UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Measurement of tendon transverse stiffness in people with Achilles tendinopathy : a cross sectional study Finnamore, Evan Hugh John

Abstract

The Achilles tendon is the largest and strongest tendon in the human body and is vital for locomotion. One of the most important indicators of tendon function is tendon stiffness. Tendinopathic Achilles tendon displays reduced stiffness compared to healthy tissue, meaning that it experiences more strain for a given load, putting the tendon at a higher risk of damage. Recently, in vivo measures of Achilles tendon stiffness have become more common, although they are limited to the research setting due to low reliability values. In order to address these limitations, we have begun validating a newly available technology, the MyotonPRO. This is a handheld, digital palpation device that sends out a small impulse into the tendon through a probe which houses an accelerometer. The measured deformation and acceleration determined by the device, are then used to derive the transverse stiffness of the tendon. The aim of this cross-sectional pilot study is to assess whether the transverse stiffness of tendinopathic Achilles tendon (the mid-portion tendinopathy group) is lower than those who are free from symptoms (the control group). We hypothesized that the injured tendons will be significantly less stiff than the tendons of the control group. To test this hypothesis, we used the MyotonPRO to measure the Achilles tendons of 25 individuals who either had midportion tendinopathy (n=10) or who were healthy controls (n=15), and compared their transverse stiffness values taken at the same average location on the tendon (3.7cm from the insertion). We found that there was a significantly lower transverse stiffness in tendinopathic subjects compared to controls (p=0.006). These findings suggest that the MyotonPRO can provide information about the tendon mechanical properties that may be useful in understanding how tendinopathy affects tendon function. This study opens the door to the continued investigation of a relatively inexpensive, accessible and easy-to-interpret device. We believe that this device could be used to monitor the healing in tendinopathy patients as well as predicting and preventing injuries and monitoring adaptive changes in tendons in response to exercise.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International