UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Scenarios for coastal First Nations' fisheries under climate change : impacts, resilience and adaptation… Weatherdon, Lauren Vanessa 2014

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2014_september_weatherdon_lauren.pdf [ 8.95MB ]
Metadata
JSON: 24-1.0167585.json
JSON-LD: 24-1.0167585-ld.json
RDF/XML (Pretty): 24-1.0167585-rdf.xml
RDF/JSON: 24-1.0167585-rdf.json
Turtle: 24-1.0167585-turtle.txt
N-Triples: 24-1.0167585-rdf-ntriples.txt
Original Record: 24-1.0167585-source.json
Full Text
24-1.0167585-fulltext.txt
Citation
24-1.0167585.ris

Full Text

	  	  Scenarios	  for	  coastal	  First	  Nations’	  fisheries	  under	  climate	  change:	  impacts,	  resilience	  and	  adaptation	  potential	  	  	  by	  	  LAUREN	  VANESSA	  WEATHERDON	  	  B.A.,	  The	  University	  of	  British	  Columbia,	  2011	  	  	  	  	  	  A	  THESIS	  SUBMITTED	  IN	  PARTIAL	  FULFILLMENT	  OF	  THE	  REQUIREMENTS	  FOR	  THE	  DEGREE	  OF	  	  MASTER	  OF	  SCIENCE	  	  	  in	  	  	  THE	  FACULTY	  OF	  GRADUATE	  AND	  POSTDOCTORAL	  STUDIES	  	  	  	  (Resource	  Management	  and	  Environmental	  Studies)	  	  	  	  	  THE	  UNIVERSITY	  OF	  BRITISH	  COLUMBIA	  	  (Vancouver)	  	  	  	  	  July	  2014	  	  	  	  ©	  Lauren	  Vanessa	  Weatherdon,	  2014	  	   ii	  ABSTRACT	  	  Recent	  studies	  have	  demonstrated	  ways	  in	  which	  climate-­‐related	  shifts	  in	  the	  distribution	  and	  relative	  abundance	  of	  marine	  species	  are	  expected	  to	  alter	  the	  dynamics	  and	  catch	  potential	  of	  global	  fisheries.	  While	  these	  studies	  focus	  on	  assessing	  impacts	  to	  commercial	  fisheries,	  few	  efforts	  have	  been	  made	  to	  quantitatively	  project	  impacts	  to	  small-­‐scale	  fisheries	  that	  are	  economically,	  socially	  and	  culturally	  important	  to	  many	  coastal	  communities.	  	  This	  study	  uses	  a	  dynamic	  bioclimate	  envelope	  model	  to	  project	  scenarios	  of	  climate-­‐related	  changes	  in	  the	  relative	  abundance,	  distribution	  and	  richness	  of	  98	  exploited	  marine	  fishes	  and	  invertebrates	  that	  are	  of	  commercial	  and	  cultural	  importance	  to	  First	  Nations	  in	  coastal	  British	  Columbia,	  Canada.	  Declines	  in	  relative	  abundance	  are	  projected	  for	  most	  of	  the	  sampled	  species	  (n	  =	  84	  to	  95;	  x̅	  =	  -­‐15.0%	  to	  -­‐20.8%)	  under	  both	  the	  lower	  and	  upper	  scenarios	  of	  climate	  change,	  with	  poleward	  range	  shifts	  occurring	  at	  a	  mean	  rate	  of	  2.9	  and	  4.5	  kilometres	  decade-­‐1	  for	  fishes	  and	  2.7	  to	  3.4	  kilometres	  decade-­‐1	  for	  invertebrates	  within	  BC’s	  exclusive	  economic	  zone.	  While	  cumulative	  declines	  in	  catch	  potential	  are	  projected	  to	  occur	  coastwide	  (-­‐4.5	  to	  -­‐10.7%),	  estimates	  suggest	  a	  strong	  positive	  correlation	  between	  relative	  catch	  potential	  and	  latitude,	  with	  First	  Nations’	  territories	  along	  the	  north	  and	  central	  coasts	  experiencing	  less	  severe	  declines	  than	  those	  to	  the	  south.	  Furthermore,	  a	  strong	  negative	  correlation	  is	  projected	  between	  latitude	  and	  the	  number	  of	  species	  exhibiting	  declining	  abundance.	  These	  trends	  are	  shown	  to	  be	  robust	  to	  alternative	  species	  distribution	  models,	  and	  highlight	  key	  management	  challenges	  that	  are	  likely	  to	  be	  encountered	  under	  climate	  change.	  	   iii	  Drawing	  from	  an	  interdisciplinary	  literature	  review	  of	  First	  Nations’	  traditional	  fisheries	  management	  strategies	  and	  historical	  responses	  to	  changes	  in	  the	  availability	  of	  aquatic	  resources,	  a	  scenario-­‐based	  framework	  is	  applied	  to	  explore	  climate-­‐resilient	  pathways	  for	  First	  Nations’	  fisheries	  given	  quantitative	  projections.	  Findings	  suggest	  that	  joint-­‐management	  frameworks	  incorporating	  First	  Nations’	  traditional	  ecological	  knowledge	  could	  aid	  in	  offsetting	  impacts	  and	  developing	  site-­‐specific	  mitigation	  and	  adaptation	  strategies.	  This	  interdisciplinary	  framework	  thereby	  facilitates	  proactive	  discussions	  of	  potential	  mitigation	  and	  adaptation	  strategies	  deriving	  from	  local	  fishers’	  knowledge	  that	  could	  be	  used	  to	  respond	  to	  a	  range	  of	  climate	  change	  scenarios.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   iv	  PREFACE	  	  This	  dissertation	  contributes	  to	  two	  research	  programs	  led	  by	  my	  co-­‐supervisors:	  an	  assessment	  of	  the	  effects	  of	  climate	  change	  on	  global	  fisheries,	  led	  by	  Dr.	  William	  Cheung	  (Director,	  Changing	  Ocean	  Research	  Unit)	  and	  a	  global	  Indigenous	  fisheries	  assessment	  (GIFA),	  led	  by	  Dr.	  Yoshitaka	  Ota	  (Co-­‐Director,	  NF-­‐UBC	  Nereus	  Program).	  Aside	  from	  suggested	  manuscript	  revisions	  provided	  by	  my	  committee,	  the	  text	  and	  graphics	  in	  this	  dissertation	  are	  entirely	  my	  own.	  	  Chapter	  2	  of	  the	  thesis	  was	  achieved	  primarily	  through	  collaboration	  between	  Dr.	  William	  Cheung	  (co-­‐supervisor)	  and	  myself,	  wherein	  the	  dynamic	  bioclimate	  envelope	  model	  and	  equations	  used	  derive	  from	  Dr.	  Cheung’s	  previous	  work	  with	  other	  colleagues	  (Cheung	  et	  al.	  2008a;	  2009;	  2010b;	  2011a).	  I	  was	  responsible	  for	  collecting	  data	  from	  online	  databases	  and	  published	  literature	  regarding	  habitat	  preferences,	  known	  ranges,	  and	  life	  history	  traits	  for	  each	  species	  included	  in	  the	  analysis,	  and	  for	  producing	  species’	  current	  distribution	  maps	  using	  the	  Sea	  Around	  Us	  method	  (Close	  et	  al.	  2006).	  Dr.	  Cheung	  then	  used	  these	  data	  and	  maps	  to	  project	  species’	  responses	  to	  the	  lower	  and	  upper	  ranges	  of	  climate	  change	  (representative	  concentration	  pathways	  2.6	  and	  8.5,	  respectively)	  using	  the	  dynamic	  bioclimate	  envelope	  model.	  Aside	  from	  technical	  assistance	  received	  from	  Dr.	  Cheung	  with	  R	  coding,	  I	  am	  exclusively	  responsible	  for	  all	  subsequent	  calculations,	  including	  each	  species’	  change	  in	  relative	  abundance,	  distribution,	  and	  catch	  potential.	  The	  global	  climate	  model	  (GFDL	  ESM2M)	  used	  in	  this	  analysis	  was	  obtained	  from	  the	  NOAA’s	  Geophysical	  Fluid	  Dynamics	  Laboratory	  (GFDL),	  while	  tests	  examining	  the	  sensitivity	  of	  	   v	  results	  to	  alternative	  species	  distribution	  models	  (Maxent	  and	  AquaMaps)	  were	  run	  using	  data	  obtained	  from	  Dr.	  Miranda	  Jones	  and	  Dr.	  William	  Cheung	  (in	  press).	  	  	  I	  was	  responsible	  for	  conducting	  the	  literature	  review	  and	  analysis	  in	  Chapter	  3,	  but	  received	  guidance	  from	  my	  committee—Drs.	  William	  Cheung,	  Yoshitaka	  Ota,	  and	  David	  Close—in	  the	  early	  stages	  of	  concept	  formation	  and	  with	  manuscript	  revisions.	  The	  data	  in	  this	  chapter	  derive	  exclusively	  from	  Chapter	  2,	  and	  are	  used	  in	  concert	  with	  knowledge	  attained	  from	  the	  published	  literature.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   vi	  TABLE	  OF	  CONTENTS	  Abstract	  ....................................................................................................................................................	  ii	  Preface	  .....................................................................................................................................................	  iv	  List	  of	  tables	  ........................................................................................................................................	  viii	  List	  of	  figures	  .......................................................................................................................................	  xii	  List	  of	  symbols	  and	  abbreviations	  ................................................................................................	  xv	  Acknowledgements	  ..........................................................................................................................	  xvi	  	  1	   Introduction	  ....................................................................................................................................	  1	  1.1	   Introduction	  ..........................................................................................................................................	  1	  1.2	   Context	  .....................................................................................................................................................	  3	  1.2.1	   Aboriginal	  title	  and	  the	  “right	  to	  fish”	  .....................................................................................................	  5	  1.2.2	   Projected	  climate	  change	  impacts	  on	  Pacific	  Northeast	  marine	  ecosystems	  ........................	  8	  1.3	   Research	  objectives	  ..........................................................................................................................	  10	  	  2	   Projecting	  climate	  change	  impacts	  to	  the	  catch	  potential	  of	  Pacific	  First	  Nations’	  fisheries	  ................................................................................................................................................	  13	  2.1	   Introduction	  ........................................................................................................................................	  13	  2.2	   Materials	  and	  methods	  ....................................................................................................................	  15	  2.2.1	   Sampling	  method	  ..........................................................................................................................................	  15	  2.2.2	   Identifying	  species	  of	  importance	  to	  coastal	  First	  Nations	  ........................................................	  20	  2.2.3	   Mapping	  species’	  current	  distributions	  ..............................................................................................	  22	  2.2.4	   Model	  selection	  and	  parameters	  ............................................................................................................	  26	  2.2.5	   Impacts	  to	  species’	  relative	  abundance,	  distribution,	  and	  richness	  .......................................	  29	  2.2.6	   Fisheries	  impacts	  under	  climate	  change	  ............................................................................................	  31	  2.3	   Results	  ...................................................................................................................................................	  34	  2.3.1	   Impacts	  to	  species’	  relative	  abundance,	  distribution	  and	  richness	  ........................................	  34	  2.3.2	   Fisheries	  impacts	  under	  climate	  change	  ............................................................................................	  38	  2.3.3	   Sensitivity	  analysis	  .......................................................................................................................................	  47	  2.4	   Discussion	  ............................................................................................................................................	  52	  2.4.1	   Selection	  and	  use	  of	  the	  dynamic	  bioclimate	  envelope	  model	  (DBEM)	  ................................	  52	  2.4.2	   Uncertainties	  and	  assumptions	  ..............................................................................................................	  53	  2.4.3	   Implications	  for	  First	  Nations	  .................................................................................................................	  58	  2.4.4	   Climate-­‐resilient	  pathways	  for	  First	  Nations	  ...................................................................................	  61	  2.5	   Conclusion	  ............................................................................................................................................	  63	  	  3	   Scenario-­‐based	  framework	  for	  exploring	  climate-­‐resilient	  pathways	  for	  coastal	  First	  Nations’	  fisheries	  .....................................................................................................................	  65	  3.1	   Introduction	  ........................................................................................................................................	  65	  3.2	   Climate-­‐resilient	  pathways	  and	  the	  concept	  of	  wellbeing	  ...................................................	  69	  3.3	   First	  Nations’	  worldviews	  ...............................................................................................................	  73	  3.4	   Methods	  .................................................................................................................................................	  77	  	   vii	  3.4.1	   Study	  regions	  ..................................................................................................................................................	  77	  3.4.2	   Data	  processing	  .............................................................................................................................................	  82	  3.4.3	   Literature	  review	  ..........................................................................................................................................	  84	  3.4.4	   Scenario	  development	  ................................................................................................................................	  84	  3.4.5	   Exploring	  climate-­‐resilient	  pathways	  ..................................................................................................	  86	  3.5	   Results	  ...................................................................................................................................................	  88	  3.5.1	   Traditional	  management	  strategies	  .....................................................................................................	  