UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The impact of female sex hormones on cigarette smoke-induced airway remodelling and mucus production Tam, Anthony

Abstract

Adjusting for amount of smoking, women have a 50% increased risk of COPD compared with men. It is not known what the anatomic basis/mechanism(s) of these sex-related differences in COPD might be. The main objective of this study is to characterize the impact of female sex hormones on chronic cigarette smoke-induced airway remodelling and emphysema in a murine model of COPD. We showed here for the first time that smoke-induced COPD in female compared to male mice have increased small airway remodelling, and may be biologically driven by estrogen through down-regulation of antioxidant defences and activation of TGFβ1 signalling, resulting in increased expression of collagen matrix in the airway walls. These effects can be ameliorated by ovariectomy before smoke exposure or use of the estrogen antagonist, tamoxifen, during smoke exposure, suggesting that estrogen is involved in this process. Using the flexiVent system to assess the functional relationship with the observed structural changes, we showed evidence of cigarette smoke-induced lung abnormalities. Tissue damping (G), and complex input resistance of the respiratory system (Zrs) at low oscillating frequency were elevated in female compared to male mice after smoke exposure, and this effect was attenuated after ovariectomy. Quasistatic pressure-volume curve revealed a decrease in inspiratory capacity in female mice but not in male mice after smoke exposure, and this effect was attenuated after ovariectomy. Chronic smoke exposure did not increase goblet cell expression in the distal airways of all groups, suggesting that the increase in distal airway resistance in smoke-exposed female mice is unlikely to be derived from luminal exudates. Finally, using a human bronchial epithelial cell culture model in air liquid interface, we showed that transfection with nuclear factor of activated T-cell (NFAT)c1 or NFATc2 siRNA blunted estrogen or progesterone-induced increase in MUC5AC mRNA expression, respectively. Collectively, our data showed that estrogen may be involved in the excess risk for small airways disease in a mouse model of COPD, and MUC5AC expression is regulated by estrogen and progesterone via NFATc1 and NFATc2 in normal human bronchial epithelial cells.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada