UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Androgens and neuroplasticity : contributions to the pathogenesis and treatment of depression Wainwright, Steven R.

Abstract

Depression is a devastating neuropsychiatric disease that has profound effects on neural structure and function, however the pathogenesis and modes of effective treatment remain poorly understood. Stress is the primary preceding factor in depression, leading to profound deficits in neurophysiology, particularly in the hippocampus. Depressed patients show reduced hippocampal neuroplasticity, while antidepressant treatment enhances both neurogenesis and the expression of proteins that mediate plasticity such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). Interestingly, men are half as likely as women to develop depression, where androgens appear to confer resiliency in males, as hypogonadal men are more likely to develop depression and supplementation of testosterone shows antidepressant efficacy. Little is known about the neurological underpinnings of this profound sex difference, however androgens influence the stress response and enhance hippocampal neurogenesis. The experiments in this thesis aimed to examine the role of androgens in the pathogenesis and treatment of depression using an animal model, with a specific eye toward the impact on hippocampal neurogenesis and neuroplasticity, and whether neuroplasticity mediated through PSA-NCAM is essential to antidepressant efficacy. In Chapter 2, surgically-induced hypogonadism potentiates the expression of depressive-like endophenotypes in male rodents within a chronic unpredictable stress (CUS) model of depression. Hypogonadal males showed potentiated behavioural, endocrine, and neurophysiological depressive-like phenotypes, including reductions in hippocampal neurogenesis and the expression of PSA-NCAM, compared to intact males. In Chapter 3, the hypogonadism-induced susceptibility to depressive-like phenotypes following CUS is largely inhibited by supplementation with testosterone. Testosterone treatment ameliorated physiological and endocrine phenotypes while showing independent antidepressant-like effects and facilitating the efficacy of an antidepressant drug in some measures. In Chapter 4, the enzymatic cleavage of the polysialic acid moiety from NCAM completely inhibits the behavioural efficacy of antidepressant treatment, while also serving to attenuate the survival of newly generated hippocampal neurons. Collectively, this body of research demonstrates the protective effects of androgens against the development of depression in males, coinciding with enhanced hippocampal neuroplasticity, and delineates an essential role for neuroplasticity mediated through PSA-NCAM in antidepressant action.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada