Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Eco-industrial network planning in the face of climate change : an exploratory study using landscape… LaValle, Alicia Veronica 2015

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2015_september_lavalle_alicia.pdf [ 23.14MB ]
Metadata
JSON: 24-1.0166555.json
JSON-LD: 24-1.0166555-ld.json
RDF/XML (Pretty): 24-1.0166555-rdf.xml
RDF/JSON: 24-1.0166555-rdf.json
Turtle: 24-1.0166555-turtle.txt
N-Triples: 24-1.0166555-rdf-ntriples.txt
Original Record: 24-1.0166555-source.json
Full Text
24-1.0166555-fulltext.txt
Citation
24-1.0166555.ris

Full Text

ECO-­‐INDUSTRIAL	  NETWORK	  PLANNING	  IN	  THE	  FACE	  OF	  CLIMATE	  CHANGE:	  AN	  EXPLORATORY	  STUDY	  USING	  LANDSCAPE	  PLANNING	  APPROACHES	  	  by	  	  Alicia	  Veronica	  LaValle	  	  B.A.	  University	  of	  Michigan,	  2000	  B.F.A.,	  University	  of	  Michigan,	  2000	  M.L.A.,	  University	  of	  Michigan,	  2008	  	  A	  THESIS	  SUBMITTED	  IN	  PARTIAL	  FULFILLMENT	  OF	  	  THE	  REQUIREMENTS	  FOR	  THE	  DEGREE	  OF	  	  MASTER	  OF	  APPLIED	  SCIENCE	  	  in	  	  The	  Faculty	  of	  Graduate	  and	  Postdoctoral	  Studies	  	  (Forestry)	  	  THE	  UNIVERSITY	  OF	  BRITISH	  COLUMBIA	  	  (Vancouver)	  	  	  August	  2015	  	  	  ©	  Alicia	  Veronica	  LaValle,	  2015	  	   ii	  ABSTRACT	  This	  study	  explores	  the	  opportunities	  and	  challenges	  in	  combining	  three	  areas	  of	  planning:	  Eco-­‐Industrial	  Networking,	  Climate	  Change	  Adaptation	  and	  Climate	  Change	  Mitigation.	  	  The	  Tilbury	  Industrial	  Park	  in	  the	  Corporation	  of	  Delta	  on	  the	  Fraser	  River	  was	  used	  as	  a	  case	  study	  to	  examine	  opportunities	  and	  challenges	  in	  integrating	  eco-­‐industrial	  network	  planning	  into	  climate	  change	  planning,	  with	  a	  focus	  on	  adapting	  to	  local	  climate	  change	  vulnerabilities.	  A	  multi-­‐phase	  approach	  was	  used	  including	  document	  analysis,	  precedent	  case	  studies,	  indicator	  development,	  mapping,	  industry	  leader	  interviews	  and	  guided	  feedback	  from	  expert	  reviewers	  in	  the	  planning	  sector.	  The	  goal	  was	  to	  understand	  existing	  knowledge	  and	  perceptions	  in	  these	  three	  areas	  of	  planning,	  and	  to	  use	  visual	  tools	  to	  engage	  further	  exploration	  of	  ideas	  that	  may	  support	  more	  than	  one	  planning	  objective	  simultaneously.	  Study	  findings	  suggest	  that	  industry	  leaders’	  understanding	  and	  perceptions	  of	  the	  three	  areas	  are	  inconsistent.	  Interview	  participants	  had	  the	  greatest	  understanding	  of	  climate	  change	  mitigation	  goals,	  though	  not	  always	  positive	  perceptions	  of	  the	  mitigation	  policy	  tools	  being	  used.	  There	  was	  some	  understanding	  of	  eco-­‐industrial	  networks	  (EIN),	  with	  generally	  positive	  attitudes	  towards	  the	  concepts	  in	  meeting	  industry	  planning	  and	  sustainability	  ambitions.	  Climate	  change	  adaptation	  was	  least	  well	  understood	  initially	  but	  enhanced	  by	  visual	  tools	  presented	  to	  participants,	  which	  focused	  mainly	  on	  localized	  and	  interactive	  maps.	  None	  of	  the	  three	  areas	  of	  planning	  (adaptation,	  mitigation,	  and	  EIN)	  appeared	  to	  be	  strong	  drivers	  of	  change,	  with	  the	  exception	  of	  mitigation	  more	  recently	  driven	  especially	  by	  corporate	  policy.	  Visual	  tools	  led	  to	  better	  understanding	  of	  EIN	  and	  climate	  change	  planning	  and	  new	  ideas.	  This	  suggests	  that	  these	  methods	  could	  be	  replicated	  and	  enhanced	  within	  more	  formal	  planning	  processes	  for	  further	  co-­‐development	  of	  knowledge	  and	  opportunities	  for	  integrating	  EIN	  and	  climate	  change	  planning,	  in	  Delta	  and	  beyond.	  Additionally	  this	  could	  promote	  positive	  perceptions	  of	  new	  climate	  change	  adaptation	  plans	  in	  the	  future.	  Using	  the	  methods	  explored	  here	  could	  lead	  to	  co-­‐benefits	  being	  better	  understood	  by	  industry	  stakeholder	  and	  may	  support	  more	  integrated	  planning,	  building	  on	  positive	  inertia	  from	  existing	  collaborations	  at	  Tilbury.	  Recommendations	  for	  government	  and	  industry	  to	  further	  these	  aims	  are	  provided.	   	  	   iii	  PREFACE	  This	  thesis	  is	  an	  original	  intellectual	  product	  of	  the	  author,	  Alicia	  LaValle.	   This	  research	  project	  was	  approved	  by	  the	  University	  of	  British	  Columbia	  Behavioural	  Research	  Ethics	  Board,	  certificate	  number	  H14-­‐02028.	  	   	  	   iv	  TABLE	  OF	  CONTENTS	  ABSTRACT	  ........................................................................................................................................	  ii	  PREFACE	  ..........................................................................................................................................	  iii	  TABLE	  OF	  CONTENTS	  ...................................................................................................................	  iv	  LIST	  OF	  TABLES	  ............................................................................................................................	  vii	  LIST	  OF	  FIGURES	  .........................................................................................................................	  viii	  LIST	  OF	  ABBREVIATIONS	  .............................................................................................................	  x	  ACKNOWLEDGEMENTS	  ..............................................................................................................	  xii	  DEDICATION	  .................................................................................................................................	  xiii	  1.	   INTRODUCTION	  .......................................................................................................................1	  1.1.	   HISTORY	  OF	  THESIS	  DEVELOPMENT	  .....................................................................................	  1	  1.2.	   PLANNING	  FOR	  SUSTAINABLE	  DEVELOPMENT	  IN	  INDUSTRY	  ......................................	  1	  1.3.	   RESEARCH	  OBJECTIVE	  ................................................................................................................	  5	  1.4.	   HYPOTHESIS	  AND	  RESEARCH	  QUESTIONS	  ..........................................................................	  7	  1.5.	   OVERVIEW	  OF	  THESIS	  ................................................................................................................	  8	  1.6.	   THE	  CASE	  STUDY	  CONTEXT	  ......................................................................................................	  8	  1.6.1.	   Climate	  Change	  Vulnerabilities	  and	  Adaptation	  Planning	  ....................................................	  8	  1.6.2.	   Climate	  Causes	  and	  Mitigation	  Planning	  ......................................................................................	  9	  1.7.	   THE	  INDUSTRIAL	  USES	  .............................................................................................................	  10	  2.	   LITERATURE	  REVIEW	  .........................................................................................................	  12	  2.1.	   ECO-­‐INDUSTRIAL	  NETWORKS	  ...............................................................................................	  12	  2.2.	   CLIMATE	  CHANGE	  ADAPTATION	  PLANNING	  AND	  INDUSTRY	  .....................................	  15	  2.2.1.	   Climate	  Change	  Vulnerability	  .........................................................................................................	  15	  2.2.2.	   Adaptation	  Planning	  for	  Resilience	  .............................................................................................	  17	  2.3.	   CLIMATE	  CHANGE	  MITIGATION	  PLANNING	  AND	  INDUSTRY	  .......................................	  18	  2.4.	   MERGING	  TOGETHER	  THREE	  SECTORS	  OF	  PLANNING	  ..................................................	  20	  2.4.1.	   Why	  Bring	  the	  Three	  Areas	  Together	  .........................................................................................	  20	  2.4.2.	   Effectiveness	  of	  Visualization	  and	  Participatory	  Processes	  in	  Promoting	  Climate	  Change	  Planning	  and	  Awareness	  Building	  ................................................................................................	  22	  2.5.	   KNOWLEDGE	  GAPS	  AND	  LOOKING	  FOR	  SYNERGIES	  .......................................................	  23	  	   v	  3.	   METHODS	  ................................................................................................................................	  26	  3.1.	   OVERVIEW	  OF	  METHODS	  ........................................................................................................	  26	  3.2.	   PHASE	  1A:	  DOCUMENT	  ANALYSIS	  ........................................................................................	  27	  3.3.	   PHASE	  1B:	  INDICATOR	  DEVELOPMENT	  ..............................................................................	  28	  3.3.1.	   Adaptation	  Needs	  Indicators	  ..........................................................................................................	  30	  3.3.2.	   EIN	  Potential	  Indicators	  ....................................................................................................................	  31	  3.3.3.	   Mitigation	  Potential	  Indicators	  ......................................................................................................	  34	  3.4.	   PHASE	  1C:	  MAPPING	  .................................................................................................................	  38	  3.5.	   PHASE	  2:	  INTERVIEWS	  .............................................................................................................	  41	  3.6.	   RECRUITMENT	  AND	  CONSENT	  ...............................................................................................	  43	  3.7.	   PRE-­‐SURVEY	  AND	  INTERVIEW	  METHODS	  .........................................................................	  44	  3.8.	   PHASE	  3:	  EXPERT	  REVIEWER	  FEEDBACK	  ..........................................................................	  47	  4.	   RESULTS	  AND	  ANALYSIS	  ....................................................................................................	  51	  4.1.	   RESULTS:	  DOCUMENT	  ANALYSIS	  ..........................................................................................	  51	  4.1.1.	   Eco-­‐Industrial	  Networking	  Precursors	  ......................................................................................	  51	  4.1.2.	   Climate	  Change	  Mitigation	  &	  Adaptation	  Planning	  Inertia	  ...............................................	  57	  4.2.	   RESULTS:	  UPDATE	  FROM	  EXPERT	  REVIEWERS	  ...............................................................	  62	  4.2.1.	   Tilbury	  Industrial	  Park	  ......................................................................................................................	  62	  4.2.2.	   The	  Corporation	  of	  Delta	  ..................................................................................................................	  64	  4.2.3.	   Metro	  Vancouver	  ..................................................................................................................................	  65	  4.3.	   ANALYSIS:	  BRINGING	  ECO-­‐INDUSTRIAL	  NETWORKS	  INTO	  CLIMATE	  CHANGE	  PLANNING	  .................................................................................................................................................	  67	  4.4.	   RESULTS:	  INDICATORS	  AND	  MAPPING	  ...............................................................................69	  4.4.1.	   Refining	  the	  Study	  Area	  ....................................................................................................................	  70	  4.4.2.	   Localized	  Climate	  Change	  Vulnerability	  Maps	  ........................................................................	  72	  4.4.3.	   Localized	  Eco-­‐Industrial	  Network	  Maps	  ...................................................................................	  79	  4.4.4.	   Localized	  Mitigation	  Maps	  ...............................................................................................................	  81	  4.4.5.	   Summary	  of	  Maps	  as	  Visualization	  Tools	  ..................................................................................	  81	  4.5.	   RESULTS:	  INTERVIEWS	  ............................................................................................................	  82	  4.5.1.	   Pre-­‐Survey	  Results	  ..............................................................................................................................	  83	  4.5.2.	   Interviews	  Results	  ................................................................................................................................	  85	  4.6.	   ANALYSIS:	  INDUSTRY	  LEADER	  INTERVIEWS	  .....................................................................	  97	  4.6.1.	   Constraints	  and	  Opportunities:	  Realities	  and	  Perceptions.	  ..............................................	  .99 	  4.6.2.	   Perception	  of	  Government	  Planning	  &	  Policies	  on	  Industries	  .......................................	  103	  	   vi	  4.6.3.	   Corporate	  Pride	  in	  “Doing	  the	  Right	  Thing”	  ...........................................................................	  105	  4.6.4.	   Summary	  of	  Industry	  Leader	  Interview	  Analysis	  ................................................................	  106	  4.7.	   ANALYSIS:	  EXPERT	  REVIEWERS’	  PERCEPTIONS	  ON	  INTERVIEW	  RESULTS	  .........	  108	  5.	   DISCUSSION	  .........................................................................................................................	  113	  5.1.	   ADDRESSING	  RESEARCH	  QUESTIONS	  ...............................................................................	  113	  5.2.	   HOW	  CONSTRAINTS	  CAN	  BE	  DEVELOPED	  INTO	  OPPORTUNITIES	  .........................	  119	  5.2.1.	   Weaving	  the	  Three	  Core	  Concepts	  Together	  .........................................................................	  119	  5.2.2.	   Expand	  the	  Lens	  of	  EIN	  Spatially	  to	  Find	  More	  Options	  for	  Climate	  Change	  Planning	   ……………………………………………………………………………………………………………………..126	  5.3.	   REFLECTION	  ON	  METHODS	  AND	  FUTURE	  RESEARCH	  NEEDS	  ..................................	  129	  5.3.1.	   Overall	  Study	  Weaknesses	  .............................................................................................................	  130	  5.3.2.	   Overall	  Study	  Strengths	  ..................................................................................................................	  131	  6.	   CONCLUSION	  AND	  RECOMMENDATIONS	  ...................................................................	  134	  6.1.	   CONCLUSION	  .............................................................................................................................	  134	  6.2.	   RECOMMENDATIONS	  .............................................................................................................	  136	  6.2.1.	   