UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Late Cenozoic post-subduction tectonic, magmatic and metallogenic evolution of the Anatolide-Tauride… Rabayrol, Fabien 2018

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2018_november_rabayrol_fabien.pdf [ 69.29MB ]
Metadata
JSON: 24-1.0371622.json
JSON-LD: 24-1.0371622-ld.json
RDF/XML (Pretty): 24-1.0371622-rdf.xml
RDF/JSON: 24-1.0371622-rdf.json
Turtle: 24-1.0371622-turtle.txt
N-Triples: 24-1.0371622-rdf-ntriples.txt
Original Record: 24-1.0371622-source.json
Full Text
24-1.0371622-fulltext.txt
Citation
24-1.0371622.ris

Full Text

LATE CENOZOIC POST-SUBDUCTION TECTONIC, MAGMATIC AND METALLOGENIC EVOLUTION OF THE ANATOLIDE – TAURIDE OROGENIC BELT, TURKEY byFabien RabayrolMaster’s degree, UniLaSalle, 2011A THESIS SUBMITTED IN PARTIAL FULFILLMENT OFTHE REQUIREMENTS FOR THE DEGREE OFDOCTOR OF PHILOSOPHYinTHE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES(Geological Sciences)THE UNIVERSITY OF BRITISH COLUMBIA(Vancouver) August 2018© Fabien Rabayrol, 2018iiThe following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled:Late Cenozoic Post-Subduction Tectonic, Magmatic and Metallogenic Evolution of the Anatolide-Tauride Orogenic Belt, Turkey       submitted by  Fabien Rabayrol  in partial fulfillment of the requirements forthe degree of Doctor of Philosophy        in  Geological Sciences        Examining Committee:Craig J.R. Hart, Geological Sciences        Supervisor James K. Mortensen, Geological Sciences       Supervisory Committee Member Derek J. Thorkelson, Simon Fraser University      Supervisory Committee Member Dominique Weis, Geological Sciences       University ExaminerScott W. Dunbar, Mining Engineering       University ExaminerJeremy P. Richards, Laurentian University       External ExaminerAbstractThe termination of the northward subduction of the Southern Neotethyan oceanic slab beneath the Anatolide-Tauride Block in Turkey led to the onset of the Arabia-Eurasia continental collision in the Oligocene. The subducting Southern Neotethyan slab was affected by post-subduction segmentation manifested by slab break-off (central-eastern Anatolia) and tearing (western Anatolia) during the late Cenozoic. Many igneous complexes formed in the late Cenozoic and some of them host gold-rich porphyry and epithermal prospects and deposits. New temporal (U-Pb, 40Ar/39Ar and Re-Os dates), spatial (field observations and GIS) and geochemical data (elemental and Sr-Nd-Pb isotopic analyses) provide robust constraints on the genetic relationship between late Cenozoic slab segmentation tectonic events, Anatolian magmatism and associated gold mineralization.The newly-defined Eastern Anatolian Magmatic Belt formed in response to the slab break-off initiation at ca. 25 Ma, window opening, westward break-off propagation to central Anatolia and induced asthenospheric flow. The slab break-off-related igneous units were subsequently covered by widespread volcanic products in eastern Anatolia (12 Ma-Present) that resulted from the long-lived asthenospheric heating, destabilization of the thickened Anatolian lithosphere root and its partial removal by convective dripping. Magmatic sources include the shallow melting of the previously-metasomatized Anatolian subcontinental lithospheric mantle and asthenosphere by decompression due to impingement of the Arabian and African sub-slab asthenospheric mantles.Late Cenozoic Anatolian magmatism produced porphyry and epithermal prospects and deposits that cluster in nine isolated mineral districts controlled by graben, transtensional corridors and pull-apart basins. The bulk of gold mineralization (33 Moz Au) peaked at the beginning of the slab break-off event at 25 Ma in central and eastern Anatolia, and slab tear at 15 Ma in western Anatolia. The late Cenozoic trench-parallel and -perpendicular migrations of slab rupture and window opening in Anatolia 1) allowed toroidal and poloidal flow of asthenosphere beneath Anatolia, 2) caused the migration of melting source and associated igneous complexes and mineral deposits in the overriding crust, 3) destabilized the Anatolian lithospheric mantle, which reduced the amount of available volatiles and metals, and therefore 4) increased the production of barren, drier and mantle-dominant volcanism through time that partially covers fertile igneous units. iiiLay SummaryThe increasing demand for metals requires efficient mineral exploration processes and thus well-constrained tectonic, magmatic and metallogenic models for a particular metal-endowed region. The Anatolian region in Turkey has been known for its gold resources for millenniums. However, factors controlling the formation and distribution of Anatolian gold mineralization and associated magmatic rocks have not been determined. New temporal, spatial and geochemical constraints on mineralized magmatic rocks reveal that most of Anatolian gold mineralization occurred for the last 25 million years as a result of mantle flow beneath Anatolia after the onset of the continental collision between the Arabia and Eurasia tectonic plates. The outcomes of this research work provide new empirical criteria and a comprehensive model for gold exploration in Anatolia as well as insights into the geodynamic evolution of the Eastern Mediterranean region and metallogenic processes in collisional domains.ivPrefaceThis thesis is the result of my own work that was carried out at the MDRU – Mineral Deposit Research Unit at The University of British Columbia (UBC) and in the field throughout the Anatolia in Turkey between 2013 and 2018. Craig J.R. Hart (UBC), supervisor, Derek J. Thorkelson (SFU), James K. Mortensen (UBC) and Aleksandar Mišković (UBC), co-supervisors, provided me with advice, comments, suggestions, supervision and editorial co-authorship during our many informal discussions and formal committee meetings. This research work was part of the MDRU’s Western Tethyan Metallogeny project (WTM; 2012-2016) sponsored by 16 Canadian and international mining companies including Alamos Gold Inc., AngloGold Ashanti Ltd., Avala Resources Ltd., Centerra Gold Inc., Dunav Resources Ltd., Dundee Precious Metals Inc., Esan, Eldorado Gold Corp./Tüprag Metal Madencilik, First Quantum Minerals Ltd., Kinross Gold Corp., National Iranian Copper Industries Company, Newcrest Mining Ltd., Pilot Gold Inc., Silver Standard Resources Inc., and Teck Resources Ltd. This WTM project was initiated and managed by Aleksandar Mišković and Craig Hart, who also designed the initial research objectives and scope of this PhD. I readjusted those objectives during my research work in collaboration with my supervisory committee to accommodate my own science questions, early findings and new ideas. Many technical reports were prepared by myself and edited by Aleksandar Mišković and Craig Hart, and oral presentations were given to the WTM project’s sponsors. Although some components and data presented in those reports were used to develop argumentations and interpretations in this dissertation, none of the sections were literally reproduced. The report and presentation references are listed below.The research herein is paper-based and built on four main chapters, which each forms a manuscript, bracketed by an introduction (Chapter 1) and conclusion (Chapter 6). Each manuscript aims to be published in reputable journals and is accompanied by