88	  3.5.2	   Examples	  of	  fisheries-­‐related	  mitigation	  and	  adaptation	  ...........................................................	  92	  3.5.3	   Future	  fisheries	  mitigation	  and	  adaptation	  prospects	  ...............................................................	  102	  3.5.4	   Summary	  ........................................................................................................................................................	  117	  3.6	   Discussion	  .........................................................................................................................................	  119	  3.6.1	   Assumptions	  and	  uncertainties	  ............................................................................................................	  119	  3.6.2	   Implications	  for	  fisheries	  management	  ............................................................................................	  120	  3.7	   Conclusion	  .........................................................................................................................................	  124	  	  4	   Conclusion	  ...................................................................................................................................	  127	  4.1	   Summary	  of	  research	  .....................................................................................................................	  127	  4.2	   Management	  implications	  ...........................................................................................................	  132	  4.3	   Cross-­‐application	  of	  framework	  ................................................................................................	  134	  4.4	   Future	  research	  and	  modifications	  ..........................................................................................	  135	  	  References	  ..........................................................................................................................................	  138	  	  Appendix	  A:	  Species	  ........................................................................................................................	  162	  Appendix	  B:	  Projections	  ................................................................................................................	  169	  Appendix	  C:	  Sensitivity	  analysis	  .................................................................................................	  187	  Appendix	  D:	  Chapter	  3	  calculations	  ..........................................................................................	  189	  Appendix	  E:	  Range	  shifts	  ...............................................................................................................	  200	  Appendix	  F:	  Species	  with	  catch	  offset	  potential	  ....................................................................	  207	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   viii	  LIST	  OF	  TABLES	  	  Table	  1.1	  Examples	  of	  studies	  estimating	  the	  impacts	  of	  climate	  change	  on	  marine	  species	  found	  along	  the	  Pacific	  Northwest	  Coast	  of	  British	  Columbia.	  .............................................................	  9	  	  Table	  2.1	  Sample	  of	  First	  Nations	  and	  respective	  regions	  and	  treaty	  groups	  included	  in	  this	  study.	  ...........................................................................................................................................................................	  18	  	  Table	  2.2	  Species	  harvested	  by	  First	  Nations	  for	  food,	  social	  and	  ceremonial	  (FSC)	  purposes.1	  .................................................................................................................................................................	  21	  	  Table	  2.3	  	  First	  Nations’	  participation	  in	  British	  Columbia’s	  commercial	  fisheries	  by	  percentage	  and	  number	  of	  total	  licenses	  held	  (modified	  from	  James	  2003	  and	  (Heiltsuk	  First	  Nation	  2011)1.	  ..............................................................................................................................................	  24	  	  Table	  2.4	  Representative	  concentration	  pathways	  (RCPs)	  used	  in	  this	  study	  to	  capture	  upper	  and	  lower	  bounds	  of	  emissions	  scenarios	  (adapted	  from	  (Moss	  et	  al.	  2010).	  ..............	  28	  	  Table	  2.5	  Number	  of	  species	  (n	  =	  98)	  exhibiting	  different	  types	  of	  latitudinal	  range	  shifts	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios.	  ................................	  36	  	  Table	  2.6	  Number	  of	  species	  (n)	  whose	  catch	  potential	  (%)	  is	  projected	  to	  increase,	  	  decrease,	  or	  remain	  neutral	  within	  First	  Nations’	  respective	  domestic	  fishing	  areas	  (DFAs)	  under	  RCPs	  2.6	  and	  8.5.	  DFAs	  are	  ordered	  latitudinally	  from	  north	  to	  south.	  ...........................	  44	  	  Table	  2.7	  Relative	  change	  in	  catch	  potential	  (%)	  by	  study	  area,	  as	  projected	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios.	  .....................................................	  44	  	  Table	  2.8	  Estimated	  upper-­‐	  and	  lower-­‐	  thresholds	  of	  impacts	  to	  landed	  revenue	  (2010	  CAD),	  derived	  from	  a	  10-­‐year	  average	  (2001-­‐2010),	  for	  a	  sample	  of	  First	  Nations	  commercial	  fisheries	  under	  two	  climate	  change	  scenarios	  (James	  2003;	  BC	  Ministry	  of	  Agriculture	  2004;	  2006;	  2008;	  2010;	  2011).	  ............................................................................................	  46	  	  Table	  2.9	  Impacts	  to	  landed	  revenue	  (in	  2010	  value)	  within	  the	  Haida	  traditional	  fishing	  area	  relating	  to	  commercial	  fisheries	  (average	  annual	  values	  from	  Pinfold	  2010).	  ................	  47	  	  Table	  3.1	  Relative	  change	  in	  catch	  potential	  by	  domestic	  fishing	  area	  (derived	  from	  ‘Statement	  of	  Intent’	  boundaries),	  as	  projected	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios	  (Chapter	  2).	  ................................................................................................	  78	  	  Table	  3.2	  A	  sample	  of	  First	  Nations’	  traditional	  fisheries	  management	  approaches	  and	  analogous	  Western	  fisheries	  management	  strategies.	  ..........................................................................	  90	  	  Table	  3.3	  Social	  institutions	  and	  knowledge	  employed	  by	  coastal	  First	  Nations	  to	  mitigate	  aquatic	  resource	  fluctuations.	  ..........................................................................................................................	  94	  	   ix	  Table	  3.4	  	  Pre-­‐contact	  models	  of	  changes	  in	  resource	  composition	  or	  abundance,	  and	  corresponding	  response	  strategies	  suggested	  in	  the	  archaeological	  and	  ethnographic	  records.	  ......................................................................................................................................................................	  97	  	  Table	  3.5.	  Post-­‐contact	  examples	  of	  changes	  in	  resource	  composition,	  abundance,	  or	  access	  rights	  and	  correlating	  changes	  in	  First	  Nations’	  harvesting	  patterns.	  .........................................	  100	  	  Table	  3.6	  Examples	  of	  potential	  climate-­‐resilient	  pathways	  associated	  with	  different	  levels	  of	  adaptive	  capacity	  for	  case	  study	  #1.	  ......................................................................................................	  106	  	  Table	  3.7	  Examples	  of	  potential	  climate-­‐resilient	  pathways	  associated	  with	  different	  levels	  of	  adaptive	  capacity	  under	  case	  study	  #2.	  ................................................................................................	  111	  	  Table	  3.8	  Examples	  of	  potential	  climate-­‐resilient	  pathways	  associated	  with	  different	  levels	  of	  adaptive	  capacity	  under	  case	  study	  #3.	  ................................................................................................	  116	  	  Table	  3.9.	  Summary	  of	  risks	  and	  adaptation	  prospects	  under	  different	  climate	  change	  scenarios	  (RCPs	  2.6	  and	  8.5),	  estimating	  the	  level	  of	  impacts	  by	  2050	  given	  different	  levels	  of	  adaptive	  capacity	  (pathways	  described	  in	  section	  3.5.2).	  ............................................................	  117	  	  	  Appendices	  	  Supplementary	  Table	  A1.	  Species	  (n	  =	  98)	  included	  in	  the	  analysis	  of	  Chapter	  2.	  .................	  162	  	  Supplementary	  Table	  A2.	  Proportion	  of	  species	  (%)	  caught	  in	  multi-­‐species	  commercial	  fisheries	  that	  are	  included	  in	  analysis1.	  .....................................................................................................	  165	  	  Supplementary	  Table	  A3.	  Species	  included	  in	  estimates	  of	  changes	  to	  commercial	  fisheries	  catch	  potential	  (%).	  ............................................................................................................................................	  166	  	  Supplementary	  Table	  B	  1.	  Relative	  change	  in	  abundance	  (%)	  for	  each	  species	  within	  British	  Columbia’s	  EEZ	  (numbers	  do	  not	  represent	  specific	  units).	  Ordered	  by	  from	  largest	  decline	  to	  largest	  increase	  in	  catch	  potential	  (%)	  under	  RCP	  8.5.	  .................................................................	  169	  	  Supplementary	  Table	  B2.	  Relative	  change	  in	  catch	  potential	  (%)	  for	  each	  species	  within	  British	  Columbia’s	  EEZ	  (numbers	  do	  not	  represent	  specific	  units).	  Ordered	  by	  largest	  decline	  to	  largest	  increase	  in	  catch	  potential	  under	  RCP	  8.5.	  ..........................................................	  173	  	  Supplementary	  Table	  B3.	  Latitudinal	  range	  shifts	  (km	  decade-­‐1)	  within	  British	  Columbia’s	  exclusive	  economic	  zone	  by	  2050	  relative	  to	  2000,	  calculating	  by	  comparing	  20-­‐year	  averaged	  latitudinal	  centroids	  (lat.	  cent.).	  ................................................................................................	  177	  	  Supplementary	  Table	  C1.	  Inter-­‐model	  variability	  between	  species	  distribution	  models	  (SDMs)	  under	  RCP	  8.5	  when	  projecting	  changes	  to	  relative	  catch	  potential	  in	  British	  	   x	  Columbia’s	  exclusive	  economic	  zone	  (EEZ).	  Data	  from	  Aquamaps	  and	  Maxent	  obtained	  from	  Jones	  et	  al.	  (2014).	  ...................................................................................................................................	  187	  	  Supplementary	  Table	  C2.	  Sensitivity	  of	  model	  to	  time	  frame,	  comparing	  results	  from	  20-­‐	  and	  30-­‐year	  averages	  and	  interdecadal	  variation	  (2045	  vs.	  2050).	  Intra-­‐model	  results	  are	  shown	  to	  be	  robust	  to	  the	  time	  frame	  selected.	  Ordered	  from	  lowest	  to	  highest	  standard	  deviation	  (σ).	  .........................................................................................................................................................	  188	  	  Supplementary	  Table	  D1.	  Change	  in	  relative	  catch	  potential	  for	  Pacific	  herring	  (Clupea	  pallasii)	  under	  RCPs	  2.6	  and	  8.5	  using	  a	  20-­‐year	  average	  of	  2050	  relative	  to	  2000.	  .............	  189	  	  Supplementary	  Table	  D2.	  Change	  in	  relative	  catch	  potential	  for	  butter	  clams	  (Saxidomus	  giganteus).	  ..............................................................................................................................................................	  190	  	  Supplementary	  Table	  D3.	  Change	  in	  relative	  catch	  potential	  for	  Pacific	  littleneck	  clams	  (Protothaca	  staminea).	  ......................................................................................................................................	  190	  	  Supplementary	  Table	  D4.	  Change	  in	  relative	  catch	  potential	  for	  manila	  clams	  (Venerupis	  philippinarum).	  .....................................................................................................................................................	  191	  	  Supplementary	  Table	  D5.	  Change	  in	  relative	  catch	  potential	  for	  varnish	  clams	  (Nuttallia	  obscurata).	  ..............................................................................................................................................................	  192	  	  Supplementary	  Table	  D6.	  Change	  in	  relative	  catch	  potential	  for	  Pacific	  geoduck	  (Panopea	  abrupta).	  ..................................................................................................................................................................	  192	  	  Supplementary	  Table	  D7.	  Change	  in	  relative	  catch	  potential	  for	  horse	  clams	  (Tresus	  capax).	  .....................................................................................................................................................................................	  193	  	  Supplementary	  Table	  D8.	  Change	  in	  relative	  catch	  potential	  for	  Pacific	  gaper	  (Tresus	  nuttallii).	  ..................................................................................................................................................................	  194	  	  Supplementary	  Table	  D9.	  Change	  in	  relative	  catch	  potential	  for	  Pacific	  razor	  clam	  (Siliqua	  patula).	  .....................................................................................................................................................................	  194	  	  Supplementary	  Table	  D10.	  Cumulative	  change	  in	  relative	  catch	  potential	  for	  intertidal	  clams	  by	  region.	  ...................................................................................................................................................	  