Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The paper to digital media transition : defining sustainability in media supply chains Bull, Justin G. 2014

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2015_february_bull_justin.pdf [ 2.94MB ]
Metadata
JSON: 24-1.0167053.json
JSON-LD: 24-1.0167053-ld.json
RDF/XML (Pretty): 24-1.0167053-rdf.xml
RDF/JSON: 24-1.0167053-rdf.json
Turtle: 24-1.0167053-turtle.txt
N-Triples: 24-1.0167053-rdf-ntriples.txt
Original Record: 24-1.0167053-source.json
Full Text
24-1.0167053-fulltext.txt
Citation
24-1.0167053.ris

Full Text

THE	  PAPER	  TO	  DIGITAL	  MEDIA	  TRANSITION:	  DEFINING	  SUSTAINABILITY	  IN	  MEDIA	  SUPPLY	  CHAINS	  by	  Justin	  G.	  Bull	  	  A	  THESIS	  SUBMITTED	  IN	  PARTIAL	  FULFILLMENT	  OF	  THE	  REQUIREMENTS	  FOR	  THE	  DEGREE	  OF	  	  DOCTOR	  OF	  PHILOSOPHY	  in	  THE	  FACULTY	  OF	  GRADUATE	  AND	  POSTDOCTORAL	  STUDIES	  (Forestry)	  	  THE	  UNIVERSITY	  OF	  BRITISH	  COLUMBIA	  (Vancouver)	  	  	  November	  2014	  	  ©	  Justin	  G.	  Bull,	  2014	  	   	   	   	   	  	   	   iiAbstract	  The	  phrase,	  “please	  consider	  the	  environment	  before	  printing	  this	  email”	  has	  entered	  the	  common	  vernacular.	  It	  suggests	  that	  when	  I	  consider	  the	  environment,	  paper	  media	  is	  of	  particular	  concern,	  and	  by	  inference,	  digital	  media	  is	  not.	  This	  thesis	  tackles	  the	  legitimacy	  of	  this	  claim	  by	  examining	  how	  media	  sustainability	  operates	  from	  three	  critical	  perspectives:	  industry,	  consumers,	  and	  academia.	  To	  measure	  the	  paper	  industry’s	  perspective,	  a	  series	  of	  interviews	  with	  business	  executives	  along	  a	  supply	  chain	  were	  conducted.	  I	  found	  that	  collaboration	  between	  supply	  chain	  actors	  is	  a	  prerequisite	  for	  improving	  environmental	  performance.	  To	  gain	  insight	  on	  the	  consumer’s	  perspective,	  I	  surveyed	  1,400	  individuals	  in	  North	  America,	  investigating	  media	  habits	  and	  environmental	  values.	  I	  found	  that	  consumers	  are	  shifting	  from	  paper	  to	  digital	  media,	  but	  that	  environmental	  values	  have	  no	  influence	  over	  this	  shift.	  This	  suggests	  that	  consumers	  could	  be	  detached	  from	  the	  environmental	  impacts	  of	  their	  media	  choices.	  Finally,	  the	  academic	  perspective	  was	  analyzed	  through	  a	  comprehensive	  review	  of	  life	  cycle	  assessment	  (LCA)	  research	  that	  compares	  paper	  and	  digital	  media	  from	  an	  environmental	  perspective.	  The	  studies	  found	  that	  digital	  media	  is	  almost	  always	  preferable	  to	  paper,	  requiring	  less	  energy	  and	  materials.	  However,	  they	  did	  not	  assess	  the	  assumptions	  required	  in	  order	  to	  compare	  such	  different	  products.	  More	  worryingly,	  the	  context	  of	  media	  consumption	  –	  the	  industrial	  systems	  that	  produce	  paper	  and	  digital	  products	  –	  was	  never	  taken	  into	  account.	  I	  conclude	  that	  since	  a	  significant	  media	  shift	  is	  underway	  new	  methods	  are	  required	  to	  consider	  sustainability.	  The	  new	  methods	  should	  be	  anchored	  in	  two	  concepts	  that	  could	  improve	  considerations	  of	  the	  environmental	  performance	  of	  industrial	  systems.	  First,	  industrial	  ecology,	  the	  idea	  that	  industry	  might	  mimic	  nature,	  can	  strengthen	  initial	  assessments	  of	  environmental	  performance.	  Second,	  capability	  maturity	  models	  can	  assist	  in	  gauging	  the	  ability	  of	  industrial	  systems	  to	  manage	  and	  improve	  environmental	  performance	  over	  time.	  	   	   	   	   	  	   	   iiiPreface	  While	  I	  completed	  all	  of	  the	  writing,	  research,	  and	  analysis	  present	  in	  this	  dissertation,	  credit	  must	  be	  given	  my	  collaborators.	  I	  designed	  the	  research	  program	  on	  my	  own,	  although	  the	  advice	  of	  my	  supervisory	  research	  committee	  –	  Drs.	  Robert	  A.	  Kozak,	  Paul	  McFarlane,	  and	  David	  H.	  Cohen	  –	  was	  sought.	  The	  analysis	  of	  my	  research	  results	  was	  conducted	  entirely	  by	  myself,	  unless	  noted	  otherwise.	  There	  are	  four	  components	  to	  my	  research	  where	  I	  had	  the	  privilege	  of	  collaborating	  with	  other	  researchers	  and	  benefitting	  from	  the	  scrutiny	  of	  peer-­‐review.	  	  	  The	  first	  is	  Chapter	  1.1.1,	  “The	  Sustainability	  Shift.”	  A	  lengthier	  version	  of	  this	  chapter	  has	  been	  peer-­‐reviewed	  and	  is	  set	  to	  appear	  as	  “The	  meaning	  and	  means	  of	  environmental	  sustainability:	  Forestry	  in	  a	  more	  responsible	  world”	  in	  an	  untitled	  book	  published	  by	  the	  Value	  Chain	  Optimization	  Network,	  a	  research	  group	  supported	  by	  the	  National	  Sciences	  and	  Engineering	  Research	  Council	  (NSERC).	  I	  co-­‐authored	  this	  chapter	  with	  Dr.	  Robert	  A.	  Kozak,	  but	  I	  was	  responsible	  for	  most	  of	  the	  work.	  I	  designed	  the	  research	  methodology,	  identified	  all	  relevant	  source	  material,	  conducted	  the	  analysis	  of	  research	  results,	  and	  was	  lead	  author	  on	  all	  drafts	  of	  the	  paper.	  	  	  The	  second	  collaborative	  effort	  is	  Chapter	  2,	  “The	  Case	  of	  Supply	  Chains:	  Carbon’s	  Role	  in	  Paper	  Media.”	  A	  version	  of	  this	  chapter	  was	  peer-­‐reviewed	  and	  published	  in	  the	  Journal	  of	  Forest	  Products	  Business	  Research	  (Volume	  8,	  Number	  2)	  in	  2011.	  While	  I	  was	  lead	  author,	  I	  collaborated	  with	  Graham	  Kissack,	  Dr.	  Christ	  Elliot,	  Dr.	  Robert	  A.	  Kozak	  and	  Dr.	  Gary	  Q.	  Bull	  on	  the	  preparation	  and	  publication	  of	  the	  paper.	  The	  design	  of	  the	  research	  program	  was	  a	  joint	  effort,	  although	  I	  was	  tasked	  with	  implementing	  the	  majority	  of	  proposed	  research.	  I	  conducted	  interviews	  over	  the	  phone	  and	  in	  person	  with	  corporate	  executives	  in	  North	  America.	  I	  wrote	  all	  drafts	  of	  the	  paper	  and	  incorporated	  any	  edits	  that	  were	  suggested	  by	  my	  co-­‐authors.	  Mr.	  Kissack	  conducted	  the	  carbon	  footprint	  analysis,	  although	  I	  led	  the	  summation	  and	  write-­‐up	  of	  his	  work.	  The	  research	  was	  conducted	  after	  receiving	  a	  certificate	  of	  approval	  from	  the	  Behavioural	  Research	  Ethics	  Board	  (BREB	  certificate	  #H08-­‐02734).	  	  	  The	  third	  collaborative	  effort	  is	  found	  in	  Chapter	  3,	  “The	  Case	  of	  Consumers:	  Environmental	  Values	  and	  Media	  Consumption.”	  I	  was	  lead	  author	  on	  this	  chapter,	  but	  worked	  closely	  with	  Dr.	  Robert	  A.	  Kozak	  on	  the	  design,	  implementation	  and	  analysis	  of	  the	  research	  program.	  I	  used	  a	  web-­‐based	  survey	  to	  engage	  consumers	  in	  North	  America	  with	  the	  approval	  for	  the	  Behavioural	  Research	  Ethics	  Board	  (BREB	  certificate	  #H09-­‐03036).	  I	  wrote	  every	  draft	  of	  the	  paper,	  including	  all	  feedback	  from	  my	  co-­‐author.	  And	  	   	   	   	   	  	   	   ivwhile	  I	  took	  the	  lead	  in	  designing	  the	  survey	  and	  collecting	  results,	  the	  advice	  of	  my	  co-­‐author	  was	  invaluable.	  Most	  importantly,	  Dr.	  Kozak	  played	  an	  instrumental	  role	  in	  guiding	  statistical	  analysis.	  However,	  the	  write-­‐up	  of	  all	  results,	  discussions,	  and	  conclusions	  were	  my	  own	  efforts.	  	  	  The	  fourth	  and	  final	  collaborative	  effort	  is	  found	  in	  Chapter	  4,	  “The	  Case	  of	  Academic	  Comparison:	  Efforts	  to	  Measure	  Paper	  and	  Digital	  Media.”	  A	  version	  of	  this	  chapter	  was	  peer-­‐reviewed	  and	  published	  in	  February	  of	  2014	  in	  the	  journal	  Environmental	  Impact	  Assessment	  Review	  under	  the	  title	  “Comparative	  life	  cycle	  assessments:	  The	  case	  of	  paper	  and	  digital	  media”	  and	  can	  be	  found	  on	  pages	  10	  through	  18.	  My	  co-­‐author	  for	  this	  paper	  was	  Dr.	  Robert	  A.	  Kozak.	  I	  was	  once	  again	  lead	  author,	  designing	  and	  implementing	  the	  proposed	  research	  program.	  I	  conducted	  the	  necessary	  literature	  review,	  gathered	  all	  relevant	  data,	  and	  wrote-­‐up	  all	  results.	  Dr.	  Kozak	  provided	  input	  throughout	  the	  process,	  with	  particular	  focus	  on	  the	  discussion	  and	  conclusions	  of	  the	  paper.	  	  	  Full	  Citations:	  J.	  G.	  Bull,	  G.	  Kissack,	  C.	  Elliott,	  R.A.	  Kozak,	  and	  G.Q.	  Bull.	  (2011)	  Carbon’s	  Potential	  to	  Reshape	  Supply	  Chains	  in	  Paper	  and	  Print.	  Journal	  of	  Forest	  Products	  Business	  Research.	  8(2).	  	  J.	  G.	  Bull	  and	  R.	  A.	  Kozak.	  (2014).	  Comparative	  life	  cycle	  assessments:	  The	  case	  of	  paper	  and	  digital	  media.	  Environmental	  Impact	  Assessment	  Review.	  February	  (1),	  10-­‐18.	  	  J.G.	  Bull	  and	  R.A.	  Kozak.	  (In	  Press).	  The	  Means	  and	  Meaning	  of	  Sustainability:	  The	  Role	  of	  Forestry	  in	  a	  Responsible	  World.	  In:	  S.	  D’Amours,	  M.	  Ouhimmou,	  J.	  Audy	  and	  Y.	  Feng,	  ed.,	  Forest	  Value	  Chain	  Optimization	  and	  Sustainability,	  1st	  ed.	  Boca	  Raton:	  CRC	  Press/Taylor	  &	  Francis.	  	  	   	   	   	   	  	   	   vTable	  of	  Contents	  Abstract	  ...............................................................................................................................................	  ii	  Preface	  ...............................................................................................................................................	  iii	  Table	  of	  Contents	  .................................................................................................................................	  v	  List	  of	  Tables	  .......................................................................................................................................	  vii	  List	  of	  Figures	  .....................................................................................................................................	  viii	  List	  of	  Abbreviations	  ............................................................................................................................	  ix	  Acknowledgements	  .............................................................................................................................	  x	  Dedication	  ...........................................................................................................................................	  xi	  Chapter	  1:	  Introduction	  ........................................................................................................................	  1	  1.1	   Background	  and	  Literature	  Review	  .........................................................................................	  1	  1.1.1	   The	  Sustainability	  Shift	  ...........................................................................................................	  2	  1.1.1.1	   Definitions	  of	  Sustainability	  ............................................................................................	  2	  1.1.1.2	   Drivers	  of	  Sustainability	  ..................................................................................................	  8	  1.1.1.3	   Responses	  to	  Sustainability	  ...........................................................................................	  15	  1.1.2	   The	  Media	  Shift	  ....................................................................................................................	  20	  1.1.2.1	   Digital	  Media	  .................................................................................................................	  21	  1.1.2.2	   Paper	  Media	  ..................................................................................................................	  25	  1.2	   Research	  Questions	  ..............................................................................................................	  29	  Chapter	  2:	  The	  Case	  of	  Supply	  Chains:	  Carbon’s	  Role	  in	  Paper	  Media	  .................................................	  33	  2.1	   Abstract	  ...............................................................................................................................	  33	  2.2	   Introduction	  .........................................................................................................................	  33	  2.3	   Background	  ..........................................................................................................................	  34	  2.4	   Objectives	  ............................................................................................................................	  35	  2.5	   Methodology	  ........................................................................................................................	  36	  2.6	   Results	  .................................................................................................................................	  39	  2.6.1	   Carbon	  Footprint	  Analysis	  ....................................................................................................	  39	  2.6.2	   Origins	  and	  Evolution	  of	  Carbon	  Management	  ....................................................................	  42	  2.6.3	   Future	  Directions	  of	  Carbon	  Management	  ...........................................................................	  43	  2.7	   Discussion	  ............................................................................................................................	  45	  2.7.1	   Efficient	  Supply	  Chains	  .........................................................................................................	  45	  2.7.2	   Responsible	  Supply	  Chains	  ...................................................................................................	  45	  2.7.3	   Resilient	  Supply	  Chains	  .........................................................................................................	  46	  2.7.4	   Implications	  for	  Businesses	  and	  Supply	  Chains	  ....................................................................	  47	  2.8	   Conclusions	  ..........................................................................................................................	  48	  Chapter	  3:	  The	  Case	  of	  Consumers:	  Environmental	  Values	  and	  Media	  Consumption	  ..........................	  49	  3.1	   Abstract	  ...............................................................................................................................	  49	  3.2	   Introduction	  .........................................................................................................................	  49	  3.3	   Background	  ..........................................................................................................................	  50	  3.4	   Objectives	  ............................................................................................................................	  52	  3.5	   Methodology	  ........................................................................................................................	  52	  3.6	   Results	  .................................................................................................................................	  56	  3.6.1	   Demographic	  Trends	  ............................................................................................................	  56	  3.6.2	   Environmental	  Values	  ...........................................................................................................	  59	  3.6.3	   Media	  Consumption	  Trends	  .................................................................................................	  62	  3.7	   Discussion	  ............................................................................................................................	  73	  3.8	   Conclusions	  ..........................................................................................................................	  75	  	   	   	   	   	  	   	   viChapter	  4:	  The	  Case	  of	  Life	  Cycle	  Comparisons:	  Efforts	  to	  Measure	  Paper	  and	  Digital	  Media	  ..............	  76	  4.1	   Abstract	  ...............................................................................................................................	  76	  4.2	   Introduction	  .........................................................................................................................	  76	  4.3	   Background	  ..........................................................................................................................	  77	  4.4	   Objectives	  ............................................................................................................................	  78	  4.5	   Methodology	  ........................................................................................................................	  79	  4.6	   Results	  .................................................................................................................................	  82	  4.6.1	   Functional	  Unit	  Definition	  ....................................................................................................	  82	  4.6.2	   Boundary	  Selection	  ...............................................................................................................	  84	  4.6.3	   Allocation	  ..............................................................................................................................	  86	  4.6.4	   Spatial	  Variation	  and	  Environmental	  Uniqueness	  ................................................................	  88	  4.6.5	   Data	  Availability	  and	  Quality	  ................................................................................................	  89	  4.7	   Discussion	  ............................................................................................................................	  91	  4.7.1	   Uncertainties	  in	  Comparative	  LCAs	  ......................................................................................	  91	  4.7.2	   Assumptions	  in	  Comparative	  LCAs	  .......................................................................................	  93	  4.7.3	   The	  Drivers	  of	  Uncertainty	  and	  Assumptions:	  The	  Context	  of	  Moore’s	  Law	  ........................	  95	  4.8	   Conclusions	  ..........................................................................................................................	  97	  Chapter	  5:	  Discussion	  and	  Conclusions	  ..............................................................................................	  100	  5.1	   Conclusions	  ........................................................................................................................	  100	  5.1.1	   Sustainability	  Perspective:	  Media	  Supply	  Chains	  ...............................................................	  102	  5.1.2	   Sustainability	  Perspective:	  Consumer	  Media	  Habits	  ..........................................................	  104	  5.1.3	   Sustainability	  Perspective:	  Comparing	  Media	  Choices	  .......................................................	  106	  5.2	   Potential	  Applications	  and	  Future	  Research	  ........................................................................	  109	  5.2.1	   Industrial	  Ecology	  ...............................................................................................................	  109	  5.2.2	   Capability	  Maturity	  Models	  ................................................................................................	  112	  5.3	   Strengths	  and	  Limitations	  ...................................................................................................	  115	  5.4	   Final	  Thoughts	  ....................................................................................................................	  117	  Bibliography	  .....................................................................................................................................	  118	  Appendices	  .......................................................................................................................................	  138	  Appendix	  A	  ..................................................................................................................................	  138	  Appendix	  B	  ..................................................................................................................................	  139	  	  	   	   	   	   	  	   	   viiList	  of	  Tables	  Table	  1:	  Supply	  chain	  emissions	  ................................................................................................................	  41	  Table	  2:	  The	  new	  ecological	  paradigm	  ......................................................................................................	  54	  Table	  3:	  Digital	  use	  score	  ...........................................................................................................................	  55	  Table	  4:	  Media	  activities	  ............................................................................................................................	  67	  Table	  5:	  Key	  findings	  of	  comparative	  LCAs	  ................................................................................................	  81	  Table	  6:	  Summary	  of	  functional	  units	  of	  the	  comparative	  LCAs	  reviewed	  ................................................	  83	  	  	   	   	   	   	  	   	   viiiList	  of	  Figures	  	  Figure	  1:	  Schematic	  definitions	  of	  sustainability	  .........................................................................................	  4	  Figure	  2:	  Industrial	  ecology	  types	  ................................................................................................................	  5	  Figure	  3:	  Summary	  of	  research	  chapters	  and	  objectives	  ...........................................................................	  32	  Figure	  4:	  Map	  of	  supply	  chain	  emissions	  ...................................................................................................	  40	  Figure	  5:	  Gender	  breakdown	  of	  respondents	  by	  segment	  ........................................................................	  56	  Figure	  6:	  Age	  breakdown	  of	  respondents	  by	  segment	  ..............................................................................	  57	  Figure	  7:	  Education	  breakdown	  of	  respondents	  by	  segment	  ....................................................................	  58	  Figure	  8:	  Income	  breakdown	  of	  respondents	  by	  segment	  ........................................................................	  59	  Figure	  9:	  Frequency	  distribution	  of	  NEP	  scores	  by	  digital	  use	  segment	  ....................................................	  60	  Figure	  10:	  Environmental	  trade	  offs	  breakdown	  of	  respondents	  by	  segment	  ..........................................	  61	  Figure	  11:	  Environmental	  outlook	  breakdown	  of	  respondents	  by	  segment	  .............................................	  61	  Figure	  12:	  Digital	  media	  sources	  –	  NEP	  segments	  .....................................................................................	  62	  Figure	  13:	  Digital	  media	  sources	  –	  digital	  segments	  ..................................................................................	  63	  Figure	  14:	  Paper	  media	  sources	  –	  NEP	  segments	  ......................................................................................	  64	  Figure	  15:	  Paper	  media	  sources	  –	  digital	  segments	  ..................................................................................	  64	  Figure	  16:	  Online	  services	  –	  NEP	  segments	  ...............................................................................................	  65	  Figure	  17:	  Online	  services	  –	  digital	  segments	  ............................................................................................	  66	  Figure	  18:	  Willingness	  to	  pay	  –	  NEP	  segments	  ..........................................................................................	  68	  Figure	  19:	  Willingness	  to	  pay	  –	  digital	  segments	  .......................................................................................	  68	  Figure	  20:	  Media	  habits:	  newspaper	  or	  magazine	  delivered	  to	  home	  ......................................................	  70	  Figure	  21:	  Media	  habits:	  books	  purchased	  from	  bookstore	  ......................................................................	  70	  Figure	  22:	  Media	  habits:	  books	  borrowed	  from	  library	  .............................................................................	  71	  Figure	  23:	  Media	  habits:	  reading	  news	  on	  PC	  or	  laptop	  computer	  ...........................................................	  71	  Figure	  24:	  Media	  habits:	  read	  news	  on	  smartphone	  or	  mobile	  device	  .....................................................	  72	  Figure	  25:	  Media	  habits:	  books	  purchased	  for	  electronic	  reader	  ..............................................................	  72	  Figure	  26:	  Summary	  of	  research	  chapters	  and	  conclusions	  	  ...................................................................	  102	  Figure	  27:	  Industrial	  ecology	  types	  ..........................................................................................................	  110	  	  	   	   	   	   	  	   	   ixList	  of	  Abbreviations	  British	  Columbia	  (B.C.)	  Burlington	  Northern	  Santa	  Fe	  Railways	  	  (BNSF)	  Business	  to	  business	  (B2B)	  Capability	  maturity	  models	  (CMM)	  Carbon	  Disclosure	  Project	  (CDP)	  Cathode	  ray	  tube	  (CRT)	  Corporate	  social	  responsibility	  (CSR)	  Digital	  subscriber	  line	  (DSL)	  Economic	  Input-­‐Output	  (EIO)	  End	  of	  life	  (EOL)	  Environmental	  Defense	  Fund	  (EDF)	  Environmental	  management	  systems	  (EMSs)	  Environmental	  non-­‐governmental	  organizations	  (ENGOs)	  Environmental,	  social,	  and	  governance	  (ESG)	  Information	  and	  communication	  technology	  (ICT)	  Input-­‐Output	  (IO)	  International	  Panel	  on	  Climate	  Change	  (IPCC)	  Global	  warming	  potential	  (GWP)	  Life	  cycle	  assessment	  (LCA)	  Life	  cycle	  inventory	  (LCI)	  Megajoules	  (MJ)	  New	  ecological	  paradigm	  (NEP)	  Non-­‐state	  market-­‐driven	  (NSMD)	  Original	  equipment	  manufacturer	  (OEM)	  Personal	  computer	  (PC)	  Personal	  digital	  assistant	  (PDA)	  Reduced	  Emissions	  from	  Deforestation	  and	  Degradation	  (REDD)	  Regional	  Greenhouse	  Gas	  Initiative	  (RGGI)	  United	  Nations	  Environment	  Programme’s	  (UNEP)	  United	  States	  Climate	  Action	  Partnership	  (USCAP)	  Washington	  Marine	  Group	  (WMG)	  Waste	  Electrical	  and	  Electronic	  Equipment	  (WEEE)	  Western	  Climate	  Initiative	  (WCI)	  	   	   	   	   	  	   	   xAcknowledgements	  I	  offer	  my	  gratitude	  to	  the	  faculty	  at	  UBC,	  who	  both	  permitted	  and	  inspired	  this	  far-­‐reaching	  thesis.	  I	  offer	  particular	  thanks	  to	  Dr.	  Thomas	  Sullivan,	  for	  showing	  me	  value	  in	  the	  philosophy	  of	  science,	  not	  just	  science	  itself.	  I	  am	  indebted	  to	  my	  committee	  members,	  Dr.	  David	  Cohen	  and	  Dr.	  Paul	  McFarlane,	  for	  their	  patience	  and	  insights.	  My	  supervisor,	  Dr.	  Robert	  Kozak,	  invited	  me	  to	  take	  a	  long	  and	  unconventional	  path	  and	  tolerated	  my	  ever-­‐evolving	  interests.	  His	  penetrating	  insights,	  high	  standards	  and	  incredible	  work	  ethic	  were	  a	  great	  gift	  and	  a	  tremendous	  inspiration.	  	  	  I	  also	  need	  to	  thank	  NSERC,	  the	  Value	  Chain	  Optimization	  Network,	  and	  the	  UBC	  Faculty	  of	  Forestry	  for	  their	  generous	  support	  throughout	  my	  matriculation.	  	  	  Special	  thanks	  are	  reserved	  for	  my	  parents.	  To	  my	  mother,	  for	  never	  letting	  me	  forget	  that	  I	  was	  expected	  to	  succeed.	  And	  to	  my	  father,	  Dr.	  Gary	  Bull,	  for	  providing	  the	  perspective	  and	  encouragement	  required	  to	  get	  things	  done.	  	  	  	   	   	   	   	  	   	   xiDedication	  For	  Grandma.	  For	  Sunny.	  For	  Mom.	  For	  Dad.	  For	  Dulce.	  (Oh,	  and	  Crowley	  too.)	  	  	  	   	   	   	   	  	   1Chapter	  1: Introduction	  “Please	  consider	  the	  environment	  before	  printing	  this	  email.”	  We’ve	  all	  seen	  the	  phrase	  happily	  applied	  to	  the	  bottom	  of	  emails,	  reminding	  us	  to	  refrain	  from	  printing.	  It	  is	  an	  empowering	  eight	  words,	  letting	  the	  reader	  know	  that,	  if	  they	  do	  the	  right	  thing,	  the	  environment	  will	  thank	  them.	  It	  also	  suggests	  that	  printing	  is	  bad	  for	  the	  environment,	  but	  emails	  aren’t	  something	  I	  should	  worry	  about.	  After	  reading	  the	  phrase	  countless	  times,	  I	  have	  finally	  decided	  to	  heed	  its	  advice.	  	  	  This	  dissertation	  takes	  the	  phrase	  seriously,	  but	  rather	  than	  simply	  ask	  whether	  I	  ought	  to	  print	  an	  email	  or	  not,	  I	  have	  taken	  an	  academic	  approach.	  I	  want	  to	  explore	  the	  big	  questions	  the	  phrase,	  pondered	  closely,	  reveals.	  What	  does	  it	  mean	  to	  “consider	  the	  environment”?	  I	  need	  to	  define	  and	  understand	  sustainability.	  Why	  is	  printing	  on	  paper	  implicitly	  criticized?	  I	  need	  to	  understand	  the	  sustainability	  of	  paper.	  Why	  is	  paper	  being	  compared	  to	  an	  email?	  I	  need	  to	  describe	  the	  shift	  from	  one	  media	  type	  to	  another,	  and	  its	  environmental	  consequences.	  	  	  If	  these	  questions	  sound	  too	  big	  for	  the	  scope	  of	  a	  PhD,	  it	  is	  because	  they	  are.	  But	  they	  have	  been	  winnowed	  down	  to	  research	  questions	  and	  scientific	  approaches	  that	  will	  strengthen	  an	  understanding	  of	  what	  sustainability	  means	  in	  the	  context	  of	  media	  consumption.	  The	  environment	  will	  be	  considered	  from	  the	  perspective	  of	  industry,	  consumers,	  and	  academic	  research.	  The	  research	  objective	  of	  this	  dissertation	  is	  to	  consider	  the	  environmental	  footprints	  of	  digital	  and	  paper	  media	  from	  three	  perspectives	  –	  industry,	  consumers,	  and	  academic	  comparisons	  –	  in	  order	  to	  elucidate	  the	  concept	  of	  sustainability.	  	  	  1.1 BACKGROUND	  AND	  LITERATURE	  REVIEW	  In	  order	  to	  properly	  assess	  the	  environmental	  impacts	  of	  media	  –	  either	  digital	  or	  printed	  –	  I	  need	  to	  begin	  with	  a	  thorough	  grounding	  in	  the	  literature	  and	  establish	  working	  definitions	  of	  the	  two	  major	  topics	  this	  thesis	  examines:	  sustainability	  and	  media.	  In	  this	  section,	  I	  set	  out	  to	  achieve	  two	  things:	  to	  explore	  definitions	  and	  manifestations	  of	  sustainability,	  and	  to	  identify	  and	  contextualize	  the	  changes	  in	  media	  consumption	  underway	  and	  potential	  environmental	  impacts.	  I	  call	  these	  two	  trends,	  “The	  Sustainability	  Shift”	  and	  the	  “The	  Media	  Shift”,	  respectively,	  terms	  I	  employ	  throughout	  the	  dissertation.	  	  	  	   	   	   	   	  	   21.1.1 The	  Sustainability	  Shift1	  For	  such	  a	  common	  word,	  sustainability	  is	  a	  difficult	  concept	  to	  define.	  At	  its	  core,	  it	  implies	  doing	  something	  better	  (or	  at	  least	  less	  badly).	  For	  this	  dissertation,	  I	  need	  to	  define	  sustainability	  in	  light	  of	  my	  broad	  research	  objective	  –	  to	  understand	  the	  sustainability	  of	  media	  consumption.	  Due	  to	  the	  nature	  of	  media,	  I	  must	  ground	  an	  understanding	  of	  sustainability	  in	  the	  world	  of	  industry.	  It	  takes	  businesses,	  supply	  chains,	  and	  consumers	  all	  connecting	  together	  in	  order	  to	  produce,	  distribute,	  and	  consume	  media.	  	  	  With	  the	  need	  to	  understand	  business	  and	  sustainability	  established,	  this	  section	  describes	  the	  origins,	  evolution,	  and	  future	  directions	  of	  business	  and	  sustainability.	  My	  focus	  is	  on	  environmental	  sustainability,	  not	  social	  or	  economic	  sustainability.	  While	  these	  latter	  two	  issues	  are	  important,	  economic	  sustainability	  is	  well	  understood	  and	  already	  considered	  thoroughly	  by	  business	  and	  its	  profit	  motive.	  Social	  sustainability	  –	  which	  considers	  human	  rights	  and	  the	  concept	  of	  inter-­‐generational	  equity	  –	  is	  important,	  but	  sufficiently	  distinct	  from	  environmental	  sustainability	  to	  make	  its	  inclusion	  here	  inappropriate.	  	  1.1.1.1 Definitions	  of	  Sustainability	  In	  1970,	  the	  economist	  Milton	  Friedman	  wrote	  (Friedman,	  1970)	  a	  seminal	  article	  called	  “The	  Social	  Responsibility	  of	  Business	  is	  to	  Increase	  its	  Profits.”	  The	  role	  of	  business	  has	  since	  changed.	  Business	  can	  no	  longer	  relentlessly	  pursue	  profits	  without	  considering	  the	  environmental	  and	  social	  implications.	  A	  confluence	  of	  drivers	  has	  shaped	  this	  evolution,	  including	  increasing	  population	  (and	  consumption)	  levels	  and	  the	  emergence	  of	  climate	  change	  as	  a	  global	  environmental	  issue	  have	  shaken	  the	  corporate	  sector	  and	  undermined	  public	  trust	  in	  private	  industry.	  In	  2010,	  the	  Nobel	  Laureate	  Joseph	  Stiglitz	  revisited	  Friedman’s	  narrow	  doctrine,	  and	  suggested,	  “We	  should	  think	  about	  how	  we	  can	  create	  a	  global	  economic	  architecture	  which	  works	  better,	  for	  more	  people,	  in	  a	  more	  sustainable	  way”	  (United	  Nations,	  2009).	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  1	  A	  longer	  version	  of	  this	  section	  (1.1.1.)	  appears	  in	  the	  following:	  J.G.	  Bull	  and	  R.A.	  Kozak.	  (In	  Press).	  The	  Means	  and	  Meaning	  of	  Sustainability:	  The	  Role	  of	  Forestry	  in	  a	  Responsible	  World.	  In:	  S.	  D’Amours,	  M.	  Ouhimmou,	  J.	  Audy	  and	  Y.	  Feng,	  ed.,	  Forest	  Value	  Chain	  Optimization	  and	  Sustainability,	  1st	  ed.	  Boca	  Raton:	  CRC	  Press/Taylor	  &	  Francis.	  	  	   	   	   	   	  	   31.1.1.1.1 Academic	  Definitions	  of	  Sustainability	  A	  founding	  definition	  of	  sustainability	  comes	  from	  the	  Brundtland	  Commission,	  which	  described	  sustainability	  –	  more	  specifically,	  sustainable	  development	  –	  as	  meeting	  “the	  needs	  of	  the	  present	  without	  compromising	  the	  ability	  of	  future	  generations	  to	  meet	  their	  own	  needs”	  (United	  Nations,	  1987).	  This	  definition	  evolved,	  with	  the	  concept	  of	  sustainability	  as	  a	  ‘three-­‐legged	  stool’	  gaining	  popular	  adoption	  (Newport	  et	  al.,	  2003).	  Here,	  an	  ideal	  outcome	  considers	  economic,	  social,	  and	  environmental	  concerns	  together,	  with	  sustainability	  occurring	  at	  the	  intersection	  of	  these	  three	  values.	  A	  modified	  version	  of	  this	  idea	  is	  the	  embedded	  circles	  approach	  (Lozano,	  2008),	  which	  considers	  the	  economy	  a	  subset	  of	  society,	  which	  in	  turn	  is	  a	  subset	  of	  the	  natural	  environment.	  This	  approach	  offers	  the	  natural	  environment	  as	  the	  most	  important	  variable	  worth	  considering	  (see	  Figure	  1).	  	  A	  variation	  of	  this	  definition	  comes	  from	  the	  discipline	  of	  ecological	  economics.	  Ecological	  economics	  is	  an	  effort	  to	  promote	  understanding	  between	  ecologists	  and	  economists.	  It	  differs	  from	  neoclassical	  economic	  approaches	  in	  that	  neoclassical	  models	  are	  defined	  by	  achieving	  an	  equilibrium	  and	  final	  state	  that	  is	  independent	  of	  the	  path	  taken	  (Goodland	  and	  Ledec,	  1987).	  Growth	  in	  the	  neoclassical	  sense	  is	  a	  function	  of	  accumulated	  savings,	  capital	  investment,	  and	  technological	  progress.	  Consequently,	  growth	  is	  theoretically	  exponential	  and	  limitless.	  By	  contrast,	  ecological	  economics	  models	  are	  subject	  to	  an	  exogenous	  limit:	  	  the	  carrying	  capacity	  of	  the	  planet.	  Economic	  models	  are	  embedded	  in	  the	  environment,	  and	  these	  models	  explicitly	  address	  the	  interdependence	  of	  human	  economies	  and	  natural	  ecosystems	  over	  time	  and	  space	  (Wackernagel	  and	  Rees,	  1997).	  Thus,	  sustainability	  is	  conveyed	  as	  ‘embedded	  circles’	  where	  social	  and	  economic	  concerns	  are	  bounded	  by	  the	  broader	  context	  of	  the	  environment.	  In	  this	  view,	  society	  and	  economic	  systems	  are	  subsets	  of	  the	  environment,	  limited	  by	  a	  finite	  amount	  of	  natural	  capital.	  	  	   	   	   	   	  	   4Figure	  1:	  Schematic	  definitions	  of	  sustainability	  	  While	  these	  definitions	  are	  conceptual,	  elegant,	  and	  inclusive,	  they	  do	  not	  necessarily	  offer	  the	  specificity	  required	  by	  different	  actors,	  such	  as	  governments,	  consumers,	  corporations,	  and	  civil	  society.	  The	  traditional	  academic	  approach	  of	  creating	  distinct	  and	  isolated	  disciplines	  and	  reducing	  questions	  to	  testable	  hypotheses	  is	  ill-­‐suited	  to	  ask	  questions	  and	  provide	  answers	  about	  sustainability.	  What	  type	  of	  academic	  is	  best	  suited	  to	  address	  issues	  of	  sustainability	  –an	  engineer,	  an	  ecologist,	  an	  economist,	  a	  sociologist,	  or	  political	  scientist?	  Each	  would	  approach	  sustainability	  in	  very	  different	  ways,	  none	  more	  correct	  than	  the	  others.	  	  Seager	  (2008)	  suggests	  that	  academics	  are	  not	  unaware	  of	  this	  mismatch	  between	  traditional	  research	  structures	  and	  urgent	  research	  questions.	  To	  that	  end,	  two	  new	  academic	  disciplines	  are	  emerging	  as	  a	  means	  of	  grappling	  with	  the	  complex	  and	  multifaceted	  nature	  of	  sustainability:	  industrial	  ecology	  and	  ecosystem	  health.	  