UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Origin of Cu-PGE-rich sulphide mineralization in the DJ/DB zone of the Turnagain Alaskan-type intrusion,… Jackson-Brown, Sarah 2017

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2017_november_jackson-brown_sarah.pdf [ 26.56MB ]
Metadata
JSON: 24-1.0355222.json
JSON-LD: 24-1.0355222-ld.json
RDF/XML (Pretty): 24-1.0355222-rdf.xml
RDF/JSON: 24-1.0355222-rdf.json
Turtle: 24-1.0355222-turtle.txt
N-Triples: 24-1.0355222-rdf-ntriples.txt
Original Record: 24-1.0355222-source.json
Full Text
24-1.0355222-fulltext.txt
Citation
24-1.0355222.ris

Full Text

ORIGIN OF Cu-PGE-RICH SULPHIDE MINERALIZATION IN THE DJ/DB ZONE OF THE TURNAGAIN ALASKAN-TYPE INTRUSION, BRITISH COLUMBIA  by  Sarah Jackson-Brown B.Sc. (Hons.) Laurentian University, 2011  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF   MASTER OF SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Geological Sciences)  THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)  August 2017  © Sarah Jackson-Brown, 2017   ii  Abstract The Early Jurassic (>188-185 Ma) Turnagain ultramafic-mafic body, a composite Alaskan-type intrusion in the Northern Cordillera of northern British Columbia, hosts a significant nickel-cobalt resource (Horsetrail zone, 1842 Mt @ 0.21 wt. % Ni and 0.013 wt. % Co), and minor copper-platinum group element (Cu-PGE) mineralization. The 24 km2 Turnagain intrusion comprises four temporally, spatially, and chemically distinct ultramafic-mafic phases that include dunite, wehrlite, clinopyroxenite, hornblendite and diorite. The 1.5 x 2 km DJ/DB zone, an area of Cu-PGE enrichment that was discovered through soil geochemistry and drilling of a previously under-explored area of the intrusion, is located 2.5 km northwest of the nickel resource. Clinopyroxenites and hornblendites with minor wehrlite are the major rock types of the DJ/DB zone. Orthomagmatic sulphide mineralization ranges from predominantly disseminated sulphides (<5 vol. %) to rare massive ores, and contains chalcopyrite and pyrrhotite, with minor pyrite and pentlandite, and trace arsenides (nickeline), arsenic-antimony sulphides (cobaltite, gersdorffite), and platinum group minerals (PGM; sperrylite, sudburyite, Pd-melonite, testibiopalladite). Sulphide and PGM mineralization underwent minor remobilization related to post-magmatic hydrothermal alteration. The DJ/DB zone represents the products of a magmatic event that is younger than the magmatism that produced the Ni-Co-rich mineralization. Sulphide saturation of Mg-rich arc parent magmas through assimilation of sulphur and carbon from pyrite- and graphite-bearing metasedimentary rocks surrounding the intrusion lead to the formation of the DJ/DB zone following extensive olivine fractionation (i.e., Ni depletion). The distinct nature of Cu-PGE mineralization in the DJ/DB zone indicates that Ni-Cu-PGE sulphides in Alaskan-type intrusions may have more significant exploration potential in convergent margins than previously considered. iii  Lay Summary As the global demand for nickel, copper, and platinum group elements (Ni-Cu-PGE) grows, the search for new and larger mines becomes increasingly important. Exploring atypical settings for these metals may lead to finding the next major mine, however, in order to find new deposits we must first understand how known deposits formed. Investigation of the DJ/DB zone of the Turnagain intrusion will add to the body of knowledge on the formational history of Ni-Cu-PGE deposits in a previously underexplored setting. This information can be used by government, researchers and companies to locate areas that have a high potential for a mineral deposit.  iv  Preface The subject of this thesis was part of a successfully funded project by Drs. James Scoates (UBC), Graham Nixon (British Columbia Geological Survey), and Doreen Ames (Geological Survey of Canada, Ottawa) supported by Natural Resources Canada as part of the Geological Survey of Canada’s Targeted Geosciences Initiative 4 (TGI-4: 2011-2015) Magmatic-Hydrothermal Nickel-Copper-PGE-Chrome Ore System Project. Geological samples were collected by Dr. Nixon in 2011 and by the author, Sarah Jackson-Brown in 2013. All the work presented here was completed and presented by the author under the co-supervision of Drs. Scoates, Nixon, and Ames, each of whom were involved in project development, assistance with data acquisition, and extensive edits of presentations, publications, and the thesis document. Chapter 1 contains a global compilation table of Alaskan-type intrusions with Ni-Cu-PGE mineralization that was compiled and prepared by myself with sources listed in Table 1.1 and the references section. The soil geochemical survey maps in Figure 1.7 were provided to the author courtesy of Hard Creek Nickel Corporation. Chapter 2 contains the main research results for this thesis. All data from this section were obtained by the author, with the exception of electron microprobe analyses (EMPA), which were provided by Dr. I. Kjarsgaard (Ottawa), and geochemical data from the Turnagain intrusion reported in Scheel (M.Sc., 2007). Figure 2.3 was provided to the author by Hard Creek Nickel Corporation. Dr. Ken Hickey (UBC) provided key observations and advice on the structure of the DJ/DB zone. Observations and data from Chapter 2 have previously been presented in British Columbia Geological Survey Paper 2014-1 (Jackson-Brown, S., Scoates, J.S., Nixon, G.T., and Ames, D.E., 2014, Mineralogy of sulphide, arsenide, and platinum group minerals from the DJ/DB Zone of the Turnagain Alaskan-type ultramafic intrusion, north-central British Columbia) and in Geological Survey of Canada, Open File 7871 (Jackson-Brown, S., Scoates, J.S., Nixon, G.T., and Ames, D.E., v  2015, Geology, mineralogy, and geochemistry of the Cu-PGE (DJ/DB) zone of the Turnagain Alaskan-type intrusion, north-central British Columbia: Supporting databases for the convergent-margin Ni-Cu-PGE study). Most of the thesis appendices are contained in this publication. Data collection and manuscript preparation for these publications were done by the author. Conceptualization, and manuscript editing of these publications was provided by the supervisory authors (Drs. Scoates, Nixon, and Ames) and final manuscript edits on the publications were contributed by Drs. Larry Aspler and Michel Houlé.  vi  Table of Contents Abstract ................................................................................................................................................. ii Lay Summary ...................................................................................................................................... iii Preface .................................................................................................................................................. iv Table of Contents................................................................................................................................. vi List of Tables ........................................................................................................................................ ix List of Figures ...................................................................................................................................... xi List of Abbreviations .......................................................................................................................... xv Acknowledgements ........................................................................................................................... xvii Dedication ........................................................................................................................................ xviii Chapter 1: Introduction to the DJ/DB zone of the Turnagain Alaskan-type intrusion, northern British Columbia .................................................................................................................................. 1 1.1 Introduction .................................................................................................................................. 1 1.1.1 Convergent margin Ni-Cu-PGE deposits .............................................................................. 2 1.1.2 Alaskan-type intrusions ......................................................................................................... 4 1.1.2.1 Platinum group element mineralization associated with Alaskan-type intrusions worldwide ................................................................................................................................... 7 1.1.2.2 Ni-Cu mineralization in Alaskan-type intrusions ........................................................... 8 1.2 Overview of the Turnagain intrusion ......................................................................................... 13 1.2.1 Previous work on the Turnagain intrusion .......................................................................... 17 1.3 Overview of thesis ...................................................................................................................... 20 1.4 Contributions from the thesis research ....................................................................................... 22 Chapter 2: Geology and Cu-PGE mineralization in the DJ/DB zone of the Turnagain Alaskan-type intrusion ...................................................................................................................................... 23 2.1 Introduction ................................................................................................................................ 23 2.2 Regional geology of the Turnagain intrusion ............................................................................. 28 2.3 Overview of the Turnagain intrusion and associated DJ/DB zone ............................................. 30 vii  2.4 Analytical techniques ................................................................................................................. 38 2.4.1 Scanning electron microscopy ............................................................................................ 38 2.4.2 Electron microprobe analyses ............................................................................................. 44 2.4.3 Whole rock major element oxides and trace element concentrations ................................. 44 2.4.4 Chalcophile, platinum group element, and sulphur geochemical analyses ......................... 45 2.4.5 Calculation procedure for whole-rock Ni, Cu, and PGE analyses to 100% sulphide ......... 46 2.4.6 Laser ablation ICP-MS analysis of sulphide minerals ........................................................ 47 2.4.7 Sulphur isotope analyses ..................................................................................................... 50 2.5 Results ........................................................................................................................................ 51 2.5.1 Mineralogy of major rock types in the DJ/DB zone ........................................................... 51 2.5.2 Whole rock major element oxide and trace element concentrations ................................... 61 2.5.3 Sulphide and platinum group element mineralization......................................................... 68 2.5.3.1 Base metal sulphides .................................................................................................... 68 2.5.3.2 Arsenides, sulpharsenides and sulphantimonides ........................................................ 71 2.5.3.3 Platinum group minerals .............................................................................................. 72 2.5.4 Chalcophile and platinum group element geochemistry ..................................................... 81 2.5.5 Laser ablation ICP-MS analysis of sulphide minerals ........................................................ 88 2.5.5.1 Mass balance in the sulphide minerals ......................................................................... 89 2.5.6 Sulphur isotope geochemistry ............................................................................................. 93 2.6 Discussion .................................................................................................................................. 96 2.6.1 Petrogenesis and paragenesis of the DJ/DB zone of the Turnagain Alaskan-type intrusion ..................................................................................................................................................... 96 2.6.2 Formation and modification of platinum group minerals in the DJ/DB zone ................... 101 2.6.3 Sulphide saturation and Cu-PGE mineralization in the DJ/DB zone ................................ 102 2.7 Conclusions .............................................................................................................................. 106 Chapter 3: Conclusions .................................................................................................................... 107 3.1 Summary of key findings ......................................................................................................... 107 viii  3.2 Directions for future work ........................................................................................................ 111 3.2.1 Geometry of the DJ/DB zone and adjacent Turnagain intrusive bodies............................ 111 3.2.2 The relationship of the Turnagain intrusion to other Alaskan-type intrusions and convergent margin ultramafic-mafic intrusions in the Northern Cordillera ............................... 112 References ......................................................................................................................................... 114 Appendices ........................................................................................................................................ 131   ix  List of Tables Table 1.1. Summary of key characteristics of Alaskan-type ultramafic intrusions and associated Ni-Cu-PGE mineralization .................................................................................................................... 9 Table 1.2. Platinum group element (PGE) mineralization in Alaskan-type intrusions .................... 11 Table 1.3. Exploration history of the Turnagain intrusion ............................................................... 18 Table 2.1. Characteristics of the Turnagain intrusion vs. other Cu-PGE-rich deposits ................... 24 Table 2.2. Location and orientation information for diamond drillholes sampled in the DJ/DB zone, Turnagain intrusion .......................................................................................................................... 37 Table 2.3. Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusion .................................................................................................... 39 Table 2.4.  LA-ICP-MS instrumentation, operating conditions and quantification ......................... 49 Table 2.5. Modal abundances of minerals from petrography and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusion ........................................................................................... 53 Table 2.6. Whole rock major element oxide and select trace element concentrations for samples in and adjacent to the DJ/DB zone of the Turnagain intrusion ............................................................ 62 Table 2.7. Mineralogy of Ni-Cu-PGE mineralization in the DJ/DB zone of the Turnagain intrusion ......................................................................................................................................................... 69 Table 2.8. Representative sulphide and arsenide compositions from electron microprobe analysis from the DJ/DB zone of the Turnagain intrusion ............................................................................ 73 Table 2.9. Summary of platinum group minerals (PGM) from microprobe and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusion ............................................................... 77 x  Table 2.10. Electron microprobe analyses of platinum group minerals from the DJ/DB zone of the Turnagain intrusion ......................................................................................................................... 78 Table 2.11. Whole rock chalcophile and platinum group element concentrations for sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion .............................................. 82 Table 2.12. Average chalcophile and platinum group element concentrations from laser ablation ICP-MS analysis of select sulphide minerals in the DJ/DB zone of the Turnagain intrusion ................ 90 Table 2.13. Sulphur isotope analyses from sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion ............................................................................................................... 95   xi  List of Figures Figure 1.1. Nickel grade vs. total ore resource in millions of tonnes for convergent margin Ni-Cu-PGE deposits and major Ni-Cu-PGE deposits globally. .................................................................. 3 Figure 1.2. Locations of known Alaskan-type intrusions with Ni-Cu-PGE mineralization with respect to global orogenic belts. ................................................................................................................... 6 Figure 1.3. Simplified tectonic map of the Canadian Cordillera with locations of major convergent margin mafic-ultramafic intrusions shown, including the Turnagain intrusion. .............................. 12 Figure 1.4. Simplified geological map of the Turnagain Alaskan-type intrusion and host rocks. ... 15 Figure 1.5. Satellite image showing the local topography, forest cover, and rivers in the area of the Turnagain Alaskan-type intrusion. ................................................................................................... 16 Figure 1.6. Photographs of the general Turnagain area. .................................................................. 16 Figure 1.7. Copper and combined Pt+Pd concentrations from a soil geochemical survey completed in 2008. ................................................................................................................................................ 19 Figure 2.1. Map of the tectono-stratigraphic configuration of the Canadian Cordillera with locations of major convergent margin mafic-ultramafic intrusions including the Turnagain intrusion. ......... 29 Figure 2.2. Simplified geological map of the Turnagain intrusion and immediate surroundings. ... 32 Figure 2.3. Photographs of boulders found in the DJ/DB zone showing angular clasts of dunite in fine- to medium-grained clinopyroxenite. ....................................................................................... 33 Figure 2.4. Geological map of the DJ/DB zone and immediate surroundings showing surface sample and drill collar locations. .................................................................................................................. 34 xii  Figure 2.5. Copper and combined Pt+Pd concentrations from a soil geochemical survey completed in 2008. ................................................................................................................................................ 35 Figure 2.6. Cross-section of drillhole geology and assayed Cu, Pt and Pd concentrations through the DJ/DB zone for drill holes DDH05-88, DDH05-101, and DDH07-211. ........................................ 36 Figure 2.7. Photographs of representative rock samples of major rock types within the DJ/DB zone. ......................................................................................................................................................... 57 Figure 2.8. Thin section scans in transmitted light and cross-polarized light of typical textures in clinopyroxenite. ............................................................................................................................... 58 Figure 2.9. Thin section scans and photographs of samples exhibiting characteristic compositional, magnetite, or sulphide banding textures observed in the DJ/DB zone. ........................................... 59 Figure 2.10. Thin section scans in transmitted light and cross-polarized light of typical textures in hornblendite. .................................................................................................................................... 60 Figure 2.11. Thin section scans of contacts observed in drill core samples from the DJ/DB zone. 60 Figure 2.12. Diagrams of MgO vs. select major element oxides for whole rock samples from the Turnagain intrusion. ........................................................................................................................ 66 Figure 2.13. Diagrams of MgO vs. select compatible trace elements for whole rock samples from the Turnagain intrusion. ........................................................................................................................ 66 Figure 2.14. Chondrite-normalized rare earth element patterns and N-MORB-normalized extended trace element patterns for samples from the DJ/DB zone of the Turnagain intrusion. ................... 67 Figure 2.15. Photomicrographs in reflected light of base metal sulphide minerals from the DJ/DB zone. ................................................................................................................................................ 70 xiii  Figure 2.16. Ternary compositions of Ni-, Fe-, and S-bearing base metal sulphides and Ni-, Co-, and As-/S-bearing base metal sulphides/arsenides in the DJ/DB zone of the Turnagain intrusion. ....... 75 Figure 2.17. Photomicrographs and backscatter electron (BSE) images of sulphides in altered samples that exhibit desulphurization and remobilization. ............................................................................ 75 Figure 2.18. Photomicrographs and backscatter electron (BSE) images of arsenide, sulpharsenide and sulphantimonide minerals from the DJ/DB zone. ............................................................................ 76 Figure 2.19. Distribution of platinum group minerals by total 2-dimensional area of measured grains, total number of grains observed, association with other minerals, and grain shape ........................ 77 Figure 2.20. Backscatter electron (BSE) images of platinum group minerals from the DJ/DB zone. ......................................................................................................................................................... 79 Figure 2.21. Backscatter electron (BSE) images of platinum group minerals forming rims around sulphides in the DJ/DB zone. ........................................................................................................... 80 Figure 2.22. Chalcophile and platinum group element concentrations of samples from the Turnagain intrusion. .......................................................................................................................................... 86 Figure 2.23. Platinum group element concentrations of samples from the Turnagain intrusion. .... 86 Figure 2.24. Primitive mantle-normalized whole rock PGE patterns of rocks from the DJ/DB zone. ......................................................................................................................................................... 87 Figure 2.25. Primitive mantle-normalized PGE patterns of base metal sulphides in pyrrhotite, chalcopyrite, pyrite, and pentlandite. ............................................................................................... 92 Figure 2.26. Mass balance of the PGE and other chalcophile elements in base metal sulphides and PGM from the DJ/DB zone. ............................................................................................................. 92 xiv  Figure 2.27. Sulphur isotope compositions from sulphide-rich rocks in and adjacent to the DJ/DB zone and various locations throughout the Turnagain intrusion. ..................................................... 94 Figure 2.28. Schematic cross-section of the subduction zone setting inferred for the emplacement and crystallization of the Turnagain Alaskan-type intrusion ca. 185 Ma............................................... 97 Figure 2.29. Schematic paragenetic sequence for sulphide and silicate crystallization and post-magmatic remobilization for the DJ/DB zone of the Turnagain intrusion.. .................................... 98 Figure 2.30. Schematic model of the formation of sulphide and platinum group minerals (PGM) in the DJ/DB zone of the Turnagain Alaskan-type intrusion. ................................................................... 104 Figure 2.31 Ternary phase diagram (CoAsS-FeAsS-NiAsS) for sulpharsenides. ........................... 105 Figure 3.1. Location map for the Targeted Geoscience Initiatives 4 ore systems project study sites in Canada ............................................................................................................................................. 108 Figure 3.2. Map of the tectono-stratigraphic configuration of the Canadian Cordillera with locations of major convergent margin mafic-ultramafic intrusions including the Turnagain intrusion ......... 113   xv  List of Abbreviations adl - above upper detection limit altd - altered amp - amphibole B - blebby band - banded bdl - below lower detection limit bt - biotite CA - core axis cal - calcite cb - carbonate cbt - cobaltite ccp - chalcopyrite chl - chlorite cpx - clinopyroxene cpxite - clinopyroxenite D - disseminated fg - fine-grained gf - gersdorffite gn - galena hbl - hornblende hblite - hornblendite hcr - hauchecornite ilm - ilmenite incl. - inclusion M - massive mag - magnetite mg - medium-grained ms - muscovite nc - nickeline NT - net-textured ol - olivine PGE - platinum group element xvi  PGM - platinum group mineral phl - phlogopite pl - plagioclase pn - pentlandite po - pyrrhotite py - pyrite qz - quartz ser - sericite sd - sudburyite SM - semi-massive sp - spinel spy - sperrylite srp - serpentine tbp - testibiopalladite tc - tucekite tlc - talc tr - tremolite ttn - titanite ull - ullmannite VH - vein-hosted w. - intergrown with  xvii  Acknowledgements This thesis would not have been possible without the knowledge and patience of my supervisors Drs. James Scoates (UBC), Graham Nixon (BCGS-Victoria), Doreen Ames (GSC-Ottawa), and Kenneth Hickey (UBC), whose guidance, support, and feedback were invaluable to me and this project.  Many thanks to Tony Hitchins and Hard Creek Nickel Corporation for assistance with field work and access to Turnagain materials and data.  Thanks to Dr. Mati Raudsepp, Jenny Lai, and Elisabetta Pani of the Electron Microbeam/X-ray Diffraction Facility at UBC for their help and guidance on the SEM. Thanks to Dr. Ingrid Kjarsgaard in Ottawa for additional detailed petrographic descriptions and all EMPA analyses and stoichiometric calculations. Thanks also to Patricia Hunt at the GSC, Ottawa, for assistance with SEM mapping of PGM. Thanks to Drs. Zhaoping Yang and Simon Jackson at the GSC for training and use of the GSC LA-ICP-MS facility in Ottawa, and their invaluable assistance with data collection and reduction. Thanks to Dr. Corey Wall, Dr. Emily Mullen, Lauren Harrison, Anaïs Fourny, Marina Martindale, and Tom Ver Hoeve for their advice and assistance with my project and for creating such a fun, welcoming work environment over the past years. Special thanks go out to Matt Manor, without whose help I would not have made it through this thesis. Lastly, thanks to my family and my amazing husband Mike Tucker for being there for me. Funding for this project was provided by the Geological Survey of Canada Targeted Geoscience Initiative 4 program, the Government of Canada Research Affiliate Program, a SEG Canadian Foundation Graduate Student Research Grant awarded to Sarah Jackson-Brown in 2013, and an NSERC Discovery Grant to Dr. James Scoates.   xviii       Dedication To my late father, Philip Brown, and my mother, Joanne Jackson, for always believing in me. and To my dear husband, Mike Tucker, for making me believe in myself.   1  Chapter 1: Introduction to the DJ/DB zone of the Turnagain Alaskan-type intrusion, northern British Columbia 1.1 Introduction Exploration for new Ni-Cu-platinum group element (PGE) deposits has historically been concentrated in mafic-ultramafic intrusions associated with continental rifting, however, recent studies of convergent margin ultramafic-mafic intrusions has revealed their potential to host economically significant Ni-Cu-PGE deposits (e.g. Aguablanca, Spain, Piña et al., 2008; Huangshandong, China, Mao et al., 2014; Giant Mascot, Canada, Manor et al., 2016). These supra-subduction mafic-ultramafic intrusions can be classified into two major mineralogical categories: orthopyroxene-absent Alaskan-type and orthopyroxene-rich Giant Mascot-type intrusions (Nixon et al., 2015). Giant Mascot-type intrusions are commonly associated with significant Ni-Cu sulphide mineralization, whereas Alaskan-type intrusions are better known for their chromite-PGE mineralization in lode and placer deposits. Several Alaskan-type intrusions in southeastern Alaska (Salt Chuck, Duke Island) and northern British Columbia (Turnagain) contain significant concentrations of nickel, copper, cobalt, and PGE in disseminated, semi-massive, and massive sulphide. Of these intrusions, the Turnagain is notable as it contains both a large tonnage, low grade Ni-Co resource (1842 Mt @ 0.21 wt. % Ni and 0.013 wt. % Co; Mudd and Jowitt, 2014) and a discrete zone of Cu-PGE mineralization. Initial investigations of the Turnagain intrusion completed by Clark (1975) focused on mapping and petrogenesis of the intrusion. Later work by Scheel (2007) investigated the geochronology and geochemistry of the intrusion, with a focus on the Ni-Co mineralization in an area known as the Horsetrail zone (Scheel et al., 2005; Scheel, 2007; Scheel et al., 2009). The Cu-PGE mineralized zone, referred to as the DJ/DB zone, has not been studied in detail owing to lack of surface exposure in the area, however, recent drilling within the DJ/DB zone has provided access to new geological 2  information. The detailed geochemical, petrographic, and isotopic study of samples from DJ/DB zone drillcore has provided new insight into the composition and emplacement history of mineralization within the DJ/DB zone. Characterization of the Cu-PGE-rich DJ/DB zone with respect to the rest of the Turnagain intrusion and other mineralized Alaskan-type intrusions is important for establishing exploration criteria for similar deposits in convergent margin settings. 1.1.1 Convergent margin Ni-Cu-PGE deposits Ultramafic-mafic-hosted magmatic sulphide deposits, which contain the majority of the world’s nickel-copper-platinum group element (PGE) resources, are found in a wide variety of tectonomagmatic settings (Mudd and Jowitt, 2014; Naldrett, 2010; Naldrett, 2011). Typically, these deposits are associated with either rift-related magmatism (e.g. Noril’sk, Russia; Voisey’s Bay, Canada; Jinchuan, China; Duluth, USA), komatiites (e.g. Raglan, Canada; Mt. Keith, Australia; Kambalda, Australia), or impact events (i.e. Sudbury, Canada) (Figure 1.1) (see Naldrett, 2011, and references therein). Until recently, convergent margin settings have been considered to be poor exploration targets for Ni-Cu-PGE owing to the apparent low abundance of sulphide-bearing mafic-ultramafic intrusions (Ripley, 2010). However, recent studies of ultramafic intrusions in convergent margin settings have revealed significant concentrations of Ni-sulphide mineralization and potential for PGE mineralization (e.g. Turnagain, Nixon, 1998; Salt Chuck, Watkinson and Melling, 1992; Duke Island, Thakurta et al., 2008; Giant Mascot, Manor et al., 2016). These intrusions have been classified into two types: Ural-Alaskan-type intrusions (NC-7: Naldrett, 2011), and the newly described orthopyroxene-rich Giant-Mascot-type (Nixon et al., 2015). Both intrusion styles are interpreted to have formed from hydrous, Mg-rich magmas, with the primary difference being that Alaskan-type intrusions lack orthopyroxene, whereas Giant Mascot-type intrusions contain orthopyroxene (Nixon et al., 2015; Manor et al., 2016). This study focusses on the Turnagain Alaskan-type intrusion in north-central British Columbia that is host to significant Ni-Cu-PGE mineralization. 3    Figure 1.1. Nickel grade (wt. %) vs. total ore resource in millions of tonnes (Mt) for convergent margin Ni-Cu-PGE deposits (diamonds) and major Ni-Cu-PGE deposits (red circles) globally as modified from Naldrett (2011). Convergent margin deposits are coded based on the structure of the host mafic-ultramafic rocks (zoned, layered, no internal structure). Diagonal grey lines represent the total Ni-metal resource. Deposit tonnage (Mt) and Ni grade (wt. %, in brackets) are shown for each deposit. The very large, low grade Turnagain Ni-deposit is highlighted in bold. Note that the axes are logarithmic. 4  1.1.2 Alaskan-type intrusions Alaskan-type intrusions, which are also known as Uralian- or Ural-Alaskan-type intrusions, are defined as orthopyroxene-absent ultramafic-mafic cumulates (e.g., dunite, clinopyroxenite, hornblendite, and gabbro) with an abundance of primary hydrous minerals (e.g., amphibole, phlogopite) and spinels, including chromian spinel in olivine-rich rocks and magnetite in clinopyroxene-rich rocks (Irvine, 1974; Taylor, 1967). These cumulates generally form distinct units with sharp contacts and local occurrences of primary igneous layering on centimeter to meter scales (Taylor, 1967). Alaskan-type intrusions may be zoned, with an olivine-rich core that typically passes outwards to more evolved clinopyroxene-, hornblende-, and plagioclase-rich rocks at their periphery (Johan, 2002; Taylor, 1967). These intrusions may exhibit different degrees of zonation, from well-defined concentric zoning (e.g., Tulameen) to crude zoning (e.g., Duke Island) to unzoned variants (e.g., Salt Chuck) (Taylor, 1967; Himmelberg and Loney, 1995; Nixon et al., 1997). Alaskan-type intrusions have also been observed to form composite structures, with multiple intrusive phases (e.g., Turnagain) (Jackson-Brown et al., 2014; Nixon, et al., 2017). The size of these intrusions ranges from small (<4 km2) dykes, plugs, or sills, to large (>50 km2) intrusions or groups of intrusions (Johan, 2002; Taylor, 1967; Nixon et al., 1997). Several major Alaskan-type “belts” have been recognized worldwide (Figure 1.2). These include the Duke-Klukwan Belt along the Alaskan Panhandle (Himmelberg and Loney, 1995), along with a parallel belt running through the Northern Cordillera in central British Columbia (Nixon et al., 1997); the Ural Platinum Belt in the Ural Mountains of Eastern Russia (Garuti et al., 1997); the Kamchatka-Koryak Platinum Belt in Siberia, Far East Russia (Johan, 2002); and the Fifield Platinum belt in New South Wales, Australia (Johan et al., 1989). Alaskan-type intrusions have been identified elsewhere, such as the Archean Quetico intrusions in Ontario, Canada (Pettigrew and Hattori, 2006; MacTavish, 1999); the Goodnews Bay intrusions in southwestern Alaska (Southworth and Foley, 1986); and intrusions in Columbia and Ethiopia (Johan, 2002). These intrusions range in age from Neoarchean 5  (~2.69 Ga, Quetico intrusions; MacTavish, 1999) to Neogene (~20 Ma, Alto Condoto, Columbia; Tistl, 1994), however, the majority of the Alaskan-type intrusions preserved in the geological record formed in the late Paleozoic to Middle Cretaceous (Johan, 2002). Alaskan-type intrusions are typically found in convergent margin settings (Nixon et al., 2015; Johan, 2002; Taylor, 1967; Su et al., 2012). Various hypotheses have been put forth to explain the geochemical and structural characteristics of different styles of supra-subduction zone ultramafic-intrusions, such as arc-related magmatism, post-orogenic decompression melting, and short-lived extensional episodes during compression related to mantle plume activity (see summary in Nixon et al., 2015) The trace element geochemistry from Alaskan-type intrusions generally shows an arc mantle signature (e.g., negative Nb-Ta anomalies in primitive mantle-normalized or MORB-normalized trace element patterns; Li et al., 2012). The mantle wedge in subduction zones undergoes partial melting in response to an influx of volatiles from the subducting slab and the resulting melts are characterized by high volatile contents compared to magmas generated along mid-ocean ridges or from mantle plumes (e.g., Stern, 2002; Batanova et al., 2005; Plank et al., 2013). These hydrous magmas then transit the lithospheric mantle and crust where they are emplaced over a range of pressures resulting in the formation of a series of olivine-rich cumulates followed by hydrous feldspathic or hornblende-rich differentiates (Taylor, 1967). These intrusions may form as a single, commonly zoned, intrusion, or composite intrusions formed via multiple magma injections each with their own unique geochemical signature and mineralization (Himmelberg and Loney, 1995; Nixon et al., 1997; Johan, 2002; Jackson-Brown et al., 2014; Nixon, et al., 2017).  6     Figure 1.2. Locations of known Alaskan-type intrusions with Ni-Cu-PGE mineralization with respect to global orogenic belts (modified from Nixon et al., 2015). Triangles indicate individual intrusions. Ovals represent the location and extent of known Alaskan-type “belts”, each of which contains numerous intrusions. The green-coloured symbols represent intrusions or belts in which base-metal mineralization is dominant, with or without PGE mineralization. The purple-coloured symbols indicate intrusions or belts in which PGE mineralization is dominant, with little to no base metal mineralization. The numbers next to each intrusion or belt are keyed to specific references in Table 1.1. Generalized orogenic belts taken from Guillot et al. (2009), Mercator projection. 7  1.1.2.1 Platinum group element mineralization associated with Alaskan-type intrusions worldwide Alaskan-type intrusions are associated with platinum group element mineralization (Table 1.1, Figure 1.2). The intrusions in the Ural Mountains, the Fifield Complex, the Goodnews Bay area, and Tulameen have all been identified as sources for platinum placer production (Nixon et al., 1990; Garuti et al., 2002; Johan et al., 1989; Southworth and Foley, 1986; Johan, 2002). There are three main categories of PGE mineralization in Alaskan-type intrusions (Johan, 2002): 1) Pt-Fe alloys associated with chromitite layers, schlieren, or pods within olivine-rich rocks (dunite, wehrlite); 2) Pt-Fe alloys as accessory phases within olivine-rich rocks, which may or may not be associated with accessory chromite/spinel; and 3) disseminated PGE sulphides and semi-metal alloys within clinopyroxene-rich rocks, commonly associated with base-metal sulphide mineralization and magnetite. In this study, PGE mineralization in Alaskan-type intrusions is divided into two major types: dunite-associated Pt-Fe alloys and clinopyroxenite-associated PGE, which may be Cu rich (Table 1.2). Platinum-iron (±Cu,Ni) alloys are the most abundant type of platinum group minerals (PGM) in Alaskan-type intrusions, commonly forming as isoferroplatinum (Pt3Fe), tetraferroplatinum (PtFe), tulameenite (Pt2FeCu), and native platinum (Pt) (Johan, 2002). Iridium-, osmium-, and ruthenium-rich minerals (e.g., native iridium, laurite, RuS2; erlichmanite, OsS2) are also found in association with Pt-Fe alloys (Johan, 2002; Garuti et al., 2002). Sulphide-associated PGM are uncommon in Alaskan-type intrusions, however, some examples have been found in intrusions that are host to abundant base-metal sulphide mineralization (Loney and Himmelberg, 1992; Johan et al., 1989; Pettigrew et al., 2000; MacTavish, 1999; Jackson-Brown et al., 2014). This style of PGM is characterized by platinum group element sulphides, arsenides, antimonides, tellurides, and bismuthinides, with or without Pt-Fe alloys. Common sulphide-associated PGM include cooperite (PtS), sperrylite (PtAs2), geversite (PtSb2), hollingworthite (RhAsS), michenerite (PdBiTe), froodite (PdBi2), kotulskite (PdTe), and elrichmanite (OsO2) (Johan et al., 1989; Nazimova et al., 2011). 8  Sulphide-associated PGM in clinopyroxenites have been interpreted to either represent the final stages of magmatism (Johan et al., 1989) or to have formed owing to later hydrothermal alteration (Garuti et al., 2002). 1.1.2.2 Ni-Cu mineralization in Alaskan-type intrusions Base-metal sulphide mineralization is relatively rare in Alaskan-type intrusions, however, the discovery of significant sulphide mineralization in these intrusions has led to increased interest as potential hosts for magmatic Ni-Cu(-Co) deposits. Several intrusions in Alaska (Duke Island, Salt Chuck) and British Columbia (Turnagain) are host to potentially economic quantities of sulphide mineralization (Figure 1.3) (Ripley et al., 2005; Nixon, 1998). Sulphides are also present as accessory phases in some intrusions in the Fifield district and Urals (Johan et al., 1989; Garuti et al., 2002). Base-metal sulphide mineralization in Alaskan-type intrusions consists predominantly of pyrrhotite, chalcopyrite, and minor pentlandite with accessory pyrite (FeS2), cubanite (CuFe2S3), bornite (Cu5FeS4), digenite (Cu9S5), chalcocite (Cu2S), covellite (CuS), cobaltite (CoAsS), cobaltian pentlandite ((Co, Ni, Fe)9S8), sphalerite (ZnS), and galena (PbS) (Jackson-Brown et al., 2014; Johan et al., 1989; Thakurta, 2008; Watkinson and Melling, 1992). Net-textured to semi-massive and massive sulphide are found in wehrlites and olivine clinopyroxenites (Thakurta et al., 2014; Nixon, 1998) with disseminated sulphides elsewhere in intrusions that contain Ni-Cu-PGE mineralization Sulphur isotope studies of sulphides from Alaskan-type intrusions reveal the presence of a significant crustal sulphur component, indicating that external sulphur is important for sulphide saturation to occur in Alaskan-type magmas (Ripley et al., 2005; Ripley and Li, 2013). Sulphide mineralization at the Salt Chuck and Owendale deposits indicate that metals can be concentrated by post-magmatic hydrothermal events (Johan et al., 1989; Watkinson and Melling, 1992). .   Table 1.1. Summary of key characteristics of Alaskan-type ultramafic intrusions and associated Ni-Cu-PGE mineralizationNo.* Deposit/Prospect Geotectonic Setting Intrusion Age              Surface Dimensions Internal Structure Intrusion LithologiesNi    (wt. %)Cu         (wt. %) Max. PGE Major PGMHost Rocks for PGE MineralizationBritish Columbia1 Turnagain (Horsetrail/            DJ/DB zone)Northern Cordillera/ Yukon-Tanana terraneEarly Jurassic       (ca. >188-185 Ma)8.5 x 3 km composite dunite/wehrlite/Ol clinopyroxenite/Mag clinopyroxenite/Hbl clinopyroxenite(±Mag)/hornblendite/Hbl diorite0.21 629 ppb Pt, 699 ppb Pdsperrylite (PtAs2), sudburyite (PdSb)clinopyroxenite2 Polaris Northern Cordillera/ Quesnellia/Harper Ranch subterraneEarly Jurassic       (ca. 186 Ma)45 km2 crudely zoned dunite/wehrlite/Ol clinopyroxenite/clinopyroxenite/Hbl clinopyroxenite(±Mag)/hornblendite/gabbro-diorite(±Mag)0.25 1.2 1.3 g/t Pt,      1.8 g/t Pdchromitite/ clinopyroxenite3 Tulameen Southern Cordillera/ Nicola GroupLate Triassic 17 x 6.5 km zoned dunite/Ol clinopyroxenite(±Mag)/Hbl clinopyroxenite(±Mag)/syenogabbro/syenodiorite9297 ppb Pt, 75 ppb Pd,   247 ppb IrPt-Fe alloys,              Pt antimonides,             Rh-Ir sulpharsenideschromititeCanadaQuetico Intrusions4 Samuels Lake Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)500 x 300 m crudely zoned wehrlite(±Hbl,Mag)/Mag-Hbl clinopyroxenite(±Ol)/ hornblendite/Hbl gabbro/monzodiorite-diorite>0.68 <2.6 <5 g/t Pd+Pt sperrylite,        froodite (PdBi2), hollingworthite ((Rh,Pt,Pd)AsS)sulphide in wehrlite (Ni-Cu), clinopyroxenite (PGE)5 Plateau Lake Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)650 x 100 m crudely zoned Hbl clinopyroxenite/hornblendite <0.73 <4.4 1028 ppb Pt, 686 ppb PdHbl clinopyroxenite6 Kawene Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)500 x 70-130 m crudely zoned Hbl wehrlite/Hbl clinopyroxenite(±Ol)/Cpx hornblendite(±Bi)/hornblendite(±Cpx)/Hbl gabbro<0.47 <1.3 3942 ppb Pt, 1754 ppb Pdhollingworthite, froodite, michenerite (PdBiTe)sulphide in wehrlite7 Abiwin Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)200 x 40 m NIS hornblendite(±Pl)/Hbl gabbro <0.24 <2.0 720 ppb Pt, 650 ppb Pd8 Mudd Lake Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)800 x 10-100 m NIS Cpx hornblendite/hornblendite(±Pl)/Hbl gabbro/diorite <0.07 <5.1 3430 ppb Pt, 525 ppb Pd9 Chief Peter Lake Superior/Quetico subprovinceNeoarchean          (ca. 2.69 Ga)760 x 460 m zoned Hbl wehrlite/hornblendite(±Pl) <0.24 <0.81 1500 ppb Pt, 1050 ppb Pdsulphide in wehrliteUSA (Alaska)Duke-Klukwan Belt10 Duke Island (Marquis/Potato Patch/Raven)Northern Cordillera/ Alexander terraneEarly Cretaceous                  (ca. 108-111 Ma)23 km2 crudely zoned dunite/wehrlite/Ol clinopyroxenite(±Hbl)/Hbl-Mt clinopyroxenite/Hbl-Pl pegmatite<0.82 <2.8 411 ppb Pt, 701 ppb PdOl clinopyroxenite11 Salt Chuck Northern Cordillera/ Alexander terraneSilurian                 (ca. 429 Ma)7.3 x 1.6 km NIS clinopyroxenite(±Mag)/gabbro(±Hbl,Mag)/diorite - 0.95 26.1 g/t Pd kotulskite (PdTe), sperrylite, PdSb mineralsMag clinopyroxenite12 Union Bay Northern Cordillera/ Alexander terraneCretaceous           (ca. 102 Ma)11.5  x 8 km zoned dunite/wehrlite/Ol clinopyroxenite/clinopyroxenite(±Mag)/ Hbl clinopyroxenite/hornblendite/gabbro1600 ppb Pt, 200 ppb PdPt-Fe alloys, hollingworthiteclinopyroxenite13 Blashke Islands Northern Cordillera/ Alexander terraneCretaceous 3.5 x 3.5 km zoned dunite/wehrlite/Ol clinopyroxenite/gabbro(±Hbl,Ol) 180 ppb Pt, 542 ppb Pdmertieite (Pd8(Sb,As)3), cooperite (PtS)gabbrosSouthwest Alaska14 Goodnews Bay   (Red Mountain/ Susie Mountain)Gemuk Group Middle Jurassic 10 x 3 km/      4.7 x 1.5 kmzoned dunite/wehrlite/clinopyroxenite(±Ol,Mag)/hbl clinopyroxenite/hornblendite(±Pl)160 ppb Pt,     40 ppm PdPt-Fe alloy, Ir-Os alloychromitite* Location shown in Figure 1.2Mineral Abbreviations: Bi = biotite, Cpx = clinopyroxenite, Hbl = hornblendite, Mag = magnetite, Ol = olivine, Pl = plagioclaseReferences: 1) Clark (1975), Nixon et al. (2017), Scheel (2007), this study; 2) Hancock (1990), Nixon, et al. (1997); 3) Hancock (1990), Findlay (1969), Johan (2002), Nixon et al. (1990); 4) Pettigrew and Hattori (2006), Pettigrew et al. (2000); 5-9) MacTavish (1999); 10) Himmelberg and Loney (1995), Irvine (1974), Li et al. (2013), Thakurta et al. (2014); 11) Himmelberg and Loney (1995), Loney and Himmelberg (1992), Watkinson and Melling (1992); 12) Clark and Greenwood (1972),  Himmelberg and Loney (1995), Johan (2002); 13) Himmelberg and Loney (1995), Himmelberg et al (1986), Johan (2002); 14) Johan (2002), Southworth and Foley (1986)9      Table 1.1.(continued) Summary of key characteristics of Alaskan-type ultramafic intrusions and associated Ni-Cu-PGE mineralizationNo.* Deposit/Prospect Geotectonic setting Intrusion age              Surface dimension Internal Structure Intrusion lithologiesNi    (wt. %)Cu         (wt. %) Max. PGE Major PGMHost Rocks for PGE MineralizationRussiaUrals Platinum Belt15 Nizhni Tagil ComplexSoloviev Mountain/ Tagil-Magnetogorsk synclineDevonian 10 x 4.5 km zoned dunite/wehrlite/clinopyroxenite(±Mag)/hornblendite/gabbro 3.9 g/t Pt,        0.5 g/t PdPt-Fe alloys, Ir alloyschromitite16 Kachkanar (Svetli Bor/Veresovy Bor) and GusevogorskSoloviev Mountain/ Tagil-Magnetogorsk synclineOrdovician-Silurian             (ca. 432-475 Ma)6.7 x 2.5 km/    8 x 1.3 kmzoned dunite/wehrlite/Mag clinopyroxenite/Hbl clinopyroxenite/ hornblendite/gabbro7902 ppb Pt, 157 ppb PdPt-Fe alloys chromitite, clinopyroxenite17 Uktus Soloviev Mountain/ Tagil-Magnetogorsk synclineEarly Cambrian 50 km2 crudely zoned dunite/wehrlite/Ol clinopyroxenite(±Mag,Hbl)/ gabbro(±Ol,Hbl)163 ppb Pt,       48 ppb Pdlaurite (RuS2), Pt-Fe alloys, Ir-PGM, irarsite ((Ir,Ru,Rh,Pt)AsS)chromitite18 Kytlym Soloviev Mountain/ Tagil-Magnetogorsk synclineCarboniferous      (ca. 337 Ma)725 km2 NIS dunite/clinopyroxenite/Ol-Cpx gabbro 23 g/t PGE Pt-Fe alloys chromititeEastern Siberia19 Kondyor Eastern Aldan Shield/ Ayan-Maya regionTriassic 6 x 6 km zoned dunite/clinopyroxenite(±Ol,Mag,Pl)/gabbro 417 ppb Pt,      12 ppb PdPt-Fe alloys chromitite20 Chad Eastern Aldan Shield Early Cretaceous 4 x 4 km zoned dunite/wehrlite/clinopyroxenite(±Ol,Mag)/gabbro(±Ol)/diorite 24 ppb Pt chromititeFar East21 Feklistov Island Shantar Archipelago Cretaceous           (ca. 115-135 Ma)12 km2 zoned dunite/wehrlite/clinopyroxenite(±Hbl)/hornblendite/gabbro/ diorite/monzodiorite140 ppb Pt Pt-Fe alloys wehrlite22 Galmoenan Kamchatka-Koryak Platinum Belt/ Olutorsky zoneLate Cretaceous 14 x 3 km zoned dunite/wehrlite/clinopyroxenite(±Mag)/gabbro 0.12 g/t PGE Pt-Fe alloys chromititeAustraliaFifield Platinum Field23 Owendale (Kelvin Grove)Lachlan Orogen/ Parkes Terrace/ Girilambone GroupDevonian              (ca. 360-415 Ma)6.5 x 6.5 km crudely zoned peridotite/Ol clinopyroxenite/Hbl-Mag clinopyroxenite/ hornblendite/gabbro/norite/monzodiorite13200 ppb Pt, 930 ppb Pd, 500 ppb Rhcooperite, erlichmanite (OsO2), Pt-Fe alloysclinopyroxenite, chromititeColombia24 Alto Condoto Columbian Cordillera Neogene               (ca. 20 Ma)8 x 5 km zoned dunite/wehrlite/Ol clinopyroxenite/Hbl-Mag clinopyroxenite/gabbro-diorite150 ppb Pt, 100 ppb PdPt-Fe alloys dunite (Pt), Hbl clinopyroxenite (Pd)Ethiopia25 Yubdo Arabian-Nubian Shield36 km2 zoned dunite/peridotite/Hbl clinopyroxenite 1.8 g/t Pt Pt-Fe alloys chromitite* Location shown in Figure 1.2Mineral Abbreviations: Cpx = clinopyroxenite, Hbl = hornblendite, Mag = magnetite, Ol = olivine, Pl = plagioclaseReferences: 15-16) Augé et al. (2005), Garuti et al. (1997), Johan (2002); 17) Garuti et al. (1997), Garuti et al. (2003); 18) Garuti et al. (2002), Guillou-Frottier et al. (2014), Zaccarini et al. (2011); 19-21) Johan (2002); 22) Johan (2002), Nazimova et al. (2011); 23) Johan (2002), Johan et al. (1989), Shi (1995); 24) Johan (2002), Tistl (1994); 25) Belete et al. (2002), Jackson (2006), Johan (2002)10 11     Table 1.2. Platinum group element (PGE) mineralization in Alaskan-type intrusions*Dunite-associated Clinopyroxenite-associatedMajor PGM mineralogy isoferroplatinum (Pt3Fe) kotulskite (PdTe)tetraferroplatinum (PtFe) merenskyite (PdTe2)ferronickelplatinum (Pt2NiFe) sperrylite (PtAs2)tulameenite (Pt2FeCu) cooprite (PtS)cuprorhodsite (CuRh2S4) erlichmanite (OsS2)bowieite (Rh2S3) Pt-Fe alloyshollingworthite (RhAsS) – irarsite (IrAsS) solid solution seriesother Pd- and Pt-arsenides, antimonides, tellurides, and bismuthidesDominant PGE Platinum Platinum and PalladiumRock type(s) Dunite, chromitite (Magnetite) clinopyroxeniteBase metal sulphide mineralizationabsent to low low to abundantSuphur content low moderate to highInferred temperature high lowExamples Tulameen (British Columbia, Canada) Turnagain (British Columbia, Canada)1Goodnews Bay (Alaska, USA) Salt Chuck (Alaska, USA)Nizhni Tagil (Ural Mountains, Russia) Owendale (New South Wales, Australia)Yubdo (Ethiopia)*information from Johan (2002), except where indicated: 1Jackson-Brown et al (2014)12    Figure 1.3. Simplified tectonic map of the Canadian Cordillera with locations of major convergent margin mafic-ultramafic intrusions shown, including the Turnagain intrusion (map modified from Colpron and Nelson, 2011). Alaskan-type intrusions are shown in red, the Giant Mascot ultramafic suite is shown in blue; intrusions without mineralization are shown as circles, whereas intrusions with mineralization (Ni-Cu and/or PGE) are shown as stars. 