195	  	  Supplementary	  Table	  D11.	  Change	  in	  relative	  catch	  potential	  for	  pink	  salmon	  (Oncorhynchus	  gorbuscha).	  .............................................................................................................................	  196	  	  Supplementary	  Table	  D12.	  Change	  in	  relative	  catch	  potential	  for	  coho	  salmon	  (Oncorhynchus	  kisutch).	  ....................................................................................................................................	  196	  	  Supplementary	  Table	  D13.	  Change	  in	  relative	  catch	  potential	  for	  chum	  salmon	  (Oncorhynchus	  keta).	  ..........................................................................................................................................	  197	  	   xi	  Supplementary	  Table	  D14.	  Change	  in	  relative	  catch	  potential	  for	  sockeye	  salmon	  (Oncorhynchus	  nerka).	  .......................................................................................................................................	  198	  	  Supplementary	  Table	  D15.	  Change	  in	  relative	  catch	  potential	  for	  Chinook	  salmon	  (Oncorhynchus	  tshawystcha).	  .........................................................................................................................	  198	  	  Supplementary	  Table	  D16.	  Cumulative	  change	  in	  relative	  catch	  potential	  for	  salmon	  by	  region.	  .......................................................................................................................................................................	  199	  	  Supplementary	  Table	  E1.	  Latitudinal	  range	  shifts	  (km	  decade-­‐1)	  within	  British	  Columbia’s	  exclusive	  economic	  zone	  by	  2050	  relative	  to	  2000,	  calculating	  by	  comparing	  20-­‐year	  averaged	  latitudinal	  centroids	  (lat.	  cent.)(Chapter	  3).	  ........................................................................	  200	  	  Supplementary	  Table	  E2.	  Rate	  of	  global	  leading	  and	  trailing	  edges	  of	  range	  shifts	  (km	  decade-­‐1)	  by	  species,	  directionality	  of	  shifts,	  and	  range	  type	  (expansion	  [+],	  contraction	  [-­‐],	  or	  neutral	  [N/A])	  under	  the	  lower	  and	  upper	  scenarios	  of	  climate	  change	  (RCPs	  2.6	  and	  8.5,	  respectively).	  Global	  rates	  compared	  with	  rates	  of	  range	  shifts	  within	  British	  Columbia’s	  exclusive	  economic	  zone	  (EEZ).	  ....................................................................................................................	  201	  	  Supplementary	  Table	  F1.	  Catch	  offset	  potential	  for	  butter	  clams	  (Saxidomus	  giganteus.)	  .	  207	  	  Supplementary	  Table	  F2.	  Catch	  offset	  potential	  for	  Pacific	  geoduck	  (Panopea	  abrupta).	  ..	  207	  	  Supplementary	  Table	  F3.	  Catch	  offset	  potential	  for	  manila	  clams	  (Venerupis	  philippinarum).	  .....................................................................................................................................................................................	  208	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   xii	  LIST	  OF	  FIGURES	  	  Figure	  1.1	  Map	  outlining	  First	  Nations’	  communities	  throughout	  coastal	  British	  Columbia	  (dark	  yellow)	  and	  domestic	  fishing	  areas	  identified	  during	  the	  BC	  Treaty	  Process	  (teal),	  noting	  the	  sample	  of	  communities	  included	  in	  this	  analysis.	  ................................................................	  4	  	  Figure	  2.1	  Cells	  (0.5°	  long.	  x	  0.5°	  lat.)	  representing	  domestic	  fishing	  areas,	  as	  derived	  from	  Statement	  of	  Intent	  (SOI)	  boundaries	  indicated	  during	  the	  BC	  treaty	  process.	  Cells	  shared	  by	  more	  than	  one	  First	  Nation	  are	  denoted,	  but	  do	  not	  represent	  legal	  boundaries	  and	  are	  only	  used	  to	  assess	  relative	  availability	  of	  marine	  resources	  in	  a	  given	  cell.	  ..............................	  19	  	  Figure	  2.2	  Projected	  latitudinal	  shifts	  (km	  decade-­‐1)	  by	  functional	  group	  or	  species	  using	  a	  20-­‐year	  average	  latitudinal	  centroid	  at	  2050	  relative	  to	  2000.	  The	  line	  represents	  the	  projected	  range	  of	  possibilities	  between	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios.	  ...................................................................................................................................................	  35	  	  Figure	  2.3	  (a)	  Species	  richness	  by	  0.5°	  lat.	  x	  0.5°	  long.	  cell	  in	  2000	  and	  (b)	  projected	  number	  of	  species	  lost	  or	  gained	  per	  cell	  by	  2050,	  under	  both	  climate	  change	  scenarios.	  Black	  lines	  identify	  First	  Nations’	  domestic	  fishing	  areas	  within	  the	  study.	  ...............................	  37	  	  Figure	  2.4	  Projected	  change	  in	  relative	  catch	  potential	  for	  commercial	  fisheries	  in	  British	  Columbia’s	  EEZ	  with	  known	  First	  Nation	  participation,	  illustrating	  the	  range	  of	  results	  obtained	  from	  the	  lower	  and	  upper	  climate	  change	  scenarios	  (RCPs	  2.6	  and	  8.5,	  respectively).	  *Remaining	  two	  species	  are	  harvested	  occasionally	  in	  northern	  regions	  and	  require	  a	  special	  permit.	  .....................................................................................................................................	  38	  	  Figure	  2.5	  Graphs	  exhibit	  a	  (a)	  positive	  correlation	  between	  latitude	  (°N)	  and	  cumulative	  change	  in	  catch	  potential	  (%)	  and	  (b)	  a	  negative	  correlation	  between	  latitude	  (°N)	  and	  the	  number	  of	  species	  exhibiting	  declines	  in	  catch	  potential	  (<	  -­‐3.0%)	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................	  40	  	  Figure	  2.6	  Changes	  in	  relative	  catch	  potential	  by	  functional	  group	  for	  four	  regions:	  the	  North	  Coast,	  Central	  Coast,	  Strait	  of	  Georgia,	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI).	  The	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  range	  of	  climate	  change	  scenarios	  is	  denoted.	  .....................................................................................................................................................................	  42	  	  Figure	  2.7	  Changes	  in	  relative	  catch	  potential	  by	  functional	  group	  for	  four	  regions:	  the	  North	  Coast,	  Central	  Coast,	  Strait	  of	  Georgia,	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI).	  The	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  range	  of	  climate	  change	  scenarios	  is	  denoted.	  .....................................................................................................................................................................	  43	  	  Figure	  2.8	  Testing	  sensitivity	  of	  results	  obtained	  for	  change	  in	  relative	  catch	  potential	  within	  British	  Columbia’s	  EEZ	  to	  the	  assumptions	  behind	  different	  species	  distribution	  models	  (DBEM,	  AquaMaps,	  and	  Maxent)	  under	  RCP	  8.5.	  ....................................................................	  50	  	   xiii	  Figure	  2.9	  Sensitivity	  of	  results	  obtained	  for	  the	  upper-­‐bound	  climate	  change	  scenario	  (RCP	  8.5)	  within	  the	  EEZ	  to	  (a)	  the	  selected	  time	  frame,	  tested	  using	  20-­‐year	  averages	  centred	  around	  2045	  and	  2050	  (a	  20-­‐year	  average	  centred	  on	  2000	  was	  maintained	  for	  comparison),	  and	  (b)	  interdecadal	  variability,	  tested	  using	  20-­‐	  and	  30-­‐year	  averages	  centred	  on	  2000	  and	  2045.	  ................................................................................................................................	  51	  	  Figure	  3.1	  Maps	  outlining	  the	  conversion	  of	  (a)	  the	  sample	  of	  First	  Nations’	  domestic	  fishing	  territories	  used	  in	  this	  analysis	  to	  (b)	  0.5°	  latitudinal	  x	  0.5°	  longitudinal	  grid	  cells	  forming	  five	  distinct	  regions	  along	  coastal	  British	  Columbia	  (Haida	  Gwaii,	  the	  North	  Coast,	  the	  Central	  Coast,	  the	  Strait	  of	  Georgia,	  and	  the	  west	  coast	  of	  Vancouver	  Island).	  ..................	  83	  	  Figure	  3.2	  Pacific	  herring	  major	  stock	  areas	  (North	  Coast,	  Haida	  Gwaii,	  Central	  Coast,	  West	  Coast	  Vancouver	  Island,	  and	  the	  Strait	  of	  Georgia)	  and	  minor	  stock	  areas	  (Area	  2W	  and	  Area	  27),	  showing	  overlap	  with	  First	  Nations’	  traditional	  territories	  and	  commercial	  fishing	  areas.	  Spawning	  and	  feeding	  areas	  are	  not	  meant	  to	  be	  exhaustive,	  but	  to	  focus	  on	  key	  regions	  of	  importance.	  ......................................................................................................................................	  104	  	  Figure	  3.3	  Regional	  and	  coastwide	  changes	  in	  relative	  catch	  potential	  (%)	  for	  Pacific	  herring	  (Clupea	  pallasii)	  using	  a	  20-­‐year	  average	  of	  2050	  relative	  to	  2000.	  Regions	  include	  the	  North	  Coast	  (orange),	  Haida	  Gwaii	  (dark	  blue),	  Central	  Coast	  (light	  blue),	  Strait	  of	  Georgia	  (yellow),	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI;	  green).	  The	  coastwide	  estimates	  are	  bounded	  by	  British	  Columbia’s	  exclusive	  economic	  zone	  (EEZ).	  .....................	  105	  	  Figure	  3.4	  Regional	  and	  coastwide	  changes	  in	  relative	  catch	  potential	  (%)	  for	  intertidal	  clams	  of	  cultural	  and	  commercial	  importance	  to	  First	  Nations	  using	  a	  20-­‐year	  average	  of	  2050	  relative	  to	  2000.	  Regions	  include	  the	  North	  Coast	  (orange),	  Haida	  Gwaii	  (dark	  blue),	  Central	  Coast	  (light	  blue),	  Strait	  of	  Georgia	  (yellow),	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI;	  green).	  The	  coastwide	  estimates	  are	  bounded	  by	  British	  Columbia’s	  exclusive	  economic	  zone	  (EEZ)………………………………………………………………………………………………….	  110	  	  Figure	  3.5	  Regional	  and	  coastwide	  changes	  in	  relative	  catch	  potential	  (%)	  for	  salmon	  (Oncorhynchus	  spp.)	  of	  cultural	  and	  commercial	  importance	  to	  First	  Nations	  using	  a	  20-­‐year	  average	  of	  2050	  relative	  to	  2000.	  Regions	  include	  the	  North	  Coast	  (orange),	  Haida	  Gwaii	  (dark	  blue),	  Central	  Coast	  (light	  blue),	  Strait	  of	  Georgia	  (yellow),	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI;	  green).	  The	  coastwide	  estimates	  are	  bounded	  by	  British	  Columbia’s	  exclusive	  economic	  zone	  (EEZ).…………………………………………………………………	  114	  	   	  	  	  	  	  	  	  	  	   xiv	  Appendices	  	  Supplementary	  Figure	  B1.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  Gitga’at	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................................	  181	  	  Supplementary	  Figure	  B2.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  Haida	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................................	  182	  	  Supplementary	  Figure	  B3.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  Heiltsuk	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................................	  183	  	  Supplementary	  Figure	  B4.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  ‘Namgis	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................................	  184	  	  Supplementary	  Figure	  B5.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  Tla’amin	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  .........................................................................................	  185	  Supplementary	  Figure	  B6.	  Projected	  change	  in	  catch	  potential	  (%)	  by	  functional	  group	  or	  species	  within	  the	  Tsawwassen	  Nation’s	  domestic	  fishing	  area	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  scenarios	  of	  climate	  change.	  ................................................................................	  186	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   xv	  LIST	  OF	  SYMBOLS	  AND	  ABBREVIATIONS	  	  	  AFS	   Aboriginal	  Fisheries	  Strategy	  BC	   British	  Columbia	  BC	  FLNRO	   BC	  Government	  Ministry	  of	  Forest,	  Lands	  and	  Natural	  Resource	  Operations	  DBEM	   Dynamic	  bioclimate	  envelope	  model	  DFA	   Domestic	  fishing	  area	  DFO	   Department	  of	  Fisheries	  and	  Oceans	  Canada	  EEZ	   Exclusive	  economic	  zone	  FNFC	   (BC)	  First	  Nations	  Fisheries	  Council	  FSC	   Food,	  social,	  and	  ceremonial	  GFDL	   Geophysical	  Fluid	  Dynamics	  Laboratory	  GCM	   Global	  climate	  model	  IPCC	   Intergovernmental	  Panel	  on	  Climate	  Change	  RCP	   Representative	  concentration	  pathway	  SOI	   Statement	  of	  Intent	  boundaries	  SOK	   Spawn-­‐on-­‐kelp	  (fishery)	  SDM	   Species	  distribution	  model	  TEK	   Traditional	  ecological	  knowledge	  TPK	   Traditional	  phenological	  knowledge	  WCVI	   West	  coast	  of	  Vancouver	  Island	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   xvi	  ACKNOWLEDGEMENTS	  	  I	  would	  like	  to	  express	  my	  immeasurable	  gratitude	  to	  my	  co-­‐supervisors,	  Dr.	  William	  Cheung	  and	  Dr.	  Yoshi	  Ota,	  for	  their	  willingness	  to	  share	  their	  knowledge	  and	  for	  their	  continued	  guidance,	  patience	  and	  support	  both	  prior	  to	  and	  during	  the	  course	  of	  my	  research.	  I	  am	  fortunate	  to	  have	  had	  support	  and	  feedback	  from	  the	  Changing	  Ocean	  Research	  Unit,	  and	  am	  especially	  grateful	  to	  Dr.	  Miranda	  Jones	  for	  sharing	  her	  expertise	  regarding	  the	  technical	  aspects	  of	  my	  thesis.	  Furthermore,	  I	  would	  like	  to	  thank	  Dr.	  David	  Close	  for	  his	  kind	  assistance	  and	  constructive	  comments,	  and	  Dr.	  Dirk	  Zeller	  for	  taking	  the	  time	  to	  accommodate	  my	  questions	  and	  share	  data	  obtained	  from	  the	  Sea	  Around	  Us	  project.	  	  	  	  I	  have	  been	  immensely	  lucky	  to	  have	  a	  strong	  support	  group	  throughout	  the	  course	  of	  my	  degree,	  and	  for	  that	  I	  owe	  considerable	  thanks	  to	  my	  friends	  and	  colleagues	  at	  UBC’s	  Fisheries	  Centre,	  as	  well	  as	  those	  in	  Vancouver	  and	  abroad.	  I	  would	  like	  to	  thank	  Julia,	  Andrea,	  Dana,	  Gerald,	  Wilf,	  Ariel,	  Ally,	  Kyle	  and	  countless	  others	  (essentially	  everyone	  at	  the	  Fisheries	  Centre)	  who	  have	  made	  the	  last	  few	  years	  a	  wonderful	  experience.	  In	  particular,	  I	  am	  indebted	  to	  Julia	  Lawson	  for	  her	  friendship,	  patience	  and	  support	  throughout	  the	  program;	  together,	  we	  have	  weathered	  the	  challenges	  and	  celebrated	  the	  victories,	  forming	  many	  good	  memories.	  Additionally,	  I	  extend	  my	  sincere	  thanks	  to	  Dr.	  Amanda	  Vincent	  and	  Jenny	  Selgrath	  for	  providing	  guidance	  during	  difficult	  circumstances	  and	  for	  kindly	  allowing	  me	  to	  borrow	  an	  office.	  I	  would	  like	  to	  express	  my	  gratitude	  to	  Dr.	  Nigel	  Haggan,	  whose	  knowledge	  informed	  my	  understanding	  of	  the	  holistic	  importance	  of	  fisheries	  to	  First	  Nations	  and	  whose	  stories	  were	  consistently	  thought	  provoking	  and	  	   xvii	  inspiring.	  Last	  but	  certainly	  not	  least,	  I	  am	  most	  grateful	  to	  have	  a	  wonderful	  friend	  in	  Sarah	  McNeil,	  with	  whom	  I	  have	  spent	  many	  happy	  days	  chatting	  over	  tea.	  She	  truly	  embodies	  a	  kindness	  and	  selflessness	  that	  is	  seldom	  seen,	  and	  her	  energy	  and	  optimism	  have	  been	  a	  constant	  source	  of	  strength	  for	  me.	  	  	  Above	  all,	  I	  thank	  my	  love,	  Liam	  Foley,	  for	  his	  unwavering	  love	  and	  support,	  and	  my	  parents,	  Jim	  and	  Peggy	  Weatherdon,	  for	  years	  of	  patience	  and	  understanding.	  	  	  	  I	  would	  like	  to	  affirm	  that	  this	  study	  does	  not	  intend	  to	  speak	  on	  behalf	  of	  First	  Nations,	  but	  rather	  to	  draw	  from	  the	  existing	  literature	  and	  examples	  of	  traditional	  fisheries	  management	  in	  the	  context	  of	  environmental	  or	  anthropogenic	  change.	  My	  intent	  is	  to	  highlight	  the	  potential	  for	  interdisciplinary	  approaches	  to	  support	  the	  development	  of	  mitigation	  and	  adaptation	  strategies	  under	  climate	  change,	  and	  to	  draw	  attention	  to	  the	  strengths	  and	  versatility	  of	  traditional	  ecological	  knowledge	  in	  local	  contexts.	  Implementation	  of	  the	  suggestions	  mentioned	  within	  this	  study	  would	  necessarily	  involve	  community	  consultations	  and	  a	  more	  in-­‐depth	  study	  of	  the	  full	  range	  of	  ecological,	  cultural	  and	  social	  impacts	  at	  various	  scales.	  	  	  	  This	  study	  could	  not	  have	  been	  completed	  without	  the	  assistance	  of	  a	  Joseph-­‐Armand	  Bombardier	  Canada	  Graduate	  Scholarship	  from	  the	  Social	  Sciences	  and	  Humanities	  Research	  Council	  (SSHRC)(#766-­‐2013-­‐0832),	  and	  without	  financial	  support	  provided	  by	  my	  supervisors	  through	  the	  NF-­‐UBC	  Nereus	  Program	  and	  external	  grants	  held	  by	  Dr.	  William	  Cheung.	  	   1	  1 INTRODUCTION	  	  1.1 Introduction	  Globally,	  coastal	  Indigenous	  fishing	  communities	  are	  socially,	  culturally,	  and	  economically	  dependent	  on	  marine	  ecosystems	  through	  fisheries,	  which	  play	  critical	  roles	  in	  maintaining	  their	  cultural	  heritage.	  Recent	  studies	  argue	  that	  climate	  change	  and	  the	  resulting	  range	  of	  biophysical	  responses—such	  as	  altered	  species	  distributions	  (Perry	  et	  al.	  2005;	  Hazen	  et	  al.	  2013;	  Bates	  et	  al.	  2013;	  Feary	  et	  al.	  2013),	  phenology	  (Poloczanska	  et	  al.	  2013)	  physiology	  (Doney	  et	  al.	  2012),	  and	  marine	  biodiversity	  (Cheung	  et	  al.	  2009;	  Harley	  2011)—are	  likely	  to	  impact	  fisheries	  (Lehodey	  et	  al.	  2005;	  Roessig	  et	  al.	  2005;	  Cheung	  et	  al.	  2010)	  and	  the	  societies	  that	  depend	  upon	  them	  (Badjeck	  et	  al.	  2010;	  Barange	  et	  al.	  2014).	  In	  particular,	  projected	  changes	  in	  fisheries	  catch	  potential	  (Cheung	  et	  al.	  2010)	  could	  result	  in	  or	  exacerbate	  socio-­‐economic	  impacts	  on	  fisheries	  through	  reduced	  food	  and	  economic	  security	  (Sumaila	  et	  al.	  2011).	  	  However,	  while	  extensive	  research	  has	  been	  done	  on	  the	  effects	  of	  climate	  change	  on	  fish	  populations	  and	  distributions,	  studies	  exploring	  the	  human	  dimensions	  of	  climate	  change	  impacts	  to	  marine	  ecosystems	  have	  been	  primarily	  limited	  to	  large-­‐scale	  national	  or	  global	  assessments	  (Allison	  et	  al.	  2009;	  Sumaila	  et	  al.	  2011;	  Barange	  et	  al.	  2014),	  or	  have	  examined	  these	  impacts	  qualitatively	  across	  broader	  issues	  (Grossman	  2008;	  Heyd	  and	  Brooks	  2009;	  Adger	  et	  al.	  2012)	  or	  in	  highly	  localized	  circumstances	  (Ford	  et	  al.	  2006;	  Turner	  and	  Clifton	  2009;	  Wolf	  et	  al.	  2012).	  For	  instance,	  while	  discourses	  on	  resilience,	  adaptability,	  and	  vulnerability	  have	  served	  to	  conceptualize	  notions	  regarding	  interactions	  	   2	  within	  socio-­‐ecological	  systems,	  adaptive	  processes,	  and	  non-­‐linear	  pathways	  of	  environmental	  change	  (see	  Folke	  2006;	  Gallopín	  2006;	  Füssel	  2007;	  Folke	  et	  al.	  2010),	  their	  use	  is	  predominantly	  restricted	  to	  score-­‐based	  approaches	  that	  define	  qualitative	  or	  quantitative	  indicators	  of	  resilience	  or	  adaptive	  capacity	  within	  the	  context	  of	  one	  or	  more	  regional	  case	  studies	  (Marshall	  et	  al.	  2010;	  Schwarz	  et	  al.	  2011).	  Although	  these	  approaches	  highlight	  key	  issues,	  a	  framework	  that	  merges	  quantitative	  projections	  of	  climate	  change	  impacts	  to	  fisheries	  with	  qualitative	  studies	  of	  the	  human	  dimensions	  of	  environmental	  change	  could	  facilitate	  a	  more	  integrated	  approach	  to	  identifying	  viable	  mitigation	  and	  adaptation	  strategies.	  	  	  Increasingly,	  scenario-­‐based	  assessments	  have	  offered	  promising	  potential	  to	  improve	  our	  ability	  to	  examine	  questions	  and	  to	  identify	  challenges	  that	  are	  likely	  to	  be	  encountered	  under	  climate	  change	  (IPCC	  2014),	  with	  specific	  application	  in	  the	  context	  of	  marine	  fisheries	  (Jones	  et	  al.	  2014).	  Plausible	  scenarios	  constructed	  from	  expert	  knowledge	  have	  been	  employed	  by	  the	  Intergovernmental	  Panel	  on	  Climate	  Change	  (IPCC)	  to	  serve	  as	  a	  framework	  for	  investigating	  key	  questions	  and	  for	  engaging	  in	  discussions	  regarding	  mitigation	  and	  adaptation	  prospects	  (Moss	  et	  al.	  2010).	  Moreover,	  given	  that	  models	  have	  been	  used	  extensively	  in	  fisheries	  science	  as	  necessary	  tools	  to	  address	  uncertainty	  and	  produce	  defensible	  management	  strategies	  from	  existing	  knowledge	  (Walters	  and	  Martell	  2004),	  the	  integration	  of	  climate	  projections	  with	  fisheries	  models	  has	  been	  shown	  to	  generate	  useful	  scenarios	  outlining	  potential	  impacts	  to	  marine	  ecosystems	  and	  fisheries	  (Cheung	  et	  al.	  2008a;	  Sumaila	  and	  Cheung	  2010;	  Jones	  et	  al.	  2014).	  	   3	  This	  thesis	  combines	  quantitative	  and	  qualitative	  methods	  within	  an	  interdisciplinary	  scope:	  scenarios	  of	  impacts	  to	  fisheries’	  catch	  potential	  derived	  from	  a	  dynamic	  bioclimate	  envelope	  model	  (DBEM)	  are	  combined	  with	  records	  obtained	  from	  anthropological,	  archaeological,	  and	  ethnographic	  literature	  to	  inform	  a	  more	  holistic	  understanding	  of	  how	  community-­‐based	  knowledge	  might	  be	  applied	  to	  respond	  to	  climate-­‐related	  impacts	  to	  fisheries.	  	  	  1.2 Context	  To	  illustrate	  how	  such	  methods	  could	  be	  applied,	  I	  have	  focused	  on	  coastal	  First	  Nations	  whose	  unceded	  territories	  are	  situated	  along	  the	  Pacific	  Northwest	  Coast	  of	  British	  Columbia	  (BC),	  Canada	  (Figure	  1.1).	  These	  Nations	  have	  demonstrated	  exemplary	  resilience	  in	  the	  face	  of	  anthropogenic	  and	  environmental	  change	  for	  millennia,	  having	  occupied	  this	  region	  for	  more	  than	  10,000	  years	  (Orchard	  and	  Clark	  2005;	  Erlandson	  et	  al.	  2008).	  	  However,	  given	  the	  intrinsic	  importance	  of	  the	  marine	  ecosystems	  to	  coastal	  First	  Nations—as	  cited	  extensively	  in	  the	  archaeological,	  anthropological,	  and	  ethnographic	  literature	  (Stewart	  1977;	  Newell	  1993;	  Mos	  et	  al.	  2004;	  Moss	  and	  Cannon	  2011b)—unprecedented	  climate	  change	  (IPCC	  2013a)	  poses	  a	  considerable	  threat	  to	  First	  Nations’	  food	  sovereignty,	  cultural	  practices,	  economic	  autonomy,	  and	  spiritual	  values	  through	  fisheries	  (Turner	  and	  Clifton	  2009;	  Downing	  and	  Cuerrier	  2011)(Chapter	  2).	  However,	  despite	  the	  risks	  associated	  with	  climate	  change,	  First	  Nations’	  extensive	  accumulation	  of	  knowledge	  through	  adaptive	  ecosystem-­‐based	  management	  strategies	  has	  provided	  them	  with	  considerable	  experience	  in	  accommodating	  environmental	  change	  and	  interpreting	  ecological	  indicators	  and	  relationships	  (Berkes	  et	  al.	  2000;	  Turner	  and	  Spalding	  2013).	  	  	   4	  	  Figure	  1.1	  Map	  outlining	  First	  Nations’	  communities	  throughout	  coastal	  British	  Columbia	  (yellow)	  and	  domestic	  fishing	  areas	  identified	  during	  the	  BC	  Treaty	  Process,	  noting	  the	  sample	  of	  communities	  that	  form	  the	  First	  Nations	  included	  in	  this	  analysis	  (red).	  	  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! !!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!! !!!! !!!!!! !!!!!! !!! !!!!!!!!!!! !!!! ! !!!!!!!!!!!!! !! !!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!! !!! !125°0'W125°0'W130°0'W130°0'W135°0'W135°0'W55°0'N55°0'N50°0'N50°0'N0 200 400100 300KilometersF! Sample communities! First Nation communitiesSample domestic fishing areasFirst Nations' domestic fishing areasBC's exclusive economic zone (EEZ)British Columbia	   5	  In	  fact,	  these	  ongoing	  relationships	  with	  the	  marine	  environment	  have	  allowed	  First	  Nations—as	  well	  as	  other	  Indigenous	  and	  small-­‐scale	  fishers—to	  develop	  “intimate,	  detailed,	  and	  functionally-­‐oriented	  knowledge”	  of	  local	  marine	  ecosystems	  (MacGoodwin	  2001).	  Thus,	  coastal	  First	  Nations	  provide	  ideal	  case	  studies	  when	  examining	  how	  traditional	  ecological	  knowledge	  (TEK)	  regarding	  the	  dynamics	  of	  marine	  ecosystems	  could	  be	  applied	  to	  develop	  climate-­‐resilient	  pathways	  facilitating	  mitigation	  and	  adaptation	  (Reidlinger	  and	  Berkes	  2001;	  Berkes	  2009)(Chapter	  3).	  	  1.2.1 Aboriginal	  title	  and	  the	  “right	  to	  fish”	  Under	  colonialism,	  First	  Nations	  have	  experienced	  considerable	  challenges	  in	  their	  endeavour	  to	  maintain	  traditional	  knowledge	  and	  resource	  management	  practices	  alongside	  access	  to	  traditional	  foods,	  all	  of	  which	  serve	  to	  support	  food	  sovereignty	  and	  cultural	  continuity	  (Newell	  1993;	  Elliott	  et	  al.	  2012).	  After	  the	  Crown	  appropriated	  and	  redistributed	  fisheries	  access	  in	  the	  late	  1800s	  and	  early	  1900s,	  First	  Nations	  were	  increasingly	  marginalized	  from	  fisheries	  and	  auxiliary	  industries,	  and	  were	  simultaneously	  banned	  from	  practicing	  traditional	  fishing	  methods	  (Newell	  1993;	  Turner	  et	  al.	  2000;	  Garner	  and	  Parfitt	  2006;	  Menzies	  and	  Butler	  2008;	  Johnsen	  2009).	  Despite	  the	  many	  barriers	  imposed	  through	  colonialism,	  First	  Nations	  have	  continued	  to	  exert	  varying	  degrees	  of	  control	  over	  local	  resources,	  and	  have	  maintained	  their	  unceded	  territorial	  rights	  to	  their	  traditional	  lands	  and	  waters.	  	  	  	  	  In	  their	  battle	  to	  attain	  recognition	  of	  these	  rights	  under	  the	  imposed	  colonial	  legal	  framework,	  First	  Nations	  achieved	  notable	  landmarks	  that	  set	  precedents	  for	  future	  	   6	  negotiations,	  and	  that	  are	  representative	  of	  the	  ongoing	  struggle	  between	  First	  Nations	  and	  the	  Government	  of	  Canada	  in	  the	  context	  of	  resource	  management.	  	  The	  first	  key	  decision	  occurred	  during	  the	  Regina	  v.	  Sparrow	  case,	  wherein	  the	  Supreme	  Court	  of	  Canada	  upheld	  First	  Nations’	  constitutional	  right	  under	  section	  35	  of	  the	  Constitution	  Act,	  1982,	  which	  asserts	  “the	  existing	  aboriginal	  and	  treaty	  rights	  of	  the	  aboriginal	  peoples	  of	  Canada	  are	  hereby	  recognized	  and	  confirmed”	  (Constitution	  Act,	  1982,	  p.	  63).	  The	  Sparrow	  decision	  reinforced	  the	  fiduciary	  duty	  of	  the	  Crown	  to	  uphold	  inherent	  Aboriginal	  rights	  and	  ensured	  that	  the	  Aboriginal	  right	  to	  fish	  for	  food,	  social,	  and	  ceremonial	  purposes	  (FSC)	  superseded	  all	  priorities	  other	  than	  conservation	  (Garner	  and	  Parfitt	  2006).	  In	  response	  to	  this	  decision,	  DFO	  launched	  the	  Aboriginal	  Fisheries	  Strategy	  (AFS)	  in	  1992,	  thereby	  providing	  a	  framework	  that	  acknowledged	  the	  importance	  of	  fishing	  for	  FSC	  purposes	  within	  Aboriginal	  communities	  (McDaniels	  et	  al.	  1994).	  	  	  These	  affirmations	  of	  Aboriginal	  fishing	  rights	  and	  were	  further	  strengthened	  through	  the	  1997	  decision	  made	  in	  the	  Delgamuukw	  v.	  British	  Columbia	  case,	  which	  upheld	  Aboriginal	  title	  “based	  on	  the	  continued	  occupation	  and	  use	  of	  traditional	  tribal	  lands”	  (p.	  1129),	  citing	  a	  point	  made	  by	  Lambert	  J.A.	  in	  the	  Court	  of	  Appeal:	  	   .	  .	  .	  the	  legal	  rights	  of	  the	  Indian	  people	  will	  have	  to	  be	  accommodated	  within	  our	  total	  society	  by	  political	  compromises	  and	  accommodations	  based	  in	  the	  first	  instance	  on	  negotiation	  and	  agreement	  and	  ultimately	  in	  accordance	  with	  the	  sovereign	  will	  of	  the	  community	  as	  a	  whole	  (Court	  of	  Appeal,	  [1993]	  	   7	  5	  W.W.R.	  97,	  pp.	  379-­‐380,	  as	  cited	  in	  Supreme	  Court	  of	  Canada	  1997,	  pp.	  379-­‐80).	  	  Thus,	  the	  trial	  acknowledged	  the	  requirement	  for	  all	  external	  parties—whether	  governmental	  or	  corporate—to	  consult	  and	  accommodate	  First	  Nations	  in	  all	  matters	  affecting	  Aboriginal	  title	  and	  rights.	  As	  cited	  in	  Garner	  and	  Parfitt	  (2006),	  Brenda	  Gaertner—a	  lawyer	  specializing	  in	  Aboriginal	  law—noted	  the	  significance	  of	  the	  decision	  with	  respect	  to	  fisheries	  issues	  in	  a	  2004	  report	  to	  the	  First	  Nation	  Panel:	  	   .	  .	  .	  the	  Department	  of	  Fisheries	  and	  Oceans	  Canada	  (‘DFO’)	  must	  ensure	  that	  First	  Nations	  are	  consulted	  in	  decision-­‐making	  about	  the	  allocation	  of	  the	  resource,	  and	  that	  the	  actual	  allocation	  of	  the	  resource	  accommodates	  the	  priority	  of	  Aboriginal	  peoples.	  This	  requires	  that	  First	  Nations	  be	  consulted	  on	  the	  full	  range	  of	  allocations	  of	  the	  fisheries	  resources,	  beyond	  just	  issues	  of	  allocations	  for	  primary	  food,	  social	  and	  ceremonial	  purposes.	  (p.	  13)	  	  The	  Aboriginal	  “right	  to	  fish”	  moved	  beyond	  fishing	  for	  FSC	  purposes	  to	  include	  commercial	  rights	  through	  trials—such	  as	  Van	  der	  Peet,	  Gladstone,	  and	  N.T.C.	  Smokehouse	  (Garner	  and	  Parfitt	  2006)—illustrating	  the	  existence	  of	  pre-­‐contact	  economies	  revolving	  around	  the	  barter	  and	  trade	  of	  marine	  resources	  between	  First	  Nations.	  	  	  While	  only	  the	  Gladstone	  case	  successfully	  attained	  recognition	  of	  a	  pre-­‐contact	  commercial	  economy	  involving	  the	  sale	  of	  herring	  spawn-­‐on-­‐kelp	  (Garner	  and	  Parfitt	  	   8	  2006),	  the	  underrepresentation	  of	  First	  Nations	  within	  the	  commercial	  fishing	  sectors	  was	  acknowledged	  by	  DFO	  during	  the	  implementation	  of	  the	  AFS	  in	  1992,	  and	  led	  to	  the	  creation	  of	  the	  Allocation	  Transfer	  Program	  in	  1994.	  This	  program	  aims	  to	  support	  fisheries-­‐based	  economic	  development	  for	  coastal	  First	  Nations	  through	  comprehensive	  fisheries	  agreements	  that	  transfer	  existing	  commercial	  licences	  or	  quotas	  to	  First	  Nations	  on	  a	  communal	  basis,	  with	  87	  communal	  commercial	  licenses	  having	  been	  allocated	  to	  First	  Nations	  by	  2006	  (Garner	  and	  Parfitt	  2006).	  	  1.2.2 Projected	  climate	  change	  impacts	  on	  Pacific	  Northeast	  marine	  ecosystems	  Given	  the	  historical	  challenges	  faced	  by	  First	  Nations	  in	  their	  efforts	  to	  attain	  recognition	  of	  unceded	  territorial	  rights	  to	  fishing,	  projected	  impacts	  to	  the	  marine	  environments	  that	  play	  critical	  roles	  in	  their	  livelihoods	  pose	  new	  challenges	  in	  addition	  to	  existing	  pressures.	  The	  marine	  ecosystems	  found	  in	  the	  Pacific	  Northeast	  basin	  are	  expected	  to	  exhibit	  variable	  responses	  to	  climate	  given	  the	  dynamic	  interfaces	  that	  characterize	  the	  region	  and	  the	  diverse	  biota	  therein	  (Okey	  et	  al.	  2014).	  Recent	  studies	  have	  projected	  scenarios	  that	  vary	  by	  region	  (Cheung	  et	  al.	  2011b;	  Ainsworth	  et	  al.	  2011)	  and	  taxon	  (Hunter	  et	  al.	  2014)(Table	  1.1).	  At	  a	  larger	  scale,	  however,	  the	  findings	  obtained	  through	  these	  studies	  corroborate	  the	  global	  trend	  of	  poleward	  shifts	  in	  the	  distributions	  of	  marine	  species	  (Perry	  et	  al.	  2005;	  Poloczanska	  et	  al.	  2013)	  and	  regional	  changes	  in	  fisheries	  catch	  potential	  (Cheung	  et	  al.	  2010;	  Pinsky	  and	  Fogarty	  2012).	  	  	  	  	  	   9	  Table	  1.1	  Examples	  of	  studies	  estimating	  the	  impacts	  of	  climate	  change	  on	  marine	  species	  found	  along	  the	  Pacific	  Northwest	  Coast	  of	  British	  Columbia.	  	  STUDY	   REGION(S)	  AND	  SAMPLE	  SIZE	   APPROACH	   KEY	  RESULTS	  	   	   	   	  Cheung	  et	  al.	  2011b	   Northern	  Shelf	  (n	  =	  152	  species),	  Southern	  Shelf	  (n	  =	  155),	  the	  Strait	  of	  Georgia	  (n	  =	  150),	  and	  the	  Offshore	  Pacific	  (n	  =	  149).	  	  	  Large-­‐scale	  study	  of	  climate	  change	  impacts	  to	  the	  turnover	  rate	  of	  commercially	  exploited	  marine	  species	  in	  Canada’s	  ecoregions	  using	  a	  dynamic	  bioclimate	  envelope	  model	  (DBEM).	  Includes	  44	  species	  assessed	  in	  Chapter	  1	  study.	  Low	  species	  turnover	  rates	  projected	  by	  2050	  within	  these	  four	  regions	  (less	  than	  0.1	  per	  100	  km2).	  Species	  loss	  highest	  in	  the	  Northern	  and	  Southern	  Shelf	  regions.	  Ainsworth	  et	  al.	  2011	   Northern	  British	  Columbia	  (n	  =	  53	  functional	  groups),	  West	  Coast	  Vancouver	  Island	  (n	  =	  15	  functional	  groups).	  Used	  trophodynamic	  ecosystem	  models	  (Ecopath	  with	  Ecosim)	  for	  each	  region	  of	  the	  Northeast	  Pacific	  to	  examine	  impacts	  to	  food	  webs	  and	  fisheries	  associated	  with	  five	  different	  drivers	  (deoxygenation,	  acidification,	  range	  shifts,	  zooplankton	  community	  structure,	  and	  primary	  productivity).	  Individual	  climate	  drivers	  affect	  fisheries	  landings	  minimally	  (<7%),	  with	  the	  exception	  of	  range	  shifts	  (54%	  reduction	  in	  landings),	  which	  affected	  the	  pelagic	  fisheries	  the	  most.	  Shellfish	  and	  rockfish	  fisheries	  do	  better	  in	  Northern	  British	  Columbia	  under	  some	  scenarios,	  the	  former	  depending	  on	  increased	  availability	  of	  zooplankton.	  	  	  	  	  Hunter	  et	  al.	  2014	   West	  Coast	  Vancouver	  Island	  (n	  =	  43	  species)	  Employed	  a	  climate	  change	  risk	  framework	  to	  assess	  species’	  sensitivities	  to	  climate	  change	  by	  compiling	  risk	  scores	  based	  on	  12	  attributes	  (e.g.,	  fecundity,	  recruitment	  period,	  age	  at	  maturity,	  physiological	  tolerance,	  mobility,	  habitat	  availability,	  etc.).	  Elasmobranchs	  (equilibrium	  strategists)	  were	  ranked	  most	  sensitive	  to	  climate	  change,	  while	  flatfishes	  (periodic	  strategists)	  were	  ranked	  least	  sensitive	  due,	  in	  part,	  to	  low	  variability	  in	  abundance	  and	  periodically	  strong	  recruitment	  events.	  	  	  	   10	  1.3 Research	  objectives	  The	  objective	  of	  this	  study	  is	  to	  address	  two	  research	  questions:	  	  	   1. What	  are	  the	  projected	  changes	  to	  relative	  catch	  potential	  for	  coastal	  First	  Nations’	  commercial	  and	  food,	  social	  and	  ceremonial	  fisheries	  under	  the	  lower	  and	  upper	  range	  of	  climate	  change	  scenarios?	  	  	  2. (a)	  How	  have	  coastal	  First	  Nations	  historically	  responded	  to	  change	  within	  marine	  ecosystems,	  and	  (b)	  how	  might	  traditional	  ecological	  knowledge	  (TEK)	  and	  traditional	  fisheries	  management	  systems	  be	  used	  to	  establish	  climate-­‐resilient	  pathways	  for	  fisheries	  under	  climate	  change?	  	  To	  achieve	  this	  objective,	  I	  employ	  a	  scenario-­‐based	  framework	  that	  merges	  climate	  change	  projections	  regarding	  changes	  in	  fisheries	  catch	  potential	  with	  a	  qualitative	  analysis	  of	  First	  Nations’	  traditional	  fisheries	  management	  strategies	  that	  could	  inform	  mitigation	  and	  adaptation	  pathways.	  	  	  In	  Chapter	  2,	  a	  dynamic	  bioclimate	  envelope	  model	  (DBEM)(Cheung	  et	  al.	  2008a)	  is	  used	  to	  project	  the	  change	  in	  relative	  abundance,	  distribution,	  and	  richness	  of	  98	  species	  of	  cultural	  and	  commercial	  importance	  to	  a	  sample	  of	  coastal	  First	  Nations	  under	  the	  lower	  and	  upper	  ranges	  of	  climate	  change,	  as	  defined	  by	  the	  Intergovernmental	  Panel	  on	  Climate	  Change	  (representative	  concentration	  pathways	  [RCPs]	  2.6	  and	  8.5,	  respectively).	  These	  results	  are	  then	  used	  to	  estimate	  changes	  in	  relative	  catch	  potential	  for	  First	  Nations’	  commercial	  and	  	   11	  FSC	  fisheries,	  using	  British	  Columbia’s	  exclusive	  economic	  zone	  (EEZ)	  and	  First	  Nations’	  respective	  domestic	  fishing	  areas	  (DFAs)	  as	  study	  areas.	  Through	  these	  analyses,	  I	  identify	  key	  fisheries	  management	  issues	  that	  are	  likely	  to	  arise	  given	  regional	  trends	  in	  range	  shifts	  and	  fisheries	  impacts.	  	  	  Chapter	  3	  offers	  an	  interdisciplinary,	  qualitative	  analysis	  of	  how	  First	  Nations’	  worldviews,	  values	  and	  knowledge	  could	  be	  aligned	  with	  “modern”	  fisheries	  management	  strategies	  in	  order	  to	  mitigate	  climate	  change	  within	  their	  traditional	  territories.	  By	  employing	  a	  scenario-­‐based	  framework,	  I	  explore	  the	  potential	  application	  of	  TEK	  and	  traditional	  fisheries	  management	  strategies	  in	  the	  context	  of	  three	  case	  studies	  of	  climate-­‐related	  impacts	  to	  fisheries,	  which	  derive	  from	  Chapter	  2.	  By	  drawing	  from	  a	  literature	  review	  of	  historical	  responses	  to	  environmental	  change	  chronicled	  in	  anthropological,	  archaeological,	  and	  ethnographic	  contexts,	  I	  outline	  theoretical	  climate-­‐resilient	  pathways	  under	  low,	  medium,	  and	  high	  levels	  of	  adaptive	  capacity,	  where	  adaptive	  capacity	  is	  defined	  according	  to	  the	  ability	  of	  a	  fishery	  to	  offset	  declines	  in	  catch	  potential	  through	  alternative	  harvests,	  a	  spatial	  redistribution	  of	  fishing	  effort,	  or	  increased	  stock	  productivity	  associated	  with	  selective	  harvesting	  methods	  or	  mariculture	  (e.g.,	  traditional	  clam	  beds).	  This	  analysis	  identifies	  important	  fisheries	  management	  caveats	  under	  climate	  change,	  such	  as	  the	  tendency	  of	  adaptation	  responses	  to	  externalize	  impacts,	  and	  to	  thereby	  redistribute—rather	  than	  offset—declines	  in	  catch	  potential.	  	  	  Ultimately,	  this	  thesis	  offers	  a	  preliminary	  methodology	  for	  integrating	  model-­‐based	  climate	  change	  projections	  of	  fisheries	  impacts	  with	  an	  anthropological	  understanding	  of	  	   12	  the	  human	  dimensions	  of	  climate	  change.	  By	  doing	  so,	  I	  demonstrate	  the	  versatility	  of	  interdisciplinary	  approaches	  by	  producing	  a	  framework	  that	  is	  both	  easily	  modified	  and	  transferrable	  to	  other	  international	  contexts—particularly	  where	  data-­‐poor,	  small-­‐scale	  or	  Indigenous	  fisheries	  seek	  a	  better	  understanding	  of	  potential	  impacts	  and	  viable	  responses	  to	  climate	  change	  that	  leverage	  local	  engagement	  and	  expertise.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   13	  2 PROJECTING	  CLIMATE	  CHANGE	  IMPACTS	  TO	  THE	  CATCH	  POTENTIAL	  OF	  PACIFIC	  FIRST	  NATIONS’	  FISHERIES	  	  2.1 Introduction	  Theoretical	  and	  empirical	  evidence	  of	  the	  influence	  of	  anthropogenic	  climate	  change	  on	  the	  productivity	  and	  ecology	  of	  marine	  ecosystems	  has	  been	  witnessed	  globally,	  spanning	  tropical,	  temperate,	  and	  polar	  regions	  (Roessig	  et	  al.	  2005;	  Perry	  et	  al.	  2005;	  Bates	  et	  al.	  2013;	  Poloczanska	  et	  al.	  2013).	  The	  majority	  of	  observed	  warming—over	  90	  per	  cent—has	  accumulated	  within	  the	  world’s	  oceans,	  with	  sea	  surface	  temperature	  (SST)	  expecting	  to	  warm	  between	  0.6°C	  and	  2.0°C	  by	  the	  end	  of	  the	  21st	  century	  (IPCC	  2013a).	  Studies	  have	  depicted	  scenarios	  in	  which	  accompanying	  shifts	  in	  the	  distribution	  and	  abundance	  of	  commercially	  important	  species	  are	  expected	  to	  alter	  the	  catch	  potential	  of	  global	  fisheries	  (Cheung	  et	  al.	  2008a;	  Allison	  et	  al.	  2009;	  Cheung	  et	  al.	  2010;	  Sumaila	  et	  al.	  2011;	  Barange	  et	  al.	  2014).	  However,	  while	  commercial	  impacts	  have	  been	  explored,	  few	  efforts	  have	  been	  made	  to	  generate	  scenarios	  of	  potential	  impacts	  to	  small-­‐scale	  fishing	  communities	  that	  exhibit	  social,	  cultural	  and	  economic	  dependence	  on	  marine	  ecosystems	  through	  fisheries.	  	  	  First	  Nations	  situated	  along	  the	  Pacific	  coast	  of	  Canada	  are	  representative	  of	  Indigenous	  communities	  whose	  small-­‐scale	  fishing	  practices	  and	  diversified	  harvest	  and	  storage	  of	  marine	  resources—predominantly	  that	  of	  salmon,	  in	  this	  instance—have	  played	  essential	  roles	  in	  the	  development	  of	  their	  cultural	  complexity	  (Cannon	  1998;	  Butler	  and	  Campbell	  2004;	  Campbell	  and	  Butler	  2010).	  Having	  occupied	  the	  Pacific	  Northwest	  Coast	  for	  more	  than	  10,000	  years	  (Orchard	  and	  Clark	  2005;	  Erlandson	  et	  al.	  2008),	  the	  emergence	  of	  maritime	  cultures	  among	  First	  Nations	  accommodated	  increased	  mobility,	  regional	  trade	  	   14	  expansion,	  and	  intensified	  harvest	  of	  more	  remote	  marine	  species	  through	  travel	  at	  sea	  (Ames	  2002).	  The	  traditional	  ecological	  knowledge	  (TEK)	  and	  traditional	  phenological	  knowledge	  (TPK)	  that	  accumulated	  during	  these	  millennia	  provide	  a	  holistic	  understanding	  of	  both	  ecological	  principles,	  such	  as	  the	  interrelatedness	  of	  all	  environmental	  components	  (Turner	  et	  al.	  2000;	  Menzies	  and	  Butler	  2007),	  and	  the	  seasonal	  timing	  of	  growth,	  development,	  reproduction	  and	  migration	  of	  organisms,	  respectively	  (Turner	  and	  Clifton	  2009).	  