 3.011 0.3005 2.551 0.85 1993 28 180  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T077A01-A1-05 CoreA 8242.21 28 111 155 1.39 0.1302 1.567 5.7986 2.757 0.3232 2.268 0.82 2100 28 T077A01-A1-06 CoreA-Misori 8242.21 885 306 286 0.94 0.8162 1.578 95.8390 5.497 0.8520 5.265 0.96 5000 22 T077A01-A1-07 CoreA-Misori 8242.21 14 144 54 0.37 0.1371 1.737 6.1068 3.072 0.3232 2.534 0.82 2193 30 T077A01-A1-08 CoreA-Misori 8242.21 62 140 369 2.64 0.1277 1.572 5.6824 2.859 0.3229 2.388 0.84 2066 28 T077A01-A1-09 CoreA-Misori 8242.21 55 151 325 2.16 0.1263 1.545 5.6405 2.781 0.3241 2.312 0.83 2047 27 T077A01-A1-10 CoreA-rim 8242.21 38 89 26 0.27 0.3163 1.616 16.2815 3.130 0.3735 2.681 0.86 3551 25 T077A01-A1-11 CoreA-Misori 8242.21 48 172 241 1.41 0.1470 2.533 6.5924 3.379 0.3254 2.237 0.66 2300 43 T077A01-A1-12 CoreA-Misori 8242.21 38 68 84 1.25 0.2981 1.770 15.8500 3.327 0.3858 2.817 0.85 3465 27 T077A01-A1-13 CoreA-Misori 8242.21 65 144 378 2.63 0.1277 1.563 5.6868 2.914 0.3231 2.460 0.84 2068 28 T077A01-A1-14 CoreA 8242.21 8 122 35 0.26 0.1240 1.581 5.3558 3.098 0.3133 2.665 0.86 2017 28 T077A01-A1-15 CoreA-Misori 8242.21 100 157 588 3.76 0.1275 1.629 5.7758 3.405 0.3287 2.989 0.88 2064 29 T077A01-A1-16 CoreA-Misori 8242.21 53 231 304 1.33 0.1234 1.548 5.4307 2.664 0.3193 2.168 0.81 2006 27 T077A01-A1-17 CoreA 8242.21 18 92 92 1.00 0.1325 1.614 5.9216 3.084 0.3244 2.628 0.85 2131 28 T077A01-A1-18 CoreA-Misori 8242.21 50 178 290 1.63 0.1253 1.572 5.5959 2.701 0.3241 2.196 0.81 2033 28 T077A01-A1-19 CoreA-Misori 8242.21 54 179 309 1.72 0.1249 1.553 5.6627 2.826 0.3291 2.361 0.84 2026 27 T077A01-A1-20 CoreA-Misori-rim 8242.21 19 40 26 0.56 0.3001 2.420 15.5511 4.479 0.3760 3.769 0.84 3470 37 T077A01-B-01 CoreA-NG11 151.346 154 134 402 2.98 0.3810 3.489 22.1902 4.264 0.4226 2.453 0.58 3810 53 T077A01-B-02 CoreA-NG11 151.346 26 61 20 0.26 0.2807 2.045 14.5264 3.453 0.3755 2.782 0.81 3367 32 T077A01-B-03 CoreA-NG12 64.304 23 93 107 1.16 0.1512 1.639 6.9057 2.905 0.3314 2.398 0.83 2360 28 T077A01-B-04 CoreA-NG10 251.453 36 105 44 0.42 0.2475 1.744 11.7918 3.026 0.3457 2.474 0.82 3167 28 T077A01-B-05 CoreA-NG13 96.826 70 106 386 3.64 0.1585 1.960 7.3615 3.860 0.3370 3.325 0.86 2438 33 T077A01-B-06 CoreA-NG2 297.584 10 112 27 0.22 0.1430 1.719 6.2100 3.229 0.3151 2.733 0.85 2262 30 T077A01-B-07 CoreA-NG2 297.584 10 59 47 0.79 0.1397 1.613 6.3242 3.044 0.3285 2.581 0.85 2222 28 T077A01-B-08 CoreA-NG10 251.453 300 123 403 3.28 0.6156 1.628 51.5832 3.697 0.6080 3.319 0.90 4545 24 T077A01-B-09 CoreA-NG10 251.453 18 92 91 0.99 0.1376 1.584 5.9997 3.412 0.3164 3.022 0.89 2197 28 T077A01-B-10 CoreA-NG14 65.770 7 94 33 0.34 0.1273 1.603 5.3186 2.827 0.3032 2.329 0.82 2060 28 T077A01-B-11 CoreA-NG2 297.584 6 121 27 0.21 0.1232 1.572 5.4244 2.678 0.3195 2.168 0.81 2002 28 T077A01-B-12 CoreA-NG2 297.584 8 142 33 0.21 0.1226 1.563 5.2611 2.899 0.3115 2.441 0.84 1993 28 T077A01-B-13 CoreA-NG2-SG1 65.097 5 62 17 0.22 0.1333 1.657 5.7202 2.910 0.3113 2.392 0.82 2142 29 T077A01-B-14 CoreA-NG3 156.181 12 72 59 0.81 0.1343 1.606 5.8617 2.881 0.3166 2.392 0.83 2156 28 T077A01-B-15 CoreA-NG5 144.831 45 105 241 2.26 0.1432 1.563 6.5876 3.058 0.3337 2.628 0.86 2266 27 T077A01-B-16 CoreA-NG2-SG1 112.802 6 117 23 0.19 0.1246 1.557 5.3508 2.874 0.3115 2.416 0.84 2023 28 T077A01-B-17 CoreA-NG4 75.534 25 96 102 1.07 0.1622 1.762 7.3590 2.965 0.3292 2.384 0.80 2479 30 T077A01-B-18 CoreA-NG3 156.181 50 95 122 1.28 0.2653 1.813 13.5539 3.342 0.3707 2.808 0.84 3276 28 T077A01-B-19 CoreA-NG6 76.746 47 123 214 1.74 0.1683 1.745 7.6751 2.893 0.3309 2.307 0.80 2540 29 T077A01-B-20 CoreA-NG7 75.095 21 96 112 1.17 0.1332 1.566 6.0699 2.989 0.3306 2.546 0.85 2140 27 T077A01-B-21 CoreA-NG1 1434.71 20 85 107 1.25 0.1356 1.577 5.9317 2.668 0.3175 2.152 0.81 2171 27 T077A01-B-22 CoreA-NG1 1434.71 16 71 82 1.15 0.1408 1.614 6.3928 3.020 0.3294 2.552 0.85 2237 28 T077A01-B-23 CoreA-NG8 65.714 32 102 180 1.76 0.1315 1.575 5.9806 2.834 0.3301 2.357 0.83 2119 28 T077A01-B-24 CoreA-NG9 73.611 22 82 81 0.97 0.1685 1.613 7.8933 2.860 0.3399 2.362 0.83 2541 27 T077A01-B-25 CoreA 6394.34 26 107 147 1.36 0.1299 1.599 5.8058 2.992 0.3242 2.529 0.85 2096 28 T077A01-B-26 CoreA 6394.34 110 108 656 5.99 0.1329 1.585 6.0722 2.854 0.3316 2.374 0.83 2136 28 T077A01-B-27 CoreA-Y 6394.34 94 134 557 4.10 0.1304 1.556 6.0016 2.664 0.3339 2.162 0.81 2104 27 T077A01-B-28 CoreA 6394.34 75 162 440 2.72 0.1260 1.544 5.7153 3.026 0.3291 2.603 0.86 2043 27 T077A01-B-29 CoreA 6394.34 45 188 265 1.39 0.1237 1.553 5.6246 3.006 0.3299 2.574 0.86 2012 28 T077A01-B-30 CoreA 6394.34 78 129 464 3.58 0.1298 1.559 5.8479 2.837 0.3268 2.371 0.84 2096 27 181  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T077A01-B-31 CoreA 6394.34 90 125 543 4.32 0.1295 1.559 5.8464 2.720 0.3275 2.229 0.82 2092 27 T077A01-B-32 CoreA 6394.34 91 111 548 4.87 0.1314 1.568 5.9883 2.888 0.3306 2.425 0.84 2118 27 T077A01-B-33 CoreA-SG1-rim 3471.85 9 77 34 0.42 0.1437 2.245 6.3453 3.304 0.3204 2.424 0.73 2270 39 T077A01-B-34 CoreA-SG1-rim 3471.85 109 88 395 4.44 0.3375 1.824 20.1404 4.192 0.4330 3.775 0.90 3651 28 T077A01-B-35 CoreA-SG1 3471.85 115 145 714 4.88 0.1303 1.560 5.8861 2.835 0.3278 2.366 0.83 2102 27 T077A01-B-36 CoreA-SG1-rim 3471.85 2 36 5 0.77 0.1451 1.713 6.7391 3.740 0.3370 3.325 0.89 2289 29 T077A01-B-37 CoreA-SG1-rim 3471.85 133 128 228 1.80 0.4004 1.635 24.9590 3.101 0.4523 2.635 0.85 3910 25 T077A01-B-38 CoreA 6394.34 22 42 54 1.22 0.2653 1.878 14.1865 3.468 0.3880 2.915 0.84 3279 30 T077A01-B-39 CoreA 6394.34 82 103 503 4.88 0.1330 1.578 6.0754 2.831 0.3315 2.351 0.83 2138 28 T077A01-B-40 CoreA-rim 6394.34 24 56 79 1.40 0.2214 1.611 10.9877 3.069 0.3601 2.612 0.85 2990 26 T077A01-C-01 CoreA-SG1 543.641 78 114 503 4.43 0.1319 1.565 5.8316 2.688 0.3209 2.185 0.81 2123 27 T077A01-C-02 CoreA-SG1 543.641 75 118 487 4.11 0.1296 1.555 5.7080 2.723 0.3197 2.236 0.82 2092 27 T077A01-C-03 CoreA-SG1 543.641 71 154 299 1.95 0.2133 1.769 10.1800 3.077 0.3463 2.517 0.82 2931 29 T077A01-C-04 CoreA-SG1 543.641 107 127 696 5.47 0.1307 1.554 5.8497 2.583 0.3247 2.063 0.80 2107 27 T077A01-C-05 CoreA-SG1 543.641 133 166 231 1.38 0.3605 1.630 21.2347 2.714 0.4274 2.170 0.80 3751 25 T077A01-C-06 CoreA 1399.43 30 123 187 1.50 0.1281 1.556 5.6936 2.539 0.3226 2.007 0.79 2071 27 T077A01-C-07 CoreA-Y 1399.43 615 146 755 5.14 0.7708 1.529 102.0871 3.959 0.9610 3.652 0.92 4897 22 T077A01-C-08 CoreA 1399.43 62 158 312 1.97 0.1699 2.143 7.7762 3.064 0.3321 2.190 0.71 2559 36 T077A01-C-09 CoreA 1399.43 47 156 305 1.93 0.1242 1.562 5.3944 2.629 0.3152 2.115 0.80 2017 28 T077A01-C-10 CoreA 1399.43 35 120 219 1.80 0.1279 1.576 5.7138 2.703 0.3242 2.196 0.81 2068 28 T077A01-C-11 CoreA-Y 1399.43 103 139 567 4.02 0.1706 1.710 7.9987 3.009 0.3402 2.476 0.82 2563 29 T077A01-C-12 CoreA 1399.43 164 128 468 3.64 0.3814 1.772 23.0702 3.083 0.4389 2.522 0.82 3836 27 T077A01-E-01 CoreA-rim 757.614 4 34 16 0.39 0.1480 1.705 6.5597 3.082 0.3216 2.567 0.83 2323 29 T077A01-E-02 CoreA-rim 757.614 2 29 4 0.56 0.1525 1.759 6.7844 3.255 0.3228 2.740 0.84 2375 30 T077A01-E-03 CoreA-rim 757.614 3 39 7 0.18 0.1430 1.719 6.4820 2.959 0.3289 2.409 0.81 2264 30 T077A01-E-04 CoreA-Y 757.614 104 127 733 5.81 0.1290 1.575 5.6829 2.754 0.3196 2.259 0.82 2085 28 T077A01-E-05 CoreA-Y 757.614 108 125 745 5.98 0.1292 1.557 5.7278 2.700 0.3217 2.205 0.82 2087 27 T077A01-E-06 CoreA-rim 757.614 676 265 312 1.19 0.6833 1.537 65.3547 3.368 0.6940 2.996 0.89 4699 22 T077A01-E-07 CoreA 757.614 31 108 161 1.51 0.1623 1.583 7.1953 2.678 0.3216 2.160 0.81 2481 27 T077A01-E-08 CoreA 757.614 242 152 311 2.11 0.5082 1.713 37.0507 4.252 0.5290 3.892 0.92 4265 25 T077A01-E-09 CoreA-Y 757.614 127 123 908 7.42 0.1293 1.580 5.6805 2.703 0.3188 2.193 0.81 2089 28 T077A01-E-10 CoreA-rim 757.614 9 125 51 0.41 0.1239 1.581 5.2026 2.633 0.3048 2.105 0.80 2013 28 T077A01-E-11 CoreA-NG1 465.000 109 142 762 5.41 0.1350 1.542 6.0384 2.682 0.3246 2.195 0.82 2163 27 T077A01-E-12 CoreA-NG1 465.000 5 3 3 2.70 0.6430 2.116 64.6904 74.018 0.7300 73.988 1.00 4607 31 T077A01-E-13 CoreA-NG1 465.000 29 106 187 1.78 0.1342 1.574 5.9374 2.675 0.3210 2.162 0.81 2153 27 T077A01-E-14 CoreA-NG1 465.000 47 180 322 1.80 0.1253 1.590 5.5346 2.741 0.3204 2.233 0.81 2034 28 T077A01-E-15 CoreA 757.614 30 128 199 1.54 0.1266 1.573 5.4934 2.730 0.3149 2.231 0.82 2051 28 T077A01-E-16 CoreA 757.614 37 125 191 1.52 0.1630 1.699 7.2829 2.707 0.3242 2.108 0.78 2485 29 T077A01-E-17 CoreA-NG2 198.973 14 58 85 1.45 0.1397 1.635 6.2263 3.015 0.3233 2.533 0.84 2224 28 T077A01-E-18 CoreA-NG2 198.973 51 228 350 1.52 0.1222 1.557 5.3336 2.504 0.3168 1.961 0.78 1988 28 T077A01-E-19 CoreB-SG1 83.538 44 137 200 1.45 0.1727 3.209 7.8163 3.777 0.3284 1.991 0.53 2561 54 T077A01-E-20 CoreB-SG1 83.538 73 102 95 0.92 0.3722 1.978 19.8002 6.217 0.3860 5.894 0.95 3799 30 T077A01-E-21 CoreB 1139.85 85 148 250 1.67 0.2485 1.763 11.6545 2.982 0.3403 2.406 0.81 3175 28 T077A01-E-22 CoreB 1139.85 76 129 213 1.66 0.2529 1.548 12.5834 2.608 0.3611 2.099 0.80 3203 24 T077A01-E-23 CoreB-rim 1139.85 9 51 21 0.26 0.1773 1.695 7.7655 2.968 0.3178 2.436 0.82 2628 28 T077A01-E-24 CoreB-rim 1139.85 3 35 10 0.83 0.1487 1.736 6.3141 3.417 0.3081 2.943 0.86 2333 30 182  Specimen Category Diame- ter (μm) Pb (ppm) U (ppm) Th (ppm) Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 6/38 - 7/35 rho 207/206 Age 2 SE abs. T077A01-E-25 CoreB-Y 1139.85 194 98 365 3.76 0.4983 1.648 33.6506 4.123 0.4900 3.780 0.92 4236 24 T077A01-E-26 CoreB-rim 1139.85 2 40 4 0.09 0.1391 1.663 5.8451 3.161 0.3049 2.688 0.85 2215 29 T077A01-E-27 CoreB 1139.85 23 98 142 1.45 0.1316 1.591 5.8287 2.896 0.3213 2.420 0.84 2119 28 T077A01-E-28 CoreB 1139.85 89 128 597 4.70 0.1313 1.577 5.8589 2.839 0.3237 2.361 0.83 2115 28 T077A01-E-29 CoreB 1139.85 109 130 576 4.44 0.2014 1.947 9.6759 3.068 0.3486 2.371 0.77 2834 32 T077A01-E-30 CoreB-Y 1139.85 567 194 722 3.73 0.7150 1.561 55.1823 4.176 0.5600 3.874 0.93 4771 22 T077A01-E-31 CoreB 1139.85 111 117 749 6.44 0.1312 1.568 5.7807 2.809 0.3196 2.330 0.83 2115 27 T077A01-E-32 CoreB-Y 1139.85 184 107 709 6.65 0.3292 1.911 19.5090 3.700 0.4300 3.168 0.86 3612 29 T077A01-E-33 CoreB 1139.85 116 137 777 5.63 0.1384 1.559 6.1279 2.665 0.3212 2.162 0.81 2207 27 T077A01-E-34 CoreB 1139.85 26 98 163 1.67 0.1322 1.601 5.8293 2.846 0.3199 2.353 0.83 2127 28 T077A01-E-35 CoreB-rim 1139.85 3 41 6 0.77 0.1402 1.693 6.2835 3.208 0.3252 2.725 0.85 2230 29 T077A01-F-01 CoreA-NG1-SG1-rim 294.273 8 37 38 0.97 0.1489 1.643 6.7658 3.337 0.3297 2.904 0.87 2335 28 T077A01-F-02 CoreA-NG1-SG1-rim 294.273 7 43 26 0.55 0.1499 1.733 7.0178 3.122 0.3397 2.597 0.83 2346 30 T077A01-F-03 CoreA-NG1-SG1 294.273 75 159 444 2.80 0.1266 1.557 5.6841 2.901 0.3257 2.448 0.84 2052 27 T077A01-F-04 CoreA-NG1-SG1 294.273 72 156 429 2.73 0.1261 1.550 5.6790 2.813 0.3268 2.347 0.83 2044 27 T077A01-F-05 CoreA-NG1-SG1 294.273 72 158 427 2.69 0.1247 1.551 5.6993 2.740 0.3316 2.259 0.82 2025 27 T077A01-F-06 CoreA-NG1-SG1 294.273 11 109 58 0.52 0.1252 1.582 5.3943 3.080 0.3126 2.642 0.86 2032 28 T077A01-F-07 CoreA-NG1 404.609 16 99 87 0.86 0.1277 1.594 5.6538 2.960 0.3212 2.494 0.84 2067 28 T077A01-F-08 CoreA-NG1 404.609 38 131 48 0.35 0.2439 1.817 11.9094 3.148 0.3543 2.571 0.82 3143 29 T077A01-F-09 CoreA-NG1 404.609 77 106 466 4.35 0.1312 1.568 6.0221 2.840 0.3331 2.367 0.83 2113 27 T077A01-F-10 CoreA-NG1 404.609 23 105 128 1.19 0.1304 1.567 5.8389 3.057 0.3250 2.625 0.86 2102 28 T077A01-F-11 CoreA-NG2 61.181 43 96 132 1.37 0.2380 1.627 12.1559 2.875 0.3706 2.370 0.82 3106 26 T077A01-F-12 CoreA-NG2 61.181 15 94 78 0.82 0.1303 1.581 5.9368 2.997 0.3306 2.546 0.85 2104 28 T077A01-F-13 CoreA-NG1 404.609 184 128 520 4.00 0.4633 1.602 30.5208 3.829 0.4780 3.478 0.91 4131 24 T077A01-F-14 CoreA-NG1 404.609 13 65 71 1.04 0.1335 1.639 5.8214 3.180 0.3165 2.725 0.86 2143 29 T077A01-F-15 CoreA 449.439 81 106 493 4.64 0.1323 1.576 6.0475 2.949 0.3316 2.492 0.85 2128 28 T077A01-F-16 CoreA 449.439 62 151 378 2.49 0.1255 1.554 5.6027 2.991 0.3239 2.555 0.85 2037 27 T077A01-F-17 CoreA-rim 449.439 1 40 1 -10.00 0.1331 1.750 5.6333 3.129 0.3071 2.594 0.83 2139 31 T077A01-F-18 CoreA-rim 449.439 17 76 90 1.17 0.1413 1.760 6.2725 3.029 0.3221 2.465 0.81 2244 30 T077A01-F-19 CoreA 449.439 82 139 494 3.56 0.1275 1.574 5.8568 3.066 0.3332 2.630 0.86 2064 28 T077A01-F-20 CoreA 449.439 89 108 521 4.86 0.1493 2.150 6.9486 3.102 0.3377 2.236 0.72 2334 37 T077A01-F-21 CoreA-SG1 68.547 67 107 173 1.60 0.2937 1.759 15.5149 3.351 0.3833 2.853 0.85 3437 27 T077A01-F-22 CoreA-SG1 68.547 80 83 161 1.94 0.4081 1.704 24.6909 4.489 0.4390 4.153 0.93 3939 26 T077A01-F-23 CoreA 449.439 6 23 26 1.01 0.1640 2.012 7.7977 5.530 0.3450 5.151 0.93 2499 34 T077A01-F-24 CoreA 449.439 662 118 348 2.93 0.8877 1.522 166.8732 3.931 1.3640 3.624 0.92 5161 22 T077A01-F-25 CoreA 449.439 82 109 493 4.54 0.1323 1.561 5.9956 3.036 0.3289 2.604 0.86 2129 27 T077A01-F-26 CoreA 449.439 81 147 477 3.27 0.1286 1.556 5.8482 3.028 0.3301 2.597 0.86 2078 27 T077A01-F-27 CoreA-rim 449.439 90 176 330 1.88 0.2277 2.086 11.4541 5.319 0.3650 4.893 0.92 3035 33 T077A01-F-28 CoreA-rim 449.439 9 35 43 1.14 0.1542 1.661 7.3382 3.348 0.3453 2.907 0.87 2392 28  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T020A01-B-01 2402 72 1995 48 1844 45 6710 136000 187000 263000 767 7760 7.82 45.4 1360 272 32 11.76 T020A01-B-02 1905 62 1781 50 1744 48 5540 151000 207000 284000 795 7560 7.93 36.7 1280 273 32 11.72 T020A01-B-03 1897 64 1773 53 1743 51 5370 129000 184000 247000 760 7700 7.16 35.1 1210 238 27 11.34 183  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T020A01-B-04 3095 171 2463 107 2024 99 7190 147000 207000 270000 699 7030 8.17 30.1 1140 166 12 7.23 T020A01-B-05 2699 91 2199 63 1950 58 8040 141000 228000 305000 810 8100 8.19 35.2 1470 252 30 11.90 T020A01-B-06 1927 62 1823 50 1790 49 7300 132000 191000 262000 754 8250 7.37 36.5 1280 228 20 8.77 T020A01-B-07 1906 57 1790 46 1759 44 7300 134000 194000 265000 754 7770 7.48 40.7 1550 261 23 8.81 T020A01-B-08 1898 59 1803 47 1771 46 9000 133000 193000 286000 775 9530 7.85 35.3 1640 252 23 9.13 T020A01-B-09 1898 66 1774 55 1741 52 6970 142000 225000 271000 850 10100 8.4 41.1 1560 267 25 9.36 T020A01-B-10 1911 58 1797 45 1758 44 6500 121000 175000 260000 732 7830 7.3 32.2 1250 216 21 9.72 T020A01-B-11 - - - - - - 7400 131000 200000 279000 729 5790 7.87 25 410 108 11 10.19 T020A01-B-12 1894 58 1781 46 1753 45 8670 145000 205000 258000 828 9700 8.23 39.3 1760 290 31 10.69 T020A01-B-13 1902 57 1798 46 1770 44 7590 127000 177000 255000 748 8630 7.4 33.3 1400 249 26 10.44 T020A01-B-14 1896 55 1773 43 1742 41 7570 133000 204000 264000 770 9580 8.15 35.5 1590 276 19 6.88 T020A01-B-15 1943 56 1815 44 1780 42 6660 116000 192000 256000 730 8240 7.44 37.1 1450 251 13 5.18 T020A01-B-16 2096 69 1885 54 1816 52 9600 160000 222000 298000 869 10900 8.6 38.1 1760 298 36 12.08 T020A01-B-17 2020 57 1839 43 1786 41 8030 142000 220000 290000 804 9900 8.42 40.6 1630 295 32 10.85 T020A01-B-18 1896 62 1777 51 1747 49 7100 128000 203000 252000 780 9400 7.6 31.6 1530 240 24 10.00 T020A01-B-19 2059 67 1849 52 1783 49 8600 137000 202000 264000 787 9810 8.36 34.5 1700 286 24 8.39 T020A01-B-20 1896 61 1806 50 1781 49 6800 123400 170000 252000 742 8380 7.58 34.5 1470 263 13 4.94 T020A01-B-21 1886 58 1772 46 1743 45 7800 133000 201000 245000 776 10200 7.99 38.7 1600 257 27 10.51 T020A01-B-22 1934 64 1794 52 1753 50 6250 134000 207000 278000 727 8400 7.96 37.2 1540 263 29 11.03 T020A01-B-23 1938 60 1804 48 1765 46 6130 128000 197000 294000 757 7810 8.52 40.1 1450 269 31 11.52 T020A01-B-24 2133 84 1835 61 1745 57 6810 134000 177000 272000 708 6970 8.41 28.6 900 145 16 11.03 T020A01-B-25 2770 110 2288 83 2021 76 9100 144000 197000 258000 841 9600 8.09 32.4 766 152 11 7.24 T020A01-B-26 2015 73 1758 56 1686 53 5650 120000 184000 259000 637 6390 7.83 30.7 1190 165 17 10.30 T020A01-B-27 - - - - - - 7300 141000 204000 292000 860 6030 8.9 28 131 51.8 6.4 12.36 T020A01-B-28 - - - - - - 8280 132000 191000 296000 819 6660 8.53 26.6 128 47.5 