UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effects of bicarbonate on cardiac function in fish Lo, Wing Man Mandy

Abstract

An entirely novel mechanism to modulate heart rate was recently discovered in the Pacific hagfish (Eptatretus stoutii): a soluble adenylyl cyclase (sAC)-mediated pathway that increases cyclic adenosine monophosphate (cAMP) production upon stimulation by HCO₃₋ to increase heart rate. However, still unknown is whether this cardiac control pathway is present in other species as well. The objective of my study was to determine the effects of increasing extracellular [HCO₃₋] on the in vitro cardiac function of other fish species and whether the sAC-mediated pathway is associated with recovery of cardiac function during debilitating conditions. Exposure to severe hypoxia (100% N₂) and hypercapnic acidosis (7.5% or 15% CO₂) significantly decreased the heart rate of isolated, freely beating hearts and reduced the isometric tension (contractility) of electrically paced ventricular strips from Pacific lamprey (Lampetra richardsoni), Pacific spiny dogfish (Squalus suckleyi), Asian swamp eel (Monopterus albus), white sturgeon (Acipenser transmontanus), zebrafish (Danio rerio), and starry flounder (Platichthys stellatus). Spontaneous recovery in heart rate or contractility was not observed during severe hypoxia or hypercapnic acidosis for any of the species tested. Addition of HCO₃₋ (up to 50 mM) was associated with a complete and dose-dependent recovery of control heart rate in lamprey, dogfish, and swamp eel hearts during severe hypoxia, and in dogfish, sturgeon, and swamp eel hearts during hypercapnic acidosis. A partial recovery of control heart rate was observed in lamprey and zebrafish hearts during hypercapnic acidosis. However, HCO₃₋ had no effect on the heart rate or contractility in flounder hearts and had little to no effect on restoring control contractility in dogfish, swamp eel, and flounder ventricular strips. The addition of KH7 (sAC blocker) abolished the HCO₃₋-induced recovery of heart rate during severe hypoxia only in the lamprey heart. Thus, the sAC-mediated pathway in cardiac control appears to be unique to the cyclostomes and not present in the other species tested. While the sAC-mediated pathway was associated with the recovery of heart rate in the lamprey heart, the specific mechanisms behind how HCO₃₋ was associated with the recovery of heart rate in the other species still needs to be determined.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International