This	  knowledge	  imparted	  respect	  for	  marine	  and	  terrestrial	  organisms	  and,	  by	  instilling	  a	  principle	  of	  stewardship	  (Haggan	  et	  al.	  2004),	  facilitated	  sustainable	  harvesting	  and	  management	  of	  these	  organisms	  (Trosper	  2002).	  	  	  Traditional	  foods	  are	  of	  such	  unequivocal	  importance	  to	  First	  Nations	  situated	  along	  coastal	  BC	  that	  observed	  declines	  in	  the	  abundance	  of	  these	  resources	  associated	  with	  mismanagement	  or	  climate	  change	  can	  lead	  to	  devastating	  economic,	  nutritional,	  and	  cultural	  impacts	  to	  communities	  (Chan	  et	  al.	  2011;	  Gregory	  et	  al.	  2011;	  Turner	  et	  al.	  2013).	  Many	  First	  Nations	  have	  noted	  significant	  climate-­‐related	  impacts	  manifesting	  in	  decreased	  availability	  of	  traditional	  foods	  through	  declining	  abundance,	  altered	  growth	  and	  migration	  patterns,	  and	  reduced	  predictability	  previously	  established	  through	  TEK	  and	  TPK	  (Turner	  and	  Clifton	  2009;	  Chan	  et	  al.	  2011).	  Thus,	  it	  is	  necessary	  to	  improve	  our	  understanding	  of	  challenges	  that	  are	  likely	  to	  be	  faced	  increasingly	  by	  Indigenous	  peoples	  under	  climate	  change,	  thereby	  allowing	  for	  the	  development	  and	  implementation	  of	  mitigation	  and/or	  adaptation	  strategies.	  	  	   15	  This	  study	  seeks	  to	  address	  this	  knowledge	  gap	  by	  identifying	  scenarios	  that	  might	  arise	  given	  impacts	  to	  fisheries	  catch	  potential	  associated	  with	  a	  changing	  global	  climate.	  To	  obtain	  scenarios,	  the	  Intergovernmental	  Panel	  on	  Climate	  Change’s	  (IPCC’s)	  representative	  concentration	  pathways	  (RCPs)	  2.6	  and	  8.5—representing	  a	  low	  and	  high	  range	  of	  climate	  change,	  respectively—were	  used	  to	  project	  shifts	  in	  species	  abundance,	  richness	  and	  distribution	  using	  a	  20-­‐year	  average	  of	  2050	  relative	  to	  2000	  under	  changing	  environmental	  conditions.	  The	  resulting	  projections	  provide	  an	  opportunity	  to	  heuristically	  and	  proactively	  identify	  critical	  fisheries	  management	  challenges	  with	  respect	  to	  regional	  and	  localized	  impacts	  to	  First	  Nations’	  fisheries.	  	  	  	  2.2 Materials	  and	  methods	  2.2.1 Sampling	  method	  While	  referred	  to	  collectively	  as	  First	  Peoples	  of	  the	  Pacific	  Northwest	  Coast	  (Moss	  2011),	  First	  Nations	  residing	  along	  coastal	  BC	  vary	  with	  respect	  to	  culture,	  traditions,	  and	  diet,	  making	  it	  inappropriate	  to	  assess	  climate-­‐related	  impacts	  to	  First	  Nations	  as	  if	  they	  were	  a	  single,	  homogenous	  entity	  (Turner	  et	  al.	  2000).	  Therefore,	  First	  Nations	  were	  purposively	  selected	  from	  each	  of	  the	  seven	  coastal	  administrative	  regions	  defined	  by	  the	  BC	  First	  Nations	  Fisheries	  Council	  (FNFC)1,	  forming	  a	  sample	  of	  groups	  with	  diverse	  marine	  resources,	  geographical	  locations,	  territorial	  sizes,	  and	  treaty	  statuses	  (see	  Table	  2.1).	  Ultimately,	  12	  First	  Nations	  were	  selected,	  7	  of	  which	  fall	  under	  two	  overarching	  councils	  negotiating	  in	  the	  BC	  treaty	  process:	  the	  Council	  of	  the	  Haida	  Nation	  and	  the	  Maa-­‐nulth	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  For	  more	  information,	  please	  see	  the	  BC	  First	  Nations	  Fisheries	  Council’s	  website:	  http://www.fnfisheriescouncil.ca/regions.	  	   16	  First	  Nations.	  For	  the	  purpose	  of	  this	  study,	  these	  12	  Nations	  are	  referred	  to	  collectively	  under	  their	  respective	  treaty	  councils	  (see	  Table	  2.1).	  	  	  	  The	  FNFC’s	  administrative	  regions	  intersect	  with	  five	  ecological	  regions:	  the	  North	  Coast,	  comprising	  the	  Hecate	  Strait	  and	  Dixon	  Entrance;	  Haida	  Gwaii,	  which	  includes	  the	  waters	  surrounding	  the	  islands;	  the	  Central	  Coast,	  including	  Queen	  Charlotte	  Sound,	  Queen	  Charlotte	  Strait,	  and	  the	  southern	  tip	  of	  Hecate	  Strait;	  the	  Strait	  of	  Georgia;	  and	  the	  west	  coast	  of	  Vancouver	  Island	  (WCVI)(Riddell	  2004;	  Johannessen	  et	  al.	  2007;	  Johannessen	  and	  McCarter	  2010;	  Okey	  et	  al.	  2014).	  First	  Nations	  are	  thereby	  exposed	  to	  different	  climate-­‐related	  impacts	  to	  fisheries	  due	  to	  the	  differing	  ecological	  characteristics	  of	  these	  regions	  and	  to	  differing	  traditional	  and	  commercial	  harvests.	  Moreover,	  of	  the	  Nations	  selected,	  the	  ‘Namgis,	  Tla’amin,	  Tsawwassen,	  and	  Maa-­‐nulth	  First	  Nations	  treaty	  groups	  either	  hold	  ratified	  treaties	  that	  incorporate	  fisheries	  agreements,	  or	  are	  in	  the	  final	  stages	  of	  ratification	  (BC	  Treaty	  Commission	  2013).	  These	  agreements	  identify	  key	  aquatic	  resources	  for	  each	  of	  the	  participating	  communities	  through	  commercial	  and	  FSC2	  allocations,	  and	  outline	  different	  levels	  of	  engagement	  in	  fisheries	  management	  and	  access	  to	  resources.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  For	  more	  information	  regarding	  food,	  social	  and	  ceremonial	  fisheries,	  please	  see	  Chapter	  1,	  section	  1.2.1,	  or	  refer	  to	  DFO’s	  “Aboriginal	  Fisheries	  Strategy”	  documentation,	  obtained	  from:	  http://www.dfo-­‐mpo.gc.ca/fm-­‐gp/aboriginal-­‐autochtones/afs-­‐srapa-­‐eng.htm.	  	  	  	   17	  First	  Nations’	  domestic	  fishing	  areas	  (DFAs)	  were	  derived	  from	  Statement	  of	  Intent	  (SOI)	  boundaries	  identified	  during	  the	  BC	  treaty	  process3.	  These	  boundaries	  were	  then	  converted	  to	  0.5°	  latitudinal	  by	  0.5°	  longitudinal	  grid	  cells	  to	  reflect	  corresponding	  species	  habitat	  (Figure	  2.1).	  Cells	  shared	  by	  more	  than	  one	  First	  Nation	  are	  denoted,	  but	  do	  not	  necessarily	  reflect	  an	  overlap	  in	  territorial	  claims	  due	  to	  the	  scale	  of	  the	  grid.	  While	  these	  boundaries	  do	  not	  signify	  the	  full	  extent	  of	  territory	  previously	  used	  by	  First	  Nations,	  particularly	  with	  respect	  to	  the	  sharing	  of	  resources	  between	  communities	  (Turner	  and	  Jones	  2000;	  Trosper	  2003;	  Haggan	  et	  al.	  2004),	  the	  boundaries	  serve	  to	  illustrate	  approximate	  areas	  requested	  by	  First	  Nations	  for	  FSC	  fishing	  purposes	  at	  the	  finest	  scale	  that	  can	  be	  reconciled	  with	  current	  global	  climate	  modelling	  (GCM)	  approaches.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  3	  Shapefile	  of	  SOI	  boundaries	  (BC	  Treaty	  Commission	  2005)(last	  accessed	  22	  June	  2014):	  https://apps.gov.bc.ca/pub/geometadata/metadataDetail.do?recordUID=45438&recordSet=ISO19115.	  	  	  	   18	  Table	  2.1	  Sample	  of	  First	  Nations	  and	  respective	  regions	  and	  treaty	  groups	  included	  in	  this	  study.	  	  FIRST	  NATIONS	   ADMIN.	  REGION1	   ECO-­‐REGION	   TREATY	  GROUP2	   REG.	  POP.3	   EST.	  SIZE	  OF	  DFA	  (sq.	  km.)4	   TREATY	  STATUS2	  Gitga’at	  First	  Nation	   North	  Coast	   Hecate	  Strait/	  Dixon	  Entrance	   Tsimshian	  First	  Nations	   733	   8,520	   Agreement-­‐in-­‐principle	  negotiations	  Skidegate	  Band	  Council;	  Old	  Massett	  Village	  Council	   Haida	  Gwaii	   Haida	  Gwaii	   Council	  of	  the	  Haida	  Nation	   1,604;	  2,962	   74,235	   Agreement-­‐in-­‐principle	  negotiations	  Heiltsuk	  First	  Nation	   Central	  Coast	   Central	  Coast	   Independent	   2,362	   10,800	   No	  treaty	  negotiations	  (since	  2001)	  ‘Namgis	  First	  Nation	   North	  Vancouver	  Island	  and	  Mainland	  Inlets	   Central	  Coast	   Independent	   1,787	   2,615	   Advanced	  agreement-­‐in-­‐principle	  Huu-­‐ay-­‐aht	  First	  Nation;	  	  Ka:’yu:’k’t”h’	  /	  Chek’tles7et’h	  Nations;	  	  Toquaht	  Nation;	  Uchucklesaht	  Tribe;	  	  Ucluelet	  First	  Nation	  West	  Coast	  Vancouver	  Island	   West	  Coast	  Vancouver	  Island	   Maa-­‐nulth	  First	  Nations	   704;	  538;	  	  144;	  206;	  639	  18,870	   Ratified	  and	  implemented	  (April	  2011)	  Tla’amin	  (Sliammon)	  First	  Nation	   South	  Island	  and	  Mainland	  Inlets	   Strait	  of	  Georgia	   Independent	   1,035	   6,087	   Final	  agreement	  completed	  (not	  ratified)	  Tsawwassen	  First	  Nation	   Lower	  Mainland	   Strait	  of	  Georgia	   Independent	   342	   1,215	   Ratified	  and	  implemented	  (April	  2009)	  1	  Administrative	  regions	  based	  on	  the	  BC	  First	  Nations	  Fisheries	  Council’s	  seven	  coastal	  regions	  (http://www.fnfisheriescouncil.ca/regions)	  2	  Treaty	  groups	  and	  statuses	  accurate	  as	  of	  December	  2013	  (BC	  Treaty	  Commission	  2013).	  3	  Population	  registered	  as	  of	  December	  2013	  (AANDC	  2013).	  4	  Approximate	  size	  of	  domestic	  fishing	  areas	  derived	  from	  SOI	  boundary	  shapefiles	  (BC	  Treaty	  Commission	  2005)	  using	  ArcGIS.	  	  	   19	  Figure	  2.1	  Cells	  (0.5°	  long.	  x	  0.5°	  lat.)	  representing	  domestic	  fishing	  areas	  (on	  the	  right),	  as	  derived	  from	  Statement	  of	  Intent	  (SOI)	  boundaries	  indicated	  during	  the	  BC	  treaty	  process	  (on	  the	  left).	  Cells	  shared	  by	  more	  than	  one	  First	  Nation	  are	  denoted,	  but	  do	  not	  represent	  legal	  boundaries	  and	  are	  only	  used	  to	  assess	  relative	  availability	  of	  marine	  resources	  in	  a	  given	  cell.	  	  !H!H !H!H!H!H !H!H!H!H!H!H125°0'W130°0'W!H!H !H!H!H!H !H!H!H!H!H!H125°0'W130°0'W55°0'N50°0'N45°0'N0 150 300 450 60075Kilometers'Reserves!H 'Namgis!H Gitga'at!H Haida!H Heiltsuk!H Maa-nulth!H Tla'amin!H TsawwassenTFAsHaida /Gitga'atHaidaGitga-at /HeiltsukGitga'atHeiltsuk'NamgisMaa-nulthTla'amin /TsawwassenTsawwassenTla'amin	   20	  2.2.2 Identifying	  species	  of	  importance	  to	  coastal	  First	  Nations	  A	  sample	  of	  culturally	  and	  commercially	  important	  species	  was	  identified	  from	  the	  peer-­‐reviewed	  literature,	  government	  and	  non-­‐governmental	  organization	  (NGO)	  reports,	  treaty	  agreements,	  and	  First	  Nations’	  reports.	  Ninety-­‐eight	  species—comprising	  marine	  and	  diadromous	  fish,	  shellfish	  and	  invertebrates—were	  selected	  (summarized	  in	  Tables	  2.2	  and	  2.3;	  full	  list	  available	  in	  Supplementary	  Table	  A1,	  Appendix	  A).	  For	  the	  purpose	  of	  this	  study,	  culturally	  important	  species	  were	  loosely	  identified	  according	  to	  qualitative	  elements	  outlined	  by	  Garibaldi	  and	  Turner	  (2004):	  intensity,	  type,	  and	  multiplicity	  of	  use;	  naming	  and	  terminology	  in	  a	  language;	  use	  as	  seasonal	  or	  phenological	  indicators;	  roles	  in	  narratives,	  ceremonies,	  or	  symbolism;	  persistence	  and	  memory	  of	  use	  in	  relationship	  to	  cultural	  change;	  level	  of	  unique	  position	  in	  culture;	  and	  extent	  to	  which	  species	  provide	  opportunities	  for	  resource	  acquisition	  from	  beyond	  the	  territory.	  This	  list	  is	  not	  intended	  to	  be	  a	  complete	  representation	  of	  the	  resources	  used	  by	  coastal	  First	  Nations,	  but	  a	  summary	  restricted	  to	  a	  sample	  of	  key	  marine	  fishes,	  shellfish	  and	  invertebrates	  documented	  in	  the	  available	  literature.	  For	  instance,	  while	  also	  contributing	  to	  First	  Nations’	  traditional	  harvests,	  marine	  mammals,	  plants	  and	  birds	  were	  not	  the	  focus	  of	  this	  study.	  	  Specific	  data	  relating	  to	  First	  Nations’	  commercial	  landings	  were	  unavailable	  from	  the	  Department	  of	  Fisheries	  and	  Oceans	  Canada	  (DFO)	  due	  to	  the	  ‘Three	  Party	  Rule’4	  under	  the	  Access	  to	  Information	  Act	  20	  (1)(b,c)(Martin	  Huang,	  pers.	  comm.,	  11th	  October	  2013).	  For	  this	  reason,	  landings	  data	  for	  species	  of	  commercial	  importance	  were	  collated	  at	  the	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4	  DFO	  applies	  a	  ‘Three	  Party	  Rule’	  to	  the	  release	  of	  information	  regarding	  commercial	  fisheries,	  wherein	  if	  three	  or	  fewer	  vessels	  report	  landings	  from	  the	  same	  sub-­‐area,	  the	  landings	  weight	  is	  considered	  confidential	  and	  is	  therefore	  not	  released.	  	  	  	   21	  regional	  scale	  from	  published	  literature	  (James	  2003;	  McRae	  and	  Pearse	  2004)	  and,	  where	  applicable,	  estimated	  indirectly	  from	  catch	  quota	  allocations	  for	  First	  Nations’	  commercial	  fisheries,	  as	  specified	  through	  treaties	  (see	  Table	  2.3).	  	  Table	  2.2	  Species	  harvested	  by	  First	  Nations	  for	  food,	  social	  and	  ceremonial	  (FSC)	  purposes,	  ordered	  alphabetically.1	  COMMON	  NAME(S)	   SCIENTIFIC	  NAME(S)	   FISHING	  METHOD(S)	  Abalone,	  northern2	   Haliotis	  kamtschatkana	   By	  hand	  or	  spear	  	  Chitons	   Katharina	  tunicate,	  Cryptochiton	  stelleri	   By	  hand	  Clams,	  intertidal	  (butter,	  manila,	  Pacific	  littleneck,	  varnish)	   Saxidomus	  gigantea,	  Venerupis	  philippinarum,	  Protothaca	  staminea,	  Nuttallia	  obscurata	   By	  hand	  Clam,	  Pacific	  razor	   Siliqua	  patula	   Digging	  Crab	  spp.	  (Dungeness,	  Pacific	  rock,	  tanner,	  purple	  shore,	  green)	  	   Metacarcinus	  magister,	  Cancer	  productus,	  Chionoecetes	  bairdi,	  Hemigrapsus	  spp.	   Handpicking,	  traps,	  gaffing,	  dip	  net,	  ring	  net	  Dogfish,	  spiny	   Squalus	  suckleyi	   By	  hook	  and	  line	  Eulachon	  (oolichan)2	   Thaleichthys	  pacificus	   By	  net	  (driftnet,	  bag	  net);	  rake	  Flounder	  and	  soles	   Pleuronectidae	   Hook	  and	  line;	  traps;	  seine	  net	  Halibut,	  Pacific	   Hippoglossus	  stenolepis	   Hook	  and	  line	  Herring,	  Pacific	  	  (including	  roe)	   Clupea	  pallasii	  pallasii	   Spawn	  on	  kelp;	  seine;	  gillnet;	  dip	  net;	  herring	  rake;	  hand	  picking	  Lingcod	   Ophiodon	  elongatus	   Hook	  and	  line;	  jigging	  in	  shallow	  waters;	  trolling	  Mussels	  (Pacific	  blue,	  northern	  horse)	   Mytilus	  trossulus	  Modiolus	  modiolus	   By	  hand	  Prawn	   Pandalus	  platyceros	   By	  trap	  Rockfish2	   Sebastes	  spp.,	  Sebastolobus	  spp.	   