Recommendations	  for	  Governments	  ........................................................................................	  137	  6.2.2.	   Recommendations	  for	  Industry	  ...................................................................................................	  143	  BIBLIOGRAPHY	  ..........................................................................................................................	  148	  APPENDICES	  ...............................................................................................................................	  165	  Appendix	  1:	  Documents	  Reviewed	  in	  Chronological	  Order	  of	  Publication	  ....................	  166	  Appendix	  2:	  Interview	  Recruitment	  Letter	  ................................................................................	  170	  Appendix	  3:	  Consent	  Form	  ..............................................................................................................	  171	  Appendix	  4:	  PowerPoint	  Presented	  to	  Participants	  During	  Interview..............................173 	  Appendix	  5:	  Interview	  Protocol	  .....................................................................................................	  194	  Appendix	  6:	  Interview	  Themes	  Coding	  .......................................................................................	  198	  Appendix	  7:	  	  Questions	  for	  Expert	  Reviewers	  ..........................................................................	  200	  Appendix	  8:	  Additional	  Quotes	  ......................................................................................................	  204	  Appendix	  9:	  Drivers	  of	  and	  Barriers	  to	  Action	  and	  Ideas	  (Past	  and	  Present)	  Discussed	  by	  Industry	  Leader	  Participants	  ....................................................................................................	  206	  Appendix	  10:	  Co-­‐benefits	  to	  Demonstrate	  Inter-­‐Connections	  Between	  Planning	  Areas	  ...................................................................................................................................................................	  213	  	   vii	  LIST	  OF	  TABLES	  Table	  1:	  Summary	  of	  observed	  global	  changes	  in	  climate	  and	  weather.	  Source:	  International	  Council	  for	  Local	  Environmental	  Initiatives	  (ICLEI)	  Canada	  (35)	  ................	  16	  Table	  2:	  Details	  on	  spatial	  data	  reviewed	  and	  created	  ..................................................................	  35	  Table	  3:	  Representation	  of	  Industries	  and	  employees	  in	  Tilbury	  .............................................	  43	  Table	  4:	  Delta	  Community	  Energy	  and	  Emissions	  Inventory.	  Adapted	  from	  Delta	  District	  Municipality	  Community	  Energy	  and	  Emissions	  Inventory	  (CEEI)	  ...........................	  59	  Table	  5:	  Multi-­‐criteria	  categorization	  of	  industry	  leader	  interview	  participants	  ..............	  82	  Table	  6:	  Self-­‐assessment	  by	  interview	  participants	  of	  awareness	  and	  perceptions	  of	  study	  topics.	  Table	  indicates	  the	  number	  of	  participants	  that	  answered	  each	  questions	  as	  1(Not	  at	  all)	  to	  5	  (Entirely)	  ...........................................................................	  84	  Table	  7:	  Perceptions	  on	  resource	  recovery	  options	  and	  EIN	  type	  sharing,	  highlighted	  by	  quotes	  ................................................................................................................................................	  92	  Table	  8:	  Summary	  of	  analysis	  for	  drivers	  and	  barriers	  for	  actions	  and	  ideas	  (past	  and	  present)	  noted	  by	  industry	  leader	  participants	  .............................................................	  99	  	  	  	   	  	   viii	  LIST	  OF	  FIGURES	  Figure	  1:	  The	  three	  focal	  areas	  of	  planning	  and	  the	  emergence	  of	  overlaps	  in	  ideas	  and	  goals.	  ..................................................................................................................................................	  4	  Figure	  2:	  Conceptual	  diagram	  representing	  all	  areas	  of	  potential	  synergies	  between	  climate	  change	  planning	  and	  Eco-­‐Industrial	  Networks	  in	  overlapping	  areas.	  .	  6	  Figure	  3:	  Tilbury	  Industrial	  Area.	  Red	  outline	  specifies	  original	  Tilbury	  study	  area.	  ......	  11	  Figure	  4:	  Diagram	  of	  Kalundborg	  Denmark	  ........................................................................................	  14	  Figure	  5:	  Concept	  drawing	  of	  IRR	  adapted	  from	  BC	  Ministry	  of	  Community	  Development	  report	  .............................................................................................................................................	  19	  Figure	  6:	  Merging	  three	  areas	  of	  planning	  for	  co-­‐benefits	  ...........................................................	  25	  Figure	  7:	  Flow	  Chart	  of	  Methodology	  ....................................................................................................	  27	  Figure	  8:	  Indicators	  used	  to	  develop	  data	  into	  information	  which	  could	  be	  presented	  in	  maps	  for	  conversation	  towards	  uncovering	  opportunities	  and	  constraints	  in	  overlapping	  planning	  sectors.	  .............................................................................................	  29	  Figure	  9:	  BC	  Ministry	  of	  Environment	  Greenhouse	  Gas	  Inventory	  Report	  2012..	  .............	  59	  Figure	  10:	  BC	  Ministry	  of	  Environment:	  Individual	  Facility	  Locations	  with	  GHGs	  of	  >10,000	  tonnes/year..	  ............................................................................................................	  60	  Figure	  11:	  Climate	  Smart	  reduction	  strategies	  	  .................................................................................	  66	  Figure	  12:	  2015	  high	  level	  organizational	  chart	  for	  Metro	  Vancouver.	  ..................................	  67	  Figure	  13:	  Conceptual	  diagram	  of	  planning	  area	  synergies	  ........................................................	  69	  Figure	  14:	  Industrial	  lands	  of	  economic	  importance	  as	  represented	  by	  total	  land	  value.	  Each	  parcel	  with	  value	  of	  >$5	  million	  is	  outlined	  in	  red.	  ........................................	  71	  Figure	  15:	  Narrowing	  the	  scope	  to	  central	  Tilbury	  because	  of	  a	  environmental	  vulnerability	  condition	  ...........................................................................................................	  73	  Figure	  16:	  Screen	  capture	  of	  interactive	  Google	  Map	  Engine	  Project	  	  map.	  ..........................	  75	  Figure	  17:	  Heat	  Island	  Effect	  for	  the	  region	  with	  inset	  area	  showing	  Tilbury	  in	  Google	  Map	  Engine	  Project..	  .................................................................................................................	  77	  Figure	  18:	  Tilbury	  potable	  water	  (blue	  lines)	  and	  sewer	  water	  (red	  lines)	  mains	  as	  seen	  on	  DeltaMap	  (120)..	  .................................................................................................................	  78	  Figure	  19:	  An	  example	  of	  the	  a	  PowerPoint	  slide	  that	  was	  used	  in	  interviews	  representing	  location	  dependency	  and	  Existing	  Sustainability	  Leaders	  .........	  80	  	   ix	  Figure	  20:	  Community	  Energy	  Explorer	  map	  screenshot	  demonstrating	  potential	  heat	  energy	  recovery	  opportunities	  by	  industry.	  .................................................................	  81	  	  Figure	  21:	  Bar	  chart	  representing	  self-­‐reported	  awareness/concerns/interests	  in	  the	  study	  topics	  .................................................................................................................................	  84	  	  	   	  	   x	  LIST	  OF	  ABBREVIATIONS	  	  AMSD	   Adaptation	  and	  Mitigation	  Sustainable	  Development	  BC	   British	  Columbia	  CEEI	   Community	  Energy	  and	  Emission	  Inventory	  CEEP	   Community	  Energy	  and	  Emission	  Plan	  EIN	   Eco-­‐Industrial	  Network	  GHG	   Greenhouse	  Gas	  GVRD	   Greater	  Vancouver	  Regional	  District	  ICLEI	   International	  Council	  for	  Local	  Environmental	  Initiatives	  IPCC	   Intergovernmental	  Panel	  on	  Climate	  Change	  LFG	   Landfill	  gas	  Lo-­‐CAR	   Low-­‐carbon,	  Attractive	  and	  Resilient	  PID	   Parcel	  Identifier	  SME	   Small	  and	  Medium	  Enterprises	  TEIP	   Tilbury	  Eco-­‐Industrial	  Partnership	  TMA	   Transportation	  Management	  Association	  WWTP	   Wastewater	  Treatment	  Plant	  	  	   	  	   xi	  	  ACKNOWLEDGEMENTS	  I	  would	  like	  to	  thank	  my	  Supervisors	  and	  committee,	  Stephen	  Sheppard,	  Gunilla	  Öberg,	  and	  Murray	  Journeay,	  my	  colleagues	  at	  the	  Collaborative	  for	  Advanced	  Landscape	  Planning,	  particularly	  David	  Flanders	  for	  early	  introduction	  to	  the	  spatial	  data.	  I	  would	  also	  like	  to	  thank	  and	  acknowledge	  the	  Bridge	  Program	  and	  the	  Social	  Sciences	  and	  Humanities	  Research	  Council	  and	  the	  Faculty	  of	  Forestry	  for	  their	  valuable	  financial	  support	  in	  completing	  this	  research.	  A	  special	  thanks	  to	  The	  Bridge	  Program	  faculty,	  staff	  and	  fellows	  -­‐	  for	  valuable	  feedback	  during	  early	  states	  of	  this	  research.	  	  	  	  	   xLL	  	  DEDICATION	  Thank	  you	  to	  my	  family	  and	  friends	  for	  encouragement	  throughout	  this	  research.	  	  Special	  thanks	  to	  Ther	  Aung	  for	  getting	  me	  thought	  the	  last	  drafts	  and	  to	  my	  sister	  Liliana	  LaValle,	  champion,	  confidant,	  copy	  editor	  and	  comic.	  	  	   1	  1. INTRODUCTION	  	  1.1. HISTORY	  OF	  THESIS	  DEVELOPMENT	  	  Prior	  to	  this	  research,	  colleagues	  at	  the	  Collaborative	  for	  Advanced	  Landscape	  Planning	  at	  the	  University	  of	  British	  Columbia	  proposed	  a	  trans-­‐disciplinary	  design,	  production	  and	  research	  process	  for	  the	  development	  of	  a	  place-­‐based	  educational	  climate	  change	  video	  game.	  Funded	  by	  Canada’s	  Social	  Sciences	  and	  Humanities	  Research	  Council	  (SSHRC),	  research	  on	  this	  larger	  project,	  Future	  Delta	  2.0,	  commenced	  in	  2011,	  building	  on	  over	  a	  decade	  of	  collaboration	  and	  research	  with	  the	  community	  of	  Delta,	  BC,	  on	  climate	  change	  mitigation	  and	  adaptation	  planning.	  One	  of	  the	  main	  knowledge	  gaps	  identified	  in	  terms	  of	  climate	  change	  causes,	  vulnerabilities	  and	  future	  solutions	  for	  Delta	  was	  the	  industrial	  sector.	  The	  Tilbury	  industrial	  area	  on	  the	  Fraser	  River	  waterfront,	  close	  to	  North	  Delta	  where	  most	  of	  the	  population	  of	  the	  municipality	  lives,	  became	  a	  clear	  choice	  for	  further	  attention.	  The	  initial	  goals	  were	  to	  better	  understand	  this	  area,	  develop	  supporting	  data,	  and	  ultimately	  enable	  a	  scientific	  and	  credible	  game	  for	  climate	  change	  education	  that	  explores	  pathways	  to	  local	  climate	  change	  action,	  including	  the	  local	  industrial	  sector	  (1,2).	  The	  Tilbury	  area	  as	  a	  case	  study	  became	  integrated	  into	  game	  play	  including	  some	  of	  the	  eco-­‐industrial	  networking	  resource	  exchange	  ideas	  for	  exploration	  by	  the	  player.	  The	  beta	  version	  of	  the	  game	  has	  been	  completed	  and	  tested	  in	  local	  high	  schools	  (1,2).	  This	  thesis	  research	  examines	  in	  greater	  depth	  the	  potential	  for	  synergies	  between	  eco-­‐industrial	  networks	  and	  climate	  change	  planning	  for	  industry.	  	  1.2. PLANNING	  FOR	  SUSTAINABLE	  DEVELOPMENT	  IN	  INDUSTRY	  Warming	  caused	  by	  CO2	  emissions	  is	  effectively	  irreversible	  over	  multi-­‐century	  timescales	  unless	  measures	  are	  taken	  to	  remove	  CO2	  from	  the	  atmosphere.	  Ensuring	  CO2	  -­‐induced	  warming	  remains	  likely	  less	  than	  2°C	  requires	  cumulative	  CO2	  emissions	  from	  all	  anthropogenic	  sources	  to	  remain	  below	  about	  3650	  Gt	  CO2	  (1000	  GtC),	  over	  half	  of	  which	  were	  already	  emitted	  by	  2011.	  (3).	  	   	  	   2	  The	  previous	  quote	  by	  the	  Intergovernmental	  Panel	  on	  Climate	  Change	  (IPCC)	  5th	  Assessment	  Report	  in	  2014	  reiterates	  what	  advocates	  for	  climate	  change	  action	  have	  been	  saying	  for	  over	  4	  decades	  (4,5),	  but	  still	  global	  carbon	  emissions	  increase.	  	  The	  industrial	  sector	  accounts	  for	  20%	  of	  these	  emissions	  directly	  (3)	  though	  industrial	  emission	  are	  also	  found	  in	  the	  categories	  of	  transport,	  buildings,	  electricity/heat	  production,	  and	  other	  energy,	  which	  together	  account	  for	  approximately	  80%	  of	  global	  emissions	  (3).	  It	  is	  also	  increasingly	  evident	  that	  some	  of	  the	  impacts	  of	  anthropogenic	  climate	  change	  are	  already	  being	  witnessed,	  so	  adaptation	  planning	  is	  also	  becoming	  critical	  (3,6,7).	  Industries	  therefore	  are	  both	  contributors	  to	  the	  problem	  and	  potential	  leaders	  in	  developing	  solutions	  for	  both	  mitigation	  and	  adaptation.	  	  Eco-­‐industrial	  networks	  (EIN)	  are	  complexes	  of	  diverse	  industries	  that	  cluster	  and	  collaborate	  on	  the	  principle	  that	  the	  waste	  materials	  and	  energy	  from	  one	  industry	  may	  be	  a	  valuable	  input	  for	  another	  (8,9).	  Eco-­‐industrialism	  builds	  off	  the	  concept	  of	  industrial	  ecology	  or	  industrial	  ecosystems	  first	  coined	  by	  Frosch	  and	  Gallopoulos	  in	  1989:	  a	  conceptual	  framework	  that	  suggests	  transforming	  industrial	  systems	  from	  linear	  production	  models	  (e.g.	  mine,	  producer,	  consumer,	  dump)	  to	  a	  circular	  closed-­‐loop	  model	  mimicking	  natural	  ecosystems	  (10,11).	  More	  recently	  there	  is	  new	  attention	  to	  the	  concept	  of	  ‘low	  carbon	  industrial	  parks’	  (12)	  and	  ‘renewable	  eco-­‐industrialism’	  (8,13),	  to	  create	  a	  “symbiotic	  complex	  …	  premised	  on	  renewable	  resources	  and	  social	  equity”	  (8).	  	  	  The	  IPCC	  defines	  climate	  change	  mitigation	  as:	  “An	  anthropogenic	  intervention	  to	  reduce	  the	  sources	  or	  enhance	  the	  sinks	  of	  greenhouse	  gases”	  (14).	  This	  can	  include	  energy	  conservation	  measures,	  use	  of	  renewable	  energy	  and	  carbon	  sequestration	  techniques	  (e.g.	  with	  vegetation).	  Thus	  climate	  change	  mitigation	  planning	  has	  found	  an	  area	  of	  overlap	  with	  the	  goals	  of	  EIN	  planning	  [see	  Figure	  1	  and	  the	  overlapping	  area	  in	  Area	  (1)].	  	  	  	  The	  IPCC	  defines	  climate	  change	  adaptation	  as:	  “Adjustment	  in	  natural	  or	  human	  systems	  in	  response	  to	  actual	  or	  expected	  climatic	  stimuli	  or	  their	  effects,	  which	  	   3	  moderates	  harm	  or	  exploits	  beneficial	  opportunities”	  (14).	  As	  climate	  change	  impacts	  become	  more	  apparent,	  planning	  efforts	  have	  begun	  to	  focus	  on	  adaptation	  at	  various	  levels	  of	  governance.	  Historically,	  adaptation	  and	  mitigation	  planning	  have	  been	  separated	  in	  intent	  and	  implementation,	  perceived	  even	  as	  opposites,	  because	  it	  could	  be	  seen	  that	  mitigation	  has	  failed	  if	  adaptation	  is	  needed	  (15).	  	  Many	  voices	  now	  suggest	  this	  is	  an	  artificial	  dichotomy	  (7,16,17).	  	  The	  concept	  of	  human	  capacity	  has	  emerged	  into	  prominence	  derived	  from	  the	  ecological	  concept	  of	  adaptive	  capacity,	  the	  ability	  for	  a	  system	  to	  withstand	  and	  adapt	  to	  stress	  (18–20).	  In	  addition,	  human	  mitigative	  capacity,	  the	  ability	  to	  use	  socio-­‐technical	  systems	  to	  mitigate	  the	  causes	  of	  climate	  change,	  is	  essentially	  driven	  by	  the	  same	  factors	  (20).Together	  adaptive	  and	  mitigative	  capacity	  are	  called	  response	  capacity	  (21).	  	  	  Adaptation	  is	  necessarily	  place-­‐based	  (22)	  and	  linkages	  between	  mitigation	  and	  adaptation	  are	  highly	  context	  specific	  (7,17,21,23).	  Having	  those	  linkages	  proposed	  in	  early	  stages	  of	  planning	  is	  critical,	  in	  order	  to	  identify	  synergistic	  opportunities	  for	  a	  particular	  project	  (24).	  Otherwise	  institutionalized	  pools	  of	  resources	  that	  are	  geared	  towards	  either	  mitigation	  of,	  or	  adaptation	  to	  climate	  change	  may	  act	  as	  obstacles	  for	  synergies	  (7).	  Theory	  and	  evidence	  suggest	  that	  there	  is	  potential	  for	  climate	  change	  adaptation	  (A)	  and	  mitigation	  (M)	  to	  be	  integrated	  alongside	  sustainable	  development	  (SD),	  especially	  at	  local	  and	  regional	  levels,	  and	  this	  has	  been	  called	  the	  AMSD	  approach.	  Figure	  1	  shows	  in	  Area	  2	  the	  overlap	  found	  in	  the	  AMSD	  approach.	  Figure	  1	  also	  shows	  the	  general	  historical	  trend	  to	  date	  in	  recognizing	  the	  importance	  of	  interactions	  among	  the	  three	  foci	  for	  planning	  in	  the	  industrial	  sector.	  	  	   4	  	  Figure	  1:	  The	  three	  focal	  areas	  of	  planning	  and	  the	  emergence	  of	  overlaps	  in	  ideas	  and	  goals.	  	  For	  industry,	  the	  AMSD	  approach	  might	  include	  low-­‐carbon	  infrastructure	  improvements,	  integrating	  emergency	  preparedness	  that	  protects	  human	  and	  economic	  capital,	  and	  insurance	  policies	  that	  promote	  response	  capacity.	  To	  take	  insurance	  policies	  as	  an	  example,	  there	  is	  a	  long	  history	  of	  creating	  value	  by	  pooling	  and	  redistributing	  various	  types	  of	  risk	  through	  3rd	  parties.	  	  	  However,	  a	  similar	  approach	  could	  be	  taken	  with	  Eco-­‐Industrial	  Networks,	  which	  could	  help	  in	  redistributing	  risk	  using	  the	  adaptive	  capacities	  and	  resources	  of	  localized	  areas.	  In	  fact,	  vulnerability	  may	  be	  best	  addressed	  in	  collaboration	  with	  others,	  rather	  than	  each	  industry	  trying	  to	  be	  a	  lone	  wolf	  in	  the	  face	  of	  the	  scale,	  complexity	  and	  site-­‐specific	  uncertainty	  of	  climatic	  change.	  Much	  as	  we	  have	  begun	  to	  realize	  the	  artificial	  dichotomy	  between	  mitigation	  and	  adaptation	  planning,	  there	  seems	  to	  be	  a	  false	  	  	   5	  separation	  between	  the	  place-­‐based,	  highly	  context-­‐specific	  realm	  of	  adaptation	  planning	  and	  the	  similar	  attributes,	  which	  EIN	  planning	  has	  been	  considering	  for	  decades.	  	  	  What	  we	  have	  learned	  about	  climate	  change	  policy	  is	  that	  it	  requires	  understanding	  of	  human	  response	  capacity,	  in	  addition	  to	  understanding	  the	  science	  of	  bio-­‐physical	  causes	  and	  impacts.	  This	  learning	  is	  also	  mirrored	  in	  the	  literature	  on	  industrial	  collaboration.	  Cooperation	  between	  industries	  needs	  technical	  compatibilities	  of	  inputs	  and	  outputs,	  and	  economic	  feasibility,	  but	  also	  a	  facilitative	  regulatory	  climate	  and	  personal	  relationships	  between	  managers	  for	  successful	  collective	  action	  (25–27).	  Many	  authors	  emphasize	  difficult-­‐to-­‐measure	  indicators	  such	  as	  ‘trust’	  and	  ‘openness’,	  and	  for	  over	  two	  decades	  have	  delved	  into	  the	  study	  of	  social	  capital,	  communication,	  and	  the	  existing	  relationships	  of	  exchange	  between	  industries	  (9,27–29).	  	  It	  seems	  that	  climate	  change	  adaptation	  and	  eco-­‐industrial	  network	  planning	  could	  have	  much	  to	  say	  to	  one	  another	  and	  could	  close	  a	  gap	  in	  the	  existing	  literature	  on	  the	  need	  for	  integration.	  However	  there	  seems	  to	  be	  a	  significant	  gap	  in	  literature	  and	  application	  of	  this	  thinking	  leading	  to	  the	  research	  questions	  and	  objectives	  of	  this	  project.	  	  	  	  1.3. RESEARCH	  OBJECTIVE	  This	  research	  examines	  the	  opportunities	  and	  challenges	  in	  integrating	  eco-­‐industrial	  network	  planning	  into	  the	  process	  of	  climate	  change	  planning.	  The	  research	  focuses	  on	  a	  case	  study	  in	  Delta,	  British	  Columbia,	  which	  has	  many	  of	  the	  archetypical	  climate	  change	  vulnerabilities	  of	  low-­‐lying	  industrial	  coastal	  communities.	  These	  include	  sea-­‐level	  rise,	  seasonal-­‐flooding	  and	  extreme	  weather	  events	  such	  as	  summer	  droughts	  and	  winter	  storms.	  The	  goals	  are	  to	  understand	  existing	  conditions,	  unearth	  opportunities	  where	  multiple	  interests	  align,	  and	  ultimately	  make	  recommendations	  on	  if	  and	  how	  future	  climate	  change	  planning	  might	  integrate	  synergistically	  with	  EIN	  development.	  Using	  current	  adaptation	  planning	  as	  the	  main	  focus	  and	  a	  potential	  driver,	  the	  	  	   6	  objective	  of	  this	  research	  is	  to	  explore	  opportunities	  for	  increased	  resilience	  of	  the	  Tilbury	  industrial	  area	  through	  development	  and	  expansion	  of	  eco-­‐industrial	  networks	  (EINs).	  	  	  	  Figure	  2	  provides	  a	  new	  conceptual	  schema	  of	  the	  areas	  of	  intersection	  for	  the	  three	  planning	  topics	  described	  in	  Figure	  1.	  Area	  3	  in	  Figure	  2,	  where	  goals	  for	  climate	  change	  adaptation	  overlap	  with	  the	  goals	  of	  EIN,	  will	  be	  the	  core	  content	  area	  where	  this	  study	  will	  explore	  opportunities	  for	  collaborative	  planning.	  	  Area	  4	  in	  Figure	  2,	  where	  these	  goals	  additionally	  overlap	  with	  climate	  change	  mitigation	  planning,	  is	  where	  the	  analysis	  and	  recommendations	  will	  focus,	  identifying	  optimal	  areas	  where	  all	  three	  planning	  areas	  intersect	  4.	  	  Figure	  2:	  Conceptual	  diagram	  representing	  all	  areas	  of	  potential	  synergies	  between	  climate	  change	  planning	  and	  Eco-­‐Industrial	  Networks	  in	  overlapping	  areas.	  The	  main	  focus	  and	  driver	  postulated	  for	  this	  research	  is	  climate	  change	  adaptation	  planning	  which	  is	  an	  emerging	  area	  of	  concern	  for	  many	  coastal	  communities.	  	  	  Area	  (3)	  represents	  the	  core	  content	  for	  exploration	  of	  collaborative	  planning	  opportunities.	  	  Area	  (4)	  represents	  the	  focus	  area	  for	  initiatives	  analysis	  and	  recommendations.	  	  	   	  	   7	  1.4. HYPOTHESIS	  AND	  RESEARCH	  QUESTIONS	  The	  underlying	  hypothesis	  of	  the	  thesis	  is:	  	  	  Within	  the	  industrial	  sector,	  if	  climate	  change	  adaptation	  planning	  questions	  are	  first	  contextualized	  within	  an	  Eco-­‐Industrial	  Network	  planning	  context,	  synergies	  and	  co-­‐benefits	  for	  both	  climate	  change	  adaptation	  and	  climate	  change	  mitigation	  may	  emerge	  that	  did	  not	  before.	  	  In	  order	  to	  investigate	  the	  key	  potential	  synergies	  identified	  in	  Figure	  2	  above,	  the	  following	  research	  questions	  are	  posed:	  	  1. What	  are	  the	  perceptions	  and	  understanding	  of	  industry	  leaders	  about	  the	  three	  areas	  of	  planning:	  1.1. Eco-­‐Industrial	  Networking,	  	  1.2. Climate	  Change	  Adaptation	  and	  	  1.3. Climate	  Change	  Mitigation?	  2. Do	  any	  of	  the	  three	  planning	  concepts	  emerge	  as	  drivers	  for	  enacting	  sustainability-­‐oriented	  change	  (especially	  in	  addressing	  climate	  change	  adaptation)	  within	  the	  industrial	  sector?	  If	  so,	  how?	  	  3. In	  the	  context	  of	  Tilbury	  Industrial	  area	  in	  Delta	  BC	  where	  there	  was	  a	  history	  of	  government	  conceived	  Eco-­‐Industrial	  Networking	  planning,	  has	  the	  use	  of	  EIN	  planning	  helped	  industries	  strategize	  for	  climate	  change	  adaptation?	  4. Does	  the	  use	  of	  a	  localized	  document	  synthesis,	  indicators,	  mapping,	  and	  visualizations	  for	  the	  three	  planning	  areas	  reveal	  new	  ideas	  towards	  reaching	  internal	  (corporation	  driven)	  or	  external	  (government	  policy	  driven)	  climate	  change	  goals?	  5. What	  constraints	  and	  opportunities	  can	  be	  highlighted	  by	  this	  case	  study	  for	  other	  areas	  undergoing	  similar	  climate	  change	  issues?	  	   8	  1.5. 	  	  OVERVIEW	  OF	  THESIS	  The	  rest	  of	  Chapter	  1	  provides	  the	  study	  context	  for	  analyzing	  these	  Research	  Questions.	  Chapter	  2	  presents	  a	  review	  of	  literature	  on	  Eco-­‐Industrial	  Network	  (EIN)	  planning,	  and	  climate	  change	  planning	  for	  adaptation	  and	  mitigation.	  Chapter	  2	  also	  reviews	  literature	  on	  participatory	  planning	  with	  visual	  tools	  for	  engagement	  and	  capacity	  building.	  Chapter	  3	  describes	  the	  methods	  that	  were	  used	  to	  simulate	  the	  first	  phase	  of	  a	  planning	  process	  that	  could	  bring	  climate	  change	  adaptation	  and	  Eco-­‐Industrial	  networking	  together	  with	  mitigation	  co-­‐benefits.	  The	  research	  uses	  document	  analysis,	  mapping,	  indicator	  development,	  existing	  case-­‐study	  precedents,	  interviews	  with	  industry	  leaders	  and	  expert	  reviewers	  in	  the	  planning	  sector.	  Chapter	  4	  presents	  findings	  from	  these	  phases	  of	  research	  within	  a	  case	  study	  of	  the	  Tilbury	  industrial	  Park	  in	  the	  municipality	  of	  Delta,	  and	  analyzes	  emergent	  themes	  from	  a	  series	  of	  interviews	  with	  industry	  leaders	  and	  guided	  feedback	  from	  domain	  experts.	  Chapter	  5	  summarizes	  lessons	  learned	  from	  the	  analysis	  and	  interprets	  key	  findings.	  Chapter	  6	  makes	  recommendations	  for	  planners	  and	  industries	  interested	  in	  continuing	  the	  development	  of	  eco-­‐industrial	  network	  planning	  and	  climate	  change	  planning.	  	  	  1.6. THE	  CASE	  STUDY	  CONTEXT	  1.6.1. Climate	  Change Vulnerabilities	  and	  Adaptation	  Planning 	  The	  Intergovernmental	  Panel	  on	  Climate	  Change	  (IPCC)	  states	  that	  increased	  greenhouse	  gases	  (GHGs)	  have	  led	  to	  associated	  climate	  change	  impacts	  include	  global	  warming	  trends,	  glacial	  and	  permafrost	  melt,	  sea	  level	  rise,	  more	  extreme	  storm	  events,	  droughts	  and	  floods	  (30).	  	  The	  Corporation	  of	  Delta,	  a	  British	  Columbia	  coastal	  municipality	  in	  Metro	  Vancouver,	  Canada,	  is	  located	  on	  the	  Fraser	  River	  delta.	  Like	  New	  Orleans,	  this	  region	  has	  been	  identified	  by	  the	  IPCC	  as	  an	  area	  below	  sea	  level	  with	  significant	  populations,	  especially	  at	  risk	  from	  water-­‐related	  climate	  change	  impacts	  (31,32).	  	  In	  2006	  a	  storm	  breached	  a	  sea-­‐wall	  in	  Delta,	  demonstrating	  this	  vulnerability	  and	  making	  climate	  change	  threats	  particularly	  tangible	  in	  the	  area.	  In	  2006,	  Delta	  became	  	   9	  one	  of	  19	  local	  governments	  in	  Canada	  to	  join	  the	  International	  Council	  for	  Local	  Environmental	  Initiatives	  (ICLEI),	  a	  network	  of	  cities	  around	  the	  world	  dedicated	  to	  sustainable	  development.	  Delta	  participated	  in	  a	  pilot	  project	  to	  assess	  the	  local	  climate	  change	  vulnerabilities	  and	  adaptation	  options	  specific	  to	  the	  community	  (33,34).	  Delta	  was	  selected	  by	  ICLEI	  Canada,	  as	  the	  one	  local	  government	  to	  be	  part	  of	  a	  steering	  committee	  to	  help	  to	  create	  a	  toolkit	  document	  that	  can	  be	  used	  by	  communities	  across	  the	  country	  in	  their	  own	  climate	  change	  adaptation	  planning	  (35).	  1.6.2. Climate	  Change Causes	  and	   Mitigation	  Planning 	  According	  to	  the	  United	  Nations	  Framework	  Convention	  on	  Climate	  Change	  “the	  largest	  share	  of	  historical	  and	  current	  global	  emissions	  of	  greenhouse	  gases	  has	  originated	  in	  developed	  countries”	  and	  thus	  from	  there	  the	  principle	  of	  “common	  but	  differentiated	  responsibilities”	  was	  acknowledged	  between	  developed	  and	  developing	  nations	  (36).	  	  In	  2013,	  Canada’s	  total	  GHG	  emissions	  were	  estimated	  to	  be	  726	  megatonnes	  of	  carbon	  dioxide	  equivalent	  (Mt	  CO2	  eq)	  excluding	  Land-­‐Use,	  Land-­‐Use	  Change	  and	  Forestry	  estimates	  (LULUCF)	  (37).	  Canadian	  per	  capita	  emissions	  are	  among	  the	  highest	  in	  the	  world	  at	  22	  tonnes	  CO2	  equivalent/person	  from	  1990-­‐2013	  (37).	  From	  fuel	  combustion	  alone,	  including	  energy	  industries,	  manufacturing	  and	  construction	  and	  transportation,	  waste,	  agriculture	  and	  industrial	  processes,	  Canada	  ranks	  14th	  in	  the	  world	  per	  capita	  based	  on	  2012	  data	  at	  15.3	  tCO2	  /person	  (38).	  	  81%	  of	  this	  total	  comes	  from	  combustion	  from	  energy	  industries,	  manufacturing	  and	  construction	  and	  transportation	  (38).	  Excluding	  Land	  use,	  land-­‐use	  change	  and	  forestry,	  Canada’s	  total	  emissions	  have	  been	  measured	  at	  107,718,000	  tonnes	  CO2	  eq	  (+18%)	  from	  1990	  levels,	  with	  27%	  coming	  from	  energy	  industries,	  15%	  from	  manufacturing	  and	  construction	  and	  35%	  from	  transportation	  (39).	  	  	  The	  BC	  Ministry	  of	  Environment	  and	  municipalities	  including	  the	  Corporation	  of	  Delta	  have	  been	  undergoing	  climate	  change	  mitigation	  planning	  processes	  aimed	  at	  reducing	  greenhouse	  gas	  emissions.	  Using	  2007	  data	  as	  a	  baseline,	  British	  Columbia	  has	  set	  GHG	  reduction	  targets	  of	  33%	  by	  2020	  and	  80%	  by	  2050	  (40).	  The	  Corporation	  of	  Delta,	  noting	  population	  growth	  projections,	  has	  set	  a	  2020	  goal	  of	  0%	  GHG	  increase	  and	  a	  12%	  total	  reduction	  by	  2040	  (41).	  Stated	  another	  way	  these	  goals	  are	  a	  per	  capita	  GHG	  	   10	  target	  of	  10%	  less	  by	  2020	  and	  a	  per	  capita	  target	  of	  32%	  less	  by	  2040	  (41).	  