Seager,	  in	  identifying	  this	  mismatch	  between	  definitions	  and	  research	  capacity,	  follows	  upon	  the	  work	  of	  Mebratu	  (1998,	  p.493)	  who	  noted	  that	  definitions	  of	  sustainability	  “focus	  on	  specific	  elements	  while	  failing	  to	  capture	  the	  whole	  spectrum.”	  Efforts	  to	  develop	  a	  theory	  of	  sustainability	  has	  led	  to	  concepts	  and	  definitions	  that	  benefit	  specific	  groups	  and	  interests,	  but	  do	  not	  reflect	  holistic	  thinking	  on	  the	  subject	  (Mebratu,	  1998).	  	  Industrial	  ecology	  is	  focused	  on	  the	  interactions	  between	  ecological	  and	  industrial	  systems	  (Graedel	  and	  Allenby,	  1995).	  It	  is	  founded	  on	  the	  idea	  that	  much	  can	  be	  learned	  from	  natural	  systems	  to	  improve	  the	  environmental	  footprint	  of	  industrial	  systems	  (Erkman,	  1997).	  Given	  that	  industrial	  systems	  have	  a	  	   	   	   	   	  	   5relatively	  brief	  history,	  at	  least	  compared	  to	  ecosystems,	  looking	  at	  the	  structures	  and	  successes	  of	  nature	  can	  provide	  insights	  into	  how	  to	  devise	  more	  effective	  and	  sustainable	  systems	  (Seager,	  2008).	  	  Figure	  2	  shows	  three	  types	  of	  systems	  commonly	  discussed	  in	  the	  discipline	  of	  industrial	  ecology.	  The	  first,	  Type	  I,	  is	  an	  open	  loop,	  with	  energy	  and	  materials	  flowing	  in,	  being	  processed,	  and	  flowing	  out.	  It	  assumes	  an	  unlimited	  availability	  of	  resources,	  and	  an	  unlimited	  ability	  for	  the	  planet	  to	  absorb	  the	  impacts	  of	  industrial	  activities.	  Early	  industrial	  systems	  were	  similar	  to	  this	  model.	  Type	  II	  describes	  most	  existing	  industrial	  systems	  as	  they	  occur	  today.	  There	  are	  limited	  supplies	  of	  materials	  and	  energy,	  and	  industry	  cannot	  pollute	  freely	  without	  incurring	  costs.	  Some	  industries	  might	  be	  a	  ‘weak’	  Type	  II,	  with	  minimal	  resource	  conservation	  and	  waste	  reduction	  efforts,	  while	  others	  could	  be	  considered	  a	  ‘strong’	  Type	  II,	  where	  both	  economic	  and	  environmental	  motives	  exist	  for	  managing	  resource	  use	  and	  waste	  streams.	  A	  completely	  closed	  loop	  Type	  III	  system	  is	  impossible	  for	  industry,	  as	  total	  resource	  conservation	  is	  unachievable.	  However,	  it	  is	  something	  that	  industry	  can	  aspire	  to.	  Ecological	  systems	  are	  Type	  III	  systems,	  as	  nature	  has	  only	  one	  input	  (solar	  energy),	  waste	  does	  not	  exist	  as	  every	  material	  is	  eventually	  reused	  by	  the	  system	  (Gradel	  and	  Allenby,	  1995;	  Erkman,	  1997).	  	  Figure	  2:	  Industrial	  ecology	  types	  	  	  	   	   	   	   	  	   6Industrial	  ecology	  is	  more	  than	  simply	  envying	  the	  extreme	  efficiency	  of	  nature.	  Kalundborg,	  Denmark	  is	  an	  example	  of	  industrial	  ecology	  that	  has	  garnered	  substantial	  academic	  inquiry	  (see	  Ehrenfeld	  and	  Gertler,	  1997	  for	  a	  detailed	  account).	  A	  variety	  of	  industrial	  actors	  evolved,	  without	  any	  master	  plan,	  to	  integrate	  their	  waste	  and	  energy	  flows	  to	  become	  more	  environmentally	  benign.	  A	  coal	  plant	  sells	  steam	  to	  a	  variety	  of	  users,	  including	  local	  households.	  A	  pharmaceutical	  factory	  installed	  a	  two-­‐mile	  steam	  pipe	  rather	  than	  replacing	  their	  existing	  boilers,	  an	  investment	  that	  paid	  for	  itself	  in	  two	  years.	  The	  coal	  plant	  was	  also	  required	  by	  regulators	  to	  install	  sulfur	  dioxide	  scrubbers	  at	  a	  cost	  of	  $US	  115	  million.	  Fortunately,	  the	  coal	  plant	  was	  able	  to	  sell	  gypsum,	  a	  byproduct	  of	  the	  scrubbing	  process,	  to	  a	  local	  plasterboard	  plant.	  All	  of	  these	  connections	  between	  industrial	  actors	  minimize	  the	  waste	  of	  energy	  and	  materials.	  This	  symbiosis	  was	  not	  mandated	  by	  regulations,	  although	  some	  regulatory	  imperatives	  helped	  foster	  connections	  that	  would	  not	  have	  otherwise	  existed.	  Further,	  and	  perhaps	  more	  importantly,	  these	  decisions	  made	  a	  good	  deal	  of	  economic	  sense.	  	  While	  industrial	  ecology	  is	  now	  emerging	  as	  a	  bona	  fide	  area	  of	  inquiry,	  ecosystem	  health	  is	  much	  less	  formalized	  and	  the	  most	  nascent	  of	  the	  academic	  disciplines	  focused	  on	  sustainability	  (Rapport	  et	  al.,	  1999).	  It	  advances	  the	  goal	  of	  assessing	  the	  health	  of	  an	  entire	  ecosystem,	  not	  just	  the	  health	  of	  individual	  organisms	  or	  species.	  Further,	  it	  suggests	  that	  human	  health	  is	  dependent	  on	  healthy	  ecosystems,	  and	  that	  the	  interaction	  between	  these	  two	  systems	  is	  vital.	  Like	  ecological	  economics,	  it	  considers	  a	  healthy	  ecosystem	  to	  be	  a	  necessary	  factor	  of	  production	  in	  a	  functioning	  society	  and	  economy.	  There	  are	  three	  key	  concepts	  that	  have	  shaped	  research	  in	  ecosystem	  health,	  and	  thus,	  a	  conception	  of	  sustainability:	  vigour	  –a	  measure	  of	  total	  activity;	  organization	  –	  a	  measure	  of	  the	  quality	  and	  diversity	  of	  interactions	  between	  different	  parts	  of	  the	  system;	  and	  resilience	  –	  the	  ability	  of	  the	  system	  to	  recover	  from	  injury	  (Seager,	  2008;	  Costanza	  and	  Mageau,	  1999).	  	  1.1.1.1.2 Corporate	  Definitions	  of	  Sustainability	  The	  corporate	  world	  offers	  its	  own	  versions	  of	  sustainability,	  with	  corporate	  social	  responsibility	  (CSR)	  being	  the	  most	  common	  tool	  for	  pursuing	  sustainability	  objectives.	  CSR	  requires	  a	  firm	  to	  think	  beyond	  legal	  and	  profit	  imperatives	  by	  considering	  its	  impacts	  on	  society	  and	  the	  environment	  (van	  Merrewijk,	  2003).	  By	  no	  means	  is	  CSR	  a	  simple	  concept;	  the	  literature	  identifies	  nearly	  40	  competing	  and	  complimentary	  definitions	  (see	  Dahlsrud,	  2008).	  CSR	  can	  be	  referred	  to	  by	  many	  names,	  with	  the	  terms	  triple	  bottom	  line	  accounting,	  stakeholder	  management,	  corporate	  citizenship,	  or	  corporate	  responsibility	  being	  used	  interchangeably.	  Auld	  et	  al.	  (2008a)	  describe	  CSR	  efforts	  as	  either	  ‘win-­‐win’	  	   	   	   	   	  	   7solutions	  or	  ‘win-­‐lose’	  solutions.	  Win-­‐win	  solutions	  involve	  internal	  changes	  that	  are	  socially	  and/or	  environmentally	  beneficial,	  but	  also	  serve	  to	  increase	  profit.	  In	  other	  words,	  this	  is	  the	  ‘low	  hanging	  fruit’	  of	  CSR.	  Win-­‐lose	  solutions	  are	  more	  complex,	  as	  a	  change	  that	  provides	  environmental	  or	  social	  benefits	  may	  decrease	  profits.	  As	  a	  result,	  the	  structures	  that	  influence	  profits	  (such	  as	  government	  policy	  and	  consumer	  preferences)	  would	  need	  to	  be	  adapted	  to	  reward	  the	  new,	  but	  initially	  less	  profitable,	  solution.	  If	  no	  such	  changes	  take	  place,	  the	  win-­‐lose	  solution	  eventually	  fails.	  	  Firms	  can	  be	  proactive	  in	  trying	  to	  develop	  new	  markets	  that	  reward	  what	  are	  initially	  win-­‐lose	  efforts,	  or	  they	  can	  anticipate	  changes	  in	  government,	  consumer,	  or	  civil	  society	  behaviour	  that	  will	  eventually	  result	  in	  win-­‐lose	  solutions	  becoming	  profitable.	  However,	  when	  win-­‐win	  or	  win-­‐lose	  solutions	  fail	  to	  generate	  profits	  in	  the	  long-­‐term,	  CSR	  efforts	  can	  result	  in	  a	  competitive	  disadvantage,	  and	  become	  marginalized	  rather	  than	  transformative	  in	  influencing	  firm	  behaviour	  (McWilliams	  and	  Siegel,	  2001).	  	  There	  is	  a	  danger	  that	  CSR	  efforts	  might	  bias	  a	  conception	  of	  sustainability.	  Does	  CSR	  mean	  that	  a	  company	  will	  transform	  to	  become	  truly	  more	  sustainable?	  Or	  does	  a	  company	  engage	  in	  CSR	  in	  the	  hopes	  that	  some	  of	  its	  industrial	  practices	  can	  be	  viewed	  –	  without	  much	  corporate	  effort	  –	  as	  being	  sustainable?	  Another	  important	  idea	  is	  that,	  ‘you	  can’t	  make	  an	  omelet	  without	  breaking	  eggs.’	  Businesses	  will	  always	  have	  an	  impact	  on	  the	  environment,	  and	  it	  is	  prudent	  to	  remember	  this	  when	  considering	  some	  of	  the	  more	  utopian	  ideals	  surrounding	  definitions	  of	  sustainability.	  	  1.1.1.1.3 The	  Spectrum	  of	  Sustainability	   	  Sustainability	  manifests	  differently	  within	  academic	  and	  corporate	  contexts.	  But	  in	  many	  ways,	  the	  multitudes	  of	  definitions	  complement	  one	  another,	  offering	  guidance	  at	  practical	  and	  abstract	  levels.	  A	  common	  element	  is	  that	  sustainability	  is	  a	  function	  of	  both	  time	  and	  space.	  For	  example,	  the	  time	  dimension	  of	  sustainability	  is	  revealed	  when	  describing	  the	  use	  of	  a	  reusable	  mug	  instead	  of	  a	  disposable	  cup,	  or	  altering	  an	  entire	  economy	  to	  rely	  on	  the	  production	  of	  services	  rather	  than	  goods,	  or	  reducing	  consumption	  as	  a	  means	  of	  achieving	  intergenerational	  equality.	  The	  space	  dimension	  refers	  to	  the	  fact	  that	  sustainability	  initiatives	  can	  occur	  at	  the	  scale	  of	  a	  single	  consumer	  or	  at	  the	  scale	  of	  a	  factory,	  supply	  chain,	  or	  country.	  When	  defining	  sustainability,	  we	  must	  embrace	  diversity,	  rather	  than	  struggle	  to	  find	  a	  unifying	  articulation.	  Seager	  (2008,	  p.447)	  grapples	  with	  this	  tension	  between	  inclusivity	  and	  specificity	  and	  arriving	  at	  a	  definition	  that	  allows	  different	  actors	  to	  consider	  sustainability	  relative	  to	  their	  own	  interests:	  	   	   	   	   	  	   8“Sustainability	  might	  best	  be	  defined	  as	  an	  ethical	  concept	  that	  things	  should	  be	  better	  in	  the	  future	  than	  they	  are	  at	  present.	  Like	  other	  ethical	  concepts	  such	  as	  fairness	  or	  justice,	  sustainability	  is	  best	  interpreted	  conceptually	  rather	  than	  technically.”	  	  Seager	  (2008)	  takes	  this	  notion	  that	  sustainability	  is	  an	  ethical	  concept,	  and	  produces	  spectrum	  of	  sustainability	  that	  reflects	  the	  different	  dimensions	  of	  time	  and	  space	  over	  which	  sustainable	  outcomes	  can	  occur.	  On	  one	  side	  is	  a	  version	  of	  sustainability	  that	  is	  static.	  It	  is	  defined	  by	  the	  maintenance	  of	  the	  status	  quo,	  which	  to	  some	  actors	  (such	  as	  law	  enforcement)	  would	  be	  a	  sustainable	  outcome.	  Next	  is	  steady-­‐state	  sustainability,	  which	  is	  defined	  by	  reliability.	  Here,	  the	  ability	  for	  a	  system	  to	  sustain	  the	  same	  function	  over	  the	  long-­‐term	  is	  prioritized.	  Further	  along	  is	  dynamic	  sustainability,	  where	  the	  ability	  of	  a	  system	  to	  adapt,	  regrow,	  or	  evolve	  in	  light	  of	  changing	  circumstances	  is	  prioritized.	  To	  the	  far	  side	  is	  episodic	  sustainability,	  which	  is,	  in	  essence,	  a	  version	  of	  Schumpeter’s	  ‘creative	  destruction’	  (Schumpeter,	  1942).	  In	  this	  view,	  sustainability	  is	  defined	  as	  an	  evolving	  system	  passing	  through	  multiple	  states.	  	  	  1.1.1.2 Drivers	  of	  Sustainability	  It	  is	  clear	  the	  sustainability	  has	  a	  range	  of	  meanings	  and	  interpretations.	  It	  should	  come	  as	  no	  surprise	  that	  a	  wide	  variety	  of	  factors	  motivate	  the	  adoption	  of	  sustainability	  practices.	  Each	  actor	  along	  any	  given	  supply	  chain	  is	  motivated	  by	  their	  own	  definition	  of	  sustainability	  and	  self-­‐interests.	  That	  being	  said,	  many	  common	  themes	  are	  emerging	  within	  this	  burgeoning	  domain	  and,	  in	  the	  first	  part	  of	  this	  section,	  I	  consider	  the	  main	  ‘drivers’	  of	  corporate	  sustainability:	  governments;	  investors;	  eco-­‐efficiency;	  the	  marketplace;	  advocates;	  and	  climate	  change.	  These	  categories	  emerged	  from	  an	  extensive	  literature	  review.	  While	  other	  categories	  certainly	  exist,	  these	  provide	  a	  framework	  that	  captures	  both	  the	  breadth	  and	  the	  complexity	  of	  sustainability	  and	  its	  manifestations.	  	  	  1.1.1.2.1 Sustainability	  Driver:	  Governments	  Governments	  motivate	  sustainability	  by	  a	  variety	  of	  means	  and	  for	  a	  variety	  of	  reasons.	  Governments	  are	  ‘stewards’	  of	  the	  environment;	  they	  are	  responsive	  to	  the	  demands	  of	  voters	  who,	  at	  times,	  prioritize	  environmental	  issues	  (Kraft,	  2001).	  Governments	  are	  pressured	  by	  environmental	  advocates	  and	  corporations,	  and	  attempt	  to	  strike	  a	  policy	  balance	  between	  environmental	  conservation	  and	  the	  need	  for	  economic	  growth.	  How,	  when,	  and	  why	  a	  government	  pushes	  for	  corporate	  environmental	  sustainability	  is	  dependent	  on	  the	  definition	  of	  sustainability	  employed	  and	  the	  environmental	  issue	  at	  	   	   	   	   	  	   9hand.	  Graedel	  and	  Allenby	  (2003)	  provide	  a	  thorough	  accounting	  of	  how	  governments	  influence	  corporate	  sustainability.	  They	  suggest	  that	  government	  action	  rests	  on	  a	  spectrum.	  On	  one	  hand,	  governments	  can	  encourage	  specific	  behaviour,	  by	  setting	  standards,	  implementing	  bans,	  or	  mandating	  the	  use	  of	  best	  available	  technology.	  At	  the	  other	  end	  of	  the	  spectrum,	  governments	  can	  act	  by	  correcting	  a	  lack	  of	  information,	  using	  product	  labels,	  life	  cycle	  accounting,	  and	  awards	  and	  recognition	  to	  encourage	  sustainable	  outcomes.	  In	  the	  middle	  rests	  governmental	  actions	  which	  serve	  to	  change	  incentives,	  either	  by	  introducing	  or	  removing	  subsidies,	  taxes,	  or	  regulatory	  reform.	  	  	  Governments	  have	  motivated	  environmental	  sustainability	  in	  the	  forest	  sector	  in	  a	  variety	  of	  ways.	  In	  British	  Columbia	  (B.C.),	  emitters	  are	  required	  to	  pay	  a	  tax	  on	  their	  carbon	  emissions	  (Schnoor,	  2014).	  This	  can	  be	  a	  significant	  cost	  for	  major	  emitters,	  such	  as	  pulp	  and	  paper	  mills	  (Bumpus,	  2014).	  The	  provincial	  government	  has	  committed	  to	  becoming	  carbon	  neutral,	  providing	  opportunities	  for	  forest	  companies	  to	  sell	  credits	  to	  the	  Pacific	  Carbon	  Trust.2	  B.C.	  is	  also	  part	  of	  the	  Western	  Climate	  Initiative,	  which	  could	  evolve	  into	  a	  major	  market	  for	  trading	  carbon	  emissions	  in	  North	  America.	  The	  federal	  government	  in	  Canada	  has	  subsidized	  the	  retrofitting	  of	  pulp	  and	  paper	  facilities	  to	  produce	  bioenergy	  and	  biochemicals	  as	  a	  means	  of	  participating	  in	  the	  new	  so-­‐called	  ‘green	  economy’	  (Laan	  et	  al.,	  2009).	  In	  Europe,	  governments	  have	  implemented	  sustainable	  a	  variety	  of	  procurement	  policies,	  including	  policies	  to	  ensure	  that	  the	  government	  only	  buys	  forest	  products	  from	  legally	  verified	  suppliers	  (Commission	  of	  the	  European	  Communities,	  2003).	  	  1.1.1.2.2 Sustainability	  Driver:	  Investors	  Investors	  –	  those	  who	  provide	  capital	  to	  companies	  or	  hold	  corporate	  stock	  –	  have	  been	  a	  key	  driver	  of	  corporate	  sustainability.	  But	  to	  characterize	  all	  investors	  as	  drivers	  of	  sustainability	  would	  be	  untrue.	  Many	  are	  focused	  on	  only	  profits	  and	  quarterly	  returns.	  However,	  large	  institutional	  investors,	  like	  pension	  funds,	  have	  taken	  a	  different	  approach,	  adopting	  ESG	  (environmental,	  social,	  and	  governance)	  metrics	  in	  their	  investment	  strategies	  (Flatz	  et	  al.,	  2001).	  	  The	  United	  Nations	  Environment	  Programme’s	  (UNEP)	  Finance	  Initiative	  is	  a	  group	  of	  over	  seventy	  investors	  that	  have	  adopted	  Principles	  for	  Responsible	  Investing.	  The	  investors	  describe	  their	  motives	  for	  considering	  ESG	  issues	  as	  threefold	  (UNEP,	  2006).	  First	  and	  foremost,	  ESG	  variables	  can	  help	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  The	  Pacific	  Carbon	  Trust	  is	  currently	  being	  wound-­‐down,	  with	  the	  provincial	  government	  folding	  its	  services	  back	  into	  the	  provincial	  Environmental	  Agency	  (Moore,	  2014).	  	   	   	   	   	  	   10investors	  make	  more	  money.	  Their	  hypothesis	  is	  that,	  over	  time,	  integrating	  thorough	  and	  systematic	  reviews	  of	  ESG	  issues	  will	  result	  in	  better	  financial	  performance	  (Tang	  et	  al.,	  2012).	  Second,	  some	  investors	  consider	  ethical	  values	  in	  their	  investment	  decisions,	  and	  are	  happy	  to	  ignore	  marginal	  impacts	  that	  ESG	  criteria	  might	  have	  on	  financial	  performance.	  Finally,	  channeling	  investment	  flows	  in	  accordance	  with	  ESG	  issues	  will	  support	  the	  long-­‐term	  sustainable	  development	  of	  the	  global	  economy.	  	  The	  authors	  of	  the	  UNEP	  report	  dismiss	  the	  notion	  that	  investors	  are	  unfamiliar	  with	  the	  financial	  impacts	  of	  environmental	  or	  social	  risk,	  offering	  as	  evidence	  the	  financial	  liabilities	  associated	  with	  asbestos	  in	  building	  materials	  in	  the	  1980s	  and	  1990s,	  or	  the	  costs	  faced	  by	  Union	  Carbide	  following	  the	  Bhopal	  explosion.	  Speaking	  to	  agnostic	  or	  skeptical	  investors	  who	  think	  ESG	  issues	  have	  a	  tenuous	  connection	  with	  financial	  performance,	  the	  authors	  suggest	  (UNEP,	  2006,	  p.4):	  “Investors	  who	  are	  not	  sure	  what	  to	  do	  would	  do	  well	  to	  refer	  to	  Pascal’s	  wager	  concerning	  the	  existence	  of	  God:	  make	  believe	  as	  if	  the	  hypothesis	  is	  true,	  thus	  at	  little	  or	  no	  cost	  avoiding	  the	  worst-­‐case	  scenario.”	  	  Another	  example	  of	  investors	  encouraging	  environmental	  sustainability	  comes	  from	  the	  Carbon	  Disclosure	  Project	  (CDP).	  The	  CDP	  is	  a	  non-­‐profit	  supported	  by	  534	  investors	  with	  assets	  totaling	  $US	  64	  trillion.	  The	  CDP	  administers	  an	  annual	  survey	  to	  over	  4700	  corporations,	  but	  focuses	  its	  efforts	  on	  the	  so-­‐called	  ‘Global	  500’,	  a	  group	  of	  companies	  that	  collectively	  accounts	  for	  11%	  of	  annual	  greenhouse	  gas	  emissions	  (CDP,	  2010).	  Of	  these	  top	  500	  companies,	  82%	  responded	  to	  the	  survey	  in	  2010,	  the	  highest	  rate	  since	  the	  inaugural	  survey	  in	  2003.	  In	  their	  annual	  report	  for	  2010,	  the	  CDP	  identifies	  several	  important	  trends.	  They	  see	  the	  demand	  for	  primary	  corporate	  climate	  change	  data	  to	  be	  growing,	  with	  platforms	  like	  Bloomberg	  Finance	  now	  offering	  carbon	  data	  alongside	  financial	  data.	  