5.7 12.00 T020A01-C-01 5024 278 6950 364 11947 241 8800 154000 207000 333000 730 10600 10.3 46.9 950 393 55 13.99 T020A01-C-02 6157 178 11740 288 0 56 20800 158000 198000 363000 880 19900 12.1 57.6 1590 1090 180 16.51 T020A01-C-03 5969 187 10700 293 0 78 14300 160000 225000 343000 700 12800 10.9 50.8 1300 1020 160 15.69 T020A01-C-04 5787 188 10000 282 0 98 12600 149000 210000 426000 830 15400 11.3 72 1140 980 110 11.22 T020A01-C-05 6090 230 11370 392 0 84 37700 206000 198000 616000 1210 34400 17 74 2880 2670 310 11.61 T020A01-C-06 5838 402 10120 678 0 225 95000 243000 193000 1260000 1450 71000 32 138 4450 4060 530 13.05 T020A01-C-07 1953 68 1822 56 1794 54 6200 139000 185000 196000 472 7900 8.5 48.1 1330 431 69 16.01 T020A01-C-08 5983 174 10620 263 - 72 16700 161000 212000 402000 820 14900 11.69 64.3 2360 1660 200 12.05 T020A01-C-09 2350 123 2020 93 1910 88 6800 126000 209000 232000 640 8600 9.45 61 1660 558 88 15.77 T020A01-C-10 1998 66 1841 52 1799 50 7300 140000 209000 295000 552 8400 9.29 50.5 1680 485 44 9.07 T020A01-C-11 1991 70 1828 57 1791 55 6900 157000 210000 248000 528 11600 10.34 51.1 1030 1680 210 12.50 T020A01-C-12 2004 74 1836 60 1797 58 7300 141000 186000 296000 500 10900 9.3 46.1 980 1280 170 13.28 T020A01-C-13 2027 70 1871 55 1832 54 8900 159000 206000 290000 609 12200 10.32 40 850 554 66 11.91 T020A01-C-14 1990 76 1822 62 1773 60 6300 117000 179000 245000 470 9100 8.48 41.6 990 1270 190 14.96 T020A01-C-15 2058 77 1877 62 1825 60 8700 151000 257000 330000 660 11700 10.6 38 850 329 61 18.54 T020A01-C-16 2033 74 1821 59 1760 56 7000 129000 201000 301000 616 9800 9.7 40.3 707 293 34 11.60 T020A01-C-17 2871 101 2365 73 2064 68 5180 135000 169000 239000 557 7200 8.6 32 810 241 39 16.18 T020A01-D-01 2209 151 1904 124 1808 116 4670 131000 161000 244000 560 6400 7.7 29 680 94 14 14.89 T020A01-D-02 3737 299 3480 269 3008 497 7300 147000 174000 272000 501 8400 9.38 31.1 885 153 19 12.42 T020A01-D-03 - - - - - - 7400 146000 180000 299000 620 8400 9.2 26.7 267 73 12 16.44 T020A01-D-04 - - - - - - 7800 150000 175000 302000 695 8600 9.32 24 655 62.6 7.7 12.30 184  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T020A01-D-05 4456 462 5260 539 279 10 5300 113000 174000 210000 560 5810 7.96 20.9 595 96 20 20.83 T020A01-D-06 2500 1004 2140 857 2483 998 7900 134000 207000 298000 740 5370 9.5 26.4 1170 108 13 12.04 T020A01-D-07 4530 882 5500 1065 4677 91 5320 135000 203000 237000 517 6180 9.11 26.8 388 103 13 12.62 T020A01-D-08 2025 83 1836 67 1782 64 4800 138000 193000 305000 505 6200 9.5 29.4 1220 166 27 16.27 T020A01-D-09 2263 230 1950 193 1846 181 8900 150000 218000 291000 603 7500 10 34.7 429 224 33 14.73 T020A01-D-10 5606 251 9390 396 - 193 9300 165000 220000 331000 697 9100 11.07 35 900 175 25 14.29 T020A01-D-11 4170 50040 4680 56160 -387 1809 8400 134000 214000 270000 553 8200 10 29.8 346 299 60 20.07 T020A01-D-12 - - - - - - 6400 139000 189000 290000 565 6460 9.66 24.1 616 82 13 15.85 T020A01-D-13 - - - - - - 8000 119000 170000 279000 605 7090 9.1 20.3 553 81 14 17.28 T020A01-D-14 - - - - - - 9200 122000 207000 252000 690 8200 9.8 30.7 550 121 17 14.05 T020A01-D-15 - - - - - - 9100 155000 218000 242000 880 7200 10.7 28.5 1090 221 31 14.03 T020A01-D-16 - - - - - - 7000 146000 174000 261000 690 7400 9.8 31.8 383 138 24 17.39 T020A01-D-17 2133 110 1839 88 1748 82 7080 166000 224000 277000 670 8240 11.23 40.7 1090 190 18 9.47 T020A01-D-18 2320 206 1950 166 1822 154 4740 142000 229000 289000 496 6310 9.4 25.5 447 95 14 14.74 T020A01-D-19 - - - - - - 9000 133000 202000 270000 680 8900 10.99 19.6 484 79 11 13.92 T020A01-D-20 - - - - - - 7600 126000 180000 235000 640 7900 9.3 26.2 609 130 23 17.69 T020A01-G1-01 - - - - - - 9740 121500 188000 290000 707 6280 6.96 18.6 63.9 38.3 4.3 11.23 T020A01-G1-02 - - - - - - 6750 129200 187000 254000 656 5950 6.76 27.2 172 97 11 11.34 T020A01-G1-03 4010 1665 4110 1705 2933 3361 8060 126000 195000 281000 719 7320 7.28 25.1 129.6 94 10 10.64 T020A01-G1-04 2277 203 1950 166 1837 155 8000 138000 207000 257000 724 6480 7.26 23.6 354 76 12 15.79 T020A01-G1-05 - - - - - - 6490 130000 200000 264000 695 5690 7.13 22.4 96.8 80.3 8.3 10.34 T020A01-G1-06 - - - - - - 6850 142000 188000 275000 692 6760 6.98 26.1 238 116.4 9.9 8.51 T020A01-G1-07 - - - - - - 5250 122000 192000 258000 589 4950 6.65 30.1 157 150 22 14.67 T020A01-G1-08 2452 276 2020 223 1867 205 5740 131000 186000 274000 595 5680 6.98 29.7 412 141 13 9.22 T020A01-G1-09 3960 3249 3990 3272 1828 10627 6700 126000 192000 252000 662 6490 6.38 21.1 117 85 11 12.94 T020A01-G1-10 - - - - - - 6830 127000 198000 268000 638 4750 6.86 20.8 97 39.2 3.6 9.18 T020A01-G1-11 - - - - - - 6680 129000 204000 271000 721 4820 7.16 25.8 177 86 7.2 8.37 T020A01-G1-12 - - - - - - 5770 128000 197000 268000 671 5180 7.08 27.7 250 161 15 9.32 T020A01-G2-01 4299 228 3990 201 2691 1009 6500 129000 177000 272000 649 5540 6.71 25.6 141 98 12 12.24 T020A01-G2-02 2537 169 2000 124 1789 110 6210 140000 191000 263000 704 6880 7.24 29.8 475 159 15 9.43 T020A01-G2-03 2361 119 1971 93 1819 85 6370 137000 189000 267000 600 6570 6.76 26.6 617 157 23 14.65 T020A01-G2-04 2146 97 1862 77 1771 72 6290 144000 192000 263000 677 7700 7.55 32.6 777 195 23 11.79 T020A01-G2-05 2463 241 2200 210 1948 189 7800 140000 188000 303000 687 6220 7.04 25.9 357 141 16 11.35 T020A01-G2-06 - - - - - - 6000 139000 199000 274000 639 5620 6.9 23 136 108 14 12.96 T020A01-G2-07 3570 836 3260 761 2923 1077 6350 123000 187000 259000 671 4900 6.57 23.8 95 71 7.6 10.70 T020A01-G2-08 - - - - - - 6640 135000 191000 297000 688 4240 6.99 21 74.7 47.3 3.4 7.19 T020A01-G2-09 2406 110 1969 82 1806 75 6650 136000 190000 263000 698 6740 7.04 30.2 705 127 14 11.02 T020A01-G2-10 2924 177 2280 127 1903 111 7280 126000 199000 285000 658 12100 7.23 29.1 578 160 12 7.50 T020A01-G2-11 2630 535 2180 439 2022 414 7300 139000 224000 290000 751 8300 7.63 27.2 299 132 17 12.88 T020A01-G2-12 - - - - - - 7050 132000 199000 270000 658 5690 6.69 23.3 146 86 11 12.79 T020A01-G4-01 2178 115 1892 92 1812 87 6170 127000 186000 275000 712 5630 6.79 26.9 572 94 11 11.70 T020A01-G4-02 2255 120 1858 93 1731 85 6060 112000 198000 261000 699 5360 6.37 26.1 415 90.6 9.3 10.26 T020A01-G4-03 - - - - - - 7000 122000 191000 267000 770 5450 6.56 21.3 149 53.4 6.5 12.17 T020A01-G4-04 2118 87 1844 67 1763 63 6450 139200 212300 287000 740 5490 7.02 29.6 917 136 10 7.35 T020A01-G4-05 2103 87 1807 67 1727 63 6790 129000 191000 286000 698 6080 6.56 27.3 818 113 13 11.50 T020A01-G4-06 2548 199 2100 159 1924 146 7140 144000 191000 305000 787 6550 7.18 24.9 360 60.6 7.3 12.05 185  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T020A01-G4-07 3700 1747 3300 1557 2767 2166 7500 131000 207000 274000 843 4930 7.17 27.1 239 65 5.9 9.08 T020A01-G4-08 2730 645 2420 568 2204 547 6870 130000 199000 269000 695 5940 6.53 24.3 239 68.4 7.5 10.96 T020A01-G4-09 2600 380 2080 300 1870 270 6550 125000 199000 284000 786 5740 6.79 25.9 239 66.1 8.3 12.56 T020A01-G4-10 2171 103 1792 77 1692 72 6040 131000 190000 283000 678 5880 6.5 29.9 609 112 13 11.61 T020A01-G4-11 - - - - - - 7200 133000 187000 245000 770 5290 6.72 32.5 161 43.4 6.5 14.98 T020A01-G4-12 3806 304 3410 265 2745 412 7870 132800 206000 305000 803 6650 7.08 26.6 419 76.4 6.7 8.77 T045B01-A-01 6360 207 10930 316 - 77 18700 139000 194000 284000 226 31800 8.1 20.9 562 122 11 9.02 T045B01-A-02 2732 132 2249 102 2000 94 13900 128000 172000 263000 119 9600 0.34 5.32 83 54.2 5 9.23 T045B01-A-03 1931 57 1842 45 1819 43 11200 116000 182000 274000 119 9340 0.45 6.6 187 67 10 14.93 T045B01-A-04 3197 242 2430 122 1909 116 12700 129000 196000 248000 129 8440 0.8 7.3 567 64.4 6.6 10.25 T045B01-A-05 2068 94 1872 55 1807 53 13100 157000 195000 249000 133 10900 1.47 5.07 227 65.3 9 13.78 T045B01-A-06 4270 180 3747 145 2318 498 13600 142000 208000 264000 136 9700 1.1 7 893 68.6 8.8 12.83 T045B01-A-07 2337 83 1975 56 1846 53 15400 128000 210000 255000 140 11400 bdl 7 97 47.4 7.3 15.40 T045B01-A-08 6630 256 12140 430 0 77 13900 155000 201000 307000 142 9500 1.5 6.5 185 81 15 18.52 T045B01-A-09 6568 205 11830 323 - 61 11900 131000 165000 216000 118 8000 1 5.2 515 61.1 6.2 10.15 T045B01-B-01 3717 150 2929 106 2038 99 12600 125000 193000 242000 125 13100 3.2 8.5 2100 190 21 11.05 T045B01-B-02 1964 52 1837 38 1802 37 14900 148000 220000 295000 127 13000 2.7 9.6 1750 247 20 8.10 T045B01-B-03 2075 58 1859 42 1791 40 13000 141000 193000 254000 111 9430 bdl 12.5 712 167 13 7.78 T045B01-B-04 2228 80 1932 59 1837 56 12500 160000 208000 232000 99 11700 1.04 8.8 269 400 43 10.75 T045B01-B-05 2327 101 1964 77 1838 72 12300 147000 193000 236000 96 11700 1.12 8.2 218 384 34 8.85 T045B01-B-06 6360 170 10844 239 0 60 13000 143000 195000 257000 138 14600 6.9 7.9 4650 207 21 10.14 T045B01-B-07 6326 170 10661 238 0 64 14900 149000 207000 248000 150 14100 7.3 11 5100 210 19 9.05 T045B01-B-08 5390 689 6930 877 12838 569 15000 135000 187000 242000 112 23600 12.1 10.1 298 222 18 8.11 T045B01-B-09 5517 382 7320 493 - 551 13000 134000 178000 253000 118 15400 6.4 11.9 350 721 60 8.32 T069A01-B-01 4153 182 3354 137 1930 155 17500 207000 200000 260000 398 35500 13.5 128 3210 150 14 9.33 T069A01-B-02 3608 143 2715 97 1842 80 13900 170000 220000 269000 476 25600 8.47 55.6 2410 110 13 11.82 T069A01-B-03 2748 90 2063 52 1740 46 7390 144000 196000 281000 421 8400 6.55 56.9 2620 143 22 15.38 T069A01-B-04 2755 87 2045 54 1699 46 7100 133000 194000 262000 430 10100 6.88 23 2470 135 14 10.37 T069A01-B-05 2472 77 1918 47 1704 42 7700 145000 195000 226000 512 7700 6.8 21.9 2850 131 16 12.21 T069A01-B-06 2774 81 2038 50 1692 42 8700 133000 179000 239000 405 10990 6.86 47.4 3520 179 20 11.17 T069A01-B-07 3692 156 2838 110 1918 95 9000 143000 202000 255000 591 9830 7.47 18.7 1200 149 18 12.08 T069A01-B-08 3431 164 2512 107 1765 86 7400 116100 174000 215000 444 8300 5.93 16.3 709 77.6 8.2 10.57 T069A01-B-09 2806 123 2188 88 1854 76 9200 145000 204000 275000 554 7900 7.18 20.8 794 134 16 11.94 T069A01-B-10 3738 168 2870 120 1898 102 8800 129000 190000 232000 576 8000 6.69 16.8 452 123 16 13.01 T069A01-B-11 2099 75 1844 58 1765 54 7100 140000 193000 283000 468 7910 7.19 18.6 1840 150 15 10.00 T069A01-B-12 2495 82 1963 55 1754 50 7250 145000 195000 309000 499 8070 7.34 18.1 2750 156 17 10.90 T069A01-B-13 1982 56 1829 42 1780 41 5340 120000 191000 253000 411 7620 6.66 18.1 3080 170 20 11.76 T069A01-B-14 2932 146 2190 102 1781 85 7080 126000 175000 258000 500 6740 6.37 16.7 567 116 13 11.21 T069A01-B-15 2719 117 2101 82 1804 72 6640 141000 213000 263000 539 7980 7.12 14.1 623 149 11 7.38 T069A01-B-16 2379 109 1966 83 1804 76 6910 123000 176000 246000 499 7100 6.43 14.5 900 95 14 14.74 T069A01-B-17 2073 63 1833 47 1753 44 6010 138000 200000 285000 414 7600 7.11 19.4 3970 192 22 11.46 T069A01-B-18 2547 80 1975 50 1734 44 6900 149000 208000 259000 432 9200 7.36 19.1 2950 174 21 12.07 T069A01-C-01 2383 121 1863 88 1672 78 6870 126000 188000 241000 537 7410 6.11 17 512 136 11 8.09 T069A01-C-02 2386 104 1956 77 1793 70 7220 135000 192000 233000 483 7600 6.27 17.5 635 142 12 8.45 T069A01-C-03 2939 102 2090 63 1623 51 10300 152000 213000 294000 560 7710 7.16 29.5 1110 152.4 9.9 6.50 T069A01-C-04 2505 68 1949 42 1727 38 5820 128300 189000 269000 421 6600 6.23 20.4 3150 198 20 10.10 186  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T069A01-C-05 2104 62 1806 43 1710 40 6150 132000 201000 267000 427 7170 6.41 19.8 3340 193 12 6.22 T069A01-C-06 2382 76 1913 51 1728 46 6320 139000 191000 253000 440 7570 6.35 19.1 1990 188 15 7.98 T069A01-C-07 2148 62 1854 43 1761 41 6590 129000 193000 258000 433 7920 6.39 21.4 3210 197 25 12.69 T069A01-C-08 2111 65 1824 46 1736 43 6160 129600 217000 234000 432 6770 6.52 17.5 1690 172 16 9.30 T069A01-C-09 2023 55 1807 40 1740 38 5950 128400 186000 251000 405 6720 6.23 17.9 3100 181 11 6.08 T069A01-C-10 2089 67 1835 49 1747 46 6690 139000 211000 243000 442 7570 6.6 20.8 2570 207 13 6.28 T069A01-C-11 2081 61 1798 43 1711 41 6060 130000 199000 239000 423 7300 6.27 17.8 3170 182 20 10.99 T069A01-C-12 3264 196 2400 136 1784 109 6550 121000 191000 236000 452 7360 6.05 14.2 562 111 11 9.91 T069A01-D-01 4272 234 3600 185 2071 329 7830 118600 178000 225000 426 8660 5.99 15.7 318 111 14 12.61 T069A01-D-02 2327 94 1856 67 1690 61 7010 128100 199000 258000 413 6980 6.45 17.6 392 125 11 8.80 T069A01-D-03 2029 60 1780 43 1707 40 6030 122000 190000 270000 382 7540 6.16 16.7 1237 166 17 10.24 T069A01-D-04 2043 61 1789 45 1716 42 5840 128000 195000 248000 413 7410 6.64 17.9 1338 166 13 7.83 T069A01-D-05 2160 78 1829 58 1726 54 7530 120000 201000 256000 456 8980 6.35 17.7 732 133 15 11.28 T069A01-D-06 3149 93 2299 57 1738 47 7240 144000 192000 241000 387 8140 6.46 19 1720 193 21 10.88 T069A01-D-07 2109 66 1802 48 1711 44 7970 128000 199000 240000 441 9250 6.57 18.8 984 144 10 6.94 T069A01-D-08 2082 59 1827 42 1745 40 6280 135000 211000 281000 399 7730 6.51 24 1780 215 21 9.77 T069A01-D-09 2019 58 1793 42 1725 40 6260 121900 203000 263000 379 8010 6.36 19.9 1600 177 14 7.91 T069A01-D-10 3766 176 2857 125 1813 102 8140 124000 182000 228000 415 8800 6.25 16.6 327 107 13 12.15 T069A01-D-11 2713 176 2120 132 1847 117 5960 127000 191000 227000 436 5710 6.08 18.3 217 80.7 8.1 10.04 T069A01-D-12 3138 118 2316 78 1784 64 5260 111000 183000 210000 382 5730 5.83 15.3 477 100.7 9.5 9.43 T069A01-D-13 2370 93 1938 67 1781 61 5180 117100 184000 222000 430 4790 5.93 14.9 512 96.7 9.3 9.62 T069A01-D-14 2022 56 1783 40 1714 37 6550 130000 190000 244000 410 8410 6.55 19.2 1490 175 15 8.57 T069A01-D-15 2368 110 1938 82 1788 75 7960 128000 191000 251000 450 8970 6.42 19.8 491 112.9 8.7 7.71 T069A01-D-16 2457 107 1978 77 1795 70 8160 128000 191000 249000 450 8910 6.15 17.5 347 98 13 13.27 T069A01-D-17 2184 77 1826 56 1707 51 7210 127000 187000 231000 384 9020 6.05 17.4 692 127 10 7.87 T069A01-E2-01 2168 67 1777 44 1649 40 7150 129000 206000 262000 488 7670 7.14 23.3 1800 145 13 8.97 T069A01-E2-02 2293 80 1874 53 1726 49 10100 125000 195000 252000 496 15900 6.35 16.3 1220 105.2 9.1 8.65 T069A01-E2-03 2417 120 2023 92 1871 86 8080 131000 224000 244000 631 7550 6.78 19 708 82.3 5.8 7.05 T069A01-E2-04 1964 57 1762 43 1705 41 5630 136400 191000 247000 459 7070 6.5 19.4 2770 194 20 10.31 T069A01-E2-05 2534 83 2015 54 1788 49 8060 128000 192000 226000 484 6430 6.55 20.9 1340 120.9 8.6 7.11 T069A01-E2-06 3520 490 2910 401 2457 424 8900 121000 193000 240000 574 8720 6.5 16.3 204 52.3 7.9 15.11 T069A01-E2-07 2850 1057 2140 784 1776 657 7850 125000 182000 242000 561 8970 6.31 15.3 206 47.8 4.6 9.62 T069A01-E2-08 - - - - - - 8470 131000 187000 230000 562 8830 6.28 13.4 169 45.9 6.6 14.38 T069A01-E2-09 5050 779 5600 846 5423 158 9100 137000 209000 245000 558 8430 6.61 16.7 275 48.4 5.7 11.78 T069A01-E2-10 2682 280 2140 219 2086 216 7420 132000 183000 238000 618 7180 6.55 16 314 80.2 7.6 9.48 T069A01-E2-11 2204 79 1905 60 1805 56 7870 137000 196000 235000 581 7120 6.63 14.8 1020 71 10 14.08 T069A01-E2-12 2420 110 1943 77 1759 70 8900 127000 199000 261000 573 7040 6.47 18.5 801 83.3 5.7 6.84 T069A01-E3-01 3587 210 2670 150 1792 117 6540 136400 210000 277000 531 6230 6.31 18.4 221 83.4 7.7 9.23 T069A01-E3-02 2086 69 1791 51 1696 47 5120 127000 210000 256000 440 6910 6.18 19.2 1060 190 17 8.95 T069A01-E3-03 2039 59 1822 44 1760 42 5760 126900 194000 252000 489 6930 6.59 19.3 1740 173 22 12.72 T069A01-E3-04 2522 156 2028 119 1822 107 8800 123000 183000 214000 678 6490 6.16 16.2 179 29 4.5 15.52 T069A01-E3-05 3016 212 2330 157 1902 134 8880 130000 196000 234000 635 8330 6.16 16.6 437 58.5 6.5 11.11 T069A01-E3-06 2444 89 1900 61 1687 53 12500 143000 193000 254000 586 8280 7.02 32.2 1111 95.5 7.6 7.96 T069A01-E3-07 2167 81 1737 57 1594 51 16500 146300 193000 236000 468 6710 9.58 73.7 3190 203 18 8.87 T069A01-E3-08 2391 91 1926 62 1747 57 7210 129000 199000 239000 604 7310 6.38 15.9 584 74.2 6.6 8.89 T069A01-E3-09 2910 801 2490 684 2924 842 8470 133000 215000 236000 659 8860 6.87 15.4 308 35.8 3.7 10.34 187  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T069A01-E3-10 2450 