UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Experimental and computational study of an air-breathing micro liquid fuel cell with an extended active anode catalyst region Zhang, Yinghui

Abstract

Portable electronic devices for the next generation demand a quick charging and long-lasting energy power system. Micro direct methanol fuel cells (µDMFCs) are considered as one of the appropriate alternatives to rechargeable battery technology for portable power devices. Although a significant amount of work has been done with µDMFCs, it is still a design challenge to miniaturize the fuel cell and to provide adequate power. The conventional bipolar fuel cell architecture contains a membrane electrode assembly sandwiched between two flow field plates. In this research, we present an approach to enhance the maximum power density of µDMFCs without affecting the total fuel cell volume by depositing extra anode catalyst on the fuel flow channel walls. An air-breathing µDMFC with extra anode catalyst deposited on the channel walls was developed, and the effects of key design parameters and operating conditions on the fuel cell performance were examined by measuring the overall cell and individual electrode polarization curves. The fuel cell with extra anode catalyst on the channel walls improved the maximum power density by 20% compared to the conventional design with only a catalyst coated membrane. The fuel cell design approach with catalyzed flow field channel walls was also demonstrated in an air-breathing micro Fe(II)/Fe(III) redox anode fuel cell (μRAFC). The μRAFC with graphite channel walls as an anode improved the maximum power density by 281% compared to the μRAFC with inactive channel walls. The impacts of key operating conditions on the cell performance were also evaluated. A 3D simplified model for the µDMFC design with catalyzed channel walls was developed and applied to evaluate the key parameters. It was found that the fuel cell performance was mainly limited by the kinetics of the methanol oxidation reaction. For the fuel cell with anode catalyst both on the membrane and the channel walls, increasing the anode catalyst loading on the channel walls improved the contribution of the anode on the wall to the total anodic current, and reducing the channel dimensions only slightly improved the cell performance.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International