For	  more	  details	  on	  British	  Columbia’s	  and	  Corporation	  of	  Delta’s	  emissions	  reductions	  targets	  as	  they	  relate	  to	  industry,	  see	  Chapter	  4.1	  Document	  Analysis.	  	  	  1.7. THE	  INDUSTRIAL	  USES	  Delta	  has	  two	  of	  the	  largest	  business	  parks	  in	  Metro	  Vancouver,	  Annacis	  Island	  Industrial	  Park	  and	  Tilbury	  Industrial	  Park.	  There	  are	  430	  companies	  located	  on	  Annacis	  Island	  with	  over	  10,300	  employees	  and	  more	  than	  300	  businesses	  in	  Tilbury	  with	  over	  8000	  employees	  (42).	  See	  Figure	  3	  for	  context	  map.	  	  Tilbury	  Industrial	  Park,	  named	  after	  Tilbury	  Island,	  was	  established	  in	  the	  early	  1980’s	  (43).	  In	  1973	  the	  lands	  were	  purchased	  along	  the	  south	  shore	  of	  the	  Fraser	  River	  with	  402	  acres	  rezoned	  as	  industrial	  (44).	  As	  of	  2008	  there	  were	  200	  acres	  of	  vacant	  industrial	  lands	  bordering	  the	  Fraser	  River	  (45).	  	  This	  is	  quickly	  changing,	  as	  Delta	  has	  one	  of	  the	  fastest	  growing	  industrial	  areas	  in	  Metro	  Vancouver	  and	  is	  expected	  to	  add	  20,000	  new	  jobs	  by	  2041	  from	  a	  2006	  baseline	  (46,47).	  Over	  2,000	  of	  those	  jobs	  are	  projected	  to	  be	  based	  on	  the	  River	  Road	  corridor	  (also	  known	  as	  highway	  17A	  or	  62B	  St.).	  In	  particular	  the	  eastern	  stretch	  from	  Alexander	  Road	  to	  Nordel	  Way	  will	  experience	  development,	  in	  part	  due	  to	  a	  concentrated	  planning	  effort	  by	  the	  Corporation	  of	  Delta	  known	  as	  Saving	  Our	  Industrial	  Lands	  (SOIL)	  (45,48).	  	  	  The	  mayor’s	  SOIL	  initiative	  is	  leveraging	  provincial	  and	  federal	  plans	  and	  programs	  to	  foster	  sustainable	  brownfield	  redevelopment	  of	  the	  riverside	  corridor	  into	  a	  more	  viable	  and	  diverse	  industrial	  area	  (45,48).	  One	  of	  the	  precursors	  to	  current	  parcel	  ‘vacancy’	  was	  the	  Delta	  Shake	  and	  Shingle	  property	  fire	  in	  1999	  which	  burned	  for	  10	  weeks	  and	  led	  Delta	  to	  declare	  a	  state	  of	  emergency	  (49,50).	  Former	  landfill	  sites	  in	  a	  narrow	  stretch	  of	  land	  between	  the	  Fraser	  River	  and	  Burns	  Bog	  also	  meant	  that	  the	  clean	  up	  cost	  exceeded	  the	  value	  of	  the	  land	  (49,50).	  	  In	  2011	  Delta	  approved	  a	  tax	  exemption	  bylaw	  in	  exchange	  for	  landfill	  remediation	  and	  redevelopment	  on	  affected	  sites	  (49,50).	  	  	  	   11	  Completed	  in	  2014,	  the	  South	  Fraser	  River	  Perimeter	  Road	  was	  implemented	  to	  promote	  expedient	  road	  transport	  to	  Deltaport	  and	  Tsawwassen	  ferry	  terminals.	  This	  project	  involved	  a	  joint	  partnership	  of	  the	  BC	  Ministry	  of	  Transportation	  and	  Infrastructure,	  the	  BC	  Ministry	  of	  Environment,	  and	  private	  landowners	  to	  promote	  enclosure	  and	  redevelopment	  of	  5	  former	  landfill	  sites	  in	  Tilbury	  (49,50).	  In	  2012	  the	  Delta	  Landfill	  Renewal	  Project	  won the	  Consulting	  Engineers	  of	  BC	  award	  for	  Engineering	  Excellence,	  with	  a	  innovative	  design	  in	  adaptive	  landfill	  closure	  which	  relocated	  the	  debris	  into	  one	  landfill	  site,	  capped	  and	  contained	  with	  leachate	  and	  landfill	  gas	  collection	  systems	  (49,50).	  	  	  	  	  Figure	  3:	  Tilbury	  Industrial	  Area.	  Red	  outline	  specifies	  original	  Tilbury	  study	  area.	  White	  polygon	  in	  northeast	  of	  study	  area	  is	  the	  Saving	  Our	  Industrial	  Lands	  Concept	  Plan	  area.	  Inset	  map	  contextualizes	  the	  study	  area	  within	  the	  Metro	  Vancouver	  area.	   	  	   12	  2. LITERATURE	  REVIEW	  	  The	  aim	  of	  this	  literature	  review	  is	  to:	  1. Set	  the	  context	  for	  the	  three	  areas	  of	  planning	  examined	  in	  this	  research	  project	  in	  terms	  of	  what	  they	  are,	  key	  concepts	  and	  definitions,	  how	  they	  developed	  and	  objectives	  they	  aim	  to	  achieve.	  2. Examine	  successes	  and	  shortcomings	  in	  traditional	  planning	  methods	  and	  outreach,	  and	  review	  theories	  on	  how	  localized	  visualizations	  and	  mapping	  might	  be	  effective	  in	  outreach	  and	  engagement	  tools	  for	  making	  unfamiliar	  planning	  concepts	  tangible	  and	  relevant.	  3. Identify	  existing	  knowledge	  gaps	  in	  combining	  the	  3	  areas	  of	  planning	  to	  achieve	  multiple	  objectives.	  2.1. ECO-­‐INDUSTRIAL	  NETWORKS	   	  EINs	  seek	  to	  maximize	  the	  concept	  that	  the	  waste	  materials	  and	  energy	  from	  one	  industry	  may	  be	  a	  valuable	  input	  for	  another	  (8).	  The	  underlying	  principle	  is	  that	  physical	  exchanges	  of	  material,	  energy,	  water,	  and	  by-­‐products	  can	  lead	  to	  co-­‐benefits	  in	  cost	  sharing	  and	  efficiency	  between	  industries	  as	  well	  as	  decreasing	  industries’	  impact	  on	  the	  environment	  (51).	  	  An	  EIN	  refers	  to	  a	  group	  of	  companies	  engaged	  in	  shared	  management	  of	  resources	  that	  are	  co-­‐located	  in	  an	  industrial	  park	  or	  across	  a	  larger	  region	  (51,52).	  	  	  An	  often	  cited	  early	  example	  of	  eco-­‐industrialism	  is	  the	  complex	  that	  began	  forming	  in	  1989	  in	  Kalundborg,	  Denmark	  and	  continued	  to	  evolve	  over	  the	  course	  of	  two	  decades	  (8,10,51).	  Within	  the	  complex	  are	  an	  electric	  power	  plant,	  oil	  refineries,	  a	  pharmaceutical	  company,	  a	  fish	  nursery,	  a	  city	  heating	  works,	  a	  gypsum	  factory,	  a	  cement	  factory	  and	  several	  smaller	  companies	  that	  developed	  a	  network	  of	  exchanges	  of	  waste	  energy	  and	  byproducts	  (53).	  This	  web	  of	  recycling	  and	  reuse	  led	  to	  cost-­‐saving	  opportunities	  for	  all	  parties	  estimated	  between	  US	  $12-­‐15	  million	  annually	  (10,54).	  See	  Figure	  4	  for	  diagram	  demonstrating	  exchanges	  in	  Kalundborg.	  	  	  	   13	  Interestingly,	  this	  example	  of	  an	  eco-­‐industrial	  network	  evolved	  spontaneously	  rather	  than	  being	  directed	  by	  a	  plan	  or	  program.	  It	  has	  therefore	  been	  called	  an	  ‘industrial	  symbiosis’	  between	  traditionally	  separate	  industries	  facilitated	  by	  geographic	  proximity	  (10,51,55).	  Over	  time	  the	  definition	  of	  industrial	  symbiosis	  had	  been	  refined	  to	  distinguish	  it	  from	  linear	  business	  exchanges	  between	  a	  producer	  and	  a	  recycler	  as	  having	  a	  minimum	  of	  three	  industries	  with	  at	  least	  two	  different	  resources	  exchanged	  (51)	  	  Since	  1989	  much	  attention	  has	  been	  put	  into	  the	  intentional	  design	  of	  eco-­‐industrial	  networks	  (also	  sometimes	  called	  eco-­‐industrial	  parks)	  by	  governments	  and	  planners,	  with	  the	  intent	  to	  replicate	  what	  developed	  organically	  at	  Kalundborg.	  The	  goals	  of	  these	  planning	  objectives	  include	  enhanced	  economic	  development,	  remediation	  of	  pollution,	  water	  and	  land	  savings,	  and	  greenhouse	  gas	  reductions	  (51).	  However,	  research	  suggests	  greater	  survivorship	  and	  more	  intricate	  resource	  exchange	  development	  for	  eco-­‐industrial	  networks	  that	  were	  mostly	  self-­‐organized	  (51,56).	  A	  2004	  literature	  review	  of	  eco-­‐industrial	  developments	  noted	  that	  especially	  where	  there	  was	  a	  strong	  drive	  to	  establish	  EIN’s	  through	  policy	  initiatives	  “eco-­‐industrial	  ideals	  are	  often	  compromised”	  (57).	  Analysis	  by	  Chertow	  suggests	  that	  ‘uncovering’	  existing	  precursors	  or	  ‘kernels’	  of	  industrial	  symbiosis	  is	  where	  research	  should	  be	  focused	  and	  where	  policy	  support	  tools	  should	  be	  dedicated	  (51).	  Precursors	  include	  areas	  where	  there	  are	  existing	  bilateral	  or	  multilateral	  exchanges	  and	  where	  there	  is	  potential	  to	  expand	  (51).	  	  	  	   14	  	  	  Figure	  4:	  Diagram	  of	  Kalundborg	  Denmark	  industries	  and	  exchange	  of	  energy	  and	  by-­‐products	  over	  time.	  (Huo	  &	  Chai	  2008	  (53)	  	  	   15	  In	  order	  for	  industrial	  symbiosis	  to	  manifest,	  there	  is	  a	  need	  for	  spatial	  proximity	  and	  technical	  compatibilities,	  a	  facilitative	  regulatory	  climate	  and	  personal	  relationships	  and	  collective	  action	  between	  managers	  and	  administrators	  (25–27,58,59).	  The	  sociological	  principle	  of	  social	  embeddedness	  suggests	  that	  the	  actions	  of	  organizations,	  like	  individuals,	  are	  determined	  by	  the	  norms	  of	  the	  larger	  group	  in	  which	  they	  interact	  (60).	  ‘Embeddedness’	  for	  industrial	  symbiosis	  potential	  includes	  the	  following	  criteria	  (52,61):	  1)	  spatial	  (geographic	  proximity)	  2)	  temporal	  (situating	  action	  in	  a	  historical	  context)	  3)	  cognitive	  (shared	  conception	  of	  what	  to	  do	  with	  waste	  materials)	  	  4)	  political	  (the	  role	  of	  the	  state	  in	  the	  economic	  processes)	  5)	  cultural	  (communication	  intricacies	  and	  trust)	  6)	  structural	  (communication	  frequency	  and	  social	  capital	  of	  actors)	  	  	  2.2. CLIMATE	  CHANGE	  ADAPTATION	  PLANNING	  AND	  INDUSTRY	  2.2.1. Climate	  Change	  Vulnerability	  Climate	  change	  vulnerability	  is	  defined	  as	  “The	  degree	  to	  which	  a	  system	  is	  susceptible	  to,	  or	  unable	  to	  cope	  with,	  adverse	  effects	  of	  climate	  change,	  including	  climate	  variability	  and	  extremes”	  (14).	  	  In	  the	  Northern	  hemisphere,	  the	  last	  50	  years	  have	  been	  the	  warmest	  period	  of	  the	  last	  1300	  years	  (62).	  Table	  1	  summarizes	  many	  of	  the	  observed	  climate	  and	  weather	  impacts	  that	  are	  acute	  in	  the	  Canadian	  context,	  adapted	  from	  IPCC	  Third	  Assessment	  Report	  (35,63).	  	   16	  Table	  1:	  Summary	  of	  observed	  global	  changes	  in	  climate	  and	  weather.	  Source:	  International	  Council	  for	  Local	  Environmental	  Initiatives	  (ICLEI)	  Canada	  (35)	  	  	  	  Regionally	  sea	  level	  rise	  is	  a	  particular	  threat,	  projected	  at	  80-­‐120cm	  by	  the	  year	  2100	  (64).	  Climate	  projections	  for	  BC	  suggest	  that	  while	  average	  annual	  temperatures	  will	  increase,	  warming	  will	  primarily	  be	  toward	  shifts	  in	  the	  coldest	  winter	  temperatures,	  thus	  area	  snowfall	  is	  projected	  to	  decrease	  impacting	  reservoirs	  and	  summer	  water	  supplies	  (31).	  	  In	  the	  Fraser	  Valley	  Region,	  projections	  are	  for	  drier	  summers	  and	  wetter	  winters	  with	  more	  intense	  precipitation	  (31).	  A	  recent	  severe	  storm	  in	  Oct	  2010	  right	  before	  harvest	  resulted	  in	  crop	  losses	  for	  vegetable	  producers	  in	  the	  Fraser	  Valley/	  Metro	  Vancouver	  (65).	  An	  estimated	  $6.3	  million	  in	  crop	  insurance	  and	  Agri-­‐Recovery	  was	  paid	  for	  compensation/return	  to	  production	  (65).	  	  According	  to	  the	  2014	  Climate	  Action	  Initiative:	  BC	  Agriculture	  &	  Food	  report,	  “Extreme	  precipitation	  events	  such	  as	  this	  one	  are	  anticipated	  to	  become	  more	  common	  with	  climate	  change	  (65).	  ”	  	  	  Urban	  infrastructure	  itself	  may	  pose	  a	  threat	  to	  health	  and	  safety	  if	  upgrades	  and	  adaptations	  in	  these	  systems	  are	  not	  implemented.	  The	  IPCC	  has	  identified	  urban	  infrastructure	  maintenance	  and	  capacity	  as	  one	  of	  the	  greatest	  threats	  in	  the	  in	  North	  America	  context	  suggesting	  that	  “when	  protective	  systems	  fail,	  impacts	  can	  be	  	   17	  widespread	  and	  multi-­‐dimensional	  (32).	  For	  example,	  wastewater	  and	  stormwater	  systems	  designed	  with	  traditional	  gravity-­‐based	  flow	  systems	  may	  ‘back	  up’	  due	  to	  sea	  level	  rise	  and	  flooding	  at	  outlets	  (66).	  More	  frequent	  wet	  weather-­‐events	  in	  Metro	  Vancouver	  could	  mean	  a	  reduction	  in	  wastewater	  treatment	  clarification	  performance,	  impact	  to	  maintenance	  schedules,	  and	  increased	  energy	  required	  to	  pump	  effluent	  increased	  (67).	  	  	  Summer	  droughts	  can	  also	  lead	  to	  increased	  fire	  risk	  with	  associated	  health	  related	  impacts	  of	  air	  pollution	  and	  flammable	  contaminants.	  This	  is	  a	  serious	  concern	  as	  much	  of	  Delta’s	  industrial	  lands	  are	  near	  the	  methane	  rich	  Burns	  Bog	  which	  is	  prone	  to	  wildfires	  in	  dry	  years.	  In	  recent	  times	  human-­‐caused	  fires	  have	  led	  to	  135ha	  or	  4.6%	  of	  the	  bog	  burning	  during	  3	  separate	  fire	  events.	  	  Modeling	  suggests	  that	  if	  fire	  disturbance	  continues	  at	  this	  pace	  it	  will	  reduce	  the	  peat-­‐forming	  capacity	  of	  the	  Bog	  (68).	  In	  the	  last	  decade	  there	  have	  been	  climate	  change	  projections	  suggesting	  that	  fires	  could	  become	  more	  frequent	  and	  intense	  (69)	  exacerbated	  by	  an	  increase	  of	  drought	  years	  that	  lower	  the	  position	  of	  the	  water	  table	  and	  threaten	  the	  bog	  ecosystem	  (68).	  	  The	  full	  complexity	  of	  the	  climate	  change	  impacts	  that	  Delta	  is	  projected	  to	  face	  can	  not	  be	  addressed	  by	  structural	  adaptations	  alone	  (33,70).	  	  Different	  sectors	  are	  vulnerable	  in	  different	  ways,	  and	  specific	  vulnerabilities	  for	  different	  land-­‐uses	  should	  be	  considered	  in	  adaptation	  planning.	  	  	  2.2.2. Adaptation	  Planning	  for	  Resilience	  Impacts	  of	  climate	  change	  are	  becoming	  evident	  and	  more	  effort	  is	  being	  put	  into	  understanding	  this	  at	  regional	  levels	  and	  planning	  for	  adaptation.	  Several	  of	  these	  from	  the	  federal,	  provincial	  and	  community	  level	  pertain	  to	  the	  Tilbury	  Industrial	  Context	  (35,71–74).	  	  To	  date	  most	  adaptation	  plans	  focus	  on	  general	  large	  scale	  suggestions	  such	  as	  protecting	  our	  forest	  and	  water	  resources	  (73,74)	  or	  general	  recommendations	  for	  municipal	  scale.	  These	  include	  building	  climate	  smart	  residential	  communities	  with	  zoning	  and	  development	  controls	  (74),	  flood-­‐proofing,	  infrastructure	  grants,	  and	  green	  community	  development	  (73).	  	   18	  	  In	  order	  to	  make	  more	  specific	  recommendations	  for	  regional	  and	  community	  planning,	  research	  has	  focused	  on	  physical	  modeling	  and	  costing.	  This	  has	  include	  research	  to	  combine	  specific	  aspects	  of	  forecasting	  with	  biophysical	  conditions	  such	  as	  that	  seen	  in	  Climate	  Change	  Adaption	  Guidelines	  for	  Sea	  Dikes	  and	  Coastal	  Flood	  Hazard	  Land	  Use	  (75).	  In	  eneral,	  economic	  assessment	  of	  adaptation	  options,	  focus	  on	  land	  use	  modifications	  for	  the	  built	  environment	  (76)	  or	  insurance	  conditions	  and	  strategies	  (70,77).	  What	  seems	  to	  be	  lacking	  is	  climate	  change	  adaptation	  work	  that	  focuses	  on	  the	  industrial	  sector	  and	  the	  scales	  at	  which	  they	  operate.	  