Previously	  unresponsive	  sectors,	  such	  as	  shipping	  and	  transportation,	  have	  now	  begun	  to	  share	  carbon	  data	  (CDP,	  2010).	  CDP	  also	  sees	  a	  shift	  in	  corporate	  perceptions	  of	  climate	  change,	  with	  more	  respondents	  in	  2010	  identifying	  climate	  change	  as	  an	  opportunity	  (average	  of	  9	  out	  of	  10	  respondents)	  than	  a	  risk	  (average	  of	  8	  out	  of	  10	  respondents).	  While	  the	  CDP	  is	  not,	  by	  itself,	  a	  driver	  of	  sustainability,	  it	  is	  the	  result	  of	  pressure	  from	  investors	  to	  identify	  environmental	  risks	  in	  their	  investment	  portfolios,	  which	  is	  a	  strong	  driver	  of	  disclosure	  and	  transparency	  on	  environmental	  footprints.	  	  	  	  	   	   	   	   	  	   111.1.1.2.3 Sustainability	  Driver:	  Eco-­‐Efficiency	  Eco-­‐efficiency	  is	  the	  most	  obvious	  reason	  for	  a	  corporation	  to	  consider	  sustainability.	  At	  its	  core,	  eco-­‐efficiency	  involves	  “producing	  and	  delivering	  goods	  while	  simultaneously	  reducing	  the	  ecological	  impact	  and	  use	  of	  resources.”	  (Molina-­‐Azorín	  et	  al.,	  2009,	  p.1082).	  From	  this	  perspective,	  the	  generation	  of	  pollution	  is	  seen	  as	  inefficient.	  However,	  the	  financial	  benefits	  of	  eco-­‐efficiency	  are	  not	  always	  immediate	  or	  evident,	  and	  its	  pursuit	  could	  render	  a	  firm	  temporarily	  or	  permanently	  uncompetitive.	  	  Ambec	  and	  Lanoie	  (2008)	  identify	  ways	  in	  which	  eco-­‐efficiency	  can	  help	  businesses	  to	  improve	  their	  bottom	  lines,	  for	  instance,	  by	  increasing	  their	  levels	  of	  risk	  management	  and	  external	  stakeholder	  engagement	  or	  by	  decreasing	  their	  costs	  of	  materials,	  energy,	  and	  services.	  They	  also	  identify	  three	  opportunities	  afforded	  by	  eco-­‐efficiency	  to	  directly	  increase	  revenue	  streams:	  through	  better	  access	  to	  certain	  markets;	  through	  product	  differentiation;	  and	  through	  selling	  pollution-­‐control	  technology.	  This	  variety	  of	  opportunities	  is	  demonstrative	  of	  how	  eco-­‐efficiency	  can	  be	  implemented	  in	  a	  manner	  that	  makes	  good	  fiscal	  sense	  to	  businesses.	  Eco-­‐efficiency	  can	  also	  involve	  attempts	  to	  reduce	  the	  transportation	  infrastructure	  required	  to	  deliver	  a	  product	  to	  market.	  This	  is	  most	  prevalent	  in	  the	  food	  industry	  where	  ‘food	  miles’	  are	  used	  to	  measure	  the	  environmental	  impact	  of	  delivering	  food	  to	  market	  (Engelhaupt,	  2008).	  	  	  Based	  on	  a	  review	  of	  32	  case	  studies,	  Molina-­‐Azorín	  et	  al.	  (2009)	  present	  a	  three-­‐stage	  process	  that	  relates	  environmental	  management	  to	  financial	  performance.	  Functional	  specialization	  is	  the	  first	  stage,	  and	  involves	  a	  company	  reacting	  to	  the	  pressures	  of	  environmental	  regulation.	  Internal	  integration,	  the	  second	  stage,	  involves	  management	  developing	  and	  monitoring	  corporate	  objectives	  on	  environmental	  management.	  The	  third	  stage	  is	  external	  integration.	  Here,	  a	  firm	  incorporates	  environmental	  performance	  into	  its	  overall	  business	  strategy.	  Many	  of	  the	  opportunities	  identified	  above	  by	  Ambec	  and	  Lanoie	  (2008)	  result	  from	  this	  three-­‐stage	  process.	  In	  pursuing	  environmental	  goals,	  new	  markets	  of	  consumers	  who	  prioritize	  ecological	  issues	  open	  up	  and	  firms	  can	  become	  leaders	  in	  their	  sector.	  As	  a	  result,	  they	  may	  develop	  technologies	  or	  processes	  that	  put	  them	  in	  an	  advantageous	  position,	  or	  they	  may	  be	  able	  to	  patent	  and	  resell	  their	  innovations,	  thereby	  gaining	  first	  mover	  advantage.	  Molina-­‐Azorín	  et	  al.	  (2009)	  find	  that	  firms	  who	  achieve	  a	  positive	  relationship	  between	  environmental	  management	  and	  financial	  performance	  are	  able	  to	  invest	  more	  in	  their	  environmental	  strategies,	  resulting	  in	  a	  positive	  feedback	  loop.	  	  	  	   	   	   	   	  	   121.1.1.2.4 Sustainability	  Driver:	  Marketplace	  There	  are	  primarily	  two	  market	  forces	  that	  can	  drive	  corporate	  sustainability:	  business-­‐to-­‐business	  (B2B)	  markets	  and	  consumer	  markets.	  B2B	  markets	  influence	  corporate	  sustainability	  when	  one	  company	  seeks	  suppliers	  who	  have	  integrated	  environmental	  thinking	  into	  their	  business	  model	  (Mariadoss	  et	  al.,	  2011).	  For	  example,	  the	  Home	  Depot	  implemented	  a	  policy	  where	  the	  purchase	  of	  certified	  wood	  is	  prioritized	  (Home	  Depot,	  2011).	  Wal-­‐Mart	  has	  undertaken	  similar	  responsible	  purchasing	  policies.	  Wal-­‐Mart	  has	  developed	  a	  widely	  praised	  supplier	  assessment	  mandatory	  for	  anyone	  who	  intends	  to	  sell	  goods	  at	  a	  Wal-­‐Mart	  store	  (Wal-­‐Mart,	  2011).	  Providing	  information	  on	  carbon	  emissions,	  water	  usage,	  and	  plans	  to	  increase	  eco-­‐efficiency,	  amongst	  other	  things,	  is	  required.	  Wal-­‐Mart	  is	  in	  the	  process	  of	  requiring	  its	  largest	  suppliers	  to	  also	  conduct	  the	  same	  assessment	  of	  their	  own	  suppliers.	  As	  a	  result,	  Wal-­‐Mart’s	  environmental	  priorities	  are	  trickling	  up	  the	  supply	  chain,	  influencing	  companies	  who	  might	  not	  even	  sell	  directly	  to	  Wal-­‐Mart.	  Given	  the	  purchasing	  power	  of	  Wal-­‐Mart	  these	  efforts	  hold	  enormous	  potential.	  	  Consumers	  can	  also	  drive	  corporate	  sustainability.	  Price	  being	  equal,	  consumers	  generally	  prefer	  to	  purchase	  a	  ‘green’	  product	  (Wilk,	  2001)),	  and	  some	  are	  willing	  to	  pay	  a	  premium	  for	  more	  sustainable	  products	  (Ottman,	  2011).	  The	  rapid	  rise	  of	  organic	  food	  reflects	  an	  increasing	  consumer	  awareness	  of	  environmental	  issues.	  Major	  consumer	  products	  manufacturers,	  such	  as	  Coca-­‐Cola,	  are	  beginning	  to	  promote	  their	  green	  initiatives,	  in	  this	  case,	  promising	  to	  make	  bottles	  that	  contain	  at	  least	  30%	  plant-­‐based	  materials	  (Houpt,	  2011).	  Information	  and	  communications	  technology	  companies	  are	  offering	  mobile	  phones	  with	  plastic	  casing	  made	  from	  recycled	  water	  bottles	  (German,	  2009).	  Hygienic	  paper	  products	  with	  only	  recycled	  content	  have	  been	  developed	  and	  are	  capturing	  market	  share	  (Tissue	  World,	  2010).	  There	  are	  similar	  examples	  from	  almost	  every	  sector	  and	  product	  type.	  	  But	  there	  is	  a	  risk	  that	  corporate	  efforts	  to	  increase	  demand	  for	  green	  products	  offer	  little	  environmental	  benefit	  or,	  even	  worse,	  are	  misleading	  (Athanasiou,	  1996).	  This	  ‘greenwashing’	  is	  not	  surprising	  given	  the	  relative	  immaturity	  of	  markets	  for	  environmentally	  responsible	  goods.	  In	  the	  future,	  however,	  it	  will	  be	  harder	  for	  companies	  to	  mislead	  consumers	  (Parguel	  et	  al.,	  2011).	  The	  Internet	  and	  social	  media	  are	  creating	  savvy	  consumers	  who	  facilitate	  the	  rapid	  dissemination	  of	  embarrassing	  information	  on	  corporate	  practices.	  Green	  marketing	  experts	  suggest	  that,	  in	  this	  transparent	  information	  age,	  CSR	  should	  be	  authentic	  or	  not	  attempted	  at	  all	  (Ottman,	  2011).	  	  	   	   	   	   	  	   131.1.1.2.5 Sustainability	  Driver:	  Advocates	  Advocates	  are	  individuals	  or	  organizations	  who	  attempt	  to	  influence	  corporate	  behaviour,	  with	  environmental	  non-­‐governmental	  organizations	  (ENGOs)	  serving	  as	  the	  most	  prominent	  example.	  Other	  advocates	  might	  include	  local	  communities	  that	  are	  impacted	  by	  a	  firm’s	  activities	  or	  academics	  whose	  research	  leads	  them	  to	  believe	  that	  a	  firm’s	  behaviour	  should	  be	  improved.	  Advocates	  will	  exert	  influence	  by	  different	  means	  at	  various	  levels	  on	  a	  variety	  environmental	  issues	  (Stevis	  and	  Assetto,	  2001).	  	  If	  there	  is	  a	  corporation	  creating	  an	  environmental	  impact,	  there	  is	  likely	  an	  ENGO	  advocating	  for	  its	  amelioration	  (Jad,	  2007).	  They	  do	  so	  by	  a	  variety	  of	  means	  (Obar	  et	  al.,	  2012):	  connecting	  directly	  with	  a	  firm	  to	  express	  their	  concerns	  and	  perhaps	  offer	  solutions;	  lobbying	  relevant	  government	  agencies	  to	  suggest	  regulatory	  changes	  that	  address	  the	  situation;	  or	  communicating	  with	  the	  public	  to	  raise	  awareness.	  Some	  ENGOs	  have	  a	  more	  adversarial	  and	  combative	  relationship	  with	  the	  corporate	  world,	  publicly	  shaming	  a	  company	  by	  releasing	  details	  of	  an	  environmental	  harm.	  Other	  ENGOs,	  in	  contrast,	  work	  directly	  with	  corporations	  to	  help	  improve	  their	  environmental	  performance,	  lending	  authenticity	  and	  credibility	  to	  CSR	  efforts.	  ENGOs	  themselves	  admit	  that	  working	  with	  the	  private	  sector	  is	  a	  potent	  opportunity	  to	  promote	  sustainability.	  Speaking	  about	  his	  relationship	  with	  the	  CocaCola	  Company,	  the	  CEO	  of	  WWF	  Canada	  stated	  the	  following	  (Houpt,	  2011,	  para.	  8):	  "Coke	  is	  the	  No.	  1	  purchaser	  of	  aluminum	  on	  the	  face	  of	  the	  earth	  -­‐	  which	  is	  one	  of	  the	  most	  carbon-­‐intensive	  commodities.	  The	  No.	  1	  purchaser	  of	  sugar	  cane.	  The	  No.	  3	  purchaser	  of	  citrus.	  The	  second-­‐largest	  purchaser	  of	  glass,	  and	  the	  fifth-­‐largest	  purchaser	  of	  coffee.	  We	  could	  spend	  50	  years	  lobbying	  75	  national	  governments	  to	  change	  the	  regulatory	  framework	  for	  the	  way	  these	  commodities	  are	  grown	  and	  produced.	  Or	  these	  folks	  at	  Coke	  could	  make	  a	  decision	  that	  they're	  not	  going	  to	  purchase	  anything	  that	  isn't	  grown	  or	  produced	  in	  a	  certain	  way	  –	  and	  the	  whole	  global	  supply	  chain	  changes	  overnight.	  And	  that	  in	  a	  nutshell	  is	  why	  we're	  in	  a	  partnership."	  	  Local	  communities	  affected	  by	  a	  company’s	  environmental	  footprint	  can	  similarly	  advocate	  for	  change.	  How	  and	  where	  they	  advocate	  will	  depend	  on	  the	  particular	  issue,	  their	  capacity,	  and	  the	  responsiveness	  of	  government	  to	  community	  concerns.	  Like	  ENGOs,	  what	  is	  important	  from	  the	  perspective	  of	  CSR	  is	  that	  advocacy	  is	  likely	  to	  occur	  for	  any	  number	  of	  issues,	  at	  many	  levels,	  and	  can	  be	  combative	  or	  cooperative	  (Lund-­‐Thomsen	  and	  Wad,	  2014).	  How	  a	  corporation	  responds	  to	  advocacy	  is	  	   	   	   	   	  	   14perhaps	  indicative	  of	  how	  seriously	  it	  has	  integrated	  CSR	  practices	  into	  its	  business	  strategy.	  Those	  that	  have	  taken	  the	  steps	  to	  measure	  and	  manage	  their	  environmental	  footprint,	  and	  have	  done	  so	  in	  a	  methodologically	  rigorous	  and	  transparent	  way,	  will	  be	  better	  positioned	  to	  engage	  with	  advocates	  (Doh	  and	  Guay,	  2004).	  	  1.1.1.2.6 Sustainability	  Driver:	  Climate	  Change	  Climate	  change	  and,	  by	  extension,	  carbon,	  deserve	  particular	  attention	  as	  a	  driver	  of	  sustainability.	  Climate	  change	  is	  a	  unique	  environmental	  issue	  because	  it	  is	  global	  in	  scale	  and	  has	  dire	  implications	  (IPCC,	  2007).	  It	  is	  unique	  politically	  because	  so	  many	  government	  bodies	  at	  the	  international,	  national,	  provincial,	  and	  municipal	  levels	  have	  put	  forth	  regulations	  and	  set	  targets	  with	  the	  goal	  of	  reducing	  carbon	  emissions.	  Corporations,	  perhaps	  seeing	  the	  writing	  on	  the	  wall,	  have	  embraced	  carbon	  as	  a	  major	  environmental	  issue	  (SwissRe,	  2007).	  Given	  that	  carbon	  emissions	  are	  somewhat	  analogous	  with	  energy	  use,	  reducing	  carbon	  often	  equates	  with	  reducing	  energy	  costs.	  Reducing	  emissions	  can,	  therefore,	  be	  a	  classic	  ‘win-­‐win’	  CSR	  initiative	  (Stanny	  and	  Ely,	  2008).	  	  Carbon	  simply	  being	  ubiquitous	  does	  not	  make	  it	  a	  driver	  of	  environmental	  sustainability.	  The	  real	  driver	  is	  the	  likelihood	  of	  carbon	  as	  a	  priced	  commodity.	  Governments,	  advised	  by	  scientists	  and	  advocates	  that	  carbon	  emissions	  should	  be	  reduced,	  have	  devised	  schemes	  to	  put	  a	  price	  on	  carbon	  (Garnaut,	  2008).	  In	  the	  European	  Union,	  the	  European	  Trading	  System	  governs	  the	  buying	  and	  selling	  of	  emission	  allowances	  (Europa,	  2005).	  International	  agreements	  have	  tried,	  thus	  far	  failing,	  to	  emulate	  this	  system.	  Regional	  approaches,	  such	  as	  the	  Western	  Climate	  Initiative	  or	  the	  Regional	  Greenhouse	  Gas	  Initiative,	  have	  taken	  steps	  to	  price	  carbon	  (Western	  Climate	  Initiative,	  2009;	  RGGI,	  2009).	  Some	  jurisdictions,	  like	  British	  Columbia,	  have	  imposed	  a	  carbon	  tax.	  All	  of	  these	  efforts	  result	  in	  one	  obvious	  conclusion:	  corporations	  anticipate	  having	  to	  pay	  for	  carbon	  (Kolk	  et	  al.,	  2008).	  The	  prospect	  of	  a	  new	  expense	  embedded	  in	  all	  business	  transactions	  has	  been	  remarkably	  effective	  in	  driving	  businesses	  to	  consider	  their	  environmental	  footprints.	  	  The	  monetization	  of	  carbon	  is	  what	  economists	  consider	  internalizing	  a	  cost.	  Economic	  systems	  often	  fail	  at	  internalizing	  environmental	  costs,	  and	  carbon	  is	  the	  first	  attempt	  at	  a	  global	  scale	  (Lohmann,	  2009).	  It	  should	  not	  be	  a	  surprise	  that	  reaching	  an	  international	  consensus	  on	  how	  to	  price	  carbon	  is	  an	  elusive	  goal.	  The	  lack	  of	  action	  at	  the	  international	  level	  has	  not	  stopped	  corporations	  from	  learning	  how	  to	  measure,	  manage,	  and	  reduce	  their	  emissions,	  and	  these	  efforts	  are	  reaping	  benefits	  (Lee,	  2011).	  	   	   	   	   	  	   15Measuring	  the	  carbon	  footprint	  of	  a	  large	  multinational	  corporation	  is	  a	  technical	  feat,	  requiring	  expertise,	  scientific	  knowledge,	  and	  an	  evolved	  corporate	  culture	  (Halldórsson	  et	  al.,	  2009).	  However,	  now	  more	  than	  ever,	  companies	  have	  an	  increased	  capacity	  and	  willingness	  to	  begin	  measuring	  this	  aspect	  of	  their	  environmental	  footprints	  (CDP,	  2010).	  Furthermore,	  lessons	  learned	  here	  could	  be	  used	  in	  measuring	  the	  environmental	  impacts	  of	  using	  other	  public	  goods,	  like	  water.	  	  1.1.1.3 Responses	  to	  Sustainability	  	  Here	  I	  consider	  responses	  to	  sustainability	  in	  the	  form	  of	  CSR	  practices,	  basing	  the	  analysis	  on	  a	  framework	  developed	  by	  Auld	  et	  al.	  (2008a)	  that	  categorizes	  CSR	  innovations.	  These	  seven	  categories	  capture	  how	  a	  corporation	  might	  respond	  to	  the	  sustainability	  imperative:	  individual	  firm	  efforts;	  individual	  firm	  and	  NGO	  agreements;	  public-­‐private	  partnerships;	  information-­‐based	  approaches;	  environmental	  management	  systems	  (EMSs);	  industry	  association	  codes	  of	  conduct;	  and	  non-­‐state	  market-­‐driven	  (NSMD)	  governance	  in	  the	  form	  of	  private-­‐sector	  hard	  laws.	  	  1.1.1.3.1 Sustainability	  Response:	  Individual	  Firm	  Efforts	  	  Individual	  firm	  efforts	  occur	  when	  a	  firm	  independently	  makes	  a	  decision	  to	  become	  more	  environmentally	  responsible.	  Such	  efforts	  are	  not	  responses	  to	  regulations,	  but	  may	  be	  attempts	  to	  preempt	  government.	  Firms	  may	  uncover	  win-­‐win	  CSR	  opportunities	  or	  adopt	  win-­‐lose	  strategies	  that	  hold	  long-­‐term	  financial	  potential.	  In	  general,	  internal	  firm	  efforts	  are	  not	  subject	  to	  externally	  imposed	  prescriptive	  requirements,	  and	  firms	  control	  the	  processes	  and	  policies	  developed.	  This	  flexibility	  and	  the	  fact	  that	  win-­‐win	  solutions	  tend	  to	  be	  the	  focus	  of	  corporate	  attention,	  explain	  why	  individual	  firm	  efforts	  represent	  the	  most	  prevalent	  and	  widespread	  manifestation	  of	  CSR	  (Hill	  et	  al.,	  2003).	  	  1.1.1.3.2 Sustainability	  Response:	  Individual	  Firm	  and	  Individual	  NGO	  Agreements	  Agreements	  refer	  to	  CSR	  efforts	  in	  which	  a	  firm	  engages	  with	  an	  ENGO	  or	  other	  stakeholders	  to	  address	  the	  environmental	  impact	  associated	  of	  a	  firm’s	  operations	  (Hartman	  and	  Stafford,	  1997;	  Dauvergne	  and	  Lister,	  2012).	  In	  general,	  an	  ENGO	  will	  come	  to	  view	  an	  environmental	  issue	  from	  a	  different	  perspective	  than	  a	  firm.	  Firms	  benefit	  from	  these	  partnerships	  by	  adding	  legitimacy	  to	  their	  CSR	  efforts	  by	  collaborating	  with	  traditional	  adversaries	  (Yaziji	  and	  Doh,	  2009).	  	  An	  example	  of	  firm-­‐ENGO	  collaboration	  comes	  from	  the	  Environmental	  Defense	  Fund	  (EDF)	  and	  Wal-­‐Mart.	  Wal-­‐Mart,	  the	  epitome	  of	  a	  big	  box	  American	  retailer,	  has	  integrated	  environmental	  variables	  into	  	   	   	   	   	  	   16its	  practices	  for	  a	  variety	  of	  reasons.	  EDF	  decided	  to	  leverage	  this	  opportunity,	  seeing	  collaboration	  with	  Wal-­‐Mart	  as	  a	  chance	  to	  highlight	  what	  they	  perceive	  to	  be	  a	  sincere	  CSR	  effort,	  but	  also	  to	  promote	  best	  practices	  among	  retailers	  and	  along	  Wal-­‐Mart’s	  massive	  supply	  chain	  (EDF,	  n.d.).	  	  	  1.1.1.3.3 Sustainability	  Response:	  Public-­‐private	  Partnerships	  Public-­‐private	  partnerships	  are	  similar	  to	  firm-­‐ENGO	  agreements,	  but	  involve	  other	  interests,	  such	  as	  governments,	  or	  are	  made	  up	  of	  several	  firms	  and	  ENGOs	  acting	  in	  concert.	  These	  partnerships	  can	  emerge	  as	  efforts	  to	  address	  standards	  development,	  to	  implement	  self-­‐regulation,	  or	  to	  develop	  collaborative	  co-­‐regulation	  schemes	  (Andonova,	  2010).	  These	  partnerships	  are	  grounded	  in	  the	  idea	  that	  private-­‐public	  collaboration	  can	  provide	  an	  efficient	  means	  of	  enforcing	  costly	  legislation.	  	  An	  early	  example	  of	  public-­‐private	  partnerships	  comes	  from	  the	  United	  States	  and	  the	  Environmental	  Protection	  Agency	  (EPA),	  which	  developed	  the	  33/50	  program.	  Implemented	  in	  1991,	  the	  goal	  of	  the	  program	  was	  to	  reduce	  emissions	  of	  17	  toxic	  chemicals	  by	  33%	  in	  1993,	  and	  50%	  by	  1995	  (EPA,	  1994).	  Rather	  than	  set	  strict	  prescriptive	  requirements,	  the	  EPA	  gave	  industry	  flexibility	  in	  meeting	  these	  goals.	  