Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Eclogite xenoliths from the Chidliak kimberlite, Baffin Island, Nunavut, Canada Pobric, Vedran 2017

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2017_november_pobric_vedran.pdf [ 18.51MB ]
Metadata
JSON: 24-1.0357260.json
JSON-LD: 24-1.0357260-ld.json
RDF/XML (Pretty): 24-1.0357260-rdf.xml
RDF/JSON: 24-1.0357260-rdf.json
Turtle: 24-1.0357260-turtle.txt
N-Triples: 24-1.0357260-rdf-ntriples.txt
Original Record: 24-1.0357260-source.json
Full Text
24-1.0357260-fulltext.txt
Citation
24-1.0357260.ris

Full Text

Eclogite Xenoliths from the Chidliak Kimberlite, Baffin Island, Nunavut, Canada  by  Vedran Pobric  B.Sc., University of Florida, 2013   A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF  MASTER OF SCIENCE  in  THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Geological Sciences)   THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)   October 2017  ©Vedran Pobric, 2017ii  Abstract I studied the petrography, major element chemistry, geothermobarometry, and trace element chemistry of 19 eclogite xenoliths from Chidliak kimberlites (Baffin Island, Nunavut, Canada).  These granoblastic, partially melted, mostly bi-mineralic eclogites are composed of pyrope and omphacite, with accessory orthopyroxene, kyanite, and rutile, as well as secondary chlorite, serpentine, phlogopite, amphibole, and spinel. The Chidliak eclogites are classified in the Coleman’s groups A, B, and C based on the garnet composition, and into groups A and B based on the clinopyroxene composition.  Parameters of the eclogite formation were calculated by projecting clinopyroxene-garnet temperatures onto a geotherm constrained using Chidliak peridotite xenoliths. Thermobarometry of Chidliak eclogites yields temperatures of 855-1390°C and pressures of 45 70 kbar, i.e. in the diamond stability field. The temperatures may have been overestimated by 50-120°C due to the inability to account for Fe3+ in clinopyroxene and garnet. Chidliak eclogites come from the depths similar to those for eclogites of the Slave craton.    Whole rock major and trace element composition was reconstructed based on the compositions of clinopyroxene, garnet, and accessory minerals analyzed on the electron microprobe and laser ablation inductively coupled plasma mass spectrometer. Whole rock major element composition of the eclogites suggests that their protoliths could be Archean basalts or oceanic gabbros, modified by partial melting and carbonatitic mantle metasomatism. iii  Metasomatism was responsible for the introduction of Mg into Chidliak eclogites with MgO>16.5 wt. % and the high Zr/Hf values that correlate with the high MgO bulk content. Based on REE and HFSE concentrations, Chidliak eclogites were divided into several groups that show evidence for: 1) the origin in a shallow, low-P, garnet-free source protolith, 2) partial melting and extraction of arc melts, 3) cumulation of plagioclase, and 4) ancient mantle metasomatism by alkali and carbonatitic fluids.  I propose two possible tectonic settings for the formation of the studied eclogites: 1) metamorphosed mid-ocean ridge gabbros subducted under the Hall Peninsula Block during the 1.8-1.9 Ga Trans-Hudson orogeny, or alternatively 2) oceanic plateau basalts metamorphosed to Archean greenstone belts of the North Atlantic Craton that sank to the mantle via delamination of the lower crust.    iv  Lay Summary The Earth’s upper mantle (10-410 km below the surface) is made up of several types of rocks, including eclogites. Eclogites are embedded into and brought up to the surface by rare types of magmas called kimberlites. This provides earth scientists with an opportunity to study the composition and processes of the upper mantle.  The significance of mantle eclogites is twofold: 1) understanding the Earth’s upper mantle composition and changes over time, and 2) finding the relationships between diamond content and mineral chemistry which can be very valuable for finding diamonds in the process of diamond exploration.  In this thesis, I study mineral grains and textures of eclogites using a specialized microscope, their compositions as analyzed by different instruments, and calculate temperatures and pressures of the origin of the rocks, combining the results in order to determine their parent rocks and diamond potential.v  Preface This thesis was completed under the supervision of Dr. Maya Kopylova, who provided the project idea, grant funding, guidance, suggestions, and editing assistance. Peregrine Diamonds Ltd. provided all the samples. This dissertation is the original and unpublished work by the author, Vedran Pobric.  vi  Table of Contents Abstract ........................................................................................................................................................ ii Lay Summary ............................................................................................................................................... iv Preface .......................................................................................................................................................... v Table of Contents ........................................................................................................................................ vi List of Tables .............................................................................................................................................. viii List of Figures ............................................................................................................................................... ix Acknowledgements ....................................................................................................................................xiii Chapter 1: Introduction ................................................................................................................................ 1 1.1 Objective ............................................................................................................................................. 1 1.2 Kimberlites and their xenoliths ........................................................................................................... 2 1.3 Eclogite classification .......................................................................................................................... 3 1.4 The origin of eclogites ......................................................................................................................... 4 1.5 Diamond potential of eclogites ........................................................................................................... 6 Chapter 2: Geology of Chidliak .................................................................................................................... 8 2.1 Introduction to Chidliak ...................................................................................................................... 8 2.2 Chidliak kimberlite geology ............................................................................................................... 10 2.3 Geology of Hall Peninsula ................................................................................................................. 10 2.4 Geological History of the Hall Peninsula Block ................................................................................. 11 2.5 History of the North Atlantic Craton (NAC) ...................................................................................... 12 2.6 The Trans-Hudson Orogen ................................................................................................................ 14 2.7 Mantle below Chidliak ...................................................................................................................... 15 Chapter 3: Petrography .............................................................................................................................. 17 3.1 Analytical Methods ........................................................................................................................... 17 3.2 Petrographic observations on thin sections ..................................................................................... 17 Chapter 4: Major Element Composition of Minerals ................................................................................ 30 4.1 Analytical Methods ........................................................................................................................... 30 4.2 Primary mineral chemistry ................................................................................................................ 31 4.2.1 Garnet chemistry ....................................................................................................................... 31 4.2.2 Clinopyroxene chemistry ........................................................................................................... 36 4.2.3 Rutile chemistry ......................................................................................................................... 40 4.3 Secondary mineral chemistry ........................................................................................................... 42 Chapter 5: Reconstructed Whole Rock Composition ................................................................................ 48 vii  5.1 Methodology ..................................................................................................................................... 48 5.2 Reconstructed whole rock compositions of Chidliak eclogites ......................................................... 48 5.3 Comparison of the reconstructed whole rock compositions with possible protoliths ..................... 51 Chapter 6: Geothermobarometry .............................................................................................................. 53 6.1 Methodology ..................................................................................................................................... 53 6.2 Uncertainties of thermobarometric estimates related to Fe3+ in garnet and clinopyroxene........... 58 6.3 Results ............................................................................................................................................... 62 6.4 Thermobarometric comparison of the Chidliak and Slave eclogites ................................................ 69 Chapter 7: Trace Element Chemistry ......................................................................................................... 72 7.1 Methodology ..................................................................................................................................... 72 7.1.1 Analytical technique................................................................................................................... 72 7.1.2 Screening the garnet data .......................................................................................................... 74 7.1.3 Reconstruction of the whole rock element budget ................................................................... 74 7.2 Rare Earth Element (REE) compositions of clinopyroxene and garnet ............................................. 76 7.3 Bulk rock Rare Earth Element (REE) composition ............................................................................. 77 7.4 Interpretation of bulk rock Rare Earth element patterns ................................................................. 78 7.4.1 Unfractionated HREEs ................................................................................................................ 78 7.4.2 Eu anomalies .............................................................................................................................. 79 7.4.3 LREE depletion ........................................................................................................................... 84 7.4.4 Relatively unfractionated REE patterns with REEN=1-10 ........................................................... 84 7.4.5 Extremely enriched REE patterns (REEN=10 to 100) .................................................................. 85 7.4.6 A sample with enriched LREEs and depleted HREEs .................................................................. 86 7.5 Other trace elements ........................................................................................................................ 88 7.5.1 Concentrations of trace elements other than REEs in clinopyroxenes and garnets.................. 88 7.5.2 Bulk rock concentrations of trace elements other than REEs ................................................... 90 7.5.3 Interpretation of Sr anomalies ................................................................................................... 97 7.5.4 Interpretation of Ba anomalies .................................................................................................. 97 7.5.5 HFSEs .......................................................................................................................................... 98 Chapter 8: Discussion ............................................................................................................................... 103 8.1 Geochemical constraints on the origin of Chidliak eclogites .......................................................... 103 8.2 Geological constraints on the origin of Chidliak eclogites .............................................................. 106 8.2 Diamond potential of Chidliak eclogites ......................................................................................... 109 Chapter 9: Conclusions ............................................................................................................................. 112 viii  References ................................................................................................................................................ 115 Appendix A: Macro-specimen descriptions ............................................................................................. 127 Appendix B: Petrographic descriptions ................................................................................................... 145 Appendix C: Major element chemistry of Chidliak eclogites and equilibrium temperatures ............... 187 Appendix D: Reconstructed whole rock major element chemistry ........................................................ 207 Appendix E: Trace element chemistry of Chidliak eclogites ................................................................... 211 Appendix F: Rare Earth Element (REE) and other trace element diagrams for Chidliak eclogites ........ 252     ix  List of Tables Table 4.1: Chidliak eclogite garnet solid solution end-members ............................................................... 32 Table 4.2: Chidliak eclogite clinopyroxene end-members ......................................................................... 37 Table 4.3: Mica composition of eclogite xenoliths from Chidliak .............................................................. 42 Table 4.4: Calculated amphibole formulas ................................................................................................. 45 Table 6.1: Eclogite xenolith temperatures calculated at 40-60 kbar pressures ......................................... 56 Table 6.2: Thermobarometry of orthopyroxene-bearing eclogite xenoliths ............................................. 56 Table 6.3: The averaged Fe3+/ΣFe values for eclogite groups A, B, and C .................................................. 60 Table 6.4: Recalculated Chidliak equilibration temperatures accounting for Fe3+ ..................................... 60 Table 6.5: Temperatures and pressures of eclogite P-T lines (Fe2+=ΣFe) intersecting geotherm .............. 62 Table 6.6: Temperatures and pressures of eclogite P-T lines (uncorrected using Fe2+ and corrected accounting for Fe3+) intersecting geotherm ................................................................................................ 67                          x  List of Figures Fig. 2.1: A map showing geology in and around Chidliak. ............................................................................ 9 Fig. 2.2: Focus on the Chidliak kimberlite province and the 74 discovered kimberlite pipes ...................... 9 Fig. 2.3: Cratons and the associated orogens in North America ................................................................ 13 Fig. 2.4: Worldwide distribution of cratons ................................................................................................ 13 Fig. 2.5: A schematic diagram showing the accretion of four different crustal blocks .............................. 16 Fig. 2.6: A likely cross-section of the mantle below Chidliak ...................................................................... 16 Fig. 3.1: A representative average eclogite sample with 50-50 % garnet-CPX composition ...................... 20 Fig. 3.2: Sample Q-3903-U-A with serpentinized OPX ................................................................................ 21 Fig. 3.3: Sample CH7-14-S9 exhibiting kyanite grains ................................................................................. 21 Fig. 3.4: Clinopyroxene inclusion in garnet grain, sample 7S-6 .................................................................. 22 Fig. 3.5: Kelyphitic rim around garnet, sample CH7-14-S4 ......................................................................... 22 Fig. 3.6: Chloritized partially molten and recrystallized clinopyroxene, sample CH7-14-S7 ...................... 23 Fig. 3.7: Chlorite-serpentine altered CPX, sample: Q-3903-U-B ................................................................. 23 Fig. 3.8: Twinning in clinopyroxene, sample 7S-7 ....................................................................................... 24 Fig. 3.9: Orthopyroxene in between garnet grains, sample: 050-104 ........................................................ 24 Fig. 3.10: Kyanite grain with secondary corundum needles, sample: CH7-14-S9 ...................................... 25 Fig. 3.11: Rutile grains surrounded by altered clinopyroxene, sample: CH7-14-S7 ................................... 25 Fig. 3.12: Serpentinized orthopyroxene, sample: Q-3903-U-A .................................................................. 26 Fig. 3.13: Phlogopite laths around garnet and clinopyroxene, sample: DD27-80.1 ................................... 26 Fig. 3.14: Hornblende from garnet rim reaction, sample: 050-184 ............................................................ 27 Fig. 3.15: Carbonate vein going through the slide, sample: DD27-80.1 ..................................................... 27 Fig. 3.16: Spinel next to kelyphitic rim, sample: 7S-7 ................................................................................. 28 Fig. 3.17: Textural position of sulfides in sample CHI-050-80.1 ................................................................. 28 Fig. 3.18: Secondary sulfides between garnet and clinopyroxene, sample: DD27-80.1 ............................ 29 Fig. 3.19: Zeolite vein going through the slide, sample: 7S-7 ..................................................................... 29 Fig. 4.1: Eclogite xenolith classification based on garnet major element chemistry ................................. 33 Fig. 4.2: Al2O3 vs. MgO (wt. %) in eclogite garnets ..................................................................................... 33 Fig. 4.3: Na2O vs. TiO2 (wt. %) in eclogite garnets from Chidliak ................................................................ 34 Fig. 4.4: FeO (T) vs. MgO (wt. %) in eclogite garnets from Chidliak............................................................ 34 Fig. 4.5: VIAl vs. Fe3+ in eclogite garnets from Chidliak ................................................................................ 35 xi  Fig. 4.6: Ca vs. Fe3+ in eclogite garnets from Chidliak ................................................................................. 35 Fig. 4.7: Eclogite xenolith classification based on Na2O and Al2O3 contents in clinopyroxene ................... 38 Fig. 4.8: Eclogite xenolith classification based on MgO and Na2O contents in clinopyroxene ................... 38 Fig. 4.9: Na2O vs. CaO (wt. %) in Chidliak eclogite clinopyroxene .............................................................. 39 Fig. 4.10: Na + Al vs. Mg + Ca in eclogite clinopyroxene............................................................................. 39 Fig. 4.11: K2O vs. Na2O (wt. %) in eclogite clinopyroxenes ......................................................................... 40 Fig. 4.12: Nb2O5 vs. FeO (wt. %) in rutile from Chidliak eclogites ............................................................... 41 Fig. 4.13: Cr2O3 vs. Nb2O5 (wt. %) in rutile from Chidliak eclogites ............................................................ 41 Fig. 4.14: MgO vs. Na2O (wt. %) in recrystallized secondary eclogite clinopyroxene ................................. 43 Fig. 4.15: CaO vs. Na2O (wt. %) in recrystallized secondary eclogite clinopyroxene .................................. 44 Fig. 4.16: Al3+ vs. Ca+Fe+Mg+Mn (cpfu) in primary and secondary clinopyroxene .................................... 45 Fig. 4.17: Classification of Chidliak amphiboles .......................................................................................... 46 Fig. 5.1: MgO vs. SiO2 (wt. %) of reconstructed whole rock Chidliak eclogite samples .............................. 49 Fig. 5.2: MgO vs CaO, Al2O3, Na2O, and FeO (wt. %) for reconstructed whole rock Chidliak eclogites ...... 50 Fig. 6.1: Temperature histogram showing Chidliak eclogite temperatures ............................................... 57 Fig. 6.2: Chidliak linear fit to P-T array based on peridotite data ............................................................... 57 Fig. 6.3: Ca vs. Fe3+ (cpfu) in Chidliak garnets ............................................................................................. 58 Fig. 6.4: Uncorrected vs. corrected Nakamura (2009) temperatures for Chidliak eclogites ...................... 61 Fig. 6.5: Univariant P-T lines calculated without correction for Fe3+ for eclogites ..................................... 63 Fig. 6.6: Calculated eclogite P-T lines (Fe2+=ΣFe) intersecting peridotite P-T linear fit............................... 64 Fig. 6.7: Calculated eclogite P-T lines (Fe3+ accounted for) intersecting peridotite P-T linear fit ............... 65 Fig. 6.8: Calculated eclogite P-T lines (Fe2+=ΣFe) as grouped per Taylor & Neal (1989) ............................. 66 Fig. 6.9: Comparison of Chidliak eclogites to Jericho, Muskox, and Central Slave eclogites...................... 70 Fig. 6.10: Chidliak geotherm approximated as a linear fit based on 54 peridotite xenoliths from 3 different kimberlite pipes. .......................................................................................................................... 71 Fig. 7.1: Rare Earth Element diagram is showing REE averages for clinopyroxene .................................... 81 Fig. 7.2: Rare Earth Element diagram is showing REE averages for garnet ................................................ 82 Fig. 7.3: Rare Earth Element diagram is showing bulk REE composition .................................................... 83 Fig. 7.4: Reconstructed bulk REE patterns for Chidliak samples ................................................................ 87 Fig. 7.5: A spider diagram for selected trace element averages for clinopyroxene ................................... 91 Fig. 7.6: A spider diagram for selected trace element averages for garnet ............................................... 92 Fig. 7.7: A spider diagram for selected bulk trace elements composition ................................................. 93 xii  Fig. 7.8: Spidergrams for LILEs and HFSEs divided into four groups A-D .................................................... 96 Fig. 7.9: Chidliak eclogite vs. other mantle eclogite HFSE patterns around the world ............................ 101 Fig. 7.10: Reconstructed bulk whole rock MgO (wt. %) vs Zr/Hf ratios for Chidliak samples .................. 102 Fig. 8.1: Na2O (wt. %) in garnet and K2O (wt. %) in clinopyroxene vs. pressure (kbar) for Chidliak eclogites .................................................................................................................................................................. 111                        xiii  Acknowledgements  First and foremost, I want to thank my supervisor Maya Kopylova for giving me an opportunity to become a part of the Diamond Exploration Lab group at the University of British Columbia. Your guidance and superb supervisory skills have greatly aided me in successfully finishing the project I set out to do in July 2015. Maya, thank you for pushing me out of my comfort zone, helping me accomplish goals I never thought possible before.   Thank you to all my colleagues at the Diamond Exploration Lab, present and past, who have made my academic journey more enjoyable. The comprehensive discussions we have had helped me better understand a field that I knew nothing about before coming to UBC. A special thank-you goes to Matt Gaudet and Nester Korolev. Matt, thank you for all your support and convincing me to take on additional responsibilities which have helped me grow professionally. Nester, thank you for selflessly sharing your interests, thoughts, and experiences on eclogite xenoliths helping me get a better grasp of the complicated world of mantle petrology.     I would like to thank Peregrine Diamonds Ltd. for providing the Diamond Exploration Lab with the eclogite samples. Herman Grütter and Jennifer Pell are thanked for their helpful insights and ideas. I would also like to thank my committee members Greg Dipple and Matthijs Smit for their support and advice. I thank all the laboratory technical staff involved, especially Edith Czech and Marghaleray (Marg) Amini for their guidance using the SEM, EMPA, and LA-ICP-MS.   Finally, I want to thank my soulmate, Marija, who has been the light of my life and my greatest motivation over the past two years. You have kept me sane through all the chaos that graduate school life brings. 1  Chapter 1: Introduction 1.1 Objective This thesis presents the research on eclogite xenolith samples from kimberlite from a Peregrine Diamonds exploration project at Chidliak, Nunavut, Canada. Since Chidliak is the most recently discovered diamond province in Canada as of mid-2017, there has been no published work done on eclogite xenoliths from this location. While there has been a significant amount of research done on the Slave craton and the xenoliths associated with it (Kopylova et al., 1999; Heaman et al., 2002; Heaman et al., 2006; Smart et al., 2009), the study of eclogite xenoliths is the first of its kind for the Chidliak area and as such will add to our understanding of the mantle beneath Chidliak as well as the origin of the studied rocks. The research presented in this thesis has been accomplished using several common petrological and geochemical techniques widely used in mantle petrology: petrography, major element chemistry, geothermobarometry, and trace element chemistry while trying to answer a few fundamental as well as applied questions:  1) What is the diamondiferous character of Chidliak eclogites? What are the implications of these results for the diamond exploration of Chidliak? 2) What is the depth distribution of eclogites beneath Chidliak? Are the samples found in the diamond stability field? 3) How do the results from Chidliak compare to other cratons? 4) What is the origin of Chidliak eclogites? How does the geological history support the origin? 2  The study of mantle eclogite xenoliths is useful for two major reasons. Firstly, the lack of direct observational methods of the upper mantle makes mantle xenoliths extremely useful and one of the only methods available to “peek” into the upper mantle and try to understand the complex geology. Since most of the dated kimberlite-derived eclogites are Archean in age, this makes them very useful in trying to understand Archean geodynamic processes (Jacob, 2004). Secondly, diamond-bearing mantle eclogites are quite common in diamondiferous kimberlites. Eclogitic diamonds are abundant at certain locations such as Orapa mine in Botswana (Nowicki et al., 2007). This makes eclogites a lucrative target for further scientific inquiry.  1.2 Kimberlites and their xenoliths  Kimberlites are ultramafic, alkaline (potassic), volatile-rich (mostly CO2) igneous rocks of deep seated origin that can contain significant quantities of diamonds (Mitchell, 1986). The kimberlite magma is generated in the asthenosphere under the thick, cool lithosphere, below cratons. Kimberlite eruptions occur in spatio-temporal clusters (i.e. multiple pipes erupted in a narrow geographic location at a similar geological age) and are thought to violently erupt on the timescale of hours to days at increasing speeds as the magma gets closer to the surface. In the process of magma ascension from the lithosphere-astenosphere boundary (LAB) fueled by the continued orthopyroxene assimilation and CO2 exsolution (Russell et al., 2012), pieces of the mantle are broken off and brought up to the surface as xenoliths. Kimberlites have been identified as the main transportation mechanism for deep mantle rocks to reach the surface. Mantle xenoliths are comparatively rare and provide an important window into the geochemistry and geodynamics of the upper mantle.  3   Common mantle xenolith suites found in erupted kimberlites are peridotites, pyroxenites, and eclogites. Mantle eclogites are high pressure and high temperature (usually) bi-mineralic rocks composed of high MgO garnets (pyropes) and high Na clinopyroxenes (omphacites). The bulk major element chemistry of eclogites is broadly basaltic (Nowicki et al., 2007) with common accessory minerals including rutiles, kyanites, zircons, apatites, and coesites. While peridotites and pyroxenites make up the majority of the upper mantle composition, the under-represented eclogites give important insights into the overall mantle picture, and depending on the origin, provide evidence for the beginning of the subduction-type plate tectonics that we observe today. Usually, eclogite xenoliths from kimberlite are a minority in the overall xenolith population, but some kimberlite pipes, such as Roberts Victor in South Africa, consist of over 90% eclogites in their overall xenolith population (Greau et al., 2011). 1.3 Eclogite classification  There are two frequently used eclogite classifications in eclogite xenolith studies. The first one, referred to as the Coleman classification, is the first widely used eclogite classification scheme. Coleman divided eclogites by tectonic settings and occurrences. Group A eclogites were found as inclusions in kimberlites and said to have a deep-seated igneous or metamorphic origin. Group B eclogites were found as bands or lenses within gneissic terrains, surrounded by amphibolite and showing retrograde metamorphism. Group C eclogites were found as bands or lenses within orogenic zones and associated with glaucophane shists (blueschist). Furthermore, Coleman found that major element garnet chemistry correlates with the geological settings. Group A eclogites are classified as having pyrope content greater than 55%, group B 30-55%, and group C less than 30% (Coleman et al., 1965). It was recognized early that groups B and C 4  represent subducted oceanic crust, while group A represents mantle material with higher Mg content and calculated temperatures of equilibration (Coleman et al., 1965). The second widely used eclogite classification scheme, referred to as the Taylor and Neal classification, was the improved version of Shervais et al. (1988) classification scheme. It was based on the already prevalently used Coleman classification for consistency (Taylor and Neal, 1989). Group A eclogites were characterized by the lowest jadeite content, group B by moderate jadeite content, and group C by the highest jadeite content. The groups were defined using MgO and Na2O content in clinopyroxene with the empirically determined boundaries between the groups (Taylor and Neal, 1989).    1.4 The origin of eclogites The origin of eclogite xenoliths from kimberlite is still debated. There are a few major hypotheses on the origin of eclogite xenoliths:  1) Mafic crust is subducted without partial melting (Ringwood, 1975; Helmstaedt and Doig, 1975; Jacob et al., 1994; Jacob and Foley, 1999). The first proposed model of the subducted oceanic crust protolith for mantle eclogites came from the study of Helmstaedt & Doig (1975) from the petrography and mineralogical assemblage of eclogite xenoliths from Colorado-plateau kimberlite pipes. The subsequent studies further supported the subduction origin based on lack of observable olivine in the eclogite samples (Ringwood, 1975).  In the Jagoutz et al. (1984) study, the subducted oceanic crust protolith was demonstrated for the first time using δ18O. It was shown that the variations in the δ18O in MORB caused by the hydrothermal alterations are in the same range as the observed δ18O variations observed in eclogites from Roberts Victor. Other evidence that has been used over the years to support this hypothesis includes the presence of 5  positive Eu and Sr anomalies to indicate plagioclase-bearing protolith, the presence of coesite or quartz, the bulk major element chemistry of mantle eclogites that is broadly basaltic, and the REEN concentrations similar to MORB/gabbro (Barth et al., 2001; Jacob, 2004).  2) Hydrated mafic crust is subducted and partially melted, creating Archean tonalite-trondhjemite-granodiorite (TTG) suites (Ireland et al., 1994; Rollinson, 1997; Barth et al., 2001; Jacob, 2004). The low-MgO eclogites are considered to have originated this way as leftover residue after the rising SiO2 rich melts interacted with the peridotitic mantle to form the Archean TTG melts which crystallized, contributing to the continental crust growth (Barth et al., 2001). The trace and major element geochemistry of TTG suites of rocks, as well as the experimental TTG melts obtained by partial melting of eclogite in the lab setting, show complimentary signatures to eclogitic residue (Rollinson, 1997). Eclogites often show signs of LREE depletion caused by partial melting during subduction (Barth et al., 2001).  3) Eclogites originated as high-pressure cumulates from mafic melts that crystallized in situ in the mantle (O’Hara and Yoder, 1967; O’Hara et. al, 1975; Hatton and Gurney, 1987; Caporuscio and Smyth, 1990). The evidence for this hypothesis is not as solid or striking as that for the subduction hypothesis (Jacob, 2004). The hypothesis states that the garnet lherzolite melts within the mantle crystallized and cumulated mantle eclogites. Evidence for this hypothesis includes fractionated HREE patterns which indicate the presence of garnet in the protolith, as well as the mantle-like values of δ18O (Barth et al., 2002).    6  1.5 Diamond potential of eclogites The diamond potential of mantle eclogites, in general, has been linked to a few factors: 1) the texture of eclogites, 2) the Na2O content of garnet, and K2O content of clinopyroxene, and 3) the bulk rock MgO content.  Early studies on eclogites (Coleman et al., 1965; MacGregor and Carter, 1970; Hatton and Gurney, 1977; McCandless and Gurney, 1989; Taylor and Neal, 1989) classified different types of eclogites based on their petrography and chemistry. MacGregor and Carter (1970) study used petrographic indicators to differentiate between two types of eclogites: type I (coarse grained, subhedral to rounded altered garnets with a matrix of interstitial clinopyroxene, frequent occurrence of garnets in bands or foliations, diamond-bearing), and type II (elongated, unaltered garnets, anhedral clinopyroxenes, and frequent exsolution of rutile in both garnets and clinopyroxenes, diamond-barren).  A couple of decades later, McCandless and Gurney (1989) introduced a quantitative way to differentiate between the type I and II based on 564 eclogitic garnet and clinopyroxene microprobe analyses from Roberts Victor (South Africa). Garnets that showed Na2O>0.09 (wt. %) and clinopyroxenes K2O>0.08 (wt. %) are used to classify eclogites as type I diamondiferous eclogites, and vice versa for type II barren eclogites. The study found that 91% of type I garnets contained Na2O>0.09 (wt. %), and 99% of type I clinopyroxenes contained K2O>0.08 (wt. %).  Schulze et al. (2003) revised the scheme, lowering the threshold for Na2O in garnet to 0.07 wt. %. With more research, the criteria for type I and type II eclogites have been largely expanded. Greau et al. (2011) showed that type I eclogites provide evidence for metasomatism (recrystallization, phlogopite, sulphides, melt blebs), while type II eclogites virtually do not show 7  any of those. While type I or II eclogite classification does not differentiate between the origin of potential protoliths (Greau et al., 2011), it does imply the diamond potential of the eclogite.   However, Na2O in garnet is far from a perfect indicator of diamond potential in eclogites. Grütter and Quadling (1999) found that Na2O in graphite bearing eclogite garnets varied significantly (>0.03-0.20 wt. %), strongly implying that Na2O in garnet cannot be uniquely used to discriminate diamond-barren from diamond-bearing eclogites. The study found that the eclogite bulk compositions were primarily responsible for garnet chemistry (Grütter and Quadling, 1999).  Higher MgO content of garnet and clinopyroxene is associated with the presence of diamond in the Jericho eclogites (De Stefano et al., 2009). The chemical evolution of recrystallized grains, both garnets and clinopyroxenes, due to metasomatic activity was found to shift towards the characteristics of diamondiferous eclogites (higher Mg, lower Ca in garnet; higher Ca and Mg, lower Na and Al in clinopyroxenes) (De Stefano et al., 2009). Several studies have found that the higher MgO content in eclogites corresponds to a stronger degree of metasomatism (Barth et al., 2001; De Stefano et al., 2009; this study). Jericho eclogites indicate that multiple and repetitive pulses of metasomatism were involved in the genesis of diamonds and their diamond inclusions (De Stefano et al., 2009). Higher MgO content of eclogites might be thus used as an indicator of metasomatism through which diamond-bearing fluids were introduced into the eclogite as a replacement texture mineral, bringing in that extra MgO content with it.8  Chapter 2: Geology of Chidliak 2.1 Introduction to Chidliak Chidliak is a newly discovered kimberlite province in Nunavut, Canada. The area lies on the Hall Peninsula in the south-eastern portion of Baffin Island, approximately 120 km northeast from Iqaluit (Fig. 2.1). Prior to diamond exploration, this area was explored for nickel-copper-platinum group elements, lead-zinc-copper, and lode gold deposits in 1996 and 1997 (Doerksen et al., 2016). The diamond exploration at Chidliak started in 2005 because the area was relatively under-explored (Pell et al., 2013). Zircons found in basement ortho-gneisses in Hall Peninsula suggested that a portion of the region might be underlain by Archean aged cratonic basement (Scott, 1999). This provided a reasonable assumption to start exploring diamonds in the area. After glacial till sampling yielded positive KIM (kimberlite indicator mineral) results, the exploration intensified. Since 2005 there have been 74 kimberlite pipe discoveries using standard diamond exploration methods: surficial sediment sampling, geological mapping, airborne geophysical surveys, ground geophysical surveys, core drilling, RC (reverse circulation) drilling, petrography, whole rock chemistry, and microdiamond analyses. Based on the diamond potential, Chidliak kimberlite pipes CH-06, CH-07, and CH-44 have been selected for further evaluation (Fig. 2.2). Eclogite xenoliths in this study come from the same pipes, with a large majority from CH-07.  9   Fig. 2.1: A map showing geology in and around Chidliak. Superior, Rae, and North Atlantic cratons are shown. The red rectangle shows the approximate extent of Chidliak kimberlite province. The map is modified from Whalen et al. (2010).  Fig. 2.2: Focus on the Chidliak kimberlite province and the 74 discovered kimberlite pipes on the Hall Peninsula block. Eclogite xenoliths used in this study come from pipes CH-6, CH-7, and CH-44. Modified from Steenkamp and St-Onge (2014).  10  2.2 Chidliak kimberlite geology Chidliak kimberlites have been dated using U-Pb perovskite geochronology for 44 kimberlites sampled from the Chidliak kimberlite field. The kimberlite field was found to be Jurassic in age, ranging from 157.0 to 139.1 Ma (Heaman et al., 2015). About 80% of the dated kimberlites showed that the most intense period of magmatism occurred between 152 to 142 Ma (Heaman et al., 2015). These ages imply coeval Jurassic kimberlite magmatism with other kimberlite fields in eastern North America (165-132 Ma) and SW Greenland (164-149 Ma) (Heaman and Kjarsgaard, 2002). The similarity in kimberlite Sr/Nd data implies a common origin (setting and mantle source) between SW Greenland kimberlites and Chidliak kimberlites (Heaman et al., 2015). SW Greenland kimberlite magmatism has been linked to upwelling asthenosphere, rifting and opening of the Labrador Sea basin (Larsen et al., 2009). It is hypothesized that both Chidliak and SW Greenland kimberlite magmatism comes from deep melting of North Atlantic Craton (NAC) lithospheric mantle caused by the upwelling asthenosphere (Heaman et al., 2015).  2.3 Geology of Hall Peninsula The first real attempt to map the geology of Hall Peninsula was done at a reconnaissance scale by the Geological Survey of Canada (Blackadar, 1967). A more detailed mapping was done by Scott (1996), which was incorporated into a compilation map by St-Onge et al. (2006). St-Onge et al. (2006) divided Hall Peninsula into three parts, going from west to east (Fig. 2.1):  1) Paleoproterozoic Cumberland Batholith (amphibolite to granulite-grade monzogranite). The batholith is mainly composed of I-type, intra-crustal granitoids that are ~1.865-1.845 Ga in age (Whalen et al., 2010).  11  2) Paleoproterozoic Lake Harbour Group metasediments (semipelite and minor marble). This Group is a metamorphosed continental margin shelf succession that was correlated to strata on the Meta Incognita Peninsula (St-Onge et al., 2006).  3) The Archean gneissic terrain that was called the Hall Peninsula block by Whalen et al. (2010). The block consists of tonalitic gneiss and monzogranite, with minor supracrustal rocks (Machado et al., 2013) of 2.92-2.80 Ga age and younger, possibly reworked clastic rocks (Scott, 1999). All Chidliak kimberlites are found on the Hall Peninsula block.  2.4 Geological History of the Hall Peninsula Block The geological history of this area is disputed (Pell et al., 2013). There are three theories on the origin of the Hall Peninsula block: 1) The block was a part of the Nain (North Atlantic) craton (Scott, 1996; Scott et al., 2002; St-Onge et al., 2002); 2) Reworked Archaean gneisses related to the Trans Hudson orogen in Canada and the Nagssugtoqidian Orogen in west Greenland (St-Onge et al., 2006); 3) One of several micro-continents that were accreted during a two-phase, three-way collision of the Superior, Rae, and North Atlantic cratons between 1.865 and 1.79 Ga (Snyder, 2010; Whalen et al., 2010).  Recent evidence from major element chemistry data from a suite of Chidliak peridotite xenoliths shows a distinctly different chemistry of Chidliak mantle when compared to Rae and Superior cratons (Kopylova et al., 2017). Chidliak mantle has compositional traits that resemble the NAC with its forsteritic olivine-rich composition (Kopylova et al., 2017) and overall bulk 12  composition (Wittig et al., 2008). This evidence supports that the Hall Peninsula block was a part of the NAC prior to its rifting (Kopylova et al., 2017).  2.5 History of the North Atlantic Craton (NAC) The NAC is bounded by the Torngat orogen to the west, Ketilidian orogen to the southeast, and the Nagssugtoqidian orogen to the northeast (Hoffman, 1989) (Fig. 2.3). The craton is exposed on the coasts of southwest and southeast Greenland, and central and northern Labrador (Andrews et al., 1973; Bridgwater et al., 1976; Taylor, 1979; Bleeker, 2003) (Fig. 2.4). It is composed mainly of terranes formed before 2.9 Ga, but was not fully assembled until about 2.7 Ga (Hoffman, 1989).  The NAC is thought to be an example of craton formation by subduction and collision processes (Griffin et al., 2004; Pearson and Wittig, 2008; Windley and Garde, 2009).  The Torngat Orogen represents the western margin of the NAC, which was rifted apart by the opening of the Davis Strait and Labrador Sea, so that currently one part of it is in Western Greenland (Grütter and Tuer, 2009; St-Onge et al., 2009). The NAC is hypothesized as underlying the Hall Peninsula and even the Cumberland Peninsula, however, others have linked it to Torngat region of mainland North America (Snyder, 2010).   13   Fig. 2.3: Cratons and the associated orogens in North America. Approximate location of Chidliak shown in dotted red line. Adapted from Hoffman (1989).   Fig. 2.4: Worldwide distribution of cratons. An approximate extent of the North Atlantic Craton (Nain) is outlined in dashed red line. Most of the NAC is found in SW Greenland, but the remnants can also be found in Canada (Labrador) and NW Scotland. Adapted from Bleeker (2003).  14  2.6 The Trans-Hudson Orogen The geological history of the Chidliak area is dominated by the Trans-Hudson Orogen (THO). The THO is a Himalayan-scale collisional belt found in eastern North America between a lower plate Superior craton to the south, upper plate Rae craton to the north, and the North Atlantic craton to the east (Fig. 2.1) (Whalen et al., 2010). The accepted model is that several microcontinents became trapped in a two-phase, three-way collision between Superior, Rae, and North Atlantic cratons at about 1.865 Ga and 1.82-1.79 Ga (Snyder, 2010). Prior to the collision, the upper plate history of the THO shows outward growth by accretion of the crustal blocks and arc terranes (St-Onge et al., 2006a; Corrigan et al., 2009). At least four crustal blocks have been identified (Fig. 2.5):  1) the Sugluk block made of Mesoarchean crystalline basement rocks (Corrigan et al., 2009);  2) the Meta Incognita microcontinent made of 1.95 Ga orthogneiss overlain by 2.01 to 1.90 Ga continental margin shelf succession, the Lake Harbour Group, and feldspathic quartzite and pelitic rocks which are intruded by 1.865-1.845 Ga Cumberland batholith and 1.84-1.82 Ga granitoid plutons (St-Onge et al., 2006a). Cumberland batholith was interpreted as an Andean margin-type batholith emplaced above a subduction system after the accretion of the Meta Incognita microcontinent to the Rae craton (Whalen et al., 2010).  3) The Hall Peninsula block made of 2.92-2.80 Ga tonalitic gneissic rocks (Scott, 1999) where Chidliak kimberlite field is located;  15  4) the Rae craton made of 2.90-2.66 Ga felsic orthogneiss, supracrustal rocks, and felsic plutonic rocks (St-Onge et al., 2006a, 2009).  2.7 Mantle below Chidliak Through an operating earthquake station located on Baffin Island, the Moho below Chidliak was estimated to be at 39 km depth (Snyder, 2010). From a geophysical study based on these earthquake stations across the Baffin Island, northeastward-dipping layers within the uppermost mantle at 50-150 km depth have been identified beneath station FRB (Iqaluit, Nunavut) (Fig. 2.6). The layers are dipping from west-southwest towards east-northeast at 15° and have been interpreted as underthrust parts of the Sugluk Block (crust and mantle), the Narsajuaq Arc and Cape Smith fold belt, and the Superior Craton at greater depths (Snyder, 2010). Underthrust oceanic lithosphere related to Narsajuaq Arc would contain basaltic rocks and carbon-rich sediments that would metamorphose at depths greater than 100 km into eclogite and eclogitic diamond (Snyder, 2010).  The geophysical information about the mantle complements geochronology of the mantle rocks. Chidliak peridotites formed in the Archean, with the oldest sample dated at 2.94 Ga and most others showing Meso- and Neoarchean ages (Liu et al., 2017). Chidliak eclogites have not been dated at the time of writing this thesis, but there was pioneering Pb-Pb dating work on the first Greenland eclogites by Tappe et al. (2011). These eclogites were emplaced by kimberlite eruptions (165-155 Ma, contemporaneous with Chidliak) in West Greenland that is a part of NAC in an area dominated by late Archean TTG gneisses (2.9-2.7 Ga, equivalent to surficial bedrock geology at Chidliak). The Pb-Pb dating of Greenland eclogites gave ages of 2.7 ± 0.29 Ga, which is contemporaneous with the peak of the crustal growth of NAC (Nutman et al., 2004; Naerra and 16  Schersten, 2008). The Greenland eclogite ages are also supported by peridotite Re-Os ages for NAC mantle lithosphere at 2.65 Ga (Wittig et al., 2010). These eclogites were interpreted as residues of subducted and partially melted oceanic crust (Tappe et al., 2011).   Fig. 2.5: A schematic diagram showing the accretion of four different crustal blocks (labeled with red numbers 1-4, following their descriptions in the text above) at approximately 1.865-1.85 Ga. Modified after Whalen et al. (2010).  Fig. 2.6: A likely cross-section of the mantle below Chidliak. The red rectangle at the surface represents Chidliak kimberlite field area extent. Modified from Snyder (2010). 17  Chapter 3: Petrography 3.1 Analytical Methods A total of 19 eclogite xenoliths were studied. These texturally massive, mostly spheroid shaped, 1-12 cm in diameter samples came from three different kimberlite pipes at Chidliak (CH-07, CH-06, and CH-44). After the samples were catalogued, photographs and scans were taken with a Nikon Coolpix 13.5 MPIX digital camera and a Canon CanoScan 4400F digital scanner. Next, the samples were cut with a AVCO Felker Corporation 41-A rock saw in the basement of the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia (EOS UBC). Macroscopic observations were made based on mineralogy, texture, and alteration products using an AmScope stereomicroscope at the Diamond Exploration Lab at EOS UBC (Appendix A). All 19 samples were made into 21 thin sections by Vancouver Petrographics Ltd. and Spectrum Petrographics Inc. Petrography was completed using two microscopes: 1) Leitz Laborlux 12 POL polarizing microscope, and 2) Nikon Optiphot-Pol microscope with a reflected light source attached to it (Appendix B). Photos of minerals were captured in three ways: 1) a high-resolution Nikon Coolscan V ED thin section scanner, 2) a Diagnostic Instruments 11.2 Color Mosaic camera attached to the polarized light microscope unit, and 3) Philips XL-30 Scanning Electron Microscope unit with back scattered electron unit attached to it at EOS UBC. The thin section photographs were edited and labeled using Adobe Illustrator software.  3.2 Petrographic observations on thin sections  Petrographic studies were conducted on 21 thin sections of eclogite xenoliths from Chidliak kimberlite pipes CH-07, CH-06, and CH-44. The samples have granoblastic texture and 18  are always composed of clinopyroxene (15-77 vol. %) and garnet (23-72 vol. %), with an occasional occurrence of OPX (9-11 vol. %) and one instance of kyanite (20 vol. %). The common accessory mineral is rutile (1-3 vol. %). Garnets (3.7 mm on average) and clinopyroxene (3.5 mm on average) grains show mostly xenoblastic to hypidioblastic shapes with frequent fractures and partial melting, especially in clinopyroxene. Garnet grains are usually more idioblastic than clinopyroxene grains, having more well-defined grain boundaries (Figs. 3.1, 3.2, and 3.3). Garnet grains are mostly rounded and severely fractured, with occasional inclusions of clinopyroxene, followed by spinel, phlogopite, and (rarely) sulfides (Fig. 3.4). Kelyphitic rims are a common feature in garnets, appearing in half of the samples (Fig. 3.5). Clinopyroxene grains are almost always poorly defined in shape, with medium to high levels of partial melting or alteration to chlorite (Figs. 3.6 and 3.7). Twinning is very rare, but it is present in clinopyroxene in a couple of slides (Fig. 3.8) Undulatory extinction in clinopyroxene is found in ~25% of the samples, is usually low in intensity and suggesting deformation. Orthopyroxene (3 mm on average) is found in ~20% of the samples, usually completely serpentinized or left with only a very small area of fresh orthopyroxene (Fig. 3.9). Orthopyroxene grains are xenoblastic, but less so than clinopyroxene grains. Kyanite was noted in sample CH7-14-S9. The kyanite grains (1.5 mm on average) were mostly hypidioblastic (elliptical to tear-shaped), with a well-defined cleavage. Kyanite was replaced by needle-habit corundum at the very edges of the grains. (Fig. 3.10)  The only common accessory mineral is rutile. It is found in ~50% of the samples, ranging in size between 0.1 to 1 mm. The grains are rounded (often more idioblastic than garnet and 19  clinopyroxene), sometimes kidney shaped, dark brown in color, with ilmenite exsolution lamellae running alongside the cleavage planes. (Fig. 3.11)  Secondary alteration is ubiquitous, but ranges in intensity from one sample to another. On average, alteration occupies 30 vol. % of a thin section, but some samples have up to 64 vol. % of alteration. The secondary minerals that appear in the samples, in order of decreasing vol. %, are secondary clinopyroxene, chlorite, serpentine, phlogopite, amphibole, carbonate, spinel, sulfides, zeolites, and corundum. Secondary clinopyroxene (25 vol. % on average) is a product of partial melting where primary clinopyroxene melted and recrystallized, while chlorite and serpentine occur as replacement minerals in primary and secondary clinopyroxene and orthopyroxene. The replacement minerals look like fine-grained grey aggregate replacing 10-90 vol. % of primary and secondary clinopyroxene. Chlorite (6-40 vol. %) is found as an alteration patch in primary clinopyroxene, usually taking up a significant area of the proto-grain (40-80 vol. % on average), or more rarely as an alteration of garnet within the fractures (1-2 vol. % on average). Serpentine (4 vol. % on average) occurs as either a yellow colored replacement mineral in clino-and-orthopyroxene or a greenish-blue, fibrous constituent of metasomatic veins throughout many of the thin sections (Fig. 3.12). Phlogopite, amphibole, carbonate, spinel, and sulfides occur as interstitial minerals that are products of garnet and clinopyroxene reactions or metasomatic fluid interactions. Phlogopite (2 vol. % on average) is the most likely secondary mineral to form idioblastic laths, but is mostly interstitial and has a poorly defined shape (Fig. 3.13). Amphibole (1 vol. % on average) is significant only in a couple of thin sections, where it is a product of garnet rim reactions (Fig. 3.14). Carbonate (2 vol. % on average, where present) is found only in a handful of thin sections, within and around metasomatic alteration veins that 20  found their ways around the primary minerals, sometimes cutting through them (Fig. 3.15). Spinel (1 vol. % on average) is a small (<0.05 mm in size), minor, but ubiquitous component of almost all of the eclogites, with an unmistakable green color and euhedral square-shaped habit. It is found mostly around coarse, outer parts of kelyphitic rims and within altered garnet fractures (Fig. 3.16). Sulfides (1-7 vol. %) are observed in two thirds of the eclogites, featuring a distinct tear-shaped habit, 0.1-0.5 mm size, and a dark red pseudo-opaque color (Figs. 3.17 and 3.18). Zeolites occur in a couple of samples as distinct fibrous greyish-blue metasomatic veins cutting through the eclogite (Fig. 3.19).        Fig. 3.1: A representative average eclogite sample with 50-50 % garnet-CPX composition (14x23mm) 21   Fig. 3.2: Sample Q-3903-U-A with serpentinized OPX (17x30mm)  Fig. 3.3: Sample CH7-14-S9 exhibiting kyanite grains (14x23mm) 22   Fig. 3.4: Clinopyroxene inclusion in garnet grain, sample 7S-6, horizontal FoV: 9mm  Fig. 3.5: Kelyphitic rim around garnet, sample CH7-14-S4, horizontal FoV: 4.5 mm 23   Fig. 3.6: Chloritized partially molten and recrystallized clinopyroxene, sample CH7-14-S7, horizontal FoV: 4.5mm  Fig. 3.7: Chlorite-serpentine altered CPX, sample: Q-3903-U-B, horizontal FoV: 1.5mm 24   Fig. 3.8: Twinning in clinopyroxene, sample 7S-7, horizontal FoV: 1.5mm  Fig. 3.9: Orthopyroxene in between garnet grains, sample: 050-104, horizontal FoV: 9mm 25   Fig. 3.10: Kyanite grain with secondary corundum needles, sample: CH7-14-S9, SEM  Fig. 3.11: Rutile grains surrounded by altered clinopyroxene, sample: CH7-14-S7, horizontal FoV: 4.5mm 26   Fig. 3.12: Serpentinized orthopyroxene, sample: Q-3903-U-A, horizontal FoV: 4.5mm  Fig. 3.13: Phlogopite laths around garnet and clinopyroxene, sample: DD27-80.1, horizontal FoV: 4.5mm 27   Fig. 3.14: Hornblende from garnet rim reaction, sample: 050-184, horizontal FoV: 4.5mm  Fig. 3.15: Carbonate vein going through the slide, sample: DD27-80.1, horizontal FoV: 9mm 28   Fig. 3.16: Spinel next to kelyphitic rim, sample: 7S-7, horizontal FoV: 0.9 mm  Fig. 3.17: Textural position of sulfides in sample CHI-050-80.1 (25x40mm) 29   Fig. 3.18: Secondary sulfides between garnet and clinopyroxene, sample: DD27-80.1, horizontal FoV: 9mm  Fig. 3.19: Zeolite vein going through the slide, sample: 7S-7, horizontal FoV: 4.5mm30  Chapter 4: Major Element Composition of Minerals 4.1 Analytical Methods Nineteen thin sections previously used for petrography were cleaned with isopropyl alcohol. Then, by careful inspection of the thin sections, representative grains were selected and clearly marked using a fine permanent black marker. Prior to the analysis, the thin sections were carbon-coated for conductivity using a carbon evaporator. Major element composition was determined by a fully automated Cameca SX50 Electron Microprobe in the basement of the Department of Earth, Ocean and Atmospheric Sciences at the University of British Columbia (Appendix C). At least 3 garnet and 3 clinopyroxene grains were probed per each thin section, where possible. Each grain was probed in both the core area and the rim area for inquiring about potential compositional variations in the grains. The best representative results are reported in Appendix C as either averages of statistically similar analyses or in some cases, the best individual analysis out of many. Any alterations or deviations in the data are also reported.  The instrument operated in the wavelength-dispersion mode with the following operating conditions: excitation voltage, 15 kV; beam current, 20 nA; peak count time, 20 s (except for K [40 s] in pyroxene program and Na [60s] in garnet program); background count-time, 10 s (except for K [20 s] in pyroxene program and Na [30s] in garnet program); spot diameter, 5 m (except for small rutile grains [2m] in oxide program). For the elements considered in garnet analyses, the following standards, X-ray lines and crystals were used: albite, NaK, TAP; pyrope, MgK, TAP; pyrope, AlK, TAP; pyrope, SiK, TAP; pyrope, CaK, PET; rutile, TiK, PET; magnesiochromite, CrK, LIF; synthetic rhodonite, MnK, LIF; pyrope, FeK, LIF. For the elements considered in pyroxene analyses, the following standards, X-ray lines and crystals were used: albite, NaK, TAP; kyanite, 31  AlK, TAP; diopside, MgK, TAP; diopside, SiK, TAP; orthoclase, KK, PET; diopside, CaK, PET; rutile, TiK, PET; synthetic magnesiochromite, CrK, LIF; synthetic rhodonite, MnK, LIF; synthetic fayalite, FeK, LIF. For the elements considered in oxide analyses, the following standards, X-ray lines and crystals were used: synthetic magnesiochromite, MgK, TAP; spinel, AlK, TAP; diopside, SiK, TAP; diopside, CaK, PET; rutile, TiK, PET; synthetic magnesiochromite, CrK, LIF; synthetic rhodonite, MnK, LIF; synthetic fayalite, FeK, LIF; synthetic Ni-Olivine, NiK, LIF; columbite, NbL, PET. Data reduction was done using the 'PAP' (Z) method (Pouchou & Pichoir, 1985).  Minimum detection limits are found in Appendix C.  4.2 Primary mineral chemistry  4.2.1 Garnet chemistry Garnets in Chidliak eclogites are mostly pyropes, with the composition Almandine15-47Pyrope26-77Grossular6-37 (table 4.1). The calculations are based on 12 oxygens and then normalized to 8 cations using the reported total FeO content. The eclogite xenoliths were divided into groups using the classification schemes developed by Coleman et al. (1965) and Taylor and Neal (1989). Using the Coleman et al. (1965) classification, based on garnet major element chemistry, 9 eclogites are in group A, 4 are in group B, and 5 are in group C (N=18) (Fig. 4.1).  Positive correlations in garnet chemistry were found between Al2O3 and MgO, TiO2 and Na2O, and FeO and CaO (Figs. 4.2 and 4.3). Negative correlations in garnet chemistry were found between Al2O3 and CaO, FeO and MgO, and MgO and CaO. The correlation between FeO (T) and MgO is explained by the solid solution series of garnet, where Fe2+ and Mg2+ substitute the X site in garnet, controlling the composition of almandine and pyrope, respectively (Fig. 4.4). Fe2O3 32  content in garnet was calculated assuming full site occupancy at the Y site1, which gives the Al-Fe3+ negative correlation (Fig. 4.5). A correlation between CaO and Fe2O3 calculated from stoichiometry was also observed (Fig. 4.6). All the Chidliak garnets had less than 2 wt. % of Fe2O3 when calculated using this method. According to Deer, Howie, and Zussman (1982), the calculated Fe2O3 is considerably less accurate when <2 wt. %, and it is better to use only FeO (total) when determining garnet endmembers. All correlations as a whole can be explained by the dominant substitution MgVIAl->CaFe3+.   Table 4.1: Chidliak eclogite garnet solid solution end-members calculated based on 8 cations without accounting for Fe3+ (footnote 2) ID Sample Almandine (Fe) Pyrope (Mg) Grossular (Ca) 1 Q-3903-U-A 15 77 9 2 Q-3903-U-B 31 55 14 3 7S-6 21 71 8 4 7S-7 28 51 21 5 P-5500-N1 27 49 24 6 CH7-14-S3 22 63 15 7 CH7-14-S4 44 35 21 8 CHI-050-14-DD27 @ 80.1 30 61 9 9 CHI-050-14-DD28 @ 104.18 16 74 9 10 CHI-050-14-DD27 @ 184.54 47 26 27 11 CH7-14-S8 32 38 30 13 CH7-14-S10-2 31 47 22 14 CH7-14-S13 21 71 8 16 CH7-14-S7 36 31 33 17 CH7-14-S14-A 21 72 7 19 CHI-251-14-DD19 @ 162.09 25 60 15 20 CHI-251-14-DD19 @ 175.26 28 34 37 21 CHI-258-14-DD15 @ 163.07 24 69 6                                                            1 Calculated using Excel spreadsheet: www.open.ac.uk/earth-research/tindle/AGTWebData/Garnet.xls 2 Calculated using: http://serc.carleton.edu/research_education/equilibria/mineralformulaerecalculation.html Olivine, Pyroxene, Garnet, Spinel and Feldspar Spreadsheets 33   Fig. 4.1: Eclogite xenolith classification based on garnet major element chemistry using the classification method employed by Coleman et al., 1965. Group A > 16.25 wt. %, group B 10.5 – 16.5 wt. %, group C < 10.5 wt.% MgO (n=18)  Fig. 4.2: Al2O3 vs. MgO (wt. %) in eclogite garnets from Chidliak (n=18) 05101520250 2 4 6 8 10 12 14 16 18 20MgO, wt. %CaO, wt. %BAC468101214161820222422 22 23 23 24 24 25MgO, wt. %Al2O3, wt. %34   Fig. 4.3: Na2O vs. TiO2 (wt. %) in eclogite garnets from Chidliak (n=18); none of the samples plot in the megacrystic field. The boundaries between different fields are defined by empirical observations as described in McCandless and Gurney (1989) and Gurney and Zweistra (1995). Minimum detection limits represented by dashed lines. Modified from Cookenboo and Grütter (2010).    Fig. 4.4: FeO (T) vs. MgO (wt. %) in eclogite garnets from Chidliak (n=18) showing solid solution series between pyrope and almandine garnets 0.00.10.20.30.40.50.60.70.80.90.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20TiO2, wt. %Na2O, wt. %Diamond barren Diamond inclusionMegacryst46810121416182022246 8 10 12 14 16 18 20 22 24MgO, wt. %FeO (T), wt. %35   Fig. 4.5: VIAl vs. Fe3+ in eclogite garnets from Chidliak (n=18)   Fig. 4.6: Ca vs. Fe3+ in eclogite garnets from Chidliak (n=18) 00.0050.010.0150.020.0250.030.0350.040.0451.88 1.9 1.92 1.94 1.96 1.98 2 2.02Fe3+ (cpfu)VIAl (cpfu)00.0050.010.0150.020.0250.030.0350.040.0450 0.2 0.4 0.6 0.8 1 1.2Fe3+ (cpfu)Ca (cpfu)36  4.2.2 Clinopyroxene chemistry Most of the Chidliak eclogite clinopyroxenes are categorized as omphacites by composition. The end-members of clinopyroxenes were calculated based on 6 oxygens and then normalized to 4 cations using reported total FeO content. The resulting clinopyroxene compositions for primary clinopyroxenes are Diopside-Hedenbergite54-88Jadeite12-46 (table 4.2). Out of 19 Chidliak eclogites, 2 samples (CH7-14-S8 and CH7-14-S9) did not contain enough fresh clinopyroxene to be used for microprobe analyses. Using the Taylor and Neal (1989) classification of eclogite xenoliths by clinopyroxene chemistry, the eclogites were divided in groups: group A (5 samples) and group B (12 samples) (n=17) (Figs. 4.7 and 4.8). Some samples have been classified in different groups, depending on whether garnet or clinopyroxene classification was used. Samples CHI-258-14-DD15, 7S-6, CH7-14-S14A, and CH7-14-S13 were classified as group A eclogites based on garnet chemistry, but also classified as group B eclogites based on clinopyroxene chemistry. Likewise, samples CH7-14-S4, CHI-251-14-DD19 (at 175.26), and CHI-050-14-DD27 (at 184.54) were classified as group C eclogites based on garnet chemistry, but also classified as group B eclogites based on clinopyroxene chemistry. Positive correlation in clinopyroxene chemistry was found between TiO2 and FeO, and Al2O3 and Na2O. Negative correlation in clinopyroxene chemistry was found between Al2O3 and CaO, Al2O3 and MgO, MgO and Na2O, CaO and Na2O (Figs. 4.9 and 4.10). This is interpreted as dominant substitution of CaMg for NaAl, showing the preferential solid solution between diopside and jadeite.   37  Table 4.2: Chidliak eclogite clinopyroxene end-members (n=17) calculated based on 4 cations ID Sample Diopside-Hedenbergite (Ca,Mg,Fe)3 Jadeite (Na, Al)4 1 Q-3903-U-A 82 18 2 Q-3903-U-B 75 25 3 7S-6 75 25 4 7S-7 64 36 5 P-5500-N1 63 37 6 CH7-14-S3 87 13 7 CH7-14-S4 78 22 8 CHI-050-14-DD27 @ 80.1 80 20 9 CHI-050-14-DD28 @ 104.18 88 12 10 CHI-050-14-DD27 @ 184.54 68 32 13 CH7-14-S10-2 69 31 14 CH7-14-S13 75 25 16 CH7-14-S7 54 46 17 CH7-14-S14-A 75 25 19 CHI-251-14-DD19 @ 162.09 81 19 20 CHI-251-14-DD19 @ 175.26 59 41 21 CHI-258-14-DD15 @ 163.07 67 33                                                           3 Diopside-Hedenbergite component calculated as ((Ca+Mg+Fe)/2)*100, where Ca, Mg, and Fe are in cpfu 4 Jaedite component calculated as ((Na+Al)/2)*100, where Na and Al are in cpfu 38   Fig. 4.7: Eclogite xenolith classification based on Na2O and Al2O3 contents in clinopyroxene grains (n=17) employed by Taylor and Neal (1989).  Fig. 4.8: Eclogite xenolith classification based on MgO and Na2O contents in clinopyroxene grains (n=17) employed by Taylor and Neal (1989).  05101520250 1 2 3 4 5 6 7 8Al 2O3,wt.%Na2O, wt. %BAC0123456780 2 4 6 8 10 12 14 16 18 20Na 2O, wt. %MgO, wt. %BAC39   Fig. 4.9: Na2O vs. CaO (wt. %) in Chidliak eclogite clinopyroxene (n=17), showing a negative relationship.  Fig. 4.10: Na + Al vs. Mg + Ca in eclogite clinopyroxene (n=17) showing a strong negative correlation. Deviation from the dashed MgCa=2-NaAl line reflects the presence of minor Fe as hedenbergite.  101214161820221 2 3 4 5 6 7CaO, wt. %Na2O, wt. %0.91.01.11.21.31.41.51.61.71.80.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Mg + Ca (cpfu)Na + Al (cpfu)40   Fig. 4.11: K2O vs. Na2O (wt. %) in eclogite clinopyroxenes (n=17). Thick vertical line represents the boundary between non-diamondiferous samples (<0.08 wt.% K2O) and diamondiferous samples (>0.08 wt.% K2O) as per McCandless and Gurney (1989). Dashed line represents the minimum detection limit of K2O at 0.02 wt. %.   4.2.3 Rutile chemistry Rutiles were found in 7 out of 19 samples. The rutiles contain Cr2O3 (0.08-0.49 wt.%), FeO (0.1-1.05 wt.%), and Nb2O5 (0.27-1.77 wt.%). There are only 3 grains with Nb2O5 content above the minimum detection limit for rutile, limiting the plots to only 3 data points.   Positive correlation in rutile chemistry was found between Cr2O3 and FeO, Cr2O3 and Nb2O5, and FeO and Nb2O5 (Figs. 4.12 and 4.13). Negative correlation in rutile chemistry was found between TiO2 vs Nb2O5, TiO2 vs. FeO, TiO2 and Cr2O3. This indicates dominant substitution of Fe2+, Cr, and Nb for Ti in rutile. Rutile shows solid solution between rutile (TiO2) and ilmenorutile (Ti0.97Nb0.02Fe2+0.01)Σ=1 O2.  012345670.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28Na 2O, wt. %K2O, wt. %41   Fig. 4.12: Nb2O5 vs. FeO (wt. %) in rutile from Chidliak eclogites (n=3).  Fig. 4.13: Cr2O3 vs. Nb2O5 (wt. %) in rutile from Chidliak eclogites (n=3). 0.50.60.70.80.91.01.10.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0FeO, wt. %Nb2O5 , wt. %0.00.20.40.60.81.01.21.41.61.82.00.0 0.1 0.2 0.3 0.4 0.5 0.6Nb2O5, wt. %Cr2O3 , wt. %42  4.3 Secondary mineral chemistry Out of 18 samples with data for primary clinopyroxene compositions, 14 samples had recrystallized secondary clinopyroxene. A slight increase in FeO concentration was observed in many samples, but in some, the concentration of FeO was not changed when compared to primary clinopyroxene composition. These parameters clearly show that the composition of secondary clinopyroxenes is richer in diopside-hedenbergite component (65-93 mol. %, compared to 54-88 mol. % for primary CPX), and poorer in jadeite component (7-35 mol. % compared to 12-46 mol. % for primary CPX) (Figs. 4.14 and 4.15). All the secondary clinopyroxenes experienced a significant decrease in Al2O3, Na2O and SiO2, with a significant increase in MgO and CaO when compared to all the primary clinopyroxene compositions. The maintained good stoichiometry in the NaAl and MgCa end-members (Fig. 4.16) proves that the grey mineral replacing primary clinopyroxene is low-jadeitic secondary clinopyroxene rather than the secondary chlorite.  Phlogopite was found in 8 out of 19 samples both as laths and an interstitial phase between clinopyroxenes and garnets. The composition of phlogopite in eclogite xenoliths is Phlogopite80-94Annite6-20 (table 4.3), calculated based on the ratio of Mg and Fe cations.  Table 4.3: Mica composition of eclogite xenoliths from Chidliak (n=8) ID Sample Phlogopite KMg3(AlSi3O10)(F,OH)2 Annite KFe3(AlSi3O10)(F,OH)2 1 Q-3903-U-A 94 6 3 7S-6 88 12 8 CHI-050-14-DD27 @ 80.1 87 13 9 CHI-050-14-DD28 @ 104.18 90 10 11 CH7-14-S8 80 20 17 CH7-14-S14-A 89 11 19 CHI-251-14-DD19 @ 162.09 90 10 21 CHI-258-14-DD15 @ 163.07 89 11 43   Fig. 4.14: MgO vs. Na2O (wt. %) in recrystallized secondary eclogite clinopyroxene. Dashed lines show the change in composition between primary and secondary clinopyroxene. (n=14) Q-3903-U-A7S-67S-7P-5500-N1CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CH7-14-S10-2CH7-14-S13CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26CHI-258-14-DD15 @ 163.07Q-3903-U-A7S-67S-7P-5500-N1CH7-14-S3 CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CH7-14-S10-2 CH7-14-S13CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26CHI-258-14-DD15 @ …012345678 10 12 14 16 18 20Na 2O, wt. %MgO, wt. %Primary CPX MgO vs Na2O Secondary CPX MgO vs. Na2O44   Fig. 4.15: CaO vs. Na2O (wt. %) in recrystallized secondary eclogite clinopyroxene. Dashed lines show the change in composition between primary and secondary clinopyroxene. (n=14)Q-3903-U-A7S-67S-7P-5500-N1CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CH7-14-S10-2CH7-14-S13CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26CHI-258-14-DD15 @ 163.07Q-3903-U-A7S-67S-7P-5500-N1CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CH7-14-S10-2CH7-14-S13CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26CHI-258-14-DD15 @ 163.070123456711 13 15 17 19 21 23 25Na 2O, wt. %CaO, wt. %Primary CPX CaO vs Na2O Secondary CPX CaO vs. Na2O45   Fig. 4.16: Al3+ vs. Ca+Fe+Mg+Mn (cpfu) in primary and secondary clinopyroxene in Chidliak eclogites.   Amphiboles were found in 10 out of 19 samples as replacement minerals around garnets.  All samples were classified as calcic amphiboles where B(Ca+ΣM2+)/ΣB ≥ 0.75, BCa/ΣB ≥ BΣM2+/ΣB.  Classification scheme by Hawthorne et al. (2012) was used to classify amphiboles (table 4.4 and Fig. 4.17). All 10 amphiboles are classified as pargasite.  Table 4.4: Calculated amphibole formulas as per Hawthorne et al. (2012) ID Sample Formula 4 7S-7 K0.20Na0.80(Na0.18Ca1.48Mn0.02Mg0.32)[Mg2.68Fe1.25Ti0.09Al0.98][Si5.95Al2.05]O22(OH)2 5 P-5500-N1 K0.20Na0.80(Na0.21Ca1.51Mn0.02Mg0.27)[Mg2.94Fe1.11Ti0.17Al0.77][Si6.01Al1.99]O22(OH)2 8 CHI-050-14-DD27 @ 80.1 K0.16Na0.78(Ca1.63Mn0.02Mg0.35)[Mg3.00Fe1.09Ti0.14Al0.76][Si5.89Al2.11]O22(OH)2 9 CHI-050-14-DD28 @ 104.18 K0.15Na0.75(Na0.04Ca1.73Mn0.02Mg0.20)[Mg3.54Fe0.77Ti0.20Al0.50][Si6.11Al1.89]O22(OH)2 10 CHI-050-14-DD27 @ 184.54 K0.21Na0.82(Na0.13Ca1.57Mn0.02Mg0.27)[Mg2.41Fe1.79Ti0.30Al0.51][Si6.00Al2.00]O22(OH)2 1.0001.1001.2001.3001.4001.5001.6001.7001.8001.9002.0000.000 0.100 0.200 0.300 0.400 0.500Ca+Fe+Mg+Mn(cpfu)Al3+ (cpfu)Primary CPXSecondary CPX46  ID Sample Formula 11 CH7-14-S8 K0.19Na0.85(Na0.15Ca1.54Mn0.01Mg0.30)[Mg2.79Fe1.07Ti0.15Al1.00][Si5.77Al2.23]O22(OH)2 13 CH7-14-S10-2 K0.23Na0.77(Na0.07Ca1.55Mn0.02Mg0.36)[Mg2.68Fe1.44Ti0.16Al0.73][Si6.00Al2.00]O22(OH)2 14 CH7-14-S13 K0.16Na0.88(Na0.09Ca1.45Mn0.02Mg0.44)[Mg3.31Fe0.83Ti0.10Al0.77][Si6.08Al1.92]O22(OH)2 17 CH7-14-S14-A K0.16Na0.88(Ca1.52Mn0.02Mg0.46)[Mg3.39Fe0.87Ti0.07Al0.67][Si6.09Al1.91]O22(OH)2 20 CHI-251-14-DD19 @ 175.26 K0.32Na0.71(Na0.09Ca1.74Mn0.03Mg0.14)[Mg2.18Fe1.49Ti0.03Al1.30][Si5.68Al2.32]O22(OH)2   Fig. 4.17: Classification of Chidliak amphiboles. All samples classify as pargasite (orange stars). Diagram adapted from Hawthorne et al. (2012). A single carbonate mineral with ~55 wt. % of CaO was found in a metasomatic vein in sample CHI-251-14-DD19 (@175.26). MgO+FeO wt. % content of the carbonate mineral was <0.5%, making this mineral mostly CaCO3 calcite.  47  In eclogite xenoliths, spinels are products of secondary decomposition of garnets. Almost all the spinels found in Chidliak eclogites are smaller than the spot size of microprobe analysis. Only in one sample (7S-6) were the spinels large enough to be able to be probed. The single probed mineral’s composition is Spinel72.4Hercynite20.3Magnetite5.9. The composition was calculated based on 4 oxygens and accounting for Fe3+.   Zeolites were found in 2 samples, 7S-6 and 7S-7, as constituents of a metasomatic vein going through the samples. In both cases, the zeolite was found to be Stilbite-Ca with the composition Na1.25Ca2.73Al9Si27O72 · 28(H2O). 48  Chapter 5: Reconstructed Whole Rock Composition 5.1 Methodology  Virtually all eclogite xenoliths are extremely susceptible to kimberlite alteration (Barth et al., 2001; Jacob, 2004) and therefore reconstructing eclogite whole rock composition is a better technique than the whole rock analysis for assessing unaltered eclogite compositions. Whole rock compositions for Chidliak eclogites were calculated based on the EPMA measurements of major element chemistry and the observed modal abundances of the primary minerals clinopyroxene and garnet (and orthopyroxene and rutile where present). For comparison, three additional modes of garnet-to-clinopyroxene were used in order to show how variability in modal percentage affects the reconstructed bulk composition: 80%-20% and 20%-80% to show the observed extreme end of ranges (Appendix E, table 24) and 50%-50% to represent the average (Fig. 5.1). The calculated values can be found in Appendix D. Reconstructed whole rock compositions of Chidliak eclogites are demonstrated in Fig. 5.1 for the 20%-80% (green), 50%-50% (yellow), 80%-20% (red), and the observed modal abundances of garnet-clinopyroxene (black).  5.2 Reconstructed whole rock compositions of Chidliak eclogites  Reconstructed black, green, red, and yellow points show SiO2 range of 11 wt. % (42-53 wt. %) and MgO range of 16 wt. % (7-23 wt. %). The range for CaO is 13 wt. % (5-18 wt. %), Al2O3 14 wt. % (7-21 wt. %), Na2O 4.5 wt. % (0.5-5.0 wt. %), and FeO 16 wt. % (4-20 wt. %).  Other red points calculated for 80% garnet – 20% clinopyroxene samples are too aluminous to be metabasites, but lack high contents of K typical for metapelites. We therefore consider points 49  calculated for observed modes in samples 050-104 and DD19-175 unrealistically low in SiO2 because of the high observed garnet-to-clinopyroxene modal abundances in the thin sections. We consider garnet in these thin sections overabundant and overestimated because of the small sizes of the eclogite samples and the more plausible garnet-to-clinopyroxene modal abundances of 50%-50% were used to calculate the whole rock compositions for major and trace elements for samples 050-104 and DD19-175 (see blue arrows in Fig. 5.1).                   Fig. 5.1: MgO vs. SiO2 (wt. %) of reconstructed whole rock Chidliak eclogite samples for the 20%-80% (green circles), 50%-50% (yellow circles), 80%-20% (red circles), and the observed modal abundances of garnet-clinopyroxene (black circles). Fields for altered modern oceanic gabbros (shaded red; Bach et al., 2001), MORB (shaded grey; Jenner & O’Neill, 2012), Archean basalts (shaded green; Barth et al., 2001), Archean picrites and komatiites (shaded blue; Barth et al., 2002), ocean island basalts (orange dotted line; Jackson and Dasgupta, 2008), and continental flood basalts (green dotted line; Farmer, 2003), as well as compiled mantle eclogites field (thick black line; Jacob, 2004). The shift in the composition from ~80%-20% garnet-clinopyroxene to 50%-50% in samples 050-104.18 and DD19-175 is shown by two thin blue arrows. The thick black arrow line shows the possible effects of partial melting on subducted residue-eclogites (Smart et al., 2017).  4042444648505254565 10 15 20 25SiO2(wt. %)MgO (wt. %)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (observedmodal abundance ofGRT and CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (20% GRT -80% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (80% GRT -20% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (50% GRT -50% CPX)50   Fig. 5.2:  A) MgO vs CaO (wt. %), B) MgO vs. Al2O3 (wt. %), C) MgO vs. Na2O (wt. %), D) MgO vs. FeO (wt. %) for reconstructed bulk whole rock Chidliak eclogite major element chemistry. Labels and fields as in Fig. 5.1.  357911131517195 10 15 20 25CaO (wt. %)MgO (wt. %)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (observedmodal abundance ofGRT and CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (20% GRT -80% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (80% GRT -20% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (50% GRT -50% CPX)05101520255 10 15 20 25Al 2O3(wt. %)MgO (wt. %)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (observedmodal abundance ofGRT and CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (20% GRT -80% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (80% GRT -20% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (50% GRT -50% CPX)01234565 10 15 20 25Na 2O (wt. %)MgO (wt. %)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (observedmodal abundance ofGRT and CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (20% GRT -80% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (80% GRT -20% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (50% GRT -50% CPX)024681012141618205 10 15 20 25FeO (wt. %)MgO (wt. %)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (observedmodal abundance ofGRT and CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (20% GRT -80% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (80% GRT -20% CPX)Reconstructed bulkmajor elementchemistry of Chidliakeclogites (50% GRT -50% CPX)A B C D 51  5.3 Comparison of the reconstructed whole rock compositions with possible protoliths Reconstructed black, green, and yellow points fall into the field of Archean basalts with only a couple plotting in the Archean picrite and komatiite field (APK). The AB field is a wide field composed of Archean aged basalts which have a much higher MgO content when compared to modern MORBs (Fig. 5.1). The higher MgO content of AB can be correlated to the higher potential temperatures of the mantle in the Archean (Herzberg et al., 2010). The potential temperatures were 200-300°C higher than today, which would have led to higher degrees of partial melting of the ambient mantle (~30%) with primary magmas of 18-24% MgO that crystallized into Archean basalts and left residues of harzburgite that is found as xenoliths in the cratonic mantle (Herzberg et al., 2010). The AB field consists of Archean greenstone belt basalts which have been preferentially preserved in these belts by the accretion of ocean island plateaus and ocean island arcs on cratons that existed in the Archean (Polat, 2013).     Modern gabbros (MG), mid-ocean ridge basalts (MORB), ocean island basalts (OIB), and continental flood basalts (CFB) fields overlap the AB field in most of the plots (Figs. 5.1 and 5.2). MB, MORB, OIB, and CFB fields are very close in values to each other, with the exception of OIB in MgO (wt. %) vs. SiO2 (wt. %) and MG in MgO (wt. %) vs. FeO (wt. %) plots. The large variation of SiO2 (wt. %) for OIBs is explained by their higher alkalies and TiO2 contents (Jackson and Dasgupta, 2008) (Fig. 5.1). The higher content of MgO (wt. %) and the lower content of FeO (wt. %) in MG as compared to MORB in MgO (wt. %) vs. FeO (wt. %) plot (Fig. 5.2D) is best explained by the cumulative nature of the origin of gabbros: the cumulate CPX and olivine account for high Mg#, while the removal of Fe-Ti-rich melt lowers the FeO (wt. %) content of gabbros (Niu et al., 2002).  52  The Chidliak samples are generally more magnesian than MORBs, CFBs, and many gabbros, but plot together with AB and other cratonic eclogites (Figs. 5.1 and 5.2). Chidliak eclogites show a better fit to OIBs with respect to all elements except SiO2 (Fig. 5.1). MGs resemble the studied eclogites more than MORBs, but demonstrate the lower FeO (Fig. 5.2D), higher CaO (Fig. 5.2A), and lower MgO (Fig. 5.1). Partial melting can have a significant effect on the major element chemistry of eclogites (Ireland et al., 1994) where the chemistry of eclogites is not exactly matching the chemistry of the suspected protolith. From experimental data, residues from partial melting of metabasalt creates a residue that is compatible with the composition of eclogites found in some kimberlites (Pernet-Fisher et al., 2014; Smart et al., 2017). Partial melting was found to move the bulk composition from 52% SiO2 to 48% SiO2 and from 9% MgO to 12% MgO (black arrow in Fig. 5.1) in Karelian, Finland eclogites when using the starting composition of gabbro (Smart et al., 2017). If a similar increase in MgO and decrease in SiO2 is assumed for a possible partial melting of the Chidliak eclogites, their protolith could have been gabbros or OIBs. 53  Chapter 6: Geothermobarometry 6.1 Methodology Analyses used for thermobarometry are listed in Appendix C. The values chosen for analyses were either averaged for 2-10 grains if no significant variation was present in the probe measurements or taken as the best analysis out of the obtained set of data. The best analysis was determined as having the best Si4+ cpfu values (closest to 3.000 for garnet and 2.000 for clinopyroxene), element wt. % oxides adding up to as close to 100% as possible for the available sample analyses, and for garnets, the X site cations adding up to 3.000 (Mg2+, Fe2+, Ca2+, Mn2+). Almost all the samples, except CHI-258-14-DD15 @ 163.07 had largely homogenous grains. Sample CHI-258-14-DD15 @ 163.07 was the only sample that contained two distinct populations of clinopyroxene contrasting in sizes and compositions within the sample. In order to account for this heterogeneity, both clinopyroxene populations were considered for thermobarometry and the results were listed in table 6.3 as “CHI-258-14-DD15 @ 163.07 (fine)” and “CHI-258-14-DD15 @ 163.07 (coarse)”, corresponding to the respective sizes of clinopyroxene grains found in the sample. The calculated temperatures for these two samples differed by about 70°C for equal pressure values, i.e. equaling the thermometry precision of 1 sigma of 74°C. Because only one garnet composition coexisted with two distinct clinopyroxene compositions, the accuracy of calculated temperatures for sample CHI-258-14-DD15 @ 163.07 cannot be ascertained and cannot be used for P-T diagrams or discussion.   The eclogite temperatures were calculated using Nakamura (2009) geothermometer. Its calibration was based on 333 garnet-clinopyroxene pairs. This geothermometer uses the 54  distribution of Mg and Fe between garnet and clinopyroxene, but also takes into account the garnet end-member composition and contents of Ca, Al, and Mn. The thermometer is calibrated in the range of 800-1820 °C (1 sigma of 74 °C) and for pressures of 15-75 kbar for ultramafic to mafic compositions. The experiments were run with graphite capsules with the assumption that Fe (total) = Fe2+ to avoid any over/underestimations in the value of Kd, since the Fe3+ clinopyroxene content is difficult to estimate. The non-ideality of Ca in garnet was accounted for and the representative formulation of the thermometer shows smaller values in Tcalculated-Texperimental than other comparable studies. Nakamura (2009) geothermometer improves on Ellis & Green (1979) by adjusting the non-ideality of garnet which was overestimated in Ellis & Green (1979) study.  Ellis & Green (1979) systematically overestimated at temperatures ≤1000 °C and for Xgrs of ≥0.30 compared with experimental temperatures, while Nakamura (2009) formulation yields temperatures 20-100 °C lower than Ellis and Green (1979).   The eclogite equilibration temperatures were calculated for pressures of 40-60 kbar in 5 kbar increments (table 6.1) and are shown in a temperature histogram for a set pressure of 50 kbar (Fig. 6.1). Since there are no accurate barometers for mantle eclogites at this time, a set of pressure values had to be used for defining eclogite xenoliths in P-T space. For the temperatures to make sense in the geological setting, the paleo-geotherm (i.e. pressures of equilibration) has to be constrained. Two sets of data aid this goal.  Firstly, two eclogite xenolith samples from this study, Q-3903-U-A and CHI-050-14-DD28 @ 104.18, contain grains of fresh orthopyroxene, making them suitable for orthopyroxene - garnet barometry. Using thermobarometry on these samples is helpful for constraining the pressure values of eclogite xenolith equilibration. Two thermobarometers were 55  used: 1) Brey and Köhler (1990) (BK90) thermobarometer and, 2) Taylor (1998) (TA98) thermometer in combination with Nickel and Green (1985) (NG85) Al-in-orthopyroxene barometer (table 6.2). BK90 thermobarometer uses a combination of two-pyroxene (ortho- and clinopyroxene) thermometer and an orthopyroxene-garnet barometer calibrated for the CaO-MgO-Al2O3-SiO2 system. Nimis and Grütter (2010) state that combining TA98 two-pyroxene thermometer with NG85 orthopyroxene-garnet barometer yields better results over BK90 thermobarometer for the following reasons: 1) NG85 reproduces pressures of experiments with better precision on variably depleted to fertile peridotite compositions to 60 kbar, 2) TA98 shows less significant systematic deviations at T between 900°C and 1400°C compared to BK90, and 3) Na in clinopyroxene and orthopyroxene has been accounted for in TA98, unlike BK90, showing higher temperature precision in TA98. The BK90 thermometer generally overestimates temperatures relative to the TA98 thermometer, as is the case with these two samples as shown in table 6.2.  Secondly, a set of peridotite data from another xenolith study at Chidliak (Kopylova et al., 2017) was used to constrain the P-T array approximating the thermal state of the mantle at the time of eclogite equilibration. The underlying assumptions are that eclogites have thermally equilibrated with peridotites after staying billions of years together in a hot mantle. A P-T array was constructed using best linear fit through a set of 54 peridotite P-T points calculated by TA98 thermometer and NG85 barometer. Most of the 54 points were clustered in a P-T window of 1000-1300°C and 50-70 kbar. For comparison, both orthopyroxene-bearing eclogite P-T calculations (BK90 and TA98/NG85) are also plotted along the peridotite data and do not seem 56  to drastically differ from the linear-fitted geotherm, therefore corroborating the linear fit used to constrain pressure (Fig. 6.2). Table 6.1: Eclogite xenolith temperatures calculated at 40-60 kbar pressures (in 5 kbar increments) using Nakamura (2009) geothermometer (n=18). ID Sample Temperature (@40kb) °C Temperature (@45kb) °C Temperature (@50kb) °C Temperature (@55kb) °C Temperature (@60kb) °C 1 Q-3903-U-A 1188 1218 1247 1276 1306 2 Q-3903-U-B 1190 1218 1245 1272 1300 3 7S-6 1270 1300 1330 1360 1390 4 7S-7 1167 1193 1220 1246 1272 5 P-5500-N1 1213 1240 1267 1294 1321 6 CH7-14-S3 1041 1066 1091 1116 1141 7 CH7-14-S4 857 879 901 924 946 8 CHI-050-14-DD27 @ 80.1 899 922 944 967 990 9 CHI-050-14-DD28 @ 104.18 1096 1124 1151 1179 1206 10 CHI-050-14-DD27 @ 184.54 1048 1075 1102 1128 1155 13 CH7-14-S10-2 1196 1224 1251 1278 1305 14 CH7-14-S13 1278 1308 1338 1369 1399 16 CH7-14-S7 941 965 988 1011 1035 17 CH7-14-S14-A 1254 1284 1314 1343 1373 19 CHI-251-14-DD19 @ 162.09 837 858 879 900 921 20 CHI-251-14-DD19 @ 175.26 882 903 925 947 969 21a CHI-258-14-DD15 @ 163.07 (fine) 1416 1448 1481 1513 1546 21b CHI-258-14-DD15 @ 163.07 (coarse) 1482 1516 1549 1583 1617  Table 6.2: Thermobarometry of orthopyroxene-bearing eclogite xenoliths (n=2) using Brey and Kohler (1990) thermobarometer and Taylor (1998) thermometer combined with Nickel and Green (1985) barometer. ID Sample BK90 P (kbar) BK90 T (°C) NG85 P (kbar) TA98 T (°C) 1 Q-3903-U-A 61 1080 42 903 9 CHI-050-14-DD28 @ 104.18 66 1163 56 1078  57    Fig. 6.1: Temperature histogram showing Chidliak eclogite temperatures (n=18) in bins of 50°C at a set pressure of 50 kbar. The T-histogram is based on calculations using Nakamura (2009) geothermometer.     Fig. 6.2: Chidliak linear fit to P-T array based on peridotite data (n=54; Kopylova et al., 2017) using TA98 and NG85 thermobarometry calculations. Graphite-diamond transition (Day, 2012) and adiabat (McKenzie & Bickle, 1988; McKenzie & O’Nions, 1991) included. 01234850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550FrequencyTemperature (°C)58  6.2 Uncertainties of thermobarometric estimates related to Fe3+ in garnet and clinopyroxene Calculated temperatures (table 6.1) correlate with Fe3+ estimates in garnet calculated from stoichiometry (Fig. 6.3). In more than half of all the samples, Ca is present in end-member Ca3Fe23+[SiO4]3, and samples on the Ca-Fe3+ trend generally yield higher temperatures. In other specimens, Ca does not correlate with Fe3+ content (Fig. 6.3). The correlation suggests that these temperatures might be artificially overestimated and warrants a special study on the temperature uncertainties associated with non-analyzed Fe3+.     Fig. 6.3: Ca vs. Fe3+ (cpfu) in Chidliak garnets. Fe3+ was calculated as 5-(Si+Ti+Al+Cr) (cpfu). Points are labeled with calculated Nakamura (2009) temperatures at 50 kbar.    Eclogite thermometers rely on the Fe2+-Mg exchange between omphacite and garnet. The calculated equilibrium temperatures may be significantly altered by neglecting or using incorrect Fe3+ values (Sobolev et al., 1999; Aulbach et al., 2007; Kopylova et al., 2016). Correction for Fe3+ 133087912479251091944125111519881338 9011314124512671220110215150.0000.0050.0100.0150.0200.0250.0300.0350.0400.0450.0 0.2 0.4 0.6 0.8 1.0 1.2Fe3+in garnet (cpfu)Ca in garnet (cpfu)59  is known to lower temperatures (Kopylova et al., 2016). A common practice in the past was to the compositions of silicate phases analyzed by EMP to calculate their Fe3+ contents, since EMP itself cannot measure Fe3+. However, this method could result in significant errors in Fe3+/ΣFe and therefore introduce large uncertainties in P-T estimates (Sobolev et al., 1999). Various studies have used Mössbauer spectroscopy to determine a more correct Fe3+/ΣFe ratio (Proyer et al., 2004; Li et al., 2005; Sobolev et al., 1999; Kopylova et al., 2016). It is to be noted that Fe3+ values obtained from Mössbauer analyses of clinopyroxenes possess much larger errors than those of garnets (Sobolev et al., 1999). Since the Chidliak samples were not analyzed using Mössbauer spectroscopy, and EMP calculations are deemed to be inaccurate, I used Fe3+ values reported for garnet and clinopyroxene in kimberlite-derived eclogites (Sobolev et all, 1999; Kopylova et al., 2016) to assess the temperature uncertainty related to the Fe3+ content.  Sobolev’s et al. (1999) study used eclogites from the Udachnaya kimberlite that were classified as Group A eclogites by Coleman et al. (1965) and Taylor and Neal (1989). The Fe3+/ΣFe values obtained through Mössbauer spectroscopy for garnets were 0.08-0.127, while the Fe3+/ΣFe values for clinopyroxene were reported as 0.316-0.744 (Sobolev’s et al., 1999).  Kopylova’s et al. (2016) study was based on eclogites from the Jericho and Muskox kimberlites that were classified as massive and foliated, and divided into groups A, B, and C according to Coleman et al. (1965) and Taylor and Neal (1989). I assumed that Fe3+/ΣFe ratios in Chidliak minerals from massive eclogites resemble the respective ratios analyzed for massive Jericho and Muskox eclogites classified to the same compositional groups. Group A garnets have 60  Fe3+/ΣFe values of 0.061-0.076 (3 samples, σ=0.008) and clinopyroxene Fe3+/ΣFe value of 0.199 (1 sample). Group B garnets have Fe3+/ΣFe values of 0.019-0.023 (2 samples, σ=0.003) and clinopyroxene Fe3+/ΣFe value of 0.144 (1 sample). Group C garnets have Fe3+/ΣFe value of 0.021 (1 sample) and clinopyroxene Fe3+/ΣFe value of 0.19 (1 sample) (Kopylova et al., 2016). I extrapolated the Jericho and Muskox Fe3+/ΣFe values rather than the Udachnaya Fe3+/ΣFe ratios to Chidliak eclogites, since the former has a smaller Fe3+/ΣFe value range, with a representation of all three eclogite groups (Table 6.3) Table 6.3: The averaged Fe3+/ΣFe values for eclogite groups A, B, and C based on respective measurements for Northern Slave eclogites (Kopylova et al., 2016) Mineral/Eclogite Group Fe3+/ΣFe values for A Fe3+/ΣFe values for B Fe3+/ΣFe values for C Garnet 0.068 0.021 0.021 Clinopyroxene 0.199 0.144 0.190  Table 6.4. lists equilibration temperatures corrected for Fe3+ for the assumed Fe3+/ΣFe values for Groups A – C eclogites (Table 6.3).  Table 6.4: Recalculated Chidliak equilibration temperatures using Nakamura (2009) and accounting for Fe3+  ID Sample Eclogite group Temperature (@40kb) °C Temperature (@50kb) °C Temperature (@60kb) °C Tuncorrected – Tcorrected  (@50 kb) 1 Q-3903-U-A A 1092 1147 1202 100 2 Q-3903-U-B B 1095 1146 1197 99 3 7S-6 B (or A) 1163 1220 1276 110 4 7S-7 B 1080 1130 1179 90 5 P-5500-N1 B 1123 1174 1225 93 6 CH7-14-S3 A 964 1011 1058 80 7 CH7-14-S4 B 798 840 883 61 8 CHI-050-14-DD27 @ 80.1 A (or B) 833 876 919 68 9 CHI-050-14-DD28 @ 104.18 A 1012 1063 1115 88 10 CHI-050-14-DD27 @ 184.54 B 973 1023 1074 79 13 CH7-14-S10-2 B 1106 1157 1208 94 14 CH7-14-S13 B (or A) 1158 1214 1271 124 61  ID Sample Eclogite group Temperature (@40kb) °C Temperature (@50kb) °C Temperature (@60kb) °C Tuncorrected – Tcorrected  (@50 kb) 16 CH7-14-S7 B (or C) 884 929 973 59 17 CH7-14-S14-A B (or A) 1144 1200 1256 114 19 CHI-251-14-DD19 @ 162.09 A 784 824 864 55 20 CHI-251-14-DD19 @ 175.26 B 830 872 913 53 21a CHI-258-14-DD15 @ 163.07 (fine) B 1290 1350 1410 131 21b CHI-258-14-DD15 @ 163.07 (coarse) B 1338 1400 1462 149   Fig. 6.4: Uncorrected vs. corrected Nakamura (2009) temperatures for Chidliak eclogites. The thick red line represents 1:1 ratio. The distance between the thick red line and the points representing Chidliak samples visually shows how much the temperatures were lowered by accounting for Fe3+ in absolute terms.   