However	  there	  seems	  to	  be	  appetite	  for	  this	  intention	  as	  British	  Columbia’s	  Adaptation	  Strategy	  recommends:	  	  	  	  Implement	  through	  a	  coordinated	  approach:	  (71)	  • Strengthen	  cross-­‐government	  coordination	  to	  ensure	  that	  ministries	  share	  experiences,	  have	  access	  to	  the	  same	  information	  and	  work	  towards	  common	  goals.	  • Engage	  and	  work	  with	  partners	  in	  other	  levels	  of	  government,	  the	  private	  and	  non-­‐profit	  sectors	  and	  other	  jurisdictions.	  	  • Integrate	  adaptation	  into	  the	  strategies	  for	  building	  BC’s	  Green	  Economy.	  	  	  2.3. CLIMATE	  CHANGE	  MITIGATION	  PLANNING	  AND	  INDUSTRY	  Low	  carbon	  industrial	  parks	  are	  being	  piloted	  in	  China	  where	  carbon	  emission	  control	  is	  the	  driving	  consideration.	  However,	  sustainability	  assessment	  of	  these	  projects	  has	  been	  limited	  and	  poorly	  documented	  (12).	  This	  field	  is	  in	  its	  embryonic	  state	  worldwide,	  thus	  there	  are	  few	  case	  studies	  and	  insufficient	  data	  on	  effective	  development	  processes	  and	  sustainability	  outcomes	  (8).	  	  	  British	  Columbia	  has	  increasingly	  been	  looking	  to	  Integrated	  Resource	  Recovery	  (IRR)	  as	  a	  tool	  for	  climate	  change	  action.	  IRR	  looks	  at	  the	  other	  end	  of	  the	  conventional	  linear	  production	  models	  of	  industrial	  and	  agricultural	  production	  with	  a	  focus	  on	  planning	  and	  managing	  community	  infrastructure	  to	  maximize	  the	  recovery	  of	  waste	  resources	  to	  create	  energy,	  reduce	  GHGs,	  conserve	  water,	  and	  recover	  nutrients	  (78).	  Though	  still	  	  	   19	  linear	  in	  terms	  of	  concepts	  of	  resource	  recovery,	  IRR	  follows	  the	  Pollution	  Prevention	  Hierarchy.	  This	  is,	  listed	  in	  order	  of	  what	  is	  preferable:	  avoid,	  reduce,	  reuse,	  recycle,	  recover,	  and	  dispose.	  	  Examples	  of	  IRR	  projects	  being	  promoted	  by	  BC	  plans	  include:	  aerobic	  composting	  of	  organic	  waste,	  anaerobic	  digestion	  to	  create	  fuel,	  combustion	  and/or	  gasification	  of	  waste	  biomass	  to	  create	  fuel,	  reclamation	  of	  heat	  and	  cold	  from	  wastewater	  using	  heat	  pumps,	  and	  extraction	  of	  nutrients	  from	  wastewater	  for	  use	  as	  fertilizer	  (78).	  See	  Figure	  5	  for	  a	  conceptual	  diagram	  of	  these	  ideas.	  	  	  	  Figure	  5:	  Concept	  drawing	  of	  IRR	  adapted	  from	  BC	  Ministry	  of	  Community	  Development	  report	  Resources	  from	  Waste:	  A	  guide	  for	  Integrated	  Resource	  Recovery	  (78).	  Examples	  of	  IRR	  in	  the	  form	  of	  district	  energy	  systems	  can	  be	  found	  in	  Revelstoke,	  Vancouver,	  North	  Vancouver,	  Whistler,	  Kelowna	  and	  Victoria	  (78,79).	  The	  Southeast	  False	  Creek	  and	  Olympic	  Village	  communities	  recover	  heat	  from	  the	  municipal	  sewage	  pipes	  (78)	  with	  an	  estimated	  GHG	  emissions	  reduction	  of	  64%	  compared	  to	  conventional	  natural	  gas	  heating	  (80).	  	  In	  Kelowna	  the	  Okanagan	  College	  heats	  building	  	   20	  from	  the	  wastewater	  at	  the	  adjacent	  Kelowna	  Wastewater	  Treatment	  Plant,	  providing	  80-­‐100%	  of	  the	  heat	  needed	  on	  campus	  depending	  on	  outdoor	  temperatures	  (78).	  This	  along	  with	  building	  retrofits	  has	  reduced	  GHG	  emissions	  by	  8,000	  tonnes/year	  (79).	  	  2.4. MERGING	  TOGETHER	  THREE	  SECTORS	  OF	  PLANNING	  2.4.1. Why	  Bring	  the Three	  Areas	  Together 	  Planning	  tools	  for	  Eco-­‐Industrial	  Networking,	  climate	  change	  mitigation	  and	  climate	  change	  adaption	  come	  from	  different	  histories,	  some	  newer	  than	  others,	  and	  each	  is	  considered	  to	  have	  different	  goals.	  However,	  evidence	  from	  psychology,	  education	  and	  behaviour	  change	  literature	  suggests	  that	  there	  may	  be	  some	  merit	  in	  combining	  them.	  	  	  	  Susanne	  C.	  Moser	  (2010)	  argues	  that	  climate	  change	  discourse	  has	  changed	  and	  though	  the	  ‘battle’	  over	  unproven	  science	  still	  exists	  in	  some	  mass	  media	  outlets	  –	  with	  today’s	  overwhelming	  scientific	  consensus,	  public	  awareness	  is	  improving.	  Now	  gaps	  are	  found	  in	  understanding	  ‘invisible	  causes’	  and	  ‘distant	  impacts’	  and	  there	  is	  great	  variety	  among	  people	  on	  levels	  of	  concern,	  and	  sense	  of	  urgency	  and	  importance	  (4).	  Many	  perceptual	  issues	  have	  been	  identified	  in	  bridging	  general	  knowledge	  of	  climate	  change	  to	  behaviour	  change	  including:	  a)	  climate	  change	  is	  perhaps	  a	  problem	  for	  far	  away	  places	  but	  not	  in	  their	  community	  (81),	  b)	  people’s	  feeling	  that	  they	  do	  not	  	  ‘see’	  climate	  change,	  (82)	  c)	  apathy	  that	  there	  is	  nothing	  individuals	  can	  do	  about	  it,	  (83)	  and	  d)	  general	  feelings	  that	  solutions	  are	  somebody	  else’s	  responsibility	  (84).	  	  	  Studies	  show	  that	  educational	  messages,	  with	  information	  delivery	  alone,	  have	  not	  resulted	  in	  effective	  behaviour	  change	  (83,85).	  Researchers	  with	  experience	  in	  communicating	  climate	  change	  with	  the	  goal	  of	  fostering	  social	  change	  suggest	  that	  it	  is	  important	  to	  tailor	  information	  and	  processes	  to	  audience	  (86),	  that	  it	  be	  relevant	  on	  the	  local	  level	  (87–89)	  and	  appeal	  to	  deeply	  held	  values	  (82).	  	  	  	  	   21	  For	  decision-­‐making	  in	  business,	  literature	  demonstrates	  that	  the	  characteristics	  and	  interpretations	  of	  decision-­‐makers,	  and	  their	  social	  ties	  are	  very	  important	  in	  strategic	  high-­‐stakes	  decision	  making,	  and	  subsequent	  outcomes	  (90).	  These	  businesses	  often	  are	  making	  decisions	  with	  limited	  processing	  capabilities	  (91)	  and	  resources	  for	  intelligence	  gathering	  (92),	  which	  “make[s]	  individual	  factors	  related	  to	  information	  processing	  highly	  relevant	  for	  decision	  effectiveness”(90).	  This	  suggests	  that	  the	  psychology	  of	  climate	  change-­‐related	  knowledge	  and	  perceptions	  of	  key	  decision	  makers,	  can	  translate	  as	  critical	  change	  within	  business	  communities,	  just	  as	  within	  individuals.	  	  Within	  existing	  communities,	  the	  need	  for	  accelerated	  retrofitting	  of	  neighbourhoods	  to	  become	  more	  low-­‐carbon,	  attractive	  and	  resilient	  (Lo-­‐CAR)	  has	  been	  identified	  for	  some	  time,	  associated	  with	  multi-­‐functional	  local	  solutions	  (6).	  	  These	  need	  to	  move	  beyond	  technological	  advances	  and	  legislation	  for	  GHG	  reductions	  to	  embrace	  collective	  social	  action,	  and	  be	  transformative	  in	  landscape	  patterns	  and	  behaviours	  (6).	  	  This	  will	  require	  paradigm	  shifting	  in	  society	  (84,93).	  	  	  Indicators	  for	  resilience	  need	  to	  be	  site	  specific	  (94).	  Categories	  for	  these	  indicators	  can	  be	  thought	  of	  as	  follows:	  (adapted	  from	  Sheppard	  et.	  al	  2008).	  	  1) Low	  vulnerability	  or	  local	  adaptation	  2) Local	  resources	  in	  production,	  use	  and	  disposal/recycling	  3) Spatial	  heterogeneity	  and	  redundancy	  (i.e.	  multiple	  sources	  of	  energy,	  food,	  water)	  	  4) Social	  interaction	  and	  social	  networks	  5) Multi-­‐functional	  landscape	  (i.e.	  that	  solve	  multiple	  problems	  with	  few	  actions)	  	  Eco-­‐Industrial	  Networking,	  an	  existing	  framework	  with	  over	  three	  decades	  of	  history,	  adheres	  to	  all	  of	  the	  principles	  of	  resilience	  development	  as	  well	  as	  the	  human	  factors	  that	  promote	  behaviour	  change.	  Thinking	  of	  EINs	  within	  industrial	  ‘communities’	  seems	  a	  logical	  platform	  for	  Lo-­‐CAR	  evolution.	  Having	  been	  built	  off	  existing	  values	  including	  saving	  money	  and	  resources	  to	  embraces	  sustainability,	  it	  may	  be	  one	  of	  the	  more	  effective	  tool	  for	  industrial	  sector	  planning,	  as	  it	  straddles	  the	  divide	  between	  existing	  	   22	  values	  and	  paradigm	  shifts.	  A	  tool	  that	  embraces	  localized	  innovation,	  entrepreneurship	  and	  experimentation	  for	  solution,	  and	  multi-­‐functional	  landscapes,	  it	  may	  have	  something	  to	  teach	  other	  planning	  efforts	  on	  picking	  up	  the	  pace	  in	  knowledge	  transfer	  and	  collaboration.	  	  2.4.2. 	  Many	  environmental	  problems	  that	  require	  technical	  guidance	  are	  best	  addressed	  with	  active	  participation	  of	  those	  most	  affected	  by	  the	  decisions	  (95).	  There	  is	  robust	  evidence	  that	  co-­‐production	  of	  knowledge	  between	  researchers,	  policy	  makers	  and	  stakeholders	  is	  important	  in	  creating	  ownership	  of	  problems	  and	  solutions	  (96–99).	  Progress	  towards	  both	  climate	  change	  mitigation	  and	  adaptation	  is	  more	  likely,	  credible	  and	  enduring	  if	  local,	  visual	  and	  constructed	  in	  collaboration	  with	  stakeholders	  (81,100,101).	  	  Addressing	  some	  of	  these	  perceptual	  issues	  outlined	  above	  may	  be	  effectively	  addressed	  with	  visual	  tools.	  	  For	  quite	  some	  time	  it	  has	  been	  recognized	  that	  visual	  tools,	  such	  as	  mapping	  and	  3D	  visualizations	  are	  key	  in	  effective	  public	  participation	  because	  of	  the	  common	  language	  they	  can	  provide	  between	  technical	  and	  non-­‐technical	  participants	  (95,102,103).	  The	  climate	  change	  communication	  literature	  suggests	  using	  vivid	  visual	  media	  can	  help	  to	  make	  science	  on	  causes	  and	  impacts	  locally	  salient	  and	  more	  concrete,	  and	  ultimately	  aid	  in	  impacting	  behavioural	  change	  and	  action	  (89,104–108).	  Imagery	  that	  triggers	  affective	  responses	  has	  been	  shown	  to	  influence	  decision-­‐making	  (89,109).	  Geographic	  Information	  Systems	  (GIS)	  based	  methods	  for	  landscape	  visualization	  have	  long	  been	  applied	  to	  depict	  alternative	  future	  scenarios	  for	  visioning,	  public	  input,	  and	  decision-­‐making	  in	  fields	  such	  as:	  coastal	  zone	  management,	  forestry,	  and	  industrial-­‐residential-­‐natural	  interfaces	  (110–115).	  	  	   	  	  	  	   23	  2.5. KNOWLEDGE	  GAPS	  AND	  LOOKING	  FOR	  SYNERGIES	  The	  main	  knowledge	  gaps	  relevant	  to	  this	  thesis	  can	  be	  summarized	  as	  follows:	  	  1. EIN	  planning	  traditionally	  focuses	  on	  closing	  the	  loops	  of	  waste	  and	  energy	  in	  physically	  and	  socially	  proximate	  areas	  for	  the	  gain	  of	  all	  players.	  Because	  EIN	  planning	  tends	  to	  focus	  on	  existing	  conditions	  to	  determine	  value	  added	  in	  sharing	  resources,	  or	  immediate	  and	  known	  needs	  to	  fill	  a	  resource	  gap,	  it	  is	  not	  a	  method	  that	  generally	  considers	  the	  contextualization	  of	  climate	  change	  projections.	  Thus	  EIN	  planning	  alone	  may	  be	  missing	  opportunities	  available	  to	  industrial	  sectors	  to	  set	  up	  systems	  to	  share	  the	  burden	  of	  adaptive	  costs	  or	  diminish	  climate	  change	  impact	  so	  they	  can	  still	  operate	  in	  the	  face	  of	  climate	  change.	  	  	  2. Climate	  change	  adaptation	  capacity-­‐building	  focuses	  on	  environmental,	  economic	  and	  social	  resources	  present	  to	  respond	  to	  changing	  conditions.	  However	  the	  social	  component	  generally	  focuses	  on	  residential	  areas,	  assuming	  that	  where	  people	  live	  is	  where	  social	  resilience	  or	  vulnerability	  is	  defined.	  There	  does	  not	  tend	  to	  be	  an	  analysis	  of	  the	  drivers,	  constraints	  and	  interests	  that	  contextualize	  industries	  within	  “communities”.	  Understanding	  the	  adaptive	  capacity	  of	  industrial	  areas	  involves	  analysis	  of	  drivers	  and	  pressures	  on	  institutions	  to	  act	  and	  ‘embeddedness’	  within	  their	  social	  and	  spatial	  context.	  	  	  Overall	  there	  appears	  to	  be	  a	  need	  for	  engaging	  the	  industrial	  community	  more	  widely	  and	  deeply	  in	  adaptation	  planning.	  Additionally	  there	  is	  a	  compelling	  argument	  for	  combining	  this	  with	  previous	  and	  existing	  efforts	  in	  EIN	  planning.	  Tilbury	  Industrial	  Park	  provides	  a	  timely	  setting	  to	  conduct	  a	  case	  study,	  approximately	  a	  decade	  after	  the	  original	  Metro	  Vancouver	  and	  Corporation	  of	  Delta	  planning.	  Additionally,	  since	  BC	  set	  mitigation	  targets	  in	  2007,	  this	  context	  offers	  an	  area	  to	  also	  understand	  co-­‐benefits	  with	  climate	  change	  mitigation	  planning.	  	  Visualized,	  localized	  and	  interactive	  tools	  can	  act	  as	  an	  effective	  way	  to	  bridge	  outreach	  and	  education	  between	  experts	  and	  stakeholders,	  but	  have	  not	  yet	  been	  tested	  extensively	  within	  the	  business	  context.	  	  	  	   24	  Eco-­‐industrial	  development	  has	  been	  expressly	  targeted	  as	  a	  potential	  solution	  to	  a)	  attract	  new,	  progressive	  sectors	  and	  jobs;	  b)	  meet	  economic,	  social	  and	  ecological	  objectives;	  and	  c)	  create	  a	  sustainable	  community	  with	  industry	  (48).	  The	  Delta	  Community	  Planning	  and	  Development	  Department	  is	  also	  currently	  working	  to	  expand	  engagement	  not	  only	  with	  residents	  but	  with	  representatives	  of	  the	  industrial	  and	  agricultural	  sectors	  (33,116).	  Given	  that	  Delta	  is	  in	  the	  process	  of	  making	  the	  difficult	  investment	  decisions	  in	  climate	  change	  adaptation	  and	  mitigation	  planning,	  it	  is	  timely	  to	  research	  appropriate	  siting	  of	  eco-­‐industrial	  networks	  that	  hypothetically	  offer	  climate	  change	  mitigation	  potential	  while	  concurrently	  increasing	  resilience	  in	  the	  industrial	  sector.	  Figure	  6	  shows	  how	  these	  three	  areas	  of	  planning	  may	  overlap	  more	  strategically	  with	  more	  specific	  illustrations	  of	  how	  the	  tools	  from	  each	  could	  hypothetically	  be	  integrated	  into	  the	  other	  areas	  of	  planning.	  	   25	  	  Figure	  6:	  Merging	  three	  areas	  of	  planning	  for	  co-­‐benefits.	   	  	   26	  3. METHODS	  3.1. OVERVIEW	  OF	  METHODS	  The	  research	  process	  was	  subdivided	  into	  three	  phases	  of	  data	  collection	  and	  synthesis.	  Phase	  1	  involved	  document	  analysis,	  casting	  a	  wide	  net	  for	  policies,	  plans,	  programs	  and	  projects	  that	  in	  some	  way	  pertained	  to	  the	  Tilbury	  industrial	  context.	  Phase	  1	  also	  included	  a	  broad	  analysis	  of	  existing	  spatial	  data	  for	  the	  Tilbury	  area,	  and	  generation	  of	  new	  spatialized	  data.	  This	  included	  creation	  of	  specific	  indicators	  for	  the	  3	  areas	  of	  planning	  using	  existing	  or	  created	  data	  sets	  to	  create	  site-­‐specific	  maps	  within	  the	  regional	  context.	  