Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

'Smart' energy systems and networked buildings : examining the integrations, controls, and experience… Fedoruk, Laura Elizabeth 2013

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2014_spring_fedoruk_laura.pdf [ 8.67MB ]
Metadata
JSON: 24-1.0165715.json
JSON-LD: 24-1.0165715-ld.json
RDF/XML (Pretty): 24-1.0165715-rdf.xml
RDF/JSON: 24-1.0165715-rdf.json
Turtle: 24-1.0165715-turtle.txt
N-Triples: 24-1.0165715-rdf-ntriples.txt
Original Record: 24-1.0165715-source.json
Full Text
24-1.0165715-fulltext.txt
Citation
24-1.0165715.ris

Full Text

	 ? i	 ??SMART?	 ?ENERGY	 ?SYSTEMS	 ?AND	 ?NETWORKED	 ?BUILDINGS:	 ?EXAMINING	 ?THE	 ?INTEGRATIONS,	 ?CONTROLS,	 ?AND	 ?EXPERIENCE	 ?OF	 ?DESIGN	 ?THROUGH	 ?OPERATION	 ?	 ? by	 ?	 ?Laura	 ?Elizabeth	 ?Fedoruk	 ?	 ?B.A.Sc.	 ?Engineering	 ?Physics,	 ?University	 ?of	 ?British	 ?Columbia,	 ?2010	 ?	 ?	 ?	 ?	 ?	 ?A	 ?THESIS	 ?SUBMITTED	 ?IN	 ?PARTIAL	 ?FULFILLMENT	 ?OF	 ?THE	 ?REQUIREMENTS	 ?FOR	 ?THE	 ?DEGREE	 ?OF	 ?	 ?	 ?MASTER	 ?OF	 ?SCIENCE	 ?	 ?in	 ?	 ?THE	 ?FACULTY	 ?OF	 ?GRADUATE	 ?AND	 ?POSTDOCTORAL	 ?STUDIES	 ?	 ?(Resource	 ?Management	 ?and	 ?Environmental	 ?Studies)	 ?	 ?	 ?	 ?THE	 ?UNIVERSITY	 ?OF	 ?BRITISH	 ?COLUMBIA	 ?	 ?(Vancouver)	 ?	 ?	 ?	 ?	 ?	 ?December	 ?2013	 ?	 ??	 ?Laura	 ?Elizabeth	 ?Fedoruk,	 ?2013	 ?	 ? 	 ?	 ? ii	 ?Abstract	 ?Designs	 ?for	 ?new	 ?infrastructure	 ?such	 ?as	 ?buildings	 ?and	 ?energy	 ?systems	 ?often	 ?have	 ?the	 ?goals	 ?of	 ?being	 ??smart?	 ?and	 ??sustainable?.	 ?	 ?These	 ?goals	 ?often	 ?coincide	 ?with	 ?designs	 ?that	 ?integrate	 ?renewable	 ?and	 ?distributed	 ?energy	 ?systems,	 ?industrial	 ?ecology	 ?based	 ?principles,	 ?increased	 ?controls	 ?and	 ?monitoring	 ?capabilities,	 ?and	 ?integrated	 ?design	 ?techniques.	 ?	 ?This	 ?thesis	 ?attempts	 ?to	 ?understand	 ?the	 ?design	 ?and	 ?process-??based	 ?lessons	 ?that	 ?help	 ?to	 ?achieve	 ?these	 ?goals	 ?in	 ?networked	 ?infrastructure	 ?through	 ?the	 ?use	 ?of	 ?a	 ?contextual	 ?literature	 ?review	 ?as	 ?well	 ?as	 ?two	 ?case	 ?studies	 ?that	 ?examine	 ?the	 ?design	 ?and	 ?early	 ?operation	 ?of	 ?the	 ?networked	 ?energy	 ?and	 ?controls	 ?systems	 ?at	 ?the	 ?University	 ?of	 ?British	 ?Columbia?s	 ?(UBC)	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS).	 ?	 ?The	 ?thesis	 ?examines	 ?various	 ?literatures	 ?associated	 ?with	 ??smart?	 ?and	 ??sustainable?	 ?systems	 ?inclusive	 ?of	 ?sustainable	 ?buildings,	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?systems,	 ?and	 ?industrial	 ?ecology	 ?and	 ?finds	 ?that	 ?learning	 ?processes	 ?and	 ?systems	 ?integration	 ?are	 ?key	 ?to	 ?the	 ?success	 ?of	 ?these	 ?projects.	 ?	 ?From	 ?this	 ?understanding,	 ?a	 ?case	 ?study	 ?is	 ?used	 ?to	 ?examine	 ?the	 ?energy	 ?systems	 ?at	 ?CIRS	 ?in	 ?order	 ?to	 ?understand	 ?the	 ?systems	 ?integration	 ?of	 ?energy	 ?infrastructure	 ?during	 ?early	 ?operation.	 ?	 ?The	 ?analysis	 ?reveals	 ?that	 ?in	 ?order	 ?to	 ?create	 ?systems	 ?that	 ?meet	 ?their	 ?design	 ?intent	 ?and	 ?create	 ?symbiotic	 ?relationships	 ?within	 ?a	 ?network,	 ?it	 ?is	 ?paramount	 ?to	 ?understand	 ?system	 ?boundaries	 ?and	 ?network	 ?effects	 ?throughout	 ?the	 ?lifecycle	 ?of	 ?a	 ?project	 ??	 ?from	 ?design	 ?through	 ?to	 ?operation	 ?and	 ?optimization.	 ?	 ?A	 ?second	 ?case	 ?study	 ?examines	 ?the	 ?systems	 ?at	 ?CIRS	 ?that	 ?are	 ?usually	 ?considered	 ?the	 ??smart?	 ?component	 ?of	 ?infrastructure,	 ?controls	 ?and	 ?monitoring	 ?capabilities,	 ?and	 ?finds	 ?that	 ?in	 ?order	 ?to	 ?have	 ?successful	 ?controls	 ?systems	 ?it	 ?is	 ?necessary	 ?to	 ?design	 ?and	 ?operate	 ?these	 ?systems	 ?in	 ?a	 ?way	 ?that	 ?complements	 ?the	 ?human	 ?systems	 ?that	 ?interact	 ?with	 ?them.	 ?	 ?Designing	 ?for	 ?learning	 ?enables	 ?operator	 ?troubleshooting	 ?processes	 ?and	 ?inhabitant	 ?feedback	 ?and	 ?understanding.	 ?	 ? 	 ?	 ? iii	 ?Preface	 ?	 ?This	 ?work	 ?was	 ?approved	 ?by	 ?the	 ?UBC	 ?Behavioural	 ?Research	 ?Ethics	 ?Board	 ??	 ?UBC	 ?BREB	 ?Number	 ?H13-??01876. 	 ?This	 ?thesis	 ?consists	 ?of	 ?three	 ?main	 ?chapters	 ?or	 ?papers	 ?for	 ?which	 ?my	 ?contributions	 ?included	 ?identification	 ?of	 ?research	 ?objectives,	 ?research	 ?design,	 ?carrying	 ?out	 ?of	 ?research	 ?activities	 ?and	 ?data	 ?collection,	 ?data	 ?analysis,	 ?and	 ?manuscript	 ?preparation.	 ?	 ?Paper	 ?I	 ?(Chapter	 ?2):	 ?Smart,	 ?Sustainable,	 ?Integrated,	 ?and	 ?Distributed	 ??	 ?Towards	 ?an	 ?Understanding	 ?of	 ?Buildings	 ?as	 ?Nodes	 ?	 ?In	 ?this	 ?chapter	 ?I	 ?conducted	 ?the	 ?literature	 ?review,	 ?structured	 ?the	 ?chapter,	 ?justified	 ?the	 ?methodological	 ?approach,	 ?produced	 ?the	 ?summary	 ?tables,	 ?and	 ?wrote	 ?the	 ?manuscript.	 ?	 ?Dr.	 ?John	 ?Robinson	 ?provided	 ?valuable	 ?insight	 ?into	 ?the	 ?paper	 ?framing,	 ?key	 ?conceptual	 ?purpose,	 ?and	 ?provided	 ?several	 ?rounds	 ?of	 ?comments	 ?and	 ?revisions	 ?on	 ?drafts.	 ?	 ?Dr.	 ?Hadi	 ?Dowlatabadi	 ?also	 ?provided	 ?comments	 ?on	 ?a	 ?final	 ?draft.	 ?	 ?Paper	 ?II	 ?(Chapter	 ?3):	 ?An	 ?Exploration	 ?of	 ?Energy	 ?Systems	 ??	 ?Systems	 ?Integration	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?	 ?In	 ?this	 ?chapter,	 ?I	 ?conducted	 ?the	 ?literature	 ?review,	 ?structured	 ?the	 ?chapter,	 ?collected	 ?the	 ?data,	 ?produced	 ?all	 ?figures	 ?and	 ?tables,	 ?conducted	 ?the	 ?data	 ?analysis,	 ?and	 ?wrote	 ?the	 ?manuscript.	 ?	 ?Scott	 ?Yonkman	 ?provided	 ?key	 ?insights	 ?into	 ?data	 ?interpretation	 ?and	 ?analysis,	 ?and	 ?provided	 ?comments	 ?and	 ?revisions	 ?for	 ?the	 ?final	 ?draft.	 ?	 ?Dr.	 ?Hadi	 ?Dowlatabadi	 ?helped	 ?to	 ?provide	 ?insight	 ?into	 ?paper	 ?structure,	 ?framing,	 ?and	 ?interpretation	 ?of	 ?data	 ?and	 ?findings,	 ?as	 ?well	 ?as	 ?provided	 ?comments	 ?on	 ?several	 ?drafts.	 ?	 ?Dr.	 ?John	 ?Robinson	 ?also	 ?provided	 ?assistance	 ?with	 ?paper	 ?structure,	 ?comments,	 ?and	 ?framing	 ?approaches	 ?on	 ?several	 ?revisions.	 ?	 ?Alberto	 ?Cayuela	 ?provided	 ?comments	 ?on	 ?the	 ?final	 ?draft.	 ?	 ?Paper	 ?III	 ?(Chapter	 ?4):	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ??	 ?An	 ?Exploration	 ?of	 ?Building	 ?Monitoring	 ?and	 ?Controls	 ?	 ?In	 ?this	 ?chapter,	 ?I	 ?conducted	 ?the	 ?literature	 ?review,	 ?developed	 ?the	 ?paper	 ?outline,	 ?conducted	 ?the	 ?data	 ?analysis,	 ?produced	 ?all	 ?tables	 ?and	 ?figures,	 ?and	 ?wrote	 ?the	 ?manuscript.	 ?	 ?Scott	 ?Yonkman	 ?provided	 ?key	 ?insights	 ?into	 ?data	 ?interpretation	 ?and	 ?objective	 ?analysis,	 ?and	 ?provided	 ?comments	 ?and	 ?revisions	 ?for	 ?the	 ?final	 ?draft.	 ?	 ?Dr.	 ?John	 ?Robinson	 ?provided	 ?comments	 ?and	 ?framing	 ?approaches	 ?on	 ?several	 ?revisions	 ?and	 ?provided	 ?insight	 ?into	 ?the	 ?interpretation	 ?of	 ?findings.	 ?	 ?Dr.	 ?Hadi	 ?Dowlatabadi	 ?helped	 ?to	 ?provide	 ?insight	 ?into	 ?paper	 ?structure,	 ?framing,	 ?and	 ?interpretation	 ?of	 ?both	 ?subjective	 ?and	 ?objective	 ?data	 ?and	 ?findings,	 ?as	 ?well	 ?as	 ?provided	 ?comments	 ?on	 ?several	 ?drafts.	 ?Dr.	 ?Jiaying	 ?Zhao	 ?provided	 ?key	 ?insights	 ?into	 ?the	 ?interpretation	 ?of	 ?quantitative	 ?survey	 ?data.	 ?	 ?Alberto	 ?Cayuela	 ?provided	 ?comments	 ?on	 ?the	 ?final	 ?draft.	 ? iv	 ?	 ?Table	 ?of	 ?Contents	 ?	 ?Abstract	 ?.......................................................................................................................................	 ?ii	 ?Preface	 ?.......................................................................................................................................	 ?iii	 ?Table	 ?of	 ?Contents	 ?....................................................................................................................	 ?iv	 ?List	 ?of	 ?Tables	 ?...........................................................................................................................	 ?vii	 ?List	 ?of	 ?Figures	 ?........................................................................................................................	 ?viii	 ?Glossary	 ?.....................................................................................................................................	 ?ix	 ?1	 ? Introduction	 ?.......................................................................................................................	 ?1	 ?1.1	 ? Problem	 ?Statement	 ?and	 ?Research	 ?Contribution	 ?..........................................................	 ?2	 ?1.2	 ? Research	 ?Objectives	 ?..............................................................................................................	 ?2	 ?1.3	 ? Structure	 ?and	 ?Overview	 ?of	 ?Thesis	 ?....................................................................................	 ?3	 ?2	 ? Chapter	 ?2:	 ?Smart,	 ?Sustainable,	 ?Integrated,	 ?and	 ?Distributed	 ?-??	 ?Towards	 ?an	 ?Understanding	 ?of	 ?Buildings	 ?as	 ?Nodes	 ?in	 ?System	 ?Networks	 ?.......................................	 ?4	 ?2.1	 ? Introduction	 ?.............................................................................................................................	 ?4	 ?2.1.1	 ? Methodology	 ?for	 ?Literature	 ?Review	 ?and	 ?Design	 ?Criteria	 ?Formulation	 ?............	 ?5	 ?2.1.2	 ? Format	 ?and	 ?Purpose	 ?..........................................................................................................	 ?5	 ?2.1.3	 ? How	 ?This	 ?Relates	 ?to	 ?the	 ?Building	 ?Industry	 ?................................................................	 ?6	 ?2.1.4	 ? The	 ?Building	 ?as	 ?a	 ?Node	 ?in	 ?a	 ?Networked	 ?System	 ?.......................................................	 ?7	 ?2.2	 ? Smart	 ?Grids	 ?...............................................................................................................................	 ?7	 ?2.2.1	 ? What	 ?are	 ?They?	 ?....................................................................................................................	 ?7	 ?2.2.2	 ? What	 ?is	 ?its	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?.............................................	 ?8	 ?2.2.3	 ? What	 ?Issues	 ?are	 ?Emerging?	 ?.............................................................................................	 ?9	 ?2.2.4	 ? What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?.......................................................	 ?10	 ?2.2.5	 ? What	 ?Design	 ?Criteria	 ?Emerge?	 ?....................................................................................	 ?10	 ?2.3	 ? Distributed	 ?Energy	 ?Systems	 ?............................................................................................	 ?11	 ?2.3.1	 ? What	 ?are	 ?They?	 ?.................................................................................................................	 ?11	 ?2.3.2	 ? What	 ?is	 ?its	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?..........................................	 ?12	 ?2.3.3	 ? What	 ?Issues	 ?are	 ?Emerging?	 ?..........................................................................................	 ?13	 ?2.3.4	 ? What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?.......................................................	 ?14	 ?2.3.5	 ? What	 ?Design	 ?Criteria	 ?Emerge?	 ?....................................................................................	 ?14	 ?2.4	 ? Industrial	 ?Ecology	 ?...............................................................................................................	 ?16	 ?2.4.1	 ? What	 ?is	 ?it?	 ?...........................................................................................................................	 ?16	 ?2.4.2	 ? What	 ?is	 ?the	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?.........................................	 ?17	 ?2.4.3	 ? What	 ?Issues	 ?are	 ?Emerging?	 ?..........................................................................................	 ?17	 ?2.4.4	 ? What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?.......................................................	 ?18	 ?2.4.5	 ? What	 ?Design	 ?Criteria	 ?Emerge?	 ?....................................................................................	 ?18	 ?2.5	 ? Sustainable	 ?Buildings	 ?........................................................................................................	 ?20	 ?2.5.1	 ? What	 ?are	 ?They?	 ?.................................................................................................................	 ?20	 ?2.5.2	 ? What	 ?is	 ?the	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?.........................................	 ?20	 ?2.5.3	 ? What	 ?Issues	 ?are	 ?Emerging?	 ?..........................................................................................	 ?21	 ?2.5.4	 ? What	 ?does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?.......................................................	 ?22	 ?	 ? v	 ?2.5.5	 ? What	 ?Design	 ?Criteria	 ?Emerge?	 ?....................................................................................	 ?22	 ?2.6	 ? Common	 ?Themes	 ?and	 ?Conclusions	 ?................................................................................	 ?23	 ?2.6.1	 ? Discussion	 ?and	 ?Future	 ?Research	 ?................................................................................	 ?24	 ?3	 ? Chapter	 ?3:	 ?An	 ?Exploration	 ?of	 ?Energy	 ?Systems	 ??Systems	 ?Integration	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?..................................	 ?27	 ?3.1	 ? Introduction	 ?..........................................................................................................................	 ?27	 ?3.2	 ? Methods	 ?..................................................................................................................................	 ?30	 ?3.3	 ? CIRS	 ?Energy	 ?Systems	 ??	 ?A	 ?Conceptual	 ?Understanding	 ?..............................................	 ?30	 ?3.3.1	 ? Electrical	 ?System	 ?Description	 ?......................................................................................	 ?31	 ?3.3.2	 ? Electrical	 ?System	 ?Concept	 ?Diagram	 ?...........................................................................	 ?32	 ?3.3.3	 ? Electrical	 ?System	 ?Metering	 ?Description	 ?...................................................................	 ?32	 ?3.3.4	 ? Thermal	 ?Energy	 ?System	 ?Description	 ?........................................................................	 ?32	 ?3.3.5	 ? Thermal	 ?Energy	 ?Flow	 ?Diagram	 ?...................................................................................	 ?33	 ?3.3.6	 ? Thermal	 ?Energy	 ?Metering	 ?Description	 ?.....................................................................	 ?33	 ?3.3.7	 ? Theoretical	 ?Energy	 ?Flows	 ?.............................................................................................	 ?34	 ?3.4	 ? Energy	 ?System	 ?Performance	 ?...........................................................................................	 ?34	 ?3.4.1	 ? Understanding	 ?the	 ?System	 ?Operation	 ?.......................................................................	 ?35	 ?3.4.2	 ? Metered	 ?and	 ?Calculated	 ?Flows	 ?....................................................................................	 ?36	 ?3.4.3	 ? Issue	 ?Investigation	 ?..........................................................................................................	 ?43	 ?3.4.4	 ? Electricity	 ?...........................................................................................................................	 ?45	 ?3.4.5	 ? New	 ?Conceptual	 ?System	 ?Understanding	 ?..................................................................	 ?47	 ?3.5	 ? Understanding	 ?the	 ?Integrations	 ??	 ?Lessons	 ?Learned	 ?................................................	 ?48	 ?3.5.1	 ? Lessons	 ?Learned	 ?Summary	 ?...........................................................................................	 ?51	 ?4	 ? Chapter	 ?4:	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ??	 ?An	 ?Exploration	 ?of	 ?Building	 ?Monitoring	 ?and	 ?Controls	 ?...............	 ?53	 ?4.1	 ? Introduction	 ?..........................................................................................................................	 ?53	 ?4.1.1	 ? Background	 ??	 ?Sustainable	 ?Buildings	 ?and	 ?Infrastructure	 ?Networks	 ?...............	 ?53	 ?4.1.2	 ? ?Smart?	 ?Buildings	 ?and	 ?Infrastructure	 ?........................................................................	 ?54	 ?4.1.3	 ? CIRS	 ?Controls	 ?Goals	 ?.........................................................................................................	 ?54	 ?4.2	 ? Background	 ?...........................................................................................................................	 ?55	 ?4.2.1	 ? Intelligent	 ?Buildings	 ??	 ?What	 ?They	 ?are,	 ?What	 ?They	 ?Hope	 ?to	 ?Accomplish	 ?.......	 ?55	 ?4.2.2	 ? Operator	 ?Control	 ??	 ?Espoused	 ?Benefits	 ?and	 ?Abilities	 ?............................................	 ?55	 ?4.2.3	 ? Inhabitant	 ?Control	 ??	 ?Espoused	 ?Benefits	 ?and	 ?Abilities	 ?.........................................	 ?56	 ?4.2.4	 ? Overall	 ?Proposed	 ?Benefits	 ?............................................................................................	 ?56	 ?4.2.5	 ? The	 ?Case	 ?Study	 ?..................................................................................................................	 ?57	 ?4.3	 ? Case	 ?Study	 ??	 ?CIRS	 ??	 ?Operational	 ?Control	 ?and	 ?Monitoring	 ?......................................	 ?57	 ?4.3.1	 ? Operator	 ?Control	 ?Systems	 ??	 ?Operational	 ?Team	 ?Perspectives	 ?..........................	 ?58	 ?4.3.2	 ? Accessibility	 ?of	 ?Data	 ?........................................................................................................	 ?61	 ?4.4	 ? CIRS	 ?Case	 ?Study	 ?-??	 ?Inhabitant	 ?Control	 ?and	 ?Monitoring	 ?............................................	 ?61	 ?4.4.1	 ? Inhabitant	 ?Control	 ?Systems	 ??	 ?Inhabitant	 ?Experience	 ?..........................................	 ?62	 ?4.5	 ? Case	 ?Study	 ??	 ?CIRS	 ?Control	 ?and	 ?Monitoring	 ?Issues	 ??	 ?System	 ?Examples	 ?..............	 ?73	 ?4.5.1	 ? Lighting	 ?...............................................................................................................................	 ?73	 ?4.5.2	 ? AHU	 ?Heat	 ?Recovery	 ?.........................................................................................................	 ?74	 ?4.5.3	 ? Geothermal	 ?Heat	 ?Exchange	 ?..........................................................................................	 ?75	 ?4.5.4	 ? Solar	 ?Thermal	 ?Hot	 ?Water	 ?System	 ?...............................................................................	 ?76	 ?4.5.5	 ? Photovoltaic	 ?Panels	 ?.........................................................................................................	 ?78	 ?4.5.6	 ? Water	 ?Meters	 ?.....................................................................................................................	 ?78	 ?4.6	 ? Summary	 ?of	 ?Successes	 ?.......................................................................................................	 ?78	 ?	 ? vi	 ?4.7	 ? Understanding	 ?Control	 ?and	 ?Monitoring	 ?Needs	 ??	 ?Lessons	 ?Learned	 ?....................	 ?79	 ?4.7.1	 ? Inhabitants	 ?.........................................................................................................................	 ?79	 ?4.7.2	 ? Design	 ?Strategy	 ?.................................................................................................................	 ?80	 ?4.7.3	 ? Accessibility	 ?and	 ?System	 ?Integration	 ?........................................................................	 ?81	 ?4.7.4	 ? Root	 ?Cause	 ?Solutions	 ?......................................................................................................	 ?82	 ?4.7.5	 ? Learning	 ?..............................................................................................................................	 ?83	 ?5	 ? Conclusions	 ?......................................................................................................................	 ?84	 ?References	 ?..............................................................................................................................	 ?89	 ?Appendix	 ?I	 ??	 ?Statistical	 ?Analysis	 ?of	 ?Inhabitant	 ?Controls	 ?Survey	 ?...........................	 ?97	 ?	 ? vii	 ?List	 ?of	 ?Tables	 ?	 ?Chapter	 ?2:	 ?Table	 ?2-??	 ?1?	 ?Themes	 ?from	 ?the	 ?Smart	 ?Grid	 ?Literature	 ?...............................................................	 ?11	 ?Table	 ?2-??	 ?2	 ??Themes	 ?from	 ?the	 ?Distributed	 ?Generation	 ?Literature	 ?.....................................	 ?16	 ?Table	 ?2-??	 ?3	 ??	 ?Themes	 ?from	 ?the	 ?Industrial	 ?Ecology	 ?Literature	 ?...............................................	 ?19	 ?Table	 ?2-??	 ?4	 ??	 ?Themes	 ?from	 ?the	 ?Sustainable	 ?Building	 ?Literature	 ?..........................................	 ?23	 ?	 ?Chapter	 ?3:	 ?Table	 ?3-??	 ?1?	 ?Energy	 ?Meter	 ?Values	 ?for	 ?Heat	 ?Transfer	 ?Between	 ?CIRS/EOS	 ??	 ?to	 ?the	 ?nearest	 ?MWh	 ?...................................................................................................................................	 ?37	 ?Table	 ?3-??	 ?2?	 ?Calculated	 ?Values	 ?for	 ?Heat	 ?Transfer	 ?Between	 ?CIRS/EOS	 ??	 ?to	 ?the	 ?nearest	 ?MWh	 ?....................................................................................................................................................	 ?38	 ?Table	 ?3-??	 ?3?	 ?Modelled	 ?versus	 ?Measured	 ?Net	 ?Energy	 ?Flows	 ?...................................................	 ?47	 ?Table	 ?3-??	 ?4?	 ?Summary	 ?of	 ?Lessons	 ?Learned	 ?from	 ?CIRS	 ?Energy	 ?Systems	 ?...........................	 ?51	 ?	 ?Chapter	 ?5:	 ?Table	 ?5-??	 ?1	 ??	 ?Emergent	 ?Questions	 ?from	 ?the	 ?Research	 ?..............................................................	 ?88	 ?	 ?	 ?	 ? viii	 ?	 ?List	 ?of	 ?Figures	 ?	 ?Chapter	 ?3:	 ?Figure	 ?3-??	 ?1	 ??	 ?CIRS	 ?Electricity	 ?Flow	 ?Diagram	 ?...............................................................................	 ?32	 ?Figure	 ?3-??	 ?2?	 ?CIRS	 ?Thermal	 ?Energy	 ?Flow	 ?Diagram	 ?....................................................................	 ?33	 ?Figure	 ?3-??	 ?3?	 ?CIRS	 ?Design	 ?Sankey	 ?Diagram	 ?...................................................................................	 ?34	 ?Figure	 ?3-??	 ?4?	 ?Metered	 ?Heat	 ?Transfer	 ?Between	 ?CIRS	 ?and	 ?EOS	 ?...............................................	 ?37	 ?Figure	 ?3-??	 ?5?	 ?Metered	 ?Vs.	 ?Calculated	 ?Heat	 ?Transferred	 ?from	 ?EOS	 ?Exhaust	 ?to	 ?CIRS	 ?....	 ?41	 ?Figure	 ?3-??	 ?6?	 ?Calculated	 ?Heat	 ?Transfer	 ?Between	 ?CIRS	 ?and	 ?EOS	 ?..........................................	 ?42	 ?Figure	 ?3-??	 ?7?	 ?Calculated	 ?Heat	 ?Dumped	 ?at	 ?EOS	 ?Exhaust	 ?...........................................................	 ?43	 ?Figure	 ?3-??	 ?8?	 ?Metered	 ?Electricity	 ?Use	 ?..............................................................................................	 ?45	 ?Figure	 ?3-??	 ?9?	 ?Baseline	 ?versus	 ?actual	 ?steam	 ?consumption	 ?at	 ?EOS	 ?........................................	 ?46	 ?Figure	 ?3-??	 ?10?	 ?CIRS	 ?Conceptual	 ?Sankey	 ?Diagram	 ?.......................................................................	 ?47	 ?Figure	 ?3-??	 ?11?	 ?Linear	 ?to	 ?Feedback	 ?Driven	 ?Project	 ?Lifecycle	 ?..................................................	 ?52	 ?	 ?Chapter	 ?4:	 ?Figure	 ?4-??	 ?1?	 ?Operator	 ?Influence	 ?Diagram	 ?....................................................................................	 ?58	 ?Figure	 ?4-??	 ?2-??	 ?Inhabitant	 ?Influence	 ?Diagram	 ?..................................................................................	 ?62	 ?Figure	 ?4-??	 ?3?	 ?Inhabitant	 ?Perception	 ?of	 ?Ability	 ?to	 ?Influence	 ?Building	 ?Performance	 ?....	 ?64	 ?Figure	 ?4-??	 ?4-??	 ?Inhabitant	 ?Satisfaction	 ?with	 ?Indoor	 ?Environment	 ?..........................................	 ?65	 ?Figure	 ?4-??	 ?5?	 ?Inhabitant	 ?Self-??perceived	 ?Knowledge	 ?of	 ?Design	 ?Intent	 ?...............................	 ?66	 ?Figure	 ?4-??	 ?6?	 ?Inhabitant	 ?Perception	 ?of	 ?Success	 ?in	 ?Achieving	 ?Design	 ?Intent	 ?...................	 ?66	 ?Figure	 ?4-??	 ?7?	 ?Inhabitant	 ?Engagement	 ?with	 ?Opportunities	 ?to	 ?Learn	 ?About	 ?CIRS	 ?..........	 ?68	 ?Figure	 ?4-??	 ?8?	 ?Inhabitant	 ?Perception	 ?of	 ?Current	 ?Feedback	 ?on	 ?Performance	 ?Affect	 ?of	 ?Behaviour	 ?.........................................................................................................................................	 ?69	 ?Figure	 ?4-??	 ?9?	 ?Inhabitant	 ?Perception	 ?of	 ?Ability	 ?to	 ?Control	 ?Environment	 ?..........................	 ?70	 ?Figure	 ?4-??	 ?10?	 ?Inhabitant	 ?Perception	 ?of	 ?Monitoring	 ?Effectiveness	 ?....................................	 ?71	 ?Figure	 ?4-??	 ?11?	 ?CIRS	 ?Heat	 ?Recovered	 ?at	 ?local	 ?AHU	 ?Exhaust	 ?....................................................	 ?74	 ?Figure	 ?4-??	 ?12-??	 ?Geothermal	 ?Field	 ?Energy	 ?Exchange	 ?....................................................................	 ?75	 ?Figure	 ?4-??	 ?13?	 ?Approximated	 ?SHW	 ?Energy	 ?Exchange	 ?..............................................................	 ?77	 ?	 ?Chapter	 ?5:	 ?Figure	 ?5-??	 ?1	 ??	 ?Feedback	 ?Diagram	 ?.......................................................................................................	 ?87	 ?	 ?	 ? 	 ?	 ? ix	 ?Glossary	 ?	 ?This	 ?thesis	 ?attempts	 ?to	 ?draw	 ?insights	 ?from	 ?multiple	 ?disciplines.	 ?	 ?A	 ?short	 ?glossary	 ?is	 ?therefore	 ?provided	 ?below:	 ?	 ?Building	 ?automation	 ?system	 ?(BAS)	 ??	 ?A	 ?distributed	 ?control	 ?system	 ?for	 ?a	 ?building,	 ?sometimes	 ?called	 ?a	 ?Building	 ?Management	 ?System	 ?(BMS).	 ?	 ?Consists	 ?of	 ?a	 ?computerized	 ?network	 ?that	 ?assists	 ?in	 ?controlling	 ?building	 ?components	 ?such	 ?as	 ?heating,	 ?ventilation,	 ?air-??conditioning,	 ?lighting.	 ?	 ?Building	 ?information	 ?modeling	 ?(BIM)	 ??	 ?A	 ?process	 ?of	 ?creating	 ?and	 ?managing	 ?digital	 ?representations	 ?of	 ?physical	 ?and	 ?process	 ?systems	 ?related	 ?to	 ?buildings.	 ?	 ?Commissioning	 ??	 ?Commissioning	 ?is	 ?the	 ?process	 ?by	 ?which	 ?installed	 ?components	 ?and	 ?building	 ?systems	 ?are	 ?tested	 ?and	 ?evaluated	 ?as	 ?to	 ?their	 ?alignment	 ?with	 ?the	 ?owner?s	 ?project	 ?requirements.	 ?	 ?Controls	 ??	 ?physical	 ?or	 ?computerized	 ?components	 ?that	 ?allow	 ?for	 ?change	 ?to	 ?be	 ?exerted	 ?over	 ?a	 ?system.	 ?	 ?Data	 ?accessibility	 ??	 ?ability	 ?to	 ?obtain,	 ?understand,	 ?interpret,	 ?and	 ?make	 ?meaningful	 ?decisions	 ?based	 ?on	 ?data.	 ?	 ?Design	 ?intent	 ?-??	 ?the	 ?design	 ?goals,	 ?intended	 ?system	 ?functioning,	 ?and	 ?the	 ?performance	 ?that	 ?a	 ?project	 ?was	 ?intended	 ?to	 ?achieve	 ?	 ?Distributed	 ?energy	 ?system	 ??	 ?an	 ?energy	 ?system	 ?whose	 ?generation	 ?comes	 ?from	 ?multiple	 ?locations.	 ?	 ?District	 ?energy	 ?system	 ??	 ?a	 ?thermal	 ?energy	 ?system	 ?that	 ?supplies	 ?heating	 ?through	 ?a	 ?distribution	 ?network	 ?connected	 ?to	 ?multiple	 ?loads.	 ?	 ?Energy	 ?flow	 ??	 ?movement	 ?or	 ?transfer	 ?of	 ?energy.	 ?	 ?Energy	 ?quality	 ??	 ?the	 ?contrast	 ?between	 ?different	 ?forms	 ?of	 ?energy	 ?and	 ?the	 ?propensity	 ?of	 ?each	 ?form	 ?to	 ?be	 ?transformed	 ?into	 ?another	 ?form	 ?of	 ?energy.	 ?	 ?Feedback	 ??	 ?a	 ?process	 ?or	 ?action	 ?by	 ?which	 ?performance	 ?gaps	 ?are	 ?identified	 ?and	 ?lessons	 ?used	 ?to	 ?inform	 ?subsequent	 ?process	 ?iterations.	 ?	 ?Human	 ?system	 ??socially	 ?based	 ?systems	 ?comprised	 ?of	 ?human	 ?actors.	 ?	 ?Industrial	 ?ecology	 ??	 ?the	 ?study	 ?of	 ?material	 ?and	 ?energy	 ?flows	 ?through	 ?an	 ?industrial	 ?type	 ?system.	 ?	 ? x	 ?	 ?Inhabitant	 ??	 ?An	 ?alternative	 ?term	 ?used	 ?for	 ?an	 ?occupant	 ?of	 ?a	 ?building,	 ?meant	 ?to	 ?indicate	 ?an	 ?engaged	 ?user	 ?and	 ?co-??inhabitant	 ?of	 ?the	 ?space.	 ?	 ?Integrated	 ?design	 ?process	 ?(IDP)	 ??	 ?A	 ?process	 ?focusing	 ?on	 ?bringing	 ?together	 ?stakeholders	 ?from	 ?different	 ?backgrounds,	 ?including	 ?building	 ?design	 ?consultants,	 ?to	 ?develop	 ?the	 ?design	 ?and	 ?contribute	 ?to	 ?the	 ?achievement	 ?of	 ?a	 ?high-??performance	 ?building	 ?over	 ?the	 ?projects	 ?entire	 ?life	 ?cycle.	 ?	 ?Integration	 ??	 ?the	 ?process	 ?of	 ?bringing	 ?together	 ?component	 ?sub-??systems	 ?into	 ?a	 ?functioning	 ?overall	 ?system.	 ?	 ?Intelligent	 ?building	 ??	 ?A	 ?building	 ?that	 ?uses	 ?a	 ?BAS	 ?system	 ?with	 ?the	 ?intention	 ?of	 ?improving	 ?performance.	 ?	 ?Islanded	 ?system	 ??	 ?an	 ?energy	 ?system	 ?not	 ?connected	 ?to	 ?a	 ?conventional	 ?grid.	 ?	 ?LEED	 ??	 ?Leadership	 ?in	 ?Energy	 ?and	 ?Environmental	 ?Design.	 ?	 ?A	 ?green	 ?building	 ?rating	 ?system	 ?originally	 ?developed	 ?by	 ?the	 ?U.S.	 ?Green	 ?Building	 ?Council.	 ?	 ?Network	 ??	 ?a	 ?system	 ?comprised	 ?of	 ?two	 ?or	 ?more	 ?components	 ?which	 ?have	 ?the	 ?ability	 ?to	 ?affect	 ?one	 ?another.	 ?	 ?Prescriptive	 ?assessment	 ??	 ?assessment	 ?based	 ?on	 ?prescribed	 ?rules	 ?or	 ?processes	 ?considered	 ?met	 ?simply	 ?by	 ?compliance.	 ?	 ?Performance	 ?based	 ?assessment	 ??	 ?assessment	 ?based	 ?on	 ?performance	 ?outcomes	 ?independent	 ?of	 ?compliance	 ?with	 ?prescriptive	 ?process.	 ?	 ?Root	 ?cause	 ??	 ?the	 ?initiating	 ?cause	 ?of	 ?an	 ?issue	 ?or	 ?event	 ?sequence.	 ?	 ?Sustainable	 ?buildings	 ??	 ?buildings	 ?designed	 ?to	 ?meet	 ?environmental	 ?performance	 ?standards	 ?or	 ?rating	 ?systems.	 ?	 ?	 ?	 ? 1	 ?1 Introduction	 ?This	 ?research	 ?attempts	 ?to	 ?find	 ?lessons	 ?applicable	 ?to	 ?viewing	 ?buildings	 ?as	 ?part	 ?of	 ?an	 ?energy	 ?and	 ?resource	 ?network.	 ?	 ?With	 ?the	 ?concept	 ?of	 ?a	 ??smart	 ?energy	 ?system?	 ?gaining	 ?significance	 ?in	 ?industry	 ?and	 ?in	 ?the	 ?context	 ?of	 ?the	 ?University	 ?of	 ?British	 ?Columbia?s	 ?infrastructure	 ?and	 ?planning	 ?process,	 ?this	 ?research	 ?has	 ?looked	 ?at	 ?the	 ?smart	 ?energy	 ?system	 ?concept	 ?as	 ?a	 ?combination	 ?of	 ?sustainable	 ?buildings	 ?and	 ?networked	 ?infrastructure.	 ?	 ?Both	 ?networked	 ?infrastructure	 ?and	 ?sustainable	 ?buildings	 ?are	 ?viewed	 ?to	 ?have	 ?design	 ?strategy	 ?and	 ?process	 ?components.	 ?Through	 ?viewing	 ?the	 ?smart	 ?energy	 ?system	 ?concept	 ?as	 ?a	 ?networked	 ?view	 ?of	 ?buildings	 ?versus	 ?the	 ?typical	 ?practice	 ?of	 ?designing	 ?individual	 ?buildings	 ?as	 ?stand-??alone	 ?projects	 ?that	 ?happen	 ?to	 ?be	 ?connected	 ?to	 ?an	 ?infrastructure	 ?system	 ?such	 ?as	 ?an	 ?electrical	 ?grid,	 ?literatures	 ?focused	 ?on	 ?buildings	 ?and	 ?networked	 ?infrastructures	 ?were	 ?explored.	 ?	 ?In	 ?particular,	 ?the	 ?thesis	 ?draws	 ?on	 ?the	 ?literatures	 ?of	 ?sustainable	 ?buildings,	 ?industrial	 ?ecology,	 ?smart	 ?grids,	 ?and	 ?distributed	 ?energy	 ?systems.	 ?	 ?The	 ?sustainable	 ?buildings	 ?literature	 ?was	 ?chosen	 ?in	 ?order	 ?to	 ?look	 ?at	 ?the	 ?current	 ?state	 ?of	 ?the	 ?field	 ?and	 ?best	 ?practices,	 ?whereas	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?systems,	 ?and	 ?industrial	 ?ecology	 ?literatures	 ?were	 ?considered	 ?representative	 ?of	 ?current	 ?views	 ?on	 ?sustainable	 ?resource	 ?networks.	 ?	 ?Through	 ?these	 ?literatures	 ?we	 ?can	 ?look	 ?at	 ?electricity	 ?networks,	 ?thermal	 ?energy	 ?networks,	 ?and	 ?implemented	 ?examples	 ?of	 ?resource	 ?sharing.	 ?	 ?Smart	 ?grids	 ?introduce	 ?controls	 ?and	 ?monitoring	 ?capabilities	 ?to	 ?the	 ?electrical	 ?grid	 ?and	 ?are	 ?increasing	 ?the	 ?visibility	 ?of	 ?concepts	 ?related	 ?to	 ?other	 ??smart?	 ?infrastructures.	 ?	 ?Distributed	 ?energy	 ?systems	 ?have	 ?a	 ?long	 ?history	 ?and	 ?provide	 ?lessons	 ?for	 ?thermal	 ?energy	 ?networks	 ?and	 ?resource	 ?sharing	 ?integrations,	 ?and	 ?industrial	 ?ecology	 ?is	 ?a	 ?field	 ?specifically	 ?related	 ?to	 ?resource	 ?sharing	 ?within	 ?the	 ?built	 ?environment	 ?and	 ?across	 ?various	 ?individual	 ?structures	 ?and	 ?entities.	 ?	 ?With	 ?these	 ?literatures	 ?in	 ?mind,	 ?the	 ?thesis	 ?articulates	 ?some	 ?of	 ?the	 ?design	 ?and	 ?operational	 ?challenges	 ?associated	 ?with	 ?moving	 ?towards	 ?networks	 ?of	 ?buildings	 ?wherein	 ?individual	 ?buildings	 ?may	 ?be	 ?considered	 ?network	 ?nodes.	 ?This	 ?thesis	 ?looks	 ?at	 ?overall	 ?lessons	 ?learned	 ?with	 ?respect	 ?to	 ?energy	 ?infrastructure	 ?design	 ?and	 ?controls	 ?at	 ?CIRS.	 ?	 ?This	 ?case	 ?study	 ?was	 ?chosen	 ?as	 ?an	 ?operating	 ?example	 ?of	 ?a	 ?two-??building	 ?energy	 ?sharing	 ?network	 ?and	 ?the	 ?energy	 ?and	 ?controls	 ?systems	 ?were	 ?specifically	 ?examined	 ?due	 ?to	 ?their	 ?being	 ?integral	 ?to	 ?the	 ?concept	 ?of	 ?the	 ?system	 ?being	 ?both	 ??smart?	 ?and	 ??sustainable.?	 ?	 ?These	 ?two	 ?systems	 ?overlay	 ?nicely	 ?with	 ?the	 ?literatures	 ?examined.	 ?	 ?It	 ?draws	 ?conclusions	 ?useful	 ?for	 ?moving	 ?towards	 ?integrated	 ?energy	 ?and	 ?infrastructure	 ?system	 ?design	 ?and	 ?operation	 ?through	 ?drawing	 ?together	 ?two	 ?components	 ?of	 ??smart?	 ?infrastructure	 ??	 ?sustainable	 ?energy	 ?infrastructure	 ?and	 ?controls	 ?capabilities.	 ?	 ?These	 ?themes	 ?are	 ?explored	 ?through	 ?the	 ?use	 ?of	 ?two	 ?case	 ?study	 ?papers	 ?that	 ?look	 ?at	 ?the	 ?early	 ?operation	 ?of	 ?networked	 ?energy	 ?infrastructure	 ?and	 ?controls	 ?and	 ?monitoring	 ?at	 ?the	 ?CIRS	 ?building.	 ?	 ?	 ? 2	 ?1.1 Problem	 ?Statement	 ?and	 ?Research	 ?Contribution	 ?	 ?The	 ?buildings	 ?sector	 ?has	 ?received	 ?significant	 ?attention	 ?as	 ?an	 ?area	 ?for	 ?mitigation	 ?of	 ?carbon	 ?emissions.	 ?	 ?Particularly	 ?through	 ?a	 ?focus	 ?on	 ??green?	 ?or	 ??sustainable?	 ?buildings,	 ?this	 ?industry	 ?has	 ?tended	 ?to	 ?focus	 ?on	 ?environmental	 ?goals	 ?related	 ?to	 ?energy	 ?efficiency.	 ?	 ?Renewable	 ?energy	 ?transitions	 ?and	 ?energy	 ?and	 ?resource	 ?infrastructure	 ?planning	 ?in	 ?the	 ?form	 ?of	 ?distributed	 ?energy	 ?systems,	 ?smart	 ?grids,	 ?and	 ?symbiosis	 ?opportunities	 ?have	 ?also	 ?received	 ?attention	 ?for	 ?their	 ?potential	 ?to	 ?influence	 ?positive	 ?environmental	 ?outcomes.	 ?	 ?While	 ?in	 ?practice	 ?these	 ?areas	 ?overlap,	 ?there	 ?has	 ?been	 ?little	 ?detailed	 ?and	 ?performance	 ?based	 ?research	 ?to	 ?date	 ?on	 ?the	 ?design	 ?and	 ?implementation	 ?process	 ?for	 ?sustainable	 ?buildings	 ?that	 ?attempt	 ?to	 ?integrate	 ?with	 ?community	 ?energy	 ?systems.	 ?	 ?This	 ?research	 ?uses	 ?a	 ?case	 ?study	 ?of	 ?a	 ?system	 ?designed	 ?with	 ?the	 ?goals	 ?of	 ?being	 ??smart?	 ?and	 ??sustainable?	 ?and	 ?draws	 ?lessons	 ?for	 ?future	 ?design	 ?and	 ?implementation	 ?processes.	 ?	 ?1.2 Research	 ?Objectives	 ?	 ?The	 ?objective	 ?of	 ?this	 ?research	 ?is	 ?to	 ?better	 ?understand	 ?the	 ?design	 ?and	 ?operational	 ?processes	 ?that	 ?contribute	 ?to	 ?enabling	 ?high	 ?performing,	 ?multi-??building	 ?energy	 ?systems.	 ?	 ?Keeping	 ?in	 ?mind	 ?the	 ?trend	 ?towards	 ??smart?	 ?systems	 ?that	 ?increasingly	 ?incorporate	 ?monitoring	 ?and	 ?controls	 ?strategy	 ?with	 ?integrated	 ?energy	 ?systems,	 ?this	 ?research	 ?attempts	 ?to	 ?look	 ?specifically	 ?at	 ?energy	 ?systems	 ?integration	 ?and	 ?monitoring	 ?and	 ?controls	 ?using	 ?the	 ?two-??building	 ?energy	 ?system	 ?at	 ?CIRS	 ?as	 ?a	 ?case	 ?study.	 ?	 ?	 ? 	 ?	 ? 3	 ?1.3 Structure	 ?and	 ?Overview	 ?of	 ?Thesis	 ?	 ?The	 ?second	 ?chapter	 ?of	 ?this	 ?thesis,	 ?following	 ?the	 ?introduction	 ?chapter,	 ?serves	 ?as	 ?a	 ?review	 ?of	 ?the	 ?literature	 ?related	 ?to	 ?networked	 ?energy	 ?planning	 ?and	 ?sustainable	 ?building.	 ?	 ?It	 ?looks	 ?at	 ?the	 ?framing	 ?and	 ?lessons	 ?within	 ?these	 ?literatures	 ?and	 ?how	 ?they	 ?may	 ?apply	 ?to	 ?networked	 ?buildings.	 ?	 ?Conclusions	 ?from	 ?this	 ?chapter	 ?led	 ?to	 ?the	 ?division	 ?of	 ?the	 ?case	 ?study	 ?into	 ?research	 ?on	 ?energy	 ?systems	 ?and	 ?controls	 ?systems	 ?as	 ?these	 ?two	 ?areas	 ?coincide	 ?with	 ?the	 ?general	 ?movement	 ?towards	 ??smart?	 ?and	 ??sustainable?	 ?networks	 ?and	 ?buildings.	 ?	 ?The	 ?third	 ?chapter	 ?of	 ?this	 ?thesis	 ?is	 ?a	 ?case	 ?study	 ?of	 ?the	 ?energy	 ?systems	 ?at	 ?CIRS.	 ?	 ?It	 ?attempts	 ?to	 ?uncover	 ?lessons	 ?with	 ?respect	 ?to	 ?system	 ?integration	 ?from	 ?design	 ?through	 ?operation.	 ?	 ?Findings	 ?emphasize	 ?the	 ?importance	 ?of	 ?system	 ?boundary	 ?understanding	 ?and	 ?feedback	 ?processes	 ?for	 ?learning.	 ?	 ?The	 ?fourth	 ?chapter	 ?of	 ?this	 ?thesis	 ?is	 ?a	 ?case	 ?study	 ?of	 ?the	 ?controls	 ?and	 ?monitoring	 ?systems	 ?at	 ?CIRS.	 ?	 ?It	 ?attempts	 ?to	 ?uncover	 ?lessons	 ?with	 ?respect	 ?to	 ?feedback	 ?and	 ?understanding	 ?of	 ?performance	 ?assessment	 ?and	 ?system	 ?functioning.	 ?	 ?Findings	 ?emphasize	 ?the	 ?importance	 ?of	 ?creating	 ?accessible	 ?system	 ?interfaces	 ?and	 ?processes	 ?that	 ?enable	 ?human	 ?learning.	 ?	 ?Conclusions	 ?from	 ?the	 ?research	 ?are	 ?presented	 ?along	 ?with	 ?emergent	 ?research	 ?questions	 ?at	 ?the	 ?end	 ?of	 ?the	 ?thesis.	 ?	 ?Lessons	 ?from	 ?both	 ?case	 ?studies	 ?and	 ?the	 ?literature	 ?review	 ?are	 ?explored.	 ?	 ?	 ? 4	 ?2 Chapter	 ?2:	 ?Smart,	 ?Sustainable,	 ?Integrated,	 ?and	 ?Distributed	 ?-??	 ?Towards	 ?an	 ?Understanding	 ?of	 ?Buildings	 ?as	 ?Nodes	 ?in	 ?System	 ?Networks	 ?	 ?There	 ?is	 ?an	 ?emerging	 ?tendency	 ?within	 ?the	 ?buildings	 ?industry	 ?to	 ?view	 ?buildings	 ?as	 ?potential	 ?resource	 ?nodes	 ?within	 ?a	 ?networked	 ?infrastructure,	 ?such	 ?as	 ?a	 ?district	 ?energy	 ?system	 ?or	 ?smart	 ?grid	 ?network.	 ?	 ?In	 ?order	 ?to	 ?uncover	 ?lessons	 ?that	 ?may	 ?be	 ?transferred	 ?to	 ?the	 ?buildings	 ?industry	 ?when	 ?thinking	 ?of	 ?systems	 ?in	 ?this	 ?way,	 ?a	 ?review	 ?of	 ?four	 ?literatures	 ?with	 ?emerging	 ?or	 ?specific	 ?emphasis	 ?on	 ?networked	 ?systems	 ??	 ?smart	 ?grids,	 ?distributed	 ?energy,	 ?sustainable	 ?buildings,	 ?and	 ?industrial	 ?ecology	 ??	 ?was	 ?undertaken.	 ?	 ?These	 ?literatures	 ?and	 ?the	 ?lessons	 ?learned	 ?from	 ?these	 ?areas	 ?are	 ?used	 ?to	 ?find	 ?potential	 ?insights	 ?that	 ?could	 ?benefit	 ?the	 ?building	 ?industry	 ?as	 ?it	 ?moves	 ?towards	 ?more	 ?integrated	 ?systems.	 ?	 ?It	 ?provides	 ?a	 ?contextual	 ?overview	 ?for	 ?the	 ?opportunity	 ?to	 ?see	 ?buildings	 ?not	 ?as	 ?stand-??alone	 ?infrastructures	 ?but	 ?as	 ?nodes	 ?within	 ?a	 ?larger	 ?system	 ?network	 ?and	 ?calls	 ?for	 ?greater	 ?understanding	 ?and	 ?analysis	 ?of	 ?sustainable	 ?infrastructure	 ?that	 ?integrates	 ?controls	 ?and	 ?resource	 ?sharing.	 ?	 ?	 ?	 ?2.1 Introduction	 ?	 ?Both	 ?in	 ?Europe	 ?and	 ?across	 ?North	 ?America,	 ?investments	 ?are	 ?being	 ?made	 ?in	 ??smart	 ?grids?	 ?and	 ??smart?	 ?infrastructure	 ?with	 ?the	 ?promise	 ?of	 ?increasing	 ?energy	 ?security	 ?while	 ?reducing	 ?green	 ?house	 ?gas	 ?emissions	 ?(Agrell,	 ?Bogetoft,	 ?&	 ?Mikkers,	 ?2012).	 ?	 ?As	 ?electrical	 ?control	 ?and	 ?transmission	 ?infrastructure	 ?undergoes	 ?a	 ?redesign,	 ?there	 ?is	 ?a	 ?desire	 ?for	 ?distributed	 ?energy	 ?systems	 ?with	 ?higher	 ?shares	 ?of	 ?renewables,	 ?and	 ?for	 ?buildings	 ?designed	 ?to	 ?be	 ?more	 ??intelligent?	 ?and	 ??sustainable.?	 ?	 ?There	 ?is	 ?also	 ?a	 ?movement	 ?in	 ?the	 ?green	 ?buildings	 ?sector	 ?toward	 ?more	 ?integrated,	 ?sustainable,	 ?and	 ?regenerative	 ?building	 ?networks,	 ?in	 ?addition	 ?to	 ?a	 ?call	 ?for	 ?industry	 ?to	 ?move	 ?towards	 ?systems	 ?based	 ?approaches	 ?to	 ?design.	 ?	 ?While	 ?they	 ?have	 ?different	 ?motivations	 ?and	 ?methods,	 ?these	 ?four	 ?movements	 ??	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?systems,	 ?sustainable	 ?buildings,	 ?and	 ?industrial	 ?ecology	 ??	 ?all	 ?propose	 ?movement	 ?towards	 ?an	 ?integrated	 ?approach	 ?for	 ?infrastructure	 ?and	 ?planning	 ?that	 ?requires	 ?understanding	 ?both	 ?technical	 ?feasibility	 ?and	 ?system	 ?learning.	 ?	 ?In	 ?all	 ?four	 ?cases,	 ?there	 ?is	 ?also	 ?a	 ?suggestion	 ?of	 ?the	 ?need	 ?to	 ?address	 ?the	 ?human	 ?dimensions	 ?of	 ?such	 ?changes	 ?and	 ?to	 ?adopt	 ?programs	 ?that	 ?can	 ?lead	 ?to	 ?social	 ?learning	 ?and	 ?institutional	 ?change	 ?in	 ?the	 ?promotion	 ?of	 ?sustainability-??related	 ?targets.	 ?	 ?As	 ?noted	 ?in	 ?the	 ?thesis	 ?introduction,	 ?these	 ?four	 ?literatures	 ?provide	 ?insight	 ?into	 ?network	 ?lessons	 ?related	 ?to	 ?the	 ?issues	 ?that	 ?may	 ?be	 ?encountered	 ?in	 ?thinking	 ?of	 ?buildings	 ?as	 ?networked	 ?infrastructures.	 ?	 ?Based	 ?on	 ?the	 ?network-??based	 ?focus	 ?of	 ?these	 ?literatures	 ?(with	 ?the	 ?partial	 ?exception	 ?of	 ?sustainable	 ?buildings,	 ?which	 ?brings	 ?a	 ?necessary	 ?building-??related	 ?focus)	 ?these	 ?literatures	 ?help	 ?us	 ?to	 ?understand	 ?the	 ?potential	 ?challenges	 ?associated	 ?with	 ?thinking	 ?of	 ?buildings	 ?as	 ?part	 ?of	 ?systems	 ?and	 ?not	 ?as	 ?individual	 ?projects.	 ?	 ?Considering	 ?the	 ?current	 ?trend	 ?towards	 ?integrating	 ?buildings	 ?into	 ?resource	 ?networks	 ?through	 ?systems	 ?such	 ?as	 ?smart	 ?grids,	 ?it	 ?is	 ?important	 ?to	 ?look	 ?at	 ?the	 ?lessons	 ?from	 ?	 ? 5	 ?other	 ?areas	 ?that	 ?could	 ?assist	 ?in	 ?optimizing	 ?this	 ?process.	 ?	 ?Looking	 ?at	 ?buildings	 ?as	 ?parts	 ?of	 ?systems	 ?instead	 ?of	 ?individual	 ?projects	 ?could	 ?also	 ?assist	 ?in	 ?finding	 ?resource	 ?efficiencies	 ?not	 ?possible	 ?at	 ?the	 ?building	 ?scale.	 ?	 ?	 ?2.1.1 Methodology	 ?for	 ?Literature	 ?Review	 ?and	 ?Design	 ?Criteria	 ?Formulation	 ?	 ?Peer-??reviewed	 ?journal	 ?articles	 ?from	 ?the	 ?last	 ?ten	 ?years	 ?were	 ?used	 ?for	 ?this	 ?literature	 ?review.	 ?	 ?A	 ?search	 ?of	 ??Web	 ?of	 ?Science?	 ?for	 ?the	 ?term	 ??smart?	 ?included	 ?with	 ?the	 ?topic	 ??energy	 ?system?	 ?yielded	 ?148	 ?results	 ?which	 ?were	 ?then	 ?filtered	 ?to	 ?exclude	 ?articles	 ?that	 ?were	 ?specifically	 ?focused	 ?on	 ?technology	 ?and	 ?communication	 ?protocols	 ?and	 ?did	 ?not	 ?have	 ?a	 ?planning,	 ?implementation,	 ?or	 ?design	 ?focus.	 ?	 ?Articles	 ?that	 ?focused	 ?on	 ?a	 ?particular	 ?technology	 ?or	 ?were	 ?not	 ?at	 ?a	 ?scale	 ?relevant	 ?to	 ?community	 ?energy	 ?planning	 ?were	 ?also	 ?excluded.	 ?	 ?While	 ?this	 ?search	 ?prioritizes	 ?more	 ?recent	 ?ideas	 ?in	 ?this	 ?field,	 ?it	 ?is	 ?acknowledged	 ?that	 ?such	 ?ideas	 ?and	 ?systems	 ?can	 ?be	 ?traced	 ?back	 ?to	 ?the	 ?early	 ?1900s.	 ?	 ?However,	 ?for	 ?the	 ?purpose	 ?of	 ?this	 ?thesis	 ?the	 ?prominence	 ?of	 ?these	 ?ideas	 ?in	 ?the	 ?recent	 ?term	 ?defined	 ?the	 ?search	 ?window.	 ?	 ?In	 ?addition	 ?to	 ?this	 ?search,	 ?the	 ?table	 ?of	 ?contents	 ?of	 ?prominent	 ?journals	 ?on	 ?energy	 ?and	 ?industrial	 ?ecology	 ?were	 ?searched	 ?for	 ?articles	 ?pertaining	 ?to	 ?systems	 ?integration,	 ??smart?	 ?systems,	 ?and	 ?energy	 ?system	 ?planning	 ?and	 ?implementation.	 ?	 ?Journals	 ?that	 ?were	 ?looked	 ?at	 ?included	 ?the	 ?Journal	 ?of	 ?Cleaner	 ?Production;	 ?Journal	 ?of	 ?Industrial	 ?Ecology;	 ?Energy;	 ?Energy	 ?and	 ?Buildings;	 ?Energy	 ?for	 ?Sustainable	 ?Development;	 ?Building	 ?Research	 ?and	 ?Information;	 ?Energy	 ?Engineering;	 ?Energy	 ?Policy;	 ?Energy,	 ?Sustainability,	 ?and	 ?Society;	 ?International	 ?Journal	 ?of	 ?Energy	 ?Research;	 ?Energy	 ?Policy;	 ?and	 ?Energy	 ?Conversion	 ?and	 ?Management.	 ?	 ?Additional	 ?articles	 ?recommended	 ?by	 ?experts	 ?in	 ?the	 ?field	 ?of	 ?community	 ?energy	 ?planning	 ?were	 ?also	 ?included	 ?in	 ?the	 ?literature	 ?review	 ?as	 ?they	 ?were	 ?recommended.	 ?	 ?A	 ?brief	 ?grey	 ?literature	 ?search	 ?was	 ?also	 ?undertaken.	 ?	 ?This	 ?literature	 ?search	 ?resulted	 ?in	 ?the	 ?following	 ?categories	 ?of	 ?literature	 ?for	 ?review:	 ?? Smart	 ?Grids	 ?? Distributed	 ?Energy	 ?Systems	 ?? Sustainable	 ?Buildings	 ?? Industrial	 ?Ecology	 ?	 ?2.1.2 Format	 ?and	 ?Purpose	 ?	 ?This	 ?paper	 ?looks	 ?at	 ?each	 ?literature	 ?individually,	 ?first	 ?introducing	 ?the	 ?main	 ?concepts	 ?discussed,	 ?then	 ?briefly	 ?discussing	 ?the	 ?key	 ?attributes	 ?of	 ?the	 ?proposed	 ?approach,	 ?emergent	 ?issues	 ?that	 ?may	 ?be	 ?important	 ?to	 ?consider,	 ?how	 ?each	 ?literature	 ?addresses	 ?the	 ?integration	 ?context,	 ?and	 ?potential	 ?design	 ?criteria	 ?that	 ?emerge	 ?and	 ?may	 ?be	 ?useful	 ?to	 ?the	 ?buildings	 ?industry.	 ?	 ?The	 ?identification	 ?of	 ?these	 ?four	 ?areas	 ?emerged	 ?out	 ?of	 ?a	 ?scan	 ?of	 ?the	 ?literature	 ?and	 ?current	 ?pulse	 ?of	 ?articles	 ?related	 ?to	 ??smart	 ?integrated	 ?systems?,	 ??smart	 ?energy	 ?systems?,	 ??integrated	 ?energy	 ?systems?,	 ??smart	 ?energy	 ?communities?	 ?and	 ??sustainable	 ?	 ? 6	 ?neighbourhoods.?	 ?	 ??Smart	 ?grids?	 ?are	 ?often	 ?proposed	 ?as	 ?the	 ?best	 ?way	 ?forward	 ?for	 ?efficiency	 ?and	 ?renewable	 ?integration	 ?or	 ?energy	 ?transitions	 ?and	 ?upgrades	 ?to	 ?the	 ?energy	 ?network,	 ?making	 ?this	 ?an	 ?important	 ?literature	 ?to	 ?look	 ?at	 ?as	 ?it	 ?has	 ?lessons	 ?for	 ?control	 ?strategies	 ?of	 ?integrated	 ?networks.	 ?	 ?Distributed	 ?generation	 ?is	 ?closely	 ?tied	 ?to	 ?the	 ?smart	 ?grid	 ?literature	 ?because	 ?of	 ?the	 ?desire	 ?to	 ?have	 ?a	 ?higher	 ?share	 ?of	 ?renewables	 ?in	 ?the	 ?energy	 ?mix.	 ?	 ?With	 ?this	 ?transition	 ?to	 ?renewables	 ?comes	 ?the	 ?inherent	 ?variability	 ?of	 ?renewable	 ?energy	 ?sources,	 ?requiring	 ?more	 ?attentive	 ?and	 ?continuous	 ?monitoring	 ?and	 ?managing	 ?of	 ?supply	 ?and	 ?demand.	 ?	 ?A	 ?transition	 ?towards	 ??smart?	 ?or	 ?two-??way	 ?communication	 ?and	 ?delivery	 ?capabilities	 ?further	 ?increases	 ?this	 ?need.	 ?	 ?Sustainable	 ?buildings,	 ?energy	 ?efficiency,	 ?and	 ?otherwise	 ??intelligent?	 ?building	 ?strategies	 ?are	 ?also	 ?linked	 ?to	 ?the	 ?energy	 ?system	 ?literature	 ?in	 ?a	 ?very	 ?substantial	 ?way.	 ?	 ?This	 ?can	 ?be	 ?seen	 ?in	 ?many	 ?energy	 ?plans	 ?that	 ?focus	 ?on	 ?building	 ?infrastructure,	 ?as	 ?well	 ?as	 ?in	 ?the	 ?emerging	 ?theme	 ?of	 ?building	 ?level	 ?distributed	 ?energy	 ?networks	 ?where	 ?buildings	 ?integrated	 ?systems	 ?become	 ?possible	 ?energy	 ?sources	 ?within	 ?the	 ?energy	 ?network.	 ?	 ?This	 ?links	 ?the	 ?sustainable	 ?building	 ?literature	 ?to	 ?both	 ?the	 ?smart	 ?grid	 ?and	 ?distributed	 ?generation	 ?literature.	 ?	 ?I	 ?have	 ?found	 ?industrial	 ?ecology	 ?to	 ?be	 ?a	 ?connecting	 ?thread	 ?between	 ?some	 ?of	 ?these	 ?literatures,	 ?with	 ?working	 ?examples	 ?found	 ?in	 ?eco-??industrial	 ?parks	 ?