The difference between the uncorrected and corrected for Fe3+ Nakamura (2009) temperatures ranges between 53°C and 124°C (Table 6.4). On average, the lower temperature samples were Q-3903-U-AQ-3903-U-B7S-67S-7P-5500-N1CH7-14-S3CH7-14-S4CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2CH7-14-S13CH7-14-S7 CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.268009001000110012001300140015001600800 900 1000 1100 1200 1300 1400 1500 1600Corrected temperature accounting for Fe3+ (°C) at 50 kbarUncorrected Fe(tot)=Fe2+ temperature (°C) at 50 kbar62  corrected less, in absolute terms, than the higher temperature samples. This is represented by the increasing distance between the dotted blue line and the thick red line as the temperature increases (Fig. 6.4).   6.3 Results Eclogite P-T lines were intersected with the projected P-T array. The solutions were obtained from two intersecting linear equations (table 6.5). This data is visually represented in Fig. 6.5.  Table 6.5: Temperatures and pressures of eclogite P-T lines (Fe2+=ΣFe) intersecting geotherm based on peridotite data and defining a P-T space where eclogites equilibrated.  ID Sample T of eclogite P-T line intersecting peridotite geotherm (°C) P of eclogite P-T line intersecting peridotite geotherm (kbar) 1 Q-3903-U-A 1361 69.4 2 Q-3903-U-B 1348 68.8 3 7S-6 1483 75.5 4 7S-7 1308 66.8 5 P-5500-N1 1376 70.2 6 CH7-14-S3 1131 58.0 7 CH7-14-S4 882 45.6 8 CHI-050-14-DD27 @ 80.1 937 48.4 9 CHI-050-14-DD28 @ 104.18 1219 62.4 10 CHI-050-14-DD27 @ 184.54 1149 58.9 13 CH7-14-S10-2 1354 69.1 14 CH7-14-S13 1497 76.2 16 CH7-14-S7 994 51.2 17 CH7-14-S14-A 1458 74.2 19 CHI-251-14-DD19 @ 162.09 855 44.3 20 CHI-251-14-DD19 @ 175.26 913 47.2 63   Fig. 6.5: Univariant P-T lines for eclogites (n=16) calculated without correction for Fe3+ (color lines) intersect the linear fit to the peridotite P-T array (black line). Here and further, the graphite-diamond transition (Day, 2012) is shown as a black dashed line. Here and further, mantle adiabat (shown as a brown dotted line) and its range (represented in transparent blue rectangle) is based on McKenzie & Bickle (1988) and McKenzie & O’Nions (1991). Recalculated eclogite temperatures accounting for Fe3+ are shown as blue triangles.  253545556575700 800 900 1000 1100 1200 1300 1400 1500 1600Pressure (kbar)Temperature (°C)Eclogites intersecting peridotite P-Tlinear fit (Fe3+ accounted for)Linear (Peridotite P-T linear fit(unpublished data - 54 samples))Linear (Graphite-Diamond transition,Day (2012))Linear (7S-6)Linear (DD19-162)Linear (Q-3903-U-A)Linear (DD19-175.26)Linear (CH7-14-S3)Linear (DD27-80.1)Linear (CH7-14-S10-2)Linear (050-104.18)Linear (CH7-14-S7)Linear (CH7-14-S13)Linear (CH7-14-S4)Linear (CH7-14-S14A)Linear (Q-3903-U-B)Linear (P-5500-N1)Linear (7S-7)Linear (050-184.54)Linear (Adiabat, Kiseeva et al. (2013))64   Fig. 6.6: Pressures and temperatures of equilibrium of Chidliak eclogites (green circles) superimposed onto dry eclogite solidus (Litasov, 2011), carbonated eclogite solidi (Hammouda, 2003; Dasgupta, 2004; Yaxley & Brey, 2004), and wet eclogite solidus (Schmidt et al., 2004). The green circles are intersections of eclogite P-T lines for Fe2+=ΣFe and the Chidliak peridotite geotherm (black line). Red circles mark intersections of eclogite P-T lines for Fe2+=ΣFe and the ambient adiabate (dotted brown line). The pressure histogram for Chidliak eclogites includes 3 samples with univariant P-T lines intersecting the adiabat rather than the peridotitic geotherm at temperatures exceeding the adiabat range. 65   Fig. 6.7: Pressures and temperatures of equilibrium of Chidliak eclogites (blue triangles) superimposed onto dry eclogite solidus (Litasov, 2011), carbonated eclogite solidi (Hammouda, 2003; Dasgupta, 2004; Yaxley & Brey, 2004), and wet eclogite solidus (Schmidt et al., 2004). The blue triangles are intersections of eclogite P-T lines (Fe3+ accounted for) and the Chidliak peridotite geotherm (black line). The pressure histogram for Chidliak eclogites includes 3 samples with univariant P-T lines intersecting the adiabat rather than the peridotitic geotherm at temperatures exceeding the adiabat range. 66   Fig. 6.8: Pressures and temperatures of equilibrium of Chidliak eclogites (green nad yellow circles) superimposed onto dry eclogite solidus (Litasov, 2011), carbonated eclogite solidi (Hammouda, 2003; Dasgupta, 2004; Yaxley & Brey, 2004), and wet eclogite solidus (Schmidt et al., 2004).  The eclogites are shown as green (group A) and yellow (group B) circles. The circles are intersections of eclogite P-T lines for Fe2+=ΣFe and the Chidliak peridotite geotherm (black line). The pressure histogram for Chidliak eclogites includes 3 samples with univariant P-T lines intersecting the adiabat rather than the peridotitic geotherm at temperatures exceeding the adiabat range.  67  Table 6.6: Temperatures and pressures of eclogite P-T lines (uncorrected using Fe2+ and corrected accounting for Fe3+) intersecting geotherm based on peridotite data and adiabat and defining a P-T space where eclogites equilibrated.  ID Sample T of UNCORRECTED (using Fe2+=ΣFe) eclogite P-T line intersecting peridotite geotherm (°C) P of UNCORRECTED (using Fe2+=ΣFe) eclogite P-T line intersecting peridotite geotherm (kbar) T of CORRECTED (accounting for Fe3+) eclogite P-T line intersecting peridotite geotherm (°C) P of CORRECTED (accounting for Fe3+) eclogite P-T line intersecting peridotite geotherm (kbar) T of UNCORRECTED (using Fe2+=ΣFe) eclogite P-T line intersecting adiabat (°C) P of UNCORRECTED (using Fe2+=ΣFe) eclogite P-T line intersecting adiabat (kbar) 1 Q-3903-U-A 1361 69.4 1214 62.1 1401 76.2 2 Q-3903-U-B 1348 68.8 1206 61.7 1403 78.9 3 7S-6 1483 75.5 1317 67.2 1386 59.2 4 7S-7 1308 66.8 1181 60.5 1410 86.0 5 P-5500-N1 1376 70.2 1242 63.5 1399 74.5 6 CH7-14-S3 1131 58.0 1024 52.6 1440 119.7 7 CH7-14-S4 882 45.6 806 41.8 1497 182.4 8 CHI-050-14-DD27 @ 80.1 937 48.4 851 44.1 1485 169.4 9 CHI-050-14-DD28 @ 104.18 1219 62.4 1096 56.2 1422 99.2 10 CHI-050-14-DD27 @ 184.54 1149 58.9 1041 53.5 1433 112.2 13 CH7-14-S10-2 1354 69.1 1220 62.4 1403 78.0 14 CH7-14-S13 1497 76.2 1309 66.8 1384 57.6 16 CH7-14-S7 994 51.2 917 47.4 1470 153.2 17 CH7-14-S14-A 1458 74.2 1288 65.8 1389 62.6 19 CHI-251-14-DD19 @ 162.09 855 44.3 788 41.0 1513 200.3 20 CHI-251-14-DD19 @ 175.26 913 47.2 846 43.8 1496 181.4 68  Eclogite equilibration temperatures calculated without correction for Fe3+ range from 855°C to 1389°C (table 6.6). Since 3 samples (7S-6; CH7-14-S13; CH7-14-S14-A) intersect the geotherm above the plausible adiabat range, their equilibrium temperatures and pressures were computed by projecting the univariant Nakamura (2009) P-T lines onto the adiabat (Figs. 6.6 and 6.8). Intersections with the adiabat were also used for the pressure histogram in Fig. 6.6. All of the samples equilibrate in the diamond stability field.  Eclogite equilibration temperatures with Fe3+ correction vary from 788°C to 1309°C, a range of 521°C. All the samples intersect the geotherm below the adiabat range and are within the diamond stability field (Fig. 6.7). Since the Fe3+ content in garnet and (especially) clinopyroxene cannot be accurately reported without being measured by Mössbauer spectroscopy, the temperatures calculated for Fe2+=ΣFe will be used for further discussion.  These temperatures allow for thermobarometric comparison with eclogite suites from other cratons, where temperatures are conventionally calculated without accounting for Fe3+ (e.g. Aulbach et al., 2007; Kopylova et al., 2016). These temperatures represent the highest possible values, and can be overestimated by as much as 120o, based on the errors assessed for the unaccounted Fe3+ in clinopyroxene and garnet (Table 6.4).  Fig. 6.8 illustrates that there are no obvious differences in the temperatures between the compositional eclogite groups A and B. Both groups coexist together at different depths, although it appears that group A samples, on average, are slightly shallower than group B samples. Six eclogites that yield particularly high temperatures (7S-6, CH7-14-S13, and CH7-14-S14A, Q-3903-U-A, DD27-80.1, and 050-104.18) mostly belongs to high-Mg eclogites based on the whole rock composition. The high-Mg samples include the three samples whose univariant P-T lines were 69  intersected with the adiabat (Fig. 6.8). The pressure-temperature estimates for the Chidliak eclogites lie above wet and carbonated solidi, but below the dry solidus line (Figs. 6.6 and 6.7). The absence of petrographic evidence for intense partial melting despite the position above the solidi in the presence of volatiles suggest that the Chidliak mantle around eclogite domains was relatively poor in H2O and CO2.  6.4 Thermobarometric comparison of the Chidliak and Slave eclogites  When comparing Chidliak eclogites to Jericho, Muskox, and Central Slave eclogites from Kopylova et al. (2016) study, the first obvious observation is the lack of group C eclogites in Chidliak when compared to all three other study areas (Fig. 6.9). Chidliak eclogites have a higher proportion of deeper samples when compared to Jericho, Muskox, and Central Slave. It is worth noting that the number of Chidliak samples (N=16) is much lower than Jericho (N=124) or Central Slave (N=98), but somewhat comparable to Muskox (N=29). The lack of group C eclogites at Chidliak may be due to low number of samples. It is highly likely that one of the Chidliak samples, CH7-14-S9, is in fact a group C eclogite. This sample was not included because of the lack of primary clinopyroxene in the sample, making it worthless for the purposes of geothermobarometry. However, based on the very high content of CaO in garnet, and the presence of kyanite (high Al-eclogite) in the sample, it is very likely that this sample is a group C sample.       70   Fig. 6.9: Comparison of Chidliak eclogites to Jericho, Muskox, and Central Slave eclogites using a depth distribution diagram. Data from Jericho, Muskox and Central Slave craton obtained from Kopylova et al. (2016). Eclogites are sub-divided into different groups: A (green), B (yellow), C (red). 71    Fig. 6.10: A) Chidliak geotherm approximated as a linear fit based on 54 peridotite xenoliths from 3 different kimberlite pipes. Red circles are calculated P and T of peridotites using a combination of Taylor (1998) thermometer and Nickel and Green (1985) barometer as recommended by Nimis and Grütter (2010). Reconstructed Jericho (Newton et al., 2016) and Central Slave (Menzies et al., 2004) geotherms are shown for comparison B) Same as A, with calculated eclogite T intersecting the reconstructed geotherms for Chidliak (this work), Jericho (Newton et al., 2016), and Central Slave craton (Menzies et al., 2004). 10203040506070500 600 700 800 900 1000 1100 1200 1300 1400Pressure (kbar)Temperature (°C) Linear (Chidliakgeotherm (TA98-NG85) Unpublisheddata with 54peridotites thatdefine the line (reddots))Linear (Jerichogeotherm (BK90)Newton et al.,2016)Linear (CentralSlave geotherm(BK90) Menzies etal., 2004)10203040506070500 600 700 800 900 1000 1100 1200 1300 1400Pressure (kbar)Temperature (°C) Linear (Chidliakgeotherm (TA98-NG85) Unpublisheddata with Chidliaksamples (blackdots))Linear (Jerichogeotherm (BK90)Newton et al., 2016with Jericho andMuskox eclogites(yellow and bluedots))Linear (CentralSlave geotherm(BK90) Menzies etal., 2004 with C.Slave eclogites(green dots))BA 72  Chapter 7: Trace Element Chemistry 7.1 Methodology 7.1.1 Analytical technique Primary garnets, clinopyroxenes, orthopyroxenes and rutiles in 15 eclogite samples were analyzed for trace element chemistry. Along with REEs, I analyzed for high field strength elements (HFSEs; Nb, Ta, Zr, Hf, Ti, Y), large ion lithophile elements (LILEs; K, Rb, Ba, Sr, Pb), as well as Li, Na, V, and Ni. The raw trace element data concentrations, as well as normalized (to primitive mantle) trace element data values can be found in Appendix E. LA-ICP-MS analyses were carried out by an ArF excimer laser ablation system (193nm; Resolution M-50LR, ASI Australia) connected to a Quadrupole ICP-MS (Agilent 7700x) at the Pacific Centre for Isotopic and Geochemical Research at the University of British Columbia. Measurements were performed at a repetition rate of 8 Hz and using a spot size of 89µm. Energy density on the sample was 1.8 J/cm2. Helium served as carrier gas and was admixed with N2 for signal enhancement. The mass spectrometer was tuned for sensitivity, ThO/Th<0.3% and a mass bias with 238/232<110%. Calibration was carried out using the silicate glass standard SRM NIST612 as external standard and Ca (43) as internal standard using values from EPMA analyses (reported in Appendix C). SRM NIST610 and the basaltic BCR2-G were cross-checked as quality control. The typical precision and accuracy ranged from 1-3% to 10%, very rarely exceeding 100% for the elements with very low concentrations that were on the verge of the minimum detection limit. Data reduction was performed by the Iolite v.3 software (Paton et al., 2011).  73  Two garnet and two clinopyroxene grains in each of the 15 thin sections were analyzed two times each for a total of four garnet and four clinopyroxene analyses per sample. Where present, orthopyroxene and rutile grains were analyzed as well. The grains selected for analysis were identical to the ones used for major element chemistry analysis as to reduce any possible compositional discrepancies between different grains. Outliers were rejected and the averages for garnet and clinopyroxene trace element chemistry analyses were calculated and reported in Appendix E. The trace element chemistry data was normalized to C1 chondrite and primitive mantle values by McDonough & Sun (1995) and Sun & McDonough (1989) for rare earth element (REE) and multielement (spider) diagrams, respectively. The values can be found in Appendix E.  High uncertainty or anomalous measurements were avoided when calculating the average REE concentrations for garnets and clinopyroxenes in Chidliak eclogite samples. When averaging garnet REE data, the largest difference, up to an order of magnitude, was found in La. Other LREEs (Ce, Pr, Nd, Sm) also showed significant differences, although not as of high magnitude or as often as La. This artificially large increase in La and other LREEs has been linked to secondary alteration of garnets by kimberlitic fluids (Jacob, 2004), therefore, analyses with significantly higher La counts in the same grains were disregarded. In clinopyroxene, the 3-4 heaviest REEs: Er, Tm, Yb, and especially Lu showed scatter, sometimes significant. The averages for clinopyroxene were obtained by excluding both low and high extremes that seemed to not fit the average expected pattern. REE diagrams representing averages of clinopyroxene and garnet analyses for 15 eclogite samples are shown in Figs. 7.1 and 7.2, respectively. The single-spot analyses for each of the 15 samples, that were the basis for calculating averages, are shown in Appendix F.  74  7.1.2 Screening the garnet data  A suggested method for screening out garnets that have been influenced by kimberlitic fluids is to discard any garnets that have abnormally high Ba content (>0.2 ppm), because Ba is very low in pristine garnet, but very high in kimberlitic fluids (Jacob, 2004). For Chidliak eclogites, high Ba content combined with high La content worked very well in screening out garnet grains that have been influenced by kimberlitic fluids. In almost all grains, an increase in Ba content in garnets was closely followed by an increase in La content in garnets, providing high certainty of the interference of kimberlitic fluids with the analyzed grain. Other elements that are enriched in kimberlites compared to eclogites are Nb and Ce, and increased concentrations of these elements can also be used to infer whether the grains have been influenced by kimberlitic fluids or not (Jacob, 2004). In most of the analyzed Chidliak garnets, where Ba and La content was increased, so was the Nb and Ce content. The grains with increased concentrations of these elements were not used in calculating the averages, or subsequently in calculating the bulk eclogite trace element composition.  7.1.3 Reconstruction of the whole rock element budget Since xenoliths found in kimberlites can sometimes show evidence of infiltration of the kimberlitic metasomatic fluid (Taylor & Neal, 1989; Barth et al., 2001, 2002b; Heaman et al., 2006; Jacob et al., 2009), the standard approach of calculating whole rock trace element budget by using modal abundances of primary mineral phases, i.e. clinopyroxene and garnet, can be used (Aulbach et al., 2007) (Fig. 7.4). The whole-rock REE composition was calculated by using the mineral modal percentages acquired from thin section petrography for all but 2 samples (050-104 and DD19-175) which had their whole-rock REE compositions calculated using 50% 75  clinopyroxene – 50% garnet modes, since they had unreasonably high garnet modal abundances in the thin sections. The resulting values and diagrams are reported in Appendices E and F, respectively.  I calculated bulk REE budget without accounting for REEs in orthopyroxene and rutile. Because of the low modal abundances and relative REE insignificance of rutiles and orthopyroxenes in Chidliak samples, the bulk REE budget was not significantly impacted by the exclusion of these minerals from the calculated bulk REE budget. However, orthopyroxenes and rutiles were used for calculating the bulk trace element budget of Chidliak eclogites because 1) the data for other trace elements had lower variations and uncertainties without gaps in the data, and 2) because rutiles can significantly alter the bulk trace element composition since they preferentially take in significant amounts of high field strength elements (HFSE) such as Ta, Hf, Nb, and Zr.  Calculating the whole-rock trace element budget by using garnet and clinopyroxene trace element data is a crude, but generally accurate method. The uncertainty in mineral modal abundance of medium to coarse grained eclogites was estimated to be 10%, in addition to the uncertainties related to any sort of alterations within the samples (Jerde et al., 1993). Even accounting for such uncertainties, the whole rock trace element composition and REE patterns are rather insensitive to the exact modes of garnet and clinopyroxene. The bulk trace element composition does not significantly change even for modal variations of 30% (Jacob, 2004; Aulbach et al., 2007). In Chidliak eclogites, this also holds true. Bulk REE composition changes very slightly when using ±5% modal abundance changes in clinopyroxene and garnet (Appendix F). On average the bulk composition changes by about 5% in relative terms and negligible amounts in absolute 76  terms. The impact on REE diagrams is minor and predictable, with LREE more enriched with more clinopyroxene accounted for, and HREE more enriched with more garnet accounted for. Changing modal abundances of clinopyroxenes and garnets used to calculate the bulk REE patterns does not move samples between groups. The bulk REE diagram with all the samples accounted for is shown in Fig. 7.3, while REE diagrams for each of the samples are found in Appendix F.   7.2 Rare Earth Element (REE) compositions of clinopyroxene and garnet The REE patterns of clinopyroxenes in Chidliak eclogites are shown in Fig. 7.1. The REE pattern, on average, is a typical convex-upward pattern with moderately enriched LREEs relative to HREEs. LaN is <1 in only one sample (050-184), with all other clinopyroxenes being variably enriched, some up to LaN=26 (DD27-80.1 and 7S-6). Almost all samples have slightly positive to flat LREE slopes, turning into markedly negative slopes around NdN or SmN. HREEs are extremely depleted for most of the samples, except the two highly unusual enriched samples, DD27-80.1 and 7S-6 (LuN=1). The Tm anomaly in sample S7 can be ignored as the concentration of Tm in this sample was very close to the minimum detection limit, therefore creating a false result. A slight positive Eu anomaly is present in 5 samples: DD19-162, DD19-175, P-5500-N1, 7S-7, and CH7-14-S7. It is interesting to note that the samples with a positive Eu anomaly are the ones that are more highly depleted in HREEs. Based on this analysis, the clinopyroxenes can be grouped in 3 distinct groups: 1) samples with highly enriched REEs (DD27-80.1 and 7S-6), 2) samples with slight positive Eu anomalies and highly depleted HREEs (DD19-162, DD19-175, P-5500-N1, 7S-7, and CH7-14-S7), and 3) all the other samples, which vary in enrichment/depletion of LREEs/HREEs, but cannot be classified in separate groups with certainty.  77  The REE patterns of garnets in Chidliak eclogites are shown in Fig. 7.2. The REE pattern, on average, is convex-downward with strongly depleted LaN, slightly depleted/enriched rest of LREEs with a pronounced positive slope, and flat to slightly positive/negative sloping MREEs and HREEs. LREEs are depleted to extremely depleted with a high positive slope. Around SmN the slope flattens out and is most often slightly positive or flat for HREEs. All HREEs are enriched, but variably so, with LuN ranging from 5 to 133. Just like with clinopyroxene, the same 2 samples where clinopyroxene is highly enriched show REE enrichment in garnet as well (DD27-80.1 and 7S-6). Not surprisingly, a slight positive Eu anomaly is present in the same 5 samples as was the case with clinopyroxene: DD19-162, DD19-175, P-5500-N1, 7S-7, and CH7-14-S7. However, samples P-5500-N1 and 7S-7 have very slight anomalies that are within the margins of uncertainty. As with clinopyroxene, garnet REE patterns can be classified into 3 groups: 1) highly enriched HREEs (DD27-80.1 and 7S-6), 2) samples with a slight positive Eu anomaly (DD19-162, DD19-175, P-5500-N1, 7S-7, and CH7-14-S7), and 3) other samples which are variably depleted/enriched in LREEs/HREEs, but do not have anything characteristic about them.  7.3 Bulk rock Rare Earth Element (REE) composition  REE patterns for the estimated bulk composition of eclogites are shown in Fig. 7.3.  The bulk REE patterns of Chidliak eclogite samples show a few distinguishable groups (Fig. 7.4): 1. Samples with fractionated LREEs (3 samples) (Fig. 7.4A) 2. Samples with unfractionated REEs at levels <10 REEN (9 samples) (Fig. 7.4B) 3. Samples with significantly enriched LREE and HREE signatures (2 samples) (Fig. 7.4C) 4. A sample with enriched LREEs and depleted HREEs (1 sample) (Fig. 7.4D) 78  Most of the samples with Eu anomalies fall into group 1. These samples have very depleted LREEs with LaN=0.5-0.6, steep positive LREE slope with prominent positive Eu anomalies. Most of the samples fall into group 2. These calculated bulk sample REEs are unfractionated (flat REE patterns) to relatively unfractionated (slightly sloping REE patterns) with REEN values ranging 1 to 11 for LaN and LuN, respectively. Group 3 contains the two highly enriched samples, DD27-80.1 and 7S-6. The REEN concentrations for these two samples range 12 to 70 for LaN and LuN, respectively. These values are significantly higher than for all the other Chidliak samples, especially for HREEs. Most of the samples from all three groups have flat to slightly sloping HREE patterns, albeit varying HREEN concentrations (LuN=2-17 for groups 1 and 2, and LuN=50-70 for highly enriched group 3). DD19-162 (group 4) has a positive Eu anomaly and REEN=1-10, but it is different from the other samples with Eu anomalies in that it has comparatively enriched LREEs and depleted HREEs and is therefore put in a separate group.  The Groups 1 to 4 identified based on bulk REE patterns do not correlate with Groups A and B as classified based on the clinopyroxene mineral chemistry (Taylor and Neal (1989). However, Group B eclogites contain all the observed ‘group 3’ samples with prominent Eu anomalies and depleted LREEs (Fig. 7.4A). 7.4 Interpretation of bulk rock Rare Earth element patterns         Chidliak eclogite trace elements exhibit a few characteristic observable traits discussed in the text below. 7.4.1 Unfractionated HREEs Common to all the Chidliak samples are the unfractionated HREE patterns. This implies that the melts, which later metamorphosed to eclogites, originated from a source that was 79  garnet-free (Barth et al., 2002; Aulbach et al., 2007). If garnet was present in the source, the HREE patterns for original mafic rocks and their metamorphic products would have been strongly fractionated with lower HREE abundances. If garnet was not present in the source, this means that the source was melted at a low-P, because the garnet stability field is above 80km depth for pyrolite composition of the mantle (Winter, 2001). Most of the mantle eclogites worldwide have flat HREE patterns (Barth et al., 2001; Jacob, 2004; Appleyard et al., 2007; Aulbach et al., 2007; Pernet-Fisher et al., 2014) thus implying shallow mantle origin for mafic protoliths. 7.4.2 Eu anomalies Positive Eu anomalies were found largely in one group of eclogites. All of them are group B eclogites with depleted LREEs and unfractionated HREEs. Sample 050-184 is the only sample that has a slight negative Eu anomaly out of all the Chidliak samples (Fig. 7.3). As a trace element, Eu3+ is generally incompatible in most minerals, but is compatible in plagioclase because Eu2+ is similar in size and charge to Ca2+ which it replaces. When a plagioclase-bearing rock melts, the Eu2+ preferentially stays in the residue, while other LREE and MREE preferentially go into the melt. This creates a positive Eu anomaly in the residue, and a negative Eu anomaly in the melt that originates from that residue. Therefore, the positive Eu anomaly implies that the source rock that was metamorphosed to eclogites contained plagioclase. Since plagioclase is stable at low-P, this would imply a plagioclase-bearing, low-P protolith. An accumulation of ~25 wt. % plagioclase is required for Eu anomalies to appear (Schmickler et al., 2004; Dongre et al., 2015). There are a few ways to create a Eu anomaly in an eclogite:   1) A plagioclase bearing oceanic crust is hydrated, subducted, and partially melted (Ireland et al., 1994). The melts are depleted in Eu2+ because the plagioclase-bearing residue 80  preferentially keeps the Eu. As the residue gets subducted deeper, it gets metamorphosed to eclogite. Eclogite will therefore have a positive Eu anomaly. 2) A non-hydrous, partial melt from the mantle must rise to low-P depths where plagioclase is stable, and as it starts cooling, it crystallizes plagioclase-bearing rocks which may cumulate plagioclase, such as anorthosites, gabbros, troctolites, or basalts. Crystallizing magma chamber may separate into plagioclase cumulates with a positive Eu anomaly and rocks that fractionated plagioclase with a negative Eu anomaly. The environment of melting is a mid ocean ridge and not a subduction zone, since the latter environment is known to form intermediate partial melts in the presence of H2O (Winter, 2001).  3) A negative Eu anomaly is created when plagioclase-bearing, shallow mantle partially melts. In that process, Eu is preferentially left in the mantle residue, while the melt inherits the negative Eu anomaly. If the melt is mafic, when it crystallizes and gets metamorphosed to an eclogite, the eclogite keeps the negative Eu anomaly.  A positive Eu anomaly in reconstructed eclogite bulk REE patterns is a well-documented occurrence (Jacob, 2004; Pernet-Fischer et al., 2014).  81   Fig. 7.1: Rare Earth Element diagram is showing REE averages for clinopyroxene for all 15 Chidliak eclogite samples.  0.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 CPX7S-7 CPX050-104.18 CPX050-184 CPXDD19-162 CPXDD19-175 CPXDD27-80.1 CPXP-5500-N1 CPXQ-U-A CPXS3 CPXS7 CPXS10-2 CPXS13 CPXS14A CPXQ-U-B-CPX82   Fig. 7.2: Rare Earth Element diagram is showing REE averages for garnet for all 15 Chidliak eclogite samples.  0.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 GRT7S-7 GRT050-104.18 GRT050-184 GRTDD19-162 GRTDD19-175 GRTDD27-80.1 GRTP-5500-N1 GRTQ-U-A GRTS3 GRTS7 GRTS10-2 GRTS13 GRTS14A GRTQ-U-B-GRT83   Fig. 7.3: Rare Earth Element diagram is showing bulk REE composition for all 15 Chidliak eclogite samples based on the modal abundance of primary garnet and clinopyroxene. Average N-MORB and E-MORB (Sun & McDonough, 1989) and basalts, gabbros, and tholeiitic flood basalts (Jormua ophiolite, Finland; Smart et al., 2017) shown for comparison.  0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsBULK 7S-6; AverageBULK 7S-7; AverageBULK 050-104; AverageBULK 050-184; AverageBULK DD19-162; AverageBULK DD19-175; AverageBULK DD27-80.1; AverageBULK P-5500-N1; AverageBULK Q-U-A; AverageBULK S3; AverageBULK S7; AverageBULK S10-2; AverageBULK S13; AverageBULK S14A; AverageBULK Q-U-B; AverageAverage N-MORB (Sun & McDonough, 1989)Average E-MORB (Sun & McDonough, 1989)Jormua basalts (Smart et al., 2017)Jormua gabbros (Smart et al., 2017)Tholeiitic flood basalts (Smart et al., 2017)84  7.4.3 LREE depletion For Chidliak eclogites and their reconstructed whole-rock REE compositions, samples DD19-175, S7, 050-104, CH7-14-S7, and 050-184 all show extreme LREE depletion (Fig. 7.4A), while samples CH7-14-S10-2, P-5500-N1, and 7S-7 show lesser degrees of LREE depletion (Fig. 7.4B). LREE depletion could indicate a residual protolith that was depleted through a prior partial melting extraction event (Appleyard et al., 2007). If we adopt a model of Ireland et al. (1994), a LREE depletion could indicate that Chidliak eclogites formed as residues in subduction zones during TTG extraction (Fig. 7.4A).  7.4.4 Relatively unfractionated REE patterns with REEN=1-10 Most of the reconstructed bulk REE patterns are relatively flat to completely flat with REEN values mostly between 1 to 10. Samples 7S-7, P-5500-N1, Q-3903-U-A, CH7-14-S3, CH7-14-S10-2, CH7-14-S13, CH7-14-S14-A, and Q-3903-U-B are in this group (Fig. 7.4B). 7S-7, P-5500-N1, and CH7-14-S10-2 are slightly more LREE depleted with flat to slightly positive MREE and HREE patterns. Q-3903-U-A, CH7-14-S13, CH7-14-S14-A, and Q-3903-U-B have an almost sinusoidal shape, with LREE sometimes slightly more enriched than MREE, and HREE patterns that are either flat or slightly positive, but usually have higher values than LREE and MREE. To produce such relatively flat patterns with absolute REEN values of 1 to 10, it is best explained by melting the depleted mantle. Depleted mantle (DM) is the uppermost portion of the mantle that has been progressively getting more depleted throughout the Earth’s geological history by the means of melt extraction. The DM is therefore depleted of LREEs, which preferentially go into the melt. The REE pattern of the melt, which would later crystallize and get metamorphosed to eclogite, is 85  flat with the REEN values expected to be similar to that of a MORB or gabbro in the range 1-10 (Winter, 2001) (Fig. 7.4B). 7.4.5 Extremely enriched REE patterns (REEN=10 to 100) Two samples (7S-6 and DD27-80.1) show extremely enriched REE patterns across the board when compared to other Chidliak samples at values of REEN=10-100 (Fig. 7.4C).  The two samples are very different from the vast majority of the published REE patterns on mantle eclogites. The closest comparable REE pattern observed in literature is found in Barth et al. (2002) study of high-Mg Koidu eclogites. One of the high-Mg Koidu eclogites resembles these two Chidliak samples both in the levels of REE enrichment and HREE fractionation (Fig. 7.4C). The analogous highly fractionated HREEs are also observed in a sample from another eclogite group (sample CH7-14-S14A), although the absolute level of REE enrichment in this sample is lower. All samples with fractionated HREEs may indicate cumulate or residual garnet, but the REE pattern of a modelled shallow cumulate is poorer in REEN than samples 7S-6 and DD27-80.1.  The mismatch between the shallow cumulates and the observed high REEN for samples 7S-6 and DD27-80.1 is likely a result of metasomatism because of a few reasons: 1) The Chidliak mantle has been affected by several episodes of metasomatism (Kopylova et al., 2017); 2) Sample 7S-6 plots at 60 kb where the metasomatism is very extensive and titaniferous, whereas sample DD27-80.1 plots at 50 kb where metasomatism is pervasive calcic (Kopylova et al., 2017); 3) High-Mg eclogites of Koidu, similar to 7S-6 and DD27-80.1, were interpreted as metasomatized (Barth et al., 2002).    86  7.4.6 A sample with enriched LREEs and depleted HREEs Even though sample DD19-162 fits entirely between REEN values of 1 to 10, this sample is different from the rest in the following: 1) it is the only sample that has significantly enriched LREEs compared to HREEs, and 2) DD19-162 is the only sample outside of group 3 to have a distinct positive Eu anomaly (Fig. 7.4D). Sample DD19-162 most closely resembles a mafic partial melt from the undepleted (enriched) primitive mantle. As the primitive mantle partially melted, the LREEs preferentially escaped into the melt creating the REE pattern observed. As the mafic melt started crystallizing, it began cumulating plagioclase, which is observed through the presence of a strong positive Eu anomaly in the sample.  87                       Fig. 7.4: Reconstructed bulk REE patterns for Chidliak samples: A) LREE depleted samples (n=3). Ireland et al. (1994) Ud146 (at present and pre-metasomatic) and Jacob et al. (2003b) 13-61-100 reconstructed eclogite samples included for comparison. B) Relatively unfractionated (REEN=1-10) samples (n=9). Average N-MORB shown for comparison (Winter, 2001). C) Highly enriched samples (n=2). Similar sample from Sierra Leone (KEC 86-19 - yellow dashed line) and a calculated composition of a 15% nonmodal batch melt of depleted MORB-type garnet lherzolite with 100% of a garnet-clinopyroxene (50-50 %) cumulate in equilibrium with such a melt (black dotted line) from Barth et al. (2002) study are shown for comparison. Typical reconstructed bulk mantle eclogites from Jericho, Canada (green and purple double lines) and Komsomolskaya, Russia (grey double line) shown for comparison. D) A sample with enriched LREE and depleted HREE (n=1). A typical alkaline ocean island basalt (OIB) and E-MORB are shown for comparison (Winter, 2001).0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsBULK 050-184;AverageBULK DD19-175;AverageBULK S7; AverageUd146 reconstructedeclogite (at present)(32% grt, 68% cpx)(Ireland et al., 1994)Ud146 reconstructedeclogite (pre-metasomatic) (32%grt, 68% cpx)(Ireland et al., 1994)13-64-100reconstructedeclogite fromRoberts Victor (Jacobet al., 2003b)A0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsBULK 7S-7;AverageBULK P-5500-N1;AverageBULK Q-U-A;AverageBULK S3; AverageBULK S10-2;AverageBULK S13;AverageBULK S14A;AverageBULK Q-U-B;AverageBULK 050-104Average N-MORB(Winter, 2001)BGroup 2 0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsBULK 7S-6; AverageBULK DD27-80.1;AverageKEC 86-19 (Barth et al.,2002)Modeled 100% garnetcumulate (Barth et al.,2002)Average eclogites fromJericho (group A)(Smart et al., 2009)Average eclogites fromJericho (group B) (Smartet al., 2009)B1 basaltic crustprotolith eclogites(Pernett-Fisher et al.,2014)B2 cumulate gabbrosprotolith eclogites(Pernett-Fisher et al.,2014)CGroup 3 0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsBULK DD19-162;AverageA typical AlkalineOcean IslandBasalt (OIB)(Winter, 2001)A typical E-MORB (Winter,2001)DGroup 4 Group 1  88  7.5 Other trace elements 7.5.1 Concentrations of trace elements other than REEs in clinopyroxenes and garnets This chapter documents concentrations of large ion lithophile elements (LILEs) and high field strength elements (HFSEs) in Chidliak eclogites. Concentrations of these elements in clinopyroxenes are shown in a spider diagram in Fig. 7.5. Most of the samples show no Ba anomaly (Q-3903-U-B, 7S-6, DD27-80.1, CH7-14-S13 and CH7-14-S7), 3 samples show a negative Ba anomaly (7S-7 and P-5500-N1 pronounced; CH7-14-S3 slight), and 4 samples show a positive Ba anomaly (050-184.54 pronounced; DD19-162, DD19-175, 050-104.18 slight). Half the samples show no Pb anomaly (7S-6, DD27-80.1, 050-184, CH7-14-S13, CH7-14-S7, CH7-14-S14-A, and DD19-175). The other half shows a pronounced negative Pb anomaly (Q-3903-U-A, Q-3903-U-B, 7S-7, P-5500-N1, CH7-14-S3, 040-104.18, and CH7-14-S10-2). There is only 1 sample showing a positive Pb anomaly (DD19-162). No clinopyroxenes exhibit a negative Sr anomaly. Three samples show no Sr anomaly (Q-3903-U-A, DD27-80.1, and 050-104.18). Most of the samples show a positive Sr anomaly, albeit at different intensities. Very strong positive Sr anomalies are detected in samples 7S-7, P-5500-N1, 050-184.54, CH7-14-S7, DD19-162, and DD19-175. It is interesting to note that these are exactly the same samples that exhibited a Eu anomaly in reconstructed bulk REE diagrams. A slight positive Sr anomaly was detected in samples Q-3903-U-B, 7S-6, CH7-14-S3, CH7-14-S10-2, CH7-14-S13, and CH7-14-S14-A. Ti anomalies are common and often pronounced. Negative Ti anomaly is the most common one, found in samples Q-3903-U-A, 7S-6, CH7-14-S3, DD27-80.1, 050-104.18, CH7-14-S13, CH7-14-S14-A, and DD19-162. A positive Ti anomaly is found in samples Q-3903-U-B, 7S-7, P-5500-N1, and CH7-14-S10-2. No Ti anomaly was found in samples 050-184.54, CH7-14-S7, and DD19-175. Comparing the Ti anomalies with the 89  presence or absence of rutile in the system is inconclusive. Rutile bearing samples show positive, negative, and no Ti anomalies in clinopyroxenes in Chidliak eclogites.  Concentrations of LILEs and HFSEs in garnet are shown in a spider diagram in Fig. 7.6. The concentrations of Rb, Ba, and Ta were often below the minimum detection limit (samples P-5500-N1, 050-104.18, 050-184.54, CH7-14-S14-A, and DD19-162). Strong positive Rb anomaly was observed in samples CH7-14-S3 and DD27-80.1. Slight positive Rb anomalies were observed in samples Q-3903-U-A, Q-3903-U-B, 7S-6, 7S-7, and CH7-14-S13. No Rb anomalies were observed in samples CH7-14-S10-2 and CH7-14-S7. Strong negative Ba anomaly was found in samples 7S-6, 7S-7, CH7-14-S10-2, CH7-14-S13, and CH7-14-S7. Unlike clinopyroxene, garnet rarely exhibits a Pb anomaly. Negative Pb anomaly was found in samples P-5500-N1, DD27-80.1, CH7-14-S10-2, and DD19-175. All of the garnets show variably negative Sr anomalies. The most pronounced negative Sr anomalies are found in samples Q-3903-U-A, Q-3903-U-B, DD27-80.1, 050-104.18, CH7-14-S14-A, and CH7-14-S7. Negative Ti anomaly is observed in samples Q-3903-U-A, DD27-80.1, 050-184.54, CH7-14-S7, DD19-162, and DD19-175. A positive Ti anomaly is observed in only 2 samples (Q-3903-U-B and CH7-14-S10-2). No Ti anomalies were found in 7S-6, 7S-7, P-5500-N1, CH7-14-S3, 050-104.18, CH7-14-S3, and CH7-14-S14-A.  The abundances of high field strength elements (HFSEs) in clinopyroxenes and garnets vary and are related to the presence or absence of rutile in the samples. When rutiles are present as primary accessory minerals in eclogites, they preferentially take all the HFSEs (Zr, Hf, Nb, Ta) (Jacob, 2004). Therefore, in samples that are rutile-bearing, the concentrations of HFSEs in clinopyroxenes and garnets are, on average, lower when compared to clinopyroxenes and garnets in samples that do not contain rutiles (Barth et al., 2001; Jacob, 2004). This only holds 90  true for Ta in Chidliak eclogites, while Zr, Hf, and Nb vary from one sample to another. Ta in clinopyroxenes and garnets in rutile-bearing eclogites is <0.01 ppm, while Ta in clinopyroxenes and garnets in rutile-free eclogites is 0.01-0.06 ppm. This behavior of Ta indicates a closed system environment. 7.5.2 Bulk rock concentrations of trace elements other than REEs The bulk trace element spider diagram for Chidliak eclogites is shown in Fig. 7.7. The most noticeable features of the spider diagram are the extremely high concentrations of Nb and Ta in 6 samples (Q-3903-U-A, Q-3903-U-B, 050-184.54, CH7-14-S7, DD19-162, and DD19-175). All of the listed samples are rutile bearing, and accounting for only 1-3% rutile in the bulk trace element composition is responsible for the high Nb and Ta concentrations. A positive Rb anomaly is observed in only 3 samples (Q-3903-U-A, DD27-80.1, and CH7-14-S7). Extreme negative Ba anomalies were found in samples 7S-7, P-5500-N1, CH7-14-S3, 050-104.18, 050-184.54, and CH7-14-S10-2. A negative Pb anomaly appears in many Chidliak samples (Fig. 7.7), but the Pb concentration does not correlate with the presence or absence of sulfides. The most sulfide-rich sample (050-80.1) shows no Pb anomaly, indicating the secondary origin of the sulfide, overprinting the primary clinopyroxene and garnet.   91    Fig. 7.5: A spider diagram for selected trace element averages for clinopyroxene in 15 studied Chidliak eclogite samples.  0.000.010.101.0010.00100.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsQ-3903-U-A-cpxQ-3903-U-B-cpx7S-6-cpx7S-7-cpxP-5500-N1--cpxCH7-14-S3-cpxDD27-80.1-cpx050-104.18-cpx050-184.54-cpxCH7-S14-10-2-cpxCH7-14-S13-cpxCH7-14-S7-cpxCH7-14-S14-A-cpxDD19-162-cpxDD19-175-cpx92    Fig. 7.6: A spider diagram for selected trace element averages for garnet in 15 studied Chidliak eclogite samples. 0.000.000.000.010.101.0010.00100.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsQ-3903-U-A-grtQ-3903-U-B-garnet7S-6-grt7S-7-grtP-5500-N1--grtCH7-14-S3-grtDD27-80.1-grt050-104.18-grt050-184.54-grtCH7-S14-10-2-grtCH7-14-S13-grtCH7-14-S7-grtCH7-14-S14-A-grtDD19-162-grtDD19-175-grt93    Fig. 7.7: A spider diagram for selected bulk trace elements composition in 15 studied Chidliak eclogite samples. Typical N-MORB and E-MORB are included (Sun & McDonough, 1989). A modern gabbro field shaded in blue (Smart et al., 2017). 0.000.010.101.0010.00100.001000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsQ-3903-U-A-bulkQ-3903-U-B-bulk7S-6-bulk7S-7-bulkP-5500-N1--bulkCH7-14-S3-bulkDD27-80.1-bulk050-104.18-bulk050-184.54-bulkCH7-S14-10-2-bulkCH7-14-S13-bulkCH7-14-S7-bulkCH7-14-S14-A-bulkDD19-162-bulkDD19-175-bulkN-MORB (Sun & McDonough, 1989)E-MORB (Sun & McDonough, 1989)Modern gabbro field (Smart et al., 2017)94   When interpreting contents of trace elements other than LILEs and HFSEs, I checked for correlations of these elements with REEs. The 4 groups of samples recognized based on the REE patterns did not show uniform, consistent patterns of other trace elements; therefore, for further discussion I divided the samples into four different groups (Fig. 7.8): A. A sample with LILEs (K, Rb, Ba) normalized concentrations of 0.1-1 and a large negative Nb-Ta anomaly (1 sample) (Fig. 7.8A) B. Samples with negative Ba anomalies (<0.1 normalized conc.) and no Nb and/or Ta anomalies (8 samples) (Fig. 7.8B) C. Samples with LILEs (K, Rb, Ba) normalized concentrations of 0.1-1 and large positive Nb-Ta anomalies (4 samples) (Fig. 7.8C) D. Samples with extremely depleted Rb and Ba (<0.01 normalized conc.), positive Sr anomalies, and medium levels of Nb and Ta (2 samples) (Fig. 7.8D)  Group A has only 1 unique sample (DD27-80.1). The sample is characterized by a strong positive Sr anomaly, higher Pb normalized concentrations than most other samples, and most prominently a large negative Nb-Ta anomaly that is not observed in any of the other samples to that degree.  Group B contains 8 samples (7S-6, 7S-7, P-5500-N1, CH7-14-S3, 050-104.18, CH7-14-S10-2, CH7-14-S13, and CH7-14-S14A). These samples have fairly similarly shaped trace element patterns. They are characterized by negative Ba anomalies, and no Nb-Ta anomalies. Samples 7S-6 and CH7-14-S13 have increased normalized concentrations of Pb that are comparable to DD27-80.1 (group A) and DD19-162 (group D).  95  Group C is made up of 4 samples (Q-3903-U-A, Q-3903-U-B, CH7-14-S7, and DD19-175). The samples have no Ba anomalies and a strong Nb-Ta anomaly that comes from the presence of primary accessory rutile found in the samples.  Group D contains 2 samples (050-184.54 and DD19-162). The samples share very low Ba, and especially Rb normalized concentrations when compared to other samples. In sample 050-184.54, concentration of K is the highest of all the samples, with the concentration of Rb that is the lowest of all the samples. Sr anomalies are positive and prominent. 96                Fig. 7.8: Spidergrams for LILEs and HFSEs divided into four groups A-D. 0.000.010.101.0010.00100.001000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsDD27-80.1-bulk0.000.010.101.0010.00100.001000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elements7S-6-bulk7S-7-bulkP-5500-N1--bulkCH7-14-S3-bulk050-104.18-bulkCH7-S14-10-2-bulkCH7-14-S13-bulkCH7-14-S14-A-bulkLD Karelian eclogite,Finland (Smart et al.,2017)LB Karelian eclogite,Finland (Smart et al.,2017)0.000.010.101.0010.00100.001000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsQ-3903-U-A-bulkQ-3903-U-B-bulkCH7-14-S7-bulkDD19-175-bulkAverage carbonatite(Chakhmouradian,2006)Koala alkali-ultramaficrocks, bulk(Arzamastsev et al.,2001)0.000.010.101.0010.00100.001000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elements050-184.54-bulkDD19-162-bulkA B C D 97  7.5.3 Interpretation of Sr anomalies Sr behaves as a compatible element at low P because Sr could substitute for Ca in plagioclase (KD of Sr in plagioclase is 1.830; Winter, 2001), but as an incompatible element at high P, where plagioclase is not stable anymore. All the samples with Sr anomalies also have Eu anomalies, confirming the common reason for the anomalies, the involvement of plagioclase. Another factor in the absence or presence of the anomalies could be the redox state. Sr always has an oxidation state of Sr2+ and is not affected by different redox conditions. Eu, on the other hand, can exist as both Eu2+ and Eu3+. and under more oxidizing conditions Eu3+ is incompatible in plagioclase. I see clear evidence for the preferential development of the Eu anomaly in the more reduced Chidliak samples with the lower estimated Fe3+ in garnet. The latter according to the Ca-Fe3+ diagram, are divided into two groups, plotting on the oxidized (high fO2) and reduced (low fO2) trend (Fig. 6.3, page 58). Out of 5 samples on the reduced Ca-Fe3+ trend, 4 have Eu anomalies, whereas among 12 samples from the oxidized trend only 3 show Eu anomalies.  7.5.4 Interpretation of Ba anomalies Many Chidliak eclogites demonstrate negative Ba anomalies, with Ba contents lower than those in gabbro and in MORB (Fig. 7.7). In some samples, the Ba anomalies are paired with negative Rb anomalies. Two mineralogical features of the Chidliak samples may be invoked for the explanation of the anomalies. The first of these features is the presence of amphibole which accommodates these compatible elements in the crystal lattice (KD for Ba in amphibole in eclogite is 14 to 1022; Zack et al., 2002). Samples with more than 2 vol. % of amphiboles demonstrate an apparent negative Ba anomaly as the calculated spider diagram patterns do not include trace elements in amphiboles (Fig. 7.7). These elements were not possible to analyse in Chidliak 98  amphiboles which occurred as small, interstitial, thin grains. Samples with the lowest normalized Ba values (P-5500-N1, 050-184.54, CH7-S14-10-2, and 7S-7) also had the highest vol. % of amphiboles ranging from 2 to 10 vol. %. The correlation between an apparent negative Ba anomaly and the content of amphibole is high, with the exception of sample DD19-175. Samples with no or very little amphiboles had Ba levels equivalent to a typical MORB.  