- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A potentially stable five-helix bundle cavitein and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A potentially stable five-helix bundle cavitein and applications of caviteins in ester hydrolysis and protein-protein interaction Yang, Hui
Abstract
This thesis will present the study of a peptide sequence that is favourable for forming a five-helix bundle through the use of template assembled synthetic proteins (TASPs), and applications of our synthetic proteins in rate enhancement of ester hydrolysis and protein-protein interactions. Chapter 1 will introduce proteins, de novo protein design, and TASPs. It will also review past and current research on the applications of the synthetic molecules mimicking biological behavior. Chapter 2 will focus on several modified de novo designed peptide sequences that are intended to be more favourable in folding into a five-helix bundle than a four-helix bundle. We found that our designed sequence narrowed the free energy gap between the five-helix bundle and the four-helix bundle relative to the systems where the peptide sequence was designed to favour a four-helix bundle. Chapter 3 will concentrate on investigating the rate enhancement of ester hydrolysis by histidine-containing TASPs. These TASPs increased the rate of ester hydrolysis, and the position of the histidines was found to be relevant to activity. Chapter 4 will detail the attempts at using a template-assembled synthetic protein to inhibit protein-protein interactions between a Bak peptide and a Bcl-xL protein. Our synthesized protein was found to be a good binding partner towards the Bcl-xL protein and manifested moderately enhanced proteolytic resistance. Several heterocaviteins were also synthesized to study both their inhibitive activities to the Bcl-xL protein, and their proteolytic stability. Chapter 5 will summarize and conclude the work throughout this thesis.
Item Metadata
Title |
A potentially stable five-helix bundle cavitein and applications of caviteins in ester hydrolysis and protein-protein interaction
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2015
|
Description |
This thesis will present the study of a peptide sequence that is favourable for forming a five-helix bundle through the use of template assembled synthetic proteins (TASPs), and applications of our synthetic proteins in rate enhancement of ester hydrolysis and protein-protein interactions. Chapter 1 will introduce proteins, de novo protein design, and TASPs. It will also review past and current research on the applications of the synthetic molecules mimicking biological behavior. Chapter 2 will focus on several modified de novo designed peptide sequences that are intended to be more favourable in folding into a five-helix bundle than a four-helix bundle. We found that our designed sequence narrowed the free energy gap between the five-helix bundle and the four-helix bundle relative to the systems where the peptide sequence was designed to favour a four-helix bundle. Chapter 3 will concentrate on investigating the rate enhancement of ester hydrolysis by histidine-containing TASPs. These TASPs increased the rate of ester hydrolysis, and the position of the histidines was found to be relevant to activity. Chapter 4 will detail the attempts at using a template-assembled synthetic protein to inhibit protein-protein interactions between a Bak peptide and a Bcl-xL protein. Our synthesized protein was found to be a good binding partner towards the Bcl-xL protein and manifested moderately enhanced proteolytic resistance. Several heterocaviteins were also synthesized to study both their inhibitive activities to the Bcl-xL protein, and their proteolytic stability. Chapter 5 will summarize and conclude the work throughout this thesis.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2015-07-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivs 2.5 Canada
|
DOI |
10.14288/1.0166361
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2015-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivs 2.5 Canada