UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Elucidating the mechanism of reading frame selection by a viral internal ribosome entry site Au, Hilda Hiu Tung

Abstract

The Dicistroviridae intergenic region internal ribosome entry site (IGR IRES) exhibits the remarkable ability to bind the conserved core of the ribosome with high affinity. By mimicking the conformation of a tRNA, the IGR IRES can bypass the requirement for canonical initiation factors and Met-tRNAi, and initiate translation from a non-AUG start codon in the ribosomal A site. The pseudoknot (PKI) domain of the IRES engages the decoding center upon initial ribosome binding, and subsequently translocates into the P site to allow delivery of the incoming aminoacyl-tRNA. Within the P site, the IRES adopts a conformation that is reminiscent of a P/E hybrid state tRNA to effectively co-opt the canonical elongation cycle. How the IGR IRES establishes the translational reading frame in the absence of initiation factors remains an outstanding question. Here, we elucidate the mechanism of reading frame selection by performing mutagenesis and biochemical assays to explore the function of specific IRES structural elements. We demonstrate that constituents of the Cricket paralysis virus PKI domain, including the helical stem, anticodon:codon-like base-pairing, and the variable loop region are optimized for IRES-mediated translation. Additionally, we reveal through extensive structural and biochemical studies that stem-loop III of the Israeli acute paralysis virus (IAPV) IRES mimics the acceptor stem of tRNA and functions in supporting efficient 0 frame translation. Finally, we established an infectious chimeric clone to investigate how translational regulation by the IAPV IRES affects the viral life cycle. Studies using this chimera demonstrate that formation of stem-loop VI upstream of the IAPV IRES contributes to optimal IRES activity and viral yield. Our findings suggest that extensive and complete tRNA-mimicry by the IAPV IGR IRES facilitates IRES-mediated translation and reading frame selection.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International