124 1924 72 1723 66 6490 114000 178000 252000 560 5400 7.37 15.7 900 83 14 16.87 T069A01-E3-11 2696 158 2086 113 1810 99 5900 124000 189000 230000 526 5820 5.88 14.5 382 41.9 4.1 9.79 T069A01-E3-12 2618 135 2020 73 1752 66 9700 134000 182000 235000 561 6350 6.93 35.8 707 68.8 9.9 14.39 T069A01-F-01 4269 430 3770 373 2391 1420 8750 132300 190000 241000 507 6840 6.31 19.8 177 96.3 6.9 7.17 T069A01-F-02 4180 874 3600 748 2369 1396 3750 57500 195000 96100 222 3590 4.63 81 147 44.2 4.7 10.63 T069A01-F-03 3700 574 2900 445 2460 471 7380 129000 207000 251000 529 7780 6.56 17.7 134 94.2 7.7 8.17 T069A01-F-04 2949 323 2230 239 1948 214 7630 133200 205000 259000 523 8230 6.43 15.4 168 97.3 7.1 7.30 T069A01-F-05 2857 295 2220 223 1883 194 6860 127000 192000 236000 512 6060 6.23 15.8 174.7 102.5 8.4 8.20 T069A01-F-06 - - - - - - 8240 127600 205000 230000 549 7130 6.22 16.8 96.7 111.5 8.1 7.26 T069A01-F-07 4362 359 3770 303 2114 1036 8550 136000 219000 266000 600 6900 6.84 15.4 384 82 7.4 9.02 T069A01-F-08 3188 265 2330 187 1789 150 6340 123500 204000 283000 526 5500 6.18 13 348 60.4 6.7 11.09 T069A01-F-09 2926 198 2140 139 1727 113 7860 141000 211000 270000 594 7440 6.79 15.9 386 84.8 9.1 10.73 T069A01-H1-01 2238 83 1887 62 1771 57 7950 121000 189000 229000 645 8330 5.84 17.3 1640 112 10 8.93 T069A01-H1-02 1969 53 1741 38 1679 36 6350 147000 214000 269000 428 7620 6.32 20.6 4250 211 15 7.11 T069A01-H1-03 2872 84 2086 49 1678 42 8820 144200 208000 266000 594 7750 6.88 31.5 2690 160 12 7.50 T069A01-H1-04 2146 66 1834 47 1731 44 7190 143000 216000 277000 695 7020 6.63 19.1 2160 112.6 9.4 8.35 T069A01-H1-05 2253 60 1851 39 1718 36 6150 132000 187000 262000 449 6680 6.14 20.9 4270 191 16 8.38 T069A01-H1-06 2794 126 2123 87 1794 75 6040 136400 192000 275000 749 6720 6.19 16.2 1071 89.4 7.9 8.84 T069A01-H1-07 2315 92 1910 67 1771 62 8240 130000 215000 258000 747 7550 6.69 15.8 1400 65 6.8 10.46 T069A01-H1-08 2176 76 1841 55 1737 51 7970 125200 199000 256000 669 7090 6.35 16.7 1709 80.2 7.4 9.23 T069A01-H1-09 2351 97 1960 72 1824 67 6890 121000 193000 232000 755 7940 5.96 16.3 1112 94.3 9.1 9.65 T069A01-H1-10 2206 64 1882 45 1777 42 6310 121000 189000 242000 691 7040 5.96 19 1760 124 11 8.87 T069A01-H1-11 2121 64 1830 46 1740 43 5560 130000 194000 250000 444 6600 6.14 18.8 3280 178 16 8.99 T069A01-H2-01 3205 95 2343 58 1766 48 8130 134600 198000 242000 457 8480 6.14 16.5 2010 135 11 8.15 T069A01-H2-02 2877 105 2159 68 1785 58 7640 124000 182000 224000 432 8540 5.98 14.2 1180 99 12 12.12 T069A01-H2-03 2055 63 1812 47 1743 44 5940 122000 202000 238000 448 7520 6.13 18 1710 141 15 10.64 T069A01-H2-04 2016 55 1791 40 1723 38 7380 126000 190000 220000 497 8010 6.52 19 1470 156 10 6.41 T069A01-H2-05 3084 438 2530 355 2378 362 9300 136000 190000 263000 670 9330 6.54 15.7 252 122 12 9.84 T069A01-H2-06 2659 155 2036 113 1766 98 7050 129000 192000 249000 630 8280 6 17.8 376 41.5 4.9 11.81 T069A01-H2-07 2634 138 2122 102 1899 93 7640 136000 174000 229000 627 8050 6.7 19.5 746 73 11 15.07 T069A01-H2-08 2716 196 2170 148 1913 133 7040 122000 189000 209000 607 8110 5.96 15.9 559 51.2 7 13.67 T072A01-A-01 1838 56 1783 47 1772 46 7700 153000 200000 277000 673 10600 7.64 41.4 3690 350 37 10.57 T072A01-A-02 1875 54 1833 45 1820 44 7100 128000 225000 273000 660 9000 7.32 39.3 3230 307 48 15.64 T072A01-A-03 2560 76 2056 50 1839 46 9700 139000 196000 253000 686 11400 7.58 81 2770 325 38 11.69 T072A01-A-04 2297 94 1938 51 1808 49 10300 132000 190000 264000 663 10400 7.23 51.2 2810 324 39 12.04 T072A01-A-05 1861 52 1822 43 1814 42 8500 131000 190000 243000 600 11300 6.81 36.8 4170 308 34 11.04 T072A01-A-06 2448 85 2008 56 1832 52 8210 120000 189000 265000 655 9570 6.64 74 2860 285 39 13.68 T072A01-A-07 3589 120 2841 75 2059 74 6710 122000 163000 204000 580 10200 6.09 78 2260 327 39 11.93 T072A01-A-08 3062 103 2355 68 1907 60 7600 131000 187000 252000 704 11100 6.72 47.4 2290 325 38 11.69 T072A01-A-09 1970 57 1840 45 1806 43 9000 137000 190000 254000 694 11000 7.04 74 3180 391 50 12.79 T072A01-A-10 2039 65 1871 49 1822 47 9600 126000 178000 281000 655 11700 6.61 57.5 3000 352 29 8.24 T072A01-A-11 1877 53 1824 43 1813 42 9200 130000 172000 247000 729 13200 6.73 45 2750 343 32 9.33 T072A01-A-12 1885 58 1819 48 1800 47 11000 148000 192000 258000 752 13500 7.32 52.7 3000 375 35 9.33 T072A01-A-13 2305 73 1898 48 1755 44 10600 138000 203000 241000 690 10500 7.14 43.1 1870 272 30 11.03 T072A01-A-14 3167 115 2452 73 1946 65 8700 120000 175000 216000 637 9300 6.3 40 1600 216 30 13.89 T072A01-A-15 2747 96 2021 63 1691 53 10000 130000 207000 256000 718 10120 7.13 35.7 1500 217 27 12.44 188  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T072A01-A-16 2000 63 1846 50 1803 48 9000 143000 196000 251000 703 9700 6.95 33.9 2060 203 29 14.29 T072A01-A-17 3354 156 2535 102 1886 87 8900 125000 160000 236000 597 9300 6.75 77 2060 245 25 10.20 T072A01-A-18 2530 109 2014 54 1790 51 7750 130000 185000 231000 710 12800 7.17 61.2 2570 357 50 14.01 T072A01-A-19 4601 167 4666 152 2692 48 8400 135000 185000 272000 655 10580 7.27 101 2110 215 19 8.84 T072A01-A-20 2636 79 2083 49 1829 45 10400 131000 184000 242000 531 8490 6.41 32.5 1850 141 12 8.51 T072A01-A-21 2356 116 1962 52 1805 50 8600 138000 202000 250000 710 9500 7.1 52.2 2620 346 44 12.72 T072A01-A-22 3013 135 2347 73 1937 68 7840 135000 199000 263000 715 9800 7.6 41.2 1880 305 35 11.48 T072A01-A-23 2213 74 1880 49 1774 46 7700 135000 174000 212000 630 9800 6.3 35.1 2130 304 59 19.41 T072A01-A-24 1999 63 1834 50 1788 48 11100 128000 204000 263000 677 9800 6.78 31.1 1740 158 20 12.66 T072A01-A-25 4131 138 3571 102 2329 200 8800 143000 170000 310000 728 10900 7.57 117 2160 273 31 11.36 T072A01-A-26 1876 55 1832 45 1817 44 7800 128000 187000 247000 612 12000 7 44.4 2820 465 48 10.32 T072A01-B-27 1921 59 1833 47 1812 46 10700 126000 182000 238000 694 10600 6.44 38.2 2950 338 49 14.50 T072A01-B-28 3003 154 2340 78 1933 74 10200 138000 204000 267000 727 12700 7.41 49 3090 362 29 8.01 T072A01-B-29 1870 56 1824 47 1810 46 9700 134000 201000 252000 715 13300 6.88 38.3 2970 341 31 9.09 T072A01-B-30 2280 82 1925 56 1801 52 7600 127000 174000 246000 644 10730 6.48 41.6 2510 287 19 6.62 T072A01-B-31 1866 58 1809 49 1792 47 8500 140000 212000 302000 730 13600 7.27 39.5 3020 377 54 14.32 T072A01-B-32 2925 92 2273 57 1906 51 11300 137000 202000 299000 775 12700 7.54 48.7 3100 355 36 10.14 T072A01-B-33 2168 75 1882 50 1790 47 8150 124000 175000 269000 606 9300 6.28 31.7 1720 180 21 11.67 T072A01-B-34 1857 52 1800 42 1787 41 7720 128000 192000 282000 706 10600 6.29 37.9 2480 341 30 8.80 T072A01-B-35 1837 54 1778 44 1765 43 6300 115000 155000 237000 524 8800 5.52 28.5 1730 265 44 16.60 T072A01-B-36 2302 77 1885 53 1738 49 9500 119000 191000 296000 693 9990 6.61 35.7 1550 223 22 9.87 T072A01-B-37 3596 111 2838 75 2041 70 9900 145000 199000 276000 667 10000 7.14 45.1 1800 248 23 9.27 T072A01-B-38 2027 92 1832 53 1772 51 9300 131000 198000 254000 730 8220 6.91 31.2 1750 181 22 12.15 T072A01-B-39 1936 60 1798 48 1761 46 8530 131000 208000 237000 623 9400 6.77 30.6 1670 165 19 11.52 T072A01-B-40 4265 211 3800 176 2382 889 9100 147000 198000 322000 739 13400 7.48 68 2410 339 38 11.21 T072A01-B-41 2115 75 1866 59 1790 56 9400 142000 187000 242000 746 10400 7.19 34.1 1750 187 23 12.30 T072A01-B-42 2077 64 1829 47 1755 44 6670 120000 183000 266000 670 9600 6.62 33 1790 285 33 11.58 T072A01-B-43 1845 58 1776 49 1755 47 8300 144000 193000 250000 591 9980 6.91 29.3 1990 291 41 14.09 T072A01-B-44 1857 56 1784 46 1768 45 7830 122000 169000 265000 670 10400 6.93 32.4 1830 296 31 10.47 T072A01-B-45 1970 65 1826 53 1788 51 9500 142000 214000 291000 695 9400 7.81 31 1820 232 26 11.21 T072A01-C-01 2459 94 1958 67 1761 60 25600 170000 217000 274000 800 10500 11 149 1870 233 29 12.45 T072A01-C-02 2022 64 1863 50 1814 48 9900 121000 170000 243000 780 9700 7.16 35.9 1140 272 36 13.24 T072A01-C-03 1994 75 1856 62 1810 60 9740 139000 205000 300000 802 10800 8.1 32.1 1220 227 23 10.13 T072A01-C-04 1959 61 1802 48 1761 46 12300 132000 213000 279000 730 9100 7.9 29 1390 239 34 14.23 T072A01-C-05 2038 68 1857 54 1800 52 10100 127000 190000 244000 706 10300 7.33 29.1 1150 290 37 12.76 T072A01-C-06 1969 59 1836 46 1794 45 8700 137000 161000 258000 669 10100 7.3 37.5 1100 274 31 11.31 T072A01-C-07 1921 61 1802 49 1772 48 9970 133000 213000 257000 740 11500 7.22 31.3 1600 279 40 14.34 T072A01-C-08 1935 57 1798 44 1761 43 8300 144000 196000 261000 700 9600 7.27 29.4 1610 262 35 13.36 T072A01-C-09 1983 67 1833 54 1790 52 9400 119000 176000 234000 760 10800 6.72 31.7 790 222 26 11.71 T072A01-C-10 2020 63 1829 49 1775 47 9400 147000 210000 308000 765 11700 7.84 31.9 1000 283 41 14.49 T072A01-C-11 1940 63 1768 51 1718 48 7900 126000 187000 277000 640 9200 6.95 31.5 1560 205 28 13.66 T072A01-C-12 2262 68 1916 49 1797 46 8600 133000 183000 243000 800 7830 6.78 29.1 800 134 13 9.70 T072A01-C-13 2100 70 1873 54 1806 52 8700 133000 201000 298000 688 10400 7.26 38.3 953 205 32 15.61 T072A01-C-14 2014 66 1826 52 1767 49 10300 154000 192000 290000 700 10900 7.48 25.4 1200 163 23 14.11 T072A01-C-15 2144 72 1885 54 1802 51 9500 142000 190000 245000 746 12700 7.32 36.7 795 251 26 10.36 T072A01-C-16 2370 80 1934 56 1770 51 9500 140000 163000 252000 729 9100 6.99 25.9 1020 148 21 14.19 189  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T072A01-C-17 2043 63 1872 48 1820 47 9600 143000 183000 273000 677 12200 7.43 41.2 859 274 39 14.23 T072A01-C-18 3010 108 2301 68 1863 60 9100 147000 196000 280000 695 9400 7.41 37.7 1380 279 39 13.98 T072A01-C-19 1944 65 1817 54 1778 52 10300 129000 186000 254000 748 9600 7.11 29.4 1350 292 38 13.01 T072A01-C-20 1916 62 1812 51 1786 50 10000 142000 180000 243000 691 11200 7.22 35.6 1560 282 36 12.77 T072A01-C-21 1992 66 1825 52 1780 50 9600 123000 181000 250000 700 10500 6.91 34 1380 289 39 13.49 T072A01-C-22 1915 52 1811 40 1782 39 9240 136000 183000 264000 675 9800 6.9 26.5 1400 272 37 13.60 T072A01-C-23 2099 69 1862 53 1788 51 11700 131300 192000 269000 730 10500 7.05 33.6 1300 248 21 8.47 T072A01-C-24 1933 63 1806 51 1771 49 9400 127000 178000 246000 684 9200 6.95 32.1 1280 261 25 9.58 T072A01-C-25 1982 63 1846 50 1807 48 11200 145000 187000 274000 800 8700 7.23 30.4 1000 182 24 13.19 T072A01-C-26 2027 64 1683 45 1588 42 17300 154000 196000 281000 669 8600 9.52 129 1380 216 19 8.80 T072A01-C-27 1969 65 1824 52 1775 50 9500 138000 193000 272000 770 9500 7.31 30.5 1160 265 45 16.98 T072A01-C-28 1934 60 1803 48 1764 46 10900 139000 173000 243000 709 10700 7.21 29.9 1260 247 32 12.96 T072A01-C-29 2006 64 1818 49 1766 47 10100 159000 219000 311000 661 11800 8.2 36.3 1070 262 35 13.36 T072A01-C-30 2007 72 1844 59 1798 56 8400 111000 169000 280000 595 8900 6.62 29.1 890 248 30 12.10 T072A01-C-31 2146 67 1847 49 1754 46 10400 166000 208000 248000 950 9400 7.49 33.8 859 135 16 11.85 T072A01-D-01 1894 53 1712 39 1660 37 13600 139000 201000 282000 654 9170 7.61 49 1900 195 12 6.15 T072A01-D-02 2257 73 1810 49 1660 44 37400 165000 188000 261000 588 8550 11.26 312 1450 152 10 6.58 T072A01-D-03 2688 84 2070 46 1781 41 11670 130400 204000 229000 639 9430 6.64 33.9 2290 227 14 6.17 T072A01-D-04 1833 49 1748 38 1726 37 9460 125100 189000 277000 636 10730 6.3 35 2570 362 23 6.35 T072A01-D-05 1978 52 1801 37 1748 35 7990 127000 185000 274000 635 9650 6.2 36.2 2470 316 14 4.43 T072A01-D-06 2882 99 2241 59 1892 54 9880 119500 190000 250000 640 10070 6.18 55 2370 322 14 4.35 T072A01-D-07 1999 55 1763 39 1696 37 9740 126200 192000 268000 632 9470 6.32 38.6 2600 231 11 4.76 T072A01-D-08 1841 48 1796 38 1784 38 11000 127500 195300 268000 677 12360 6.35 37.5 3080 353 26 7.37 T072A01-D-09 1832 47 1775 37 1757 36 8870 128000 199000 263000 566 10080 6.01 35.4 3160 367 31 8.45 T072A01-D-10 1859 48 1800 37 1785 36 8790 122300 190000 259000 618 9750 6.02 36.4 2690 314 20 6.37 T072A01-D-11 1875 59 1839 50 1822 49 10500 132000 204000 267000 722 12610 6.49 45.6 2690 370 25 6.76 T072A01-D-12 1908 49 1801 36 1769 35 9410 125200 199000 280000 679 10300 6.24 39 2190 300 13 4.33 T072A01-D-13 2695 78 2109 44 1824 40 8000 125200 195000 258000 602 9700 6.26 36.5 2560 353 18 5.10 T072A01-D-14 1871 50 1762 38 1733 36 8900 123900 190000 268000 641 9620 6.22 33.7 2120 312 26 8.33 T072A01-D-15 2505 104 1996 47 1777 45 10120 134200 194000 266000 654 11100 6.32 108 3110 654 30 4.59 T072A01-D-16 1861 46 1746 34 1716 33 8080 130600 203000 261000 623 9160 6.05 38.5 2490 339 27 7.96 T072A01-D-17 1854 46 1750 34 1723 33 9180 126600 188000 255000 634 10920 6.01 35 2200 336 22 6.55 T072A01-D-18 1890 47 1763 34 1730 33 9220 126300 205800 274000 651 10690 6.03 31.7 2640 411 23 5.60 T072A01-D-19 2379 83 1921 51 1747 47 10050 126300 186000 268000 629 9490 5.91 44.6 2160 257 13 5.06 T072A01-D-20 2155 67 1815 43 1709 40 9720 124000 187900 264000 683 11370 6.18 39.9 2730 356 17 4.78 T072A01-D-21 2109 65 1872 45 1799 43 10300 130600 193600 255000 626 11120 6.11 38.4 2750 341 16 4.69 T072A01-D-22 1862 50 1775 39 1751 37 9130 131200 198000 281000 608 10880 6.22 39.1 3030 421 28 6.65 T072A01-D-23 2072 58 1787 40 1704 37 9530 143000 218000 286000 722 10040 6.86 27.8 2210 223 11 4.93 T072A01-D-24 1848 51 1773 39 1753 38 9480 130300 197000 271000 625 11030 6.31 45 3080 396 31 7.83 T072A01-D-25 2043 51 1819 35 1752 33 8390 130000 195000 265000 629 10120 6.32 52.3 3110 355 22 6.20 T072A01-D-26 1950 51 1744 36 1688 34 10470 132200 212000 272000 658 10000 6.58 29.7 2207 246 19 7.72 T072A01-D-27 1922 52 1763 39 1718 37 9370 127800 193000 268000 642 9400 6.35 25.3 1900 192 14 7.29 T072A01-D-28 3367 108 2550 69 1900 60 10700 138000 193000 276000 659 9780 6.53 28 1750 192 17 8.85 T072A01-E-01 1847 47 1738 34 1711 33 8870 118500 193000 252000 590 9010 5.88 25.8 2270 235 15 6.38 T072A01-E-02 1797 47 1719 37 1701 35 8960 121000 199000 270000 612 9540 6.03 29.3 3120 271 15 5.54 T072A01-E-03 2444 77 1965 40 1781 37 8820 128400 193800 263000 623 10890 6.1 45 2237 328 14 4.27 190  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T072A01-E-04 1945 53 1780 40 1736 38 9160 130300 187900 253000 645 10690 6.04 38.5 2380 310 17 5.48 T072A01-E-05 1979 51 1787 36 1732 35 8660 123200 188500 272000 622 9710 6.19 33.3 2390 324 25 7.72 T072A01-E-06 1871 48 1754 36 1727 35 10290 128500 189000 260000 657 12400 6.44 37.1 2600 340 24 7.06 T072A01-E-07 2056 67 1828 37 1760 36 9220 124300 184000 271000 618 10000 6.44 33.9 2255 320 17 5.31 T072A01-E-08 1930 52 1788 38 1751 37 9060 126200 203500 264000 660 10410 6.54 39.8 2420 339 15 4.42 T072A01-E-09 1838 48 1728 36 1703 35 10830 128100 194900 270000 647 11120 6.58 32.6 2480 326 24 7.36 T072A01-E-10 1843 48 1734 37 1705 35 9940 134100 196000 285000 667 11500 6.75 33.3 2400 311 19 6.11 T072A01-E-11 1847 49 1754 38 1731 37 9420 124000 183000 252000 619 10130 6.35 34.3 2290 335 25 7.46 T072A01-E-12 1985 51 1746 35 1679 33 10510 132300 195000 289000 679 11110 6.77 38.4 2360 323 23 7.12 T072A01-E-13 2017 53 1818 38 1762 36 9230 128700 189000 254000 651 11050 6.44 37.2 2090 302 18 5.96 T072A01-E-14 1850 50 1743 39 1715 37 8830 123500 184000 254000 635 10760 6.36 33.6 2024 325 14 4.31 T072A01-E-15 1932 50 1778 37 1728 35 10820 137000 196000 294000 690 13300 6.78 36.7 2240 323 18 5.57 T072A01-E-16 1946 50 1771 36 1723 34 9030 122500 197100 261000 611 10530 6.53 39.8 2189 323 15 4.64 T072A01-E-17 1862 46 1745 34 1715 33 9250 126000 190000 256000 638 10340 6.45 31.6 2390 319 26 8.15 T072A01-E-18 1884 49 1741 36 1702 35 10240 122600 184800 240000 633 10770 6.25 33 2270 300 14 4.67 T072A01-E-19 1849 47 1736 34 1708 33 9890 134400 201000 259000 650 10740 6.55 31.8 2310 317 26 8.20 T072A01-E-20 1816 45 1720 33 1698 32 9390 124800 192000 284000 655 9950 6.45 31.2 2520 295 30 10.17 T072A01-F-01 2274 88 1912 49 1776 46 8620 121700 180000 254000 587 9060 6.35 26.3 1950 186 15 8.06 T072A01-F-02 2089 66 1845 49 1772 47 10020 130000 217000 264000 684 9080 6.75 29.8 1350 180 15 8.33 T072A01-F-03 2232 61 1867 41 1748 38 9500 121000 168000 223000 618 8600 6.05 25.9 1550 195 19 9.74 T072A01-F-04 1944 55 1811 