The second factor that may have contributed to Ba anomalies in Chidliak eclogites may have been carbonate metasomatism, which is observed at Chidliak (Kopylova et al., 2017) and may have affected Ba contents and concentrations of HFSEs. Carbonatitic fluids are very effective scavengers of Ba and may have possibly leached Ba and further increased the magnitude of negative Ba anomalies. The behavior of Ba may be controlled by an extreme compatibility with carbonates and carbonate melts (KD for Ba in calcite in carbonatites is 2600; Dawson & Hinton, 2003).  7.5.5 HFSEs  Heterogeneity of HFSEs in Chidliak eclogites is higher than that of other trace elements (e.g. REEs), and especially widely varying are Nb and Ta contents. Group A of Chidliak eclogites has a negative Nb-Ta anomaly (Fig. 7.8A), while group B does not show either negative or positive Nb-Ta anomalies (Fig. 7.8B). Groups C and D of Chidliak eclogites demonstrate positive Nb and Ta anomalies, with concentrations higher than those in basalts, gabbros, or groups A and B (Figs. 7.7 and 7.8).  To understand the HFSE signatures of the Chidliak eclogites, correlations of HFSE with Mg and REEs are essential. It turned out that eclogites from groups A and B (Fig. 7.8A and 7.8B) 99  contain samples with Zr/Hf ratios >45 and with the reconstructed whole rock MgO wt. % content >15.5-16.0 wt.%; the latter two parameters demonstrate a good correlation (Fig. 7.10). Similar correlation between Mg# and Zr was found in many suites of cratonic eclogites and explained by metasomatism by passing mantle melts (Dawson, 1984; Harte et al., 1987; Zindler and Jagoutz, 1988; Ireland et al., 1994).  The mantle metasomatism that leads to higher magnesium content also is associated with higher Ba, Nb and LREE contents (Barth et al., 2002 and references therein). At Chidliak, the higher Zr/Hf is found, on the opposite, in samples with the lower Nb (Group B rather than Group C eclogites). These Group B eclogites indeed could be more metasomatized as many of them contain amphibole (5 of 8 samples), and the Ba content of the whole rock reconstructed without accounting for the amphibole (Fig. 7.8B) might be erroneously low.  The metasomatism that affected eclogites of Groups A-B is likely to be carbonatitic. The Zr/Hf ratios should be higher in equilibrated carbonatitic fluids because of the metasomatism associated with mantle and substitution of orthopyroxene by clinopyroxene, which fractionates Zr from Hf (Kogarko, 2016). Chidliak eclogites show Nb/Ta=7-58, and Zr/Hf=22-66, while Zr/Nb=0.2-5654, and Zr/Ta=5-119563. Zr/Hf ratios in Chidliak eclogites range from values close to the primitive mantle (37; Chakhmouradian, 2006) to the higher values observed in carbonatites (40-227; Kogarko, 2016). The large range of ratios for Zr/Ta and Zr/Nb relates to contrasting geochemical behavior of elements with valence state 4+ (Zr, Hf) and 5+ (Nb, Ta). A much better correlation between Nb and Ta, and Zr and Hf was observed. The higher Zr/Hf ratios of Groups A and B eclogites compared to eclogites of other groups testify to the stronger involvement of the carbonatitic metasomatism in the genesis of Group A-B eclogites. Carbonatitic 100  metasomatism was reported in the peridotitic Chidliak mantle (Kopylova et al., 2017). The carbonatitic metasomatism also increased the MgO content of these eclogites, so it should not necessarily match the MgO content of the protolith (Fig. 5.1; page 49).  Now let’s turn to HFSE in Group C eclogites, which feature very high Nb, Ta, increased Ba and Rb and the presence of rutile (Fig. 7.8C). Despite the positive Nb-Ta anomalies, the high Nb and Ta contents observed in Chidliak Group C (and D) are lower than the extreme HFSE enrichment reported for Jericho eclogites (Fig. 7.9) and related to growth of zircon and niobian rutile during eclogite metamorphism (Heaman et al., 2002; 2006). The HFSE contents for Chidliak Group C eclogites look similar to those of alkali silicate or carbonatite patterns (Fig. 7.8C), which show a large enrichment in Nb and Ta, and a smaller enrichment in Zr, Hf, and Ti. However, the carbonatitic metasomatism in Group C eclogites is not supported by the lower, primitive mantle Zr/Hf observed in these samples (Fig. 7.10). It is plausible that Group C eclogites are residues of arc melts, the hypothetical rutile-bearing deep rocks equilibrated with arc melts with pronounced negative Nb-Ta anomalies (Winter, 2010). The residual origin for Group C eclogites match their depleted LREE signatures (Group 1; Fig. 7.4A). If mantle metasomatism was involved in the genesis of these eclogites, the metasomatic agents may have been alkali Rb- and Ba- rich silicate fluids.  101   Fig. 7.9: A) Chidliak eclogite vs. other mantle eclogite HFSE patterns around the world. Jericho (Canada; Heaman et. al, 2002), Karelian (Finland; Smart et. al, 2017), and Koidu (W. Africa; Barth et. al, 2002) eclogites shown for comparison. Karelian eclogite patterns have been reconstructed using clinopyroxene and garnet, while Jericho and Koidu eclogite patterns are crushed whole rock analyses. B) Same as in A, but only other patterns shown for clarity.  0.000.010.101.0010.00100.001000.0010000.00K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsQ-3903-U-A-bulkQ-3903-U-B-bulk7S-6-bulk7S-7-bulkP-5500-N1--bulkCH7-14-S3-bulkDD27-80.1-bulk050-104.18-bulk050-184.54-bulkCH7-S14-10-2-bulkCH7-14-S13-bulkCH7-14-S7-bulkCH7-14-S14-A-bulkDD19-162-bulkDD19-175-bulkJericho MX8A (Heaman et al., 2002)Jericho MX10A (Heaman et al., 2002)LD Karelian eclogite, Finland (Smart et al., 2017)LB Karelian eclogite, Finland (Smart et al., 2017)Koidu high MgO eclogite KEC 81-2 (Barth et al., 2002)Koidu high MgO eclogite KEC 86-15 (Barth et al., 2002)0.010.1110100100010000K Rb Ba Sr Pb Nb Ta Zr Hf TiSample/Primitive MantleTrace elementsJericho MX8A (Heaman et al.,2002)Jericho MX10A (Heaman et al.,2002)LD Karelian eclogite, Finland(Smart et al., 2017)LB Karelian eclogite, Finland(Smart et al., 2017)Koidu high MgO eclogite KEC 81-2 (Barth et al., 2002)Koidu high MgO eclogite KEC 86-15 (Barth et al., 2002)BA 102   Fig. 7.10: Reconstructed bulk whole rock MgO (wt. %) vs Zr/Hf ratios for Chidliak samples showing the positive correlation between them. The yellow circle denotes the samples that have both high MgO (wt. %) and Zr/Hf ratios, implying metasomatism responsible for their geochemical signatures. The thick black line is the primitive mantle Zr/Hf ratio based on Zr and Hf values by McDonough & Sun (1995). Q-3903-U-AQ-3903-U-B7S-67S-7P-5500-N1CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2CH7-14-S13CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.260102030405060700 5 10 15 20 25Zr/Hf (reconstructed bulk rock)MgO (reconstructed bulk rock wt. %)103  Chapter 8: Discussion 8.1 Geochemical constraints on the origin of Chidliak eclogites  One of the main objectives of mantle eclogite xenolith studies around the world is to establish whether eclogites formed from mantle-derived melts from within the continental lithospheric mantle (Smyth et al., 1989; Griffin & O’Reilly, 2007; Greau et al., 2011; Huang et al., 2012), or if they represent metamorphosed subducted oceanic crust (Jacob et al., 1994; Barth et al., 2001; Schulze et al, 2003; Aulbach et al., 2011b; Tappe et al., 2011; Smart et al., 2014; Pernet-Fischer et al., 2014; Aulbach & Jacob, 2016). The origin of eclogites has been a part of a lengthy scientific debate over the past few decades.   The bulk major element chemistry cannot be an argument pro or contra the crustal or mantle origin of the eclogite protolith as mantle pyroxenites (possible protoliths for eclogites of the mantle origin) have an extremely wide range of contents of all elements (Fig. 13, 14 of Barth et al., 2002). The Chidliak major element contents fit the mantle pyroxenites and crustal mafic rocks equally well (Figs. 5.1 and 5.2).   Trace element data suggest that Chidliak eclogites most likely originate from the metamorphosed crustal mafic material. The presence of Eu and Sr anomalies, flat HREE signatures and flat REE patterns indicate the crustal origin of the studied eclogites.   Several possible types of crustal mafic rocks could be feasible protoliths for Chidliak eclogites. The following considerations are important to reject or accept the rocks as the protolith.  104   Firstly, the eclogites experienced partial melting, mandated by their strong LREE depletion (Fig. 7.4A). Similar events of partial melting were described for many cratonic eclogite suites (Ireland et al., 1994; Jacob, 2004) and were modeled to lead to an increase of as large as 4 wt. % MgO and a decrease in SiO2 that can be as large as 4 wt. % (Fig. 5.1; Smart et al., 2017).  The partial melting was linked to melt extraction in subduction zone settings (Ireland et al., 1994; Jacob, 2004; Appleyard et al., 2007). The Nb-Ta enrichment (Figs. 7.8C and 7.8D) and the presence of rutile in Chidliak eclogites constitute strong evidence of the residual origin of the rocks in the subduction zone. Rutile in the residue is invoked to explain the Nb-Ta trough typical of arc magmas (Saunders et al., 1991; Foley and Wheller, 1990; Kalfoun et al., 2002).  Secondly, the bulk composition of the Chidliak kimberlite was altered by carbonatitic mantle metasomatism that led to the increased MgO and Zr/Hf (Fig. 7.10). If we assume that all Zr/Hf values above that of the primitive mantle (Chakhmouradian, 2006) come from metasomatized samples, then all eclogites with MgO> 15.5 wt. % would be interpreted as affected by the metasomatism.  Based on the above evidence, the initial MgO content of the Chidliak protolith could be from 7 to 15 wt. %, i.e. to coincide with that for gabbros or ocean island basalts (OIBs) (Figs. 5.1 and 5.2). In the text below, I summarize the arguments for and against these rock types as feasible protoliths.   The cumulate nature of gabbros (Wager and Brown, 1967) would sufficiently explain Eu and Sr anomalies that are observed in some Chidliak samples. Gabbros are cumulates, a product of fractional crystallization and not the slow cooling melt equivalents of basalts (Niu, 105  2004) although they could capture a significant amount of interstitial melt (Coogan et al., 2001). Another line of evidence that supports gabbros as eclogite protoliths is a number of studies that have established gabbros as kimberlite-derived eclogite protoliths (Pernet-Fischer et al., 2014; Smart, 2015). However, the low FeO content of gabbro does not match the higher FeO contents of Chidliak eclogites (Fig. 5.2D; page 50).   Ocean Island basalts are a controversial choice for the protoliths of Chidliak eclogites. The increased alkalinity (Fig. 5.2; page 50) of OIBs can explain the positive Nb-Ta anomalies observed in a few Chidliak samples (Figs. 7.8C and 7.8D). Arguments against OIB as the Chidliak eclogite protoliths, however, are more numerous.  The lower SiO2 content of some OIBs simply cannot be related to the major element chemistry of Chidliak samples (Fig. 5.1; page 49). None of the Chidliak REE patterns resemble a typical OIB pattern, which is significantly enriched in LREEs as compared to other potential protoliths and is higher by one order of magnitude than that for the Chidliak samples (Fig. 7.4D). Finally, kimberlite-derived eclogites are hard to envision as metamorphosed OIBs, because of problems with subduction of 5 km-high oceanic volcanoes.  Equally controversial is a model interpreting the eclogites metamorphosed MORBs. I have already emphasized that the major element chemistry of MORBs is too poor in MgO and often slightly richer in SiO2 to be considered as the protolith (Fig. 5.1; page 49), even when corrected for partial melting. A remarkable similarity to an average MORB REE pattern to the Chidliak eclogite REE patterns (Fig. 7.4B; page 87) and the common interpretation of cratonic eclogites as metamorphosed MORBs (e.g. Beard et al., 1996; Jacob, 2004; Pernet-Fisher et al., 2014; Smart et al., 2017), nevertherless, warrant a further testing of the MORB protolith.  A 106  method commonly used in mantle eclogite studies for this could be the oxygen isotope, analysis detecting the seawater alteration.  Another possibility with respect to the Chidliak protolith could be Archean basalts. Based on all major elements, they show an excellent fit (Figs. 5.1 and 5.2; pages 49 and 50). The Archean basalts are preserved in Archean-aged greenstone belts, accreted at convergent plate boundaries and intruded by TTG suites of rocks (Kusky and Polat, 1999; Burke, 2011). The tectonic origin of greenstone belts is controversial, as they lack modern equivalents. 8.2 Geological constraints on the origin of Chidliak eclogites  Geochemical evidence suggests that Chidliak eclogites may have been metamorphosed rocks from a subduced slab (most likely gabbros) or metamorphosed Archean basalts. An additional constraint on this interpretation is placed by the geological history of the Chidliak province and the North Atlantic craton, as the Hall Peninsula block was in the past a part of NAC (Kopylova et al., 2017).  The Hall Peninsula block, the host to the Chidliak kimberlite province, shows evidence of an ancient subduction zone that was formed during the Trans-Hudson Orogeny approximately 1.9-1.8 Ga (Snyder, 2010). The subducted underthrust oceanic lithosphere related to the Narsajuaq Arc is a strong candidate for a protolith that was subducted, partially melted, metamorphosed into eclogite, and subsequently metasomatized.   To test a possible origin of the eclogite suite as the metamorphosed greenstones, we need to review current ideas on the tectonic origin of Archean basalts and greenstone belts.  107   Polat and Kerrich (2006) advocate for the OIBs and oceanic island arc origin for greenstone basalts (not common), and oceanic plateau origin (more common). These authors argue that Archean greenstone basalts preserved trace element fingerprints of their tectonic settings typical of modern basalts (MORBs, OIBs, oceanic plateaus) (Hofmann, 1997; Kerr, 2003), and these geochemical signatures persisted in the Archean as well (Polat and Kerrich, 2006). In their view, greenstone basalts cannot be Archean MORBs because the latter are denser, getting subducted and recycled, while oceanic island arcs and plateaus have been preferentially preserved (Kerrich and Polat, 2006). According to Polat and Kerrich (2006), the presence of OIB and ocean island arc basalts in Archean-aged greenstone belts implies the subduction zones already having developed in the Archean. An alternative model to modern-type subduction in the Archean points out that subduction started no earlier than 2.9 Ga (Shirey and Richardson, 2011) based on the absence of eclogitic diamonds with older ages. Therefore, there should have been another mechanism to transport crustal material into the mantle prior to 2.9 Ga. Bedard (2006) and Bedard et al. (2012) suggested that crustal mafic material was introduced into the mantle by delamination. The results of experimental models show that hot, buoyant Archean crust should be very hard to subduct (Bickle, 1986; Davies, 1992; Sizova et al., 2010). Bedard et al. (2012) argues for cratonic mobilism, a cratonic response to the stiff mantle keel that moves from the forces of mantle current pressure. He proposes that the Archean cratons were the ones accreting ocean plateaus and other terranes which would override and thrust them deep enough in the garnet peridotite field and generate TTG melts that would contribute to craton growths. The TTG crust generated by partial melting of meta-basalts would leave eclogitic to pyroxenitic residues (Rudnick, 1995; Gao et al., 1998b; Rudnick et al., 2000). These residues would then sink 108  further into the mantle due to the higher density of eclogites as compared to the surrounding mantle in the process called delamination (Bedard, 2006). This model interprets metamorphosed basalts in greenstone belts as former oceanic plateaus.  No tectonic blocks of NAC were interpreted as accreted oceanic plateaus, but greenstone belts are found on the northern Baffin Island in the 2.8 Ga Mary River group associated with Rae craton, and in the SW Greenland (NAC) in the 3.8 Ga Isua greenstone belt, and in the 3.1 Ga Ivisaartoq greenstone belt. In the West Greenland part of the NAC, Archean eclogite xenoliths have been dated at 2.7±0.3 Ga (Tappe et al., 2011). The Late Archean NAC is thought to be a product of subduction and collision processes (Griffin et al., 2004; Pearson and Wittig, 2008) between independent blocks prior to their collision. Chidliak eclogites seem not to be related to West Greenland suite of eclogites, because all three orogens surrounding the NAC are of Paleoproterozoic ages (i.e. much younger).   In conclusion, based on the combined evidence discussed above, the most likely protoliths for Chidliak eclogites are gabbros or Archean basalts. If we interpret the eclogites as metamorphosed MOR gabbros, we should expect their subduction under the North Atlantic craton during the 1.9-1.8 Ga Trans-Hudson Orogeny or during an earlier event that produced the 2.7 Ga Greenland eclogites (Tappe et al., 2011). If we interpret the eclogites as metamorphosed Archean basalts of the oceanic plateau origin, we should expect their Archean age, predating the onset of the plate tectonics and the transportation of the eclogites into the diamondiferous mantle via the crust delamination mechanism. In this scenario, one has to assume that the Isua or Ivisaartoq belts are genetically related to Chidliak eclogites.  109  8.2 Diamond potential of Chidliak eclogites  Based on an extensive petrographic study of Chidliak eclogites (Appendix B), all Chidliak eclogite xenoliths are determined to be the type I based on MacGregor and Carter (1970) criteria. The textural criteria applied to the Chidliak eclogites thus fit their origin in the diamond stability field (Fig. 6.6).   While petrographically all Chidliak eclogites are type I eclogites, this conclusion is not fully supported geochemically. All but two Chidliak eclogite garnets plot in the Na-rich diamondiferous field (Fig. 8.1). However, the opposite is true for the K2O-in-clinopyroxene requirement (Fig. 8.1B) as applied to Chidliak eclogites. The conclusion based on the Na2O data is more robust. Low levels of K2O in clinopyroxene in diamondiferous eclogites may reflect late alteration (McCandless and Gurney, 1989). In fact, there are diamond inclusion studies, which compared K2O (wt. %) content in clinopyroxenes from diamond inclusions to the content in diamondiferous eclogite xenoliths (Sobolev et al., 1972). The results showed that K2O content was 4 times higher in diamond inclusions as compared to eclogite xenoliths, implying the preferential loss of K2O in a partial melting or metasomatic process that affected the xenolith after the diamond growth (Sobolev et al., 1972). Na2O in garnet appears to be less affected by these processes, so basing the results on Na2O is a more robust method (McCandless and Gurney, 1989). Since the thermobarometry results largely correspond to the levels of Na2O in garnet, and both P-Ts and Na content imply the high diamond potential, Chidliak eclogite study also concludes that using Na2O in garnet for diamond potential is preferred to using K2O in clinopyroxene.  110    A criterion of elevated MgO in clinopyroxene and garnet in diamondierous eclogites (De Stefano et al., 2009) cannot be checked for Chidliak eclogites due to the absence of data on the presence or absence of diamond in the individual samples.   In conclusion, all Chidliak eclogites are potentially diamondiferous. This is most solidly based on thermobarometry, but also confirmed by elevated Na2O in garnet and petrographic textures. The elevated MgO content of some Chidliak eclogites might be an indicator of increased metasomatic activity (Barth et al., 2001), which in turn has higher chances of introducing diamond-bearing fluids into the eclogites (De Stefano et al., 2009).  111   Fig. 8.1: A) Na2O (wt. %) in garnet vs. pressure (kbar), and B) K2O (wt. %) in clinopyroxene vs. pressure (kbar) for Chidliak eclogites. The dashed black line represents the values suggested by MacGregor and Carter (1970) and Schulze (2000). 010203040506070800.00 0.05 0.10 0.15 0.20 0.25Pressure (kbar)Na2O (in garnet) wt. %Na2O (wt. %)in garnet vs.pressure(kbar) forChidliakeclogites010203040506070800.00 0.05 0.10 0.15 0.20 0.25 0.30Pressure (kbar)K2O (in clinopyroxene) wt. %K2O (wt. %) inclinopyroxenevs. pressure(kbar) forChidliakeclogitesBBarren DiamondiferousA Diamondiferous Barren 112  Chapter 9: Conclusions 1) The Chidliak eclogites are composed of equal proportions of pyrope and omphacite, with an occasional occurrence of orthopyroxene and kyanite, sometimes with minor accessory rutile. The garnets and clinopyroxenes show mostly xenoblastic to hypidioblastic shapes with partial melting and alteration that is especially pronounced in clinopyroxene. Alteration includes secondary clinopyroxene, chlorite, serpentine, phlogopite, amphibole, carbonate, spinel, sulfides, zeolites, and corundum.    2) The eclogites were classified by the major element chemistry of garnet and clinopyroxene into groups A, B, and C (Coleman et al., 1965; Taylor and Neal, 1989). Using compositions of garnet, Chidliak eclogites are classified into groups all three groups, while clinopyroxene classification classifies the same samples into groups A and B. Over-representation in group A eclogites by garnet classification can be attributed to a metasomatic addition of Mg to a few samples. The under-representation of group C eclogites by clinopyroxene classification can be explained by preferential alteration of clinopyroxene from group C eclogites.   3) The reconstructed whole rock major element composition of eclogites matches compositions of modern gabbros, mid-ocean ridge basalts, ocean island basalts, and continental flood basalts, and mantle pyroxenites. It is impossible to differentiate between the mantle and crustal origin of the Chidliak protoliths, with the added uncertainty related to partial melting and metasomatic effects.  113  4) Chidliak eclogites form between 855 and 1390°C at pressures of 45-70 kbar, in the diamond stability field, as determined by Nakamura (2009) geothermometer projected onto the Chidliak peridotite geotherm. There are no obvious differences in P-T patterns between the A, B, and C eclogite groups. When compared to other cratons, Chidliak eclogites plot at similar depths as Muskox, Jericho, and Central Slave eclogites.   5) Trace element composition of Chidliak eclogites provides the key to finding the possible protolith. REE and HFSE patterns indicate that Chidliak eclogites show evidence for a shallow origin, low-P, garnet-free source protolith, cumulation of plagioclase, partial melting, and ancient metasomatism by alkali and carbonatitic fluids. This is supported by unfractionated HREEs, relatively unfractionated REE patterns with REEN similar to MORBs/gabbros, Eu anomalies, LREE depletion, and a couple of extremely enriched REE patterns. Zr/Hf was found to be correlated to high-Mg eclogites (>15.5-16.0 wt. %), indicating that the Mg in samples with suprachondritic values of Zr/Hf have had some of the Mg introduced metasomatically.   6) The most likely protoliths for Chidliak eclogites are MOR gabbros or Archean basalts. The eclogites may have formed as the 1.9 Ga subducted oceanic crust related to the accretion of the Narsajuaq Arc on the Meta-Incognita microcontinent during the Trans-Hudson orogen. If the eclogites are Archean in age, their most likely protoliths are the Archean-aged, accreted, ocean island arc and ocean plateau basalts found in the Archean 114  greenstone belts (such as the 3.8 Ga Isua and the 3.1 Ga Ivisaartoq greenstone belts in Western Greenland) that sank into the mantle via delamination.   7) Chidliak eclogites could potentially be diamondiferous, as indicated by geothermobarometry, the texture, and the content of Na in garnet.  115  References  Andrews J., Bridgwater D., Gormsen K., Gulson B., Keto L. and Watterson J. (1973) The Precambrian of south-east Greenland. The Early Precambrian of Scotland and related rocks of Greenland 143, 156.  Appleyard C., Bell D. and Le Roex A. (2007) Petrology and geochemistry of eclogite xenoliths from the Rietfontein kimberlite, Northern Cape, South Africa. Contributions to Mineralogy and Petrology 154, 309-333.  Arzamastsev A., Bea F., Glaznev V., Arzamastseva L. and Montero P. (2001) Kola alkaline province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. Russian Journal of Earth Sciences 3, 3-24.  Aulbach S. and Jacob D. E. (2016) Major-and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262, 586-605.  Aulbach S., Pearson N. J., O'reilly S. Y. and Doyle B. J. (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J. Petrol. 48, 1843-1873.  Aulbach S., Stachel T., Heaman L. M., Creaser R. A. and Shirey S. B. (2011) Formation of cratonic subcontinental lithospheric mantle and complementary komatiite from hybrid plume sources. Contributions to Mineralogy and Petrology 161, 947-960.  Bach W., Alt J. C., Niu Y., Humphris S. E., Erzinger J. and Dick H. J. (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochim. Cosmochim. Acta 65, 3267-3287.  Barth M. G., Rudnick R. L., Horn I., McDonough W. F., Spicuzza M. J., Valley J. W. and Haggerty S. E. (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim. Cosmochim. Acta 66, 4325-4345.  Barth M. G., Rudnick R. L., Horn I., McDonough W. F., Spicuzza M. J., Valley J. W. and Haggerty S. E. (2001) Geochemistry of xenolithic eclogites from West Africa, Part I: a link between low MgO eclogites and Archean crust formation. Geochim. Cosmochim. Acta 65, 1499-1527.  Beard B., Fraracci K. N., Clayton R. A., Mayeda T. K., Snyder G., Sobolev N. and Taylor L. (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contributions to Mineralogy and Petrology 125, 293-310.  Bédard J. H. (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188-1214.  116  Bédard J. H., Harris L. B. and Thurston P. C. (2013) The hunting of the snArc. Precambrian Res. 229, 20-48.  Bickle M. (1986) Implications of melting for stabilisation of the lithosphere and heat loss in the Archaean. Earth Planet. Sci. Lett. 80, 314-324.  Blackadar R. G. (1967) Geological Reconnaissance, Southern Baffin Island, District of Franklin:(Report, Figure and Maps 16-1966, 17-1966, 18-1966). Geological Survey of Canada,  Bleeker W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71, 99-134.  Brey G. and Köhler T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353-1378.  Bridgwater D. and Collerson K. D. (1976) The major petrological and geochemical characters of the 3,600 my Uivak gneisses from Labrador. Contributions to Mineralogy and Petrology 54, 43-59.  Burke K. (2011) Plate tectonics, the Wilson Cycle, and mantle plumes: geodynamics from the top. Annu. Rev. Earth Planet. Sci. 39, 1-29.  Caporuscio F. A. and Smyth J. R. (1990) Trace element crystal chemistry of mantle eclogites. Contributions to Mineralogy and Petrology 105, 550-561.  Chakhmouradian A. R. (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem. Geol. 235, 138-160.  Coleman R., Lee D., Beatty L. and Brannock W. W. (1965) Eclogites and eclogites: their differences and similarities. Geological Society of America Bulletin 76, 483-508.  Coogan L. A., Wilson R. N., Gillis K. M. and MacLeod C. J. (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim. Cosmochim. Acta 65, 4339-4357.  Cookenboo H. and Grütter H. (2010) Mantle-derived indicator mineral compositions as applied to diamond exploration. Geochemistry: Exploration, Environment, Analysis 10, 81-95.  Corrigan D., Pehrsson S., Wodicka N. and De Kemp E. (2009) The Palaeoproterozoic Trans-Hudson Orogen: a prototype of modern accretionary processes. Geological Society, London, Special Publications 327, 457-479.  117  Dasgupta R., Hirschmann M. M. and Withers A. C. (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73-85.  Davies G. F. (1992) On the emergence of plate tectonics. Geology 20, 963-966.  Dawson J. (1984) Contrasting types of upper-mantle metasomatism? Kimberlites II. The mantle and crust-mantle relationships. 289-294.  Dawson J. and Hinton R. (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineralogical Magazine 67, 921-930.  Day H. W. (2012) A revised diamond-graphite transition curve. Am. Mineral. 97, 52-62.  De Stefano A., Kopylova M., Cartigny P. and Afanasiev V. (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contributions to Mineralogy and Petrology 158, 295-315.  Deer W., Howie R. and Zussman J. (1982) Rock-forming minerals, Orthosilicates, 1A.  Doerksen G., Pilotto D., Rykaart M., Murphy B. and Nowicki T. (2016) NI 43-101 Preliminary Economic Assessment Technical Report on the Chidliak Project Nunavut, Canada.  Dongre A., Jacob D. and Stern R. (2015) Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochim. Cosmochim. Acta 166, 165-188.  Ellis D. and Green D. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology 71, 13-22.  Farmer G. (2003) Continental basaltic rocks. Treatise on geochemistry 3, 659.  Foley S. F. and Wheller G. E. (1990) Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanates. Chem. Geol. 85, 1-18.  Gao S., Luo T., Zhang B., Zhang H., Han Y., Zhao Z. and Hu Y. (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 62, 1959-1975.  Geological Survey of Canada (1979) Reconnaissance geology of a part of the Precambrian Shield, northeastern Quebec, northern Labrador and Northwest Territories. Geological Survey of Canada,  118  Gréau Y., Huang J., Griffin W. L., Renac C., Alard O. and O’Reilly S. Y. (2011) Type I eclogites from Roberts Victor kimberlites: products of extensive mantle metasomatism. Geochim. Cosmochim. Acta 75, 6927-6954.  Griffin W. L. and O'Reilly S. Y. (2007) Cratonic lithospheric mantle: is anything subducted?  Griffin W., O'Reilly S. Y., Doyle B., Pearson N., Coopersmith H., Kivi K., Malkovets V. and Pokhilenko N. (2004) Lithosphere mapping beneath the North American plate. Lithos 77, 873-922.  Grütter H. and Quadling K. (1999) Can sodium in garnet be used to monitor eclogitic diamond potential. 1, 314-320.  Gurney J. and Zweistra P. (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. J. Geochem. Explor. 53, 293-309.  Hammouda T. (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357-368.  Harte B., Winterburn P. and Gurney J. (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. Mantle metasomatism 145, 220.  Hatton C. and Gurney J. (1987) Roberts Victor eclogites and their relation to the mantle. Mantle Xenoliths, 453-463.  Hatton C. and Gurney J. (1977) Igneous fractionation trends in Roberts Victor eclogites. Hawthorne F. C., Oberti R., Harlow G. E., Maresch W. V., Martin R. F., Schumacher J. C. and Welch M. D. (2012) Nomenclature of the amphibole supergroup. Am. Mineral. 97, 2031-2048.   Heaman L. M., Creaser R. A. and Cookenboo H. O. (2002) Extreme enrichment of high field strength elements in Jericho eclogite xenoliths: A cryptic record of Paleoproterozoic subduction, partial melting, and metasomatism beneath the Slave craton, Canada. Geology 30, 507-510.  Heaman L. M., Creaser R. A., Cookenboo H. O. and Chacko T. (2006) Multi-stage modification of the Northern Slave mantle lithosphere: evidence from zircon-and diamond-bearing eclogite xenoliths entrained in Jericho kimberlite, Canada. J. Petrol. 47, 821-858.  Heaman L. M., Pell J., Grütter H. S. and Creaser R. A. (2015) U–Pb geochronology and Sr/Nd isotope compositions of groundmass perovskite from the newly discovered Jurassic Chidliak kimberlite field, Baffin Island, Canada. Earth Planet. Sci. Lett. 415, 183-199.  119  Heaman L. and Kjarsgaard B. (2002) A Cretaceous corridor of kimberlite magmatism: U–Pb results from the Fort à la Corne Field, central Saskatchewan. 47.  Helmstaedt H. and Doig R. (1975) Eclogite nodules from kimberlite pipes of the Colorado Plateau—samples of subducted Franciscan-type oceanic lithosphere. Phys. Chem. Earth 9, 95-111.  Herzberg C., Condie K. and Korenaga J. (2010) Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79-88.  Hoffman P. F. (1989) Precambrian geology and tectonic history of North America. The Geology of North America. 447-512.  Hofmann A. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219.  Huang J., Gréau Y., Griffin W. L., O'Reilly S. Y. and Pearson N. J. (2012) Multi-stage origin of Roberts Victor eclogites: progressive metasomatism and its isotopic effects. Lithos 142, 161-181.  Ireland T. R., Rudnick R. L. and Spetsius Z. (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet. Sci. Lett. 128, 199-213.  Jackson M. G. and Dasgupta R. (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175-186.  Jacob D., Jagoutz E., Lowry D., Mattey D. and Kudrjavtseva G. (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim. Cosmochim. Acta 58, 5191-5207.  Jacob D. (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77, 295-316.  Jacob D., Schmickler B. and Schulze D. (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 71, 337-351.  Jacob D., Viljoen K. and Grassineau N. (2009) Eclogite xenoliths from Kimberley, South Africa—a case study of mantle metasomatism in eclogites. Lithos 112, 1002-1013.  Jacob D. E. and Foley S. F. (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48, 317-336.  Jagoutz E., Dawson J., Hoernes S., Spettel B. and Wanke H. (1984) Anorthosititc Oceanic Crust in the Archean Earth. 15, 395-396.  120  Jenner F. E. and O'Neill H. S. C. (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13,  Jerde E. A., Taylor L. A., Crozaz G., Sobolev N. V. and Sobolev V. N. (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contributions to Mineralogy and Petrology 114, 189-202.  John D. Winter 2001. An Introduction to Igneous and Metamorphic Petrology.  Kalfoun F., Ionov D. and Merlet C. (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet. Sci. Lett. 199, 49-65.  Kerrich R. and Polat A. (2006) Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? Tectonophysics 415, 141-165.  Kiseeva E. S., Litasov K. D., Yaxley G. M., Ohtani E. and Kamenetsky V. S. (2013) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J. Petrol. 54, 1555-1583.  Kogarko L. (2016) Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems. Geology of Ore Deposits 58, 173-181.  Kopylova M. G., Tso E., Ma F., Liu J. and Pearson G. D. (2017) Peridotite xenoliths of the Chidliak kimberlite province (NE Canada): The North Atlantic cratonic mantle with recent thermal and Ti-Na metasomatic disturbance. 11th International Kimberlite Conference, (abstr.).  Kopylova M. G., Beausoleil Y., Goncharov A., Burgess J. and Strand P. (2016) Spatial distribution of eclogite in the Slave cratonic mantle: The role of subduction. Tectonophysics 672, 87-103.  Kopylova M., Russell J. and Cookenboo H. (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J. Petrol. 40, 79-104.  Kusky T. M. and Polat A. (1999) Growth of granite–greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics 305, 43-73.  Larsen L. M., Heaman L. M., Creaser R. A., Duncan R. A., Frei R. and Hutchison M. (2009) Tectonomagmatic events during stretching and basin formation in the Labrador Sea and the Davis Strait: evidence from age and composition of Mesozoic to Palaeogene dyke swarms in West Greenland. Journal of the Geological Society 166, 999-1012.  Li Y., Zheng Y. and Fu B. (2005) Mössbauer spectroscopy of omphacite and garnet pairs from eclogites: Application to geothermobarometry. Am. Mineral. 90, 90-100.  121  Litasov K. D., Goncharov A. F. and Hemley R. J. (2011) Crossover from melting to dissociation of CO 2 under pressure: Implications for the lower mantle. Earth Planet. Sci. Lett. 309, 318-323.  Liu J., Pearson G. D., Harris G. A., Kopylova M. G. and Tso E. (2017) Age and evolution of the lithospheric mantle beneath southern Baffin Island, Nunavut, Canada. 11th International Kimberlite Conference, (abstr.).  Macgregor I. D. and Carter J. (1970) The chemistry of clinopyroxenes and garnets of eclogite and peridotite xenoliths from the Roberts Victor mine, South Africa. Phys. Earth Planet. Inter. 3, 391-397.  Machado G., Bilodeau C., Takpanie R., St-Onge M., Rayner N., Skipton D., From R., MacKay C., Creason C. and Braden Z. (2012) Hall Peninsula regional bedrock mapping, Baffin Island, Nunavut: summary of fieldwork. Summary of Activities13-22.  McCandless T. and Gurney J. (1989) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. GROUP 2, 30.  McDonough W. F. and Sun S. (1995) The composition of the Earth. Chem. Geol. 120, 223-253.  McKenzie D. and Bickle M. (1988) The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625-679.  McKenzie D. and O'nions R. (1991) Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021-1091.  Menzies A., Westerlund K., Grütter H., Gurney J., Carlson J., Fung A. and Nowicki T. (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, NWT, Canada: major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos 77, 395-412.  Mitchell R. H. (1986) Kimberlites: Mineralogy, Geochemistry, and Petrology. Springer US,  Næraa T. and Scherstén A. (2008) New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin 15, 73-76.  Nakamura D. (2009) A new formulation of garnet–clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. J. Metamorph. Geol. 27, 495-508.  Newton D. E., Kopylova M. G., Burgess J. and Strand P. (2015) Peridotite and pyroxenite xenoliths from the Muskox kimberlite, northern Slave craton, Canada. Canadian Journal of Earth Sciences 53, 41-58.  122  Nickel K. and Green D. (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73, 158-170.  Nimis P. and Grütter H. (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology 159, 411-427.  Niu Y. (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 45, 2423-2458.  Niu Y., Gilmore T., Mackie S., Greig A. and Bach W. (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. 176, 1-60.  Nowicki T. E., Moore R. O., Gurney J. J. and Baumgartner M. C. (2007) Diamonds and associated heavy minerals in kimberlite: a review of key concepts and applications. Developments in Sedimentology 58, 1235-1267.  Nutman A. P., Friend C. R., Barker S. L. and McGregor V. R. (2004) Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Res. 135, 281-314.  O’Hara M. and Yoder H. (1967) Formation and fractionation of basic magmas at high pressures. Scottish Journal of Geology 3, 67-117.  O'hara M., Saunders M. and Mercy E. (1975) Garnet-peridotite, primary ultrabasic magma and eclogite; interpretation of upper mantle processes in kimberlite. Phys. Chem. Earth 9, 571-604.  Paton C., Hellstrom J., Paul B., Woodhead J. and Hergt J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508-2518.  Pearson D. and Wittig N. (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. Journal of the Geological Society 165, 895-914.  Pell J., Grütter H., Neilson S., Lockhart G., Dempsey S. and Grenon H. (2013) Exploration and discovery of the Chidliak kimberlite province, Baffin Island, Nunavut: Canada’s newest diamond district. 209-227.  Peltonen P., Kinnunen K. and Huhma H. (2002) Petrology of two diamondiferous eclogite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 63, 151-164.  123  Pernet-Fisher J. F., Howarth G. H., Liu Y., Barry P. H., Carmody L., Valley J. W., Bodnar R. J., Spetsius Z. V. and Taylor L. A. (2014) Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology 167, 981.  Polat A. and Kerrich R. (2006) Reading the geochemical fingerprints of Archean hot subduction volcanic rocks: evidence for accretion and crustal recycling in a mobile tectonic regime. Archean Geodynamics and Environments189-213.  Polat A. (2013) Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early Earth. Geology 41, 379-380.  Pouchou J. and Pichoir F. (1985) Pap. Φ (ρZ) procedure for improved quantitative micro-analysis.Microbeam Analysis 104, 160.  Proyer A., Dachs E. and McCammon C. (2004) Pitfalls in geothermobarometry of eclogites: Fe3 and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contributions to Mineralogy and Petrology 147, 305-318.  Ringwood A. E. (1975) Composition and petrology of the earth's mantle [by] AE Ringwood.  Rollinson H. (1997) Eclogite xenoliths in west African kimberlites as residues from Archaean granitoid crust formation. Nature 389, 173.  Rudnick R. L. (1995) Making continental crust. Nature 378, 571.  Rudnick R. L., Barth M., Horn I. I. and McDonough W. F. (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287, 278-281.  Russell J. K., Porritt L. A., Lavallée Y. and Dingwell D. B. (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481, 352.  Saunders A., Norry M. and Tarney J. (1991) Fluid influence on the trace element compositions of subduction zone magmas. Philosophical Transactions: Physical Sciences and Engineering, 377-392.  Schmickler B., Jacob D. and Foley S. (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75, 173-207.  Schmidt M. W., Vielzeuf D. and Auzanneau E. (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65-84.  Schulze D. J. (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71, 195-213.  124  Schulze D. J., Harte B., Valley J. W., Brenan J. M. and Dominic M. D. R. (2003) Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423, 68.  Scott D. J. (1999) U–Pb geochronology of the eastern Hall Peninsula, southern Baffin Island, Canada: a northern link between the Archean of West Greenland and the Paleoproterozoic Torngat Orogen of northern Labrador. Precambrian Res. 93, 5-26.  Scott D. J. (1996) Geology of the Hall Peninsula east of Iqaluit, southern Baffin Island. Geological Survey of Canada, Current Research, 83-91.  Scott D. J., Stern R. A., St-Onge M. R. and McMullen S. M. (2002) U–Pb geochronology of detrital zircons in metasedimentary rocks from southern Baffin Island: implications for the Paleoproterozoic tectonic evolution of northeastern Laurentia. Canadian Journal of Earth Sciences 39, 611-623.  Shervais J. W., Taylor L. A., Lugmair G. W., Clayton R. N., Mayeda T. K. and Korotev R. L. (1988) Early Proterozoic oceanic crust and the evolution of subcontinental mantle: Eclogites and related rocks from southern Africa. Geological Society of America Bulletin 100, 411-423.  Shirey S. B. and Richardson S. H. (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434-436.  Sizova E., Gerya T., Brown M. and Perchuk L. (2010) Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209-229.  Smart K., Cartigny P., Tappe S., O'Brien H. and Klemme S. (2017) Lithospheric diamond formation as a consequence of methane-rich volatile flooding: An example from diamondiferous eclogite xenoliths of the Karelian craton (Finland). Geochim. Cosmochim. Acta 206, 312-342.  Smart K. A., Chacko T., Simonetti A., Sharp Z. D. and Heaman L. M. (2014) A record of Paleoproterozoic subduction preserved in the Northern Slave cratonic mantle: Sr–Pb–O isotope and trace-element investigations of eclogite xenoliths from the Jericho and Muskox kimberlites. J. Petrol. 55, 549-583.  Smart K. A., Heaman L. M., Chacko T., Simonetti A., Kopylova M., Mah D. and Daniels D. (2009) The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada. Earth Planet. Sci. Lett. 284, 527-537.  Smyth J. R., Caporuscio F. A. and McCormick T. C. (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet. Sci. Lett. 93, 133-141.  Snyder D. (2010) Mantle lithosphere structure beneath southeast Baffin Island, Nunavut from teleseismic studies.  125  Sobolev V. S., Sobolev N. V. and Lavrentyev Y. G. (1972) Inclusions in the diamonds in diamondiferous eclogite. Dokl. Acad. Sci. USSR, Earth Sci Sect. 207, 121-123.  Sobolev V. N., McCammon C. A., Taylor L. A., Snyder G. A. and Sobolev N. V. (1999) Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am. Mineral. 84, 78-85.  St‐Onge M. R., Searle M. P. and Wodicka N. (2006) Trans‐Hudson Orogen of North America and Himalaya‐Karakoram‐Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics 25,  St‐Onge M. R., Searle M. P. and Wodicka N. (2006) Trans‐Hudson Orogen of North America and Himalaya‐Karakoram‐Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates. Tectonics 25,  St-Onge M. R., Van Gool J. A., Garde A. A. and Scott D. J. (2009) Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen. Geological Society, London, Special Publications 318, 193-235.  St-Onge M., Wodicka N. and Ijewliw O. (2006) Polymetamorphic evolution of the Trans-Hudson Orogen, Baffin Island, Canada: integration of petrological, structural and geochronological data. J. Petrol. 48, 271-302.  St-Onge M., Wodicka N. and Ijewliw O. (2006) Polymetamorphic evolution of the Trans-Hudson Orogen, Baffin Island, Canada: integration of petrological, structural and geochronological data. J. Petrol. 48, 271-302.  Sun S. and McDonough W. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345.  Tappe S., Smart K. A., Pearson D. G., Steenfelt A. and Simonetti A. (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39, 1103-1106.  Taylor L. A. and Neal C. R. (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole rock chemistry. J. Geol. 97, 551-567.  Taylor W. (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie-Abhandlungen, 381-408.  Wager L. R. and Brown G. M. (1967) Layered igneous rocks. WH Freeman,  126  Whalen J. B., Wodicka N., Taylor B. E. and Jackson G. D. (2010) Cumberland batholith, Trans-Hudson Orogen, Canada: petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117, 99-118.  Whalen J. B., Wodicka N., Taylor B. E. and Jackson G. D. (2010) Cumberland batholith, Trans-Hudson Orogen, Canada: petrogenesis and implications for Paleoproterozoic crustal and orogenic processes. Lithos 117, 99-118.  Windley B. F. and Garde A. A. (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: crustal growth in the Archean with modern analogues. Earth-Sci. Rev. 93, 1-30.  Wittig N., Pearson D., Webb M., Ottley C., Irvine G., Kopylova M., Jensen S. and Nowell G. (2008) Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24-33.  Woodland A. B. and Ross C. R. (1994) A crystallographic and mössbauer spectroscopy study of Fe32 Al2Si3O12-Fe32 Fe23 Si3O12,(almandine-“skiagite”) and Ca3 Fe23 Si3O12-Fe32 Fe23 Si3O12 (andradite-“skiagite”) garnet solid solutions. Physics and Chemistry of Minerals 21, 117-132.  Yaxley G. M. and Brey G. P. (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and Petrology 146, 606-619.  Zack T., Kronz A., Foley S. F. and Rivers T. (2002) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 184, 97-122.  Zindler A. and Emil J. (1988) Mantle cryptology. Geochim. Cosmochim. Acta 52, 319-333.  127  Appendices Appendix A: Macro-specimen descriptions   ID:  1 Sample #: Q-3903-U-A Kimberlite: CH-07 Drill Hole: CHI-251-12-DD18 Depth: 180.98 Rock type: Eclogite, coarse Size (cm3): 2x3x3 Texture:  - Garnet: - - CPX: - - Accessory minerals: - - Secondary minerals: - - Comments: Hand sample not available. Size and rock type previously described.  ID:  2 Sample #: Q-3903-U-B Kimberlite: CH-07 Drill Hole: CHI-251-12-DD18 Depth: 180.98 Rock type: Eclogite Size (cm3): 1x1 Texture:  - Garnet: - - CPX: - - Accessory minerals: - - Secondary minerals: - - Comments: Hand sample not available. Size and rock type previously described.   128   ID:  3 Sample #: 7S-6 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite, massive Size (cm3): 10x8x6 Texture:  Granoblastic Garnet: 40% Hypidioblastic to xenoblastic, 2-5 mm in size, light pale red to amber in color, well preserved. 70% of the grains are aggregated with black rims around them.  CPX: 60% Xenoblastic, 2-5 mm in size, greenish grey in color, over 90% altered to some greyish by-product (carbonates/talc?). Shiny light green grains within CPX appear - possibly a mineral replacing CPX? Accessory minerals: - - Secondary minerals: 4% Veins, 1-2 mm thick, chalk white and grey in color, going through the whole rock. Possibly calcite.  Shiny golden yellow flakes observed both in CPX and GRT (sulfides?). Dirt orange-brown crystal in between GRT and CPX (phlogopite?).  Comments: - 129   ID:  4 Sample #: 7S-7 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite, massive Size (cm3): 12x10x7 Texture:  Granoblastic Garnet: 20% Hypidioblastic to xenoblastic, 2-15 mm in size, pink to dark red in color, and aggregated (occurs in patches). Black rims around grains visible, but to a lesser extent than in other samples.  CPX: 80% Xenoblastic, 2-7 mm in size, light grey to green in color, over 85% altered. Only few patches show relatively fresh CPX. Accessory minerals: - - Secondary minerals: 1-2% Very thin veins, <1mm in size, go through the sample (carbonates? quartz?). Yellowish flakes (< 0.5 mm in size) around the calcite veins (phlogopite? sulfides?).  Comments: - 130   ID:  5 Sample #: P-5500-N1 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite, massive Size (cm3): 6x4x2 Texture:  Granoblastic Garnet: 30% Hypidioblastic to xenoblastic, 5-15 mm in size, dark red in color, and heavily resorbed and aggregated (occurs in patches). Visible black rims around the grains.   CPX: 70% Xenoblastic, 2-8 mm in size, grey in color, over 95% altered to some grey/creamy white byproduct. Light green colored mineral that appears within CPX could be chlorite or serpentine. Accessory minerals: - - Secondary minerals: 2% One vein, ~1mm thick, possibly carbonate vein.   Sulfides at the edges of garnets.   Comments: -    131   ID:  6 Sample #: CH7-14-S3 Kimberlite: CH-07 Drill Hole: - Depth: - Rock type: Eclogite, massive Size (cm3): 4x3x2 Texture:  Granoblastic Garnet: 60% Mostly xenoblastic, 6-8 mm in size, light pale red in color, and grouped together as blobs of garnet.  CPX: 40% Hypidioblastic, 2-5 mm in size, fresher than usual as indicated by the grass green color of fresh omphacitic CPX.  ~45% of the grains are altered to grey/white byproduct (chlorite? talc?). Pyroxene cleavage visible. Accessory minerals: 1-2% Dark red shiny mineral at the edges of garnet (rutile?). Secondary minerals: 2% No veins, but intergranular spaces filled with some chalk white mineral (calcite? Talc? Chlorite? Something else?) Comments: -        132   ID:  7 Sample #: CH7-14-S4 Kimberlite: CH-07 Drill Hole: - Depth: - Rock type: Eclogite, massive Size (cm3): 3x2x2 Texture:  Granoblastic Garnet: 45% Hypidioblastic to xenoblastic, 2-4 mm in size, light pale pink to red in color, with thick black rim. The inside of the grains are crisscrossed with veins similar to rims in color (dark/black). CPX: 55% Xenoblastic grains, 2-4 mm in size, coated with white color, most probably altered to talc(?) Severely altered.  Accessory minerals: - - Secondary minerals: 1% Very few sulfides (if any); kelyphitic alteration possible? Comments: -       133   ID:  8 Sample #: CHI-050-14-DD27 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD27 Depth: 80.1 Rock type: Eclogite, massive Size (cm3): 4x3 Texture:  Granoblastic Garnet: 35% Mostly xenoblastic, 5-20 mm in size, pinkish-red to orange in color, elongated and aggregate together. CPX: 65% Xenoblastic, dark pale green in color, most of it altered to chlorite/talc or something similar. More than 90% of the grains altered. Accessory minerals: 1% Rutile (?) in small amounts. Secondary minerals: 1% Kelyphite(?) around garnets, 1-2 mm calcite(?) vein, sulfides. Comments: -       134   ID:  9 Sample #: CHI-050-14-DD28 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD28 Depth: 104.18 Rock type: Eclogite, massive Size (cm3): 3x4 Texture:  Granoblastic Garnet: 85% Xenoblastic, 5-20 mm in size, orange-red in color, clumped up together, and quite large with thick rims around the grains. CPX: 15% Xenoblastic, 3-6 mm in size, grass green (fresh) to grey (altered) in color, shows less alteration than many other samples. ~50% of the grains are altered.  Accessory minerals: - - Secondary minerals: 1% Kelyphitic rims? Dirty orange brown color of altered GRT; no sulfides. Comments: -       135   ID:  10 Sample #: CHI-050-14-DD27 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD27 Depth: 184.54 Rock type: Eclogite, massive Size (cm3): 2x2 Texture:  Granoblastic Garnet: 25% Hypidioblastic, 3-5 mm in size, dark red in color, with thick black rims.  CPX: 65% Mostly xenoblastic, 2-5 mm in size, greyish green in color, with about 70% altered to another mineral. Accessory minerals: - - Secondary minerals: 3-5% Phlogopite observed in the kimberlite-eclogite boundary area; possible rutiles (dark red shiny grains); a couple of small orangish grains (spinel? rutile?); reddish black, conchoidal grains at the edge of the carbonate.  Comments: There is a large (~4 mm) grain in the kimberlite-eclogite boundary area, probably a byproduct of CPX alteration or a phlogopite grain.       136   ID:  11 Sample #: CH7-14-S8 Kimberlite: CH-07 Drill Hole: CH7-14-S8 Depth: - Rock type: Eclogite, massive Size (cm3): 3x2x2 Texture:  Granoblastic Garnet: 30% Mostly xenoblastic, 3-5 mm in size, light pink (polished) in color.  CPX: 70% Xenoblastic, 2-5 mm in size, greyish white in color, very altered (over 95% of the grains are affected) probably to chlorite or talc.  Accessory minerals: - - Secondary minerals: 5-8% Visible spinel; dark grey veins in CPX between garnet grains; possible phlogopite at the rims; strange black elongated mineral w/ cleavage at the rims. Comments: -        137   ID:  12 Sample #: CH7-14-S10 Kimberlite: CH-07 Drill Hole: CH7-14-S10 Depth: - Rock type: Eclogite, massive Size (cm3): 4x3x3 Texture:  Granoblastic Garnet: 30% Hypidioblastic, large 10-15 mm in size, orange-red to amber in color, and clumped up together. In some places, garnets are zoned in color/composition(?); kelyphitic rims around the grains, but not as prominent as in the other samples. CPX: 70% Xenoblastic, 1-4 mm in size; altered (up to 60%); strange CPX alterations in some places (dirt orangish product of alteration, like crushed garnets color - dirt orange) Accessory minerals: - - Secondary minerals: 1% A few very small veins visible under the binocular, some filled with calcite(?); one single grain of spinel(?) Found in garnet. Comments: Large garnet grains.     138   ID:  13 Sample #: CH7-14-S13 Kimberlite: CH-07 Drill Hole: CH7-14-S13 Depth: - Rock type: Eclogite, undetermined Size (cm3): 9x4x3 Texture:  Granoblastic Garnet: 30% Hypidioblastic, 2-5 mm in size, pale red to amber red in color. Kelyphitic rims all the grains. CPX: 70% Xenoblastic, 2-5 mm in size, greyish green in color, ~90% altered. Accessory minerals: - - Secondary minerals: 2% A few tear shaped sulfides in the sample, both in garnet and CPX; possible phlogopite grain around one garnet; quartz-calcite veins going through both CPX and garnets; possible rutile (sapphire red glowy speck). Comments: -       139   ID:  14 Sample #: CH7-14-S9 Kimberlite: CH-07 Drill Hole: CH7-14-S9 Depth: - Rock type: Eclogite, undetermined Size (cm3): 3x3x3 Texture:  Granoblastic Garnet: 50% Xenoblastic, 4-10 mm in size, completely grey to black in color. Some completely altered to a vitreous mineral with cleavage well defined (maybe kyanite?); A few garnets have kelyphitic rims. CPX: 50% Xenoblastic; unrecognizable - completely altered to some chalk white mineral, doesn't react with 10% HCl. No fresh CPX.   Accessory minerals: - - Secondary minerals: 15% Greyish-blue hyp-to-idioblastic mineral with well-defined cleavage. Kyanite? Comments: Looks a lot different when compared to all other samples!       140   ID:  15 Sample #: CH7-14-S7 Kimberlite: CH-07 Drill Hole: CH7-14-S7 Depth: - Rock type: Eclogite, undetermined Size (cm3): 3x2x2 Texture:  Granoblastic Garnet: 50% Visually, similar to CH7-14-S8 sample. Mostly xenoblastic, 2-8 mm in size, polished pale pink in color, with resorption texture (certain parts were eaten through or melted?); profound dark/black rims around the grains, possibly kelyphitic rims? CPX: 50% Xenoblastic, 2-5 mm in size, greenish grey in color, very altered (>95%) with minute amounts of fresh CPX. CPX grains are crisscrossed with dark veins that connect garnet grains. Accessory minerals: - - Secondary minerals: 3% Lots of dark, dark red/almost black tear shaped and rectangular shaped minerals (Rutiles? Sulfides?) Comments: -    141   ID:  16 Sample #: CH7-14-S14 Kimberlite: CH-07 Drill Hole: CH7-14-S14 Depth: - Rock type: Eclogite, massive Size (cm3): 7x5x4 Texture:  Granoblastic Garnet: 60% Hypidioblastic, 2-10 mm in size, amber to dark red in color with very well defined rims. Garnets are pretty fresh, with possible inclusions of rutiles? CPX: 40% Xenoblastic, 2-5 mm in size, greyish green in color, but significantly altered to white powderish mineral (>85%); some CPX grains are iridescent, but very similar to regular CPX grains - new mineral or just cut differently?  Accessory minerals: - - Secondary minerals: 3% Sulfides, very small in size, tear drop shaped found in CPX and around garnets, even at the tri-grain boundaries; a massive 2-3 mm thick quartz-calcite(?) vein going through the sample. Comments: -   142   ID:  17 Sample #: CHI-251-14-DD19 Kimberlite: CH-07 Drill Hole: CHI-251-14-DD19 Depth: 162.09 Rock type: Eclogite, massive Size (cm3): 3x2x1 Texture:  Granoblastic Garnet: 30% Hypidioblastic, 1-5 mm in size, dark red in color. Black/dark rims (kelyphitic rims?) around few garnets.  CPX: 70% Xenoblastic, 1-4 mm in size, greyish green in color, well preserved (fresh), but 15% is altered to another mineral.   Accessory minerals: - - Secondary minerals: 3-4% Tear shaped minerals (possibly sulfides?); black to dark-red mineral specks in CPX and around garnets (rutiles?) - they are very obvious and there are at least 10 of them; light amber mineral around garnet (Spinel? Phlogopite?); a vein going through the eclogite, but NOT the kimberlite.  Comments: -     143   ID:  18 Sample #: CHI-251-14-DD19 Kimberlite: CH-07 Drill Hole: CHI-251-14-DD19 Depth: 175.26 Rock type: Eclogite, massive Size (cm3): 2x2 Texture:  Granoblastic Garnet: 60% Hypidioblastic, aggregated, 2-6 mm in size, pinkish red in color with profound black rims (possibly kelyphitic rims). CPX: 40% Xenoblastic, 1-3 mm in size, greyish green in color, severly altered (>90%) to some greyish powdered mineral (talc? Chlorite? Serpentine?) Accessory minerals: - - Secondary minerals: 10% Possible sulfides found as inclusions in garnets, CPX and on the rims of garnets; an observed reaction at the edge of an eclogite-kimberlite boundary – kimberlite fluids entered eclogite? Comments: -     144   ID:  19 Sample #: CHI-258-14-DD15 Kimberlite: CH-44 Drill Hole: CHI-258-14-DD15 Depth: 163.07 Rock type: Eclogite, undetermined Size (cm3): 10x6x6 Texture:  Granoblastic Garnet: 20% Xenoblastic to hypidioblastic, 2-5 mm in size, orange to red in color, severly altered in places, with different looking garnets (different composition?); a lot of garnets altered to shiny redish-golden, almost iridisecent flakes, possible kelyphite? Maybe phlogopite? CPX: 80% Xenoblastic, 1-7 mm in size, greyish green in color, ~50% altered to white-grey mineral (Talc? Chlorite?); CPX has dendritic texture in places, surrounded by some acicular (elongated) minerals which are dark brown in color, but it's hard to tell what it is; some vitreous mineral with obvious cleavage in CPX, grey in color (Kyanite? Altered CPX with visible cleavage?) Accessory minerals: - - Secondary minerals: 10% Possibly 2 different regions in this sample: 1) region of more regular, less altered garnets 2) a region of more altered garnets; black dark red mineral specks found in places in CPX (Rutile? Spinel? Sulfides? Phlogopite?) Comments: Two parts that are visibly different, perhaps affected by some partial melting.  145  Appendix B: Petrographic descriptions ID:  1 Sample #: Q-3903-U-A Kimberlite: CH-07 Drill Hole: CHI-251-12-DD18 Depth: 180.98 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-4 mm garnets and 2-5 mm CPXs, featuring accessory rutile and remnants of primary OPX, with secondary serpentine, CPX, phlogopite, amphibole, spinel, and carbonate and serpentine veins. Significant alteration of OPX to serpentine, some alteration of CPX to serpentine. Primary CPX: 66% Mostly xenoblastic; some grains show very low degree of alteration to serpentine; cleavage observed in half the grains (87/93); a minority of the grains show ever-so-slight undulatory extinction. Garnet: 23% Xenoblastic to hypidioblastic; surrounded by phlogopite, amphibole, serpentine, and rutile. Inclusions in garnet are rutile and CPX, but are not common.  146  OPX: 9% Xenoblastic, ~1mm in size, up to 80% altered to serpentine. Fresh OPX makes up 20% of the surface area of the grains. Rutile: 2% Xenoblastic to hypidioblastic, <1mm in size, dark red in color; found in (as inclusions) and around CPX and garnets; shows exsolution lamellae (ilmenite) obscured by the dark, deep color of the mineral. Secondary Serpentine: 7% Secondary product, almost exclusively from OPX; xenoblastic to fibrous, yellowish-green color in PPL; also found in interstitial spaces between garnets and CPXs, and in a few veins going through the slide. Phlogopite: 4% Mostly idioblastic; 0.1 to 0.5 mm in size; pleochroic (yellow) with 1 good visible cleavage; found at the edges of garnet and CPX.  Carbonate: 4% Xenoblastic, found as grains as well as veins, <1mm in size; grains found next to serpentinized OPX as well as garnets. Amphibole: 1% Interstitial, xenoblastic, <1mm in size, hard to identify; found in interstitial spaces between CPX and garnet grains; no observable cleavage. Sulfides: 1% Xenoblastic, <1mm in size, dark red in color pseudo-opaque), interstitial between garnet and CPX grains. Partial melting: Very low degree of partial melting at the edges of clinopyroxene.                 147  ID:  2 Sample #: Q-3903-U-B Kimberlite: CH-07 Drill Hole: CHI-251-12-DD18 Depth: 180.98 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite xenolith (~11mm in size) with 2-4 mm garnets and 1-5 mm CPXs with accessory rutile and fully-serpentinized remnants of OPX(?), secondary phlogopite, amphibole, serpentine, and spinel, hosted within a kimberlite rock. CPX altered to a chlorite-serpentine rich mix.  Primary CPX: 51% Xenoblastic; 80% of the grain surface area altered to a chlorite-serpentine rich mix, obscuring other features of the grains. Garnet: 43% Xenoblastic; parts of garnet altered to chlorite; surrounded by amphibole and phlogopite at the rims, with rutile inclusions inside the garnet grains.  Unknown mineral (OPX?): 5% Xenoblastic, elliptical in shape; ~1 mm in size; 100% replaced by serpentine. No fresh mineral left, therefore it is impossible to determine what it used to be. Perhaps OPX?  148  Rutile: 1% Xenoblastic to hypidioblastic; less than 0.2 mm in size; dark red in color; found in CPX as inclusions, between garnets, and in garnets as inclusions.  Secondary Chlorite-serpentine rich mix: 43% Xenoblastic, a replacement mineral in CPX; replaces ~80% of the CPX grain surface area. Serpentine: 5% Xenoblastic; three ovoid shaped grains ~1mm in size; devoid of surface grain features; completely replaced some unknown mineral (possibly OPX); yellowish green in color. Chlorite: 2% Xenoblastic; interstitial in fractures going through garnets.  Phlogopite: 2% Hypidioblastic; <1 mm in size, one good cleavage, yellowish-brown in color, pleochroic, bird’s eye extinction; found both as well defined grains and in interstitial spaces next to amphibole surrounding garnets. Amphibole: 1% Xenoblastic; <1mm in size; found in interstitial spaces between garnets; greenish-brown pleochroism; observed 60/120 cleavage.  Spinel: <1% Idioblastic; very small in size (~0.05 mm); opaque in color; found at the edges of eclogite xenolith where it contacts the kimberlite. Partial melting: Garnet closest to kimberlite partially molten and recrystallized.                  149  ID:  3 Sample #: 7S-6 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 2-5 mm CPXs with secondary CPX, zeolite, phlogopite, sulfides, spinel and amphibole. Primary CPX: 56% Xenoblastic; partially melted, up to 90% of the CPX grain surface area recrystallized; serpentine veins and rutile found in a few CPX grains; secondary CPX surrounding the primary CPX grains. Garnet: 44% Xenoblastic; partial kelyphitic rims observed in half the grains; surrounded by spinel, CPX, phlogopite, amphibole and serpentine; inclusions of CPX (round small grains) in 5-10% of garnet grains. Secondary Secondary CPX: 50% Xenoblastic; partially melted, recrystallized primary CPX taking ~90% of the grain surface area of primary CPX grains.  Zeolite: 6% Xenoblastic, radial, located in two thick veins in the slide; veins 3-5 mm in length, 0.5 mm in width.  Phlogopite: 2% Xenoblastic, interstitial; <1mm in size, found between CPXs and garnets; weakly pleochroic (yellow) with bird's eye extinction.  150  Sulfides: 2% Xenoblastic, tear shaped; ~0.5 mm in size, dark red/pink in color, sparsely spread out throughout the slide.  Amphibole: 1% Xenoblastic, interstitial; <1mm in size, found around CPXs; weakly pleochroic (dark yellow) to non-pleochroic; 60/120 cleavage a key distinction. Spinel: <1% Idioblastic, square shaped; ~0.05 mm in size, dark green in color; located between garnets and within garnet fractures. Partial melting: Extreme partial melting in CPX grains. ~90% of the surface area of the grains affected.                         151  ID:  4 Sample #: 7S-7 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 2-8 mm CPXs with secondary CPX, zeolite vein, sulfides, spinel, phlogopite, and amphibole. Primary CPX: 77% Xenoblastic; ~75% of the CPX grain surface area melted and recrystallized; a zeolite-dominant kimberlitic vein going through CPX grains; unaltered primary CPX shows twinning.  Garnet: 23% Mostly xenoblastic; ubiquitous kelyphitic rims; surrounded by secondary CPX, serpentine, rutile and spinel; CPX inclusions found in some garnet grains; heterogeneous melt pockets found within some garnet grains. Secondary Secondary CPX: 58% Molten and recrystallized primary CPX. Accounts for ~75% of the CPX grain surface area.  Amphibole: 4% Xenoblastic, interstitial; <1mm in size; dark yellow in color (not pleochroic); found around CPXs. Zeolite: 4% Xenoblastic, radial, located in thick veins in the slide; veins 3-5 mm in length, 0.5 mm in width. 152  Sulfides: 2-3% Xenoblastic, tear shaped; ~0.2 mm in size; dark red/pink in color; sparsely spread throughout the slide. Spinel: 1% Idioblastic, square shaped; ~0.05 mm in size; dark green in color; located between garnet grains, within garnet fractures, and within the kimberlitic vein. Phlogopite: <0.5% Hypidioblastic, interstitial; <1mm in size; weakly pleochroic (yellow) with bird's eye extinction. Partial melting: Pronounced partial melting in CPX grains. ~75% of the surface area of the grains affected.                        153  ID:  5 Sample #: P-5500-N1 Kimberlite: CH-07 Drill Hole: - Depth: Surface Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with aggregated 1-7 mm garnets and 2-8 mm CPXs with secondary CPX, phlogopite, amphibole, spinel, zeolite, and sulfides. Primary CPX: 55% Xenoblastic; ~85% of the CPX grain surface area partially melted; a heterogenous vein going through CPX; twinning in fresh CPX; surrounded by an occasional sulfide. Garnet: 45% Xenoblastic, aggregated; prominent kelyphitic rims observed in much of the grains; surrounded by amphibole, secondary CPX, spinel and phlogopite with inclusions of the same. Secondary Secondary CPX: 47% Xenoblastic; partially melted, recrystallized primary CPX taking ~85% of the grain surface area of primary CPX grains. Some secondary CPX is chloritized.  Amphibole: 5% Xenoblastic to hypidioblastic, interstitial; thin and elongated, up to 3 mm in length, enveloping garnets; 154  defining 60/120 cleavage; weakly pleochroic (yellowish-greenish).  Zeolite: 4% Xenoblastic, spherulitic, fibrous; bluish grey to white in color; found in veins. The veins vary in size and are spread throughout the thin section.  Spinel: 2% Idioblastic, square shaped; 0.05 mm in size; green in color; found mostly around and within garnets, also in veins. Phlogopite: 2% Xenoblastic to hypidioblastic, interstitial; <1 mm in size; yellow pleochroic in color; found around and within garnets; bird's eye extinction.  Sulfides: <1% Xenoblastic, tear shaped; <1 mm in size, dark red/pink in color; found within CPX grains; sparsely located throughout the slide.  Partial melting: CPX is heavily melted, ~85% of the primary CPX grain surface area.                       155  ID:  6 Sample #: CH7-14-S3 Kimberlite: CH-07 Drill Hole: - Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 3-7 mm garnets and 1-5 mm CPXs with some accessory rutile, and secondary CPX, phlogopite, spinel, minor sulfides, and heterogeneous pocket melts.  Primary CPX: 61% Xenoblastic; contains rutile grains with occasional phlogopite grain at the edges. ~15% of the grain surface area partially melted. Garnet: 36% Mostly xenoblastic, elliptical shaped; spinel, CPX, and phlogopite found in GRT fractures. No partial melting.  Rutile: 3% Xenoblastic; <1 mm in size, dark red in color (masks interference colors); found in CPX, between CPX and garnets. Secondary Secondary CPX: 9% Xenoblastic; partially melted, recrystallized primary CPX taking ~15% of the grain surface area of primary CPX grains. 156  Pocket melt: 3% Heterogeneous pockets of crystallized melt, consisting of phlogopite, secondary CPX, olivine, and garnet. ~0.2 mm in size. Spinel: 1% Idioblastic, square shaped; 0.05 mm in size, green and grey in color; found at the edges of garnets. Phlogopite: <1% Xenoblastic, interstitial; ~0.1 mm in size, found between garnet and CPX grains, as well as within garnet fractures. Sulfides: <0.5% Xenoblastic, round-shaped; ~0.1 mm in size; dark red in color; found mostly in CPX.  Partial melting: Partially molten CPX and crystallized pocket melts.                         157  ID:  7 Sample #: CH7-14-S4 Kimberlite: CH-07 Drill Hole: - Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 2-5 mm CPXs with some accessory rutile and secondary CPX, phlogopite, spinel, and minor amounts of sulfides. Primary CPX: 62% Xenoblastic; ~40% of the CPX is partially melted; CPX contains rutile, sulfides, and phlogopite. Garnet: 36% Xenoblastic to hypidioblastic; kelyphitic rims, orange to reddish brown in color, observed around all grains; interstitial spaces between garnets are filled with spinel, phlogopite, rutile, and secondary CPX; fresh CPX inclusions found in 10-15% of the garnet grains. Rutile: 2% Hypidioblastic to idioblastic, angular and rounded; greatly vary in size (<0.1 mm to ~0.3 mm); brown/dark red with visible cleavage; some are primary (in CPX), while others are secondary (in between garnet grains); one grain is partially melted in CPX; ilmenite exsolution lamellae found in all grains. 158  Secondary Secondary CPX: 25% Xenoblastic; partially melted, recrystallized primary CPX taking ~40% of the grain surface area. Spinel: 1% Idioblastic, square shaped; ~0.05 mm in size; green and opaque in color; secondary product of garnet alteration found at the edges of garnets and within garnet fractures. Phlogopite: 0.5% Hypidioblastic, interstitial; ~0.3 mm in size; yellow pleochroic in color; product of reactions involving garnet and CPX. Sulfides: 0.5% Idioblastic, round-shaped grains; ~0.1 mm in size; dark red in color; spread throughout the thin section, in both garnet and CPX. Partial melting: Mostly in CPX; 40% of CPX grains have been partially melted to some degree.                     159  ID:  8 Sample #: CHI-050-14-DD27 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD27 Depth: 80.1 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-4 mm garnets and 2-5 mm CPXs with secondary CPX, phlogopite, spinel, sulfides, and carbonates surrounded by kimberlite rock.  Primary Garnet: 50% Hypidioblastic; CPX and sulfide inclusions, as well as spinel and amphibole in fractures. CPX: 50% Xenoblastic; prominent cleavage; carbonate veins and serpentine alteration in some grains; 20% of CPX grain surface area partially molten and recrystallized. Secondary Secondary CPX: 10% Xenoblastic; partially melted, recrystallized primary CPX taking ~20% of the grain surface area of primary CPX grains. Sulfides: 7-8% Xenoblastic, tear to elliptical-shaped; 0.2 mm to 0.6 mm in size; dark red in color; found in between garnet and CPX grains.   160  Phlogopite: 4% Hypidioblastic to idioblastic, interstitial and bladed; 0.1 mm to 0.5 mm in size; yellow pleochroic in color; bird's eye extinction with a well-defined cleavage; located around garnets. Carbonates: 3% Xenoblastic; found in veins that originate from the surrounding kimberlite rock; veins are 0.2 mm wide on average.  Spinel: ~1% Xenoblastic to idioblastic, square to blob-shaped; ~0.05 mm in size; green and red in color. Partial melting: 20% of CPX grain surface area partially molten.                         161  ID:  9 Sample #: CHI-050-14-DD28 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD28 Depth: 104.18 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 3-6 mm garnets and 1-2 mm CPXs with primary OPX, accessory rutiles, and secondary CPX, carbonate and serpentine veins, phlogopite, spinel, and amphibole.  Primary Garnet: 72% Xenoblastic to hypidioblastic; CPX inclusions in garnets; amphibole and spinel observed at the edges of a few grains, as well as within the fractures. CPX: 15% Xenoblastic; partial melting accounts for ~30% of the grain surface area; a few grains show twinning; CPX inclusions found in garnets. OPX: 11% Xenoblastic; 1-2 mm in size; no evidence for partial melting or alteration.  Rutile: 2% Xenoblastic; ~0.1 mm in size; dark red in color, masking out the interference colors; found at garnet and CPX grain boundaries and within garnets as inclusions, but not in CPX. Secondary 162  Secondary CPX: 5% Xenoblastic; partially melted, recrystallized primary CPX taking ~30% of the grain surface area of primary CPX grains. Carbonates & serpentine veins: 2% Thin veins going through garnets and CPXs.  Phlogopite:  2% Hypidioblastic, interstitial; 0.1 mm in size; yellow pleochroic in color; located in between garnets and CPX.  Sulfides: 1-2% Xenoblastic, undefined shape; ~0.02 mm in size; dark red to pseudo opaque in PPL. Spinel: 0.5% Idioblastic, square shaped, interstitial; ~0.05 mm in size; found in interstitial spaces between garnet and CPX and within fractures in garnets. Amphibole: <0.5% Xenoblastic, interstitial; found between garnet and CPX; observed 60/120 cleavage; greenish-brown pleochroism. Partial melting: Partial melting in CPX (~30% of the grain surface area).                      163  ID:  10 Sample #: CHI-050-14-DD27 Kimberlite: CH-06 Drill Hole: CHI-050-14-DD27 Depth: 184.54 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 3-4 mm CPXs with accessory rutile, secondary CPX, amphibole, phlogopite, and spinel. Kimberlite is intruding eclogite on the side of the thin section. Primary CPX: 68% Xenoblastic; ~50% of the grain surface area partially melted and mixed with a slightly hydrous mineral, probably serpentine; rutile found within CPX.  Garnet: 30% Xenoblastic to hypidioblastic; surrounded by lots of amphibole and some phlogopite. Rutile: 2% Mostly xenoblastic; ~1 mm in size; dark brown in color with prominent ilmenite exsolution lamellae; found in CPX, close to the boundaries with garnets. Secondary Secondary CPX: 34% Xenoblastic; partially melted, recrystallized primary CPX taking ~50% of the grain surface area of primary CPX grains; mixed with a slightly hydrous phase, probably serpentine.  164  Amphibole: 10% Xenoblastic; originates from secondary garnet rim reaction; prominent 60-120 cleavage; found around and inside garnets; green-brown pleochroism. Phlogopite: 1% Xenoblastic, interstitial; found alongside amphibole; characterized by high pleochroism (very strong brown-orange color). Spinel: 1% Idioblastic, square shaped; ~0.05 mm in size; mostly found in amphibole, within the garnet rim area. Partial melting: ~50% of CPX melted, recrystallized and slightly altered to a hydrous mineral.                         165  ID:  11 Sample #: CH7-14-S8 Kimberlite: CH-07 Drill Hole: CH7-14-S8 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 1-4 mm CPXs with secondary CPX, phlogopite, amphibole, and spinel. Thick zeolite vein going through the thin section. Primary CPX: 53% Xenoblastic; very low int. colors, ~98% partially melted with a slight mixture of a hydrous mineral; the texture was not altered much from the proto mineral; fresh parts of the grain show undulatory extinction.  Garnet: 47% Xenoblastic; kelyphitic rims take up to 70% of the garnet proto-grain; 15% fresh garnet remains, and 15% is a mix of spinel, phlogopite and CPX. Secondary Secondary CPX: 50% Xenoblastic; partially melted, recrystallized primary CPX taking ~98% of the grain surface area of primary CPX grains. Mixed with phlogopite and hornblende. Some secondary CPX is idioblastic, found at the edges of CPX grains.  166  Phlogopite: 5% Hypidioblastic, interstitial; <0.1 mm in size; pleochroic (yellow) with 1 good cleavage; bird’s eye extinction. Amphibole: 2% Hypidioblastic, interstitial; <0.1 mm in size; found around garnets; low int. colors (grey); not pleochroic. Spinel: 2% Idioblastic, square shaped; ~0.05 mm in size in size; green in color; found in garnets, between kelyphitic rims and within fractures. Zeolite vein: 2% Xenoblastic, thick vein, fibrous; extending 1 cm in the slide; bluish grey color in XPL.  Partial melting: 98% of CPX partially melted.                         167  ID:  12 Sample #: CH7-14-S10-1 Kimberlite: CH-07 Drill Hole: CH7-14-S10 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite containing 2-7 mm garnets and 1-5 mm CPXs with evidence of partial melting in CPX, and presence of secondary amphibole and spinel. Primary Garnet: 55% Hypidioblastic; pink in color; secondary minerals along the fractures; rims between the grains melted and altered to opaque oxides from the spinel group. CPX: 45% Xenoblastic; up to ~20% of the CPX grain surface area partially melted; CPX altered to amphibole along the grain boundaries; some CPX grains show undulatory extinction. Rutile: <0.5% Idioblastic, spherical; very small in size <0.05 mm; very sparse. Secondary Secondary CPX: 9% Xenoblastic; partially melted, recrystallized primary CPX taking ~20% of the grain surface area. 168  Amphibole: 2% Xenoblastic, interstitial; weakly pleochroic (brown to green); a product of CPX alteration.  Spinel: <1% Idioblastic, square shaped; <0.05 mm in size; >95% concentrated at the rims of garnets and CPXs where alteration took place (in the middle of amphiboles) Quartz vein: <0.5% A thin vein of presumably quartz, undulatory extinction, no cleavage, no fractures; the vein goes exclusively through garnets; very small (0.2 um by 0.4um) euhedral opaque grains (unknown, possibly spinel) located within the vein. Partial melting: ~20% of CPX grain surface area partially melted.                       169  ID:  13 Sample #: CH7-14-S10-2 Kimberlite: CH-07 Drill Hole: CH7-14-S10 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite containing 2-7 mm garnets and 1-5 mm CPXs with evidence of partial melting in CPX, and presence of secondary amphibole and spinel. Primary Garnet: 55% Hypidioblastic; pink in color; secondary minerals along the fractures; rims between the grains melted and altered to opaque oxides from the spinel group. CPX: 45% Xenoblastic; up to ~20% of the CPX grain surface area partially melted; CPX altered to amphibole along the grain boundaries; some CPX grains show undulatory extinction. Rutile: <0.5% Idioblastic, spherical; very small in size <0.05 mm; very sparse. Secondary Secondary CPX: 9% Xenoblastic; partially melted, recrystallized primary CPX taking ~20% of the grain surface area. 170  Amphibole: 2% Xenoblastic, interstitial; weakly pleochroic (brown to green); a product of CPX alteration.  Spinel: <1% Idioblastic, square shaped; <0.05 mm in size; >95% concentrated at the rims of garnets and CPXs where alteration took place (in the middle of amphiboles) Quartz vein: <0.5% A thin vein of presumably quartz, undulatory extinction, no cleavage, no fractures; the vein goes exclusively through garnets; very small (0.2 um by 0.4um) euhedral opaque grains (unknown, possibly spinel) located within the vein. Partial melting: ~20% of CPX grain surface area partially melted.                        171  ID:  14 Sample #: CH7-14-S13 Kimberlite: CH-07 Drill Hole: CH7-14-S13 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-5 mm garnets and 2-5 mm CPXs with secondary CPX, phlogopite, olivine, amphibole, and spinel. Primary CPX: 65% Xenoblastic; ~85% of CPX is partially molten and recrystallized; polysynthetic twinning observed. Garnet: 35% Mostly xenoblastic; a third of all garnets in the thin section exhibit yellowish-brown kelyphitic rims. Rutile: <0.5% Idioblastic, found in only 3 places in the thin section; the interference colors are completely masked by a deep dark red color. Secondary Secondary CPX: 55% Xenoblastic; partially melted, recrystallized primary CPX taking ~85% of the grain surface area of primary CPX grains.  Phlogopite: <1% Xenoblastic, interstitial; <0.3 mm in size; clearly visible with parallel extinction and weak pleochroism (pale yellow with a tinge of brown). 172  Olivine: <0.5% Idioblastic; 0.2 mm in size; found in between garnet and CPX in a metasomatic vein going through the slide.  Amphibole: <0.5% Interstitial, rare; <0.2 mm in size; weakly pleochroic (brown/green); found between primary grains. Spinel: <0.5% Idioblastic, square-shaped; <0.05 mm in size; green in color; located at the boundaries of CPX & garnet, within amphibole and phlogopite. Partial melting: ~85% of CPX partially melted and recrystallized.                          173  ID:  15 Sample #: CH7-14-S9 Kimberlite: CH-07 Drill Hole: CH7-14-S9 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 2-9 mm garnets, 2-5 mm CPXs, and 1-2 mm kyanites with secondary chloritized CPX, corundum, and spinel.  Primary Garnet: 45% Xenoblastic, undefined shape; inclusions of kyanite found in garnets; some grains have orange kelyphitic rims that surround them. CPX: 35% Xenoblastic; heavily altered to chlorite (~99.9% on average). <0.1% of fresh CPX, impossible to probe.  Kyanite: 20% Hypidioblastic, tear shaped, easily observed; prominent cleavage; yellow to white in color; fibrous mineral around the edges common (secondary corundum); simple twinning often present.   Secondary Chloritized CPX: 35% Xenoblastic; partially molten and recrystallized, then chloritized; takes up 99.9% of what used to be fresh CPX.  174  Corundum: 2% Idioblastic, needly; <0.3 mm in size; secondary product of kyanite; found as needles on the edges of kyanites.  Spinel: 1% Idioblastic, square-shaped; <0.05 mm in size; green in color; located around garnets.  Secondary CPX: 0.1% Xenoblastic; partially melted and recrystallized, found at the edges of altered CPX grains. Impossible to probe.  Partial melting: Partial melting and chloritization in 99.9% of CPX.                           175  ID:  16 Sample #: CH7-14-S7 Kimberlite: CH-07 Drill Hole: CH7-14-S7 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 1-5 mm garnets and 2-5 mm CPXs with accessory rutile, secondary phlogopite, spinel, and sulfides. Primary Garnet: 49% Hypidioblastic; mostly composed of prominent kelyphitic rims (80%), fresh garnet (15%), an occasional sulfide and rutile (3%), spinel (1%), and secondary CPX (1%); garnet edges and fractures altered to spinel and sulfides. CPX: 49% Xenoblastic; ~98% partially melted and mixed with a hydrous mineral (chlorite and phlogopite); CPX contains rutiles. Rutile: 2% Hypidioblastic to idioblastic, varies in shape; 0.5-1.25 mm in size; mostly primary, but a lower percentage is identified as secondary inside garnet; dark brown in color; ilmenite exsolution lamellae in rutile. 176  Secondary Chloritized (altered) CPX: 48% Xenoblastic; partially melted and recrystallized, mixed with a slightly hydrous mineral (chlorite and/or phlogopite).  Phlogopite: <1% Xenoblastic, interstitial; 0.01 mm in size; yellow to golden brown in color; in-between grains (CPX & garnet) and in garnet. Spinel: 1% Idioblastic, square-shaped; ~0.05 mm in size; green in color; all are secondary products of garnet. Sulfides: 1% Xenoblastic, undefined; <0.1 mm in size; pseudo opaque and dark red in color.  Partial melting: Partial melting and alteration in CPX.                         177  ID:  17 Sample #: CH7-14-S14-A Kimberlite: CH-07 Drill Hole: CH7-14-S14 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 1-5 mm garnets and 1-5 mm CPXs with secondary CPX, spinel, phlogopite, and zeolite veins. Primary Garnet: 57% Hypidioblastic; zeolite vein infilling garnet fractures; CPX inclusions <0.1 mm in size; presence of thin kelyphitic rims in all garnet grains; secondary phlogopite and spinel found at the edges. CPX: 43% Xenoblastic; partial melting affected up to 80% of the CPX grains' surface area; some grains have exsolution lamellae; some grains show slight undulatory extinction. Secondary Secondary CPX: 34% Xenoblastic; a product of partial melting and recrystallization of CPX grains.   178  Phlogopite: 1% Xenoblastic, interstitial; ~0.1 mm in size; pleochroic brown in color; found in between garnets and CPX. Sulfides 1% Xenoblastic, undefined shape; <0.1 mm in size; pseudo opaque and dark red in color. Zeolite: 1% Xenoblastic, vein; found in thick and thin veins that go through CPXs and garnets. Origin in metasomatic kimberlitic veins. Spinel: 0.5% Idioblastic, square-shaped; <0.05 mm in size; green in color; found at the edges of garnets.  Partial melting: Partial melting observed in CPX, up to 80% of the grain surface area.                       179  ID:  18 Sample #: CH7-14-S14-B Kimberlite: CH-07 Drill Hole: CH7-14-S14 Depth: - Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 1-5 mm garnets and 1-5 mm CPXs with secondary CPX, spinel, phlogopite, and zeolite veins. Primary Garnet: 57% Hypidioblastic; zeolite vein infilling garnet fractures; CPX inclusions <0.1 mm in size; presence of thin kelyphitic rims in all garnet grains; secondary phlogopite and spinel found at the edges. CPX: 43% Xenoblastic; partial melting affected up to 80% of the CPX grains' surface area; some grains have exsolution lamellae; some grains show slight undulatory extinction. Secondary Secondary CPX: 34% Xenoblastic; a product of partial melting and recrystallization of CPX grains.   180  Phlogopite: 1% Xenoblastic, interstitial; ~0.1 mm in size; pleochroic brown in color; found in between garnets and CPX. Sulfides 1% Xenoblastic, undefined shape; <0.1 mm in size; pseudo opaque and dark red in color. Serpentine: 1% Xenoblastic, vein; found in thick and thin veins that go through CPXs and garnets. Origin in metasomatic kimberlitic veins. Spinel: 0.5% Idioblastic, square-shaped; <0.05 mm in size; green in color; found at the edges of garnets.  Partial melting: Partial melting observed in CPX, up to 80% of the grain surface area.                       181  ID:  19 Sample #: CHI-251-14-DD19 Kimberlite: CH-07 Drill Hole: CHI-251-14-DD19 Depth: 162.09 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 1-3 mm garnets and 1-4 mm CPXs with accessory rutile, secondary CPX, phlogopite, carbonate, quartz and serpentine veins, amphibole, spinel, and rare sulfides. Eclogite-kimberlite boundary visible in the slide.  Primary CPX: 65% Xenoblastic; ~20% of the grain surface area partially melted and recrystallized; some grains show undulatory extinction; CPXs contain rutile and secondary CPX is observed at the boundaries with garnets. Garnet: 33% Hypidioblastic to idioblastic; ~5% partial melting around the fractures; round shaped CPX inclusions in garnets; amphibole and phlogopite around garnets; some spinel within the fractures. Rutile: 2% Hypidioblastic; 0.5 mm in size; dark red to brown in color with visible ilmenite exsolution lamellae.  Secondary 182  Secondary CPX: 13% Xenoblastic; partially molten primary CPX that recrystallized to secondary CPX. ~20% of the primary CPX grain surface area affected.  Phlogopite: 4% Xenoblastic to hypidioblastic, interstitial; pleochroic (yellow to golden brown); surrounds garnet grains.  Carbonate, serpentine, quartz metasomatic veins: 2% Xenoblastic, metasomatic veins; carbonate dominant (~85%); goes through most of the slide.  Amphibole: 1% Xenoblastic, interstitial; found around garnets; weakly pleochroic. Spinel: <0.5% Idioblastic, square-shaped, opaque; <0.05 mm in size; only found within a few garnet fractures. Sulfides: <0.5% Idioblastic, round shaped; <0.1 mm in size; found in CPX.   Partial melting: Partial melting in CPX, but to a much lesser degree than in most other thin sections. (~20% of the CPX grain surface area affected)                     183  ID:  20 Sample #: CHI-251-14-DD19 Kimberlite: CH-07 Drill Hole: CHI-251-14-DD19 Depth: 175.26 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 1-4 mm garnets and ~2 mm CPXs with an unknown, completely serpentinized grain (most probably OPX or olivine), accessory rutile, secondary CPX, serpentine, amphibole, carbonate and serpentine veins, phlogopite, and spinel. Primary Garnet: 70% Mostly xenoblastic; minor partial melting along the fractures; surrounded by amphibole at the edges and within the fractures; inclusions of CPX (small round-shaped grains); metasomatic veins going through garnets.  CPX: 19% Xenoblastic; ~65% of the grain surface area partially melted. OPX or olivine: 9% Xenoblastic; 100% serpentinized grains, 3-5 mm in size; unable to determine the proto-grain, possibly OPX or olivine.  184  Rutile: 2% Xenoblastic to hypidioblastic; 0.1 mm in size; dark red in color; ilmenite exsolution lamellae; often surrounded by amphibole; found in CPX, close to garnet edges. Secondary Secondary CPX:  11% Xenoblastic; melted and recrystallized parts of primary CPX grains.  Serpentine 9% Xenoblastic; replacement mineral for a primary silicate mineral, most probably OPX or olivine; greenish-yellow in color; 3-5 mm in size.  Amphibole: 5% Xenoblastic, interstitial; found around and within garnet fractures; greenish-brown in color (pleochroic). Carbonate, serpentine, quartz metasomatic veins: 4% Xenoblastic, thin veins; metasomatic in nature, originating from the surrounding kimberlite; calcite makes up the majority of the vein composition. Phlogopite: 1% Mostly xenoblastic, interstitial; found around garnets.  Spinel: <0.5% Idioblastic, square-shaped; <0.05 mm in size; green in color; found in garnet fractures. Partial melting: Some minor partial melting in garnet fractures. ~65% of the CPX proto-grain partially melted and recrystallized.                  185  ID:  21 Sample #: CHI-258-14-DD15 Kimberlite: CH-44 Drill Hole: CHI-258-14-DD15 Depth: 163.07 Rock type: Eclogite Texture:  Granoblastic  Overall description: An eclogite with 0.5-3 mm garnets and 1-7 mm CPXs with secondary CPX, phlogopite, sulfides, spinel, and metasomatic veins going through the slide. Primary CPX: 75% Xenoblastic; two modes: coarse (>1 mm) and fine (<1 mm); ~10% of the grain surface area partially melted; contains garnet inclusions; metasomatic carbonate veins go through the grains.  Garnet: 25% Xenoblastic; two modes: coarse (>1 mm) and fine (<1 mm); very low levels of partial melting, around thicker fractures (5%); surrounded by CPX and phlogopite with carbonate, CPX and sulfide inclusions. Secondary Secondary CPX: 8% Xenoblastic; partially melted and recrystallized parts of proto-CPX. Mostly at the edges of CPX grains.  186  Carbonate, serpentine, quartz veins: 5% Xenoblastic, heterogeneous thin veins; metasomatic in nature; comes from the kimberlite.  Sulfides: 4% Xenoblastic, ellipsoid and kidney-shaped; ~0.5 mm in size; pseudo-opaque, dark red in color.  Phlogopite: 4% Idioblastic to hypidioblastic laths spread throughout the slide; weakly pleochroic (green) with bird's eye extinction; has twinning. Spinel: <0.5% Idioblastic, square-shaped; ~0.05 mm in size; pseudo-opaque, dark red in color; located around garnets. Partial melting: Partial melting in about 10% of the proto-CPX grain surface area.      