13  1.2 Overview of the Turnagain intrusion The Turnagain intrusion is a 25 km2 Alaskan-type ultramafic-mafic intrusion in north-central British Columbia, located 70 km east of Dease Lake. Clark (1975, 1978, 1980) recognized the presence of olivine-clinopyroxene-hornblende cumulates in the Turnagain intrusion with no orthopyroxene, a defining characteristic of Alaskan-type intrusions (e.g., Irvine, 1974; Nixon et al., 1997). The intrusion occurs within a tectonic sliver of the metasedimentary-metavolcanic Yukon-Tanana accreted terrane, northeast of the Kutcho Fault (Figures 1.3, 1.4). The northern and eastern margins of the intrusion are in fault contact with pyritic and graphitic phyllite and slate. The southern and western margins are intrusive contacts with hornfelsed metasedimentary and metavolcanic rocks that have been observed both in outcrop, at an inlier in the northwestern extremity of the intrusion, and in drillcore (Clark, 1975; Scheel, 2007). The Turnagain intrusion has been separated into four distinct phases based on intrusive contacts observed on surface and in drillcore and U-Pb geochronology (Clark, 1975; Scheel, 2007; Jackson-Brown et al., 2014; Nixon, Scheel, Friedman, Wall, Gabites, Jackson-Brown, et al., 2017) (Figure 1.4). The earliest intrusion (Phase 1: >188 Ma) comprises steeply dipping, layered wehrlite and clinopyroxenite that are cut by dunite (Clark, 1975; Nixon, 1998; Scheel, 2007). A large dunite core forms the majority of the intrusion (Phase 2: >188 Ma) and includes wehrlite and clinopyroxenite to the west and south, which are host to the Ni-Co-rich sulphides of the Horsetrail zone (Figures 1.4, 1.5) (Clark, 1980; Scheel et al., 2005). Melanocratic to leucocratic diorites (Phase 3: 188 Ma) occupy the centre of the intrusion (Clark, 1980; Scheel et al., 2005; Nixon, Scheel, Friedman, Wall, Gabites, Jackson-Brown, et al., 2017). Hornblendites and clinopyroxenites in the western portion of the intrusion (Phase 4: 186-185 Ma) are host to Cu-PGE mineralization of the DJ/DB zone (Figures 1.4, 1.5) (Scheel et al., 2005; Jackson-Brown et al., 2014; Nixon, Scheel, Friedman, Wall, Gabites, Jackson-Brown, et al., 2017). Clinopyroxenite is locally observed to contain fragments of dunite near the eastern margin of the DJ/DB zone (Figure 1.6) (Jackson-Brown et al., 2014). 14  The Turnagain intrusion contains disseminated sulphide throughout most rock units, with significant sulphide concentrations (2% to greater than 20%; Scheel, 2007) in the Horsetrail zone found within dunite and wehrlite (Phase 2). Sulphide textures range from disseminated to blebby with minor net-textured and semi-massive sulphide. Sulphide is also present in moderate concentrations in the southeastern arm of the Turnagain intrusion, however, this area is currently unconstrained in terms of economic potential. The major sulphide minerals in the dunite and wehrlite are pyrrhotite (~90% of  sulphide), with minor pentlandite, and trace chalcopyrite (Scheel, 2007). Clinopyroxene- and hornblende-rich rock types in the area have low concentrations of sulphide (<5%) that consists of variable proportions of pyrrhotite, pyrite, chalcopyrite, pentlandite, and a variety of other trace sulphides (Scheel, 2007; Kucha, 2013) The host rocks of the DJ/DB zone (Phase 4) consists of olivine clinopyroxenite, magnetite clinopyroxenite, hornblende clinopyroxenite, clinopyroxene hornblendite, and hornblendite with minor wehrlite (Jackson-Brown et al., 2014). The major rock types are crosscut by late dioritic dykes and by thin (>10 cm-wide) pegmatitic hornblende-calcite-biotite veins. Disseminated sulphides (>5%) occur throughout the zone; occurrences of net-textured to semi-massive sulphide are more restricted (Jackson-Brown et al., 2014).     Figure 1.4. Simplified geological map of the Turnagain Alaskan-type intrusion and host rocks (modified from Nixon et al., 2012). The red outline showing the area that was studied by Clark (1975) and the black outline shows the areas that were investigated by Scheel (2007). Map coordinates are in NAD83 UTM Zone 9. 15 16   Figure 1.5. Satellite image showing the local topography, forest cover, and rivers in the area of the Turnagain Alaskan-type intrusion. The extent of the intrusion is outlined in black; major areas with mineralization are identified and outlined in white. Image is from Google Earth (downloaded on June 5, 2015). NAD83 UTM Zone 9. Figure 1.6. Photographs of the general Turnagain area. A) Aerial photograph looking to the north showing the DJ/DB zone in the foreground (forested) and the Highland zone (mountain) in the background. B) Aerial photograph of the Discovery outcrop along the bank of the Turnagain River, view is to the northwest. C) Aerial photograph of the Turnagain camp and airstrip (courtesy of Hard Creek Nickel Corporation) D) Photograph of the Turnagain camp (courtesy of Hard Creek Nickel Corporation). 17  1.2.1 Previous work on the Turnagain intrusion Sulphide mineralization in the Turnagain area was discovered in 1956 along the banks of the Turnagain River in the location now known as the Discovery zone (Figure 1.6, Table 1.3). The presence of sulphide mineralization led Falconbridge Nickel Mines Ltd. to explore the Turnagain intrusion for economic nickel sulphide potential. Between 1966 and 1973, Falconbridge drilled major sulphide showings and conducted preliminary airborne magnetic surveys across the area (Riles et al., 2011). In 1975, Thomas Clark from Queen’s University completed a PhD study (Clark, 1975) detailing the petrography of the Turnagain intrusion, and subsequently published studies on oxide mineral compositions (Clark, 1978) and the petrology of the Turnagain intrusion (Clark, 1980). Increased interest in the PGE potential of ultramafic intrusions in British Columbia in the 1980s spurred governmental mapping and geochemical surveys of the Turnagain and other intrusions (Nixon et al., 1989; 1990; 1997). In 1996, the Turnagain intrusion was acquired by Bren-Mar Resources Ltd. (later Canadian Metals Exploration Ltd. [2002-2004] and then Hard Creek Nickel Corporation [2004-present]). Owing to the relative lack of surface exposure in the area (~30% exposure), Hard Creek Nickel Corporation (HCN) conducted geochemical soil surveys to constrain the previously identified nickel targets in the Horsetrail zone and explore for new mineralization. In 2004, a 1.5 km x 2 km area of Cu-PGE enrichment was discovered in the area known as the DJ/DB zone (Figure 1.7). Airborne and ground geophysical surveys were conducted in 2005 to define the extent of the intrusion. Extensive drilling of the Horsetrail zone, the Cliff zone, and exploratory drilling of the DJ/DB zone and other portions of the intrusion was completed between 2002 and 2008 (Riles et al., 2011). During this time, a M.Sc. thesis (Scheel, 2007), and several related publications (Scheel et al., 2005; 2009), were completed. This work included extensive mapping of the intrusion, determination of the age and S-Pb-Nd isotopic composition of minerals and rocks from the intrusion, as well as spinel compositions. Since 2008, minor soil sampling and additional airborne geophysics has been acquired to further delineate the extents of Cu-PGE mineralization in the DJ/DB zone.  18   Table 1.3. Exploration history of the Turnagain intrusionYear Activity Company1956 Mineralization discovered along Turnagain River 1966 Turnagain property aquired by Falconbridge Nickel Mines Ltd.Falconbridge Nickel Mines Ltd.1966-1973 Geophysical and geochemical surveys, exploratory drilling, geological mapping1975 Thomas Clark Ph.D. thesis completed: geological mapping of the Turnagain intrusion1980's Platinum group element exploration (mapping, sampling)Various unnamed companies, British Columbia Geological Survey1996 Property aquired by Bren-Mar Resources Ltd. Bren-Mar Resources Ltd. (BMR)1996-1998 Further exploration and preliminary metallurgical testing2002 BMR changes name to Canadian Metals Exploration Ltd. and resumes exploration activitiesCanadian Metals Exploration Ltd. (CME)2002 Aquired 34 additional claims adjacent to Turnagain property2003-2005 Additional claims staked, enlarging property from 3700 ha to 27500 ha2004 CME changes name to Hard Creek Nickel Corp. Hard Creek Nickel Corp. (HCN)2004 Geochemical soil surveys conducted to determine presence of Cu and PGE mineralization2004-2008 Resource delineation and exploration drilling (48,607 m in 188 drill holes), extensive field mapping, geophysical surveys conducted2007 Erik Scheel M.Sc. thesis completed: mapping, geochemistry, and geochronology of the Turnagain intrusion, focused on the Horsetrail zone2009-2011 Additional geochemical and geophysical surveys, minor delineation drilling and metallurgical tests19    Figure 1.7. Copper (top) and combined Pt+Pd (bottom) concentrations from a soil geochemical survey completed in 2008 across the Turnagain Alaskan-type intrusion. Major mineralization zones are labelled. Note the presence of high concentrations of both Cu and Pt+Pd above the DJ and DB zones. Figures courtesy of Hard Creek Nickel Corporation. 20  To date, 79,351 m of drill core has been recovered from 320 holes (Riles et al., 2011). The current Ni-Co resource at the Horsetrail zone is 1842 Mt at 0.21 wt. % Ni and 0.013 wt. % Co (measured and indicated; http://www.hardcreek.com/s/Turnagain.asp, March 25, 2017) and is located in the southern portion of the intrusion. This study utilizes surface and drill core samples from the DJ/DB zone obtained by Dr. Graham Nixon during the summer of 2011 as well as samples collected by the author during July 2013. During the 2013 field season, the author also collected structural data on magmatic features in unoriented drill core from the DJ/DB zone to establish the presence of magmatic layering within rock units in the area. The current map of the Turnagain intrusion is based on the mapping of Clark (1975), Scheel (2007), and Nixon et al. (2012). 1.3 Overview of thesis This study has three principal objectives: 1) To determine the host rock and ore mineralogy within the Cu-PGE-rich DJ/DB zone of the Turnagain intrusion; 2) To define the geochemical and isotopic characteristics of the DJ/DB zone and related mineralization; and 3) To establish a mineralogical and geochemical signature that can be used as a vectoring tool to explore for Cu-PGE rich zones in this and other ultramafic intrusions in modern and ancient subduction zones. This thesis is divided into three sections: an introductory chapter (Chapter 1) providing introductory statements and outlining the objectives of this study; a chapter describing the results of the study written in the style of a manuscript to be submitted to an international geoscience journal specializing in mineral deposit studies (Chapter 2); and a conclusion chapter where key vectors for 21  effective mineral exploration of convergent margin Cu-PGE mineralization are outlined as well as avenues for future work (Chapter 3). Chapter 2, the main research chapter, contains detailed petrological descriptions of the predominant rock types in the DJ/DB zone and the sulphide, arsenide, and PGM mineralization present therein. Whole rock major element oxide, trace element, chalcophile element, and PGE geochemistry of the hornblendites and clinopyroxenites are presented, along with S-isotope analyses of sulphides, to characterize the rock types in the DJ/DB zone and to compare them to similar rock types elsewhere in the Turnagain intrusion. In-situ chalcophile and trace element concentrations of major sulphide minerals (pyrrhotite, chalcopyrite, pyrite, pentlandite) from laser ablation ICP-MS are also presented to evaluate the distribution of PGE amongst base metal sulphides and platinum group minerals. The paragenesis of the DJ/DB zone mineralization is presented and discussed. Rock type and mineralization characteristics from the DJ/DB zone are then compared to the rest of the Turnagain intrusion and other convergent margin ultramafic intrusions in the Canadian Cordillera. Chapter 3 summarizes the major conclusions of the thesis and identifies areas for future study. The appendices contain supplementary data and figures relevant to the research presented in this thesis. These include: 1) visual logs of all of the drill holes sampled for this study; 2) photographs of surface samples and drill core samples; 3) scans of petrographic thin sections; 4) thin section descriptions of samples selected for EMPA analyses; 5) electron microprobe mineral chemistry; 6) laser ablation ICP-MS analyses of selected sulphides; 7) procedure and results for recalculation of whole rock geochemical data to 100% sulphide; 8) mass balance calculations for determination of PGE content for sulphide minerals.   22  1.4 Contributions from the thesis research Early results from this project have been reported in several posters, presentations, and publications. Preliminary host rock, sulphide, and PGM mineralogy were presented at AME BC Mineral Exploration Roundup 2013 (poster: Jackson-Brown et al., 2013a), GAC-MAC Winnipeg 2013 (presentation: Jackson-Brown et al., 2013b), and Whistler 2013: Geoscience for Discovery (poster: Jackson-Brown et al, 2013c). These results are detailed in British Columbia Geological Survey Paper 2014-1: Geological Fieldwork 2013 (Jackson-Brown et al., 2014a). Initial geochemical results, including base- and precious-metal content and sulphur isotope analyses along with intrusion, sulphide, and PGM mineralogy were presented at AME BC Mineral Exploration Roundup 2014 (poster: Jackson-Brown et al., 2014b). Other researchers have summarized portions of the results from this project in various abstracts, including Geological Survey of Canada Open File 7856 (Ames and Houlé, 2015, poster: Nixon et al., 2015), AGU 2015 Annual Meeting (presentation: Scoates et al., 2015), and AME BC Mineral Exploration Roundup 2016 (presentation: Peter et al., 2016). All of the mineralogical, geochemical and isotopic data obtained during this thesis has been compiled into Geological Survey of Canada Open File 7871 (Jackson-Brown et al., 2015) and is available as a free download through GEOSCAN (http://geoscan.nrcan.gc.ca/).   23  Chapter 2: Geology and Cu-PGE mineralization in the DJ/DB zone of the Turnagain Alaskan-type intrusion 2.1 Introduction Worldwide, ultramafic-mafic intrusions are host to the majority of known nickel deposits (Naldrett, 2011). These deposits are also host to significant resources of other base and precious metals such as copper and platinum group elements (PGE) (Barnes and Lightfoot, 2005; Naldrett, 2011). The style and composition of mineralization can vary significantly depending on the tectonic setting, composition, and emplacement history of the host intrusions (Arndt et al., 2005; Naldrett, 2011). Understanding the geochemical and mineralogical properties of ultramafic-mafic intrusions with Ni-Cu-PGE mineralization and how they differ between different geological settings can provide insight into the formation of economically significant deposits. Ultramafic-mafic-hosted Ni-Cu-PGE deposits exhibit a wide range of metal enrichments, from Ni-rich (e.g., Abitibi greenstone belt intrusions, Canada avg. Ni/Cu = 32.3; Manitoba Nickel Belt, Canada, avg. Ni/Cu = 16.8; Kambalda, Australia, avg. Ni/Cu = 13.8; Sudbury, Canada, avg. Ni/Cu = 3.4; Jinchuan, China, avg. Ni/Cu = 1.5; Naldrett, 2011) to Cu-PGE-rich (Noril’sk, Russia, Ni/Cu = 0.9; Lac des Iles, Canada, Ni/Cu = 0.9; Duluth Complex, USA, Ni/Cu = 0.7; Sudbury Cu-rich footwall deposits, Canada, Ni/Cu = 0.13; Naldrett, 2011). Intrusions that host Cu-PGE-rich mineralization consist of a range of mafic-ultramafic rock types and exhibit a wide variety of mineralization styles (Table 2.1). In general, these deposits display small areal footprints (<25 km2) with at least partial internal zoning or layering. Host rock compositions range from ultramafic to mafic, however, gabbro and diorite are the predominant hosts to Cu-PGE mineralization. Mineralization is typically disseminated to massive chalcopyrite and Ni-poor pyrrhotite, and can also occur as small- to large-scale veins that intrude into country rock (e.g., Sudbury footwall veins).     Table 2.1. Characteristics of the Turnagain intrusion vs. other Cu-PGE-rich depositsNo. Deposit Location Size Type Age Resource Cu (wt. %) PGE AuRock types hosting Cu-PGE mineralizationMineralization style PGM MineralogyOrigin of mineralizationCanadaBritish Columbia1 Turnagain Northern Cordillera/ Yukon-Tanana terrane8.5 x 3 km composite >188-185 Ma 865 Mt Ni-Coclinopyroxenite, hornblenditedisseminated sperrylite (PtAs2), sudburyite (PdSb)magmatic, late hydrothermalOntario2 McCreedy East Footwall veins, SudburySudbury Igneous Complex, Superior Province1 km thick veins 1.85 Ga 3.1 Mt 10 9 ppm total precious metalsgranite breccia veins michenerite ((Pd,Pt)BiTe), froodite (PdBi2), sperrylite, niggliite (PtSn), paolovite (Pd2Sn)late magmatic3 Creighton, Sudbury Sudbury Igneous Complex, Superior Province3 km unzoned 2.2 Ga 280 Mt 7.1 2.2 g/t Pd,    2.0 g/t Ptnorite, diorite disseminated, massiveirarsite ((Ir,Ru,Rh,Pt)AsS), hollingworthite ((Rh,Pt,Pd)AsS), sperrylite, michenerite, electrum (AuAg)late magmatic4 Lac Des Iles southern Wabigoon Subprovince, western Superior Province2 x 3.5 km zoned 2.7 Ga 36 Mt 3465 ppm 3.18 ppm Pd, 0.26 ppm Pt0.22 ppm olivine gabbronorite, gabbronoritedisseminated kotulskite (Pd(Te,Bi)), Pd bismuth tellurides, Pd arsenides, Pt arsenides, Pt tellurideslate magmatic/ hydrothermal5 Marathon Two Duck Lake intrusion, Coldwell Complex, Midcontinent Rift1500 x 130 m composite 1.1 Ga 21.3 Mt 0.4 1.32 g/t Pd, 0.34 g/t Pt0.12 g/t Ol gabbro, diorite associated with Cu-sulfides, alteration mineralssperrylite, Bi-kotulskite, michenerite, hollingworthitelate magmatic/ hydrothermal6 Rathburn Lake Wanapitei intrusion, Grenville Province6 x 2.3 km unzoned 1747 Ma prospect 9 21 ppm Pd, 1 ppm Pt3053 ppb altered gabbronorite massive, disseminatedbismuthian merenskyite ((Pd,Pt)(Te,Bi)2), kotulskite, michenerite, temagamite (Pd3HgTe3), sperrylitehydrothermalManitoba7 McBratney Bear Lake block, Flin Flon greenstone belt, Trans-Hudson orogen5 km thick layered/vein 1847 Ma prospect 1.1 207 g/t Pd,    34 g/t Pt,      2.6 g/t Rh75 g/t metamorphosed basaltic andesiteveins, disseminatedTe-rich sudburyite, borovskite (Pd3SbTe4), sperrylite, temagamite, merenskyitehydrothermalUSA8 Sonju Lake Intrusion, MinnesotaBeaver Bay Complex, North Shore Volcanic Group, Midcontinent Rift1.2 km x 20 km layered 1096 Ma prospect 630 ppm 100 ppb Pd,    5 ppb Ptgabbro, diorite reef magmatic9 New Rambler, Wyoming Mullen Creek Mafic Complex, Cheyenne Belt, Medicine Bow Mountains<1 km2 podiform, fault-relatedPrecambrian 7000 t 5 75 ppm Pd,     4 ppm Ptamphibolitized metagabbromassive, Cu-sulfidesperrylite, merenskyite, kotulskite, michenerite, Pd bismuthotellurides, moncheite ((Pt,Pd)(Te,Bi)2)hydrothermalReferences: 1) Clark (1975), Scheel (2007), this study; 2) Dare et al. (2011), Dare et al. (2014); 3) Dare et al. (2010); 4) Barnes and Gomwe (2011), Djon and Barnes (2012); 5) Watkinson and Ohnenstetter (1992), Dahl et al. (2001); 6) Rowell and Edgar (1986), Napoli (2003); 7) Olivo et al. (2002), Bursztyn and Olivo (2010); 8) Park et al. (2004); 9) Theobald and Thompson (1968), McCallum et al. (1976), Nyman et al. (1990)24  23  23  23     Table 2.1.(continued) Characteristics of the Turnagain intrusion vs. other Cu-PGE-rich depositsNo. Deposit Location Size Type Age Resource Cu (wt. %) PGE AuRock types hosting Cu-PGE mineralizationMineralization style PGM MineralogyOrigin of mineralizationRussia10 Noril'sk I, Noril'sk-Talnakh regionNadezhdinsky Formation, Siberian Platform2.5 x 15 km zoned 251 Ma 462.7 Mt 1.85 4200 ppb Pt,       10000 ppb Pdolivine gabbronorite disseminated isoferroplatinum ((Pt,Pd)3(Fe,Cu)), cooperite ((Pt,Pd,Ni)S), sperrylitemagmatic11 Talnakh-Kharaelakh, Noril'sk-Talnakh regionNadezhdinsky Formation, Siberian Platform3 x 20 km zoned 251 Ma 462.7 Mt 1.85 790 ppb Pt,       2200 ppb Pdpicritic gabbro massive isoferroplatinum, cooperite, sperrylite, polarite (Pd(Bi,Pb)), plumbopalladinite (Pd3Pb2), majakite (PdNiAs), cabriite (Pd2SnCu), Pd-alloys, Pt- and Pd- sulfides, tellurides, and bismuthotelluridesmagmaticGreenland12 Platinova Reef Skaergaard intrusion, Kangerlussuaq region, North Atlantic Tertiary igneous province6 x 11 km layered 56 Ma 23 Mt 1969 ppm 0.7 g/t Pd, 0.1 g/t Pt2.3 g/t Au leucocratic gabbro disseminated/reef skaergaardite (PdCu), nielsenite (Pd3Cu), Au-Cu alloysmagmaticChina13 Kalatongke Eastern Junggar terrane, Northern Xinjiang, Central Asian Orogenic Belt0.9 km2 zoned 287 Ma 33 Mt 1.3 505 ppb Pt, 827 ppb Pdnorite, gabbro, hbl pyroxenitedisseminated, massivemichenerite, merenskyite, sperrylite, maslovite (Pt(Bi, Te))magmaticEgypt14 Gabbro Akarem Pan-African/Nubian shield 15.5 km2 zoned Late Precambrian0.7 Mt 0.95 (Cu+Ni)230 ppb Pd, 100 ppb Pt790 ppb peridotite, Ol-Pl hornblendite, dunitecontacts, fracturesmerenskyite, michenerite, palladian bismuthian melonite ((Ni,Pd)(Te,Bi)2)magmatic/ hydrothermalReferences: 10-11) Arndt (2011), Arndt et al. (2003), Burgess and Bowring (2015), Duran et al. (2017). Mudd and Jowitt (2014); 12) Holwell and Keays (2014), Keays and Tegner (2015); 13) Song and Li (2009), Mao et al (2008); 14) Helmy and Mogessie (2001), Helmy and El Mahallawi (2003)25  24  24  24 26  Platinum group element mineralization is commonly present as discrete platinum group minerals such as sperrylite (PtAs2), michenerite ((Pd,Pt)BiTe), merenskyite ((Pd,Pt)(Te,Bi)2), and kotulskite (Pd(Te,Bi)). The majority of these intrusions formed during the Precambrian with the exceptions of Noril’sk, Russia (251 Ma, Permian-Triassic boundary; Burgess and Bowring, 2015) and Kalatongke, China (287 Ma, Permian; Mao et al., 2008). Many large Ni-Cu-PGE-rich intrusions formed in rift settings along cratonic margins (Begg et al., 2010), however, there is increasing evidence for economically significant deposits in convergent margin settings (Nixon et al., 2015).  Recent work in the Cordillera of British Columbia and other convergent margins (e.g., Aguablanca, European Variscan chain, Spain, Piña et al., 2008; Huangshandong, Central Asian Orogenic Belt, China, Mao et al., 2014; Giant Mascot, Coast Plutonic Complex, Canada, Manor et al., 2016) has revealed that Ni-Cu-(Co)-PGE mineralization is present and may be a viable target for future exploration. In British Columbia, economic Ni-Cu-PGE mineralization occurs in association with two major types of mafic-ultramafic intrusions: 1) orthopyroxene-rich Giant Mascot-type (e.g., Giant Mascot ultramafic suite; Manor et al., 2016), and 2) orthopyroxene-free Alaskan-type (e.g., Turnagain; Nixon et al., 2015, and references therein). The ca. 93 Ma Giant Mascot ultramafic suite is the only past-producing nickel mine in B.C. (~4.2 Mt of ore @ 0.77% Ni, 0.34% Cu, with minor Co and precious metals; Christopher and Robinson, 1975). The Giant Mascot intrusion forms a 3 x 2 km elliptical plug of ultramafic cumulates that host conduit-style mineralization. Major rock types are dunite, peridotite, pyroxenite, hornblende pyroxenite, and hornblendite, of which dunite and peridotite are the major hosts of mineralization. Mineralization is present as narrow (6-75 m) steeply-dipping pipe-like or thin lensoid ore bodies of disseminated to massive pyrrhotite, pentlandite, chalcopyrite, and minor pyrite (Manor et al., 2016). Alaskan-type intrusions, like the Turnagain, are characterized by the absence of orthopyroxene and the abundance of hydrous minerals such as amphibole and biotite (Taylor, 1967). These intrusions can be zoned or unzoned and generally consist of a series of ultramafic to mafic cumulates. They have been historically associated with chromitite-related PGE 27  mineralization (Johan, 2002), although anomalous examples of Ni-Cu sulphide mineralization are present (e.g., Turnagain, Canada, Nixon, 1998; Quetico Intrusions, Canada, MacTavish, 1999; Duke Island, USA, Ripley et al., 2005). The Turnagain intrusion provides an opportunity to study in detail the mineralogical, geochemical, and isotopic characteristics of a sulphide-enriched, Ni-Cu-PGE-rich Alaskan-type intrusion to better understand the formation of these atypical deposits. The Early Jurassic Turnagain intrusion in northern British Columbia is a crudely zoned Alaskan-type intrusion (Clark, 1975; Nixon, 1998; Scheel, 2007) that contains significant sulphide mineralization. The intrusion hosts a large tonnage, low grade Ni resource (1842 Mt @ 0.21 wt % Ni and 0.013 wt % Co; Mudd and Jowitt, 2014) in the Horsetrail zone (Scheel, 2007). The recently discovered Cu-PGE-rich DJ/DB zone to the northwest of the Horsetrail zone covers an areal extent of 1.5 x 2 km and is hosted primarily in clinopyroxenites and hornblendites. A soil geochemical survey in areas of poor exposure northwest of the Horsetrail zone by Hard Creek Nickel Corporation followed by exploration drilling revealed the presence of Cu-PGE mineralization in bedrock. From 2004-2007, 39 holes were drilled in the DJ/DB zone and provided an opportunity to investigate this unusual mineralization in detail. This study aims to provide a comprehensive mineralogical and geochemical description of the Cu-PGE mineralization and its host rocks. This study utilizes a variety of methods including transmitted and reflected light petrography, scanning electron microscopy, electron microprobe mineral analyses, laser ablation analyses of sulphides, whole rock major, trace, chalcophile, and PGE geochemistry, and sulphur isotope analyses. Information from this study may be used to guide exploration in other Alaskan-type mafic-ultramafic intrusions in convergent margin settings globally.    28  2.2 Regional geology of the Turnagain intrusion Greenschist-facies graphitic strata of Mississippian age that host the Turnagain intrusion have been interpreted to form part of the displaced North American cratonic margin (Cassiar terrane), and to conformably overlie Cambro-Ordovician stratigraphy of the miogeocline (Figure 2.1) (Gabrielse, 1998; Erdmer et al., 2005). The latter authors also documented a conformable relationship between the graphitic strata and overlying Mississippian metasedimentary and metavolcanic rocks, and showed that the succession is deformed by kilometre-scale upright to northeasterly verging folds. They concluded that the entire succession represents a volcanic arc or back-arc assemblage built on the edge of Ancestral North America. Recent reinterpretation of the regional geology based on an airborne electromagnetic (EM) survey indicates that the Turnagain intrusion and its host rocks form part of an Upper Paleozoic accreted arc assemblage (Yukon-Tanana terrane) emplaced onto the Ancestral North American margin in the Early or early Middle Jurassic (Figure 2.1) (Nixon et al., 2017a, b). Graphitic strata that host the Turnagain intrusion exhibit a marked EM response (conductivity) not shared by ultramafic or surrounding metasedimentary and metavolcanic rocks. A sharp EM boundary separates highly conductive graphitic rocks from poorly conductive strata of the miogeocline and truncates stratigraphic units mapped by Gabrielse (1998) and Erdmer et al. (2005). This feature is interpreted to represent a steeply dipping terrane-bounding fault (the Turnagain Fault) that delineates the Jurassic thrust emplacement of the Yukon-Tanana arc onto the miogeocline (Nixon et al., 2017a, b). The Yukon-Tanana terrane is believed to form the substructure of the Mesozoic magmatic arc of Quesnellia, and is intruded by a Late Triassic to Early Jurassic plutonic suite common to the accreted arc terranes of both Quesnellia and Stikinia (Nelson and Colpron, 2007). 29     Figure 2.1. . Simplified tectonic map of the Canadian Cordillera showing locations of major convergent margin mafic-ultramafic intrusions, including the Turnagain intrusion (modified from Colpron and Nelson, 2011). Alaskan-type intrusions are shown in red, the Giant Mascot ultramafic suite is shown in blue; intrusions without mineralization are shown as circles; mineralized intrusions (Ni-Cu and/or PGE) are shown as stars. 30  2.3 Overview of the Turnagain intrusion and associated DJ/DB zone The 25 km2 Turnagain Alaskan-type ultramafic-mafic intrusion in north-central British Columbia, located 70 km east of Dease Lake, is recognized by the presence of olivine-clinopyroxene-hornblende cumulates lacking orthopyroxene, a defining characteristic of Alaskan-type intrusions (e.g., Irvine, 1974; Nixon et al., 1997). The northern and eastern margins of the Turnagain intrusion are delineated by steeply dipping faults separating intensely serpentinized ultramafic rocks from pyritic and graphitic phyllite, slate, wacke, and fine-grained volcaniclastic rocks of Mississippian age (Figure 2.2). Shear bands in the footwall indicate a reverse sense of motion and eastward tectonic transport (Nixon, 1998). Based on drillhole information, this reverse fault passes downward into a shallowly dipping thrust fault that separates ultramafic lithologies from underlying Mississippian rocks (Nixon et al., 2017a). The southern and western contacts of the Turnagain intrusion are intrusive and adjacent host rocks are typically hornfelsed, with hornfels thickness ranging from meters to tens of meters (Clark, 1975; Scheel, 2007). Emplacement of the Turnagain intrusion has been subdivided into four distinct intrusive phases based on geological observations on surface and in drillcore (Clark, 1975; Jackson-Brown et al., 2014; Scheel, 2007) (Figure 2.2) and on U-Pb and 40Ar/39Ar geochronology results (Scheel, 2007; Nixon, et al., 2017a, b). The earliest intrusion (phase 1, undated, but intruded by phase 2 dunite) comprises steeply dipping, interlayered wehrlite, clinopyroxenite, and minor dunite (Clark, 1975; Nixon, 1998; Scheel et al., 2005). A large dunite core forms the majority of the intrusion (phase 2, >188 Ma) and is bordered by wehrlite and clinopyroxenite to the west and south that are host to the Ni-Co resource of the Horsetrail zone (Clark, 1980; Scheel, 2007). Melanocratic to leucocratic diorites (phase 3, ~188 Ma) in the centre of the Turnagain intrusion cut phase 2 dunite and are intruded by phase 4 hornblendite-clinopyroxenite (Figure 2.3) (Clark, 1980; Scheel, 2007).The latter rocks, together with minor leucodiorite dikes that cut them, mark the final stage of emplacement of 31  the Turnagain intrusion (phase 4, ~187-185 Ma) and host the Cu-PGE mineralization of the DJ/DB zone. This study focuses on the Cu-PGE mineralization and associated ultramafic rocks that host the DJ/DB zone of the Turnagain intrusion (Figure 2.4). Soil surveys completed in 2004 by Hard Creek Nickel Corporation indicate an area of Cu, Pt, and Pd anomalies approximately 1.5 km x 2 km in surface extent (Figure 2.5). Subsequent drilling of the DJ/DB zone confirmed the presence of elevated Cu-PGE concentrations in phase 4 clinopyroxenites and hornblendites (Riles et al., 2011). A total of 39 drill holes (8045 m) have been drilled in the DJ/DB zone to date (see Table 2.2, Figure 2.6, Appendix B for list of sampled drillholes), however, the controls on mineralization remain poorly understood.     Figure 2.2. Simplified geological map of the Turnagain intrusion and immediate surroundings (modified from Nixon et al., 2012) showing the Cu-PGE-enriched DJ/DB zone (red) and the Horsetrail zone (blue), which hosts a significant Ni-Co resource. Map coordinates are in NAD83 UTM Zone 9.32  29  29  29 33    Figure 2.3. Photographs of boulders found in the DJ/DB zone showing angular clasts of dunite (brown) in fine- to medium-grained clinopyroxenite (green) (A, B, C). The dunite clasts exhibit alteration rims (black in A and B, white in C) composed of serpentine and magnetite. D) Cut and polished slab of dunite clasts in contact with clinopyroxenite, with associated transmitted (PPL) and cross-polarized (XPL) thin section scans of dunite-clinopyroxenite contact. Note the presence of fine-grained chilled margins within the clinopyroxenite along the contacts. Scales are as follows: A) magnet pen (12.5 cm); B and C) pencil (15 cm); D) thin sections, 20 mm across. Abbreviations: Mag, magnetite; Srp, serpentine; cpxite, clinopyroxenite.    Figure 2.4. (Top) Geological map of the DJ/DB zone and immediate surroundings showing surface sample and drill collar locations (modified from Nixon et al., 2012). Hornblendite and clinopyroxenite map units are crudely defined due to the lack of surface exposure in the area. (Bottom) A schematic cross section from A to A’ of the DJ/DB zone (400 m thickness); rock units and overall structure is based on drill logs provided by Hard Creek Nickel Corp. and measurements of inferred magmatic structures and textures (magnetite layering, lithological contacts, hornblende crystal orientation, and sulphide layering) on unoriented drill core completed by the author during field work. Solid black lines indicate observed contacts, dashed lines indicate inferred contacts. Map coordinates are in NAD83 UTM Zone 9, contour interval 100 m. Cross section depth is presented as meters above sea level. 34  32  32  32 35  Figure 2.5. Copper (top) and combined Pt+Pd (bottom) concentrations from a soil geochemical survey completed in 2008. Major mineralization zones are labelled. Note the presence of high concentrations of both Cu and Pt+Pd above the DJ and DB zones. Figures courtesy of Hard Creek Nickel Corporation.  Figure 2.6. Cross-section of drillhole geology and assayed Cu, Pt and Pd concentrations through the DJ/DB zone for drill holes DDH05-88, DDH05-101, and DDH07-211. Sections display geology (center), Cu (left, in ppm), and PGE concentrations (right, in ppb, values above 500 ppb are considered anomalous). Assay samples for all drillholes are half-core split; analytical results were obtained using 4-acid digestion ICP-ES for copper and fire assay fusion ICP-ES for Pt and Pd. Sample intervals for DDH07-211 are 4 m. Sample intervals for DDH05-88 are 2 m (3.05-105 m, 158-172.2 m EOH) and 0.5 m (105-158 m). Sample intervals for DDH05-101 are 2 m (3.7-88 m, 165-184.7 m EOH) and 1 m (88-165 m). Representative orientation data are plotted on drill traces for measured fabrics: oriented hornblende (green, M=moderate, S=strong), magnetite layering (B=blebby), sulphide layering (D=discontinuous layer). Abbreviations: Az = azimuth of drill hole, Dip = dip of drill hole at collar, EOH = end of hole (in meters). 36  34  34  34 37     Drillhole ID Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)EOH (m)DDH03-07 508583.25 6480856.29 1036.14 169.45 -47.07 434DDH04-43 506826.18 6482617.08 1401.58 0.00 -90.00 159DDH04-46 506468.86 6482806.91 1436.26 0.00 -90.00 145DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 167DDH04-49 506254.44 6483032.55 1459.56 180.00 -50.00 75DDH04-55 506280.84 6483021.70 1462.38 0.00 -90.00 60DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 111DDH04-59 506006.85 6483289.47 1462.93 0.00 -80.00 111DDH05-83 506528.86 6482326.02 1352.83 224.50 -52.00 172DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 172DDH05-89 505925.46 6482544.45 1356.58 40.77 -50.75 166DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 185DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 337DDH06-143 504769.64 6483975.36 1402.34 31.98 -50.00 340DDH06-149 505911.96 6483180.07 1435.80 41.88 -49.50 315DDH06-150 506032.27 6483009.63 1428.63 44.70 -49.80 258DDH06-161 505431.81 6482833.59 1338.16 41.41 -48.50 285DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 312DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 276All geographical coordinates are in NAD83, Zone 9masl = meters above sea levelEOH = end of holeTable 2.2. Location and orientation information for diamond drillholes sampled in the DJ/DB zone, Turnagain intrusion38  2.4 Analytical techniques A total of 131 samples were collected from the Turnagain intrusion for this study in the summers of 2011 and 2013 (see Table 2.3 for full list of samples and completed analyses). Polished petrographic thin sections were made for 95 samples and complemented by an additional six standard thin sections, and two thin sections that were stained to distinguish K-feldspar. All thin sections were examined using both plane- and cross-polarized light to determine silicate and accessory mineralogy. The polished thin sections were examined under reflected light to determine the predominant sulphide and oxide mineralogy. 2.4.1 Scanning electron microscopy Polished petrographic thin sections (n=13) were carbon coated and prepared in the Electron Microbeam/X-Ray Diffraction Facility at the University of British Columbia (UBC), Vancouver and the scanning electron microscope (SEM) facility at the Geological Survey of Canada (GSC), Ottawa. At UBC, back scattered electron (BSE) imaging and qualitative energy-dispersive spectrometry (EDS) were carried out on a Philips XL-30 SEM equipped with a Bruker Quanta 200 energy-dispersion X-ray microanalysis system. An operating voltage of 15 kV was used, with a spot diameter of 6 μm, and peak count time of 30 s. At the GSC, BSE imaging and EDS analyses were acquired on a Zeiss EVO 50 series SEM with extended pressure capability (up to 3000 Pascals), equipped with a backscattered electron detector (BSD), Everhart-Thornley secondary electron detector (SE), and variable pressure secondary electron detector (VPSE). The Oxford EDS system includes the X-MAX 150 Silicon Drift Detector, INCA Energy 450 software and Aztec microanalysis software. An operating voltage (EHT) of 20 kV was used, with a probe current of 400 pA to 1 nA, and peak count time of 30 s.     Table 2.3. Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusionNo. Sample Drillhole Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)Sample depth (m)Year collected2 Sample rock type3Mineralization texture4Thin section5SEM observationsMajor + trace element geochemistryPGE geochemistrySulphur isotopesElectron microprobeLaser ablation1 DDH03-07-1 DDH03-07 508583.25 6480856.29 1036.14 169.45 -47.07 432.80 2013 Tlc+Cb altd phyllite D P X X2 DDH04-43-1 DDH04-43 506826.18 6482617.08 1401.58 0.00 -90.00 88.10 2013 hornblendite D-B P3 DDH04-46-1 DDH04-46 506468.86 6482806.91 1436.26 0.00 -90.00 38.70 2013 clinopyroxenite clast in hornblenditeD P4 DDH04-48-1 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 18.50 2013 hornblendite D-NT5 DDH04-48-2 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 35.70 2013 Mag clinopyroxenite D6 DDH04-48-3 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 53.30 2013 Cpx hornblendite D P X X7 DDH04-48-4 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 61.63 2013 hornblendite D P X X X8 DDH04-48-5 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 71.50 2013 Mag clinopyroxenite D P9 DDH04-48-6 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 78.75 2013 Ol (Srp-Mag) clinopyroxeniteD P X X10 DDH04-48-7 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 91.90 2013 Ol (Srp-Mag) clinopyroxeniteD P11 DDH04-48-8 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 124.30 2013 Ol (Srp-Mag) clinopyroxeniteD P X12 DDH04-48-9 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 147.30 2013 Mag clinopyroxenite D P X X13 DDH04-48-10 DDH04-48 506254.41 6483031.55 1459.44 0.00 -90.00 162.92 2013 Bt clinopyroxenite D14 DDH04-49-1 DDH04-49 506254.44 6483032.55 1459.56 180.00 -50.00 62.85 2013 Mag clinopyroxenite barren15 DDH04-55-1 DDH04-55 506280.84 6483021.70 1462.38 0.00 -90.00 46.46 2013 hornblendite D P16 DDH04-58-1 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 9.90 2011 Ol (Srp-Mag) clinopyroxeniteD P X17 DDH04-58-2 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 15.10 2011 diorite barren S18 DDH04-58-3 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 18.80 2011 Cb-Ser altd diorite barren S19 DDH04-58-4-1 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 20.50 2011 Ol (Srp-Mag) clinopyroxenitebarren P X20 DDH04-58-4-2 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 20.50 2011 clinopyroxenite barren P21 DDH04-58-5 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 23.20 2011 Ol (Srp-Mag) clinopyroxeniteD P X22 DDH04-58-6 DDH04-58 506010.28 6483207.20 1454.88 35.00 -80.00 34.00 2011 clinopyroxenite barren P23 DDH04-59-1 DDH04-59 506006.85 6483289.47 1462.93 0.00 -80.00 88.70 2011 Ol (Srp-Mag) clinopyroxeniteD P X24 DDH05-83-1 DDH05-83 506528.86 6482326.02 1352.83 224.50 -52.00 60.80 2013 clinopyroxenite D and M P X X25 DDH05-88-1 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 133.80 2011 clinopyroxenite D P X X X26 DDH05-88-2 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 153.20 2011 clinopyroxenite D-NT P27 DDH05-88-3 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 156.90 2011 hornblendite D P X28 DDH05-88-101 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 18.42 2013 Hbl clinopyroxenite D-B P X29 DDH05-88-102 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 33.50 2013 Hbl clinopyroxenite D-NT P30 DDH05-88-103 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 35.10 2013 Hbl clinopyroxenite replacing Mag P1 All geographical locations are in NAD83, Zone 9; for drillholes, geographical information refers to location of drillhole collar; masl = meters above sea level2 Samples from 2011 were collected by Dr. Graham Nixon of the British Columbia Geological Survey; 2013 samples collected by Sarah Jackson-Brown3 altd = altered, Mag = magnetite, Hbl = hornblende, Cpx = clinopyroxenite, Ol = olivine, Tlc = talc, Cb = carbonate, Bt = biotite, Ser = sericite, Cal = calcite, Chl = chlorite, Srp = serpentine, Tr = tremolite4 D = disseminated, B = blebby, NT = net-textured, SM = semi-massive, M = massive, VH = vein-hosted, L = layered5 P = polished, U = standard, S = standard, stained for potassium feldsparGeographical information1 Analytical techniques used39  36  36  36     Table 2.3.(continued) Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusionNo. Sample Drillhole Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)Sample depth (m)Year collected2 Rock type3Mineralization texture4Thin section5SEM observationsMajor + trace element geochemistryPGE geochemistrySulphur isotopesElectron microprobeLaser ablation31 DDH05-88-104 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 57.23 2013 clinopyroxenite with Cal-Hbl veinNT and VH P X32 DDH05-88-105 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 62.12 2013 hornblendite D-B P X X X33 DDH05-88-106 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 63.41 2013 hornblendite with Cal-Hbl veinD-NT and VH P X (2) X34 DDH05-88-107 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 64.75 2013 Cpx hornblendite D-L P35 DDH05-88-108 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 82.55 2013 clinopyroxenite with Cb veinsD36 DDH05-88-109 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 109.53 2013 Ol (Srp-Mag) clinopyroxeniteD P37 DDH05-88-110 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 143.87 2013 Hbl-Mag clinopyroxenite D38 DDH05-88-111 DDH05-88 505395.46 6482884.27 1336.38 40.55 -50.50 166.50 2013 hornblendite D P X X39 DDH05-89-1 DDH05-89 505925.46 6482544.45 1356.58 40.77 -50.75 13.65 2013 Mag clinopyroxenite D P40 DDH05-89-2 DDH05-89 505925.46 6482544.45 1356.58 40.77 -50.75 69.26 2013 Ol (Srp-Mag) clinopyroxeniteD-B P X X X41 DDH05-101-1 DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 104.13 2013 Ol (Srp-Mag) clinopyroxeniteD P X42 DDH05-101-2 DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 146.14 2013 clinopyroxenite D-SM P43 DDH05-101-3 DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 148.65 2013 clinopyroxenite D P X X44 DDH05-101-4 DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 156.05 2013 Cal-Hbl-Chl vein in clinopyroxeniteNT and D-B P45 DDH05-101-5 DDH05-101 505395.46 6482884.28 1336.75 40.83 -65.00 169.60 2013 Cal-Chl vein in clinopyroxeniteNT and D-B P X X46 DDH05-102-1 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 53.30 2013 Srp altd wehrlite B P X X47 DDH05-102-2 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 79.20 2013 Cpx hornblendite D-B P48 DDH05-102-3 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 82.25 2013 Hbl clinopyroxenite NT-SM P X49 DDH05-102-4 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 122.83 2013 Hbl clinopyroxenite D-NT50 DDH05-102-5 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 145.15 2013 clinopyroxenite D P X X X X51 DDH05-102-6 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 147.56 2013 clinopyroxenite NT-SM P X52 DDH05-102-7 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 159.80 2013 clinopyroxenite D-NT P X53 DDH05-102-8 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 173.34 2013 clinopyroxenite barren P54 DDH05-102-9 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 182.80 2013 Ol (Srp-Mag) clinopyroxeniteNT-SM P X X55 DDH05-102-10 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 208.80 2013 Hbl-Mag clinopyroxenite D-NT56 DDH05-102-11 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 223.27 2013 hornblendite D P57 DDH05-102-12 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 242.80 2013 clinopyroxenite D-NT P X X X X X1 All geographical locations are in NAD83, Zone 9; for drillholes, geographical information refers to location of drillhole collar; masl = meters above sea level2 Samples from 2011 were collected by Dr. Graham Nixon of the British Columbia Geological Survey; 2013 samples collected by Sarah Jackson-Brown3 altd = altered, Mag = magnetite, Hbl = hornblende, Cpx = clinopyroxenite, Ol = olivine, Tlc = talc, Cb = carbonate, Bt = biotite, Ser = sericite, Cal = calcite, Chl = chlorite, Srp = serpentine, Tr = tremolite4 D = disseminated, B = blebby, NT = net-textured, SM = semi-massive, M = massive, VH = vein-hosted, L = layered5 P = polished, U = standard, S = standard, stained for potassium feldsparGeographical information1 Analytical techniques used40  37  37  37     Table 2.3.(continued) Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusionNo. Sample Drillhole Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)Sample depth (m)Year collected2 Rock type3Mineralization texture4Thin section5SEM observationsMajor + trace element geochemistryPGE geochemistrySulphur isotopesElectron microprobeLaser ablation58 DDH05-102-13 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 268.24 2013 Feldspathic hornblendite with clasts of clinopyroxenitebarren P59 DDH05-102-14 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 283.36 2013 hornblendite D-B60 DDH05-102-15 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 294.62 2013 hornblendite NT-SM P X X X61 DDH05-102-16 DDH05-102 506345.95 6482434.50 1366.17 219.30 -51.40 314.90 2013 hornfelsed phyllite barren P62 DDH06-143-1 DDH06-143 504769.64 6483975.36 1402.34 31.98 -50.00 186.40 2013 Tlc altered dunite B P X X X63 DDH06-149-1 DDH06-149 505911.96 6483180.07 1435.80 41.88 -49.50 249.30 2011 Ol (Srp-Mag) clinopyroxenitebarren P64 DDH06-149-2 DDH06-149 505911.96 6483180.07 1435.80 41.88 -49.50 249.80 2011 Ol (Srp-Mag) clinopyroxeniteD P X65 DDH06-150-1 DDH06-150 506032.27 6483009.63 1428.63 44.70 -49.80 203.00 2011 Ol (Srp-Mag) clinopyroxenitebarren P66 DDH06-161-1 DDH06-161 505431.81 6482833.59 1338.16 41.41 -48.50 98.05 2013 clinopyroxenite/ hornblendite contactNT-SM P X X67 DDH06-161-2 DDH06-161 505431.81 6482833.59 1338.16 41.41 -48.50 135.30 2013 Mag clinopyroxenite D-NT P68 DDH06-161-3 DDH06-161 505431.81 6482833.59 1338.16 41.41 -48.50 155.90 2013 Tr-Tlc altd clinopyroxeniteD-NT P X X X69 DDH07-201-1 DDH07-201 508735.60 6481503.90 1131.60 185.90 -67.20 655.50 2013 phyllite B P X X X70 DDH07-207-1 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 43.30 2013 Hbl clinopyroxenite D P71 DDH07-207-2 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 98.00 2013 Ol (Srp-Mag) clinopyroxeniteD-NT P72 DDH07-207-3 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 142.72 2013 Ol (Srp-Mag) clinopyroxeniteD-B P X X73 DDH07-207-4 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 181.44 2013 clinopyroxenite NT-L P X74 DDH07-207-5 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 187.08 2013 diorite D P75 DDH07-207-6 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 187.79 2013 clinopyroxenite NT-L P X76 DDH07-207-7 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 188.21 2013 Tr altd clinopyroxenite NT-L P X X77 DDH07-207-8 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 194.97 2013 Hbl clinopyroxenite NT-SM P X78 DDH07-207-9 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 198.50 2013 Bt clinopyroxenite NT-SM P79 DDH07-207-10 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 199.67 2013 Bt clinopyroxenite NT-L P80 DDH07-207-11 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 205.52 2013 clinopyroxenite B-NT P X X X X X81 DDH07-207-12 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 226.00 2013 Hbl clinopyroxenite B-NT P82 DDH07-207-13 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 226.40 2013 clinopyroxenite D-B P X X X83 DDH07-207-14 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 231.95 2013 hornfelsed phyllite D P X X X84 DDH07-207-15 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 250.97 2013 hornfelsed phyllite D P85 DDH07-207-16 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 261.80 2013 hornfelsed phyllite D-B P X X X86 DDH07-207-17 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 297.58 2013 hornfelsed phyllite D along bedding P87 DDH07-207-18 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 306.10 2013 hornfelsed phyllite barren P88 DDH07-207-19 DDH07-207 505919.14 6482546.35 1357.22 189.34 -49.90 311.75 2013 hornfelsed phyllite NT-SM P1 All geographical locations are in NAD83, Zone 9; for drillholes, geographical information refers to location of drillhole collar; masl = meters above sea level2 Samples from 2011 were collected by Dr. Graham Nixon of the British Columbia Geological Survey; 2013 samples collected by Sarah Jackson-Brown3 altd = altered, Mag = magnetite, Hbl = hornblende, Cpx = clinopyroxenite, Ol = olivine, Tlc = talc, Cb = carbonate, Bt = biotite, Ser = sericite, Cal = calcite, Chl = chlorite, Srp = serpentine, Tr = tremolite4 D = disseminated, B = blebby, NT = net-textured, SM = semi-massive, M = massive, VH = vein-hosted, L = layered5 P = polished, U = standard, S = standard, stained for potassium feldsparGeographical information1 Analytical techniques used41  38  38  38     Table 2.3.