In	  Phase	  2	  the	  information	  from	  the	  document	  analysis	  and	  mapping	  was	  taken	  to	  industrial	  leaders	  within	  Tilbury.	  Phase	  2	  interviews	  investigated	  knowledge	  and	  perceptions	  of	  climate	  change	  and	  eco-­‐industrial	  networking	  concepts,	  and	  specifically	  probed	  industrial	  leaders’	  ideas	  on	  opportunities	  and	  challenges.	  Finally,	  Phase	  3	  took	  the	  preliminary	  analysis	  of	  themes	  that	  emerged	  from	  the	  interview	  process	  to	  planners/coordinators	  at	  three	  scales	  of	  governance	  relevant	  to	  the	  case	  study.	  These	  expert	  reviewers	  were	  asked	  specific	  questions	  relating	  to	  their	  jurisdictional	  area	  of	  practice.	  The	  expert	  reviewers	  were	  also	  asked	  to	  discuss	  their	  perspectives	  on	  the	  current	  conditions	  and	  future	  integration	  possibilities	  for	  climate	  change	  adaptation	  and	  mitigation	  planning	  with	  eco-­‐industrial	  networking	  concepts.	  	  A	  summary	  of	  research	  methods	  and	  chronology	  can	  be	  seen	  in	  Figure	  7.	  	   27	  	  Figure	  7:	  Flow	  Chart	  of	  Methodology	  	  3.2. PHASE	  1A:	  DOCUMENT	  ANALYSIS	  	  First	  a	  document	  review	  was	  conducted	  to	  assemble	  information	  relevant	  to	  the	  Tilbury	  Industrial	  Park	  context	  as	  it	  relates	  to	  issues	  of	  climate	  change	  planning	  and	  industrial	  sector	  planning.	  	  Specifically	  the	  document	  analysis	  aimed	  to	  find	  existing	  reports	  with	  models,	  measurements,	  projections,	  design	  guidelines,	  policies,	  targets,	  or	  regulations,	  which	  related	  to	  adapting	  to,	  or	  mitigating	  climate	  change.	  	  See	  Appendix	  1	  for	  a	  full	  list	  of	  documents	  reviewed	  and	  a	  summary	  of	  key	  information	  from	  each.	  	  	  These	  documents	  were	  then	  summarized	  and	  synthesized	  for	  the	  industrial	  context,	  and	  where	  possible	  for	  Tilbury	  specifically.	  Information	  was	  pulled	  from	  a	  variety	  government	  documents,	  non-­‐profit	  organizations	  and	  contracted/independent	  research	  that	  impacts	  or	  will	  impact	  the	  case	  study	  area.	  The	  documents	  were	  queried	  for	  information	  pertaining	  to	  any	  of	  the	  three	  planning	  areas	  and	  fit	  within	  one	  ore	  more	  of	  these	  general	  categories:	  	  Document)Analysis))•  CC"vulnerabili,es"specific"to"Tilbury"•  CC"adapta,on"op,ons"for"Tilbury"•  Mi,ga,on"plans/efforts"applicable"to"the"industrial"sector"Develop)Indicators)Mapping)• Vulnerability"Maps)• Mi,ga,on"Poten,al"• EIN"Leadership"Poten,al"(EIN"‘hotspots’,"‘Keystone"Industries’)"Industry)Interviews)• PreHSurvey"(knowledge,"percep,ons"and"interest))• SemiHstructured"interview"script"and"prompts"• Feedback"to"presenta,on"(e.g."defini,ons,"maps)"Expert)Review)• WriPen"and"oral"feedback)• Integra,on"into"analysis"and"recommenda,ons)•  "Exis,ng"Spa,alized"Data"CC)vulnerabili>es)CC)adapta>on)op>ons)Mi>ga>on)plans/efforts)•  )New"Spa,alized"Data"Industry)Loca>on)Dependency))Sustainability)Leadership))Phase)2)Phase)3)Phase)1)Itera>ve)Process)Open)ended)‘how’,)‘why’)ques>ons)and)‘provide)comment’)Ques>ons)specific)to)exper>se)	   28	  	  1. Adaptation:	  	  a. Climate	  change	  vulnerabilities	  relevant	  to	  Tilbury	  context	  (e.g.	  future	  projections,	  policies,	  guidelines	  for	  planning)	  b. Climate	  adaptation	  projects,	  plans	  or	  options	  relevant	  to	  Tilbury	  context	  (e.g.	  design	  recommendations,	  costing	  analysis,	  future	  projections)	  2. Mitigation:	  	  c. Existing	  plans	  that	  foster	  climate	  change	  mitigation	  in	  some	  way	  (e.g.	  BC	  Climate	  Action	  Plan)	  d. Land	  planning	  studies	  and	  effort	  that	  could	  reduce	  GHGs	  (e.g..	  Community	  Energy	  Explorer	  website)	  	  3. Industrial	  planning	  	  e. Eco-­‐Industrial	  Network	  planning	  (e.g.	  Guide	  to	  Eco-­‐Industrial	  Networking	  for	  Greater	  Vancouver	  Municipalities)	  f. Other	  government	  or	  partnership	  planning	  programs	  directed	  towards	  the	  industrial	  sector	  (e.g.	  Saving	  Our	  Industrial	  Lands	  or	  SOIL)	  g. Case	  studies	  with	  specific	  similarities	  to	  the	  Tilbury	  context	  (e.g.	  Kalundborg:	  Denmark;	  Maplewood:	  District	  of	  North	  Vancouver)	  	  3.3. PHASE	  1B:	  IE/ATKZ	  s>KWDET	  	  The	  purpose	  of	  searching	  for	  and	  developing	  indicators	  was	  to	  convert	  the	  complex	  and	  dissimilar	  data	  and	  documents	  into	  a	  framework	  (Figure	  8)	  that	  could	  be	  used	  for	  exploring	  opportunities	  and	  constraints	  in	  each	  area	  of	  planning.	  Ultimately	  the	  goal	  was	  to	  use	  these	  indicators	  to	  structure	  content	  within	  visual	  tools	  for	  analysis	  by	  the	  researcher,	  and	  for	  clear	  communication	  with	  industry	  participants.	  It	  was	  postulated	  that	  these	  visually	  enhanced	  conversations,	  based	  on	  underlying	  data	  might	  uncover	  “sweet	  spots”	  where	  the	  goals	  of	  all	  three	  areas	  of	  planning	  could	  be	  promoted.	  	  	  	  The	  indictors	  described	  below	  have	  been	  identified	  and	  structured	  in	  this	  study	  based	  on	  indicators	  identified	  in	  the	  literature	  and	  policy	  review,	  and	  application	  of	  landscape	  planning	  principles	  (117).	  For	  climate	  change	  adaptation,	  indicators	  included	  the	  	   29	  potential	  site-­‐specific	  vulnerabilities;	  for	  mitigation,	  indicators	  focused	  on	  potential	  for	  renewable	  energy/energy	  efficiency;	  for	  EINs,	  indicators	  focused	  on	  characteristics	  of	  ‘embeddedness’	  and	  existing	  sustainability	  leadership.	  	  Climate	  change	  adaptation	  and	  mitigation	  indicators	  development	  relied	  heavily	  on	  existing	  data	  and	  in	  some	  cases	  existing	  mapping	  tools.	  EIN	  indicator	  development	  was	  generated	  on	  researcher-­‐derived	  criteria	  informed	  by	  the	  literature	  and	  spatialization	  of	  existing	  publicly	  available	  data	  sets.	  	  	  	  Figure	  8:	  Indicators	  used	  to	  develop	  data	  into	  information	  which	  could	  be	  presented	  in	  maps	  for	  conversation	  towards	  uncovering	  opportunities	  and	  constraints	  in	  overlapping	  planning	  sectors.	  An	  assessment	  of	  the	  existing	  publicly	  available	  spatialized	  data	  (GIS	  shapefiles,	  raster	  and	  google	  kmz	  files)	  was	  made	  focusing	  on:	  a. Climate	  change	  related	  vulnerabilities	  b. Climate	  change	  adaptation	  options	  	  c. Mitigation	  plans/efforts/options	  	   30	  	  See	  Table	  2	  listed	  under	  ‘existing’	  data,	  for	  a	  full	  list	  of	  data,	  sources	  and	  relevant	  information	  used.	  With	  this	  data	  several	  preliminary	  maps	  were	  made	  to	  understand	  the	  existing	  body	  of	  information	  as	  well	  as	  assess	  information	  gaps.	  Many	  of	  these	  maps	  were	  not	  used	  in	  later	  stages	  (i.e.	  interviews	  and	  expert	  review).	  However	  these	  helped	  in	  guiding	  the	  process	  in	  three	  general	  ways:	  1)	  to	  help	  define	  the	  spatial	  extent	  that	  would	  be	  the	  focus	  of	  research	  based	  on	  relevance	  to	  the	  research	  questions1;	  2)	  to	  understand	  how	  useful	  the	  existing	  information	  would	  be	  in	  addressing	  the	  research	  questions	  and	  what	  new	  spatialized	  data	  or	  proxy	  data	  would	  be	  needed;	  3)	  to	  explore	  how	  indicators	  could	  be	  mapped.	  	  The	  decision	  to	  focus	  first	  on	  publicly	  available	  data	  was	  made	  for	  three	  reasons:	  1) To	  focus	  on	  knowledge	  translation	  of	  existing	  data,	  models	  or	  projections	  and	  gauge	  participants’	  previous	  exposure	  to	  this	  information	  in	  order	  to	  better	  understand	  existing	  perceptions,	  	  2) To	  bring	  attention	  specifically	  to	  information	  that	  is	  publicly	  available	  to	  anyone	  interested	  in	  these	  issues,	  3) Publically	  available	  data	  has	  already	  been	  vetted	  by	  an	  external	  process,	  which	  allowed	  the	  research	  focus	  of	  this	  work	  to	  avoid	  misrepresentation	  on	  some	  politically	  sensitive	  topics.	  New	  data	  was	  also	  created	  in	  this	  research,	  based	  on	  publicly	  available	  data	  sources.	  These	  included	  Industry	  Canada,	  DeltaMap,	  and	  individual	  company	  websites.	  See	  Table	  2,	  listed	  under	  ‘new’	  data,	  for	  a	  full	  list	  of	  data,	  sources	  and	  relevant	  information	  created.	  3.3.1. Adaptation	  Needs	  Indicators	  Adaptation	  needs	  used	  vulnerability	  indicators	  to	  better	  understand	  the	  potential	  impacts	  of	  climate	  change	  to	  the	  site.	  	  For	  the	  Tilbury	  Industrial	  Park,	  with	  its	  low-­‐lying	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  See	  Figure	  14	  in	  Chapter	  4	  for	  an	  example	  2	  Information	  as	  written	  by	  companies	  themselves	  to	  describe	  activities,	  sectors	  of	  development	  and	  customers	  3	  Greenhouse	  Gas	  Industrial	  Reporting	  and	  Control	  Act	  (the	  Act):	  	  The	  Climate	  Action	  Secretariat	  in	  the	  Ministry	  of	  Environment	  is	  in	  the	  process	  of	  developing	  three	  proposed	  regulations	  under	  the	  Act:	  Reporting,	  Offsets	  and	  Compliance.	  	   31	  waterfront	  context	  adjacent	  to	  Burns	  Bog	  and	  high	  reliance	  on	  urban	  infrastructure	  the	  three	  composite	  indicators	  for	  focus	  were,	  a)	  flood	  risk,	  b)	  heat/drought,	  c)	  utility	  infrastructure.	  Though	  this	  may	  not	  be	  a	  comprehensive	  list	  of	  all	  the	  vulnerabilities	  that	  the	  Tilbury	  Industrial	  Park	  may	  have	  to	  consider	  with	  projected	  climate	  change	  impacts	  it	  encompasses	  many	  of	  the	  important	  considerations	  that	  could	  be	  represented	  with	  publicly	  available	  data.	  	  Individual	  indicators	  within	  each	  composite	  indicator	  included:	  	  • Flood	  Risk	  	  o Dike	  Elevations	  	  o Buildings	  at	  Risk	  (based	  on	  2007	  Flood	  Management	  Study	  commissioned	  by	  the	  Corporation	  of	  Delta)	  o 200	  year	  storm	  event	  dike	  breach	  modeling	  (based	  on	  2007	  Flood	  Management	  Study	  commissioned	  by	  the	  Corporation	  of	  Delta)	  • Heat/Drought	  o Heat	  Island	  Effect	  (summer	  temperatures)	  o Wildland	  Fires	  in	  Burns	  bog	  (historical)	  • Utility	  Infrastructure	  o Waste	  Water	  o 200	  year	  storm	  event	  dike	  breach	  modeling	  (based	  on	  2007	  Flood	  Management	  Study	  commissioned	  by	  the	  Corporation	  of	  Delta)	  3.3.2. EIN	  Potential	  Indicators	  The	  next	  goal	  was	  to	  develop	  indicators	  that	  could	  be	  used	  to	  uncover	  trends	  for	  Eco-­‐Industrial	  Networking	  potential.	  Using	  land	  use	  data	  and	  ownership	  as	  inclusion	  criteria,	  the	  parcels	  involved	  in	  manufacturing,	  transportation	  and	  utility	  provisioning	  were	  established	  (commercial,	  light	  industrial,	  heavy	  industrial,	  marine	  terminal,	  river	  zone,	  waterfront	  industrial,	  etc.).	  These	  inclusion	  criteria	  were	  used	  as	  the	  first	  EIN	  composite	  indicator.	  	  	  The	  second	  EIN	  composite	  indicator	  developed	  was	  one	  of	  “location	  dependency,”	  with	  the	  idea	  to	  discover	  those	  industries	  most	  connected	  to	  the	  site-­‐specific	  context	  for	  	   32	  economic	  reasons,	  for	  environmental	  resources	  or	  because	  of	  social	  connections	  (i.e.	  clients/area	  of	  expertise).	  The	  intention	  of	  focusing	  on	  location	  dependency	  was	  to	  use	  this	  information	  to	  locate	  potential	  EIN	  hotspots	  for	  a)	  interview	  focus,	  b)	  new	  EIN	  sharing	  concepts,	  c)	  future	  planning	  efforts.	  	  Individual	  indicators	  included:	  o Country	  of	  Ownership	  (ie.	  Local,	  regional	  businesses	  vs.	  multinationals)	  o Year	  Established	  (over/under	  30yrs	  on	  site)	  o Exports	  (globally	  or	  to	  United	  States,	  represents	  dependency	  on	  port/border)	  o Number	  of	  Employees	  (i.e.	  larger	  vs.	  smaller	  local	  employer)	  o Property	  values	  (combined	  assessors	  total	  for	  land	  value	  and	  value	  of	  site	  improvements	  including	  buildings)	  o Other:	  § Company	  has	  dependence	  on	  waterfront	  (including	  ports)	  § Primary	  inputs,	  involves	  local/regionally	  sourced	  materials	  § Has	  dependence	  on	  feature	  of	  the	  landscape	  that	  is	  unique	  to	  area	  (e.g.	  Burns	  Bog,	  methane	  in	  landfill)	  § Recent	  large	  investment	  on	  site	  (e.g.	  geothermal,	  new	  building)	  	  Note	  that	  information	  for	  the	  ‘Other’	  category	  of	  location	  dependency	  indicators	  was	  mined	  opportunistically	  from	  company	  websites,	  and	  the	  text	  field2	  of	  the	  Industry	  Canada	  website	  where	  information	  provided	  gave	  evidence	  of	  the	  above	  listed	  criteria.	  	  	  The	  third	  composite	  indicator	  developed	  initially	  represented	  a	  higher	  level	  of	  “embeddedness”	  within	  the	  local	  community,	  suggested	  by	  several	  authors	  in	  the	  EIN	  literature	  to	  be	  critical	  to	  evolving	  and	  maintaining	  industrial	  connectivity	  (58–60).	  This	  indicator	  was	  developed	  to	  reveal	  the	  community	  leaders,	  existing	  communication	  channels	  (i.e.	  membership	  within	  similar	  organizations)	  and	  any	  existing	  or	  planned	  EIN	  ‘kernels’	  involved	  in	  local	  resource	  sharing.	  This	  indicator	  proved	  difficult,	  as	  the	  information	  that	  may	  have	  been	  the	  most	  revealing,	  such	  as	  communication	  and	  trust,	  are	  qualitative	  rather	  than	  quantitative.	  In	  addition	  much	  of	  the	  information	  that	  may	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  Information	  as	  written	  by	  companies	  themselves	  to	  describe	  activities,	  sectors	  of	  development	  and	  customers	  	   33	  have	  informed	  this	  indicator,	  such	  as	  transactions/trade	  between	  companies,	  or	  planned	  projects	  (such	  as	  bids	  for	  resources	  or	  projects)	  suggest	  proprietary	  information	  or	  are	  understandably	  confidential.	  Where	  no	  clear	  public	  data	  was	  available,	  a	  proxy	  was	  used	  to	  shed	  preliminary	  light	  on	  embeddedness.	  That	  proxy	  was	  involvement	  in	  local	  sustainability	  initiatives.	  The	  idea	  here	  was	  that	  industries	  dedicating	  staff	  time	  and/or	  economic	  resources	  to	  sustainability	  leadership	  were:	  • more	  likely	  to	  self-­‐evaluate	  as	  leaders	  	  • interested	  in	  sustainability	  generally	  • committed	  to	  the	  local	  context,	  at	  least	  in	  as	  much	  as	  they	  wanted	  to	  affect	  area	  challenges	  and	  invest	  resources	  in	  public	  locally	  relevant	  and	  publicized	  sustainability	  initiatives.	  	  	  This	  derived	  indicator	  was	  renamed	  as	  “keystone	  industries”.	  	  This	  term	  was	  developed	  for	  this	  study	  from	  the	  ecological	  idea	  of	  keystone	  species.	  