42 1775 40 10800 144000 219000 246000 718 10200 6.89 31.8 1350 223 24 10.76 T072A01-F-05 2670 90 2110 57 1854 52 10500 130000 210000 284000 710 10500 6.79 32.9 1680 208 23 11.06 T072A01-F-06 1973 58 1808 44 1762 42 9740 132000 201000 228000 748 11100 6.98 27 1450 218 24 11.01 T072A01-F-07 1977 61 1820 48 1775 46 9400 118000 193000 251000 640 10700 6.41 27.6 1590 228 29 12.72 T072A01-F-08 2025 56 1805 41 1744 39 10500 136000 207000 239000 724 10830 6.85 29.7 1660 253 19 7.51 T072A01-F-09 2388 82 1898 58 1722 52 8300 138000 188000 243000 625 8740 6.54 27.6 2310 242 30 12.40 T072A01-F-10 1990 54 1796 39 1744 37 8900 141000 201000 282000 673 10200 7.24 28.7 1740 224 25 11.16 T072A01-F-11 1868 56 1776 46 1756 44 7600 136000 192000 250000 604 9440 6.47 31.2 2370 232 24 10.34 T072A01-F-12 2269 73 1892 49 1762 45 12400 151000 237000 287000 769 11500 7.82 26.2 1530 201 21 10.45 T072A01-F-13 2407 76 1981 49 1822 46 11460 134000 194000 271000 758 9910 6.63 25.6 1097 136 11 8.09 T072A01-F-14 3380 107 2594 64 1954 59 9030 122000 210000 252000 638 10800 6.29 31.9 1960 198 17 8.59 T072A01-F-15 3120 92 2371 59 1885 51 8100 127000 187000 262000 589 9800 6.52 51.6 2200 223 22 9.87 T072A01-F-16 1967 56 1787 42 1736 40 10600 133000 212000 299000 638 10400 6.99 34.9 1233 275 32 11.64 T072A01-F-17 2056 63 1838 48 1773 46 9160 131000 206000 264000 698 9780 6.63 34.8 1270 264 28 10.61 T072A01-F-18 1981 60 1814 46 1765 44 10300 150000 198000 287000 714 9500 7.56 29.2 1400 178 24 13.48 T072A01-F-19 2255 70 1870 48 1742 45 10300 119000 203000 261000 670 9000 6.26 22.3 1280 142 19 13.38 T077A01-A1-01 2128 74 1817 54 1718 50 12100 137000 197000 261000 312 10500 7.21 15.3 409 110 14 12.73 T077A01-A1-02 1920 55 1782 42 1731 40 9000 118000 187000 229000 301 12300 6.43 16.2 1250 272 27 9.93 T077A01-A1-03 1964 56 1855 45 1812 43 9900 123000 192000 252000 312 11500 6.69 18.4 1148 295 24 8.14 T077A01-A1-04 1825 55 1695 43 1658 41 13500 135000 185000 245000 311 8140 7.24 14 1300 44.1 4.8 10.88 T077A01-A1-05 1936 53 1804 41 1765 39 11300 140000 195000 288000 348 12400 7.49 22.3 1280 335 39 11.64 T077A01-A1-06 4649 256 4000 211 1594 643 11200 137000 200000 241000 321 11500 7.3 20.7 1320 330 47 14.24 T077A01-A1-07 1989 61 1803 46 1751 44 10800 132000 184000 254000 325 11700 7.03 17.9 1670 247 22 8.91 T077A01-A1-08 1925 55 1808 43 1769 42 8700 127000 192000 249000 353 12480 6.8 22.6 1580 463 42 9.07 T077A01-A1-09 1917 53 1808 42 1778 40 10100 135000 188000 264000 330 14100 7.16 19.2 1426 396 24 6.06 T077A01-A1-10 2883 90 2042 55 1612 45 15400 149000 231000 260000 342 11800 7.96 18.5 1005 160 16 10.00 191  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T077A01-A1-11 2042 69 1821 41 1743 39 12500 134000 187000 289000 371 17300 7.35 20.5 1320 321 36 11.21 T077A01-A1-12 2861 95 2099 59 1709 50 13800 159000 182000 291000 343 10540 7.65 15.3 1103 175 18 10.29 T077A01-A1-13 1928 56 1806 44 1770 43 9500 140000 223000 273000 345 15000 7.31 24.5 1600 510 57 11.18 T077A01-A1-14 1877 58 1758 47 1724 45 12000 131000 200000 246000 319 10100 6.74 16 1290 211 22 10.43 T077A01-A1-15 1950 66 1830 55 1800 53 9200 145000 209000 263000 307 12200 6.95 20.7 1630 511 51 9.98 T077A01-A1-16 1885 50 1785 39 1758 37 10100 130000 194000 259000 327 11600 6.58 16.8 1200 317 41 12.93 T077A01-A1-17 1958 60 1809 48 1767 46 12400 136000 197000 228000 319 13000 7.08 20.4 1180 262 34 12.98 T077A01-A1-18 1911 52 1808 40 1780 38 11100 129000 201000 246000 309 11100 6.78 19.9 1240 364 39 10.71 T077A01-A1-19 1923 54 1835 43 1808 42 8900 128000 171000 242000 299 10120 6.59 19.4 1160 318 37 11.64 T077A01-A1-20 2847 128 2052 77 1660 65 14000 126000 183000 250000 265 8170 7.16 12.2 1120 30.1 3.4 11.30 T077A01-B-01 3180 136 2274 56 1671 55 11600 141000 192000 245000 406 14900 6.98 22.3 1350 552 51 9.24 T077A01-B-02 2783 96 2052 57 1702 49 13100 132000 193000 233000 334 10400 6.86 16.4 946 187 16 8.56 T077A01-B-03 2093 61 1843 44 1766 42 11300 137000 205000 275000 347 12700 7.13 18.7 1032 279 24 8.60 T077A01-B-04 2588 78 1915 47 1636 41 12000 135000 199000 248000 307 10600 6.73 16.3 1260 186 19 10.22 T077A01-B-05 2159 83 1872 62 1780 59 11500 126000 177000 254000 361 15100 6.42 24.1 1190 481 39 8.11 T077A01-B-06 1998 65 1767 48 1696 46 13280 132000 206000 240000 280 9840 6.92 16 1143 189 18 9.52 T077A01-B-07 2016 61 1829 47 1774 45 12300 130000 189000 247000 303 9900 6.85 17.9 870 175 23 13.14 T077A01-B-08 4032 149 3059 102 1693 89 9130 127000 170000 239000 296 9700 6.21 19.9 1230 360 44 12.22 T077A01-B-09 1973 67 1769 53 1714 51 10600 122000 191000 252000 321 10400 6.44 20.5 1058 281 29 10.32 T077A01-B-10 1873 53 1706 40 1664 38 11500 128000 168000 218000 253 9100 6.24 15.5 1100 142 13 9.15 T077A01-B-11 1890 51 1786 39 1759 38 11100 124100 185000 215000 274 10600 6.35 13.9 962 146 14 9.59 T077A01-B-12 1865 54 1750 43 1718 41 13700 147000 206000 261000 336 11800 7.3 18 1190 170 15 8.82 T077A01-B-13 1940 56 1755 42 1695 40 12100 126000 195000 226000 308 8120 6.33 14.2 890 123 13 10.57 T077A01-B-14 1956 56 1771 42 1722 40 11500 137000 196000 243000 351 10400 6.9 18.8 1090 201 21 10.45 T077A01-B-15 2060 63 1857 49 1794 47 10900 138000 187000 220000 332 10400 6.53 19.6 746 363 47 12.95 T077A01-B-16 1880 54 1749 42 1713 41 12000 116000 186000 227000 287 9100 6.15 15.3 1016 135 17 12.59 T077A01-B-17 2163 64 1833 44 1732 41 11800 149200 210000 265000 354 12100 7.1 17.7 1079 264 25 9.47 T077A01-B-18 2715 91 2029 57 1715 49 10700 126000 183000 238000 260 9390 6.28 19.2 853 231 18 7.79 T077A01-B-19 2196 64 1847 43 1728 40 11000 130000 180000 236000 348 11700 6.45 22.4 603 350 40 11.43 T077A01-B-20 1982 59 1839 47 1799 45 10700 121000 196000 224000 318 10240 6.87 20.3 983 276 31 11.23 T077A01-B-21 1966 52 1779 38 1724 37 10100 127100 170000 250000 302 10470 6.56 18.7 1110 254 24 9.45 T077A01-B-22 2032 61 1841 47 1777 45 9700 127000 196000 224000 296 10800 6.53 16.8 1059 250 19 7.60 T077A01-B-23 1968 56 1837 43 1800 42 12300 122000 178000 261000 318 11400 6.66 21.2 1080 307 25 8.14 T077A01-B-24 2213 63 1884 44 1774 42 11700 129000 196000 252000 324 11300 6.86 17.4 837 251 16 6.37 T077A01-B-25 1945 58 1811 46 1771 44 12200 139000 197000 248000 321 12200 6.86 21.7 990 311 37 11.90 T077A01-B-26 1981 57 1848 44 1805 42 6800 129300 178000 247000 307 9400 6.56 19.4 1670 474 52 10.97 T077A01-B-27 1972 53 1856 40 1822 39 7430 146000 205000 288000 338 11430 7.16 21 2110 567 46 8.11 T077A01-B-28 1930 58 1835 48 1805 46 8300 129000 177000 220000 295 11200 6.44 21.3 1570 466 45 9.66 T077A01-B-29 1912 57 1836 47 1814 46 10100 128000 204000 262000 362 13100 7.3 18.5 1440 357 30 8.40 T077A01-B-30 1952 55 1824 43 1785 42 8100 127000 176000 237000 334 11700 6.73 22 1810 417 48 11.51 T077A01-B-31 1948 53 1825 41 1790 39 9500 143000 196000 274000 330 11700 7.04 25.6 1750 542 90 16.61 T077A01-B-32 1969 57 1843 45 1802 43 9500 127000 179000 252000 320 11300 6.62 24.4 1790 477 49 10.27 T077A01-B-33 2009 66 1790 43 1723 41 13600 139000 204000 253000 353 10000 6.91 16 1160 130 17 13.08 T077A01-B-34 3097 130 2329 88 1825 73 11600 146000 204000 294000 356 11400 7.46 21.9 1500 328 33 10.06 T077A01-B-35 1959 56 1829 43 1790 42 9800 125000 185000 264000 340 11060 6.87 32.1 1505 631 42 6.66 T077A01-B-36 2072 77 1874 62 1808 59 13000 137000 190000 240000 349 9430 6.96 13.4 631 52.9 7.7 14.56 192  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T077A01-B-37 3303 102 2404 63 1744 52 9470 140000 191000 250000 317 12000 7.24 21.6 1470 366 44 12.02 T077A01-B-38 2748 95 2111 62 1796 54 14000 128000 191000 226000 306 9620 6.9 21.9 226 157 14 8.92 T077A01-B-39 1983 56 1847 43 1804 42 9440 123500 199000 287000 306 12100 6.98 25.7 1600 438 34 7.76 T077A01-B-40 2517 77 1980 52 1762 46 14000 143000 207000 249000 385 11320 7.2 21.2 986 199 20 10.05 T077A01-C-01 1948 52 1795 39 1749 38 9430 128300 197000 241000 312 12920 6.62 25.7 1645 506 39 7.71 T077A01-C-02 1931 53 1787 40 1748 38 11700 130000 181000 238000 365 14800 6.36 26.8 1550 535 46 8.60 T077A01-C-03 2446 75 1916 48 1711 43 11210 131100 205000 251000 328 11070 6.87 20.7 1427 352 25 7.10 T077A01-C-04 1947 50 1812 37 1772 36 8450 134900 196000 248000 329 12000 6.69 27 1740 588 43 7.31 T077A01-C-05 3137 85 2292 50 1742 42 10800 144000 188000 248000 325 12140 6.78 20.5 1169 353 26 7.37 T077A01-C-06 1927 49 1804 36 1766 35 11090 129900 195000 252000 318 11230 6.42 20.9 1130 312 18 5.77 T077A01-C-07 4696 186 4330 158 1916 106 9810 151200 214000 253000 379 14260 7.19 34.7 5110 591 40 6.77 T077A01-C-08 2193 67 1847 40 1731 38 7970 125100 174000 236000 312 9880 6.21 20.8 1355 406 29 7.14 T077A01-C-09 1885 50 1765 37 1734 36 9340 132000 191000 236000 308 10790 6.45 20.7 1350 386 36 9.33 T077A01-C-10 1934 52 1809 40 1775 38 12100 129000 199000 244000 304 11230 6.38 19.5 1200 325 21 6.46 T077A01-C-11 2242 67 1886 47 1771 44 10900 136000 186000 258000 351 12900 6.74 23 3670 456 32 7.02 T077A01-C-12 3240 100 2344 59 1738 49 12490 144000 183000 256000 361 16000 6.99 26.4 1630 545 57 10.46 T077A01-E-01 2051 63 1795 46 1721 43 14460 130100 196400 245000 362 9190 6.8 14.2 1071 62.6 3.5 5.59 T077A01-E-02 2081 68 1805 49 1718 46 14410 129100 200000 237000 369 8350 6.87 15 951 44.5 3 6.74 T077A01-E-03 2049 61 1838 44 1769 42 14090 123700 180000 241000 343 8280 6.47 13.6 1058 55.4 4.4 7.94 T077A01-E-04 1937 53 1787 40 1748 39 10650 133800 201900 267000 396 14450 6.84 21.6 7190 614 33 5.37 T077A01-E-05 1941 52 1797 40 1759 38 11470 135500 199000 265000 404 14100 7.03 24.8 5600 609 31 5.09 T077A01-E-06 4270 144 3411 102 1738 125 12690 131800 201600 250000 320 11990 6.87 24 1559 372 23 6.18 T077A01-E-07 2143 57 1796 39 1692 36 12070 129400 190000 251000 308 10310 6.78 19.7 1452 285 19 6.67 T077A01-E-08 3693 157 2733 106 1746 84 11920 124600 194000 237000 304 11720 6.71 21.2 2380 420 23 5.48 T077A01-E-09 1934 52 1785 39 1743 38 8910 132400 202800 271000 373 12520 6.99 21.8 4690 655 39 5.95 T077A01-E-10 1862 49 1714 36 1679 35 11430 125700 186000 255000 276 10630 6.57 17.6 1773 220 16 7.27 T077A01-E-11 1988 53 1813 40 1763 38 10940 126900 197500 253200 335 10660 6.82 39.5 1389 671 25 3.73 T077A01-E-12 4340 3212 4190 3100 1995 2811 bdl 78 197000 24 0.67 24.2 3.14 135.3 75.4 bdl - - T077A01-E-13 1972 53 1798 39 1745 37 11620 125700 201000 251000 290 11880 6.61 20.7 1391 342 17 4.97 T077A01-E-14 1916 53 1793 40 1760 39 9740 126200 194000 260000 303 10180 6.5 18.8 1373 391 25 6.39 T077A01-E-15 1913 52 1763 39 1728 38 11410 119900 189900 240000 291 10730 6.42 19.2 1480 325 14 4.31 T077A01-E-16 2154 58 1809 38 1704 36 11500 129900 199000 245000 297 11330 6.81 20.8 1476 335 14 4.18 T077A01-E-17 2005 60 1804 46 1746 44 12620 128000 189500 244000 290 10050 6.62 16.4 1373 208 12 5.77 T077A01-E-18 1879 47 1773 35 1747 34 11320 127600 200000 258000 310 11120 6.52 18.9 1340 368 17 4.62 T077A01-E-19 2201 83 1834 37 1706 35 11100 121700 187000 228000 296 10110 6.19 17.7 1330 317 29 9.15 T077A01-E-20 3071 191 2100 124 1538 92 13790 140400 201600 251000 366 10620 6.96 20 1627 196 17 8.67 T077A01-E-21 2586 77 1889 45 1608 39 11800 124100 198000 268000 303 11630 6.65 20.6 1790 351 17 4.84 T077A01-E-22 2652 69 1986 42 1697 36 12900 128100 198100 236000 320 12400 6.65 21.6 2760 336 21 6.25 T077A01-E-23 2205 65 1780 43 1643 40 13800 123000 194000 239000 293 10220 6.57 14.4 895 124 10 8.06 T077A01-E-24 2020 69 1728 51 1648 48 14300 118800 196000 226000 296 8700 6.56 14.8 494 60.3 3.4 5.64 T077A01-E-25 3596 148 2565 97 1628 72 10020 126900 189000 268000 358 11590 6.73 22.8 4470 443 33 7.45 T077A01-E-26 1952 62 1713 46 1650 43 14880 123400 196000 238000 355 8040 6.68 13.1 952 39.6 2.9 7.32 T077A01-E-27 1947 56 1797 43 1752 42 11640 133000 206000 266000 308 11670 6.85 21.8 1525 312 24 7.69 T077A01-E-28 1960 56 1806 43 1766 41 9380 135500 186400 246000 332 12800 6.72 23.9 2250 530 38 7.17 T077A01-E-29 2402 74 1926 46 1748 42 8580 126700 194000 245000 340 11670 6.48 21.9 1930 509 34 6.68 T077A01-E-30 4085 171 2862 111 1228 71 10260 135600 199000 273000 364 12570 6.69 25 3630 578 34 5.88 193  Specimen 207/235 Age 2 SE abs. 206/238 Age 2 SE abs. 207Pb c. 6/8 (Ma) 2 SE abs. Al ppm Si ppm Ca ppm Ti ppm V ppm Fe ppm Rb ppm Sr ppm Y ppm Zr ppm Zr 2 SE abs. Zr 2 SE % T077A01-E-31 1947 55 1789 42 1744 40 9450 128500 194000 246000 360 12460 6.42 21.9 2800 536 37 6.90 T077A01-E-32 3077 114 2303 73 1832 62 10070 133000 201000 279000 368 11230 6.63 22.5 3540 538 25 4.65 T077A01-E-33 1993 53 1797 39 1738 37 8790 129900 197000 249000 325 10040 6.41 34.6 1950 538 38 7.06 T077A01-E-34 1952 56 1790 42 1743 40 12280 136700 194000 270000 304 11810 6.58 22.4 1255 311 19 6.11 T077A01-E-35 2017 65 1813 49 1756 47 14500 125300 195000 250000 356 8720 6.6 14.6 1088 55.4 5.3 9.57 T077A01-F-01 2075 69 1842 53 1762 50 15700 155000 211000 291000 391 10400 7.82 18.1 796 110 11 10.00 T077A01-F-02 2110 66 1883 49 1812 47 13300 133000 186000 234000 351 10970 6.69 14.9 610 82 10 12.20 T077A01-F-03 1931 56 1818 45 1786 43 9500 126000 199000 229000 310 9890 6.67 21.9 1480 417 35 8.39 T077A01-F-04 1927 54 1821 43 1793 41 8500 117000 172000 227000 299 10600 6.03 19.7 1430 405 40 9.88 T077A01-F-05 1925 53 1844 42 1822 41 9600 141700 204000 308000 355 11900 7.43 23 1630 453 43 9.49 T077A01-F-06 1880 58 1751 46 1718 44 12200 136000 173000 214000 295 10600 6.57 18.5 1540 212 27 12.74 T077A01-F-07 1920 57 1794 45 1759 43 9970 150000 189000 248000 299 11000 7.02 19.7 1440 290 35 12.07 T077A01-F-08 2592 82 1956 50 1684 44 12300 139000 210000 246000 333 13100 7.18 17.4 1430 226 23 10.18 T077A01-F-09 1971 56 1852 44 1816 42 9000 140000 185000 273000 319 12700 6.97 27.7 1690 458 51 11.14 T077A01-F-10 1942 59 1815 48 1774 46 11100 123000 197000 251000 309 10780 6.73 17.8 1170 255 23 9.02 T077A01-F-11 2607 75 2038 48 1776 43 10000 132000 177000 219000 315 10300 6.83 22.5 1064 278 25 8.99 T077A01-F-12 1959 59 1842 47 1805 45 12400 144000 190000 254000 330 10700 7.29 17.5 1230 253 27 10.67 T077A01-F-13 3499 134 2516 88 1679 67 10100 139000 196000 263000 356 11080 7.25 22.8 1790 480 52 10.83 T077A01-F-14 1944 62 1778 48 1723 46 13800 136000 188000 255000 302 9460 7.12 14.1 1230 187 15 8.02 T077A01-F-15 1975 58 1844 46 1806 44 9480 123000 160000 224000 296 11100 6.65 24.5 1460 467 39 8.35 T077A01-F-16 1910 57 1810 46 1778 45 9970 152000 194000 248000 342 11490 7.6 23.6 1720 446 44 9.87 T077A01-F-17 1912 60 1724 45 1673 43 14300 140000 194000 234000 299 7110 7.12 12.7 1280 291 19 6.53 T077A01-F-18 2009 61 1801 44 1737 42 12200 134000 185000 261000 333 9800 7.06 15 1287 195 18 9.23 T077A01-F-19 1948 60 1851 49 1824 47 8890 146000 192000 238000 337 11020 7.69 24.4 1740 479 45 9.39 T077A01-F-20 2092 65 1874 42 1803 40 9800 137000 206000 254000 354 12100 7.81 26.3 1690 479 56 11.69 T077A01-F-21 2845 95 2090 60 1708 50 12600 136000 196000 243000 342 12080 7.23 22.2 1390 363 36 9.92 T077A01-F-22 3288 148 2339 97 1669 74 12000 123000 177000 225000 290 10290 6.76 17.7 1042 284 22 7.75 T077A01-F-23 2199 122 1905 98 1810 92 13100 163000 222000 248000 172 9090 7.99 18.3 218 59.8 5.7 9.53 T077A01-F-24 5203 205 5540 201 5218 32 10590 146000 198000 262000 315 9510 6.96 21.2 1380 369 31 8.40 T077A01-F-25 1979 60 1834 48 1791 46 11000 133000 182000 238000 332 13000 6.41 28.8 1630 481 66 13.72 T077A01-F-26 1954 59 1836 48 1806 46 8700 145000 175000 280000 313 10200 6.38 19.9 1650 427 57 13.35 T077A01-F-27 2554 136 2001 98 1771 87 8450 142000 192000 270000 292 10900 6.17 21.8 1350 412 50 12.14 T077A01-F-28 2157 72 1913 56 1832 53 14100 136000 189000 256000 333 10700 6.11 19.4 450 133 13 9.77  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T020A01-B-01 990 512 2940 562 3080 843 270 573 61.6 304 49.9 139 22.2 118 18.1 11.4 33.5 T020A01-B-02 1011 567 3140 676 3420 830 329 596 69.1 329 50 124 20.7 118 18 14 28.6 T020A01-B-03 1010 509 2510 597 3070 830 286 532 59.4 292 48.7 117 21.8 116 16.7 12.7 35.8 T020A01-B-04 827 209 1180 285 1680 630 182 471 60.4 271 41.9 115 15.9 87 12.8 14.6 46.6 T020A01-B-05 820 553 2790 605 3340 783 268 574 66.1 305 55.9 139 23.1 115 18.1 12 28 T020A01-B-06 792 479 2570 580 3270 817 261 546 63.1 306 47.3 126 20.9 112 16.7 10.7 22.1 T020A01-B-07 991 570 2810 683 3950 1100 317 733 80.4 375 57.4 154 24 132 20.2 15.5 43.7 T020A01-B-08 918 487 2840 629 3270 990 291 712 86 395 62 158 25.5 129 19.6 16.5 37.6 T020A01-B-09 1040 489 2890 564 3640 980 273 643 87 379 61.6 164 26 134 23 10.9 33.4 194  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T020A01-B-10 734 439 2390 511 3010 798 254 539 60.5 319 47.8 121 20.9 110 17.5 11.1 24.2 T020A01-B-11 645 65.2 368 74.4 390 136 56.3 121 14.6 91 16.6 43.9 7.6 53.8 6.6 11.6 22.4 T020A01-B-12 656 456 2660 588 3560 1040 300 699 87.8 422 65.9 184 30.6 164 25.5 12.8 34.8 T020A01-B-13 661 465 2350 488 3090 878 291 521 75.4 319 52.3 133 21.3 138 19.5 12.1 26.9 T020A01-B-14 844 494 2310 561 3320 923 292 634 76.1 373 55.9 145 27.1 139.3 20.2 14.1 37 T020A01-B-15 929 522 2860 611 3550 939 271 727 79.9 375 62.4 148 25 149 21.5 12.7 48.7 T020A01-B-16 788 489 2660 622 3660 1080 314 828 87.4 412 67.1 176 27.6 184 25.9 15.9 36.2 T020A01-B-17 814 509 2790 626 3550 990 297 646 81.3 396 62.9 165 27.3 157 21.6 16.2 27 T020A01-B-18 771 416 2460 591 3420 900 283 612 77 347 51.4 147 22.3 144 19.1 12.1 26 T020A01-B-19 745 502 2680 560 3440 1000 295 715 83.5 397 67.4 155 23.7 139 23.4 14 34.9 T020A01-B-20 644 438 2330 518 2960 795 259 607 70.9 338 50.7 139 24.6 135 18.2 12.7 25.7 T020A01-B-21 604 469 2400 535 2920 970 266 631 74.4 365 63.8 174 27.4 140 24.2 14.1 28.1 T020A01-B-22 1040 549 2870 636 3370 970 294 734 81.1 395 63 154 26.2 138 18.7 14.7 39.8 T020A01-B-23 980 576 3050 637 3340 930 309 564 71.8 326 53.5 150 23.2 128 19.4 14.8 28.9 T020A01-B-24 608 170 990 255 1490 488 187 348 45.8 211 35.5 91 13.9 79 11.6 8.4 21.9 T020A01-B-25 510 201 1109 249 1430 414 209 314 38.6 163 28.5 79 12.8 77.1 13 6.6 13.5 T020A01-B-26 817 218 1321 316 2090 663 210 569 60.1 290 46.7 130 17.1 95 13.7 10.6 47 T020A01-B-27 238 63.2 346 66.9 317 64.3 88 40.9 4.61 27.5 4.8 13.6 2.15 15.6 4.04 1.31 1.68 T020A01-B-28 245 57.3 256 43.8 167 36.1 58.7 27.8 3.16 17.8 3.65 10.5 2.41 19.1 3.32 0.98 1.63 T020A01-C-01 850 1340 5600 750 2960 710 286 411 47.9 196 40.5 93 14.4 74 14.3 19.9 17.9 T020A01-C-02 2210 7900 25000 2720 8700 1180 438 710 82 442 74 194 34.7 197 30.4 44.4 38.7 T020A01-C-03 1610 4600 18800 1720 5730 1040 350 561 70 312 57.4 151 24.8 157 21.8 37 21.7 T020A01-C-04 2460 7500 18200 2110 6050 970 434 545 68.8 260 51.2 124 23.2 135 21.4 43 24.5 T020A01-C-05 5190 20000 59200 4810 15000 2230 601 1270 144 780 130 324 61.5 344 42.2 90 110 T020A01-C-06 10800 39000 93000 9000 27300 3880 1000 1920 248 1190 200 548 85 565 70 177 196 T020A01-C-07 1830 870 3890 770 4100 1070 317 800 99 442 64 128 20.7 106 14.4 32.3 171 T020A01-C-08 3010 6900 23800 2650 9100 2050 503 1190 153 762 117 283 47.2 243 35.3 66 197 T020A01-C-09 2100 880 4270 880 4830 1550 359 1030 114 484 66 163 27.3 125 18.3 42.7 173 T020A01-C-10 1910 890 3740 770 4570 1250 391 940 108 435 59.4 168 26 119 17.7 40.7 152 T020A01-C-11 1530 810 3570 635 2850 755 313 537 59.3 293 41.3 102 15.4 86 14.6 104 59.4 T020A01-C-12 1350 671 3050 580 3190 720 263 467 50.1 260 40.4 107 15 81 12.8 88 56 T020A01-C-13 860 532 2760 512 2780 740 238 437 48.5 245 36.8 78 13.3 78 11.7 41.3 31.5 T020A01-C-14 1470 650 2590 569 2240 770 260 496 52.3 242 36.5 87 14.5 78.7 12.8 90 67.8 T020A01-C-15 481 497 2100 489 2630 670 234 375 52.4 207 38.5 87 10.4 81 12.9 17.6 21.6 T020A01-C-16 522 559 2410 405 2060 516 193 352 41.5 177 29.5 72 10.6 62 9.1 16.4 19.5 T020A01-C-17 559 420 2200 404 2120 560 212 502 47.1 195 31.2 75 12.6 69 9.9 16.2 41.3 T020A01-D-01 261 73 491 116 760 366 127 334 42.7 181 28.9 62 8.6 36 6 7.8 22.5 T020A01-D-02 739 224 1020 273 1500 508 177 480 48.5 240 38 86.5 11.5 53.5 9 13.1 48.6 T020A01-D-03 188 14.9 119 33.3 214 107 41.6 107 14.6 72 10.8 24.4 3.49 16.9 3.36 4.4 13.6 T020A01-D-04 346 5.1 40 15 122 100 34.3 151 27.6 163 25.7 60.2 9.9 48.2 6.11 7.6 12.3 T020A01-D-05 314 62.8 390 103 656 296 111 303 36.8 179 26.3 50.4 7.8 41.2 5.9 7.4 20.6 T020A01-D-06 1650 47 278 74 475 319 91 378 59 276 48.7 116 15.5 83 12.6 9 58.2 T020A01-D-07 326 66 463 92 556 212 90 193 24.9 118 17 41.3 5.01 29.7 3.35 5.5 15 T020A01-D-08 830 217 1390 351 2230 830 228 620 78 335 52.2 120 15.7 74 10.1 12.6 37 T020A01-D-09 515 79 537 126 653 230 111 179 22.3 108 17.1 40.4 5.95 31.2 6.5 10.1 35.5 T020A01-D-10 630 321 5600 336 1610 615 225 476 61.8 249 45.6 100.9 17.3 79 12.4 16.9 23.4 195  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T020A01-D-11 513 45.3 248 58.5 370 157 67 151 18.6 77 13.7 35.3 4.9 23.6 4.3 32.6 28.4 T020A01-D-12 534 31.1 187 52.7 311 169 78.8 220 33.1 158 23.8 58 8.4 49 5.17 8.4 20.1 T020A01-D-13 345 13.1 106 30.8 234 136 49.5 190 26 145 22.9 57.6 8.5 41.5 6.4 8.4 15.3 T020A01-D-14 770 13.1 85 23.4 168 100 46.1 146 26.3 152 21.7 55.4 8.9 43.7 6 10.3 17.8 T020A01-D-15 890 16.5 132 36.5 223 150 67 230 38 234 46 119 16.4 91 10.7 21.3 26.8 T020A01-D-16 482 22.2 160 40 295 140 58.5 163 17.8 113 18.9 45.1 4.4 27.3 4.9 11.5 14.3 T020A01-D-17 799 263 1430 332 1860 680 202 513 65 285 45.2 122 15.9 75.4 9.7 14.3 39.2 T020A01-D-18 392 87 560 148 800 280 103 198 26 143 22.3 47 6.1 30.3 4.8 4.7 15.3 T020A01-D-19 655 21.9 104 26.2 177 90 33.6 103 18 104 22.4 62 8.8 51.2 7.2 19.2 20.6 T020A01-D-20 1060 10.2 59 18.7 158 134 46 199 34.3 173 27.2 66 8.3 43.3 6.8 20.8 21.1 T020A01-G1-01 113 10 53.9 10.5 63 18.7 12.2 15.7 1.82 10.1 2.09 6.5 1.44 7.6 1.75 1.92 0.57 T020A01-G1-02 282 97.4 471 91 454 89 64.7 72 7 37.6 6.3 15.9 3.54 16.2 2.9 5 2.61 T020A01-G1-03 148 62.7 329 63.7 330 84 58.3 55.2 6.3 24.8 3.69 14.6 2.09 11.5 2.35 4.2 1.23 T020A01-G1-04 286 74 460 98 580 198 69 151 15.6 73 13.5 39.6 5.38 30.4 3.53 5.1 18.2 T020A01-G1-05 185 37.8 226 45.6 244 49.8 36.3 36.4 3.46 16 3.2 10.7 1.48 10.3 1.76 3.14 0.57 T020A01-G1-06 316 106 550 111 536 126 77.5 93 10 48.9 7.7 22.2 3.49 22 3.65 6.1 4.12 T020A01-G1-07 437 135 632 118 551 99 74.8 69 7.4 30.4 4.73 14.8 2.65 16.1 2.7 6.2 3.54 T020A01-G1-08 624 196 1060 225 1010 243 136 193 18.4 108 16.3 39.7 5.99 34.2 5.56 8.8 12.9 T020A01-G1-09 199 48.7 265 52.5 263 64.5 46.2 44 4.71 22.1 4.03 10.6 1.42 11.6 2.37 3.86 1.25 T020A01-G1-10 129 7 63.7 17.1 131 45.8 25.4 38 3.91 17 3.49 9.7 1.36 9.3 1.53 1.6 0.43 T020A01-G1-11 197 31.7 222 58.9 336 99 68.2 72.9 8.1 36.4 6.96 16.3 1.99 12.8 3 3.7 1.08 T020A01-G1-12 639 150 780 152 718 139 97 101 11.2 42.7 8.2 21.9 3.46 21.5 4.01 8.6 10.6 T020A01-G2-01 273 109 511 87.2 392 84 64.2 63.9 5.7 29.3 5.1 11.5 2.37 12.8 2.37 4.12 1.47 T020A01-G2-02 593 245 1020 245 1110 280 147 233 23 112 17.3 44.5 7.48 39.1 7.3 8.6 14.4 T020A01-G2-03 576 202 1140 257 1350 408 149 293 31.1 151 24.4 67.2 9.08 48.2 8 9.6 32.9 T020A01-G2-04 810 272 1430 332 1640 481 200 351 38.7 177 26.8 75 11.7 56.2 9.9 11.1 38.5 T020A01-G2-05 434 160 800 163 787 203 113 154 14.8 79.9 11.7 30.5 5.48 31.7 4.98 6.4 8.81 T020A01-G2-06 257 88 418 75.9 385 77 56.9 50.6 6.4 28.7 4.24 12.4 1.79 13.2 2.11 4.9 0.89 T020A01-G2-07 109 28.9 283 41.7 203 44.9 42 34.5 3.58 19.4 3.62 8.96 1.18 9.6 1.75 3.25 0.29 T020A01-G2-08 72.3 8.5 67.2 16.6 114 28.9 16 25.4 2.56 15.2 2.1 7 1.17 8.5 1.73 0.94 bdl T020A01-G2-09 630 160 972 208 1300 378 146 345 40.4 174 26.7 66.8 10 61.5 8.1 8.4 53.9 T020A01-G2-10 663 247 1270 251 1310 362 166 288 31.6 143 22.5 59.9 9.1 45.2 7.7 9.4 24.3 T020A01-G2-11 435 151 747 161 776 198 112 144 13.8 58.9 11.3 34.3 4.57 25.1 5.43 6.7 6.8 T020A01-G2-12 247 63.7 337 65.5 355 85 59.1 56.4 5.76 31 4.59 12.3 2.01 10.4 2.3 5 1.42 T020A01-G4-01 488 109 670 161 980 313 129 258 31.3 146 23.4 53.3 7.9 49.5 6.58 6 36.1 T020A01-G4-02 527 112 613 148 945 236 112 188 20.1 102 14.9 41.6 6.66 31.5 6 5.1 25.4 T020A01-G4-03 323 45.2 241 49.5 279 65.6 61.1 53.6 6 32.5 4.42 15.1 2.75 16.6 2.77 2.13 17.1 T020A01-G4-04 653 150 1008 236 1440 478 173 360 46 199 35 86 14.2 65.7 11.01 10.6 49.1 T020A01-G4-05 624 127 830 209 1234 413 157 319 39 193 30.4 78 11.9 60.6 10.3 6 42 T020A01-G4-06 452 65.5 340 79.7 459 142 84 119 13.6 68.6 11.7 32.4 5.79 34.8 6.09 2.84 22.8 T020A01-G4-07 202 26.4 151 37.1 234 75.6 69.9 55.3 7.35 37 7.97 23.1 4.43 33.3 4.84 1.77 5.4 T020A01-G4-08 309 65.7 355 81.5 392 112 66.9 86.9 9.2 48.2 8.2 24.4 3.92 27.2 3.93 3.65 10.9 T020A01-G4-09 408 78.9 417 95 479 141 78.5 88 9.26 47.3 8.2 20.9 2.94 19.5 2.99 3.43 11.4 T020A01-G4-10 580 154 910 203 1130 358 130 273 33.6 139 24.7 59 8.6 47.8 8.2 7.7 27.8 T020A01-G4-11 289 41.9 218 47.7 230 64 53.7 57.2 6.4 29.8 6.06 15.4 2.48 16.5 2.2 1.49 7.49 T020A01-G4-12 484 101 568 134 753 211 104 187 19.4 94 13.7 37.5 5.6 37.8 4.3 4.7 24.8 196  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T045B01-A-01 385 134 612 78 328 119 120 95 18.2 117 23 67 12.3 68.7 12.2 6 5.8 T045B01-A-02 371 99 248 34.1 127 27.7 138 21.4 2.46 12.1 3.2 7.6 1.1 7.8 1.59 5.4 2.82 T045B01-A-03 405 57.7 218 45.2 195 51.3 114 47.6 5.7 27.3 6.2 17.9 2.61 15.8 2.32 6.3 7.3 T045B01-A-04 739 72 373 74.4 377 113 159 120 15.7 86.9 18.5 48.5 9.1 55.3 8.7 7.1 14.3 T045B01-A-05 790 93 392 68.3 311 83 186 61.2 8.7 40.3 7.11 22.3 2.81 21.5 3.62 4.84 9.7 T045B01-A-06 1061 99 471 86 463 155 165 151 25.1 154 28 73.8 14.4 101 14.2 8.1 21.4 T045B01-A-07 423 93 283 38.4 184 32.2 164 26.9 3.39 16.1 3.01 10.2 1 10.1 1.81 4.3 2.51 T045B01-A-08 1240 207.5 690 81 276 75 225 37 6.1 41 7.1 17.9 3.3 26 2.75 7.5 11 T045B01-A-09 1010 109 590 90 444 132 185 103 14.5 79 14.6 47.4 7.9 51.2 7.6 5.7 21.3 T045B01-B-01 900 230 910 138 688 214 144 270 52.2 288 60.6 197 33.9 220 33.5 11.9 30.9 T045B01-B-02 655 326 1080 142.8 619 164 125 191 35.4 237 47.1 151 27.9 175 26.9 15.3 32.2 T045B01-B-03 266 300 713 84.5 343 66.9 93.7 66.8 13.4 86.1 16.3 59 11.6 82.4 16 6.9 4.21 T045B01-B-04 444 131 278 30.4 113 24.7 101 29.4 4.29 28.1 6.6 23.3 4.64 31.7 6.7 16.3 5 T045B01-B-05 438 125 253 25.9 90 20.7 82 20.6 3.59 28.3 5.11 20.5 4 22.7 4.91 21.6 5.44 T045B01-B-06 1570 285 1660 308 1530 514 130 575 111 810 153 543 87 510 77 15.9 33.4 T045B01-B-07 1870 328 1790 299 1450 499 163 579 114 754 162 495 91.5 545 80.4 15.9 46.7 T045B01-B-08 155 120 288 34.9 132 26 76.6 31 5.29 37.1 7.53 29 5.28 40.3 6.3 13.3 2.53 T045B01-B-09 703 131 277 35.9 126 33 98 38.9 7.3 40.6 10 33.7 5.64 38.7 6.6 58.3 13.5 T069A01-B-01 2710 9700 22800 2230 6580 1087 247 939 128 709 135 346 55.5 285 32.2 9.9 147 T069A01-B-02 2380 713 1670 245 1030 377 143 387 69.9 426 84.9 311 52.3 271 39 6.5 108 T069A01-B-03 2190 869 2790 470 1940 649 255 606 88 595 108 278 48.6 231 34.9 10.9 91 T069A01-B-04 2180 292 1340 317 1680 569 228 621 92 563 103 278 43.8 224 27.4 9.7 90 T069A01-B-05 2140 318 1350 234 1170 504 267 528 97 599 115 350 53.3 297 36.6 10.3 115 T069A01-B-06 3010 1010 3260 510 2520 810 248 850 132 850 151 454 66.2 333 44.4 12.2 168 T069A01-B-07 1960 269 1450 169 800 246 191 289 38.8 229 43 127 24.5 118 15.8 7.2 66.3 T069A01-B-08 1270 163 717 105 457 150 155 152 23.5 147 29.2 87 13.9 82.9 11.3 4.4 48.5 T069A01-B-09 1680 101 548 113 552 164 150 162 26.4 146 25.9 79.8 13.3 76 12.7 5.9 57.7 T069A01-B-10 1700 195 820 99 392 103 87 88 12.5 81 14.5 46.7 8.3 50.8 8.4 3.78 37.7 T069A01-B-11 2410 94 668 132 760 305 134 311 49 391 75.5 195 31.3 189 24.6 6.6 88.7 T069A01-B-12 2710 176 1190 232 1340 512 195 534 87.6 541 109.2 310 50.2 259 34.5 9.1 106.1 T069A01-B-13 3230 215 1290 322 1660 710 242 695 119 689 122 364 58.2 275 40.2 10.8 157 T069A01-B-14 1080 108 385 71 279 90 79 91.9 15.1 98 20.3 68 10.8 59.9 10.9 5.5 29.5 T069A01-B-15 1440 68.2 384 69.2 295 87.5 72 94.7 16.3 116 24.1 73.8 15.2 88 16.1 6.8 40.6 T069A01-B-16 1230 52 294 60.9 363 135 133 135 27.3 155 31.4 104 16.9 100 17.7 4.4 40.2 T069A01-B-17 3440 502 2450 507 2950 947 281 980 154 1000 163 447 77.1 397 48.2 13.7 194 T069A01-B-18 2930 338 2010 438 1930 830 286 760 118 770 127 321 50.3 267 32.1 9.9 123 T069A01-C-01 1230 148 517 82 363 113 256 97.4 16.3 93 16.8 49.5 8.86 61.1 10.8 5.4 9.2 T069A01-C-02 2200 186 617 93.6 435 123 331 114 16.7 98.2 21.1 58.7 11.1 76.7 13.9 8.4 16.9 T069A01-C-03 1650 175 745 140 749 251 321 227 34.6 214 38.2 118 20.7 129 24.1 8.5 10.9 T069A01-C-04 2800 351 1610 388 1990 801 371 702 113 719 127 349 62.6 313 54.2 13.6 83.8 T069A01-C-05 2400 351 1710 392 2130 814 379 728 118 687 124.1 367 64.1 348 52.1 15.4 19.6 T069A01-C-06 1730 298 1300 264 1330 460 330 433 73.7 378 72.2 217 38.8 222 35.5 13.5 26.3 T069A01-C-07 2050 309 1530 320 1770 692 355 706 100 671 118 333 60.6 333 50 13.5 71.5 T069A01-C-08 2420 262 1190 263 1309 429 349 387 58.9 336 67.4 188 33.5 196 33.2 10.9 33.6 T069A01-C-09 2720 328 1670 373 2080 809 360 850 124 734 124.9 348 58.9 318 44.2 16 97.1 T069A01-C-10 2860 323 1510 327 1680 596 376 594 87 572 96.4 282 46.1 276 41.1 16.7 79.3 197  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T069A01-C-11 2880 335 1700 341 2130 771 352 695 111.3 639 119 343 59.6 297 52.1 12.8 60.1 T069A01-C-12 856 146 555 93.3 414 128 268 111 17 91.4 19.2 50.9 11.1 66.2 10.9 5.7 3.69 T069A01-D-01 1150 245 847 118.5 443 94.2 229 65.6 8.18 49.7 10.13 30 5.81 33.5 7.45 4.8 14.7 T069A01-D-02 1520 254 931 130 464 122 274 86.2 12.7 69.1 11.8 38.9 6.51 44.8 8 5.1 11 T069A01-D-03 1862 351 1410 231 1150 311 299 282 39.6 220 45.6 124.2 20.9 131.2 21.8 9.3 42.6 T069A01-D-04 2890 408 1660 299 1280 357 324 333 46.9 262 49.2 138 21.8 142 22.2 10.7 61.9 T069A01-D-05 1227 294 1170 183 761 210 301 168 23.2 131 28 71.9 13.5 73.2 15.1 7.2 23.7 T069A01-D-06 2400 386 1660 290 1470 480 321 408 60.2 339 61.9 187 29.7 177 28 12.5 108 T069A01-D-07 1314 317 1280 214 837 242 298 208 29.6 167 28.3 93.1 16.6 106 19.6 7.8 27.8 T069A01-D-08 4730 551 2260 366 1750 501 391 444 62.7 357 63.2 174 30 184 28.7 18.9 364 T069A01-D-09 2720 394 1640 295 1420 432 341 395 50.8 293 56.5 164 29.5 166 24.6 12.1 94.1 T069A01-D-10 891 240 810 118 420 94 219 72.9 10.2 53.9 10.9 34.8 6.2 39.2 6.97 5.1 14.6 T069A01-D-11 1001 161 530 82.7 283 58.3 211 53.6 6.48 39.2 7.66 19.4 3.76 22.9 4.73 3.3 7.8 T069A01-D-12 1550 211 810 132 519 140 252 121 16.8 94.9 18.8 51.1 8 44.9 8.1 6.4 21.2 T069A01-D-13 1577 171 656 121 558 140 258 127 17.8 104 15.9 49.5 7.41 45.1 7.9 5.5 19.6 T069A01-D-14 2210 411 1570 297 1280 410 328 350 52.3 303 59.9 168 27.9 166 27.7 12.4 65.5 T069A01-D-15 1023 267 929 142 569 124 291 112 15.2 79.7 17.9 51.2 8.37 53.4 9.3 3.5 13.2 T069A01-D-16 888 240 771 107.7 402 101 238 77 10.39 59 12 36.5 6.8 37.1 6.47 4.4 9.3 T069A01-D-17 1447 315 1200 184 718 187 282 153 20.6 118 24.1 67.8 13.5 74.4 13.1 5.5 22 T069A01-E2-01 1790 306 1360 264 1226 452 270 466 64 349 64.2 177 27.4 144 20.6 11 84.3 T069A01-E2-02 1490 231 889 190 801 281 235 280 41.4 239 44.6 129 23.9 127 18 6.4 45.6 T069A01-E2-03 1042 112 431 72.2 310 106 170 110 17.1 109.6 21.7 70 14.5 99.5 16.6 3.06 24.6 T069A01-E2-04 2290 527 2270 420 2130 699 394 633 92.1 548 106 271 49.9 260 42.5 14 68.6 T069A01-E2-05 1550 239 1023 191 1010 278 293 266 41.8 245 46.2 138 24.2 139 24.6 7.2 43.6 T069A01-E2-06 1039 54.6 180 28.4 117 33.7 159 34 5.84 33.9 6.7 22.3 3.68 27 4.61 3.28 48.5 T069A01-E2-07 1147 46.6 164 26.6 100.8 32.7 151 32.7 5.25 36.2 6.37 21.6 3.7 24.7 3.61 2.23 66.9 T069A01-E2-08 921 48.3 184 26.3 114 32.5 152 34.1 4.73 27 5.46 19.5 2.75 18.3 2.97 1.74 32.8 T069A01-E2-09 1229 53.9 204 35 137 43.4 178 43 7.31 43.5 9.2 28.6 5.14 33.1 5.1 2.33 65.5 T069A01-E2-10 1430 67.5 256 37.5 172 55.7 170 60.9 8.4 56.8 11.2 34.6 6.2 40.1 6.66 2.33 31.5 T069A01-E2-11 1340 160 644 106 506 152 259 152 25.7 163 34.1 102.1 20.3 120 23.6 2.95 31.4 T069A01-E2-12 1138 103.2 419 66 295 96 237 108 18.1 121 24.8 86.7 18.8 123 22.8 2.26 22.4 T069A01-E3-01 1560 217 500 60.2 229 57.1 211 46.6 7.3 40.1 7.21 24.8 3.83 26.6 4.63 3.54 12.1 T069A01-E3-02 2240 398 1400 219 827 252 326 222 35.6 187 35.6 108 19.8 118.2 21.1 12.4 32.1 T069A01-E3-03 2330 415 1720 299 1390 409 325 362 55.7 346 66.1 185 30.3 192 28.9 13.1 70.3 T069A01-E3-04 1350 90 239 30.3 123 30.4 223 28.8 4.65 27.2 6.25 16.6 2.58 21 4.88 1.06 14.1 T069A01-E3-05 1367 63.1 223 36.8 154 55.9 156.8 59.5 10.3 69 12.9 42.7 9.1 61.1 10.05 3.5 35.4 T069A01-E3-06 2310 162 675 120 536 185 224 182 31.2 186 40.1 107.3 22.6 137 21.5 8.1 96.1 T069A01-E3-07 2680 470 2120 406 2220 726 357 698 114 715 125 323 55.2 296 43.3 15.3 69.3 T069A01-E3-08 2080 144 502 79.9 344 101 242 105 17.6 115 22.4 71.3 12.1 69.5 12.4 3.62 30.5 T069A01-E3-09 1363 61.9 214 31.8 142 53.1 185 56 9.2 58.7 11.5 33.9 6.03 25.5 4.56 1.34 24.3 T069A01-E3-10 1400 144 549 105 470 133 279 149 23.4 147 30 86 19 107 21.6 4 18.7 T069A01-E3-11 1170 66.6 258 44 201 69 280 64.9 11.5 65.8 14 40.7 7 38.2 6.8 1.81 13.61 T069A01-E3-12 1150 116 445 71.5 331 93 256 92 16.5 114 22.3 71 14.5 93.7 17.6 3.8 14.6 T069A01-F-01 910 75.3 264 48.9 189 46.6 151 40.5 5.45 30.8 5.77 16.6 2.31 15.9 3.79 4.8 15.4 T069A01-F-02 316 76.6 280 37.7 158 42.1 67.3 37.6 4.42 20.9 4.09 12 2.01 12.2 2.17 2.85 8.09 T069A01-F-03 1117 109 406 59.6 240 46.8 162 39.5 4.58 23 4.38 12 2.11 15.6 2.31 4.29 13.7 198  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T069A01-F-04 1160 107.2 403 61.9 249 54.6 163 35.4 4.79 24.1 5.42 11.3 2.58 15.8 2.75 4.47 11.8 T069A01-F-05 1401 107.3 375 63 240 61.8 193 48.7 5.7 30.1 5.24 14.9 3.52 15.4 2.84 4.23 29.8 T069A01-F-06 1100 78.6 268 39.5 159 34.1 138 24.5 3.05 15.6 2.69 7.93 1.65 6.2 1.49 5.9 18.4 T069A01-F-07 1126 51.7 250 54.6 253 91.5 202 89.5 10.64 64.7 13.1 37.9 7 44.7 8.23 5.4 11.6 T069A01-F-08 1044 43.4 221 49.8 229 72.8 187 69.4 10.1 60.1 10.8 37.6 5.32 35.3 6.16 3.5 4.42 T069A01-F-09 1040 47.5 236 50.7 244 79.7 180 73 10.04 63.1 11 41.1 7.7 48.2 7.85 5.5 8.3 T069A01-H1-01 1810 98.1 496 122.8 623 282 187 304 50.7 316 59 162 28.4 161 29.1 5.6 39.6 T069A01-H1-02 2770 372 1930 444 2450 1010 363 989 156 958 169 473 78.6 416 54.8 15.9 72.2 T069A01-H1-03 2970 294 1410 303 1480 564 320 627 96.9 594 106.1 306 48.6 260 38.6 11.2 80 T069A01-H1-04 2500 179 844 174 955 375 308 439 76.8 454 77.8 250 43.7 244 35.3 7.2 54.6 T069A01-H1-05 2910 410 2060 441 2660 994 346 1078 166 930 172 479 79.1 408 56.6 17.2 100.9 T069A01-H1-06 1580 119 491 94 502 205 166 228 39 226 45.1 116.8 21.2 120 18.1 5.3 35.8 T069A01-H1-07 1620 68.7 354 86 467 221 265 266 42.3 301 54.5 160 25.2 139 21.3 4.2 34.5 T069A01-H1-08 2290 101.4 493 111.5 618 295 295 320 52.4 326 58 175 32.7 151 23.7 5.7 61.3 T069A01-H1-09 1420 114 533 109.2 604 254 169 251 38.7 238 44 125.7 19.8 121.4 18.6 7.1 51 T069A01-H1-10 2470 184 841 187 977 361 197 392 59.8 367 62.6 181 30.2 159 25.8 9.2 94 T069A01-H1-11 2310 306 1600 345 1810 723 356 731 119.3 682 119 348 57 275 41.2 13.4 51.4 T069A01-H2-01 1640 271 1173 252 1240 476 263 479 72.8 444 75.9 224 35.1 207 28.6 9.8 99 T069A01-H2-02 1380 172 789 138 750 267 170 253 45.2 232 44.9 120 19.6 111 17.7 6 61.2 T069A01-H2-03 3490 283 1220 250 1158 416 258 435 63.9 403 63.2 185 30.5 158 23.7 10 112.1 T069A01-H2-04 4030 344 1270 229 1080 385 287 383 53.9 302 58.5 161 25.4 136 21.6 10.2 159 T069A01-H2-05 3290 67.9 198 26.9 116 35.2 113 42.3 5.2 42 8.4 27.6 4.3 35 6.4 3.54 67.1 T069A01-H2-06 1240 82.2 270 40.5 170 59.7 109 59.2 10.5 60.6 13.5 38.3 8.5 55 9.8 1.07 17.9 T069A01-H2-07 1940 107 421 76.7 389 141 153 140 23.6 150 27.1 78 14.3 89 16 3.32 33.9 T069A01-H2-08 2020 82.6 315 59.2 268 91 132 87 15.3 107 18.8 57.2 10.3 64.6 11.3 1.92 39.3 T072A01-A-01 2220 780 3600 744 3570 1210 261 1030 142 930 142 427 68.1 313 45.4 24 544 T072A01-A-02 2020 632 2770 593 3030 901 304 773 113 690 119 298 62.9 310 50.1 18.2 274 T072A01-A-03 1610 920 3560 664 3330 860 227 850 111 643 106.8 338 49.1 246 36.7 17.5 322 T072A01-A-04 1230 764 3640 730 2810 911 254 750 108 572 118 336 61.8 324 54.9 17.7 180 T072A01-A-05 1420 684 3020 583 3160 1060 253 960 133 820 160 460 77 394 64.5 20.1 439 T072A01-A-06 1000 860 4070 660 2940 780 207 651 104 566 111 304 50.8 253 41.7 19.8 149 T072A01-A-07 1460 1310 7380 825 3130 789 189 653 86 529 94 270 52.8 249 42.4 23.1 216 T072A01-A-08 1200 826 4610 669 3090 721 200 666 88 506 96 296 46.3 286 44.3 18.3 80.6 T072A01-A-09 1780 805 3990 705 3720 870 260 810 113 624 131 369 65.4 384 50.8 25.7 517 T072A01-A-10 1790 1030 3560 660 3090 860 228 790 115 691 122 357 63 340 55.2 30.8 623 T072A01-A-11 1070 687 3330 516 2800 780 223 721 107 614 119 328 64.2 327 56.7 15.2 178 T072A01-A-12 1210 779 3400 640 3010 838 246 819 109 626 122 354 63.8 374 60.2 20.8 177 T072A01-A-13 922 481 2410 361 1740 572 140 506 74.2 418 75.6 199 35.6 186 31.4 13 176 T072A01-A-14 818 465 3070 383 1830 498 138 436 66.5 357 74 203 34.2 193 28.9 15.9 127 T072A01-A-15 1270 327 2380 282 1550 472 120 419 59.8 353 64.2 196 32 182 32.6 14.6 263 T072A01-A-16 1140 262 1620 330 1920 650 139 577 68.3 470 83 247 38.6 190 33.1 13.1 256 T072A01-A-17 1130 860 4390 541 2380 700 166 586 77.7 463 83 232 37.7 181 31.8 16.3 202 T072A01-A-18 1510 940 4550 720 3190 970 215 790 104 579 132 324 53 291 45.3 18.6 191 T072A01-A-19 1020 890 5780 597 2410 679 164 619 84.5 438 78.9 243 39.8 228 33.1 15.8 192 T072A01-A-20 1210 294 1820 258 1380 458 135 494 69.8 351 73 201 34.7 187 27.9 11.3 180 T072A01-A-21 1300 767 3880 623 2890 820 226 690 95 508 100 304 48.2 251 42.6 21.7 146 199  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T072A01-A-22 1480 920 4510 612 2930 820 193 701 79 502 79.8 230 33.4 173 27 19.2 171 T072A01-A-23 1110 750 2970 590 2750 680 190 610 93 459 83 233 37.1 194 28.3 16.3 134 T072A01-A-24 790 173 1040 228 1210 437 130 468 64.2 397 77.5 216 35.2 163 27.7 10.9 117 T072A01-A-25 1380 1650 12900 900 3600 910 192 664 92 491 99 277 51.7 267 37.5 16.4 224 T072A01-A-26 1810 804 3590 669 3270 853 236 781 106 650 129.9 358 62 312 50.9 33.3 623 T072A01-B-27 870 698 3050 599 2780 716 210 629 86.3 525 101 324 59.3 318 49.3 16.3 112 T072A01-B-28 1100 923 4980 790 3440 867 242 764 108 599 122 363 57.2 334 54.1 20 146 T072A01-B-29 1050 675 3190 635 2960 830 226 618 96 533 98 319 55.5 307 49.8 19.1 136 T072A01-B-30 1200 747 3820 663 3240 734 209 665 92.1 575 99.9 282 54 281 47.3 19 110.1 T072A01-B-31 1170 710 3730 638 3190 790 224 710 106 576 114 363 63 347 53.8 19.3 147 T072A01-B-32 1050 1010 5520 760 3360 900 246 734 101 583 120 365 64.3 349 53.7 18.5 139 T072A01-B-33 846 213 1250 226 1330 507 130 475 69 403 80.1 198 34.6 171 26.8 12.3 151 T072A01-B-34 950 656 2900 573 2750 800 197 683 88 537 104 297 58.2 285 47 18 125 T072A01-B-35 1120 535 2420 492 2470 620 171 529 65.5 410 64.1 196 31.1 143 23.8 14.3 134 T072A01-B-36 920 585 2520 357 1660 473 134 401 58.2 338 64.2 195 31.4 178 27.9 13.4 117 T072A01-B-37 897 610 3440 420 2070 614 157 535 68.4 431 71.4 223 40.8 199 33 16 137 T072A01-B-38 1080 241 1430 302 1420 437 126 425 62.5 371 66 205 36.4 188 27.2 14.3 202 T072A01-B-39 1040 203 1111 234 1520 421 127 411 61.9 354 68.4 209 36.7 181 35.7 11.1 184 T072A01-B-40 1330 1880 17300 1110 4110 1010 242 800 113 679 122 298 48.7 248 40.3 19.9 162 T072A01-B-41 1300 238 1470 334 1810 563 114 469 72 408 78 202 36.5 167 27.9 16 166 T072A01-B-42 1330 645 3010 569 2880 640 182 585 69.6 411 71.5 204 33.5 171 26.6 17.2 130 T072A01-B-43 1330 720 3000 614 2620 662 179 580 81 413 66.1 198 36.1 146 25.6 19.6 158 T072A01-B-44 1400 607 2940 544 2740 714 192 562 78 381 78 196 31.5 144 26 17 132 T072A01-B-45 1030 416 1780 425 1980 560 166 535 75 371 71.1 188 31.6 179 25.3 14.9 136 T072A01-C-01 670 338 1570 308 1680 492 145 418 58.5 343 71 206 33.9 182 27.9 15.1 51 T072A01-C-02 379 458 1600 270 1090 272 125 232 31.8 197 38.6 141 29.1 156 27.5 14.3 14.4 T072A01-C-03 744 383 1580 242 1080 283 111 249 28.2 192 42.6 124 23.2 166 27 12.3 25.3 T072A01-C-04 710 358 1840 300 1170 313 124 268 38.4 261 51.4 162 29.5 173 32.1 13.3 31 T072A01-C-05 534 526 1850 251 1210 235 139 212 29.1 202 45.9 128 28.6 172 30.5 12 18.7 T072A01-C-06 534 528 1860 270 1080 265 125 238 29.3 162 44.5 116 26.8 160 31.7 14.6 26 T072A01-C-07 685 532 1960 314 1330 311 133 284 38.1 235 54.6 167 35.9 188 33.4 13.9 27.4 T072A01-C-08 870 538 2240 309 1310 266 123 252 38.4 245 54 165 28.5 167 29.6 14 33.3 T072A01-C-09 431 353 1260 190 800 160 88 168 19.9 139 30.1 94 19 127 24.1 9.9 15 T072A01-C-10 602 429 2020 294 1140 258 130 222 28.5 193 40.8 122 26.8 138 27.9 13.8 19.7 T072A01-C-11 696 282 1500 268 1500 399 120 378 54.4 272 54 174 26.4 159 25.7 11.7 48 T072A01-C-12 393 163 800 145 734 203 97 197 26 160 33.2 97 17.1 110 19.4 7.4 14.4 T072A01-C-13 599 273 1330 225 945 284 144 248 34.1 198 40.3 112 20.9 117 20.6 13.3 24.7 T072A01-C-14 484 185 970 202 1010 276 131 251 31.6 218 43.5 131 25.2 162 24 12 12.5 T072A01-C-15 473 388 1510 236 882 219 106 168 24.5 144 31.1 96.5 19.1 112 21.2 12.2 17.2 T072A01-C-16 372 186 920 188 957 251 117 241 31.2 186 36.5 118 20.7 117 22.3 11.8 11.1 T072A01-C-17 616 508 2120 266 1130 228 124 199 24.6 159 30.7 103 17 118 22.4 12.8 18.4 T072A01-C-18 1000 610 2560 412 1560 352 149 339 43.3 245 53.8 161 28.6 164 26.9 14.8 31.4 T072A01-C-19 1000 441 1980 323 1350 341 155 297 38 246 47.9 140 28.7 161 29.5 15.5 35.5 T072A01-C-20 817 485 2050 339 1490 355 154 310 45.1 275 53.8 167 35.6 221 33 16.6 38.2 T072A01-C-21 579 440 2000 318 1320 345 136 291 38.4 228 48.5 130 31.7 193 32.9 14.4 19.8 T072A01-C-22 703 439 1800 318 1230 345 135 260 40.9 253 51.9 160 30.9 181 33.7 14.9 28.3 200  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T072A01-C-23 663 438 1770 286 1160 292 121 242 34.3 220 43.2 147 30.4 191 32.7 11.4 24.1 T072A01-C-24 687 482 1640 279 1077 251 134 215 27.9 212 39.7 135 31.5 177 30.5 14.5 27.3 T072A01-C-25 628 283 1320 196 940 252 112 212 27.5 173 39 113 23.3 152 22.4 11.5 30.8 T072A01-C-26 613 296 1310 246 1180 313 126.5 300 40 274 50.8 156 28.9 178 26.8 14 25.6 T072A01-C-27 920 511 2280 327 1480 340 135 280 35.7 213 48.9 125 24.7 157 24.9 15.2 28.8 T072A01-C-28 497 382 1540 230 1150 254 121 248 31.4 216 41.6 136 30.9 182 30.6 12.9 24.2 T072A01-C-29 790 640 2100 305 1360 282 142 233 30.4 185 35.1 113 20.9 133 25.8 16.7 31.2 T072A01-C-30 574 450 1740 278 1100 210 117 205 26 164 33.2 97 21.2 136 21.8 14.1 20.8 T072A01-C-31 352 153 700 118 572 149 103 119 19.7 143 29.8 100 21.7 135 23.8 8.3 4.86 T072A01-D-01 812 226 1131 244 1279 428 169 440 60.1 385 72 219 40.6 220 40.8 15.5 30.2 T072A01-D-02 760 158 833 179 952 303 138 306 41.7 267 53.1 161 30.1 172 32.2 12.5 14.3 T072A01-D-03 990 489 2190 339 1780 604 180 550 77.7 462 84.7 252 45.2 238 40.4 17.3 69.1 T072A01-D-04 1109 736 3170 598 2620 702 214 652 86.6 523 93.7 304 55.1 305 49.6 24 52.8 T072A01-D-05 1212 687 3450 532 2510 639 184 630 79.7 477 89.4 288 50.4 271 45 21.6 64.7 T072A01-D-06 1291 867 4600 610 2780 717 199 624 84.2 519 94.2 265 52.7 281 48.9 18 77.4 T072A01-D-07 1004 368 1870 390 2040 692 177.3 679 92.6 559 104 300 54.7 258 42.1 18.9 97.8 T072A01-D-08 962 662 3000 552 2830 774 221 733 109.4 627 117.2 346 66.8 377 64.4 22.1 157 T072A01-D-09 1426 807 3410 616 2950 860 240 758 108.6 650 115 352 66.7 349 56.1 24.3 200.9 T072A01-D-10 1288 685 2940 576 2590 747 195 579 86.5 547 97.8 292 52.4 268 44.7 16.7 95.6 T072A01-D-11 1261 695 3060 571 2740 728 198 660 86.5 522 101 304 58.8 317 55.9 24.1 96.9 T072A01-D-12 1204 614 2720 469 2230 574 172 517 71.9 408 78.1 242 44.6 240 39.4 17.6 71.5 T072A01-D-13 1425 957 3780 662 3280 793 236 668 91.4 519 106.3 310 49.5 272 49.4 21.8 69 T072A01-D-14 1049 559 2350 418 1960 527 162 488 63.9 417 80.4 233 43.1 237 38.8 19.7 54.3 T072A01-D-15 3250 1283 5300 897 3980 1003 266 823 113.2 703 122.9 366 63.6 337 51.7 37.7 233 T072A01-D-16 1223 724 3170 575 2860 708 213 591 82.2 487 93.8 270 51.9 276 43.9 17.5 54.3 T072A01-D-17 1159 714 3030 568 2530 638 189.7 545 75.8 441 83.1 244.7 50.2 286 44 20.4 44.2 T072A01-D-18 1271 764 3320 583 2750 722 217 644 82.3 512 98.3 277 55.5 302 49.2 29.4 68.5 T072A01-D-19 1019 465 2460 409 2010 578 149 524 75.4 428 88.5 245 46.4 253 42.3 16 76.6 T072A01-D-20 1031 780 3400 615 2780 761 202 737 88.6 566 108.8 305 52.5 299 49.3 17.4 66.5 T072A01-D-21 1033 734 3370 589 2900 773 200 656 97.4 597 103.6 344 60 320 51.6 19.6 80.7 T072A01-D-22 1510 837 3700 681 3070 849 232 761 116 637 131 349 61.2 354 51.7 28.3 196.1 T072A01-D-23 1043 295 1670 286 1470 500 184 459 63.7 415 79.7 247 43.4 239 45.8 16.7 30.4 T072A01-D-24 1470 817 3500 642 3170 866 229 769 110.7 639 122.6 372 63.2 333 50.6 26.2 178 T072A01-D-25 1354 746 3280 620 3110 863 234 744 104.2 623 117.3 368 65.1 343 53.1 21.2 115.2 T072A01-D-26 1084 279 1620 309 1615 557 192 543 76.2 457 86.3 255 44 256 44.1 17.8 54 T072A01-D-27 752 199 1095 213 1186 375 159 360 55.3 340 70.3 214 40.4 246 43.6 12.9 19.8 T072A01-D-28 684 272 1810 252 1340 417 171 393 57.5 334 64.2 205 39.4 219 39.7 13.8 23.4 T072A01-E-01 967 269 1364 300 1574 517 175 484 71.7 445 86.4 252 42.9 244 38.9 17 53.1 T072A01-E-02 1261 348 1873 420 2350 795 190.1 777 113.2 677 119.8 334 57.5 268 45.3 21.7 155.6 T072A01-E-03 1178 827 3490 551 2550 639 187 534 75.9 478 88.8 273 45.5 266 46.2 21.7 41.5 T072A01-E-04 944 588 2590 456 2270 634 170 504 77.6 463 89.5 272 49.6 291 45 19 39.3 T072A01-E-05 1132 579 2850 521 2440 670 204 562 77.9 486 89.2 272 48.7 264 40.8 18.8 39.9 T072A01-E-06 961 642 2880 547 2520 728 200 637 94.6 547 97.5 305 54.1 302 51.7 18.3 50.3 T072A01-E-07 1152 614 2590 471 2280 623 174.2 572 77.8 464 92.7 257 47.3 274 41.7 22 78.1 T072A01-E-08 982 679 3100 575 2530 644 192 586 78.2 465 89.7 278 49.3 287 45.9 22.2 42 T072A01-E-09 981 637 2650 450 2230 604 182 504 77.3 452 89 279 52.1 269 45.1 18.9 37.7 201  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T072A01-E-10 1013 631 2650 465 2280 634 180 542 75.1 480 89.7 267 46.5 283 44.7 19 40 T072A01-E-11 1231 687 2830 497 2380 561 199.5 569 72 423 79.8 256 44.8 252 41.7 22.2 38.1 T072A01-E-12 1214 653 3310 512 2320 622 186 537 77.7 477 90 286 48.5 258 43.8 19 39.6 T072A01-E-13 1155 697 3370 496 2350 571 189 482 68.3 378 76.9 232 42.1 235 37.1 18.3 35.8 T072A01-E-14 1060 610 2450 471 2060 516 172.9 478 62.7 407 78.3 234 40.9 258 41 19.6 31.6 T072A01-E-15 1113 687 2930 490 2415 604 189 544 73.1 425 85.7 271 45 256 43 19.5 32.3 T072A01-E-16 1159 671 2800 480 2340 605 193.6 517 71.2 438 82 250 44.7 245 39.1 17.9 38 T072A01-E-17 1116 607 2690 501 2330 633 199 539 75.3 455 91.5 268 46 247 40.7 19.9 39.4 T072A01-E-18 1069 610 2460 467 2063 594 188 505 71.4 426 80.9 254 48.1 259 41.5 18.8 35.1 T072A01-E-19 1053 633 2760 467 2210 592 187 517 75.8 462 88.6 255 48.5 269 45.3 18.1 34.1 T072A01-E-20 1170 466 2220 439 2180 675 184 599 85.1 539 98 273 47.7 262 44.2 19.7 72.6 T072A01-F-01 803 252 1420 290 1470 447 134 448 72 405 80.6 225 41.6 205 34 12.7 44 T072A01-F-02 507 228 1180 220 962 262 116 248 36.1 241 45.9 147 29.5 169 31.2 12.5 8.6 T072A01-F-03 461 298 1290 243 1070 309 127 263 43.3 282 56 175 37.8 218 36.8 12.7 8.5 T072A01-F-04 497 329 1310 246 1070 257 125 244 39.9 229 48.1 155 31.4 205 36 12.5 7.36 T072A01-F-05 527 327 1590 254 1230 308 152 261 45.9 296 57.3 199 34.8 210 40.1 11.3 16.5 T072A01-F-06 492 300 1230 217 942 276 116 239 39.5 239 53.2 167 33.9 212 36.8 11.4 8.1 T072A01-F-07 449 310 1260 222 990 280 115 284 34.7 277 53.2 164 37.2 205 35.6 10.3 7.12 T072A01-F-08 507 345 1590 229 1150 301 125 284 42.5 294 57.7 186 34.8 238 37.3 14.5 9.7 T072A01-F-09 980 376 2010 392 2100 710 208 656 95 548 103 274 46.6 225 37.2 18.7 92 T072A01-F-10 900 247 1268 266 1410 410 182 436 61.9 353 70.8 217 40.3 242 34 14.6 14.9 T072A01-F-11 930 297 1570 330 1880 563 183 563 77.1 488 98 253 48.2 244 40.8 19.6 63.6 T072A01-F-12 611 199 1040 201 1020 322 167 300 47.3 296 54.6 182 33.7 213 37.4 13.6 7.1 T072A01-F-13 407 124 708 140.2 716 203 116.3 199 29.6 186 41.3 113.4 24 143 28.8 9.1 3.66 T072A01-F-14 691 360 2150 333 1520 498 160 474 68.3 390 74.3 241 42.8 245 39 13.7 40.1 T072A01-F-15 960 498 2800 484 2120 683 186 621 90 540 97.7 265 46.6 252 35.7 16.1 69.4 T072A01-F-16 689 534 1940 312 1260 302 127 258 38.8 247 47.6 147 24.6 185 31.1 15 12.3 T072A01-F-17 603 481 2040 297 1280 309 127 259 35.8 231 48.1 149 28.9 173 33.1 14.5 10 T072A01-F-18 643 219 1090 212 1190 305 132 278 37.7 238 48.5 165 31.2 184 32.7 12.9 9.8 T072A01-F-19 487 134 845 162 810 234 131 252 36.9 225 44 138 24.8 151 29.1 8.7 6.6 T077A01-A1-01 420 124 740 142 712 163 50.1 108 15.7 87 14.9 37.8 5.8 36.2 5.53 7.8 3.05 T077A01-A1-02 833 564 2740 499 2550 536 60.8 401 56 278 48.6 120 17.4 79 11.5 23.6 35.6 T077A01-A1-03 869 644 2950 531 2470 539 64.8 400 47.6 254 45.5 