(continued) Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusionNo. Sample Drillhole Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)Sample depth (m)Year collected2 Rock type3Mineralization texture4Thin section5SEM observationsMajor + trace element geochemistryPGE geochemistrySulphur isotopesElectron microprobeLaser ablation89 DDH07-211-1 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 150.40 2011 clinopyroxenite D-B P X X X X90 DDH07-211-2-1 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 153.60 2011 clinopyroxenite/ hornblendite contactD-B P91 DDH07-211-2-2 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 153.60 2011 clinopyroxenite D-B P X92 DDH07-211-3 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 154.00 2011 hornblendite D-B93 DDH07-211-4 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 154.20 2011 hornblendite D P X X X X94 DDH07-211-5 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 157.90 2011 clinopyroxenite D-NT P X X X95 DDH07-211-6-1 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 161.60 2011 hornblendite VH P X X96 DDH07-211-6-2 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 161.60 2011 hornblendite VH97 DDH07-211-7 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 164.80 2011 Hbl clinopyroxenite D-B P X X98 DDH07-211-8 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 169.90 2011 Cal-Bt vein in clinopyroxenitebarren U99 DDH07-211-9 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 170.60 2011 Hbl clinopyroxenite/ hornblendite contactD-B P X100 DDH07-211-10 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 171.50 2011 clinopyroxenite D-B P X X X101 DDH07-211-11 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 177.50 2011 Ol (Srp-Mag) clinopyroxeniteD P102 DDH07-211-12 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 178.70 2011 clinopyroxenite B P X103 DDH07-211-101 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 25.55 2013 Ol (Srp-Mag) clinopyroxeniteD104 DDH07-211-102 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 26.92 2013 clinopyroxenite D-SM P X105 DDH07-211-103 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 28.25 2013 Mag clinopyroxenite with Hbl-Cal veinD-B P106 DDH07-211-104 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 42.30 2013 Hbl clinopyroxenite D107 DDH07-211-105 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 65.16 2013 clinopyroxenite D108 DDH07-211-106 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 78.59 2013 Hbl-Mag clinopyroxenite D109 DDH07-211-107 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 101.58 2013 Hbl clinopyroxenite B-NT P X110 DDH07-211-108 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 138.85 2013 Hbl clinopyroxenite D-NT P X X111 DDH07-211-109 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 175.75 2013 Hbl-Cal-Pl vein in clinopyroxeniteVH P X112 DDH07-211-110 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 202.97 2013 Ol (Srp-Mag) clinopyroxeniteD P X X113 DDH07-211-111 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 244.68 2013 Ol (Srp-Mag) clinopyroxeniteD P X X114 DDH07-211-112 DDH07-211 505337.42 6482829.35 1323.36 45.75 -68.30 258.05 2013 Ol (Srp-Mag) clinopyroxeniteD1 All geographical locations are in NAD83, Zone 9; for drillholes, geographical information refers to location of drillhole collar; masl = meters above sea level2 Samples from 2011 were collected by Dr. Graham Nixon of the British Columbia Geological Survey; 2013 samples collected by Sarah Jackson-Brown3 altd = altered, Mag = magnetite, Hbl = hornblende, Cpx = clinopyroxenite, Ol = olivine, Tlc = talc, Cb = carbonate, Bt = biotite, Ser = sericite, Cal = calcite, Chl = chlorite, Srp = serpentine, Tr = tremolite4 D = disseminated, B = blebby, NT = net-textured, SM = semi-massive, M = massive, VH = vein-hosted, L = layered5 P = polished, U = standard, S = standard, stained for potassium feldsparGeographical information1 Analytical techniques used42  39  39  39      Table 2.3.(continued) Sample locations, descriptions, and applied methods for rocks from the DJ/DB zone of the Turnagain Alaskan-type intrusionNo. Sample Drillhole Easting NorthingElevation (masl)Azimuth (degrees)Dip (degrees)Sample depth (m)Year collected2 Rock type3Mineralization texture4Thin section5SEM observationsMajor + trace element geochemistryPGE geochemistrySulphur isotopesElectron microprobeLaser ablation115 11GNX2-3-1* NA 506202.00 6483195.00 1480.00 NA NA NA 2011 Ol (Srp-Mag) clinopyroxenitebarren116 11GNX2-3-2* NA 506202.00 6483195.00 1480.00 NA NA NA 2011 Ol (Srp-Mag) clinopyroxenitebarren P117 11GNX2-3-3* NA 506202.00 6483195.00 1480.00 NA NA NA 2011 Ol (Srp-Mag) clinopyroxenitebarren U118 13-SJB-1* (O) NA 506707.00 6482656.00 unkn NA NA NA 2013 diorite/hornblendite contactbarren119 13-SJB-2A* (B) NA 506205.00 6483201.00 unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxeniteD120 13-SJB-2B* (B) NA 506205.00 6483201.00 unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxenitebarren P121 13-SJB-3A* (B) NA 506188.00 6482919.00 unkn NA NA NA 2013 hornblendite D122 13-SJB-3B* (B) NA 506188.00 6482919.00 unkn NA NA NA 2013 hornblendite D123 13-SJB-4* (B) NA 505742.00 6482653.00 unkn NA NA NA 2013 clinopyroxenite barren124 13-SJB-5A* (B) NA 507382.00 6482274.00 unkn NA NA NA 2013 partially altd dunite clast in clinopyroxeniteD P125 13-SJB-5B* (B) NA 507382.00 6482274.00 unkn NA NA NA 2013 partially altd dunite clast in clinopyroxenitebarren126 13-SJB-6A* (B) NA 506205.00 6483201.00 unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxeniteD127 13-SJB-6B* (B) NA 506205.00 6483201.00 unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxeniteD128 13-SJB-7* (B) NA 506035.00 6483078.00 unkn NA NA NA 2013 Mag clinopyroxenite barren129 13-SJB-8* (B) NA unkn unkn unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxeniteD P130 13-SJB-9* (B) NA unkn unkn unkn NA NA NA 2013 Mag clinopyroxenite D131 13-SJB-10* (B) NA unkn unkn unkn NA NA NA 2013 Ol (Srp-Mag) clinopyroxenitebarrentotal 103 12 21 27 32 17 121 All geographical locations are in NAD83, Zone 9; for drillholes, geographical information refers to location of drillhole collar; masl = meters above sea level2 Samples from 2011 were collected by Dr. Graham Nixon of the British Columbia Geological Survey; 2013 samples collected by Sarah Jackson-Brown3 altd = altered, Mag = magnetite, Hbl = hornblende, Cpx = clinopyroxenite, Ol = olivine, Tlc = talc, Cb = carbonate, Bt = biotite, Ser = sericite, Cal = calcite, Chl = chlorite, Srp = serpentine, Tr = tremolite4 D = disseminated, B = blebby, NT = net-textured, SM = semi-massive, M = massive, VH = vein-hosted, L = layered5 P = polished, U = standard, S = standard, stained for potassium feldspar* indicates surface sample; all other samples were obtained from drillcoreNA = not applicable, unkn = unknown, sample collected by Tony Hitchens from Hard Creek Nickel Corp.(O) = outcrop sample, (B) = boulder sampleGeographical information1 Analytical techniques used43  40  40  40 44  2.4.2 Electron microprobe analyses Quantitative mineral analyses of silicates, sulphides and platinum group minerals were determined on carbon-coated, polished petrographic thin sections (n=17) using an automated four-spectrometer Cameca Camebax MBX electron microprobe by wavelength-dispersive X-ray analysis at the Department of Earth Sciences, Carleton University, Ottawa. Raw X-ray data were converted to elemental weight percent by the Cameca PAP matrix correction program. Olivine was analyzed using a 20 kV accelerating voltage, 25 nA beam current, 2 μm diameter beam, and counting time of 20 s or 40,000 accumulated counts. Sulphides and precious metal minerals were analyzed using a 20 kV accelerating voltage, 35 nA beam current, 2 μm diameter beam, and counting time of 10 s or 40,000 accumulated counts. 2.4.3 Whole rock major element oxides and trace element concentrations Major element oxides and trace element concentrations of 21 whole rock samples and three duplicates were analyzed at Activation Laboratories Ltd. (Actlabs) in Ancaster, Ontario. Samples were sent as either whole rocks or rock chips (at least 50 g in weight) and processed by Actlabs. Samples were crushed to a nominal -10 mesh (1.7 mm) and split to obtain a representative sample, then pulverized to at least 95% -150 mesh (106 microns) with Cr- and Ni-free mild steel mills. For the major elements, a 1 g sample was mixed with a flux of lithium metaborate and lithium tetraborate and fused in an induction furnace. The molten mixture was then poured into solution of 5% HNO3 mixed continuously for 30 minutes until completely dissolved. The samples then were analyzed for major element oxides (excluding FeO) and select trace elements using a simultaneous/sequential Thermo Jarrell-Ash ENVIRO II inductively coupled plasma-optical emission spectrometer (ICP-OES). Additional trace element concentrations were determined by diluting and analyzing the previously fused samples using the inductively coupled plasma-mass spectrometry (ICP-MS) method. FeO was obtained through the titration method, using cold acid digestion of ammonium metavanadate 45  and hydrofluoric acid. Chalcophile elements (Co, Cu, Ni, Cd, Li, Mn, Pb, Zn) were determined by the total digestion method in which a 0.25 g sample is digested in HF, followed by a mixture of nitric and perchloric acids, then heated and taken to dryness. The samples are brought back into solution with HCl and nitric acid and analyzed using a Perkin Elmer Sciex ELAN ICP-MS. Gold, platinum and palladium concentrations were obtained by fire assay of 5-50 g samples. The sample is mixed with fluxes and Ag (collecting agent) and heated in a fire clay crucible to 1060⁰C (approx. 60 minutes). The crucible is removed from the oven and the slag into a mould, leaving a lead button containing PGE and precious metals. The button is placed in a preheated cupel that absorbs the lead, leaving an Ag bead + Au, Pt, and Pd. The bead is digested in hot HNO3 and HCl and analyzed using an ICP-MS. Semi-metals (As, Bi, Sb, Te) were obtained via nitric peroxide digestion and ICP-MS analysis. Volatiles (B, C, S, Cl, F) were analyzed using the following methods: gamma ray emission detection (B), irradiation energy (C, S), neutron activation analysis (Cl), and ion-selective electrode (F). Internal calibration was achieved using a variety of international reference materials and independent control samples.  2.4.4 Chalcophile, platinum group element, and sulphur geochemical analyses Platinum group element (Ir, Ru, Rh, Pt, Pd, Au) and chalcophile element (Ni, Cu, Co) concentrations of 27 whole rock samples and three duplicates were measured by the nickel-sulphide fire-assay (NiS-FA) ICP-MS and atomic absorption spectroscopy techniques, respectively, at Geoscience Laboratories in Sudbury, Ontario, Canada. Samples were crushed to 74 μm (200 mesh) using a high chrome steel mill to avoid contamination of precious metals. Nickel sulphide fire-assay techniques at Geolabs are detailed by Richardson and Burnham (2002), following procedures from Shazali et al. (1987) and Jackson et al. (1990). Nickel, sulphur, sodium carbonate, and sodium tetraborate were added to a 15 g aliquot of sample powder, and fused for 1.5 hours in a fire-clay crucible at 1050°C. Following cooling, the crucible was broken to recover a nickel 46  sulphide button. This button was dissolved with HCl in a closed Teflon™ vessel to remove any NiS matrix. The co-precipitation of the NiS button with tellurium produced a concentrate containing all Au and PGE lost during button dissolution. Concentrates were then vacuum-filtered, re-dissolved in aqua regia, and brought to volume with deionized water prior to analysis by a Perkin-Elmer ELAN 5000 ICP-MS. Osmium was not reported due to the potential loss as a volatile oxide during the aqua regia re-dissolution stage. Reference materials used were CANMET-certified TDB-1, WPR-1, WGB-1, and WMG-1, and an in-house komatiite sample OKUM. The remaining <74 μm pulps from the same crush as the NiS-FA method were mixed with a three-acid (hydrofluoric, nitric, and perchloric) mix in an open Teflon™ digestion vessel and heated until dry. A solution was produced by adding a second acid mixture, transferred to a 50 mL volumetric container and diluted with 10% HNO3 respective to the volume of sample. Chalcophile element concentrations (Ni, Cu, Co, Cd, Zn, Li, Pb) were measured by atomic absorption methods with a Varian Atomic Absorption Spectrometer AA280FS Series. Sulphur and carbon measurement techniques are outlined in Amirault and Burnham (2013). Sample material was taken from a 0.2 g pre-measured aliquot and combusted from radio-frequency inductive heating with a constant stream of purified oxygen. Gases (CO2 and SO2) were produced and detected by non-dispersive infrared (NDIR) cells. Concentrations were then measured by a LECO CS844 carbon and sulphur analyzer. 2.4.5 Calculation procedure for whole-rock Ni, Cu, and PGE analyses to 100% sulphide Corrections for metal contents in 100% sulphide (i.e., tenor) were calculated for 25 samples. The correction parameters from Naldrett et al. (2000) were used for Ni, Cu, Co, S, Ir, Ru, Rh, Pt, Pd, and Au, a method that utilizes the presence of significant Ni contents in olivine to correct for the Ni tenor in sulphide. Kerr (2003) used a more simplified approach by accounting for generalized ‘nonsulphide Ni’ to explain any Ni not included in the true tenor, however, this method was deemed inappropriate 47  owing to the significant variation in olivine content of the samples. The measured elemental concentrations were first converted to atomic proportions to determine the amount of sulphur in pentlandite and chalcopyrite; pyrrhotite was assigned the remaining S from the calculation. Based on normalized sulphide proportions, the amount of S and Fe applied to pyrrhotite, pentlandite, and chalcopyrite in massive sulphide were determined by multiplying by the ideal stoichiometric S wt. % (36.5, 33.3, and 34.9 wt. %, respectively) and Fe wt. % (63.5, 36.2, and 30.4 wt. %, respectively) in each of the three minerals. Proportions of sulphide were then determined based on the computed S in massive sulphide, and Fe associated with sulphide was iterated based on this sulphide proportion. The total S in massive sulphide relative to the original S assay was used as a conversion factor to determine the raw sulphide metal contents (i.e., tenor). Platinum group elements were calculated with the same conversion factor, assuming that the PGE originated from the sulphide melt by orthomagmatic processes with no hydrothermal input. The final step, to determine the proportions of non-sulphide Ni, was to account for any Ni input from olivine in olivine-rich samples. Naldrett et al. (2000) account for this by calculating the Ni/Fe in sulphide and assuming a constant 25% modal proportion of olivine in each sample. Owing to low olivine content in many samples, the actual olivine contents, determined via petrography, were utilized instead of the standard 25 vol. % to obtain accurate non-sulphide Ni data. The amount of Ni attributed to olivine was then used to re-calculate the raw Ni content in sulphide and achieve a final Ni tenor. 2.4.6 Laser ablation ICP-MS analysis of sulphide minerals Laser ablation analysis of major sulphides (pyrrhotite, chalcopyrite, pyrite, and pentlandite) was completed on 12 polished thin sections at the LA-ICP-MS laboratory at the Geological Survey of Canada (GSC) in Ottawa, Ontario, Canada. Single spot analyses were made using a Photon-Machines Analyte 193 excimer laser ablation system (λ = 193 nm) with Helex ablation cell and an Agilent 7700x quadrupole ICP-MS (see Table 2.4 for operating conditions). Ablation was performed in a He environment, mixed with Ar gas for ICP-MS analysis. Laser pulse energy was set to 40% of 4 mJ. 48  Two calibration standards were utilized for this study, Po726, a homogeneous natural pyrrhotite, for the platinum group elements (Ru, Rh, Pd, Os, Ir, Pt, Au), and GSE-1G, a USGS reference glass of basaltic composition doped with over 50 elements for the remaining chalcophile and lithophile elements. A Fe-Cu-Zn-S pressed pellet standard, MASS-1 (previously PS-1), was used along with the standards to test the accuracy and precision of the analyses, and the working values agreed with the known values. Each analytical run was preceded by two analyses of each standard and one analysis of MASS-1 to ensure accuracy. This method was repeated approximately every 10 samples and at the end of each run to correct for instrumental drift. Analysis of standards was completed using a laser pulse rate frequency of 10 Hz and a spot size of 43 µm. Laser frequency was set to 6 Hz for analysis of samples, with spot sizes ranging from 7 to 30 µm depending on the size of the sulphide grain being analyzed. Each analysis ran for approximately 100 seconds, with 40 seconds of gas blank followed by 60 seconds of ablated sample measurement. Data collection and correction was done using GLITTER data reduction software, developed by the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC) and CSIRO Exploration and Mining. Final concentrations were determined by subtracting the background (gas blank) signal from each of the analyzed isotopes, and normalizing to either Po726 (for PGE) or GSE-1G (for the remaining isotopes). Microinclusions of accessory minerals were encountered during some analyses and were excluded from the time-resolved spectrum before calculation of the average signal.  Measured isotopes were 29Si, 34S, 42Ca, 51V, 53Cr, 57Fe, 59Co, 60Ni, 61Ni, 65Cu, 66Zn, 75As, 77Se, 88Sr, 89Y, 90Zr, 99Ru, 101Ru, 102Ru, 103Rh, 105Pd, 106Pd, 108Pd, 107Ag, 109Ag, 111Cd, 118Sn, 121Sb, 125Te, 181Ta, 185Re, 189Os, 193Ir, 195Pt, 197Au, 202Hg, 205Tl, 206Pb, 208Pb and 209Bi. Due to the thinness of the samples being ablated, silicon and calcium were monitored to determine if the laser ablated completely through the sample and into the glass during the run. Sulphur, copper, and nickel values were used to monitor the mineral phase during ablation. Analyses with greater than 750 ppm Si or Ca were not   49    Table 2.4.  LA-ICP-MS instrumentation, operating conditions and quantificationLaser Ablation (LA) samplerModel Photon-Machines Analyte 193Wavelength 193 nmPulse duration (FWHM) 4 nsSample cell Helex 2-volume cell, each with separate carrier gas-in port Gas flows:1) He carrier into cup 0.6 L/min2) He carrier into cell base 0.4 L/min3) Ar make-up 1.05-1.10 L/minICP-MSModel Agilent 7700x quadrupole ICP-MS with additional interface rotary pumpShield torch UsedForward power 1550 kWSampling depth 30 μmThO+/Th+ <0.3%U/Th sensitivity ratio (NIST612) 1.05-1.10Data acquisition parameters - spot analysisLaser spot Round, 7-30 μm nominal diameter (43 μm for GSE-1G, Po726, and MASS-1)Laser energy density at sample 5.7 J/cm2Laser repetition rate 6 Hz (sample), 10 Hz (standard)Isotopes determined29Si, 34S, 42Ca, 51V, 53Cr, 57Fe, 59Co, Ni (60Ni, 61Ni), 65Cu, 66Zn, 75As, 77Se, 88Sr, 89Y, 90Zr, Ru (99Rh, 101Rh, 102Rh), 103Rh, Pd (105Pd, 106Pd, 108Pd), Ag (107Ag, 109Ag), 111Cd, 118Sn, 121Sb, 125Te, 181Ta, 185Re, 189Os, 193Ir, 195Pt, 197Au, 202Hg, 205Tl, Pb (206Pb, 208Pb), 209BiMass sweep time 326 msAnalysis time 100 s:  ~ 40 s gas blank, up to ~60 s of ablationQuantificationCalibration standards1) Platinum group elements + Au Po726 synthetic pyrrhotite (from J.H.G. Laflamme)2) Trace elements GSE-1G glass (Guillong et al., 2005)Secondary (QC) standard Synthetic doped sulphide, Mass-1 (Wilson et al., 2002)Data processing GLITTER data reduction software (Griffin et al., 2008)50  reported due to low reliability of the analyses for sulphide samples. Isotopic interference from copper on 103Rh and 105Pd meant that these isotopes were unusable when analyzing chalcopyrite or grains with greater than 100 ppm Cu. Ruthenium values in analyses with greater than 100 ppm 59Co, 60Ni, or 61Ni were only used if all three isotopes had comparable concentrations. 2.4.7 Sulphur isotope analyses Sulphide minerals (pyrrhotite, chalcopyrite, pyrite) were extracted from sulphide-bearing samples (n=32) using a Dremel 400 Series XPR hand-held drill with a 1/32” drill bit. The relative proportion of different sulphide minerals being extracted was carefully recorded to estimate the percentage of S in the sample for approximately 3 mg of sulphide powder. All powders (n=36), including three blind duplicates, were analyzed at the G.G. Hatch Stable Isotope Laboratory at the University of Ottawa, Canada. Samples were weighed into tin capsules with at least twice the sample weight of tungstic oxide (WO3) for inorganic or organic sulphur. Calibrated internal standards were prepared with every batch of samples for normalization of the data. Each analysis required 100 μg of S. Samples were loaded into an Elementar Vario Micro Cube elemental analyzer and flash combusted at 1800°C. Released gases (N2, CO2, H2O, and SO2) were carried by ultra-pure helium through the elemental analyzer to be cleaned, then gas chromatograph separation removed SO2 by moving gases through a series of adsorption traps (i.e., “trap and purge”). Isotopic compositions of organic sulphur (SO2) were measured by a ThermoFinnigan Delta XP isotope ratio mass spectrometer coupled with a ConFlo IV. The measured isotope for sulphur was 34S assuming mass-dependent fractionation. Values are reported relative to the Vienna Canyon Diablo Troilite (VCDT) and analytical precision for δ34S is ±0.2‰.    51  2.5 Results 2.5.1 Mineralogy of major rock types in the DJ/DB zone The mineralogy of clinopyroxenite and hornblendite, the two major rock types in the DJ/DB zone of the Turnagain intrusion, are described below. Appendix C contains photographs of all rock samples collected for this study and scans of all thin sections in both transmitted light and cross-polarized light are available in Appendix D. In addition, Table 2.5 reports estimated modal mineralogy, Appendix E provides petrographic descriptions of a select subset of samples, and Appendix F contains EMPA data of analyzed silicate, sulphide, and platinum group minerals. Clinopyroxenite is the dominant rock type in the DJ/DB zone and is separated into four distinct units: hornblende clinopyroxenite, clinopyroxenite, magnetite clinopyroxenite, and olivine clinopyroxenite (Figures 2.7, 2.8). Clinopyroxene compositions are diopsidic in all units (Appendix F). Hornblende clinopyroxenite contains fine- to medium-grained, pale green-grey diopside with interstitial to interlayered dark green amphibole (5-44 vol. %), biotite (<15%), magnetite (<5%), and disseminated to net-textured and locally layered sulphide (6-31%) (Figure 2.9). Secondary minerals in hornblende clinopyroxenite include chlorite (<15%, after biotite), tremolite (<15%, after clinopyroxene), and minor calcite. Clinopyroxenite contains fine- to coarse-grained diopside with interstitial biotite (<35%, up to 5% of which may be an alteration product of amphibole), interstitial hornblende (<8%), blebby magnetite (<5%), and disseminated to massive sulphide (<53%) that exhibits localized layering (Figure 2.9). Secondary minerals include up to 28% tremolite, <25% chlorite, and minor serpentine and calcite, with local areas of extensive replacement by talc (<28%). Magnetite clinopyroxenite contains fine- to coarse-grained diopside with subhedral to euhedral magnetite (<20%) that is locally layered (Figure 2.9), disseminated to blebby sulphides (<14%), and minor interstitial biotite and hornblende. Weak to moderate alteration is present as minor chlorite and biotite (after amphibole), with trace tremolite and calcite. Olivine clinopyroxenite, referred to as Ol (Srp-52  Mag) clinopyroxenite, consists of diopside and olivine (Fo79) that is partially pseudomorphed by serpentine and magnetite. Original olivine contents ranged from 2-28% (with localized clots of olivine), and there may be up to 20% remnant olivine, with thin veinlets of replacement magnetite (<10%) and fine-grained radial serpentine (<45%). Interstitial biotite (<12%), interstitial amphibole (<7%), and sulphide (<37%) also occur. Secondary minerals consist of <10% chlorite, with minor calcite and trace tremolite. Where present, sulphides in the clinopyroxene-rich rocks are disseminated to massive, with localized layering. Pyrrhotite is the dominant sulphide (<50%), and forms the majority of layered, net-textured, and semi-massive to massive sulphide occurrences. Chalcopyrite is the second most common sulphide (<35%) and is generally disseminated to blebby, with localized secondary veins. Other sulphides include pyrite (<10%), minor pentlandite, and a variety of trace sulphides, antimonides, and platinum group minerals that all form disseminated grains associated with either pyrrhotite or chalcopyrite. Hornblendite is dominated by fine-grained to pegmatitic, dark-green amphibole with up to 10 vol. % fine- to medium-grained clinopyroxene, biotite (<7%), fine-grained subhedral to euhedral magnetite (<11%), disseminated sulphide (1-15%, with up to 40% as net-textured sulphide), and is locally feldspathic (<10%) (Figure 2.10). Minor alteration is present as chlorite (<5%) and trace tremolite. Amphibole compositions are predominantly magnesio-hastingsite to potassic-magnesio-hastingsite (see Appendix F for mineral analyses). Rare blue-green subcalcic sodio-magnesio-hastingsite alteration rims are present along the edge of amphiboles in some samples (e.g., DDH05-88-106, DDH05-101-4, see sample description DDH05-88-104 in Appendix E). Most hornblendite samples contain randomly oriented amphibole, with local zones (1-100 cm thick) of moderately to strongly oriented crystals. Oriented amphiboles typically occur in the coarser grained and pegmatitic units, and they can exhibit both gradational and sharp contacts with surrounding rocks; they also occur at contacts between two hornblendite units of different grain size or along contacts with clinopyroxenite (Figure 2.11). Hornblendite commonly grades into clinopyroxenite and localized    Table 2.5. Modal abundances (vol. %) of minerals from petrography and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusionSilicates, Oxides, Carbonates Oxides Sulphides, Arsenides PGMSample Rock type Ol Srp Cpx Hbl Tr Phl/Bt Chl Tlc Pl Qz Ser Ms Ttn Cal Ilm Mag Py Po Pn Ccp Sp Cbt Other Minerals present† CommentsDDH03-07-1 Tlc+Cb altd phyllite 65 1 3 tr. 1magnesite - 30%, gersdorffiteeuhedral rhombs of carb (magnesite) in talc matrix, hand sample had large pyDDH04-43-1 hornblendite 5 85 9 1 contact between fg hblite and mg-cg hbliteDDH04-46-1clinopyroxenite clast in hornblendite30 60 tr. 5 5 fg sulphide-rich cpxite clast in mg hbliteDDH04-48-3 Cpx hornblendite 10 85 0.5 0.5 2 2 mg, massiveDDH04-48-4 hornblendite 8 81 tr. 8 3 mg, weakly orientedDDH04-48-5 Mag clinopyroxenite 75 5 5 11 4 iddingsite?cumulus cpx with interstitial chl+bi (alt. to iddingsite?) with blebby mtDDH04-48-6Ol (Srp-Mag) clinopyroxenite2 70 5 8 13 2 iddingsite?mg mod alt cpxite with interstitial chl w blebby to inst mt; clast? Of rem Ol, alt completely to serp and stringy mt w inst bioDDH04-48-7Ol (Srp-Mag) clinopyroxenite20 40 10 7 12 10 1rem Ol, partially replaced by serp+st mt, w inst bio, contacting mod alt cpxite w inst hblDDH04-48-8*Ol (Srp-Mag) clinopyroxenite25 55 1 3 9 3 tr. tr. 2 1 tr. tr. milleritemg cpxite contacting alt ol (mt+serp) clot w mica, inst sulph and euhedral pyDDH04-48-9 Mag clinopyroxenite 55 5 15 20 5fg cpxite w blebby to inst banded mt. bio repl inst hbl?DDH04-55-1 hornblendite tr. 98 1 tr. 1 fg hblite with fine carb/hbl veinsDDH04-58-1Ol (Srp-Mag) clinopyroxenite5 20 70 tr. 5 tr. tr. tr. iddingsite? rem ol, mostly alt to serp+st mt in mg cpxDDH04-58-2 diorite 5 15 80 tr. tr. fg mod alt plag w fg inst biDDH04-58-3 Cb-Ser altd diorite 80 9 1 10 mg mod alt plag w patches of carb altDDH04-58-4-1Ol (Srp-Mag) clinopyroxenite8 86 4 tr. 2 tr. tr. tr. tr. tr. mg cpxite w ol alt to serp+mt, w thin calcite veinsDDH04-58-4-2 clinopyroxenite 85 1 14 tr. mg mod alt cpxite w inst chl (w cpy)DDH04-58-5*Ol (Srp-Mag) clinopyroxenite3 45 45 tr. 1 tr. tr. 5 tr. tr. tr. siegenite mg cpxite w clots of alt olDDH04-58-6 clinopyroxenite 97 2 1 tr. tr. fg, massive, one area of chl/carbDDH04-59-1Ol (Srp-Mag) clinopyroxenite11 75 1 3 4 5 1 tr. Xfg mild alt cpxite w ol totally repl by pseudomorph serp/mt +/- chl/tremDDH05-83-1* clinopyroxenite 3 45 tr. 1 tr. tr. tr. tr. 50 tr. tr. goethite X mg cpxite w inst serp+sulph contacting massive DDH05-88-1* clinopyroxenite 96 tr. 3 tr. 0.5 tr. tr. tr. X cg cpxite w inst chlDDH05-88-2 clinopyroxenite 65 10 1 3 13 tr. 8 fg heavily alt cpxite w inst sulph and carb veinDDH05-88-3 hornblendite tr. tr. 84 tr. tr. 11 4 tr. fg hblite w inst mt/poDDH05-88-101 Hbl clinopyroxenite 33 25 15 15 2 7 3mod to heavily alt cpxite w inst hbl. Chl rep bi rep hbl, cpx alt to trem. sulph conc in bi-trem alt areasDDH05-88-102 Hbl clinopyroxenite 30 42 1 1 2 2 15 tr. 5vfg grey altn of Mag - 2%clot of mg hbl in cpxite, mod alt. sulph intruding along fractures/broken cleavages, mt almost entirely relp by vfg translucent grey material?DDH05-88-103 Hbl clinopyroxenite 55 15 tr. 5 10 5 10 hem // to cpy veinmg cpxite w inst hbl, being repl by chl. Two cpy veins, but most of sulph is py repl mt (pseudomorph) and along fractures/cleavagesDDH05-88-104*clinopyroxenite with Cal-Hbl vein80 5 tr. 1 tr. 6 tr. 2 1.5 4 tr. NaAmp, marcasitefg cpxite w cal/hbl/po vein. Inst sulph+hbl w blebby mt.*Petrography and SEM analysis completed by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)† See Table 2.9 for PGM petrographyMineral abbreviations: Ol = olivine, Srp = serpentine, Cpx = clinopyroxenite, Hbl = hornblendite, Tr = tremolite, Phl/Bt = phlogopite/biotite, Chl = chlorite, Tlc = talc, Pl = plagioclase, Qz = quartz, Ser = sericite, Ms = muscovite, Ttn = titanite, Cal = calcite, Ilm = ilmenite, Mag = magnetite, Py = pyrite, Po = pyrrhotite, Pn = pentlandite, Ccp = chalcopyrite, Sp = sphalerite, Cbt = cobaltite, hem = hematite, NaAmp = sodic amphibole53  49  49  49     Table 2.5.(continued) Modal abundances (vol. %) of minerals from petrography and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusionSilicates, Oxides, Carbonates Oxides Sulphides, Arsenides PGMSample Rock type Ol Srp Cpx Hbl Tr Phl/Bt Chl Tlc Pl Qz Ser Ms Ttn Cal Ilm Mag Py Po Pn Ccp Sp Cbt Other Minerals present† CommentsDDH05-88-105 hornblendite 86 tr. 1 2 10 tr. 1 mg hblite w blebby mt and inst sulphDDH05-88-106hornblendite with Cal-Hbl vein74 1 3 5 1 tr. 10 5 NaAmpfg-mg hblite w calcite and calcite/plag veins w blebby to inst sulph and sulph along carb vein. Blue amph along vein/grain boundariesDDH05-88-107 Cpx hornblendite 71 1 5 8 12 3 NaAmpfg hblite w inst po (+/-cp) and inst sulph/mt, chl alt along rims of opaquesDDH05-88-109Ol (Srp-Mag) clinopyroxenite5 81 5 1 2 3 1 2vfg mod-high alt cpxite w minor alt ol repl by mt/serp. Trem alt along grain boundariesDDH05-88-111 hornblendite 94 1 1 1 3 fg-mg hblite w weird symplectitic intergrowth?DDH05-89-1 Mag clinopyroxenite 77 3 tr. 15 4 1 fg cpxite w blebby-euhedral mt w ilm exsolutionDDH05-89-2*Ol (Srp-Mag) clinopyroxenite14 79 4 tr. tr. tr. tr. 2 tr. tr. tr. Xmg cpxite w patches pf alt ol (mt+serp) w assoc bi. sulph inst.DDH05-101-1*Ol (Srp-Mag) clinopyroxenite28 68 tr. tr. 3 tr. tr. 1 tr. tr. tr. tr. tr. X mg-cg cpxite w patches of alt ol (mt+serp), inst chlDDH05-101-2 clinopyroxenite 70 5 20 5 fg cpxite w inst sulph + chl veinDDH05-101-3 clinopyroxenite 69 1 22 8 fg cpxite w inst sulph + carb/po veinDDH05-101-4Cal-Hbl-Chl vein in clinopyroxenite28 25 25 tr. 10 8 2 NaAmpfg cpxite contacting hbl-cal vein. Hbl from vein intrudes along grain boundaries of cpx, forming "interstitial" vfg hbl. Hbl exhibiting blue hbl along rimsDDH05-101-5*Cal-Chl vein in clinopyroxenite22 4 tr. 38 6 18 tr. tr. 11 1 X cal+chl vein in cg cpxite, inst sulphDDH05-102-1 Srp altd wehrlite 60 30 1 5 1 0.5 0.5vfg brown altn - 2%ol pervasively alt to serp+mt+brown alt, w inst cpx. minor bi in brown alt. sulph blebby and being repl by mtDDH05-102-2 Cpx hornblendite 5 83 7 4 1 NaAmp fg hblite contacting mg hblite w inst biDDH05-102-3 Hbl clinopyroxenite 25 44 3 5 20 3layered mg hbl and fg cpx w layered D to NT inst sulph . Minor trem alt // to layeringDDH05-102-5 clinopyroxenite 91 1 1 2 4 1 X mg cpxite w minor inst sulphDDH05-102-6 clinopyroxenite 66 5 5 20 4 mg cpxite w inst chl+sulphDDH05-102-7* clinopyroxenite 94 1 tr. tr. tr. 2 1 1 tr. tr. tr. X fg cpxite w inst hbl/chl and sulphDDH05-102-8 clinopyroxenite 88 10 2 tr. cg cpxite w patches of trem alt. Incl of carbDDH05-102-9Ol (Srp-Mag) clinopyroxenite8 47 8 32 5mg mod alt cpxite w blebby to NT sulph. Locally SM sulph assoc w serp patches (relic ol)DDH05-102-11 hornblendite 5 79 3 10 2 1 NaAmp cg orient hblite w blocky mtDDH05-102-12* clinopyroxenite 87 1 3 1 tr. tr. tr. 9 tr.mg cpxite w inst to NT sulph and chl/hbl. Minor trem altDDH05-102-13Feldspathic hornblendite with clasts of clinopyroxenite59 30 10 1 tr. apatitefg cpx win mg-cg hbl-(microcrystalline)plag pocketsDDH05-102-15 hornblendite 49 1 45 5 mod to heavily alt hbl w NT sulphDDH05-102-16 hornfelsed phyllite 40 30 30 tr. vfg heavily sericitized plag and biotiteDDH06-143-1 Tlc altered dunite 1 41 5 15 3 35dunite? Alt completely to talc +/- cal, w blebby sulphDDH06-149-1Ol (Srp-Mag) clinopyroxenite15 78 7 tr. tr. mg cpxite w repl ol (serp+stringy mt)DDH06-149-2*Ol (Srp-Mag) clinopyroxenite4 26 66 tr. tr. 1 tr. tr. 3 tr. tr. tr.millerite, siegenite, borniteXmg cpxite w alt ol (mt+serp) and minor inst sulph and chl*Petrography and SEM analysis completed by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)† See Table 2.9 for PGM petrographyMineral abbreviations: Ol = olivine, Srp = serpentine, Cpx = clinopyroxenite, Hbl = hornblendite, Tr = tremolite, Phl/Bt = phlogopite/biotite, Chl = chlorite, Tlc = talc, Pl = plagioclase, Qz = quartz, Ser = sericite, Ms = muscovite, Ttn = titanite, Cal = calcite, Ilm = ilmenite, Mag = magnetite, Py = pyrite, Po = pyrrhotite, Pn = pentlandite, Ccp = chalcopyrite, Sp = sphalerite, Cbt = cobaltite, hem = hematite, NaAmp = sodic amphibole54  50  50  50     Table 2.5.(continued) Modal abundances (vol. %) of minerals from petrography and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusionSilicates, Oxides, Carbonates Oxides Sulphides, Arsenides PGMSample Rock type Ol Srp Cpx Hbl Tr Phl/Bt Chl Tlc Pl Qz Ser Ms Ttn Cal Ilm Mag Py Po Pn Ccp Sp Cbt Other Minerals present† CommentsDDH06-150-1Ol (Srp-Mag) clinopyroxenite10 5 67 3 8 7 tr. tr.mg cpxite w mostly intact ol, w mt+serp along rim/fracturesDDH06-161-1clinopyroxenite/ hornblendite contact15 27 15 tr. 40 tr. 3 Xfg cpxite contacting cg hblite, both v altered, w inst sulphDDH06-161-2 Mag clinopyroxenite 75 3 tr. 8 7 7 fg cpxite w inst sulph/mtDDH06-161-3*Tr-Tlc altd clinopyroxenite2 4 28 28 tr. 3 30 tr. 4 tr. molybdenite X cpxite alt to trem and talc sulphDDH07-201-1 phyllite 38 40 15 1 5 1qtz-bi phyllite w blebs of sulph along bedding, and vfg mt xtls, and calcite veinsDDH07-207-1 Hbl clinopyroxenite 47 40 2 5 5 1fg cpx interlayered and included w/in cg hbl, hbl inst to cpx at contacts. Layered inst sulph, mostly in cpxiteDDH07-207-2Ol (Srp-Mag) clinopyroxenite3 11 70 1 tr. 4 7 4 fg cpxite w fg variably alt olDDH07-207-3Ol (Srp-Mag) clinopyroxenite15 67 1 2 tr. 3 9 3mg cpxite w completely replaced ol blebs. Inst sulphDDH07-207-4 clinopyroxenite 45 2 45 8fg-mg cpx interlayered w inst to SM sulph, w minor bi near sulphDDH07-207-5 diorite 1 30 66 3 tr. vfg mod alt dioriteDDH07-207-6 clinopyroxenite 50 tr. tr. 48 2 fg mod alt cpxite w inst to SM layered sulphDDH07-207-7*Tr altd clinopyroxenite48 7 20 12 tr. 1 tr. tr. tr. 12 tr. fg cpxite partialy alt to trem, w inst bi (repl hbl?)DDH07-207-8 Hbl clinopyroxenite 25 37 3 4 5 20 1 5fg cpx interlayered and included w/in cg hbl. Layered inst to NT sulph, w minor inst bio. Py blocky, enclosed w/in poDDH07-207-9 Bt clinopyroxenite 45 20 5 5 22 3fg cpx interlayered w bi+inst to NT sulph, minor chl along cleavages of bi. Py blocky, enclosed w/in DDH07-207-10 Bt clinopyroxenite 38 35 5 20 2fg cpx interlayered w cg bi+inst sulph. Py blocky. Bi occ inst to cpxDDH07-207-11* clinopyroxenite 58 tr. 10 25 tr. tr. 2 tr. 5 tr.fg cpxite w inst chl and inst to blebby sulph, minor sulph banding?DDH07-207-12 Hbl clinopyroxenite 37 40 1 2 15 5cg hbl and cpx w inst to blebby sulph. Py stringy (sec?) in poDDH07-207-13 clinopyroxenite 84 tr. 10 tr. 1 4 1 fg-mg cpxite. Chl mostly located near sulph patchsDDH07-207-14 hornfelsed phyllite 70 5 tr. 2 12 1sillimanite (fibrolite) - 10%fg plag rich, w vfg mt defined bedding, and radial fibrolite patchesDDH07-207-15 hornfelsed phyllite 5 5 65 10 10 tr. 3 2vfg alt qtz/plag w poor bedding defined by coarse qtz+sulph+debrisDDH07-207-16 hornfelsed phyllite 20 50 4 15 1 5 5 tr.cg qtz interbedded w vfg qtz/plag/musc, blcky po+py along beddingDDH07-207-17 hornfelsed phyllite 20 50 1 15 1 5 5 staurolite? - 3% fg qtz interbedded w vfg qtz/plag/musc/oxidesDDH07-207-18 hornfelsed phyllite 40 40 tr. zoisite? - 10%,         fg qtz/cal interbedded w vfg qtz/cal/zoi/sillDDH07-207-19 hornfelsed phyllite 5 5 15 50 1 2 20 2 vfg musc/qzt/carb w inst sulph*Petrography and SEM analysis completed by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)† See Table 2.9 for PGM petrographyMineral abbreviations: Ol = olivine, Srp = serpentine, Cpx = clinopyroxenite, Hbl = hornblendite, Tr = tremolite, Phl/Bt = phlogopite/biotite, Chl = chlorite, Tlc = talc, Pl = plagioclase, Qz = quartz, Ser = sericite, Ms = muscovite, Ttn = titanite, Cal = calcite, Ilm = ilmenite, Mag = magnetite, Py = pyrite, Po = pyrrhotite, Pn = pentlandite, Ccp = chalcopyrite, Sp = sphalerite, Cbt = cobaltite, hem = hematite, NaAmp = sodic amphibole55  51  51  51     Table 2.5.(continued) Modal abundances (vol. %) of minerals from petrography and SEM analysis of samples from the DJ/DB zone of the Turnagain intrusionSilicates, Oxides, Carbonates Oxides Sulphides, Arsenides PGMSample Rock type Ol Srp Cpx Hbl Tr Phl/Bt Chl Tlc Pl Qz Ser Ms Ttn Cal Ilm Mag Py Po Pn Ccp Sp Cbt Other Minerals present† CommentsDDH07-211-1* clinopyroxenite 88 1 8 1 tr. tr. 0.5 1.5 tr.epidote, millerite, galena, nickeline, tucekite, gersdorffite, ullmannite, hauchecorniteXcg cpxite w inst sulph and hbl almost entirely alt to vfg bioDDH07-211-2-1clinopyroxenite/ hornblendite contact45 20 tr. 10 5 tr. 12 8cg cpx contacting cg hbl. sulph blebby/inst in cpx, inst in hbl. Blebby plag in hbliteDDH07-211-2-2 clinopyroxenite 71 8 10 5 3 tr. 3 mg cpxite w alt patches of trem and hbl alt to chlDDH07-211-4* hornblendite 90 2 tr. 2 tr. tr. 1 5 tr. tr. tr. tr. apatite X cg hblite w inst cal+apatite+biDDH07-211-5 clinopyroxenite 72 10 tr. tr. tr. 10 tr. 8 tr. tr. X fg cpxite w chl alt and inst sulphDDH07-211-6-1 hornblendite 69 5 5 5 1 5 2 5 1 2 cg orient hblite w cal/py(Po?) veins, w tabular plagDDH07-211-7 Hbl clinopyroxenite 75 5 10 3 3 4mg cpxite w inst hbl being replaced by chl, and inst carb. sulph blebby w minor veinsDDH07-211-8Cal-Bt vein in clinopyroxenite59 20 5 1 10 5fg cpxite w vein of cal+vfg bi, patches of chl, blebby mtDDH07-211-9Hbl clinopyroxenite/ hornblendite contact30 10 5 5 15 5 5 5 10 10mg cpxite (minor trem) contacting cg hblite almost cometely altered to trem/bio/chl. In hblite, "clasts" of rounded qtz cemented w sulphide. Rest of sulphide blebby to instDDH07-211-10 clinopyroxenite 65 10 10 4 8 3 X cg cpxite w patches of trem/chl. sulph blebbyDDH07-211-11Ol (Srp-Mag) clinopyroxenite45 35 5 tr. tr. tr. tr. 10 5 tr. X mg high alt cpxite w significant alt ol (serp+mt)DDH07-211-12 clinopyroxenite 65 10 7 15 3 cg cpxite w patches of chl and blebby sulphDDH07-211-102 clinopyroxenite 60 tr. 3 tr. 15 tr. 2 tr. 15 tr. 5 fg cpxite w sulph band+blebs, mod alt to chlDDH07-211-103Mag clinopyroxenite with Hbl-Cal vein45 3 tr. 20 1 10 10 10 1alt fg cpxite contacting cg hbl/cal vein almost entirely alt to chl. sulph blebby, mt instDDH07-211-107* Hbl clinopyroxenite 72 13 7 tr. tr. 1 tr. 1 tr. 5 1 tr. marcasite mg mod alt cpx w inst hbl + carb vein + vfg hblDDH07-211-108* Hbl clinopyroxenite 65 7 15 tr. tr. 2 0.5 0.5 10 tr. marcasitemg cpx w inst hbl alt to chl and large pods of inst sulphDDH07-211-109Hbl-Cal-Pl vein in clinopyroxenite35 5 8 10 2 30 1 4 tr. 5 coarse cal w vfg amph/chl/trem, w euhedral plagDDH07-211-110Ol (Srp-Mag) clinopyroxenite20 60 5 tr. 5 10 tr. tr. tr. X cg cpxite w completely alt ol (mt+serp), w inst hblDDH07-211-111Ol (Srp-Mag) clinopyroxenite15 60 5 10 3 tr. 5 tr. 2cg alt cpxite w clot of alt ol (mt+serp), hbl altering to chl11GNX2-3-2Ol (Srp-Mag) clinopyroxenite60 25 3 2 10 very alt ol(serp+mt), cg cpx11GNX2-3-3Ol (Srp-Mag) clinopyroxenite75 15 2 2 6 almost entirely serp+mt alt w some alt cpx13-SJB-2BOl (Srp-Mag) clinopyroxenite20 70 tr. 5 5 serp+mt alt ol contacting mg cpxite w inst chl13-SJB-5Apartially altd dunite clast  in clinopyroxenite20 25 38 5 10 2fg cpxite w inst hbl and fg blebs of serp, contacting band of serp+mt (mt strings // to contact) w dunite becoming less alt away from contact13-SJB-8Ol (Srp-Mag) clinopyroxenite10 55 20 15 tr. tr.cg cpxite contacting ol altering to mt+serp, mt bands //*Petrography and SEM analysis completed by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)† See Table 2.9 for PGM petrographyMineral abbreviations: Ol = olivine, Srp = serpentine, Cpx = clinopyroxenite, Hbl = hornblendite, Tr = tremolite, Phl/Bt = phlogopite/biotite, Chl = chlorite, Tlc = talc, Pl = plagioclase, Qz = quartz, Ser = sericite, Ms = muscovite, Ttn = titanite, Cal = calcite, Ilm = ilmenite, Mag = magnetite, Py = pyrite, Po = pyrrhotite, Pn = pentlandite, Ccp = chalcopyrite, Sp = sphalerite, Cbt = cobaltite, hem = hematite, NaAmp = sodic amphibole56  52  52  52 57    Figure 2.7. Photographs of representative rock samples of major rock types within the DJ/DB zone. A) Sample DDH05-102-11: moderately foliated coarse-grained hornblendite, B) DDH05-88-107: medium-grained clinopyroxene hornblendite C) DDH05-88-101: coarse-grained hornblende clinopyroxenite, D) DDH05-101-3: medium-grained clinopyroxenite, E) DDH05-89-1: medium-grained magnetite clinopyroxenite with weak layers of blebby magnetite grains, F) DDH04-49-1: fine-grained magnetite clinopyroxenite with prominent layers of magnetite, G) DDH05-89-2: medium-grained olivine clinopyroxenite with weak layers of olivine (replaced by serpentine and magnetite pseudomorphs), H) DDH07-211-110: medium- to coarse-grained olivine clinopyroxene with prominent olivine pseudomorphs (serpentine and magnetite). All photographs contain centimeter card for scale. 58    Figure 2.8. Thin section scans in transmitted light (left) and cross-polarized light (right) of typical textures in clinopyroxenite. Each scan is 20 mm across. A) DDH05-88-101: medium-grained hornblende clinopyroxenite, B) DDH07-207-1: fine- to coarse-grained hornblende clinopyroxenite, C) DDH05-102-5: low-sulphide medium-grained clinopyroxenite, D) DDH07-211-5: fine- to medium-grained clinopyroxenite, E) DDH04-48-5: fine-grained magnetite clinopyroxenite with interstitial to blebby magnetite, F) DDH05-89-1: fine-grained magnetite clinopyroxenite with blebby magnetite, G) DDH04-48-6: fine-grained olivine clinopyroxenite (olivine has been replaced by serpentine and magnetite, with interstitial biotite), H) DDH05-101-1: medium-grained olivine clinopyroxenite (olivine has been replaced by serpentine and magnetite), I) DDH05-101-1: coarse-grained olivine clinopyroxenite (olivine has been replaced by serpentine and magnetite). 59    Figure 2.9. Thin section scans and photographs of samples exhibiting characteristic compositional, magnetite, or sulphide layering textures observed in the DJ/DB zone. A) Sample DDH07-207-9: biotite clinopyroxenite exhibiting weak pyrrhotite and biotite layering, B) DDH05-102-3: hornblende clinopyroxenite with moderate hornblende/pyrrhotite layering, C) DDH04-48-9: layered magnetite (±biotite) clinopyroxenite, D) 13-SJB-09: strongly layered magnetite clinopyroxenite, E) DDH07-207-4: clinopyroxenite with strong pyrrhotite (±biotite) layering, F) DDH07-207-6: clinopyroxenite with moderate pyrrhotite layering. Thin section scans are 20 mm across, photographs contain centimeter card for scale. Abbreviations: CA, core axis; po, pyrrhotite; bt, biotite; hbl, hornblendite; mag, magnetite. 60   Figure 2.10. Thin section scans in transmitted light (left) and cross-polarized light (right) of typical textures in hornblendite. Orientation of sample to core axis (CA) is noted on samples with visible mineralogical fabric; parallel (arrow) or perpendicular (┴) to section. Each scan is 20 mm across. A) Sample DDH04-43-1: fine-grained hornblendite in contact with fine- to medium-grained hornblendite, B) DDH04-55-1: moderately foliated medium-grained hornblendite, C) DDH05-88-106: fine- to medium-grained hornblendite with veins of calcite-plagioclase-sulphide, D) DDH07-211-4: moderately foliated coarse-grained hornblendite. Figure 2.11. Thin section scans of contacts observed in drill core samples from the DJ/DB zone. A) Sample DDH07-211-2-1: clinopyroxenite in contact with hornblendite, B) DDH04-43-1: Medium-grained hornblendite in contact with fine-grained hornblendite, note the weak alignment of amphibole crystals at an oblique to the contact in the medium-grained hornblendite. Abbreviations: cpxite, clinopyroxenite; hblite, hornblendite; fg, fine-grained; mg, medium-grained. 61  hornblendite dikes are observed cutting earlier clinopyroxenite and hornblendite units (Figure 2.11). Sulphide mineralization in hornblendite consists primarily of pyrrhotite (<12%) and chalcopyrite (1-5%), with minor pyrite and pentlandite, and trace sphalerite. Sulphides are typically interstitial to amphibole, but can also occur as inclusions and as secondary crosscutting veins. 2.5.2 Whole rock major element oxide and trace element concentrations Whole rock major element oxides and trace element concentrations were determined for 10 clinopyroxenite samples and 4 hornblendite samples from the DJ/DB zone (Table 2.6). Major element oxide compositions are reported below as anhydrous values. The clinopyroxenites range in MgO content from 11.9 to 22.4 wt. % (Mg# = 0.58-0.88), reflecting the relative abundances of olivine (higher MgO), clinopyroxene (intermediate MgO), and amphibole (lower MgO) (Figure 2.12). They have relatively low Al2O3 (2.5-6.1 wt. %) and TiO2 (0.2-1.7 wt. %), and a wide range of CaO (14.0-21.8 wt. %) that is related to variations in the modal abundance of clinopyroxene (Figure 2.12). Nickel (70-2431 ppm) and Cu (30-11753 ppm) concentrations are highly variable owing in large part to the relative amounts of sulphide present (Figure 2.13). The low-MgO samples (<18% MgO) have the highest Cu contents, consistent with the presence of chalcopyrite in the clinopyroxenites and hornblende clinopyroxenites (Figure 2.13). Clinopyroxenites from the DJ/DB zone are relatively Cr-poor compared to clinopyroxenites from older parts of the intrusion (Figure 2.13). Chondrite-normalized rare earth element (REE) patterns for clinopyroxenites exhibit concave-down patterns in the light REE ((La/Yb)cn = 1.0-2.1) typical of rocks that have accumulated clinopyroxene (Figure 2.14). The degree of overall REE enrichment of the clinopyroxenites is related to the presence of either hornblende (higher REE values) or olivine (lower REE values). Clinopyroxenites with high combined Pt+Pd concentrations (>500 ppb) exhibit higher.     Sample DDH07-201-1 DDH07-201-1 DDH07-207-14 DDH07-207-16 DDH03-07-1 DDH06-143-1 DDH05-102-1 DDH04-48-6 DDH05-89-2 DDH07-207-3 DDH07-211-110 DDH04-48-9Rock type phyllite(duplicate) phyllitehornfelsed phyllitehornfelsed phylliteTlc+Cb altd phylliteTlc altered duniteSrp altd wehrliteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteMag clinopyroxeniteDrillhole DDH07-201 DDH07-201 DDH07-207 DDH07-207 DDH03-07 DDH06-143 DDH05-102 DDH04-48 DDH05-89 DDH07-207 DDH07-211 DDH04-48Depth (m) 655.5 655.5 231.95 261.8 432.8 186.4 53.3 78.75 69.26 142.72 202.97 147.3Major elements (wt. %)Analysis method*SiO2 FUS-ICP 53.4 53.56 56.15 63.7 36.04 21.75 41.03 46.92 46.35 44.83 47.25 35.02TiO2 FUS-ICP 0.721 0.722 0.749 0.792 0.008 0.081 0.144 0.668 0.403 0.312 0.239 1.68Al2O3 FUS-ICP 14.53 15.22 14.36 12.66 0.11 0.7 1.67 3.54 2.82 2.57 2.44 5.93Fe2O3 FUS-ICP 1.26 1.37 bdl 1.23 1.02 25.01 5.86 4.99 3.94 4.37 3.4 14.68FeO TITR 5.0 0.162 7.6 6.0 7.8 12.4 5.9 7.3 7.3 9.5 5.5 11.7MnO FUS-ICP 0.16 5 0.061 0.068 0.074 0.288 0.203 0.156 0.149 0.174 0.145 0.152MgO FUS-ICP 3.26 3.22 2.85 3.8 30.63 14.08 28.72 13.99 16.69 17.45 21.64 11.58CaO FUS-ICP 5.66 5.81 3.3 2.52 0.33 4.17 7.39 20.64 17.88 16.77 15.25 13.57Na2O FUS-ICP 1.37 1.41 7.37 1.44 0.01 0.01 0.05 0.25 0.17 0.17 0.21 0.27K2O FUS-ICP 3.24 3.28 0.58 2.11 bdl bdl 0.07 0.14 0.14 0.03 0.05 1.03P2O5 FUS-ICP 0.17 0.17 0.13 0.12 bdl bdl 0.01 bdl 0.01 0.01 bdl bdlLOI†FUS-ICP 9.66 9.78 4.41 5.35 21.95 19.42 8.51 1.26 2.68 3.37 3.91 1.36LOI2† FUS-ICP 9.1 9.22 3.56 4.68 21.08 18.03 7.85 0.45 1.86 2.31 3.29 0.05Total† FUS-ICP 98.99 100.3 98.40 100.50 98.86 99.30 100.20 100.70 99.34 100.60 100.70 98.28Total 2† FUS-ICP 98.43 99.72 97.55 99.79 97.99 97.91 99.53 99.84 98.53 99.57 100.00 96.97Fe2O3(T) FUS-ICP 6.82 6.93 8.43 7.90 9.69 38.80 12.42 13.11 12.05 14.94 9.52 27.69Volatiles (%, except where indicated)B (ppm) PGNAA 31 28 2 35 bdl bdl 27 bdl 3 2 2 bdlC-Total IR 2.61 2.52 1.75 1.07 5.13 1.76 0.3 0.14 0.03 0.09 0.08 0.08Total S IR 1.05 0.94 3.64 3.85 0.9 20.4 0.23 0.04 1.53 3.02 0.09 0.26Cl INAA 0.02 bdl 0.04 bdl bdl 0.03 0.03 0.02 0.02 0.02 0.02 0.03F FUS-ISE 0.03 0.04 bdl 0.02 0.03 bdl bdl bdl bdl bdl bdl bdlChalcophile elements (ppm, except where indicated)Co TD-MS 24.1 21 24.9 22.3 166 adl 119 55.9 152 211 88 103Cu TD-MS 172 80 206 93.9 399 2970 106 313 2450 2310 49 1960Ni TD-MS 106 140 78 59 893 adl 1190 143 610 418 331 189Au (ppb) FA-MS 2 3 bdl bdl 3 44 3 2 bdl 3 bdl 1Pt (ppb) FA-MS 3.7 3.9 1.5 1.5 10.5 229 4.9 237 118 21 17.3 1.2Pd (ppb) FA-MS 4.8 4.8 4 2 12.2 193 6.6 285 116 42.8 17.9 1Semimetals (ppm)As NP-MS bdl 0.5 bdl bdl 344 114 bdl 1 bdl bdl 13 bdlBi NP-MS 0.18 0.18 bdl 0.1 bdl 0.25 bdl bdl bdl bdl bdl bdlSb NP-MS bdl 0.42 bdl bdl bdl 0.04 bdl bdl bdl bdl bdl bdlTe NP-MS 0.09 bdl 0.02 0.16 0.04 0.21 0.04 0.03 bdl 0.02 bdl 0.03Tlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below lower detection limit, adl = above upper detection limitTable 2.6. Whole rock major element oxides and trace element concentrations for samples in and adjacent to the DJ/DB zone of the Turnagain intrusion*FUS-ICP = emission spectroscopy;  TITR = titration; PGNAA = gamma ray emission; IR = irradiation; INAA = Neutron Activation Analysis; FUS-ISE = ion-selective electrode; TD-MS = total digestion;  FA-MS = fire assay; NP-MS = nitric peroxide; analyses preformed at Activation Laboratories, Inc. (Ancaster, ON)†LOI = loss-on-ignition; LOI2 = loss-on-ignition adjusted to difference in oxygen between FeO and Fe2O3, Total = sum of major elements and LOI, Total 2 = sum of major elements and LOI262  59  59  59     Sample DDH05-101-3 DDH05-102-5 DDH05-102-12 DDH07-207-11 DDH07-207-11 DDH07-207-13 DDH07-207-13 DDH04-48-3 DDH04-48-4 DDH05-88-105 DDH05-88-111 DDH05-102-15Rock type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite(duplicate) clinopyroxenite clinopyroxenite(duplicate) clinopyroxeniteCpx hornblendite hornblendite hornblendite hornblendite hornblenditeDrillhole DDH05-101 DDH05-102 DDH05-102 DDH07-207 DDH07-207 DDH07-207 DDH07-207 DDH04-48 DDH04-48 DDH05-88 DDH05-88 DDH05-102Depth (m) 148.65 145.15 242.8 205.52 205.52 226.4 226.4 53.3 61.63 62.12 166.5 294.62Major elements (wt. %)Analysis method*SiO2 FUS-ICP 44.6 48.79 40.45 46.97 46.12 47.05 46.41 40.35 37.03 35.78 41.03 35.15TiO2 FUS-ICP 0.589 0.379 0.317 0.252 0.248 0.645 0.626 1.357 1.547 1.74 2.381 0.114Al2O3 FUS-ICP 3.1 3.11 2.81 2.86 2.89 5.56 5.65 13.55 12.8 11.69 10.92 0.77Fe2O3 FUS-ICP 3.04 2.54 3.96 6.08 4.77 3.24 3.44 2.83 6.11 8.67 4.37 0.79FeO TITR 9.7 7.6 16.3 6.0 0.1 6.2 0.21 10.0 11.1 11.8 10.2 28.9MnO FUS-ICP 0.207 0.16 0.134 0.126 7.1 0.21 6 0.142 0.153 0.152 0.195 0.216MgO FUS-ICP 13.33 14.24 12.52 19.66 19.4 13.84 13.74 13.19 12.08 11.72 13.03 13.91CaO FUS-ICP 20.22 21.75 16.75 13.71 13.58 20.69 20.99 12.32 11.2 10.49 12.24 7.44Na2O FUS-ICP 0.23 0.25 0.21 0.18 0.18 0.27 0.27 1.77 1.73 1.65 1.75 0.16K2O FUS-ICP 0.03 0.11 0.04 0.07 0.07 0.08 0.08 1.48 1.47 1.12 1.00 0.03P2O5 FUS-ICP bdl 0.01 bdl bdl bdl 0.17 0.17 bdl 0.02 bdl 0.19 0.03LOI†FUS-ICP 3.06 1.09 4.06 4.18 4.42 2.17 2.46 2.4 2.06 3.22 2.21 9.48LOI2† FUS-ICP 1.98 0.24 2.23 3.51 3.62 1.48 1.78 1.28 0.82 1.9 1.07 6.25Total† FUS-ICP 99.19 100.90 99.38 100.80 99.70 100.80 100.7 100.50 98.54 99.37 100.70 100.20Total 2† FUS-ICP 98.11 100.00 97.56 100.10 98.90 100.10 100.1 99.39 97.30 98.04 99.53 97.00Fe2O3(T) FUS-ICP 13.83 10.99 22.09 12.75 12.66 10.13 10.12 13.95 18.45 21.79 15.71 32.93Volatiles (%, except where indicated)B (ppm) PGNAA 1 bdl 1 bdl 1 bdl 3 bdl 3 bdl 2 bdlC-Total IR 0.21 0.04 bdl bdl 0.01 0.1 0.12 0.15 0.04 0.05 0.01 2.69Total S IR 3.61 1.69 7.68 3.64 3.36 0.48 0.41 0.57 0.88 3.12 0.57 13.9Cl INAA 0.01 0.02 0.03 0.02 0.01 bdl 0.02 0.07 0.05 0.05 0.04 0.03F FUS-ISE bdl bdl bdl 0.01 0.03 bdl bdl 0.04 0.04 0.04 0.03 bdlChalcophile elements (ppm, except where indicated)Co TD-MS 154 100 364 136 114 48.2 40 63.9 91 84.8 79.6 181Cu TD-MS 7450 677 2150 838 370 1100 80 70.3 638 497 211 747Ni TD-MS 386 283 868 519 620 109 840 151 98 120 118 545Au (ppb) FA-MS 2 1 2 4 4 bdl 1 2 4 bdl bdl 3Pt (ppb) FA-MS 411 601 202 233 248 77.5 80.4 33.7 6.7 1.8 2.1 81.7Pd (ppb) FA-MS 335 628 145 699 667 61.8 58.1 45.5 6.7 3.7 3.4 98Semimetals (ppm)As NP-MS bdl bdl bdl bdl 1.3 bdl 0.2 bdl bdl bdl 1 bdlBi NP-MS bdl bdl bdl bdl 0.04 bdl bdl bdl bdl bdl bdl 0.06Sb NP-MS bdl bdl bdl bdl 0.23 bdl 0.18 bdl bdl bdl bdl bdlTe NP-MS 0.18 0.09 0.11 bdl bdl bdl bdl 0.03 0.02 0.03 0.02 0.97Tlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below lower detection limit, adl = above upper detection limitTable 2.6.