Calculated minimum detection limits (MDL) for primary and secondary minerals in Chidliak eclogites 187 All MDL values expressed in wt. %. Appendix C: Major element chemistry of Chidliak eclogites and equilibrium temperatures   Garnet CPX Rutile OPX Kyanite Olivine Chlorite Serpentine Mica Amphibole Carbonate Spinel ZeoliteSiO2 0.06 0.06 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.06TiO2 0.05 0.05 0.07 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04Al2O3 0.04 0.04 0.08 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.09 0.04Cr2O3 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.07FeO (T) 0.08 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.08 0.06MnO 0.07 0.07 0.07 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.07 0.07 0.06MgO 0.03 0.03 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.07 0.03CaO 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.04Na2O 0.02 0.02 - 0.04 0.02 0.06 0.03 0.04 0.04 0.05 0.04 - 0.05K2O - 0.02 - 0.02 - 0.02 - 0.02 0.03 0.03 0.02 - 0.02Nb2O5 - - 0.18 - - - - - - - - 0.16 -NiO - - 0.10 - - - - - - - - 0.09 -Table 1 - Major element chemistry of the minerals from Q-3903-U-A OPX-bearing eclogite xenolith 188 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Primary Secondary Secondary Secondary Secondary SecondaryPoint name - - - - cpx3-1 cpx2-6 - - rutile1-5Mineral garnet* cpx* opx rutile clinopyroxenecpx & serpentine phlogopite serpentine ilmeniteDescription c=r c=r c=r c=rpartially molten & recrystallizedserpentinized fracture in cpx c=r c=rlamellae in rutileNumber of analyses averaged 11 10 12 7 - - 8 10 -SiO2 42.68 54.84 57.96 <MDL 53.99 36.31 41.72 37.86 <MDLTiO2 0.34 0.38 0.09 95.69 0.26 0.48 0.78 0.11 55.57Al2O3 24.12 3.91 0.42 <MDL 1.55 5.26 11.75 0.70 0.22Cr2O3 0.19 0.14 <MDL 0.49 0.15 0.11 <MDL <MDL 0.34FeO (T) 7.55 2.79 4.61 1.04 2.80 5.33 2.95 6.15 29.28MnO 0.36 0.08 0.11 <MDL 0.13 0.12 <MDL 0.11 0.57MgO 21.95 15.83 36.78 0.08 17.55 35.27 25.82 36.13 12.39CaO 3.41 18.43 0.31 <MDL 21.79 0.07 <MDL 0.08 <MDLNa2O 0.10 2.97 0.13 - 1.13 0.07 0.22 0.05 -K2O - 0.03 <MDL - 0.03 0.05 10.89 0.02 -Nb2O5 - - - 1.77 - - - - 0.19NiO - - - <MDL - - - - <MDLTotal 100.68 99.40 100.40 99.08 99.38 83.08 94.13 81.22 98.57Oxygens 12 6 6 2 6 14 11 14 3Si4+ 2.981 1.983 1.975 <MDL 1.971 3.629 2.989 3.886 <MDLTi4+ 0.018 0.010 0.002 0.977 0.007 0.036 0.042 0.009 0.979Al3+1.985 0.167 0.017 <MDL 0.067 0.620 0.992 0.085 0.006Cr3+ 0.010 0.004 <MDL 0.005 0.004 0.009 <MDL <MDL 0.006Fe (T) 0.441 0.084 0.131 0.012 0.085 0.446 0.177 0.528 0.573Mn2+ 0.021 0.003 0.003 <MDL 0.004 0.010 <MDL 0.010 0.011Mg2+2.285 0.853 1.869 0.002 0.955 5.253 2.757 5.528 0.432Ca2+0.255 0.714 0.011 <MDL 0.852 0.008 <MDL 0.008 <MDLNa+ 0.014 0.208 0.009 - 0.080 0.014 0.030 0.009 -K+ - 0.001 <MDL - 0.002 0.007 0.996 0.003 -Nb5+ - - - 0.047 - - - - 0.009Ni2+- - - <MDL - - - - <MDLX3(Ca, Fe, Mn, Mg) 3.002 - - - - - - - -Cation sum 8.010 4.027 4.017 1.043 4.028 10.031 7.983 10.066 2.017T (°C)aT (°C)bT (°C)cT (°C)dTable 2 - Major element chemistry of the minerals from Q-3903-U-B OPX-bearing eclogite xenolith 189 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit)  Primary of secondary? Primary Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name grt2-3 cpx2-2 - grt3-4 grt3-3 grt1-5 cpx1-5 cpx1-6 cpx1-8 cpx2-5 cpx2-6 cpx2-7 cpx3-6 cpx3-7 cpx3-8 -Mineral garnet* cpx* rutile garnet garnet chlorite serpentineDescription core c=r c=rpartially molten & recrystallizedpartially molten & recrystallizedchloritized garnet fractureserpentinized opx (?)Number of analyses averaged - - 4 - - - - - - - - - - - - 4SiO2 41.23 55.75 <MDL 40.14 40.72 29.27 24.84 32.15 34.40 23.94 25.94 32.36 23.92 24.03 32.86 37.38TiO2 0.64 0.49 97.57 0.61 0.53 0.77 0.24 0.50 0.52 1.08 0.98 0.70 0.90 0.11 0.38 0.15Al2O3 22.63 5.54 <MDL 22.50 22.71 15.61 7.04 4.48 2.89 8.83 8.07 4.89 8.71 7.34 2.98 0.95Cr2O3 <MDL <MDL <MDL <MDL <MDL <MDL <MDL 0.07 <MDL <MDL <MDL <MDL 0.12 <MDL <MDL <MDLFeO (T) 15.23 5.91 0.83 17.95 16.55 11.87 4.19 4.83 4.72 4.47 5.30 4.74 3.97 3.99 5.12 6.87MnO 0.43 0.10 <MDL 0.43 0.41 0.26 <MDL <MDL <MDL 0.09 <MDL 0.10 <MDL <MDL <MDL 0.08MgO 15.24 13.08 <MDL 13.15 14.38 23.34 38.81 38.56 37.92 37.99 36.53 36.10 37.93 38.89 38.42 36.30CaO 5.17 15.66 0.04 5.53 5.26 0.81 0.04 0.08 0.07 0.08 0.11 1.38 0.05 <MDL 0.05 0.06Na2O 0.15 3.88 - 0.11 0.15 0.50 0.04 0.04 0.05 0.05 0.05 0.15 0.04 0.04 0.10 0.09K2O - 0.05 - - - - <MDL 0.03 <MDL 0.17 0.31 0.14 0.12 <MDL <MDL 0.02Nb2O5 - - 1.49 - - - - - - - - - - - - -NiO - - <MDL - - - - - - - - - - - - -Total 100.71 100.46 99.92 100.42 100.71 82.44 75.20 80.74 80.56 76.70 77.29 80.56 75.77 74.40 79.89 81.89O 12 6 2 12 12 14 14 14 14 14 14 14 14 14 14 14Si4+ 3.000 2.001 <MDL 2.973 2.982 3.066 2.805 3.340 3.558 2.663 2.861 3.381 2.684 2.745 3.451 3.827Ti4+ 0.035 0.013 0.984 0.034 0.029 0.061 0.020 0.039 0.040 0.090 0.081 0.055 0.076 0.009 0.030 0.011Al3+1.940 0.234 <MDL 1.963 1.960 1.927 0.936 0.549 0.352 1.158 1.049 0.602 1.151 0.988 0.368 0.115Cr3+ <MDL <MDL <MDL <MDL <MDL <MDL <MDL 0.006 <MDL <MDL <MDL <MDL 0.011 <MDL <MDL <MDLFe (T) 0.927 0.178 0.009 1.111 1.014 1.040 0.395 0.420 0.408 0.416 0.489 0.414 0.373 0.381 0.449 0.588Mn2+ 0.026 0.003 <MDL 0.027 0.026 0.023 <MDL <MDL <MDL 0.009 <MDL 0.009 <MDL <MDL <MDL 0.007Mg2+1.653 0.700 <MDL 1.452 1.569 3.645 6.532 5.972 5.847 6.300 6.006 5.621 6.343 6.620 6.014 5.539Ca2+0.403 0.602 0.001 0.439 0.413 0.090 0.004 0.009 0.008 0.009 0.013 0.155 0.007 <MDL 0.006 0.006Na+ 0.021 0.270 - 0.016 0.021 0.102 0.009 0.008 0.009 0.010 0.011 0.031 0.009 0.010 0.020 0.018K+ - 0.002 - - - - <MDL 0.004 <MDL 0.025 0.044 0.018 0.017 <MDL <MDL 0.002Nb5+ - - 0.039 - - - - - - - - - - - - -Ni2+- - <MDL - - - - - - - - - - - - -X3(Ca, Fe, Mn, Mg) 3.009 - - 3.029 3.021 - - - - - - - - - - -Cation sum 8.005 4.004 1.033 8.015 8.014 9.955 10.702 10.347 10.223 10.680 10.553 10.286 10.671 10.753 10.338 10.113T (°C)aT (°C)bT (°C)cT (°C)dChlorite-serpentine rich mix of secondary minerals replacing CPX.Table 3 - Major element chemistry of the minerals from 7S-6 eclogite xenolith 190 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name - - chl-on-cpx1-1 chl-on-cpx1-2 - phl2-3 phl3-3 - spl1-1 - vein-1 vein-2Mineral garnet* cpx* clinopyroxene clinopyroxene phlogopite phlogopite phlogopite spinel spinel Wustite (FeO) Stilbite-Ca Stilbite-CaDescription c=r c=rpartially molten & recrystallizedpartially molten & recrystallized c=rrim, high Alrim, high Alsecondary product of garnet high Al, high Mg in sulfide zeolite vein zeolite veinNumber of analyses averaged 9 8 - - 9 - - 3 - 4 - -SiO2 41.92 55.08 54.06 53.41 39.86 38.81 38.49 0.29 0.07 0.28 37.21 35.99TiO2 0.32 0.48 0.39 0.40 3.46 2.86 2.39 0.15 0.07 0.07 <MDL <MDLAl2O3 23.61 5.22 2.25 1.09 13.78 15.04 16.06 61.57 64.87 0.13 28.77 29.95Cr2O3 <MDL 0.07 0.09 0.12 0.07 0.08 0.10 0.45 0.39 <MDL <MDL <MDLFeO (T) 10.55 4.30 4.71 5.12 5.12 5.64 5.79 18.15 13.96 91.97 <MDL <MDLMnO 0.30 0.08 0.10 0.11 <MDL <MDL 0.09 0.30 0.24 <MDL <MDL <MDLMgO 20.10 14.42 17.56 18.38 21.61 21.68 21.58 18.88 20.09 0.43 <MDL <MDLCaO 2.96 15.40 18.59 18.76 <MDL 0.05 0.26 0.07 <MDL 0.09 13.45 11.87Na2O 0.12 4.15 1.78 0.94 0.47 1.12 0.86 - - - 3.41 3.26K2O - 0.04 <MDL 0.03 10.02 9.03 9.36 - - - 0.02 0.02Nb2O5 - - - - - - - 0.04 0.00 0.00 - -NiO - - - - - - - <MDL <MDL 0.77 - -Total 99.87 99.24 99.52 98.35 94.38 94.31 94.98 99.91 99.70 93.73 82.86 81.09O 12 6 6 6 11 11 11 4 4 1 14 14Si4+2.986 1.992 1.970 1.975 2.870 2.799 2.763 0.008 0.002 0.004 3.642 3.577Ti4+ 0.017 0.013 0.011 0.011 0.187 0.155 0.129 0.003 0.001 0.001 <MDL <MDLAl3+ 1.982 0.223 0.097 0.048 1.169 1.278 1.359 1.886 1.945 0.002 3.319 3.507Cr3+ <MDL 0.002 0.003 0.004 0.004 0.005 0.006 0.009 0.008 <MDL <MDL <MDLFe (T) 0.629 0.130 0.144 0.158 0.308 0.340 0.348 0.395 0.297 0.973 <MDL <MDLMn2+0.018 0.002 0.003 0.003 <MDL <MDL 0.005 0.007 0.005 <MDL <MDL <MDLMg2+ 2.134 0.778 0.954 1.013 2.319 2.330 2.309 0.731 0.762 0.008 <MDL <MDLCa2+ 0.226 0.597 0.726 0.743 <MDL 0.004 0.020 0.002 <MDL 0.001 1.411 1.264Na+ 0.016 0.291 0.126 0.067 0.066 0.156 0.119 - - - 0.647 0.628K+- 0.002 <MDL 0.002 0.921 0.831 0.857 - - - 0.002 0.003Nb5+- - - - - - - 0.001 0.000 0.000 - -Ni2+ - - - - - - - <MDL <MDL 0.012 - -X3(Ca, Fe, Mn, Mg) 3.007 - - - - - - - - - - -Cation sum 8.008 4.029 4.033 4.023 7.845 7.898 7.914 3.040 3.020 1.000 9.021 8.978T (°C)aT (°C)bT (°C)cT (°C)dTable 4 - Major element chemistry of the minerals from 7S-7 eclogite xenolith 191 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary SecondaryPoint name grt3-2 - - cpx1-5 - -Mineral garnet* cpx* cpx cpx hornblende Stilbite-CaDescription corefresh primary cpx and cpx inclusions in garnetpartially molten & recrystallized small secondary cpx grains recrystallized at the edges of primary cpx grains c=r zeolite vein Number of analyses averaged - 9 2 - 2 2SiO2 40.38 54.65 53.02 52.61 41.08 36.85TiO2 0.61 0.53 0.56 0.59 0.83 <MDLAl2O3 22.81 8.63 3.71 5.98 17.01 29.60Cr2O3 0.38 0.36 0.37 0.45 0.32 <MDLFeO (T) 13.83 4.15 4.76 4.60 10.06 0.11MnO 0.31 <MDL 0.08 0.07 0.16 <MDLMgO 14.10 10.91 14.60 13.54 13.98 <MDLCaO 8.06 14.27 19.31 17.80 9.20 12.61Na2O 0.20 5.29 2.27 3.03 3.60 3.01K2O - 0.06 0.11 <MDL 1.02 0.06Total 100.67 98.86 98.78 98.68 97.25 82.25O 12 6 6 6 23 14Si4+2.953 1.975 1.956 1.933 5.948 3.618Ti4+ 0.033 0.015 0.015 0.016 0.090 <MDLAl3+ 1.965 0.368 0.161 0.259 3.032 3.424Cr3+ 0.022 0.010 0.011 0.013 0.022 <MDLFe (T) 0.845 0.126 0.147 0.141 1.248 0.009Mn2+ 0.019 <MDL 0.002 0.002 0.021 <MDLMg2+1.536 0.588 0.803 0.741 3.000 <MDLCa2+0.632 0.552 0.763 0.701 1.476 1.326Na+ 0.029 0.371 0.162 0.216 0.986 0.572K+ - 0.003 0.005 <MDL 0.210 0.008X3(Ca, Fe, Mn, Mg) 3.033 - - - - -Cation sum 8.035 4.007 4.026 4.023 16.033 8.957T (°C)aT (°C)bT (°C)cT (°C)dTable 5 - Major element chemistry of the minerals from P-5500-N1 eclogite xenolith 192 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name - cpx3-4 - cpx3-5 cpx2-5 cpx3-6 cpx3-7 -Mineral garnet* cpx* garnet cpx cpx cpx cpx hornblendeDescription c=r core high Mg, low Capartially molten & recrystallizedpartially molten & recrystallized chloritized chloritized c=rNumber of analyses averaged 2 - 2 - - - - 6SiO2 40.49 54.65 40.30 53.54 53.62 52.38 52.74 40.84TiO2 0.68 0.48 0.51 0.50 0.59 0.14 0.22 1.56Al2O3 22.64 8.63 23.22 1.89 2.58 18.67 13.58 15.87Cr2O3 0.36 0.30 0.37 0.44 0.32 0.16 0.17 0.23FeO (T) 13.09 4.22 13.11 4.97 5.76 1.17 2.25 9.03MnO 0.30 <MDL 0.28 0.07 <MDL <MDL <MDL 0.14MgO 13.26 10.66 14.48 15.73 14.99 3.16 6.86 14.66CaO 9.14 14.22 7.57 20.92 19.55 4.99 10.02 9.55Na2O 0.21 5.33 0.17 1.41 1.44 3.93 3.53 3.56K2O - 0.05 - 0.08 0.88 0.53 0.70 1.05Total 100.15 98.54 100.02 99.53 99.73 85.15 90.07 96.49O 12 6 12 6 6 6 6 23Si4+ 2.973 1.981 2.950 1.969 1.972 2.049 2.019 6.012Ti4+ 0.037 0.013 0.028 0.014 0.016 0.004 0.006 0.173Al3+ 1.960 0.369 2.003 0.082 0.112 0.861 0.613 2.754Cr3+ 0.021 0.009 0.022 0.013 0.009 0.005 0.005 0.026Fe (T) 0.804 0.128 0.803 0.153 0.177 0.038 0.072 1.112Mn2+ 0.019 <MDL 0.018 0.002 <MDL <MDL <MDL 0.017Mg2+1.451 0.576 1.580 0.862 0.822 0.185 0.392 3.218Ca2+0.719 0.552 0.594 0.824 0.770 0.209 0.411 1.506Na+0.030 0.375 0.024 0.100 0.102 0.298 0.262 1.015K+ - 0.002 - 0.004 0.041 0.027 0.034 0.197X3(Ca, Fe, Mn, Mg) 2.993 - 2.994 - - - - -Cation sum 8.014 4.005 8.022 4.022 4.022 3.676 3.813 16.030T (°C)aT (°C)bT (°C)cT (°C)dTable 6 - Major element chemistry of the minerals from CH7-14-S3 eclogite xenolith 193 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name garnet3-6 - - - cpx3-5 mp1-1 mp1-5 mp2-4 mp3-1Mineral garnet* cpx* garnet cpx cpx cpx garnet olivine phlogopiteDescription core c=r High Mg, low Capartially molten & recrystallizedpartially molten & recrystallizedrecrystallized secondary cpx from melt pocketsecondary garnet from melt pocketsecondary olivine from melt pocketsecondary phlogopite from melt pocketNumber of analyses averaged - 16 2 2 - - - - -SiO2 41.40 54.58 41.28 52.70 54.20 48.07 41.13 39.72 37.01TiO2 0.26 0.23 0.35 0.29 0.22 1.25 0.35 <MDL 3.22Al2O3 23.20 2.73 23.41 2.54 1.49 8.16 22.54 <MDL 17.65Cr2O3 0.16 0.15 0.15 0.12 0.21 <MDL 0.19 <MDL 0.27FeO (T) 11.09 3.62 11.18 3.80 3.62 6.04 11.21 12.37 6.75MnO 0.35 <MDL 0.35 0.07 <MDL 0.25 0.39 0.19 <MDLMgO 17.62 15.74 18.90 16.12 16.85 14.50 17.67 48.07 19.83CaO 5.82 20.72 4.16 22.76 22.05 20.38 6.56 <MDL <MDLNa2O 0.06 2.01 0.09 0.90 1.12 0.72 0.07 <MDL 0.67K2O - 0.03 - 0.02 <MDL 0.02 <MDL <MDL 9.34Total 99.97 99.81 99.87 99.31 99.75 99.39 100.11 100.36 94.74O 12 6 12 6 6 6 12 4 11Si4+ 2.984 1.982 2.966 1.940 1.977 1.781 2.973 0.982 2.674Ti4+0.014 0.006 0.019 0.008 0.006 0.035 0.019 <MDL 0.175Al3+1.970 0.117 1.982 0.110 0.064 0.356 1.920 <MDL 1.502Cr3+ 0.009 0.004 0.008 0.003 0.006 <MDL 0.011 <MDL 0.016Fe (T) 0.668 0.110 0.672 0.117 0.110 0.187 0.678 0.256 0.408Mn2+ 0.021 <MDL 0.021 0.002 <MDL 0.008 0.024 0.004 <MDLMg2+ 1.892 0.852 2.024 0.885 0.916 0.801 1.905 1.771 2.135Ca2+ 0.450 0.806 0.320 0.898 0.862 0.809 0.508 <MDL <MDLNa+0.009 0.141 0.013 0.064 0.079 0.052 0.010 <MDL 0.094K+ - 0.002 - 0.001 <MDL 0.001 <MDL <MDL 0.861X3(Ca, Fe, Mn, Mg) 3.031 - 3.038 - - - - - -Cation sum 8.017 4.021 8.026 4.028 4.020 4.030 8.047 3.013 7.865T (°C)aT (°C)bT (°C)cT (°C)dTable 7 - Major element chemistry of the minerals from CH7-14-S4 eclogite xenolith 194 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary SecondaryPoint name - - rutile2-1 rutile1-5Mineral garnet* cpx* rutile ilmeniteDescription c=rfresh cpx and cpx inclusions in garnet c=r lamellae in rutileNumber of analyses averaged 3 27 - -SiO2 39.31 54.79 <MDL <MDLTiO2 0.13 0.14 99.60 54.81Al2O3 22.52 5.12 <MDL <MDLCr2O3 <MDL <MDL <MDL 0.18FeO (T) 20.68 5.48 0.10 38.97MnO 0.42 <MDL <MDL 0.43MgO 9.18 12.39 <MDL 5.11CaO 7.95 18.53 0.11 0.06Na2O 0.07 3.30 - -K2O - 0.09 - -Nb2O5 - - <MDL <MDLNiO - - <MDL <MDLTotal 100.27 99.85 99.81 99.56O 12 6 2 3Si4+2.974 1.991 <MDL <MDLTi4+ 0.008 0.004 0.998 1.002Al3+ 2.008 0.219 <MDL <MDLCr3+ <MDL <MDL <MDL 0.003Fe (T) 1.308 0.167 0.001 0.792Mn2+0.027 <MDL <MDL 0.009Mg2+ 1.035 0.671 <MDL 0.185Ca2+ 0.644 0.721 0.002 0.002Na+ 0.011 0.233 - -K+- 0.004 - -Nb5+- - <MDL <MDLNi2+ - - <MDL <MDLX3(Ca, Fe, Mn, Mg) 3.015 - - -Cation sum 8.015 4.010 1.000 1.993T (°C)aT (°C)bT (°C)cT (°C)dTable 8 - Major element chemistry of the minerals from CHI-050-14-DD27 (@ 80.1) eclogite xenolith 195 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name - - - - phl2-5 - - hbl3-2 - - -Mineral garnet* cpx* cpx cpx phlogopite phlogopite phlogopite hornblende hornblende hornblende hornblendeDescriptionpartially molten & recrystallizedpartially molten & recrystallized core rim core core core core coreNumber of analyses averaged 10 2 2 3 - 2 5 - 2 2 3SiO2 40.90 55.59 53.80 54.06 39.70 38.91 39.29 41.27 40.62 40.06 40.15TiO2 0.21 0.25 0.26 0.22 1.64 1.59 1.75 1.49 2.41 0.86 1.31Al2O3 23.43 4.23 2.64 3.75 13.19 15.47 14.78 15.16 15.44 15.82 16.63Cr2O3 0.13 0.14 0.13 0.07 0.39 0.22 0.28 <MDL 0.17 <MDL 0.10FeO (T) 14.72 3.70 4.34 4.48 4.95 6.07 5.88 7.71 7.39 9.93 8.91MnO 0.36 <MDL 0.09 0.07 0.07 <MDL <MDL 0.14 0.12 0.25 0.16MgO 16.94 14.50 16.44 14.25 23.05 21.95 22.31 16.92 15.93 14.88 15.34CaO 3.66 18.40 21.13 20.44 0.09 0.06 <MDL 10.10 10.63 11.34 10.62Na2O 0.07 3.21 1.08 2.39 0.43 1.00 0.67 2.99 2.80 2.39 2.75K2O - <MDL <MDL <MDL 10.47 9.29 9.86 0.86 1.02 1.33 0.89Total 100.42 100.02 99.92 99.74 93.99 94.55 94.83 96.64 96.55 96.86 96.85O 12 6 6 6 11 11 11 23 23 23 23Si4+ 2.965 2.000 1.960 1.972 2.884 2.805 2.827 6.019 5.945 5.927 5.887Ti4+ 0.012 0.007 0.007 0.006 0.090 0.086 0.095 0.164 0.266 0.095 0.144Al3+ 2.001 0.179 0.113 0.161 1.130 1.314 1.254 2.606 2.664 2.758 2.873Cr3+ 0.007 0.004 0.004 0.002 0.023 0.012 0.016 <MDL 0.019 <MDL 0.012Fe (T) 0.892 0.111 0.132 0.137 0.301 0.366 0.354 0.940 0.904 1.228 1.093Mn2+ 0.022 <MDL 0.003 0.002 0.004 <MDL <MDL 0.017 0.015 0.031 0.020Mg2+1.830 0.778 0.892 0.775 2.496 2.359 2.394 3.679 3.476 3.282 3.354Ca2+0.284 0.709 0.825 0.799 0.007 0.004 <MDL 1.579 1.667 1.798 1.668Na+0.010 0.224 0.076 0.169 0.061 0.139 0.093 0.847 0.794 0.687 0.782K+ - <MDL <MDL <MDL 0.970 0.854 0.905 0.160 0.191 0.251 0.166X3(Ca, Fe, Mn, Mg) 3.029 - - - - - - - - - -Cation sum 8.024 4.012 4.013 4.024 7.965 7.940 7.937 16.011 15.940 16.058 16.000T (°C)aT (°C)bT (°C)cT (°C)dTable 9 - Major element chemistry of the minerals from CHI-050-14-DD28 (@ 104.18) OPX-bearing eclogite xenolith 196 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary Secondary Secondary SecondaryPoint name grt1-5 - - cpx3-7 - - mp3-1Mineral garnet* cpx* opx cpx phlogopite phlogopite hornblendeDescription core c=rpartially molten & recrystallized, low Al, high Cainterstitial, coreinterstitial, riminterstitial, c=rNumber of analyses averaged - 3 13 - 2 2 -SiO2 42.37 55.11 58.36 54.63 40.28 39.34 42.05TiO2 0.43 0.22 0.10 0.23 2.39 2.78 1.82Al2O3 23.74 2.74 0.38 1.37 12.51 13.53 13.97Cr2O3 0.18 0.26 <MDL 0.44 0.60 0.90 0.57FeO (T) 8.25 2.96 5.18 2.89 4.62 5.05 6.31MnO 0.34 0.08 0.11 0.10 0.06 <MDL 0.20MgO 21.25 17.09 36.23 17.58 23.06 22.30 17.28CaO 3.68 19.43 0.37 21.51 0.13 0.07 11.10Na2O 0.09 1.91 0.10 1.16 0.28 0.59 2.64K2O - 0.02 <MDL <MDL 9.88 9.66 0.78Total 100.32 99.83 100.83 99.91 93.81 94.23 96.74O 12 6 6 6 11 11 23Si4+ 2.983 1.987 1.984 1.982 2.916 2.844 6.107Ti4+0.023 0.006 0.003 0.006 0.130 0.151 0.199Al3+1.970 0.117 0.015 0.058 1.067 1.153 2.391Cr3+0.010 0.008 <MDL 0.013 0.034 0.051 0.066Fe (T) 0.486 0.089 0.147 0.088 0.279 0.305 0.767Mn2+ 0.020 0.002 0.003 0.003 0.003 <MDL 0.024Mg2+ 2.230 0.918 1.836 0.950 2.488 2.403 3.741Ca2+ 0.278 0.751 0.013 0.836 0.010 0.005 1.727Na+ 0.013 0.133 0.007 0.082 0.039 0.082 0.744K+ - 0.001 <MDL <MDL 0.912 0.891 0.145X3(Ca, Fe, Mn, Mg) 3.013 0.000 0.000 - 0.000 0.000 -Cation sum 8.011 4.012 4.008 4.017 7.879 7.886 15.911T (°C)aT (°C)bT (°C)cT (°C)dTable 10 - Major element chemistry of the minerals from CHI-050-14-DD27 (@ 184.54) eclogite xenolith 197 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary Secondary Secondary Secondary SecondaryPoint name grt1-1 - - cpx2-5 cpx3-5 cpx3-6 hbl1-2 hbl2-1Mineral garnet* cpx* rutile cpx cpx cpx hornblende hornblendeDescription c=r c=r c=rpartially molten and recrystallized cpx mixed with serpentinepartially molten and recrystallized cpx mixed with serpentinepartially molten and recrystallized cpx mixed with serpentine core rimNumber of analyses averaged - 5 6 - - - - 2SiO2 38.63 54.08 <MDL 49.79 47.24 47.86 39.52 36.71TiO2 0.48 0.37 98.90 0.46 0.36 0.51 2.58 1.09Al2O3 21.94 7.55 <MDL 2.55 1.10 1.32 14.04 17.73Cr2O3 <MDL <MDL <MDL <MDL <MDL <MDL <MDL <MDLFeO (T) 22.48 7.81 0.15 10.06 9.53 9.97 14.10 18.19MnO 0.41 0.08 <MDL 0.10 0.10 0.11 0.19 0.32MgO 6.90 9.27 <MDL 13.62 14.91 13.59 11.84 8.14CaO 9.80 15.09 0.06 19.02 18.49 19.89 9.70 10.52Na2O 0.17 4.46 - 1.25 0.97 1.00 3.24 2.75K2O - 0.27 - 0.02 0.03 0.15 1.08 1.04Nb2O5 - - <MDL - - - - -NiO - - <MDL - - - - -Total 100.81 98.98 99.11 96.88 92.73 94.39 96.30 96.48O 12 6 2 6 6 6 23 23Si4+ 2.954 1.988 <MDL 1.924 1.915 1.915 5.995 5.68Ti4+ 0.027 0.010 0.998 0.013 0.011 0.015 0.295 0.13Al3+1.977 0.327 0.000 0.116 0.053 0.062 2.510 3.23Cr3+ <MDL <MDL <MDL <MDL <MDL <MDL <MDL <MDLFe (T) 1.438 0.240 0.002 0.325 0.323 0.334 1.789 2.35Mn2+ 0.027 0.003 0.000 0.003 0.003 0.004 0.024 0.04Mg2+0.787 0.508 <MDL 0.785 0.901 0.810 2.678 1.88Ca2+0.803 0.595 <MDL 0.788 0.803 0.853 1.577 1.74Na+ 0.025 0.318 - 0.094 0.076 0.078 0.954 0.82K+ - 0.012 - 0.001 0.002 0.008 0.210 0.20Nb5+ - - <MDL - - - - -Ni2+- - <MDL - - - - -X3(Ca, Fe, Mn, Mg) 3.055 - - - - - - -Cation sum 8.038 4.002 1.000 4.049 4.086 4.078 16.032 16.082T (°C)aT (°C)bT (°C)cT (°C)dTable 11 - Major element chemistry of the minerals from CH7-14-S8 eclogite xenolith 198 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name grt1-6 - cpx3-4 cpx1-2 cpx2-1 - cpx2-5Mineral garnet* cpx cpx cpx cpx phlogopite hornblendeDescription coresecondary recrystallized cpx found at the edges of cpx grainspartially molten & recrystallized, slighlty altered cpxpartially molten & recrystallized, slighlty altered cpxpartially molten & recrystallized cpx c=rhornblende surrounding cpxNumber of analyses averaged - 3 - - - 3 -SiO2 39.81 50.70 49.94 48.69 51.13 38.06 39.13TiO2 0.08 0.61 0.36 0.52 0.23 3.48 1.32Al2O3 23.34 10.67 6.53 5.75 4.78 15.92 18.56Cr2O3 <MDL <MDL <MDL <MDL 0.09 0.11 0.10FeO (T) 15.55 5.09 5.67 5.17 4.10 8.03 8.67MnO 0.22 <MDL 0.08 <MDL 0.09 <MDL 0.08MgO 10.16 11.26 12.04 11.67 13.96 18.01 14.04CaO 11.17 17.14 18.22 21.96 22.04 0.04 9.76Na2O 0.11 3.54 2.44 1.65 1.56 0.65 3.50K2O - <MDL 1.40 0.18 0.19 9.61 1.05Total 100.44 99.01 96.68 95.59 98.17 93.92 96.21O 12 6 6 6 6 11 23Si4+ 2.960 1.853 1.902 1.880 1.909 2.791 5.772Ti4+ 0.004 0.017 0.010 0.015 0.006 0.192 0.147Al3+ 2.045 0.460 0.293 0.262 0.210 1.376 3.226Cr3+<MDL <MDL <MDL <MDL 0.003 0.006 0.011Fe (T) 0.967 0.156 0.181 0.167 0.128 0.492 1.070Mn2+ 0.014 <MDL 0.003 <MDL 0.003 <MDL 0.010Mg2+ 1.126 0.614 0.683 0.672 0.777 1.969 3.087Ca2+ 0.890 0.671 0.743 0.909 0.882 0.003 1.542Na+0.016 0.251 0.180 0.123 0.113 0.093 1.000K+- <MDL 0.068 0.009 0.009 0.898 0.198X3(Ca, Fe, Mn, Mg) 2.997 - - - - - -Cation sum 8.022 4.021 4.063 4.036 4.040 7.820 16.062T (°C)aT (°C)bT (°C)cT (°C)dTable 12 - Major element chemistry of the minerals from CH7-14-10-2 eclogite xenolith 199 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary SecondaryPoint name - - - cpx2-6 cpx3-4 - hbl1-3Mineral garnet* cpx* cpx cpx cpx hornblende hornblendeDescription c=r c=rpartially molten & recrystallizedpartially molten & recrystallizedpartially molten & recrystallized core rimNumber of analyses averaged 5 10 5 - - 2 -SiO2 40.22 55.03 53.85 53.94 53.69 40.63 41.79TiO2 0.90 0.63 0.62 0.67 0.69 1.39 1.83Al2O3 22.11 6.91 4.58 3.55 5.39 15.67 14.72Cr2O3 <MDL <MDL 0.07 <MDL <MDL <MDL <MDLFeO (T) 15.17 5.53 5.70 6.07 5.71 11.62 10.05MnO 0.33 0.07 <MDL 0.09 0.07 0.18 0.13MgO 13.00 11.73 13.75 14.59 13.17 13.80 14.72CaO 8.23 15.37 18.44 19.01 18.08 9.77 9.51Na2O 0.22 4.73 2.82 2.16 3.12 2.95 3.50K2O - 0.04 <MDL <MDL <MDL 1.23 0.98Total 100.17 100.03 99.83 100.07 99.90 97.24 97.23O 12 6 6 6 6 23 23Si4+ 2.974 1.983 1.963 1.967 1.954 6.003 6.121Ti4+ 0.050 0.017 0.017 0.018 0.019 0.155 0.201Al3+ 1.927 0.294 0.197 0.153 0.231 2.730 2.540Cr3+ <MDL <MDL 0.002 <MDL <MDL <MDL <MDLFe (T) 0.938 0.167 0.174 0.185 0.174 1.436 1.231Mn2+ 0.021 0.002 <MDL 0.003 0.002 0.023 0.016Mg2+1.433 0.630 0.747 0.793 0.714 3.039 3.214Ca2+0.652 0.593 0.720 0.743 0.705 1.547 1.493Na+0.032 0.331 0.199 0.153 0.220 0.845 0.992K+ - 0.002 <MDL <MDL <MDL 0.231 0.183X3(Ca, Fe, Mn, Mg) 3.044 0.000 - - - - -Cation sum 8.027 4.018 4.019 4.013 4.019 16.008 15.993T (°C)aT (°C)bT (°C)cT (°C)dTable 13 - Major element chemistry of the minerals from CH7-14-S13 eclogite xenolith 200 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name - - - cpxincl2-1 cpxincl2-2 - hbl1-1 hbl1-2Mineral garnet* cpx* cpx olivine olivine hornblende hornblende hornblendeDescription c=rfresh primary cpx and cpx inclusions in garnetpartially molten & recrystallizedin metasomatic vein going through the slidein metasomatic vein going through the slide c=r c=r c=rNumber of analyses averaged 3 5 5 - - 2 - -SiO2 42.29 55.79 54.65 40.12 39.51 42.08 44.12 43.33TiO2 0.36 0.46 0.42 <MDL <MDL 0.89 0.97 0.73Al2O3 23.74 5.22 2.02 <MDL <MDL 15.75 13.33 14.02Cr2O3 0.13 0.14 0.25 <MDL <MDL 0.15 0.14 0.09FeO (T) 10.58 4.34 4.33 12.69 14.56 6.87 6.90 7.11MnO 0.34 0.08 0.09 0.27 0.37 0.12 0.18 0.13MgO 20.21 14.55 17.50 47.12 46.04 17.41 18.60 18.14CaO 2.99 15.53 19.38 0.19 0.20 9.36 8.86 9.28Na2O 0.13 3.99 1.56 <MDL <MDL 3.34 3.63 3.43K2O <MDL 0.04 <MDL <MDL <MDL 0.83 0.63 0.65Total 100.78 100.15 100.19 100.38 100.69 96.80 97.36 96.90O 12 6 6 4 4 23 23 23Si4+ 2.988 1.997 1.977 0.993 0.985 6.083 6.323 6.251Ti4+0.019 0.012 0.011 <MDL <MDL 0.097 0.105 0.079Al3+1.977 0.220 0.086 <MDL <MDL 2.684 2.251 2.384Cr3+ 0.007 0.004 0.007 <MDL <MDL 0.017 0.016 0.010Fe (T) 0.625 0.130 0.131 0.263 0.303 0.831 0.827 0.858Mn2+ 0.021 0.003 0.003 0.006 0.008 0.015 0.022 0.016Mg2+ 2.128 0.777 0.943 1.739 1.711 3.751 3.974 3.901Ca2+ 0.226 0.596 0.751 0.005 0.005 1.450 1.361 1.435Na+ 0.018 0.277 0.109 <MDL <MDL 0.935 1.007 0.959K+<MDL 0.002 <MDL <MDL <MDL 0.154 0.116 0.120X3(Ca, Fe, Mn, Mg) 3.000 - - - - - - -Cation sum 8.009 4.017 4.019 3.005 3.012 16.015 16.001 16.012T (°C)aT (°C)bT (°C)cT (°C)dTable 14 - Major element chemistry of the minerals from CH7-14-S9 kyanite-bearing eclogite xenolith 201 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary SecondaryPoint name grt3-2 - chl-1 chl-2 chl-3 chl-4 cpx2-4Mineral garnet* kyanite cpx cpx cpx cpx cpx2-4Description c=r chloritized cpx chloritized cpx chloritized cpx chloritized cpx chloritized cpxNumber of analyses averaged - 10 - - - - -SiO2 40.33 37.01 43.33 40.99 44.81 43.41 41.83TiO2 0.20 <MDL 0.14 0.14 0.18 0.15 0.13Al2O3 23.07 64.24 7.16 7.69 5.91 6.57 6.87Cr2O3 <MDL <MDL <MDL <MDL <MDL <MDL <MDLFeO (T) 7.10 0.10 1.26 1.44 1.65 1.35 1.36MnO 0.15 <MDL <MDL <MDL <MDL <MDL <MDLMgO 9.31 0.05 21.09 20.70 18.89 20.78 19.32CaO 19.30 <MDL 7.85 5.99 10.77 9.08 9.00Na2O 0.08 <MDL 0.42 0.39 0.50 0.46 0.49K2O - - 0.33 0.53 0.45 0.36 0.17Total 99.54 101.40 81.58 77.87 83.16 82.17 79.17Calculate to O 12 5 6 6 6 6 6Si4+ 2.979 0.985 1.843 1.822 1.890 1.845 1.842Ti4+ 0.011 <MDL 0.004 0.005 0.006 0.005 0.004Al3+ 2.008 2.015 0.359 0.403 0.294 0.329 0.356Cr3+ <MDL <MDL <MDL <MDL <MDL <MDL <MDLFe (T) 0.439 0.002 0.045 0.054 0.058 0.048 0.050Mn2+ 0.009 <MDL <MDL <MDL <MDL <MDL <MDLMg2+1.025 0.002 1.337 1.371 1.188 1.316 1.269Ca2+1.528 <MDL 0.358 0.285 0.487 0.414 0.425Na+0.011 <MDL 0.035 0.034 0.041 0.038 0.042K+ - - 0.018 0.030 0.024 0.020 0.010X3(Ca, Fe, Mn, Mg) 3.001 - - - - - -Cation sum 8.010 3.005 3.999 4.003 3.988 4.014 3.998T (°C)aT (°C)bT (°C)cT (°C)dTable 15 - Major element chemistry of the minerals from CH7-14-S7 eclogite xenolith 202 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary Secondary Secondary Secondary SecondaryPoint name - - - cpx1-10 cpx2-8 cpx1-12 cpx3-10 rutile1-5Mineral garnet* cpx* rutile cpx cpx cpx cpx ilmeniteDescriptionpartially molten & recrystallized, mixed with a slightly hydrous phasepartially molten & recrystallized, mixed with a slightly hydrous phasepartially molten & recrystallized, chloritizedpartially molten & recrystallized, chloritizedlamellae in rutileNumber of analyses averaged 2 3 11 - - - - -SiO2 39.19 55.79 <MDL 54.16 53.55 53.69 57.37 <MDLTiO2 0.17 0.18 99.85 0.23 0.18 0.18 0.05 55.72Al2O3 22.85 11.27 <MDL 4.16 7.75 12.14 18.03 <MDLCr2O3 <MDL <MDL 0.08 0.10 0.07 <MDL <MDL <MDLFeO (T) 17.14 3.55 <MDL 5.22 4.07 3.60 0.53 40.26MnO 0.28 <MDL <MDL <MDL <MDL <MDL <MDL 0.56MgO 8.15 8.70 <MDL 11.77 10.66 6.89 1.21 3.97CaO 12.19 13.34 0.03 19.86 16.97 11.07 3.50 0.06Na2O 0.14 6.45 - 2.13 2.50 3.78 5.93 -K2O <MDL 0.07 - 1.95 3.12 6.22 10.66 -Nb2O5 - - 0.27 - - - - <MDLNiO - - <MDL - - - - <MDLTotal 100.10 99.33 100.23 99.58 98.87 97.57 97.28 100.57O 12 6 2 6 6 6 6 3Si4+ 2.958 1.988 <MDL 1.998 1.970 1.989 2.083 <MDLTi4+ 0.009 0.005 0.997 0.006 0.005 0.005 0.001 1.014Al3+ 2.033 0.473 <MDL 0.181 0.336 0.530 0.771 <MDLCr3+<MDL <MDL 0.001 0.003 0.002 <MDL <MDL <MDLFe (T) 1.082 0.106 <MDL 0.161 0.125 0.112 0.016 0.814Mn2+ 0.018 <MDL <MDL <MDL <MDL <MDL <MDL 0.011Mg2+ 0.917 0.462 <MDL 0.647 0.585 0.380 0.066 0.143Ca2+0.986 0.509 0.000 0.785 0.669 0.440 0.136 0.002Na+ 0.020 0.446 - 0.152 0.179 0.272 0.418 -K+ <MDL 0.003 - 0.092 0.146 0.294 0.494 -Nb5+ - - 0.007 - - - - <MDLNi2+- - <MDL - - - - <MDLX3(Ca, Fe, Mn, Mg) 3.002 0.000 0.000 - - - - -Cation sum 8.022 3.992 1.005 4.025 4.017 4.022 3.984 1.984T (°C)aT (°C)bT (°C)cT (°C)dTable 16 - Major element chemistry of the minerals from CH7-14-S14A eclogite xenolith 203 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name grt3-4 - cpx3-5 cpx3-6 cpx1-5 grt1-5 - -Mineral garnet* cpx* cpx cpx cpx zeolite hbl phlDescription corefresh primary cpx and cpx inclusions in garnetaltered, partially moltenaltered, partially moltenaltered, partially moltenin veins and garnet fractures c=r c=rNumber of analyses averaged - 11 - - - - 6 7SiO2 42.12 55.78 53.48 54.01 53.69 37.12 42.05 40.31TiO2 0.31 0.45 0.56 0.36 0.53 <MDL 0.61 3.31Al2O3 23.83 5.28 3.57 2.03 1.11 31.59 15.14 13.67Cr2O3 0.11 0.11 0.20 0.20 0.19 <MDL <MDL 0.12FeO (T) 10.50 4.26 4.85 4.60 4.72 0.20 7.16 5.14MnO 0.32 0.07 0.14 0.08 0.11 <MDL 0.15 <MDLMgO 20.28 14.56 17.04 18.08 17.72 <MDL 17.85 22.19CaO 2.91 15.46 17.28 18.53 20.29 12.12 9.94 <MDLNa2O 0.10 3.98 1.33 1.55 1.15 3.41 3.12 0.45K2O - 0.04 0.61 0.02 <MDL - 0.84 10.07Total 100.48 99.98 99.04 99.46 99.52 84.44 96.86 95.25O 12 6 6 6 6 14 23 11Si4+ 2.983 1.998 1.955 1.969 1.968 3.546 6.090 2.876Ti4+0.016 0.012 0.015 0.010 0.015 <MDL 0.067 0.178Al3+1.989 0.223 0.154 0.087 0.048 3.556 2.585 1.149Cr3+0.006 0.003 0.006 0.006 0.006 <MDL <MDL 0.007Fe (T) 0.622 0.128 0.148 0.140 0.145 0.016 0.867 0.306Mn2+ 0.019 0.002 0.004 0.002 0.004 <MDL 0.018 <MDLMg2+ 2.140 0.777 0.929 0.982 0.968 <MDL 3.854 2.360Ca2+ 0.221 0.594 0.677 0.724 0.797 1.240 1.543 <MDLNa+ 0.014 0.276 0.094 0.109 0.082 0.631 0.877 0.063K+ - 0.002 0.028 0.001 <MDL 0.000 0.155 0.916X3(Ca, Fe, Mn, Mg) 3.003 - - - - - - -Cation sum 8.011 4.015 4.011 4.031 4.031 8.989 16.056 7.854T (°C)aT (°C)bT (°C)cT (°C)dTable 17 - Major element chemistry of the minerals from CHI-251-14-DD19 (@162.09) eclogite xenolith 204 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary Secondary Secondary SecondaryPoint name - - - - cpx2d-4 cpx3na-2 -Mineral garnet* cpx* rutile clinopyroxene clinopyroxene clinopyroxene phlogopiteDescription c=r c=r c=rpartially molten & recrystallizedpartially molten & recrystallizedpartially molten & recrystallized c=rNumber of analyses averaged 4 4 3 2 - - 2SiO2 41.15 55.23 <MDL 52.84 48.96 49.53 40.02TiO2 0.09 0.09 96.80 0.15 0.11 0.20 2.80Al2O3 23.46 4.68 0.08 4.02 9.31 7.81 15.07Cr2O3 0.13 0.10 0.36 0.13 0.10 0.13 0.26FeO (T) 12.45 2.49 1.05 3.48 5.61 4.82 4.06MnO 0.26 <MDL <MDL 0.08 0.13 0.08 <MDLMgO 16.53 14.56 <MDL 15.41 12.62 13.26 21.50CaO 5.88 19.65 <MDL 21.60 21.40 21.52 <MDLNa2O 0.05 2.66 - 1.43 1.14 1.51 0.32K2O - 0.08 - <MDL 0.02 0.03 10.55Nb2O5 - - <MDL - - - -NiO - - <MDL - - - -Total 99.99 99.55 98.28 99.13 99.39 98.88 94.59O 12 6 4 6 6 6 11Si4+ 2.981 1.990 <MDL 1.937 1.810 1.838 2.864Ti4+ 0.005 0.003 1.977 0.004 0.003 0.005 0.151Al3+2.002 0.199 0.002 0.174 0.406 0.342 1.271Cr3+ 0.008 0.003 0.008 0.004 0.003 0.004 0.015Fe (T) 0.754 0.075 0.024 0.107 0.173 0.150 0.243Mn2+ 0.016 <MDL <MDL 0.003 0.004 0.002 <MDLMg2+1.784 0.782 <MDL 0.842 0.696 0.733 2.293Ca2+0.456 0.759 <MDL 0.849 0.848 0.856 <MDLNa+ 0.006 0.186 - 0.102 0.082 0.109 0.044K+ - 0.004 - <MDL 0.001 0.002 0.963Nb5+ - - <MDL - - - -Ni2+- - <MDL - - - -X3(Ca, Fe, Mn, Mg) 3.011 - - - - - -Cation sum 8.013 4.000 2.011 4.021 4.024 4.039 7.844T (°C)aT (°C)bT (°C)cT (°C)dTable 18 - Major element chemistry of the minerals from CHI-251-14-DD19 (@175.26) eclogite xenolith 205 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary Secondary SecondaryPoint name - - - garnet1-5 - cpx2-5 cpx1-7 - - - - - - -Mineral garnet* cpx* rutile garnet cpx cpx cpx cpx cpx serpentine serpentine calcite hornblende ilmeniteDescription c=r c=r c=rrim, partially molten and recrystallizedpartially molten & recrystallizedpartially molten & recrystallizedpartially molten & recrystallizedpartially molten & recrystallizedpartially molten & recrystallized core core vein c=rlamellae in rutileNumber of analyses averaged 15 12 8 - 2 - - 2 2 2 4 3 7 2SiO2 39.58 56.12 <MDL 39.69 49.29 52.15 53.44 53.33 53.22 40.94 40.72 0.30 37.99 <MDLTiO2 0.16 0.14 97.47 0.23 0.56 0.45 0.15 0.19 0.24 <MDL <MDL <MDL 0.27 53.52Al2O3 22.99 10.61 0.05 22.83 12.80 10.64 7.02 7.96 9.10 0.46 4.44 0.05 20.60 0.49Cr2O3 <MDL <MDL 0.15 0.09 0.08 0.09 0.08 0.08 <MDL <MDL <MDL <MDL <MDL 0.16FeO (T) 13.67 2.37 0.64 13.87 5.49 3.97 2.85 2.88 3.12 6.46 5.94 0.19 11.89 35.99MnO 0.34 <MDL <MDL 0.41 0.13 <MDL 0.08 <MDL <MDL <MDL <MDL <MDL 0.24 1.06MgO 9.32 10.07 <MDL 11.48 9.88 10.89 13.76 12.69 11.77 35.71 33.46 0.33 10.41 6.86CaO 13.97 15.03 0.03 10.94 18.63 17.14 19.89 19.07 18.72 0.12 0.20 54.45 10.85 0.35Na2O 0.09 5.48 - 0.11 3.06 3.82 2.69 3.24 3.63 <MDL 0.06 <MDL 2.78 0.15K2O - 0.07 - - 0.02 0.04 0.05 0.05 0.05 <MDL 0.10 <MDL 1.67 <MDLNb2O5 - - 0.75 - - - - - - - - - - -NiO - - <MDL - - - - - - - - - - -Total 100.11 99.91 99.10 99.65 99.93 99.20 100.00 99.49 99.86 83.69 84.92 55.32 96.70 98.57O 12 6 2 12 6 6 6 6 6 14 14 6 23 3Si4+2.955 1.984 0.000 2.957 1.798 1.890 1.926 1.927 1.915 4.049 3.944 0.029 5.676 0.000Ti4+ 0.009 0.004 0.989 0.013 0.015 0.012 0.004 0.005 0.007 <MDL <MDL <MDL 0.031 0.979Al3+ 2.023 0.442 0.001 2.005 0.550 0.455 0.298 0.339 0.386 0.054 0.507 0.006 3.628 0.014Cr3+ <MDL <MDL 0.002 0.005 0.002 0.003 0.002 0.002 <MDL <MDL <MDL <MDL <MDL 0.003Fe (T) 0.854 0.070 0.007 0.864 0.167 0.120 0.086 0.087 0.094 0.534 0.481 0.016 1.486 0.732Mn2+0.021 <MDL <MDL 0.026 0.004 <MDL 0.002 <MDL <MDL <MDL <MDL <MDL 0.030 0.022Mg2+ 1.037 0.531 <MDL 1.274 0.537 0.588 0.739 0.684 0.631 5.265 4.831 0.048 2.318 0.249Ca2+ 1.117 0.569 0.000 0.873 0.728 0.666 0.768 0.738 0.722 0.013 0.021 5.859 1.738 0.009Na+ 0.013 0.376 - 0.016 0.216 0.268 0.188 0.227 0.254 <MDL 0.010 <MDL 0.805 0.007K+- 0.003 - - 0.001 0.002 0.002 0.003 0.002 <MDL 0.012 <MDL 0.319 <MDLNb5+- - 0.020 - - - - - - - - - - -Ni2+ - - <MDL - - - - - - - - - - -X3(Ca, Fe, Mn, Mg) 3.029 - - 3.037 - - - - - - - - - -Cation sum 8.028 3.979 1.019 8.033 4.019 4.003 4.015 4.012 4.011 9.915 9.806 5.958 16.030 2.015T (°C)aT (°C)bT (°C)cT (°C)dTable 19 - Major element chemistry of the minerals from CHI-258-14-DD15 (@163.07) eclogite xenolith 206 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit) Primary or secondary? Primary Primary Primary Secondary SecondaryPoint name - - - - -Mineral garnet cpx cpx cpx phlogopiteDescriptionc=r, fine and coarse grains c=r, fine grains c=r, coarse grainspartially melted & recrystallized coarse cpx c=rNumber of analyses averaged 2 4 3 4 6SiO2 42.08 55.33 55.62 53.49 41.74TiO2 0.29 0.49 0.55 0.39 0.77Al2O3 23.87 6.38 7.30 4.27 11.31Cr2O3 <MDL 0.07 0.07 <MDL <MDLFeO (T) 12.35 5.38 5.81 6.22 5.26MnO 0.38 0.13 0.12 0.13 <MDLMgO 19.61 13.15 12.54 15.44 24.43CaO 2.55 13.51 11.82 16.24 0.05Na2O 0.11 5.02 5.61 2.76 0.29K2O - 0.03 0.03 <MDL 10.57Total 101.24 99.49 99.49 98.94 94.42O 12 6 6 6 11Si4+ 2.978 1.996 2.000 1.962 3.009Ti4+0.015 0.013 0.015 0.011 0.042Al3+1.991 0.271 0.309 0.185 0.961Cr3+<MDL 0.002 0.002 <MDL <MDLFe (T) 0.731 0.162 0.175 0.191 0.317Mn2+ 0.023 0.004 0.004 0.004 <MDLMg2+ 2.069 0.707 0.672 0.844 2.626Ca2+ 0.194 0.522 0.456 0.638 0.004Na+ 0.015 0.351 0.391 0.196 0.040K+ - 0.001 0.001 <MDL 0.972X3(Ca, Fe, Mn, Mg) 3.016 - - - -Cation sum 8.016 4.030 4.026 4.030 7.972T (°C)aT (°C)bT (°C)cT (°C)dTable 1 - Whole rock major element chemistry as calculated by using observed modal abundances (see Appendix E, table 24) of primary grains in 16 eclogite samples 207 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit)  Appendix D: Reconstructed whole rock major element chemistry     Sample Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3 CH7-14-S4CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2 CH7-14-S13 CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26SiO2 46.01 48.66 49.29 51.37 48.27 49.71 48.12 48.25 46.30 48.36 46.88 51.07 46.54 47.99 49.48 42.59TiO2 0.34 1.53 0.41 0.55 0.57 0.24 2.13 0.23 0.35 2.38 0.78 0.43 2.16 0.37 2.03 2.10Al2O3 8.13 13.17 13.31 11.89 14.94 10.31 11.28 13.83 17.60 11.72 15.27 11.70 16.72 15.86 10.79 19.68Cr2O3 0.14 0.00 0.04 0.36 0.32 0.15 0.00 0.13 0.17 0.00 0.00 0.14 0.00 0.11 0.11 0.00FeO (T) 3.58 10.06 7.05 6.38 8.21 6.39 10.85 9.21 7.01 12.06 10.83 6.52 10.14 7.82 5.75 10.81MnO 0.14 0.24 0.18 0.07 0.14 0.13 0.15 0.18 0.27 0.18 0.21 0.17 0.14 0.21 0.09 0.25MgO 15.50 13.92 16.92 11.64 11.83 16.44 10.99 15.72 22.19 8.37 12.43 16.53 8.26 17.82 14.92 9.30CaO 12.95 10.78 9.93 12.84 11.93 15.21 14.35 11.03 6.00 13.20 11.44 11.14 12.51 8.31 14.71 13.94Na2O 1.98 2.16 2.37 4.12 3.03 1.29 2.08 1.64 0.40 3.08 2.25 2.64 3.23 1.77 1.75 1.33K2O 0.02 0.03 0.02 0.05 0.03 0.02 0.06 0.00 0.00 0.18 0.02 0.03 0.03 0.02 0.05 0.02Table 2 - Whole rock major element chemistry as calculated by using 50-50 % modal abundances of garnet and clinopyroxene in 16 eclogite samples 208 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit)      Sample Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3 CH7-14-S4CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2 CH7-14-S13 CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26SiO2 48.76 48.49 48.50 47.51 47.57 47.99 47.05 48.25 48.74 46.35 47.62 49.04 47.49 48.95 48.19 47.85TiO2 0.36 0.56 0.40 0.57 0.58 0.24 0.14 0.23 0.32 0.43 0.76 0.41 0.17 0.38 0.09 0.15Al2O3 14.01 14.08 14.42 15.72 15.64 12.97 13.82 13.83 13.24 14.74 14.51 14.48 17.06 14.56 14.07 16.80Cr2O3 0.17 0.00 0.04 0.37 0.33 0.15 0.00 0.13 0.22 0.00 0.00 0.14 0.00 0.11 0.11 0.00FeO (T) 5.17 10.57 7.43 8.99 8.66 7.36 13.08 9.21 5.60 15.15 10.35 7.46 10.34 7.38 7.47 8.02MnO 0.22 0.26 0.19 0.16 0.15 0.17 0.21 0.18 0.21 0.25 0.20 0.21 0.14 0.19 0.13 0.17MgO 18.89 14.16 17.26 12.50 11.96 16.68 10.78 15.72 19.17 8.09 12.36 17.38 8.42 17.42 15.55 9.69CaO 10.92 10.41 9.18 11.17 11.68 13.27 13.24 11.03 11.56 12.45 11.80 9.26 12.76 9.19 12.76 14.50Na2O 1.54 2.02 2.13 2.75 2.77 1.04 1.69 1.64 1.00 2.31 2.48 2.06 3.29 2.04 1.35 2.79K2O 0.01 0.02 0.02 0.03 0.02 0.02 0.05 0.00 0.01 0.13 0.02 0.02 0.03 0.02 0.04 0.04Table 3 - Whole rock major element chemistry as calculated by using 80-20 % modal abundances of garnet and clinopyroxene in 16 eclogite samples 209 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit)       Sample Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3 CH7-14-S4CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2 CH7-14-S13 CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26SiO2 45.11 44.13 44.55 43.23 43.32 44.04 42.41 43.84 44.92 41.72 43.18 44.99 42.51 44.85 43.97 42.89TiO2 0.34 0.61 0.35 0.59 0.64 0.26 0.14 0.22 0.38 0.46 0.84 0.38 0.17 0.34 0.09 0.15Al2O3 20.08 19.21 19.93 19.97 19.84 19.11 19.04 19.59 19.54 19.06 19.07 20.04 20.54 20.12 19.70 20.51Cr2O3 0.18 0.00 0.01 0.37 0.35 0.15 0.00 0.13 0.20 0.00 0.00 0.13 0.00 0.11 0.13 0.00FeO (T) 6.59 13.37 9.30 11.89 11.31 9.60 17.64 12.52 7.19 19.55 13.24 9.34 14.42 9.25 10.46 11.41MnO 0.30 0.36 0.26 0.25 0.24 0.28 0.34 0.28 0.29 0.35 0.28 0.29 0.22 0.27 0.21 0.27MgO 20.72 14.81 18.96 13.46 12.74 17.24 9.82 16.45 20.41 7.37 12.75 19.08 8.26 19.13 16.13 9.47CaO 6.42 7.26 5.45 9.30 10.16 8.80 10.07 6.61 6.83 10.86 9.66 5.49 12.42 5.42 8.63 14.18Na2O 0.67 0.90 0.92 1.22 1.23 0.45 0.72 0.70 0.46 1.03 1.13 0.90 1.40 0.88 0.57 1.17K2O 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.05 0.01 0.01 0.01 0.01 0.02 0.01Table 4 - Whole rock major element chemistry as calculated by using 20-80 % modal abundances of garnet and clinopyroxene in 16 eclogite samples 210 c=r (core=rim) * (analyses used for thermobarometry)  - (not applicable/not measured) <MDL (less than the Minimum Detection Limit)       Sample Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3 CH7-14-S4CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54CH7-14-S10-2 CH7-14-S13 CH7-14-S7CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26SiO2 52.41 52.85 52.44 51.79 51.81 51.95 51.69 52.65 52.56 50.99 52.07 53.09 52.47 53.04 52.42 52.81TiO2 0.37 0.52 0.45 0.55 0.52 0.23 0.14 0.24 0.26 0.40 0.68 0.44 0.17 0.42 0.09 0.14Al2O3 7.95 8.95 8.90 11.47 11.44 6.83 8.60 8.07 6.94 10.43 9.95 8.93 13.58 8.99 8.44 13.09Cr2O3 0.15 0.00 0.06 0.36 0.31 0.15 0.00 0.14 0.25 0.00 0.00 0.14 0.00 0.11 0.10 0.00FeO (T) 3.74 7.78 5.55 6.09 6.00 5.12 8.52 5.90 4.01 10.74 7.46 5.59 6.27 5.51 4.48 4.63MnO 0.14 0.16 0.12 0.06 0.06 0.07 0.08 0.07 0.13 0.15 0.12 0.14 0.06 0.12 0.05 0.07MgO 17.05 13.51 15.56 11.55 11.18 16.12 11.75 14.99 17.92 8.80 11.98 15.69 8.59 15.70 14.96 9.92CaO 15.43 13.56 12.91 13.03 13.20 17.74 16.41 15.45 16.28 14.03 13.94 13.02 13.11 12.95 16.89 14.82Na2O 2.40 3.14 3.34 4.28 4.31 1.62 2.66 2.59 1.54 3.60 3.83 3.22 5.19 3.20 2.14 4.40K2O 0.02 0.04 0.03 0.05 0.04 0.03 0.07 0.00 0.02 0.21 0.03 0.04 0.05 0.03 0.06 0.06Chondrite and primitive mantle normalizing values as per McDonough & Sun (1995) 211   Appendix E: Trace element chemistry of Chidliak eclogites  C1 CHONDRITE PYROLITE (PRIMITIVE MANTLE)Li 1.5 1.6Na 5100 2670K 550 240Ti 440 1205V 56 82Ni 10500 1960Rb 2.3 0.6Sr 7.25 19.9Y 1.57 4.3Zr 3.82 10.5Nb 0.24 0.658Ba 2.41 6.6La 0.237 0.648Ce 0.613 1.675Pr 0.0928 0.254Nd 0.457 1.25Sm 0.148 0.406Eu 0.563 0.154Gd 0.199 0.544Tb 0.0361 0.099Dy 0.246 0.674Ho 0.0546 0.149Er 0.16 0.438Tm 0.0247 0.068Yb 0.161 0.441Lu 0.0246 0.0675Hf 0.103 0.283Ta 0.0136 0.037Pb 2.47 0.15Table 1 - Trace element chemistry of the primary minerals from Q-3903-U-A OPX-bearing eclogite xenolith 212 Int2SE=Analytical Error       Q-3903-U-A-cpx1 Q-3903-U-A-cpx2 Q-3903-U-A-cpx3 Q-3903-U-A-grt1 Q-3903-U-A-grt2 Q-3903-U-A-grt3 Q-3903-U-A-opx1 Q-3903-U-A-opx2 Q-3903-U-A-opx3 Q-3903-U-A-rut1 Q-3903-U-A-rut2Li_ppm_m6 0.08 0.165 0.15 0.12 -0.08 0.13 8.7 13.3 13 0 0.12Li_ppm_m6_Int2SE 0.047 0.068 0.051 0.15 0.16 0.14 3.1 4.4 3.5 1 0.14Li_ppm_m7 0.15 0.143 0.143 0.225 0.164 0.23 13.2 12.81 12.2 0.244 0.252Li_ppm_m7_Int2SE 0.016 0.013 0.013 0.062 0.055 0.057 1.4 0.99 1.2 0.069 0.063Na_ppm_m23 4275 4244 4254 718 706 707 12540 13060 12400 54.9 6.74Na_ppm_m23_Int2SE 61 46 43 14 13 16 620 580 660 6.1 0.54Si_ppm_m29 47840 47460 48050 224800 230000 227100 3640000 3800000 3790000 1080 503Si_ppm_m29_Int2SE 680 550 430 4200 4600 5500 180000 170000 200000 140 89Si_ppm_m30 48140 48450 48190 209900 222900 220100 3680000 3810000 3790000 -2100 -2100Si_ppm_m30_Int2SE 660 600 510 4200 4600 5900 180000 170000 190000 1300 1100K_ppm_m39 23.19 21.03 21.69 10.9 -1.4 4.5 77 580 70 24.8 1K_ppm_m39_Int2SE 0.41 0.45 0.33 3.1 1.9 2.5 16 110 18 5 2Ti_ppm_m47 399.7 397.5 399.2 2108 1968 2057 6660 7040 6770 19 24Ti_ppm_m47_Int2SE 4.9 4.2 4.8 45 42 52 360 350 340 27 35Ti_ppm_m49 425.6 421.9 420.3 2224 2087 2146 7110 7350 7020 600300 591700Ti_ppm_m49_Int2SE 6 6.2 4.6 51 45 59 350 340 350 4500 5300V_ppm_m51 56.49 54.2 56.63 103.8 100.1 101.2 243 271 249 1502 1477V_ppm_m51_Int2SE 0.84 0.64 0.53 2.3 2.1 2.5 12 13 14 18 18Fe_ppm_m56 3800 3657 3801 59200 60700 60000 452000 498000 468000 21910 18200Fe_ppm_m56_Int2SE 61 41 36 1100 1200 1300 23000 22000 24000 270 430Fe_ppm_m57 2409 2338 2498 35050 36520 36480 294000 321000 304000 14190 11940Fe_ppm_m57_Int2SE 32 28 26 650 740 780 14000 14000 16000 220 310Ni_ppm_m60 56.46 54.27 56.84 40 40.9 39.2 9860 10490 10140 49.1 41.4Ni_ppm_m60_Int2SE 0.98 0.8 0.86 1.7 1.8 1.8 490 460 520 2.4 2.2Ni_ppm_m64 3.69 3.57 3.54 14.36 15.93 14.92 831 1194 859 42.3 40.6Ni_ppm_m64_Int2SE 0.16 0.12 0.15 0.76 0.87 0.9 47 88 47 1.6 1.9Rb_ppm_m85 -0.0026 -0.0097 -0.0035 0.104 -0.009 -0.029 0.19 7 0.5 0.001 -0.003Rb_ppm_m85_Int2SE 0.0052 0.0066 0.0059 0.077 0.071 0.063 0.42 1.7 0.45 0.079 0.057Sr_ppm_m88 81.84 61.76 66.38 0.362 0.174 0.172 5.25 36 3.72 0.76 0.11Sr_ppm_m88_Int2SE 0.93 0.6 0.61 0.069 0.041 0.042 0.69 8 0.48 0.13 0.038Y_ppm_m89 1.331 1.329 1.32 30.62 30.79 30.83 1.15 3.14 0.96 0.034 0.0127Y_ppm_m89_Int2SE 0.026 0.029 0.025 0.7 0.72 0.76 0.17 0.61 0.18 0.012 0.0067Zr_ppm_m90 11.62 10.89 11.13 52.7 53.4 53.1 2.81 7.3 3.13 2913 2849Zr_ppm_m90_Int2SE 0.18 0.17 0.17 1.1 1.3 1.4 0.41 1.4 0.44 19 33Nb_ppm_m93 0.0523 0.031 0.0532 0.021 0.0089 0.0077 0.66 1.49 0.35 12790 12440Nb_ppm_m93_Int2SE 0.0057 0.004 0.0052 0.011 0.0081 0.0079 0.17 0.34 0.11 120 160Ba_ppm_m137 0.037 0.055 0.056 0.18 0 0 -0.06 64 0 2.48 0Ba_ppm_m137_Int2SE 0.014 0.017 0.016 0.12 1 1 0.13 15 1 0.47 1CLINOPYROXENE GARNET ORTHOPYROXENE RUTILETable 1 - Trace element chemistry of the primary minerals from Q-3903-U-A OPX-bearing eclogite xenolith 213 Int2SE=Analytical Error   Q-3903-U-A-cpx1 Q-3903-U-A-cpx2 Q-3903-U-A-cpx3 Q-3903-U-A-grt1 Q-3903-U-A-grt2 Q-3903-U-A-grt3 Q-3903-U-A-opx1 Q-3903-U-A-opx2 Q-3903-U-A-opx3 Q-3903-U-A-rut1 Q-3903-U-A-rut2CLINOPYROXENE GARNET ORTHOPYROXENE RUTILELa_ppm_m139 3.118 2.177 2.439 0.032 0.0038 0.0027 0.232 14.9 0.284 1 0.034La_ppm_m139_Int2SE 0.052 0.03 0.031 0.012 0.003 0.0026 0.076 3.3 0.083 0.14 0.017Ce_ppm_m140 8.91 4.99 6.24 0.1 0.078 0.075 1 35.4 0.86 1.04 0.044Ce_ppm_m140_Int2SE 0.15 0.065 0.083 0.024 0.017 0.018 0.17 7.5 0.15 0.15 0.019Pr_ppm_m141 1.164 0.67 0.809 0.034 0.04 0.0179 0.164 3.98 0.139 0.091 0.0044Pr_ppm_m141_Int2SE 0.026 0.014 0.017 0.012 0.012 0.0096 0.047 0.86 0.055 0.02 0.0036Nd_ppm_m146 5.02 3.58 3.962 0.553 0.496 0.51 1.08 16.9 0.56 0.388 0.0062Nd_ppm_m146_Int2SE 0.12 0.085 0.079 0.094 0.085 0.12 0.37 3.9 0.22 0.091 0.0086Sm_ppm_m147 1.155 1.023 1.06 0.72 0.74 0.84 0.09 2.31 0.16 0.034 -0.00691Sm_ppm_m147_Int2SE 0.056 0.038 0.046 0.12 0.13 0.15 0.12 0.78 0.11 0.025 0.00057Eu_ppm_m153 0.285 0.279 0.2843 0.375 0.402 0.397 0.034 0.73 0.029 0.0028 0Eu_ppm_m153_Int2SE 0.012 0.011 0.0096 0.04 0.056 0.046 0.027 0.19 0.029 0.0032 1Gd_ppm_m157 0.82 0.775 0.783 1.99 2.28 2.23 0.13 1.65 0.25 0.031 -0.00753Gd_ppm_m157_Int2SE 0.039 0.044 0.04 0.18 0.21 0.27 0.11 0.51 0.17 0.023 0.00051Tb_ppm_m159 0.0883 0.0879 0.0895 0.557 0.508 0.531 0.04 0.109 0.031 0.00049 0Tb_ppm_m159_Int2SE 0.0043 0.0053 0.0053 0.034 0.041 0.042 0.025 0.044 0.021 0.00098 1Dy_ppm_m163 0.404 0.403 0.404 4.7 4.78 4.75 0.19 0.56 0.22 0.0063 0Dy_ppm_m163_Int2SE 0.018 0.024 0.02 0.28 0.27 0.23 0.13 0.22 0.11 0.0071 1Ho_ppm_m165 0.0582 0.0547 0.0558 1.123 1.149 1.19 0.054 0.101 0.064 0.0005 0Ho_ppm_m165_Int2SE 0.0043 0.0034 0.0034 0.064 0.056 0.066 0.027 0.036 0.031 0.001 1Er_ppm_m166 0.1057 0.108 0.1017 3.73 3.71 3.99 0.032 0.15 0.129 0.0014 0Er_ppm_m166_Int2SE 0.0096 0.01 0.0075 0.22 0.18 0.22 0.037 0.081 0.078 0.0028 1Tm_ppm_m169 0.0111 0.0105 0.0115 0.586 0.575 0.642 0.014 0.012 0.0053 0 0Tm_ppm_m169_Int2SE 0.002 0.0016 0.0015 0.047 0.041 0.043 0.011 0.012 0.0074 1 1Yb_ppm_m172 0.052 0.053 0.0451 4.41 4.23 4.14 0.048 0.028 0.109 0.0024 0Yb_ppm_m172_Int2SE 0.007 0.0086 0.0071 0.24 0.29 0.25 0.042 0.04 0.081 0.0047 1Lu_ppm_m175 0.0055 0.0053 0.0049 0.623 0.693 0.655 0.0022 -0.002 0 0.00043 0Lu_ppm_m175_Int2SE 0.001 0.0012 0.0012 0.038 0.041 0.04 0.0043 0.0042 1 0.00085 1Hf_ppm_m177 0.513 0.497 0.504 0.78 0.791 0.77 0.059 0.148 0.085 64.89 62.23Hf_ppm_m177_Int2SE 0.024 0.022 0.021 0.1 0.089 0.08 0.051 0.095 0.07 0.86 0.96Ta_ppm_m181 0.00126 0.0001 0.00114 -0.00426 0 0 0.0047 0.011 0.0019 520.9 473Ta_ppm_m181_Int2SE 0.00056 0.00015 0.00046 0.00023 1 1 0.0068 0.011 0.0038 4.5 8Pb_ppm_m208 0.1114 0.1107 0.1043 0.0069 0.0039 0.0039 -0.003 0.4 0.05 0.04 -0.0005Pb_ppm_m208_Int2SE 0.0045 0.0042 0.0036 0.0044 0.0034 0.0035 0.013 0.11 0.025 0.013 0.0014Table 2 - Trace element chemistry of the primary minerals from Q-3903-U-B OPX-bearing eclogite xenolith 214 Int2SE=Analytical Error   RUTILEQ-3903-U-B-cpx1 Q-3903-U-B-cpx2 Q-3903-U-B-cpx3 Q-3903-U-B-garnet1 Q-3903-U-B-garnet2 Q-3903-U-B-garnet3 Q-3903-U-B-garnet4 Q-3903-U-B-grt5 Q-3903-U-B-rutile1Li_ppm_m6Li_ppm_m6_Int2SELi_ppm_m7 1.656 1.718 1.567 0.269 0.8 0.245 0.297 0.286 0.677Li_ppm_m7_Int2SE 0.087 0.089 0.082 0.029 0.08 0.033 0.042 0.043 0.095Na_ppm_m23 29210 25920 27640 675.9 708.3 654.1 723.1 710.8 45540Na_ppm_m23_Int2SE 530 510 630 7.3 7 9.8 7.2 9.6 980Si_ppm_m29Si_ppm_m29_Int2SESi_ppm_m30Si_ppm_m30_Int2SEK_ppm_m39 289.7 285.7 284.8 6 161 2.4 73.4 0.06 2670K_ppm_m39_Int2SE 6.7 6 6.1 1.3 13 1.1 6 0.76 62Ti_ppm_m47Ti_ppm_m47_Int2SETi_ppm_m49 2761 2847 2859 1962 1966 1830 2140 2040 156800Ti_ppm_m49_Int2SE 71 72 51 22 23 35 29 33 1900V_ppm_m51 531 519 502 130.5 122.9 114.7 134.6 137.3 491.8V_ppm_m51_Int2SE 13 13 10 1.8 1.6 2.1 1.4 2.3 8Fe_ppm_m56Fe_ppm_m56_Int2SEFe_ppm_m57Fe_ppm_m57_Int2SENi_ppm_m60 28.81 27.57 28.75 2.67 2.73 2.63 2.91 2.62 4.43Ni_ppm_m60_Int2SE 0.87 0.9 0.91 0.27 0.23 0.25 0.21 0.22 0.42Ni_ppm_m64Ni_ppm_m64_Int2SERb_ppm_m85 0.008 0.164 0.124 0.008 0.588 -0.011 0.44 -0.005 6.87Rb_ppm_m85_Int2SE 0.02 0.03 0.044 0.018 0.079 0.011 0.065 0.012 0.26Sr_ppm_m88 103.4 95.2 93.3 0.214 3.28 0.162 0.782 0.217 26.49Sr_ppm_m88_Int2SE 2.7 2.4 2.4 0.024 0.19 0.026 0.074 0.038 0.72Y_ppm_m89 1.498 1.487 1.33 7.17 7.13 7.36 7.28 6.79 0.762Y_ppm_m89_Int2SE 0.044 0.056 0.045 0.11 0.14 0.16 0.17 0.12 0.047Zr_ppm_m90 18.72 18.7 19.07 15.31 13.93 12.89 17.99 17.45 272.9Zr_ppm_m90_Int2SE 0.47 0.36 0.33 0.3 0.23 0.35 0.28 0.34 4.2Nb_ppm_m93 0.311 0.724 0.422 0.076 0.714 0.07 0.18 0.043 2949Nb_ppm_m93_Int2SE 0.031 0.05 0.041 0.012 0.043 0.011 0.019 0.01 33Ba_ppm_m137 1.2 10.18 2.8 0.012 5.4 0 1.17 0.012 86Ba_ppm_m137_Int2SE 0.26 0.69 0.42 0.014 0.59 1 0.14 0.017 2.7CLINOPYROXENE GARNETTable 2 - Trace element chemistry of the primary minerals from Q-3903-U-B OPX-bearing eclogite xenolith 215 Int2SE=Analytical Error    RUTILEQ-3903-U-B-cpx1 Q-3903-U-B-cpx2 Q-3903-U-B-cpx3 Q-3903-U-B-garnet1 Q-3903-U-B-garnet2 Q-3903-U-B-garnet3 Q-3903-U-B-garnet4 Q-3903-U-B-grt5 Q-3903-U-B-rutile1CLINOPYROXENE GARNETLa_ppm_m139 1.351 3.63 1.548 0.0248 0.592 0.0156 0.127 0.0068 2.212La_ppm_m139_Int2SE 0.047 0.16 0.06 0.0057 0.027 0.0043 0.02 0.0032 0.079Ce_ppm_m140 5.28 7.76 5.195 0.107 1.123 0.081 0.28 0.0828 3.95Ce_ppm_m140_Int2SE 0.13 0.16 0.073 0.014 0.049 0.011 0.031 0.0099 0.11Pr_ppm_m141 0.828 0.947 0.778 0.0269 0.131 0.0211 0.0454 0.0299 0.438Pr_ppm_m141_Int2SE 0.025 0.037 0.032 0.0049 0.015 0.0043 0.0079 0.006 0.031Nd_ppm_m146 3.96 4.44 4.17 0.293 0.571 0.255 0.363 0.343 1.71Nd_ppm_m146_Int2SE 0.16 0.2 0.17 0.044 0.063 0.036 0.053 0.062 0.14Sm_ppm_m147 0.9 0.776 0.828 0.226 0.288 0.197 0.268 0.21 0.288Sm_ppm_m147_Int2SE 0.083 0.067 0.086 0.042 0.04 0.04 0.042 0.036 0.065Eu_ppm_m153 0.235 0.212 0.246 0.115 0.119 0.11 0.13 0.113 0.061Eu_ppm_m153_Int2SE 0.019 0.02 0.023 0.015 0.015 0.011 0.015 0.015 0.017Gd_ppm_m157 0.653 0.63 0.636 0.45 0.515 0.474 0.555 0.549 0.197Gd_ppm_m157_Int2SE 0.06 0.073 0.065 0.058 0.056 0.052 0.054 0.05 0.046Tb_ppm_m159 0.0745 0.0859 0.0732 0.1167 0.1205 0.11 0.1259 0.123 0.0267Tb_ppm_m159_Int2SE 0.0091 0.0089 0.007 0.0079 0.0089 0.0095 0.0098 0.01 0.0057Dy_ppm_m163 0.391 0.356 0.373 1.07 1.014 1.085 1.081 1.093 0.117Dy_ppm_m163_Int2SE 0.042 0.039 0.027 0.082 0.069 0.07 0.069 0.057 0.028Ho_ppm_m165 0.0644 0.0624 0.0525 0.301 0.284 0.295 0.294 0.269 0.0226Ho_ppm_m165_Int2SE 0.0061 0.0073 0.0069 0.018 0.018 0.018 0.017 0.016 0.0066Er_ppm_m166 0.166 0.143 0.146 1.032 1.051 1.061 0.992 0.951 0.098Er_ppm_m166_Int2SE 0.025 0.021 0.019 0.05 0.051 0.061 0.053 0.049 0.023Tm_ppm_m169 0.016 0.0164 0.0144 0.157 0.186 0.184 0.163 0.1429 0.0087Tm_ppm_m169_Int2SE 0.0033 0.0037 0.0032 0.012 0.014 0.016 0.012 0.0091 0.0036Yb_ppm_m172 0.085 0.095 0.091 1.289 1.34 1.44 1.222 1.055 0.086Yb_ppm_m172_Int2SE 0.019 0.019 0.019 0.069 0.081 0.08 0.074 0.063 0.031Lu_ppm_m175 0.0056 0.0105 0.0076 0.212 0.216 0.243 0.195 0.168 0.0106Lu_ppm_m175_Int2SE 0.002 0.0027 0.0023 0.015 0.013 0.014 0.014 0.01 0.0045Hf_ppm_m177 1.143 1.116 1.291 0.295 0.299 0.265 0.392 0.374 9.3Hf_ppm_m177_Int2SE 0.061 0.066 0.078 0.036 0.033 0.03 0.035 0.035 0.26Ta_ppm_m181 0.0205 0.0348 0.0212 0.0047 0.0266 0.0047 0.0082 0.002 343.7Ta_ppm_m181_Int2SE 0.0044 0.0071 0.0055 0.0024 0.005 0.0021 0.0037 0.0013 4.9Pb_ppm_m208 0.11 0.08 0.095 0.0101 0.045 0.0073 0.026 0.002 1.79Pb_ppm_m208_Int2SE 0.021 0.016 0.017 0.0056 0.014 0.0048 0.011 0.0023 0.14Table 3 - Trace element chemistry of the primary minerals from 7S-6 eclogite xenolith 216 Int2SE=Analytical Error   7S-6-cpx1 7S-6-cpx2 7S-6-cpx3 7S-6-cpx4 7S-6-grt1 7S-6-grt2 7S-6-grt3 7S-6-grt4Li_ppm_m6 0.76 1.53 1.19 0.82 -0.35 0 0.4 1.1Li_ppm_m6_Int2SE 0.22 0.33 0.33 0.25 0.7 1 0.57 1.1Li_ppm_m7 0.862 1.41 1.42 1.083 1.16 1.23 1.24 1.26Li_ppm_m7_Int2SE 0.075 0.1 0.11 0.092 0.26 0.25 0.3 0.3Na_ppm_m23 26450 26460 26190 26090 3666 3979 3799 3878Na_ppm_m23_Int2SE 350 360 390 480 85 88 75 96Si_ppm_m29 216900 214900 213700 215300 981000 976000 969000 977000Si_ppm_m29_Int2SE 2800 2700 2800 3400 24000 20000 19000 23000Si_ppm_m30 218000 214700 213300 215300 965000 971000 961000 960000Si_ppm_m30_Int2SE 3000 3000 2800 3300 24000 22000 20000 24000K_ppm_m39 220.2 249.3 223.4 220.6 15.2 10 -1 11.2K_ppm_m39_Int2SE 3.7 7.7 3.5 4.3 9.8 12 11 9.1Ti_ppm_m47 2508 2448 2487 2447 9270 10120 10130 10320Ti_ppm_m47_Int2SE 24 32 31 26 200 220 230 280Ti_ppm_m49 2571 2536 2617 2559 9060 9920 10080 10390Ti_ppm_m49_Int2SE 30 29 31 31 230 240 250 290V_ppm_m51 264.2 268.6 265.7 266.5 363.4 434.4 415.2 406V_ppm_m51_Int2SE 3.2 3.1 3.7 3.4 9 9.8 8.7 11Fe_ppm_m56 26820 26310 26660 26680 367100 369300 368200 371700Fe_ppm_m56_Int2SE 330 340 340 370 8500 7800 6500 8900Fe_ppm_m57 20260 20050 20720 20680 287500 283700 280000 276700Fe_ppm_m57_Int2SE 280 260 270 290 6600 6200 5700 6400Ni_ppm_m60 374 367.9 370.9 372.1 291 281 278.3 290Ni_ppm_m60_Int2SE 5 6.4 6.4 7.2 11 11 9.7 13Ni_ppm_m64 26.51 26.33 26.42 26.47 118.9 122.5 121.6 122.9Ni_ppm_m64_Int2SE 0.87 0.75 0.94 0.85 5.9 5.5 6.3 6.4Rb_ppm_m85 0.09 0.109 