UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Silicon photonic switches for optical communication applications Lu, Zeqin

Abstract

Optical switches are used for signal switching in optical communication networks. Silicon photonics is a low-cost and mature technology to develop high-performance optical switches. This thesis is a theoretical and experimental study on silicon photonic switches, featuring broadband, low-power, high-speed, and low-crosstalk performance. Broadband 3-dB couplers are fundamental building blocks for broadband switches based on Mach-Zehnder interferometer (MZI) structures. A broadband 3-dB coupler, which has a 100 nm operation bandwidth with coupling imbalance being much less than its competitors, i.e., adiabatic couplers and multimode interference couplers, has been theoretically designed and experimentally demonstrated. Switches using thermo-optic phase tuning typically have high power consumption. In this thesis, two methods to improve the tuning efficiency of thermo-optic phase shifters have been investigated and employed: 1) using thermal isolation structures and 2) using folded waveguides structures. Accordingly, thermo-optic switches with state-of-the-art, ultra-low power consumption of down to 50μW/π have been demonstrated. MZI switches using carrier injection phase tuning have high-speed performance but with a large switching crosstalk, due to the imbalanced tuning loss in the MZI structure. A novel carrier injection switch based on a balanced nested Mach-Zehnder interferometer (BNMZI) structure has been theoretically proposed. The BNMZI switch has balanced tuning schemes and therefore can be both high-speed and crosstalk-free. Besides, the switch has three switching states: cross, bar, and blocking. Polarization control is necessary for single-mode switches. A high-performance polarization beamsplitter (PBS), which has a 120 nm operation bandwidth with modal isolations of more than 20 dB, has been designed and demonstrated, and it can be used for polarization control for single-mode switches. Characterizing fabrication variability and performing yield prediction for photonic integrated circuits (PICs) are both challenging for photonics designers. We have developed an accurate and cost-efficient characterization method for fabrication variations, which extracts waveguide dimension variations from the spectral response of a single racetrack resonator. In addition, we have proposed a novel yield prediction method for PICs, which, for the first time in silicon photonics, is able to model the impacts of layout-dependent correlated manufacturing variations and take them into account in circuit simulations.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International