Keystone	  species	  are	  those	  organisms	  that	  play	  a	  critical	  role	  in	  impacting	  the	  function	  and	  structure	  of	  the	  ecosystem	  where	  they	  live,	  often	  disproportionately	  to	  their	  abundance.	  	  This	  approach	  seeks	  to	  understand	  which	  businesses	  could	  act	  as	  keystones	  to	  the	  industrial	  ecosystem,	  with	  the	  idea	  that	  these	  are	  most	  likely	  to	  act	  as	  leaders	  in	  transformation	  of	  the	  industrial	  landscape.	  Identification	  of	  these	  companies	  and	  their	  knowledge,	  attitudes	  and	  perceptions,	  may	  further	  inform	  planning	  mechanisms	  that	  could	  act	  as	  catalysts	  in	  behaviour	  change	  or	  re-­‐investment	  strategies.	  	  The	  main	  individual	  indicators	  for	  keystone	  industries	  added	  at	  this	  point	  of	  development	  were	  industries	  that	  were	  members	  of	  the	  Tilbury	  Eco-­‐Industrial	  Partnership/Transportation	  Management	  Association	  (TEIP/TMA).	  Indicators	  of	  Keystone	  Industries	  included:	  	  	  o Larger	  number	  of	  employees	  (>15),	  OR	  locally	  owned	  OR,	  30+	  years	  on	  site	  	  AND	  o Member	  of	  TEIP/TMA	  	   	  	   34	  	  3.3.3. Mitigation	  Potential	  Indicators	  	  In	  order	  to	  enhance	  the	  conversations	  towards	  the	  third	  interest	  area	  of	  planning	  possibilities,	  climate	  change	  mitigation	  indicators	  were	  added.	  For	  the	  purposes	  of	  the	  inherently	  energy	  intensive	  industrial	  sector,	  mitigation	  indicators	  focused	  on	  energy	  efficiency	  and	  renewable	  energy.	  Given	  that	  the	  ultimate	  goal	  was	  to	  find	  synergies	  with	  mitigation	  and	  EIN	  and	  adaptation	  goals,	  energy	  efficiency	  and	  renewable	  energy	  as	  the	  composite	  indicators	  seemed	  a	  logical	  focus.	  It	  this	  case	  there	  was	  already	  an	  existing	  set	  of	  indicators	  that	  had	  been	  developed	  by	  the	  Collaborative	  for	  Advanced	  Landscape	  Planning	  on	  energy	  sources	  within	  the	  Metro	  Vancouver	  landscape	  that	  could	  be	  borrowed	  (118,119).	  Individual	  indicators	  within	  each	  composite	  indicator	  included:	  	  • Energy	  Efficiency	  o Potential	  Waste	  Heat	  Recovery	  • Renewable	  Energy	  o Solar	  o Biomass	  (especially	  from	  surrounding	  agricultural	  sources)	  	  o Wind	  	   	  	   35	  	  Table	  2:	  Details	  on	  spatial	  data	  reviewed	  and	  created	  Data$Type Data$sourceWebsite Date Indicator$scale$GIS$Data$type Existing/$NewNotesRoads Corp.*of*Deltahttp://24.207.0.130/DeltaMapMGO/default.aspx2010 N/A shapefile ExistingBuilding*FootprintsCorp.*of*Deltahttp://24.207.0.130/DeltaMapMGO/default.aspx2010 N/A shapefile ExistingParcels/Lot*LinesCorp.*of*Deltahttp://24.207.0.130/DeltaMapMGO/default.aspx2010 N/A shapefile ExistingOrthophotos Google*Earthhttp://www.google.com/earth/index.html2013 N/A raster Existing Google*Earth:*7.1.2.204.*Build*Date:*10/7/2013.**49°*8'12.97"N*123°*1'3.73"W$Category$Data$Type Data$sourceWebsite Date Indicator$scale$GIS$Data$type Existing/NewNotesEnergy*ConservationBCFacil_*IndSec_NoBio_2013.kmzB.C.*Ministry*of*the*Environmenthttp://www2.gov.bc.ca/gov/topic.page?id=14C1FA7186124D1C8CABA452C9DFCA562013 Facility*locations*and*emission*levelskmz Existing Data*on*large*industrial*facilities*monitored*by*B.C.*rather*than*Delta*CEEPRenewable*EnergyCommunity*Energy*Explorer*CALP*]*UBChttp://energyexplorer.ca/renewables2013 Solar*Potential*&*Cloud*Days,*Biomass*&*Ag.,*Heat*Recovery,*Wind*Energy*Web*based Existing Energy*potential*for*renewable*resources*in*Metro*VancouverGENERAL*SPATIAL*DATA*MITIGATION**POTENTIAL*DATATable*2*:*Details*on*spatial*data*reviewed*and*created	   36	  Table	  2	  (continued):	  Details	  on	  spatial	  data	  reviewed	  and	  created	  	  	   	  $Category$Data$Type Data$sourceWebsite Date Indicator$scale$GiS$Data$type NotesFlood*RiskDike*Design*ElevationsKerr*Wood*Leidel*http://www.kwl.ca/projects/delta]flood]management]study]corporation]delta1999 Height*(cm)shapefile ExisitngFlood*RiskBuildings*at*RiskKerr*Wood*Leidel*http://www.kwl.ca/projects/delta]flood]management]study]corporation]deltaMay,*2007At*Risk,*Low*Risk,*No*Riskshapefiles ExisitngFlood*RiskDike*Breach*200*Year*StormKerr*Wood*Leidel*(KWL)*Assoc.http://www.kwl.ca/projects/delta]flood]management]study]corporation]deltaMay,*2007Max*Height*of*flood*(cm)raster ExisitngFlood*RiskDitches*and*CulvertsCorporation*of*Deltahttp://24.207.0.130/DeltaMapMGO/default.aspx2008 Minor*or*Majorshapefile ExisitngHeat/*DroughtWildland*Fire*(Burns*Bog)Burns*Bog**Review,*2000http://www.delta.ca/discover]delta/burns]bog1977]2008Historic*blaze*yearsN/A NewHeat/*DroughtHeat*Island*EffectPerez,*2008.*http://www.urbanheatislands.com/vancouverJuly,*2004Temp*°C**(color*gradient)raster NewInfra]structureWaste*Water Corporation*of*Delta*]*Delta*Mapshttp://24.207.0.130/DeltaMapMGO/default.aspx*2012 Forcemains*and*Gravity*Mainsshapefiles Exisiting Sewer*mains*=*pumping*against*gradientInfra]structureWater Corporation*of*Delta*]*Delta*Maphttp://24.207.0.130/DeltaMapMGO/default.aspx2012 Water*Mainsshapefiles Exisitng pumping*against*gradientVULNERABILITY*DATATable*2*[co tinued]*:*Details*on*spatial*data*review d*and*created	   37	  Table	  2	  (continued):	  Details	  on	  spatial	  data	  reviewed	  and	  created	  	  	   	  EIN$Category$Data$Type Data$sourceWebsite Date Indicator$scale$GiS$Data$type NotesInclusion*CriteriaSelect*ownership*Corporation*of*Deltahttp://24.207.0.130/DeltaMapMGO/default.aspx2010 BC*Gas*Utility,*BC*Hydro*&*Power*shapefile Existing Join*via*PID*to*parcel*shapefileInclusion*CriteriaZoning Corporation*of*Deltahttps://delta.civicweb.net/Documents/DocumentList.aspx?ID=393862010 Industrial*(I1,*I2,*I2]A,*I2]S,*I2]B,**I3,*I4,*I5,*I6,*I7,*I8)*shapefile Existing Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*IndicatorProperty*valuesBC*Assessmenthttp://www.bcassessment.ca2013 $*(CAD) tabular*data New Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*IndicatorYear*EstablishedIndustry*Canadahttp://www.ic.gc.ca2014 Year tabular*data New Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*IndicatorExporting Industry*Canadahttp://www.ic.gc.ca2014 Yes,*No tabular*data New Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*Indicator#*of*EmployeesIndustry*Canadahttp://www.ic.gc.ca2014 >15 or <16 tabular*data New Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*IndicatorCountry*of*OwnershipIndustry*Canadahttp://www.ic.gc.ca2014 Canada,*Othertabular*data New Join*via*PID*to*parcel*shapefileKeystone*EIN*Industry*IndicatorTMA/*TEIP*MembersTEIP/TMA*contact*listN/A 2014 Yes/No tabular*data New Join*via*PID*to*parcel*shapefileCore*industry*Primary*IndustryIndustry*Canadahttp://www.ic.gc.ca2014 Code#*and*Category*nametabular*data New Join*via*PID*to*parcel*shapefileINDUSTRY*DATATable*2*[continued]*:*Details*on*spatial*data*reviewed*and*created	   38	  	  3.4. 	  	  PHASE	  1C:	  MAWW/E'Mapping	  was	  needed	  to	  set	  the	  stage	  with	  visual	  tools	  to	  help	  answer	  the	  central	  Research	  Question	  4):	  	  	  Does	  the	  use	  of	  a	  localized	  document	  synthesis,	  indicators,	  mapping,	  and	  visualizations	  for	  the	  three	  planning	  areas	  reveal	  new	  ideas	  towards	  reaching	  internal	  (corporation	  driven)	  or	  external	  (government	  policy	  driven)	  climate	  change	  goals?	  	  Maps	  were	  intended	  as	  visualization	  tools	  for	  the	  existing	  and	  created	  data	  that	  related	  to	  the	  three	  areas	  of	  interest.	  Since	  climate	  change	  adaptation	  planning	  for	  the	  area	  is	  very	  nascent	  (see	  Chapter	  4	  Document	  Analysis	  for	  more	  information),	  the	  adaptation	  maps	  focused	  mostly	  on	  climate	  change	  vulnerabilities	  to	  prompt	  discussion	  on	  adaptation	  thinking	  and	  options.	  Eco-­‐Industrial	  Networking	  potential	  was	  demonstrated	  through	  mapping	  of	  the	  new	  indicators	  and	  would	  later	  be	  used	  to	  stimulate	  conversation	  on	  the	  assumptions	  and	  specific	  interests,	  challenges	  and	  resources	  of	  the	  site-­‐specific	  context	  for	  EIN.	  Mitigation	  options,	  focusing	  on	  energy,	  were	  summarized	  through	  existing	  Community	  Energy	  Explorer	  website	  maps.	  This	  interactive	  online	  map	  tool	  developed	  by	  the	  Collaboration	  for	  Advanced	  Landscape	  Planning	  allows	  users	  to	  see	  a	  variety	  of	  renewable	  energy	  sources	  available	  in	  Metro	  Vancouver	  and	  gives	  information	  on	  how	  much	  energy	  is	  available	  over	  the	  landscape.	  Note	  this	  tool	  also	  includes	  maps	  on	  potential	  heat	  recovery,	  which	  for	  the	  purposes	  of	  this	  study	  is	  being	  categorized	  as	  ‘energy	  efficiency’	  as	  the	  originating	  fuel	  source	  for	  this	  waste	  heat	  is	  not	  always	  renewable	  at	  this	  point.	  	  	  New	  indicators	  and	  the	  existing	  spatialized	  data	  were	  connected	  to	  allow	  the	  new	  indicators	  to	  be	  spatialized.	  For	  the	  tabular	  data	  created	  for	  EIN	  potential	  the	  company	  names	  and	  addresses	  sourced	  from	  Industry	  Canada	  was	  used	  to	  search	  the	  Corporation	  of	  Delta’s	  online	  resource	  DeltaMap	  (120).	  This	  allowed	  the	  manual	  insertion	  of	  Parcel	  Identification	  Numbers	  (PID’s)	  for	  each	  company	  to	  the	  tabular	  data.	  	   39	  This	  information	  was	  also	  found	  in	  Delta	  zoning	  data	  and	  assessor’s	  data,	  allowing	  PID’s	  to	  be	  the	  unification	  data	  for	  a	  “join”	  in	  ArcGIS.	  	  	  The	  maps	  were	  made	  and	  presented	  using	  a	  variety	  of	  software.	  The	  primary	  tool	  was	  ArcGIS	  Version	  10	  used	  for	  the	  versatility	  of	  tools	  and	  ability	  to	  layer	  and	  build	  large	  databases	  for	  simultaneous	  viewing.	  The	  freeware	  Cartographica	  Version	  1.4.6	  developed	  by	  Clue	  Trust	  was	  used	  to	  develop	  maps	  on	  a	  Mac	  platform	  and	  for	  multiple	  layer	  transparencies	  for	  display	  and	  export.	  Google	  Map	  Engine	  Project	  was	  used	  to	  display	  exported	  data	  layers	  to	  directly	  to	  Google	  Maps	  satellite	  imagery	  so	  that	  the	  information	  could	  be	  easily	  shared	  and	  displayed	  on	  any	  computer	  using	  web	  URLs.	  In	  addition,	  maps	  created	  with	  Google	  Map	  Engine	  were	  interactive	  such	  that	  any	  viewer	  with	  the	  URL	  could	  zoom	  in	  and	  out	  to	  see	  regional	  context	  or	  site-­‐specific	  information	  and	  turn	  layers	  on	  and	  off.	  Both	  Google	  Map	  Engine	  and	  Google	  Earth	  offered	  the	  advantage	  of	  displaying	  all	  data	  over	  the	  most	  current	  satellite	  imagery	  (i.e.	  orthophotos)	  .	  This	  was	  especially	  useful	  to	  show	  the	  changing	  site	  context	  and	  new	  development	  such	  as	  of	  the	  new	  South	  Fraser	  Perimeter	  Road,	  a	  major	  new	  infrastructure	  project	  in	  the	  area	  that	  opened	  in	  2014.	  	  Limitations	  of	  Indicators	  and	  Mapping	  Methods	  The	  methods	  outlined	  involved	  a	  large	  amount	  of	  manual	  data	  searching	  and	  merging.	  The	  available	  data	  resource	  on	  companies	  was	  the	  Industry	  Canada	  website,	  which	  is	  accessible	  by	  clicking	  on	  each	  company	  profile	  to	  individually	  htmls	  for	  specific	  information	  including	  company	  address	  information.	  The	  second	  step	  was	  also	  highly	  manual,	  using	  DeltaMap	  address	  search	  to	  find	  parcel	  IDs	  for	  new	  tabular	  data	  that	  could	  later	  be	  integrated	  with	  a	  GIS	  join	  process.	  Manual	  methods	  have	  potential	  for	  inaccuracies	  as	  well	  as	  being	  very	  time	  consuming,	  and	  are	  not	  recommended	  for	  large-­‐	  scale	  replicability.	  This	  is	  especially	  true	  if	  these	  methods	  are	  migrated	  into	  research	  conducted	  by	  a	  municipality	  or	  other	  public	  planning	  agency,	  they	  should	  have	  access	  to	  internal	  databases	  with	  preexisting	  aggregate	  combinations	  of	  industry	  names/addresses	  and	  PIDs.	  This	  would	  eliminate	  the	  manual	  join	  process	  and	  these	  	   40	  methods	  could	  be	  quickly	  adapted	  for	  an	  automated	  join	  to	  create	  new	  indicators	  with	  any	  existing	  spatial	  data.	  	  	  The	  Industry	  Canada	  database	  that	  was	  used	  as	  a	  primary	  resource	  for	  much	  of	  the	  indicator	  development,	  states	  that	  the	  website:	  “does	  NOT	  include	  corporations	  created	  under	  financial	  legislation	  (such	  as	  financial	  institutions,	  insurance	  companies	  or	  loan	  and	  trust	  companies)	  or	  those	  created	  under	  provincial/territorial	  legislation	  or	  corporate	  legislation	  from	  another	  jurisdiction.”	  (121)	  	  	  This	  means	  that	  though	  this	  research	  process	  captured	  the	  majority	  of	  industries,	  some	  may	  not	  have	  been	  found	  with	  the	  search	  tools	  available.	  Fortunately	  a	  spot	  check	  of	  the	  main	  area	  of	  interest	  found	  that	  most	  are	  registered	  with	  Industry	  Canada,	  especially	  those	  that	  export,	  which	  was	  a	  major	  criterion	  of	  interest	  for	  the	  purposes	  of	  highlighting	  location	  dependency.	  Therefore	  this	  was	  not	  a	  strong	  enough	  weakness	  to	  justify	  a	  different	  method	  at	  this	  time,	  but	  should	  be	  considered	  by	  others	  intending	  to	  replicate	  the	  methodology	  to	  include	  companies	  created	  under	  provincial	  or	  corporate	  legislation.	  	  	  In	  addition	  this	  study	  did	  not	  aim	  to	  captured	  all	  indicators	  which	  could	  be	  used	  to	  enhance	  climate	  change	  planning	  or	  understand	  EIN	  potential	  but	  rather	  tried	  to	  focus	  on	  what	  would	  be	  most	  important	  to	  industry	  and	  what	  could	  be	  spatialized	  based	  on	  existing	  data.	  For	  example	  change	  mitigation	  can	  be	  undertaken	  through	  renewable	  energy	  use,	  energy	  efficiency,	  carbon	  sequestration	  and	  enhancing	  existing	  carbon	  sinks	  (122).	  Other	  indicators	  such	  as	  additional	  energy	  efficiencies	  and	  enhancing	  carbon	  sinks	  were	  not	  readily	  available,	  especially	  across	  different	  industries,	  as	  these	  options	  are	  often	  very	  industry	  specific.	  These	  could	  be	  explored	  and	  added	  to	  enhance	  this	  methodology	  in	  the	  future.	  	  	  	   41	  Strengths	  of	  Indicators	  and	  Mapping	  Methods	  Putting	  this	  through	  a	  mapping	  exercise	  that	  involves	  three	  sets	  of	  indicators	  and	  spans	  all	  three	  tiers	  of	  sustainability	  acts	  as	  theoretical	  grounding	  and	  an	  organizational	  structure	  for	  a	  considerable	  array	  of	  data.	  The	  methods	  outline	  a	  process	  for	  sorting,	  making,	  joining,	  and	  prioritizing	  data.	  	  	  Though	  the	  actual	  data	  used	  in	  this	  research	  processes	  had	  certain	  limitations	  noted	  above,	  the	  methods	  are	  replicable	  due	  to	  the	  public	  nature	  of	  the	  data	  and	  offer	  the	  basic	  building	  blocks	  for	  data	  query.	  