supplementary data presented in the thesis appendices (A, B, C and D). Also, each manuscript deals with a specific component of the project that all together contribute to achieve the research objectives. The core ideas of each manuscript are a piece of original work but the redundancy of some background information was inevitable to produce stand-alone manuscripts. I provided the original ideas, wrote the entire content of each manuscript, acquired the data, unless specified below, designed all of the figures and tables, and conducted research work and leadership. Contributions from co-authors are defined below. During my five-month field work between 2013 and 2015, I was guided by Aleksandar Miskovic (three weeks), Matias Sanchez (six days) and İlkay Kuşcu (Muğla University; four days). Sara Jenkins (MDRU-UBC) assisted me with data compilation, GIS work and design of database templates.vChapter 2, entitled “Migration of Late Cenozoic Magmatism as a Proxy for Slab Break-Off and Mantle Flow Initiation and Propagation, Central and Eastern Anatolia, Turkey” is intended for submission to an international peer-reviewed journal. Craig Hart is the only co-author and provided technical and editorial advice, and suggestions to the developed ideas and manuscript. Additional discussions and reviews were brought by Derek Thorkelson, James Mortensen, Thomas Bissig (Goldcorp Inc.) and Armel Menant (Institut du Globe de Paris). Supplementary data to this manuscript are in the Appendix A.Chapter 3, entitled “Geochemical Evolution of Late Cenozoic Post-Subduction Magmatism in Central and Eastern Anatolia, Turkey”, is intended for submission to an international peer-reviewed journal. Derek Thorkelson provided me with his expertise in igneous petrology and helped me develop ideas and interpretations. He also provided advice and editorial suggestions throughout the preparation of this manuscript. Lithogeochemical data were acquired by Bureau Veritas Labs in Vancouver and the radiogenic Sr-Nd-Pb isotope analyses were conducted by Bruno Kieffer and Kathy Gordon from the Pacific Centre for Isotopic and Geochemical Research (PCIGR) at UBC. During that analytical process, I sampled the rocks, hand-picked the feldspar crystals for Pb isotope analyses and performed the Pb analyses. I also beneficiated from additional discussions about isotopic data quality and interpretation with Dominique Weis and Anaïs Fourny (PCIGR-UBC). Supplementary data to this manuscript are in the Appendix B.Chapter 4, entitled “Tectonic Triggers for Post-Subduction Magmatic-Hydrothermal Gold Metallogeny in the Late Cenozoic Anatolian Metallogenic Trend, Turkey” is intended for submission to an international peer-reviewed journal. Craig Hart provided technical and editorial expertise to the developed ideas and manuscript. Robert Creaser (University of Alberta) and Richard Spikings (Université de Genève) were responsible for the Re-Os and 40Ar/39Ar dating analyses, respectively. Additional discussions and reviews were brought by Kaleb Boucher (Teck Resources Ltd.), Derek Thorkelson and James Mortensen. Supplementary data to this manuscript are in the Appendix C.Chapter 5, entitled “Petrogenetic Controls on Post-Subduction Magma Fertility in the Late Cenozoic Anatolian Metallogenic Trend, Turkey”, will also be submitted to an international peer-reviewed journal. Craig Hart, co-author, contributed through feedback, advice and editorial suggestions throughout the preparation of the manuscript. Additional discussion and technical advice were provided by Thomas Bissig, Farhad Bouzari (MDRU- UBC) and Derek Thorkelson. The acquisition protocol of geochemical data presented in this manuscript is the same as stated in Chapter 3 above. Supplementary data to this manuscript are in the Appendix D.viBelow is the list of papers, technical reports, oral presentations and posters made or given during this PhD research project:PapersBaker, T., Bickford, D., Juras, S., Lewis, P., Öztaş, Y., Ross, K., Tukaç, A., Rabayrol, F., Mišković, A., Friedman, R. and Creaser, R.A., 2016, The geology of the Kışladağ porphyry gold deposit, Turkey: Society of Economic Geologists Special Publication, v.19, p 57-83.Technical reportsRabayrol, F., 2013, Metallogeny and Tectonic Associations of the Anatolian Epithermal and Porphyry-Style Deposits: A Synthesis of the 2013 Field Season: In Mišković, A. and Hart, C.J.R (eds), Western Tethyan Metallogeny Project, 1st Technical Report to Companies, MDRU, The University of British Columbia, p 69-96.Rabayrol, F. and Mišković, A., 2013, The Karapınar Cu-Mo porphyry and Demirtepe Cu-rich skarn deposits, Bursa district, NW Anatolia, Turkey: Western Tethyan Metallogeny Project, Technical Memorandum, MDRU, The University of British Columbia, 14 p.Rabayrol, F., 2014, The Cenozoic Cu-Au metallogeny of Western Anatolia, Turkey: Western Tethyan Metallogeny Project, 2nd Technical Meeting, MDRU, The University of British Columbia, 26 p.Rabayrol, F., 2014, The Öksüt High-Sulphidation Epithermal Au Deposit, Kayseri District, Central Anatolia, Turkey: In Mišković, A. (ed), Western Tethyan Metallogeny Project, Technical Report, MDRU, The University of British Columbia, 20 p.Rabayrol, F., 2015, Temporal and Spatial Distribution of Porphyry and Epithermal Systems in the Anatolian-Tauride Metallogenic Belt, Turkey: In Mišković, A., (ed). Western Tethyan Metallogeny Project, Final Technical Report to Companies, MDRU, The University of British Columbia, p 71-75.Rabayrol, F. and Hart, C.J.R., 2016, New geochronological ages from the Anatolian porphyry-epithermal systems and associated magmatic units, Turkey: Western Tethyan Metallogeny Project, Technical Memorandum, MDRU, The University of British Columbia, 15 p.Rabayrol, F., Wainwright, A.J. and Hart, C.J.R., 2017, 2017 New geochronology of Anatolian magmatic units, Turkey: Western Tethyan Metallogeny Project-Phase 2, Technical Memorandum, MDRU, The University of British Columbia, 5 p.Oral presentations (and associated abstracts)Rabayrol, F., 2013, Metallogeny and Tectonic Associations of the Anatolian Epithermal and Porphyry-Style Deposits: A Synthesis of the 2013 Field Season. Western Tethyan Metallogeny Project, 1st Technical Meeting, İzmir, Turkey. Oral Presentation (invited). Rabayrol, F., 2014, The Cenozoic Cu-Au metallogeny of Western Anatolia, Turkey: viiWestern Tethyan Metallogeny Project, 2nd Technical Meeting, Sofia, Bulgaria. Oral Presentation (invited).Rabayrol, F., 2015, Temporal and Spatial Distribution of Porphyry and Epithermal Systems in the Anatolian-Tauride Metallogenic Belt, Turkey: In Mišković, A., (ed), Western Tethyan Metallogeny Project, Final Technical Meeting, Istanbul, Turkey. Oral Presentation (invited).Rabayrol, F., Mišković, A., and Hart, C.J.R., 2016, Post-Subduction Porphyry and Epithermal Gold Systems and Associated Magmatism in the Miocene Anatolian Metallogenic Belt, Turkey. SEG 2016 Conference: Tethyan Tectonics and Metallogeny, Çeşme, Turkey, September 25-28. Oral Presentation.Rabayrol, F., Hart, C.J.R. and Mišković, A., 2016, Temporal, Spatial and Geochemical Constraints on the Post-Subduction Porphyry and Epithermal Gold Systems of the Miocene Anatolian Metallogenic Belt, Turkey: Western Tethyan Metallogeny Project, Tethyan Day, Vancouver, BC, Canada, November 28. Oral Presentation (invited).Rabayrol, F. and Hart, C.J.R., 2017, Late Cretaceous to Cenozoic