The	  program	  managed	  to	  achieve	  its	  targets	  one	  year	  ahead	  of	  schedule	  (Khanna	  and	  Damon,	  1999).	  Forestry	  has	  similar	  examples.	  The	  Great	  Bear	  Rainforest	  Agreement	  and	  the	  Canadian	  Boreal	  Forest	  Agreement	  both	  demonstrate	  the	  potency	  of	  partnerships	  between	  ENGOs,	  industry,	  and	  government.	  The	  former	  protected	  a	  large	  area	  of	  rainforest	  on	  the	  coast	  of	  British	  Columbia,	  allowing	  ENGOs	  to	  claim	  victory	  while	  providing	  industry	  with	  a	  degree	  of	  security	  from	  ENGO	  criticism	  ((Howlett	  et	  al.,	  2009).	  In	  the	  latter,	  ENGOs	  and	  industry	  (including	  traditional	  adversaries	  like	  Greenpeace	  and	  Weyerhaeuser)	  agreed	  on	  environmental	  conservational	  goals	  and	  the	  need	  to	  pursue	  sustainable	  forest	  management	  and	  provide	  jobs	  for	  forest-­‐dependent	  communities	  (FPAC,	  2010).	  This	  provided	  a	  détente	  of	  sorts,	  allowing	  industry	  to	  focus	  on	  economic	  issues	  without	  the	  constant	  risk	  of	  negative	  attention	  from	  ENGOs.	  	  1.1.1.3.4 Sustainability	  Response:	  Information-­‐based	  Approaches	  Many	  CSR	  efforts	  revolve	  around	  the	  provision	  of	  information	  related	  to	  a	  firm’s	  behaviour	  (Kharrazi	  et	  al.	  2014).	  Some	  efforts	  are	  voluntary,	  while	  others	  are	  mandatory.	  Government	  sponsored	  systems,	  such	  as	  the	  EPA’s	  Toxic	  Release	  Inventory	  (Khanna	  et	  al.,	  1998),	  require	  companies	  to	  disclose	  information	  on	  an	  extensive	  list	  of	  chemicals	  that	  their	  activities	  produce.	  This	  was	  brought	  about	  by	  advocates	  who	  argued	  that	  communities	  have	  the	  ‘right	  to	  know’	  about	  what	  corporations	  are	  doing.	  In	  	   	   	   	   	  	   17Canada	  and	  the	  United	  States,	  like	  most	  other	  developed	  economics,	  major	  emitters	  of	  carbon	  are	  required	  to	  report	  on	  their	  emissions	  to	  the	  federal	  government	  (Jones	  and	  Ratnatunga,	  2012).	  Similarly,	  food	  producers	  must	  report	  on	  the	  nutritional	  requirements	  of	  their	  products.	  Wal-­‐Mart,	  while	  describing	  the	  future	  of	  its	  Supplier	  Sustainability	  Index	  has	  suggested	  that	  a	  carbon	  label	  might	  be	  required	  for	  all	  of	  the	  goods	  that	  it	  sells	  (Wal-­‐Mart,	  2011),	  which	  could	  potentially	  impact	  sustainability	  reporting	  and	  information	  based	  approaches	  across	  the	  globe	  (Gereffi	  and	  Christian,	  2009).	  	  These	  examples	  speak	  to	  an	  increasing	  emphasis	  on	  transparency.	  By	  requiring	  the	  disclosure	  of	  information	  or	  by	  advocating	  for	  voluntary	  disclosure,	  transparency	  becomes	  the	  norm	  rather	  than	  the	  exception.	  Firms	  that	  do	  not	  participate	  risk	  losing	  market	  access.	  Other	  forms	  of	  information	  sharing	  also	  revolve	  around	  this	  notion	  of	  transparency.	  In	  the	  United	  States,	  the	  Lacey	  Act	  mandates	  that	  importers	  of	  forest	  products	  trace	  the	  origin	  of	  their	  imports.	  This	  has	  forced	  the	  development	  of	  sophisticated	  supply	  chain	  practices,	  such	  as	  radio-­‐tags	  that	  get	  attached	  to	  felled	  trees	  at	  harvest	  sites	  (USDA,	  2011).	  Non-­‐compliance	  with	  the	  Lacey	  Act	  can	  lead	  to	  embarrassment.	  Gibson	  Guitars,	  a	  high-­‐end	  luthier	  in	  the	  United	  States,	  experienced	  public	  scrutiny	  when	  its	  operations	  were	  shut	  down	  by	  government	  officials	  for	  violating	  the	  Lacey	  Act.	  An	  investigation	  by	  the	  World	  Resources	  Institute	  purchased	  32	  books	  randomly	  from	  a	  retailer	  and	  found	  that	  three	  of	  them	  used	  illegal	  fibre	  in	  the	  paper	  (Nogueron	  and	  Hanson,	  2010).	  A	  continued	  need	  for	  transparency	  and	  measurement	  along	  the	  supply	  chain	  remains.	  Similar	  legislation	  for	  conflict	  minerals	  (minerals	  from	  the	  Congo	  Basin	  whose	  sale	  funds	  armed	  conflict)	  are	  being	  implemented	  in	  the	  United	  States	  which	  would	  require	  manufactures	  to	  trace	  the	  source	  of	  certain	  metals	  in	  their	  products	  (OpenCongress	  ,2010).	  	  The	  Global	  Reporting	  Initiative	  (GRI)	  is	  an	  example	  of	  information	  sharing	  that	  deserves	  particular	  attention.	  The	  GRI	  has	  become	  the	  de	  facto	  standard	  (it	  is	  technically	  a	  guideline	  rather	  than	  standard,	  as	  it	  is	  free	  to	  use	  and	  does	  not	  mandate	  verification	  or	  auditing)	  for	  corporate	  sustainability	  reporting,	  and	  is	  perceived	  by	  executives	  as	  second	  only	  to	  the	  ISO	  14001	  standard	  in	  influencing	  their	  CSR	  practices	  (Brown	  et	  al.	  2009).	  The	  GRI	  is	  a	  multi-­‐stakeholder	  process,	  involving	  industry,	  governments,	  scientists,	  and	  civil	  society.	  Various	  working	  groups	  develop	  specific	  guidelines	  for	  different	  sectors.	  Additionally,	  the	  guidelines	  evolve	  relatively	  quickly;	  the	  third	  version	  of	  GRI	  is	  in	  place	  after	  only	  9	  years.	  The	  GRI	  has	  gained	  widespread	  support	  for	  a	  variety	  of	  reasons.	  It	  is	  a	  ‘win-­‐win’	  solution	  as	  corporations	  adopt	  a	  reporting	  framework	  that	  meets	  the	  requirements	  of	  many	  social	  actors	  (notably,	  	   	   	   	   	  	   18advocates	  and	  investors).	  The	  GRI	  also	  carries	  with	  it	  a	  strong	  sense	  of	  legitimacy	  and	  inclusivity	  and	  is	  a	  partner	  institution	  of	  the	  UNEP.	  	  At	  the	  opposite	  end	  of	  the	  scale	  from	  enterprise-­‐level	  GRI	  reporting	  is	  another	  information-­‐based	  approach:	  Environmental	  Product	  Declarations	  (EPDs.)	  These	  statements	  are	  equivalent	  to	  food	  nutrition	  labels,	  disclosing	  the	  energy,	  materials,	  water	  impacts	  and	  waste	  emissions	  associated	  with	  a	  particular	  product.	  EPDs	  are	  based	  off	  ISO	  standards	  (ISO	  14025,	  2006)	  and	  can	  only	  be	  prepared	  once	  Product	  Category	  Rules	  (PCRs)	  have	  been	  developed	  using	  a	  multi-­‐stakeholder	  process.	  The	  forestry	  sector	  has	  embraced	  EPDs,	  as	  they	  are	  increasingly	  being	  required	  of	  products	  used	  in	  the	  construction	  industry	  (Zackrisson	  et	  al.	  2008).	  EPD’s	  have	  been	  developed	  for	  highly	  specific	  products,	  like	  Western	  Red	  Cedar	  Decking,	  Western	  Red	  Cedar	  Bevel	  Siding,	  Glue	  Laminated	  Timbers	  and	  Softwood	  Timber,	  to	  name	  a	  few	  (FII,	  2013).	  	  	  1.1.1.3.5 Sustainability	  Response:	  Environmental	  Management	  Systems	  Environmental	  management	  systems	  (EMS)	  are	  externally	  defined	  and	  imposed	  criteria	  about	  how	  a	  firm	  should	  approach	  its	  environmental	  footprint	  (Melnyk,	  2003).	  The	  ISO	  14001	  standard,	  and	  more	  recently	  the	  26001	  standard,	  are	  examples	  of	  widely	  adopted	  EMSs	  that	  organizations	  adopt	  in	  order	  to	  standardize	  their	  internal	  processes	  for	  handling	  environmental	  issues.	  Firms	  use	  these	  systems	  to	  measure	  and	  monitor	  their	  footprint	  with	  the	  goal	  of	  reducing	  inefficiencies	  and	  identifying	  risk.	  They	  carry	  with	  them	  credibility,	  and	  the	  opportunity	  to	  attach	  a	  recognized	  logo	  to	  a	  product,	  but	  there	  are	  costs	  associated	  with	  implementation	  and	  third-­‐party	  verification	  of	  EMS	  standards.	  	  Firms	  can	  also	  employ	  other	  systems	  to	  measure	  their	  environmental	  footprint.	  A	  common	  tool,	  in	  both	  academia	  and	  the	  corporate	  world,	  is	  life-­‐cycle	  assessment	  (LCA)	  (Gauthier,	  2005).	  While	  ISO	  standards	  are	  used	  to	  define	  protocols	  on	  how	  to	  conduct	  an	  LCA,	  LCAs	  are	  rarely	  verified	  by	  a	  third	  party.	  Increasingly,	  LCAs	  are	  utilizing	  data	  from	  life	  cycle	  inventory	  (LCI)	  databases	  that	  are	  privately	  owned	  and	  not	  subject	  to	  peer-­‐review.	  While	  these	  databases	  make	  the	  conduct	  of	  an	  LCA	  cost	  effective,	  they	  may	  also	  hide	  uncertainties	  or	  gaps	  in	  data	  (Auld	  et	  al.,	  2008a).	  	  1.1.1.3.6 Sustainability	  Response:	  Industry	  Association	  Codes	  of	  Conduct	  Industry	  codes	  of	  conduct	  are	  typically	  found	  in	  sectors	  where	  companies	  tend	  to	  share	  a	  collective	  reputation.	  This	  can	  happen	  when	  the	  behaviour	  of	  one	  firm	  can	  impact	  an	  entire	  industry,	  regardless	  of	  	   	   	   	   	  	   19individual	  firm	  performance	  (Bondy	  et	  al.,	  2004).	  Most	  often	  these	  are	  sectors	  that	  produce	  primary	  or	  intermediary	  goods,	  like	  forestry,	  mining,	  or	  petrochemicals	  (Jenkins	  and	  Yakovleva,	  2006).	  Recently,	  other	  sectors	  have	  adopted	  codes	  of	  conduct:	  the	  coffee	  industry,	  which	  sells	  directly	  to	  consumers,	  has	  several	  schemes	  in	  place	  (Giovannucci	  and	  Ponte,	  2005);	  and	  the	  textile	  industry	  in	  the	  United	  States	  has	  created	  a	  Sustainable	  Apparel	  Coalition	  (Sustainable	  Apparel	  Coalition,	  2014)	  with	  the	  backing	  of	  ENGOs	  (EDF),	  government	  bodies	  (EPA),	  and	  major	  clothing	  manufacturers	  (Levi	  Strauss,	  Nike,	  and	  Mountain	  Equipment	  Co-­‐op,	  to	  name	  a	  few).	  These	  codes	  of	  conduct	  are	  often	  principles-­‐driven	  and	  administered	  by	  industry	  associations;	  they	  do	  not	  provide	  specific,	  prescriptive	  guidance	  on	  how	  firms	  should	  behave.	  Rather,	  concepts	  are	  defined	  and	  adherents	  promise	  to	  meet	  them,	  although	  verification	  and	  enforcement	  may	  not	  be	  as	  stringent	  as	  in	  other	  types	  of	  CSR	  innovations.	  	  1.1.1.3.7 Sustainability	  Response:	  Nonstate	  Market-­‐driven	  Governance	  Nonstate	  market-­‐driven	  (NSMD)	  governance	  is	  a	  type	  of	  CSR	  innovation	  defined	  by	  Auld	  et	  al.	  (2008a,	  2008b).	  It	  differs	  from	  all	  of	  the	  above	  CSR	  tools	  in	  that	  it	  requires	  mandatory	  and	  enduring	  behaviour	  (so-­‐called	  ‘hard	  law’),	  but	  is	  not	  enforced	  by	  the	  state.	  Further,	  it	  differs	  from	  traditional	  hard	  law	  by	  continually	  adapting	  over	  time	  with	  the	  input	  of	  various	  stakeholders	  (Bernstein	  and	  Cashore,	  2007).	  NSMD	  governance	  also	  differs	  from	  other	  CSR	  innovations	  in	  that	  it	  is	  rooted	  in	  the	  supply	  chain.	  NSMD	  governance	  requires	  a	  firm	  to	  understand	  and	  manage	  the	  upstream	  implications	  of	  its	  activities,	  but	  also	  requires	  a	  firm	  to	  look	  downstream	  to	  understand	  that	  it	  is	  ultimately	  the	  market	  that	  drives	  NSMD	  schemes	  to	  be	  adopted.	  Finally,	  NSMD	  governance,	  unlike	  most	  CSR	  efforts,	  requires	  third-­‐party	  verification	  (Cashore	  et	  al.,	  2007).	  This	  imposes	  a	  significant	  cost	  on	  firms,	  but	  also	  ensures	  that	  NSMD	  schemes	  remain	  something	  akin	  to	  hard	  law.	  	  The	  most	  obvious	  example	  of	  NSMD	  is	  certification.	  Certification	  schemes	  exist	  in	  several	  industries	  (seafood,	  for	  example,	  has	  seen	  recent	  growth	  in	  a	  variety	  of	  schemes).	  But	  forestry	  has	  led	  the	  way	  in	  the	  development	  of	  certification	  systems.	  Perhaps	  the	  most	  widely	  known	  scheme	  is	  the	  Forest	  Stewardship	  Council	  (FSC).	  Borne	  out	  of	  dialogue	  around	  sustainability	  at	  the	  Rio	  Environmental	  Summit	  in	  1992,	  FSC	  is	  an	  independent	  body	  jointly	  controlled	  by	  an	  environmental	  committee	  and	  an	  industry	  committee	  (see	  Rametsteiner	  and	  Simula,	  2003	  for	  a	  more	  thorough	  discussion	  of	  forest	  certification	  schemes).	  Other	  prominent	  schemes	  are	  the	  Sustainable	  Forestry	  Initiative	  (SFI,	  an	  industry-­‐backed	  scheme	  in	  North	  America)	  and	  the	  Programme	  for	  the	  Endorsement	  of	  Forest	  Certification	  (PEFC,	  	   	   	   	   	  	   20dominant	  in	  Europe	  with	  a	  significant	  Canadian	  presence	  and	  composed	  of	  a	  central	  body	  that	  allows	  for	  country-­‐level	  definitions	  of	  certification).	  	  Whether	  a	  firm	  choses	  to	  participate	  in	  a	  forest	  certification	  scheme	  relates	  to	  the	  character	  of	  the	  firm	  (publicly	  or	  privately	  owned),	  the	  product	  they	  are	  manufacturing	  (magazine	  paper,	  dimensional	  lumber,	  pulp,	  etc.),	  trade	  dependence	  (major	  exporter	  or	  domestically	  oriented),	  ENGO	  pressure,	  supply	  chain	  procurement	  policies,	  and	  government	  support.	  Small	  operations	  may	  find	  compliance	  too	  costly	  and	  not	  worth	  the	  effort	  (Crals	  and	  Vereeck,	  2005).	  Large	  forestry	  firms,	  in	  contrast,	  are	  more	  vulnerable	  to	  pressure	  from	  advocates	  and	  can	  better	  bear	  the	  costs	  of	  compliance.	  In	  fact,	  in	  many	  instances,	  certification	  among	  larger	  supply	  chain	  actors	  is	  fast	  becoming	  the	  norm	  in	  the	  marketplace	  (Cashore	  et	  al.,	  2005).	  Other	  firms,	  such	  as	  those	  that	  sell	  intermediary	  products,	  must	  comply	  with	  more	  than	  one	  scheme	  in	  order	  to	  meet	  various	  customers’	  demands	  (Mikkilä	  and	  Toppinen,	  2008).	  For	  example,	  a	  paper	  company	  might	  have	  to	  be	  SFI-­‐certified	  to	  sell	  to	  an	  American	  client,	  FSC-­‐certified	  to	  sell	  to	  a	  Canadian	  client,	  and	  PEFC-­‐certified	  to	  sell	  to	  a	  European	  client.	  	  1.1.2 The	  Media	  Shift	  We’ve	  described	  and	  defined	  sustainability	  and	  its	  facets,	  possibilities,	  and	  contexts.	  With	  these	  drivers,	  definitions,	  and	  responses	  in	  mind,	  in	  this	  section	  I	  set	  out	  to	  characterize	  the	  media	  shift	  that	  is	  underway.	  Describing	  the	  paper	  to	  pixel	  transition	  is	  not	  simple.	  There	  is	  such	  variety	  in	  the	  many	  transitions	  that	  no	  single	  metric	  that	  can	  capture	  the	  diversity	  in	  the	  scope,	  volume,	  or	  intensity	  of	  the	  transition.	  My	  goal	  is	  not	  to	  describe	  specific	  transition,	  but	  instead	  to	  consider	  the	  types	  of	  transitions.	  Given	  the	  diversity	  of	  media	  that	  can	  be	  consumed	  either	  on	  paper	  or	  digitally,	  this	  approach	  was	  necessary.	  	  The	  complexity	  of	  the	  transition	  is	  simple	  to	  illustrate:	  media	  that	  previously	  could	  be	  consumed	  only	  on	  paper	  is	  now	  available	  on	  a	  vast	  array	  of	  digital	  devices.	  Paper	  media	  can	  be	  a	  newspaper,	  magazine,	  book,	  catalogue,	  flyer	  insert,	  directory,	  printing	  or	  writing	  paper,	  invoices,	  and	  bills,	  etc.	  All	  of	  these	  serve	  as	  a	  basis	  for	  communicating	  information.	  Digital	  media	  is	  similarly	  equipped	  to	  communicate	  over	  a	  wide	  variety	  of	  platforms	  including	  desktop	  computers,	  laptops,	  internet-­‐enabled	  cell	  phones,	  tablet	  computers,	  or	  E-­‐Readers.	  With	  this	  many	  products	  and	  types	  of	  information,	  the	  scope	  for	  different	  transitions	  is	  vast	  (Hetemäki	  and	  Nilsson,	  2005).	  	  	   	   	   	   	  	   21There	  are	  other	  characteristics	  of	  media	  that	  need	  to	  be	  considered	  when	  describing	  the	  paper	  to	  pixel	  transition.	  Media	  consumption	  is	  not	  necessarily	  a	  zero-­‐sum	  game.	  If	  the	  marketplace	  consumes	  more	  digital	  media,	  it	  does	  not	  necessarily	  to	  come	  at	  the	  expense	  of	  paper	  media.	  This	  is	  not	  to	  suggest	  that	  increased	  digital	  consumption	  does	  not	  impact	  paper	  consumption,	  it’s	  just	  not	  a	  direct	  trade-­‐off.	  	  	  Nor	  is	  the	  transition	  towards	  digital	  media	  the	  result	  of	  consumers	  becoming	  tired	  of	  the	  offerings	  provided	  on	  paper	  media	  (Hujala,	  2011).	  Digital	  devices	  are	  capable	  of	  providing	  a	  broad	  range	  of	  services,	  far	  beyond	  the	  ability	  to	  communicate	  information	  previously	  on	  paper.	  For	  example,	  digital	  devices	  can	  email,	  bank,	  shop,	  play	  videos,	  take	  pictures,	  and	  act	  as	  GPS	  devices	  –	  this	  multi-­‐functionality	  is	  a	  large	  part	  of	  their	  attraction	  to	  consumers.	  And,	  most	  importantly,	  it	  also	  implies	  that	  the	  environmental	  impacts	  of	  digital	  devices	  are	  spread	  over	  multiple	  uses.	  	  	  In	  this	  section,	  I	  review	  digital	  and	  paper	  media,	  their	  lifecycles,	  and	  the	  range	  of	  environmental	  issues	  associated	  with	  media	  production,	  distribution,	  consumption,	  and	  end-­‐of-­‐life.	  The	  objective	  is	  to	  bring	  into	  focus	  the	  characteristics	  of	  each	  sector,	  and	  to	  identify	  key	  trends	  that	  indicate	  a	  shift	  is	  underway.	  By	  combining	  this	  review	  with	  definitions	  of	  sustainability	  (see	  section	  1.1.1	  The	  Sustainability	  Shift)	  I	  can	  define	  research	  questions	  that	  will	  add	  depth	  and	  context	  to	  our	  understanding	  of	  the	  sustainability	  of	  media.	  	  	  1.1.2.1 Digital	  Media	  	  I	  discuss	  trends	  in	  the	  digital	  media	  according	  to	  various	  lifecycle	  stages.	  The	  goal	  is	  to	  better	  understand	  the	  diffuse,	  complex	  and	  rapidly	  changing	  digital	  media	  landscape.	  I	  organize	  the	  review	  in	  four	  parts	  	  –	  media	  production,	  distribution,	  consumption,	  and	  end-­‐of-­‐life.	  In	  each	  category,	  I	  examine	  recent	  trends	  and	  the	  environmental	  context	  of	  each.	  Digital	  media	  is	  employed	  as	  a	  holistic	  term;	  it	  incorporates	  both	  the	  virtual,	  final	  product	  (the	  digital	  content	  viewed	  on	  a	  screen),	  as	  well	  as	  all	  of	  the	  necessary	  Information	  and	  Communication	  Technology	  (ICT)	  that	  supports	  the	  product,	  delivery,	  and	  consumption	  of	  digital	  media.	  This	  includes	  hardware	  and	  networking	  devices,	  consumer	  devices	  like	  computers	  and	  smartphones,	  as	  well	  as	  the	  factories	  required	  to	  manufacture	  all	  of	  this	  equipment.	  	  	  1.1.2.1.1 Digital	  Media	  Production	  To	  actually	  produce	  digital	  media	  requires	  a	  global	  and	  complex	  supply	  chain	  of	  ICT.	  To	  deliver	  digital	  media	  requires	  a	  complex	  supply	  chain,	  from	  raw	  materials	  to	  material	  processing	  to	  manufacturing	  	   	   	   	   	  	   22facilities,	  to	  computer	  hardware	  and	  networking	  equipment.	  Over	  its	  lifespan	  ICT	  equipment	  hosts	  a	  massive	  variety	  of	  products,	  dispersing	  its	  footprint	  across	  a	  range	  of	  digital	  media.	  But	  the	  key	  point	  is	  that	  digital	  media	  is	  not	  virtual	  media:	  it	  depends	  on	  a	  physical,	  tangible,	  and	  complex	  network	  of	  material	  goods.	  	  	  