UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Three-dimensional numerical simulations of subaerial landslide generated waves Clohan, William Daley

Abstract

This research aims to advance the continuing effort of general purpose computational fluid dynamics model validation of subaerial landslide generated wave (SLGW) simulations. Specifically, using the open source program weakly compressible Smooth Particle Hydrodynamics model, DualSPHysics, three-dimensional simulations are quantitatively compared against a combination of physical model data and traditional general-purpose computational fluid dynamics, Flow-3D™, data. Many simulations were conducted to determine the effect of both numerical parametrization and numerical scheme prescriptions on SLGW accuracy. A systematic approach was taken to parse out insignificant physical processes using Flow-3D™ - specifically surface tension - and to determine the optimal numerical scheme settings that yield the most accurate results for both Flow-3D™ and DualSPHysics. From this research, it is found that DualSPHysics is able to accurately simulate both wave generation and wave propagation, but tends to over-predict the maximum wave run-up by about 70%. In contrast, Flow-3D™ was able to accurately simulate wave propagation, but under predicted wave generation by about 25% and over predicted the maximum wave run-up by about 40%. The question as to why both DualSPHysics and Flow-3D™ both over predict the maximum wave run-up during a SLGW simulation is still open. However, it is speculated that this due to a lack of either energy dissipation through air entrainment or eigenfrequency consideration’s.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivs 2.5 Canada