subduction-, post-subduction- and post-collision-related porphyry and epithermal Au-Cu systems of the Anatolide-Tauride metallogenic belt, Turkey: Proceedings of the 14th SGA Biennial Meeting, Quebec City, Canada, August 20-23. Oral Presentation.Rabayrol, F. and Hart, C.J.R., 2018, Petrogenetic Controls on Post-Subduction Magma Fertility in the Late Cenozoic Anatolian Metallogenic Trend, Turkey: Gordon Research Seminar, Mineralizing Processes Across All Scale, Waterville Valley, New Hampshire, USA, August 4-5, Oral Presentation (invited).Posters (and associated abstracts)Rabayrol, F., Mišković, A., Hart, C.J.R., Kuşcu, İ., Sanchez, M., 2014, The Cenozoic metallogeny of Western Anatolia, Turkey: SEG 2014 Meeting: Building Exploration Capability for the twenty-first Century, Keystone, Colorado, USA, September 27–30, Poster.Rabayrol, F., Mišković, A., and Hart, C.J.R., 2016, Porphyry and epithermal metallogeny of the Anatolide-Tauride Belt, Turkey: AME BC Roundup, Vancouver, BC, Canada, January 26, Poster.Rabayrol, F., Mišković, A., and Hart, C.J.R., 2016, Porphyry and epithermal metallogeny of the Anatolide-Tauride Belt, Turkey: PDAC-SEG Student Minerals Colloquium, Toronto, Ontario, Canada, March 7, Poster.Rabayrol, F. and Hart, C.J.R., 2018, Petrogenetic Controls on Post-Subduction Magma Fertility in the Late Cenozoic Anatolian Metallogenic Trend, Turkey: Gordon Research Conference, Mineralizing Processes Across All Scale, Waterville Valley, New Hampshire, USA, August 5-10, Poster.viiiixAbstract ................................................................................................................................... iiiLay Summary ..........................................................................................................................ivPreface .......................................................................................................................................vTable of Contents ....................................................................................................................ixList of Tables ...........................................................................................................................xvList of Figures ...................................................................................................................... xviiList of Abbreviations ........................................................................................................ xxxiiiGlossary .............................................................................................................................xxxviAcknowledgements ........................................................................................................ xxxviiiDedication ................................................................................................................................xlChapter 1: Introduction ..........................................................................................................11.1 Subduction and post-subduction metallogeny ................................................................11.1.1 Subduction magmatism and porphyry-epithermal systems  ....................................11.1.2 Post-subduction metallogeny ...................................................................................41.1.3 Temporal and spatial distribution of porphyry deposits ..........................................51.2 Slab break-off and tearing models ..................................................................................61.3 Tectono-magmatic framework of the Anatolide-Tauride Block .....................................81.4 Late Cenozoic segmentation of the Southern Neotethyan oceanic slab .......................121.5 Metallogeny of the Western Tethyan Orogenic Belt ....................................................131.6 Overview of the Turkish metallogeny  .........................................................................151.6.1 Birthplace of mining ..............................................................................................151.6.2 Mineral diversity of Turkey ...................................................................................161.6.3 Tectono-magmatic context of Anatolian porphyry and epithermal mineralization ..........................................................................................................................................171.7 Thesis research questions and objectives .....................................................................191.7.1 Part 1: Temporal, spatial and geochemical evolution of late Cenozoic magmatism in central and eastern Anatolia .........................................................................................191.7.2 Part 2: Late Cenozoic Anatolian Gold Metallogeny ..............................................201.8 Thesis approach ............................................................................................................21Part 1: Temporal, spatial and geochemical evolution of late Cenozoic magmatism in central and eastern Anatolia, Turkey ...................................................................................22Table of ContentsxChapter 2: Migration of late Cenozoic magmatism as a proxy for slab break-off and mantle flow initiation and propagation, central and eastern Anatolia, Turkey ...............232.1 Introduction ..................................................................................................................232.2 Geodynamic setting of the Anatolide-Tauride Block ...................................................252.3 Late Cenozoic magmatism of the central and eastern Anatolide-Tauride Block .........292.4 Methodology ................................................................................................................302.4.1 Age data compilation .............................................................................................302.4.2 Sample selection ....................................................................................................312.4.3 LA-ICP-MS U-Pb dating analytical technique ......................................................312.5 Results ..........................................................................................................................322.5.1 U-Pb zircon dating .................................................................................................322.5.2 Timing of late Cenozoic magmatism .....................................................................362.6 Discussion ....................................................................................................................412.6.1 Initiation and propagation of the lithospheric slab break-off .................................412.6.2 Spatial extent of the sub-horizontal slab rupture ...................................................452.6.3 Slab break-off-related sub-slab asthenospheric infiltration ....................................472.6.4 Propagation rates of magmatism and crustal uplift ................................................482.6.5 Post-late Miocene partial removal of the subcontinental lithospheric mantle in central and eastern Anatolia .............................................................................................512.7 Conclusion ....................................................................................................................53Chapter 3: Geochemical evolution of late Cenozoic post-subduction magmatism in central and eastern Anatolia, Turkey  ...............................................................................................553.1 Introduction ..................................................................................................................553.2 Geological and tectonic setting of central and eastern Anatolia ..................................573.2.1 Tectonic assembly ..................................................................................................573.2.2 Geological framework ...........................................................................................603.2.3 Geodynamic history ...............................................................................................613.3 Late Cenozoic magmatism in central and eastern Anatolia .........................................643.3.1 Central Anatolia .....................................................................................................643.3.2 Eastern Anatolia .....................................................................................................693.3.3 Other late Cenozoic magmatic domains in central and eastern Turkey .................723.4 Methodology ................................................................................................................723.4.1 Geochemical data compilation ...............................................................................723.4.2 Sample selection ....................................................................................................733.4.3 Analytical techniques .............................................................................................743.4.3.1 Whole-rock lithogeochemistry .........................................................................74xi3.4.3.2 Sr-Nd-Pb isotopic geochemistry ......................................................................753.5 Results ..........................................................................................................................763.5.1 Central Anatolia .....................................................................................................763.5.1.1 Middle-Late Miocene .......................................................................................763.5.1.2 Pliocene ............................................................................................................773.5.1.3 Quaternary ........................................................................................................823.5.2 Magmatic transition between central and eastern Anatolia ...................................933.5.3 Eastern Anatolia .....................................................................................................933.5.3.1 Oligocene-early Miocene .................................................................................933.5.3.2 Middle Miocene  ..............................................................................................943.5.3.3 Late Miocene-Pliocene ....................................................................................943.5.3.4 Pliocene-Quaternary ........................................................................................953.6 Discussion ....................................................................................................................963.6.1 Subduction component ...........................................................................................963.6.2 Post-subduction magmatism: inheritance from past subduction events ................983.6.3 Crustal contamination ............................................................................................983.6.4 Magma alkalinity .................................................................................................1013.6.5 Composition and depth of magmatic sources ......................................................1023.6.6 The role of upwelling subslab asthenosphere ......................................................1083.6.7 Geochemical and tectonic evolution of the Eastern Anatolian Magmatic Belt ...1103.6.7.1 Two-stage, post-subduction, syn-collisional magmatism ..............................1103.6.7.2 Mantle dynamics and regional partial removal of the SCLM ........................1143.7 Conclusion ..................................................................................................................116Part 2: Late Cenozoic Anatolian Gold Metallogeny, Turkey ...........................................118Chapter 4: Tectonic triggers for post-subduction magmatic-hydrothermal gold metallogeny in the late Cenozoic Anatolian Metallogenic Trend, Turkey  .....................1194.1 Introduction ................................................................................................................1194.2 Geological and tectonic setting of the Anatolide-Tauride Block ...............................1224.2.1 Anatolide-Tauride Block ......................................................................................1224.2.2 Geodynamic evolution .........................................................................................1264.2.3 Late Cenozoic Anatolian magmatism ..................................................................1284.3 Field-based definition of late Cenozoic Anatolian precious and base metal districts  ............................................................................................................................................1294.3.1 Economic features of the Anatolian porphyry and epithermal systems ...............1304.3.2 Simav low-sulfidation epithermal Au-Ag, porphyry Mo-Cu and skarn Pb-Zn-Fe district .............................................................................................................................133xii4.3.3 İzmir low- to intermediate-sulfidation epithermal Au district .............................1384.3.4 Uşak porphyry Au district ....................................................................................1394.3.5 Afyon-Sandıklı porphyry Au-Cu prospect ...........................................................1414.3.6 Bodrum high-sulfidation epithermal and skarn district .......................................1414.3.7 Konya high-sulfidation epithermal Au-Ag-(Cu) district ......................................1424.3.8 Niğde high-sulfidation epithermal district ...........................................................1444.3.9 Kayseri high-sulfidation epithermal Au district ...................................................1444.3.10 Hasançelebi high-sulfidation epithermal Au-Ag prospect ...................................1484.3.11 Tunceli porphyry Cu-Au-Mo district ...................................................................1484.3.12 Ağrı porphyry, high-sulfidation epithermal and Carlin-style Au-(Cu-Ag?) district ........................................................................................................................................1484.4 Methodology of gold mineralization dating ...............................................................1504.5 Age dating results .......................................................................................................1514.6 Discussion ..................................................................................................................1554.6.1 Style and distribution of gold-bearing ore systems ..............................................1554.6.1.1 Spatial distribution of precious and base metal mineralization in western Anatolia ......................................................................................................................1554.6.1.2 Boron-rich hydrothermal alteration in western Anatolia ...............................1554.6.1.3 Orogenic and epithermal gold mineralization in western Anatolia ...............1564.6.1.4 High-sulfidation epithermal mineralization in central Anatolia .....................1574.6.1.5 Potential for epithermal- and porphyry-style mineralization in eastern Anatolia ....................................................................................................................................1574.6.2 Regional structural control on gold mineralization .............................................1584.6.2.1 Western Anatolia ............................................................................................1584.6.2.2 Central Anatolia .............................................................................................1594.6.2.3 Eastern Anatolia .............................................................................................1614.6.3 Paleodepth of porphyry ore emplacement ...........................................................1624.6.4 Timing and duration of gold mineralization events .............................................1654.6.4.1 Western Anatolia ............................................................................................1654.6.4.2 Central Anatolia .............................................................................................1674.6.4.3 Eastern Anatolia .............................................................................................1674.6.5 Temporal and spatial migration of gold mineralization and mantle dynamics ....1684.6.5.1 Slab roll-back-, back-arc- and slab tear-related gold mineralization in western Anatolia ......................................................................................................................1704.6.5.2 Slab steepening- and break-off-related gold mineralization in central and eastern Anatolia ......................................................................................................................173xiii4.6.6 Comparison with the neighboring late Cenozoic gold provinces along the Western Tethyan Orogenic Belt ....................................................................................................1744.6.6.1 Greece and northwest Turkey ........................................................................1754.6.6.2 Lesser Caucasus and Iran ...............................................................................1764.7 Conclusion ..................................................................................................................177Chapter 5: Petrogenetic controls on post-subduction magma fertility in the late Cenozoic Anatolian Metallogenic Trend, Turkey ..............................................................................1795.1 Introduction ................................................................................................................1795.2 Late Cenozoic tectonic, magmatic and metallogenic framework of the Anatolide-Tauride Block .....................................................................................................................1815.2.1 Tectonic and geodynamic evolution ....................................................................1815.2.2 Late Cenozoic Anatolian magmatism ..................................................................1855.2.3 Late Cenozoic Anatolian precious and base metal metallogeny ..........................1885.2.3.1 Western Anatolia ............................................................................................1895.2.3.2 Central Anatolia .............................................................................................1905.2.3.3 Eastern Anatolia .............................................................................................1905.3 Data acquisition and assessment ................................................................................1915.4 Results ........................................................................................................................1965.5 Discussion ..................................................................................................................2035.5.1 Fertility of late Cenozoic Anatolian magmatism .................................................2035.5.1.1 Magma volatile content and oxidation state ..................................................2035.5.1.2 Early hornblende ± clinopyroxene fractionation ...........................................2085.5.1.3 Magma alkalinity ...........................................................................................2115.5.2 Slab segmentation, mantle dynamics and magma petrogenesis ..........................2125.5.2.1 Temporal evolution of magma fertility ..........................................................2125.5.2.2 Metal and magma source(s) ...........................................................................2145.5.2.3 Progressive loss of the SCLM and migration of melting loci  .......................2175.6 Conclusion ..................................................................................................................219Chapter 6: Conclusions .......................................................................................................2226.1 Part 1: Temporal, spatial and geochemical evolution of late Cenozoic magmatism along the Eastern Anatolian Magmatic Belt ................................................................................2226.1.1 Definition of the Eastern Anatolian Magmatic Belt .............................................2226.1.2 Slab break-off-related magmatism .......................................................................2236.1.3 SCLM removal-related magmatism .....................................................................2246.1.4 Implications for the geodynamic evolution of the Eastern Mediterranean region ........................................................................................................................................2256.2 Part 2: Late Cenozoic Anatolian gold metallogeny ....................................................2256.2.1 Characterization of late Cenozoic Anatolian mineral districts ............................2266.2.2 Timing of late Cenozoic Anatolian gold mineralization and tectonic implications ........................................................................................................................................2276.2.3 Post-subduction magma fertility in Anatolia .......................................................2286.2.4 Implications for post-subduction gold metallogeny ............................................2296.3  Final remarks .............................................................................................................229References .............................................................................................................................232Appendix