Digital	  media	  begins	  making	  hardware,	  involving	  a	  variety	  of	  raw	  materials,	  including	  chemicals,	  metals	  and	  minerals.	  Paul	  and	  Campbell	  (2011)	  investigate	  the	  environmental	  footprints	  of	  rare	  earth	  minerals3,	  substances	  that	  are	  present	  in	  in	  almost	  all	  ICTs.	  In	  all	  stages	  of	  mining	  and	  refining	  rare	  earth	  minerals,	  there	  are	  adverse	  impacts	  on	  the	  environment.	  After	  sourcing	  and	  refining	  raw	  materials,	  complex	  industrial	  processes	  are	  required	  to	  produce	  ICT	  equipment.	  Lau	  et	  al.	  (2002)	  investigate	  the	  footprints	  associated	  with	  electronics	  manufacturing,	  finding	  that	  a	  host	  of	  environmental	  problems	  arise	  in	  the	  production	  and	  then	  eventual	  disposal	  of	  computer	  material	  components.	  Adamon	  et	  al.	  (2005)	  find	  the	  range	  of	  environmental	  impacts	  from	  ICT	  is	  difficult	  to	  manage:	  impacts	  are	  dispersed	  along	  the	  supply	  chain,	  and	  ICT	  users	  are	  limited	  in	  their	  ability	  to	  mitigate	  footprints.	  	  	  1.1.2.1.2 Digital	  Media	  Distribution	  Once	  ICT	  hardware	  and	  networks	  are	  in	  place,	  digital	  media	  needs	  to	  be	  distributed.	  This	  means	  data	  flowing	  over	  wired	  and	  wireless	  networks,	  being	  processed	  by	  data	  centers,	  and	  finally	  arriving	  at	  the	  various	  devices	  that	  can	  be	  used	  to	  access	  digital	  media.	  Over	  the	  past	  two	  decades,	  there	  has	  been	  an	  almost	  exponential	  increase	  in	  the	  volume	  of	  data	  being	  delivered	  worldwide,	  and	  the	  trend	  is	  accelerating.	  According	  to	  Cisco	  (2014),	  devices	  like	  smartphones,	  tablets,	  and	  laptops	  are	  expected	  to	  increase	  in	  number	  from	  7	  billion	  in	  2013	  to	  10.3	  billion	  in	  2018.	  Over	  the	  same	  period,	  the	  amount	  of	  data	  consumed	  over	  mobile	  networks	  is	  expected	  to	  increase	  by	  15.9	  exabytes	  per	  month4.	  Mobile	  networks	  are	  also	  evolving	  away	  from	  3G	  (third	  generation)	  to	  4G	  (fourth	  generation)	  networks.	  This	  requires	  a	  massive	  build-­‐out	  of	  switches,	  relays,	  and	  transmission	  towers	  in	  order	  to	  support	  the	  new,	  faster	  mobile	  frequencies	  (Suk	  Yu	  Hui	  and	  Kai	  Hau	  Yeung,	  2003).	  	  As	  the	  volume	  of	  data	  and	  digital	  networks	  grow,	  more	  and	  more	  data	  centers	  are	  required.	  Terms	  like	  “the	  cloud”	  and	  “big	  data”	  have	  become	  ubiquitous	  as	  firms	  like	  Google,	  Apple,	  Facebook,	  Microsoft,	  and	  Amazon	  measure	  and	  collect	  more	  data,	  while	  finding	  ways	  to	  profit	  from	  the	  process.	  Koomey	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  3	  Rare	  earth	  minerals	  are	  used	  in	  a	  variety	  of	  applications,	  and	  have	  nuclear,	  metallurgical,	  chemical,	  catalytic,	  electrical,	  magnetic,	  and	  optical	  properties	  that	  are	  sought-­‐after	  by	  industrial	  users.	  (Koltun	  and	  Tharumarajah,	  2014)	  4	  To	  put	  that	  figure	  in	  perspective,	  an	  exabyte	  is	  one	  million	  terabytes,	  and	  one	  terabyte	  (a	  thousand	  gigabytes)	  is	  about	  the	  size	  of	  large	  hard	  drive	  in	  a	  desktop	  computer.	  	   	   	   	   	  	   23(2008)	  reviews	  the	  explosive	  growth	  in	  data	  centers	  that	  started	  in	  the	  early	  2000s.	  Early	  in	  the	  growth	  curve,	  data	  centers	  were	  smaller	  and	  their	  operators	  paid	  little	  attention	  to	  energy	  consumption.	  But	  as	  the	  number	  and	  size	  of	  data	  centers	  grew,	  they	  began	  to	  consume	  almost	  2%	  of	  total	  electricity	  produced	  in	  the	  United	  States.	  Operators	  have	  now	  begun	  to	  manage	  for	  energy	  consumption,	  attempting	  to	  reduce	  both	  environmental	  and	  financial	  costs	  (Koomey,	  2008).	  But	  not	  all	  companies	  share	  a	  concern	  for	  reducing	  the	  environmental	  footprint	  of	  their	  data	  centers.	  A	  recent	  investigation	  (BBC,	  2014)	  found	  that	  not	  all	  data	  centers	  are	  created	  equally.	  While	  some	  providers	  publicly	  disclose	  their	  environmental	  footprints	  and	  set	  targets	  for	  absolute	  reductions	  in	  emissions,	  others	  are	  more	  sanguine	  about	  their	  facilities	  impacts	  and	  energy	  use	  (Greenpeace,	  2010).	  	  	  1.1.2.1.3 Digital	  Media	  Consumption	  The	  production	  and	  distribution	  of	  digital	  media	  has	  experienced	  explosive	  growth.	  Unsurprisingly,	  the	  consumption	  of	  digital	  media	  –	  both	  digital	  hardware	  and	  virtual	  media	  –	  has	  undergone	  a	  similar	  experience.	  Between	  2009	  and	  2012,	  global	  shipments	  of	  smart	  phones	  and	  tablets	  per	  quarter	  rose	  from	  15	  million	  to	  almost	  190	  million	  today	  (Business	  Insider,	  2014).	  Over	  the	  same	  period	  shipments	  of	  traditional	  personal	  computers	  (PCs),	  like	  desktops	  and	  laptops,	  experienced	  little	  growth	  (AVC,	  2014).	  	  	  In	  mature	  markets	  like	  North	  America	  and	  Europe,	  people	  have	  long	  consumed	  digital	  media,	  first	  on	  desktops	  with	  dial-­‐up	  modems,	  shifting	  to	  laptops	  with	  broadband	  connections,	  and	  now	  dominated	  by	  mobile	  devices	  with	  wireless	  connections.	  According	  to	  the	  MIT	  Technology	  Review	  (2010),	  developing	  countries	  like	  India	  are	  experiencing	  growth	  that	  skips	  the	  wired,	  stationary	  ICT	  devices	  and	  are	  moving	  straight	  towards	  cheap,	  mobile	  devices.	  While	  mature	  markets	  still	  dominate	  the	  total	  consumption	  of	  mobile	  data,	  the	  fastest	  growth	  is	  occurring	  in	  regional	  markets	  like	  Latin	  America,	  Africa,	  and	  Eastern	  Europe.	  	  	  Smartphones,	  laptops,	  and	  tablets	  have	  been	  steadily	  declining	  in	  price	  for	  years,	  facilitating	  the	  massive	  growth	  in	  data	  consumption	  (Zuberbühler	  Associates,	  2013).	  ICT	  companies	  know	  that	  not	  all	  consumers	  can	  afford	  $700	  smart	  phones	  and	  are	  creating	  cheaper	  devices	  for	  developing	  markets.	  But	  this	  trend	  means	  that	  devices	  tend	  to	  last	  for	  only	  a	  few	  years	  and	  companies	  may	  in	  fact	  been	  engaged	  in	  so-­‐called	  ‘planned	  obsolescence’	  where	  devices	  are	  deliberately	  designed	  to	  have	  a	  limited	  lifespan	  (CBC	  News,	  2013b).	  Why	  make	  a	  device	  intended	  to	  last	  a	  long	  time,	  when	  after	  just	  12	  or	  24	  months	  a	  new	  device	  with	  better	  performance	  is	  available?	  Unfortunately,	  this	  approach	  results	  in	  manufacturing	  	   	   	   	   	  	   24complex	  devices	  with	  embedded	  environmental	  impacts	  that	  have	  relatively	  short	  lifespans,	  clearly	  suboptimal	  from	  the	  perspective	  of	  environmental	  sustainability.	  	  	  1.1.2.1.4 Digital	  Media	  End-­‐of-­‐Life	  Given	  these	  trends	  in	  production,	  distribution,	  and	  consumption,	  it	  is	  no	  surprise	  that	  the	  end-­‐of-­‐life	  (EOL)	  of	  digital	  media	  is	  problematic.	  Ongondo	  et	  al.	  (2011)	  provide	  a	  thorough	  review	  of	  the	  management	  of	  electrical	  and	  electronic	  waste	  flows	  worldwide.	  Digital	  media	  relies	  on	  ICT	  that	  is	  composed	  of	  abiotic,	  non-­‐renewable	  resources	  that	  are	  difficult	  and	  expensive	  to	  process.	  Processing	  ICT	  at	  EOL	  is	  further	  complicated	  by	  the	  fact	  that	  dozens,	  if	  not	  hundreds,	  of	  different	  metals,	  chemicals,	  and	  plastics	  are	  present	  in	  small	  quantities.	  This	  makes	  it	  difficult	  to	  retrieve	  any	  particular	  substance	  at	  a	  large	  scale,	  removing	  any	  economic	  imperative	  to	  manage	  EOL.	  As	  a	  result,	  large	  volumes	  –	  between	  20	  and	  25	  million	  tonnes	  per	  year,	  by	  some	  estimates	  (Robinson,	  2009)	  –	  of	  ICT	  waste	  ends	  up	  in	  landfills	  or	  exported	  to	  countries,	  like	  China,	  India,	  or	  Ghana,	  where	  the	  environmental	  and	  social	  impacts	  of	  processing	  ICT	  waste	  are	  often	  severe	  (Ni	  and	  Zeng,	  2009).	  Some	  jurisdictions	  have	  tried	  to	  improve	  handling	  of	  ICT	  waste.	  Europe	  passed	  the	  WEEE	  (Waste	  Electrical	  and	  Electronic	  Equipment)	  Directive,	  requiring	  the	  handling	  of	  ICT	  waste	  domestically.	  In	  North	  America,	  the	  province	  of	  British	  Columbia	  charges	  consumers	  an	  up-­‐front	  waste	  handling	  fee,	  and	  processes	  all	  ICT	  waste	  at	  a	  domestic	  facility	  operated	  with	  funds	  from	  the	  up-­‐front	  fees	  (Driedger,	  2001).	  But	  these	  initiatives	  are	  the	  exception,	  not	  the	  norm	  (Kahhat	  et	  al.,	  2008).	  In	  the	  face	  of	  explosive	  growth	  in	  ICT	  hardware	  production,	  ICT	  device	  consumption	  and	  digital	  media	  production,	  the	  EOL	  impacts	  of	  ICT	  and	  digital	  media	  remain	  a	  pressing	  environmental	  concern	  (Yu	  et	  al.,	  2010).	  	  1.1.2.1.5 Summary:	  Digital	  Media	  Shift	  Digital	  media	  is	  intrinsically	  connected	  to	  ICT	  hardware,	  devices	  and	  networks,	  all	  of	  which	  are	  undergoing	  significant	  growth	  in	  production,	  distribution,	  and	  delivery.	  The	  digital	  media	  shift	  can	  be	  characterized	  as	  accelerating	  quickly	  and	  increasingly	  global.	  It	  is	  complex	  and	  involves	  hundreds	  of	  industrial	  sectors	  and	  actors.	  This	  interconnected	  web	  of	  networks,	  data	  centers,	  and	  devices	  is	  the	  platform	  that	  hosts	  all	  digital	  media.	  And	  this	  platform	  is	  growing	  globally,	  evolving	  as	  new	  technologies	  emerge.	  In	  light	  of	  all	  the	  drivers	  and	  responses	  to	  sustainability	  identified	  earlier,	  the	  digital	  media	  shift	  is	  a	  challenge	  to	  environmental	  sustainability.	  The	  diffuse	  and	  rapid	  change	  makes	  it	  difficult	  to	  measure	  and	  manage	  environmental	  impacts,	  both	  negative	  and	  positive.	  	  	  	   	   	   	   	  	   251.1.2.2 Paper	  Media	  	  In	  this	  section,	  I	  explore	  four	  stages	  of	  the	  paper	  media	  lifecycle	  –	  production,	  distribution,	  consumption,	  and	  end-­‐of-­‐life.	  For	  each	  stage,	  I	  identify	  the	  most	  important	  trends	  and	  environmental	  issues.	  Clearly,	  paper	  is	  a	  very	  different	  media	  form	  than	  digital.	  Humans	  have	  been	  producing	  paper	  for	  thousands	  of	  years,	  and	  the	  printing	  press,	  pioneered	  in	  the	  1430s,	  portended	  the	  almost	  universal	  adoption	  of	  paper	  media	  across	  the	  world.	  Paper	  media,	  much	  like	  digital,	  depends	  on	  expansive	  industrial	  system	  –	  in	  this	  case	  forestry	  –	  in	  order	  to	  be	  produced.	  Again,	  the	  goal	  here	  is	  not	  to	  define	  every	  environmental	  impact	  or	  sustainability	  issue	  in	  forestry.	  Instead,	  I	  review	  the	  production,	  distribution,	  and	  consumption	  of	  paper	  and	  the	  environmental	  impacts	  that	  arise.	  	  An	  important	  factor	  to	  consider	  is	  that	  not	  all	  paper	  is	  created	  equally.	  Trees	  used	  to	  make	  paper	  could	  come	  from	  a	  sustainably	  managed	  forest	  or	  from	  an	  illegal	  harvest	  site	  in	  an	  area	  of	  high	  conservation	  value.	  A	  paper	  mill	  could	  be	  run	  at	  a	  world-­‐class	  level,	  with	  all	  environmental	  impacts	  measured	  and	  managed,	  or	  it	  could	  originate	  from	  an	  old	  mill	  in	  a	  jurisdiction	  with	  weak	  environmental	  controls.	  Paper	  products	  also	  vary	  widely,	  from	  an	  enduring	  product	  like	  a	  classic	  novel	  or	  a	  passport,	  to	  something	  transient	  like	  junk	  mail	  or	  shopping	  catalogue.	  The	  Environmental	  Paper	  Network	  (EPN)	  produces	  a	  paper	  utility	  matrix	  that	  identifies	  four	  classes	  of	  paper	  (EPN,	  2013):	  	  • High	  Utility	  /	  Low	  Volume:	  passports,	  birth	  Certificates,	  letters,	  photographs,	  important	  documents	  • High	  Utility	  /	  High	  Volume:	  books,	  newspapers,	  hygienic	  papers	  • Low	  Utility	  /	  Low	  Volume:	  local	  advertising,	  advertising	  posters	  • Low	  Utility	  /	  High	  Volume:	  junk	  mail,	  catalogues,	  over-­‐prints	  of	  books	  and	  magazines,	  over-­‐packaging	  	  These	  four	  categories	  demonstrate	  the	  wide	  variety	  of	  paper	  media	  that	  exists.	  And	  in	  each	  category,	  digital	  media	  is	  playing	  a	  disruptive	  role,	  either	  augmenting	  or	  replacing	  a	  paper	  product.	  	  	  1.1.2.2.1 Paper	  Production	  The	  impacts	  of	  paper	  production	  begin	  in	  the	  forest,	  where	  logging	  takes	  place.	  Berg	  and	  Lindholm	  (2005)	  review	  the	  energy	  impacts	  of	  logging,	  finding	  that	  removal	  and	  haulage	  contribute	  significantly	  to	  the	  footprint	  of	  harvesting.	  Boltz	  et	  al.	  (2003)	  compare	  various	  logging	  methods,	  finding	  that	  reduced-­‐impact	  logging	  can	  significantly	  decrease	  the	  footprint	  of	  harvesting.	  After	  a	  log	  is	  removed	  from	  the	  forest,	  it	  must	  be	  processed	  (typically	  at	  a	  sawmill)	  and	  chips	  moved	  from	  the	  sawmill	  to	  a	  paper	  mill.	  	   	   	   	   	  	   26Here	  another	  host	  of	  environmental	  challenges	  emerge.	  Carlberg	  and	  Stuthridge	  (1996)	  review	  the	  scope	  of	  environmental	  impacts	  of	  paper	  making,	  from	  the	  origin	  of	  fibre	  to	  the	  long-­‐term	  impact	  of	  paper	  mills	  on	  the	  surrounding	  environment.	  Bajpai	  (2011)	  offers	  a	  more	  recent	  perspective,	  identifying	  how	  paper	  mills	  have	  improved	  their	  chemical,	  effluent,	  and	  waste	  handling	  procedures	  to	  minimize	  environmental	  impacts.	  Galloway	  et	  al.	  (2004)	  consider	  how	  paper	  mills	  and	  their	  effluents	  can	  adversely	  impact	  wildlife,	  including	  fish,	  with	  a	  commensurate	  impact	  on	  ecosystem	  health	  and	  biodiversity.	  This	  reinforces	  a	  core	  truth	  about	  forestry	  and	  papermaking:	  it	  involves	  harvesting	  and	  processing	  trees	  (with	  the	  exception	  of	  recycling	  various	  forest	  products),	  thereby	  disrupting	  natural	  environments	  at	  a	  large	  scale.	  The	  impacts	  of	  this	  disruption	  can	  be	  managed	  sustainably,	  through	  adequate	  planning	  and	  site-­‐level	  remediation,	  or	  they	  can	  be	  ignored,	  resulting	  in	  deforestation	  and/or	  the	  degradation	  of	  the	  natural	  environment.	  	  In	  the	  production	  of	  paper,	  there	  is	  significant	  scope	  for	  variation.	  In	  some	  instances,	  forest	  certification	  schemes	  may	  be	  used	  to	  encourage	  sustainable	  forest	  management.	  These	  schemes,	  either	  industry	  sponsored	  or	  a	  collaborative	  approach	  involving	  non-­‐state	  actors	  and	  industry,	  have	  varying	  levels	  of	  effectiveness.	  Beyond	  a	  scheme	  and	  the	  standards	  it	  sets,	  the	  role	  of	  governance	  and	  transparency	  is	  important	  (Overdevest,	  2010).	  Recent	  studies	  (Visseren-­‐Hamakers	  and	  Pattberg,	  2013)	  have	  suggested	  that	  it	  is	  inconclusive	  whether	  certification	  meaningfully	  and	  consistently	  improves	  environmental	  performance.	  	  	  	  1.1.2.2.2 Paper	  Distribution	  Distributing	  paper	  media	  has	  its	  own	  set	  of	  environmental	  impacts.	  There	  is	  an	  inevitable	  reliance	  on	  transportation	  networks,	  including	  sea	  shipping,	  railways,	  trucks,	  as	  well	  as	  the	  vehicles	  of	  consumers	  who	  drive	  to	  retailers	  to	  purchase	  paper	  media.	  Borggren	  et	  al.	  (2011)	  suggest	  that	  the	  distribution	  impacts	  of	  paper	  media	  can	  vary	  widely.	  Some	  paper	  media,	  like	  books,	  are	  easily	  shared	  and	  can	  last	  for	  decades.	  How	  a	  consumer	  actually	  receives	  a	  book	  matters	  too:	  do	  they	  drive	  a	  significant	  distance	  for	  the	  express	  purpose	  of	  purchasing	  a	  book?	  Or	  do	  they	  take	  public	  transit,	  and	  walk	  to	  a	  bookstore	  as	  part	  of	  their	  daily	  routine?	  Or	  perhaps	  the	  book	  is	  delivered,	  part	  of	  a	  network	  of	  trucks	  and	  distribution	  centres	  that	  deliver	  a	  wide	  variety	  of	  goods.	  	  	  	   	   	   	   	  	   27To	  understand	  the	  footprint	  of	  distributing	  paper	  media,	  there	  is	  no	  better	  case	  study	  than	  that	  of	  mail.	  The	  delivery	  of	  mail	  has	  been	  disrupted	  by	  the	  advent	  of	  digital	  media.	  SLS	  Consultants	  (2008)	  conducted	  a	  study	  of	  the	  evolving	  mail	  industry	  in	  the	  United	  States.	  Personal	  correspondence,	  as	  well	  as	  invoices	  and	  statements,	  used	  to	  dominate	  the	  mail	  system.	  Now	  people	  rely	  on	  emails	  and	  electronic	  invoices	  to	  correspond.	  Mail	  volumes	  have	  declined,	  but	  have	  also	  evolved.	  Unsolicited	  mail,	  or	  junk	  mail,	  now	  makes	  up	  the	  majority	  of	  mail	  delivered.	  The	  type	  of	  vehicle	  used	  for	  delivery	  can	  influence	  environmental	  impacts:	  older,	  less	  efficient	  vehicles	  can	  potentially	  double	  the	  footprint	  of	  delivering	  mail.	  The	  density	  of	  a	  mail	  system	  also	  matters.	  Delivering	  paper	  media	  in	  remote	  areas	  often	  requires	  driving	  significant	  distances.	  Postal	  workers	  operating	  in	  urban	  areas,	  in	  contrast,	  can	  easily	  do	  so	  on	  foot.	  	  	  1.1.2.2.3 Paper	  Consumption	  The	  impacts	  of	  paper	  consumption	  are	  best	  understood	  through	  the	  concept	  of	  ‘paper	  utility’	  introduced	  at	  the	  beginning	  of	  this	  section.	  Different	  paper	  types	  are	  of	  high	  or	  low	  utility	  and	  are	  consumed	  in	  high	  or	  low	  volumes.	  A	  paper	  product	  like	  a	  book	  can	  be	  shared	  and	  stored	  for	  a	  significant	  period	  of	  time.	  Some	  have	  suggested	  (Skog	  and	  Nicholson,	  2000)	  that	  paper	  products	  can	  even	  act	  as	  a	  carbon	  sink,	  thereby	  assisting	  in	  efforts	  to	  mitigate	  and	  abate	  climate	  change.	  In	  contrast,	  high	  volume	  low	  utility	  products	  –	  junk	  mail	  being	  the	  obvious	  example	  –	  can	  have	  a	  significant	  and	  adverse	  impact	  on	  the	  environment.	  Consumers	  often	  immediately	  discard	  some	  forms	  of	  paper,	  gaining	  no	  utility	  from	  its	  production	  and	  distribution.	  	  1.1.2.2.4 Paper	  End-­‐of-­‐Life	  At	  the	  end-­‐of-­‐life	  (EOL),	  paper	  media	  faces	  two	  options:	  it	  can	  be	  recycled	  or	  it	  can	  be	  discarded.	  Recycling	  paper	  itself	  has	  an	  impact:	  it	  takes	  energy	  and	  water	  to	  break	  paper	  down	  to	  its	  constituent	  fibres	  and	  recycle	  these	  into	  a	  new	  product.	  