121 15.4 78.1 11.2 23 18.4 T077A01-A1-04 920 8.5 232 109 970 442 58.6 402 61.8 316 54.5 139 19.4 101 15.3 7.8 30.4 T077A01-A1-05 990 641 3290 590 2780 606 72 442 60.9 301 51.4 129 19.6 103 14.1 24.7 38.9 T077A01-A1-06 1110 900 3970 712 2890 593 64.7 474 58.8 311 56 142 20.5 96 16.2 29.3 37.7 T077A01-A1-07 986 235 1730 407 2250 694 79 528 73.9 415 72.5 162.4 24.8 126 16.3 18.7 41.1 T077A01-A1-08 1110 1250 5160 769 3620 669 61.8 526 64 363 60.6 176 22.6 110 18 34.2 24.6 T077A01-A1-09 999 925 4330 815 3610 679 70.6 482 67.5 352 59.1 156 20.7 114 17 28.5 28.7 T077A01-A1-10 594 167 1130 259 1420 412 70.9 302 40.9 212 41.7 104 14.2 64.9 12 9.1 5.3 T077A01-A1-11 681 750 3490 576 2700 544 59.1 441 58.8 284 53.2 137 21.5 100.3 17.1 30.7 27 T077A01-A1-12 743 200 1680 351 1880 467 54.6 375 48.3 237 43.5 114 14.8 74.9 11.3 17.4 20.6 T077A01-A1-13 1060 1370 5360 870 3440 613 67.1 537 64.8 360 63.8 176 22.8 119 18 37.4 29.2 T077A01-A1-14 769 138 1070 285 1570 458 71 411 60.9 296 49.9 138 18.9 97 15.1 19.2 23.6 T077A01-A1-15 1360 1350 6180 1020 4620 895 84.2 601 74.6 392 67.6 158 22 113 16.1 38.7 24.7 T077A01-A1-16 1090 700 3020 583 2780 614 56.5 429 62.6 285 55.3 144 16.6 91 14.2 27.9 34.2 202  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T077A01-A1-17 950 472 2630 524 2510 604 69 471 53 289 51.8 128 17.1 93 14.2 20.6 28.6 T077A01-A1-18 1130 772 3500 605 2820 560 59.7 416 49.6 302 50.3 130 18.9 89.8 13.4 31.2 35.8 T077A01-A1-19 1100 946 4550 775 3400 650 63.6 473 58.4 283 48.5 129 19.3 101 15.1 26.3 54.8 T077A01-A1-20 1080 26.1 415 148 1230 406 32.5 372 50 249 43.7 126 15.9 79.6 11.6 6.38 68.9 T077A01-B-01 751 1340 4460 642 2730 512 60.1 361 55 272 51.2 144 19.4 99.8 14.8 41.5 18.1 T077A01-B-02 687 119 757 179 1110 346 42.1 289 38.1 220 37.8 85 14.5 69 9.8 18.2 20.9 T077A01-B-03 603 495 2320 446 1840 422 53.3 288 34.7 205 35.8 97 14.3 75 9.7 18.5 15.4 T077A01-B-04 755 217 1400 342 1770 484 68.9 419 51.8 298 48.9 151 17.8 96 14.3 14.7 13.4 T077A01-B-05 722 1260 4100 634 2580 451 48.8 417 54 273 46.6 139 19.1 100.8 13.7 64.3 17 T077A01-B-06 835 99 930 233 1360 423 61.2 352 48.2 255 45.5 126 15.5 81.5 11.9 14.3 20.3 T077A01-B-07 598 269 1350 279 1360 359 49 302 35.1 196 36.2 88 12.7 72 9.6 11.8 8.7 T077A01-B-08 1018 1160 3970 715 2650 492 58.4 363 50.5 268 47.5 116 15.1 87.8 12.9 24.2 35.8 T077A01-B-09 754 475 2630 500 2090 422 65.4 350 47.3 238 41.9 110.3 15.1 78 12.7 17 18.2 T077A01-B-10 737 135 1031 259 1510 404 62.9 330 43.5 247 42.3 109 14.9 84.3 12.4 12.3 14.8 T077A01-B-11 660 102.1 834 214 1280 386 59.2 302 40.9 224 37.6 96 15.7 71.6 11.3 14.3 15.9 T077A01-B-12 660 166 1120 272 1540 469 61.2 402 54.1 276 44.4 113 17 86 12.9 14.3 14.5 T077A01-B-13 687 72 523 140 870 287 44.4 263 39 203 36.8 97 12.8 62.6 10.1 10.8 17.5 T077A01-B-14 879 227 1420 340 1770 484 61.5 385 48.8 260 46.5 121 17.2 78.9 12.4 18.1 24.4 T077A01-B-15 592 700 2450 373 1410 266 43.7 174 23.7 139 26.9 76 13 64.8 10.7 30.7 14.9 T077A01-B-16 658 89 747 232 1240 352 58.6 313 39.2 204 39.3 98 14.1 68 10.5 11.7 16.3 T077A01-B-17 610 547 2290 449 1970 417 66.2 317 40.9 253 42.6 113.1 15.1 79 12.4 15.9 8.3 T077A01-B-18 728 474 1950 377 1670 368 45.6 271 33.8 189 32.7 75.2 11.7 62.4 9.4 19 20.4 T077A01-B-19 524 609 2170 319 1260 214 47.1 138 19.4 105 20.1 56.1 7.73 49.7 7.6 19.7 5.3 T077A01-B-20 737 510 2490 472 1990 456 59 317 42.2 217 40 95 14.2 74.4 11.8 18 11.6 T077A01-B-21 763 484 2650 465 2320 482 66.1 366 52.2 244 42.3 94.4 16.8 80.4 12.3 20.4 15.2 T077A01-B-22 800 446 2450 449 2110 489 63 342 44 248 42 106.4 16.1 80 11.1 17.8 17.2 T077A01-B-23 776 598 3020 534 2450 537 63 376 47.1 270 46 120 16.4 84.9 13.4 24.6 18.8 T077A01-B-24 732 392 1690 321 1500 317 52 257 35.9 179 31.6 86 12.5 65.4 8.9 15.6 14 T077A01-B-25 747 542 2670 463 2160 415 62.2 329 42.9 209 35.1 100 13.5 84 11.4 23.2 14.2 T077A01-B-26 1730 1870 6680 960 4400 820 77.3 587 77 411 73 162 23 107 14.4 31.3 35.9 T077A01-B-27 1820 1950 7140 1115 4710 854 83.6 667 84.8 468 76.3 194 25.7 121 15.9 40.3 33.5 T077A01-B-28 1280 1090 4870 868 3810 794 75.5 585 71.9 349 64.1 146 21.4 117 16.3 32.9 42.5 T077A01-B-29 1077 801 3840 661 2950 639 73.6 484 65.3 316 54.5 148 21.5 103.1 16.3 26.6 40.3 T077A01-B-30 1390 1530 5420 842 3960 739 76 554 77.7 419 70.3 162 23.6 114 14.1 31.8 29.7 T077A01-B-31 1350 1720 6150 885 4320 890 78 622 86 402 76.4 179 23.5 117 18.1 34.4 28.9 T077A01-B-32 1260 1560 5840 885 3970 737 75.3 584 78.1 382 71.7 163 21.4 115 14.8 34.7 29.2 T077A01-B-33 697 108 880 209 1290 372 53.8 361 42.1 244 40.4 123 18.6 84 11.3 13.8 21.3 T077A01-B-34 1380 1170 4230 642 3110 605 59.5 475 68.5 342 59 155 18.4 106 14.6 32.5 63.2 T077A01-B-35 1770 2060 6120 929 3450 721 62.9 495 70.5 356 59.5 149.2 22.9 125.7 18.5 49.6 73.7 T077A01-B-36 473 20.6 197 60.3 386 158 36.8 182 29.4 140 24.8 68.4 9.7 44 6.84 6.1 10.5 T077A01-B-37 1070 917 4160 719 3400 619 77.3 511 65.6 327 54.4 137 18.4 96 12.8 28 32.8 T077A01-B-38 378 267 861 127 497 89 22.7 73 7.9 43.7 8.6 19.6 3.45 21.4 3.27 5.33 4.51 T077A01-B-39 1480 1540 5610 889 3640 707 69.5 529 70.8 395 64.2 163 23 104 15.2 31.8 34.3 T077A01-B-40 716 332 1830 357 1780 421 55 335 46.4 221 44.3 97.1 14.1 71.5 10.4 15.4 19.5 T077A01-C-01 991 1610 5630 872 3790 753 73.1 564 75.5 394 65.7 172 24 113 15.9 35.6 25 T077A01-C-02 842 1590 5190 773 3320 655 60.9 493 71.1 351 65.7 153 21.8 119 18.3 43.4 26.4 203  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T077A01-C-03 1210 922 4060 732 3330 697 70.8 473 62 304 55.3 135 20.6 115.9 17.6 32.9 60.3 T077A01-C-04 1580 2010 7340 1007 4490 821 72.7 617 77.5 397 71.9 173 22.8 125 16.5 44.6 51.7 T077A01-C-05 961 729 3280 597 2740 538 61.4 384 50.6 282 46.7 126 17 90 13.8 33.1 27 T077A01-C-06 893 625 3120 537 2520 528 59.8 411 55.2 266 47 110.5 17.3 86.9 13.5 24.6 24.2 T077A01-C-07 3090 2060 9490 1650 7960 2070 174 1570 235 1271 222 542 73 339 40.8 41 199 T077A01-C-08 1025 900 4210 733 3400 722 76 510 65 321 58.1 144 18.6 105.2 13.6 28.1 29.9 T077A01-C-09 1120 910 4040 727 3230 682 75.6 518 67.1 324 57.7 146 18.9 97 13.3 27.6 38.1 T077A01-C-10 893 673 3130 572 2540 555 71.1 406 54.1 263 45.6 121.1 18.9 92.5 12.5 24.3 22.1 T077A01-C-11 1700 1181 5980 1067 5540 1320 134 1070 170 899 153.5 393 55.8 306 36.3 33.1 75.8 T077A01-C-12 797 1470 5360 779 3530 713 61.6 486 70.9 382 70.2 170 23.8 125 18.5 39.3 27.1 T077A01-E-01 638 26.3 270 85.1 597 266 37.4 276 42.8 235 43.3 107.9 15.8 70.2 8.89 8.2 16.2 T077A01-E-02 493 14.5 141 52.9 387 220 32.4 239 38 217 37.6 100.4 13.4 65.5 9.2 6 12.4 T077A01-E-03 632 21.3 214 73 512 236 36.4 250 40.4 232 42.5 101.3 14.54 79.2 10.61 6.8 16.7 T077A01-E-04 2154 1615 7650 1567 8310 2340 202 2070 308 1770 295 770 110.8 502 59.6 41.6 198 T077A01-E-05 1955 1690 7500 1441 7370 1788 169 1490 228 1287 226 577 82.3 425 48.6 37.3 99 T077A01-E-06 1124 899 4270 664 3130 674 70.2 524 69.9 346 61.4 162 24 113.4 16.7 29.7 32.2 T077A01-E-07 989 546 2500 493 2490 579 65.5 470 65.1 325 61.4 155 21.5 102.6 15.5 22.8 36.7 T077A01-E-08 1342 884 4300 781 3840 973 94.9 734 106.7 593 102.7 278 35.9 176 25.1 27 85.4 T077A01-E-09 2880 1825 7880 1370 6930 1700 147.8 1365 193 1048 198 481 60.7 289 30.5 39.7 115.3 T077A01-E-10 1112 179 1300 346 2150 625 70.9 547 78.8 420 75.8 181 25.7 131.3 17.2 17.1 51.5 T077A01-E-11 1600 2392 7130 976 3760 662 54.7 494 61.7 313 52.2 139.6 20.7 97.1 15 51.3 50.4 T077A01-E-12 bdl 41.6 166.2 30 151 26.3 3.61 26.3 2.62 13.48 2.5 6.04 0.85 3.19 0.64 bdl bdl T077A01-E-13 859 627 2820 528 2490 555 67.7 422 59.6 303 54.9 132 18.9 97 14.32 23.2 27.1 T077A01-E-14 1040 836 3660 673 3180 654 68.2 500 64.6 322 56.5 148 19.5 102 15.6 30.7 48.2 T077A01-E-15 961 613 2820 539 2566 615 65 464 66.7 358 62.6 154.4 22.1 109.1 16 24.1 53.9 T077A01-E-16 1036 623 2980 557 2860 638 73.1 477 66.2 346 58.7 150 19.7 106 15.2 26.7 40.7 T077A01-E-17 911 290 1830 377 2040 507 60.7 437 61.1 318 53.3 146.3 19.9 91.1 11.9 18.8 29.2 T077A01-E-18 1120 727 3380 588 2800 586 59.8 479 57.2 299 51.5 132 19.4 105.5 15.5 34.1 39.2 T077A01-E-19 885 551 2660 483 2310 521 62.4 411 57.7 311 52.7 135 19.2 89.7 13.7 25.2 32.5 T077A01-E-20 1058 349 1690 321 1710 519 63.8 422 65.6 358 63 166 22.1 117.7 16.4 14.5 37.7 T077A01-E-21 1435 729 3410 617 3150 700 70.3 573 83.9 421 77.3 189 23.4 117.3 15.4 31.4 79.2 T077A01-E-22 1587 632 3310 686 3820 1083 71.5 952 141.6 786 132.8 301 39.2 185 21.2 29.2 193 T077A01-E-23 451 109 751 181 1100 301 53.8 247 36.8 189 34.6 88.7 13 67.5 9.5 6.8 5.88 T077A01-E-24 270 44 387 100.9 656 173 33.3 138 18.4 106.7 18.3 48.4 6.93 35 5.76 4.15 1.92 T077A01-E-25 2540 1029 5480 1122 5530 1600 142.2 1348 199 1061 191 454 63.2 287 34.6 32.8 186 T077A01-E-26 618 13.3 152.2 57 437 202 34.6 225 34.9 203 39.9 97.2 13.6 68.2 10.4 5.7 26.2 T077A01-E-27 1052 649 3000 564 2720 628 79 518 63.8 361 58.1 151 21.4 104 13.7 21 33.3 T077A01-E-28 1480 1840 6270 1009 4390 884 84.9 658 88.1 501 80.8 201 27.5 135 16.1 40.4 29.4 T077A01-E-29 1199 1860 5830 995 4200 870 86.4 645 92.6 460 79.7 196 24.4 132.5 16.5 36 25.9 T077A01-E-30 2420 1760 7610 1195 5760 1352 115 1119 159 833 148 377 50.9 218 25.3 43.8 69.9 T077A01-E-31 1633 1740 6460 1076 5030 1113 103.7 853 119.2 652 107.3 267 33.5 155 19 35.4 27.1 T077A01-E-32 2118 1840 7030 1207 5680 1236 128 1014 146 792 146.9 338 45.5 194.4 22.3 35.7 41.2 T077A01-E-33 2410 2650 8200 1266 4950 918 85.8 645 92.6 428 76.1 193 25.4 124.6 15.7 44 67 T077A01-E-34 785 619 2850 519 2540 532 64.5 355 51.6 274 49.7 127.4 17.1 88.6 13.3 23.2 18 T077A01-E-35 612 24 221 75.3 514 228 38.8 258 38.5 230 41.2 111.7 14.6 73.8 9.02 5.2 15.2 T077A01-F-01 508 92.6 688 154 823 248 40.4 212 31.8 166 29.8 78.4 11.2 69 9.7 10.07 6.11 204  Specimen Nb ppm La ppm Ce ppm Pr ppm Nd ppm Sm ppm Eu ppm Gd ppm Tb ppm Dy ppm Ho ppm Er ppm Tm ppm Yb ppm Lu ppm Hf ppm Ta ppm T077A01-F-02 348 80.6 593 147 832 197 32.3 184 25.2 117 19.7 58.2 7.8 38.6 7 6.9 3.2 T077A01-F-03 1300 1280 5230 915 4050 735 77.7 584 63.9 355 56.7 156 19.5 116 14.5 32.2 40.3 T077A01-F-04 990 1090 4670 780 3530 601 76 504 66.9 345 51.7 147 20.8 94 15.2 33.4 23 T077A01-F-05 1150 1220 5400 868 4280 838 79.5 599 73.9 405 69.3 170 25.2 115 17.1 35.2 26.5 T077A01-F-06 1250 180 1430 374 2240 638 67.8 500 72.8 352 63.8 155 19.6 101 12.2 21.9 28.7 T077A01-F-07 1060 266 1880 390 2200 527 69 467 59.8 319 59.9 150 20.1 94 12.8 23.3 27.8 T077A01-F-08 1070 194 1500 362 2190 654 66.8 565 69.5 358 62.1 146 20.7 104 15.5 21.8 30.9 T077A01-F-09 1190 1610 5510 910 3800 770 70.6 594 76.5 383 70.8 164 24.5 101 16.4 33.2 40.8 T077A01-F-10 800 528 2500 426 2180 508 65.3 335 50.3 253 45.4 112 15.6 75.3 11.2 19.3 15 T077A01-F-11 845 549 2740 423 2240 512 55.8 377 50.8 234 46.3 113 14.9 88 10.9 20.1 15.5 T077A01-F-12 888 395 1860 419 2040 544 68.8 450 59.3 283 53.5 127 18.4 85.9 11.8 16.5 24.3 T077A01-F-13 1390 1640 5930 905 4240 880 80 623 82.8 408 73.2 166 21.9 121 14.3 32.1 36.1 T077A01-F-14 988 265 1700 331 1890 467 53.4 404 48.9 303 51.6 122 17.8 80.9 12.1 17.6 30.1 T077A01-F-15 1236 1508 5270 738 3580 713 65.5 489 74 347 61.6 143 19.7 98.8 13.3 32.9 37.5 T077A01-F-16 1051 1250 4790 808 3600 771 64.9 543 70 380 69 191 23.6 114 17.3 31.1 24.8 T077A01-F-17 915 4.44 90.2 40.3 404 290 38.6 333 49.7 284 49 128 19 92 11.7 24.2 25.4 T077A01-F-18 919 237 1410 340 1820 468 52.6 398 59.3 293 44.2 127 16.4 89 10.9 17.3 30.5 T077A01-F-19 1500 1660 6070 1010 4540 827 73.2 586 88 398 72.6 182 24.1 112 16.4 33.5 27.8 T077A01-F-20 1440 1950 6980 980 4410 774 77 608 78.1 389 70.1 165 22.4 127 15 37.1 35.5 T077A01-F-21 1030 765 3340 601 2770 579 71.4 502 58.8 352 55.2 139 20.4 103 13.6 29.7 30.4 T077A01-F-22 801 654 2580 442 1890 470 51.9 326 40.7 241 40 100 14.2 72.3 9.8 18.8 16 T077A01-F-23 313 97 466 75 368 72.7 16.1 61.7 7.9 42 7.5 20.9 2.76 18.8 2.15 3.23 2.96 T077A01-F-24 1430 1120 4100 589 2630 572 60.7 438 55.8 295 57 122 17.1 92 11.1 27.1 25.4 T077A01-F-25 1210 1550 5440 830 3560 725 68.1 546 73.9 379 63.3 168 24.4 110 14.4 30.4 34.4 T077A01-F-26 1180 1450 5650 930 4090 773 72 584 72 386 70 171 22.8 109 15.3 34.1 23.9 T077A01-F-27 1220 947 4420 731 3410 691 67.3 509 64.1 316 51.7 140 19.8 97 13 33.7 58.1 T077A01-F-28 519 202 1030 182 910 187 36.2 149 18.2 96 17.9 44.2 6.28 36.7 4.33 8.2 6.9     205  Table F.2: Zr-in-titanite geothermometry data, calculated using the following parameters: pressure = 0.9 GPa, activity of TiO2 = 0.75, activity of SiO2 = 1.00 and Zr (ppm) values from Table F.1.  Specimen T (°C)  Specimen T (°C)  Specimen T (°C)  Specimen T (°C) T020A01-B-01 771  T020A01-G1-01 673  T069A01-B-12 741  T069A01-F-06 724 T020A01-B-02 771  T020A01-G1-02 717  T069A01-B-13 746  T069A01-F-07 709 T020A01-B-03 764  T020A01-G1-03 715  T069A01-B-14 726  T069A01-F-08 694 T020A01-B-04 744  T020A01-G1-04 705  T069A01-B-15 739  T069A01-F-09 710 T020A01-B-05 767  T020A01-G1-05 708  T069A01-B-16 716  T069A01-H1-01 724 T020A01-B-06 761  T020A01-G1-06 726  T069A01-B-17 752  T069A01-H1-02 757 T020A01-B-07 769  T020A01-G1-07 739  T069A01-B-18 747  T069A01-H1-03 743 T020A01-B-08 767  T020A01-G1-08 736  T069A01-C-01 734  T069A01-H1-04 725 T020A01-B-09 770  T020A01-G1-09 711  T069A01-C-02 736  T069A01-H1-05 752 T020A01-B-10 758  T020A01-G1-10 674  T069A01-C-03 740  T069A01-H1-06 713 T020A01-B-11 722  T020A01-G1-11 711  T069A01-C-04 754  T069A01-H1-07 698 T020A01-B-12 775  T020A01-G1-12 743  T069A01-C-05 752  T069A01-H1-08 708 T020A01-B-13 766  T020A01-G2-01 718  T069A01-C-06 751  T069A01-H1-09 716 T020A01-B-14 772  T020A01-G2-02 742  T069A01-C-07 754  T069A01-H1-10 729 T020A01-B-15 767  T020A01-G2-03 742  T069A01-C-08 746  T069A01-H1-11 748 T020A01-B-16 776  T020A01-G2-04 753  T069A01-C-09 749  T069A01-H2-01 734 T020A01-B-17 776  T020A01-G2-05 736  T069A01-C-10 756  T069A01-H2-02 718 T020A01-B-18 764  T020A01-G2-06 722  T069A01-C-11 749  T069A01-H2-03 736 T020A01-B-19 774  T020A01-G2-07 702  T069A01-C-12 724  T069A01-H2-04 741 T020A01-B-20 769  T020A01-G2-08 683  T069A01-D-01 724  T069A01-H2-05 729 T020A01-B-21 768  T020A01-G2-09 731  T069A01-D-02 730  T069A01-H2-06 677 T020A01-B-22 769  T020A01-G2-10 743  T069A01-D-03 744  T069A01-H2-07 703 T020A01-B-23 770  T020A01-G2-11 733  T069A01-D-04 744  T069A01-H2-08 686 T020A01-B-24 737  T020A01-G2-12 711  T069A01-D-05 733  T072A01-A-01 785 T020A01-B-25 740  T020A01-G4-01 715  T069A01-D-06 752  T072A01-A-02 778 T020A01-B-26 744  T020A01-G4-02 714  T069A01-D-07 737  T072A01-A-03 781 T020A01-B-27 687  T020A01-G4-03 688  T069A01-D-08 758  T072A01-A-04 781 T020A01-B-28 683  T020A01-G4-04 734  T069A01-D-09 748  T072A01-A-05 778 T020A01-C-01 792  T020A01-G4-05 725  T069A01-D-10 722  T072A01-A-06 774 T020A01-C-02 854  T020A01-G4-06 694  T069A01-D-11 708  T072A01-A-07 781 T020A01-C-03 850  T020A01-G4-07 698  T069A01-D-12 719  T072A01-A-08 781 T020A01-C-04 847  T020A01-G4-08 700  T069A01-D-13 717  T072A01-A-09 791 T020A01-C-05 915  T020A01-G4-09 698  T069A01-D-14 747  T072A01-A-10 785 T020A01-C-06 945  T020A01-G4-10 724  T069A01-D-15 725  T072A01-A-11 784 T020A01-C-07 797  T020A01-G4-11 679  T069A01-D-16 718  T072A01-A-12 789 T020A01-C-08 882  T020A01-G4-12 705  T069A01-D-17 731  T072A01-A-13 771 T020A01-C-09 812  T045B01-A-01 729  T069A01-E2-01 737  T072A01-A-14 758 T020A01-C-10 804  T045B01-A-02 689  T069A01-E2-02 721  T072A01-A-15 759 T020A01-C-11 882  T045B01-A-03 699  T069A01-E2-03 709  T072A01-A-16 755 T020A01-C-12 864  T045B01-A-04 697  T069A01-E2-04 753  T072A01-A-17 765 T020A01-C-13 812  T045B01-A-05 698  T069A01-E2-05 728  T072A01-A-18 786 T020A01-C-14 864  T045B01-A-06 700  T069A01-E2-06 687  T072A01-A-19 758 T020A01-C-15 782  T045B01-A-07 683  T069A01-E2-07 683  T072A01-A-20 736 T020A01-C-16 775  T045B01-A-08 708  T069A01-E2-08 681  T072A01-A-21 785 T020A01-C-17 764  T045B01-A-09 695  T069A01-E2-09 684  T072A01-A-22 777 T020A01-D-01 715  T045B01-B-01 752  T069A01-E2-10 708  T072A01-A-23 777 T020A01-D-02 740  T045B01-B-02 766  T069A01-E2-11 702  T072A01-A-24 742 T020A01-D-03 703  T045B01-B-03 745  T069A01-E2-12 710  T072A01-A-25 771 T020A01-D-04 696  T045B01-B-04 793  T069A01-E3-01 710  T072A01-A-26 802 T020A01-D-05 717  T045B01-B-05 790  