The Open Collections site will undergo maintenance from 4:00 PM - 6:00 PM PT on Wednesday, April 2nd, 2025. During this time, images and the IIIF service will not be available.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Development of energy storage systems capable of Cu extraction from CuFeS₂ Deen, Kashif Mairaj

Abstract

Two hybrid energy storage systems, i.e., a fixed bed flow cell (FBFC) and a tri-functional battery (TFB) are introduced, which use either synthetic CuFeS₂ or a mineral concentrate (MC) as electrode materials and a source of Cu. In the FBFC, the composite negative electrode is CuFeS₂ or MC sandwiched in graphite felt (GF). The Fe^II^/Fe^III^ redox reaction (in the presence of Cu^II^) occurs on a GF positive electrode. Under optimized conditions, the presence of CuFeS₂ resulted in a continuous increase in the specific capacity of the FBFC from 9 to 48 mAh g-¹ and in the specific energy from 2 to 6.3 Wh kg-¹ in 500 galvanostatic charge/discharge (GCD) cycles. However, in the same setup, the MC had an increase in the specific energy from 3.5 to 8.5 Wh kg-¹ in 400 GCD cycles. Advantageously, 10.3 and 12.7% Cu is extracted from the synthetic CuFeS₂ and MC, respectively. In the TFB, two energy intensive processes, Cu extraction from CuFeS₂ and Zn electrowinning, are integrated for energy storage. In this setup, the positive slurry electrode (PSE) composed of CuFeS₂ or MC mixed with activated carbon (AC) in H₂SO₄ was separated by a membrane from the circulating Zn²⁺ solution in the negative compartment. The Zn deposition/re–dissolution and commencement of reversible reactions in the PSE during GCD cycles are responsible for energy storage akin to a battery. The maximum 388 Wh kg-¹ specific energy (1.13 Wh l-¹) during the 1st discharge cycle decreased to ≈50 Wh kg-¹ over the subsequent 14 GCD cycles. The low coulombic (≈50%) and energy (~40%) efficiencies are offset by ~23% Cu extraction from CuFeS₂ in 100 GCD cycles. The cell potential of ~0.95 V and potential efficiency (>70%) imply that the TFB can be used as a hybrid energy storage device. Using MC in the TFB-M, a monotonic increase in energy density from 2.6 to 36.2 mWh l-¹ at low energy efficiency (between 14–43%) was obtained for the initial 14 GCD cycles. On the other hand, in 100 GCD cycles, ~16.1% Cu was also extracted from the MC.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International