Virtaten	  and	  Nilsson	  (1993)	  offer	  a	  broad	  view	  of	  all	  the	  environmental	  impacts	  of	  paper	  recycling.	  They	  find	  that	  recycling	  has	  the	  potential	  to	  actually	  use	  more	  energy	  and	  water	  than	  virgin	  fibre,	  although	  specific	  energy	  sources	  and	  processes	  employed	  matter	  as	  well.	  If	  a	  paper	  product	  is	  not	  recycled	  at	  its	  EOL,	  chances	  are	  it	  ends	  up	  in	  a	  landfill.	  Research	  has	  suggested	  (Agriculture	  Today,	  2010)	  that	  paper	  in	  a	  landfill	  can	  decompose	  in	  an	  oxygen	  starved	  environment,	  thereby	  resulting	  in	  methane	  emissions,	  a	  potent	  source	  of	  greenhouse	  gases.	  Some	  estimates	  (Micales	  and	  Skog,	  1997;	  Wang	  et	  al.,	  2013)	  suggest	  that	  decomposition	  in	  a	  landfill	  and	  the	  	   	   	   	   	  	   28associated	  methane	  can	  actually	  produce	  the	  most	  greenhouse	  gas	  emissions	  of	  any	  stage	  in	  the	  paper	  lifecycle.	  	  1.1.2.2.5 Paper	  Media	  Shift	  I	  have	  briefly	  reviewed	  the	  various	  lifecycle	  stages	  –	  from	  forest	  floor	  to	  delivery	  truck	  to	  landfill	  –	  where	  paper	  has	  the	  potential	  to	  impact	  the	  environment.	  But	  for	  the	  purposes	  of	  this	  thesis,	  I	  need	  to	  also	  review	  how	  paper	  media	  is	  changing.	  As	  digital	  media	  has	  emerged,	  it	  has	  clearly	  impacted	  the	  consumption	  of	  paper	  media.	  I	  want	  to	  contextualize	  and	  deepen	  the	  understanding	  of	  this	  impact.	  	  	  A	  big	  change	  in	  paper	  media	  has	  been	  the	  decline	  of	  traditional	  paper	  media	  outlets.	  The	  best	  example	  of	  the	  paper-­‐to-­‐digital	  media	  shift	  is	  that	  of	  newspapers.	  For	  well	  over	  a	  century,	  newspapers	  dominated	  the	  media	  landscape,	  generating	  revenue	  by	  selling	  physical	  copies,	  advertisements	  as	  well	  as	  classifieds.	  But	  with	  the	  advent	  of	  digital	  media,	  this	  revenue	  model	  faced	  an	  existential	  threat.	  Websites	  like	  Craigslist	  offered	  a	  platform	  for	  posting	  employment	  advertisements,	  real	  estate	  listings,	  and	  various	  other	  products.	  The	  monopoly	  of	  newspapers	  on	  distributing	  targeted	  and	  local	  advertising	  was	  suddenly	  broken.	  Between	  2003	  and	  2012,	  newspapers	  in	  the	  United	  States	  lost	  $11	  billion	  in	  classified	  revenue	  (Edmonds,	  2013).	  This	  amplified	  a	  downward	  spiral	  of	  declining	  readership	  and	  advertising	  revenue	  brought	  about	  by	  changing	  consumer	  preferences.	  Industry	  believes	  that	  the	  transition	  has	  stabilized	  (Newspaper	  Association	  of	  America,	  2013),	  but	  big	  brands	  like	  the	  Wall	  Street	  Journal	  and	  the	  New	  York	  Times	  are	  now	  relying	  on	  digital	  subscriptions	  to	  augment	  their	  revenue	  streams.	  	  	  Newspapers	  are	  not	  the	  only	  paper	  medium	  to	  be	  impacted:	  magazines	  have	  suffered	  too.	  Prominent	  brands	  like	  Life	  Magazine	  and	  Newsweek	  have	  ceased	  paper	  publications,	  unable	  to	  sell	  enough	  magazines	  or	  advertising	  to	  remain	  profitable	  (Media	  Life	  Magazine,	  2014).	  While	  niche	  magazines	  endure,	  it	  is	  only	  prominent	  brands	  (e.g.	  The	  Economist)	  or	  publications	  with	  generous	  corporate	  backing	  (e.g.	  Time	  Magazine)	  that	  have	  survived	  the	  media	  shift	  (Pew	  Research	  Journalism	  Project,	  2013).	  Experts	  predict	  that	  the	  future	  of	  media	  is	  both	  paper	  and	  digital	  (Ferguson,	  2009).	  Consumers	  vary	  in	  their	  preferences,	  and	  the	  advent	  of	  cheap	  and	  accessible	  digital	  technology	  has,	  by	  no	  means,	  eradicated	  all	  print	  media.	  Established	  paper	  media	  brands	  (like,	  as	  mentioned	  previously,	  the	  New	  York	  Times)	  are	  able	  to	  leverage	  their	  editorial	  staff	  and	  reputation	  to	  generate	  significant	  digital	  revenues.	  	  	   	   	   	   	  	   29I	  have	  already	  discussed	  the	  decline	  in	  mail	  volumes	  that	  the	  digital	  to	  paper	  media	  shift	  has	  induced,	  but	  is	  worth	  revisiting.	  Between	  1980	  and	  2013,	  mail	  volume	  went	  from	  around	  60	  billion	  pieces	  mailed	  per	  year	  to	  a	  peak	  of	  103	  billion	  in	  2002	  and	  back	  to	  65	  billion	  (United	  States	  Postal	  Service,	  2014).	  With	  current	  mail	  volumes	  similar	  to	  levels	  in	  the	  1980s,	  it	  is	  no	  surprise	  that	  postal	  services	  worldwide	  have	  had	  to	  aggressively	  curtail	  services	  and	  cut	  costs	  in	  order	  to	  operate	  without	  losing	  large	  sums	  of	  money.	  	  	  One	  final	  shift	  worth	  considering	  is	  that	  of	  the	  office	  place.	  In	  the	  workplace,	  paper	  and	  digital	  media	  form	  a	  complex,	  and	  at	  times	  symbiotic,	  relationship.	  Digital	  tools	  are	  used	  to	  produce	  paper	  products	  (like	  a	  printed	  email).	  And	  while	  the	  use	  of	  digital	  media	  has	  exploded,	  the	  decline	  of	  paper	  media	  has	  not	  experienced	  an	  equal	  and	  inverse	  implosion.	  York	  (2006)	  sees	  the	  concept	  of	  the	  ‘paperless	  office’	  as	  a	  quintessential	  example	  of	  Jevon’s	  paradox,	  which	  posits	  that	  any	  increase	  in	  efficiency	  is	  often	  offset	  by	  an	  increase	  in	  use.	  In	  the	  office	  environment,	  this	  paradox	  manifests	  in	  increased	  digital	  media	  consumption	  along	  with	  only	  modest	  declines	  in	  paper	  consumption.	  While	  digital	  media	  may	  be	  more	  efficient	  at	  delivering	  memos,	  emails,	  or	  reports,	  paper	  media	  is	  still	  being	  consumed.	  As	  a	  result,	  the	  aggregate	  environmental	  footprint	  of	  office	  workers	  may	  have	  increased.	  Researchers	  who	  study	  the	  effectiveness	  of	  media	  types	  suggest	  that	  a	  mix	  of	  paper	  and	  digital	  media	  is	  likely	  to	  persist,	  as	  each	  format	  has	  its	  own	  attributes	  and	  strengths	  (Ashby,	  2011).	  	  1.2 RESEARCH	  QUESTIONS	  I	  have	  demonstrated	  that	  there	  has	  been	  a	  shift	  in	  media	  consumption,	  and	  that	  concurrent	  to	  that	  shift	  has	  been	  the	  emergent	  priority	  of	  sustainability.	  To	  probe	  these	  trends	  further,	  and	  to	  take	  the	  time	  to	  “consider	  the	  environment”,	  I	  have	  arrived	  at	  three	  research	  questions	  that	  seek	  to	  unpack	  the	  relationship	  between	  sustainability	  and	  media.	  These	  questions	  look	  at	  the	  same	  issue	  –	  media	  sustainability	  –	  from	  three	  distinct	  perspectives:	  the	  consumer,	  industry,	  and	  academic	  comparisons	  of	  media	  choices.	  	  Given	  what	  I	  have	  learned	  about	  the	  sustainability	  shift	  and	  the	  media	  shift,	  it	  is	  clear	  that	  multiple	  perspectives	  are	  required.	  I	  have	  identified	  three	  research	  questions	  that	  will	  deepen	  an	  understanding	  of	  why	  I	  should	  consider	  the	  environment	  when	  printing	  an	  email.	  As	  already	  mentioned,	  clearly	  the	  paper	  sector	  deserves	  particular	  attention,	  having	  been	  classified	  as	  the	  product	  requiring	  environmental	  consideration.	  I	  have	  also	  seen	  that	  media	  consumption	  is	  shifting,	  and	  want	  to	  find	  out	  whether	  a	  survey	  of	  consumers	  provides	  further	  evidence	  of	  this	  transition.	  Finally,	  I	  have	  identified	  the	  need	  to	  compare	  paper	  and	  digital.	  To	  that	  end,	  I	  need	  to	  conduct	  a	  thorough	  analysis	  of	  the	  research	  that	  has	  compared	  both	  paper	  and	  pixels.	  	  	   	   	   	   	  	   30	  Influencing	  and	  motivating	  this	  line	  of	  inquiry	  are	  the	  two	  shifts	  I	  discussed	  in	  detail	  above.	  As	  the	  world	  responds	  to	  environmental	  challenges	  by	  pursuing	  sustainability,	  and	  as	  the	  media	  landscape	  evolves	  in	  light	  of	  new	  technologies,	  I	  need	  to	  better	  understand	  what	  this	  means	  for	  the	  environment.	  Given	  the	  breadth	  and	  depth	  of	  the	  trends	  that	  motivate	  this	  dissertation,	  I	  cannot	  focus	  simply	  on	  a	  discrete	  trade-­‐off	  between	  digital	  and	  paper	  media.	  A	  discrete	  trade-­‐off,	  say	  a	  consumer	  reading	  a	  book	  digitally	  instead	  of	  in	  print,	  is	  an	  important	  question.	  But	  it	  does	  not	  capture	  the	  systemic	  shifts	  in	  sustainability	  and	  media.	  It	  might	  say	  something	  about	  the	  impacts	  of	  a	  single	  consumptive	  choice,	  yet	  reveals	  very	  little	  about	  the	  impacts	  of	  entire	  industries	  across	  the	  planet	  and	  across	  decades	  of	  time.	  This	  dissertation	  seeks	  to	  elucidate	  the	  broad	  and	  deep	  questions	  that	  a	  comparative	  analysis	  of	  two	  industrial	  sectors	  requires.	  The	  uncertainties	  and	  assumptions	  that	  shape	  an	  understanding	  of	  paper	  and	  digital	  media	  need	  to	  be	  identified	  so	  that	  I	  might	  better	  understand	  the	  ecology	  of	  the	  industries	  involved,	  and	  contribute	  to	  a	  theory	  of	  sustainability	  that	  is	  both	  nuanced	  and	  evolved.	  	  	  But	  scientific	  inquiry	  and	  academic	  research	  needs	  to	  be	  grounded	  in	  testable	  hypotheses,	  sound	  methods,	  and	  clear	  reasoning.	  While	  a	  long	  and	  philosophical	  exploration	  of	  sustainability	  is	  tempting,	  grounding	  this	  dissertation	  in	  sound	  research	  will	  ensure	  that	  results	  and	  findings	  are	  theoretically	  robust	  and	  relevant.	  Reflecting	  these	  trends	  and	  objectives,	  the	  three	  research	  questions	  are	  as	  follows:	  1. Given	  the	  focus	  of	  environmental	  concern	  on	  paper	  media,	  how	  does	  sustainability	  operate	  along	  a	  paper	  media	  supply	  chain?	  2. Given	  the	  shift	  of	  consumers	  from	  paper	  to	  digital	  media	  sources,	  has	  sustainability	  impacted	  consumers’	  media	  consumption	  habits?	  3. Given	  the	  proliferation	  of	  media	  choices,	  have	  life	  cycle	  comparisons	  been	  made?	  And	  if	  so,	  what	  are	  their	  findings?	  	  I	  start	  with	  an	  inquiry	  into	  paper	  media	  supply	  chains.	  Because	  paper	  is	  seen	  as	  an	  environmental	  pariah,	  I	  want	  to	  investigate	  how	  that	  sector	  is	  managing	  sustainability	  issues.	  Rather	  than	  focus	  on	  one	  company	  or	  facility,	  I	  want	  to	  investigate	  a	  media	  supply	  chain	  to	  learn	  more	  about	  how	  sustainability	  impacts	  the	  way	  business	  is	  done.	  I	  identify	  a	  specific	  environmental	  variable	  in	  order	  to	  fully	  understand	  how	  supply	  chains	  are	  coping	  with	  sustainability.	  Sustainability	  itself	  is	  a	  broad	  concept,	  and	  focus	  is	  needed.	  I	  use	  carbon	  as	  an	  environmental	  variable	  to	  explore	  for	  a	  variety	  of	  reasons:	  it	  is	  intrinsically	  connected	  to	  climate	  change,	  the	  pressing	  environmental	  issue	  of	  our	  age;	  it	  is	  a	  widely	  	   	   	   	   	  	   31understood	  and	  managed	  concept;	  and	  it	  is	  a	  proxy	  for	  cost,	  as	  carbon	  represents	  energy	  which	  is	  an	  economic	  cost	  faced	  by	  all	  businesses.	  In	  short,	  I	  am	  using	  carbon	  as	  a	  proxy	  for	  environmental	  sustainability.	  In	  selecting	  carbon	  as	  a	  vehicle	  for	  studying	  sustainable	  supply	  chain	  management,	  I	  utilize	  a	  variable	  that	  has	  traction	  and	  a	  shared	  understanding	  in	  the	  business	  community.	  I	  hypothesize	  that	  supply	  chains	  play	  an	  important	  role	  in	  managing	  environmental	  variables,	  as	  they	  capture	  a	  large	  part	  of	  the	  lifecycle	  of	  a	  media	  product.	  To	  conduct	  this	  portion	  of	  research,	  I	  use	  expert	  interviews,	  grounded	  theory	  methods,	  and	  a	  quantitative	  analysis	  of	  the	  carbon	  footprint	  of	  a	  magazine.	  	  	  I	  then	  follow	  with	  an	  examination	  of	  the	  environmental	  values	  of	  media	  consumers.	  I	  want	  to	  evaluate	  whether	  consumers	  are	  shifting	  in	  their	  media	  consumption	  habits,	  and	  whether	  environmental	  values	  have	  any	  role	  to	  play	  in	  that	  shift.	  I	  hypothesize	  that	  consumers	  who	  care	  more	  about	  the	  environment	  consume	  less	  media,	  thereby	  reducing	  their	  environmental	  footprint.	  I	  also	  hypothesize	  that	  consumers	  are	  shifting	  in	  their	  media	  consumption	  habits,	  with	  digital	  media	  playing	  an	  increasingly	  large	  role.	  While	  I	  did	  present	  evidence	  of	  this	  shift	  earlier	  in	  Chapter	  1,	  I	  want	  to	  validate	  and	  add	  nuance	  to	  my	  understanding	  of	  changing	  consumer	  habits.	  I	  survey	  consumers	  in	  North	  America	  using	  an	  online	  survey	  tool,	  asking	  a	  series	  of	  questions	  on	  environmental	  values	  and	  media	  consumption	  habits.	  Where	  appropriate,	  I	  apply	  statistical	  methods	  to	  strengthen	  and	  validate	  my	  results.	  I	  employ	  the	  New	  Ecological	  Paradigm	  (NEP)	  Dunlap	  et	  al.	  (2000)	  in	  order	  to	  segment	  my	  survey	  sample,	  while	  also	  connecting	  my	  research	  with	  a	  broader	  academic	  discourse.	  	  	  Finally,	  I	  evaluate	  the	  findings	  of	  academic	  research	  that	  compares	  the	  environmental	  footprint	  of	  paper	  and	  media	  products.	  Beyond	  a	  simple	  literature	  review,	  however,	  I	  construct	  an	  analytical	  framework	  so	  that	  I	  can	  better	  understand	  the	  limitations	  of	  academic	  research,	  and	  what	  gaps	  in	  the	  environmental	  lifecycle	  of	  media	  products	  traditional	  methodologies	  might	  miss.	  I	  hypothesize	  that	  the	  standard	  academic	  method	  of	  comparing	  environmental	  footprints,	  the	  life	  cycle	  assessment	  (LCA)	  has	  limitations	  when	  assessing	  the	  footprint	  of	  digital	  media.	  I	  use	  an	  analytical	  framework	  developed	  by	  Reap	  et	  al.	  (2008)	  to	  structure	  my	  research.	  The	  framework	  identifies	  the	  key	  areas	  of	  concern,	  as	  well	  as	  opportunities	  for	  improvement,	  in	  the	  conduct	  of	  LCAs.	  This	  approach	  allows	  us	  to	  compare	  LCAs	  using	  a	  common	  framework.	  	  Our	  results	  are	  presented	  in	  three	  chapters,	  organized	  according	  to	  Figure	  3	  on	  the	  subsequent	  page.	  The	  first,	  Chapter	  2,	  presents	  the	  results	  of	  my	  investigation	  into	  a	  paper	  media	  supply	  chain.	  The	  second,	  Chapter	  3,	  examines	  consumer’s	  perceptions	  of	  media	  consumption	  and	  environmental	  values.	  	   	   	   	   	  	   32The	  third,	  Chapter	  4,	  provides	  a	  framework	  for	  analyzing	  comparisons	  between	  paper	  and	  digital	  media	  products.	  Together,	  this	  research	  constructs	  a	  more	  nuanced	  definition	  of	  the	  sustainability	  of	  media.	  I	  then	  synthesize	  the	  findings	  into	  a	  broader	  discussion	  of	  media	  and	  sustainability.	  I	  identify	  patterns	  that	  connect	  my	  research	  chapters,	  looking	  for	  opportunities	  to	  strengthen	  and	  expand	  an	  understanding	  of	  sustainability.	  My	  goal	  is	  to	  move	  beyond	  results	  towards	  new	  ideas	  that	  might	  help	  us	  better	  understand	  what	  it	  is	  to	  “consider	  the	  environment”,	  contributing	  to	  the	  existing	  literature	  while	  offering	  guidance	  for	  further	  research.	  	   Figure	  3:	  Summary	  of	  research	  chapters	  and	  objectives	  	   	   	   	   	  	   33Chapter	  2: 	  The	  Case	  of	  Supply	  Chains:	  Carbon’s	  Role	  in	  Paper	  Media5	  	  2.1 ABSTRACT	  The	  purpose	  of	  this	  case	  study	  is	  to	  identify	  the	  origins	  and	  evolution	  of	  carbon	  management	  along	  a	  supply	  chain	  in	  the	  paper	  and	  print	  sector.	  I	  selected	  carbon	  as	  the	  environmental	  metric	  to	  track	  since	  it	  is	  a	  common	  and	  well-­‐understood	  pollutant,	  and	  companies	  have	  developed	  systems	  and	  processes	  for	  managing	  their	  own	  performance.	  But	  carbon	  can	  also	  be	  used	  as	  a	  proxy	  for	  sustainability	  and	  environmental	  performance	  in	  general.	  This	  chapter	  offers	  an	  investigation	  of	  how	  supply	  chains,	  and	  in	  particular	  paper	  supply	  chains,	  consider	  the	  environment.	  The	  results	  from	  in-­‐depth	  interviews	  are	  used	  to	  suggest	  a	  framework	  for	  assessing	  carbon’s	  impact	  on	  the	  supply	  chain.	  I	  find	  that	  the	  use	  of	  biomass	  for	  energy	  and	  low-­‐carbon	  transportation,	  such	  as	  rail	  and	  sea-­‐based	  barges,	  can	  reduce	  the	  carbon	  footprint	  of	  a	  paper	  product.	  The	  interviews	  reveal	  that	  upstream	  and	  downstream	  supply	  chain	  actors	  are	  shaped	  by	  different	  pressures.	  Energy-­‐intensive,	  upstream	  actors	  manage	  their	  carbon	  footprints	  in	  order	  to	  save	  energy	  and	  in	  anticipation	  of	  regulated	  carbon	  emissions.	  Downstream	  actors,	  in	  contrast,	  manage	  carbon	  in	  order	  to	  strengthen	  their	  corporate	  brand	  and	  maintain	  market	  share.	  Businesses	  trying	  to	  balance	  short-­‐term	  costs,	  long-­‐term	  profitability,	  and	  the	  maintenance	  of	  a	  corporate	  brand,	  have	  identified	  carbon	  as	  a	  means	  for	  progress	  on	  all	  three	  fronts.	  	  	  2.2 INTRODUCTION	  The	  challenge	  of	  climate	  change	  is	  significant.	  Shifts	  in	  global	  temperatures,	  weather	  patterns,	  and	  sea	  levels	  may	  adversely	  impact	  ecosystems	  and	  societies	  alike	  (Garnaut	  Review,	  2008).	  To	  address	  this	  challenge,	  governments,	  corporations,	  civil	  society,	  and	  scientists	  are	  collaborating	  in	  efforts	  to	  mitigate	  and	  adapt	  to	  the	  impacts	  of	  climate	  change	  (U.S.	  Climate	  Action	  Partnership,	  2008).	  Mitigation	  strategies	  are	  focused	  on	  efforts	  to	  limit	  and	  reduce	  carbon	  emissions,	  often	  through	  the	  monetization	  of	  carbon.	  Carbon,	  in	  short,	  is	  poised	  to	  have	  a	  price.	  Any	  business	  that	  emits	  carbon	  will	  pay	  for	  its	  emissions.	  This	  development	  has	  implications	  for	  supply	  chains.	  Monetized	  carbon	  may	  force	  supply	  chains	  to	  consider	  a	  new	  cost.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5A	  version	  of	  this	  chapter	  (2.1.)	  was	  peer	  reviewed	  and	  published	  as	  follows:	  “J.	  G.	  Bull,	  G.	  Kissack,	  C.	  Elliott,	  R.A.	  Kozak,	  and	  G.Q.	  Bull.	  (2011)	  Carbon’s	  Potential	  to	  Reshape	  Supply	  Chains	  in	  Paper	  and	  Print.	  Journal	  of	  Forest	  Products	  Business	  Research,	  8(2)	  	   	   	   	   	  	   34It	  is	  the	  purpose	  of	  this	  chapter	  to	  fill	  a	  gap,	  exploring	  the	  potential	  carbon	  management	  to	  reshape	  supply	  chains	  in	  the	  paper	  and	  print	  industries.	  