(continued) Whole rock major element oxides and trace element concentrations for samples in and adjacent to the DJ/DB zone of the Turnagain intrusion†LOI = loss-on-ignition; LOI2 = loss-on-ignition adjusted to difference in oxygen between FeO and Fe2O3, Total = sum of major elements and LOI, Total 2 = sum of major elements and LOI2*FUS-ICP = emission spectroscopy;  TITR = titration; PGNAA = gamma ray emission; IR = irradiation; INAA = Neutron Activation Analysis; FUS-ISE = ion-selective electrode; TD-MS = total digestion;  FA-MS = fire assay; NP-MS = nitric peroxide; analyses preformed at Activation Laboratories, Inc. (Ancaster, ON)63  60  60  60     Sample DDH07-201-1 DDH07-201-1 DDH07-207-14 DDH07-207-16 DDH03-07-1 DDH06-143-1 DDH05-102-1 DDH04-48-6 DDH05-89-2 DDH07-207-3 DDH07-211-110 DDH04-48-9Rock Type phyllite(duplicate) phyllitehornfelsed phyllitehornfelsed phylliteTlc+Cb altd phylliteTlc altered duniteSrp altd wehrliteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteMag clinopyroxeniteDrillhole DDH07-201 DDH07-201 DDH07-207 DDH07-207 DDH03-07 DDH06-143 DDH05-102 DDH04-48 DDH05-89 DDH07-207 DDH07-211 DDH04-48Depth (m) 655.5 655.5 231.95 261.8 432.8 186.4 53.3 78.75 69.26 142.72 202.97 147.3Trace elements (ppm)Analysis Method*Sc FUS-ICP 18 18 15 18 2 7 25 115 91 89 65 95Be FUS-ICP 3 3 1 1 bdl bdl bdl bdl bdl bdl bdl bdlV FUS-ICP 275 281 222 255 14 511 67 489 260 259 138 1273Cr FUS-MS 90 90 30 50 2470 1640 1190 1220 360 350 1350 70Ga FUS-MS 21 23 12 14 bdl bdl 2 5 4 3 3 13Ge FUS-MS 0.8 1 bdl 0.6 6.3 0.6 1.7 2.7 2 1.9 2.1 2Rb FUS-MS 118 121 4 52 bdl bdl 3 3 3 bdl bdl 20Sr FUS-ICP 374 379 134 91 25 46 43 94 69 57 78 80Y FUS-MS 27.6 28.6 10.9 16.9 bdl 1 2.7 4.4 4.1 3.7 3.3 3.2Zr FUS-ICP 144 144 133 122 2 bdl 7 6 5 4 7 4Nb FUS-MS 10.7 8.8 8.5 6.7 0.5 bdl bdl bdl bdl bdl bdl bdlMo FUS-MS 15 17 24 20 bdl 106 bdl bdl bdl bdl bdl bdlAg FUS-MS 1 1.4 0.9 0.6 0.7 bdl bdl bdl bdl bdl bdl bdlIn FUS-MS bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdlSn FUS-MS 2 2 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdlCs FUS-MS 5 5.3 bdl 2 bdl bdl 0.2 0.3 0.1 bdl 0.2 0.9Ba FUS-ICP 1725 1684 143 976 bdl 3 26 54 72 9 15 463Bi FUS-MS bdl bdl bdl bdl bdl 0.3 bdl bdl bdl bdl bdl bdlLa FUS-MS 33.4 34.1 9.98 15.1 0.33 0.21 0.84 0.7 0.72 0.4 0.62 0.48Ce FUS-MS 64.4 63.5 19 30.2 0.56 0.35 1.82 1.91 1.84 1.12 1.37 1.23Pr FUS-MS 7.83 7.83 2.48 3.96 0.07 0.07 0.28 0.32 0.32 0.21 0.29 0.21Nd FUS-MS 30 29.7 10.7 16.7 0.25 0.38 1.31 1.97 1.74 1.31 1.52 1.41Sm FUS-MS 6.15 6.15 2.21 3.47 0.07 0.12 0.39 0.8 0.63 0.63 0.57 0.56Eu FUS-MS 1.69 1.71 1.2 0.852 0.018 0.023 0.155 0.28 0.231 0.213 0.193 0.222Gd FUS-MS 5.39 5.57 2.05 3.22 0.04 0.14 0.44 0.88 0.83 0.74 0.63 0.68Tb FUS-MS 0.85 0.81 0.31 0.51 bdl 0.02 0.08 0.16 0.15 0.14 0.11 0.12Dy FUS-MS 4.66 4.64 1.94 2.97 0.04 0.15 0.54 0.92 0.87 0.76 0.63 0.69Ho FUS-MS 0.94 0.96 0.38 0.6 bdl 0.03 0.1 0.18 0.16 0.14 0.12 0.13Er FUS-MS 2.7 2.76 1.02 1.68 0.02 0.1 0.27 0.46 0.41 0.37 0.32 0.34Tm FUS-MS 0.405 0.398 0.156 0.241 bdl 0.015 0.039 0.06 0.055 0.049 0.048 0.047Yb FUS-MS 2.77 2.7 1.05 1.64 0.03 0.07 0.25 0.34 0.34 0.3 0.31 0.28Lu FUS-MS 0.41 0.449 0.159 0.249 0.004 0.011 0.039 0.052 0.05 0.045 0.044 0.039Hf FUS-MS 3.4 3.5 2.8 2.8 bdl bdl 0.2 0.2 0.2 0.1 0.2 0.1Ta FUS-MS 0.79 0.85 0.62 0.45 bdl bdl bdl bdl bdl bdl bdl bdlW FUS-MS 2.1 7.9 bdl 0.6 1.1 1.4 bdl bdl bdl 1 bdl 4.9Tl FUS-MS 0.68 0.85 bdl 0.97 0.3 bdl bdl bdl bdl 0.08 0.12 0.05Th FUS-MS 9.45 9.78 1.18 3.35 0.19 bdl 0.19 0.17 0.31 0.06 0.05 0.15U FUS-MS 4.29 4.25 1.25 2.68 0.02 0.03 0.06 0.01 0.04 0.02 0.01 0.01Se NP-MS 6 5.3 5 4 5 49 bdl bdl 6 7 bdl 1Cd TD-MS 2.1 2.1 1.3 1.7 0.2 0.7 bdl bdl bdl 0.2 bdl bdlLi TD-MS 86 64 4 34 2 4 3 13 16 12 13 26Mn TD-MS 1200 1560 482 495 537 2140 1580 1180 1140 1390 1130 1160Pb TD-MS 13 11 bdl 5 bdl 9 bdl bdl bdl bdl bdl bdlZn TD-MS 247 267 157 190 67.8 200 88.7 67.5 52.9 52.8 53.6 121Tlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below lower detection limit*FUS-ICP = emission spectroscopy;  TD-MS = total digestion;  NP-MS = nitric peroxide, FUS-MS = ICP-MS; analyses preformed at Activation Laboratories, Inc. (Ancaster, ON)Table 2.6.(continued) Whole rock major element oxides and trace element concentrations for samples in and adjacent to the DJ/DB zone of the Turnagain intrusion64  61  61  61     Sample DDH05-101-3 DDH05-102-5 DDH05-102-12 DDH07-207-11 DDH07-207-11 DDH07-207-13 DDH07-207-13 DDH04-48-3 DDH04-48-4 DDH05-88-105 DDH05-88-111 DDH05-102-15Rock Type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite(duplicate) clinopyroxenite clinopyroxenite clinopyroxeniteCpx hornblendite hornblendite hornblendite hornblendite hornblenditeDrillhole DDH05-101 DDH05-102 DDH05-102 DDH07-207 DDH07-207 DDH07-207 DDH07-207 DDH04-48 DDH04-48 DDH05-88 DDH05-88 DDH05-102Depth (m) 148.65 145.15 242.8 205.52 205.52 226.4 226.4 53.3 61.63 62.12 166.5 294.62Trace elements (ppm)Analysis Method*Sc FUS-ICP 93 104 77 57 55 89 87 100 78 96 72 23Be FUS-ICP bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdlV FUS-ICP 431 343 591 186 181 372 375 553 715 813 856 758Cr FUS-MS 120 560 270 520 500 530 510 120 60 160 80 350Ga FUS-MS 5 4 4 4 4 8 9 13 14 14 13 2Ge FUS-MS 2 2.1 1.6 2 2.2 2.2 2.2 2 1.8 1.7 2 2.1Rb FUS-MS bdl 2 1 bdl bdl 1 1 6 6 7 5 1Sr FUS-ICP 158 64 54 53 53 288 292 371 309 271 259 29Y FUS-MS 8.2 5.7 4.1 3.3 3.4 10.8 11 13.6 12.6 15.9 22.8 3.5Zr FUS-ICP 10 8 5 4 6 10 12 15 14 18 19 3Nb FUS-MS bdl bdl bdl bdl bdl bdl bdl 1 0.8 bdl 1.2 bdlMo FUS-MS 10 bdl 8 bdl bdl bdl bdl bdl bdl 30 bdl 139Ag FUS-MS bdl bdl bdl bdl bdl bdl 0.6 bdl bdl bdl bdl bdlIn FUS-MS bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdlSn FUS-MS bdl bdl bdl bdl bdl bdl bdl 1 1 bdl bdl bdlCs FUS-MS bdl 0.8 0.1 bdl bdl 0.4 0.4 0.2 bdl 0.2 0.4 0.1Ba FUS-ICP 13 37 9 14 13 111 109 288 305 252 214 4Bi FUS-MS bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdlLa FUS-MS 0.67 0.55 0.57 0.42 0.44 1.25 1.12 1.53 1.4 2.42 1.77 0.55Ce FUS-MS 2.11 1.75 1.47 1.21 1.14 3.86 3.79 4.81 4.23 6.06 6.46 1.43Pr FUS-MS 0.42 0.35 0.25 0.22 0.21 0.76 0.75 0.94 0.83 0.99 1.34 0.24Nd FUS-MS 2.75 2.09 1.54 1.31 1.36 4.65 4.71 5.72 5.42 5.7 8.62 1.28Sm FUS-MS 1.21 0.97 0.64 0.51 0.58 1.62 1.72 2.12 1.91 2.25 3.26 0.39Eu FUS-MS 0.449 0.314 0.213 0.163 0.164 0.598 0.617 0.831 0.754 0.783 1.14 0.054Gd FUS-MS 1.53 1.09 0.79 0.62 0.68 2.12 2.41 2.76 2.59 2.88 4.54 0.43Tb FUS-MS 0.27 0.2 0.14 0.11 0.12 0.37 0.41 0.48 0.42 0.5 0.77 0.07Dy FUS-MS 1.66 1.28 0.85 0.66 0.74 2.21 2.44 2.78 2.76 2.99 4.58 0.47Ho FUS-MS 0.32 0.24 0.17 0.13 0.14 0.44 0.44 0.54 0.52 0.56 0.89 0.11Er FUS-MS 0.81 0.59 0.45 0.35 0.37 1.12 1.19 1.44 1.34 1.42 2.42 0.33Tm FUS-MS 0.109 0.071 0.06 0.048 0.05 0.154 0.167 0.185 0.173 0.179 0.317 0.049Yb FUS-MS 0.68 0.45 0.34 0.31 0.32 0.94 1 1.12 0.99 1.08 1.86 0.34Lu FUS-MS 0.09 0.072 0.045 0.041 0.054 0.117 0.138 0.151 0.136 0.142 0.252 0.051Hf FUS-MS 0.3 0.2 0.1 0.2 bdl 0.5 0.4 0.7 0.6 0.6 0.9 bdlTa FUS-MS bdl bdl bdl bdl bdl bdl bdl 0.02 bdl bdl 0.03 bdlW FUS-MS 3.3 0.5 2.6 bdl bdl bdl 2 3.5 0.6 2.7 bdl 1.5Tl FUS-MS 0.18 bdl 0.1 bdl bdl bdl bdl 0.17 0.11 0.34 bdl 0.05Th FUS-MS bdl 0.12 bdl 0.06 bdl 0.13 bdl 0.27 0.45 0.09 0.18 bdlU FUS-MS 0.02 bdl 0.02 0.01 0.01 0.04 0.05 0.02 0.04 0.05 bdl 0.05Se NP-MS 13 4 20 11 9.3 1 0.9 1 2 6 2 38Cd TD-MS 0.7 0.3 0.3 bdl bdl 0.3 bdl bdl bdl bdl 0.2 0.9Li TD-MS 22 14 13 8 bdl 49 30 9 7 18 10 2Mn TD-MS 1550 1210 970 1030 1210 1730 1640 994 1160 1090 1460 1650Pb TD-MS bdl bdl bdl 2 bdl bdl bdl bdl bdl bdl bdl 4Zn TD-MS 83.6 52.7 38.9 51.2 41.2 83.2 64.2 75.7 87.3 85.4 102 148Tlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below lower detection limit*FUS-ICP = emission spectroscopy;  TD-MS = total digestion;  NP-MS = nitric peroxide, FUS-MS = ICP-MS; analyses preformed at Activation Laboratories, Inc. (Ancaster, ON)Table 2.6.(continued) Whole rock major element oxides and trace element concentrations for samples in and adjacent to the DJ/DB zone of the Turnagain intrusion65  62  62  62 66    Figure 2.12. Diagrams of MgO vs. select major element oxides for whole rock samples from the Turnagain intrusion (Mg# = Mg/(Mg+Fe)). Black symbols represent samples from the DJ/DB zone, whereas grey symbols indicate samples from older parts of the intrusion from Scheel (2007). Stars indicate average mineral compositions for clinopyroxene (white) and hornblende (grey) from EMPA analyses. Figure 2.13. Diagrams of MgO vs. select compatible trace elements for whole rock samples from the Turnagain intrusion. Black symbols represent samples from the DJ/DB zone, whereas grey symbols indicate samples from other parts of the intrusion from Scheel (2007). 67    Figure 2.14. A) Chondrite-normalized rare earth element patterns and B) N-MORB-normalized extended trace element patterns for samples from the DJ/DB zone of the Turnagain intrusion. Note that Nb and Ta were below detection limit in most samples. Open symbols represent samples with combined Pt+Pd concentrations greater than 500 ppb. Fields indicate the range of compositions for hornblendite (dark grey) and clinopyroxenite (light grey) samples from older parts of the intrusion (Scheel, 2007). The anomalous sample is a partially digested sedimentary clast. Normalizing values are from McDonough and Sun (1995). 68  total REE values than samples with low Pt+Pd. Extended trace element diagrams for clinopyroxenites show distinctive enrichment in large ion lithophile elements relative to N-MORB and strong depletions in Nb and Ta (below detection limit in clinopyroxenites) (Figure 2.14), features that are characteristic of an arc mantle source for the magmas that crystallized to produce the clinopyroxenites (Stern, 2002). Relative depletion of Zr and Hf and enrichment of K, Sr, and Ti exhibited in the clinopyroxenites is related to the mineralogy of these cumulates; clinopyroxene does not fractionate Zr-Hf (Green et al., 2000), whereas amphibole can strongly partition K and Ti (Green, 1994). The hornblendites span a narrow range of MgO from 12.2 to 13.4 wt. % (Mg# = 0.64-0.70), and they have higher Al2O3 (11.1-13.8 wt. %) and TiO2 (1.4-2.4 wt. %) compared to the clinopyroxenites (Figure 2.12). Copper concentrations in the hornblendites range from 86-2420 ppm, significantly lower than in clinopyroxenite, and Ni values are extremely low (Figure 2.13). Chondrite-normalized REE patterns for hornblendites also exhibit concave-downwards patterns in the light REE ((La/Yb)cn = 1.0-2.2) (Figure 2.14). The hornblendites have higher total REE than clinopyroxenites from the DJ/DB zone (Figure 2.14). As with the clinopyroxenites, the hornblendites show enrichment in large ion lithophile elements relative to N-MORB (Figure 2.14) and Nb-Ta depletion. 2.5.3 Sulphide and platinum group element mineralization 2.5.3.1 Base metal sulphides Base metal sulphides in the DJ/DB zone consist primarily of pyrrhotite, chalcopyrite, pyrite, and minor pentlandite (Figure 2.15, Table 2.7). Trace and accessory sulphide phases include millerite (NiS), sphalerite (ZnS), bornite (Cu5FeS4), siegenite [(Ni,Co)3S4], marcasite (FeS2), galena (PbS), and molybdenite (MoS2) (Table 2.7). Pyrrhotite is the dominant sulphide, forming sub-millimetre to 3 mm diameter grains both interstitial to silicates and as blebs within silicates (Figure 2.15 A,C,D,E,F). Pyrrhotite compositions (n= 45) range from Fe58.7S39.5 to Fe61.6S38.9 (average= Fe60.3Ni0.29S39.3) with a maximum Ni content of 1 wt. % (Figure 2.16, Table 2.8, Appendix F). Chalcopyrite is commonly   69   Table 2.7. Mineralogy of Ni-Cu-PGE mineralization in the DJ/DB zone of the Turnagain intrusionMineral (abbreviation) Formula* Description Relevant FiguresMajor base metal mineralspyrrhotite (po) Fe1-xS most abundant sulphide; interstitial to silicates, locally blebby, associated with ccpFigs. 2.9 A,B,E,F; 2.15 A,C-F; 2.17 A-D; 2.18 C,E; 2.20 A-C,H; 2.21 B-Dchalcopyrite (ccp) CuFeS2 dominant Cu-rich mineral; blebby within and interstitial to silicates, commonly found with po, host for arsenic- and antimony-bearing mineralsFigs. 2.15 A-D,F; 2.17 B-D; 2.18 A-C,E,F; 2.20 A,B,D,E,G,I; 2.21 A,C,Dpyrite (py) FeS2 blocky, intergrown with po, ccp, pn; rarely in veins Figs. 2.15 C,D; 2.18 CMinor and trace base metal mineralspentlandite (pn) (Fe, Ni)9S8 blocky grains and exsolution lamellae within po, rarely within ccpFigs. 2.15 E,F; 2.18 A,F; 2.20 Fsiegenite (Ni,Co)3S4 rare, fine-grained, associated with py, ccp, pn, magmillerite NiS rare, fine-grained, associated with py, ccp, sp, pnsphalerite (sp) ZnS rare, fine-grained, associated with ccp, py, mlr, bngalena (gn) PbS rare, submicron grains associated with ccp and arsenic- and antimony-bearing mineralsFig. 2.18 E,Fmarcasite FeS2 rare, alteration product of po and exsolution lamellae in pobornite Cu5FeS4 very rare, associated with ccp, spmolybdenite MoS2 very rare, in strongly altered sample, anhedralArsenic- and antimony-bearing mineralscobaltite (cbt) CoAsS euhedral to anhedral grains associated with ccp, po, mt; commonly includes nc, pnFigs. 2.15 B; 2.18 A-Dnickeline (nc) NiAs rare, anhedral grains associated with ccp, cbt, gf, py Fig. 2.18 A, B, Fgersdorffite (gf) NiAsS rare, anhedral grains associated with ccp, cbt; rarely includes ncFig. 2.18 E, Fullmannite (ull) NiSbS very rare, anhedral grains in ccp, associated with other arsenic- and antimony-bearing phasesFig. 2.18 Ftucekite (tc) Ni9Sb2S8 very rare, anhedral grains in ccp, associated with other arsenic- and antimony-bearing phasesFig. 2.18 Fhauchecornite (hcr) Ni9Bi(Sb,Bi)S8 very rare, forms rims on tucekite Fig. 2.18 FPlatinum group mineralssperrylite (spy) PtAs subhedral to anhedral, <20 µm diameter grains associated with ccp, po, cbt, mag, silicate; as 1-10 rims on cpy, po; commonly intergrown with sdFigs. 2.17 A,B,G-I; 2.18 A-D; 2.20 A,B,G-I; 2.21 A-Dsudburyite (sd) PdSb subhedral to anhedral, <20 µm diameter grains associated with ccp, po, cbt, mag, silicate; as 1-10 rims on cpy, po; commonly intergrown  with spyFigs. 2.17 B,D; 2.20 C,E-G; 2.21 A,Cungavaite Pd4Sb3 rare, submicroscopic grains, subhedral, associated with pogenkinite (Pt,Pd)4Sb3 rare, submicroscopic grains, subhedral, associated with potestibiopalladite (tbp) PdTe(Sb,Te) rare, submicroscopic grains, subhedral, associated with po, ccpFig. 2.20 DPd-melonite (Ni,Pd)Te2 rare, submicroscopic grains, subhedral, associated with mag, po* see Appendix F for mineral chemistry70    Figure 2.15. Photomicrographs in reflected light of base metal sulphide minerals from the DJ/DB zone. A) DDH07-211-5: coarse-grained interstitial pyrrhotite bleb with chalcopyrite along grain boundaries of surrounding clinopyroxene grains. B) DDH07-211-4: chalcopyrite bleb in clinopyroxenite containing a grain of subhedral cobaltite in pyroxene. C) DDH07-211-4: coarse-grained euhedral pyrite in a bleb of pyrrhotite and chalcopyrite. D) DDH07-211-4: an aggregate of subhedral pyrite in a composite bleb of pyrrhotite and chalcopyrite. E) DDH05-88-102: blocky pentlandite in pyrrhotite. F) DDH05-98-2: pentlandite exsolution lamellae (i.e., flames) within pyrrhotite. Mineral abbreviations: cpx, clinopyroxene, po, pyrrhotite; ccp, chalcopyrite; cbt, cobaltite; py, pyrite; mag; magnetite; pn, pentlandite; amp, amphibole; phl, phlogopite. 71  intergrown with pyrrhotite and forms either interstitial to silicates or as blebs within silicates (Figure 2.15 A,B,C,D). Chalcopyrite compositions are stoichiometric (average=Cu1.01Fe0.99S2, n=42). Pyrite is observed as either aggregates of subhedral to euhedral grains within pyrrhotite and chalcopyrite (Figure 2.15 C,F), or as anhedral grains in veinlets that crosscut silicates. Pyrite compositions are stoichiometric (Fe0.99S2, n=29), although some grains contain up to 3.4 wt. % Co (Figure 2.16, Table 2.8, Appendix F). Pentlandite forms both as subhedral, sub-millimeter grains in pyrrhotite and chalcopyrite and as exsolved flames within pyrrhotite (Figure 2.15 E,F). Pentlandite (n=20) has an average composition of (Ni4.60Fe3.81Co0.54)S8, but is characterized by lower Ni and higher Co contents when present as inclusions and flames within pyrrhotite, and in strongly altered samples [average=(Fe3.91Ni3.72Co1.39)S8] (Figure 2.16, Table 2.8, Appendix F). Sulphides in moderately to intensely hydrothermally altered samples exhibit evidence of desulphurization (Figure 2.17 A,B), in which sulphide has been removed by hydrothermal fluids and replaced by alteration minerals, commonly chlorite. Sulphides in some altered samples also exhibit remobilization (Figure 2.17 C,D) into intergranular space between silicates and cracks within sulphides and silicates. Remobilized sulphides in intensely altered samples contain inclusions of alteration minerals (e.g., tremolite, talc). 2.5.3.2 Arsenides, sulpharsenides and sulphantimonides The DJ/DB zone contains a wide variety of arsenic- and antimony-bearing accessory minerals (Table 2.7, Figure 2.18). Nickeline (NiAs), present as anhedral grains enclosed within cobaltite and gersdorffite (Figure 2.18 A,B,F), has approximately stoichiometric compositions [average=(Ni0.96Fe0.01)(As0.96Sb0.03S0.02), n=4] (Figure 2.16, Appendix F). Sulpharsenide and sulphantimonide minerals include cobaltite (CoAsS), gersdorffite (NiAsS), ullmannite (NiSbS), tucekite (Ni9Sb2S8), and hauchecornite (Ni9Bi(Sb,Bi)S8). Cobaltite is observed as one of two forms: 1) anhedral grains or grain aggregates within chalcopyrite, rarely enclosing grains of nickeline and pentlandite (Figure 2.18 A,B); or 2) equant, euhedral grains (~50 µm) associated with chalcopyrite, pyrrhotite, and magnetite (Figure 2.15 B, Figure 2.18 C,D). The average cobaltite composition (n=8) 72  is (Co0.86Fe0.07Ni0.07)As0.97S1.02 (Figure 2.16, Table 2.8, Appendix F) with some grains containing up to 1.3 wt. % Pt and 0.5 wt. % Pd. Gersdorffite commonly occurs as subhedral to anhedral grains within chalcopyrite, rarely enclosing nickeline (Figure 2.18 E,F). Gersdorffite and cobaltite form a solid-solution series with gersdorffite compositions (n=8) ranging from nickel-rich (Ni0.98Co0.02Fe0.02)AsS to cobalt-rich (Co0.60Ni0.34Fe0.04)AsS (Figure 2.16, Table 2.8, Appendix F), with no appreciable Pt or Pd. Ullmanite, tucekite, and hauchecornite are only observed in one sample (DDH07-211-1), in a single chalcopyrite bleb. Ullmannite is found as submicron to 10 µm grains, whereas tucekite is observed as 20-50 µm grains with 1-5 µm thick rims of hauchecornite (Figure 2.18 F). 2.5.3.3 Platinum group minerals Platinum- and palladium-bearing PGM have been identified in samples from the DJ/DB zone. The two dominant phases are sperrylite (PtAs2) and sudburyite (PdSb), with rare occurrences of Pd-melonite [(Ni,Pd)Te2], ungavaite (Pd4Sb3), testibiopalladite [PdTe(Sb,Te)], and genkinite [(Pt,Pd)4Sb3] (Figure 2.19, Table 2.7, Table 2.9). All varieties of PGM commonly form equant to lath-shaped grains that range in size from submicron to 40 µm grains (Figure 2.20). They are observed included within and along grain boundaries between chalcopyrite, pyrrhotite, cobaltite, magnetite, chlorite, and clinopyroxene. Sperrylite and sudburyite are commonly intergrown with one another, and are rarely observed as 1-10 µm partial rims around chalcopyrite and pyrrhotite (Figure 2.21). Sperrylite compositions are near stoichiometric (average=Pt0.77As1.68), but can contain up to 1 wt. % Pd (Table 2.10). Sudburyite compositions are stoichiometric (average=Pd0.93Sb0.98) (Table 2.10).       Table 2.8. Representative sulphide and arsenide compositions from electron microprobe analyses from the DJ/DB zone of the Turnagain intrusionSample DDH04-48-8 DDH04-58-5 DDH05-83-1 DDH05-88-1 DDH05-88-104 DDH05-89-2 DDH05-101-1 DDH05-101-5 DDH05-102-7 DDH05-102-12Rock type* Ol (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteclinopyroxenite clinopyroxenite clinopyroxenite with Cal-Hbl veinOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteCal-Chl vein in clinopyroxeniteclinopyroxenite clinopyroxeniteRock texture† D D D and M D NT and VH D-B D NT and D-B D-NT D-NTPyrrhotite (Fe 1-x S)Texture† M D D-NT D D D bleb NTS 38.80 39.45 39.18 38.68 39.26 39.19 39.73 38.74Fe 60.45 58.74 60.22 60.51 60.02 60.53 60.10 60.24Co 0.10 0.03 0.09 0.04 0.06 0.06 0.15 0.16Ni 0.14 0.66 0.08 0.75 0.52 0.20 0.44 0.44Cu 0.00 0.02 0.02 0.00 0.04 0.01 0.00 0.00Total 99.49 98.90 99.59 99.99 99.90 99.99 100.43 99.58Chalcopyrite (CuFeS 2 )Texture† D D M incl. D-NT D D D-NT D NTS 34.35 34.28 34.24 34.82 34.32 35.25 34.11 34.26 34.66 34.69Fe 31.13 30.82 30.75 29.99 31.06 30.01 30.95 31.37 30.85 31.05Co 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.03 0.02Ni 0.04 0.00 0.00 0.05 0.02 0.00 0.01 0.03 0.08 0.00Cu 34.10 34.31 34.33 34.89 33.72 33.76 34.53 34.60 33.89 34.03Total 99.62 99.41 99.35 99.75 99.12 99.02 99.59 100.27 99.50 99.79Pyrite (FeS 2 )Texture† intergrown w. ccp porphyroblast vein D-NT intergrown w. ccp/po porphyroblast D-NTS 53.45 53.97 52.70 53.69 53.28 53.38 53.58Fe 46.18 47.13 46.78 45.99 45.29 45.54 47.75Co 1.15 0.03 0.11 0.01 2.69 2.17 0.03Ni 0.05 0.12 0.12 0.05 0.02 0.02 0.04Cu 0.06 0.00 0.01 0.00 0.13 0.02 0.03Total 100.88 101.24 99.72 99.74 101.42 101.13 101.42Pentlandite ((Fe,Ni) 9 S 8 )Texture† incl. in py D flame intergrown w. ccp/po flameS 33.14 32.45 33.83 32.46 33.54Fe 25.92 27.90 27.95 29.26 28.28Co 0.51 5.41 10.71 3.05 9.33Ni 33.81 34.45 28.52 35.26 29.70Cu 0.12 0.01 0.00 0.00 0.00Total 93.50 100.22 101.02 100.03 100.84Arsenides Cobaltite (CoAsS) Cobaltite (CoAsS)Texture† inclusion DS 19.29 20.02Fe 5.43 3.06Co 27.71 29.10Ni 2.34 4.26As 45.41 43.87Sb 0.00 0.00Total 100.17 100.31All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite,Hbl = hornblende, Chl = chlorite, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated, B = blebby, NT = net-textured, M = massive VH = vein-hosted; ccp = chalcopyrite, po = pyrrhotite, cbt = cobaltite, py=pyrite; incl. = inclusion, w. = intergrown with73  70  70  70     Table 2.8.(continued) Representative sulphide and arsenide compositions from electron microprobe analyses from the DJ/DB zone of the Turnagain intrusionSample DDH06-149-2 DDH06-161-3 DDH07-207-7 DDH07-207-11 DDH07-211-1 DDH07-211-4 DDH07-211-107 DDH07-211-108Rock type* Ol (Srp-Mag) clinopyroxeniteTr-Tlc altd clinopyroxeniteTr altd clinopyroxeniteclinopyroxenite clinopyroxenite hornblendite Hbl clinopyroxeniteHbl clinopyroxeniteRock texture† D D-NT NT-L B-NT D-B D B-NT D-NTPyrrhotiteTexture† NT D-NT D-NT D D-NT MS 38.83 38.89 39.34 39.97 40.09 39.71Fe 61.38 60.77 60.44 60.18 60.26 59.39Co 0.01 0.11 0.13 0.17 0.23 0.00Ni 0.14 0.04 0.29 0.05 0.06 1.06Cu 0.11 0.00 0.00 0.02 0.01 0.05Total 100.47 99.81 100.20 100.39 100.64 100.50ChalcopyriteTexture† D NT D D D D D-NT MS 34.20 34.56 34.19 34.92 33.98 34.95 35.10 34.68Fe 30.94 30.51 31.15 30.28 30.73 30.67 30.21 30.94Co 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00Ni 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.01Cu 35.07 35.37 34.51 34.35 34.00 35.12 35.03 34.61Total 100.22 100.48 99.87 99.56 98.92 100.75 100.34 100.60PyriteTexture† intergrown w. mt/cbt porphyroblast vein vein intergrown w. ccpS 51.24 53.88 54.13 54.98 53.89Fe 42.39 45.26 47.29 46.00 46.15Co 5.19 2.24 0.00 0.19 1.71Ni 0.01 0.02 0.11 0.05 0.25Cu 0.05 0.03 0.00 0.01 0.07Total 98.88 101.42 101.53 101.23 102.53PentlanditeTexture† D vein incl. in ccpS 33.51 32.81 32.84Fe 28.57 25.99 30.43Co 16.36 0.48 0.02Ni 22.38 40.47 36.99Cu 0.03 0.03 0.01Total 100.85 100.06 100.68Cobaltite (CoAsS) Gersdorffite (NiAsS)Texture† D incl. in ccpS 19.46 19.18Fe 2.73 0.38Co 31.74 1.21Ni 1.67 32.64As 44.89 44.61Sb 0.06 0.67Total 100.54 99.50All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite,Hbl = hornblende, Chl = chlorite, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated, B = blebby, NT = net-textured, M = massive VH = vein-hosted; ccp = chalcopyrite, po = pyrrhotite, cbt = cobaltite, py=pyrite; incl. = inclusion, w. = intergrown with74  71  71  71 75    Figure 2.17. Photomicrographs and backscatter electron (BSE) images of sulphides in altered samples that exhibit desulphurization and remobilization. A) DDH07-207-11: partially desulphurized grains of pyrrhotite in chlorite-altered clinopyroxenite. B) DDH05-88-1: sudburyite along the periphery of a chalcopyrite grain in clinopyroxenite; chalcopyrite has been partially replaced by chlorite along contacts with clinopyroxene grains. C) DDH05-101-2: fractured pyrrhotite bleb in clinopyroxenite with remobilized chalcopyrite and minor pyrrhotite along fractures within pyrrhotite and altered clinopyroxene grains. D) DDH06-161-3 remobilized pyrrhotite in  strongly altered clinopyroxenite; pyrrhotite contains inclusions of altered clinopyroxene (tremolite/talc), magnetite, and sudburyite. Mineral abbreviations as in Fig. 2.15, except: chl, chlorite; sd, sudburyite; tr/tlc, tremolite/talc. Figure 2.16. Ternary compositions of Ni-, Fe-, and S-bearing base metal sulphides (left) and Ni-, Co-, and As-/S-bearing base metal sulphides/arsenides (right) in the DJ/DB zone of the Turnagain intrusion. Analyses are EPMA results in weight percent normalized to 100%. 76   Figure 2.18. Photomicrographs and backscatter electron (BSE) images of arsenide, sulpharsenide and sulphantimonide minerals from the DJ/DB zone. A) DDH07-211-1: chalcopyrite bleb containing subhedral to anhedral cobaltite. Anhedral crystals of pentlandite and nickeline are enclosed in cobaltite. B) DDH07-211-1: nickeline within cobaltite at the periphery of a chalcopyrite bleb. C) DDH07-211-5: fractured, euhedral grain of cobaltite in pyrrhotite in clinopyroxenite; pyrrhotite also contains pyrite and chalcopyrite. D) DDH05-101-1: two subhedral cobaltite crystals in serpentine near magnetite. E) DDH07-211-1: subhedral, cobalt-rich gersdorffite within chalcopyrite with galena in fractures. F) DDH07-211-1: chalcopyrite bleb containing blebs of pentlandite, galena, gersdorffite, ullmannite, and tucekite; nickeline is enclosed in gersdorffite, and tucekite is partly rimmed by hauchecornite. Mineral abbreviations as in Fig. 2.15, except: nc, nickeline; chl, chlorite; srp, serpentine; gf, gersdorffite; gn, galena; ull, ullmannite; tc, tucekite; hcr, hauchecornite. 77   Sample Rock typeSperrylite (PtAs2)Sudburyite (PdSb)other PGMDDH04-59-1 Ol (Srp-Mag) clinopyroxenite X XDDH05-83-1* clinopyroxenite Pd-melonite [(Ni,Pd)Te2]DDH05-88-1* clinopyroxenite X X PdAgSbTeDDH05-89-2* Ol (Srp-Mag) clinopyroxenite X ungavaite (Pd4Sb3)DDH05-101-1* Ol (Srp-Mag) clinopyroxenite XDDH05-101-5* Cal-Chl vein in clinopyroxenite XDDH05-102-5 clinopyroxenite X XDDH05-102-7* clinopyroxenite X genkinite? [(Pt,Pd)4Sb3]DDH06-149-2* Ol (Srp-Mag) clinopyroxenite XDDH06-161-1 clinopyroxenite/hornblendite contactX XDDH06-161-3* Tr-Tlc altd clinopyroxenite X X testibiopalladite? [PdTe(Sb,Te)]DDH07-211-4* hornblendite XDDH07-211-5 clinopyroxenite XDDH07-211-10 clinopyroxenite XDDH07-211-11 Ol (Srp-Mag) clinopyroxenite XDDH07-211-110 Ol (Srp-Mag) clinopyroxenite X*Petrography, SEM, and microprobe analysis completed by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Mineral abbreviations: Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Chl = chlorite, Tr = tremolite, Tlc = talcTable 2.9. Summary of platinum group minerals (PGM) from microprobe and SEM analyses of samples from the DJ/DB zone of the Turnagain intrusionFigure 2.19. Distribution of platinum group minerals by A) total 2-dimensional area of measured grains, B) total number of grains observed, C) association with other minerals, and D) grain shape.    Table 2.10. Electron microprobe analyses of platinum group minerals from the DJ/DB zone of the Turnagain intrusionSample Host Rock1Mineralization Texture2Host Mineral3S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalSperryliteDDH05-88-1 clinopyroxenite D po 0.01 0.07 0.10 0.13 0.04 42.16 0.22 0.95 2.72 0.18 51.91 0.02 0.73 99.24DDH05-88-1 clinopyroxenite D po 0.28 0.13 0.05 0.05 43.19 0.21 2.15 0.01 1.83 0.24 51.09 0.33 0.19 99.74DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD cbt 10.81 0.03 0.81 15.13 0.64 0.02 41.47 0.24 0.56 0.11 0.13 0.03 31.00 0.34 101.32DDH05-101-5Cal-Chl vein in clinopyroxeniteD-NT po 5.64 9.02 0.18 0.07 0.01 37.63 0.20 2.03 0.16 3.16 1.12 45.19 0.15 104.56DDH05-101-5Cal-Chl vein in clinopyroxeniteD-NT gangue 1.01 2.24 0.10 0.03 0.21 37.50 0.18 0.72 0.14 0.06 1.32 49.09 0.03 0.48 0.01 93.11DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD cbt 1.60 0.02 0.38 4.39 0.46 0.07 41.28 0.24 0.11 3.87 0.04 51.97 0.29 104.72DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT gangue 0.27 0.02 0.18 0.09 0.06 0.04 41.42 0.22 0.42 2.63 0.63 53.97 0.01 0.31 0.14 100.39SudburyiteDDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT gangue 0.14 0.11 0.56 0.04 18.23 0.11 24.34 0.02 43.56DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT gangue 0.03 0.02 0.03 0.44 0.40 0.06 0.15 46.10 0.26 51.86 0.52 0.25 0.02 0.05 100.19DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT po 0.27 0.02 1.67 0.04 0.15 43.75 0.32 52.20 1.00 0.01 99.43Pd-meloniteDDH05-83-1 clinopyroxenite M po, gangue 1.28 14.32 0.07 0.04 4.23 0.01 0.60 80.12 0.05 0.04 0.06 100.82DDH05-83-1 clinopyroxenite M po 14.43 0.03 21.05 0.98 9.95 0.02 0.01 2.95 0.35 54.13 0.02 0.03 103.94DDH05-83-1 clinopyroxenite M mag, po 1.34 14.13 0.01 0.03 4.07 0.56 81.29 0.05 0.09 101.57UngavaiteDDH05-89-2Ol (Srp-Mag) clinopyroxeniteD po 0.22 0.48 0.03 0.09 0.11 47.34 0.20 46.65 2.44 0.10 1.63 99.28(Pd,Ni)(Sb,Te)2*DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT po 0.04 0.02 0.15 1.14 0.03 0.01 0.17 0.01 28.33 0.24 46.91 24.36 0.01 0.03 101.44DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT po 0.03 0.12 1.49 0.19 0.01 0.12 27.73 0.24 45.61 26.51 0.01 0.07 102.11DDH06-161-3Tr-Tlc altd clinopyroxeniteD-NT po 0.12 0.01 0.16 2.03 0.70 0.07 0.10 26.42 0.19 42.81 28.66 0.22 0.07 101.55(Pd,Pt)x(Sb,As)x-1**DDH05-102-7 clinopyroxenite D-NT po, cpx 12.35 0.01 17.29 0.18 0.35 0.12 0.08 3.49 0.05 33.60 20.42 0.18 10.51 0.06 0.08 98.76AgxSbTeDDH07-211-1 clinopyroxenite D ccp 0.94 0.39 0.05 2.32 0.39 0.05 62.17 0.38 4.42 8.66 0.02 0.00 0.10 3.22 83.09PdAgSbTe?DDH05-88-1 clinopyroxenite D po 31.49 45.78 0.03 0.77 0.02 0.01 0.05 0.02 6.64 3.94 0.03 5.19 4.29 0.13 0.01 0.09 0.07 1.04 99.59All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)1 Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Chl = chlorite, Tr = tremolite, Tlc = talc, altd = altered2 D = disseminated, NT = net-textured, M = massive; 3 cbt = cobaltite, po = pyrrhotite, mag = magnetite, cpx = clinopyroxene, ccp = chalcopyrite* possibly a Sb-rich variety of testibiopalladite [PdTe(Sb,Te)]** possibly a Pd-rich version of genkinite [(Pt,Pd)4Sb3]78  76  76  76 79    Figure 2.20. Backscatter electron (BSE) images of platinum group minerals from the DJ/DB zone. A) DDH07-211-5: sperrylite inclusions in chalcopyrite with minor pyrrhotite. B) DDH07-211-5: sperrylite in pyrrhotite, near a contact with chalcopyrite. C) DDH06-161-3: sudburyite grain enclosed in pyrrhotite. D) DDH06-161-3: anhedral grain of testibiopalladite in chalcopyrite. E) DDH05-88-1: sudburyite on the periphery of a chalcopyrite bleb in contact with clinopyroxene. F) DDH05-88-1: sudburyite in chlorite, adjacent to pentlandite and clinopyroxene. G) DDH04-59-1: sudburyite and sperrylite grains in chlorite near magnetite. H) DDH07-211-11: sperrylite in chlorite around clinopyroxene. I) DDH05-88-1: satellite grain of sperrylite in clinopyroxene and adjacent to a chalcopyrite bleb. Mineral abbreviations as in Fig. 2.17, except: spy, sperrylite; sd, sudburyite; tr, tremolite; tbp, testibiopalladite. 80    Figure 2.21. Backscatter electron (BSE) images of platinum group minerals forming rims around sulphides in the DJ/DB zone. A) DDH05-88-1: sudburyite along the periphery of a chalcopyrite grain enclosing a small grain of sperrylite. B) DDH05-88-1: rims and inclusions of sperrylite in pyrrhotite blebs. C) DDH05-102-5: sperrylite and sudburyite rims and fracture-controlled veinlets along a composite grain of chalcopyrite and pyrrhotite. D) DDH05-88-1: pyrrhotite bleb with a partial rim and veinlets of sperrylite. Mineral abbreviations as in Fig. 2.19. 81  2.5.4 Chalcophile and platinum group element geochemistry Whole rock Ni-Cu-PGE (Ir, Ru, Rh, Pd, Pt) and Au concentrations were determined for 14 clinopyroxenites and 6 hornblendites from the DJ/DB zone (Table 2.11). These results are compared to analyses reported in Scheel (2007) for ultramafic rocks from the older phases of the Turnagain intrusion. Sulphur contents of samples from the DJ/DB zone are typically low (0.06-9.3 wt. %, avg=2.8 wt. %), reflecting the low quantities of disseminated sulphide in these rocks. Nickel (61-2431 ppm) and copper (30-11753 ppm) concentrations show poor correlation with sulphur, whereas cobalt (42-401 ppm) is moderately to strongly correlated with sulphur (Figure 2.22). There is little to no correlation between sulphur and Pt+Pd (1.78-1387 ppb) (Figure 2.22), consistent with the presence of PGM grains. Platinum and Pd concentrations in clinopyroxenites range from 1.0-629 ppb and 0.8-758 ppb, respectively, with Pt/Pd=0.3-2.8, (average Pt/Pd=1.0) (Figure 2.23). Platinum and Pd concentrations are lower in hornblendites (1.9-193 ppb and 3.3-332 ppb, respectively) with a more restricted range of Pt/Pd ratios (0.5-1.0, avg=0.7) (Figure 2.23). Primitive mantle-normalized PGE patterns for rocks of the DJ/DB zone exhibit significant copper enrichment with Ni contents either near or slightly below those of primitive mantle (average Ni/Cu=0.7) (Figure 2.24), a feature that is more evident in hornblendite (Ni/Cumax=1.3) than in clinopyroxenite (Ni/Cumax=7.7). Clinopyroxenites show significant enrichment in Pt and Pd relative to primitive mantle and range up to two orders of magnitude higher than clinopyroxenites in older phases of the intrusion (Pd/Ir=19.1, Scheel, 2007) (Figure 2.24), with the exception of one biotite-magnetite-rich sample (DDH04-48-9). Clinopyroxenites also display moderate depletion to slight enrichment in IPGE (Ir, Ru, Os) and Au relative to primitive mantle (average Pd/Ir=261) (Figure 2.24). Hornblendites exhibit similar Pt and Pd enrichment and IPGE+Au depletion as the clinopyroxenites, although not as pronounced (average Pd/Ir=255) (Figure 2.24).    Sample DDH07-201-1 DDH07-207-14 DDH07-207-14 (duplicate)DDH07-207-16 DDH03-07-1 DDH06-143-1 DDH05-102-1 DDH04-48-6Rock Type phyllitehornfelsed phyllitehornfelsed phyllitehornfelsed phylliteTlc+Cb altd phylliteTlc altd dunite Srp altd wehrliteOl (Srp-Mag) clinopyroxeniteDrillhole DDH07-201 DDH07-207 DDH07-207 DDH07-207 DDH03-07 DDH06-143 DDH05-102 DDH04-48Depth (m) 655.5 231.95 231.95 261.8 432.8 186.4 53.3 78.75Base metals (ppm)1Detection limitCu 3 140 157 164 75 293 2947 83 394Ni 6 78 52 57 43 622 6877 811 109Co 30 bdl bdl 33 bdl 145 632 98 53Cd 5 na na na na na na na naPb 12 bdl bdl bdl bdl bdl bdl bdl bdlZn 6 180 110 113 141 22 64 55 33Li 5 na na na na na na na naPlatinum group elements (ppb)2Ir 0.01 0.06 0.04 0.04 0.04 0.69 1.5 0.48 1.12Ru 0.08 bdl 0.36 1.79 0.8 0.12Rh 0.02 0.16 0.11 0.16 0.1 0.7 4.33 0.7 7.21Pt 0.17 3.67 1.79 1.63 1.44 9.78 225 7.28 629Pd 0.12 4.83 3.86 3.68 2.13 11.9 184 8.26 758Au 0.22 1.04 bdl bdl 0.51 1.93 37.3 0.39 2.24Major elements (wt. %)3CO2 0.03 9.29 6.15 6.06 4.22 18.7 6.53 0.95 0.15S 0.01 0.84 3.2 3.27 3.74 0.82 19.4 0.16 0.06†Analyses were performed at Geological Laboratories Inc., Sudbury, ON.1AAF-100=Atomic absorption spectroscopy flame analysis; 2IMP-200=Nickel sulphide fire assay with ICP-MS analysis; 3IRC-100=IrradiationTlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below detection limit, na = not analysedTable 2.11. Whole rock chalcophile and platinum group element concentrations for sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion†82  79  79  79    Sample DDH05-89-2 DDH07-207-3 DDH07-207-3 (duplicate)DDH07-211-110 DDH04-48-9 DDH05-101-3 DDH05-102-5 DDH05-102-5 (duplicate)Rock TypeOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteMag clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteDrillhole DDH05-89 DDH07-207 DDH07-207 DDH07-211 DDH04-48 DDH05-101 DDH05-102 DDH05-102Depth (m) 69.26 142.72 142.72 202.97 147.3 148.65 145.15 145.15Base metals (ppm)1Detection limitCu 3 2077 2020 2054 30 1870 6810 514 569Ni 6 441 293 300 230 130 287 198 198Co 30 122 175 185 80 86 133 85 85Cd 5 na na na na na na na naPb 12 bdl bdl bdl bdl bdl bdl bdl bdlZn 6 37 36 37 39 87 56 38 43Li 5 na na na na na na na naPlatinum group elements (ppb)2Ir 0.01 1.3 0.09 0.09 0.16 0.04 6.81 2.68 2.68Ru 0.08 0.16 bdl 0.35 0.37 0.36Rh 0.02 1.01 0.26 0.39 0.5 0.61 7.64 13.8 13.4Pt 0.17 110 21.8 21.5 14.4 0.95 369 553 552Pd 0.12 116 42.9 44.5 16.5 0.83 298 629 607Au 0.22 0.62 2.14 2.04 0.24 0.69 0.88 0.61 0.65Major elements (wt. %)3CO2 0.03 0.08 0.34 0.36 0.23 0.27 0.75 0.11 0.12S 0.01 1.38 2.75 2.83 0.07 0.22 3.37 1.52 1.54†Analyses were performed at Geological Laboratories Inc., Sudbury, ON.1AAF-100=Atomic absorption spectroscopy flame analysis; 2IMP-200=Nickel sulphide fire assay with ICP-MS analysis; 3IRC-100=IrradiationTlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below detection limit, na = not analysedTable 2.11.(continued) Whole rock chalcophile and platinum group element concentrations for sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion†83  79  79  79    Sample DDH05-102-12 DDH07-207-11 DDH07-207-13 DDH07-211-1 DDH07-211-5 DDH07-211-10 DDH07-211-7 DDH04-48-3Rock Type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteHbl clinopyroxeniteCpx hornblenditeDrillhole DDH05-102 DDH07-207 DDH07-207 DDH07-211 DDH07-211 DDH07-211 DDH07-211 DDH04-48Depth (m) 242.8 205.52 226.4 150.4 157.9 171.5 164.8 53.3Base metals (ppm)1Detection limitCu 3 1598 628 876 11753 8845 3515 6036 86Ni 6 609 360 70 1953 2431 1830 1794 112Co 30 311 117 42 150 347 245 401 54Cd 5 na na na bdl bdl bdl bdl naPb 12 bdl bdl bdl bdl bdl bdl bdl bdlZn 6 26 29 53 45 43 38 62 44Li 5 na na na 45 25 23 27 naPlatinum group elements (ppb)2Ir 0.01 0.35 3.16 0.51 1.04 25.7 0.16 1.35 0.08Ru 0.08 0.29 0.66 0.6 3.36 0.27 0.49 0.13Rh 0.02 2.03 3.76 1.01 5.63 22.8 0.35 2.14 0.31Pt 0.17 351 221 73.9 373 586 41.8 150 19.1Pd 0.12 127 699 59 526 437 111 117 23.8Au 0.22 0.42 2.7 0.45 19.6 7.75 3.1 2.32 bdlMajor elements (wt. %)3CO2 0.03 0.06 0.03 0.42 0.16 0.18 0.45 0.19 0.36S 0.01 6.8 3.34 0.39 1.37 9.25 5.62 9.22 0.31†Analyses were performed at Geological Laboratories Inc., Sudbury, ON.1AAF-100=Atomic absorption spectroscopy flame analysis; 2IMP-200=Nickel sulphide fire assay with ICP-MS analysis; 3IRC-100=IrradiationTable 2.11.(continued) Whole rock chalcophile and platinum group element concentrations for sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion†Tlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below detection limit, na = not analysed80  80  80  80 84  79  79  79    Sample DDH04-48-4 DDH05-88-105 DDH05-88-111 DDH05-102-15 DDH07-211-4 DDH07-211-6-2Rock Type hornblendite hornblendite hornblendite hornblendite hornblendite hornblenditeDrillhole DDH04-48 DDH05-88 DDH05-88 DDH05-102 DDH07-211 DDH07-211Depth (m) 61.63 62.12 166.5 294.62 154.2 161.6Base metals (ppm)1Detection limitCu 3 399 400 152 561 1444 2420Ni 6 61 85 74 410 106 126Co 30 78 75 63 163 92 119Cd 5 na na na na bdl bdlPb 12 bdl bdl bdl bdl bdl bdlZn 6 53 65 66 92 77 81Li 5 na na na na 23 27Platinum group elements (ppb)2Ir 0.01 0.05 0.03 0.02 0.31 0.26 0.62Ru 0.08 0.1 0.65 0.24 0.16Rh 0.02 0.34 0.2 0.06 1.15 0.18 0.43Pt 0.17 6.79 1.89 2.05 76.8 60.4 193Pd 0.12 7.94 3.88 3.3 108 62.7 332Au 0.22 0.47 0.45 0.28 2.74 1.04 2.34Major elements (wt. %)3CO2 0.03 0.37 0.19 0.11 9.89 0.16 0.8S 0.01 1.46 2.9 1.11 13 1.34 4.02†Analyses were performed at Geological Laboratories Inc., Sudbury, ON.1AAF-100=Atomic absorption spectroscopy flame analysis; 2IMP-200=Nickel sulphide fire assay with ICP-MS analysis; 3IRC-100=IrradiationTlc = talc, Cb = carbonate, Ol = olivine, Mag = magnetite, Srp = serpentine, Hbl = hornblende, Cpx = clinopyroxene, altd = altered, bdl = below detection limit, na = not analysedTable 2.11.(continued) Whole rock chalcophile and platinum group element concentrations for sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusion†85  81  81  81 82  82  82  82 86   Figure 2.22. Chalcophile and platinum group element concentrations of samples from the Turnagain intrusion. Black symbols represent samples from the DJ/DB zone, whereas grey symbols indicate samples from other parts of the intrusion from Scheel (2007). Figure 2.23. Platinum group element concentrations of samples from the Turnagain intrusion. Black symbols represent samples from the DJ/DB zone, whereas grey symbols indicate samples from other parts of the intrusion from Scheel (2007). Note logarithmic axes for PGE. 87   Figure 2.24. Primitive mantle-normalized whole rock PGE patterns of A) hornblende-rich rocks and B) clinopyroxene-rich rocks from the DJ/DB zone. Open symbols represent samples with combined Pt+Pd concentrations >500 ppb. Shaded regions indicate the range of compositions from samples from older parts of the Turnagain intrusion from Scheel (2007). Whole rock analyses are normalized to primitive mantle values from Lyubetskaya and Korenaga (2007). 88  2.5.5 Laser ablation ICP-MS analysis of sulphide minerals Chalcophile (Ni, Cu, Co, Sb, Se, Te, Zn), platinum group element (Pt, Pd, Ir, Ru, Rh), and Au concentrations were determined in situ by LA-ICP-MS for sulphides (pyrrhotite, chalcopyrite, pentlandite, pyrite) in 10 clinopyroxenite and 2 hornblendite samples (Table 2.12, Appendix G). The concentrations of major chalcophile elements (Ni, Cu) are predominantly controlled by mineralogy (i.e., high Ni in pentlandite, high Cu in chalcopyrite) (Figure 2.25). Nickel concentrations in pyrrhotite are variable (801-17966 ppm, avg=5429 ppm). Pyrrhotite from DDH05-88 has low Ni (801-1212 ppm), whereas pyrrhotite in samples from DDH07-211 is characterized by high Ni (4938-17966 ppm) (see Table 2.12 for averages). Platinum group element and Au concentrations were below detection limits in the majority of analyses, with the exception of Pd, which was detected in over half of the analyses (Appendix G).The IPGE are present in low concentrations in all analyzed sulphides (0.001-0.59 ppm). Iridium concentrations are variable in most sulphides and are highest in pyrrhotite (up to 0.35 ppm). Ru and Rh concentrations are generally low, although there is some enrichment of Ru observed in chalcopyrite (up to 0.06 ppm) and Rh in pentlandite (up to 0.09 ppm) and one anomalous analysis in pyrrhotite (0.59 ppm) (Rh analyses for chalcopyrite are not available owing to isotopic interferences). Platinum concentrations, while relatively high in some whole rock samples, are conspicuously low in all of the sulphides analyzed (0.002-0.19 ppm in sulphides vs. 0.28 ppm in whole rock), which is consistent with the presence of Pt in discrete PGM phases, rather than in solid solution within sulphides. Palladium exhibits low to high concentrations in all sulphides (0.002-79.6 ppm, avg=1.47 ppm), with a particular affinity for pentlandite (avg=15.2 ppm). Gold concentrations are moderately to strongly enriched in the sulphides (0.002-0.84 ppm, avg=0.09 ppm), in contrast to the relatively low concentration of Au in whole rock analyses (avg=0.001 ppm). High concentrations of Pd in pentlandite and a general lack of Pt in base metal sulphides are both common characteristics in 89  Sudbury offset ores (Dare et al., 2011) and sulphide-rich samples from Aguablanca, Spain (Piña et al., 2012). 2.5.5.1 Mass balance in the sulphide minerals To establish the proportion (%) of each element hosted within pyrrhotite, chalcopyrite, pentlandite, and the PGM, a mass balance was calculated according to the methods in Online Resource C of Dare et al. (2011) (Appendix H). This calculation requires the whole rock elemental concentrations (Table 2.6) normalized to 100% sulphide, the weight fraction (in %) of each mineral phase, as determined from whole rock geochemistry and EMPA (as described below), and the average concentration of each element in each sulphide and PGM phase (Table 2.12). The contribution of pyrite to the mass balance was deemed to be negligible (<1%). The weight fraction of each mineral phase in 100% sulphide was calculated using whole rock Ni, Cu, and S, and average mineral compositions from EMPA analyses of the sulphide phases (Appendix F). All available Cu in the rock was assigned to chalcopyrite, and all Ni to pentlandite, accounting for Ni dissolved in pyrrhotite (0.28%). The remaining sulphur was attributed to pyrrhotite. As the samples were olivine-poor, the Ni content of the silicate and accessory minerals was deemed insignificant. The contribution of PGM was calculated by estimating the total area of each PGM by measuring the length and width of grains from SEM images. The total area of each mineral was then divided by the total area of the samples in microns (4 samples, approx. 20×35 mm in size) to get the modal fraction. Using the density of the PGM (sperrylite, 10.6 g/cm3; sudburyite, 9.0 g/cm3) and the approximate density of the whole rock (density of clinopyroxene, 3.3 g/cm3, used as a proxy for samples), modal fraction was converted to weight fraction for each PGM (Appendix H). Elements that were below detection limit for whole rock data were not used. Iridium-PGE elements (Ir, Ru, Os), Rh and Au were not used as the concentrations of these elements in the whole rocks were below 1 ppb and were deemed unreliable. Whole rock geochemical data was available for 4 samples for which there are LA-ICP-MS results (DDH05-88-105, DDH05-102-5, DDH05-102-12, DDH07-207-11). 90   Element Ni Ir Ru Rh Pt Pd Au CuMineral # of grains Isotope 61 193 average1 103 195 average2 197 65DDH05-88-1 (clinopyroxenite)Ccp 6 avg 21.4 0.008 nr 0.012 0.106 0.003 332571stdev 10.8 0.004 0 0 0 8639DDH05-88-105 (hornblendite)Po 4 avg 931 0.029 0.028 0.023 0.46stdev 106 0.013 0.012 0 0.06DDH05-88-106 (hornblendite with Cal-Hbl vein)Po 5 avg 1027 0.354 0.011 0.004 0.003 0.028 0.041 0.61stdev 130 0 0.001 0.002 0 0.009 0 0.25Ccp 3 avg 9.34 0.007 nr 0.008 0.145 0.017 324097stdev 3.71 0 0 0.009 0 9546Py 6 avg 70.0 0.007 0.011 0.012 0.014 0.066 0.090 971stdev 50.6 0.002 0.004 0.008 0.009 0.080 0.084 1933DDH05-102-5 (clinopyroxenite)Po 9 avg 4634 0.006 0.025 0.013 0.013 0.018 0.022 169stdev 375 0.005 0.007 0.006 0.002 0.011 0.006 350Ccp 3 avg 38.3 0.003 0.037 nr 2.18 339452stdev 7.65 0 0.025 1.81 11425DDH05-102-9 (Ol clinopyroxenite)Po 10 avg 1289 0.005 0.009 0.004 0.004 0.009 0.008 1.44stdev 30.4 0.003 0.002 0.002 0.002 0.004 0.001 2.04Ccp 2 avg 13.3 nr 0.091 0.009 329266stdev 0.45 0 0 5176DDH05-102-12 (clinopyroxenite)Po 5 avg 3540 0.027 0.034 0.033 0.009 0.008 25.4stdev 483 0 0.016 0 0 0 34.0Ccp 2 avg 22.6 0.017 0.024 nr 0.029 0.124 329800stdev 7.17 0 0 0 0 5950DDH06-161-1 (clinopyroxenite/hornblendite contact)Po 5 avg 3238 0.019 0.003 0.012 0.030 0.011 203stdev 47.7 0.006 0 0.003 0.018 0 396Py 4 avg 569 0.008 0.151 0.025 173stdev 488 0 0.066 0.009 219DDH07-207-11 (clinopyroxenite)Po 8 avg 4147 0.046 0.016 0.010 0.009 0.013 0.244 74.6stdev 226 0.049 0.002 0.005 0.002 0.003 0.238 193Ccp 6 avg 54.1 0.006 nr 0.040 0.042 0.090 327281stdev 37.9 0 0 0.020 0.022 5980Pn 1 4602 0.004 0.015DDH07-211-2-2 (clinopyroxenite)Po 4 avg 13980 0.006 0.016 0.021 0.233 0.011 125stdev 465 0.001 0.006 0 0.301 0.001 149Ccp 5 avg 49.0 0.002 0.019 nr 0.007 0.745 340554stdev 16.5 0.0005 0.022 0 0.716 9495Pn 4 avg 351637 0.013 0.054 0.013 1.46 0.109 308stdev 32977 0.032 0 1.06 0 433nr = not reported due to interferences; blank spaces indicate value was below detection limit; all values are in ppmOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn; 105Pd and 106Pd were corrected for Cd interferenceTable 2.12. Average chalcophile and platinum group element concentrations from laser ablation ICP-MS analysis of select sulphide minerals in the DJ/DB zone of the Turnagain intrusion91     Element Ni Ir Ru Rh Pt Pd Au CuMineral # of grains Isotope 61 193 average1 103 195 average2 197 65DDH07-211-102 (clinopyroxenite)Po 4 avg 5597 0.010 0.032 0.423 0.34stdev 846 0.001 0.038 0.421Ccp 6 avg 27.9 nr 0.008 0.151 0.009 325022stdev 14.5 0.003 0.048 0 7261Py 3 avg 478 0.104 0.275 131stdev 612 0.032 0.077 67.0DDH07-211-108 (Hbl clinopyroxenite)Po 5 avg 11647 0.033 0.299 0.048 1.50 54.1stdev 1702 0.043 0.292 0.016 1.32 64.0Ccp 6 avg 80.9 0.030 nr 0.009 1.48 0.139 330405stdev 88.9 0.023 0 0 0.179 9193Py 9 avg 677 0.024 0.009 0.004 0.040 0.803 0.016 851stdev 779 0.016 0.005 0.002 0.067 0.901 0.007 1422Pn 1 378523 79.63 0.025 31.5DDH07-211-111 (Ol clinopyroxenite)Po 5 avg 16085 0.018 0.004 0.013 0.007 2.66stdev 1045 0.004 0 0.004 0.003 4.25Ccp 5 avg 19.7 0.028 nr 342928stdev 10.2 0 8511Pn 1 367234 5.95nr = not reported due to interferences; blank spaces indicate value was below detection limit; all values are in ppmOl = olivine, Hbl = hornblende; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn; 105Pd and 106Pd were corrected for Cd interferenceTable 2.12. Average chalcophile and platinum group element concentrations from laser ablation ICP-MS analysis of select sulphide minerals in the DJ/DB zone of the Turnagain intrusion92   Figure 2.25. Primitive mantle-normalized PGE patterns of base metal sulphides in A) pyrrhotite, B) chalcopyrite, C) pyrite, and D) pentlandite from the DJ/DB zone. Grey line represents average whole rock (WR) concentrations/primitive mantle for all ablated samples where whole rock data was available. Analyses are normalized to primitive mantle values from Lyubetskaya and Korenaga (2007). Figure 2.26. Mass balance of the PGE and other chalcophile elements in base metal sulphides and PGM from the DJ/DB zone. Plotted as the proportion (%) of each element in pyrrhotite (po), chalcopyrite (ccp), and pentlandite (pn). 93  The mass balance results indicate that pyrrhotite hosts the majority of Co (77%), Se (67%) and Te (50%), with significant Zn (15%) (Figure 2.26). Chalcopyrite contains minor amounts of Se (2%), Te (8%), and Zn (3%). The contribution of pentlandite is either negligible or minimal (Co, Se), however, this may be a function of the low pentlandite content of the samples and a lack of reliable analyses for pentlandite. Sudburyite accounts for the majority of Pd (23%) and Sb (45%) content, with a minor Te (2%) contribution. Sperrylite accounts for the vast majority of available Pt (45%) in the samples, with minor Sb (2%), Te (1%), and Pd (0.5%). Other phases that were not analysed likely account for the remaining proportion of most elements. Pyrite is host to up to 5.2 wt. % Co and up to 0.15 wt. % Pt (Appendix F7). Accessory sphalerite and cobaltite likely account for most of the remaining Zn and Sb proportions, respectively. Cobaltite, gersdorffite and nickeline all contain up to 0.34 wt. % Se (Appendix F7). The remaining Pd and Te and some Sb and Pt are probably contained in other PGM (i.e., Pd-melonite, ungavaite, testipiopalladite, genkinite). Low Pt proportions may be due to underrepresentation of sperrylite in area calculations as numerous sub-micron sperrylite grains are present in the samples, but were not included in the calculations. 2.5.6 Sulphur isotope geochemistry Sulphur isotopic compositions (δ34S) of sulphide mineral separates from clinopyroxenite and hornblendites of the DJ/DB zone (n=33) span a wide range from -14.1‰ to +4.2‰ VCDT (Figure 2.27, Table 2.13). These values slightly overlap with analyses of hornfelsed phyllite and distal, unhornfelsed phyllite that are characteristically lighter (-20.1‰ to -11.6‰ VCDT) (Figure 2.27, Table 2.13). The S isotope geochemistry of the DJ/DB zone broadly overlaps with sulphur isotope values determined by Scheel (2007) from the Horsetrail zone and nearby phyllite. Ultramafic rocks in the Turnagain intrusion display values considerably lighter than the range of values that typically characterize MORB or arc mantle sources (Figure 2.27).   94    Figure 2.27. Sulphur isotope compositions from sulphide-rich rocks in and adjacent to the DJ/DB zone (this study) and various locations throughout the Turnagain intrusion (Scheel, 2007). The orange field represents a range of δ34S compositions from volcanic arcs, as compiled by Manor (2014), taken to represent δ34S values of the mantle wedge (range = +1.4 to +6.5‰). The grey field represents a range of δ34S compositions (-0.91 ± 0.5‰) from MORB glasses, taken to represent MORB mantle values (Labidi et al., 2012). Mineral abbreviations: Hbl = hornblende; Cpx, clinopyroxenite; Ol, olivine; Srp, serpentine; Mag, magnetite. 95     Table 2.13. Sulphur isotope analyses from sulphide-bearing rocks in and adjacent to the DJ/DB zone of the Turnagain intrusionSample Drillhole Depth (m) Rock Type1Texture2Mineral(s) analyzed3S (wt. %) δ34S†DDH05-83-1 DDH05-83 60.8 clinopyroxenite M po 36.1 -8.6DDH05-88-101 DDH05-88 18.42 Hbl clinopyroxenite D-B po, ccp 38.6 4.2DDH05-88-104 DDH05-88 57.23clinopyroxenite with Cal-Hbl veinVH po, py 34.6 2.0DDH05-88-106A DDH05-88 63.41hornblendite with     Cal-Hbl veinVH po, ccp 34.8 -1.7DDH05-88-106B DDH05-88 63.41 hornblendite D-NT po, ccp 29.6 -1.4DDH05-101-5 DDH05-101 169.6Cal-Chl vein in clinopyroxeniteD-NT po, ccp 23.6 0.7DDH05-102-3 DDH05-102 82.25 Hbl clinopyroxenite NT-L po 39.3 -11.0DDH05-102-6 DDH05-102 147.56 clinopyroxenite M po 39.8 -2.3DDH05-102-9 DDH05-102 182.8Ol (Srp-Mag) clinopyroxeniteNT-SM po 38.4 -12.0DDH05-102-12 DDH05-102 242.8 clinopyroxenite D po, py 26.0 -1.6DDH05-102-15 DDH05-102 294.62 hornblendite NT-SM po, ccp 33.2 -14.1DDH06-143-1 DDH06-143 186.4 Tlc altd dunite D py 28.0 -12.3DDH06-161-1 DDH06-161 98.05clinopyroxenite/               hornblendite contactNT-L po 34.6 -6.5DDH06-161-3 DDH06-161 155.9Tr-Tlc altd clinopyroxeniteD-NT po, ccp 36.7 -7.0DDH07-201-1 DDH07-201 655.5 phyllite B po 32.7 -11.6DDH07-207-4 DDH07-207 181.44 clinopyroxenite NT-L po 35.8 -4.5DDH07-207-6 DDH07-207 187.79 clinopyroxenite NT-L po 39.2 -5.6DDH07-207-7 DDH07-207 188.21 Tr altd clinopyroxenite NT-L po 40.4 -4.2DDH07-207-8 DDH07-207 194.97 Hbl clinopyroxenite NT-SM po 37.8 -4.3DDH07-207-13 DDH07-207 226.4 clinopyroxenite D-B po, ccp 28.1 -3.5DDH07-207-14 DDH07-207 231.95 hornfelsed phyllite D po 22.7 -20.1DDH07-207-16 DDH07-207 261.8 hornfelsed phyllite D po 24.9 -19.3DDH07-211-1 DDH07-211 150.4 clinopyroxenite D ccp 25.5 -1.2DDH07-211-4 DDH07-211 154.2 hornblendite D po 6.8 0.3DDH07-211-5 DDH07-211 157.9 clinopyroxenite D-NT ccp, py 16.1 -5.9DDH07-211-6-1 DDH07-211 161.6 hornblendite VH py 14.1 2.2DDH07-211-6-2 DDH07-211 161.6 hornblendite VH py 18.2 1.5DDH07-211-7 DDH07-211 164.8 Hbl clinopyroxenite D-NT po, py 21.0 -4.9DDH07-211-9 DDH07-211 170.6Hbl clinopyroxenite/ hornblendite contactD-B py 18.1 -6.8DDH07-211-10 DDH07-211 171.5 clinopyroxenite D-B po 21.9 -11.0DDH07-211-12 DDH07-211 178.7 clinopyroxenite D-NT py 15.7 -8.1DDH07-211-109 DDH07-211 175.75Hbl-Cal-Pl vein in clinopyroxeniteVH po, ccp 34.8 -5.6DDH07-211-111 DDH07-211 244.68Ol (Srp-Mag) clinopyroxeniteB po 2.1 -8.22 M = massive, SM = semi-massive, NT = net-textured, B = blebby, L = layered, D = disseminated, VH = vein-hosted3 po = pyrrhotite, ccp = chalcopyrite, py = pyrite† Analytical precision = ± 0.2‰, analyses done at G.G. Hatch Isotope Laboratories (Ottawa, ON)1 Hbl = hornblende, Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Chl = chlorite, Tlc = talc, Tr = tremolite, Pl = plagioclase, altd = altered96  2.6 Discussion 2.6.1 Petrogenesis and paragenesis of the DJ/DB zone of the Turnagain Alaskan-type intrusion The petrology and geochemistry of the ultramafic rocks that host the DJ/DB zone (phase 4) of the Turnagain intrusion are consistent with crystallization of hydrous MgO-rich parent magma(s) in an arc setting derived through subduction zone processes (Figure 2.28). The hydrous nature of the parent magma is supported by the presence of primary interstitial phlogopite in clinopyroxenite and the abundance of fractionated hornblende-rich rocks. High water contents in arc magmas (e.g., ~4 wt. % H2O; Plank et al., 2013) suppress the stability of plagioclase during the crystallization of mafic-ultramafic magmas (e.g., Gaetani et al., 1993). Based on evidence in drillcore and from geochemistry, the relative order of crystallization of phase 4 rocks generally follows, from oldest to youngest, wehrlite -> olivine clinopyroxenite -> clinopyroxenite (±magnetite±biotite) -> hornblende clinopyroxenite -> clinopyroxene hornblendite -> hornblendite (Figure 2.29). The sequence of crystallization is preserved in the form of gradational textures between units (e.g., olivine-rich units grading into clinopyroxene-dominant units, clinopyroxene-dominant units grading into hornblende-dominant units), the local presence of magmatic layering of olivine and magnetite (Figure 2.9), and zones of oriented hornblende crystals (Figure 2.10). The lack of consistent orientation to the mineral layering, as observed in the drill logs, may be due to magmatic slumping of poorly consolidated cumulates during crystallization perhaps related to new magmatic injections or magma withdrawal from the crystallizing magma reservoir. The geochemistry of phase 4 ultramafic rocks in the DJ/DB zone reflects mineral accumulation from high-MgO parent magmas, which are different from those magmas that produced the ultramafic rocks of the earlier intrusive phases in the Turnagain intrusion. Trends of decreasing MgO with increasing SiO2 97   Figure 2.28. Schematic cross-section of the subduction zone setting inferred for the emplacement and crystallization of the Turnagain Alaskan-type intrusion ca. 185 Ma (intrusion not to scale); adapted from Stern (2002). Arrows indicate direction of plate (white) and asthenosphere (black) motion. Dashed lines indicate temperature isograds. Inset shows the timing of the four phases of magmatism in the Turnagain intrusion with the approximate locations of the Ni-Co-rich Horsetrail zone (blue star) and the Cu-PGE-rich DJ/DB zone (red star) for reference; note that the shapes of the different intrusive phases in the inset are schematic and not to scale. 98    Figure 2.29. Schematic paragenetic sequence for sulphide and silicate crystallization and post-crystallization remobilization for the DJ/DB zone of the Turnagain intrusion. Thick horizontal lines indicate relative timing of mineral formation; dashed lines indicate uncertainty. Timing of post-magmatic alteration/remobilization is unknown. Major compositions for primary and secondary PGM are indicated. PGM = platinum group minerals. 99  and Al2O3 correlate with decreasing modal abundances of cumulus olivine and increasing cumulus clinopyroxene and hornblende (Table 2.6, Figure 2.12). Chromium contents in the DJ/DB zone (70-1160 ppm) are considerably lower than values from similar rock types at similar MgO contents in older parts of the Turnagain intrusion (37-3200 ppm), as reflected by the relative lack of chromite within the olivine-rich units of the DJ/DB zone (Table 2.6, Figure 2.13), and this indicates involvement of more evolved parent magmas compared to those of the earlier intrusive phases. The shapes of the chondrite-normalized REE patterns are typical of those resulting from accumulation of clinopyroxene and hornblende cumulus phases (i.e., relatively depleted light REE and “humped” patterns). The REE patterns are similar to those observed for ultramafic rocks from the earlier phases (Figure 2.14), however, they generally show less REE enrichment, particularly in the hornblendite units. Phase 4 ultramafic rocks are distinct from the earlier phases of the Turnagain intrusion with respect to their mineralogy and their base and precious metal contents. Sulphide mineralization in the DJ/DB zone is relatively Cu-rich and Ni-poor compared to the rest of the intrusion, particularly the phase 2 rocks that host the Horsetrail zone, despite the broad geochemical similarities between the host rocks of the DJ/DB zone and the Ni-Co-rich Horsetrail zone. The abundance of disseminated sulphide within the clinopyroxenite and hornblende clinopyroxenite units is consistent with relatively elevated sulphur concentrations observed in drillhole assays from the DJ/DB zone; olivine-rich rocks (wehrlite and olivine clinopyroxenite) have the lowest sulphur concentrations (Table 2.6, Figure 2.22). Ratios of Ni/Cu from phase 4 whole rocks are considerably lower (average Ni/Cu = 0.26) than those in similar rock types in phases 1 and 2 of the intrusion (average Ni/Cu = 1.07). Average Cu/Pd (2.6 x 104) is also much lower in the DJ/DB zone than the rest of the intrusion (Cu/Pd = 9.6 x 104). Average Pt/Pd within the DJ/DB zone (Pt/Pd = 1.33) is similar to clinopyroxenites and hornblende clinopyroxenites in the earlier phases of the intrusion (Pt/Pd = 1.24). Pyrrhotite- and chalcopyrite-rich sulphide droplets are observed as inclusions within clinopyroxene and amphibole crystals within the 100  clinopyroxenites and hornblende clinopyroxenites, whereas sulphide inclusions have not been observed in relict olivine anywhere within the DJ/DB zone. This textural evidence indicates that sulphide saturation in the DJ/DB zone occurred after fractionation of olivine from the parental magma and prior to or during fractionation of clinopyroxene and hornblende, which contrasts with relatively early sulphide saturation in the dunites and wehrlites of the Ni-enriched Horsetrail zone (Scheel, 2007; Scheel et al., 2009). Collectively, the mineralogical and geochemical characteristics of ultramafic rocks of the DJ/DB zone suggest that sulphide saturation and sulphide mineralization was delayed relative to processes that formed the large tonnage, low-grade Ni deposit of the Horsetrail zone in phase 2 of the Turnagain intrusion. The Cu-PGE-rich, and Ni-poor, nature of the DJ/DB mineralization is consistent with sulphide saturation following extensive olivine fractionation, which effectively and efficiently removed Ni from the evolved magmas owing to partitioning in olivine (e.g., Li et al., 2003; Ripley and Li, 2013) Evidence for hydrothermal activity is present in the rocks of the Turnagain intrusion and metals have been partially redistributed during post-crystallization hydrothermal events. Ultramafic rocks in the DJ/DB zone exhibit weak to intense post-magmatic alteration to serpentine, chlorite, tremolite, and talc (Table 2.5, Appendices C and D). Alteration is observed at a range of scales, from localized areas along grain boundaries to intense alteration associated with fault zones (e.g. sample DDH03-07-1). Hydrothermal alteration and metal mobilization is observed in sulphide textures where moderately to strongly altered sulphides have been remobilized along silicate grain boundaries and into cracks in silicate grains as well as enclosing alteration minerals (Figure 2.17). Sulphide blebs, even in samples with low degrees of alteration, show evidence of desulphurization, in which sulphide appears to have been partially dissolved by fluids and replaced by secondary minerals (Figure 2.17 A,B) (Fleet and Wu, 1993, 1995). In addition, pyrrhotite in altered samples is observed to be partially altered to pyrite and locally to magnetite. These fluids were likely oxidizing, as suggested by Scheel (2007), and may have been relatively enriched in semi-metals. Arsenic and antimony concentrations in samples from 101  fault zones are significantly higher than the surrounding ultramafic rocks, which suggests that fluids likely played a role in locally remobilizing semimetals (As and Sb) and PGE in altered rocks (Figure 2.17 C,D) (Prichard et al., 2013).  2.6.2 Formation and modification of platinum group minerals in the DJ/DB zone Platinum group element enrichment is a common feature of many Alaskan-type intrusions (Johan, 2002), however, the DJ/DB zone of the composite Turnagain intrusion represents an atypical style of PGE mineralization. In the Turnagain intrusion, the PGE are not strongly associated with dunite- and chromitite in which PGM are present predominantly as Pt-Fe alloys (e.g., Tulameen; Nixon et al., 1990). The PGM are instead associated with small amounts of base metal sulphide mineralization within more evolved clinopyroxenite and hornblendite. Although this style of PGE mineralization occurs in the phase 4 rocks within the DJ/DB zone, a similar style of PGM mineralization can also be found within the earlier phase 2 rock units (e.g., Cliff zone; Kucha, 2013). Based on textural evidence, PGM in the DJ/DB zone are found associated with both pyrrhotite and chalcopyrite within clinopyroxenites and hornblendites and they formed by exsolution from blebs of interstitial orthomagmatic sulphide, both Fe-rich monosulphide solid solution (MSS) and Cu-rich intermediate solid solution (ISS). The abundance of semi-metal minerals (e.g., nickeline, cobaltite) throughout the DJ/DB zone indicates that the original sulphide melt was enriched in As and Sb, which may have been scavenged from the sedimentary rocks that host the intrusion. The primary PGM crystals are equant or elongate, indicating that they formed either along crystallographic interfaces or sulphide boundaries (Figure 2.20) (Godel and Barnes, 2008). These early-formed PGM have variable compositions, occurring as As- and Sb-rich sperrylite and sudburyite, and also have relatively significant proportions of Te-bearing phases such as Pd-melonite and testibiopalladite (Table 2.9, Table 2.10).  102  The PGM in the DJ/DB zone also exhibit evidence of post-magmatic modification resulting from hydrothermal activity. Remobilized PGM formed as rims on chalcopyrite and pyrrhotite grains (Figure 2.21). Secondary PGM are also found as equant grains associated with alteration minerals (Figure 2.20 F,G,H). These textures are interpreted to be the result of either (1) precipitation of fluid-mobilized precious metals from a hydrothermal fluid, or (2) remobilization of PGE within sulphide and deposition along the periphery of desulphurized sulphide grains (Peregoedova et al., 2004; Barnes et al., 2008). Remobilized PGM are predominantly sperrylite and sudburyite, which commonly form composite grains of variable composition (Table 2.10). Formation of these secondary PGM was facilitated by oxidized fluids that interacted with the Turnagain intrusion (Scheel, 2007). These fluids may have mobilized platinum group elements via chloride complexes (Hanley et al., 2005; Parviainen et al., 2008). 2.6.3 Sulphide saturation and Cu-PGE mineralization in the DJ/DB zone The sulphur isotope geochemistry of sulphides from the Turnagain intrusion indicates that significant assimilation of the surrounding pyritiferous and graphitic sedimentary rocks occurred prior to and during emplacement of the high-MgO parent magmas. Chromite geochemistry from dunites within the Ni-rich Horsetrail zone is consistent with a relatively reduced parent magma for the Turnagain intrusion compared to typical arc magmas (Scheel et al., 2009). In a relatively reduced magma, sulphur will be dissolved as sulphide (S2-) (Jugo, 2009). Additional sulphur to reach sulphide saturation was supplied by the assimilation of pyritiferous country rocks. Field and drillcore observations indicate that the Turnagain magmas incorporated crustal rocks during ascent and emplacement. Xenoliths of partially digested sedimentary wallrocks are common (Scheel, 2007). These xenoliths range in size from several centimeters to tens of meters, with large >100 m inclusions observed along the northwestern edge of the intrusion and in drillcore from the southwestern portion of the intrusion. Graphitic phyllite near the northern contact of the intrusion exhibits light isotopic signatures, with δ34S less than -17‰ (Figure 2.27) (Scheel, 2007). Typical subduction zone mantle 103  signatures have relatively heavy δ34S values, ranging from +1.5 to +7‰ (Manor et al., 2016). The sulphur isotopic compositions of sulphide from mineralized Turnagain rocks (δ34S = -13 to +5‰) are shifted to values well below the range of arc mantle values towards those of sulphides from the surrounding sedimentary rocks. Sulphides from clinopyroxenites of the DJ/DB zone exhibit similar sulphur isotopic systematics to those from the more olivine-dominant units in older areas of the intrusion (Figure 2.27). Sulphides from the hornblendites are characterized by heavier δ34S values (-2 to +2‰ for most samples) than the more MgO-rich lithologies and overlap with values from MORB and subduction zone mantle. As noted above, sulphide saturation of the phase 4 magma only occurred after extensive olivine fractionation, resulting in Ni-depletion of the magma. Consequently, the sulphide liquid that formed was relatively Ni-poor. This sulphide liquid collected in interstitial spaces between silicates. As cooling progressed the sulphide liquid crystallized into mss, leaving a residual Cu-rich sulphide liquid that subsequently crystallized as iss (Figure 2.30). At this point, Pt and Pd begin to complex with Sb, Te, and As to form primary platinum group minerals (e.g., sudburyite, sperrylite, testibiopalladite, Pd-melonite) associated with both mss and iss. Further cooling below ~600°C results in the destabilization of mss and iss, which formed pyrrhotite and chalcopyrite, respectively. Nickel and Co that partitioned into iss subsequently exsolved out of chalcopyrite to form irregular blebs of nickeline and cobaltite-gersdorffite (Figure 2.31), while remaining Ni in pyrrhotite exsolved out as pentlandite flames. Post-magmatic hydrothermal activity caused localized desulphurization of the sulphides and replacement by secondary minerals (e.g., chlorite) and magnetite, leaving remnant primary PGM enclosed in secondary minerals and the formation of secondary rim-forming PGM (i.e., sperrylite and sudburyite) along cracks and grain boundaries of sulphide grains. 104   Figure 2.29. Schematic model of the formation of sulphide and platinum group minerals (PGM) in the DJ/DB zone of the Turnagain Alaskan-type intrusion. A) Crystallization of monosulphide solid solution (MSS); residual Cu-rich sulphide liquid propagates along clinopyroxene (cpx) grain boundaries. B) Crystallization of intermediate solid solution (ISS) from Cu-rich sulphide liquid and exsolution of high-temperature PGM. C) Exsolution of pyrrhotite (po) from MSS and chalcopyrite (ccp) from ISS. Further cooling results in exsolution of cobalt and nickel-rich phases, including cobaltite (cbt) and nickeline (nc) from chalcopyrite and pentlandite (pn) from pyrrhotite. D) Post-magmatic hydrothermal alteration results in desulphurization and replacement of sulphides by secondary minerals (chlorite, chl) and magnetite (mag); remnant magmatic PGM are locally enveloped by secondary phases and both sperrylite and sudburyite form as rims around sulphides (remobilized PGM). Temperatures, phase stability, and element partitioning adapted from Dare et al. (2011) and Duran et al. (2017).   105     Figure 2.29. Ternary phase diagram (CoAsS-FeAsS-NiAsS) for sulpharsenides (in mol %). The upper limit immiscibility isotherms are shown at various temperatures (Klemm, 1965). Cobaltite compositions (squares) are contained below the 500°C isotherm, whereas gersdorffite compositions (diamonds) exist over a range of values below 600°C. 106  2.7 Conclusions The Turnagain Alaskan-type ultramafic-mafic intrusion hosts both the Ni-Co-rich Horsetrail zone and the spatially and temporally distinct Cu-PGE-rich DJ/DB zone. The DJ/DB zone is hosted by clinopyroxenites and hornblendites that constitute the final stage of magma emplacement in the composite Turnagain intrusion. Clinopyroxenite and hornblendite exhibit both gradational and sharp contacts and vary in grain size from fine-grained to pegmatitic. Clinopyroxenite locally contains significant magnetite (<15 vol. %) as individual blebs or layers. Sulphide mineralization in the DJ/DB zone consists of pyrrhotite and chalcopyrite with minor pentlandite and pyrite. Platinum group minerals occur in zones of low sulphide content (<5%) and consist of sperrylite, sudburyite, testibiopalladite, Pd-melonite, and other Pd- and Pt-antimonides. Geochemically, the rocks of the DJ/DB zone have distinct characteristics (e.g., lower MgO, Cr, Ni contents) compared to similar rock types in magmatic phases 1 and 2 of the Turnagain intrusion. The parent magma to the ultramafic rocks that host the DJ/DB zone reached sulphide saturation late, following extensive crystallization of olivine, which stripped Ni from the magma. Sulphide saturation was triggered by the assimilation of pyritic and graphitic sedimentary country rocks. Mineralization within the DJ/DB zone underwent post-magmatic hydrothermal alteration, which locally remobilized sulphides and PGM. The presence of Ni-Cu-PGE sulphide mineralization in some Alaskan-type intrusions in the Northern Cordillera, and the distinctive nature of the Cu-PGE mineralization in the DJ/DB zone of the Turnagain intrusion, indicate that convergent margin settings are fertile for base and precious metal mineralization and are viable, albeit difficult, exploration targets with increasing economic potential.   107  Chapter 3: Conclusions This chapter concludes the study of the Cu-PGE-rich DJ/DB zone of the Turnagain Alaskan-type intrusion in northwestern British Columbia. Below, a summary of key findings is provided on the mineralogy, geochemistry, and sulphur isotope characteristics of mineralization and host rocks, as well as the distribution of PGE within sulphide minerals. Suggestions for future research are guided by the supplementary data obtained during the course of this project and the resulting questions that arose. These topics include (1) the geometry of the host rocks to the DJ/DB zone and the overall orientations of the multiple intrusive phases of the Turnagain intrusion, and (2) the geochemical, isotopic, and temporal relationships between the Alaskan-type intrusions with mineralization and those with no sulphide in the Northern Cordillera and the implications for the development of sulphide and/or PGE mineralization in Alaskan-type intrusions. 3.1 Summary of key findings The Geological Survey of Canada developed the Targeted Geosciences Initiative 4 (TGI-4) program to establish a database of information on known mineralized areas across Canada to gain insights into the formational processes involved in creating large mineral deposits (Figure 3.1) (Ames and Houlé, 2015). This information will be used to aid in the exploration for mineral deposits that are under deep cover or in areas that are not normally considered as targets for exploration. The guiding project pertaining to high-Mg, hydrothermal-magmatic Cu-PGE, and orogenic Ni-Cu systems (Ames and Houle, 2011) included a study on the Turnagain Alaskan-type intrusion, which represents an example of atypical mineralization in a convergent margin setting. Past studies have focussed on the Ni-Co mineralization (i.e., Horsetrail zone; Scheel, 2007; Nixon, 1998), however, there has been little work on the Cu-PGE mineralization in phase 4 of the intrusion in the area known as the DJ/DB zone. By studying the variety of base and precious metal mineralization in the Turnagain intrusion, characteristics necessary for the development of mineralization can be established for other  108    Figure 3.1. Location map for the Targeted Geoscience Initiatives 4 ore systems project study sites in Canada (modified from Wheeler et al., 1996). 109  ultramafic-mafic intrusions in subduction zones elsewhere in the Cordilleran and in ancient orogenic belts extending back through the Phanerozoic, Proterozoic, and Archean (Nixon et al., 2015). This study of Cu-PGE-rich mineralization in the DJ/DB zone of the Turnagain intrusion utilized a wide variety of observational and analytical methods, including field investigation and sampling, drill hole logging, petrography, mineral chemistry, whole rock chalcophile and platinum group element geochemistry, sulphide and platinum group mineral chemistry, in-situ sulphide mineral trace element concentrations, and S-isotope analyses. This integrated approach allowed for a comprehensive characterization of the nature of the Cu-PGE mineralization in the intrusion and determination of the formational history of the DJ/DB zone and its host rocks. The Turnagain intrusion is classified as an Alaskan-type intrusion, characterized by orthopyroxene-absent, hydrous, ultramafic-mafic cumulates. This intrusion is anomalous compared to most other Alaskan-type intrusions owing to the presence of abundant, yet temporally and spatially distinct, zones of orthomagmatic sulphides. The Turnagain intrusion comprises four distinct magmatic phases; phase 1 includes layered wehrlite and clinopyroxenite; phase 2 forms the majority of the intrusion and is composed of a dunite core with peripheral wehrlite and clinopyroxenite that host the Ni-Co-rich Horsetrail zone; phase 3 consists of a large diorite body in the centre of the intrusion; and phase 4, which contains interlayered clinopyroxenite and hornblendite with minor wehrlite and hosts the Cu-PGE-rich DJ/DB zone. This study has revealed that mineralization in the DJ/DB zone consists primarily of disseminated sulphide (<5 vol. % pyrrhotite and chalcopyrite with minor pyrite and pentlandite), with localized zones of net-textured to massive sulphide. The zone hosts a wide variety of trace minerals, including nickeline (NiAs), cobaltite (CoAsS), gersdorffite (NiAsS), ullmannite (NiSbS), tucekite (Ni9Sb2S8), and hauchecornite (Ni9Bi(Sb,Bi)S8). Arsenides, sulpharsenides, and sulphantimonides predominantly form irregular blebs associated with chalcopyrite, pyrrhotite, and magnetite. Platinum group minerals (PGM) identified include sperrylite (PtAs2) and sudburyite (PdSb), with rare occurrences of Pd-110  melonite [(Ni,Pd)Te2], testibiopalladite [PdTe(Sb,Te)], ungavaite (Pd4Sb3), and genkinite [(Pt,Pd)4Sb3]. The PGM mostly form as small (<40 µm) anhedral grains that are equant to elongate; sperrylite and sudburyite also form as thin rims on chalcopyrite and pyrrhotite. The latter textures are interpreted as resulting from remobilization of PGE during a post-magmatic hydrothermal event. Whole rock geochemical results from rocks of the DJ/DB zone indicate that the host rocks represent a distinct magmatic phase relative to the magmas that crystallized to produce the wehrlites and clinopyroxenites that host the Horsetrail Ni-Co zone. The host rocks to the DJ/DB zone exhibit relatively lower MgO and higher Al2O3 contents than those in the Horsetrail zone, consistent with the respective proportions of olivine-rich lithologies in the Horsetrail zone vs. clinopyroxene- and hornblende-rich units in the DJ/DB zone. Additionally, rocks of the DJ/DB zone exhibit relatively low concentrations of Cr compared to equivalent ultramafic rocks in the Horsetrail zone, yet are characterized by significantly higher concentrations of Pt and Pd. Laser ablation-ICP-MS analysis of trace element concentrations within sulphide minerals from the DJ/DB zone indicate that Pt and Pd predominantly form as PGM, with minor quantities of Pd contained in pyrrhotite. Anomalous PGE concentrations may be present as submicron grains of PGM or in solid solution within As- and Sb-rich minerals. Sulphur isotope analyses from sulphide minerals in the DJ/DB zone exhibit a strong trend away from typical arc mantle values towards the pyrite- and graphite-bearing metasedimentary country rocks adjacent to the Turnagain intrusion. This indicates that sulphide saturation of phase 4 magma(s) was promoted by assimilation of sulphur and carbon from the nearby country rocks. The lack of significant sulphide in olivine-rich units of the DJ/DB zone and the relative paucity of Ni in the sulphides further indicates that sulphide saturation only occurred after extensive olivine fractionation.   111  3.2 Directions for future work The principal aim of this study was to establish a mineralogical and geochemical database for an Alaskan-type intrusion with Ni-Cu-PGE mineralization to establish geographic, textural, and geochemical criteria that can be used to explore for similar mineralization in other Alaskan-type intrusions in other convergent margin settings. Gaining additional knowledge on the structure of the Turnagain and the characteristic differences between Alaskan-type intrusions with or without Ni-Cu-PGE mineralization is essential for future exploration of the Northern Cordillera and other convergent margins globally. 3.2.1 Geometry of the DJ/DB zone and adjacent Turnagain intrusive bodies Localized magmatic layering is a characteristic in some Alaskan-type intrusions (Irvine, 1974; MacTavish, 1999; Himmelberg and Loney, 1995). Indicators of magmatic layering were observed on surface in the Turnagain intrusion by Clark (1975) and Scheel (2007) in phase 1 wehrlite and clinopyroxenite and phase 2 dunite and wehrlite. Structures consistent with magmatic layering were also discovered during this investigation in drillcore of phase 4 clinopyroxenites and hornblendite. These structures included fine- to coarse-grained layered magnetite and sulphides in clinopyroxenite and zones of oriented hornblende crystals in hornblendite units. Both clinopyroxenite and hornblendite were observed to have gradational variations in grain size. A more comprehensive analysis of these textures and a larger dataset of orientations would be warranted to better constrain the overall orientation of the phase 4 rocks. Advances in 3D geological and structural modelling tools and their application to the DJ/DB zone could provide a better image of below surface unit orientations. By utilizing these methods, the orientation of layering may be established within phase 4 units and could be used as indicators of additional sulphide-rich or sulphide-bearing zones at depth.   112  3.2.2 The relationship of the Turnagain intrusion to other Alaskan-type intrusions and convergent margin ultramafic-mafic intrusions in the Northern Cordillera With the increasing number of studies on Alaskan-type intrusions that contain Ni-Cu-PGE mineralization (e.g., Turnagain, this study; Duke Island, Thakurta et al., 2008; Salt Chuck, Loney and Himmelberg, 1992), it is now possible to compare and contrast the spatial, temporal, textural, geochemical, and isotopic characteristics of these intrusions. Johan (2002) provides a summary of Alaskan-type intrusions with PGE mineralization worldwide, however, there is still little information on the potential for base metal mineralization in these deposits. In the Northern Cordillera, most known Alaskan-type intrusions lie along two roughly parallel trends: the Duke-Klukwan ultramafic belt that runs along the Alaskan Panhandle, and an unnamed N-S trend within the Quesnel terrane (Figure 3.2) (Taylor, 1967; Nixon and Hammack, 1991; Nixon et al., 1997; Johan, 2002). Despite being temporally and spatially separated, both of these trends contain a number of intrusions with sulphide occurrences, indicating that there may be similar key factors involved in the genesis of Ni-Cu-PGE mineralization in these environments. Establishing a database for the key characteristics of Alaskan-type intrusions will be useful for determining exploration criteria for these areas and similar settings worldwide. 113    Figure 3.2. Map of the tectono-stratigraphic configuration of the Canadian Cordillera with locations of major convergent margin mafic-ultramafic intrusions including the Turnagain intrusion (map modified from Colpron and Nelson, 2011). Alaskan-type intrusions are shown in red, Giant Mascot-type shown in blue; unmineralized intrusions are shown as circles, while mineralized (Ni-Cu and/or PGE) intrusions are shown as stars. Yellow ellipsoids indicate locations of Alaskan-type belts referenced in the text. 114  References Ames, D.E., and Houle, M.G., 2011, Overview of the Targeted Geoscience Initiative 4 nickel-copper-platinum group elements-chromium project (2010–2015)—mafic to ultramafic ore systems: footprint, fertility and vectors: Summary of Field Work and Other Activities 2011, Ontario Geological Survey, Open File Report 6270, p. 37-1-7. Ames, D.E., and Houlé, M.G., 2015, Targeted Geoscience Initiative 4: Canadian nickel-copper-platinum group elements-chromium ore systems -- fertility, pathfinders, new and revised models: Summary of Field Work and Other Activities 2011, Ontario Geological Survey, Open File Report 6270, p. 37-1 to 37-7, doi: 10.4095/296674. Amirault, F., and Burnham, O.M., 2013, Carbon and sulphur analysis in geological samples by combustion–infrared: verifying method capabilities on new instrumentation, in Summary of Field Work and Other Activities 2013, Ontario Geological Survey, Open File Report 6290, p. 43-1-5. Arndt, N.T., 2011, Chapter 8, Insights into the geologic setting and origin of Ni-Cu-PGE sulfide deposits of the Norilsk-Talnakh region, Siberia: Reviews in Economic Geology, v. 17, p. 199–215. Arndt, N.T., Czamanske, G.K., Walker, R.J., Chauvel, C., and Fedorenko, V.A., 2003, Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits: Economic Geology, v. 98, p. 495–515. Arndt, N.T., Lesher, C.M., and Czamanske, G.K., 2005, Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits, in Hedenquist, J. W., Thompson, J. F. H., Goldfarb, J. P., & Richards, J. P., eds., Economic Geology 100th Anniversary Volume, p. 5–23. Augé, T., Genna, A., Legendre, O., Ivanov, K.S., and Volchenko, Y.A., 2005, Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, Urals, Russia: A 115  genetic model for PGE concentration in chromite-rich zones: Economic Geology, v. 100, p. 707–732. Barnes, S.-J., and Gomwe, T.S., 2011, Chapter 13, The Pd Deposits of the Lac des Iles Complex, Northwestern Ontario: Reviews in Economic Geology, v. 17, p. 351–370. Barnes, S.-J., and Lightfoot, P.C., 2005, Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents, in Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., & Richards, J. P., eds., Economic Geology 100th Anniversary Volume, p. 179–213. Barnes, S.-J., Prichard, H.M., Cox, R.A., Fisher, P.C., and Godel, B., 2008, The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): Implications for the formation of the deposits: Chemical Geology, v. 248, p. 295–317. doi: 10.1016/j.chemgeo.2007.08.004. Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G., and Sobolev, A. V., 2005, Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite-dunite plutonic complex, Koryak Highland (Far East Russia): Journal of Petrology, v. 46, p. 1345–1366. doi: 10.1093/petrology/egi018. Begg, G.C., Hronsky, J.A.M., Arndt, N.T., Griffin, W.L., O’Reilly, S.Y., and Hayward, N., 2010, Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits: Economic Geology, v. 105, p. 1057–1070. Belete, K.H., Mogessie, A., and Bowles, J.F.W., 2002, Platinum-group minerals in the Alaskan type mafic-ultramafic intrusions of the Yubdo area, Western Ethiopia, in [eds.] Boudreau, A. E., 9th International Platinum Symposium: Billings, Montana, USA. Burgess, S.D., and Bowring, S.A., 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction: Science Advances, v. 1, p. 116  e1500470–e1500470. doi: 10.1126/sciadv.1500470. Bursztyn, N.E., and Olivo, G.R., 2010, PGE-rich Ni-Cu sulfide mineralization in the Flin Flon greenstone belt, Manitoba, Canada: Implications for hydrothermal remobilization of platinum group elements in basic-ultrabasic sequences: Economic Geology, v. 105, p. 1469–1490. doi: 10.2113/econgeo.105.8.1469. Christopher, P.A., and Robinson, J.W., 1975, Pride of Emory Mine (92H/SW-4), in Exploration and Mining in British Columbia 1974: British Columbia Ministry of Mines and Petroleum Resources, p. 105–113. Clark, A. L., and Greenwood, W. R., 1972, Geochemistry and distribution of platinum group metals in mafic to ultramafic complexes of southern and southeastern Alaska [abs.]: International Geological Congress 24th, Montreal, 1972, Proceedings, Section 10, p. 201. Clark, T., 1975, Geology of an ultramafic complex on the Turnagain River, northwestern B.C.: unpublished PhD dissertation, Queen’s University, Kingston, ON, 454 p. Clark, T., 1978, Oxide minerals in the Turnagain ultramafic complex, northwestern British Columbia: Canadian Journal of Earth Sciences, v. 15, p. 1893–1903. doi: 10.1139/e78-201. Clark, T., 1980, Petrology of the Turnagain ultramafic complex, northwestern British Columbia: Canadian Journal of Earth Sciences, v. 17, p. 744–757. Colpron, M., and Nelson, J.L., 2011, A digital atlas of terranes for the Northern Cordillera: British Columbia Ministry of Energy and Mines, BCGS GeoFile 2011-11. Dahl, R., Watkinson, D.H., and Taylor, R.P., 2001, Geology of the Two Duck Lake intrusion and the Marathon Cu-PGE deposit, Coldwell Complex, northern Ontario: Exploration and Mining Geology, v. 10, p. 51–65. doi: 10.2113/10.1-2.51. Dare, S.A.S., Barnes, S.-J., Prichard, H.M., and Fisher, P.C., 2010, The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group element sulfide deposit, 117  Sudbury, Canada: early crystallization of PGE-rich sulfarsenides: Economic Geology, v. 105, p. 1071–1096. Dare, S.A.S., Barnes, S.-J., Prichard, H.M., and Fisher, P.C., 2011, Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite: Mineralium Deposita, v. 46, p. 381–407. doi: 10.1007/s00126-011-0336-9. Dare, S.A.S., Barnes, S.-J., Prichard, H.M., and Fisher, P.C., 2014, Mineralogy and geochemistry of Cu-rich ores from the McCreedy East Ni-Cu-PGE deposit (Sudbury, Canada): Implications for the behavior of platinum group and chalcophile elements at the end of crystallization of a sulfide liquid: Economic Geology, v. 109, p. 343–366. doi: 10.2113/econgeo.109.2.343. Djon, M.L.N., and Barnes, S.-J., 2012, Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada: Mineralium Deposita, v. 47, p. 875–896. doi: 10.1007/s00126-012-0401-z. Duran, C.J., Barnes, S.-J., Pleše, P., Kudrna Prašek, M., Zientek, M.L., and Pagé, P., 2017, Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia): Ore Geology Reviews. doi: 10.1016/j.oregeorev.2017.05.016. Erdmer, P., Mihalynuk, M.G., Gabrielse, H., Heaman, L.M., and Creaser, R.A., 2005, Mississippian volcanic assemblage conformably overlying Cordilleran miogeoclinal strata, Turnagain River area, northern British Columbia, is not part of an accreted terrane: Canadian Journal of Earth Sciences, v. 42, p. 1449–1465. doi: 10.1139/E05-045. Findlay, D.C., 1969, Origin of the Tulameen ultramafic-gabbro complex, southern British Columbia: Canadian Journal of Earth Sciences, v. 6, p. 339–425.  Fleet, M.E., and Wu, T.-W., 1993, Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000 C: Geochimica et Cosmochimica Acta, v. 57, p. 3519–3531. 118  Fleet, M.E., and Wu, T.-W., 1995, Volatile transport of precious metals at 1000°C: Speciation, fractionation, and effect of base-metal sulfide: Geochimica et Cosmochimica Acta, v. 59, p. 487–495. doi: 10.1016/0016-7037(94)00382-V. Gabrielse, H., 1998, Geology of the Cry Lake (104I) and Dease Lake (104J/E) map areas, north central British Columbia: Geological Survey of Canada, Bulletin 504, p. 147. Gaetani, G.A., Grove, T.L., and Bryan, W.B., 1993, The influence of water on the petrogenesis of subduction-related igneous rocks: Nature, v. 365, p. 332–334. doi: DOI 10.1038/365332a0. Garuti, G., Fershtater, G., Bea, F., Montero, P., Pushkarev, E. V., and Zaccarini, F., 1997, Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results: Tectonophysics v. 276, p. 181-194. Garuti, G., Pushkarev, E. V., and Zaccarini, F., 2002, Composition and paragenesis of Pt alloys from chromitites of the Uralian-Alaskan-type Kytlym and Uktus complexes, northern and central Urals, Russia: Canadian Mineralogist, v. 40, p. 1127–1146. doi: 10.2113/gscanmin.40.4.1127. Garuti, G., Pushkarev, E. V., Zaccarini, F., Cabella, R., and Anikina, E., 2003, Chromite composition and platinum-group mineral assemblage in the Uktus Uralian-Alaskan-type complex (Central Urals, Russia): Mineralium Deposita, v. 38, p. 312–326. doi: 10.1007/s00126-003-0348-1. Godel, B., and Barnes, S.-J., 2008, Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef: Chemical Geology, v. 248, p. 272–294. doi: 10.1016/j.chemgeo.2007.05.006. Green, T.H., Blundy, J.D., Adam, J., and Yaxley, G.M., 2000, SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200°C: Lithos, v. 53, p. 165–187. doi: 10.1016/S0024-4937(00)00023-2. Green, T.H., 1994, Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later: Chemical Geology, v. 117, p. 1–36. doi: 10.1016/0009-119  2541(94)90119-8. Griffin, W.L., Powell, W.J., Pearson, N.J., and O’Reilly, S.Y., 2008, GLITTER: Data reduction software for laser ablation ICP-MS, in Sylvester, P., ed., Mineralogical Association of Canada (MAC) Short Course Series, v. 40: Mineralogical Association of Canada, p. 308–311. Guillong, M., Hametner, K., Reusser, E., Wilson, S.A., and Günther, D., 2005, Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths: Geostandards & Geoanalytical Research, v. 29, p. 315–331. Guillot, S., Hattori, K., Agard, P., Schwartz, S., and Vidal, O., 2009. Exhumation processes in oceanic and continental subduction contexts: a review, In: Subduction Zone Geodynamics, (eds) S. Lallemand and F. Funiciello, F.; Springer, Berlin Heidelberg, p. 175–205. Guillou-Frottier, L., Burov, E., Augé, T., and Gloaguen, E., 2014, Rheological conditions for emplacement of Ural-Alaskan-type ultramafic complexes: Tectonophysics, v. 631, p. 130–145. doi: 10.1016/j.tecto.2014.02.002. Hancock, K.D., 1990, Ultramafic associated chromite and nickel occurrences in British Columbia: Province of British Columbia Ministry of Energy, Mines and Petroleum Resources, Open File 1990-27, p. 62. Hanley, J.J., Pettke, T., Mungall, J.E., and Spooner, E.T.C., 2005, The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800°C: A laser ablation ICP-MS pilot study of synthetic fluid inclusions: Geochimica et Cosmochimica Acta, v. 69, p. 2593–2611. doi: 10.1016/j.gca.2004.11.005. Helmy, H.M., and El Mahallawi, M.M., 2003, Gabbro Akarem mafic-ultramafic complex, Eastern Desert, Egypt: A Late Precambrian analogue of Alaskan-type complexes: Mineralogy and Petrology, v. 77, p. 85–108. doi: 10.1007/s00710-001-0185-9. 120  Helmy, H.M., and Mogessie, A., 2001, Gabbro Akarem, Eastern Desert, Egypt: Cu-Ni-PGE mineralization in a concentrically zoned mafic-ultramafic complex: Mineralium Deposita, v. 36, p. 58–71. Himmelberg, G.R., and Loney, R.A., 1995, Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska: U.S. Geological Survey Professional Paper 1564, p. 47. Himmelberg, G.R., Loney, R.A., and Craig, J.T., 1986, Petrogenesis of the ultramafic complex at the Blashke Islands, southeastern Alaska: U.S. Geological Survey Bulletin 1662, p. 19. Holwell, D.A., and Keays, R.R., 2014, The formation of low-volume, high-tenor magmatic PGE-Au sulfide mineralization in closed systems: Evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard intrusion, East Greenland: Economic Geology, v. 109, p. 387–406. doi: 10.2113/econgeo.109.2.387. Irvine, T.N., 1974, Petrology of the Duke Island ultramafic complex southeastern Alaska: Geological Society of America Memoir, v. 138, p. 1–244. Jackson, M., 2006, Lithogeochemistry and spinel compositions in the ultramafic complexes of western Ethiopia: Criteria for the identification of Alaskan-type intrusions: unpublished PhD dissertation, Cardiff University, 552 p. Jackson-Brown, S., Scoates, J.S., Nixon, G.T., and Ames, D.E., 2014, Mineralogy of sulphide, arsenide, and platinum group minerals from the DJ/DB Zone of the Turnagain Alaskan-type ultramafic intrusion, north-central British Columbia, in Geological Fieldwork 2013, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2014-1, p. 157–168. Jackson, S.E., Fryer, B.J., Gosse, W., Healey, D.C., Longerich, H.P., and Strong, D.F., 1990, Determination of the precious metals in geological materials by inductively coupled plasma-121  mass spectrometry (ICP-MS) with nickel sulphide fire-assay collection and tellurium coprecipitation: Chemical Geology, v. 83, p. 119–132. Johan, Z., 2002, Alaskan-type complexes and their platinum-group element mineralization, in Cabri, L.J. ed. Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements, Canadian Institute of Mining and Metallurgy, Special Volume 54, p. 669–719. Johan, Z., Ohnenstetter, M., Slansky, E., Barton, L.M., and Suppel, D., 1989, Platinum mineralization in the Alaskan-type intrusive complexes near Fifield , New South Wales, Australia: Part 1. Platinum-group minerals in clinopyroxenites of the Kelvin Grove prospect, Owendale intrusion: Mineralogy and Petrology, v. 40, p. 289–309. Jugo, P.J., 2009, Sulfur content at sulfide saturation in oxidized magmas: Geology, v. 37, p. 415–418. doi: 10.1130/G25527A.1. Keays, R.R., and Tegner, C., 2015, Magma chamber processes in the formation of the low-sulphide magmatic Au-PGE mineralization of the Platinova Reef in the Skaergaard intrusion, east Greenland: Journal of Petrology, v. 56, p. 2319–2340. doi: 10.1093/petrology/egv075. Kerr, A., 2003, Guidelines for the calculation and use of sulphide metal contents in research and mineral exploration: Current Research (2003) Newfoundland Department of Mines and Energy Geological Survey, Report 03-1, p. 223-229 Klemm, D.D., 1965, Synthesen und Analysen in den Dreiechdiagrammen FeAsS-CoAsS-NiAsS und FeS2-COS2-NiS2: Neues Jahrbuche fuer Miner- alogie, Abhandlungen, v. 103, p. 205–255. Kucha, H., 2013, Petrology, mineralogy and tectogenesis of Pt, Pd, Os, Ir, Rh, Ru and related sulphides & rock forming minerals, DB - DJ area, Turnagain, BC, Canada: Unpublished internal report for Hard Creek Nickel Corp., 135 p. Labidi, J., Cartigny, P., Birck, J.L., Assayag, N., and Bourrand, J.J., 2012, Determination of multiple sulfur isotopes in glasses: A reappraisal of the MORB δ34S: Chemical Geology, v. 334, p. 189–122  198. doi: 10.1016/j.chemgeo.2012.10.028. Li, C., Ripley, E.M., and Mathez, E.A., 2003, The effect of S on the partitioning of Ni between olivine and silicate melt in MORB: Chemical Geology, v. 201, p. 295–306. doi: 10.1016/j.chemgeo.2003.08.008. Li, C., Ripley, E.M., Thakurta, J., Stifter, E.C., and Qi, L., 2013, Variations of olivine Fo–Ni contents and highly chalcophile element abundances in arc ultramafic cumulates, southern Alaska: Chemical Geology, v. 351, p. 15–28. Li, C., Zhang, M., Fu, P., Qian, Z., Hu, P., and Ripley, E.M., 2012, The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism? Mineralium Deposita, v. 47, p. 51–67. doi: 10.1007/s00126-011-0354-7. Loney, R.A., and Himmelberg, G.R., 1992, Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales Island: An Early Paleozoic Alaskan-type ultramafic body: Canadian Mineralogist, v. 30, p. 1005–1022. Lyubetskaya, T., and Korenaga, J., 2007, Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results: Journal of Geophysical Research: Solid Earth, v. 112, B03211. doi: 10.1029/2005JB004223. MacTavish, A.D., 1999, The mafic-ultramafic intrusions of the Atikokan-Quetico area, northwestern Ontario: Ontario Geological Survey, Open File Report 5997, p. 127. Manor, M.J., 2014, Convergent margin Ni-Cu-PGE deposits: Geology, geochronology, and geochemistry of the Giant Mascot magmatic sulphide deposit, Hope, British Columbia: unpublished MSc thesis, The University of British Columbia, 387 p. Manor, M.J., Scoates, J.S., Nixon, G.T., and Ames, D.E., 2016, The Giant Mascot Ni-Cu-PGE deposit, British Columbia: Mineralized conduits in a convergent margin tectonic setting: Economic Geology, v. 111, p. 57–87. doi: 10.2113/econgeo.111.1.57. 