0.061 -0.055 -0.15 -0.23 0.6 -0.08Rb_ppm_m85_Int2SE 0.038 0.05 0.035 0.032 0.29 0.31 0.39 0.34Sr_ppm_m88 208 203.4 208.4 207.9 0.84 0.78 0.69 1.33Sr_ppm_m88_Int2SE 1.9 2.3 2.4 2.6 0.17 0.19 0.15 0.26Y_ppm_m89 5.39 5.175 5.22 5.25 107.8 109.5 107.8 106.6Y_ppm_m89_Int2SE 0.12 0.099 0.12 0.12 2.4 2.9 2.3 2.6Zr_ppm_m90 33.28 32.41 33 32.64 128 131 133.5 138.3Zr_ppm_m90_Int2SE 0.46 0.55 0.57 0.56 3.9 4.5 3.4 4.1Nb_ppm_m93 0.472 0.469 0.477 0.498 0.5 0.61 0.52 0.74Nb_ppm_m93_Int2SE 0.03 0.039 0.038 0.037 0.13 0.15 0.12 0.14Ba_ppm_m137 0.374 0.58 0.56 0.5 0 0 0 0.08Ba_ppm_m137_Int2SE 0.082 0.12 0.12 0.12 1 1 1 0.16CLINOPYROXENE GARNETTable 3 - Trace element chemistry of the primary minerals from 7S-6 eclogite xenolith 217 Int2SE=Analytical Error    7S-6-cpx1 7S-6-cpx2 7S-6-cpx3 7S-6-cpx4 7S-6-grt1 7S-6-grt2 7S-6-grt3 7S-6-grt4CLINOPYROXENE GARNETLa_ppm_m139 6.32 6.22 6.43 6.36 0.084 0.028 0.03 0.064La_ppm_m139_Int2SE 0.1 0.11 0.11 0.13 0.035 0.021 0.022 0.033Ce_ppm_m140 16.53 16.16 16.67 16.64 0.45 0.47 0.51 0.55Ce_ppm_m140_Int2SE 0.23 0.26 0.27 0.24 0.1 0.11 0.1 0.12Pr_ppm_m141 2.222 2.058 2.218 2.174 0.205 0.132 0.188 0.161Pr_ppm_m141_Int2SE 0.072 0.051 0.055 0.066 0.051 0.04 0.056 0.046Nd_ppm_m146 9.6 9.02 9.56 9.24 2.18 1.95 1.82 2.42Nd_ppm_m146_Int2SE 0.27 0.29 0.32 0.28 0.5 0.39 0.34 0.48Sm_ppm_m147 2.24 2.15 2.28 2.19 1.93 1.96 1.79 2.13Sm_ppm_m147_Int2SE 0.14 0.12 0.16 0.13 0.51 0.47 0.45 0.41Eu_ppm_m153 0.687 0.666 0.674 0.695 1.07 1.31 1.14 1.16Eu_ppm_m153_Int2SE 0.036 0.038 0.042 0.041 0.18 0.16 0.16 0.17Gd_ppm_m157 2.11 2.04 2.08 2.04 5.98 5.89 5.98 6.22Gd_ppm_m157_Int2SE 0.13 0.11 0.14 0.13 0.79 0.7 0.76 0.7Tb_ppm_m159 0.274 0.275 0.262 0.276 1.62 1.7 1.64 1.67Tb_ppm_m159_Int2SE 0.015 0.016 0.017 0.021 0.14 0.16 0.15 0.16Dy_ppm_m163 1.437 1.339 1.398 1.44 14.7 15.5 15.19 15.24Dy_ppm_m163_Int2SE 0.085 0.073 0.088 0.091 1.1 1.1 0.9 0.88Ho_ppm_m165 0.225 0.227 0.221 0.231 4.03 4.17 4.27 3.99Ho_ppm_m165_Int2SE 0.016 0.016 0.018 0.014 0.22 0.22 0.24 0.23Er_ppm_m166 0.486 0.453 0.503 0.461 13.39 13.55 14.6 13.42Er_ppm_m166_Int2SE 0.044 0.037 0.052 0.031 0.68 0.66 0.71 0.79Tm_ppm_m169 0.0512 0.0542 0.0468 0.0489 2.13 2.33 2.4 2.19Tm_ppm_m169_Int2SE 0.0081 0.0084 0.0078 0.0074 0.14 0.17 0.14 0.16Yb_ppm_m172 0.297 0.254 0.253 0.253 16.9 17 15.65 15.5Yb_ppm_m172_Int2SE 0.042 0.033 0.043 0.035 1 1.2 0.93 1.1Lu_ppm_m175 0.028 0.0229 0.0261 0.0198 2.73 2.44 2.58 2.52Lu_ppm_m175_Int2SE 0.0061 0.0049 0.0048 0.0045 0.19 0.18 0.2 0.18Hf_ppm_m177 1.348 1.36 1.341 1.338 1.22 1.72 1.89 1.74Hf_ppm_m177_Int2SE 0.078 0.082 0.073 0.073 0.24 0.28 0.28 0.32Ta_ppm_m181 0.0597 0.0544 0.0533 0.0631 0.049 0.029 0.036 0.048Ta_ppm_m181_Int2SE 0.0064 0.008 0.0085 0.0085 0.023 0.015 0.017 0.019Pb_ppm_m208 1.088 1.112 1.116 1.063 -0.003 0.0024 -0.0241 0.009Pb_ppm_m208_Int2SE 0.028 0.027 0.033 0.031 0.012 0.0097 0.0096 0.016Table 4 - Trace element chemistry of the primary minerals from 7S-7 eclogite xenolith 218 Int2SE=Analytical Error   7S-7-cpx1 7S-7-cpx2 7S-7-cpx3 7S-7-cpx4 7S-7-grt1 7S-7-grt2 7S-7-grt3 7S-7-grt4Li_ppm_m6 2.78 2.59 3.14 4.29 0.61 1.37 1.28 1.47Li_ppm_m6_Int2SE 0.44 0.4 0.51 0.54 0.44 0.59 0.51 0.51Li_ppm_m7 2.71 2.58 3.01 4.43 1.11 1.3 1.34 1.34Li_ppm_m7_Int2SE 0.14 0.13 0.12 0.29 0.12 0.14 0.14 0.14Na_ppm_m23 21250 20530 22330 23610 1765 1698 1753 1719Na_ppm_m23_Int2SE 360 420 320 320 25 23 30 21Si_ppm_m29 141400 138900 141100 147400 221300 212100 198100 201100Si_ppm_m29_Int2SE 2000 2700 1900 1900 3500 2900 3600 2600Si_ppm_m30 144600 139400 141000 148500 221100 209600 198000 201400Si_ppm_m30_Int2SE 2200 2400 1900 1700 3800 3000 3400 2600K_ppm_m39 231.2 233.3 258.5 228.7 7.9 47 6.7 4.7K_ppm_m39_Int2SE 3.8 4.4 4.2 3.4 2.7 15 2.7 2.3Ti_ppm_m47 1592 1588 1801 1900 3834 3962 4212 4123Ti_ppm_m47_Int2SE 23 20 19 19 57 57 66 54Ti_ppm_m49 1651 1641 1875 1954 3906 4004 4317 4244Ti_ppm_m49_Int2SE 18 21 17 20 64 55 82 62V_ppm_m51 102.5 101.6 119.7 116.4 105.2 91.3 103.2 97.1V_ppm_m51_Int2SE 1.5 1.6 1.4 1.3 1.7 1.6 2.2 1.5Fe_ppm_m56 16250 16290 16640 17150 114500 108900 100800 102500Fe_ppm_m56_Int2SE 260 290 200 190 1500 1300 1700 1300Fe_ppm_m57 13750 13580 13930 14400 92300 89000 83500 85400Fe_ppm_m57_Int2SE 250 210 170 190 1200 1200 1600 1100Ni_ppm_m60 149.9 145.6 97.1 111.2 36.4 33.6 34.8 34Ni_ppm_m60_Int2SE 3.3 3.7 1.5 2.4 1.8 1.7 1.8 1.4Ni_ppm_m64 38.82 38.3 36.7 38.2 98.7 91.8 86.7 89.3Ni_ppm_m64_Int2SE 0.91 1 0.68 0.72 3 2.4 2.5 2.3Rb_ppm_m85 0.058 0.01 -0.008 0.014 -0.158 0.51 -0.044 0.064Rb_ppm_m85_Int2SE 0.034 0.027 0.027 0.031 0.086 0.17 0.091 0.08Sr_ppm_m88 81.94 91.5 54.17 58.24 0.77 1.2 0.961 0.711Sr_ppm_m88_Int2SE 0.86 1.2 0.6 0.8 0.091 0.2 0.096 0.095Y_ppm_m89 0.663 0.664 0.504 0.463 11.73 11.63 13.68 12.73Y_ppm_m89_Int2SE 0.028 0.026 0.024 0.025 0.25 0.26 0.28 0.24Zr_ppm_m90 5.7 5.78 6.71 6.8 27.07 28.98 29.37 29.44Zr_ppm_m90_Int2SE 0.13 0.15 0.18 0.19 0.59 0.59 0.6 0.69Nb_ppm_m93 0.123 0.121 0.118 0.14 0.202 0.212 0.273 0.125Nb_ppm_m93_Int2SE 0.016 0.014 0.016 0.017 0.035 0.039 0.045 0.024Ba_ppm_m137 0.046 0.07 0.029 0.051 0 0.044 0.107 -0.0156Ba_ppm_m137_Int2SE 0.03 0.037 0.018 0.03 1 0.043 0.058 0.0011CLINOPYROXENE GARNETTable 4 - Trace element chemistry of the primary minerals from 7S-7 eclogite xenolith 219 Int2SE=Analytical Error    7S-7-cpx1 7S-7-cpx2 7S-7-cpx3 7S-7-cpx4 7S-7-grt1 7S-7-grt2 7S-7-grt3 7S-7-grt4CLINOPYROXENE GARNETLa_ppm_m139 0.486 0.484 0.398 0.416 0.03 0.0182 0.053 0.0198La_ppm_m139_Int2SE 0.027 0.024 0.02 0.022 0.011 0.0067 0.015 0.0076Ce_ppm_m140 2.007 2.139 1.547 1.696 0.257 0.219 0.289 0.23Ce_ppm_m140_Int2SE 0.057 0.07 0.045 0.054 0.029 0.031 0.03 0.031Pr_ppm_m141 0.341 0.384 0.267 0.3 0.081 0.097 0.096 0.095Pr_ppm_m141_Int2SE 0.019 0.022 0.018 0.019 0.014 0.017 0.018 0.016Nd_ppm_m146 1.865 1.84 1.41 1.56 1.09 1.06 1.08 1.02Nd_ppm_m146_Int2SE 0.094 0.093 0.11 0.11 0.11 0.13 0.12 0.14Sm_ppm_m147 0.393 0.444 0.291 0.296 0.8 0.72 0.7 0.77Sm_ppm_m147_Int2SE 0.049 0.051 0.044 0.043 0.15 0.11 0.12 0.12Eu_ppm_m153 0.122 0.129 0.081 0.105 0.382 0.404 0.39 0.44Eu_ppm_m153_Int2SE 0.014 0.013 0.011 0.013 0.041 0.057 0.048 0.048Gd_ppm_m157 0.285 0.349 0.246 0.229 1.44 1.4 1.47 1.45Gd_ppm_m157_Int2SE 0.033 0.044 0.045 0.036 0.18 0.19 0.18 0.16Tb_ppm_m159 0.0301 0.033 0.0301 0.027 0.252 0.286 0.329 0.286Tb_ppm_m159_Int2SE 0.0043 0.0046 0.005 0.0052 0.027 0.027 0.033 0.026Dy_ppm_m163 0.159 0.174 0.141 0.119 2.03 2.02 2.45 2.21Dy_ppm_m163_Int2SE 0.025 0.021 0.02 0.02 0.14 0.14 0.16 0.12Ho_ppm_m165 0.0272 0.0302 0.017 0.0195 0.449 0.385 0.538 0.488Ho_ppm_m165_Int2SE 0.0043 0.0052 0.0034 0.0041 0.038 0.025 0.028 0.031Er_ppm_m166 0.065 0.046 0.0429 0.038 1.43 1.315 1.63 1.511Er_ppm_m166_Int2SE 0.013 0.011 0.008 0.0089 0.11 0.093 0.11 0.099Tm_ppm_m169 0.0062 0.0067 0.0023 0.0054 0.212 0.205 0.252 0.24Tm_ppm_m169_Int2SE 0.0021 0.0017 0.0013 0.0022 0.024 0.023 0.028 0.023Yb_ppm_m172 0.044 0.039 0.0213 0.031 1.58 1.52 1.74 1.56Yb_ppm_m172_Int2SE 0.011 0.01 0.008 0.011 0.13 0.16 0.14 0.16Lu_ppm_m175 0.0048 0.0044 0.0026 0.0027 0.228 0.221 0.261 0.255Lu_ppm_m175_Int2SE 0.0017 0.0015 0.0014 0.0013 0.029 0.025 0.025 0.023Hf_ppm_m177 0.283 0.267 0.393 0.383 0.544 0.613 0.671 0.61Hf_ppm_m177_Int2SE 0.031 0.028 0.034 0.032 0.071 0.086 0.071 0.065Ta_ppm_m181 0.015 0.0214 0.0096 0.0217 0.0162 0.0163 0.0283 0.0192Ta_ppm_m181_Int2SE 0.0033 0.0035 0.0023 0.0038 0.0067 0.0065 0.0076 0.0058Pb_ppm_m208 0.0682 0.0686 0.0587 0.06 0.0103 0.0076 0.0059 0.0182Pb_ppm_m208_Int2SE 0.0048 0.0056 0.0058 0.0057 0.0052 0.0041 0.0035 0.0058Table 5 - Trace element chemistry of the primary minerals from P-5500-N1 eclogite xenolith 220 Int2SE=Analytical Error   P-5500-N1--cpx1 P-5500-N1--cpx2 P-5500-N1--cpx3 P-5500-N1--cpx4 P-5500-N1--grt1 P-5500-N1--grt2 P-5500-N1--grt3 P-5500-N1--grt4Li_ppm_m6 3 2.89 2.72 3.22 1.2 1.13 1.04 0.66Li_ppm_m6_Int2SE 0.54 0.59 0.46 0.56 0.61 0.52 0.59 0.46Li_ppm_m7 2.84 3.01 2.81 2.92 1.04 1.15 1.06 1.16Li_ppm_m7_Int2SE 0.14 0.16 0.13 0.15 0.15 0.16 0.12 0.15Na_ppm_m23 28720 28900 28550 27430 1868 2022 1741 1892Na_ppm_m23_Int2SE 470 420 380 400 30 37 38 31Si_ppm_m29 170900 173300 169300 167400 280400 266600 280300 252800Si_ppm_m29_Int2SE 2600 2400 2300 2400 5000 4900 4900 4200Si_ppm_m30 169500 175000 169700 168700 279400 259500 276400 255300Si_ppm_m30_Int2SE 2400 3100 2100 2500 5400 4600 4500 4700K_ppm_m39 216.2 215.8 196.9 200.8 -17 -6.5 -0.5 7.9K_ppm_m39_Int2SE 3.8 3.6 2.8 3.8 15 3.9 4 3.3Ti_ppm_m47 2053 2091 2188 2112 3595 4083 3339 3837Ti_ppm_m47_Int2SE 30 28 26 22 61 65 61 68Ti_ppm_m49 1998 2019 2078 1975 3532 4055 3330 3905Ti_ppm_m49_Int2SE 23 26 27 24 67 74 59 77V_ppm_m51 174 170.2 185.5 96.3 118.1 114.5 122 111.7V_ppm_m51_Int2SE 2.3 3.1 2.2 1.3 2.2 2.6 2.3 2.2Fe_ppm_m56 20570 21020 20710 20800 142900 134600 146200 130800Fe_ppm_m56_Int2SE 290 340 260 240 2400 2100 2300 2000Fe_ppm_m57 17900 18550 18230 18510 121700 116000 125800 113900Fe_ppm_m57_Int2SE 260 300 210 270 2100 2000 2100 1800Ni_ppm_m60 91.5 90.5 93.4 96 36.7 38 34.6 32.1Ni_ppm_m60_Int2SE 2.4 2.2 1.7 2.2 1.7 1.8 1.7 1.6Ni_ppm_m64 42.7 42 42.46 41.5 122.9 116 129.2 111.4Ni_ppm_m64_Int2SE 1 1 0.95 0.91 3.1 3.9 3 2.9Rb_ppm_m85 0.025 0.054 0.041 0.046 -0.31 -0.06 -0.16 -0.15Rb_ppm_m85_Int2SE 0.04 0.036 0.044 0.039 0.14 0.11 0.1 0.11Sr_ppm_m88 58.5 59.34 59.33 64.95 0.88 0.825 0.95 0.83Sr_ppm_m88_Int2SE 0.83 0.86 0.75 0.86 0.12 0.091 0.11 0.1Y_ppm_m89 0.497 0.509 0.52 0.567 14.33 14.28 14.32 13.96Y_ppm_m89_Int2SE 0.032 0.034 0.027 0.032 0.35 0.32 0.34 0.34Zr_ppm_m90 7.99 8.2 8.39 8.6 22.53 36.69 22.47 35.65Zr_ppm_m90_Int2SE 0.17 0.2 0.2 0.19 0.59 0.86 0.68 0.78Nb_ppm_m93 0.156 0.161 0.155 0.173 0.246 0.259 0.249 0.259Nb_ppm_m93_Int2SE 0.023 0.019 0.02 0.022 0.053 0.048 0.048 0.045Ba_ppm_m137 0.025 0.014 0.019 0.033 0 0 0 0Ba_ppm_m137_Int2SE 0.021 0.016 0.02 0.026 1 1 1 1CLINOPYROXENE GARNETTable 5 - Trace element chemistry of the primary minerals from P-5500-N1 eclogite xenolith 221 Int2SE=Analytical Error    P-5500-N1--cpx1 P-5500-N1--cpx2 P-5500-N1--cpx3 P-5500-N1--cpx4 P-5500-N1--grt1 P-5500-N1--grt2 P-5500-N1--grt3 P-5500-N1--grt4CLINOPYROXENE GARNETLa_ppm_m139 0.44 0.478 0.516 0.498 0.0222 0.034 0.032 0.028La_ppm_m139_Int2SE 0.03 0.027 0.028 0.03 0.0096 0.013 0.013 0.011Ce_ppm_m140 1.912 1.862 1.899 2.019 0.312 0.312 0.342 0.345Ce_ppm_m140_Int2SE 0.076 0.065 0.066 0.059 0.043 0.044 0.042 0.04Pr_ppm_m141 0.321 0.329 0.335 0.341 0.154 0.142 0.13 0.14Pr_ppm_m141_Int2SE 0.019 0.018 0.023 0.024 0.024 0.024 0.021 0.025Nd_ppm_m146 1.71 1.66 1.59 1.85 1.33 1.49 1.36 1.6Nd_ppm_m146_Int2SE 0.13 0.12 0.11 0.12 0.18 0.2 0.19 0.18Sm_ppm_m147 0.333 0.311 0.388 0.379 0.8 1.01 0.72 1.09Sm_ppm_m147_Int2SE 0.048 0.057 0.06 0.051 0.14 0.18 0.13 0.2Eu_ppm_m153 0.11 0.112 0.107 0.124 0.384 0.455 0.437 0.458Eu_ppm_m153_Int2SE 0.015 0.015 0.014 0.014 0.049 0.056 0.052 0.073Gd_ppm_m157 0.253 0.246 0.249 0.298 1.43 1.83 1.37 1.74Gd_ppm_m157_Int2SE 0.049 0.045 0.049 0.044 0.2 0.22 0.19 0.22Tb_ppm_m159 0.0285 0.0276 0.0307 0.0278 0.29 0.322 0.314 0.303Tb_ppm_m159_Int2SE 0.0057 0.0054 0.0052 0.0052 0.032 0.031 0.032 0.032Dy_ppm_m163 0.133 0.158 0.132 0.166 2.45 2.55 2.35 2.36Dy_ppm_m163_Int2SE 0.022 0.025 0.024 0.027 0.21 0.16 0.2 0.19Ho_ppm_m165 0.0197 0.0183 0.0205 0.023 0.523 0.564 0.541 0.523Ho_ppm_m165_Int2SE 0.0046 0.0045 0.0043 0.0043 0.045 0.038 0.047 0.04Er_ppm_m166 0.036 0.047 0.046 0.056 1.65 1.59 1.87 1.69Er_ppm_m166_Int2SE 0.013 0.013 0.01 0.012 0.13 0.14 0.14 0.13Tm_ppm_m169 0.0054 0.0045 0.0054 0.0037 0.264 0.259 0.285 0.256Tm_ppm_m169_Int2SE 0.0025 0.002 0.002 0.0018 0.027 0.028 0.031 0.033Yb_ppm_m172 0.0176 0.0157 0.0248 0.033 1.8 1.92 1.93 1.86Yb_ppm_m172_Int2SE 0.0091 0.0079 0.0093 0.011 0.18 0.21 0.2 0.15Lu_ppm_m175 0.0015 0.0032 0.003 0.0025 0.285 0.283 0.33 0.258Lu_ppm_m175_Int2SE 0.0011 0.002 0.0018 0.0014 0.031 0.032 0.03 0.026Hf_ppm_m177 0.488 0.542 0.49 0.464 0.37 0.631 0.425 0.72Hf_ppm_m177_Int2SE 0.061 0.051 0.044 0.045 0.051 0.098 0.095 0.1Ta_ppm_m181 0.0275 0.0273 0.0302 0.0268 0.0307 0.0343 0.0303 0.036Ta_ppm_m181_Int2SE 0.0053 0.0051 0.0048 0.0051 0.0092 0.0092 0.009 0.011Pb_ppm_m208 0.0602 0.0591 0.0549 0.0598 -0.0007 0.0001 0.0077 0.0019Pb_ppm_m208_Int2SE 0.0071 0.0069 0.0068 0.0064 0.0041 0.0036 0.0043 0.0038Table 6 - Trace element chemistry of the primary minerals from CH7-14-S3 eclogite xenolith 222 Int2SE=Analytical Error   CH7-14-S3-cpx1 CH7-14-S3-cpx2 CH7-14-S3-cpx3 CH7-14-S3-cpx4 CH7-14-S3-grt1 CH7-14-S3-grt2 CH7-14-S3-grt3 CH7-14-S3-grt4Li_ppm_m6 0.161 0.096 0.134 0.158 0.26 0 0 0.06Li_ppm_m6_Int2SE 0.075 0.058 0.054 0.07 0.26 1 1 0.11Li_ppm_m7 0.18 0.145 0.169 0.118 0.294 0.139 0.253 0.275Li_ppm_m7_Int2SE 0.018 0.019 0.019 0.016 0.089 0.056 0.071 0.084Na_ppm_m23 4601 4259 4710 4517 1031 585 705 919Na_ppm_m23_Int2SE 65 47 56 71 18 12 13 22Si_ppm_m29 72690 71890 72710 73130 310500 259800 293600 319900Si_ppm_m29_Int2SE 940 730 740 950 5900 4800 5600 7700Si_ppm_m30 73130 71820 73030 72400 307200 259100 291900 319200Si_ppm_m30_Int2SE 950 770 740 1000 5600 4700 6200 7900K_ppm_m39 50.8 46.99 52.2 48.01 42.9 4.9 4.3 7.8K_ppm_m39_Int2SE 1 0.84 1.1 0.99 7.3 4.4 4.4 5.4Ti_ppm_m47 364.8 344.2 387 351 3375 1928 2236 3131Ti_ppm_m47_Int2SE 5.7 3.9 4.9 4.8 60 40 50 74Ti_ppm_m49 378.9 360.6 392.7 353.2 3566 2036 2354 3295Ti_ppm_m49_Int2SE 5.5 5 5.2 4.5 84 45 49 83V_ppm_m51 110.7 105 108.6 109.1 259.6 166.7 200.2 241.6V_ppm_m51_Int2SE 1.1 1.1 1.2 1.2 5.2 4 4.3 7.1Fe_ppm_m56 7721 7648 7531 7676 124500 103300 115500 127400Fe_ppm_m56_Int2SE 95 79 68 92 2200 1900 2100 3200Fe_ppm_m57 6599 6554 6511 6564 106000 87900 97000 108200Fe_ppm_m57_Int2SE 69 78 68 94 1800 1700 1700 2800Ni_ppm_m60 106.3 108.8 115.5 110.5 51.9 51.8 60.1 61.2Ni_ppm_m60_Int2SE 1.9 1.6 1.6 1.8 2.8 2.3 2.8 2.7Ni_ppm_m64 7.79 7.91 7.68 7.73 41.8 28.8 35.1 37.7Ni_ppm_m64_Int2SE 0.23 0.21 0.22 0.23 1.8 1.5 1.6 1.8Rb_ppm_m85 -0.007 -0.011 0.041 0.024 0.22 0.05 0 0.12Rb_ppm_m85_Int2SE 0.013 0.018 0.017 0.018 0.21 0.13 0.16 0.18Sr_ppm_m88 66.95 68.03 69.54 66.85 2.96 0.295 0.248 0.278Sr_ppm_m88_Int2SE 0.67 0.76 0.66 0.95 0.32 0.075 0.062 0.066Y_ppm_m89 0.574 0.59 0.641 0.586 33.89 29.16 31.27 33.98Y_ppm_m89_Int2SE 0.021 0.019 0.024 0.021 0.77 0.71 0.8 0.88Zr_ppm_m90 6.55 6.2 6.82 6.24 26.5 27.91 27.79 26.39Zr_ppm_m90_Int2SE 0.13 0.1 0.12 0.13 0.81 0.94 0.76 0.9Nb_ppm_m93 0.09 0.0669 0.0805 0.0724 0.385 0.118 0.126 0.055Nb_ppm_m93_Int2SE 0.009 0.0073 0.0085 0.009 0.079 0.028 0.032 0.022Ba_ppm_m137 0.111 0.017 0.143 0.023 1.62 0 0 0Ba_ppm_m137_Int2SE 0.029 0.011 0.039 0.015 0.36 1 1 1CLINOPYROXENE GARNETTable 6 - Trace element chemistry of the primary minerals from CH7-14-S3 eclogite xenolith 223 Int2SE=Analytical Error    CH7-14-S3-cpx1 CH7-14-S3-cpx2 CH7-14-S3-cpx3 CH7-14-S3-cpx4 CH7-14-S3-grt1 CH7-14-S3-grt2 CH7-14-S3-grt3 CH7-14-S3-grt4CLINOPYROXENE GARNETLa_ppm_m139 0.896 0.933 0.906 0.896 0.354 0.0111 0.0168 0.04La_ppm_m139_Int2SE 0.024 0.02 0.023 0.02 0.058 0.0056 0.0083 0.016Ce_ppm_m140 3.588 3.756 3.65 3.705 1.07 0.196 0.258 0.37Ce_ppm_m140_Int2SE 0.058 0.06 0.051 0.058 0.14 0.032 0.046 0.051Pr_ppm_m141 0.595 0.625 0.614 0.603 0.158 0.092 0.102 0.083Pr_ppm_m141_Int2SE 0.015 0.018 0.017 0.017 0.029 0.022 0.019 0.022Nd_ppm_m146 2.881 3.029 3.105 3.04 0.88 0.79 0.85 0.67Nd_ppm_m146_Int2SE 0.096 0.093 0.094 0.11 0.17 0.14 0.15 0.13Sm_ppm_m147 0.613 0.645 0.614 0.637 0.59 0.75 0.8 0.55Sm_ppm_m147_Int2SE 0.044 0.052 0.049 0.045 0.13 0.14 0.17 0.12Eu_ppm_m153 0.168 0.184 0.184 0.176 0.377 0.395 0.43 0.321Eu_ppm_m153_Int2SE 0.011 0.011 0.011 0.012 0.057 0.055 0.063 0.062Gd_ppm_m157 0.43 0.409 0.454 0.408 2.15 2.03 2.16 2.01Gd_ppm_m157_Int2SE 0.033 0.033 0.04 0.033 0.24 0.2 0.21 0.22Tb_ppm_m159 0.0434 0.0466 0.0498 0.0472 0.526 0.446 0.51 0.522Tb_ppm_m159_Int2SE 0.0044 0.0037 0.0043 0.004 0.039 0.039 0.041 0.048Dy_ppm_m163 0.19 0.2 0.228 0.211 5.34 4.44 4.76 5.27Dy_ppm_m163_Int2SE 0.015 0.017 0.015 0.018 0.33 0.24 0.35 0.33Ho_ppm_m165 0.0224 0.0267 0.0276 0.0239 1.307 1.116 1.197 1.286Ho_ppm_m165_Int2SE 0.0028 0.0032 0.0035 0.0031 0.086 0.078 0.075 0.072Er_ppm_m166 0.0453 0.0459 0.0483 0.046 4.33 3.77 3.81 4.52Er_ppm_m166_Int2SE 0.0065 0.0074 0.0077 0.0081 0.28 0.2 0.21 0.27Tm_ppm_m169 0.0048 0.0036 0.0045 0.00309 0.664 0.531 0.596 0.61Tm_ppm_m169_Int2SE 0.0012 0.001 0.0012 0.00097 0.06 0.047 0.042 0.049Yb_ppm_m172 0.0186 0.0176 0.02 0.0156 4.1 3.6 4.25 4.36Yb_ppm_m172_Int2SE 0.0049 0.0055 0.0056 0.0045 0.25 0.21 0.25 0.28Lu_ppm_m175 0.00165 0.00153 0.00241 0.00171 0.651 0.579 0.642 0.744Lu_ppm_m175_Int2SE 0.00078 0.0007 0.00084 0.00071 0.049 0.043 0.053 0.061Hf_ppm_m177 0.409 0.406 0.422 0.412 0.543 0.452 0.475 0.466Hf_ppm_m177_Int2SE 0.026 0.022 0.028 0.021 0.093 0.077 0.089 0.098Ta_ppm_m181 0.0078 0.0061 0.0084 0.0064 0.0243 0.0043 0.0078 0.0006Ta_ppm_m181_Int2SE 0.0018 0.0015 0.0017 0.0016 0.0087 0.0032 0.0042 0.0012Pb_ppm_m208 0.0643 0.0679 0.0664 0.0665 0.028 0.012 0.0044 0.0117Pb_ppm_m208_Int2SE 0.0041 0.0034 0.0042 0.0045 0.011 0.006 0.0044 0.007Table 7 - Trace element chemistry of the primary minerals from CHI-050-14-DD27 @ 80.1 eclogite xenolith 224 Int2SE=Analytical Error   DD27-80.1-cpx1 DD27-80.1-cpx2 DD27-80.1-cpx3 DD27-80.1-cpx4 DD27-80.1-grt1 DD27-80.1-grt2 DD27-80.1-grt3 DD27-80.1-grt4Li_ppm_m6 2.74 1.89 2.58 1.93 1.8 1.8 2.8 2Li_ppm_m6_Int2SE 0.63 0.47 0.56 0.5 1.2 1.5 1.7 1.6Li_ppm_m7 2.86 1.99 2.17 1.94 2.86 2.21 2.84 2.4Li_ppm_m7_Int2SE 0.32 0.16 0.13 0.12 0.47 0.41 0.49 0.45Na_ppm_m23 24570 24570 25490 25190 2625 2107 2873 2377Na_ppm_m23_Int2SE 310 330 560 350 51 47 67 58Si_ppm_m29 257900 257800 262100 260100 1002000 1112000 1013000 1159000Si_ppm_m29_Int2SE 3300 2700 5000 3600 22000 24000 23000 28000Si_ppm_m30 256900 256300 253100 257100 984000 1090000 1008000 1169000Si_ppm_m30_Int2SE 3400 3100 3800 3200 23000 22000 20000 28000K_ppm_m39 37.2 34.7 46.4 38 50 25 7 -23K_ppm_m39_Int2SE 2.1 2 2 2.1 19 19 18 20Ti_ppm_m47 1482 1440 1516 1457 8960 5420 10240 7260Ti_ppm_m47_Int2SE 16 18 24 20 190 140 240 170Ti_ppm_m49 1561 1483 1583 1514 9430 5680 10810 7460Ti_ppm_m49_Int2SE 19 20 25 22 210 160 280 200V_ppm_m51 496.4 491.7 487 495.2 799 702 819 853V_ppm_m51_Int2SE 5.6 5.7 10 6 16 19 21 21Fe_ppm_m56 28300 28460 29120 28590 523000 578000 539000 613000Fe_ppm_m56_Int2SE 340 330 600 390 10000 12000 13000 15000Fe_ppm_m57 24420 24520 24690 24760 446300 490000 459000 513000Fe_ppm_m57_Int2SE 370 280 430 340 9100 11000 12000 12000Ni_ppm_m60 43.7 44.7 47 45 13.7 15.5 14.8 18.9Ni_ppm_m60_Int2SE 1.1 1.4 1.6 1.2 2.2 2.6 2.1 3Ni_ppm_m64 47.3 46.1 46.6 47.8 266 294 268 313Ni_ppm_m64_Int2SE 1.3 1.1 1.5 1.3 11 11 10 11Rb_ppm_m85 0.002 -0.021 0.064 0.167 0.44 0.89 0.49 -0.39Rb_ppm_m85_Int2SE 0.059 0.069 0.065 0.076 0.68 0.68 0.53 0.65Sr_ppm_m88 240.9 242.2 236.8 242.1 0.37 0.64 0.69 0.45Sr_ppm_m88_Int2SE 2.4 2.7 3.4 2.5 0.12 0.2 0.16 0.14Y_ppm_m89 5.69 5.96 6.03 5.89 160.3 170.7 165.7 181Y_ppm_m89_Int2SE 0.15 0.13 0.13 0.11 3.4 3.6 4.1 4.3Zr_ppm_m90 53.77 53.78 51.95 54.36 124.1 88.5 135.1 108.5Zr_ppm_m90_Int2SE 0.86 0.81 0.83 0.77 3.6 2.4 4.9 2.8Nb_ppm_m93 0.021 0.0051 0.0102 0.0102 0 0 0.072 0Nb_ppm_m93_Int2SE 0.012 0.0032 0.0054 0.0068 1 1 0.047 1Ba_ppm_m137 0.71 0.55 0.91 0.69 0 0 0.29 -0.0595Ba_ppm_m137_Int2SE 0.14 0.11 0.15 0.17 1 1 0.31 0.0045CLINOPYROXENE GARNETTable 7 - Trace element chemistry of the primary minerals from CHI-050-14-DD27 @ 80.1 eclogite xenolith 225 Int2SE=Analytical Error    DD27-80.1-cpx1 DD27-80.1-cpx2 DD27-80.1-cpx3 DD27-80.1-cpx4 DD27-80.1-grt1 DD27-80.1-grt2 DD27-80.1-grt3 DD27-80.1-grt4CLINOPYROXENE GARNETLa_ppm_m139 5.72 5.76 5.41 5.33 0.007 0.068 0.099 0.007La_ppm_m139_Int2SE 0.12 0.12 0.15 0.11 0.0098 0.036 0.035 0.01Ce_ppm_m140 17.86 17.88 17.91 17.58 0.234 0.352 0.327 0.256Ce_ppm_m140_Int2SE 0.27 0.27 0.36 0.28 0.079 0.083 0.088 0.072Pr_ppm_m141 3.062 3.019 3.116 2.999 0.128 0.11 0.184 0.154Pr_ppm_m141_Int2SE 0.098 0.086 0.075 0.074 0.039 0.041 0.064 0.049Nd_ppm_m146 16.83 16.53 15.96 16.76 2.16 2.84 2.67 2.78Nd_ppm_m146_Int2SE 0.4 0.39 0.43 0.44 0.4 0.56 0.57 0.54Sm_ppm_m147 3.9 3.91 3.66 3.85 3.19 2.81 4.01 3.23Sm_ppm_m147_Int2SE 0.24 0.22 0.17 0.21 0.58 0.54 0.61 0.64Eu_ppm_m153 1.088 1.04 1.076 1.07 1.83 1.43 2.1 1.86Eu_ppm_m153_Int2SE 0.071 0.052 0.052 0.06 0.21 0.21 0.25 0.31Gd_ppm_m157 3.23 3.12 3.18 3.01 10.46 9.9 11.3 11.1Gd_ppm_m157_Int2SE 0.19 0.2 0.2 0.2 0.98 1.3 1 1.1Tb_ppm_m159 0.391 0.375 0.387 0.362 2.77 2.84 2.76 3.02Tb_ppm_m159_Int2SE 0.026 0.027 0.025 0.022 0.25 0.23 0.22 0.21Dy_ppm_m163 1.88 1.9 1.93 1.97 25.5 25.9 26.6 27.8Dy_ppm_m163_Int2SE 0.1 0.12 0.11 0.11 1.6 1.5 1.5 1.5Ho_ppm_m165 0.241 0.26 0.257 0.264 6.1 6.44 6.31 6.91Ho_ppm_m165_Int2SE 0.018 0.022 0.019 0.02 0.35 0.35 0.3 0.43Er_ppm_m166 0.438 0.484 0.471 0.455 18.4 21.1 19.41 22Er_ppm_m166_Int2SE 0.043 0.049 0.048 0.041 1.1 1.2 0.85 1.4Tm_ppm_m169 0.045 0.0426 0.0422 0.0425 3.14 3.11 2.94 3.34Tm_ppm_m169_Int2SE 0.007 0.008 0.0078 0.0068 0.26 0.23 0.19 0.25Yb_ppm_m172 0.189 0.172 0.171 0.176 18.7 22.4 21.1 22.7Yb_ppm_m172_Int2SE 0.037 0.035 0.032 0.033 1.1 1.3 1.2 1.5Lu_ppm_m175 0.022 0.0151 0.0222 0.0201 3.14 3.39 3.12 3.47Lu_ppm_m175_Int2SE 0.0059 0.0047 0.0056 0.006 0.23 0.24 0.23 0.23Hf_ppm_m177 2.09 2.07 1.91 2.07 1.64 0.79 1.84 1.58Hf_ppm_m177_Int2SE 0.12 0.12 0.13 0.14 0.35 0.24 0.37 0.33Ta_ppm_m181 0.0013 0.0012 0.0014 0.0017 0 0 0 0Ta_ppm_m181_Int2SE 0.0013 0.0011 0.0013 0.0012 1 1 1 1Pb_ppm_m208 1.415 1.408 1.383 1.382 0.006 0.019 -0.011 0.001Pb_ppm_m208_Int2SE 0.039 0.034 0.042 0.045 0.014 0.021 0.011 0.013Table 8 - Trace element chemistry of the primary minerals from CHI-050-14-DD28 @ 104.18 OPX-bearing eclogite xenolith 226 Int2SE=Analytical Error        050-104.18-cpx1 050-104.18-cpx2 050-104.18-cpx3 050-104.18-cpx4 050-104.18-grt1 050-104.18-grt2 050-104.18-grt3 050-104.18-grt4 050-104.18-opx1 050-104.18-opx2 050-104.18-opx3 050-104.18-opx4 Li_ppm_m6 0.056 0.052 0.089 0.109 -0.193 -0.074 0 0.2 6 5.4 6.2 5.4Li_ppm_m6_Int2SE 0.043 0.039 0.049 0.052 0.0055 0.006 1 0.29 3.7 3.2 3.5 3.1Li_ppm_m7 0.113 0.104 0.134 0.103 0.18 0.189 0.181 0.128 6.55 6.39 7.15 7.35Li_ppm_m7_Int2SE 0.014 0.014 0.014 0.015 0.071 0.068 0.065 0.05 0.97 0.87 0.75 0.94Na_ppm_m23 2697 2688 3020 2421 587 463 446 533 9160 9700 8630 7810Na_ppm_m23_Int2SE 43 34 44 36 13 11 10 11 480 540 360 410Si_ppm_m29 47770 48040 48690 47580 228400 231700 223100 230800 3340000 3360000 3080000 2980000Si_ppm_m29_Int2SE 670 620 610 690 4500 5100 4900 4500 170000 190000 120000 140000Si_ppm_m30 47880 47130 48100 47230 226800 228400 221800 227900 3370000 3370000 3000000 2920000Si_ppm_m30_Int2SE 720 740 540 690 4700 5300 5000 4500 170000 190000 120000 130000K_ppm_m39 33.25 31.18 40.22 34 0.6 5.9 2.8 20.8 68 82 194 50K_ppm_m39_Int2SE 0.75 0.77 0.71 1.4 4.2 3.6 4.1 4.5 21 28 29 24Ti_ppm_m47 254.9 273.7 304.4 238.2 3009 2311 2329 2676 7340 7290 6860 6690Ti_ppm_m47_Int2SE 3.6 3.5 3.7 3.1 68 56 54 51 400 430 320 290Ti_ppm_m49 250 276.8 302.1 233.5 2909 2268 2293 2621 7220 7260 6820 6580Ti_ppm_m49_Int2SE 3.5 4.8 4.3 3.2 72 57 62 58 390 410 290 310V_ppm_m51 83 83.6 89.4 68.75 232.3 210.7 212.8 220.3 403 399 403 377V_ppm_m51_Int2SE 1.3 1 1.2 0.82 4.8 4.9 5.3 4.5 22 25 14 19Fe_ppm_m56 4220 4263 4330 4168 69700 67700 67400 68900 473000 472000 442000 433000Fe_ppm_m56_Int2SE 67 62 58 59 1500 1600 1500 1300 25000 27000 17000 20000Fe_ppm_m57 3706 3714 3744 3614 59300 58000 58000 59000 410000 405000 380000 374000Fe_ppm_m57_Int2SE 58 55 52 51 1400 1400 1200 1100 22000 23000 14000 17000Ni_ppm_m60 78.9 79.1 78.2 79.4 52.9 65.8 59.5 59.3 10750 10530 10200 9990Ni_ppm_m60_Int2SE 1.5 1.3 1.2 1.6 2.5 2.6 2.1 2.4 560 580 420 510Ni_ppm_m64 4.52 4.37 4.3 4.35 15.51 15.89 15.46 16.1 767 760 731 705Ni_ppm_m64_Int2SE 0.15 0.15 0.14 0.11 0.85 0.86 0.91 1.1 37 43 39 38Rb_ppm_m85 -0.003 -0.003 0.001 0.021 0.14 0.12 -0.16 -0.11 0.13 0.05 0.99 -0.41Rb_ppm_m85_Int2SE 0.011 0.012 0.011 0.011 0.14 0.13 0.13 0.14 0.89 0.73 0.7 0.72Sr_ppm_m88 37.32 53.88 31.16 44.95 0.185 0.096 0.149 0.152 2.33 1.06 7.5 3.83Sr_ppm_m88_Int2SE 0.46 0.62 0.34 0.54 0.041 0.03 0.039 0.035 0.39 0.25 1.5 0.49Y_ppm_m89 0.666 0.732 0.879 0.567 23.39 22.72 22 23.27 0.49 0.57 0.66 0.52Y_ppm_m89_Int2SE 0.019 0.017 0.023 0.014 0.5 0.67 0.56 0.51 0.11 0.14 0.12 0.13Zr_ppm_m90 2.082 2.704 2.856 1.955 33.6 34.38 33.18 33.24 1.38 1.63 1.69 1.2Zr_ppm_m90_Int2SE 0.055 0.06 0.062 0.044 1 0.97 0.82 0.85 0.31 0.34 0.34 0.26Nb_ppm_m93 0.0266 0.0308 0.034 0.0389 0.066 0.079 0.097 0.038 0.76 0.242 0.81 0.52Nb_ppm_m93_Int2SE 0.0039 0.0043 0.0037 0.0051 0.024 0.023 0.02 0.017 0.2 0.091 0.2 0.16Ba_ppm_m137 0.03 0.0147 0.073 0.181 0 0 0 0 0.19 0.02 2.9 0Ba_ppm_m137_Int2SE 0.014 0.0088 0.019 0.025 1 1 1 1 0.21 0.14 1.1 1CLINOPYROXENE GARNET ORTHOPYROXENETable 8 - Trace element chemistry of the primary minerals from CHI-050-14-DD28 @ 104.18 OPX-bearing eclogite xenolith 227 Int2SE=Analytical Error        050-104.18-cpx1 050-104.18-cpx2 050-104.18-cpx3 050-104.18-cpx4 050-104.18-grt1 050-104.18-grt2 050-104.18-grt3 050-104.18-grt4 050-104.18-opx1 050-104.18-opx2 050-104.18-opx3 050-104.18-opx4 CLINOPYROXENE GARNET ORTHOPYROXENELa_ppm_m139 0.639 0.745 0.744 0.556 0.0074 0.0032 0.0019 0.0058 0.09 0.078 0.53 0.065La_ppm_m139_Int2SE 0.016 0.019 0.017 0.013 0.0056 0.0028 0.0022 0.0046 0.044 0.035 0.13 0.032Ce_ppm_m140 2.514 3.154 2.571 2.402 0.081 0.099 0.085 0.086 0.48 0.333 1.51 0.432Ce_ppm_m140_Int2SE 0.048 0.047 0.046 0.045 0.026 0.023 0.022 0.021 0.13 0.08 0.31 0.093Pr_ppm_m141 0.455 0.556 0.406 0.431 0.026 0.049 0.04 0.037 0.042 0.008 0.158 0.083Pr_ppm_m141_Int2SE 0.01 0.015 0.011 0.012 0.011 0.013 0.011 0.011 0.027 0.017 0.059 0.033Nd_ppm_m146 2.238 2.854 2.087 2.233 0.338 0.431 0.54 0.41 0.46 0 0.79 0.47Nd_ppm_m146_Int2SE 0.071 0.078 0.074 0.07 0.092 0.097 0.11 0.091 0.21 1 0.33 0.24Sm_ppm_m147 0.507 0.587 0.508 0.484 0.41 0.51 0.49 0.52 -0.011 0 0.08 0.026Sm_ppm_m147_Int2SE 0.034 0.03 0.034 0.031 0.11 0.1 0.11 0.12 0.063 1 0.1 0.051Eu_ppm_m153 0.1383 0.1654 0.155 0.1312 0.253 0.246 0.253 0.254 0.05 0 0.015 0.074Eu_ppm_m153_Int2SE 0.0084 0.0094 0.0085 0.0075 0.044 0.037 0.044 0.043 0.04 1 0.022 0.043Gd_ppm_m157 0.356 0.432 0.419 0.31 1.34 1.57 1.21 1.33 0.097 0.017 0.033 0.3Gd_ppm_m157_Int2SE 0.026 0.024 0.029 0.023 0.17 0.21 0.14 0.16 0.095 0.035 0.046 0.17Tb_ppm_m159 0.0436 0.0477 0.0524 0.0365 0.365 0.347 0.371 0.371 0.0026 0.0065 0.0042 0.017Tb_ppm_m159_Int2SE 0.0038 0.0036 0.0041 0.0033 0.032 0.034 0.035 0.037 0.0051 0.0094 0.0059 0.013Dy_ppm_m163 0.202 0.221 0.27 0.179 3.53 3.21 3.32 3.27 0.102 0.065 0.154 0.138Dy_ppm_m163_Int2SE 0.016 0.016 0.019 0.013 0.22 0.25 0.2 0.22 0.075 0.062 0.094 0.098Ho_ppm_m165 0.0292 0.0312 0.0395 0.0256 0.914 0.85 0.871 0.919 0.011 0.016 0.007 0.012Ho_ppm_m165_Int2SE 0.0027 0.0036 0.0035 0.0029 0.066 0.046 0.064 0.071 0.012 0.015 0.01 0.012Er_ppm_m166 0.0462 0.0685 0.0742 0.0483 3.09 2.82 2.81 2.97 0.009 0.026 0.087 0.045Er_ppm_m166_Int2SE 0.0061 0.0072 0.0069 0.0055 0.18 0.18 0.17 0.19 0.028 0.031 0.057 0.039Tm_ppm_m169 0.0047 0.0054 0.0067 0.00381 0.456 0.455 0.449 0.477 0.006 0.012 0.009 0Tm_ppm_m169_Int2SE 0.0011 0.0013 0.0012 0.00089 0.051 0.039 0.03 0.043 0.0084 0.014 0.011 1Yb_ppm_m172 0.0256 0.0277 0.0398 0.024 3.39 3.16 3.2 3.17 0 0.022 0.039 0.031Yb_ppm_m172_Int2SE 0.0055 0.0063 0.0067 0.0055 0.26 0.22 0.21 0.22 1 0.03 0.05 0.036Lu_ppm_m175 0.00297 0.00251 0.00386 0.00251 0.51 0.477 0.474 0.498 0 0 0 0.0023Lu_ppm_m175_Int2SE 0.0007 0.00075 0.00099 0.00075 0.043 0.042 0.04 0.048 1 1 1 0.0046Hf_ppm_m177 0.16 0.23 0.235 0.132 0.595 0.709 0.723 0.72 0.037 0.055 0.029 0.01Hf_ppm_m177_Int2SE 0.013 0.016 0.018 0.011 0.094 0.097 0.089 0.12 0.054 0.056 0.033 0.02Ta_ppm_m181 0.0022 0.00201 0.0032 0.00224 0.0049 0.002 0.0029 0.001 0.064 0 0.031 0.067Ta_ppm_m181_Int2SE 0.0007 0.00061 0.00078 0.00065 0.0037 0.0019 0.0022 0.0014 0.029 1 0.019 0.032Pb_ppm_m208 0.0399 0.0416 0.0589 0.035 0.0128 0.0042 0.01 0.0035 0.022 0.05 0.123 0.028Pb_ppm_m208_Int2SE 0.0027 0.0026 0.0028 0.003 0.0047 0.0037 0.0048 0.0035 0.021 0.023 0.041 0.019Table 9 - Trace element chemistry of the primary minerals from CHI-050-14-DD27 @ 184.54 eclogite xenolith 228 Int2SE=Analytical Error       050-184.54-cpx1 050-184.54-cpx2 050-184.54-cpx3 050-184.54-cpx4 050-184.54-grt1 050-184.54-grt2 050-184.54-grt3 050-184.54-grt4 050-184.54-rut1 050-184.54-rut2 050-184.54-rut3 050-184.54-rut4Li_ppm_m6 8.6 9.7 6.71 9.2 2.1 1.35 3.1 3.1 0 0.13 0 0.22Li_ppm_m6_Int2SE 1.3 1.4 0.96 1.3 1 0.63 1.1 1.1 1 0.18 1 0.29Li_ppm_m7 7.82 7.98 7.89 8.23 2.18 2.34 2.82 2.71 0.085 0.153 0.103 0.052Li_ppm_m7_Int2SE 0.27 0.31 0.31 0.29 0.25 0.21 0.23 0.22 0.037 0.063 0.063 0.051Na_ppm_m23 22680 23300 21650 20970 1137 1121 1497 1275 76.3 8.48 7 42.9Na_ppm_m23_Int2SE 440 410 430 440 21 18 21 30 4.5 0.76 0.72 2.1Si_ppm_m29 164600 166900 158300 159900 206100 206000 202400 200600 247 189 231 389Si_ppm_m29_Int2SE 3400 3200 2300 2800 3900 2900 3300 2600 89 59 82 84Si_ppm_m30 164600 168500 160200 163100 209200 203000 202200 203900 -370 1710 -4830 6400Si_ppm_m30_Int2SE 3800 3100 2800 3000 4000 3000 3600 2900 710 800 730 5000K_ppm_m39 1397 1343 1370 1456 0.3 0.1 7.7 4.9 -0.7 1.1 -0.3 7.3K_ppm_m39_Int2SE 26 20 22 30 5.2 3.4 4.1 4.3 2.4 2.8 3.7 4.5Ti_ppm_m47 1498 1477 1434 1495 2650 2540 3075 2809 21 1 19 102Ti_ppm_m47_Int2SE 22 22 22 21 45 49 57 48 41 32 35 42Ti_ppm_m49 1573 1544 1499 1543 2854 2669 3228 2992 617000 620700 591000 598000Ti_ppm_m49_Int2SE 25 23 20 24 51 40 49 46 8400 7200 14000 11000V_ppm_m51 313.1 316.3 315.5 313.3 239.5 228 269.8 247.4 1366 1409 1395 1404V_ppm_m51_Int2SE 5.5 4.3 4.9 4.3 3.9 4.2 3.8 3.8 27 19 35 65Fe_ppm_m56 37690 37910 35770 35260 177600 175800 172300 172400 28700 16400 13420 32600Fe_ppm_m56_Int2SE 680 580 500 540 2900 2600 2300 2200 1600 1300 620 1500Fe_ppm_m57 33050 33740 31530 31830 154500 152600 149500 151800 25000 14000 11660 29200Fe_ppm_m57_Int2SE 550 460 460 470 2400 2300 2200 2200 1200 1100 610 1800Ni_ppm_m60 79.7 78.7 70.7 69.7 13.1 13.8 13.05 13.02 2.94 11.1 4.93 9.6Ni_ppm_m60_Int2SE 2 2.1 1.7 1.9 1.1 1 0.97 0.9 0.43 1.4 0.69 1.6Ni_ppm_m64 108.4 108.3 104.6 107 161.8 157.7 158.6 155.1 47.4 383 71.5 91Ni_ppm_m64_Int2SE 2.2 2.9 2.3 2.8 5.1 4.4 4.3 3.4 3.2 63 6.6 15Rb_ppm_m85 0.004 -0.017 0.016 0.001 -0.09 -0.09 -0.02 0.02 -0.07 -0.16 0.04 0Rb_ppm_m85_Int2SE 0.061 0.068 0.081 0.059 0.18 0.13 0.15 0.14 0.12 0.12 0.14 0.16Sr_ppm_m88 108.7 103.2 101.3 102.7 1.21 1.24 1.17 1.15 0.132 0.12 0.142 0.149Sr_ppm_m88_Int2SE 1.9 1.7 1.4 1.5 0.12 0.11 0.12 0.12 0.037 0.11 0.036 0.08Y_ppm_m89 1.155 1.096 1.112 1.073 49.04 48.78 48.86 47.86 0.042 0.0092 0.0148 0.066Y_ppm_m89_Int2SE 0.051 0.056 0.058 0.043 0.94 0.78 0.82 0.7 0.013 0.0058 0.0096 0.021Zr_ppm_m90 14.4 13.79 13.33 13.38 28.5 28.51 32.21 31.6 1069 1064 1023 1004Zr_ppm_m90_Int2SE 0.35 0.37 0.28 0.36 0.7 0.7 0.63 0.56 12 13 30 28Nb_ppm_m93 -0.0002 0.0012 0.0011 0.0006 0 0 0 0.0049 589 518.2 566 600Nb_ppm_m93_Int2SE 0.0019 0.0017 0.0016 0.0013 1 1 1 0.0068 11 6.8 12 29Ba_ppm_m137 0 0.046 0.054 0.059 0 0 0 0 0 0 0.039 0.27Ba_ppm_m137_Int2SE 1 0.041 0.041 0.046 1 1 1 1 1 1 0.053 0.27CLINOPYROXENE GARNET RUTILETable 9 - Trace element chemistry of the primary minerals from CHI-050-14-DD27 @ 184.54 eclogite xenolith 229 Int2SE=Analytical Error        050-184.54-cpx1 050-184.54-cpx2 050-184.54-cpx3 050-184.54-cpx4 050-184.54-grt1 050-184.54-grt2 050-184.54-grt3 050-184.54-grt4 050-184.54-rut1 050-184.54-rut2 050-184.54-rut3 050-184.54-rut4CLINOPYROXENE GARNET RUTILELa_ppm_m139 0.146 0.171 0.185 0.15 0.0049 0.0035 0.0124 0.0048 0.0083 0 0 0La_ppm_m139_Int2SE 0.017 0.019 0.02 0.016 0.005 0.003 0.0063 0.0039 0.0057 1 1 1Ce_ppm_m140 0.742 0.783 0.751 0.738 0.13 0.121 0.603 0.276 0.0073 0.0016 0 0.009Ce_ppm_m140_Int2SE 0.037 0.041 0.051 0.048 0.029 0.023 0.046 0.037 0.0056 0.0023 1 0.01Pr_ppm_m141 0.152 0.142 0.138 0.135 0.071 0.065 0.215 0.204 0 0 0 0Pr_ppm_m141_Int2SE 0.017 0.014 0.017 0.017 0.018 0.012 0.023 0.028 1 1 1 1Nd_ppm_m146 1.02 0.881 0.953 0.98 1.1 1.23 2.76 2.54 0 0 0 0Nd_ppm_m146_Int2SE 0.11 0.096 0.081 0.08 0.16 0.17 0.24 0.24 1 1 1 1Sm_ppm_m147 0.472 0.419 0.468 0.46 2.29 2.49 2.98 2.96 0 0 0 0Sm_ppm_m147_Int2SE 0.071 0.079 0.082 0.072 0.28 0.27 0.26 0.23 1 1 1 1Eu_ppm_m153 0.155 0.169 0.149 0.178 1.242 1.129 1.104 1.219 0 0 0 -0.00105Eu_ppm_m153_Int2SE 0.024 0.027 0.023 0.02 0.093 0.072 0.062 0.087 1 1 1 0.00011Gd_ppm_m157 0.529 0.486 0.512 0.532 5.72 5.7 5.54 5.71 0 0 0 0Gd_ppm_m157_Int2SE 0.081 0.081 0.066 0.073 0.36 0.38 0.37 0.38 1 1 1 1Tb_ppm_m159 0.0606 0.0604 0.0613 0.058 1.182 1.148 1.178 1.072 -0.000393 -0.0004405 0 0.0017Tb_ppm_m159_Int2SE 0.0099 0.0088 0.0091 0.011 0.051 0.055 0.069 0.056 0.00003 0.0000079 1 0.0023Dy_ppm_m163 0.317 0.326 0.339 0.309 8.64 8.49 8.48 8.45 0 0 0 0.02Dy_ppm_m163_Int2SE 0.046 0.037 0.04 0.051 0.43 0.41 0.41 0.33 1 1 1 0.019Ho_ppm_m165 0.0446 0.0378 0.0519 0.0479 1.88 1.926 1.849 1.876 0.0006 0 0 0Ho_ppm_m165_Int2SE 0.0077 0.0067 0.0089 0.0089 0.094 0.072 0.078 0.085 0.0012 1 1 1Er_ppm_m166 0.124 0.107 0.11 0.103 5.52 5.51 5.52 5.55 0.014 0 0 0.002Er_ppm_m166_Int2SE 0.025 0.02 0.018 0.021 0.22 0.25 0.23 0.24 0.011 1 1 0.0061Tm_ppm_m169 0.0155 0.0101 0.0102 0.008 0.84 0.799 0.877 0.751 0 0 0 0.001Tm_ppm_m169_Int2SE 0.0046 0.0031 0.0033 0.0029 0.052 0.058 0.05 0.039 1 1 1 0.002Yb_ppm_m172 0.064 0.063 0.062 0.052 5.62 5.43 5.35 5.56 0.014 0 0 0.0044Yb_ppm_m172_Int2SE 0.026 0.017 0.02 0.021 0.27 0.29 0.28 0.25 0.012 1 1 0.0089Lu_ppm_m175 0.0053 0.0063 0.0105 0.0035 0.79 0.833 0.804 0.796 0.001 0 0 -0.001136Lu_ppm_m175_Int2SE 0.0026 0.0029 0.0033 0.0025 0.057 0.051 0.051 0.054 0.0013 1 1 0.000031Hf_ppm_m177 0.756 0.81 0.812 0.862 0.52 0.524 0.52 0.57 35.04 34.76 33.5 31.8Hf_ppm_m177_Int2SE 0.072 0.084 0.072 0.08 0.087 0.078 0.072 0.082 0.68 0.89 1.3 1.2Ta_ppm_m181 0 0 0 0.00027 0 0 0 0 38.41 30.2 35.1 29.07Ta_ppm_m181_Int2SE 1 1 1 0.00054 1 1 1 1 0.68 0.35 0.89 0.89Pb_ppm_m208 0.096 0.0939 0.0793 0.093 0.013 0.0014 0.0012 0.0036 0.007 0.0087 0.01 0.014Pb_ppm_m208_Int2SE 0.012 0.0094 0.0095 0.013 0.011 0.0057 0.0039 0.0027 0.0062 0.0063 0.013 0.013Table 10 - Trace element chemistry of the primary minerals from CH7-14-S10-2 eclogite xenolith 230 Int2SE=Analytical Error   CH7-S14-10-2-cpx1 CH7-S14-10-2-cpx2 CH7-S14-10-2-cpx3 CH7-S14-10-2-cpx4 CH7-S14-10-2-grt1 CH7-S14-10-2-grt2 CH7-S14-10-2-grt3 CH7-S14-10-2-grt4Li_ppm_m6 0.65 0.34 0.49 0.39 0 0.18 -0.105 0.64Li_ppm_m6_Int2SE 0.24 0.17 0.2 0.16 1 0.2 0.0043 0.42Li_ppm_m7 0.739 0.641 0.609 0.662 0.396 0.284 0.303 0.33Li_ppm_m7_Int2SE 0.076 0.069 0.066 0.061 0.098 0.078 0.088 0.1Na_ppm_m23 20650 20120 20100 20180 1904 2018 2002 2122Na_ppm_m23_Int2SE 260 240 340 330 26 29 29 32Si_ppm_m29 141100 138100 140300 139300 203800 211500 215000 216700Si_ppm_m29_Int2SE 1600 1500 2200 2000 2900 3200 3400 3400Si_ppm_m30 141300 136500 139900 143700 207800 211700 215800 222400Si_ppm_m30_Int2SE 1600 1800 2000 2100 3100 3100 3100 3500K_ppm_m39 113.4 74 54 128.3 14 17.4 25.7 17.5K_ppm_m39_Int2SE 3.2 23 18 3 3.4 4.4 4.9 4.4Ti_ppm_m47 2056 2005 2007 1984 5237 5611 5530 5975Ti_ppm_m47_Int2SE 23 22 24 23 80 88 77 94Ti_ppm_m49 2105 2027 2070 2070 5390 5705 5604 6030Ti_ppm_m49_Int2SE 25 22 25 24 96 96 89 100V_ppm_m51 211 208.4 207.4 207.5 161 188.4 183.4 207.2V_ppm_m51_Int2SE 2.1 2.2 3 2.8 3.1 3.2 3.3 3.5Fe_ppm_m56 22750 22310 22720 22640 117200 120900 122400 124900Fe_ppm_m56_Int2SE 250 220 300 310 1600 1900 1700 2000Fe_ppm_m57 19760 19420 19950 19950 103400 106500 108900 110100Fe_ppm_m57_Int2SE 200 210 260 260 1400 1800 1500 1800Ni_ppm_m60 78.9 76.5 79.1 78.2 27.5 27.3 26.8 29.7Ni_ppm_m60_Int2SE 1.6 1.7 1.7 1.6 1.7 1.6 1.5 1.5Ni_ppm_m64 27.8 27.47 28.41 27.51 65.8 67.6 66.6 70.5Ni_ppm_m64_Int2SE 0.61 0.7 0.91 0.77 2.1 2.6 2 2Rb_ppm_m85 -0.064 -0.165 -0.187 -0.055 -0.12 0.03 0.08 0.15Rb_ppm_m85_Int2SE 0.047 0.077 0.074 0.057 0.13 0.13 0.18 0.17Sr_ppm_m88 58.8 57.03 59.01 58.66 0.709 0.743 0.695 0.786Sr_ppm_m88_Int2SE 0.61 0.64 0.77 0.7 0.082 0.088 0.094 0.089Y_ppm_m89 0.621 0.657 0.649 0.656 20.66 19.48 19.7 19.52Y_ppm_m89_Int2SE 0.034 0.029 0.033 0.028 0.36 0.37 0.32 0.44Zr_ppm_m90 10.69 10.63 10.77 10.88 43.72 45.18 46.1 47.6Zr_ppm_m90_Int2SE 0.24 0.22 0.24 0.2 0.88 0.98 1.1 1.1Nb_ppm_m93 0.146 0.143 0.147 0.138 0.231 0.22 0.218 0.238Nb_ppm_m93_Int2SE 0.02 0.014 0.017 0.019 0.038 0.04 0.044 0.046Ba_ppm_m137 0.05 0.033 0.043 0.129 0 0 0 0.079Ba_ppm_m137_Int2SE 0.025 0.023 0.029 0.054 1 1 1 0.073CLINOPYROXENE GARNETTable 10 - Trace element chemistry of the primary minerals from CH7-14-S10-2 eclogite xenolith 231 Int2SE=Analytical Error    CH7-S14-10-2-cpx1 CH7-S14-10-2-cpx2 CH7-S14-10-2-cpx3 CH7-S14-10-2-cpx4 CH7-S14-10-2-grt1 CH7-S14-10-2-grt2 CH7-S14-10-2-grt3 CH7-S14-10-2-grt4CLINOPYROXENE GARNETLa_ppm_m139 0.603 0.579 0.595 0.626 0.0213 0.0195 0.0285 0.036La_ppm_m139_Int2SE 0.03 0.024 0.025 0.024 0.0081 0.008 0.0089 0.01Ce_ppm_m140 2.304 2.319 2.43 2.387 0.298 0.285 0.33 0.38Ce_ppm_m140_Int2SE 0.06 0.062 0.066 0.051 0.035 0.031 0.037 0.038Pr_ppm_m141 0.407 0.409 0.398 0.423 0.107 0.142 0.134 0.121Pr_ppm_m141_Int2SE 0.023 0.02 0.021 0.023 0.019 0.021 0.023 0.023Nd_ppm_m146 1.96 2.01 2 1.97 1.29 1.33 1.36 1.22Nd_ppm_m146_Int2SE 0.11 0.1 0.11 0.1 0.14 0.18 0.12 0.17Sm_ppm_m147 0.422 0.464 0.481 0.454 0.96 1.04 1.03 0.94Sm_ppm_m147_Int2SE 0.054 0.044 0.059 0.048 0.14 0.17 0.14 0.13Eu_ppm_m153 0.137 0.128 0.136 0.129 0.417 0.465 0.451 0.457Eu_ppm_m153_Int2SE 0.015 0.012 0.014 0.013 0.05 0.065 0.051 0.047Gd_ppm_m157 0.346 0.281 0.33 0.299 1.91 1.85 1.92 1.69Gd_ppm_m157_Int2SE 0.048 0.043 0.04 0.041 0.21 0.22 0.19 0.17Tb_ppm_m159 0.0399 0.0367 0.0377 0.0344 0.375 0.372 0.375 0.431Tb_ppm_m159_Int2SE 0.0057 0.006 0.0071 0.0051 0.034 0.033 0.037 0.041Dy_ppm_m163 0.193 0.17 0.169 0.182 3.16 3.05 3.05 3.19Dy_ppm_m163_Int2SE 0.029 0.028 0.024 0.022 0.2 0.21 0.2 0.17Ho_ppm_m165 0.0313 0.0287 0.0271 0.0282 0.748 0.736 0.802 0.747Ho_ppm_m165_Int2SE 0.0053 0.0044 0.0048 0.0044 0.049 0.056 0.052 0.046Er_ppm_m166 0.057 0.046 0.06 0.058 2.68 2.62 2.53 2.42Er_ppm_m166_Int2SE 0.012 0.012 0.011 0.013 0.15 0.17 0.17 0.16Tm_ppm_m169 0.0053 0.0058 0.0068 0.0061 0.472 0.407 0.412 0.374Tm_ppm_m169_Int2SE 0.002 0.0022 0.0023 0.0022 0.039 0.033 0.034 0.035Yb_ppm_m172 0.038 0.0209 0.036 0.0232 3.32 2.93 2.75 2.78Yb_ppm_m172_Int2SE 0.013 0.0078 0.013 0.0084 0.22 0.22 0.21 0.18Lu_ppm_m175 0.0061 0.0047 0.0031 0.0023 0.526 0.485 0.472 0.451Lu_ppm_m175_Int2SE 0.0021 0.0019 0.0014 0.001 0.036 0.037 0.04 0.037Hf_ppm_m177 0.73 0.708 0.693 0.704 1.01 1.05 1.07 1.09Hf_ppm_m177_Int2SE 0.055 0.057 0.053 0.045 0.11 0.11 0.13 0.12Ta_ppm_m181 0.0194 0.0226 0.022 0.0208 0.0337 0.0301 0.035 0.0322Ta_ppm_m181_Int2SE 0.0041 0.0039 0.004 0.0043 0.0094 0.0071 0.009 0.0092Pb_ppm_m208 0.0515 0.0493 0.0557 0.0537 0.0053 -0.0025 0.0028 -0.001Pb_ppm_m208_Int2SE 0.006 0.0056 0.0059 0.0066 0.0063 0.0029 0.0041 0.0036Table 11 - Trace element chemistry of the primary minerals from CH7-14-S13 eclogite xenolith 232 Int2SE=Analytical Error   CH7-14-S13-cpx1 CH7-14-S13-cpx2 CH7-14-S13-cpx3 CH7-14-S13-cpx4 CH7-14-S13-grt1 CH7-14-S13-grt2 CH7-14-S13-grt3 CH7-14-S13-grt4Li_ppm_m6 0.66 0.39 0.4 0.5 0.38 0.61 0 0.14Li_ppm_m6_Int2SE 0.24 0.18 0.18 0.19 0.52 0.52 1 0.28Li_ppm_m7 0.499 0.434 0.46 0.477 0.55 0.55 0.58 0.47Li_ppm_m7_Int2SE 0.051 0.041 0.041 0.041 0.17 0.14 0.13 0.13Na_ppm_m23 12270 12140 12480 12450 1677 1679 1625 1738Na_ppm_m23_Int2SE 240 150 240 220 49 46 40 45Si_ppm_m29 98800 99300 101500 99580 438000 445000 430000 437900Si_ppm_m29_Int2SE 1700 1200 1900 1600 12000 10000 11000 9900Si_ppm_m30 95800 97400 97700 98800 431000 440200 423000 434000Si_ppm_m30_Int2SE 1700 1100 1600 1600 12000 9600 11000 11000K_ppm_m39 94.4 96.8 174 92.2 37 33.9 19.4 36K_ppm_m39_Int2SE 1.9 1.8 17 2.1 11 9.1 9.3 12Ti_ppm_m47 1103 1136 1119 1090 4200 4150 4270 4270Ti_ppm_m47_Int2SE 14 13 14 14 120 120 120 120Ti_ppm_m49 1079 1099 1081 1070 4030 4030 4110 4150Ti_ppm_m49_Int2SE 17 14 19 13 110 100 100 120V_ppm_m51 121.5 119.4 123 122.6 167.6 176.5 175.3 178.8V_ppm_m51_Int2SE 1.9 1.4 2.4 1.9 5.5 5.1 4.7 4.4Fe_ppm_m56 12160 12390 12670 12260 170000 175200 167600 172900Fe_ppm_m56_Int2SE 220 160 230 210 5100 4300 4000 3900Fe_ppm_m57 10580 10980 10960 10780 149700 154700 147500 153900Fe_ppm_m57_Int2SE 160 150 190 190 4400 3900 3500 3800Ni_ppm_m60 189.4 188.3 187.9 189.2 140.3 142.7 131.2 143.6Ni_ppm_m60_Int2SE 4 3.3 3.7 3.8 7 5.3 4.8 6.3Ni_ppm_m64 12.7 12.63 13.06 12.59 57.3 57.7 57.5 58.7Ni_ppm_m64_Int2SE 0.41 0.36 0.43 0.31 3 3.2 2.8 3.6Rb_ppm_m85 -0.038 0.034 0.137 -0.004 0.1 0.29 0.31 -0.2Rb_ppm_m85_Int2SE 0.04 0.046 0.054 0.042 0.38 0.34 0.43 0.4Sr_ppm_m88 93.3 94.4 93.6 91.1 0.405 0.51 0.402 1.49Sr_ppm_m88_Int2SE 1.1 1.1 1.3 1.2 0.095 0.11 0.068 0.33Y_ppm_m89 2.307 2.394 2.364 2.243 49 49.6 49.9 51.3Y_ppm_m89_Int2SE 0.048 0.044 0.054 0.052 1.4 1.4 1.3 1.3Zr_ppm_m90 14.94 15.78 15.32 15 59.9 58.1 58.6 57.3Zr_ppm_m90_Int2SE 0.27 0.24 0.22 0.24 2.2 2 1.7 1.8Nb_ppm_m93 0.215 0.22 0.222 0.206 0.277 0.237 0.241 0.341Nb_ppm_m93_Int2SE 0.016 0.019 0.015 0.019 0.077 0.047 0.059 0.071Ba_ppm_m137 0.25 0.335 0.366 0.264 0 0.049 0 0.43Ba_ppm_m137_Int2SE 0.051 0.067 0.073 0.052 1 0.069 1 0.23CLINOPYROXENE GARNETTable 11 - Trace element chemistry of the primary minerals from CH7-14-S13 eclogite xenolith 233 Int2SE=Analytical Error    CH7-14-S13-cpx1 CH7-14-S13-cpx2 CH7-14-S13-cpx3 CH7-14-S13-cpx4 CH7-14-S13-grt1 CH7-14-S13-grt2 CH7-14-S13-grt3 CH7-14-S13-grt4CLINOPYROXENE GARNETLa_ppm_m139 2.733 2.858 2.775 2.654 0.02 0.07 0.019 0.24La_ppm_m139_Int2SE 0.059 0.055 0.053 0.054 0.011 0.03 0.01 0.084Ce_ppm_m140 7.08 7.39 7.34 6.96 0.249 0.284 0.2 0.54Ce_ppm_m140_Int2SE 0.14 0.11 0.14 0.13 0.054 0.059 0.045 0.12Pr_ppm_m141 0.911 0.961 0.947 0.896 0.079 0.063 0.084 0.105Pr_ppm_m141_Int2SE 0.025 0.025 0.027 0.028 0.024 0.02 0.023 0.025Nd_ppm_m146 4.19 4.25 4.24 4.01 1.05 0.83 0.8 0.94Nd_ppm_m146_Int2SE 0.15 0.16 0.15 0.12 0.2 0.16 0.17 0.24Sm_ppm_m147 0.925 1.016 0.968 0.912 0.84 1 0.85 0.73Sm_ppm_m147_Int2SE 0.069 0.068 0.063 0.059 0.19 0.2 0.19 0.2Eu_ppm_m153 0.296 0.319 0.299 0.313 0.477 0.542 0.515 0.5Eu_ppm_m153_Int2SE 0.022 0.02 0.022 0.021 0.084 0.088 0.07 0.094Gd_ppm_m157 0.879 0.939 0.918 0.887 2.84 3.05 2.97 2.86Gd_ppm_m157_Int2SE 0.059 0.06 0.065 0.061 0.29 0.35 0.37 0.35Tb_ppm_m159 0.1225 0.1259 0.1178 0.1179 0.739 0.758 0.744 0.712Tb_ppm_m159_Int2SE 0.0093 0.0097 0.0089 0.0067 0.075 0.069 0.066 0.077Dy_ppm_m163 0.624 0.668 0.638 0.641 6.86 7.07 7.41 7.03Dy_ppm_m163_Int2SE 0.042 0.047 0.034 0.042 0.47 0.54 0.48 0.45Ho_ppm_m165 0.1063 0.105 0.1005 0.0983 1.75 1.824 1.89 1.97Ho_ppm_m165_Int2SE 0.0076 0.0083 0.0081 0.0071 0.12 0.099 0.14 0.12Er_ppm_m166 0.217 0.22 0.206 0.194 6.11 6.62 6.21 6.07Er_ppm_m166_Int2SE 0.025 0.019 0.019 0.021 0.34 0.34 0.34 0.37Tm_ppm_m169 0.0225 0.021 0.0225 0.0232 1.02 1.082 1.143 1.072Tm_ppm_m169_Int2SE 0.0039 0.0038 0.0035 0.0038 0.08 0.081 0.082 0.072Yb_ppm_m172 0.098 0.116 0.095 0.091 7.22 7.04 7.29 7.71Yb_ppm_m172_Int2SE 0.019 0.019 0.015 0.017 0.46 0.4 0.41 0.43Lu_ppm_m175 0.0119 0.0126 0.0118 0.0122 1.076 1.131 1.092 1.239Lu_ppm_m175_Int2SE 0.0026 0.0026 0.0026 0.0023 0.084 0.07 0.083 0.093Hf_ppm_m177 0.646 0.649 0.637 0.603 0.67 0.69 0.82 0.73Hf_ppm_m177_Int2SE 0.043 0.043 0.047 0.035 0.13 0.14 0.17 0.14Ta_ppm_m181 0.0264 0.0256 0.0238 0.0243 0.0183 0.0141 0.0245 0.023Ta_ppm_m181_Int2SE 0.0048 0.0037 0.0037 0.0037 0.0086 0.0087 0.0098 0.0087Pb_ppm_m208 0.491 0.547 0.541 0.533 0.016 0.0084 -0.0041 0.022Pb_ppm_m208_Int2SE 0.017 0.015 0.017 0.014 0.012 0.0071 0.0043 0.012Table 12 - Trace element chemistry of the primary minerals from CH7-14-S7 eclogite xenolith 234 Int2SE=Analytical Error       CH7-14-S7-cpx1 CH7-14-S7-cpx2 CH7-14-S7-cpx3 CH7-14-S7-cpx4 CH7-14-S7-grt1 CH7-14-S7-grt2 CH7-14-S7-grt3 CH7-14-S7-grt4 CH7-14-S7-rut1 CH7-14-S7-rut2 CH7-14-S7-rut3 CH7-14-S7-rut4Li_ppm_m6 14.7 91.9 51.9 60.6 1.85 0.87 1.51 2.12 1.81 1.35 3.4 0.05Li_ppm_m6_Int2SE 2 6 5.6 5 0.76 0.57 0.92 0.93 0.7 0.87 2.1 0.4Li_ppm_m7 13.41 80.2 48.7 52.7 1.48 1.15 1.25 1.81 2.06 1.32 3.7 0.74Li_ppm_m7_Int2SE 0.59 1.5 4.8 1.5 0.15 0.18 0.16 0.19 0.33 0.36 1.5 0.29Na_ppm_m23 47050 46080 48380 48570 739.7 610.2 714 663.3 8900 25200 87000 25000Na_ppm_m23_Int2SE 880 700 900 520 9.2 7.1 39 9.5 3700 7900 41000 10000Si_ppm_m29 240300 240500 246000 245400 207200 215000 208400 210600 26000 81000 280000 83000Si_ppm_m29_Int2SE 5100 3400 5400 3000 2400 2500 3900 2900 11000 26000 130000 35000Si_ppm_m30 253800 257400 258500 257600 207900 212000 204200 205400 36000 97000 320000 106000Si_ppm_m30_Int2SE 4900 4000 5200 3200 3300 3000 4300 3000 14000 27000 140000 39000K_ppm_m39 350.4 4060 379 338.1 452 -54.5 2.4 10.6 630 1970 6600 1970K_ppm_m39_Int2SE 8.3 150 12 6.5 61 5.3 7.6 4.4 260 600 3100 770Ti_ppm_m47 996 1043 1029 992 1248 1078 1140 1136 2700 8500 38000 6800Ti_ppm_m47_Int2SE 23 21 19 19 21 20 29 24 1200 2900 18000 3000Ti_ppm_m49 1002 1062 1049 1007 1257 1054 1177 1164 590500 592800 604400 613200Ti_ppm_m49_Int2SE 20 19 20 19 25 20 27 21 3500 4100 4700 4700V_ppm_m51 428.4 446.4 438.9 445.7 244.3 158.3 208.9 174.1 1387 1389 1196 989V_ppm_m51_Int2SE 7.4 5.8 7.6 4.9 3.1 2.5 4.6 2.7 14 24 20 13Fe_ppm_m56 25330 26480 25960 25230 145600 151800 148100 149600 7620 6010 14000 1760Fe_ppm_m56_Int2SE 450 360 470 310 1600 1600 2400 1900 570 620 740 120Fe_ppm_m57 21360 22510 21400 20820 130100 134400 132400 132000 6580 5090 11250 1422Fe_ppm_m57_Int2SE 420 280 350 250 1500 1400 1900 1700 500 540 480 94Ni_ppm_m60 121.1 117.4 111.9 131.2 12.21 10.46 9.09 9.86 13.3 6.05 17.2 1.25Ni_ppm_m60_Int2SE 3.5 3.5 2.5 3 0.83 0.84 0.86 0.86 1.6 0.81 2.1 0.33Ni_ppm_m64 92.1 91 91.6 89.2 127.1 129.7 129 128.8 155 33.5 60.7 30.1Ni_ppm_m64_Int2SE 3.8 3.5 3.4 2.2 2.8 2.5 3.5 3.2 11 2.2 3 2Rb_ppm_m85 -0.142 20.14 0 0.08 0.87 -0.47 -0.26 0.1 2.25 7.4 26 7.9Rb_ppm_m85_Int2SE 0.097 0.99 0.11 0.12 0.29 0.17 0.16 0.17 0.97 2.4 12 3Sr_ppm_m88 127.9 131.7 124.3 124.1 1.8 1.01 1.37 1.05 2.9 8.4 28 6.7Sr_ppm_m88_Int2SE 2.1 1.6 2.2 1.3 0.12 0.1 0.2 0.12 1.1 2.4 13 2.8Y_ppm_m89 0.356 0.365 0.348 0.385 22.57 26.21 23.7 25.54 0.104 0.298 1.23 0.27Y_ppm_m89_Int2SE 0.038 0.035 0.044 0.04 0.49 0.48 0.51 0.46 0.051 0.099 0.57 0.12Zr_ppm_m90 9.04 9.6 9.67 8.71 16.84 14.72 15.57 14.4 767 777.8 824 776Zr_ppm_m90_Int2SE 0.38 0.44 0.42 0.37 0.49 0.45 0.58 0.49 6.2 9 57 13Nb_ppm_m93 0 0.762 0.0011 0 0.0012 0.0028 0.011 0.005 2325 2324 2027 2172Nb_ppm_m93_Int2SE 1 0.073 0.0022 1 0.0024 0.0039 0.011 0.0048 16 26 62 32Ba_ppm_m137 0.026 27.1 0.15 0.023 0 0 0.16 0 15.9 50 195 47Ba_ppm_m137_Int2SE 0.036 1.9 0.18 0.033 1 1 0.21 1 6.7 16 91 20CLINOPYROXENE GARNET RUTILETable 12 - Trace element chemistry of the primary minerals from CH7-14-S7 eclogite xenolith 235 Int2SE=Analytical Error       CH7-14-S7-cpx1 CH7-14-S7-cpx2 CH7-14-S7-cpx3 CH7-14-S7-cpx4 CH7-14-S7-grt1 CH7-14-S7-grt2 CH7-14-S7-grt3 CH7-14-S7-grt4 CH7-14-S7-rut1 CH7-14-S7-rut2 CH7-14-S7-rut3 CH7-14-S7-rut4CLINOPYROXENE GARNET RUTILELa_ppm_m139 0.233 0.314 0.256 0.244 0.0131 0.0082 0.018 0.011 0.093 0.35 1.36 0.34La_ppm_m139_Int2SE 0.028 0.03 0.024 0.033 0.0072 0.0054 0.01 0.0067 0.043 0.13 0.67 0.15Ce_ppm_m140 1.131 1.312 1.178 1.085 0.269 0.219 0.233 0.211 0.199 0.65 2.4 0.53Ce_ppm_m140_Int2SE 0.073 0.078 0.064 0.064 0.04 0.035 0.044 0.029 0.087 0.21 1.2 0.24Pr_ppm_m141 0.234 0.251 0.243 0.241 0.166 0.098 0.141 0.127 0.022 0.054 0.24 0.076Pr_ppm_m141_Int2SE 0.03 0.029 0.027 0.021 0.025 0.022 0.028 0.02 0.01 0.02 0.13 0.043Nd_ppm_m146 1.12 1.32 1.29 1.23 2.15 1.35 1.63 1.71 0.066 0.39 0.64 0.155Nd_ppm_m146_Int2SE 0.12 0.15 0.15 0.14 0.2 0.2 0.18 0.19 0.037 0.16 0.32 0.086Sm_ppm_m147 0.37 0.462 0.359 0.382 2.29 2.07 2.09 1.78 0.009 0.005 0.105 0.013Sm_ppm_m147_Int2SE 0.1 0.086 0.076 0.088 0.24 0.19 0.29 0.22 0.011 0.01 0.072 0.018Eu_ppm_m153 0.148 0.136 0.134 0.141 1.234 1.093 1.19 1.098 0.001 0.023 0.076 0.012Eu_ppm_m153_Int2SE 0.028 0.026 0.022 0.026 0.098 0.081 0.12 0.085 0.0029 0.013 0.046 0.011Gd_ppm_m157 0.329 0.232 0.263 0.205 3.38 3.76 3.51 3.59 0.0039 0.013 0.18 0Gd_ppm_m157_Int2SE 0.092 0.064 0.065 0.068 0.26 0.3 0.37 0.24 0.0079 0.018 0.12 1Tb_ppm_m159 0.027 0.0229 0.0302 0.0361 0.627 0.684 0.675 0.654 0 0.0026 0.024 0.0045Tb_ppm_m159_Int2SE 0.01 0.0078 0.0081 0.0097 0.045 0.047 0.05 0.056 1 0.003 0.021 0.0045Dy_ppm_m163 0.089 0.123 0.116 0.106 4.16 4.97 4.41 4.94 0.005 0.043 0.17 0.052Dy_ppm_m163_Int2SE 0.034 0.028 0.032 0.032 0.26 0.27 0.31 0.28 0.012 0.03 0.1 0.033Ho_ppm_m165 0.0093 0.0154 0.0133 0.0138 0.856 0.968 0.898 0.964 0.0017 0.0082 0.032 0.0033Ho_ppm_m165_Int2SE 0.0051 0.006 0.0057 0.0052 0.052 0.065 0.075 0.059 0.0019 0.0063 0.022 0.0038Er_ppm_m166 0.023 0.032 0.025 0.0159 2.54 2.9 2.59 2.81 0.0022 0.011 0.144 0.027Er_ppm_m166_Int2SE 0.018 0.015 0.013 0.0092 0.16 0.2 0.2 0.15 0.0034 0.013 0.083 0.019Tm_ppm_m169 -0.0004 0.0009 -0.00106 0.001 0.347 0.401 0.368 0.405 0 0.0051 0.039 0.0009Tm_ppm_m169_Int2SE 