Hook	  and	  line;	  Jigging	  in	  shallow	  waters;	  trolling	  Sablefish	  (black	  cod)	   Anoplopoma	  fimbria	   Hook	  and	  line;	  traps	  Salmon	  (sockeye,	  chum,	   Oncorhynchus	  spp.	   Traps,	  weirs,	  beach	  seines;	  	   22	  COMMON	  NAME(S)	   SCIENTIFIC	  NAME(S)	   FISHING	  METHOD(S)	  pink,	  Chinook,	  coho)	   trap	  nets;	  fish	  wheels;	  seine;	  hook	  and	  line;	  dip	  or	  gillnets;	  spear	  	  Scallops	  (weathervane,	  spiny	  pink,	  rock)	   Chlamys	  hastata,	  Patinopecten	  caurinus,	  Crassadoma	  giganteus	   Collect	  by	  hand	  Sea	  cucumber	   Parasthichopus	  californicus	   Collect	  by	  dive	  Shrimp	   Pandalus	  spp.,	  Pandalopsis	  spp.	   Trap	  Sturgeon,	  white2	   Acipenser	  transmontanus	   Harpoon;	  weir;	  set	  or	  trawl	  net	  Urchins	   Strongylocentrotus	  spp.	   Spear	  or	  collect	  by	  hand	  1	  For	  a	  full	  list	  of	  species	  included	  in	  the	  analysis,	  please	  see	  Appendix	  A.	  2	  Fishing	  is	  restricted	  or	  no	  longer	  permitted	  for	  these	  species	  due	  to	  conservation	  concerns.	  Sources:	  Stewart	  1977;	  DFO	  and	  Gitga'at	  Indian	  Band	  2005;	  Tsawwassen	  First	  Nation	  et	  al.	  2006;	  Council	  of	  the	  Haida	  Nation	  2011;	  Gregory	  et	  al.	  2011;	  Blakley	  et	  al.	  2011;	  Haida	  Marine	  Traditional	  Knowledge	  Study	  Participants	  et	  al.	  2011;	  DFO	  and	  Council	  of	  the	  Haida	  Nation	  2013;	  Uchucklesaht	  Tribe	  2013.	  	  	  2.2.3 Mapping	  species’	  current	  distributions	  Species’	  current	  distributions	  were	  obtained	  using	  a	  species	  distribution	  model	  developed	  by	  the	  Sea	  Around	  Us	  project	  (Close	  et	  al.	  2006).	  The	  model	  determines	  distributions	  of	  marine	  fishes	  and	  invertebrates	  discriminatively	  by	  employing	  a	  set	  of	  filters	  including:	  (i)	  presence	  in	  FAO	  area(s);	  (ii)	  latitudinal	  range;	  (iii)	  range-­‐limiting	  polygons;	  (iv)	  depth	  range;	  (v)	  habitat	  preferences;	  and	  (vi)	  the	  effect	  of	  ‘equatorial	  submergence’	  (for	  detailed	  methodology,	  please	  see	  Close	  et	  al.	  2006).	  Data	  for	  these	  filters	  were	  primarily	  derived	  from	  FishBase	  (Froese	  and	  Pauly	  2013),	  SeaLifeBase	  (Palomares	  and	  Pauly	  2013),	  and	  the	  Encyclopedia	  of	  Life	  (EOL	  2013)	  and	  supplemented	  or	  cross-­‐checked	  with	  data	  collected	  from	  DFO	  reports	  and	  peer-­‐reviewed	  literature.	  For	  species	  with	  limited	  life	  history	  records,	  data	  for	  species	  within	  the	  same	  genus	  were	  used.	  Range-­‐limiting	  polygons	  were	  	   23	  produced	  through	  reference	  to	  known	  latitudinal	  and	  longitudinal	  ranges	  and	  the	  resulting	  distributional	  maps	  were	  cross-­‐checked	  with	  AquaMaps	  (Kaschner	  et	  al.	  2013),	  the	  IUCN	  Red	  List	  of	  Threatened	  Species	  (IUCN	  2014),	  and	  FAO’s	  Aquatic	  Species	  Distribution	  Viewer	  (FAO	  2013).	  Data	  for	  species	  not	  listed	  on	  FishBase	  or	  SeaLifeBase	  are	  available	  by	  request	  (l.weatherdon@fisheries.ubc.ca).	  	  	   24	  Table	  2.3	  	  First	  Nations’	  participation	  in	  British	  Columbia’s	  commercial	  fisheries	  by	  percentage	  and	  number	  of	  total	  licenses	  held	  (modified	  from	  James	  2003	  and	  Heiltsuk	  First	  Nation	  2011)1,8.	  COMMERCIAL	  LICENSE	   COMMON	  NAME	  (S)	   SCIENTIFIC	  NAME(S)	   PER	  CENT	  AND	  NUMBER	  OF	  LICENSES	  HELD	  (2003)	  Haida	  razor	  clam	   Pacific	  razor	  clam	   Siliqua	  patula	   100%	  (94	  –	  2692)	  Heiltsuk	  intertidal	  clam	   Manila	  clam,	  Pacific	  littleneck	  clam	   Venerupis	  philippinarum,	  Protothaca	  staminea	   100%	  (50)	  Herring	  spawn-­‐on-­‐kelp	   Pacific	  herring	   Clupea	  pallasii	  pallasii	   78.3%	  (36)3	  Sardine	  by	  seine	   Pacific	  sardine	   Sardinops	  sagax	   58%	  (29)	  Clam	  by	  hand	   Butter	  clam,	  manila	  clam,	  Pacific	  littleneck	  clam	   Saxidomus	  gigantea,	  Venerupis	  philippinarum,	  Protothaca	  staminea	   56.5%	  (648)	  Salmon	  seine	  (Areas	  A,	  B)	   Salmon	   Oncorhynchus	  spp.	   29.0%	  (80)4	  Salmon	  gillnet	  (Areas	  C,	  D,	  E)	   Salmon	   Oncorhynchus	  spp.	   38.1%	  (536)	  Roe	  herring	  seine	   Pacific	  herring	   Clupea	  pallasii	   25.0%	  (63)5	  Roe	  herring	  gillnet	   Pacific	  herring	   Clupea	  pallasii	   27.5%	  (345)5	  Red	  sea	  urchin	   Red	  sea	  urchin	   Mesocentrotus	  franciscanus	   12.7%	  (14)	  Eulachon6	   Eulachon	   Thaleichthys	  pacificus	   12.5%	  (2)	  Halibut	   Pacific	  halibut	   Hippoglossus	  stenolepis	   12.2%	  (53)	  Sea	  cucumber	   Giant	  red	  sea	  cucumber	   Parastichopus	  californicus	   11.8%	  (10)	  	   25	  COMMERCIAL	  LICENSE	   COMMON	  NAME	  (S)	   SCIENTIFIC	  NAME(S)	   PER	  CENT	  AND	  NUMBER	  OF	  LICENSES	  HELD	  (2003)	  Salmon	  troll	  (Areas	  F,	  G,	  H)	   Salmon	  	   Oncorhynchus	  spp.	   9.3%	  (50)	  Rockfish	  by	  hook	  and	  line	   Rockfish	   Sebastes	  spp.,	  Sebastolobus	  spp.	  	   7.3%	  (19)	  Shrimp	  trawl	   Humpback,	  northern	  pink,	  pink,	  sidestripe	   Pandalus	  spp.	  Pandalopsis	  dispar	   6.1%	  (15)	  Crab	   Dungeness	  crab,	  Pacific	  rock	  crab	   Metacarcinus	  magister,	  Cancer	  productus	   5%	  (11)	  Sablefish	   Sablefish	   Anoplopoma	  fimbria	   4.2%	  (2)	  Category	  C	  (hook	  and	  line)	   Schedule	  II	  species7	   -­‐-­‐	   3.7%	  (20)	  Prawn	   Prawn	   Pandalus	  platyceros	   3.6%	  (9)	  Groundfish	  trawl	  (T)	   Pacific	  sanddab,	  sculpins,	  greenlings,	  including	  Schedule	  II7	   Citharichthys	  sordidus,	  Cottidae	  spp.,	  Hexagrammos	  spp.,	  etc.	  7	   3.5%	  (5)	  Geoduck	  and	  horse	  clam	   Horse	  clam,	  Pacific	  geoduck,	  Pacific	  gaper	   Tresus	  capax,	  Panopea	  abrupta,	  Tresus	  nuttallii	   1.8%	  (1)	  1	  Note	  that	  not	  all	  licenses	  may	  be	  active.	  2	  As	  of	  2003,	  an	  unlimited	  number	  of	  harvesters	  were	  allowed	  under	  the	  Haida	  Communal	  Clam	  Licence	  (James	  2003).	  	  3	  80.8%	  of	  the	  quota	  was	  held	  in	  2003	  (James	  2003).	  4	  Inclusion	  of	  Aboriginal-­‐operated	  licenses	  increases	  the	  percentage	  to	  46.7%	  (James	  2003).	  5	  Percentage	  held	  of	  active	  licenses	  (James	  2003).	  6	  Commercial	  fishing	  is	  no	  longer	  permitted	  due	  to	  conservation	  status.	  	  7	  	  Outlined	  under	  Schedule	  II	  –	  Part	  II	  of	  Canada’s	  Pacific	  Fisheries	  Regulations	  (1993).	  8	  Species	  used	  to	  calculate	  aggregated	  impacts	  to	  each	  commercial	  fishery	  are	  listed	  in	  Supplementary	  Table	  A3.	  	  	  	   26	  2.2.4 Model	  selection	  and	  parameters	  The	  species-­‐based	  dynamic	  bioclimate	  envelope	  model	  (DBEM)(Cheung	  et	  al.	  2008a;	  2011a)	  and	  accompanying	  Sea	  Around	  Us	  model	  (Close	  et	  al.	  2006)(described	  in	  Section	  2.2.3)	  are	  used	  to	  model	  changes	  to	  species	  distribution	  and	  relative	  abundance	  in	  each	  0.5°	  latitudinal	  x	  0.5°	  longitudinal	  cell	  (𝑖)	  at	  each	  time	  step	  (𝑡)	  based	  on	  the	  following	  algorithm:	  	  𝒅(𝑨𝒃𝒅)𝒊𝒅𝒕 =    𝑮𝒊 + 𝑳𝒋𝒊 + 𝑰𝒋𝒊𝑵𝒋?𝟏 	   	   	   	   (	  1	  )	  	  where	  𝐴𝑏𝑑? 	  is	  the	  relative	  abundance	  of	  cell	  𝑖,	  𝐺	  is	  the	  intrinsic	  population	  growth,	  and	  𝐿™ 	  and	  𝐼™   are	  settled	  larvae	  and	  net	  migrated	  adults	  from	  surrounding	  cells	  j,	  respectively	  (Cheung	  et	  al.	  2008b;	  2009).	  The	  intrinsic	  growth	  rate	  of	  a	  population	  is	  calculated	  as	  	  𝑮𝒊 = 𝒓 ∙ 𝑨𝒃𝒅𝒊 ∙ (𝟏−   𝑨𝒃𝒅𝒊𝑲𝒊 )	   	   	   	   	   (	  2	  )	  	  where	  r	  is	  the	  intrinsic	  rate	  of	  population	  increase	  and	  𝐾? 	  is	  the	  population	  carrying	  capacity	  for	  cell	  𝑖.	  The	  model	  is	  defined	  by	  (a)	  sea	  water	  temperature;	  (b)	  bathymetry;	  (c)	  habitats;	  and	  (d)	  distance	  from	  sea	  ice	  (Cheung	  et	  al.	  2008a),	  thereby	  identifying	  a	  ‘climatic	  niche’	  (Pearson	  and	  Dawson	  2003).	  Biological	  parameterization	  of	  a	  species’	  capacity	  to	  respond	  to	  environmental	  change	  is	  represented	  using	  four	  areas	  of	  knowledge:	  current	  latitudinal	  and	  longitudinal	  range,	  habitat	  preferences,	  depth	  range,	  and	  life	  history	  parameters	  (data	  collection	  methods	  outlined	  in	  section	  2.2.3).	  An	  advection-­‐diffusion-­‐	   27	  reaction	  model	  is	  used	  to	  account	  for	  larval	  dispersal	  according	  to	  ocean	  conditions,	  while	  adult	  abundances	  diffuse	  following	  a	  gradient	  of	  habitat	  suitability	  (Cheung	  et	  al.	  2009).	  	  Through	  reference	  to	  the	  von	  Bertalanffy	  growth	  function	  (VBGF;	  von	  Bertalanffy,	  1951),	  the	  model	  estimates	  ecophysiological	  changes	  associated	  with	  changes	  in	  temperature	  and	  oxygen	  (relative	  to	  initial	  conditions)	  as	  	  𝑾? = 𝑯𝒌 𝟏/(𝟏?𝒂),  	   	   	   	   	   (	  3	  )	  and	   𝑲 = 𝒌(𝟏− 𝒂),	   	   	   	   	   (	  4	  )	  	  where	  𝑊?	  is	  the	  asymptotic	  weight,	  𝐻	  and	  𝑘	  are	  the	  coefficients	  for	  anabolism	  and	  catabolism	  respectively,	  𝐾	  is	  the	  von	  Bertalanffy	  growth	  parameter,	  and	  𝑎	  is	  the	  parameter	  within	  the	  VBGF	  that	  scales	  anabolism	  with	  body	  weight	  (Cheung	  et	  al.	  2011a).	  	  	  Two	  of	  the	  four	  RCPs	  created	  for	  the	  IPCC’s	  fifth	  report	  are	  used	  to	  reflect	  expert	  judgements	  regarding	  plausible	  future	  scenarios	  of	  emissions	  given	  socioeconomic,	  environmental	  and	  technological	  trends	  (Moss	  et	  al.	  2010)(see	  Table	  2.4).	  These	  RCPs	  represent	  the	  upper	  (RCP	  8.5)	  and	  lower	  (RCP	  2.6)	  bounds	  of	  projected	  emissions	  scenarios,	  thereby	  providing	  a	  broad	  range	  of	  estimated	  scenarios	  of	  environmental	  change	  (as	  defined	  by	  the	  IPCC)	  for	  the	  purpose	  of	  this	  study.	  	   28	  Table	  2.4	  Representative	  concentration	  pathways	  (RCPs)	  used	  in	  this	  study	  to	  capture	  upper	  and	  lower	  bounds	  of	  emissions	  scenarios	  (adapted	  from	  Moss	  et	  al.	  2010).	  NAME	   RADIATIVE	  FORCING	   CONCENTRATION	  (P.P.M.)	   PATHWAY	   MODEL	  PROVIDING	  RCP	   REFERENCES	  RCP8.5	   >	  8.5	  W	  m-­‐2	  in	  2100	   >	  1,370	  CO2-­‐equiv.	  in	  2100	   Rising	   MESSAGE1	   Riahi	  et	  al.	  2007;	  Rao	  and	  Riahi	  2006	  RCP2.6	   Peak	  at	  ~3	  W	  m-­‐2	  before	  2100	  and	  then	  declines	  Peak	  at	  ~490	  CO2-­‐equiv.	  before	  2100	  and	  then	  declines	  Peak	  and	  decline	   IMAGE2	   van	  Vuuren	  et	  al.	  2007;	  van	  Vuuren	  et	  al.	  2006	  1.	  MESSAGE,	  Model	  for	  Energy	  Supply	  Strategy	  Alternatives	  and	  their	  General	  Environmental	  Impact.	  2.	  IMAGE,	  Integrated	  Model	  to	  Assess	  the	  Global	  Environment,	  Netherlands	  Environmental	  Assessment	  Agency,	  The	  Netherlands.	  	  	  A	  coupled	  atmosphere-­‐ocean	  global	  climate	  model	  (GFDL	  CM2.1)	  and	  primary	  production	  time	  series	  data	  were	  obtained	  from	  NOAA’s	  Geophysical	  Fluid	  Dynamics	  Laboratory’s	  IPCC-­‐class	  earth	  system	  model	  (GFDL	  ESM2.1	  with	  Tracers	  of	  Phytoplankton	  with	  Allometric	  Zooplankton	  [TOPAZ],	  Dunne	  et	  al.	  2010).	  A	  geographic	  information	  systems	  (GIS)	  approach	  was	  used	  to	  represent	  the	  spatial	  change	  in	  species	  distribution	  and	  relative	  environmental	  suitability	  (RES)	  over	  time	  (ESRI,	  2013,	  ArcGIS	  Version	  10.1),	  while	  R	  (version	  3.0.0)	  was	  used	  to	  calculate	  changes	  in	  species’	  relative	  abundance,	  distribution,	  and	  richness,	  as	  well	  as	  corresponding	  changes	  in	  catch	  potential.	  	  	  	  	   29	  2.2.5 Impacts	  to	  species’	  relative	  abundance,	  distribution,	  and	  richness	  2.2.5.1 Changes	  to	  species’	  relative	  abundances	  Mean	  abundance	  (𝐴𝑏𝑑)	  per	  grid	  cell	  (0.5°	  lat.	  x	  0.5°	  long.)	  was	  derived	  for	  each	  species	  by	  applying	  the	  following	  equation	  to	  the	  results	  obtained	  from	  the	  DBEM:	  	  	  𝑨𝒃𝒅 = (𝑨𝒃𝒅𝒊,𝒕)𝒏𝒊?  𝟏 𝒏   	  	  	  	   	  	  	  	  	  	   	   	   	  	  	  	  	  	  (	  5	  )	  	  where	  𝐴𝑏𝑑?,?	  is	  the	  relative	  abundance	  for	  a	  given	  cell	  (𝑖)	  at	  time	  step	  𝑡	  (in	  years),	  and	  𝑛	  is	  the	  number	  of	  years	  used	  to	  calculate	  the	  average	  abundance.	  Twenty-­‐year	  averages	  centred	  on	  2000	  (1991-­‐2010)	  and	  2050	  (2041-­‐2060)	  were	  used	  to	  smooth	  inter-­‐annual	  and	  decadal	  variability.	  	  	  2.2.5.2 Changes	  to	  species’	  relative	  distributions	  The	  latitudinal	  centroid	  (LC)	  of	  each	  species	  was	  calculated	  using	  the	  following	  equation,	  	  𝑳𝑪 = 𝑳𝒂𝒕𝒊∗𝑨𝒃𝒅𝒊𝒏𝒊?𝟏 𝑨𝒃𝒅𝒊𝒏𝒊?𝟏   	  	   	   	   	   	   (	  6	  )	  	  where	  𝐿𝑎𝑡? 	  is	  the	  latitudinal	  centre	  of	  the	  spatial	  cell	  (𝑖),	  𝐴𝑏𝑑? 	  is	  the	  predicted	  relative	  abundance	  in	  the	  cell	  (corrected	  by	  the	  area	  of	  the	  grid	  cells),	  and	  𝑛	  is	  the	  total	  number	  of	  cells	  where	  abundance	  is	  greater	  than	  ‘0’	  (Cheung	  et	  al.	  2009;	  2012).	  The	  range	  shift	  was	  	   30	  then	  calculated	  from	  the	  difference	  between	  the	  latitudinal	  centroid	  of	  the	  projected	  and	  reference	  years,	  followed	  by	  calculation	  of	  the	  shift	  in	  distance	  (in	  kilometres)(Cheung	  et	  al.	  2011a):	  	  𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆  𝒔𝒉𝒊𝒇𝒕𝒆𝒅   𝒌𝒎 = 𝑳𝒂𝒕𝒎 − 𝑳𝒂𝒕𝒏 𝝅𝟏𝟖𝟎   ×  𝟔𝟑𝟕𝟖. 𝟐	   	   (	  7	  )	  	  	  To	  determine	  whether	  each	  species’	  latitudinal	  range	  had	  contracted	  or	  expanded,	  20-­‐year	  mean	  lower	  and	  upper	  latitudinal	  limits	  using	  the	  global	  dataset	  were	  projected	  for	  2050	  and	  compared	  with	  those	  in	  2000.	  	  These	  estimates	  were	  obtained	  for	  both	  the	  lower	  and	  upper	  climate	  change	  scenarios.	  	  	  