123  Mao, J.W., Pirajno, F., Zhang, Z.H., Chai, F.M., Wu, H., Chen, S.P., Cheng, L.S., Yang, J.M., and Zhang, C.Q., 2008, A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes: Journal of Asian Earth Sciences, v. 32, p. 184–203. doi: 10.1016/j.jseaes.2007.10.006. Mao, Y.J., Qin, K.Z., Li, C., and Tang, D.M., 2014, A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China: Mineralium Deposita, v. 50, p. 65–82. doi: 10.1007/s00126-014-0524-5. McCallum, M.E., Loucks, R.R., Carlson, R.R., Cooley, E.F., and Doerge, T.A., 1976, Platinum metals associated with hydrothermal copper ores of the New Rambler Mine, Medicine Bow Mountains, Wyoming: Economic Geology, v. 71, p. 1429–1450. doi: 10.2113/gsecongeo.71.7.1429. McDonough, W. F. and Sun, S. s. (1995). The composition of the Earth: Chemical Geology v. 2541, p. 223–253. Mudd, G.M., and Jowitt, S.M., 2014, A detailed assessment of global nickel resource trends and endowments: Economic Geology, v. 109, p. 1813–1841. Naldrett, A.J., 2010, Secular variation of magmatic sulfide deposits and their source magmas: Economic Geology, v. 105, p. 669–688. Naldrett, A.J., 2011, Fundamentals of magmatic sulfide deposits: Reviews in Economic Geology, v. 17, p. 1–50. Naldrett, A.J., Asif, M., Krstic, S., and Li, C., 2000, The composition of mineralization at the Voisey’s Bay Ni-Cu sulfide deposit, with special reference to platinum-group elements: Economic Geology, v. 95, p. 845–865. doi: 10.2113/gsecongeo.95.4.845. Napoli, M.G., 2003, Geology of the Wanapitei Complex, Grenville Front, Ontario: unpublished 124  M.Sc. thesis, Laurentian University, Sudbury, Ontario, Canada, 236 p. Nazimova, Y. V., Zaytsev, V.P., and Petrov, S. V., 2011, The Galmoenan massif, Kamchatka, Russia: Geology, PGE mineralization, applied mineralogy and beneficiation: Canadian Mineralogist, v. 49, p. 1433–1453. doi: 10.3749/canmin.49.6.1433. Nelson, J.L., and Colpron, M., 2007, Tectonics and metallogeny of the British Columbia, Yukon and Alaskan Cordillera, 1.8 Ga to the present: in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 755–791. Nixon, G.T., 1998, Ni–Cu sulfide mineralization in the Turnagain Alaskan-type complex: a unique magmatic environment, in Geological Fieldwork 1997, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Paper 1998-1, p. 18.1-18.12. Nixon, G.T., and Hammack, J.L., 1991, Metallogeny of ultramafic-mafic rocks in British Columbia with emphasis on the platinum-group elements, in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Paper 1991-4, p. 125–161. Nixon, G.T., Ash, C.H., Connelly, J.N., and Case, G., 1989, Alaskan-type mafic-ultramafic rocks in British Columbia: the Gnat Lakes, Hickman, and Menard Creek complexes: British Columbia Geological Survey, Geological Fieldwork 1988, p. 429-442 Nixon, G.T., Cabri, L.J., and Laflamme, J.H.G., 1990, Platinum-group-element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia: Canadian Mineralogist, v. 28, p. 503–535. Nixon, G.T., Hammack, J.L., Ash, C.H., Cabri, L.J., Case, G., Connelly, J.N., Heaman, L., 125  Laflamme, J.H.G., Nuttall, C., Paterson, W.P.E., and Wong, R.H., 1997, Geology and platinum-group-element mineralization of Alaskan-type ultramafic-mafic complexes in British Columbia, in British Columbia: Ministry of Employment and Investment, British Columbia Geological Survey Bulletin 93, p. 141. Nixon, G.T., Hitchins, A.C., and Ross, G.P., 2012. Geology of the Turnagain ultramafic intrusion, northern British Columbia; British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Open File 2012-05, scale: 1:10 000. Nixon, G.T., Manor, M.J., Jackson-Brown, S., Scoates, J.S., and Ames, D.E., 2015, Magmatic Ni-Cu-PGE deposits at convergent margins: summary of activities, in Ames, D. E. & Houle, M. G., eds., Targeted Geoscience Initiative 4: Canadian Nickel-Copper-Platinum Group Elements-Chromium Ore Systems - Fertility, Pathfinders, New and Revised Models, Geological Survey of Canada, Open File 7856, p. 17–34. Nixon, G.T., Scheel, J.E., Friedman, R.M., Wall, C.J., Gabites, J., Jackson-Brown, S., and Scoates, J.S., 2017, Staged emplacement of the Turnagain Alaskan-type ultramafic-mafic Intrusion, British Columbia, Canada: Implications for Ni-Cu-PGE mineralization and the origin of zoned complexes: Society for Geology Applied to Mineral Deposits 14th Biennial Meeting Abstracts. Nixon, G.T., Scheel, J.E., Friedman, R.M., Wall, C.J., Gabites, J., Miller, J.D., and Scoates, J.S., 2017, Geology and geochronology of the Turnagain ultramafic-mafic intrusion, British Columbia: British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Geoscience Map 2017-1 (scale 1:10,000). Nyman, M.W., Sheets, R.W., and Bodnar, R.J., 1990, Fluid inclusion evidence for the physical and chemical conditions associated with intermediate-temperature PGE mineralization at the New Rambler deposit, southeastern Wyoming: Canadian Mineralogist, v. 28, p. 629–638. Olivo, G., Theyer, P., and Bursztyn, N., 2002, Platinum group element investigations in the Flin Flon 126  greenstone belt: petrography and mineralogy of the McBratney Lake PGE-Au occurrence (NTS 63K13), Manitoba: 94-99 p. Park, Y.-R., Ripley, E.M., Miller, J.D., Li, C., Mariga, J., and Shafer, P., 2004, Stable isotopic constraints on fluid-rock interaction and Cu-PGE-S redistribution in the Sonju Lake Intrusion, Minnesota: Economic Geology, v. 99, p. 325–338. Parviainen, A., Gervilla, F., Melgarejo, J.-C., and Johanson, B., 2008, Low-temperature, platinum-group elements-bearing Ni arsenide assemblage from the Atrevida mine (Catalonian Coastal Ranges, NE Spain): Neues Jahrbuch fur Mineralogie, Abhandlungen, v. 185. doi: 10.1127/0077-7757/2008/0113. Peregoedova, A., Barnes, S.-J., and Baker, D.R., 2004, The formation of Pt–Ir alloys and Cu–Pd-rich sulfide melts by partial desulfurization of Fe–Ni–Cu sulfides: results of experiments and implications for natural systems: Chemical Geology, v. 208, p. 247–264. doi: 10.1016/j.chemgeo.2004.04.015. Pettigrew, N.T., and Hattori, K.H., 2006, The Quetico intrusions of Western Superior Province: Neo-Archean examples of Alaskan/Ural-type mafic–ultramafic intrusions: Precambrian Research, v. 149, p. 21–42. doi: 10.1016/j.precamres.2006.06.004. Pettigrew, N.T., Hattori, K.H., and Percival, J.A., 2000, Samuels Lake intrusion: a late Archean Cu-Ni-PGE-bearing mafic-ultramafic complex in the western Quetico Subprovince, northwestern Ontario: Geological Survey of Canada, Current Research 2000-C20, p. 8. Piña, R., Gervilla, F., Barnes, S.-J., Ortega, L., and Lunar, R., 2012, Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study: Chemical Geology, v. 302–303, p. 61–75. Piña, R., Gervilla, F., Ortega, L., and Lunar, R., 2008, Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain): Mineralogy and Petrology, v. 92, 127  p. 259–282. Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., and Wallace, P.J., 2013, Why do mafic arc magmas contain ~4 wt% water on average? Earth and Planetary Science Letters, v. 364, p. 168–179. doi: 10.1016/j.epsl.2012.11.044. Prichard, H.M., Fisher, P.C., McDonald, I., Knight, R.D., Sharp, D.R., and Williams, J.P., 2013, The distribution of PGE and the role of arsenic as a collector of PGE in the Spotted Quoll nickel ore deposit in the Forrestania Greenstone Belt, Western Australia: Economic Geology, 108, 2013, Proceedings, p. 1903–1921. doi: 10.2113/econgeo.108.8.1903. Richardson, T., and Burnham, O.M., 2002, Precious metal analysis at the geoscience laboratories: Results from the new Low-Level Analytical Facility, in Summary of Field Work and Other Activities 2002: Ontario Geological Survey, Open File Report 6100, p. 35-1-35–5. Riles, A., Molavi, M., Simpson, R., Fong, B., Reid, J., McTavish, G., and Friedman, D., 2011, Turnagain project Hard Creek Nickel Corporation preliminary economic assessment: Unpublished internal report for Hard Creek Nickel Corp., 151 p. Ripley, E.M., 2010, Chapter 24 - A new perspective on exploration for magmatic sulfide-rich Ni-Cu-(PGE) deposits, in Society of Economic Geologists Special Publication 15, p. 437–450. Ripley, E.M., and Li, C., 2013, Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Economic Geology, v. 108, p. 45–58. doi: 10.2113/econgeo.108.1.45. Ripley, E.M., Li, C., and Thakurta, J., 2005, Magmatic Cu-Ni-PGE mineralization at a convergent plate boundary: Preliminary mineralogic and isotopic studies of the Duke Island Complex, Alaska: Mineral Deposit Research: Meeting the Global Challenge, 2005, Proceedings, p. 49–51. Rowell, W.F., and Edgar, A.D., 1986, Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, northeastern Ontario: Economic Geology, v. 81, p. 1272–128  1277. doi: 10.2113/gsecongeo.81.5.1272. Scheel, J.E., 2007, Age and origin of the Turnagain Alaskan-type intrusion and associated Ni-sulphide mineralization, North-Central British Columbia, Canada: unpublished MSc thesis, University of British Columbia, Vancouver, BC, 210 p. Scheel, J.E., Nixon, G.T., and Scoates, J.S., 2005, New observations on the geology of the Turnagain Alaskan-type ultramafic intrusive suite and associated Ni-Cu-PGE mineralization, British Columbia, in Geological Fieldwork 2004, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Paper 2005-1, p. 167–176. Scheel, J.E., Scoates, J.S., and Nixon, G.T., 2009, Chromian spinel in the Turnagain Alaskan-type ultramafic intrusion, northern British Columbia, Canada: The Canadian Mineralogist, v. 47, p. 63–80. doi: 10.3749/canmin.47.1.63. Shazali, I., Van’t Dack, L., and Gijbels, R., 1987, Determination of precious metals in ores and rocks by thermal neutron activation spectrometry after preconcentration by nickel sulfide fire assay and coprecipitation with tellurium: Analytica Chimica Acta, v. 196, p. 49–58. Shi, B., 1995, Geochemistry and mineralisation of primary and secondary platinum group elements in the ultramafic “Alaskan-Type” Owendale Complex and laterites in the Fifield Region, New South Wales, Australia: School of Earth Sciences, The University of Melbourne, 420 p. Song, X.-Y., and Li, X.R., 2009, Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment: Mineralium Deposita, v. 44, p. 303–327. doi: 10.1007/s00126-008-0219-x. Southworth, D.D., and Foley, J.Y., 1986, Lode platinum-group metals potential of the Goodnews Bay ultramafic complex, Alaska: U.S. Geological Survey Open-File Report 51-86, p. 82. Stern, R.J., 2002, Subduction zones: Reviews of Geophysics, v. 40, p. 1012. doi: 10.1029/2001RG000108. 129  Su, B.-X., Qin, K.-Z., Sakyi, P.A., Malaviarachchi, S.P.K., Liu, P.-P., Tang, D.-M., Xiao, Q.-H., Sun, H., Ma, Y.-G., and Mao, Q., 2012, Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies: International Geology Review, v. 54, p. 37–41. doi: 10.1080/00206814.2010.543009. Taylor, H.P., 1967, The zoned ultramafic complexes of southeastern Alaska, in Wyllie P.J. (eds) Ultramafic and Related Rocks: New York, Wiley, p. 97–121. Thakurta, J., 2008, Isotopic and mineralogical studies of sulfide mineralization and hydrothermal alteration in the Duke Island Ultramafic Complex, southeastern Alaska: unpublished PhD dissertation, Indiana University, 220 p. Thakurta, J., Ripley, E.M., and Li, C., 2008, Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska: Geochemistry, Geophysics, Geosystems, v. 9, p. 1–34. doi:10.1029/2008GC001982. Thakurta, J., Ripley, E.M., and Li, C., 2014, Platinum group element geochemistry of sulfide-rich horizons in the Ural-Alaskan-type ultramafic complex of Duke Island, southeastern Alaska: Economic Geology, v. 109, p. 643–659. Theobald, P.K.J., and Thompson, C.E., 1968, Platinum and associated elements at the New Rambler mine and vicinity, Albany and Carbon Counties, Wyoming: 14 p. Tistl, M., 1994, Geochemistry of platinum group elements of the zoned ultramafic Alto Condoto Complex, northwest Colombia: Economic Geology, v. 89, p. 158–167. Watkinson, D.H., and Melling, D.R., 1992, Hydrothermal origin of platinum-group mineralization in low-temperature copper sulfide-rich assemblages, Salt Chuck intrusion, Alaska: Economic Geology, v. 87, p. 175–184 Watkinson, D.H., and Ohnenstetter, D., 1992, Hydrothermal origin of platinum-group mineralization in the Two Duck Lake intrusion, Coldwell complex, northwestern Ontario: The Canadian 130  Mineralogist, 30, 121–136. Wheeler, J.O., Hoffman, P.F., Card, K.D., Davidson, A., Sanford, B.V., Okulitch, A.V. and Roest, W.R. 1996, Geological map of Canada; Geological Survey of Canada, “A” Series Map 1860A, scale 1:5 000 000. Wilson, G.C., Rucklidge, J.C., and Cermignani, C., 2002, Coarse-grained Cabriite from Noril’sk, Russia: The Canadian Mineralogist, v. 40, p. 473–479. doi: 10.2113/gscanmin.40.2.473. Zaccarini, F., Garuti, G., and Pushkarev, E. V., 2011, Unusually PGE-rich chromitite in the Butyrin vein of the Kytlym Uralian-Alaskan complex, northern Urals, Russia: The Canadian Mineralogist, v. 49, p. 1413–1431. doi: 10.3749/canmin.49.6.1413. 131      Appendices   132      Appendix A: Field photographs from the DJ/DB zone of the Turnagain intrusion (July, 2013)  133   Aerial photograph of the DJ/DB zone (tree-covered) and the dunite-rich Highland zone (outcrop), facing east (approximate location of peak: 507500E, 6484000N).  Outcrop: diorite dike cross-cutting fine-grained hornblendite (506707E, 6482656N; near 13-SJB-01), hammer head for scale (12.5 cm across) Highland zone (dunite)  Highland zone (dunite)  Highland zone (dunite)  Highland zone (dunite) DJ/DB zone (clinopyroxenite/hornblendite)  DJ/DB zone (clinopyroxenite/hornblendite)  DJ/DB zone (clinopyroxenite/hornblendite)  DJ/DB zone (clinopyroxenite/hornblendite) Former drill pad  Former drill pad  Former drill pad  Former drill pad 500 m  500 m  500 m  500 m 134   Boulder: coarse-grained clusters of olivine (replaced by serpentine and magnetite pseudomorphs, grey) in fine-grained clinopyroxenite (pale green) (506101E, 6483393N), pencil for scale (15 cm in length)  Boulder: serpentinized dunite in sharp contact with coarse-grained clinopyroxenite (506125E, 6483225N; 13-SJB-02), pencil for scale (black portion 4 cm in length) Clinopyroxenite  Clinopyroxenite  Clinopyroxenite  Clinopyroxenite Serpentinized dunite  Serpentinized dunite  Serpentinized dunite  Serpentinized dunite 135   Outcrop: hornblende clinopyroxenite in contact with hornblendite (506200E, 6482906N, near 13-SJB-03), pencil for scale (15 cm in length)  Boulder: blebby magnetite (black) in fine-grained clinopyroxenite (grey) (506035E, 6483078N), hammer for scale (head is 12.5 cm across) Hornblendite  Hornblendite  Hornblendite  Hornblendite Hornblende clinopyroxenite  Hornblende clinopyroxenite  Hornblende clinopyroxenite  Hornblende clinopyroxenite 136   Boulder: 3 cm layer of coarse-grained magnetite (black) in magnetite clinopyroxenite (grey ± black magnetite grains) (506035E, 6483078N), pencil for scale (15 cm in length)  Boulder: thin layers of fine-grained magnetite (black) in clinopyroxenite (grey) (505742E, 6482653N, near 13-SJB-04), hammer for scale (33 cm visible length) 137   Boulder: diffuse layers of fine-grained magnetite (dark grey) in clinopyroxenite (grey) (505742E, 6482653N, 13-SJB-04), pencil for scale (15 cm in length)  Boulder: deformed layers of fine-grained magnetite (dark brown-grey) in clinopyroxenite (grey) (505742E, 6482653N, near 13-SJB-04), pencil for scale (15 cm in length) 138   Boulder: angular clasts of dunite (brown) in fine- to medium-grained clinopyroxenite (green). Dunite clasts have been entirely or almost entirely altered to serpentine and magnetite (white) (507382E, 6482274N, near 13-SJB-05), pencil for scale (15 cm in length)  Boulder: angular clasts of dunite (brown) in fine- to medium-grained clinopyroxenite (green). The rims of the dunite clasts have been altered to serpentine and magnetite (black). Serpentinization is also located along fractures within the dunite clasts. (507382E, 6482274N, near 13-SJB-05), pencil for scale (15 cm in length) Clinopyroxenite  Clinopyroxenite  Clinopyroxenite  Clinopyroxenite Dunite clast  Dunite clast  Dunite clast  Dunite clast 139   Boulder: angular clasts of dunite (brown) in fine- to medium-grained clinopyroxenite (green). Dunite clast rims have been altered to serpentine and magnetite (black). Serpentinization is also located along fractures within the dunite clasts. (507382E, 6482274N, near 13-SJB-05), magnet pen for scale (12.5 cm in length)   Clinopyroxenite  Clinopyroxenite  Clinopyroxenite  Clinopyroxenite Dunite clast  Dunite clast  Dunite clast  Dunite clast 140      Appendix B: Visual logs and assay results for sampled drill holes from the DJ/DB zone  Appendix B contains downhole cross sections for all sampled drill holes. Location information indicates the location of each drill hole collar (NAD83 UTM Zone 9). Sections were cut parallel to the downhole orientation of the hole. The centreline of each drill hole is colour-coded for geology. Each side of the trace shows histogram and colour-coded assay values for copper (left) and combined platinum + palladium (right) concentrations from assay data provided by Hard Creek Nickel Corporation. Samples are indicated on the right hand side of the drill trace, with a line leading to the sample location. Thickness of histogram bars is representative of downhole assay sample lengths. Az = azimuth of drill hole, Dip = dip of drill hole at collar, EOH = end of hole (in meters). Mineral abbreviations: ep = epidote, fsp = feldspar, hbl = hornblende.  Representative orientation data are plotted on drill traces for measured fabrics: oriented hornblende (green, W=weak, M=moderate, S=strong), magnetite layering (B=blebby, C=continuous), sulphide layering (L=coherent layer, D=discontinuous layer), and bedding in phyllite.  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157    158       Appendix C: Photographs of rock samples from the DJ/DB zone   Appendix C contains photographs of all samples from the DJ/DB zone, with drill collar or surface sample location (NAD83 UTM Zone 9), rock type, depth of sample (for drillcore samples), and sulphide mineralization texture (D=disseminated, B=blebby, NT=net-textured, SM=semi-massive, M=massive, L=layered, VH=vein-hosted). All photographs include centimeter scale card (black band = 1 cm). Abbreviations: fg=fine-grained, mg=medium-grained, cg=coarse-grained, altd=altered, Tlc=talc, Cb=carbonate, Mag=magnetite, Cpx=clinopyroxene, Ol=olivine, Srp=serpentine, Bt=biotite, Ser=sericite, Hbl=hornblende, Cal=calcite, Pl=plagioclase, Chl=chlorite, Tr=tremolite.   159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179    180      Appendix D: Scans of thin sections in transmitted light and cross-polarized light from samples from the DJ/DB zone   Appendix D contains scans of all thin sections from this study from the DJ/DB zone, with drill collar or surface sample location (NAD83 UTM Zone 9), rock type, depth of sample (for drillcore samples), and sulphide mineralization texture (D=disseminated, B=blebby, NT=net-textured, SM=semi-massive, M=massive, L=layered, VH=vein-hosted). Where there was a visible fabric, approximate orientation of core axis (CA) was noted. All scans are approximately 20 mm across. Abbreviations: fg=fine-grained, mg=medium-grained, cg=coarse-grained, altd=altered, hblite=hornblendite, cpxite=clinopyroxenite, Tlc=talc, Cb=carbonate, Mag=magnetite, Cpx=clinopyroxene, Ol=olivine, Srp=serpentine, Bt=biotite, Ser=sericite, Hbl=hornblende, Cal=calcite, Pl=plagioclase, Chl=chlorite, Tr=tremolite.   181  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197  198  199  200  201  202    203      Appendix E: Thin section descriptions of samples selected for microprobe analyses   204  PETROGRAPHY OF POLISHED SECTIONS (n=18) FROM THE TURNAGAIN ULTRAMAFIC INTRUSION by Ingrid Kjarsgaard, Ottawa October 2013  1) DDH04-48-8 Phlogopite clinopyroxenite    Description: massive granular clinopyroxene with minor interstitial olive-green hornblende at the left edge of the section is intergrown with coarse, strongly kinked phlogopite and large masses of deformed serpentine in the center and left side of the section. Fine-grained anhedral magnetite and traces of sulphides (pyrrhotite-pentlandite-chalcopyrite) are disseminated throughout. Secondary magnetite occurs in veins in serpentine. The serpentine is probably an alteration product of a primary oikocrystic Mg,Fe-silicate (olivine) and is overprinted by euhedral metamorphic tremolite crystals, which also rim primary hornblende. Phlogopite is partially replaced by chlorite. Sulphides are a late addition and not primary: chalcopyrite is squeezed into cracks in massive clinopyroxene and interstitial to amphibole and phlogopite. Pyrite forms euhedral crystals surrounding and intergrown with tremolite in serpentine, where it encloses magnetite grains and anhedral chalcopyrite. Trace millerite was found intergrown with pyrite and chalcopyrite. Diopside (55%) fine- to medium-grained anhedral, medium relief, almost colourless grains in semi-massive to massive granoblastic masses, intergrown with altered phlogopite, hornblende and magnetite Hornblende (1%) fine- to medium-grained green, pleochroic anhedral interstitial to pyroxene or serpentine  Phlogopite (9%) medium- to coarse-grained, anhedral, strongly kinked, pale orange, intergrown with serpentine and clinopyroxene Serpentine (25%) colourless, extremely fine-grained fibrous to micaceous masses, veined by secondary magnetite Tremolite (3%) fine-grained, euhedral elongate crystals overprinting serpentine and rimming anhedral hornblende remnants Chlorite (3%) i) green pleochroic micaceous masses filling cracks in massive clinopyroxenite; ii) colourless, replacing phlogopite Titanite (trace) very fine-grained anhedral grains in trails in altered phlogopite Magnetite (2%) i) fine-grained subhedral to anhedral isometric grains intergrown with silicates; ii) very fine-grained secondary magnetite fills veins in serpentine Ilmenite (trace) very fine-grained anhedral, pinkish-grey reflectance, lamellae intergrown with magnetite Pyrite (1%) fine-grained, subhedral to euhedral cubes in aggregates surrounding tremolite crystals in serpentine, enclosing chalcopyrite and magnetite  Chalcopyrite (trace) fine-grained anhedral intergrown with pyrite and with sheet silicates and amphibole 205  Millerite (trace) bright creamy pale yellow-reflecting, anisotropic, intergrown with pyrite and chalcopyrite Sphalerite (trace) fine-grained euhedral inclusion in chalcopyrite intergrown with millerite Location and description of areas analyzed by electron microprobe 1) fine-grained pyrite and chalcopyrite intergrown with tremolite (overgrowing green hornblende) in serpentine with magnetite; chlorite replacing phlogopite 2) magnetite rimming pyrite-millerite-chalcopyrite-sphalerite patch interstitial to serpentine with euhedral tremolite (trace remnant hornblende), secondary magnetite 3) coarse kinked ± chlorite-altered phlogopite intergrown with magnetite, pyrite, chalcopyrite 4) pyrite aggregate intergrown with anhedral chalcopyrite and granular magnetite in serpentine with tremolite, magnetite 5) hornblende remnants overgrown by tremolite in serpentine with secondary magnetite; chlorite pseudomorphs after phlogopite at edge of circle 6) green chlorite veining clinopyroxene 206  2) DDH04-58-5 Clinopyroxenite dunite    Description: massive clinopyroxenite consisting of granoblastic diopside with disseminated magnetite borders on highly serpentinized dunite with minor interstitial phlogopite and rafts of clinopyroxenite. Remnants of intact olivine are surrounded by large areas of serpentine with very fine-grained secondary magnetite in fractures and overprinted by talc or metamorphic diopside ± carbonate. Primary phlogopite has recrystallized into aggregates of more fine-grained phlogopite intergrown with carbonate. Diopside (45%) fine- to medium-grained anhedral, medium relief, almost colourless grains in massive granoblastic masses, intergrown with ± serpentine-altered olivine Olivine (3%) medium-grained, colourless, fractured, anhedral remnants in serpentine  Phlogopite (1%) fine-grained subhedral recrystallized primary phlogopite interstitial to serpentinized olivine, partially altered Serpentine (45%) colourless, extremely fine-grained fibrous to micaceous masses, veined by secondary magnetite (chrysotile grading into antigorite) Talc (trace) very fine-grained patches overprinting serpentine and filling veinlets Diopside 2 (trace) very fine-grained acicular aggregates forming brownish, medium relief patches overprinting serpentine Calcite (trace) very fine-grained interstitial to recrystallized phlogopite and intergrown with talc overprinting serpentine Cr-magnetite (trace) very fine-grained euhedral grains in olivine and clinopyroxene Magnetite 2 (5%) very fine-grained secondary magnetite fills abundant veins in serpentine and olivine; overgrows primary magnetite when exposed to alteration Pyrite (trace) rare, very fine-grained, anhedral, intergrown with chalcopyrite; one euhedral porphyroblast with chalcopyrite, pentlandite and magnetite inclusions in serpentine  Chalcopyrite (trace) very fine-grained, anhedral, intergrown with pyrite in cracks and on grain boundaries Siegenite [(Ni,Co)3S4] (trace) very fine-grained white square grain associated with chalcopyrite at edge of section; many creamy-white pin prick inclusions in serpentine  Pentlandite (trace) fine-grained, anhedral, pinkish-cream, intergrown with chalcopyrite in pyrite Location and description of areas analyzed by electron microprobe 1) small white cubes of siegenite associated with chalcopyrite and magnetite in serpentine surrounded by clinopyroxene 2) more siegenite cubes with magnetite in serpentine and with chalcopyrite and magnetite in cracks 207  3) creamy white specks in magnetite in serpentine adjacent to clinopyroxene 4) olivine remnants veined by serpentine-magnetite, chalcopyrite in clinopyroxene 5) deformed phlogopite with interstitial carbonate and magnetite, with serpentine and clinopyroxene 6) olivine remnants rimmed by serpentine-magnetite, small euhedral chromite-magnetite in clinopyroxene 7) brownish medium relief patches overgrowing serpentine: diopside 8) pyrite porphyroblast with chalcopyrite-pentlandite-siegenite and magnetite inclusions 9) talc-carbonate patches overgrowing serpentine and same in veinlet 10) chalcopyrite-pyrite-magnetite droplet in serpentine veined by secondary magnetite and overprinted by diopside  208  3) DDH05-83-1 Clinopyroxenite with massive pyrrhotite vein  Description: massive pyrrhotite (vein?) bordering clinopyroxenite consisting of fine-grained granoblastic diopside intergrown with a few patches of serpentine (formerly olivine?) and minor interstitial olive hornblende, fine-grained red biotite, trace chlorite, magnetite and abundant pyrrhotite blebs. The pyroxene is strongly textured and appears "dirty" and mottled due to parallel exsolutions and alteration.  The pyrrhotite blebs in the pyroxenite are intergrown with very, very fine-grained acicular tremolite that has developed on grain boundaries, giving them a fuzzy appearance around the edges. Very fine-grained chalcopyrite and secondary magnetite may be intergrown with pyrrhotite. Massive pyrrhotite shows deformation lamellae and contains inclusions of gangue (phlogopite, amphibole, carbonate), fine-grained primary magnetite, anhedral chalcopyrite and tiny cream coloured cobaltite and white Pd-melonite, which are typically associated with magnetite or gangue inclusions. Diopside (45%) fine- to medium-grained anhedral, medium relief, almost colourless grains in massive granoblastic masses, intergrown with ± serpentine-altered olivine Hornblende (trace) fine-grained, olive pleochroic, anhedral interstitial to clinopyroxene Phlogopite (1%) fine-grained tan to red-brown, partially chloritized anhedral interstitial to clinopyroxene and as anhedral inclusions in pyrrhotite Serpentine (3%) colourless, extremely fine-grained fibrous to micaceous masses interstitial to clinopyroxene and possibly intergrown with edges of pyrrhotite Chlorite (trace) fine-grained green pleochroic intergrown with clinopyroxene (probably replacing phlogopite) Magnetite (trace) fine-grained euhedral to subhedral isometric grains in massive pyrrhotite; finer grained inclusions in clinopyroxene Goethite (trace) very fine-grained alteration in gangue inclusions in pyrrhotite, bluish-grey reflectance Carbonate (trace) as fine-grained elongate anhedral inclusion in massive pyrrhotite Pyrite (trace) fine-grained euhedral aggregates (secondary) in veins in massive pyrrhotite Pyrrhotite (50%) massive deformed in vein and as blebs in clinopyroxenite Chalcopyrite (trace) fine-grained anhedral intergrown with pyrrhotite Cobaltite (trace) very fine-grained isometric creamy-white grains in massive pyrrhotite Pd-melonite [(Ni,Pd,Co)Te2] (trace) extremely small bright white specks associated with magnetite in massive pyrrhotite     209  Location and description of areas analyzed by electron microprobe 1) clinopyroxene intergrown with olive hornblende and pyrrhotite blebs 2) phlogopite (with secondary magnetite) and chlorite intergrown with clinopyroxene and pyrrhotite blebs 3) creamy white isometric grain in pyrrhotite close to magnetite-gangue inclusion (not found) 4) secondary pyrite in vein in massive pyrrhotite 5) creamy white isometric Pd-melonite between gangue inclusion with magnetite in pyrrhotite 6) tiny white speck of Pd-melonite at edge of pyrrhotite in gangue inclusion with magnetite 7) creamy white isometric grain of cobaltite close to edge of massive pyrrhotite, with chalcopyrite and gangue 8) pyrrhotite intergrown with chalcopyrite and clinopyroxene with magnetite inclusions 9) extremely thin Pd-melonite inclusions in pyrrhotite (pentlandite? at edge of pyrrhotite) 10) bright white speck (Pd-melonite) attached to tip of magnetite inclusion in pyrrhotite  210  4) DDH05-88-1 Massive clinopyroxenite with disseminated sulphides Description: massive clinopyroxenite consisting of medium- to coarse-grained, mottled diopside intergrown with a few patches of green chlorite (formerly phlogopite), minor euhedral magnetite (surrounded by titanite alteration) and trace disseminated pyrrhotite-chalcopyrite-pentlandite blebs. Very fine-grained titanite grains occur in chlorite and euhedral tremolite overgrows clinopyroxene in chlorite. Sulphide blebs are composite and consist of pyrrhotite, chalcopyrite and pentlandite. In one case, a tiny white (Pd-Sb) inclusion was discovered in pyrrhotite and another pyrrhotite was rimmed and veined by very fine-grained sperrylite.  Diopside (96%) medium- to coarse-grained anhedral, medium relief, almost colourless grains massive, intergrown with chlorite Chlorite (3%) fine-grained, green pleochroic, anhedral, interstitial to and mottling clinopyroxene  Tremolite (trace) fine-grained, euhedral, overgrowing clinopyroxene at edge of chlorite patches Titanite (trace) fine-grained, high relief, pale brown grains intergrown with magnetite and in chlorite Calcite (trace) very fine-grained, anhedral, intergrown with sulphides Magnetite (0.5%) fine-grained euhedral to subhedral isometric grains in clinopyroxene Pentlandite (trace) fine-grained, cream reflectance, intergrown with pyrrhotite and chalcopyrite Pyrrhotite (trace) fine-grained, anhedral, intergrown with chalcopyrite and pentlandite in clinopyroxene Chalcopyrite (trace) fine-grained, anhedral, yellow reflectance, intergrown with pyrrhotite unidentified PdAgSbBiTe (trace) extremely fine-grained, isometric, creamy white grain in pyrrhotite Sperrylite (trace) very fine-grained, white-reflecting grains lining and in pyrrhotite Location and description of areas analyzed by electron microprobe 1) euhedral tremolite overgrowing chlorite and clinopyroxene in chlorite patch with titanite 2) two large magnetite grains intergrown with titanite and chlorite in chlorite-mottled clinopyroxene 3) pyrrhotite-pentlandite-chalcopyrite droplet with tiny white inclusion (PdAgSbBiTe) in clinopyroxene 4) very fine-grained white sperrylite lining and veining pyrrhotite in clinopyroxene with chalcopyrite inclusions 211  5) DDH05-88-104  Massive clinopyroxenite with disseminated sulphides Description: massive clinopyroxenite consisting of medium-grained granoblastic diopside, intergrown with minor olive-green hornblende, medium-grained magnetite and fine-grained pyrrhotite-chalcopyrite blebs. The assemblage is cut by a sheared vein filled with strongly deformed carbonate, intense green Na-amphibole, fine-grained olive biotite and lace-like pyrite aggregates. Hornblende is abundant and in some cases very coarse in the vicinity of the vein. It is rimmed first by colourless tremolite and then by intense blue green Na-amphibole, all replacing clinopyroxene. The alkali-amphibole also infiltrates the clinopyroxenite on grain boundaries. Sulphide blebs in these areas show orange to tan tarnished chalcopyrite intergrown with pyrrhotite. Pyrrhotite also contains euhedral porous (secondary?) pyrite and flames of white marcasite (alteration). A second form of pyrite occurs in the form of "dirty" beige colloform patches in strongly altered pyrrhotite. Magnetite in the pyroxenite forms fairly coarse subhedral to anhedral grains with thin exsolution lamellae that have been replaced by titanite. It is intergrown with anhedral ilmenite and both are rimmed and partially replaced by titanite.  Diopside (85%) medium- to coarse-grained anhedral, medium relief, almost colourless grains massive, intergrown with hornblende Hornblende (5%) fine- to coarse-grained anhedral to euhedral dark olive-green to brown pleochroic, intergrown with clinopyroxene Tremolite (trace) fine-grained colourless overgrowths on hornblende in vicinity of carbonate vein Na-amphibole (2%) intense blue-green elongate deformed crystals in vein, rimming and replacing hornblende adjacent to vein Biotite (1%) fine-grained pale olive-green pleochroic, anhedral, in aggregates in vein  Titanite (trace) fine-grained, high relief, pale brown, rimming and replacing ilmenite and magnetite  Carbonate (6%) medium-grained anhedral, strongly deformed (sheared) in vein; also pseudomorph, replacing magnetite in clinopyroxenite Magnetite (2%) medium-grained euhedral to subhedral isometric grains with weathered exsolution lamellae in clinopyroxene Ilmenite (trace) fine-grained anhedral intergrown with magnetite Pyrrhotite (4%) fine-grained anhedral, intergrown with chalcopyrite and pentlandite in clinopyroxene Chalcopyrite (trace) fine-grained anhedral, yellow-orange (?) reflectance, intergrown with pyrrhotite Pyrite (1-2%) fine-grained, cream-reflecting aggregates and lace-like impregnations of amphibole and carbonate in vein and in clinopyroxenite; also fine-grained porous overprinting pyrrhotite in clinopyroxenite Marcasite (trace) very fine-grained white flames (anisotropic) in pyrrhotite    212  Location and description of areas analyzed by electron microprobe 1) pyrite and marcasite replacing pyrrhotite interstitial to clinopyroxene + green hornblende 2) two types of pyrite altering pyrrhotite with trace chalcopyrite in clinopyroxene 3) pyrrhotite blebs in unaltered clinopyroxene 4) + 5) pyrrhotite blebs with orange-brown chalcopyrite in clinopyroxene with green Na-amphibole on grain boundaries (more pronounced in 5) 6) carbonate replacing magnetite-ilmenite, green amphibole surrounding clinopyroxene 7) intense blue-green Na-amphibole with olive biotite, pyrite and carbonate in vein 8) edge of coarse hornblende rimmed by tremolite and Na-amphibole (±titanite?) adjacent to carbonate vein with olive biotite  213  6) DDH05-89-2 Clinopyroxenite with disseminated sulphides Description: massive clinopyroxenite consisting of medium-grained granoblastic diopside with fine-grained, disseminated sulphide blebs and pockets of serpentine intergrown with coarse, slightly altered phlogopite and anhedral magnetite-ilmenite. The sulphide blebs consist of pyrrhotite-pentlandite-chalcopyrite±magnetite. Chalcopyrite (and rare sphalerite) has been remobilized into cracks and grain boundaries. Secondary magnetite occurs between sheets of altered phlogopite. A very bright white PGM (ungavaite?) occurs as very small grains attached to pyrrhotite-chalcopyrite blebs, but most of them do not reach the surface and could not be analyzed. Diopside (79%) fine- to medium-grained, anhedral, medium relief, almost colourless grains in massive granoblastic masses, intergrown with ± serpentine-altered olivine Hornblende (trace) medium-grained, anhedral green pleochroic, intergrown with serpentine and phlogopite Phlogopite (4%) fine-grained, subhedral, recrystallized primary phlogopite interstitial to serpentinized olivine, partially altered Serpentine (14%) colourless, extremely fine-grained fibrous to micaceous masses, overprinted by tremolite; grading from chrysotile to antigorite Tremolite (trace) very fine-grained oriented crystals overprinting serpentine Chlorite (trace) fine-grained, grey green, anhedral, in pockets in clinopyroxene and replacing phlogopite (colourless); also very fine-grained, colourless, anhedral, mottling clinopyroxene, also in titanite Titanite (trace) very fine-grained, almost colourless, high relief grains in clinopyroxene and associated with magnetite Magnetite (1%) fine-grained euhedral isometric grains in clinopyroxene and sulphides; ii) secondary anhedral magnetite infiltrates phlogopite and serpentine Pyrrhotite (2%) very fine-grained, anhedral, with flames of pentlandite; intergrown with chalcopyrite and fine-grained magnetite Pentlandite (trace) very fine-grained, anhedral, flames in pyrrhotite Chalcopyrite (trace) very fine-grained, anhedral, intergrown with pyrrhotite  Sphalerite (trace) fine-grained, anhedral, red-brown translucent filling crack in clinopyroxene together with pyrrhotite Ungavaite? [Pd4Sb3] (trace) extremely small, bright white-reflecting, euhedral isometric grain attached to pyrrhotite     214  Location and description of areas analyzed by electron microprobe 1) large pyrrhotite with flames of pentlandite and acicular inclusions of tremolite or serpentine bordering on coarse phlogopite 2) sphalerite, pyrrhotite and chalcopyrite in crack in clinopyroxene 3) extremely bright white-reflecting aggregates associated with pyrrhotite-chalcopyrite in clinopyroxene 4) extremely bright white square in gangue associated with pyrrhotite-chalcopyrite in clinopyroxene 5) antigorite with secondary magnetite bordering on phlogopite intergrown with primary magnetite 6) tiny white PdSb attached to pyrrhotite-pentlandite-chalcopyrite intergrown with magnetite and hornblende in serpentine   215  7) DDH05-101-1 Clinopyroxenite with serpentine patches hosting cobaltite Description: massive clinopyroxenite consisting of medium-grained mottled diopside with fine-grained, disseminated sulphide blebs and anhedral magnetite, contains medium to large pockets of serpentine. Other pockets contain green chlorite, subhedral magnetite and titanite. Rare green hornblende and brown phlogopite remnants were found intergrown with serpentine. The serpentine patches show beginning metamorphic overprint by talc and/or tremolite and host many fine-grained euhedral bright white cobaltite grains up to 80 µm in diameter, some of which contain submicroscopic inclusions of sperrylite. The sulphide blebs are disseminated throughout the clinopyroxenite (but not in the serpentine) and consist predominantly of chalcopyrite intergrown with pyrrhotite and blocky pentlandite. Late veinlets contain secondary pyrite.  Diopside (68%) fine- to medium-grained, anhedral, medium relief, almost colourless, in massive granoblastic masses, mottled by chlorite and titanite Hornblende (trace) medium-grained, anhedral green pleochroic, intergrown with serpentine Serpentine (28%) colourless, extremely fine-grained fibrous to micaceous masses, overprinted by tremolite and talc; grading from chrysotile to antigorite; with secondary magnetite Tremolite/Diopside 2 (trace) fine-grained, colourless, euhedral crystals with medium high interference colours, overprinting serpentine Chlorite (3%) fine-grained, grey green, anhedral, in pockets in clinopyroxene together with fine granular titanite and anhedral magnetite; also very fine-grained, almost colourless, anhedral, mottling clinopyroxene Titanite (trace) very fine-grained, almost colourless, high relief grains in chlorite and clinopyroxene Carbonate (trace) very fine-grained, anhedral, intergrown with sulphides in clinopyroxene Magnetite (1%) fine-grained, subhedral to anhedral, spongy grains in clinopyroxene; coarser, anhedral, with titanite-altered exsolution lamellae interstitial to serpentine pseudomorphs; ii) very fine-grained, secondary, anhedral magnetite in serpentine Pyrrhotite (trace) very fine-grained, anhedral, with flames of pentlandite; intergrown with chalcopyrite and fine-grained magnetite Pentlandite (trace) very fine-grained, anhedral, blocky grains intergrown with pyrrhotite and chalcopyrite Chalcopyrite (trace) very fine-grained, anhedral, intergrown with pyrrhotite  Pyrite (trace) fine-grained, anhedral, in veins, rarely in small patches intergrown with serpentine. Cobaltite (trace) very fine-grained (up to 80 µm), bright white-reflecting, euhedral isometric grains in serpentine patches Sperrylite (trace) submicroscopic inclusion in cobaltite    216  Location and description of areas analyzed by electron microprobe 1) chalcopyrite intergrown with pyrrhotite, magnetite and anhedral pyrite in clinopyroxene 2) two white hexagonal cobaltite grains in serpentine with secondary magnetite 3) one white hexagonal cobaltite grain in serpentine with secondary magnetite and chalcopyrite 4) two white hexagonal cobaltite grains in serpentine with pyrite in vein 5) fine-grained cobaltite associated with magnetite and pentlandite in serpentine with secondary pyrite 6) cobaltite intergrown with magnetite, pyrrhotite and chalcopyrite in serpentine with talc 7) tremolite or talc overprinting serpentine with secondary magnetite 8) anhedral green hornblende intergrown with serpentine, overprinted by fine-grained colourless aggregates  9) chalcopyrite-pyrrhotite-pentlandite intergrown with carbonate in clinopyroxene  217  8) DDH05-101-5 Chlorite-carbonate-pyrrhotite vein in clinopyroxenite  Description: clinopyroxenite at the top of the section is being cut by a vein of semi-massive chlorite, intergrown with coarse carbonate, anhedral titanite and sulphides. The latter consist of dominantly medium-grained anhedral pyrrhotite intergrown with chalcopyrite, minor magnetite and pyrite. Very fine-grained cream-coloured euhedral cobaltite grains were discovered in coarse pyrrhotite. The sulphides have been mobilized into cracks of the clinopyroxene. The chlorite-carbonate assemblage contains minor olive biotite and is overprinted by parallel aligned elongate crystals of tremolite that nucleate around carbonate. Diopside (22%) medium-grained anhedral, greenish- to brownish-tinged medium relief, semi-massive remnants, mottled by chlorite and titanite Chlorite (38%) fine-grained, green- to straw-coloured pleochroic, semi-massive, infiltrating clinopyroxenite and intergrown with carbonate, titanite and sulphides.  Biotite (trace) fine-grained olive-green anhedral inclusions in carbonate Tremolite (4%) fine-grained elongate bladed parallel crystals overprinting chlorite and carbonate Titanite (6%) fine- to medium-grained, almost colourless, high relief, poikilitic, anhedral grains in chlorite and carbonate Carbonate (18%) very fine-grained, anhedral, intergrown with sulphides in clinopyroxene Magnetite (trace) fine-grained, subhedral to anhedral, spongy grains in clinopyroxene; coarser, anhedral with titanite-altered exsolution lamellae interstitial to serpentine pseudomorphs; ii) very fine-grained, secondary, anhedral magnetite in serpentine Pyrrhotite (11%) very fine-grained, anhedral grains with flames of pentlandite; intergrown with chalcopyrite and fine-grained magnetite Chalcopyrite (1%) fine-grained, anhedral, intergrown with pyrrhotite; in cracks and veins Pyrite (trace) fine-grained, anhedral, in veins; euhedral to subhedral crystals intergrown with chalcopyrite-pyrrhotite Cobaltite (trace) very fine-grained, trapezoidal, cream-coloured grains in pyrrhotite Location and description of areas analyzed by electron microprobe 1) pyrite-chalcopyrite-pyrrhotite filling veinlets in clinopyroxene 2) magnetite aggregates intergrown with pyrrhotite-chalcopyrite and chlorite-carbonate 3) three tiny cobaltite inclusions on grain boundary in pyrrhotite 4) pyrite porphyroblasts in pyrrhotite-chalcopyrite intergrown with coarse titanite, chlorite and carbonate 5) tremolite overprinting chlorite-carbonate with pyrrhotite-chalcopyrite, intergrown with titanite 6) olive biotite and tremolite blades in carbonate; pyrrhotite intergrown with chlorite   218  9) DDH05-102-7 Clinopyroxenite with altered magnetite Description: massive clinopyroxenite with minor interstitial green hornblende, brown biotite, altered magnetite, and sulphide droplets. A few patches contain olive-green biotite (± carbonate) that is overprinting green chlorite and titanite. Magnetite is more or less strongly altered and partially replaced by titanite, secondary pyrrhotite or pyrite ± chalcopyrite. Sulphide blebs and droplets consisting of pyrrhotite-chalcopyrite and flame pentlandite occur in and on grain boundaries of clinopyroxene. Diopside (94%) medium-grained anhedral, greenish- to brownish-tinged, medium relief, massive, with minor interstitial amphibole, magnetite and biotite Chlorite (trace) fine-grained, green pleochroic, almost completely overprinted by green biotite Biotite2 (2%) fine-grained, olive-green anhedral, replacing chlorite intergrown with carbonate Hornblende (1%) fine-grained, anhedral, olive-green pleochroic, interstitial to clinopyroxene Biotite 1 (trace) rare, brown, subhedral, intergrown with hornblende interstitial to clinopyroxene Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in chlorite/biotite and clinopyroxene, also replacing and rimming altered magnetite Calcite (trace) fine-grained, anhedral, intergrown with chlorite/biotite Magnetite (2%) fine- to medium-grained, anhedral grains with dissolved exsolution lamellae; partially replaced by titanite, secondary pyrrhotite or pyrite ± chalcopyrite, interstitial to clinopyroxene and intergrown with biotite Pyrrhotite (1%) very fine-grained, anhedral, as droplets and blebby grains in clinopyroxene; with flames of pentlandite; intergrown with chalcopyrite  Pentlandite (trace) very fine-grained flames in pyrrhotite Chalcopyrite (trace) fine-grained, anhedral, intergrown with pyrrhotite; also mobilized into cracks of clinopyroxene Pyrite (1%) fine-grained, subhedral, intergrown with chalcopyrite, replacing magnetite Sphalerite (trace) very fine-grained, inclusions in chalcopyrite unknown (Pd,Pt)5(Sb,As)3 or Ungavaite? (trace) submicroscopic grain attached to pyrrhotite  Location and description of areas analyzed by electron microprobe 1) altered magnetite intergrown with clinopyroxene, green biotite, pyrrhotite-pentlandite and pyrite-chalcopyrite 2) pyrrhotite-pentlandite-chalcopyrite with trace sphalerite(?) interstitial to clinopyroxene with minor chlorite 3) biotite 1 intergrown with hornblende and chlorite interstitial to clinopyroxene with sulphide (pyrrhotite-chalcopyrite) droplets 4) green biotite overprinting chlorite patch with fine-grained titanite and anhedral carbonate, clinopyroxene 219  5) pyrrhotite and titanite replacing altered magnetite, interstitial to clinopyroxene 6) pyrite-chalcopyrite intergrown with secondary magnetite in green biotite-chlorite patch  220  10) DDH05-102-12 Clinopyroxenite with net-textured pyrrhotite Description: massive clinopyroxenite with minor interstitial chlorite (formerly phlogopite) and pale green hornblende rimmed by colourless tremolite, which also forms euhedral aggregates in the center of the section. The clinopyroxene is impregnated with abundant blebby to net-textured pyrrhotite, intergrown with trace chalcopyrite, pentlandite, pyrite and sphalerite. Any pre-existing magnetite has been completely replaced by titanite. Diopside (87%) medium-grained, anhedral, greenish- to brownish-tinged, medium relief, massive, with minor interstitial amphibole, magnetite and biotite Chlorite (1%) fine-grained to medium-grained, pale green pleochroic, probably replacing primary phlogopite Hornblende (1%) fine-grained, anhedral, olive-green pleochroic, interstitial to clinopyroxene, rimmed by tremolite Tremolite (3%) colourless rims on hornblende and medium-grained euhedral crystals in aggregates in clinopyroxene Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in chlorite and clinopyroxene Carbonate (trace) fine-grained, anhedral, intergrown with clinopyroxene and sulphides Pyrrhotite (9%) fine- to medium-grained, anhedral, as droplets and blebby grains in clinopyroxene and as coarser net-textured masses surrounding clinopyroxene in top left portion of section; with flames of pentlandite?; intergrown with chalcopyrite  Pentlandite (trace) very fine-grained, bright cream flames and specks in pyrrhotite Chalcopyrite (trace) fine-grained, anhedral, tarnished tan, intergrown with pyrrhotite; also mobilized into cracks of clinopyroxene Pyrite (trace) fine-grained, subhedral, intergrown with pyrrhotite Location and description of areas analyzed by electron microprobe 1) net-textured pyrrhotite with creamy pentlandite and tan tarnished chalcopyrite surrounding clinopyroxene 2) very fine-grained creamy white specks (pentlandite) in pyrrhotite surrounding clinopyroxene 3) tan-tarnished chalcopyrite in pyrrhotite with creamy white specks and flames 4) slightly altered pyrrhotite with creamy white specks (1 µm or less) intergrown with chlorite and tremolite 5) green hornblende rimmed by tremolite intergrown with clinopyroxene and pyrrhotite 6) medium phlogopite-chlorite intergrown with clinopyroxene, titanite, and pyrrhotite-chalcopyrite  221  11) DDH06-149-2 Clinopyroxenite with serpentinite patches Description: granoblastic clinopyroxenite with minor interstitial green chlorite and fine-grained magnetite and very fine-grained chalcopyrite inclusions is intergrown with several large serpentinite patches, some of which still contain remnants of olivine and rare phlogopite, as well as abundant secondary magnetite and very fine-grained white sperrylite. Trace chalcopyrite occurs in chlorite or tremolite or serpentine on grain boundaries of clinopyroxene. A bornite-chalcopyrite-sphalerite droplet was discovered in serpentine as well as abundant very fine-grained sperrylite.  