T069A01-E3-02 752  T072A01-B-27 783 T020A01-D-06 722  T045B01-B-06 756  T069A01-E3-03 747  T072A01-B-28 787 T020A01-D-07 720  T045B01-B-07 757  T069A01-E3-04 661  T072A01-B-29 784 T020A01-D-08 744  T045B01-B-08 760  T069A01-E3-05 693  T072A01-B-30 774 T020A01-D-09 760  T045B01-B-09 828  T069A01-E3-06 716  T072A01-B-31 789 T020A01-D-10 747  T069A01-B-01 739  T069A01-E3-07 755  T072A01-B-32 786 T020A01-D-11 776  T069A01-B-02 723  T069A01-E3-08 704  T072A01-B-33 749 T020A01-D-12 709  T069A01-B-03 737  T069A01-E3-09 670  T072A01-B-34 784 T020A01-D-13 708  T069A01-B-04 734  T069A01-E3-10 709  T072A01-B-35 770 T020A01-D-14 728  T069A01-B-05 732  T069A01-E3-11 677  T072A01-B-36 760 T020A01-D-15 760  T069A01-B-06 748  T069A01-E3-12 700  T072A01-B-37 766 T020A01-D-16 735  T069A01-B-07 739  T069A01-F-01 717  T072A01-B-38 749 T020A01-D-17 752  T069A01-B-08 706  T069A01-F-02 679  T072A01-B-39 744 T020A01-D-18 716  T069A01-B-09 733  T069A01-F-03 716  T072A01-B-40 783 T020A01-D-19 707  T069A01-B-10 729  T069A01-F-04 717  T072A01-B-41 751 T020A01-D-20 732  T069A01-B-11 739  T069A01-F-05 720  T072A01-B-42 774 206  Specimen T (°C)  Specimen T (°C)  Specimen T (°C)  Specimen T (°C) T072A01-B-43 775  T072A01-E-08 783  T077A01-B-18 762  T077A01-E-35 690 T072A01-B-44 776  T072A01-E-09 781  T077A01-B-19 785  T077A01-F-01 723 T072A01-B-45 762  T072A01-E-10 778  T077A01-B-20 772  T077A01-F-02 709 T072A01-C-01 763  T072A01-E-11 783  T077A01-B-21 767  T077A01-F-03 795 T072A01-C-02 771  T072A01-E-12 781  T077A01-B-22 766  T077A01-F-04 794 T072A01-C-03 761  T072A01-E-13 777  T077A01-B-23 778  T077A01-F-05 800 T072A01-C-04 764  T072A01-E-14 781  T077A01-B-24 767  T077A01-F-06 757 T072A01-C-05 775  T072A01-E-15 781  T077A01-B-25 778  T077A01-F-07 775 T072A01-C-06 771  T072A01-E-16 781  T077A01-B-26 803  T077A01-F-08 761 T072A01-C-07 772  T072A01-E-17 780  T077A01-B-27 813  T077A01-F-09 801 T072A01-C-08 769  T072A01-E-18 776  T077A01-B-28 802  T077A01-F-10 767 T072A01-C-09 760  T072A01-E-19 780  T077A01-B-29 786  T077A01-F-11 772 T072A01-C-10 773  T072A01-E-20 776  T077A01-B-30 795  T077A01-F-12 767 T072A01-C-11 756  T072A01-F-01 750  T077A01-B-31 811  T077A01-F-13 803 T072A01-C-12 733  T072A01-F-02 749  T077A01-B-32 803  T077A01-F-14 751 T072A01-C-13 756  T072A01-F-03 753  T077A01-B-33 732  T077A01-F-15 802 T072A01-C-14 744  T072A01-F-04 760  T077A01-B-34 781  T077A01-F-16 799 T072A01-C-15 767  T072A01-F-05 756  T077A01-B-35 820  T077A01-F-17 775 T072A01-C-16 738  T072A01-F-06 759  T077A01-B-36 688  T077A01-F-18 753 T072A01-C-17 771  T072A01-F-07 761  T077A01-B-37 788  T077A01-F-19 803 T072A01-C-18 772  T072A01-F-08 767  T077A01-B-38 742  T077A01-F-20 803 T072A01-C-19 775  T072A01-F-09 765  T077A01-B-39 798  T077A01-F-21 787 T072A01-C-20 773  T072A01-F-10 760  T077A01-B-40 754  T077A01-F-22 773 T072A01-C-21 774  T072A01-F-11 762  T077A01-C-01 806  T077A01-F-23 694 T072A01-C-22 771  T072A01-F-12 755  T077A01-C-02 810  T077A01-F-24 788 T072A01-C-23 766  T072A01-F-13 734  T077A01-C-03 785  T077A01-F-25 804 T072A01-C-24 769  T072A01-F-14 754  T077A01-C-04 815  T077A01-F-26 797 T072A01-C-25 749  T072A01-F-15 760  T077A01-C-05 786  T077A01-F-27 794 T072A01-C-26 758  T072A01-F-16 772  T077A01-C-06 779  T077A01-F-28 733 T072A01-C-27 770  T072A01-F-17 769  T077A01-C-07 816    T072A01-C-28 766  T072A01-F-18 748  T077A01-C-08 794    T072A01-C-29 769  T072A01-F-19 736  T077A01-C-09 791    T072A01-C-30 766  T077A01-A1-01 723  T077A01-C-10 781    T072A01-C-31 734  T077A01-A1-02 771  T077A01-C-11 800    T072A01-D-01 753  T077A01-A1-03 776  T077A01-C-12 811    T072A01-D-02 740  T077A01-A1-04 679  T077A01-E-01 696    T072A01-D-03 761  T077A01-A1-05 783  T077A01-E-02 680    T072A01-D-04 787  T077A01-A1-06 782  T077A01-E-03 690    T072A01-D-05 779  T077A01-A1-07 766  T077A01-E-04 818    T072A01-D-06 780  T077A01-A1-08 801  T077A01-E-05 818    T072A01-D-07 762  T077A01-A1-09 792  T077A01-E-06 789    T072A01-D-08 786  T077A01-A1-10 743  T077A01-E-07 774    T072A01-D-09 788  T077A01-A1-11 780  T077A01-E-08 796    T072A01-D-10 779  T077A01-A1-12 747  T077A01-E-09 822    T072A01-D-11 788  T077A01-A1-13 807  T077A01-E-10 759    T072A01-D-12 776  T077A01-A1-14 757  T077A01-E-11 823    T072A01-D-13 786  T077A01-A1-15 807  T077A01-E-12 -    T072A01-D-14 779  T077A01-A1-16 780  T077A01-E-13 784    T072A01-D-15 822  T077A01-A1-17 769  T077A01-E-14 791    T072A01-D-16 783  T077A01-A1-18 787  T077A01-E-15 781    T072A01-D-17 783  T077A01-A1-19 780  T077A01-E-16 783    T072A01-D-18 794  T077A01-A1-20 662  T077A01-E-17 756    T072A01-D-19 768  T077A01-B-01 812  T077A01-E-18 788    T072A01-D-20 786  T077A01-B-02 751  T077A01-E-19 780    T072A01-D-21 784  T077A01-B-03 772  T077A01-E-20 753    T072A01-D-22 796  T077A01-B-04 750  T077A01-E-21 785    T072A01-D-23 760  T077A01-B-05 804  T077A01-E-22 783    T072A01-D-24 792  T077A01-B-06 751  T077A01-E-23 729    T072A01-D-25 786  T077A01-B-07 747  T077A01-E-24 694    T072A01-D-26 766  T077A01-B-08 787  T077A01-E-25 799    T072A01-D-27 752  T077A01-B-09 773  T077A01-E-26 674    T072A01-D-28 752  T077A01-B-10 736  T077A01-E-27 779    T072A01-E-01 763  T077A01-B-11 738  T077A01-E-28 809    T072A01-E-02 771  T077A01-B-12 746  T077A01-E-29 807    T072A01-E-03 781  T077A01-B-13 729  T077A01-E-30 814    T072A01-E-04 778  T077A01-B-14 755  T077A01-E-31 810    T072A01-E-05 781  T077A01-B-15 787  T077A01-E-32 810    T072A01-E-06 784  T077A01-B-16 734  T077A01-E-33 810    T072A01-E-07 780  T077A01-B-17 769  T077A01-E-34 778    207  Appendix G: U-Pb Zircon Data Table G.1: U-Pb zircon data. The prefix ‘17SUB-’ (‘16WGA-’ for M047A01) was removed from the specimen number. Note: No data available for a few analyses with very high U & Pb (IC trip, no data). Specimen- analysis Pb ppm U ppm Th ppm Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 2 SE abs Rho M047A01_01 149 116 166 1.458 0.1192 1.74 5.6902 3.96 0.3464 3.56 0.01232 0.90 M047A01_02 288 267 341 1.292 0.1098 1.07 4.9263 3.27 0.3255 3.09 0.01004 0.94 M047A01_03 136 126 160 1.285 0.1106 1.11 5.0888 2.92 0.3338 2.70 0.00901 0.92 M047A01_04 33 27 38 1.387 0.1132 1.80 5.1062 5.84 0.3272 5.56 0.01819 0.95 M047A01_05 178 137 178 1.337 0.1358 3.25 5.0487 4.99 0.2697 3.79 0.01023 0.76 M047A01_06 54 1008 21 0.021 0.1121 1.74 5.0405 5.84 0.3262 5.58 0.01819 0.95 M047A01_07 328 366 427 1.075 0.1155 1.32 5.1660 2.76 0.3244 2.42 0.00784 0.88 M047A01_08 188 369 235 0.644 0.1123 1.08 5.0648 5.66 0.3272 5.56 0.01819 0.98 M047A01_09 27 248 18 0.067 0.1186 1.10 6.2394 5.92 0.3818 5.82 0.02221 0.98 M047A01_10 120 89 149 1.685 0.1176 1.25 5.5312 3.55 0.3414 3.32 0.01133 0.94 M047A01_11 29 104 24 0.228 0.1242 1.57 5.5681 7.29 0.3252 7.12 0.02315 0.98 M047A01_12 96 75 113 1.490 0.1115 1.27 5.0117 2.95 0.3261 2.67 0.0087 0.90 M047A01_13 51 34 62 1.845 0.1126 1.53 5.0162 4.09 0.3232 3.80 0.01228 0.93 M047A01_14 477 172 157 0.925 0.2707 4.54 13.7523 6.33 0.3687 4.41 0.01627 0.70 M047A01_15 96 132 113 0.861 0.1256 2.02 6.4010 7.62 0.3697 7.35 0.02716 0.96 M047A01_16 99 2270 101 0.044 0.1120 1.08 4.8333 4.98 0.3131 4.86 0.01521 0.98 M047A01_17 27 190 31 0.141 0.1159 1.13 5.6166 3.95 0.3515 3.78 0.0133 0.96 M047A01_18 202 258 256 1.011 0.1128 1.07 5.3407 3.74 0.3434 3.58 0.01231 0.96 M047A01_19 208 395 216 0.551 0.1271 1.49 6.0309 3.61 0.3444 3.29 0.01134 0.91 M047A01_20 27 706 20 0.029 0.1115 1.03 5.0425 3.88 0.3283 3.74 0.01228 0.96 M047A01_21 175 364 192 0.541 0.1153 1.16 5.4448 3.08 0.3428 2.86 0.00979 0.93 M047A01_22 145 669 60 0.091 0.1539 1.15 2.3645 7.49 0.1115 7.40 0.00825 0.99 M047A01_23 103 148 115 0.792 0.1204 1.47 6.2173 4.09 0.3747 3.82 0.01432 0.93 M047A01_24 165 132 149 1.144 0.1396 2.63 6.6642 4.20 0.3464 3.27 0.01134 0.78 M047A01_25 437 396 562 1.429 0.1127 1.06 5.0198 3.65 0.3232 3.50 0.0113 0.96 M047A01_26 133 172 156 0.908 0.1241 1.57 5.4979 3.39 0.3214 3.00 0.00965 0.89 M047A01_27 140 180 168 0.958 0.1295 1.42 6.5605 4.14 0.3676 3.89 0.01431 0.94 M047A01_28 167 107 128 1.208 0.1899 9.01 8.8014 10.51 0.3363 5.41 0.0182 0.51 M047A01_29 92 123 114 0.937 0.1111 1.10 5.2280 3.50 0.3414 3.32 0.01133 0.95 M047A01_30 267 334 336 1.022 0.1126 1.06 5.2200 4.09 0.3363 3.95 0.01328 0.97 M047A01_31 446 429 563 1.353 0.1113 1.05 5.1882 3.51 0.3384 3.35 0.01133 0.95 M047A01_32 131 193 171 0.905 0.1120 1.07 6.0015 3.60 0.3889 3.44 0.01337 0.95 M047A01_33 39 40 46 1.157 0.1152 1.51 5.4540 3.89 0.3434 3.58 0.01231 0.92 M047A01_34 54 60 67 1.136 0.1126 1.40 5.0319 3.76 0.3242 3.49 0.0113 0.93 M047A01_35 136 137 173 1.277 0.1105 1.10 4.8597 4.00 0.3192 3.84 0.01227 0.96 M047A01_36 403 830 20 0.025 0.1858 16.17 7.0879 16.97 0.2767 5.12 0.01417 0.30 M047A01_37 39 38 47 1.253 0.1133 1.33 5.1739 3.00 0.3313 2.69 0.0089 0.90 M047A01_38 76 51 95 1.880 0.1129 1.73 5.3283 4.25 0.3424 3.88 0.01329 0.91 M047A01_39 70 73 88 1.222 0.1111 1.32 4.9948 3.27 0.3263 2.99 0.00976 0.91 M047A01_40 438 301 545 1.835 0.1113 1.06 5.2530 3.21 0.3424 3.03 0.01037 0.94 T004A01_01 154 256 187 0.719 0.1170 1.22 5.8352 2.01 0.3619 1.60 0.00578 0.80 T004A01_02 237 1677 192 0.087 0.1233 1.84 5.7608 2.44 0.3390 1.60 0.00543 0.66 T004A01_03 623 1980 143 0.070 0.1472 1.07 6.5099 2.30 0.3209 2.03 0.00653 0.89 T004A01_04 150 1990 154 0.077 0.1171 1.01 5.5193 2.44 0.3421 2.22 0.00761 0.91 T004A01_05 306 1423 295 0.209 0.1365 2.15 6.8775 2.73 0.3657 1.68 0.00614 0.62 T004A01_06 1495 1647 1354 0.800 0.1595 1.03 9.8797 3.58 0.4495 3.43 0.01542 0.96 T004A01_07 178 1230 273 0.185 0.1236 2.11 4.7150 4.57 0.2767 4.05 0.01122 0.89 T004A01_08 79 1538 66 0.042 0.1160 1.08 5.0740 2.75 0.3174 2.52 0.00801 0.92 T004A01_09 345 1582 113 0.069 0.1387 1.64 6.4722 3.03 0.3387 2.55 0.00864 0.84 T004A01_10 573 1739 1170 0.629 0.1341 1.18 5.1021 2.22 0.2761 1.88 0.00519 0.85 T004A01_11 822 995 734 0.730 0.1674 1.95 9.6373 2.85 0.4178 2.08 0.00867 0.73 T004A01_12 59 1427 56 0.040 0.1165 1.01 5.5074 1.59 0.3431 1.23 0.00422 0.77 T004A01_13 1034 2570 1160 0.439 0.1404 1.19 6.8206 3.18 0.3525 2.95 0.01039 0.93 T004A01_14 - 1879 103 0.055 - - - - - - - - T004A01_15 - 1420 208 0.111 - - - - - - - - T004A01_16 267 1914 295 0.122 0.1236 1.15 5.1959 2.29 0.3049 1.97 0.00602 0.86 T004A01_17 - 1273 1570 1.256 - - - - - - - - T004A01_18 65 1411 59 0.042 0.1171 1.02 5.5065 1.81 0.3412 1.49 0.00509 0.83 208  Specimen- analysis Pb ppm U ppm Th ppm Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 2 SE abs Rho T004A01_19 200 1454 970 0.680 0.1301 1.47 6.2544 2.26 0.3489 1.72 0.00599 0.76 T004A01_20 - 2260 2320 1.053 - - - - - - - - T004A01_21 162 1137 91 0.078 0.1207 1.20 5.6883 2.30 0.3419 1.96 0.00669 0.85 T004A01_22 - 2243 125 0.055 - - - - - - - - T004A01_23 - 3450 2000 0.341 - - - - - - - - T004A01_24 112 1700 80 0.045 0.1155 1.85 4.8137 3.27 0.3023 2.70 0.00817 0.82 T004A01_25 78 1452 54 0.037 0.1195 1.01 5.6443 1.99 0.3428 1.71 0.00588 0.86 T004A01_26 223 522 325 0.610 0.1483 2.08 6.1771 3.24 0.3023 2.48 0.0075 0.77 T004A01_27 117 863 990 0.763 0.1231 1.84 5.7343 3.06 0.3379 2.44 0.00826 0.80 T004A01_28 163 1433 139 0.068 0.1209 1.79 5.6998 2.84 0.3421 2.20 0.00752 0.77 T004A01_29 140 2100 107 0.052 0.1184 1.05 5.2220 2.27 0.3201 2.01 0.00643 0.89 T004A01_30 60 376 185 0.518 0.1224 1.06 6.5177 2.37 0.3865 2.12 0.0082 0.89 T004A01_31 - 2590 385 0.148 - - - - - - - - T004A01_32 - 822 146 0.176 - - - - - - - - T004A01_33 212 564 79 0.147 0.1415 2.22 7.6304 2.93 0.3913 1.91 0.00749 0.65 T004A01_34 319 1233 900 0.667 0.1334 1.12 6.5622 2.11 0.3569 1.79 0.00638 0.85 T004A01_35 61 1484 40 0.027 0.1266 1.02 6.2314 1.91 0.3571 1.61 0.00576 0.84 T004A01_36 - 1210 1540 1.328 - - - - - - - - T004A01_37 302 1197 161 0.111 0.1338 1.29 5.6964 2.89 0.3089 2.59 0.00799 0.89 T004A01_38 286 1520 183 0.097 0.1315 1.30 5.1619 4.48 0.2848 4.29 0.01221 0.96 T004A01_39 374 1575 1380 0.885 0.1348 1.39 4.9924 4.75 0.2687 4.54 0.01219 0.96 T004A01_40 508 1866 440 0.122 0.1397 3.85 5.4480 4.67 0.2830 2.63 0.00745 0.56 T015B01_01 271 2614 295 0.112 0.1177 1.10 4.0578 3.70 0.2501 3.53 0.00883 0.95 T015B01_02 312 2190 377 0.169 0.1264 2.15 3.6793 4.79 0.2113 4.29 0.00906 0.89 T015B01_03 398 3171 231 0.075 0.1179 1.13 3.5437 3.79 0.2181 3.62 0.0079 0.95 T015B01_04 198 2157 98 0.045 0.1153 1.07 3.9944 3.71 0.2514 3.55 0.00893 0.96 T015B01_05 445 3360 970 0.285 0.1197 1.06 3.6312 4.26 0.2202 4.12 0.00907 0.97 T015B01_06 558 3514 2980 0.769 0.1280 1.48 2.8055 3.29 0.1591 2.94 0.00468 0.89 T015B01_07 56 865 28 0.033 0.1126 1.02 5.1386 2.38 0.3312 2.15 0.00711 0.90 T015B01_08 - 3150 384 0.120 - - - - - - - - T015B01_09 - 3850 20500 5.181 - - - - - - - - T015B01_10 - 3113 164 0.053 - - - - - - - - T015B01_11 - 876 28 0.032 - - - - - - - - T015B01_12 - 1730 73 0.044 - - - - - - - - T015B01_13 - 6100 270 0.045 - - - - - - - - T015B01_14 - 7180 314 0.041 - - - - - - - - T015B01_15 - 4500 50000 11.455 - - - - - - - - T015B01_16 - 5870 2230 0.388 - - - - - - - - T015B01_17 - 6060 2050 0.250 - - - - - - - - T015B01_18 - 2293 3960 1.739 - - - - - - - - T015B01_19 - 3434 355 0.103 - - - - - - - - T015B01_20 - 2601 157 0.063 - - - - - - - - T035B01_01 51 86 40 0.498 0.1200 1.73 6.3133 4.61 0.3818 4.27 0.01629 0.93 T035B01_02 137 458 114 0.258 0.1191 1.12 5.2838 1.73 0.3220 1.32 0.00427 0.76 T035B01_03 112 363 143 0.418 0.1123 1.08 5.0775 1.66 0.3281 1.26 0.00414 0.76 T035B01_04 267 1028 301 0.310 0.1133 1.02 5.0256 1.69 0.3220 1.35 0.00435 0.80 T035B01_05 377 1467 433 0.309 0.1158 1.04 5.0731 1.58 0.3177 1.19 0.00378 0.75 T035B01_06 553 1571 519 0.348 0.1213 1.06 4.7046 2.67 0.2815 2.44 0.00688 0.92 T035B01_07 273 1492 877 0.612 0.1914 1.04 10.7238 2.39 0.4065 2.15 0.00873 0.90 T035B01_08 543 1193 517 0.450 0.1435 1.35 4.3831 3.17 0.2216 2.87 0.00635 0.90 T035B01_09 286 1286 286 0.232 0.1176 1.06 5.0649 2.13 0.3125 1.85 0.00577 0.87 T035B01_10 295 511 155 0.314 0.1965 1.06 11.5399 3.33 0.4262 3.15 0.01344 0.95 T035B01_11 622 1154 722 0.649 0.1140 1.01 5.1263 1.58 0.3262 1.22 0.00398 0.77 T035B01_12 411 1315 501 0.395 0.1154 1.02 5.3349 1.62 0.3355 1.27 0.00425 0.78 T035B01_13 636 879 733 0.868 0.1168 1.11 5.1804 1.77 0.3219 1.38 0.00443 0.78 T035B01_14 464 1380 464 0.345 0.1200 1.26 5.4457 2.38 0.3293 2.02 0.00664 0.85 T035B01_15 473 654 605 0.990 0.1196 1.08 5.2038 3.30 0.3158 3.11 0.00983 0.94 T035B01_16 766 1776 5020 2.915 0.1140 1.06 3.7594 4.38 0.2394 4.25 0.01018 0.97 T035B01_17 496 1513 584 0.400 0.1154 1.02 5.2679 3.28 0.3313 3.12 0.01035 0.95 T035B01_18 561 1175 546 0.482 0.1246 1.50 5.5342 4.38 0.3222 4.11 0.01325 0.94 T035B01_19 251 770 552 0.728 0.1229 1.11 5.0418 3.35 0.2976 3.16 0.00941 0.94 T035B01_20 302 1024 282 0.281 0.1240 1.83 3.8327 5.30 0.2242 4.97 0.01115 0.94 T035B01_21 201 831 240 0.293 0.1135 1.03 5.1361 2.58 0.3283 2.36 0.00776 0.92 T035B01_22 780 933 1381 1.513 0.1628 1.68 4.8317 3.95 0.2153 3.57 0.0077 0.90 T035B01_23 374 1442 464 0.330 0.1153 1.04 4.9688 3.19 0.3128 3.02 0.00944 0.95 209  Specimen- analysis Pb ppm U ppm Th ppm Th/U 207/206 2 SE % 207/235 2 SE % 206/238 2 SE % 2 SE abs Rho T035B01_24 167 853 254 0.260 0.1187 1.08 4.9049 2.93 0.2999 2.72 0.00816 0.93 T035B01_25 587 913 1055 1.176 0.1235 1.11 4.4901 3.64 0.2637 3.47 0.00915 0.95 T035B01_26 185 689 196 0.293 0.1164 1.06 4.6510 3.38 0.2900 3.21 0.00929 0.95 T035B01_27 782 539 1730 3.273 0.2925 1.12 5.9443 6.92 0.1475 6.83 0.01007 0.99 T035B01_28 - 7360 9750 1.361 - - - - - - - - T035B01_29 331 692 384 0.562 0.1146 1.05 5.0889 4.24 0.3222 4.11 0.01325 0.97 T035B01_30 1258 1617 1524 0.958 0.1155 1.01 5.1607 2.81 0.3241 2.62 0.0085 0.93 T035B01_31 242 1232 318 0.249 0.1151 1.01 5.0039 3.10 0.3154 2.93 0.00925 0.95 T035B01_32 - 3220 725 0.229 - - - - - - - - T035B01_33 - 3000 1055 0.360 - - - - - - - - T035B01_34 516 779 649 0.847 0.1228 1.25 4.9352 3.43 0.2917 3.19 0.0093 0.93 T035B01_35 314 536 614 1.174 0.1509 1.56 5.0829 7.57 0.2444 7.41 0.01811 0.98 T035B01_36 394 868 377 0.424 0.1200 1.54 3.7228 3.75 0.2251 3.43 0.00771 0.91 T035B01_37 338 981 352 0.360 0.1168 1.13 4.6322 2.98 0.2876 2.76 0.00794 0.93 T035B01_38 319 1337 376 0.284 0.1153 1.03 5.0301 2.79 0.3164 2.59 0.0082 0.93 T035B01_39 314 935 329 0.356 0.1165 1