2.2.5.3 Changes	  to	  biodiversity	  Using	  the	  results	  obtained	  from	  Equation	  1,	  changes	  to	  species	  richness	  were	  calculated	  for	  British	  Columbia’s	  EEZ	  and	  for	  the	  DFA	  of	  each	  First	  Nation.	  Relative	  average	  abundance	  data	  for	  the	  projected	  and	  reference	  periods	  were	  modified	  to	  reflect	  presence	  (‘1’)	  or	  absence	  (‘0’)	  within	  a	  given	  cell	  and	  summed	  to	  yield	  species	  richness	  for	  each	  cell	  within	  the	  area	  of	  interest.	  The	  difference	  was	  then	  obtained	  between	  the	  projected	  and	  reference	  periods.	  The	  threshold	  used	  to	  assess	  species’	  presence	  or	  absence	  was	  ‘0’,	  which	  represents	  an	  extremely	  conservative	  estimate	  given	  that	  species’	  thresholds	  would	  differ	  depending	  on	  the	  spatial	  density	  and	  dynamics	  of	  a	  population	  (Jones	  et	  al.	  2013).	  	  	  	  	   31	  2.2.6 Fisheries	  impacts	  under	  climate	  change	  	  2.2.6.1 Estimating	  relative	  change	  in	  commercial	  catch	  potential	  Change	  in	  catch	  potential	  was	  calculated	  for	  each	  0.5°	  longitudinal	  x	  0.5°	  latitudinal	  grid-­‐cell	  situated	  in	  BC’s	  exclusive	  economic	  zone	  (EEZ)	  using	  20-­‐year	  average	  abundances	  for	  2050	  relative	  to	  2000	  obtained	  from	  the	  DBEM	  simulations.	  Species	  were	  aggregated	  by	  commercial	  fishery,	  noting	  the	  proportion	  of	  species	  included	  in	  the	  analysis	  relative	  to	  those	  included	  in	  each	  fishery’s	  quota	  (see	  Appendix	  A,	  Supplementary	  Tables	  A2	  and	  A3).	  The	  empirical	  relationship	  between	  observed	  catch	  potential,	  net	  primary	  production,	  and	  range	  area	  used	  to	  estimate	  relative	  catch	  potential	  is	  represented	  by	  the	  following	  algorithm,	  	  𝑴𝒂𝒙𝒊𝒎𝒖𝒎  𝑪𝒂𝒕𝒄𝒉𝒕 = 𝑴𝒂𝒙𝒊𝒎𝒖𝒎  𝑪𝒂𝒕𝒄𝒉𝒕𝟎  ×    𝑷𝒊,𝒕  ×  𝑨𝒊,𝒕𝑷𝒊,𝒕𝟎  ×  𝑨𝒊,𝒕𝟎  	   	   (8)	  	  where	  𝑃	  and	  𝐴	  are	  the	  net	  primary	  productivity	  and	  area	  of	  cell	  𝑖	  at	  time	  step	  𝑡,	  respectively	  (Cheung	  et	  al.	  2010;	  Jones	  et	  al.	  2014).	  	  2.2.6.2 Estimating	  relative	  change	  in	  First	  Nations’	  food,	  social	  and	  ceremonial	  catch	  potential	  Impacts	  to	  relative	  catch	  potential	  for	  FSC	  purposes	  were	  estimated	  by	  using	  First	  Nations’	  DFAs	  as	  outlined	  by	  the	  SOI	  boundaries	  submitted	  to	  the	  BC	  Treaty	  Commission.	  The	  scale	  of	  the	  model	  (0.5°	  long.	  x	  0.5°	  lat.	  cells)	  yielded	  over-­‐	  and	  under-­‐representation	  of	  DFA	  boundaries.	  For	  this	  reason,	  DFA	  polygons	  were	  converted	  to	  raster	  format	  in	  ArcGIS	  	   32	  (version	  10.1)(Figure	  2.1)	  using	  the	  maximum	  combined	  area	  method,	  thereby	  ensuring	  that	  potential	  domestic	  fishing	  grounds	  were	  fully	  accounted	  for	  and	  that	  estimates	  represented	  the	  maximum	  future	  catch	  potential	  under	  climate	  change.	  	  2.2.6.3 Estimating	  potential	  impacts	  to	  landed	  revenue	  Climate-­‐related	  impacts	  to	  First	  Nations’	  commercial	  fisheries	  were	  analysed	  at	  an	  aggregated	  level	  to	  ensure	  privacy	  and	  to	  accommodate	  DFO’s	  ‘Three	  Party	  Rule’	  (see	  section	  2.2.2).	  Since	  DFO	  was	  unable	  to	  provide	  detailed	  records	  of	  First	  Nation	  licensing	  due	  to	  the	  above	  rule	  (Martin	  Huang,	  DFO,	  pers.	  comm.,	  3rd	  October	  2013),	  First	  Nations’	  participation	  in	  commercial	  fisheries	  was	  obtained	  from	  a	  study	  commissioned	  by	  British	  Columbia’s	  Ministry	  of	  Agriculture	  (then	  known	  as	  the	  Ministry	  of	  Agriculture,	  Food	  and	  Fisheries)	  in	  2003,	  which	  outlines	  the	  proportion	  of	  licenses	  and	  landed	  values	  held	  by	  First	  Nations	  between	  1999	  and	  2002	  (James	  2003)(Table	  2.3).	  Annual	  landed	  values	  by	  taxon	  or	  fishery	  (e.g.,	  herring	  spawn-­‐on-­‐kelp)	  between	  2001	  and	  2010	  were	  obtained	  from	  the	  BC	  Ministry	  of	  Agriculture’s	  annual	  reports	  and	  averaged	  to	  provide	  mean	  annual	  landed	  revenue	  (BC	  Ministry	  of	  Agriculture	  2004;	  2006;	  2008;	  2010;	  2011).	  Data	  outlining	  landed	  revenue	  in	  the	  Heiltsuk	  commercial	  intertidal	  bivalve	  fishery	  and	  First	  Nations’	  participation	  in	  the	  commercial	  green	  sea	  urchin	  fishery,	  tuna	  fishery,	  and	  groundfish	  trawl	  and	  hook	  and	  lines	  fisheries	  were	  unavailable,	  and	  were	  therefore	  not	  included	  in	  the	  estimates	  of	  impacts	  to	  landed	  revenue	  in	  the	  EEZ.	  Projected	  changes	  in	  catch	  potential	  for	  each	  commercial	  fishery	  under	  RCPs	  2.6	  and	  8.5	  were	  subsequently	  used	  to	  derive	  a	  highly	  conservative	  estimate	  of	  impacts	  to	  landed	  revenue	  (in	  2010	  CAD)	  given	  the	  approximate	  proportion	  of	  licenses	  held	  by	  First	  Nations.	  Lastly,	  a	  case	  study	  of	  commercial	  fisheries	  	   33	  situated	  within	  the	  Haida	  First	  Nation’s	  traditional	  territory	  was	  conducted	  to	  explore	  localized	  impacts.	  	  	  	  2.2.6.4 Sensitivity	  analysis	  Results	  obtained	  by	  Jones	  and	  Cheung	  (in	  press)	  for	  two	  additional	  species	  distribution	  models	  (SDMs)—	  Maxent	  (Phillips	  et	  al.	  2006)	  and	  AquaMaps	  (Kaschner	  et	  al.	  2006)—were	  used	  to	  analyse	  the	  sensitivity	  of	  the	  upper	  bounds	  for	  catch	  potential	  and	  latitudinal	  shifts	  obtained	  under	  RCP	  8.5	  to	  underlying	  assumptions	  behind	  the	  DBEM.	  In	  contrast	  with	  DBEM’s	  discriminative	  approach	  that	  combines	  mechanistic	  and	  statistical	  tools,	  Maxent	  and	  AquaMaps	  use	  statistical	  methods	  to	  produce	  bioclimatic	  envelopes	  that	  represent	  species’	  preferred	  habitats.	  Species’	  current	  distributions	  were	  determined	  from	  presence-­‐only	  data	  overlaying	  environmental	  data	  (averaged	  over	  30	  years,	  falling	  between	  1971	  and	  2000),	  thereby	  accommodating	  a	  large	  range	  of	  existing	  datasets	  and	  reducing	  the	  uncertainty	  associated	  with	  small	  sample	  sizes	  (Jones	  et	  al.	  2013).	  	  	  In	  order	  to	  assess	  the	  sensitivity	  of	  projected	  shifts	  in	  catch	  potential	  to	  interdecadal	  variability,	  two	  separate	  analyses	  were	  conducted.	  Firstly,	  the	  time	  frame’s	  capacity	  to	  influence	  results	  was	  tested	  by	  comparing	  the	  results	  from	  two	  20-­‐year	  averaged	  time	  frames	  centred	  on	  2045	  and	  2050.	  	  Secondly,	  the	  effect	  of	  extending	  the	  time	  frame	  to	  30	  years	  was	  tested	  to	  explore	  whether	  further	  smoothing	  of	  interdecadal	  variability	  would	  lead	  to	  large	  changes	  in	  the	  projections.	  	  	   34	  2.3 Results	  2.3.1 Impacts	  to	  species’	  relative	  abundance,	  distribution	  and	  richness	  Declines	  in	  relative	  abundance	  (<	  -­‐3.0%)	  are	  observed	  for	  most	  of	  the	  98	  species	  (RCP	  2.6:	  n	  =	  95;	  RCP	  8.5:	  n	  =	  84)	  within	  British	  Columbia’s	  EEZ	  under	  both	  scenarios	  of	  climate	  change,	  with	  evidence	  of	  latitudinal	  and	  regional	  trends.	  Three	  species—white	  sturgeon	  (Acipenser	  transmontanus),	  Pacific	  sardines	  (Sardinops	  sagax),	  and	  manila	  clams	  (Venerupis	  phiippinarum)—are	  projected	  to	  remain	  neutral	  or	  increase	  in	  abundance	  under	  both	  scenarios,	  while	  a	  few	  species	  (n	  =	  11)	  remain	  relatively	  neutral,	  with	  values	  oscillating	  around	  0%.	  A	  poleward	  range	  shift	  in	  mean	  abundance	  is	  projected	  for	  the	  majority	  of	  species	  (n	  >	  81)	  at	  an	  average	  rate	  of	  2.9	  to	  4.5	  kilometres	  decade-­‐1	  for	  fishes5	  and	  2.7	  to	  3.4	  kilometres	  decade-­‐1	  for	  invertebrates	  within	  BC’s	  EEZ	  (Figure	  2.2).	  	  	  At	  the	  global	  scale,	  there	  are	  six	  types	  of	  range	  shifts	  exhibited	  by	  the	  species	  included	  in	  this	  study:	  (1)	  no	  change;	  (2)	  range	  expanding	  both	  polewards	  and	  equatorially;	  (3)	  range	  expanding	  polewards,	  with	  southern	  latitudinal	  limit	  remaining	  constant;	  (4)	  range	  expanding	  polewards,	  with	  a	  trailing	  edge;	  (5)	  range	  contracting	  polewards,	  with	  the	  rate	  of	  the	  trailing	  edge	  exceeding	  that	  of	  the	  leading	  edge;	  or	  (6)	  a	  range	  contraction	  where	  both	  the	  lower	  and	  upper	  latitudinal	  limits	  contract	  (Table	  2.5).	  	  Range	  expansions	  are	  projected	  for	  75	  species	  under	  RCP	  2.6;	  however,	  only	  28	  of	  these	  show	  neutral	  or	  increasing	  catch	  potential	  within	  BC’s	  EEZ.	  	  Shifts	  are	  primarily	  polewards,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5	  Estimates	  for	  albacore	  tuna	  (Thunnus	  alalunga)	  excluded	  from	  mean	  rate	  since	  they	  are	  likely	  inaccurate	  given	  conflicting	  results	  for	  tuna	  between	  species	  distribution	  models	  (Aquamaps	  and	  Maxent	  project	  a	  large	  increase	  in	  relative	  catch	  potential	  for	  albacore).	  	  	   35	  	  Figure	  2.2	  Projected	  latitudinal	  shifts	  (km	  decade-­‐1)	  by	  functional	  group	  or	  species	  using	  a	  20-­‐year	  average	  latitudinal	  centroid	  at	  2050	  relative	  to	  2000.	  The	  line	  represents	  the	  projected	  range	  of	  possibilities	  between	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios.	  	  	  with	  only	  a	  few	  species	  simultaneously	  moving	  equatorially	  (n	  =	  19).	  	  Conversely,	  while	  range	  expansions	  are	  projected	  for	  the	  majority	  of	  species	  at	  the	  global	  scale	  under	  RCP	  8.5	  (n	  =	  76	  of	  98),	  only	  a	  few	  of	  these	  species	  (n	  =	  9)	  exhibit	  neutral	  or	  increased	  catch	  potential	  within	  BC’s	  EEZ	  (i.e.,	  Pacific	  sardine,	  Sardinops	  sagax;	  black,	  yellowmouth,	  tiger,	  and	  China	  rockfish,	  Sebastes	  spp.;	  manila	  clam,	  Venerupis	  philippinarum;	  white	  sturgeon,	  Acipenser	  transmontanus;	  and	  Pacific	  geoduck,	  Panopea	  abrupta).	  The	  majority	  of	  species	  show	  net	  poleward	  shifts	  at	  the	  global	  scale	  under	  the	  upper	  climate	  change	  scenario	  (n	  =	  85).	  For	  species	  showing	  exclusively	  poleward	  shifts	  (n	  =	  69),	  the	  rate	  of	  the	  leading	  edge	  TunaHalibutEulachonFlounder and soleChitonsShrimp and prawnsUrchinsMusselsRoundfishSalmonCrabsDogfish and skatesHerringTroutRockfishBarnaclesScallopsSea cucumbersLingcodSculpinsOystersClamsSturgeonGreenlingAbalonePerchSardinesLatitudinal shift (km decade Թñ)Functional group  or speciesScenarioRCP 2.6RCP 8.5Nï 0 2 4 6 8 10 12 14	   36	  of	  the	  range	  shift	  predominantly	  exceeds	  that	  of	  the	  trailing	  edge	  (n	  =	  57),	  which	  is	  supported	  by	  findings	  of	  other	  meta-­‐analyses	  (Poloczanska	  et	  al.	  2013).	  Only	  a	  few	  cases	  occurred	  where	  the	  rate	  of	  the	  trailing	  edge	  exceeded	  that	  of	  the	  leading	  edge,	  leading	  to	  a	  range	  contraction	  (n	  =	  12)(see	  Table	  2.5	  for	  summary).	  	  	  Table	  2.5	  Number	  of	  species	  (n	  =	  98)	  exhibiting	  different	  types	  of	  latitudinal	  range	  shifts	  under	  the	  lower	  (RCP	  2.6)	  and	  upper	  (RCP	  8.5)	  climate	  change	  scenarios	  (see	  Appendix	  E,	  Supplementary	  Table	  E2).	  	  TYPE	  OF	  RANGE	  SHIFT	   RCP	  2.6	   RCP	  8.5	  (1)	  No	  change	   10	   8	  (2)	  Range	  expansion,	  both	  polewards	  and	  equatorially;	   19	   19	  (3)	  Range	  expansion	  polewards,	  with	  constant	  lower	  latitudinal	  limit;	   48	   48	  (4)	  Range	  expansion	  polewards,	  with	  a	  trailing	  edge;	   8	   9	  (5)	  Range	  contraction	  polewards,	  with	  the	  rate	  of	  the	  trailing	  edge	  exceeding	  the	  leading	  edge;	   13	   12	  (6)	  Range	  contraction,	  where	  both	  limits	  contract.	  	  	   0	   2	  	  Marine	  biodiversity	  along	  coastal	  British	  Columbia	  remains	  quite	  high	  in	  most	  areas,	  with	  the	  spatial	  extent	  of	  each	  First	  Nation’s	  territory	  containing	  a	  minimum	  of	  81	  of	  the	  98	  species	  included	  in	  this	  study	  (Figure	  2.3(a)).	  Given	  the	  expected	  changes	  in	  climate,	  the	  absolute	  number	  of	  species	  that	  occurs	  within	  each	  cell	  (i.e.,	  with	  a	  habitat	  suitability	  of	  greater	  than	  ‘0’)	  differs	  little	  under	  each	  scenario,	  with	  gains	  or	  losses	  of	  up	  to	  3	  species	  per	  cell	  (Figure	  2.3(b)).	  Similar	  latitudinal	  patterns	  to	  those	  observed	  for	  relative	  abundance	  and	  distribution	  were	  again	  evident,	  with	  greater	  losses	  in	  biodiversity	  experienced	  towards	  the	  southern	  coast	  of	  British	  Columbia,	  falling	  primarily	  between	  48°N	  and	  51°N.	  	   37	  	  Figure	  2.3	  (a)	  Species	  richness	  by	  0.5°	  lat.	  x	  0.5°	  long.	  cell	  in	  2000	  and	  (b)	  projected	  number	  of	  species	  lost	  or	  gained	  per	  cell	  by	  2050	  under	  both	  climate	  change	  scenarios.	  Black	  lines	  identify	  First	  Nations’	  domestic	  fishing	  areas	  within	  the	  study.	  125°0'W130°0'W135°0'W55°0'N50°0'N125°0'W130°0'W135°0'W55°0'N50°0'NSpecies richness (2000)     01 - 1011 - 2021 - 3031 - 4041 - 5051 - 6061 - 7071 - 8081 - 9091 - 1000 150 30075Kilometers0 150 30075Kilometers-3 -2 -1 0 1 2 3Number of species lost or gained by 2050(b)(a)	   38	  2.3.2 Fisheries	  impacts	  under	  climate	  change	  2.3.2.1 Relative	  change	  in	  commercial	  catch	  potential	  With	  two	  exceptions,	  all	  commercial	  fisheries	  (n	  =	  15)	  show	  modest	  to	  severe	  declines	  in	  catch	  potential	  under	  both	  scenarios	  of	  climate	  change	  (Figure	  2.4).	  Estimates	  place	  the	  Pacific	  herring	  commercial	  fisheries—comprising	  roe	  herring,	  spawn-­‐on-­‐kelp,	  and	  food	  and	  bait	  fisheries—as	  likely	  to	  experience	  the	  greatest	  relative	  impact	  under	  climate	  change,	  with	  declines	  in	  catch	  potential	  ranging	  between	  28.1%	  and