This	  will	  be	  done	  in	  two	  parts.	  I	  begin	  with	  a	  case	  study	  from	  the	  paper	  and	  print	  sector	  that	  explores	  the	  role	  of	  the	  supply	  chain	  in	  managing	  carbon.	  I	  follow	  with	  a	  framework	  grounded	  in	  my	  case	  study	  that	  explores	  how	  carbon	  will	  influence	  supply	  chains.	  The	  case	  study	  synthesizes	  results	  of	  interviews	  with	  six	  corporations	  along	  a	  supply	  chain	  in	  the	  paper	  and	  publishing	  industries.	  I	  explore	  the	  origins,	  evolution,	  and	  future	  directions	  of	  carbon	  management	  for	  supply	  chain	  actors.	  I	  also	  present	  a	  carbon	  footprint	  for	  the	  supply	  chain.	  I	  suggest	  that,	  in	  the	  future,	  a	  thorough	  understanding	  of	  carbon	  may	  become	  a	  central	  issue	  in	  supply	  chain	  design	  and	  business	  operations.	  	  	  2.3 BACKGROUND	  There	  is	  a	  convergence	  around	  carbon.	  Many	  sectors	  of	  society,	  from	  corporations	  to	  NGOs	  to	  governments	  and	  international	  bodies,	  have	  embraced	  carbon	  management	  as	  central	  to	  addressing	  climate	  change.	  Governments	  have	  begun	  to	  regulate	  carbon	  emissions.	  Internationally,	  the	  Kyoto	  Protocol	  and	  subsequent	  processes	  are	  working	  towards	  binding	  international	  commitments	  for	  reducing	  carbon	  emissions	  (UNFCC,	  2009;	  Hedegaard,	  2008).	  At	  the	  regional	  level,	  the	  European	  Union	  Emissions	  Trading	  Scheme	  is	  capping	  and	  monetizing	  carbon	  emissions.	  Nationally,	  Australia,	  Canada,	  and	  the	  United	  States	  are	  moving	  towards	  binding	  emissions	  targets.	  There	  are	  also	  regional	  and	  local	  initiatives	  to	  cap	  and	  trade	  carbon	  emissions	  —	  the	  Western	  Climate	  Initiative	  (WCI)	  and	  the	  Regional	  Greenhouse	  Gas	  Initiative	  (RGGI)	  are	  prominent	  examples.	  	  The	  corporate	  world	  is	  also	  responding,	  treating	  carbon	  as	  both	  a	  risk	  and	  an	  opportunity.	  There	  is	  a	  growing	  awareness	  of	  carbon	  amongst	  consumers	  (Semenza	  et	  al.,	  2008),	  and	  government	  regulations	  and	  policies	  are	  increasing	  well	  (Neil	  Adger	  et	  al.,	  2005),	  shaping	  the	  corporate	  response.	  Those	  who	  differentiate	  their	  products	  based	  on	  its	  carbon	  footprint	  may	  be	  rewarded	  (Benjaafar	  et	  al.,	  2013).	  Insurance	  companies	  are	  including	  climate	  change	  in	  their	  long-­‐term	  cost	  projections	  and	  designing	  incentives	  to	  reward	  climate	  change	  mitigation	  strategies	  (SwissRe,	  2008).	  Investors	  are	  adjusting	  their	  decisions	  to	  include	  climate	  change	  criteria	  (UN	  Principles	  for	  Responsible	  Investing	  2009).	  Carbon	  also	  represents	  a	  possible	  source	  of	  savings,	  or	  perhaps	  revenue,	  for	  business.	  As	  carbon	  gains	  a	  price,	  business	  may	  be	  forced	  to	  pay;	  those	  that	  are	  able	  to	  emit	  less	  will	  spend	  less	  relative	  to	  their	  competition	  and	  may	  gain	  market	  advantages	  (Luo	  and	  Bhattacharya,	  2006).	  	  	  	   	   	   	   	  	   35Civil	  society	  is	  active	  in	  shaping	  the	  response	  to	  climate	  change	  in	  a	  variety	  of	  ways.	  For	  example,	  advocates	  are	  arguing	  to	  include	  REDD	  (Reduced	  Emissions	  from	  Deforestation	  and	  Degradation)	  schemes	  in	  a	  post-­‐Kyoto	  global	  climate	  accord	  (IUCN,	  2008).	  Scientists	  are	  also	  central	  in	  this	  response,	  from	  the	  Intergovernmental	  Panel	  on	  Climate	  Change	  (IPCC),	  a	  body	  composed	  almost	  entirely	  of	  scientists	  and	  recipient	  of	  the	  Nobel	  Peace	  Prize	  for	  its	  efforts	  (IPCC,	  2007)	  to	  the	  Stern	  Review	  (Stern,	  2006),	  science	  is	  enjoying	  a	  prominent	  voice	  in	  discussions	  on	  climate	  change.	  Demonstrative	  of	  this	  consensus	  behind	  carbon	  are	  positions	  taken	  by	  the	  U.S.	  Climate	  Action	  Partnership	  (USCAP),	  a	  coalition	  of	  several	  major	  corporations	  (including	  Shell,	  General	  Electric,	  and	  ConocoPhillips),	  and	  four	  prominent	  NGOs	  (Environmental	  Defense,	  Natural	  Resources	  Defense	  Council,	  Pew	  Center	  on	  Global	  Climate	  Change,	  and	  World	  Resources	  Institute).	  	  Beyond	  the	  convergence	  of	  governments,	  corporations,	  and	  civil	  society,	  there	  is	  a	  strong	  theoretical	  grounding	  for	  the	  management	  and	  monetization	  of	  carbon	  (Helm	  et	  al.,	  2012).	  Typically,	  the	  producer	  of	  a	  good	  pays	  only	  the	  private	  costs	  associated	  with	  production.	  Public	  costs,	  like	  carbon,	  are	  not	  captured	  in	  the	  price.	  The	  evolution	  of	  carbon	  into	  a	  regulated	  pollutant	  is	  an	  example	  of	  internalizing	  a	  negative	  externality.	  Economic	  theory	  has	  established	  the	  “polluter	  pays	  principle,”	  which	  has	  appeared	  in	  academic	  literature	  and	  policy	  for	  over	  30	  years	  (Gaines,	  1991).	  What	  is	  different	  now	  is	  the	  scale	  and	  the	  application	  to	  carbon	  (Woerdman	  et	  al.,	  2008).	  Carbon	  is	  the	  largest	  attempt	  at	  internalization	  to	  date,	  and	  with	  a	  pollutant	  that	  is	  so	  ubiquitous	  and	  intangible,	  challenges	  arise.	  The	  specifics,	  means,	  and	  mechanisms,	  while	  well-­‐grounded	  in	  theory,	  are	  less	  understood	  in	  practice.	  	  	  2.4 OBJECTIVES	  In	  this	  chapter,	  there	  are	  three	  objectives:	  1. To	  measure	  the	  relative	  contribution	  of	  various	  paper	  supply	  chain	  stages	  to	  the	  carbon	  footprint	  of	  a	  magazine.	  2. To	  elucidate	  why	  carbon,	  in	  particular,	  has	  the	  potential	  to	  encourage	  collaboration	  along	  supply	  chains	  in	  the	  paper	  and	  print	  sector.	  	  3. To	  develop	  a	  framework	  for	  gauging	  how	  supply	  chains	  can	  collaborate	  on	  environmental	  issues,	  thereby	  changing	  their	  composition	  and	  behaviour	  over	  time.	  	  	  	   	   	   	   	  	   362.5 METHODOLOGY	  Our	  research	  measured	  the	  carbon	  footprint	  of	  a	  supply	  chain	  with	  a	  focus	  on	  describing	  the	  influence	  that	  carbon	  has	  on	  business-­‐to-­‐business	  relationships	  between	  supply	  chain	  partners.	  	  This	  chain	  oriented	  around	  the	  production	  of	  a	  major	  American	  magazine,	  which	  chose	  to	  remain	  anonymous.	  Using	  a	  case	  study	  approach	  (Yin,	  2009),	  I	  wanted	  to	  explore	  carbon	  not	  only	  as	  a	  quantifiable	  emission,	  but	  as	  a	  phenomenon	  that	  influences	  supply	  chain	  dynamics.	  I	  interviewed	  six	  corporations	  for	  this	  case	  study,	  after	  attaining	  ethics	  approval	  (UBC	  BREB	  certificate	  #H08-­‐02734).	  I	  investigated	  the	  origins,	  evolution,	  and	  future	  directions	  of	  carbon	  management	  in	  each	  company.	  In	  order	  to	  strengthen	  the	  internal	  validity	  of	  the	  case	  study,	  I	  shared	  the	  findings	  with	  all	  those	  interviewed	  and	  incorporated	  their	  feedback.	  	  	  The	  steps	  in	  the	  supply	  chain	  were	  as	  follows.	  Catalyst	  Paper	  sourced	  fibre	  from	  Western	  Forest	  Products	  (WFP),	  which	  harvested	  trees	  on	  Vancouver	  Island,	  Canada.	  Residual	  fibre	  from	  WFP’s	  operations	  was	  shipped	  to	  Catalyst’s	  mill	  in	  Port	  Alberni	  by	  truck.	  After	  the	  paper	  was	  manufactured,	  it	  was	  shipped	  by	  truck	  and	  then	  on	  barges	  operated	  by	  the	  Washington	  Marine	  Group	  (WMG)	  to	  Catalyst’s	  distribution	  center	  in	  Richmond,	  Canada.	  From	  here,	  it	  was	  shipped	  by	  Burlington	  Northern	  Santa	  Fe	  Railways	  (BNSF)	  to	  Quebecor	  World’s	  printing	  plant	  in	  Merced,	  California,	  where	  it	  was	  printed	  and	  then	  distributed	  across	  North	  America.	  	  	  The	  standard	  approach	  in	  quantifying	  carbon	  emissions	  is	  to	  conduct	  a	  life	  cycle	  assessment	  (LCA).	  LCAs	  of	  magazine	  products	  exist	  (Boguski,	  2010;	  Gower	  et	  al.	  2006)	  and	  there	  is	  agreement	  that	  the	  paper	  manufacturing	  process	  is	  significant	  in	  the	  total	  footprint	  of	  a	  product.	  For	  example,	  Boguksi	  (2010)	  found	  that	  79%	  of	  lifecycle	  energy	  is	  accounted	  for	  by	  the	  cradle-­‐to-­‐gate	  (meaning	  from	  harvest	  in	  the	  forest	  to	  final	  product	  at	  the	  paper	  mill)	  for	  coated	  magazine	  paper.	  Gower	  et	  al.	  (2006)	  found	  that	  the	  paper	  manufacturing	  process	  accounts	  for	  61%	  to	  77%	  of	  total	  lifecycle	  carbon	  emissions.	  The	  approach	  of	  focusing	  on	  the	  supply	  chain	  partners	  in	  direct	  contact	  with	  Catalyst	  Paper	  meant	  that	  I	  measured	  emissions	  that	  made	  up	  the	  bulk	  of	  the	  magazine’s	  footprint.	  I	  therefore	  felt	  confident	  that	  the	  methods	  were	  in	  line	  with	  those	  employed	  in	  other	  LCAs,	  and	  chose	  not	  to	  prioritize	  the	  replication	  of	  LCAs	  that	  already	  exist.	  	  Further,	  there	  are	  problems	  with	  LCA	  that	  I	  did	  not	  want	  to	  introduce	  into	  my	  analysis	  given	  the	  tandem	  focus	  on	  quantifying	  emissions	  and	  qualifying	  their	  influence	  on	  business	  relationships.	  Gadreault	  et	  al.	  	   	   	   	   	  	   37(2007)	  reviewed	  forty	  LCAs	  in	  the	  pulp	  and	  paper	  industry	  and	  found	  that	  sound	  methodologies	  for	  assessing	  land	  use	  and	  demonstrating	  the	  carbon	  storage	  advantages	  of	  paper	  were	  absent.	  They	  also	  noted	  that	  generalized	  coarse-­‐level	  LCAs	  are	  not	  as	  robust	  as	  LCAs	  that	  rely	  on	  primary	  data	  and	  describe	  specific	  processes	  or	  products.	  Reap	  et	  al.	  (2008)	  took	  a	  broader	  view,	  and	  discussed	  unresolved	  problems	  in	  LCA	  methodologies.	  They	  found	  that,	  at	  each	  stage	  in	  the	  conduct	  of	  LCA,	  there	  are	  several	  challenges.	  Most	  prominent	  in	  the	  context	  of	  a	  paper	  magazine	  were	  the	  problems	  of:	  local	  environmental	  uniqueness;	  spatial	  variation;	  time	  horizons;	  and	  data	  availability/quality.	  Summarizing	  these	  issues,	  Reap	  et	  al.	  (2008,	  p.384)	  quotes	  Bare	  et	  al.	  (1999)	  in	  stating	  that	  it	  is	  hard	  to	  know	  “where	  to	  draw	  the	  line	  between	  sound	  science	  and	  modeling	  assumptions.”	  	  	  Pulp	  and	  paper	  LCAs,	  in	  sum,	  are	  not	  without	  problems.	  I	  opted	  to	  avoid	  the	  full	  LCA	  methodology	  not	  only	  because	  of	  these	  problems,	  but	  because	  I	  also	  had	  the	  advantage	  of	  a	  unique	  level	  of	  cooperation	  and	  accessibility	  to	  corporate	  executives,	  as	  well	  as	  primary	  data	  for	  several	  stages	  of	  the	  supply	  chain.	  I	  felt	  that	  a	  hybrid	  approach,	  quantifying	  what	  I	  could,	  while	  describing	  the	  qualitative	  influence	  of	  carbon,	  would	  lead	  to	  a	  more	  nuanced	  understanding	  of	  how	  carbon	  can	  influence	  a	  supply	  chain.	  When	  I	  did	  quantify,	  I	  used	  the	  most	  granular	  data	  available.	  I	  tracked	  logs	  from	  specific	  logging	  operations	  to	  a	  specific	  mill,	  and	  along	  specific	  transport	  routes	  to	  a	  specific	  printer.	  I	  avoided	  generalized	  emissions	  factors	  in	  favor	  of	  specific	  data	  whenever	  possible.	  	  It	  should	  be	  noted	  that	  I	  did	  not	  include	  the	  distribution	  footprint	  for	  the	  product.	  I	  attempted	  to	  estimate	  this	  figure	  using	  several	  approaches,	  but	  each	  proved	  highly	  sensitive	  to	  assumptions	  made.	  Variables	  under	  consideration	  were:	  the	  average	  distance	  traveled	  by	  each	  copy	  of	  the	  magazine;	  the	  volume	  distributed	  by	  retail	  outlets	  compared	  to	  home-­‐delivery;	  and	  the	  precise	  geography	  of	  distribution.	  Because	  actual	  data	  was	  not	  available,	  and	  the	  assumptions	  produced	  unacceptable	  variation	  in	  results,	  I	  omitted	  the	  distribution	  process	  from	  the	  supply	  chain	  footprint.	  This	  is	  an	  area	  where	  further	  research	  is	  warranted.	  	  	  I	  also	  refrained	  from	  modeling	  the	  carbon	  emissions	  of	  the	  magazine	  after	  disposal	  by	  the	  consumer.	  Again,	  there	  was	  too	  much	  potential	  variation.	  Whether	  the	  magazine	  was	  recycled,	  incinerated,	  archived,	  or	  buried	  in	  a	  landfill	  strongly	  influenced	  the	  results.	  Since	  my	  study	  is	  distinct	  from	  a	  traditional	  LCA,	  I	  used	  data	  for	  specific	  facilities	  and	  processes	  rather	  than	  aggregate	  data.	  The	  goal	  was	  	   	   	   	   	  	   38to	  describe	  the	  carbon	  emissions	  of	  the	  supply	  chain	  stages	  examined,	  and	  to	  describe	  the	  relative	  emissions	  of	  those	  stages,	  not	  the	  entire	  lifecycle	  of	  the	  magazine.	  	  	  The	  interviews	  were	  developed	  using	  qualitative	  methods	  for	  exploring	  complex	  and	  intricate	  phenomena	  that	  are	  difficult	  to	  express	  quantitatively	  (Cresswell,	  1998;	  Strauss	  and	  Corbin,	  1998;	  Yin,	  2009).	  Given	  the	  emergent	  nature	  of	  the	  topic	  at	  hand,	  this	  approach	  was	  deemed	  the	  most	  appropriate	  for	  providing	  a	  better	  understanding	  of	  carbon’s	  potential	  to	  reshape	  supply	  chains.	  The	  following	  companies	  (five	  of	  which	  consented	  to	  be	  identified)	  and	  individuals	  participated	  in	  the	  interviews.	  I	  have	  separated	  the	  companies	  from	  the	  individuals	  interviewed	  to	  further	  protect	  anonymity.	  	   • Companies	  o Anonymous	  Magazine	  Publisher6	  An	  internationally	  distributed,	  monthly	  magazine.	  o Burlington	  Northern	  Santa	  Fe	  Railways	  	  (BNSF)	  A	  railway	  operator	  with	  an	  extensive	  network	  in	  western	  North	  America.	  o Catalyst	  Paper	  Corporation	  A	  paper	  manufacturer	  with	  operations	  on	  the	  west	  coast	  of	  Canada.	  o Quebecor	  World	  Inc.	  One	  of	  the	  largest	  printing	  companies	  in	  North	  America.	  o Washington	  Marine	  Group	  A	  shipping	  company	  with	  operations	  on	  the	  west	  coast	  of	  North	  America.	  o Western	  Forest	  Products	  (WFP)	  A	  forestry	  company	  with	  operations	  primarily	  on	  the	  west	  coast	  of	  Canada.	  	  • Individuals	  o Chief	  Executive	  Officer	  o Chief	  Operating	  Officer	  o Director,	  Environmental	  Affairs	  o Director,	  Paper	  Procurement,	  Environmental	  Affairs	  o General	  Director,	  Environmental	  o Vice-­‐President,	  Corporate	  Relations	  and	  Social	  Responsibility	  o Vice	  President,	  Health,	  Safety	  and	  Environment	  o Vice-­‐President,	  Manufacturing	  	  Data	  were	  collected	  through	  in-­‐depth,	  semi-­‐structured	  interviews.	  Participants	  received	  the	  interview	  questions	  in	  advance	  (a	  copy	  of	  the	  interview	  protocol	  employed	  is	  found	  in	  Appendix	  A).	  Two	  researchers	  conducted	  each	  interview,	  either	  in	  person	  or	  via	  telephone.	  Each	  interview	  was	  recorded	  and	  transcribed.	  The	  interviews	  focused	  on	  three	  themes	  of	  interest	  in	  carbon	  management:	  origins;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  6	  The	  magazine	  chose	  to	  remain	  anonymous	  out	  of	  fear	  of	  being	  criticized	  by	  ENGOS	  for	  using	  virgin	  fibre	  in	  their	  product	  rather	  than	  recycled	  fibre.	  	   	   	   	   	  	   39evolution;	  and	  future	  directions.	  I	  asked	  companies	  to	  identify	  how	  carbon	  manifested	  as	  a	  management	  priority,	  to	  describe	  the	  role	  that	  the	  supply	  chain	  played	  in	  shaping	  their	  perceptions	  of	  carbon,	  and	  to	  identify	  specific	  examples	  of	  interactions	  with	  external	  actors	  that	  shaped	  their	  carbon	  strategy.	  Given	  the	  elite	  status	  of	  those	  being	  interviewed,	  I	  adopted	  methods	  (Dexter,	  1970)	  that	  acknowledged	  the	  expertise	  of	  the	  interview	  subjects.	  The	  interview	  protocol	  guided	  each	  interview,	  but	  when	  the	  interview	  subject	  demonstrated	  additional	  knowledge	  or	  interest	  in	  the	  subject,	  I	  used	  a	  semi-­‐structured	  approach	  to	  ensure	  I	  could	  remain	  responsive	  to	  a	  subject’s	  expertise.	  	  Upon	  completing	  the	  interviews,	  I	  supported	  the	  analysis	  with	  a	  review	  of	  existing	  literature	  around	  carbon	  and	  the	  supply	  chain.	  This	  review,	  influenced	  by	  qualitative	  methods	  developed	  by	  Glaser	  and	  Strauss	  (1967)	  and	  Strauss	  and	  Corbin	  (1998),	  led	  to	  the	  construction	  of	  a	  framework	  on	  efficient,	  responsible,	  and	  resilient	  supply	  chains.	  It	  is	  within	  the	  context	  of	  this	  framework	  that	  I	  discuss	  the	  interview	  results.	  	  	  Throughout	  this	  chapter,	  I	  use	  the	  term	  ‘carbon	  management’	  in	  an	  intentionally	  ambiguous	  way.	  It	  can	  mean	  the	  measurement	  of	  carbon	  emissions,	  or	  the	  acknowledgement	  that	  carbon	  is	  an	  important	  issue,	  or	  steps	  taken	  to	  control	  carbon	  emissions.	  In	  other	  words,	  its	  specific	  meaning	  varies	  depending	  on	  the	  context.	  	  	  2.6 RESULTS	  I	  present	  the	  results	  of	  my	  research	  below,	  beginning	  with	  a	  review	  of	  the	  carbon	  footprint	  of	  Anonymous	  Magazine.	  I	  follow	  with	  an	  analysis	  of	  the	  interviews,	  highlighting	  common	  themes	  and	  particular	  concerns	  of	  individual	  companies.	  	  	  2.6.1 Carbon	  Footprint	  Analysis	  The	  results	  were	  in	  line	  with	  those	  of	  other	  studies	  (Boguski,	  2010;	  Gower	  et	  al.	  2006)	  that	  measured	  the	  environmental	  footprint	  of	  magazine	  products.	  I	  found	  that	  paper	  production	  made	  up	  the	  bulk	  of	  greenhouse	  gas	  emissions	  associated	  with	  the	  magazine,	  but	  that	  transportation	  of	  paper	  to	  the	  printing	  facility	  was	  a	  significant	  source	  of	  emissions	  in	  and	  of	  itself.	  Figure	  4	  shows	  the	  different	  stages	  in	  the	  supply	  chain,	  while	  Table	  1	  provides	  the	  specific	  contributions	  from	  each	  supply	  chain	  stage.	  I	  follow	  with	  a	  detailed	  breakdown	  of	  the	  results	  and	  assumptions	  made	  for	  each	  supply	  chain	  stage.	  	  The	  data	  is	  expressed	  as	  greenhouse	  gas	  equivalent	  (referred	  to	  as	  carbon	  dioxide	  or	  C02	  throughout)	  per	  air-­‐dried	  tonne	  (ADt).	  	   	   	   	   	  	   40	  The	  question	  of	  how	  much	  carbon	  was	  emitted	  from	  the	  felling	  of	  the	  tree	  compared	  to	  how	  much	  was	  stored	  in	  the	  final	  product	  was	  not	  addressed	  in	  our	  analysis.	  Life	  cycle	  research	  has	  often	  treated	  emissions	  from	  forest	  activities	  as	  carbon	  neutral,	  but	  this	  assumption	  has	  been	  challenged	  (Helin	  et	  al.	  2012