Primary anhedral magnetite in serpentine is overgrown by secondary magnetite. Very fine-grained acicular tremolite or antigorite occurs on grain boundaries of clinopyroxene and coarser euhedral tremolite and/or cummingtonite overprints serpentine. Diopside (66%) medium-grained anhedral, greenish- to brownish-tinged, medium relief, massive with minor interstitial amphibole, magnetite and biotite Chlorite (1%) fine-grained to medium-grained, pale green pleochroic, interstitial to clinopyroxene and on grain boundaries Tremolite (trace) very fine-grained colourless acicular aggregates rimming clinopyroxene; coarser, euhedral to subhedral overprinting serpentine Olivine (4%) medium-grained, colourless, anhedral remnants with opaque fingerprint-like exsolutions on parallel "cleavage" planes; in serpentine  Phlogopite (trace) fine-grained subhedral pale brown micaceous grains in serpentine  Serpentine (26%) colourless, extremely fine-grained fibrous to micaceous masses, veined by secondary magnetite (chrysotile grading into antigorite) Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in chlorite and clinopyroxene Carbonate (trace) rare, anhedral, interstitial to clinopyroxene Magnetite (3%) i) fine-grained, subhedral to anhedral grains in clinopyroxenite; ii) abundant, very fine-grained trails in serpentine and fuzzy overgrowth on primary magnetite Chalcopyrite (trace) very fine-grained, anhedral, golden reflectance, specks in clinopyroxene; more abundant as intergrowths with chlorite on grain boundaries of clinopyroxene Pyrite (trace) fine-grained, subhedral, intergrown with secondary magnetite ± chalcopyrite in serpentine Siegenite (trace) very fine-grained (≤60 µm), euhedral to subhedral, bright white, smooth grains in serpentine Millerite (trace) very fine-grained (2-5 µm), tiny anhedral, light yellow specks in serpentine     222  Location and description of areas analyzed by electron microprobe 1) bornite-chalcopyrite droplet and sphalerite with secondary magnetite and siegenite in serpentine 2) olivine remnant with magnetite on cleavage planes and surrounded by rusty brown stilpnomelane (Fe-rich phyllosilicate)? in serpentine 3) phlogopite intergrown with secondary magnetite in serpentine with tiny siegenite 4) acicular, fuzzy tremolite and/or chlorite/antigorite rimming clinopyroxene against serpentine with small siegenite and secondary magnetite 5) euhedral sperrylite in serpentine with antigorite aggregates at rim; secondary magnetite 6) siegenite intergrown with secondary magnetite interstitial to clinopyroxene with fuzzy antigorite on grain boundaries 7) anhedral chalcopyrite with siegenite, intergrown with green chlorite, interstitial to clinopyroxene 8) chalcopyrite intergrown with acicular antigorite or tremolite, with secondary magnetite and pyrite-chalcopyrite in clinopyroxene 9) tremolite patch overgrowing serpentine with secondary magnetite-pyrite-chalcopyrite  223  12) DDH06-161-3 Deformed pyrrhotite-amphibole-talc with molybdenite and PdSb(Te) Description: strongly deformed assemblage consisting of semi-massive pyrrhotite intergrown with fibrous serpentine, amphibole (pale green Mg-hornblende remnants overgrown by tremolite), and talc; all replacing a primary ultramafic assemblage whose grain boundaries are still visible in some areas. Pyrrhotite contains medium-sized magnetite poikiloblasts and extremely fine-grained cream-coloured specks of Co-rich pentlandite and is intergrown with chalcopyrite, which contains very fine-grained rounded white inclusions of Pd(Sb,Te)2, sudburyite [PdSb] and kinked banded molybdenite. Mg-hornblende (4%) fine- to medium-grained, anhedral, pale green remnants overgrown by colourless tremolite  Talc (28%) fairly coarse, colourless, poikilitic intergrown with amphiboles  Tremolite (28%) fine-grained, colourless, bladed aggregates rimming hornblende remnants Serpentine (2%) colourless, extremely fine-grained, fibrous, in veins and intergrown with pyrrhotite Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in chlorite and clinopyroxene Magnetite (3%) fine-grained, subhedral to euhedral, poikilitic grains in pyrrhotite Pyrrhotite (30%) semi-massive, intergrown with Mg-silicates, chalcopyrite and magnetite Chalcopyrite (4%) fine-grained anhedral, yellow-reflecting, intergrown with pyrrhotite Pentlandite (trace) extremely fine-grained, cream-coloured specks in pyrrhotite Molybdenite (trace) fine-grained, light grey, strongly anisotropic, kinked ribbons and micaceous grains in chalcopyrite and gangue Sphalerite (trace) fine-grained, medium-grey inclusion in chalcopyrite unknown [(Pd,Ni)(Sb,Te)2] (trace) very fine-grained (≤20 µm) anhedral, smooth, rounded, bright white (isotropic) inclusions in chalcopyrite. (possibly a Sb-rich and Bi-free variant of testibiopalladite [Pd(Sb,Bi)Te]) Sudburyite [PdSb] (trace) very fine-grained (7µm), cream-coloured round inclusion in pyrrhotite Sperrylite (trace) very fine-grained, white, anhedral inclusions in tremolite Location and description of areas analyzed by electron microprobe 1) white PdSbTe in pyrrhotite with magnetite, chalcopyrite , molybdenite intergrown with talc/tremolite 2) two PdSbTe grains in pyrrhotite and round cream-coloured inclusion (sudburyite) in magnetite 3) kinked molybdenite band in pyrrhotite with chalcopyrite, magnetite, trace sphalerite and anhedral sperrylite in gangue 4) round sudburyite (cream, approximately 7 µm in diameter) in pyrrhotite with pentlandite speck and fibrous serpentine 224  5) molybdenite with chalcopyrite in gangue 6) fine-grained pentlandite specks in pyrrhotite with amphiboles (hornblende + tremolite)  225  13) DDH07-207-7 Amphibole-biotite clinopyroxenite with net-textured pyrrhotite Description: granular clinopyroxene is intergrown with abundant coarse- to medium-grained, partly altered and deformed red-brown biotite and olive-green hornblende, which is overgrown by colourless euhedral tremolite and surrounded by net-textured sulphides (mostly pyrrhotite ± chalcopyrite). The upper portion of the section contains more amphibole and pyrrhotite and less clinopyroxene. A round amygdule (approximately 4-5mm in diameter) in the center of the section is filled with phlogopite + talc + carbonate + pyrrhotite. Diopside (48%) medium-grained anhedral, almost colourless, with oriented exsolutions of opaque flakes, medium relief, surrounded by pyrrhotite Mg-hornblende (7%) fine- to medium-grained, euhedral to anhedral, pale olive-green to brown, overgrown by colourless tremolite  Tremolite (20%) fine- to medium-grained, colourless, euhedral, overgrowing hornblende and as rhomb-shaped to bladed crystals in top portion of section Phlogopite (12%) medium- to coarse-grained, subhedral, kinked, pale brown pleochroic "books" intergrown with clinopyroxene, amphibole, pyrrhotite and partly altered by chlorite Talc? (1%) fine-grained, anhedral, associated with secondary phlogopite and carbonate, filling amygdule Chlorite (trace) fine-grained, anhedral, colourless with blue-violet interference colours; replacing phlogopite Carbonate (trace) colourless, anhedral, interstitial to amphibole and in amygdule Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in amphibole and rimming magnetite-ilmenite Magnetite (trace) fine-grained, anhedral remnants with ilmenite lamellae, both rimmed and replaced by titanite Pyrrhotite (12%) anhedral, blebby to net-textured, surrounding clinopyroxene, amphibole, phlogopite Chalcopyrite (trace) fine-grained, anhedral, yellow to orangy-brown tarnished, intergrown with pyrrhotite Location and description of areas analyzed by electron microprobe 1) euhedral tremolite with pyrrhotite-chalcopyrite in crack overprinting chlorite-altered phlogopite intergrown with pyrrhotite-chalcopyrite and trace titanite 2) pale green hornblende rimmed by clear tremolite(?) intergrown with phlogopite, clinopyroxene, pyrrhotite-chalcopyrite and trace titanite 3) coarse clinopyroxene and minor hornblende intergrown with pyrrhotite-chalcopyrite 4) fuzzy talc/serpentine and pale phlogopite with titanite and carbonate intergrown with pyrrhotite-chalcopyrite in round amygdule 226  5) euhedral green hornblende intergrown with anhedral clinopyroxene, brown phlogopite, and chalcopyrite-pyrrhotite 6) well-preserved magnetite with ilmenite-titanite lamellae intergrown with coarse phlogopite and granular clinopyroxene  227  14) DDH07-207-11 Clinopyroxenite with pyrrhotite and chlorite Description: massive to granular granoblastic clinopyroxene with trace olive-green hornblende, intergrown with blebby to net-textured pyrrhotite-magnetite-chalcopyrite and abundant green chlorite. Subhorizontal bands with euhedral tremolite aggregates intergrown with pyrrhotite-chalcopyrite-magnetite occur in the clinopyroxenite. Pyrrhotite is slightly altered, anhedral and intergrown with poikilitic magnetite, fine-grained chalcopyrite and contains rare trace flame pentlandite (rare). Anhedral pyrite is rare. Magnetite appears to be part of the sulphide assemblage rather than a primary phase in the clinopyroxenite. Chlorite appears to partly replace earlier biotite or phlogopite. Diopside (58%) fine- to medium-grained, rounded to subhedral, slightly greenish grains in granoblastic masses or dissociated by chlorite Mg-hornblende (trace) fine-grained, anhedral, olive-green remnants intergrown with clinopyroxene and as blebby inclusions in clinopyroxene Tremolite (10%) fine- to medium-grained, colourless, euhedral, overgrowing hornblende and as bladed aggregates in subhorizontal bands Chlorite (25%) fine-grained anhedral, green with brown interference colours, interstitial to clinopyroxene Carbonate (trace) colourless, anhedral, interstitial to amphibole and in round amygdule Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in amphibole and rimming magnetite-ilmenite Magnetite (2%) fine-grained, anhedral to subhedral poikiloblasts in pyrrhotite Pyrrhotite (5%) anhedral, blebby to net-textured, surrounding clinopyroxene, amphibole, phlogopite Chalcopyrite (trace) fine-grained, anhedral, yellow to orangy-brown tarnished, intergrown with pyrrhotite Pyrite (trace) rare subhedral to anhedral, cream-coloured inclusions in pyrrhotite Location and description of areas analyzed by electron microprobe 1) subhedral pyrite intergrown with pyrrhotite-magnetite-chalcopyrite in clinopyroxene with interstitial chlorite 2) euhedral pyrite in pyrrhotite, intergrown with magnetite and chlorite 3) euhedral tremolite intergrown with pyrrhotite-magnetite and clinopyroxene 4) blebby pyrite-pyrrhotite-chalcopyrite-magnetite in clinopyroxene 5) hornblende inclusions in clinopyroxene 6) medium-grained, euhedral magnetite with chalcopyrite-pyrrhotite inclusions in pyrrhotite-chalcopyrite in chlorite with titanite and clinopyroxene  228  15) DDH07-211-1 Clinopyroxenite with biotite and chalcopyrite-pentlandite-millerite Description: massive, fine- to medium-grained clinopyroxenite containing pockets and interstices filled with pale olive-green biotite and chalcopyrite-pentlandite-millerite, which also occur in cracks and veinlets. Rare, fine-grained, red-brown biotite can still be found as inclusions in clinopyroxene. The green biotite patches are overprinted by ragged epidote ± titanite. The sulphide assemblage also contains very fine-grained euhedral to partly resorbed cobaltite-gersdorffite, nickeline, galena and submicroscopic tucekite [Ni9Sb2S8]. Diopside (87%) fine- to medium-grained, subhedral to euhedral, almost colourless, medium relief grains in granoblastic masses  Biotite (9%) fine-grained, anhedral, olive-green remnants intergrown with clinopyroxene and as blebby inclusions in clinopyroxene Epidote (1%) yellow-green, fine-grained, anhedral ragged aggregates overprinting biotite Mg-Chlorite (1%) fine-grained, colourless (with grey interference colours), anhedral, intergrown with epidote and biotite Carbonate (trace) colourless, anhedral, interstitial to chalcopyrite Titanite (trace) fine-grained, almost colourless, high relief, anhedral grains in biotite Chalcopyrite (1.5%) fine-grained, anhedral, yellow-reflecting, interstitial to chalcopyrite and in cracks  Pentlandite (0.5 %) fine-grained, subhedral, rounded, dark cream coloured grains in chalcopyrite Millerite (trace) fine-grained, anhedral, bright pale yellow grains in chalcopyrite Cobaltite (trace) very fine-grained, euhedral, white rhombs in chalcopyrite; also as partly resorbed, high relief remnants in chalcopyrite Nickeline (trace) pale copper-coloured anhedral inclusions associated with gersdorffite Gersdorffite (trace) subhedral to euhedral, off-white, isometric grains in gangue or in chalcopyrite; also as spongy, anhedral, light grey blebs and rims in and around chalcopyrite Tucekite [Ni9Sb2S8] (trace) submicrosocpic (4 µm) inclusion in chalcopyrite Location and description of areas analyzed by electron microprobe 1) yellow epidote, chlorite, titanite in olive biotite intergranular to clinopyroxene, veined by chalcopyrite 2) abundant yellow-green epidote overprinting biotite-chlorite patch with clinopyroxene at rim 3) tiny bright cream speck in pentlandite in chalcopyrite with euhedral cobaltite at rim; in clinopyroxene 4) pentlandite in chalcopyrite rimmed by light grey spongy gersdorffite intergrown with titanite in biotite-chlorite patch 229  5) euhedral, off-white gersdorffite in clinopyroxene with chalcopyrite-pentlandite-millerite 6) carbonate intergrown with chalcopyrite, interstitial to clinopyroxene 7) cobaltite remnants and millerite intergrown with pentlandite and gersdorffite in chalcopyrite 8) nickeline in gersdorffite with cobaltite remnants in chalcopyrite near crack 9) nickeline intergrown with euhedral pyrite aggregate and pentlandite 10) white gersdorffite in chalcopyrite, adjacent to crack 11) rounded pentlandite and gersdorffite intergrown with ? in chalcopyrite 12) millerite rimming chalcopyrite intergrown with white Co-gersdorffite in biotite patch  13) white, euhedral cobaltite at rim of chalcopyrite with pentlandite inclusions 14) nickeline rimmed by cobaltite in chalcopyrite with pentlandite at rim 230  16) DDH07-211-4 Hornblendite with biotite and pyrrhotite Description: massive, coarse-grained, brown hornblende (Mg-hastingite) shows intense green alkali-rich rims along cracks and in contact with sulphides (pyrrhotite-pyrite). It is intergrown with subhedral magnetite±ilmenite, remnant primary red-brown biotite, medium-grained apatite, titanite and pockets filled with secondary olive biotite and chlorite. Magnetite is being replaced by pyrrhotite ± pyrite ± carbonate, ilmenite is being replaced by titanite. Pyrrhotite-chalcopyrite droplets occur in coarse hornblende. Chalcopyrite with trace sphalerite is found in cracks and veins. A 1.8 mm thick vein filled by pyrite and trace chalcopyrite-pyrrhotite runs along the upper left side of the section.  Mg-hastingsite (90%) massive, coarse, anhedral olive brown pleochroic, intense green in contact with sulphides and near cracks  Biotite 1 (1%) red-brown, medium-grained anhedral, slightly altered, deformed, intergrown with hornblende Biotite 2 (1%) fine-grained, anhedral, olive-green rosettes in pockets interstitial to hornblende Chlorite (trace) fine-grained, green (with purple interference colours), in rosettes intergrown with biotite 2; coarser intergrown with chalcopyrite and carbonate, filling veinlet Carbonate (trace) colourless, anhedral, intergrown with chalcopyrite and chlorite in vein Titanite (2%) medium-grained, almost colourless, high relief, euhedral to anhedral grains in biotite 2 and very fine-grained, granular, replacing ilmenite and rimming magnetite Apatite (trace) colourless, medium-grained, subhedral grains associated with titanite in biotite 2 patches, abundant elongate inclusions parallel c-axis Magnetite (1%) fine- to medium-grained, subhedral, blocky grains partially replaced by pyrrhotite-pyrite in hornblende Ilmenite (trace) fine-grained, anhedral, intergrown with magnetite, marginally replaced by titanite Chalcopyrite (trace) fine-grained, anhedral, yellow-reflecting, in cracks and veinlets in hornblende Sphalerite (trace) very fine-grained, anhedral, red-brown, translucent, associated with chalcopyrite in veinlet Pyrrhotite (trace) fine-grained, anhedral, pinkish-cream, intergrown with magnetite and pyrite Pyrite (5%) massive, blocky, in vein with fine-grained, chalcopyrite and pyrrhotite inclusions Location and description of areas analyzed by electron microprobe 1) medium-grained apatite intergrown with hornblende, titanite and chlorite-biotite patch; chalcopyrite in hornblende 231  2) biotite2-titanite pseudomorph with minor pyrrhotite-chalcopyrite in primary biotite  3) pyrite vein with chalcopyrite-pyrrhotite inclusion adjacent to coarse hornblende and pyrrhotite-pyrite with carbonate inclusion adjacent to intense green hornblende 4) coarse primary biotite with tiny titanite inclusion bordering on hornblende and secondary biotite patch 5) chalcopyrite (with sphalerite star) and pyrrhotite intergrown with chlorite, biotite and titanite in veinlet 6) sphalerite attached to pyrite and chalcopyrite in hornblende with pyrrhotite droplet 7) pyrrhotite and secondary pyrite replacing magnetite; titanite replacing ilmenite surrounded by intense green hornblende, intergrown with carbonate and titanite in normal hornblende  232  17) DDH07-211-107  Hornblende clinopyroxenite with biotite vein Description: massive to granular clinopyroxene is intergrown with olive-brown oikocrystic hornblende and infused with droplets and blebs of pyrrhotite±chalcopyrite. The assemblage is veined by several subvertical carbonate-sulphide veinlets. The sulphides in the vein are pyrrhotite-chalcopyrite-sphalerite. A late sub-horizontal vein filled with fine-grained olive-green biotite cuts both the primary assemblage and off-sets the carbonate-sulphide veinlets. Magnetite in the clinopyroxenite is more or less altered and in the process of being replaced by titanite and pyrrhotite. The hornblende shows intense green streaks where alkali-bearing fluids and veinlets have gone through. Clinopyroxene (72%) fine-grained, granular to massive, anhedral, intergrown with oikocrystic hornblende, magnetite and sulphide blebs Hornblende (13%) coarse, anhedral, oikocrystic, olive brown pleochroic, intense green in contact with carbonate-sulphide veinlets Biotite  (7%) fine-grained, anhedral, olive-green, filling late vein and interstices in hornblende-clinopyroxenite Chlorite (trace) fine-grained, green (with deep violet interference colours), in pockets associated with biotite vein and intergrown with altered magnetite and associated with carbonate veins Carbonate (1%) colourless, anhedral, intergrown with chalcopyrite and pyrrhotite in subvertical veinlets Titanite (trace) medium-grained, almost colourless, high relief, anhedral, replacing ilmenite-magnetite Unknown mineral (siderite?) (trace) fine-grained, granular, high relief, orange, translucent grains in chlorite Magnetite (1%) fine- to medium-grained, subhedral, blocky grains partially replaced by pyrrhotite, titanite Ilmenite (trace) fine-grained, anhedral, intergrown with magnetite, partly replaced by titanite Chalcopyrite (1%) fine-grained, anhedral, yellow-reflecting, intergrown with pyrrhotite in droplets; more abundant in carbonate veinlets Sphalerite (trace) very fine-grained, anhedral, red-brown, translucent, associated with chalcopyrite in veinlet Pyrrhotite (5%) fine-grained, anhedral, pinkish-cream, round blebs in clinopyroxene, hornblende; anhedral, replacing magnetite Pyrite (trace) rare, fine-grained cubes and aggregates in pyrrhotite Marcasite (trace) fine-grained white flames in altered pyrrhotite    233  Location and description of areas analyzed by electron microprobe 1) tiny white anhedral pyrrhotite specks associated with titanite-chlorite-altered magnetite in hornblende 2) anhedral pyrrhotite ± pyrite in clinopyroxene adjacent to biotite vein 3) tiny white anhedral specks in crack in clinopyroxene with pyrrhotite inclusions 4) pyrrhotite-chalcopyrite-sphalerite with tiny pyrite grains in carbonate vein through hornblende-clinopyroxene-biotite 5) pyrrhotite intergrown with and replacing magnetite, surrounded by chlorite with orange unknown mineral 6) magnetite remnants and marcasite flames in pyrrhotite in hornblende + clinopyroxene 7) fine-grained secondary pyrite in crack in pyrrhotite, with chalcopyrite and magnetite in hornblende, clinopyroxene 8) pyrrhotite-chalcopyrite-sphalerite in calcite veinlet 9) orange unknown mineral (titanite or siderite?) in chlorite adjacent to carbonate and hornblende  234  18) DDH07-211-108  Hornblende clinopyroxenite  Description: massive to granular clinopyroxene is intergrown with olive-brown oikocrystic hornblende and infused with pyrite-chalcopyrite-pentlandite-pyrrhotite, which penetrate into cracks and interstices. The assemblage is altered by green chlorite that gradually replaces hornblende and in some cases also clinopyroxene. The clinopyroxene pseudomorphs are overprinted by fine-grained tremolite aggregates. Remnants of magnetite-ilmenite are being replaced by titanite and chlorite. Fine-grained titanite occurs throughout chlorite patches. The sulphides consist predominantly of chalcopyrite with anhedral, partially resorbed pyrite aggregates, minor anhedral pyrrhotite and rounded pentlandite inclusions. Rare sphalerite occurs as inclusion in chalcopyrite. Pyrrhotite is veined by flame-like marcasite (alteration).  Clinopyroxene (65%) fine-grained, granular to massive, anhedral, intergrown with oikocrystic hornblende, and veined by sulphides Hornblende (7%) coarse, anhedral, oikocrystic, olive-brown pleochroic, intense green in contact with carbonate-sulphide veinlets Chlorite (15%) fine-grained, green (with deep violet interference colours), in pockets associated with biotite and intergrown with altered magnetite and associated with carbonate veins Titanite (trace) fine-grained, anhedral, replacing ilmenite-magnetite; fine-grained euhedral grains in chlorite alteration Magnetite (trace) fine-grained, anhedral, blocky remnants, pitted due to chlorite replacing exsolution lamellae Ilmenite (trace) fine-grained, anhedral, intergrown with magnetite, partly replaced by anhedral titanite Chalcopyrite (10%) fine- to medium-grained, anhedral, yellow-reflecting, infusing silicate assemblage, intergrown with pyrite, pyrrhotite, pentlandite Sphalerite (trace) very fine-grained, anhedral, red-brown, translucent, associated with chalcopyrite in veinlet Pyrrhotite (0.5%) fine-grained, anhedral, pinkish-cream, round blebs in clinopyroxene Pentlandite (0.5%) fine-grained, rounded, cream-coloured inclusion in chalcopyrite  Pyrite (2%) fine-grained, creamy white, anhedral aggregates in chalcopyrite Marcasite (trace) fine-grained white flames in altered pyrrhotite Location and description of areas analyzed by electron microprobe 1) chalcopyrite-pyrite-pentlandite in chlorite patch, interstitial to clinopyroxene 2) pyrite and chalcopyrite intergrown with anhedral pentlandite, coarse pyrrhotite with marcasite flames 3) hornblende replaced by chlorite and titanite 4) pyrite, pyrrhotite ± pentlandite in chalcopyrite 235  5) clinopyroxene pseudomorphs overprinted by tremolite-actinolite in chlorite patch replacing hornblende    236      Appendix F: Electron microprobe mineral chemistry of silicates, oxides, and sulphides   237   Sample DDH04-58-5  DDH04-58-5  DDH04-58-5  DDH04-58-5* DDH04-58-5* DDH05-88-1  Rock TypeOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteMag clinopyroxeniteSpot† 5 6 8-9 7 8 1Oxides (wt. %)SiO2 51.03 52.23 52.39 55.35 54.77 53.15TiO2 0.27 0.29 0.28 0.01 0.12 0.23Al2O3 2.37 2.22 2.47 0.01 0.90 1.65Cr2O3 0.17 0.17 0.15 0.00 0.06 0.02V2O3 0.07 0.06 0.05 0.01 0.00 0.03FeO 5.11 5.30 5.41 0.81 3.24 5.74MnO 0.10 0.09 0.11 0.12 0.13 0.17NiO 0.03 0.02 0.00 0.01 0.02 0.05ZnO 0.00 0.00 0.00 0.01 0.03 0.03MgO 15.26 15.35 15.21 18.22 16.54 15.24CaO 23.29 23.98 23.70 25.44 24.82 23.81SrO 0.00 0.00 0.00 0.00 0.00 0.00BaO 0.00 0.06 0.00 0.01 0.03 0.00Na2O 0.26 0.20 0.20 0.00 0.04 0.15K2O 0.00 0.00 0.00 0.00 0.00 0.00F 0.00 0.00 0.00 0.00 0.00 0.00Cl 0.00 0.00 0.00 0.00 0.00 0.00Total 97.97 99.97 99.95 100.00 100.70 100.27CationsSi 1.922 1.929 1.932 2.001 1.985 1.956Ti 0.008 0.008 0.008 0.000 0.003 0.006Al 0.105 0.097 0.107 0.000 0.038 0.072Cr 0.005 0.005 0.004 0.000 0.002 0.001V 0.002 0.002 0.001 0.000 0.000 0.001Fe 0.161 0.164 0.167 0.024 0.098 0.177Mn 0.003 0.003 0.003 0.004 0.004 0.005Ni 0.001 0.001 0.000 0.000 0.001 0.002Zn 0.000 0.000 0.000 0.000 0.001 0.001Mg 0.857 0.845 0.836 0.982 0.894 0.836Ca 0.940 0.949 0.937 0.985 0.964 0.939Sr 0.000 0.000 0.000 0.000 0.000 0.000Ba 0.000 0.001 0.000 0.000 0.000 0.000Na 0.019 0.014 0.014 0.000 0.003 0.011K 0.000 0.000 0.000 0.000 0.000 0.000Total 4.023 4.018 4.010 3.998 3.993 4.006F 0.000 0.000 0.000 0.000 0.000 0.000Cl 0.000 0.000 0.000 0.000 0.000 0.000Mg-number 0.842 0.838 0.834 0.976 0.901 0.826Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite; Mg-number = Mg/(Mg+Fe)* indicates secondary mineral† see Appendix E for spot locationAppendix F1. Electron microprobe analyses of clinopyroxene from the DJ/DB zone of the Turnagain intrusion238   Sample DDH05-88-1  DDH05-88-1  DDH05-102-7  DDH05-102-7  DDH05-102-7  DDH05-102-7  Rock Type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteSpot† 2 4 2 3 4 5Oxides (wt. %)SiO2 53.11 52.90 51.62 51.87 52.53 52.09TiO2 0.40 0.27 0.34 0.39 0.41 0.33Al2O3 2.08 1.93 2.78 2.45 2.43 2.47Cr2O3 0.04 0.21 0.23 0.13 0.14 0.09V2O3 0.03 0.05 0.04 0.08 0.08 0.08FeO 4.90 5.65 6.32 6.30 6.50 6.71MnO 0.11 0.14 0.15 0.17 0.16 0.19NiO 0.03 0.00 0.00 0.00 0.03 0.00ZnO 0.04 0.01 0.01 0.00 0.00 0.04MgO 15.15 15.46 14.31 14.45 14.49 14.62CaO 24.44 22.94 22.84 23.53 23.22 23.14SrO 0.00 0.00 0.00 0.00 0.00 0.00BaO 0.00 0.04 0.00 0.01 0.08 0.00Na2O 0.14 0.26 0.20 0.15 0.24 0.22K2O 0.01 0.00 0.00 0.01 0.00 0.00F 0.00 0.00 0.00 0.06 0.02 0.00Cl 0.03 0.00 0.00 0.00 0.00 0.02Total 100.50 99.86 98.86 99.59 100.34 100.00CationsSi 1.946 1.951 1.931 1.929 1.938 1.931Ti 0.011 0.008 0.010 0.011 0.011 0.009Al 0.090 0.084 0.123 0.107 0.105 0.108Cr 0.001 0.006 0.007 0.004 0.004 0.003V 0.001 0.001 0.001 0.002 0.002 0.002Fe 0.150 0.174 0.198 0.196 0.200 0.208Mn 0.003 0.004 0.005 0.005 0.005 0.006Ni 0.001 0.000 0.000 0.000 0.001 0.000Zn 0.001 0.000 0.000 0.000 0.000 0.001Mg 0.827 0.850 0.798 0.801 0.797 0.808Ca 0.959 0.906 0.915 0.938 0.918 0.919Sr 0.000 0.000 0.000 0.000 0.000 0.000Ba 0.000 0.001 0.000 0.000 0.001 0.000Na 0.010 0.019 0.015 0.011 0.017 0.016K 0.000 0.000 0.000 0.001 0.000 0.000Total 4.001 4.005 4.002 4.005 4.002 4.010F 0.000 0.000 0.000 0.007 0.003 0.000Cl 0.002 0.000 0.000 0.000 0.000 0.001Mg-number 0.847 0.830 0.801 0.804 0.799 0.795Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite; Mg-number = Mg/(Mg+Fe)* indicates secondary mineral† see Appendix E for spot locationAppendix F1. Electron microprobe analyses of clinopyroxene from the DJ/DB zone of the Turnagain intrusion239   Sample DDH05-88-1* DDH05-88-1* DDH05-102-7  DDH05-102-7  DDH06-161-3  DDH06-161-3*Rock Type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteTr-Tlc altd clinopyroxeniteTr-Tlc altd clinopyroxeniteSpot† 1 1 3 3 5 6Oxides (wt. %)SiO2 55.54 57.43 41.57 42.22 49.98 46.88TiO2 0.03 0.01 1.41 1.41 0.98 0.89Al2O3 0.22 0.54 12.54 12.72 7.67 11.80Cr2O3 0.07 0.03 0.11 0.16 0.82 0.51V2O3 0.07 0.02 0.15 0.15 0.92 0.64FeO 15.02 8.18 10.86 10.66 4.20 4.52MnO 0.29 0.20 0.11 0.12 0.19 0.31NiO 0.03 0.04 0.01 0.03 0.03 0.04ZnO 0.00 0.00 0.05 0.02 0.00 0.00MgO 14.26 18.75 14.22 14.12 19.09 18.23CaO 12.26 12.76 12.11 12.25 12.20 11.38SrO 0.00 0.00 0.00 0.00 0.00 0.00BaO 0.01 0.00 0.01 0.06 0.02 0.02Na2O 0.29 0.44 1.82 1.88 1.20 1.77K2O 0.04 0.07 1.64 1.71 0.53 0.58F 0.00 0.00 0.06 0.14 0.14 0.09Cl 0.01 0.00 0.02 0.04 0.02 0.06Total 98.12 98.48 96.71 97.70 97.99 97.70CationsSi 8.022 8.004 6.138 6.193 6.965 6.545Aliv 0.000 0.000 1.862 1.807 1.035 1.455Alvi 0.038 0.089 0.321 0.393 0.225 0.487Ti 0.003 0.001 0.156 0.156 0.103 0.093Cr 0.008 0.004 0.013 0.018 0.090 0.056V 0.008 0.002 0.018 0.018 0.101 0.071Fe3+ 0.016 0.000 0.534 0.353 0.348 0.527Fe2+ 1.798 0.953 0.807 0.954 0.141 0.000Mn 0.035 0.024 0.014 0.015 0.022 0.037Mg 3.070 3.896 3.129 3.087 3.965 3.794Ni 0.004 0.004 0.001 0.003 0.004 0.004Zn 0.000 0.000 0.006 0.002 0.000 0.000Ca 1.896 1.905 1.916 1.926 1.821 1.703Na 0.082 0.119 0.521 0.534 0.325 0.480K 0.007 0.013 0.309 0.320 0.094 0.103Ba 0.000 0.000 0.001 0.004 0.001 0.001Sr 0.000 0.000 0.000 0.000 0.000 0.000F 0.000 0.000 0.029 0.067 0.061 0.040Cl 0.001 0.000 0.004 0.009 0.005 0.014OH 1.999 2.000 1.967 1.924 1.934 1.946Total 16.986 17.013 17.746 17.783 17.242 17.356Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Mag = magnetite, Tr = tremolite, Tlc = talc, altd = altered* indicates secondary mineral† see Appendix E for spot locationAppendix F2. Electron microprobe analyses of amphibole from the DJ/DB zone of the Turnagain intrusion240   Sample DDH06-161-3* DDH07-211-4  DDH07-211-4  DDH07-211-4* DDH07-211-4*Rock TypeTr-Tlc altd clinopyroxenitehornblendite hornblendite hornblendite hornblenditeSpot† 6 1 2 1 2Oxides (wt. %)SiO2 59.00 41.44 40.96 40.42 40.43TiO2 0.04 1.88 2.06 0.12 0.14Al2O3 0.00 13.15 13.14 11.08 11.17Cr2O3 0.02 0.00 0.00 0.02 0.04V2O3 0.05 0.15 0.19 0.41 0.37FeO 4.00 13.16 13.96 26.41 25.99MnO 0.34 0.22 0.23 0.27 0.24NiO 0.00 0.00 0.00 0.02 0.02ZnO 0.00 0.00 0.03 0.05 0.08MgO 21.47 12.09 11.47 5.43 5.35CaO 13.07 11.65 11.43 8.69 8.46SrO 0.00 0.00 0.00 0.00 0.00BaO 0.00 0.07 0.08 0.00 0.00Na2O 0.15 1.93 2.02 3.80 4.26K2O 0.04 1.36 1.20 1.21 1.16F 0.01 0.00 0.10 0.02 0.03Cl 0.01 0.04 0.04 0.01 0.01Total 98.19 97.13 96.91 97.96 97.76CationsSi 8.079 6.144 6.111 6.227 6.256Aliv 0.000 1.856 1.889 1.773 1.744Alvi 0.000 0.442 0.421 0.240 0.293Ti 0.004 0.210 0.231 0.013 0.016Cr 0.003 0.000 0.000 0.003 0.004V 0.005 0.017 0.023 0.050 0.045Fe3+ 0.000 0.459 0.507 1.208 1.056Fe2+ 0.458 1.172 1.235 2.195 2.307Mn 0.039 0.028 0.030 0.035 0.031Mg 4.384 2.671 2.550 1.248 1.235Ni 0.000 0.000 0.000 0.002 0.002Zn 0.000 0.000 0.003 0.006 0.010Ca 1.917 1.850 1.827 1.435 1.403Na 0.039 0.554 0.585 1.136 1.279K 0.007 0.256 0.229 0.238 0.228Ba 0.000 0.004 0.005 0.000 0.000Sr 0.000 0.000 0.000 0.000 0.000F 0.004 0.000 0.047 0.007 0.017Cl 0.002 0.009 0.011 0.002 0.002OH 1.994 1.991 1.942 1.991 1.982Total 16.936 17.664 17.645 17.810 17.910Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Mag = magnetite, Tr = tremolite, Tlc = talc, altd = altered* indicates secondary mineral† see Appendix E for spot locationAppendix F2. Electron microprobe analyses of amphibole from the DJ/DB zone of the Turnagain intrusion241   Sample DDH04-58-5  DDH05-102-7  DDH05-102-7* DDH05-102-7* DDH07-211-4  Rock TypeOl (Srp-Mag) clinopyroxeniteclinopyroxenite clinopyroxenite clinopyroxenite hornblenditeSpot† 5 3 4 4 2Oxides (wt. %)SiO2 40.37 36.11 37.22 35.84 35.35TiO2 1.00 1.43 0.54 0.46 1.52Al2O3 15.43 15.14 12.98 13.59 14.97Cr2O3 0.30 0.10 0.15 0.15 0.01V2O3 0.05 0.10 0.11 0.10 0.15FeO 6.00 18.66 22.74 24.28 22.94MnO 0.03 0.11 0.10 0.11 0.18NiO 0.06 0.00 0.05 0.03 0.02ZnO 0.01 0.06 0.09 0.00 0.00MgO 22.69 13.44 11.62 11.86 10.73CaO 0.05 0.01 0.03 0.03 0.00SrO 0.00 0.00 0.00 0.00 0.00BaO 0.37 0.55 0.22 0.22 0.49Na2O 0.16 0.32 0.05 0.05 0.13K2O 7.73 9.20 9.76 8.39 9.21F 0.00 0.06 0.00 0.02 0.07Cl 0.01 0.04 0.02 0.01 0.02Total 94.25 95.32 95.69 95.13 95.79CationsSi 5.762 5.528 5.788 5.617 5.503Ti 0.107 0.164 0.063 0.055 0.178Al 2.595 2.731 2.380 2.510 2.746Cr 0.034 0.012 0.019 0.019 0.001V 0.005 0.012 0.013 0.013 0.018Fe 0.716 2.389 2.958 3.183 2.986Mn 0.003 0.014 0.013 0.014 0.023Ni 0.007 0.000 0.006 0.004 0.002Zn 0.001 0.007 0.010 0.000 0.000Mg 4.827 3.067 2.694 2.772 2.489Ca 0.008 0.001 0.004 0.004 0.000Sr 0.000 0.000 0.000 0.000 0.000Ba 0.021 0.033 0.013 0.013 0.030Na 0.044 0.096 0.014 0.016 0.039K 1.406 1.796 1.937 1.678 1.829Total 15.538 15.852 15.913 15.897 15.846F 0.000 0.027 0.000 0.010 0.036Cl 0.002 0.010 0.006 0.002 0.006Mg-number 0.871 0.562 0.477 0.465 0.455Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite; Mg-number = Mg/(Mg+Fe)* indicates secondary mineral† see Appendix E for spot locationAppendix F3. Electron microprobe analyses of biotite from the DJ/DB zone of the Turnagain intrusion242   Sample DDH07-211-4  DDH07-211-4* DDH07-211-4* DDH07-211-4* DDH07-211-4*Rock Type hornblendite hornblendite hornblendite hornblendite hornblenditeSpot† 4 1 2 4 5Oxides (wt. %)SiO2 36.65 36.17 35.73 36.27 36.56TiO2 0.81 0.69 0.83 0.72 0.59Al2O3 15.02 15.13 14.91 14.67 14.85Cr2O3 0.01 0.00 0.00 0.00 0.00V2O3 0.21 0.16 0.18 0.19 0.16FeO 21.88 21.85 21.16 22.93 20.96MnO 0.18 0.17 0.18 0.17 0.16NiO 0.01 0.00 0.00 0.00 0.00ZnO 0.01 0.00 0.00 0.00 0.07MgO 11.61 11.73 11.52 11.12 12.37CaO 0.00 0.00 0.00 0.00 0.00SrO 0.00 0.00 0.00 0.00 0.00BaO 0.74 0.98 1.19 0.71 0.63Na2O 0.20 0.07 0.08 0.04 0.12K2O 8.63 8.39 8.07 9.45 9.16F 0.00 0.01 0.00 0.00 0.10Cl 0.00 0.00 0.00 0.00 0.02Total 95.95 95.37 93.85 96.27 95.76CationsSi 5.635 5.601 5.614 5.618 5.624Ti 0.093 0.080 0.098 0.084 0.069Al 2.722 2.762 2.761 2.678 2.692Cr 0.001 0.000 0.000 0.000 0.000V 0.026 0.020 0.023 0.024 0.020Fe 2.814 2.830 2.780 2.970 2.696Mn 0.023 0.022 0.024 0.022 0.021Ni 0.001 0.000 0.000 0.000 0.000Zn 0.001 0.001 0.000 0.000 0.008Mg 2.661 2.707 2.698 2.568 2.837Ca 0.000 0.000 0.000 0.000 0.001Sr 0.000 0.000 0.000 0.000 0.000Ba 0.044 0.059 0.073 0.043 0.038Na 0.059 0.022 0.025 0.013 0.036K 1.694 1.658 1.618 1.867 1.798Total 15.773 15.764 15.716 15.887 15.840F 0.000 0.006 0.001 0.000 0.047Cl 0.001 0.000 0.000 0.001 0.004Mg-number 0.486 0.489 0.492 0.464 0.513Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite; Mg-number = Mg/(Mg+Fe)* indicates secondary mineral† see Appendix E for spot locationAppendix F3. Electron microprobe analyses of biotite from the DJ/DB zone of the Turnagain intrusion243   Appendix F4. Electron microprobe analyses of chlorite from the DJ/DB zone of the Turnagain intrusionSample DDH05-88-1* DDH05-88-1* DDH05-88-1* DDH05-102-7* DDH05-102-7* DDH05-102-7* DDH07-211-4* DDH07-211-4*Rock Type clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxenite hornblendite hornblenditeSpot† 1 2 4 2 3 4 1 5Oxides (wt. %)SiO2 31.69 29.59 29.86 27.64 28.42 28.18 26.17 26.82TiO2 0.00 0.04 0.02 0.02 0.03 0.07 0.03 0.03Al2O3 15.00 18.82 16.95 17.30 17.18 16.78 20.23 19.58Cr2O3 0.19 0.30 0.86 0.27 0.15 0.26 0.00 0.01V2O3 0.08 0.05 0.06 0.11 0.05 0.08 0.05 0.16FeO 15.24 16.64 18.16 28.91 21.77 27.41 25.69 24.86MnO 0.17 0.25 0.26 0.20 0.14 0.15 0.32 0.38NiO 0.09 0.05 0.06 0.06 0.03 0.02 0.00 0.00ZnO 0.10 0.03 0.00 0.01 0.03 0.06 0.06 0.00MgO 25.00 23.37 22.31 14.22 18.68 14.55 15.32 16.56CaO 0.03 0.04 0.33 0.12 0.06 0.04 0.02 0.03SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Na2O 0.00 0.00 0.00 0.00 0.03 0.08 0.00 0.00K2O 0.02 0.00 0.01 0.05 0.55 0.82 0.10 0.01F 0.00 0.00 0.00 0.00 0.01 0.05 0.02 0.09Cl 0.00 0.02 0.00 0.01 0.02 0.01 0.00 0.00Total 87.61 89.21 88.88 88.92 87.12 88.57 88.01 88.55CationsSi 6.313 5.833 5.978 5.856 5.931 5.973 5.510 5.583Ti 0.000 0.006 0.002 0.003 0.004 0.011 0.005 0.005Al 3.522 4.373 3.999 4.322 4.225 4.192 5.021 4.804Cr 0.029 0.047 0.136 0.045 0.025 0.043 0.000 0.001V 0.013 0.008 0.009 0.019 0.008 0.014 0.008 0.027Fe 2.538 2.743 3.040 5.123 3.799 4.859 4.523 4.329Mn 0.029 0.041 0.044 0.036 0.024 0.028 0.057 0.068Ni 0.014 0.008 0.010 0.011 0.004 0.004 0.000 0.000Zn 0.014 0.005 0.000 0.001 0.005 0.010 0.010 0.000Mg 7.424 6.868 6.657 4.493 5.810 4.599 4.811 5.139Ca 0.006 0.008 0.071 0.028 0.013 0.010 0.005 0.008Sr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ba 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Na 0.000 0.000 0.002 0.000 0.011 0.032 0.000 0.002K 0.004 0.000 0.002 0.013 0.146 0.221 0.027 0.003Total 19.907 19.941 19.949 19.951 20.005 19.995 19.978 19.968F 0.000 0.000 0.000 0.000 0.003 0.034 0.011 0.061Cl 0.000 0.005 0.000 0.003 0.006 0.005 0.000 0.000Mg-number 0.745 0.715 0.687 0.467 0.605 0.486 0.515 0.543Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Mag= magnetite; Mg-number = Mg/(Mg+Fe)* indicates secondary mineral† see Appendix E for spot location244   Appendix F5. Electron microprobe analyses of olivine, serpentine and talc from the DJ/DB zone of the Turnagain intrusionMineral Olivine Serpentine TalcSample DDH04-58-5  DDH04-58-5  DDH04-58-5  DDH04-58-5* DDH04-58-5* DDH06-161-3* DDH06-161-3* DDH04-58-5*Rock TypeOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteTr-Tlc altd clinopyroxeniteTr-Tlc altd clinopyroxeniteOl (Srp-Mag) clinopyroxeniteSpot† 4 4 6 7 7 5 6 9Oxides (wt. %)SiO2 38.79 38.39 38.70 48.34 47.21 44.00 45.29 65.25TiO2 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.00Al2O3 0.00 0.00 0.00 0.24 0.08 1.34 1.19 0.34Cr2O3 0.00 0.00 0.00 0.01 0.01 0.14 0.03 0.00V2O3 0.01 0.01 0.00 0.00 0.00 0.10 0.08 0.00FeO 19.15 19.57 19.46 4.91 2.52 11.07 10.82 2.12MnO 0.29 0.31 0.31 0.29 0.18 0.40 0.52 0.03NiO 0.11 0.11 0.12 0.04 0.04 0.00 0.00 0.13ZnO 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.00MgO 41.50 41.42 41.10 37.33 39.30 32.44 33.00 29.71CaO 0.06 0.03 0.04 1.08 0.01 0.05 0.02 0.08SrO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00BaO 0.00 0.02 0.07 0.00 0.01 0.04 0.00 0.02Na2O 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.06K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03F 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00Cl 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.00Total 99.93 99.95 99.90 92.23 89.39 89.61 90.98 97.78CationsSi 0.995 0.988 0.996 2.138 2.125 2.071 2.092 4.044Ti 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000Al 0.000 0.000 0.000 0.012 0.004 0.075 0.065 0.025Cr 0.000 0.000 0.000 0.000 0.000 0.005 0.001 0.000V 0.000 0.000 0.000 0.000 0.000 0.004 0.003 0.000Fe 0.411 0.421 0.419 0.182 0.095 0.436 0.418 0.110Mn 0.006 0.007 0.007 0.011 0.007 0.016 0.020 0.002Ni 0.002 0.002 0.002 0.001 0.001 0.000 0.000 0.006Zn 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000Mg 1.587 1.590 1.577 2.461 2.637 2.276 2.272 2.745Ca 0.002 0.001 0.001 0.051 0.000 0.003 0.001 0.005Sr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ba 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000Na 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002Total 3.004 3.012 3.003 4.856 4.871 4.887 4.872 6.948F 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000Cl 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000Mg-number 0.794 0.790 0.790 0.931 0.965 0.839 0.845 0.962Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite, Tr = tremolite, Tlc = talc, altd = alteredMg-number = Mg/(Mg+Fe); Forsterite content in Olivine equivalent to Mg-number/100* indicates secondary mineral† see Appendix E for spot location245    Mineral Magnetite IlmeniteSample DDH04-58-5  DDH04-58-5* DDH05-88-1  DDH04-58-5* DDH05-88-1*Rock TypeOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxeniteclinopyroxeniteOl (Srp-Mag) clinopyroxeniteclinopyroxeniteSpot† 6 7 2 7 2Oxides (wt. %)SiO2 0.08 0.07 0.03 0.05 0.06TiO2 3.25 3.27 0.13 53.02 51.83Al2O3 3.88 0.08 0.09 0.03 0.01Cr2O3 8.87 3.69 1.87 0.03 0.14V2O3 0.63 0.36 0.70 0.00 0.00FeO 73.27 84.54 90.44 30.59 44.13MnO 3.45 1.13 0.10 16.97 3.12NiO 0.11 0.11 0.07 0.27 0.00ZnO 0.12 0.08 0.02 0.00 0.00MgO 0.37 0.10 0.03 0.24 0.48CaO 0.29 0.02 0.00 0.00 0.60SrO 0.66 0.00 0.09 0.00 0.00BaO 0.08 0.00 0.01 0.00 0.00Na2O 0.00 0.00 0.00 0.00 0.00K2O 0.00 0.00 0.00 0.01 0.00F 0.00 0.00 0.00 0.00 0.00Cl 0.00 0.03 0.00 0.01 0.00Total 95.05 93.48 93.57 101.24 100.38CationsSi 0.024 0.022 0.008 0.001 0.002Al 1.374 0.028 0.031 0.001 0.000Ti 0.735 0.758 0.030 0.990 0.974Cr 2.107 0.901 0.455 0.001 0.003V 0.152 0.090 0.173 0.000 0.000Fe+2 7.570 8.387 7.979 0.620 0.875Fe+3 10.849 13.421 15.265 0.015 0.047Mn 0.878 0.296 0.026 0.357 0.066Ni 0.027 0.027 0.017 0.005 0.000Zn 0.026 0.017 0.004 0.000 0.000Mg 0.165 0.047 0.012 0.009 0.018Ca 0.093 0.006 0.000 0.000 0.016Total 24.000 24.000 24.000 2.000 2.000Analyses and calculations done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)Ol = olivine, Srp = serpentine, Mag = magnetite* indicates secondary mineral† see Appendix E for spot locationAppendix F6. Electron microprobe analyses of oxide minerals from the DJ/DB zone of the Turnagain intrusion    Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalPyrrhotiteDDH05-83-1 clinopyroxenite M 3 39.69 0.00 60.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.04 0.01 0.14 100.01DDH05-83-1 clinopyroxenite M 4 38.80 0.00 60.45 0.10 0.14 0.00 0.00 0.01 0.01 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.56DDH05-83-1 clinopyroxenite NT 8 38.59 0.01 60.79 0.09 0.11 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.06 0.00 0.00 0.03 0.02 99.79DDH05-83-1 clinopyroxenite M 9 38.18 0.01 60.38 0.09 0.17 0.00 0.03 0.02 0.00 0.02 0.04 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.07 0.10 99.12DDH05-88-1 clinopyroxenite D 4 39.45 0.01 58.74 0.03 0.66 0.02 0.01 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.13 0.00 0.05 99.24DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 1 39.73 0.00 60.33 0.13 0.07 0.00 0.02 0.01 0.00 0.03 0.05 0.00 0.03 0.00 0.00 0.08 0.08 0.00 0.03 0.17 100.74DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 2 39.07 0.00 59.75 0.03 0.11 0.00 0.00 0.00 0.01 0.05 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 99.13DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 4 39.18 0.01 60.22 0.09 0.08 0.02 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.14 99.86DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 4 39.40 0.00 59.86 0.02 0.11 0.06 0.02 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.08 99.61DDH05-89-2Ol (Srp-Mag) clinopyroxeniteD 3 38.72 0.00 60.14 0.06 0.75 0.01 0.01 0.02 0.02 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.05 99.87DDH05-89-2Ol (Srp-Mag) clinopyroxeniteD 6 38.68 0.00 60.51 0.04 0.75 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.09 0.00 0.00 100.14DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 1 39.08 0.02 59.80 0.06 0.51 0.04 0.06 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.04 0.05 0.07 0.03 0.00 99.80DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 1 39.26 0.02 60.02 0.06 0.52 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.05 0.00 0.00 0.06 100.12DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 9 39.29 0.00 59.69 0.06 0.80 0.00 0.07 0.02 0.03 0.07 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.06 100.12DDH05-101-5Cal-Chl vein in clinopyroxeniteNT 4 39.49 0.02 60.02 0.01 0.23 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 99.90DDH05-101-5Cal-Chl vein in clinopyroxeniteD 5 39.19 0.00 60.53 0.06 0.20 0.01 0.05 0.04 0.00 0.03 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 100.38DDH05-101-5Cal-Chl vein in clinopyroxeniteD 6 39.50 0.00 60.26 0.13 0.14 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.06 0.05 100.23DDH05-102-7 clinopyroxenite bleb 1 39.54 0.00 59.77 0.04 0.20 0.03 0.40 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.04 0.06 100.15DDH05-102-7 clinopyroxenite bleb 2 39.75 0.00 60.50 0.17 0.50 0.00 0.00 0.02 0.01 0.00 0.06 0.01 0.00 0.00 0.01 0.03 0.01 0.04 0.02 0.07 101.19DDH05-102-7 clinopyroxenite bleb 3 39.73 0.03 60.10 0.15 0.44 0.00 0.04 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 100.58DDH05-102-7 clinopyroxenite D-NT 5 38.91 0.01 61.62 0.06 0.23 0.00 0.00 0.01 0.03 0.00 0.00 0.06 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.14 101.11DDH05-102-12 clinopyroxenite NT 2 38.74 0.00 60.24 0.16 0.44 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.22 99.88DDH05-102-12 clinopyroxenite NT 3 39.58 0.00 60.38 0.19 0.35 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.11 100.71DDH05-102-12 clinopyroxenite D 6 38.72 0.00 61.02 0.14 0.51 0.02 0.04 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.10 0.01 0.17 100.77DDH06-161-3Tr-Tlc altd clinopyroxeniteNT 1 39.05 0.00 61.07 0.05 0.19 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.11 0.02 0.00 0.07 100.64All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Hbl = hornblende, Chl = chlorite, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated, NT = net-textured, M = massive246  235  235  235    Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalPyrrhotiteDDH06-161-3Tr-Tlc altd clinopyroxeniteNT 2 38.83 0.00 61.38 0.01 0.14 0.11 0.06 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.11 100.76DDH06-161-3Tr-Tlc altd clinopyroxeniteM 6 38.53 0.00 61.41 0.10 0.28 0.01 0.01 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.04 100.46DDH07-207-7Tr altd clinopyroxeniteNT 1 38.67 0.00 61.14 0.09 0.05 0.01 0.06 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.14 0.00 0.00 0.00 0.16 100.41DDH07-207-7Tr altd clinopyroxeniteD-NT 2 38.89 0.01 60.77 0.11 0.04 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 99.89DDH07-207-7Tr altd clinopyroxeniteD-NT 3 38.48 0.00 60.72 0.04 0.04 0.00 0.00 0.00 0.00 0.08 0.03 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.06 0.14 99.63DDH07-207-7Tr altd clinopyroxeniteD-NT 4 39.35 0.00 61.01 0.05 0.06 0.00 0.05 0.00 0.00 0.02 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 100.65DDH07-207-11 clinopyroxenite D-NT 1 39.34 0.00 60.44 0.13 0.29 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.04 0.13 100.42DDH07-207-11 clinopyroxenite D-NT 2 38.83 0.01 60.73 0.12 0.54 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 0.00 0.06 100.42DDH07-207-11 clinopyroxenite D-NT 3 39.76 0.00 60.53 0.13 0.27 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.03 100.86DDH07-207-11 clinopyroxenite D 4 39.19 0.00 59.72 0.10 0.37 0.02 0.04 0.00 0.01 0.00 0.00 0.03 0.03 0.00 0.06 0.00 0.00 0.09 0.00 0.12 99.77DDH07-211-4 hornblendite D 2 39.74 0.00 59.79 0.44 0.16 0.01 0.04 0.02 0.01 0.00 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.01 100.31DDH07-211-4 hornblendite D 4 39.70 0.01 59.24 0.13 0.05 0.03 0.00 0.02 0.00 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.13 99.47DDH07-211-4 hornblendite D 5 39.97 0.00 60.20 0.18 0.19 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.00 0.01 0.00 0.10 100.75DDH07-211-4 hornblendite D 6 40.53 0.00 60.06 0.15 0.13 0.03 0.02 0.00 0.02 0.00 0.05 0.00 0.02 0.00 0.02 0.04 0.00 0.01 0.00 0.09 101.14DDH07-211-4 hornblendite D 6 39.97 0.02 60.18 0.17 0.05 0.02 0.03 0.00 0.00 0.05 0.03 0.00 0.03 0.00 0.04 0.05 0.00 0.05 0.03 0.06 100.77DDH07-211-107 Hbl clinopyroxenite D-NT 2 40.22 0.02 60.48 0.16 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.23 101.19DDH07-211-107 Hbl clinopyroxenite D-NT 4 40.09 0.01 60.26 0.23 0.06 0.01 0.00 0.03 0.01 0.06 0.00 0.00 0.03 0.00 0.00 0.07 0.00 0.02 0.00 0.13 100.99DDH07-211-107 Hbl clinopyroxenite D-NT 8 40.22 0.00 60.20 0.27 0.07 0.06 0.28 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.02 101.18DDH07-211-108 Hbl clinopyroxenite M 2 39.94 0.00 59.57 0.00 0.82 0.01 0.07 0.01 0.00 0.00 0.03 0.00 0.02 0.00 0.01 0.00 0.00 0.07 0.00 0.13 100.69DDH07-211-108 Hbl clinopyroxenite M 4 39.71 0.01 59.39 0.00 1.06 0.05 0.00 0.03 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 100.50ChalcopyriteDDH04-48-8Ol (Srp-Mag) clinopyroxeniteD 1 34.35 0.00 31.13 0.00 0.04 34.10 0.02 0.05 0.00 0.00 0.03 0.00 0.03 0.00 0.02 0.07 0.00 0.00 0.03 0.09 99.97DDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 3 34.27 0.00 31.13 0.00 0.00 34.33 0.06 0.00 0.02 0.03 0.02 0.00 0.03 0.00 0.04 0.00 0.00 0.10 0.04 0.08 100.13DDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 3 34.28 0.05 30.82 0.00 0.00 34.31 0.00 0.00 0.02 0.04 0.00 0.00 0.03 0.00 0.03 0.00 0.15 0.00 0.07 0.18 99.98DDH04-58-5Ol (Srp-Mag) clinopyroxeniteincl. in py 8 35.23 0.00 29.74 0.08 0.11 34.37 0.00 0.03 0.02 0.01 0.04 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.19 99.89DDH05-83-1 clinopyroxenite M 7 34.24 0.00 30.75 0.03 0.00 34.33 0.08 0.02 0.01 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.18 99.67DDH05-88-1 clinopyroxenite D 3 34.85 0.03 30.46 0.00 0.02 34.33 0.06 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.15 99.99DDH05-88-1 clinopyroxenite incl. 4 34.82 0.01 29.99 0.01 0.05 34.89 0.08 0.00 0.03 0.00 0.04 0.00 0.00 0.00 0.02 0.00 0.01 0.05 0.00 0.05 100.04DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 2 32.92 0.00 30.89 0.00 0.04 34.66 0.02 0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.04 98.72All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Hbl = hornblende, Chl = chlorite, Tr = tremolite, altd = altered† D = disseminated, NT = net-textured, M = massive; py=pyrite, incl. = inclusion247  236  236  236     Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalChalcopyriteDDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 4 34.32 0.00 31.06 0.01 0.02 33.72 0.04 0.00 0.01 0.00 0.01 0.00 0.05 0.00 0.03 0.00 0.07 0.00 0.00 0.14 99.47DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 4 34.62 0.00 31.12 0.00 0.01 34.53 0.07 0.00 0.02 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 100.60DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 4 34.89 0.02 31.09 0.00 0.02 34.04 0.00 0.00 0.00 0.04 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.05 100.19DDH05-89-2Ol (Srp-Mag) clinopyroxeniteD 6 35.25 0.00 30.01 0.00 0.00 33.76 0.06 0.00 0.02 0.00 0.00 0.05 0.00 0.00 0.02 0.05 0.00 0.07 0.00 0.05 99.35DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 1 34.11 0.00 30.95 0.00 0.01 34.53 0.02 0.00 0.02 0.05 0.02 0.00 0.00 0.00 0.01 0.00 0.08 0.02 0.00 0.08 99.89DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 9 34.08 0.00 30.75 0.00 0.00 34.67 0.06 0.02 0.01 0.00 0.01 0.05 0.00 0.00 0.03 0.05 0.00 0.00 0.00 0.11 99.84DDH05-101-5Cal-Chl vein in clinopyroxeniteD-NT 2 34.26 0.00 31.37 0.00 0.03 34.60 0.00 0.00 0.03 0.05 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.10 100.48DDH05-101-5Cal-Chl vein in clinopyroxeniterim on py 4 34.29 0.00 31.30 0.01 0.02 34.41 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.05 0.00 0.06 0.14 100.31DDH05-101-5Cal-Chl vein in clinopyroxeniteD 5 34.85 0.00 29.32 0.00 0.03 34.41 0.03 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.08 0.00 0.04 98.78DDH05-102-7 clinopyroxenite D 2 34.66 0.01 30.85 0.03 0.08 33.89 0.24 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.12 0.05 0.00 0.09 100.08DDH05-102-12 clinopyroxenite NT 1 34.19 0.02 30.99 0.00 0.03 34.60 0.02 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.14 100.07DDH05-102-12 clinopyroxenite NT 3 34.69 0.03 31.05 0.02 0.00 34.03 0.07 0.00 0.01 0.03 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 99.98DDH05-102-12 clinopyroxenite NT 3 34.31 0.02 30.56 0.00 0.03 34.31 0.03 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.12 0.02 0.09 0.07 99.60DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 7 34.20 0.00 30.94 0.01 0.00 35.07 0.00 0.01 0.01 0.01 0.17 0.00 0.00 0.00 0.01 0.00 0.22 0.02 0.04 0.15 100.85DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 8 34.22 0.00 32.50 0.00 0.00 34.04 0.00 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.11 100.94DDH06-161-3Tr-Tlc altd clinopyroxeniteNT 1 34.22 0.03 34.03 0.23 0.58 31.74 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.04 0.01 0.06 0.09 0.00 0.08 101.15DDH06-161-3Tr-Tlc altd clinopyroxeniteNT 2 34.56 0.01 30.51 0.00 0.04 35.37 0.07 0.02 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.03 0.02 0.15 100.94DDH07-207-7Tr altd clinopyroxeniteD 1 34.93 0.00 30.89 0.01 0.00 34.60 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.17 100.68DDH07-207-7Tr altd clinopyroxeniteD 2 34.37 0.02 30.28 0.00 0.03 34.58 0.10 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.12 0.00 0.06 99.62DDH07-207-7Tr altd clinopyroxeniteD 3 34.19 0.04 31.15 0.02 0.00 34.51 0.05 0.02 0.00 0.00 0.00 0.04 0.03 0.00 0.03 0.00 0.00 0.00 0.10 0.15 100.32All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Hbl = hornblende, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated, NT = net-textured, M = massive; ccp = chalcopyrite, py=pyrite; incl. = inclusion, intergrown w. = intergrown with248  240  240  240     Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalChalcopyriteDDH07-207-11 clinopyroxenite D 1 34.13 0.00 30.42 0.01 0.00 34.54 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.05 99.32DDH07-207-11 clinopyroxenite D 4 34.92 0.00 30.28 0.00 0.02 34.35 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.00 0.00 0.11 99.88DDH07-211-1 clinopyroxenite D 14 32.50 0.00 26.58 0.15 0.26 29.35 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.15 89.14DDH07-211-1 clinopyroxeniteincl. in tucekite3 33.60 0.05 25.80 0.25 0.29 30.21 0.01 0.40 2.98 0.11 0.08 0.06 0.00 0.00 0.04 0.13 0.06 0.00 0.01 0.07 94.20DDH07-211-1 clinopyroxenite D 4 33.98 0.01 30.73 0.00 0.00 34.