0.0017 0.0016 0.000048 0.0014 0.034 0.042 0.047 0.041 1 0.0041 0.029 0.0018Yb_ppm_m172 0.02 0.0114 0.0075 0 2.36 2.52 2.19 2.53 0 0.0029 0.087 0.034Yb_ppm_m172_Int2SE 0.018 0.0097 0.0087 0.0086 0.17 0.23 0.19 0.15 1 0.0058 0.072 0.029Lu_ppm_m175 0.0022 0.00049 0.0019 0 0.34 0.41 0.375 0.37 0.0025 0.0025 0 0.0064Lu_ppm_m175_Int2SE 0.0026 0.00099 0.0022 1 0.031 0.036 0.048 0.027 0.0021 0.0028 1 0.0051Hf_ppm_m177 0.473 0.494 0.504 0.514 0.232 0.249 0.197 0.207 24.36 24.73 24.5 23.59Hf_ppm_m177_Int2SE 0.077 0.084 0.061 0.061 0.053 0.062 0.081 0.042 0.48 0.8 1.7 0.83Ta_ppm_m181 0 0.009 0 0 0 0.0011 0 0 42.26 45.12 32.52 30.85Ta_ppm_m181_Int2SE 1 0.0044 1 1 1 0.0015 1 1 0.5 0.78 0.87 0.63Pb_ppm_m208 0.103 0.32 0.21 0.15 0.0001 0.009 0.086 0.013 1.21 2.51 7.6 2.35Pb_ppm_m208_Int2SE 0.019 0.18 0.1 0.025 0.0031 0.0057 0.062 0.013 0.41 0.6 3.1 0.71Table 13 - Trace element chemistry of the primary minerals from CH7-14-S14-A eclogite xenolith 236 Int2SE=Analytical Error   CH7-14-S14-A-cpx1 CH7-14-S14-A-cpx2 CH7-14-S14-A-cpx3 CH7-14-S14-A-cpx4 CH7-14-S14-A-grt1 CH7-14-S14-A-grt2 CH7-14-S14-A-grt3 CH7-14-S14-A-grt4Li_ppm_m6 0.216 0.219 0.28 0.35 0.29 0.06 0 0.06Li_ppm_m6_Int2SE 0.093 0.098 0.1 0.12 0.34 0.13 1 0.11Li_ppm_m7 0.237 0.261 0.241 0.207 0.3 0.302 0.295 0.247Li_ppm_m7_Int2SE 0.02 0.025 0.029 0.02 0.085 0.085 0.07 0.089Na_ppm_m23 6330 6210 6285 6287 817 825 848 832Na_ppm_m23_Int2SE 110 110 86 87 21 24 19 19Si_ppm_m29 50480 50510 50630 50510 229100 225000 228300 226500Si_ppm_m29_Int2SE 760 840 760 640 5800 6400 5400 5000Si_ppm_m30 49520 49630 53110 52720 225400 221200 224900 225200Si_ppm_m30_Int2SE 680 800 870 730 5200 6200 5400 5300K_ppm_m39 47.53 47.2 49.63 47.78 6.9 4.8 9.2 6.8K_ppm_m39_Int2SE 0.88 1 0.95 0.81 4.4 4 5.3 4.7Ti_ppm_m47 530.9 536 533.4 530.1 2007 2009 2168 2088Ti_ppm_m47_Int2SE 6.9 6.7 6.6 7.2 57 53 48 55Ti_ppm_m49 533.2 531.8 530.8 525 1991 2005 2157 2093Ti_ppm_m49_Int2SE 7.1 7.3 7.3 7.3 56 56 53 56V_ppm_m51 65.69 65.2 65.43 66.66 88.8 91.7 101.2 96.4V_ppm_m51_Int2SE 0.95 1.1 0.88 0.89 2.8 2.9 2.4 2.5Fe_ppm_m56 6387 6370 6389 6316 87000 86900 89100 89300Fe_ppm_m56_Int2SE 88 110 86 65 2200 2400 2000 2100Fe_ppm_m57 5698 5633 5609 5565 76500 77800 80500 82100Fe_ppm_m57_Int2SE 80 80 78 71 2000 2200 1800 2000Ni_ppm_m60 78.2 76.8 77.6 77.1 58.8 58.6 58.4 59.8Ni_ppm_m60_Int2SE 1.1 1.5 1.4 1.3 2 2.8 2.7 2.8Ni_ppm_m64 5.65 5.62 5.61 5.7 27.2 26.1 26.4 27.2Ni_ppm_m64_Int2SE 0.18 0.17 0.18 0.18 1.7 1.2 1.3 1.5Rb_ppm_m85 0.026 -0.022 -0.011 0.001 -0.01 -0.12 0.04 -0.06Rb_ppm_m85_Int2SE 0.018 0.021 0.021 0.018 0.19 0.18 0.19 0.2Sr_ppm_m88 47.59 47.7 48.27 47.67 0.225 0.261 0.214 0.192Sr_ppm_m88_Int2SE 0.63 0.69 0.65 0.55 0.053 0.057 0.053 0.054Y_ppm_m89 1.17 1.176 1.193 1.201 24.71 24.57 25.4 25.71Y_ppm_m89_Int2SE 0.028 0.024 0.03 0.031 0.63 0.66 0.63 0.59Zr_ppm_m90 6.78 6.65 6.72 6.71 26.11 26.27 27.73 27.23Zr_ppm_m90_Int2SE 0.14 0.12 0.11 0.15 0.9 0.78 0.9 0.98Nb_ppm_m93 0.1117 0.0996 0.1031 0.0987 0.119 0.126 0.122 0.11Nb_ppm_m93_Int2SE 0.0089 0.0075 0.0082 0.0093 0.033 0.03 0.029 0.032Ba_ppm_m137 0.09 0.115 0.138 0.123 0 0 0 0Ba_ppm_m137_Int2SE 0.025 0.026 0.029 0.028 1 1 1 1La_ppm_m139 1.45 1.43 1.446 1.423 0.0089 0.0095 0.0043 0.0131La_ppm_m139_Int2SE 0.03 0.027 0.028 0.024 0.0054 0.0052 0.0033 0.0069CLINOPYROXENE GARNETTable 13 - Trace element chemistry of the primary minerals from CH7-14-S14-A eclogite xenolith 237 Int2SE=Analytical Error    CH7-14-S14-A-cpx1 CH7-14-S14-A-cpx2 CH7-14-S14-A-cpx3 CH7-14-S14-A-cpx4 CH7-14-S14-A-grt1 CH7-14-S14-A-grt2 CH7-14-S14-A-grt3 CH7-14-S14-A-grt4CLINOPYROXENE GARNETLa_ppm_m139 1.45 1.43 1.446 1.423 0.0089 0.0095 0.0043 0.0131La_ppm_m139_Int2SE 0.03 0.027 0.028 0.024 0.0054 0.0052 0.0033 0.0069Ce_ppm_m140 3.826 3.883 3.85 3.845 0.116 0.128 0.091 0.106Ce_ppm_m140_Int2SE 0.066 0.069 0.064 0.057 0.026 0.029 0.018 0.024Pr_ppm_m141 0.492 0.498 0.5 0.488 0.032 0.048 0.032 0.045Pr_ppm_m141_Int2SE 0.018 0.014 0.015 0.014 0.011 0.012 0.011 0.015Nd_ppm_m146 2.114 2.182 2.203 2.212 0.41 0.416 0.41 0.449Nd_ppm_m146_Int2SE 0.069 0.055 0.065 0.07 0.1 0.081 0.11 0.08Sm_ppm_m147 0.487 0.488 0.454 0.464 0.49 0.49 0.44 0.42Sm_ppm_m147_Int2SE 0.04 0.033 0.032 0.035 0.11 0.12 0.11 0.1Eu_ppm_m153 0.15 0.146 0.153 0.1543 0.253 0.246 0.255 0.248Eu_ppm_m153_Int2SE 0.01 0.011 0.011 0.0093 0.04 0.038 0.031 0.042Gd_ppm_m157 0.446 0.46 0.425 0.46 1.24 1.37 1.28 1.42Gd_ppm_m157_Int2SE 0.033 0.037 0.028 0.031 0.17 0.19 0.16 0.16Tb_ppm_m159 0.0547 0.0607 0.0566 0.0594 0.327 0.367 0.365 0.334Tb_ppm_m159_Int2SE 0.0046 0.0039 0.0043 0.0045 0.033 0.031 0.039 0.035Dy_ppm_m163 0.321 0.326 0.307 0.314 3.54 3.52 3.65 3.42Dy_ppm_m163_Int2SE 0.021 0.019 0.019 0.02 0.23 0.24 0.21 0.21Ho_ppm_m165 0.0498 0.0487 0.0499 0.0507 0.868 0.897 0.996 0.954Ho_ppm_m165_Int2SE 0.0033 0.0046 0.0042 0.0045 0.054 0.071 0.055 0.064Er_ppm_m166 0.0963 0.105 0.102 0.106 3.27 3.35 3.36 3.41Er_ppm_m166_Int2SE 0.0079 0.011 0.011 0.011 0.2 0.19 0.17 0.21Tm_ppm_m169 0.0116 0.0121 0.0099 0.0116 0.557 0.596 0.597 0.581Tm_ppm_m169_Int2SE 0.0019 0.0019 0.0015 0.0017 0.047 0.054 0.048 0.048Yb_ppm_m172 0.066 0.063 0.0545 0.0611 4.21 4.45 4.34 4.38Yb_ppm_m172_Int2SE 0.0096 0.01 0.0082 0.0084 0.23 0.27 0.22 0.32Lu_ppm_m175 0.0071 0.0071 0.0067 0.0061 0.734 0.729 0.713 0.742Lu_ppm_m175_Int2SE 0.0014 0.0014 0.0015 0.0013 0.045 0.053 0.048 0.044Hf_ppm_m177 0.252 0.259 0.252 0.235 0.25 0.294 0.332 0.286Hf_ppm_m177_Int2SE 0.018 0.018 0.017 0.017 0.052 0.056 0.067 0.063Ta_ppm_m181 0.0121 0.0128 0.0124 0.0129 0.0093 0.0106 0.005 0.0037Ta_ppm_m181_Int2SE 0.0017 0.0018 0.002 0.0019 0.0048 0.005 0.0036 0.0037Pb_ppm_m208 0.2527 0.2479 0.2484 0.2476 0.0003 0.0027 0.0055 0.0056Pb_ppm_m208_Int2SE 0.0088 0.0071 0.0086 0.007 0.0023 0.004 0.0032 0.0044Table 14 - Trace element chemistry of the primary minerals from CHI-251-14-DD19 @ 162.09 eclogite xenolith 238 Int2SE=Analytical Error   DD19-162-cpx1 DD19-162-cpx2 DD19-162-cpx3 DD19-162-cpx4 DD19-162-grt1 DD19-162-grt2 DD19-162-grt3 DD19-162-grt4 DD19-162-rut1 DD19-162-rut2Li_ppm_m6 3.53 3.13 3.42 3.05 1.22 1.14 1.17 1.52 10.5 5.5Li_ppm_m6_Int2SE 0.48 0.45 0.42 0.4 0.75 0.65 0.64 0.74 1.9 1.2Li_ppm_m7 3.41 3.27 3.278 3.25 1.84 1.93 1.69 1.67 10.04 5.73Li_ppm_m7_Int2SE 0.13 0.14 0.096 0.11 0.2 0.23 0.2 0.18 0.59 0.38Na_ppm_m23 6270 6215 6042 6006 322.2 329.7 301 314.3 5.38 5.58Na_ppm_m23_Int2SE 100 91 79 78 5.7 5.8 5.6 6.2 0.68 0.57Si_ppm_m29 77100 76350 76060 75890 225800 227300 218000 219800 331 262Si_ppm_m29_Int2SE 1200 950 880 880 3900 3600 4200 4200 88 79Si_ppm_m30 81800 80100 79510 79200 230600 227700 216400 218600 -7700 -1230Si_ppm_m30_Int2SE 1200 1200 950 1000 4100 3600 3800 4000 5400 470K_ppm_m39 149.1 152.5 146.1 152.1 6.1 13.9 13.3 5.7 8.3 23.8K_ppm_m39_Int2SE 2.5 2.8 2.2 2.7 5.5 5.9 5.5 5.7 3.7 4.9Ti_ppm_m47 163.3 160.4 158.1 158.4 514 533 455 502 32 22Ti_ppm_m47_Int2SE 3.1 3 3.2 2.6 15 14 13 14 44 35Ti_ppm_m49 166.3 165 158.2 157.5 544 532 460 509 580500 573300Ti_ppm_m49_Int2SE 2.4 2.6 3.1 2.7 17 14 17 15 5200 4400V_ppm_m51 67.42 66.73 66.86 66.53 71.3 74.1 61.8 70.8 1171 1179V_ppm_m51_Int2SE 0.83 0.86 0.77 0.7 1.8 1.8 1.1 2 20 15Fe_ppm_m56 5768 5706 5649 5625 106000 107400 101400 104900 8010 8265Fe_ppm_m56_Int2SE 84 76 63 69 1700 1700 1600 2000 87 74Fe_ppm_m57 5143 5056 5014 5011 93000 95100 90000 93900 7060 7330Fe_ppm_m57_Int2SE 91 77 58 65 1500 1500 1500 1800 110 100Ni_ppm_m60 141.4 139.1 139.1 136.4 40.5 41.8 38.5 39.5 21.9 31.7Ni_ppm_m60_Int2SE 2.5 2.7 1.9 1.8 1.9 2 2.1 2.1 1.5 1.7Ni_ppm_m64 20.35 20.22 20.11 20.01 80.1 80.8 78.4 78 28.6 31Ni_ppm_m64_Int2SE 0.46 0.46 0.47 0.45 2.6 2.6 2.4 2.2 2 1.4Rb_ppm_m85 -0.013 0.007 0.03 0.021 0.12 -0.17 0.03 -0.06 -0.04 0.21Rb_ppm_m85_Int2SE 0.031 0.033 0.031 0.034 0.22 0.22 0.18 0.23 0.15 0.23Sr_ppm_m88 640 623.8 627 626.2 1.39 1.48 1.44 1.43 0.065 0.061Sr_ppm_m88_Int2SE 6.7 5.8 5.4 5.2 0.14 0.16 0.15 0.16 0.026 0.03Y_ppm_m89 0.185 0.168 0.1625 0.166 7.11 7.31 7.57 7.04 0 0.0017Y_ppm_m89_Int2SE 0.012 0.011 0.0097 0.01 0.23 0.24 0.24 0.23 1 0.0024Zr_ppm_m90 1.847 1.841 1.831 1.842 8.19 9.35 5.51 7.84 638.3 671.9Zr_ppm_m90_Int2SE 0.063 0.058 0.061 0.07 0.45 0.48 0.27 0.37 5.1 4.3Nb_ppm_m93 0.00016 0.0005 0.0032 0.0022 0 0.0009 -0.00203 0.0013 653.9 715.9Nb_ppm_m93_Int2SE 0.00032 0.00056 0.0017 0.0016 1 0.0037 0.00016 0.0026 6 6.9Ba_ppm_m137 0.064 0.133 0.206 0.226 0 0.025 0 0 0 0Ba_ppm_m137_Int2SE 0.029 0.04 0.059 0.048 1 0.035 1 1 1 1RUTILECLINOPYROXENE GARNETTable 14 - Trace element chemistry of the primary minerals from CHI-251-14-DD19 @ 162.09 eclogite xenolith 239 Int2SE=Analytical Error    DD19-162-cpx1 DD19-162-cpx2 DD19-162-cpx3 DD19-162-cpx4 DD19-162-grt1 DD19-162-grt2 DD19-162-grt3 DD19-162-grt4 DD19-162-rut1 DD19-162-rut2RUTILECLINOPYROXENE GARNETLa_ppm_m139 1.736 1.676 1.747 1.708 0.0144 0.0131 0.0122 0.0081 -0.000503 0.034La_ppm_m139_Int2SE 0.044 0.042 0.037 0.039 0.009 0.008 0.0067 0.006 0.000037 0.011Ce_ppm_m140 6.41 6.242 6.23 6.035 0.167 0.169 0.188 0.181 0.0053 0.041Ce_ppm_m140_Int2SE 0.11 0.085 0.076 0.086 0.027 0.025 0.032 0.04 0.0052 0.015Pr_ppm_m141 1.006 0.975 1.007 0.975 0.096 0.088 0.097 0.068 0 0.0013Pr_ppm_m141_Int2SE 0.029 0.02 0.028 0.024 0.018 0.021 0.02 0.016 1 0.0018Nd_ppm_m146 4.99 4.94 4.81 4.8 1.05 1.05 1.28 1.2 0 0Nd_ppm_m146_Int2SE 0.12 0.14 0.12 0.14 0.16 0.14 0.19 0.16 1 1Sm_ppm_m147 0.673 0.636 0.702 0.683 0.92 0.77 1.01 0.71 0 -0.00446Sm_ppm_m147_Int2SE 0.054 0.044 0.048 0.047 0.15 0.14 0.15 0.14 1 0.00031Eu_ppm_m153 0.201 0.213 0.2 0.198 0.505 0.524 0.572 0.46 0 0Eu_ppm_m153_Int2SE 0.012 0.014 0.014 0.013 0.053 0.062 0.051 0.066 1 1Gd_ppm_m157 0.264 0.235 0.258 0.247 1.11 1.22 1.13 1.09 -0.00557 0Gd_ppm_m157_Int2SE 0.033 0.024 0.031 0.029 0.13 0.16 0.17 0.14 0.0004 1Tb_ppm_m159 0.0188 0.0188 0.0183 0.0192 0.207 0.206 0.209 0.19 0 0Tb_ppm_m159_Int2SE 0.0026 0.0032 0.003 0.0033 0.032 0.028 0.027 0.033 1 1Dy_ppm_m163 0.062 0.076 0.075 0.069 1.44 1.34 1.5 1.33 0 0Dy_ppm_m163_Int2SE 0.01 0.012 0.011 0.011 0.15 0.15 0.14 0.14 1 1Ho_ppm_m165 0.0065 0.0056 0.0078 0.0078 0.26 0.278 0.3 0.268 -0.000408 0Ho_ppm_m165_Int2SE 0.0016 0.0016 0.002 0.0017 0.027 0.033 0.032 0.03 0.000029 1Er_ppm_m166 0.0119 0.0146 0.0174 0.0151 0.79 0.78 0.87 0.774 -0.001206 0Er_ppm_m166_Int2SE 0.0033 0.0046 0.0049 0.0049 0.1 0.11 0.1 0.082 0.000087 1Tm_ppm_m169 0.00135 0.00103 0.00016 0.00073 0.105 0.122 0.124 0.107 0 0Tm_ppm_m169_Int2SE 0.00067 0.00062 0.00022 0.00055 0.017 0.022 0.019 0.02 1 1Yb_ppm_m172 0.0047 0.0023 0.0032 0.0036 0.8 0.76 0.88 0.87 0 -0.00862Yb_ppm_m172_Int2SE 0.0029 0.0018 0.0027 0.0027 0.11 0.1 0.12 0.12 1 0.0004Lu_ppm_m175 0.00073 0.00017 0.00039 0.00048 0.123 0.135 0.126 0.115 0 0Lu_ppm_m175_Int2SE 0.00049 0.00023 0.0004 0.00044 0.017 0.019 0.018 0.018 1 1Hf_ppm_m177 0.132 0.131 0.109 0.119 0.075 0.094 0.111 0.105 24.14 23.93Hf_ppm_m177_Int2SE 0.017 0.018 0.014 0.016 0.034 0.032 0.035 0.032 0.68 0.72Ta_ppm_m181 0 0 0.00009 0.00008 0 0 0 0 6.44 19.38Ta_ppm_m181_Int2SE 1 1 0.00017 0.00016 1 1 1 1 0.18 0.33Pb_ppm_m208 1.348 1.396 1.376 1.422 -0.0001 -0.0012 -0.0013 0.002 0.0009 0.0016Pb_ppm_m208_Int2SE 0.03 0.025 0.025 0.03 0.0033 0.005 0.0031 0.0029 0.0026 0.0024Table 15 - Trace element chemistry of the primary minerals from CHI-251-14-DD19 @ 175.26 eclogite xenolith 240 Int2SE=Analytical Error   DD19-175-cpx1 DD19-175-cpx2 DD19-175-cpx3 DD19-175-cpx4 DD19-175-grt1 DD19-175-grt2 DD19-175-grt3 DD19-175-grt4 DD19-175-rut1 DD19-175-rut2Li_ppm_m6 10.4 11.1 12 11.1 0.64 1.14 0.16 0.45 0.31 2.31Li_ppm_m6_Int2SE 1.7 1.7 2.1 1.8 0.51 0.57 0.32 0.32 0.26 0.9Li_ppm_m7 10.9 10.42 12.62 10.58 0.88 0.85 0.75 0.82 0.402 2.68Li_ppm_m7_Int2SE 0.37 0.56 0.44 0.44 0.13 0.12 0.14 0.14 0.09 0.27Na_ppm_m23 39920 40400 39270 40570 446.9 474 454.3 439.8 14 9.4Na_ppm_m23_Int2SE 830 1600 750 760 5.1 6.4 7.4 6 12 2.3Si_ppm_m29 252000 257600 257600 251900 211600 216300 201000 208400 220 86Si_ppm_m29_Int2SE 5200 9300 4500 3900 2400 2600 2900 2500 100 88Si_ppm_m30 261100 263900 266300 259500 203600 220100 229300 230400 -5080 -1520Si_ppm_m30_Int2SE 4600 6000 4100 3200 2500 2800 3500 2900 560 640K_ppm_m39 281 238 234 239.2 19.2 22.6 22.3 8.4 12.5 22.4K_ppm_m39_Int2SE 14 10 13 5.8 6 6.8 5.6 6.2 6.2 7Ti_ppm_m47 791 783 827 807 884 965 977 872 32 14Ti_ppm_m47_Int2SE 13 15 16 16 14 19 17 15 43 39Ti_ppm_m49 811 809 834 807 917 992 1012 887 599800 580000Ti_ppm_m49_Int2SE 17 24 19 17 20 21 24 24 4400 3500V_ppm_m51 306.2 309 304.5 311.3 139.3 133.1 167.6 138.4 1610 1570.7V_ppm_m51_Int2SE 6.4 11 5 5.8 2.3 2.2 2.9 2.4 18 8.9Fe_ppm_m56 17970 17900 18250 18140 114000 117600 107900 113100 9810 10370Fe_ppm_m56_Int2SE 350 590 320 280 1400 1500 1700 1400 170 120Fe_ppm_m57 15060 15110 15500 15160 101500 104100 95300 100300 8420 8790Fe_ppm_m57_Int2SE 270 480 220 260 1300 1400 1600 1300 150 130Ni_ppm_m60 216.2 223.7 211 217.8 20 21.2 18.5 19.5 1.37 4.21Ni_ppm_m60_Int2SE 5.8 8.3 4 4.7 1.2 1.2 1 1.2 0.28 0.67Ni_ppm_m64 50.1 51.1 52.7 52.4 67.5 71.2 62.3 66.4 28.1 26.7Ni_ppm_m64_Int2SE 1.5 2.1 1.4 1.9 2.1 2.1 2.4 2.4 1.2 1.3Rb_ppm_m85 0.33 0.41 0.64 0.07 -0.46 0.4 -0.06 -0.13 0.32 0.33Rb_ppm_m85_Int2SE 0.22 0.24 0.23 0.22 0.31 0.32 0.3 0.35 0.26 0.34Sr_ppm_m88 176.5 182.3 171.5 182.6 2.15 1.66 4.32 1.55 0.15 0.064Sr_ppm_m88_Int2SE 2.6 3.7 2.8 2.7 0.15 0.2 0.23 0.12 0.037 0.022Y_ppm_m89 0.326 0.311 0.307 0.313 16.79 20.31 12.29 16.62 0.0107 0.0084Y_ppm_m89_Int2SE 0.036 0.028 0.032 0.034 0.34 0.39 0.3 0.31 0.0076 0.0068Zr_ppm_m90 7.2 6.78 6.87 6.82 12.76 12.18 12.21 12.61 614 628.3Zr_ppm_m90_Int2SE 0.25 0.29 0.28 0.3 0.45 0.35 0.45 0.44 5.2 4.5Nb_ppm_m93 0.0175 0.035 0.07 0.02 0.063 0.029 0.015 0.016 5254 5213Nb_ppm_m93_Int2SE 0.008 0.014 0.019 0.01 0.023 0.015 0.0099 0.01 51 40Ba_ppm_m137 2.04 5.6 16 3.88 0 0.071 0 0 0.012 0Ba_ppm_m137_Int2SE 0.31 1.5 2.2 0.51 1 0.065 1 1 0.025 1CLINOPYROXENE GARNET RUTILETable 15 - Trace element chemistry of the primary minerals from CHI-251-14-DD19 @ 175.26 eclogite xenolith 241 Int2SE=Analytical Error    DD19-175-cpx1 DD19-175-cpx2 DD19-175-cpx3 DD19-175-cpx4 DD19-175-grt1 DD19-175-grt2 DD19-175-grt3 DD19-175-grt4 DD19-175-rut1 DD19-175-rut2CLINOPYROXENE GARNET RUTILELa_ppm_m139 0.487 0.54 0.808 0.461 0.159 0.047 0.019 0.018 0.0014 0La_ppm_m139_Int2SE 0.034 0.05 0.096 0.04 0.019 0.017 0.0075 0.008 0.002 1Ce_ppm_m140 2.152 2.18 2.58 2.039 0.56 0.417 0.378 0.328 0.0035 0Ce_ppm_m140_Int2SE 0.091 0.1 0.18 0.088 0.063 0.05 0.043 0.038 0.0034 1Pr_ppm_m141 0.42 0.394 0.445 0.406 0.163 0.164 0.219 0.151 0 0Pr_ppm_m141_Int2SE 0.03 0.027 0.035 0.032 0.023 0.023 0.031 0.024 1 1Nd_ppm_m146 2.52 2.55 2.58 2.42 2.27 2.44 2.69 2.26 0.008 0Nd_ppm_m146_Int2SE 0.19 0.19 0.22 0.18 0.24 0.21 0.23 0.22 0.011 1Sm_ppm_m147 0.494 0.547 0.41 0.55 1.92 2.08 1.62 1.99 0 0Sm_ppm_m147_Int2SE 0.084 0.093 0.087 0.11 0.21 0.2 0.17 0.23 1 1Eu_ppm_m153 0.163 0.158 0.132 0.155 1.091 1.05 0.928 1.044 0 0Eu_ppm_m153_Int2SE 0.029 0.022 0.028 0.024 0.093 0.087 0.077 0.083 1 1Gd_ppm_m157 0.279 0.258 0.275 0.236 2.85 3.02 2 2.71 0 0Gd_ppm_m157_Int2SE 0.053 0.066 0.073 0.052 0.25 0.24 0.18 0.21 1 1Tb_ppm_m159 0.0249 0.0227 0.0252 0.033 0.548 0.563 0.391 0.506 0 0Tb_ppm_m159_Int2SE 0.0074 0.0059 0.0076 0.0066 0.036 0.049 0.038 0.038 1 1Dy_ppm_m163 0.1 0.127 0.109 0.149 3.39 4.06 2.36 3.33 0 0Dy_ppm_m163_Int2SE 0.021 0.03 0.029 0.035 0.25 0.23 0.19 0.21 1 1Ho_ppm_m165 0.01 0.0144 0.0119 0.0088 0.687 0.798 0.487 0.66 0 0Ho_ppm_m165_Int2SE 0.0043 0.0042 0.0056 0.0042 0.045 0.053 0.049 0.053 1 1Er_ppm_m166 0.025 0.024 0.024 0.027 1.98 2.23 1.35 1.72 -0.00184 0Er_ppm_m166_Int2SE 0.011 0.01 0.011 0.014 0.15 0.15 0.13 0.13 0.00013 1Tm_ppm_m169 0.00032 0.0015 0.0002 0.001 0.24 0.28 0.192 0.209 0 0Tm_ppm_m169_Int2SE 0.00065 0.0018 0.0013 0.0012 0.031 0.03 0.023 0.024 1 1Yb_ppm_m172 0.0044 0.0041 0.0145 0.0096 1.65 2 1.19 1.47 0 -0.00743Yb_ppm_m172_Int2SE 0.005 0.0046 0.0094 0.0075 0.18 0.17 0.12 0.16 1 0.00031Lu_ppm_m175 0.0006 0.0016 0 0.0007 0.218 0.273 0.199 0.246 0 0Lu_ppm_m175_Int2SE 0.00084 0.0014 1 0.001 0.028 0.026 0.023 0.025 1 1Hf_ppm_m177 0.463 0.386 0.373 0.403 0.214 0.217 0.226 0.202 21.05 21.8Hf_ppm_m177_Int2SE 0.066 0.051 0.061 0.055 0.048 0.046 0.05 0.054 0.47 0.58Ta_ppm_m181 0 0.00028 0.0018 0 0.0016 0 0 0 203.5 199.3Ta_ppm_m181_Int2SE 1 0.00055 0.0019 1 0.0018 1 1 1 2.4 2Pb_ppm_m208 0.233 0.199 0.202 0.202 0.0041 0.009 -0.0008 -0.0019 0.0101 0.0102Pb_ppm_m208_Int2SE 0.023 0.019 0.05 0.023 0.0042 0.0058 0.0027 0.0033 0.0066 0.0055Table 16 - Average Rare Earth Element (REE) data normalized to C1 chondrite for clinopyroxenes in 15 eclogite xenolith samples 242       Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54 CH7-14-S10-2 CH7-14-S13 CH7-14-S7 CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26La 10.88 6.12 26.72 1.88 2.04 3.83 23.44 2.83 0.69 2.53 11.62 1.10 6.06 7.24 2.09Ce 10.95 8.54 26.92 3.01 3.14 5.99 29.05 4.34 1.23 3.85 11.73 1.92 6.28 10.16 3.46Pr 9.49 8.65 23.36 3.48 3.57 6.57 32.86 4.98 1.53 4.41 10.01 2.61 5.33 10.68 4.49Nd 9.16 8.89 20.47 3.65 3.73 6.59 36.15 5.15 2.10 4.34 9.13 2.71 4.77 10.69 5.51Sm 7.29 5.64 14.97 2.41 2.38 4.24 25.88 3.52 3.07 3.08 6.45 2.66 3.20 4.55 3.38Eu 5.02 4.10 12.09 1.94 2.01 3.16 18.98 2.62 2.89 2.35 5.45 2.48 2.68 3.61 2.70Gd 3.98 3.21 10.39 1.39 1.31 2.14 15.75 1.91 2.59 1.58 4.55 1.29 2.25 1.26 1.32Tb 2.45 2.16 7.53 0.83 0.79 1.30 10.49 1.25 1.66 1.03 3.35 0.80 1.60 0.52 0.73Dy 1.64 1.52 5.71 0.60 0.60 0.84 7.80 0.89 1.31 0.73 2.61 0.44 1.29 0.29 0.49Ho 1.03 1.09 4.14 0.43 0.37 0.46 4.68 0.57 0.88 0.53 1.88 0.24 0.91 0.13 0.21Er 0.66 0.95 2.97 0.30 0.29 0.29 2.89 0.37 0.69 0.35 1.31 0.15 0.64 0.09 0.16Tm 0.45 0.63 2.04 0.25 0.19 0.16 1.74 0.20 0.44 0.24 0.90 0.04 0.46 0.04 0.05Yb 0.31 0.56 1.64 0.21 0.14 0.11 1.10 0.16 0.37 0.18 0.62 0.08 0.38 0.02 0.03Lu 0.21 0.37 0.98 0.11 0.10 0.07 0.81 0.11 0.24 0.16 0.49 0.08 0.27 0.02 0.03Table 17 - Average Rare Earth Element (REE) data normalized to C1 chondrite for garnets in 15 eclogite xenolith samples 243         Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54 CH7-14-S10-2 CH7-14-S13 CH7-14-S7 CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26La 0.01 0.03 0.12 0.08 0.12 0.06 0.03 0.01 0.02 0.11 0.08 0.05 0.04 0.05 0.08Ce 0.14 0.14 0.81 0.37 0.53 0.45 0.48 0.14 0.20 0.53 0.40 0.38 0.18 0.29 0.58Pr 0.40 0.32 1.85 0.99 1.52 0.99 1.55 0.45 1.50 1.36 0.81 1.43 0.42 0.94 1.88Nd 1.14 0.75 4.58 2.32 3.16 1.75 5.72 1.01 4.17 2.84 1.98 3.74 0.92 2.51 5.28Sm 5.18 1.42 13.19 5.05 6.11 4.54 22.36 3.26 18.11 6.71 5.78 13.90 3.11 5.76 12.85Eu 6.95 2.01 20.78 7.18 7.70 6.76 32.06 4.47 20.84 7.95 9.03 20.49 4.45 9.15 18.26Gd 10.89 2.76 30.24 7.24 8.00 10.49 53.72 6.85 28.48 9.26 14.72 17.89 6.67 5.72 13.29Tb 14.74 3.41 45.91 7.98 8.51 13.88 78.88 10.07 31.72 10.75 20.45 18.28 9.65 5.62 13.91Dy 19.28 4.44 61.62 8.85 9.87 20.13 107.52 13.55 34.61 12.65 28.83 18.78 14.36 5.70 13.35Ho 21.14 4.93 75.37 8.52 9.85 22.46 117.95 16.27 34.48 13.89 34.04 16.88 17.01 5.06 12.05Er 23.81 6.36 85.88 9.20 10.63 25.67 126.42 18.27 34.53 16.02 39.08 16.94 20.92 5.02 11.38Tm 24.33 6.74 91.60 9.20 10.77 24.30 126.82 18.59 33.07 16.85 43.69 15.39 23.59 4.64 9.32Yb 26.46 7.88 101.01 9.94 11.66 25.33 131.83 20.06 34.10 18.29 45.43 14.91 26.99 5.14 9.80Lu 26.71 8.41 104.37 9.81 11.75 26.59 133.33 19.91 32.75 19.65 46.12 15.19 29.65 5.07 9.51Table 18 – Normalized modal abundances of clinopyroxenes and garnets used for calculating the bulk average REE composition in 15 Chidliak eclogite samples 244        ID Sample CPX Average Modal % GRT Average Modal % CPX +5% Modal % GRT -5% Modal % CPX -5% Modal % GRT +5% Modal %1 Q-3903-U-A 74 26 79 21 69 312 Q-3903-U-B 54 46 59 41 49 513 7S-6 56 44 61 39 51 494 7S-7 77 23 82 18 72 285 P-5500-N1 55 45 60 40 50 506 CH7-14-S3 63 37 68 32 58 428 CHI-050-14-DD27 @ 80.1 50 50 55 45 45 559 CHI-050-14-DD28 @ 104.18 17 83 22 78 12 8810 CHI-050-14-DD27 @ 184.54 69 31 74 26 64 3613 CH7-14-S10-2 45 55 50 50 40 6014 CH7-14-S13 65 35 70 30 60 4016 CH7-14-S7 50 50 55 45 45 5517 CH7-14-S14-A 43 57 48 52 38 6219 CHI-251-14-DD19 @ 162.09 66 34 71 29 61 3920 CHI-251-14-DD19 @ 175.26 21 79 26 74 16 84Table 19 – Bulk REE data normalized to C1 chondrite for 15 Chidliak eclogite samples using the average modal abundance of clinopyroxene and garnet from table 18 245        Q-3903-U-A Q-3903-U-B 7S-6 7S-7 P-5500-N1 CH7-14-S3CHI-050-14-DD27 @ 80.1CHI-050-14-DD28 @ 104.18CHI-050-14-DD27 @ 184.54 CH7-14-S10-2 CH7-14-S13 CH7-14-S7 CH7-14-S14-ACHI-251-14-DD19 @ 162.09CHI-251-14-DD19 @ 175.26La 8.07 3.33 15.02 1.47 1.18 2.43 11.73 0.50 0.48 1.20 7.58 0.58 2.63 4.82 0.51Ce 8.16 4.70 15.43 2.40 1.97 3.94 14.76 0.87 0.92 2.02 7.77 1.15 2.80 6.84 1.19Pr 7.14 4.84 13.90 2.91 2.65 4.50 17.20 1.23 1.52 2.73 6.79 2.02 2.53 7.40 2.43Nd 7.09 5.17 13.48 3.35 3.47 4.79 20.93 1.72 2.73 3.52 6.63 3.23 2.57 7.93 5.33Sm 6.75 3.71 14.19 3.01 4.06 4.35 24.12 3.31 7.68 5.07 6.22 8.28 3.15 4.96 10.83Eu 5.52 3.14 15.91 3.14 4.57 4.50 25.52 4.15 8.39 5.43 6.70 11.49 3.69 5.47 14.94Gd 5.77 3.01 19.12 2.74 4.32 5.24 34.74 5.99 10.51 5.80 8.11 9.59 4.77 2.76 10.74Tb 5.63 2.73 24.42 2.48 4.27 5.97 44.68 8.55 10.86 6.38 9.34 9.54 6.19 2.24 11.09Dy 6.20 2.86 30.31 2.50 4.77 8.00 57.66 11.36 11.51 7.29 11.79 9.61 8.74 2.11 10.61Ho 6.23 2.85 35.48 2.29 4.64 8.63 61.31 13.57 11.17 7.88 13.13 8.56 10.09 1.79 9.52Er 6.64 3.42 39.45 2.35 4.94 9.71 64.65 15.18 11.05 8.96 14.53 8.54 12.20 1.75 8.98Tm 6.62 3.43 41.44 2.31 4.95 9.12 64.28 15.42 10.43 9.38 15.88 7.72 13.64 1.59 7.34Yb 7.07 3.91 45.36 2.45 5.33 9.47 66.47 16.63 10.70 10.14 16.31 7.49 15.55 1.75 7.71Lu 7.06 4.05 46.47 2.34 5.34 9.91 67.07 16.49 10.19 10.88 16.46 7.64 17.02 1.72 7.49Table 20 – Other analyzed trace elements in clinopyroxenes normalized to primitive mantle for 15 Chidliak eclogite samples used in multielement (spider) diagrams 246        Q-3903-U-A-cpxQ-3903-U-B-cpx7S-6-cpx 7S-7-cpxP-5500-N1--cpxCH7-14-S3-cpxDD27-80.1-cpx050-104.18-cpx050-184.54-cpxCH7-S14-10-2-cpxCH7-14-S13-cpxCH7-14-S7-cpxCH7-14-S14-A-cpxDD19-162-cpxDD19-175-cpxK 0.09 1.19 0.95 0.99 0.86 0.21 0.16 0.14 5.80 0.39 0.48 5.34 0.20 0.62 1.03Rb 0.00 0.16 0.09 0.03 0.07 0.02 0.09 0.01 0.00 0.00 0.05 8.37 0.00 0.02 0.60Ba 0.01 0.72 0.08 0.01 0.00 0.01 0.11 0.01 0.01 0.01 0.05 1.03 0.02 0.02 1.04Nb 0.07 0.74 0.73 0.19 0.25 0.12 0.02 0.05 0.00 0.22 0.33 0.29 0.16 0.00 0.05Ta 0.02 0.69 1.56 0.46 0.76 0.19 0.04 0.07 0.00 0.57 0.68 0.06 0.34 0.00 0.01La 3.98 3.36 9.77 0.69 0.75 1.40 8.57 1.04 0.25 0.93 4.25 0.40 2.22 2.65 0.89Ce 4.01 3.63 9.85 1.10 1.15 2.19 10.63 1.59 0.45 1.41 4.29 0.70 2.30 3.72 1.34Pr 3.47 3.35 8.54 1.27 1.31 2.40 12.00 1.82 0.56 1.61 3.66 0.95 1.95 3.90 1.64Pb 0.73 0.63 7.30 0.43 0.39 0.44 9.31 0.29 0.60 0.35 3.52 1.31 1.66 9.24 1.39Sr 3.52 4.89 10.40 3.59 3.04 3.41 12.09 2.10 5.22 2.93 4.68 6.38 2.40 31.62 8.96Nd 3.35 3.35 7.48 1.34 1.36 2.41 13.22 1.88 0.77 1.59 3.34 0.99 1.74 3.91 2.01Sm 2.66 2.06 5.46 0.88 0.87 1.54 9.43 1.28 1.12 1.12 2.35 0.97 1.17 1.66 1.23Zr 1.07 1.79 3.13 0.60 0.79 0.61 5.09 0.23 1.31 1.02 1.45 0.88 0.64 0.18 0.66Hf 1.78 4.18 4.76 1.17 1.75 1.46 7.19 0.67 2.86 2.50 2.24 1.75 0.88 0.43 1.44Eu 1.84 1.50 4.42 0.71 0.74 1.16 6.94 0.96 1.06 0.86 1.99 0.91 0.98 1.32 0.99Ti 0.35 2.34 2.13 1.48 1.67 0.31 1.27 0.22 1.28 1.72 0.90 0.85 0.44 0.13 0.68Gd 1.46 1.18 3.80 0.51 0.48 0.78 5.76 0.70 0.95 0.58 1.66 0.47 0.82 0.46 0.48Dy 0.60 0.55 2.08 0.22 0.22 0.31 2.85 0.32 0.48 0.26 0.95 0.16 0.47 0.10 0.18Y 0.31 0.33 1.22 0.13 0.12 0.14 1.37 0.17 0.26 0.15 0.54 0.08 0.28 0.04 0.07Ho 0.38 0.40 1.52 0.16 0.14 0.17 1.71 0.21 0.31 0.19 0.69 0.09 0.33 0.05 0.08Yb 0.11 0.20 0.60 0.08 0.05 0.04 0.40 0.07 0.14 0.07 0.23 0.02 0.14 0.01 0.02Lu 0.08 0.12 0.36 0.05 0.04 0.03 0.29 0.04 0.09 0.06 0.18 0.02 0.10 0.01 0.01Table 21 – Other analyzed trace elements in garnets normalized to primitive mantle for 15 Chidliak eclogite samples used in multielement (spider) diagrams 247         Q-3903-U-A-grtQ-3903-U-B-garnet 7S-6-grt 7S-7-grtP-5500-N1--grtCH7-14-S3-grtDD27-80.1-grt050-104.18-grt050-184.54-grtCH7-S14-10-2-grtCH7-14-S13-grtCH7-14-S7-grtCH7-14-S14-A-grtDD19-162-grtDD19-175-grtK 0.02 0.20 0.04 0.07 0.03 0.06 0.06 0.03 0.01 0.08 0.13 0.43 0.03 0.04 0.08Rb 0.04 0.34 0.06 0.16 0.00 0.16 0.60 0.00 0.00 0.06 0.21 0.10 0.00 0.00 0.00Ba 0.01 0.20 0.00 0.01 0.00 0.06 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00Nb 0.02 0.33 0.90 0.31 0.38 0.26 0.03 0.11 0.00 0.34 0.42 0.01 0.18 0.00 0.05Ta 0.00 0.25 1.09 0.54 0.89 0.25 0.00 0.07 0.00 0.89 0.54 0.01 0.19 0.00 0.01La 0.02 0.24 0.08 0.05 0.04 0.16 0.07 0.01 0.01 0.04 0.13 0.02 0.01 0.02 0.09Ce 0.05 0.20 0.30 0.15 0.20 0.28 0.17 0.05 0.17 0.19 0.19 0.14 0.07 0.11 0.25Pr 0.12 0.20 0.68 0.36 0.56 0.43 0.57 0.15 0.55 0.50 0.33 0.52 0.15 0.34 0.69Pb 0.03 0.12 0.00 0.07 0.02 0.09 0.03 0.05 0.03 0.01 0.07 0.18 0.02 0.00 0.02Sr 0.01 0.05 0.05 0.05 0.04 0.05 0.03 0.01 0.06 0.04 0.04 0.07 0.01 0.07 0.12Nd 0.42 0.29 1.67 0.85 1.16 0.64 2.09 0.34 1.53 1.04 0.72 1.37 0.34 0.92 1.93Sm 1.89 0.59 4.81 1.84 2.23 1.66 8.15 1.19 6.60 2.44 2.11 5.07 1.13 2.10 4.69Zr 5.05 1.48 12.64 2.73 2.79 2.59 10.86 3.20 2.88 4.35 5.57 1.47 2.56 0.74 1.18Hf 2.76 1.15 5.80 2.15 1.90 1.71 5.17 2.43 1.89 3.73 2.57 0.78 1.03 0.34 0.76Eu 2.54 0.76 7.60 2.62 2.81 2.47 11.72 1.63 7.62 2.91 3.30 7.49 1.63 3.35 6.68Ti 1.79 1.65 8.18 3.42 3.08 2.33 6.93 2.09 2.44 4.72 3.39 0.97 1.71 0.42 0.79Gd 3.98 0.93 11.06 2.65 2.93 3.84 19.65 2.50 10.42 3.39 5.39 6.54 2.44 2.09 4.86Dy 7.04 1.59 22.49 3.23 3.60 7.35 39.24 4.94 12.63 4.62 10.52 6.85 5.24 2.08 4.87Y 7.15 1.66 25.10 2.89 3.31 7.46 39.40 5.31 11.31 4.61 11.62 5.70 5.84 1.69 3.84Ho 7.74 1.94 27.62 3.12 3.61 8.23 43.22 5.96 12.64 5.09 12.47 6.18 6.23 1.86 4.42Yb 9.66 2.88 36.88 3.63 4.26 9.25 48.13 7.32 12.45 6.68 16.59 5.44 9.85 1.88 3.58Lu 9.73 3.06 38.04 3.57 4.28 9.69 48.59 7.26 11.94 7.16 16.81 5.54 10.81 1.85 3.47Table 22 – Other analyzed trace elements in orthopyroxenes normalized to primitive mantle for 15 Chidliak eclogite samples used in multielement (spider) diagrams 248       Q-3903-U-A-opx 050-104.18-opxK 1.01 0.41Rb 4.27 0.32Ba 3.23 0.12Nb 1.27 0.89Ta 0.16 1.09La 7.93 0.29Ce 7.41 0.41Pr 5.62 0.29Pb 0.99 0.37Sr 0.75 0.18Nd 4.94 0.34Sm 2.10 0.06Zr 0.42 0.14Hf 0.34 0.12Eu 1.72 0.23Ti 5.94 5.78Gd 1.24 0.21Dy 0.48 0.17Y 0.41 0.13Ho 0.49 0.08Yb 0.14 0.05Lu 0.00 0.01Table 23 – Other analyzed trace elements in rutiles normalized to primitive mantle for 15 Chidliak eclogite samples used in multielement (spider) diagrams 249       Q-3903-U-A-rut Q-3903-U-B-rutile 050-184.54-rut CH7-14-S7-rut DD19-162-rut DD19-175-rutK 0.05 11.13 0.01 11.64 0.07 0.07Rb 0.00 11.45 0.00 18.15 0.14 0.54Ba 0.19 13.03 0.01 11.66 0.00 0.00Nb 19171.73 4481.76 863.68 3361.70 1040.88 7953.65Ta 13431.08 9289.19 897.16 1018.58 348.92 5443.24La 0.80 3.41 0.00 0.83 0.03 0.00Ce 0.32 2.36 0.00 0.56 0.01 0.00Pr 0.19 1.72 0.00 0.39 0.00 0.00Pb 0.13 11.93 0.07 22.78 0.01 0.07Sr 0.02 1.33 0.01 0.58 0.00 0.01Nd 0.16 1.37 0.00 0.25 0.00 0.00Sm 0.03 0.71 0.00 0.08 0.00 0.00Zr 274.38 25.99 99.05 74.88 62.39 59.16Hf 224.59 32.86 119.35 85.85 84.93 75.71Eu 0.01 0.40 0.00 0.18 0.00 0.00Ti 494.61 130.12 503.46 498.11 478.76 489.54Gd 0.02 0.36 0.00 0.09 0.00 0.00Dy 0.00 0.17 0.01 0.10 0.00 0.00Y 0.01 0.18 0.01 0.11 0.00 0.00Ho 0.00 0.15 0.00 0.08 0.00 0.00Yb 0.00 0.20 0.01 0.07 0.00 0.00Lu 0.00 0.16 0.00 0.04 0.00 0.00Table 24 – Modal abundances and coefficients for clinopyroxenes, garnets, orthopyroxenes, and rutiles used for calculating the bulk average other trace element composition in 15 Chidliak eclogite samples  250       ID Sample CPX Garnet OPX RUTILE TOTAL CPX Garnet OPX RUTILE TOTAL1 Q-3903-U-A 66 23 9 2 100 0.66 0.23 0.09 0.02 1.002 Q-3903-U-B 51 43 0 1 95 0.54 0.45 0.00 0.01 1.003 7S-6 56 44 0 0 100 0.56 0.44 0.00 0.00 1.004 7S-7 77 23 0 0 100 0.77 0.23 0.00 0.00 1.005 P-5500-N1 55 45 0 0 100 0.55 0.45 0.00 0.00 1.006 CH7-14-S3 61 36 0 0 97 0.63 0.37 0.00 0.00 1.008 CHI-050-14-DD27 @ 80.1 50 50 0 0 100 0.50 0.50 0.00 0.00 1.009 CHI-050-14-DD28 @ 104.18 15 72 11 0 98 0.15 0.73 0.11 0.00 1.0010 CHI-050-14-DD27 @ 184.54 68 30 0 2 100 0.68 0.30 0.00 0.02 1.0013 CH7-14-S10-2 45 55 0 0 100 0.45 0.55 0.00 0.00 1.0014 CH7-14-S13 65 35 0 0 100 0.65 0.35 0.00 0.00 1.0016 CH7-14-S7 49 49 0 2 100 0.49 0.49 0.00 0.02 1.0017 CH7-14-S14-A 43 57 0 0 100 0.43 0.57 0.00 0.00 1.0019 CHI-251-14-DD19 @ 162.09 65 33 0 2 100 0.65 0.33 0.00 0.02 1.0020 CHI-251-14-DD19 @ 175.26 19 70 0 2 91 0.21 0.77 0.00 0.02 1.00MODAL % COEFFICIENTSTable 25 – Other analyzed trace elements for reconstructed bulk eclogite compositions normalized to primitive mantle for 15 Chidliak eclogite samples used in multielement (spider) diagrams 251       Q-3903-U-A-bulkQ-3903-U-B-bulk 7S-6-bulk 7S-7-bulkP-5500-N1--bulkCH7-14-S3-bulkDD27-80.1-bulk050-104.18-bulk050-184.54-bulkCH7-S14-10-2-bulkCH7-14-S13-bulkCH7-14-S7-bulkCH7-14-S14-A-bulkDD19-162-bulkDD19-175-bulkK 0.16 0.85 0.55 0.78 0.49 0.15 0.11 0.09 3.95 0.22 0.36 3.06 0.10 0.42 0.28Rb 0.39 0.36 0.07 0.06 0.04 0.07 0.34 0.04 0.00 0.03 0.11 4.51 0.00 0.02 0.14Ba 0.30 0.61 0.04 0.01 0.00 0.03 0.06 0.01 0.00 0.01 0.04 0.74 0.01 0.02 0.22Nb 383.60 47.72 0.80 0.22 0.31 0.17 0.02 0.19 17.27 0.29 0.36 67.38 0.17 20.82 174.85Ta 268.65 98.26 1.35 0.48 0.81 0.21 0.02 0.19 17.94 0.74 0.63 20.41 0.26 6.98 119.64La 3.36 1.95 5.51 0.54 0.43 0.94 4.32 0.20 0.17 0.44 2.81 0.22 0.96 1.73 0.26Ce 3.33 2.06 5.65 0.88 0.72 1.48 5.40 0.33 0.36 0.74 2.86 0.42 1.03 2.45 0.47Pr 2.83 1.91 5.08 1.06 0.97 1.67 6.29 0.42 0.54 1.00 2.49 0.73 0.93 2.65 0.87Pb 0.58 0.52 4.09 0.34 0.22 0.31 4.67 0.12 0.42 0.16 2.31 1.18 0.73 6.00 0.31Sr 2.39 2.66 5.84 2.78 1.69 2.16 6.06 0.35 3.57 1.34 3.05 3.17 1.04 20.58 1.96Nd 2.75 1.95 4.93 1.22 1.27 1.75 7.65 0.58 0.98 1.29 2.42 1.16 0.94 2.84 1.91Sm 2.38 1.38 5.17 1.10 1.48 1.59 8.79 1.08 2.74 1.85 2.27 2.96 1.15 1.77 3.86Zr 7.39 1.91 7.31 1.09 1.69 1.35 7.98 2.40 3.73 2.85 2.89 2.65 1.73 1.60 2.35Hf 6.33 3.11 5.22 1.40 1.82 1.55 6.18 1.90 4.90 3.18 2.36 2.96 0.96 2.09 2.55Eu 1.95 1.15 5.82 1.15 1.67 1.64 9.33 1.37 3.00 1.99 2.45 4.12 1.35 1.96 5.34Ti 11.07 3.37 4.80 1.92 2.30 1.06 4.10 2.22 11.67 3.37 1.77 10.85 1.16 9.80 11.51Gd 1.99 1.06 7.00 1.00 1.58 1.92 12.71 1.97 3.77 2.12 2.97 3.44 1.74 0.99 3.84Dy 2.06 1.02 11.06 0.91 1.74 2.92 21.05 3.70 4.12 2.66 4.30 3.44 3.19 0.75 3.79Y 1.88 0.93 11.73 0.77 1.56 2.86 20.39 3.94 3.57 2.61 4.42 2.84 3.45 0.58 2.97Ho 2.07 1.09 13.00 0.84 1.70 3.16 22.47 4.42 4.00 2.89 4.81 3.07 3.70 0.64 3.41Yb 2.31 1.41 16.56 0.89 1.94 3.46 24.27 5.40 3.83 3.70 5.95 2.68 5.68 0.62 2.76Lu 2.29 1.45 16.94 0.86 1.95 3.61 24.44 5.34 3.65 3.97 6.00 2.72 6.20 0.61 2.67 252  Appendix F: Rare Earth Element (REE) and other trace element diagrams for Chidliak eclogites    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 CPX REE diagram7S-6-cpx17S-6-cpx27S-6-cpx37S-6-cpx40.0010.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 GRT REE diagram7S-6-grt17S-6-grt27S-6-grt37S-6-grt4 253       0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-7 CPX REE diagram7S-7-cpx17S-7-cpx27S-7-cpx37S-7-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-7 GRT REE diagram7S-7-grt17S-7-grt27S-7-grt37S-7-grt4 254    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104.18 CPX REE diagram050-104.18-cpx1050-104.18-cpx2050-104.18-cpx3050-104.18-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104.18 GRT REE diagram050-104.18-grt1050-104.18-grt2050-104.18-grt3050-104.18-grt4 255                  0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104.18 OPX REE diagram050-104.18-opx1050-104.18-opx2050-104.18-opx3050-104.18-opx4 256    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 CPX REE diagram050-184.54-cpx1050-184.54-cpx2050-184.54-cpx3050-184.54-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 GRT REE diagram050-184.54-grt1050-184.54-grt2050-184.54-grt3050-184.54-grt4 257                 0.0010.010.11La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 rutile REE diagram050-184.54-rut1050-184.54-rut2050-184.54-rut3050-184.54-rut4 258    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 CPX REE diagramDD19-162-cpx1DD19-162-cpx2DD19-162-cpx3DD19-162-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 GRT REE diagramDD19-162-grt1DD19-162-grt2DD19-162-grt3DD19-162-grt4 259                  0.0010.010.11La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 rutile REE diagramDD19-162-rut1DD19-162-rut2 260    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 CPX REE diagramDD19-175-cpx1DD19-175-cpx2DD19-175-cpx3DD19-175-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 GRT REE diagramDD19-175-grt1DD19-175-grt2DD19-175-grt3DD19-175-grt4 261                 0.0010.010.11La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 rutile REE diagramDD19-175-rut1DD19-175-rut2 262     0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD27-80.1 CPX REE diagramDD27-80.1-cpx1DD27-80.1-cpx2DD27-80.1-cpx3DD27-80.1-cpx40.0010.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD27-80.1 GRT REE diagramDD27-80.1-grt1DD27-80.1-grt2DD27-80.1-grt3DD27-80.1-grt4 263     0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsP-5500-N1 CPX REE diagramP-5500-N1--cpx1P-5500-N1--cpx2P-5500-N1--cpx3P-5500-N1--cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsP-5500-N1 GRT REE diagramP-5500-N1--grt1P-5500-N1--grt2P-5500-N1--grt3P-5500-N1--grt4 264    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A CPX REE diagramQ-3903-U-A-cpx1Q-3903-U-A-cpx2Q-3903-U-A-cpx30.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A GRT REE diagramQ-3903-U-A-grt1Q-3903-U-A-grt2Q-3903-U-A-grt3 265     0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A rutile REE diagramQ-3903-U-A-rut1Q-3903-U-A-rut20.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A OPX REE diagramQ-3903-U-A-opx1Q-3903-U-A-opx2Q-3903-U-A-opx3 266    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B CPX REE diagramQ-3903-U-B-cpx1Q-3903-U-B-cpx2Q-3903-U-B-cpx30.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B GRT REE diagramQ-3903-U-B-grt1Q-3903-U-B-grt2Q-3903-U-B-grt3Q-3903-U-B-grt4Q-3903-U-B-grt5 267             0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B rutile REE diagramQ-3903-U-B-rut1 268     0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS3 CPX REE diagramCH7-14-S3-cpx1CH7-14-S3-cpx2CH7-14-S3-cpx3CH7-14-S3-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS3 GRT REE diagramCH7-14-S3-grt1CH7-14-S3-grt2CH7-14-S3-grt3CH7-14-S3-grt4 269    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 CPX REE diagramCH7-14-S7-cpx1CH7-14-S7-cpx2CH7-14-S7-cpx3CH7-14-S7-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 GRT REE diagramCH7-14-S7-grt1CH7-14-S7-grt2CH7-14-S7-grt3CH7-14-S7-grt4 270                  0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 rutile REE diagramCH7-14-S7-rut1CH7-14-S7-rut2CH7-14-S7-rut3CH7-14-S7-rut4 271     0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS10-2 CPX REE diagramCH7-S14-10-2-cpx1CH7-S14-10-2-cpx2CH7-S14-10-2-cpx3CH7-S14-10-2-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS10-2 GRT REE diagramCH7-S14-10-2-grt1CH7-S14-10-2-grt2CH7-S14-10-2-grt3CH7-S14-10-2-grt4 272     0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS13 CPX REE diagramCH7-14-S13-cpx1CH7-14-S13-cpx2CH7-14-S13-cpx3CH7-14-S13-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS13 GRT REE diagramCH7-14-S13-grt1CH7-14-S13-grt2CH7-14-S13-grt3CH7-14-S13-grt4 273      0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS14A CPX REE diagramCH7-14-S14-A-cpx1CH7-14-S14-A-cpx2CH7-14-S14-A-cpx3CH7-14-S14-A-cpx40.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS14A GRT REE diagramCH7-14-S14-A-grt1CH7-14-S14-A-grt2CH7-14-S14-A-grt3CH7-14-S14-A-grt4 274   0.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsECLOGITE CPX REE diagrams7S-6 CPX7S-7 CPX050-104.18 CPX050-184 CPXDD19-162 CPXDD19-175 CPXDD27-80.1 CPXP-5500-N1 CPXQ-U-A CPXS3 CPXS7 CPXS10-2 CPXS13 CPXS14A CPXQ-U-B-CPX 275  0.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsECLOGITE GRT REE diagram7S-6 GRT7S-7 GRT050-104.18 GRT050-184 GRTDD19-162 GRTDD19-175 GRTDD27-80.1 GRTP-5500-N1 GRTQ-U-A GRTS3 GRTS7 GRTS10-2 GRTS13 GRTS14A GRTQ-U-B-GRT 276    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 CPX REE diagram7S-6 CPX0.0010.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 GRT REE diagram7S-6 GRT 277    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-7 CPX REE diagram7S-7 CPX0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-7 GRT REE diagram7S-7 GRT 278    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104.18 CPX REE diagram050-104.18 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104.18 GRT REE diagram050-104.18 GRT 279    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 CPX REE diagram050-184 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 GRT REE diagram050-184 GRT 280    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 CPX REE diagramDD19-162 CPX0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 GRT REE diagramDD19-162 GRT 281    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 CPX REE diagramDD19-175 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 GRT REE diagramDD19-175 GRT 282    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD27-80.1 CPX REE diagramDD27-80.1 CPX0.0010.010.11101001000La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD27-80.1 GRT REE diagramDD27-80.1 GRT 283    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsP-5500-N1 CPX REE diagramP-5500-N1 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsP-5500-N1 GRT REE diagramP-5500-N1 GRT 284    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A CPX REE diagramQ-U-A CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A GRT REE diagramQ-U-A GRT 285    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B CPX REE diagramQ-U-B-CPX0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B GRT REE diagramQ-U-B-GRT 286    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS3 CPX REE diagramS3 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS3 GRT REE diagramS3 GRT 287    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 CPX REE diagramS7 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 GRT REE diagramS7 GRT 288    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS10-2 CPX REE diagramS10-2 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS10-2 GRT REE diagramS10-2 GRT 289    0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS13 CPX REE diagramS13 CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS13 GRT REE diagramS13 GRT 290    0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS14A CPX REE diagramS14A CPX0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS14A GRT REE diagramS14A GRT 291   0.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsECLOGITE BULK REE diagramBULK 7S-6; AverageBULK 7S-7; AverageBULK 050-104; AverageBULK 050-184; AverageBULK DD19-162; AverageBULK DD19-175; AverageBULK DD27-80.1; AverageBULK P-5500-N1; AverageBULK Q-U-A; AverageBULK S3; AverageBULK S7; AverageBULK S10-2; AverageBULK S13; AverageBULK S14A; AverageBULK Q-U-B; Average 292   0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-6 BULK REE diagramBULK 7S-6; AverageBULK 7S-6; +5% CPX, -5% GRTBULK 7S-6; -5% CPX, +5% GRT 293   0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs7S-7 BULK REE diagramBULK 7S-7; AverageBULK 7S-7; +5% CPX, -5% GRTBULK 7S-7; -5% CPX, +5% GRT 294  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-104 BULK REE diagramBULK 050-104; AverageBULK 050-104; +5% CPX, -5% GRTBULK 050-104; -5% CPX, +5% GRT 295  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEs050-184 BULK REE diagramBULK 050-184; AverageBULK 050-184; +5% CPX, -5% GRTBULK 050-184; -5% CPX, +5% GRT 296  0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-162 BULK REE diagramBULK DD19-162; AverageBULK DD19-162; +5% CPX, -5% GRTBULK DD19-162; -5% CPX, +5% GRT 297  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD19-175 BULK REE diagramBULK DD19-175; AverageBULK DD19-175; +5% CPX, -5% GRTBULK DD19-175; -5% CPX, +5% GRT 298  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsDD27-80.1 BULK REE diagramBULK DD27-80.1; AverageBULK DD27-80.1; +5% CPX, -5% GRTBULK DD27-80.1; -5% CPX, +5% GRT 299  0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsP-5500-N1 BULK REE diagramBULK P-5500-N1; AverageBULK P-5500-N1; +5% CPX, -5% GRTBULK P-5500-N1; -5% CPX, +5% GRT 300   0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-A BULK REE diagramBULK Q-U-A; AverageBULK Q-U-A; +5% CPX, -5% GRTBULK Q-U-A; -5% CPX, +5% GRT 301  0.0010.010.1110La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsQ-U-B BULK REE diagramBULK Q-U-B; AverageBULK Q-U-B; +5% CPX, -5% GRTBULK Q-U-B; -5% CPX, +5% GRT 302  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS3 BULK REE diagramBULK S3; AverageBULK S3; +5% CPX, -5% GRTBULK S3; -5% CPX, +5% GRT 303  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS7 BULK REE diagramBULK S7; AverageBULK S7; +5% CPX, -5% GRTBULK S7; -5% CPX, +5% GRT 304  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS10-2 BULK REE diagramBULK S10-2; AverageBULK S10-2; +5% CPX, -5% GRTBULK S10-2; -5% CPX, +5% GRT 305  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS13 BULK REE diagramBULK S13; AverageBULK S13; +5% CPX, -5% GRTBULK S13; -5% CPX, +5% GRT 306  0.0010.010.1110100La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb LuSample/ChondriteREEsS14A BULK REE diagramBULK S14A; AverageBULK S14A; +5% CPX, -5% GRTBULK S14A; -5% CPX, +5% GRT 307   0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCPX Trace Element Diagram Q-3903-U-A-cpxQ-3903-U-B-cpx7S-6-cpx7S-7-cpxP-5500-N1--cpxCH7-14-S3-cpxDD27-80.1-cpx050-104.18-cpx050-184.54-cpxCH7-S14-10-2-cpxCH7-14-S13-cpxCH7-14-S7-cpxCH7-14-S14-A-cpxDD19-162-cpxDD19-175-cpx 308   0.000.000.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsGRT Trace Element Diagram Q-3903-U-A-grtQ-3903-U-B-garnet7S-6-grt7S-7-grtP-5500-N1--grtCH7-14-S3-grtDD27-80.1-grt050-104.18-grt050-184.54-grtCH7-S14-10-2-grtCH7-14-S13-grtCH7-14-S7-grtCH7-14-S14-A-grtDD19-162-grtDD19-175-grt 309   0.000.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsOPX Trace Element Diagram Q-3903-U-A-opx050-104.18-opx 310  0.000.000.010.101.0010.00100.001000.0010000.00100000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsRutile Trace Element Diagram Q-3903-U-A-rutQ-3903-U-B-rutile050-184.54-rutCH7-14-S7-rutDD19-162-rutDD19-175-rut 311    0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-A CPX spider diagramQ-3903-U-A-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-A GRT spider diagramQ-3903-U-A-grt 312     0.000.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-A OPX spider diagramQ-3903-U-A-opx0.000.010.101.0010.00100.001000.0010000.00100000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-A rutile spider diagramQ-3903-U-A-rut 313    0.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-B CPX diagramQ-3903-U-B-cpx0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-B GRT spider diagramQ-3903-U-B-garnet 314                  0.101.0010.00100.001000.0010000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-B rutile spider diagramQ-3903-U-B-rutile 315     0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-6 CPX spider diagram7S-6-cpx0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-6 GRT spider diagram7S-6-grt 316     0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-7 CPX spider diagram7S-7-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-7 GRT spider diagram7S-7-grt 317     0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsP-5500-N1 CPX spider diagramP-5500-N1--cpx0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsP-5500-N1 GRT spider diagramP-5500-N1--grt 318    0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S3 CPX spider diagramCH7-14-S3-cpx0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S3 GRT spider diagramCH7-14-S3-grt 319    0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD27-80.1 CPX spider diagramDD27-80.1-cpx0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD27-80.1 GRT spider diagramDD27-80.1-grt 320    0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-104.18 CPX spider diagram050-104.18-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-104.18 GRT spider diagram050-104.18-grt 321                 0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-104.18 OPX spider diagram050-104.18-opx 322    0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-184.54 CPX spider diagram050-184.54-cpx0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-184.54 GRT spider diagram050-184.54-grt 323                  0.000.010.101.0010.00100.001000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-184.54 rutile spider diagram050-184.54-rut 324      0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S10-2 CPX spider diagramCH7-S14-10-2-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S10-2 GRT spider diagramCH7-S14-10-2-grt 325     0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S13 CPX spider diagramCH7-14-S13-cpx0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S13 GRT spider diagramCH7-14-S13-grt 326    0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S7 CPX spider diagramCH7-14-S7-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S7 GRT spider diagramCH7-14-S7-grt 327                  0.010.101.0010.00100.001000.0010000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S7 rutile spider diagramCH7-14-S7-rut 328    0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S14-A CPX spider diagramCH7-14-S14-A-cpx0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S14-A GRT spider diagramCH7-14-S14-A-grt 329    0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-162 CPX spider diagramDD19-162-cpx0.000.000.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-162 GRT spider diagramDD19-162-grt 330                  0.000.000.010.101.0010.00100.001000.0010000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-162 rutile spider diagramDD19-162-rut 331    0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-175 CPX spider diagramDD19-175-cpx0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-175 GRT spider diagramDD19-175-grt 332                0.000.000.010.101.0010.00100.001000.0010000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-175 rutile spider diagramDD19-175-rut 333  0.000.010.101.0010.00100.001000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsBulk Chidliak Eclogites Spider DiagramQ-3903-U-A-bulkQ-3903-U-B-bulk7S-6-bulk7S-7-bulkP-5500-N1--bulkCH7-14-S3-bulkDD27-80.1-bulk050-104.18-bulk050-184.54-bulkCH7-S14-10-2-bulkCH7-14-S13-bulkCH7-14-S7-bulkCH7-14-S14-A-bulkDD19-162-bulkDD19-175-bulk 334    0.101.0010.00100.001000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-A bulk eclogite spider diagramQ-3903-U-A-bulk0.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsQ-3903-U-B bulk eclogite spider diagramQ-3903-U-B-bulk 335    0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-6 bulk eclogite spider diagram7S-6-bulk0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements7S-7 bulk eclogite spider diagram7S-7-bulk 336    0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsP-5500-N1 bulk eclogite spider diagramP-5500-N1--bulk0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S3 bulk eclogite spider diagramCH7-14-S3-bulk 337    0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD27-80.1 bulk eclogite spider diagramDD27-80.1-bulk0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-104.18 bulk eclogite spider diagram050-104.18-bulk 338    0.000.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elements050-184.54 bulk eclogite spider diagram050-184.54-bulk0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S10-2 bulk eclogite spider diagramCH7-S14-10-2-bulk 339    0.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S13 bulk eclogite spider diagramCH7-14-S13-bulk0.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S7 bulk eclogite spider diagramCH7-14-S7-bulk 340    0.000.010.101.0010.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsCH7-14-S14-A bulk eclogite spider diagramCH7-14-S14-A-bulk0.010.101.0010.00100.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-162 bulk eclogite spider diagramDD19-162-bulk 341   0.101.0010.00100.001000.00K Rb Ba Nb Ta La Ce Pr Pb Sr Nd Sm Zr Hf Eu Ti Gd Dy Y Ho Yb LuSample/Primitive MantleTrace elementsDD19-175 bulk eclogite spider diagramDD19-175-bulk

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.24.1-0357260/manifest

Comment

Related Items