With	  access	  to	  other	  data	  (internal	  municipal	  databases,	  Chamber	  of	  Commerce,	  etc.)	  more	  information	  could	  be	  added	  to	  develop	  even	  more	  robust	  indicators	  for	  identification	  of	  broader	  suite	  of	  Keystone	  Industries	  or	  more	  key	  components	  for	  EIN	  leadership.	  In	  addition,	  as	  new	  plans	  come	  online,	  (i.e.	  planning	  tools	  for	  more	  localized	  adaptation,	  or	  policy	  reforms	  intended	  to	  promote	  mitigation)	  these	  can	  be	  added	  to	  the	  existing	  maps	  and	  become	  a	  living	  database	  for	  local	  industry	  and	  planners.	  	  	  3.5. PHASE	  2:	  IETZs/t^	   	  The	  interview	  method	  helped	  to	  address	  the	  five	  research	  questions:	  	  	  	  1. What	  are	  the	  perceptions	  and	  understanding	  of	  industry	  leaders	  about	  the	  three	  areas	  of	  planning:	  a. Eco-­‐Industrial	  Networking,	  	  b. Climate	  Change	  Adaptation	  and,	  c. Climate	  Change	  Mitigation?	  2. Do	  any	  of	  the	  three	  planning	  concepts	  emerge	  as	  drivers	  for	  enacting	  sustainability	  oriented	  change	  (especially	  in	  addressing	  climate	  change	  adaptation)	  within	  the	  industrial	  sector?	  If	  so,	  how?	  	  3. Has	  the	  use	  of	  EIN	  planning	  helped	  industries	  strategize	  for	  climate	  change	  adaptation?	  	   42	  4. Does	  the	  use	  of	  a	  localized	  document	  synthesis,	  indicators,	  mapping,	  and	  visualizations	  for	  the	  three	  planning	  areas	  reveal	  new	  ideas	  towards	  reaching	  internal	  (corporation	  driven)	  or	  external	  (government	  policy	  driven)	  climate	  change	  goals?	  5. What	  constraints	  and	  opportunities	  can	  be	  highlighted	  by	  this	  case	  study	  for	  other	  areas	  undergoing	  similar	  climate	  change	  issues?	  In	  order	  to	  get	  a	  better	  understanding	  of	  how	  the	  different	  sectors	  of	  externally	  driven	  planning	  integrate	  with	  industry,	  interviews	  were	  conducted	  with	  key	  leaders	  within	  Tilbury.	  Expert	  interviews	  are	  effective	  in	  understanding	  contextual	  knowledge	  (123)	  which	  in	  this	  case	  was	  integral	  to	  adding	  a	  more	  nuanced	  and	  in-­‐depth	  perspective	  to	  the	  spatial	  and	  industrial	  context	  that	  was	  not	  available	  through	  quantitative	  data.	  Using	  visual	  materials	  was	  a	  core	  part	  of	  the	  interview	  process,	  using	  methods	  similar	  to	  those	  employed	  by	  Shaw	  et	  al.	  (2009)	  with	  GIS	  maps,	  charts	  and	  photographs	  of	  precedents	  and	  case	  studies	  as	  part	  of	  a	  ‘visioning	  package’	  (101).	  The	  specific	  purpose	  of	  the	  interviews	  was	  three	  fold:	  1. To	  gather	  information	  on	  existing	  knowledge,	  perception	  of	  climate	  change	  planning	  (adaptation	  and	  mitigation)	  and	  eco-­‐industrial	  network	  planning	  and	  what	  application	  (if	  any)	  these	  had	  in	  their	  business	  planning;	  2. To	  expose	  industry	  leaders	  to	  maps	  and	  brief	  synthesis	  of	  key	  information	  from	  planning	  documents	  to	  elicit	  context	  specific	  comments;	  and	  3. To	  evaluate	  if	  the	  exposure	  to	  maps	  and	  document	  synthesis	  affected	  the	  participants’	  perceptions	  or	  idea	  on	  opportunities	  or	  challenges.	  	  The	  businesses	  prioritized	  in	  recruitment	  were	  those	  that	  emerged	  as	  potential	  Eco-­‐Industrial	  Network	  leaders	  or	  ‘keystone	  industries’	  with	  high	  or	  highest	  location	  dependency.	  Additionally,	  proportionality	  of	  large	  employers	  to	  SMEs	  (small	  and	  medium	  sized	  enterprises)	  was	  used	  as	  an	  additional	  assessment	  tool	  (see	  Table	  3).	  This	  supported	  the	  decision	  to	  interview	  more	  of	  representatives	  from	  large	  industries	  as	  they	  represent	  the	  majority	  of	  the	  personnel	  employed	  in	  the	  area.	  However	  it	  was	  also	  critical	  to	  sample	  from	  smaller	  locally	  owned	  businesses	  to	  understand	  that	  perspective.	  	  	  	   43	  Table	  3:	  Representation	  of	  Industries	  and	  employees	  in	  Tilbury	  	  	  #	  of	  Businesses	  #	  of	  Employees	   Source	  Tilbury	  Totals	  	   300	  (100%)	   8000	  (100%)	  http://www.deltachamber.ca/our-­‐communities.html	  LARGE	  Employers	  	  (>15	  employees)	   61	  (20%)	   4979	  (62%)	  	  Industry	  Canada	  (June,	  2014).	  	  	  Search	  results	  for:	  (Postal	  Code	  V4G1**)	  AND	  (#	  of	  Employees	  11	  -­‐1001+)	  SMALL/MEDIUM	  Employers	  (<15	  employees)	   239	  (80%)	   3021	  (38%)	   (Total)	  -­‐	  (Large	  Tilbury	  Employers)	  	  3.6. Recruitment	  and	  Consent	  Initial	  recruitment	  was	  based	  on	  a	  list	  generated	  from	  2003	  to	  2014	  of	  Tilbury	  based	  employees	  who	  have	  self-­‐identified	  as	  having	  interest	  in	  forming	  the	  Tilbury	  Eco-­‐Industrial	  Partnership	  (TEIP).	  This	  list	  was	  provided	  to	  the	  researcher	  by	  The	  Earthwise	  Society	  the	  coordinating	  entity	  for	  the	  TEIP.	  UBC	  MSc	  candidate	  Alicia	  LaValle	  did	  all	  recruitment.	  The	  first	  recruitment	  was	  in	  November	  2014	  at	  the	  TEIP/TMA	  members	  meeting	  via	  a	  short	  PowerPoint	  presentation	  on	  research	  objectives.	  The	  Chamber	  of	  Commerce	  also	  provided	  a	  list	  of	  industries	  in	  Tilbury	  that	  had	  membership	  with	  their	  organization	  but	  was	  not	  able	  to	  provide	  contact	  information	  	  This	  meant	  that	  additional	  recruitment	  was	  based	  on	  the	  list	  of	  65	  potential	  industries	  identified	  in	  the	  inclusion	  criteria	  and	  a	  search	  of	  publicly	  available	  emails	  and	  phone	  numbers	  provided	  on	  specific	  industry	  websites.	  Participants	  were	  contacted	  first	  via	  email	  and	  then	  received	  a	  follow	  up	  phone	  call	  within	  48	  hours	  to	  discuss	  interest	  and	  schedule	  an	  interview	  time	  and	  space.	  	  	  The	  aim	  was	  to	  solicit	  8-­‐10	  industry	  leaders	  in	  the	  interview	  process	  with	  proportional	  representation	  to	  the	  small	  and	  large	  industries	  identified	  in	  terms	  of	  the	  number	  of	  employees	  they	  represented.	  That	  is	  approximately	  5-­‐6	  (approx.	  62%)	  from	  large	  industry	  and	  2-­‐3	  (approx.	  38%)	  from	  small	  to	  medium	  enterprises.	  All	  65	  industries	  were	  contacted	  by	  email	  and	  multiple	  phone	  calls	  were	  made	  to	  20	  (generally	  those	  that	  a	  TMA/TEIP	  or	  other	  contact	  has	  been	  made	  with	  an	  individual).	  However	  not	  having	  the	  contacts’	  names	  or	  established	  rapport	  resulted	  in	  a	  low	  response	  rate	  	   44	  especially	  with	  the	  small	  and	  medium	  enterprises	  (see	  comments	  in	  Discussion	  chapter).	  In	  the	  end	  5	  interviews	  were	  solicited:	  4	  (80%)	  with	  larger	  industry	  leaders	  and	  1	  (20%)	  with	  a	  smaller	  industry	  leader.	  	  	  	  After	  recruitment	  the	  study	  participants	  were	  emailed	  a	  Letter	  of	  Consent	  (See	  Letter	  of	  Consent	  attached)	  for	  their	  review,	  a	  minimum	  of	  one	  week	  prior	  to	  the	  interview.	  Participants	  were	  be	  asked	  to	  sign	  the	  consent	  letter	  at	  the	  beginning	  of	  interview	  and	  encouraged	  to	  ask	  any	  questions	  of	  the	  interviewer	  before	  signing.	  	  	  3.7. PZ-­‐^hZsz	  AE	  IETZs/t	  MT,K^	  Interviews	  ranged	  from	  75	  minutes	  to	  3	  hours	  in	  the	  case	  of	  those	  that	  were	  willing	  to	  also	  include	  a	  site	  visit.	  The	  intention	  of	  a	  site	  visit	  was	  to	  allow	  the	  researcher	  to	  a)	  make	  more	  site	  specific	  recommendations	  where	  applicable,	  and	  b)	  make	  industry	  specific	  recommendations	  with	  a	  focus	  on	  EIN	  potential	  with	  climate	  change	  adaptation	  and/or	  mitigation	  benefits	  (see	  Appendix	  2:	  Interview	  recruitment	  letter)	  	  All	  participants	  had	  some	  interest	  in	  these	  topics	  given	  the	  self-­‐selecting	  nature	  of	  those	  who	  agreed	  to	  participate	  in	  an	  ‘eco-­‐industrial	  networking	  and	  climate	  change	  planning’	  study	  (see	  Recruitment	  and	  Consent	  Forms).	  The	  full	  script	  and	  prompts	  were	  approved	  by	  the	  University	  of	  British	  Columbia	  Behavioural	  Research	  Ethics	  Board,	  certificate	  number	  H14-­‐02028.	  The	  interview	  process	  involved:	  1) Pre-­‐survey	  on	  existing	  familiarity/interest	  in	  concepts	  	  2) Semi-­‐structured	  interview	  with	  prompts:	  a) Open	  ended	  questions.	  b) A	  PowerPoint	  presentation	  with	  researcher-­‐selected	  diagrams,	  maps,	  definitions	  and	  images	  as	  prompts	  for	  discussion.	  3) Optional:	  Site	  tour	  for	  participants	  interested	  in	  more	  specific	  opportunity	  recommendations	  	  Interviews	  were	  taped	  with	  two	  audio	  recording	  devices	  with	  permission	  of	  participant.	  Where	  a	  site	  tour	  was	  conducted,	  still	  photographs	  were	  taken	  for	  reference	  with	  	   45	  permission	  of	  participant.	  During	  the	  interviews,	  the	  researcher	  took	  detailed	  notes	  using	  a	  printed	  copy	  of	  the	  PowerPoint	  used	  during	  interviews,	  to	  document	  chronology	  of	  commentary	  and	  specific	  reactions	  related	  to	  visuals	  or	  text	  prompts.	  These	  notes	  focused	  on	  answers	  to	  the	  12	  main	  questions	  outlined	  in	  the	  slides	  (see	  Appendix	  4	  for	  slides	  used	  in	  the	  interviews).	  Initial	  note-­‐taking	  focused	  on	  perceptions	  of,	  knowledge	  of,	  constraints	  for,	  and	  opportunities	  for	  the	  three	  planning	  concepts	  of	  study.	  	  	  Each	  interview	  was	  transcribed	  from	  audio	  recordings	  including	  notations	  for	  pauses	  or	  interruptions.	  Transcripts	  were	  coded	  first	  by	  colour,	  highlighting	  the	  most	  relevant	  quotes	  related	  to	  EIN,	  climate	  change	  adaptation	  and	  climate	  change	  mitigation	  themes.	  Notations	  were	  made	  in	  transcripts	  where	  2	  or	  more	  areas	  of	  planning	  emerged.	  Over	  the	  course	  of	  coding	  several	  new	  themes	  emerged.	  These	  “emergent	  themes”	  were	  assigned	  coded	  colours	  when	  there	  was	  evidence	  of	  more	  than	  one	  interview	  participant	  discussing	  the	  same	  opportunity,	  constraint,	  perception	  or	  governance	  structure	  which	  affected	  decision	  making	  for	  their	  business.	  Finally	  these	  quotes	  and	  topics	  were	  reorganized	  into	  a	  table	  by	  themes.	  This	  revealed	  further	  patterns	  and	  allowed	  for	  tabulating	  numbers	  of	  similar	  quotes	  or	  areas	  where	  knowledge	  and	  perceptions	  were	  highly	  heterogeneous.	  See	  Appendix	  6	  for	  a	  list	  of	  themes	  coded.	  	  Limitations	  of	  Interview	  Methods	  Despite	  extensive	  recruitment	  through	  TEIP/TMA	  contact	  lists	  and	  other	  publicly	  available	  contact	  information	  (focusing	  especially	  on	  the	  identified	  ‘keystone	  industries’)	  participation	  levels	  remained	  modest.	  One	  reason	  could	  have	  been	  the	  time	  required	  of	  busy	  people	  in	  leadership	  roles.	  Another	  may	  have	  been	  the	  lack	  of	  interest	  or	  understanding	  of	  the	  topics	  as	  presented	  in	  recruitment.	  At	  least	  one	  person	  approached	  said	  their	  interest	  in	  the	  local	  landscape	  were	  mostly	  transportation	  oriented	  at	  this	  time	  and	  was	  not	  convinced	  this	  interview	  was	  relevant.	  	  Another	  individual	  suspected	  their	  personal	  interests	  and	  priorities	  were	  different	  from	  that	  of	  more	  senior	  management	  and	  they	  preferred	  not	  to	  engage	  in	  a	  research	  process	  that	  might	  stimulate	  internal	  conflict.	  Those	  that	  did	  participate	  were	  either	  in	  a	  top	  leadership	  position	  (i.e.	  owner),	  and	  thus	  did	  not	  have	  to	  justify	  their	  time	  and	  opinions	  	   46	  to	  senior	  leadership,	  or	  were	  in	  a	  position	  where	  the	  job	  description	  involved	  in-­‐house	  sustainability	  research,	  coordination	  and	  communication.	  These	  trends	  suggest	  that	  for	  companies	  that	  had	  not	  already	  prioritized	  some	  aspect	  of	  sustainability	  in	  their	  corporate	  values	  and	  mandates,	  participation	  in	  this	  process	  would	  have	  been	  more	  difficult	  to	  justify	  and	  schedule.	  	  	  Optimally	  each	  interview	  process	  would	  have	  included	  a	  site	  tour	  for	  the	  researcher	  to	  have	  a	  more	  in-­‐depth	  perspective	  of	  site	  constraints	  and	  opportunities.	  However	  given	  that	  the	  interviews	  were	  already	  a	  significant	  demand	  of	  time,	  making	  this	  a	  mandatory	  part	  of	  participation	  seemed	  potentially	  overwhelming	  and	  thus	  was	  presented	  as	  optional.	  	  Analysis	  of	  interview	  content	  are	  subject	  to	  the	  researcher’s	  own	  conformational	  bias,	  interpreting	  data	  in	  a	  way	  that	  confirms	  preconceptions.	  This	  bias	  was	  limited	  by	  use	  of	  standardized	  coding	  methods,	  and	  triangulation	  between	  interview	  notes	  and	  transcripts.	  Also,	  new	  themes	  and	  concepts	  that	  did	  not	  fit	  the	  standard	  codes	  or	  that	  overlapped	  between	  codes	  were	  recorded.	  	  It	  should	  be	  noted	  that	  many	  of	  the	  researcher’s	  initial	  pre-­‐conceptions	  were	  not	  borne	  out	  in	  the	  results. 	  Strengths	  of	  Interview	  Methods	  Semi-­‐structured	  interviews	  allowed	  the	  opportunity	  to	  research	  context	  specific	  knowledge	  and	  perceptions.	  Definitions	  and	  summarized	  document	  analysis	  text	  on	  screen	  gave	  all	  participants	  the	  same	  information	  at	  the	  same	  point	  within	  the	  structure	  of	  the	  interview,	  and	  the	  ability	  to	  read	  and	  reread	  for	  clarification.	  The	  standardized	  order	  of	  information	  helped	  assess	  where	  participants’	  self-­‐	  assessed	  knowledge	  from	  the	  pre-­‐survey	  differed	  from	  their	  actual	  knowledge,	  and	  how	  and	  to	  some	  degree	  when	  it	  was	  affected	  by	  interview	  materials.	  This	  method	  acted	  as	  a	  rough	  proxy	  for	  longitudinal	  interviewing	  (which	  was	  not	  possible	  due	  to	  timing	  constraints)	  on	  how	  knowledge	  and	  perceptions	  adapted	  due	  to	  exposure	  to	  the	  interview	  process.	  	  	  	   47	  The	  use	  of	  a	  visually	  rich	  PowerPoint	  presentation	  to	  guide	  the	  interview	  process	  added	  value	  in	  several	  ways.	  First,	  the	  diagrams	  and	  maps	  helped	  engage	  users	  and	  stimulate	  more	  specific	  conversation	  than	  the	  questions	  alone.	  Secondly,	  images	  provided	  a	  common	  non-­‐technical	  language	  for	  all	  participants,	  and	  maps	  in	  particular	  helped	  provide	  the	  communication	  effectiveness	  demonstrated	  with	  visualization	  tools	  (103,110).	  Finally	  the	  visuals	  helped	  stimulate	  some	  positive	  and	  negative	  emotional	  reaction	  in	  participants.	  It	  is	  likely	  that	  this	  benefit	  was	  particularly	  acute	  with	  industry	  leader