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.15 98.92DDH07-211-1 clinopyroxenite vein 5 33.76 0.00 30.50 0.02 0.07 33.85 0.09 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.06 98.50DDH07-211-4 hornblendite vein 0 34.83 0.00 31.07 0.00 0.01 33.77 0.06 0.03 0.01 0.03 0.00 0.05 0.00 0.00 0.00 0.09 0.01 0.01 0.00 0.00 99.98DDH07-211-4 hornblendite D 5 34.95 0.00 30.67 0.00 0.00 35.12 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.20 101.04DDH07-211-107 Hbl clinopyroxenite D 1 35.03 0.00 30.81 0.00 0.01 35.13 0.05 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.12 101.19DDH07-211-107 Hbl clinopyroxenite D 4 34.60 0.00 30.69 0.00 0.02 35.39 0.00 0.01 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.22 101.06DDH07-211-107 Hbl clinopyroxenite D-NT 8 35.10 0.00 30.21 0.00 0.00 35.03 0.11 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.02 0.00 0.18 100.77DDH07-211-108 Hbl clinopyroxeniteintergrown w. py1 34.40 0.01 30.92 0.01 0.02 34.03 0.00 0.00 0.00 0.04 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.09 99.64DDH07-211-108 Hbl clinopyroxenite M 2 34.68 0.00 30.94 0.00 0.01 34.61 0.04 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.04 0.00 0.12 0.00 0.00 0.12 100.60DDH07-211-108 Hbl clinopyroxenite M 4 34.55 0.01 30.85 0.01 0.03 33.69 0.04 0.01 0.00 0.00 0.08 0.02 0.02 0.00 0.00 0.00 0.00 0.08 0.00 0.15 99.54PyriteDDH04-48-8Ol (Srp-Mag) clinopyroxeniteD 1 53.79 0.02 47.76 0.21 0.10 0.03 0.04 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 102.15DDH04-48-8Ol (Srp-Mag) clinopyroxeniteD 2 53.39 0.00 43.90 3.37 0.06 0.01 0.05 0.00 0.04 0.03 0.02 0.00 0.00 0.00 0.03 0.07 0.00 0.00 0.00 0.20 101.16DDH04-48-8Ol (Srp-Mag) clinopyroxeniteintergrown w. ccp4 53.45 0.01 46.18 1.15 0.05 0.06 0.00 0.07 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.21 101.19DDH04-48-8Ol (Srp-Mag) clinopyroxeniteintergrown w. ccp4 53.68 0.00 46.69 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.04 0.09 0.00 0.00 0.03 0.00 0.00 0.04 0.00 0.17 100.80DDH04-58-5Ol (Srp-Mag) clinopyroxeniteporphyroblast 8 53.97 0.01 47.13 0.03 0.12 0.00 0.01 0.02 0.00 0.01 0.01 0.01 0.03 0.00 0.00 0.00 0.01 0.04 0.00 0.16 101.54DDH05-83-1 clinopyroxenite vein 4 52.70 0.04 46.78 0.11 0.12 0.01 0.04 0.01 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.17 100.13DDH05-88-104clinopyroxenite with Cal-Hbl veinD-NT 1 53.69 0.01 45.99 0.01 0.05 0.00 0.03 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.14 100.00DDH05-88-104clinopyroxenite with Cal-Hbl veinalt. in po 2 52.25 0.02 46.57 0.02 0.12 0.00 0.06 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.12 0.00 0.11 99.34DDH05-88-104clinopyroxenite with Cal-Hbl veinalt. in po 2 53.32 0.00 46.78 0.03 0.11 0.02 0.02 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.29 100.65DDH05-101-1Ol (Srp-Mag) clinopyroxeniteintergrown w. ccp/po1 53.28 0.01 45.29 2.69 0.02 0.13 0.06 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.07 101.66DDH05-101-1Ol (Srp-Mag) clinopyroxenitevein 4 52.80 0.03 48.08 0.03 0.00 0.00 0.04 0.01 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.01 0.00 0.05 101.19All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Hbl = hornblende, Chl = chlorite† D = disseminated, NT = net-textured, ccp = chalcopyrite, po = pyrrhotite, pn = pentandite, cbt = cobaltite, py=pyrite, mag = magnetite; incl. = inclusion, intergrown w. = intergrown with249  241  241  241    Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalChalcopyriteDDH05-101-5Cal-Chl vein in clinopyroxenitevein 1 53.16 0.00 47.46 0.44 0.04 0.00 0.02 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.14 0.00 0.04 0.00 0.13 101.47DDH05-101-5Cal-Chl vein in clinopyroxeniteporphyroblast 4 53.38 0.00 45.54 2.17 0.02 0.02 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.06 0.00 0.00 0.00 0.15 101.39DDH05-102-7 clinopyroxeniteintergrown w. ccp/pn1 53.26 0.00 48.32 0.00 0.18 0.13 0.00 0.02 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 102.20DDH05-102-7 clinopyroxenite D-NT 6 53.58 0.00 47.75 0.03 0.04 0.03 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.16 101.67DDH06-149-2Ol (Srp-Mag) clinopyroxeniteintergrown w. mag/cbt8 51.24 0.03 42.39 5.19 0.01 0.05 0.00 3.18 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.05 0.15 102.36DDH06-149-2Ol (Srp-Mag) clinopyroxeniteintergrown w. mag8 53.44 0.00 48.59 0.00 0.12 0.02 0.00 0.00 0.00 0.03 0.00 0.05 0.00 0.00 0.00 0.02 0.14 0.07 0.04 0.15 102.68DDH07-207-11 clinopyroxenite porphyroblast 1 54.21 0.00 45.84 1.70 0.00 0.01 0.03 0.02 0.01 0.04 0.02 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.14 102.10DDH07-207-11 clinopyroxenite porphyroblast 2 53.88 0.00 45.26 2.24 0.02 0.03 0.03 0.01 0.01 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.10 101.73DDH07-207-11 clinopyroxenite porphyroblast 4 54.27 0.00 46.31 1.37 0.00 0.06 0.00 0.02 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.03 0.03 0.06 0.00 0.11 102.32DDH07-211-4 hornblendite vein 0 54.13 0.00 47.29 0.00 0.11 0.00 0.00 0.01 0.00 0.09 0.05 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.12 101.86DDH07-211-4 hornblenditeintergrown w. mag7 54.94 0.00 47.15 0.09 0.01 0.02 0.03 0.00 0.00 0.05 0.03 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.14 102.50DDH07-211-107 Hbl clinopyroxenite vein 7 54.98 0.00 46.00 0.19 0.05 0.01 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 101.51DDH07-211-108 Hbl clinopyroxenite incl. in ccp 2 53.57 0.02 47.08 0.87 0.09 0.02 0.00 0.00 0.02 0.02 0.05 0.00 0.04 0.00 0.00 0.00 0.09 0.00 0.00 0.13 101.98DDH07-211-108 Hbl clinopyroxenite incl. in ccp 2 54.33 0.00 47.17 0.64 0.26 0.08 0.06 0.02 0.01 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.06 0.00 0.18 102.85DDH07-211-108 Hbl clinopyroxenite flame 2 53.96 0.01 47.10 0.02 0.61 0.03 0.00 0.00 0.05 0.02 0.06 0.00 0.01 0.00 0.02 0.00 0.00 0.06 0.00 0.10 102.03DDH07-211-108 Hbl clinopyroxeniteintergrown w. ccp/po4 54.38 0.01 47.22 0.04 0.50 0.03 0.01 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.06 102.38DDH07-211-108 Hbl clinopyroxeniteintergrown w. ccp1 53.89 0.01 46.15 1.71 0.25 0.07 0.05 0.03 0.02 0.02 0.00 0.00 0.04 0.00 0.01 0.15 0.00 0.00 0.00 0.13 102.53DDH07-211-108 Hbl clinopyroxeniteintergrown w. ccp1 53.73 0.03 45.56 2.25 0.03 0.04 0.01 0.02 0.01 0.01 0.03 0.00 0.02 0.00 0.04 0.04 0.07 0.00 0.00 0.01 101.91PentlanditeDDH04-58-5Ol (Srp-Mag) clinopyroxeniteincl. in py 8 33.14 0.00 25.92 0.51 33.81 0.12 0.00 0.00 0.02 0.00 0.09 0.06 0.00 0.00 0.01 0.00 0.10 0.04 0.04 0.12 93.98DDH05-88-1 clinopyroxenite D 3 32.63 0.00 27.92 5.08 33.70 0.39 0.00 0.00 0.01 0.04 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 100.07DDH05-88-1 clinopyroxenite D 3 32.45 0.00 27.90 5.41 34.45 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.18 100.47DDH05-89-2Ol (Srp-Mag) clinopyroxeniteincl. in ccp 3 33.66 0.00 26.70 9.85 30.13 0.64 0.06 0.00 0.00 0.01 0.10 0.03 0.01 0.00 0.01 0.02 0.00 0.04 0.02 0.01 101.27DDH05-89-2Ol (Srp-Mag) clinopyroxeniteflame 6 33.83 0.00 27.95 10.71 28.52 0.00 0.01 0.03 0.01 0.02 0.00 0.04 0.00 0.00 0.05 0.00 0.07 0.02 0.03 0.14 101.43All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Hbl = hornblende, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated; ccp = chalcopyrite, po = pyrrhotite; incl. = inclusion, intergrown w. = intergrown with250  241  241  241    Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalPentlanditeDDH05-101-1Ol (Srp-Mag) clinopyroxeniteintergrown w. ccp1 32.71 0.03 29.78 2.48 34.71 0.09 0.07 0.00 0.08 0.02 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.06 100.07DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 5 32.39 0.01 29.05 3.04 34.69 0.01 0.00 0.03 0.04 0.00 0.02 0.02 0.04 0.00 0.04 0.04 0.00 0.00 0.04 0.08 99.53DDH05-101-1Ol (Srp-Mag) clinopyroxeniteintergrown w. ccp/po9 32.46 0.01 29.26 3.05 35.26 0.00 0.06 0.00 0.03 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 100.21DDH05-102-7 clinopyroxenite flame 2 33.54 0.00 28.28 9.33 29.70 0.00 0.02 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.11 0.00 0.02 0.00 0.00 101.04DDH06-161-3Tr-Tlc altd clinopyroxeniteD 4 33.51 0.00 28.57 16.36 22.38 0.03 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.07 101.08DDH06-161-3Tr-Tlc altd clinopyroxeniteincl. in po 6 33.13 0.00 29.49 11.74 27.26 0.00 0.02 0.01 0.03 0.03 0.08 0.00 0.02 0.00 0.00 0.04 0.19 0.04 0.00 0.06 102.14DDH07-211-1 clinopyroxenite incl. in ccp 11 32.69 0.00 24.12 0.53 38.56 0.03 0.00 0.18 0.10 0.04 0.03 0.00 0.00 0.00 0.03 0.00 0.04 0.00 0.00 0.02 96.38DDH07-211-1 clinopyroxenite incl. in ccp 13 31.49 0.00 23.51 0.95 34.19 0.06 0.00 0.03 0.06 0.00 0.00 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 90.39DDH07-211-1 clinopyroxeniteintergrown w. ccp14 32.30 0.01 25.37 0.69 37.93 0.02 0.05 0.01 0.00 0.00 0.05 0.00 0.01 0.00 0.03 0.02 0.00 0.00 0.00 0.07 96.57DDH07-211-1 clinopyroxenite D 4 32.83 0.02 25.90 1.09 40.47 0.04 0.02 0.05 0.06 0.00 0.00 0.03 0.00 0.00 0.03 0.03 0.00 0.10 0.00 0.02 100.71DDH07-211-1 clinopyroxenite D 4 31.97 0.00 23.95 0.92 36.71 0.01 0.00 0.04 0.06 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.18 94.03DDH07-211-1 clinopyroxenite vein 5 32.81 0.00 25.99 0.48 40.47 0.03 0.00 0.00 0.01 0.04 0.02 0.02 0.01 0.00 0.02 0.00 0.07 0.02 0.00 0.07 100.06DDH07-211-1 clinopyroxenite D 9 32.51 0.00 23.35 0.55 38.67 0.03 0.03 0.00 0.01 0.02 0.04 0.00 0.00 0.00 0.03 0.02 0.03 0.00 0.00 0.09 95.38DDH07-211-108 Hbl clinopyroxenite D 1 33.02 0.03 28.95 0.00 38.39 0.00 0.01 0.03 0.02 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.15 100.75DDH07-211-108 Hbl clinopyroxenite incl. in ccp 2 32.84 0.01 30.43 0.02 36.99 0.01 0.01 0.00 0.04 0.03 0.01 0.00 0.00 0.00 0.05 0.00 0.00 0.11 0.00 0.08 100.68SphaleriteDDH04-48-8Ol (Srp-Mag) clinopyroxeniteincl. in ccp 2 32.51 0.00 2.93 0.04 0.21 0.42 63.51 0.00 0.03 0.00 0.04 0.35 0.00 0.00 0.00 0.02 0.04 0.02 0.00 0.09 100.20DDH05-89-2Ol (Srp-Mag) clinopyroxenitevein 2 32.97 0.08 8.48 0.21 0.01 0.08 57.94 0.00 0.02 0.00 0.00 0.22 0.00 0.02 0.00 0.05 0.02 0.01 0.01 0.03 100.14DDH05-102-7 clinopyroxenite D 2 32.64 0.00 8.35 0.13 0.01 0.15 56.96 0.00 0.00 0.00 0.00 0.63 0.00 0.01 0.00 0.00 0.10 0.00 0.05 0.10 99.11DDH06-161-3Tr-Tlc altd clinopyroxeniteincl. in ccp 3 32.53 0.05 7.40 0.05 0.00 1.20 59.06 0.01 0.01 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.63DDH07-211-4 hornblendite incl. in ccp 5 33.03 0.02 8.28 0.14 0.00 3.35 55.49 0.00 0.02 0.00 0.07 0.34 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.07 100.85DDH07-211-4 hornblenditeintergrown w. po6 32.79 0.02 7.10 0.07 0.00 0.11 60.31 0.00 0.00 0.00 0.01 0.30 0.00 0.00 0.00 0.00 0.07 0.01 0.00 0.14 100.93DDH07-211-107 Hbl clinopyroxenite incl. in po 4 32.90 0.03 8.73 0.11 0.02 0.06 58.58 0.00 0.00 0.00 0.10 0.11 0.02 0.01 0.00 0.10 0.00 0.04 0.00 0.01 100.82DDH07-211-107 Hbl clinopyroxenite incl. in po 8 33.13 0.00 8.40 0.14 0.00 0.98 57.19 0.02 0.01 0.00 0.00 0.12 0.00 0.00 0.00 0.13 0.00 0.06 0.00 0.04 100.23DDH07-211-108 Hbl clinopyroxenite incl. in ccp 2 32.88 0.01 7.48 0.00 0.02 2.65 57.09 0.02 0.02 0.00 0.00 0.38 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.18 100.92All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite† D = disseminated; ccp = chalcopyrite, pn = pentandite, nc = nickeline, py=pyrite, gers = gersdorffite; incl. = inclusion, intergrown w. = intergrown with251  241  241  241    Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalCobaltiteDDH05-83-1 clinopyroxenite inclusion 7 19.29 0.01 5.43 27.71 2.34 0.01 0.00 45.41 0.22 0.45 0.05 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.08 101.03DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 2 19.69 0.00 1.04 32.24 1.12 0.00 0.00 43.81 0.29 0.07 0.01 0.02 0.00 0.17 0.00 1.35 0.00 0.00 0.03 0.01 99.85DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 3 20.11 0.02 1.50 32.51 1.58 0.01 0.03 43.97 0.25 0.00 0.06 0.00 0.00 0.02 0.00 0.00 0.00 0.06 0.00 0.00 100.12DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 5 20.02 0.00 3.06 29.10 4.26 0.00 0.01 43.87 0.22 0.01 0.05 0.01 0.03 0.00 0.00 0.07 0.00 0.01 0.05 0.19 100.95DDH05-101-1Ol (Srp-Mag) clinopyroxeniteD 6 19.95 0.01 1.78 28.69 5.46 0.06 0.05 44.59 0.30 0.00 0.03 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.13 101.09DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 5 19.81 0.00 1.58 30.76 2.73 0.00 0.04 44.85 0.31 0.00 0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.07 0.00 0.01 100.21DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 6 19.46 0.02 2.73 31.74 1.67 0.00 0.00 44.89 0.26 0.03 0.00 0.06 0.00 0.06 0.01 0.04 0.00 0.09 0.04 0.12 101.21DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 8 20.48 0.01 2.85 32.78 0.19 0.04 0.03 43.53 0.24 0.00 0.01 0.04 0.00 0.03 0.00 0.00 0.00 0.07 0.02 0.06 100.37GersdorffiteDDH07-211-1 clinopyroxenite incl. in ccp 11 19.18 0.00 0.38 1.21 32.64 0.20 0.04 44.61 0.34 0.01 0.02 0.00 0.00 0.67 0.07 0.00 0.00 0.04 0.00 0.08 99.50DDH07-211-1 clinopyroxeniteintergrown w. ccp12 18.51 0.01 2.58 11.98 18.87 0.20 0.00 45.39 0.28 0.05 0.00 0.09 0.03 0.21 0.00 0.00 0.00 0.10 0.00 0.10 98.39DDH07-211-1 clinopyroxenite rim on ccp 13 19.32 0.00 1.53 15.98 13.24 0.59 0.00 43.23 0.29 0.00 0.04 0.00 0.02 0.10 0.00 0.03 0.00 0.00 0.00 0.07 94.42DDH07-211-1 clinopyroxenite rim on nc 14 19.07 0.00 1.22 21.19 11.97 0.58 0.04 45.19 0.32 0.02 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.02 0.00 0.09 99.75DDH07-211-1 clinopyroxenite rim on ccp 4 18.72 0.00 0.69 0.52 34.67 0.07 0.07 45.08 0.31 0.00 0.02 0.00 0.03 0.26 0.06 0.05 0.00 0.02 0.00 0.00 100.57DDH07-211-1 clinopyroxenite D 5 18.77 0.02 3.15 6.91 25.53 0.00 0.00 45.03 0.26 0.05 0.02 0.06 0.01 0.61 0.01 0.10 0.00 0.00 0.00 0.21 100.76DDH07-211-1 clinopyroxeniteintergrown w. nc8 18.92 0.00 0.42 1.36 34.21 0.23 0.04 45.27 0.36 0.00 0.00 0.06 0.02 0.10 0.04 0.05 0.00 0.00 0.04 0.13 101.25DDH07-211-1 clinopyroxeniteintergrown w. pn9 19.29 0.01 1.26 1.39 31.02 0.00 0.00 43.37 0.33 0.00 0.05 0.03 0.01 1.04 0.04 0.00 0.00 0.00 0.04 0.15 98.03SiegeniteDDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 2 40.47 0.04 6.04 21.95 28.45 0.03 0.04 0.00 0.04 0.04 0.02 0.01 0.05 0.02 0.00 0.00 0.02 0.03 0.00 0.00 97.26DDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 3 41.34 0.03 6.63 23.08 28.39 0.00 0.04 0.00 0.03 0.00 0.00 0.03 0.02 0.00 0.02 0.00 0.00 0.00 0.05 0.07 99.72DDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 4 39.45 0.06 3.16 23.92 31.35 0.00 0.02 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.01 0.08 0.00 0.00 98.10DDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 8 41.66 0.04 5.86 22.85 28.85 0.14 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.20 99.67DDH04-58-5Ol (Srp-Mag) clinopyroxeniteincl. in py 8 41.69 0.01 13.42 11.90 34.33 0.00 0.00 0.01 0.04 0.04 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.19 101.76All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Hbl = hornblende, Tr = tremolite, Tlc = talc, altd = altered† D = disseminated; ccp = chalcopyrite, po = pyrrhotite; incl. = inclusion, intergrown w. = intergrown with252  241  241  241     Appendix F7: Electron microprobe analyses of sulphide minerals from the DJ/DB zone of the Turnagain intrusionSample Rock type* Texture† Spot S Mn Fe Co Ni Cu Zn As Se Pd Ag Cd Sn Sb Te Pt Au Hg Pb Bi TotalSiegeniteDDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 6 41.90 0.00 2.44 24.53 29.77 0.07 0.07 0.00 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.06 98.93DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 7 41.96 0.02 1.17 34.50 21.92 0.30 0.00 0.00 0.04 0.01 0.03 0.00 0.00 0.01 0.00 0.02 0.17 0.05 0.00 0.07 100.28MilleriteDDH04-48-8Ol (Srp-Mag) clinopyroxeniteincl. in ccp 2 34.84 0.00 1.77 0.46 65.22 0.03 0.05 0.00 0.00 0.00 0.03 0.02 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.13 102.61DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 1 34.34 0.02 3.58 1.57 61.11 0.06 0.02 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.03 0.00 0.03 100.86DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 5 34.79 0.04 1.83 1.04 61.71 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.03 0.04 0.00 0.09 99.68DDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 6 34.98 0.02 1.07 1.93 61.09 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.03 0.03 0.08 0.02 0.00 0.00 0.05 99.32DDH07-211-1 clinopyroxeniteintergrown w. ccp7 35.38 0.00 1.77 0.55 62.52 0.02 0.03 0.04 0.06 0.00 0.00 0.00 0.05 0.01 0.02 0.05 0.00 0.05 0.00 0.05 100.61DDH07-211-1 clinopyroxenite rim on gers 12 33.41 0.04 1.53 0.76 58.15 0.04 0.00 0.10 0.05 0.00 0.02 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 94.14NickelineDDH07-211-1 clinopyroxenite incl. in ccp 14 0.66 0.01 0.14 0.08 41.42 0.05 0.01 53.32 0.32 0.00 0.05 0.02 0.00 2.70 0.05 0.08 0.00 0.00 0.00 0.04 98.95DDH07-211-1 clinopyroxeniteintergrown w. ccp8 0.14 0.00 0.20 0.13 44.53 0.12 0.00 55.69 0.29 0.03 0.00 0.02 0.02 0.29 0.12 0.00 0.00 0.00 0.01 0.00 101.59DDH07-211-1 clinopyroxeniteintergrown w. pn9 0.88 0.01 0.90 0.03 39.78 0.00 0.04 51.35 0.34 0.06 0.03 0.04 0.00 3.51 0.07 0.17 0.00 0.00 0.12 0.00 97.31DDH07-211-1 clinopyroxeniteintergrown w. pn9 0.63 0.01 0.67 0.01 40.59 0.00 0.03 51.08 0.33 0.07 0.00 0.00 0.02 4.78 0.01 0.29 0.01 0.00 0.00 0.06 98.56TucekiteDDH07-211-1 clinopyroxenite incl. in ccp 3 24.66 0.03 3.73 1.34 45.23 0.21 0.03 1.30 0.03 0.00 0.06 0.00 0.08 19.50 0.78 0.00 0.08 0.00 0.00 2.44 100.37DDH07-211-1 clinopyroxenite incl. in ccp 3 24.85 0.00 3.96 1.31 45.36 0.30 0.02 0.45 0.04 0.03 0.03 0.00 0.05 22.78 0.00 0.00 0.10 0.00 0.00 0.25 100.36BorniteDDH06-149-2Ol (Srp-Mag) clinopyroxeniteD 1 25.69 0.00 11.36 0.00 0.06 65.14 0.06 0.00 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.05 102.59MarcasiteDDH05-88-104clinopyroxenite with Cal-Hbl veinflame 2 53.64 0.01 40.41 5.76 0.04 0.00 0.02 0.03 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.11 100.11(Fe,Co,Ni)SDDH04-58-5Ol (Srp-Mag) clinopyroxeniteD 2 36.96 0.04 15.86 11.83 34.13 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 98.90All data presented in weight %, analyses done by Ingrid Kjarsgaard at Carleton University (Ottawa, ON)* Ol = olivine, Srp = serpentine, Mag = magnetite, Cal = calcite, Hbl = hornblende† D = disseminated; ccp = chalcopyrite, pn = pentandite; incl. = inclusion, intergrown w. = intergrown with253  242  242  242 254      Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusion          Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusionElement S Co Ni Cu Zn As Se Ru Ru Ru Rh Pd Pd Pd Pd Ag Cd Sn Sb Te Re Os Ir Pt Au Pb BiIsotope 34 59 61 65 66 75 77 101 102 average1 103 105 106* 108* average2 109 111 118 121 125 185 189 193 195 197 208 209Unit wt. % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmDDH05-88-1 (clinopyroxenite)Ccp 40.69 0.58 10.62 334809 532 97.6 nr nr 13.11 19.06 0.08 0.22 0.013 0.012 2.51 0.044Ccp 37.40 0.82 13.65 334252 508 68.7 nr nr 9.61 14.95 0.11 0.50 0.003 2.16 0.013Ccp 40.95 2.18 37.41 333906 559 77.3 nr nr nr 8.12 17.96 0.07 0.07 0.96 0.004 2.72 0.031Ccp 38.91 1.05 31.24 341025 274 1.48 94.8 nr nr nr 0.106 0.106 12.78 9.40 0.20 3.88 2.04 0.021Ccp 43.76 1.12 314039 381 90.5 nr nr 18.00 17.96 0.30 0.25 3.74 0.034Ccp 41.79 1.59 14.23 337395 849 74.2 nr nr 7.21 24.01 0.18 0.18 0.60 0.011 3.18 0.103DDH05-88-105 (hornblendite)Po 41.44 709 857 0.53 77.0 0.022 0.022 0.27 0.06 0.46 0.45Po 40.36 708 801 0.49 61.4 0.017 0.017 0.57 0.52 0.019 0.015 1.66 0.018Po 33.23 611 1066 0.40 0.87 1.40 53.7 0.044 0.044 0.20 0.08 0.23 1.93 0.021Po 30.05 601 998 0.52 2.10 47.9 nr 0.21 0.30 0.042 0.023 1.18 0.010DDH05-88-106 (hornblendite with Cal-Hbl vein)Po 42.59 321 917 0.84 1.18 57.1 0.009 0.009 0.006 0.015 0.015 2.61 0.02 0.09 0.003 5.87 0.059Po 42.66 305 960 0.28 1.22 0.56 49.3 0.011 0.011 0.011 2.50 0.10 0.06 0.17 7.29 0.021Po 42.46 322 893 0.85 62.66 0.60 47.7 0.034 0.034 2.64 0.07 0.34 0.011 8.64 0.019Po 37.53 934 1154 0.96 47.5 0.013 0.013 0.001 0.014 0.053 0.034 1.22 0.041 0.354 1.26 0.016Po 35.31 1272 1212 0.45 0.39 47.8 nr 0.79 0.024 0.041 0.91 0.011Ccp 42.18 9.77 5.20 310715 414 49.9 nr nr nr 18.28 14.91 0.18 0.20 0.14 0.047 3.23Ccp 39.00 3.60 14.20 329247 376 52.0 nr nr nr 0.135 0.135 31.01 14.78 0.78 0.46 0.014 0.007 0.008 0.017 7.07 0.151Ccp 38.82 9.61 8.62 332331 1626 52.2 nr nr nr 0.066 0.242 0.154 45.10 38.35 0.86 0.79 12.09 0.013Py 57.57 1996 58.70 63.23 1.50 79.7 0.017 0.017 0.020 0.02 0.02 0.20 0.012 0.010 0.062 0.58 0.008Py 66.94 4846 69.95 231 99.14 2.80 88.9 0.008 0.008 nr 0.064 0.064 0.70 0.28 0.31 0.33 1.00 0.004 0.012 2.97 0.219Py 58.46 2105 35.16 5287 95.10 13.65 70.0 0.011 0.011 nr nr 0.54 0.45 0.07 0.29 1.00 0.006 0.026 3.23 0.130Py 60.71 1803 41.55 243 275 0.44 76.0 0.007 0.007 0.007 0.002 0.002 0.49 0.07 0.29 0.53 0.009 0.053 0.74 0.040Py 60.84 3250 35.13 0.50 422 89.8 0.003 0.002 0.002 1.14 0.16 0.006 0.232 0.16 0.058Py 50.18 3251 179 1.11 6.91 9.86 61.3 0.013 0.013 0.158 0.212 0.223 0.198 0.02 0.04 0.28 0.36 0.013DDH05-102-5 (clinopyroxenite)Po 40.43 1604 4822 1.06 57.0 0.019 0.024 0.022 0.007 0.011 0.011 0.26 0.11 0.07 0.041 0.002 0.015 0.55 0.019Po 42.53 1506 4847 0.24 0.80 59.1 nr 0.012 0.016 0.015 0.012 0.014 0.21 0.06 0.15 0.15 0.016 0.017 0.51 0.099Po 43.61 1783 4159 1023 1.44 64.8 nr 0.44 2.42 0.047Po 41.99 1750 3954 69.27 0.61 53.7 nr 0.024 0.036 0.036 0.81 0.21 0.013 13.48 0.204Po 41.06 1972 4536 89.94 0.61 58.7 0.026 0.026 0.41 0.37 0.028 16.24 0.136Po 40.64 1480 4379 0.31 0.36 54.8 0.024 0.011 0.017 0.016 0.18 0.18 0.06 0.020 0.15Po 43.59 1910 5044 0.90 0.64 57.9 nr 0.019 0.004 0.004 0.17 0.08 0.06 0.06 0.11 0.081 0.14nr = not reported due to interferences; blank spaces indicate value was below detection limitOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite* Corrected for Cd interference1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn255  244  244  244    Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusionElement S Co Ni Cu Zn As Se Ru Ru Ru Rh Pd Pd Pd Pd Ag Cd Sn Sb Te Re Os Ir Pt Au Pb BiIsotope 34 59 61 65 66 75 77 101 102 average1 103 105 106* 108* average2 109 111 118 121 125 185 189 193 195 197 208 209Unit wt. % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmDDH05-102-5 (clinopyroxenite)Po 40.09 1744 5065 0.34 1.10 59.2 nr 0.006 0.08 0.29 0.11 0.034 0.22 0.014Po 39.99 1622 4897 0.62 0.45 61.0 0.032 0.037 0.035 0.008 0.14 0.11 0.40 0.072 0.072 0.004 0.011 0.06 0.008Ccp 36.37 11.42 41.35 330783 469 61.8 nr 0.011 0.011 nr nr 0.433 0.308 0.371 2.14 25.46 0.04 0.46 3.11 0.003 4.43 0.060Ccp 40.27 10.90 45.70 331979 666 71.8 nr 0.062 0.062 nr nr 3.717 4.269 3.993 2.12 35.38 0.06 4.37 11.76 0.54 0.181Ccp 43.97 8.41 27.74 355594 353 67.0 nr nr nr 2.49 20.67 0.54 0.031 4.34DDH05-102-9 (Ol clinopyroxenite)Po 37.53 909 1319 4.48 0.21 0.44 86.9 nr 0.004 0.004 1.95 0.12 0.08 0.11 0.99 0.081 0.006 0.35 0.020Po 39.89 892 1280 6.35 0.23 95.5 0.007 0.007 0.002 0.015 0.015 3.78 0.23 0.07 0.23 1.63 0.007 0.009 0.009 0.66 0.026Po 38.59 907 1313 0.32 0.38 95.3 0.010 0.010 1.72 0.06 0.14 0.11 1.04 0.025 0.31Po 33.31 831 1228 0.52 0.20 0.48 94.6 nr nr 0.006 3.67 0.10 0.08 0.13 1.48 0.228 0.001 0.73 0.030Po 39.27 929 1294 0.18 0.39 0.45 92.3 nr 1.05 0.12 0.12 0.04 0.77 0.290 0.007 0.21 0.020Po 35.16 863 1239 0.12 0.33 90.16 nr nr 0.92 0.09 0.06 0.05 0.90 0.008 0.20 0.017Po 43.37 881 1283 0.39 0.48 98.80 0.008 0.008 0.004 2.42 0.20 0.59 0.20 1.47 0.695 0.002 0.53 0.041Po 37.78 908 1310 0.98 10.40 91.65 0.012 0.012 0.005 0.005 0.16 0.08 0.04 0.67 0.015 0.08Po 38.33 950 1309 0.69 1.48 95.53 0.84 0.04 0.07 0.06 1.13 2.940 0.004 0.54 0.008Po 38.61 946 1314 0.36 0.30 0.87 94.82 nr 0.005 0.51 0.23 0.04 1.05 0.011 0.11 0.046Ccp 37.73 11.32 12.84 334442 455 92.20 nr nr nr 13.69 22.13 1.93 9.01 0.017 0.009 0.16 0.015Ccp 38.22 9.33 13.73 324089 2887 92.82 nr nr nr 0.114 0.067 0.091 11.13 82.18 0.10 1.41 8.80 0.029 0.09 0.010DDH05-102-12 (clinopyroxenite)Po 35.75 1992 3061 7.90 83.54 0.049 0.049 5.30 0.21 0.29 0.056 5.60 0.038Po 36.07 1226 2850 663 0.53 87.23 0.018 0.018 0.009 0.009 6.63 0.07 0.07 0.08 0.033 8.66 0.039Po 33.41 1797 3873 1.12 0.83 93.29 0.63 0.15 0.04 0.024 0.008 2.00 0.028Po 35.37 1759 3995 1.61 22.46 93.58 nr 0.38 0.018 1.01 0.014Po 34.69 1837 3921 73.55 1.60 82.33 nr nr 0.20 0.04 0.05 0.051 0.027 0.84 0.010Ccp 30.75 10.60 29.81 323850 498 68.50 0.024 0.024 nr nr 10.23 7.00 0.08 1.81 0.029 0.48Ccp 32.00 11.08 15.48 335750 560 88.15 nr nr nr 0.011 0.237 0.124 9.21 4.91 0.15 2.06 0.089 0.017 1.50DDH06-161-1 (clinopyroxenite/hornblendite contact)Po 38.32 658 3297 0.64 13.68 43.51 0.011 0.011 0.86 0.07 0.06 0.019 0.015 3.99 0.005Po 38.67 673 3196 16.63 0.72 43.23 0.012 0.012 0.90 0.09 0.056 0.010 1.38Po 39.52 657 3274 0.76 0.48 41.41 0.025 0.029 0.027 0.003 0.026 0.026 0.48 0.061 0.071 0.014 0.011 2.40Po 41.47 526 3170 0.41 1.09 41.39 nr 0.42 0.051 0.007 1.55Po 40.71 520 3251 995 2.32 42.51 0.020 0.020 nr nr 0.054 0.054 3.42 0.021 9.14 0.036nr = not reported due to interferences; blank spaces indicate value was below detection limitOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite* Corrected for Cd interference1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn256  247  247  247    Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusionElement S Co Ni Cu Zn As Se Ru Ru Ru Rh Pd Pd Pd Pd Ag Cd Sn Sb Te Re Os Ir Pt Au Pb BiIsotope 34 59 61 65 66 75 77 101 102 average1 103 105 106* 108* average2 109 111 118 121 125 185 189 193 195 197 208 209Unit wt. % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmDDH06-161-1 (clinopyroxenite/hornblendite contact)Py 31.08 3541 1311 15.51 0.26 37.54 0.008 0.008 1.14 0.023 5.77 0.136Py 47.28 19034 230 542 2.33 54.92 nr nr 0.135 0.202 0.169 2.91 0.05 0.24 0.006 0.014 16.29 0.536Py 48.61 19838 48.06 130 0.86 64.01 nr 0.063 0.063 0.81 1.19 0.15 0.044 0.024 6.98 1.095Py 43.26 8166 687 2.77 0.60 44.67 0.222 0.222 1.71 0.10 4.95 1.60 0.045 0.063 0.039 9.23 1.630DDH07-207-11 (clinopyroxenite)Po 43.77 1087 4634 0.68 1.01 84.70 0.006 0.013 0.013 0.23 0.03 0.017 0.129 0.011 0.566 1.10Po 44.51 1069 4083 2.11 0.87 89.13 0.013 0.013 0.003 0.005 0.017 0.011 0.10 0.019 0.52Po 40.67 1214 3811 0.47 0.60 86.19 0.019 0.019 0.19 0.08 0.12 0.063 1.21 0.015Po 43.77 1170 4041 0.93 1.03 94.41 nr 0.018 0.018 0.19 0.04 0.003 0.75Po 37.72 983 4032 0.46 1.02 83.37 0.017 0.49 0.029 0.008 4.39 0.017Po 37.89 1050 4069 1.41 0.54 90.86 0.018 0.019 0.018 0.013 0.60 0.06 0.08 0.010 0.011 0.379 5.75 0.022Po 37.78 1020 4217 4.77 0.31 87.16 0.014 0.014 0.014 0.009 0.009 0.11 0.03 0.09 0.63 0.004Po 37.18 1001 4288 586 0.74 0.70 100.5 0.018 0.018 nr nr 0.26 0.06 0.07 0.068 0.014 0.013 2.99Ccp 44.64 29.69 137 321997 1139 90.08 nr nr nr 0.024 0.024 15.46 8.43 0.068 4.71 0.016Ccp 42.17 4.58 30.51 331668 642 89.21 nr nr 0.070 0.070 9.50 5.69 0.20 0.112 4.26 0.021Ccp 43.43 16.00 41.39 329500 614 98.61 nr nr nr 4.68 5.51 0.36 4.51 0.022Ccp 38.10 19.86 48.21 333972 530 79.87 nr nr nr 0.033 0.033 6.43 3.93 0.18 0.33 0.040 1.34 0.010Ccp 37.43 17.60 27.63 329814 545 84.17 nr nr nr 5.65 2.54 0.10 0.14 18.52 0.031Ccp 35.70 14.63 39.28 316732 407 82.18 nr 0.006 0.006 nr nr 4.32 2.22 0.09 0.18 0.012 12.86 0.031Pn 37.10 1107 4602 0.93 83.83 0.015 0.015 0.28 0.99 0.030 0.004 2.69 0.012DDH07-211-2-2 (clinopyroxenite)Po 43.59 1082 14645 334 3.54 73.10 nr nr nr nr 0.12 0.07 0.05 0.62 0.021 0.004 0.010 0.59 0.584Po 39.82 1132 13756 39.06 0.52 0.49 69.66 nr nr 0.022 0.026 0.026 0.06 0.11 0.07 0.17 0.011 0.006 0.27 0.012Po 42.35 931 14132 0.64 11.95 75.79 nr nr 0.010 0.014 0.014 0.03 0.07 0.10 0.008 0.011 0.39 0.008Po 41.21 837 13388 1.43 79.60 nr nr 0.639 0.726 0.613 0.659 0.18 0.44 0.41 0.021 1.14 0.145Ccp 38.55 6.55 26.39 333549 559 74.50 nr 0.002 0.002 nr nr 10.99 6.62 0.11 0.25 1.37 0.020Ccp 39.10 3.60 67.02 333849 937 71.96 nr 0.050 0.050 nr nr 1.609 1.313 1.461 7.02 8.85 0.19 1.93 4.38 2.43 0.277Ccp 40.14 7.72 66.09 332957 745 0.48 79.73 nr 0.006 0.006 nr nr 0.029 0.029 7.43 7.71 0.10 1.58 0.003 0.002 0.007 1.36 0.033Ccp 39.02 1.59 33.90 345209 505 0.58 71.26 nr nr nr 7.85 6.91 0.11 0.06 0.36 2.70 0.027Ccp 39.09 1.42 51.63 357208 645 78.02 nr nr nr 6.98 5.93 0.15 0.07 0.75 0.001 0.79 0.025Pn 40.15 43680 397943 3.61 0.56 68.99 nr nr 0.022 1.027 1.093 1.164 1.095 0.31 0.10 0.14 0.011 0.057 0.013 0.013 10.08 0.145Pn 44.77 28845 304699 1.64 65.98 nr nr 0.270 0.444 0.296 0.337 6.09 0.33 0.089 15.23 1.050Pn 39.91 17847 350880 920 1823 74.26 nr nr nr nr 1.153 1.264 1.209 9.16 22.98 0.20 0.109 6.97 0.319Pn 39.87 26209 353028 1.21 60.56 nr nr 0.086 3.480 2.961 3.152 3.198 0.13 0.050 4.90 0.585nr = not reported due to interferences; blank spaces indicate value was below detection limitOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite* Corrected for Cd interference1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn257  245  245  245    Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusionElement S Co Ni Cu Zn As Se Ru Ru Ru Rh Pd Pd Pd Pd Ag Cd Sn Sb Te Re Os Ir Pt Au Pb BiIsotope 34 59 61 65 66 75 77 101 102 average1 103 105 106* 108* average2 109 111 118 121 125 185 189 193 195 197 208 209Unit wt. % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmDDH07-211-102 (clinopyroxenite)Po 42.40 2732 5272 8.61 58.73 0.097 0.097 0.39 0.16 0.022 0.57Po 37.79 2964 5130 0.34 1.04 57.66 0.009 0.009 0.020 0.020 0.12 0.06 0.002 0.53Po 39.46 2291 7048 0.76 53.93 0.012 0.012 0.003 0.003 0.11 0.844 0.40 0.019Po 38.99 1779 4938 0.87 0.70 50.23 0.009 0.009 0.28 0.12 0.015 2.22 0.074Ccp 35.85 11.59 35.24 324175 703 53.61 nr nr nr 0.213 0.178 0.196 12.63 13.96 0.14 0.18 4.96 1.48 0.041Ccp 37.44 13.90 53.23 324003 756 49.52 nr nr nr 0.137 0.137 7.19 15.25 0.12 3.78 0.010 0.011 0.95 0.325Ccp 31.70 6.49 31.90 318207 443 51.14 nr nr nr 0.226 0.159 0.193 13.82 9.22 0.07 2.99 1.39 0.017Ccp 38.15 5.60 22.20 329270 690 53.13 nr nr nr 18.35 13.49 0.07 3.45 1.30 0.012Ccp 34.54 3.12 7.94 338198 528 2.39 49.11 nr nr 8.34 10.50 0.28 1.71 0.009 1.54 0.024Ccp 37.33 2.44 16.92 316277 509 0.42 49.62 nr nr nr 0.077 0.077 2.76 9.21 0.09 0.25 0.98 0.023 0.008 0.006 2.47 0.016Py 75.16 19410 1344 41.11 96.10 nr 0.120 0.120 4.81 10.01 5.41 0.091 35.82 4.920Py 78.31 45801 63.41 149 2.96 115.4 0.129 0.136 0.133 3.42 0.04 0.26 3.51 0.79 0.018 0.351 31.64 6.380Py 64.93 38971 26.83 202 3.20 113.2 nr 0.060 0.060 2.12 0.04 0.11 7.16 0.198 18.89 5.030DDH07-211-108 (Hbl clinopyroxenite)Po 38.36 8.72 12787 48.95 5.96 6.13 101.7 nr 0.591 3.880 3.060 2.749 3.230 1.49 0.03 0.40 2.18 9.86 0.010 0.094 0.064 1.85 0.217Po 39.99 0.14 12176 2.25 76.89 0.007 1.36 0.60 0.032 2.53 0.026Po 40.88 0.91 12305 6.62 0.69 73.90 nr nr 0.010 0.010 1.44 0.07 0.39 0.003 2.25Po 39.78 12693 160 1.61 104.8 nr nr nr nr 2.59 1.63 1.15 0.027 0.032 3.24 0.192Po 40.33 1.81 8275 0.75 3.54 111.4 nr 1.470 1.286 1.069 1.275 0.58 0.06 0.22 0.79 6.37 0.010 0.002 1.39 0.117Ccp 37.34 0.09 116 325690 224 0.47 54.21 nr nr nr 30.47 6.12 0.23 7.43 0.491 44.52 0.012Ccp 35.97 0.06 40.17 328532 403 67.41 nr nr nr 7.14 5.40 0.06 0.26 0.045 3.96 0.010Ccp 37.92 0.01 12.95 322990 360 31.04 nr 0.007 0.007 nr nr 11.94 4.92 0.04 0.24 0.003 0.034 6.10 0.007Ccp 35.22 31.14 319566 311 84.40 nr nr nr 9.14 4.73 0.04 0.21 0.16 0.117 8.40 0.012Ccp 37.06 20.69 342438 2593 83.27 nr nr nr 17.45 23.40 0.11 1.88 0.34 0.011 17.84 0.127Ccp 39.06 0.03 265 343213 593 106.2 nr 0.053 0.053 nr nr 1.441 1.527 1.484 148.6 8.12 0.45 1.10 5.92 0.005 0.009 4.76 0.184Py 50.18 17317 223 49.28 418 0.87 144.8 nr 0.007 1.850 1.404 4.592 2.615 0.13 0.09 0.31 1.31 4.10 0.003 0.044 0.87 0.286Py 49.68 22960 56.55 0.72 1.16 19.27 141.4 nr 0.002 0.005 0.005 0.02 0.06 0.42 0.022 0.011 0.009 0.25 0.056Py 46.78 19129 357 3.08 5.00 2.12 138.4 nr 0.006 0.329 0.414 0.978 0.574 0.20 0.03 0.04 2.52 3.01 0.017 1.44 0.264nr = not reported due to interferences; blank spaces indicate value was below detection limitOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite* Corrected for Cd interference1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn258  246  246  246     Appendix G: Laser ablation ICP-MS results of chalcophile and platinum group element concentrations from select sulphide minerals in the DJ/DB zone of the Turnagain intrusionElement S Co Ni Cu Zn As Se Ru Ru Ru Rh Pd Pd Pd Pd Ag Cd Sn Sb Te Re Os Ir Pt Au Pb BiIsotope 34 59 61 65 66 75 77 101 102 average1 103 105 106* 108* average2 109 111 118 121 125 185 189 193 195 197 208 209Unit wt. % ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmDDH07-211-108 (Hbl clinopyroxenite)Py 39.97 9226 1312 2371 20.97 2678 95.05 nr nr nr 0.701 0.751 0.726 1.47 0.15 6.16 14.40 0.190 0.028 5.88 0.280Py 59.46 22649 57.00 4028 5.40 294 104.8 nr nr nr nr 0.095 0.095 0.28 0.12 0.004 0.021 0.016 1.60 0.076Py 47.49 5688 2476 337 1.51 152.7 nr nr nr 1.673 2.200 1.937 0.22 0.03 0.07 2.17 10.29 0.009 0.003 0.011 0.17 0.307Py 52.51 5476 627 16.50 5.81 137 100.5 0.005 0.005 0.002 0.017 0.049 0.033 0.08 0.02 0.09 0.21 11.98 0.004 0.010 0.55 0.438Py 49.08 13719 311 1.03 0.94 159.7 0.014 0.014 0.002 0.459 0.445 0.420 0.441 0.01 1.34 11.33 0.004 0.006 0.008 0.55 0.515Pn 30.06 178 378523 31.45 11.65 1.59 79.27 nr nr 82.160 78.840 77.903 79.634 0.55 0.08 1.10 0.42 0.025 1.95 0.008DDH07-211-111 (Ol clinopyroxenite)Po 42.35 1341 15257 0.78 0.63 91.01 nr nr 0.018 0.015 0.001 0.008 0.14 0.05 0.030 0.016 0.004 0.009 0.44 0.027Po 42.74 1680 17966 0.21 1.76 97.06 nr nr 0.019 0.06 0.06 0.22 0.025 0.39 0.006Po 44.02 1416 16002 0.39 1.26 89.38 nr nr 0.023 0.07 0.033 0.025 0.004 0.46 0.012Po 40.54 1492 16213 0.79 0.94 88.06 nr nr 0.020 0.013 0.013 0.14 0.054 0.63 0.023Po 41.13 1330 14986 11.14 0.96 92.46 nr nr 0.011 0.017 0.017 0.23 0.08 0.029 0.028 0.50 0.031Ccp 44.14 4.67 39.33 345924 1200 91.25 nr nr nr 12.21 4.20 0.14 0.09 0.52 0.070 0.028 4.07 0.036Ccp 44.95 1.64 13.09 339124 474 89.81 nr nr nr 10.60 2.65 0.70 4.30 0.073Ccp 51.27 1.33 17.77 357934 484 105.9 nr nr 10.45 3.35 0.21 0.30 0.66 0.033 0.111 10.44 0.100Ccp 42.01 2.72 10.77 338361 541 84.78 nr nr nr 11.84 2.82 1.34 5.39 0.115Ccp 47.78 3.78 17.75 333297 664 132.5 nr nr nr 4.27 3.63 0.25 0.29 2.51 1.46 0.117Pn 39.02 45803 367234 1.45 80.59 nr nr 5.710 5.874 6.276 5.953 0.82 0.059 4.96 0.053nr = not reported due to interferences; blank spaces indicate value was below detection limitOl = olivine, Hbl = hornblende, Cal = calcite; Po = pyrrhotite, Ccp = chalcopyrite, Py = pyrite, Pn = pentlandite* Corrected for Cd interference1 102Ru used for Ccp, average of 101Ru and 102Ru for Po-Py-Pn2 Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd for Po-Py-Pn259  248  248  248 260      Appendix H: Calculation procedure of chalcophile and platinum group element proportions within select sulphides from laser ablation ICP-MS analyses   261  The following procedure is based on the methods outlined in Dare et al. (2011, Online Resource C). First, the weight fraction (F) of each sulphide mineral is calculated using the whole rock (wr) contents of sulphur, copper, and nickel (see Table 2.10) in weight percent and the average EMPA compositions of chalcopyrite, pentlandite, and pyrrhotite (Table H1). Initially, all copper is assigned to chalcopyrite and all nickel is assigned to pentlandite; the effect of Ni in olivine is assumed to be negligible due to the absence of olivine in most of the analyzed samples). The remaining sulphur is assigned to pyrrhotite (pyrite content was negligible in the analyzed samples). Pentlandite fractions are then corrected to account for the nickel content of pentlandite. Weight fractions for sudburyite and sperrylite are determined by first calculating the modal fraction (f) of each PGM: the total volume of each PGM in the analyzed samples (measured using SEM, Table H2) is divided by the total volume of the samples (4 thin sections each with an area of 2x3 cm equals a total area of 6300000000 µm2). Area is used as a proxy for volume as there is no available information on the 3-dimensional size and distribution of PGM in the samples. The modal fraction is then converted to weight fraction using the following equation: 𝑓𝑃𝐺𝑀 × 𝐷𝑃𝐺𝑀/𝐷𝑤𝑟 where DPGM is the density of the specified PGM, and Dwr is the density of the whole rock (assumed to be 3.3 g/cm3 for samples in this study). Once the weight fractions are determined, the proportions of chalcophile and precious metals in each sulphide are calculated using the formula: 100 × 𝐹𝑥 × 𝐶𝑥/𝐶𝑤𝑟 where Cx is the average concentration of each element in the mineral of interest from laser ablation-ICP-MS analysis and Cwr is the concentration of each element of interest in the whole rock. For the PGM, the concentration of each element in the phase is equal to the average weight percent of each element from EMPA analyses (Table H3) converted to ppm. The results for each sulphide mineral present in samples where whole rock data was available are presented in Table H4, along with the calculated weight fractions. Only elements with whole rock concentrations greater than detection limit in at least three out of the four samples are reported.  Table H1. Average EMPA concentrations (wt.%) of chalcophile elements for major base metal sulphides in the DJ/DB zone of the Turnagain intrusion Mineral S  Fe Co Ni Cu Chalcopyrite 34.4 30.6 0.02 0.05 34.1 Pentlandite 32.8 27.2 3.94 34.5 0.10 Pyrrhotite 39.3 60.2 0.10 0.28 0.01      262  Table H2: Average LA-ICP-MS chalcophile and platinum group element concentrations of sulphides from select samples from the DJ/DB zone of the Turnagain intrusion  Pt Pd Co Sb Se Te Zn Mineral 195 average* 59 121 77 125 66 DDH05-88-105        Po  0.028 657 0.072 60.0 0.378 0.998 DDH05-102-5        Po 0.013 0.018 1708 0.057 58.5 0.195 0.805 Ccp  2.182 10.2 2.41 66.9 5.14 496 DDH05-102-12        Po 0.033 0.009 1722 0.134 88.0  139 Ccp 0.029 0.124 10.8 0.154 78.3 1.94 529 DDH07-207-11        Po 0.009 0.013 1074 0.084 89.5 0.075 0.765 Ccp 0.040 0.042 17.1  87.4 0.252 646 Pn     1107   83.8   0.930 * Average of 106Pd and 108Pd used for Ccp, average of 105Pd, 106Pd, and 108Pd used for Po-Py-Pn    Table H3. Average EMPA concentrations (wt.%) of chalcophile and platinum group elements for platinum group minerals in the DJ/DB zone of the Turnagain intrusion Mineral Pt Pd Co Sb Se Te Zn Sperrylite 47.7 0.99 2.90 2.24 0.21 0.32 0.03 Sudburyite  36.0 0.01 42.8  0.51 0.02   Table H4: Weight fraction and proportion of whole rock concentration of each element in sulphides and platinum group elements in select samples from the DJ/DB zone of the Turnagain intrusion Sample/Mineral Wt. fraction Pt Pd Co Sb Se Te Zn DDH05-88-105         Po 0.07  51.8 63.6 1.73 72.6 91.3 0.08 DDH05-102-5         Po 0.04 0.09 0.11 74.1 0.53 53.9 7.98 0.06 Cpy 0.002  0.52 0.02 0.91 2.52 8.59 1.42 Spy 3.0E-07 25.9 0.47 0.01 1.68 0.02 1.07 0.0002 Sud 4.2E-07  24.3 0.0001 45.3  2.42 0.0002 DDH05-102-12         Po 0.17 1.57 1.16 92.8 7.46 73.7  59.9 Cpy 0.005 0.04 0.46 0.02 0.24 1.83 8.23 6.37 DDH07-207-11         Po 0.08 0.34 0.15 75.8  67.2  0.12 Cpy 0.002 0.03 0.01 0.03  1.46  2.32 Pn 0.0004   0.99  0.80  0.002 Spy 3.00E-07 64.8 0.43 0.01  0.01  0.0002 Sud 4.24E-07   21.8 0.0001       0.0002   263      Appendix I: Calculations for base metals and platinum group elements in 100% sulphide   264  265  266  267    268      Appendix J: Percent relative standard deviation (%RSD) of analytical duplicates for whole rock geochemical analyses   Appendix J contains two tables: Appendix I1:  Duplicate analyses of whole rock major element oxide and trace element concentrations for samples from the DJ/DB zone of the Turnagain intrusion from Activation Laboratories, Inc. Appendix I2: Duplicate analyses of whole rock chalcophile and platinum group element concentrations for samples from the DJ/DB zone of the Turnagain intrusion from Geoscience Laboratories, Sudbury, Ont.       Sample DDH07-201-1DDH07-201-201DDH07-207-11DDH07-207-211DDH07-207-13DDH07-207-213Rock type phyllite phyllite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteReport A13-10152 A13-12767 A13-10152 A13-12767 A13-10152 A13-12767Date analyzed 9/12/2013 11/13/2013 9/12/2013 11/13/2013 9/12/2013 11/13/2013Major elements      (wt. %)Analysis method*Detection limitMean σ% RSDMean σ% RSDMean σ% RSDSiO2 FUS-ICP 0.01 53.4 53.56 53.48 0.11 0.21 46.97 46.12 46.55 0.60 1.29 47.05 46.41 46.73 0.45 0.97TiO2 FUS-ICP 0.001 0.721 0.722 0.722 0.00 0.10 0.252 0.248 0.250 0.00 1.13 0.645 0.626 0.636 0.01 2.11Al2O3 FUS-ICP 0.01 14.53 15.22 14.88 0.49 3.28 2.86 2.89 2.88 0.02 0.74 5.56 5.65 5.61 0.06 1.14Fe2O3 FUS-ICP 0.01 1.26 1.37 1.32 0.08 5.91 6.08 4.77 5.43 0.93 17.1 3.24 3.44 3.34 0.14 4.23FeO FUS-ICP 0.001 0.16 0.162 0.161 0.00 0.88 0.126 0.124 0.125 0.00 1.13 0.21 0.21 0.210 0.00 0.00MnO TITR 0.1 5 5 5.0 0.00 0.00 6 7.1 6.6 0.78 11.9 6.2 6 6.1 0.14 2.32MgO FUS-ICP 0.01 3.26 3.22 3.24 0.03 0.87 19.66 19.4 19.53 0.18 0.94 13.84 13.74 13.79 0.07 0.51CaO FUS-ICP 0.01 5.66 5.81 5.74 0.11 1.85 13.71 13.58 13.65 0.09 0.67 20.69 20.99 20.84 0.21 1.02Na2O FUS-ICP 0.01 1.37 1.41 1.39 0.03 2.03 0.18 0.18 0.18 0.00 0.00 0.27 0.27 0.27 0.00 0.00K2O FUS-ICP 0.01 3.24 3.28 3.26 0.03 0.87 0.07 0.07 0.07 0.00 0.00 0.08 0.08 0.08 0.00 0.00P2O5 FUS-ICP 0.01 0.17 0.17 0.17 0.00 0.00 bdl bdl 0.17 0.17 0.17 0.00 0.00LOI† FUS-ICP 0.01 9.66 9.78 9.72 0.08 0.87 4.18 4.42 4.30 0.17 3.95 2.17 2.46 2.32 0.21 8.86LOI2† FUS-ICP 0.01 9.1 9.22 9.16 0.08 0.93 3.51 3.62 3.57 0.08 2.18 1.48 1.78 1.63 0.21 13.0Total† FUS-ICP 0.01 98.99 100.3 100.8 99.7 100.8 100.7Total 2† FUS-ICP 0.01 98.43 99.72 100.1 98.9 100.1 100.1Fe2O3(T) FUS-ICP 0.01 6.82 6.93 6.88 0.08 1.13 12.75 12.66 12.71 0.06 0.50 10.13 10.12 10.13 0.01 0.07Volatiles (%, except where indicated)B (ppm) PGNAA 1 31 28 30 2.12 7.19 bdl 1 1 bdl 3 3C IR 0.01 2.61 2.52 2.57 0.06 2.48 bdl 0.01 0.01 0.1 0.12 0.11 0.01 12.9S IR 0.01 1.05 0.94 1.00 0.08 7.82 3.64 3.36 3.50 0.20 5.66 0.48 0.41 0.45 0.05 11.1Cl INAA 0.01 0.02 bdl 0.02 0.02 0.01 0.02 0.01 47.1 bdl 0.02 0.02F FUS-ISE 0.01 0.03 0.04 0.04 0.01 20.2 0.01 0.03 0.02 0.01 70.7 bdl bdlChalcophile elements (ppm, except where indicated)Co FUS-MS 1 21 21 21 0.00 0.00 112 114 113 1.41 1.25 41 40 41 0.71 1.75Ni FUS-MS 20 130 80 105 35.36 33.7 470 370 420 70.71 16.8 120 80 100 28.28 28.3Cu FUS-MS 10 180 140 160 28.28 17.7 790 620 705 120.21 17.1 1100 840 970 183.85 19.0Au (ppb) FA-MS 1 2 3 2.5 0.71 28.3 4 4 4 0.00 0.00 bdl 1 1Pt (ppb) FA-MS 0.5 3.7 3.9 3.8 0.14 3.72 233 248 240.5 10.61 4.41 77.5 80.4 79.0 2.05 2.60Pd (ppb) FA-MS 0.5 4.8 4.8 4.8 0.00 0.00 699 667 683.0 22.63 3.31 61.8 58.1 60.0 2.62 4.36bdl = below lower detection limit%RSD = σ/mean*100†Duplicate analyses are multiple digestions of a single crushed and powdered sample; the second sample number is fictive and used only for blind duplicate purposes.†LOI = loss-on-ignition; LOI2 = loss-on-ignition adjusted to difference in oxygen between FeO and Fe2O3, Total = sum of major elements and LOI, Total 2 = sum of major elements and LOI2*FUS-ICP = emission spectroscopy;  TITR = titration; PGNAA = gamma ray emission; IR = irradiation; INAA = Neutron Activation Analysis; FUS-ISE = ion-selective electrode; TD-MS = total digestion;  FA-MS = fire assay; NP-MS = nitric peroxide, FUS-MS = ICP-MS; analyses done at Activation Laboratories, Inc. (Ancaster, ON)Appendix J1.  Duplicate analyses of whole rock major element oxide and trace element concentrations for samples from the DJ/DB zone of the Turnagain intrusion from Activation Laboratories, Inc.†269  258  258  258      Sample DDH07-201-1DDH07-201-201DDH07-207-11DDH07-207-211DDH07-207-13DDH07-207-213Rock type phyllite phyllite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteReport A13-10152 A13-12767 A13-10152 A13-12767 A13-10152 A13-12767Date analyzed 9/12/2013 11/13/2013 9/12/2013 11/13/2013 9/12/2013 11/13/2013Semimetals (ppm)Analysis method*Detection limitMean σ% RSDMean σ% RSDMean σ% RSDAs NP-MS 1 bdl 0.5 0.5 bdl 1.3 1.3 bdl 0.2 0.2Bi NP-MS 0.05 0.18 0.18 0.18 0.00 0.00 bdl 0.04 0.04 bdl bdlSb NP-MS 0.02 bdl 0.42 0.42 bdl 0.23 0.23 bdl 0.18 0.18Se NP-MS 1 6 5.3 5.7 0.49 8.76 11 9.3 10.2 1.20 11.8 1 0.9 1.0 0.07 7.44Te NP-MS 0.01 0.09 bdl 0.09 bdl bdl bdl bdlTrace elements (ppm)Be FUS-ICP 1 3 3 3 0.00 0.00 bdl bdl bdl bdlV FUS-ICP 5 275 281 278 4.24 1.53 186 181 184 3.54 1.93 372 375 374 2.12 0.57Cr FUS-MS 20 90 90 90 0.00 0.00 520 500 510 14.14 2.77 530 510 520 14.14 2.72Ga FUS-MS 1 21 23 22 1.41 6.43 4 4 4 0.00 0.00 8 9 8.5 0.71 8.32Ge FUS-MS 0.5 0.8 1 0.9 0.14 15.7 2 2.2 2.1 0.14 6.73 2.2 2.2 2.2 0.00 0.00Rb FUS-MS 1 118 121 120 2.12 1.78 bdl bdl 1 1 1 0.00 0.00Sr FUS-ICP 2 374 379 377 3.54 0.94 53 53 53 0.00 0.00 288 292 290 2.83 0.98Y FUS-MS 0.5 27.6 28.6 28.1 0.71 2.52 3.3 3.4 3.4 0.07 2.11 10.8 11 10.9 0.14 1.30Zr FUS-ICP 1 144 144 144 0.00 0.00 4 6 5 1.41 28.3 10 12 11 1.41 12.9Nb FUS-MS 0.2 10.7 8.8 9.8 1.34 13.8 bdl bdl bdl bdlMo FUS-MS 2 15 17 16 1.41 8.84 bdl bdl bdl bdlAg FUS-MS 0.5 1 1.4 1.2 0.28 23.6 bdl bdl bdl 0.6 0.6In FUS-MS 0.1 bdl bdl bdl bdl bdl bdlSn FUS-MS 1 2 2 2 0.00 0.00 bdl bdl bdl bdlCs FUS-MS 0.1 5 5.3 5.2 0.21 4.12 bdl bdl 0.4 0.4 0.4 0.00 0.00Ba FUS-ICP 3 1725 1684 1705 29.0 1.70 14 13 14 0.71 5.24 111 109 110 1.41 1.29Bi FUS-MS 0.1 bdl bdl bdl bdl bdl bdlLa FUS-MS 0.05 33.4 34.1 33.75 0.49 1.47 0.42 0.44 0.43 0.01 3.29 1.25 1.12 1.19 0.09 7.76bdl = below lower detection limit%RSD = σ/mean*100†Duplicate analyses are multiple digestions of a single crushed and powdered sample; the second sample number is fictive and used only for blind duplicate purposes.Duplicate semimetal analyses were obtained via aqua regia digestion (AR-MS) with the following detection limits (in ppm):  As = 0.1, Bi = 0.02, Sb = 0.02, Se = 0.1, Te = 0.02*FUS-ICP = emission spectroscopy;  TITR = titration; PGNAA = gamma ray emission; IR = irradiation; INAA = Neutron Activation Analysis; FUS-ISE = ion-selective electrode; TD-MS = total digestion;  FA-MS = fire assay; NP-MS = nitric peroxide, FUS-MS = ICP-MS; analyses done at Activation Laboratories, Inc. (Ancaster, ON)Appendix J1.  Duplicate analyses of whole rock major element oxide and trace element concentrations for samples from the DJ/DB zone of the Turnagain intrusion from Activation Laboratories, Inc.†270  259  259  259      Sample DDH07-201-1DDH07-201-201DDH07-207-11DDH07-207-211DDH07-207-13DDH07-207-213Rock type phyllite phyllite clinopyroxenite clinopyroxenite clinopyroxenite clinopyroxeniteReport A13-10152 A13-12767 A13-10152 A13-12767 A13-10152 A13-12767Date analyzed 9/12/2013 11/13/2013 9/12/2013 11/13/2013 9/12/2013 11/13/2013Trace elements (ppm)Analysis method*Detection limitMean σ% RSDMean σ% RSDMean σ% RSDCe FUS-MS 0.05 64.4 63.5 63.95 0.64 1.00 1.21 1.14 1.18 0.05 4.21 3.86 3.79 3.83 0.05 1.29Pr FUS-MS 0.01 7.83 7.83 7.83 0.00 0.00 0.22 0.21 0.22 0.01 3.29 0.76 0.75 0.76 0.01 0.94Nd FUS-MS 0.05 30 29.7 29.85 0.21 0.71 1.31 1.36 1.34 0.04 2.65 4.65 4.71 4.68 0.04 0.91Sm FUS-MS 0.01 6.15 6.15 6.15 0.00 0.00 0.51 0.58 0.55 0.05 9.08 1.62 1.72 1.67 0.07 4.23Eu FUS-MS 0.005 1.69 1.71 1.70 0.01 0.83 0.163 0.164 0.164 0.00 0.43 0.598 0.617 0.608 0.01 2.21Gd FUS-MS 0.01 5.39 5.57 5.48 0.13 2.32 0.62 0.68 0.65 0.04 6.53 2.12 2.41 2.27 0.21 9.05Tb FUS-MS 0.01 0.85 0.81 0.83 0.03 3.41 0.11 0.12 0.12 0.01 6.15 0.37 0.41 0.39 0.03 7.25Dy FUS-MS 0.01 4.66 4.64 4.65 0.01 0.30 0.66 0.74 0.70 0.06 8.08 2.21 2.44 2.33 0.16 7.00Ho FUS-MS 0.01 0.94 0.96 0.95 0.01 1.49 0.13 0.14 0.14 0.01 5.24 0.44 0.44 0.44 0.00 0.00Er FUS-MS 0.01 2.7 2.76 2.73 0.04 1.55 0.35 0.37 0.36 0.01 3.93 1.12 1.19 1.16 0.05 4.29Tm FUS-MS 0.005 0.405 0.398 0.402 0.00 1.23 0.048 0.05 0.049 0.00 2.89 0.154 0.167 0.161 0.01 5.73Yb FUS-MS 0.01 2.77 2.7 2.74 0.05 1.81 0.31 0.32 0.32 0.01 2.24 0.94 1 0.97 0.04 4.37Lu FUS-MS 0.002 0.41 0.449 0.430 0.03 6.42 0.041 0.054 0.048 0.01 19.4 0.117 0.138 0.128 0.01 11.6Hf FUS-MS 0.1 3.4 3.5 3.5 0.07 2.05 0.2 bdl 0.2 0.5 0.4 0.5 0.07 15.7Ta FUS-MS 0.01 0.79 0.85 0.82 0.04 5.17 bdl bdl bdl bdlW FUS-MS 0.5 2.1 7.9 5.0 4.10 82.0 bdl bdl bdl 2 2.0Tl FUS-MS 0.05 0.68 0.85 0.77 0.12 15.7 bdl bdl bdl bdlTh FUS-MS 0.05 9.45 9.78 9.62 0.23 2.43 0.06 bdl 0.06 0.13 bdl 0.13U FUS-MS 0.01 4.29 4.25 4.27 0.03 0.66 0.01 0.01 0.01 0.00 0.00 0.04 0.05 0.05 0.01 15.7Cd TD-MS 0.2 2.1 2.1 2.1 0.00 0.00 bdl bdl 0.3 bdl 0.3Li TD-MS 1 86 64 75 15.56 20.7 8 bdl 8 49 30 40 13.44 34.0Mn TD-MS 2 1200 1560 1380 254.56 18.4 1030 1210 1120 127.28 11.4 1730 1640 1685 63.64 3.78Pb TD-MS 2 13 11 12 1.41 11.8 2 bdl 2 bdl bdlZn TD-MS 0.5 247 267 257 14.14 5.50 51.2 41.2 46.2 7.07 15.3 83.2 64.2 73.7 13.44 18.2bdl = below lower detection limit%RSD = σ/mean*100†Duplicate analyses are multiple digestions of a single crushed and powdered sample; the second sample number is fictive and used only for blind duplicate purposes.*FUS-ICP = emission spectroscopy;  TITR = titration; PGNAA = gamma ray emission; IR = irradiation; INAA = Neutron Activation Analysis; FUS-ISE = ion-selective electrode; TD-MS = total digestion;  FA-MS = fire assay; NP-MS = nitric peroxide, FUS-MS = ICP-MS; analyses done at Activation Laboratories, Inc. (Ancaster, ON)Appendix J1.  Duplicate analyses of whole rock major element oxide and trace element concentrations for samples from the DJ/DB zone of the Turnagain intrusion from Activation Laboratories, Inc.†271  260  260  260     Sample DDH05-102-5DDH05-102-205DDH07-207-3DDH07-207-203DDH07-207-14DDH07-207-214Rock type clinopyroxenite clinopyroxeniteOl (Srp-Mag) clinopyroxeniteOl (Srp-Mag) clinopyroxenitehornfelsed phyllitehornfelsed phylliteBase metals (ppm)1Detection limitMean σ% RSDMean σ% RSDMean σ % RSDCu 3 514 569 542 38.9 7.18 2020 2054 2037 24.0 1.18 157 164 161 4.95 3.08Ni 6 198 198 198 0.00 0.00 293 300 297 4.95 1.67 52 57 55 3.54 6.49Co 30 85 85 85 0.00 0.00 175 185 180 7.07 3.93 bdl 33 33Pb 12 bdl bdl bdl bdl bdl bdlZn 6 38 43 41 3.54 8.73 36 37 37 0.71 1.94 110 113 112 2.12 1.90Platinum group elements (ppb)2Ir 0.01 2.68 2.68 2.68 0.00 0.00 0.09 0.09 0.09 0.00 0.00 0.04 0.04 0.04 0.00 0.00Ru 0.08 0.37 0.36 0.37 0.01 1.94 bdl bdl bdl bdlRh 0.02 13.8 13.4 13.60 0.28 2.08 0.26 0.39 0.33 0.09 28.3 0.11 0.16 0.14 0.04 26.2Pt 0.17 553 552 552.50 0.71 0.13 21.8 21.5 21.65 0.21 0.98 1.79 1.63 1.71 0.11 6.62Pd 0.12 629 607 618.00 15.6 2.52 42.9 44.5 43.70 1.13 2.59 3.86 3.68 3.77 0.13 3.38Au 0.22 0.61 0.65 0.63 0.03 4.49 2.14 2.04 2.09 0.07 3.38 bdl bdlMajor elements (wt. %)3CO2 0.023 0.11 0.12 0.115 0.01 6.15 0.34 0.36 0.350 0.01 4.04 6.15 6.06 6.105 0.06 1.04S 0.003 1.52 1.54 1.530 0.01 0.92 2.75 2.83 2.790 0.06 2.03 3.2 3.27 3.235 0.05 1.53bdl = below detection limit, Ol = olivine, Srp = serpentine, Mag = magnetite†Duplicate analyses are multiple digestions of a single crushed and powdered sample; the second sample number is fictive and used only for blind duplicate purposes.1AAF-100=Atomic absorption spectroscopy flame analysis, Report 13-0429, Date 08/21/20142IMP-200=Nickel sulphide fire assay with ICP-MS analysis, Report 13-0272, Date 11/27/20133IRC-100=Irradiation, Report 13-0429, Date 02/21/2014Appendix J2. Duplicate analyses of whole rock chalcophile and platinum group element concentrationsfor samples from the DJ/DB zone of the Turnagain intrusion from Geoscience Laboratories, Sudbury, Ont.†272  261  261  261 

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0355222/manifest

Comment

Related Items