A ...........................................................................................................................279A.1 Age data compilation .................................................................................................279A.2 LA-ICP-MS U-Pb dating analyses .............................................................................281Appendix B ...........................................................................................................................290B.1 Geochemical data compilation, sorting and interpretation .........................................290B.2 Lithogeochemical analysis QA-QC ...........................................................................293B.3 Geochemical features of the late Cenozoic igneous complexes in central and eastern Anatolia ..............................................................................................................................308B.4 Primary melt calculation ............................................................................................310Appendix C ...........................................................................................................................312Appendix D ...........................................................................................................................317Appendix E ...........................................................................................................................318E.1 Geochronology of the Kışladağ  porphyry gold deposit ............................................318E.2 Age of the Kışladağ magmatic-hydrothermal system ................................................319E.3 CA-ID-TIMS U-Pb dating analytical procedure ........................................................324E.4  40Ar/39Ar dating analytical procedure ........................................................................325E.5 Re-Os dating analytical procedure .............................................................................326xivTable 2.1 U-Pb geochronological results from central and eastern Anatolia. ..........................33Table 3.1 Major, trace and rare earth element compositions of rock samples from central and eastern Anatolian igneous complexes. .....................................................................................78Table 3.2 Radiogenic Sr and Nd isotope data from selected late Cenozoic igneous units in central and eastern Anatolia .....................................................................................................82Table 3.3 Radiogenic Pb isotope data from selected late Cenozoic igneous units in central and eastern Anatolia ........................................................................................................................82Table 3.4 Primary melt isotopic compositions calculated at Mg # = 70 (if r2 ≥ 0.5) or by average of primitive samples (62 ≤ Mg # ≤ 70) if available (n ≥ 2). ..................................................105Table 4.1 Characteristics of the Late Cenozoic Anatolian mineral gold districts and isolated porphyry- and epithermal-style prospects. .............................................................................131Table 4.2 Resources, reserves and ore grades of the late Cenozoic Anatolian gold deposits.................................................................................................................................................134Table 4.3 Summary of LA-ICP-MS U-Pb, 40Ar/39Ar and Re-Os dating results from selected gold deposits and prospects along the late Cenozoic Anatolian Trend. .................................152Table 5.1 Major and trace element analyses of igneous rocks hosting precious or base metals along the late Cenozoic Anatolian Metallogenic Trend. ........................................................193Table 5.2 Radiogenic Sr and Nd isotope data from late Cenozoic igneous units in western Anatolia. .................................................................................................................................195Table 5.3 Radiogenic Pb isotope data from late Cenozoic igneous units in western Anatolia.................................................................................................................................................196Table A.1 Geochronological data compilation, central and eastern Anatolia. .......................279Table A.2 LA-ICP-MS U-Pb isotopic analyses. ....................................................................285Table B.1 Late Cenozoic igneous complexes of central and eastern Anatolia. .....................291Table B.2 Petrographic descriptions of rock samples analyzed for major and trace element and/or Sr-Nd-Pb isotope geochemistry (central and eastern Anatolia).. .......................................294Table B.3 Reference values for BAS-1 standard. ..................................................................296Table B.4 Reference values for P-1 standard. ........................................................................297Table B.5 Reference values for WP-1 standard. ....................................................................298List of TablesxvTable B.6 Summary of analyzed reference material and comparison with reference values.................................................................................................................................................299Table B.7 Comparison between original and duplicate samples (see text for explanation about MPD (mean percentile difference) and precision calculation. ...............................................302Table B.8 Rb-Sr and Sm-Nd elemental concentration QA-QC. ............................................306Table B.9 Radiogenic Pb isotope analyses QA-QC. ..............................................................307Table C.1 LA-ICP-MS U-Pb isotopic analyses. ....................................................................313Table C.2  40Ar/39Ar isotopic analyses. ...................................................................................316Table D.1 Descriptions of rock samples analyzed for major and trace element and/or Sr-Nd-Pb isotope geochemistry (western Anatolia - Chapter 5). ...........................................................317Table E.1 Summary of the new geochronological data obtained from the Kışladağ deposit.................................................................................................................................................321Table E.2 U-Th-Pb isotopic data - CA-ID-TIMS ..................................................................327Table E.3  40Ar/39Ar dating data – Hypogene alunite (FR-13-65) from the Kışladağ gold mine.................................................................................................................................................328xvixviiFigure 1.1 Subduction zone setting illustrating the melting processes and the formation of porphyry deposits (redrafted from Winter, 2001; Richards, 2011a).  ........................................2Figure 1.2 A) Slab break-off model (modified from Wortel and Spakman, 2000); B) Vertical slab tear model. ..........................................................................................................................6Figure 1.3 Western Tethyan Orogenic Belt (in light pink) showing the location of the study area, namely the Anatolide-Tauride Block (ATB; pink dotted area) sandwiched between Eurasia and the northward converging Africa and Arabia plates (green arrows), major tectonic boundaries (black lines) and the major porphyry and epithermal deposits, districts and belts. ASF = Aegean subduction front; BSZ = Bitlis suture zone; CSF = Cyprus subduction front; DSF = Dead Sea fault. Background image from ESRI. ........................................................................................9Figure 1.4 Tectonic map of Turkey (1:6,000,000; Lambert Conic projection; European Datum 1950) showing the location of major tectonic terranes and boundaries (modified from Okay and Tüysüz, 1999; Şengör et al., 2008; Pourteau et al., 2013) and the distribution of ophiolitic units (modified from MTA, 2002). The labels are the tectonic zones within the Anatolide-Tauride Block (light green; study area). BSZ = Bitlis Suture Zone; IAESZ = İzmir-Ankara-Erzincan Suture Zone; ITSZ = Inner Tauride Suture Zone; SASZ = Sevan-Akera Suture Zone. ..........10Figure 1.5 Paleogeographic reconstructions of the Middle East showing the Mesozoic northward migration of the Anatolide-Tauride Block (ATB) opening and closing the Northern and Southern Neotethys Oceans: A. Toarcian; B. Aptian; C. Maastrichtian; D. Burdigalian (modified from Barrier and Vrielynck, 2008). .........................................................................11Figure 1.6 3D diagram of the subducted Southern Neotethyan oceanic slab beneath Anatolia interpreted from seismic tomographic model and illustrating the segmented geometry of the slab and the projection to the surface of the major tectonic features (modified from Biryol et al., 2011). .................................................................................................................................13Figure 1.7 Map of Turkey showing the distribution of metal occurrences, prospects and deposits with an emphasis on magmatic-hydrothermal ore systems, namely porphyry, epithermal, skarn and VMS. Basement boundaries were modified from Okay and Tüysüz, 1999; Şengör et al., 2008; Pourteau et al., 2013; the igneous units were modified from MTA, 2002. ....................18Figure 2.1 Tectono-magmatic map of central and eastern Anatolia (1:4,000,000 scale; Lambert Conic projection; European Datum 1950) showing the basement boundaries, late Cenozoic igneous rocks (modified from MTA (2002)), complexes and provinces, and regional structures. The location of dated rock samples and compiled geochronological data is also displayed. List of FiguresBase map: SRTM 90 m digital elevation models (Jarvis et al., 2008). Background of the location map is from Google Earth. AF = Akşehir Fault; ASF = Aegean Subduction Front; ATB = Anatolide-Tauride Block; Bitlis Sutures Zone; CSF = Cyprus Subduction Front; DSF = Dead Sea Fault; EAFZ = Eastern Anatolian Fault Zone; EF = Ecemiş Fault; ES = Eratosthenes Seamount; IAESZ = İzmir-Ankara-Erzincan Suture Zone; ITSZ = Inner Tauride Suture Zone; MF = Malatya Fault; NAFZ = North Anatolian Fault Zone; SASZ = Sevan-Akera Suture Zone; TGF = Tuz Gölü Fault. ............................................................................................................26Figure 2.2 Concordia diagrams of selected late Cenozoic volcanic rocks from Konya (FR-13-181 and FR-14-73), Melendiz (FR-15-36), Develidağ (FR-13-254) and Tekkedağ volcanic complexes (FR-15-40). Dashed black ellipses are discordant data not included in weighted mean 206Pb/238U age calculation. MSWD: mean square of weighted deviates. The cathodoluminescence images for each sample display the internal structure of representative igneous zircon grains. ..............................................................................................................34Figure 2.3 Concordia diagrams of selected late Cenozoic magmatic rocks from Yamadağ (FR-14-82), and Ağrı magmatic complexes (FR-14-129, FR-14-142 and FR-14-124). Dashed black ellipses are discordant data not included in weighted mean 206Pb/238U age calculation. MSWD: mean square of weighted deviates. The images under optical microscope (left) and cathodoluminescence (right) for each sample display the internal structure of representative igneous zircon grains. ..............................................................................................................35Figure 2.4 Age histogram of late Cenozoic magmatism in central (grey) and eastern Anatolia (black) counting the number (n) of available age data for each 1 m.y. bin since 30 Ma. The horizontal segments represent the succession of tectonic events that occurred a few million years prior to the crustal emplacement of dated magmatic units. The Ağrı magmatism is continuous from 21 to 17 Ma. Age data from the Galatian magmatism (22-17 Ma) are not on this histogram as out of Anatolia. Stars are the new U-Pb data reported in this Chapter 2 (refer to Table 2.1). Reference: 1İmer et al. (2014); references of compiled data are in Table A.1. ..37Figure 2.5 Time-sliced tectono-magmatic maps of central and eastern Anatolia (1:4,000,000 scale; Lambert Conic projection; European Datum 1950) showing the westward migration of magmatism in the Oligocene, early Miocene and middle Miocene. The black lines outline the magmatic complexes whereas the dashed lines and grey areas are the interpreted connections between contiguous magmatic complexes, and the older magmatic belts, respectively. ATB = Anatolide-Tauride Block. References: 0this Chapter; 1İmer et al. (2014); 2Leo et al. (1974); 3Kürüm et al. (2008); 4Ekici et al. (2009); 5Varol et al. (2014); 6Wilson et al. (1997); 7Kurt et al. (2008); 8Platzman et al. (1998); 9Ekici (2016); 10Asan and Ertürk (2013); 11Koç et al. (2012); 12Korkmaz et al. (2017); 13Lebedev et al. (2010). ....................................................................39xviiiFigure 2.6 Time-sliced tectono-magmatic maps of central and eastern Anatolia (1:4,000,000 scale; Lambert Conic projection; European Datum 1950) showing the westward migration of magmatism in the late Miocene, Pliocene and Quaternary. The black lines outline the magmatic complexes whereas the dashed lines and grey areas are the interpreted connections between contiguous magmatic complexes, and the older magmatic belts, respectively. References: 0this Chapter; 1Leo et al. (1974); 2Platzman et al. (1998); 3Pearce et al. (1990); 4Keskin et al. (1998); 5Notsu et al. (1995); 6Dogan (2016); 7Aydar et al. (2012); 8Lepetit et al. (2014); 9Lustrino et al. (2010); 10Tatar et al. (2007); 11Aydin et al. (2014); 12Kuzucuoglu et al. (1998); 13Schmitt et al. (2011);14Arger et al. (2000). .....................................................................................................41Figure 2.7 A. Schematic map of Turkey (1:6,000,000 scale; Lambert Conic Projection, European Datum 1950) displaying the distribution of major late Cenozoic magmatic domains, including the Eastern Anatolian Magmatic Belt (in blue), the area affected by the late Miocene partial removal of the subcontinental lithospheric mantle (SCLM; blue dashed area in eastern Anatolia), and regional faults (NAFZ = North Anatolian Fault Zone; EAFZ = Eastern Anatolian Fault Zone; BSZ = Bitlis Suture Zone; DSF = Dead Sea Fault). The vertical projection of slab margins and contours (in km) from tomography (Biryol et al., 2011) shows the spatial relationship between slab tear/break-off and surface magmatism. References: 1Jolivet et al. (2015). B. Schematic 3D block (adapted from Wortel and Spakman (2000) and Ferrari (2004)) illustrating the westward migration of magmatism and sub-horizontal slab rupture propagation along the Arabian segment of the Southern Neotethyan slab during the Arabia-ATB collision in the middle Miocene. On this cartoon, the Bitlis-Pütürge Massifs, Central Anatolian Crystalline Complex, ATB and South Armenian Block are part of the same rigid overriding slab that undergoes the Arabian.  ............................................................................................................42Figure 3.1 Tectono-magmatic map of central and eastern Anatolia (1:4,000,000 scale; Lambert Conic projection; European Datum 1950) showing the location of late Cenozoic igneous units (modified from MTA, 2002), complexes, belts and provinces (Chapter 2), basement boundaries (modified from Görür and Tüysüz, 2001; Şengör et al., 2008; Pourteau et al., 2010). Base map: SRTM 90 m digital elevation models (Jarvis et al., 2008). Background of the location map is from Google Earth. ASF = Aegean Subduction Front; ATB = Anatolide -Tauride Block; BSZ = Bitlis Suture Zone; CSF = Cyprus Subduction Front. .............................................................59Figure 3.2 Magmatic map of central Anatolia (1:1,500,000 scale; Lambert Conic projection; European Datum 1950) showing the distribution of late Cenozoic igneous units (unit age modified from MTA, 2002), magmatic complexes and regional structures. The location of analyzed igneous rock samples and compiled geochemical data is also displayed. Base map: SRTM 90 m digital elevation models (Jarvis et al., 2008). ......................................................65xixFigure 3.3 Field photographs illustrating representative magmatic complexes and rock samples from central Anatolia: the succession of lava flows at the Melendiz stratovolcano (A) including an andesitic rock sample from the village of Altunhişar (B – FR-14-34), the Develidağ stratovolcano from the Öksüt gold mine (C), and an andesitic lava flow from the Tekkedağ volcano near the village of Başdere (D – FR-15-40), and the ignimbrite (E) and andesitic units (F – FR-13-181) of the Konya volcanic complex in the area of İnlice. ...................................67Figure 3.4 Optical microphotographs showing selected rock textures and minerals from central and eastern Anatolia. Detailed sample descriptions are in the appendix B (Table B.2); A. clinopyroxene-bearing andesite from Başdere at the Tekkedağ volcano (FR-15-40; plane-polarized light); B. two-pyroxene-bearing andesite from Öksüt at the Develidağ stratovolcano (FR-13-237; cross-polarized light); C. biotite-bearing andesite from Mihaliç tepe at the Konya volcanic complex (FR-14-59; plane-polarized light); D. clinopyroxene-bearing andesite from Hasançelebi at the Yamadağ volcanic complex (FR-14-82; cross-polarized light); E. two-pyroxene-bearing andesite from Idrisli in the Erzurum volcanic plateau (FR-14-117; cross-polarized light); F. monzonite from Diyadin in the Ağrı magmatic complex (FR-14-132; cross-polarized light). ........................................................................................................................68Figure 3.5 Magmatic map of eastern Anatolia (1:2,500,000 scale; Lambert Conic projection; European Datum 1950) showing the distribution of late Cenozoic igneous units (unit age modified from MTA, 2002), complexes and provinces, and regional structures. The locations of analyzed igneous rock samples and compiled geochemical data are indicated. Base map: SRTM 90 m digital elevation models (Jarvis et al., 2008). ......................................................70Figure 3.6 Photographs of representative magmatic complexes and rock samples from eastern Anatolia including: an andesitic lava flow at the Yamadağ volcanic complex, north of the town of Hasançelebi (A – B; FR-14-80), the basaltic plateau near the city of Erzurum as part of the Erzurum volcanic suite (C – D; FR-14-112), and the Taşlıçay (E) and Taşkapı granitic intrusions (F – FR-14-143) that belong to the Ağrı magmatic complex. .................................71Figure 3.7 Total alkali versus silica diagram (Le Maitre et al., 2002) showing the composition of volcanic rocks from central Anatolia (A. Late Miocene; B. Pliocene; C. Quaternary), transition central/eastern Anatolia (D. Middle to late Miocene; E. Pliocene) and eastern Anatolia (F. Oligocene-early Miocene; G. Middle Miocene; H. Late Miocene-Pliocene; I. Pliocene-Quaternary). The references of compiled and previously published geochemical data are detailed in the appendix B (Table B.1). .............................................................................83Figure 3.8 K2O versus SiO2 diagram (Peccerillo and Taylor, 1976) showing the composition of volcanic rocks from central Anatolia (A. Late Miocene; B. Pliocene; C. Quaternary), transition central/eastern Anatolia (D. Middle to late Miocene; E. Pliocene) and eastern Anatolia xx(F. Oligocene-early Miocene; G. Middle Miocene; H. Late Miocene-Pliocene; I. Pliocene -Quaternary). The references of compiled and previously published geochemical data are detailed in appendix B (Table B.1). .........................................................................................85Figure 3.9 Extended N-MORB-normalized trace element diagram (SiO2 < 56 wt %) displaying the composition of volcanic rocks from central Anatolia (A. Late Miocene; B. Pliocene; C. Quaternary), transition central/eastern Anatolia (D. Middle to late Miocene; E. Pliocene) and eastern Anatolia (F. Early-middle Miocene; G. Late Miocene-Pliocene; H. Pliocene-Quaternary). N-MORB normalization and E-MORB, and OIB values from Sun and McDonough (1989); Depleted MORB Mantle (DMM) reference values from Workman and Hart (2005); Upper and Lower Crust reference values from Rudnick and Gao (2014); Continental and Oceanic Arc reference values from Kelemen et al. (2014). The references of compiled geochemical data are detailed in the appendix B (Table B.1). ...................................................................................87Figure 3.10 Chondrite-normalized trace element diagram (SiO2 < 56 wt %) displaying the composition of volcanic rocks from central (A. Late Miocene; B. Pliocene; C. Quaternary), transition central/eastern (D. Middle to late Miocene; E. Pliocene) and eastern Anatolia (F. Early-middle Miocene; G. Late Miocene-Pliocene; H. Pliocene-Quaternary). Chondrite normalization, E-MORB, N-MORB and OIB reference values from Sun and McDonough (1989); Depleted MORB Mantle (DMM) reference values from Workman and Hart (2005); Upper and Lower Crust reference values from Rudnick and Gao (2014); Continental and Oceanic Arc reference values from Kelemen et al. (2014). The references of compiled geochemical data are detailed in the appendix B (Table B.1)...............................................................................89Figure 3.11 (87Sr/86Sr)i versus (143Nd/144Nd)i (A. New data; B. Central Anatolia; C. Eastern Anatolia) and (207Pb/204Pb)i (C. New and E. All data) and (208Pb/204Pb)i (D. New and F. All data) versus (206Pb/204Pb)i diagrams. BSE = bulk silicate Earth (Bouvier et al., 2008). The different reservoirs plotted include: Mediterran