(EIPs)	 ?where	 ?networks	 ?between	 ?buildings	 ?and	 ?processes	 ?have	 ?been	 ?formed	 ?through	 ?institutional	 ?and	 ?technical	 ?connections.	 ?	 ?Industrial	 ?ecology	 ?has	 ?a	 ?specific	 ?discourse	 ?connected	 ?to	 ?the	 ?possible	 ?neighbourhood	 ?network	 ?architectures	 ?and	 ?its	 ?common	 ?disciplinary	 ?language	 ?allows	 ?traditionally	 ?separate	 ?technologies	 ?to	 ?be	 ?discussed	 ?as	 ?part	 ?of	 ?a	 ?larger	 ?network	 ?system.	 ?	 ?Industrial	 ?ecology	 ?also	 ?brings	 ?a	 ?particular	 ?set	 ?of	 ?methodological	 ?tools	 ?and	 ?examples	 ?that	 ?may	 ?be	 ?interesting	 ?to	 ?the	 ?sustainable	 ?buildings,	 ?distributed	 ?generation,	 ?and	 ?smart	 ?grid	 ?literatures.	 ?2.1.3 How	 ?This	 ?Relates	 ?to	 ?the	 ?Building	 ?Industry	 ?	 ?The	 ?building	 ?and	 ?construction	 ?industry	 ?has	 ?seen	 ?an	 ?increased	 ?focus	 ?on	 ?providing	 ??sustainable?	 ?buildings,	 ?with	 ?much	 ?activity	 ?being	 ?implemented	 ?at	 ?the	 ?building	 ?scale	 ?to	 ?design	 ?more	 ?efficient	 ?and	 ?environmentally	 ?beneficial	 ?infrastructure	 ?(Cole,	 ?2012a).	 ?	 ?Even	 ?with	 ?such	 ?efforts	 ?being	 ?focused	 ?on	 ?creating	 ?efficient	 ?and	 ??green?	 ?buildings,	 ?the	 ?performance	 ?of	 ?these	 ?buildings	 ?has	 ?often	 ?not	 ?lived	 ?up	 ?to	 ?expectations,	 ?resulting	 ?in	 ?a	 ?gap	 ?between	 ?designed	 ?and	 ?actual	 ?performance	 ?of	 ?buildings	 ?(Newsham,	 ?Mancini,	 ?&	 ?Birt,	 ?2009).	 ?	 ?	 ?	 ?Much	 ?of	 ?the	 ?work	 ?in	 ?the	 ?area	 ?of	 ?sustainable	 ?buildings	 ?is	 ?still	 ?focused	 ?on	 ?the	 ?building	 ?as	 ?an	 ?isolated	 ?entity	 ?that	 ?can	 ?achieve	 ?incremental	 ?process	 ?or	 ?technology	 ?improvements	 ?(Cole,	 ?2012a).	 ?	 ?The	 ?addition	 ?of	 ?renewable	 ?energy	 ?sources	 ?and	 ?advanced	 ?metering	 ?and	 ?controls	 ?to	 ?buildings	 ?are	 ?examples	 ?of	 ?individual	 ?improvements	 ?being	 ?adopted	 ?(Stylianou,	 ?2011).	 ?	 ?	 ?There	 ?are	 ?however	 ?links	 ?made	 ?to	 ?the	 ?idea	 ?of	 ??smart?	 ?cities	 ?and	 ?neighbourhoods,	 ?and	 ?there	 ?has	 ?been	 ?an	 ?expressed	 ?desire	 ?of	 ?industry	 ?to	 ?connect	 ?Net	 ?Zero	 ?Energy	 ?Buildings	 ?(NZEB)	 ?processes	 ?with	 ?emerging	 ?smart	 ?grid	 ?standards	 ?and	 ?technologies.	 ?	 ?This	 ?has	 ?been	 ?due	 ?to	 ?a	 ?recognition	 ?of	 ?the	 ?push	 ?towards	 ??smart	 ?grids?	 ?and	 ??smart	 ?buildings?	 ?that	 ?integrate	 ?renewables,	 ?connect	 ?with	 ?the	 ?smart	 ?grid,	 ?and	 ?promote	 ?energy	 ?efficiency,	 ?(Ames,	 ?2010).	 ?	 ?This	 ?moves	 ?us	 ?towards	 ?a	 ?larger	 ?scale	 ?movement	 ?in	 ?the	 ?area	 ?of	 ?neighbourhood	 ?	 ? 7	 ?sustainability	 ?and	 ?energy	 ?planning	 ?that	 ?has	 ?begun	 ?to	 ?focus	 ?on	 ?distributed	 ?technologies	 ?and	 ?networks	 ?-??	 ?including	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?generation,	 ?and	 ?industrial	 ?ecology	 ?symbiosis	 ?opportunities.	 ?	 ?At	 ?a	 ?broad	 ?level,	 ?integration	 ?of	 ?resource	 ?uses	 ?such	 ?as	 ?water	 ?and	 ?energy	 ?are	 ?taking	 ?a	 ?more	 ?prominent	 ?position	 ?in	 ?industry	 ?news	 ?and	 ?events	 ?(ASHRAE,	 ?2013a).	 ?	 ?In	 ?the	 ?smart	 ?grid	 ?literature,	 ??smart?	 ?is	 ?conceptualized	 ?as	 ?giving	 ?control	 ?and	 ?monitoring	 ?capabilities	 ?to	 ?infrastructure	 ?(Alvial-??Palavicino,	 ?Garrido-??Echeverr?a,	 ?Jim?nez-??Est?vez,	 ?Reyes,	 ?&	 ?Palma-??Behnke,	 ?2011).	 ?	 ?However,	 ?implementation	 ?of	 ??smart	 ?meters?	 ?in	 ?buildings	 ?has	 ?not	 ?yet	 ?been	 ?shown	 ?to	 ?have	 ?resulted	 ?in	 ?significant	 ?benefit	 ?to	 ?building	 ?operations	 ?and	 ?inhabitants	 ?(Krishnamurti	 ?et	 ?al.,	 ?2012a).	 ?	 ?This	 ?is	 ?at	 ?odds	 ?with	 ?industry	 ?literature	 ?on	 ?the	 ?implementation	 ?of	 ?further	 ?monitoring	 ?and	 ?controls	 ?in	 ?buildings,	 ?which	 ?is	 ?estimated	 ?to	 ?have	 ?huge	 ?energy	 ?and	 ?cost	 ?savings	 ?based	 ?on	 ?modeled	 ?opportunities	 ?for	 ?energy	 ?reduction	 ?(ASHRAE,	 ?2013b;	 ?Hastbacka,	 ?Ponoum,	 ?&	 ?Bouza,	 ?2013).	 ?	 ?This	 ?is	 ?an	 ?issue	 ?that	 ?should	 ?be	 ?addressed	 ?through	 ?further	 ?research	 ?and	 ?could	 ?benefit	 ?from	 ?the	 ?lessons	 ?of	 ?other	 ?industries	 ?such	 ?as	 ?those	 ?involved	 ?with	 ??smart?	 ?grids.	 ?	 ?2.1.4 The	 ?Building	 ?as	 ?a	 ?Node	 ?in	 ?a	 ?Networked	 ?System	 ?	 ?As	 ?buildings	 ?are	 ?integrated	 ?with	 ?distributed	 ?energy	 ?and	 ?information	 ?communication	 ?systems,	 ?they	 ?can	 ?be	 ?seen	 ?not	 ?as	 ?stand-??alone	 ?entities	 ?but	 ?as	 ?nodes	 ?within	 ?these	 ?networked	 ?systems.	 ?	 ?Particularly	 ?in	 ?cases	 ?where	 ?industrial	 ?ecology	 ?strategies	 ?are	 ?implemented,	 ?the	 ?flow	 ?of	 ?resources	 ?between	 ?buildings	 ?in	 ?the	 ?network	 ?require	 ?designers	 ?and	 ?operators	 ?to	 ?take	 ?a	 ?systems	 ?view	 ?of	 ?infrastructure,	 ?as	 ?the	 ?possibilities	 ?for	 ?operational	 ?sequences	 ?and	 ?functioning	 ?parameters	 ?become	 ?more	 ?complex.	 ?	 ?This	 ?being	 ?the	 ?case,	 ?it	 ?is	 ?likely	 ?that	 ?lessons	 ?can	 ?be	 ?taken	 ?from	 ?areas	 ?that	 ?have	 ?already	 ?seen	 ?development	 ?towards	 ?these	 ?networked	 ?solutions	 ??	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?systems,	 ?sustainable	 ?buildings,	 ?and	 ?industrial	 ?ecology.	 ?	 ?What	 ?follows	 ?is	 ?a	 ?brief	 ?exploration	 ?of	 ?each	 ?of	 ?the	 ?four	 ?mentioned	 ?areas,	 ?with	 ?some	 ?elaboration	 ?of	 ?the	 ?main	 ?ideas,	 ?current	 ?practices,	 ?and	 ?emergent	 ?lessons	 ?from	 ?these	 ?fields	 ?as	 ?they	 ?may	 ?be	 ?applicable	 ?to	 ?networked	 ?building	 ?projects.	 ?	 ?2.2 Smart	 ?Grids	 ?2.2.1 What	 ?are	 ?They?	 ?	 ?	 ?	 ?While	 ?there	 ?are	 ?many	 ?papers	 ?and	 ?projects	 ?on	 ??Smart	 ?Grids?,	 ?there	 ?is	 ?no	 ?single	 ?accepted	 ?definition	 ?of	 ?a	 ?smart	 ?grid	 ?(Verbong,	 ?Beemsterboer,	 ?&	 ?Sengers,	 ?2013).	 ?	 ?However,	 ?two	 ?approaches	 ?to	 ?smart	 ?grids	 ?have	 ?emerged	 ??	 ?one	 ?more	 ?common	 ?in	 ?Europe	 ?and	 ?one	 ?more	 ?common	 ?in	 ?the	 ?United	 ?States.	 ?	 ?The	 ?European	 ?approach	 ?tends	 ?to	 ?define	 ?a	 ?smart	 ?grid	 ?as	 ?a	 ?network	 ?to	 ?intelligently	 ?integrate	 ?both	 ?energy	 ?generators	 ?and	 ?consumers,	 ?whereas	 ?the	 ?approach	 ?in	 ?the	 ?United	 ?States	 ?tends	 ?to	 ?define	 ?a	 ?smart	 ?	 ? 8	 ?grid	 ?as	 ?simply	 ?an	 ?electrical	 ?grid	 ?with	 ?increased	 ?information	 ?and	 ?communication	 ?technology	 ?(ICT)	 ?capabilities.	 ?	 ?The	 ?US	 ?approach	 ?tends	 ?to	 ?focus	 ?on	 ?the	 ?use	 ?of	 ?a	 ?smart	 ?grid	 ?to	 ?increase	 ?grid	 ?safety	 ?and	 ?security	 ?(Clastres,	 ?2011).	 ?	 ?In	 ?order	 ?to	 ?draw	 ?lessons	 ?from	 ?this	 ?literature,	 ?in	 ?this	 ?paper	 ?I	 ?will	 ?generally	 ?use	 ?the	 ?European	 ?approach	 ?to	 ?defining	 ?a	 ?smart	 ?grid	 ?as	 ?this	 ?is	 ?more	 ?consistent	 ?with	 ?developing	 ?other	 ?types	 ?of	 ?networked	 ?infrastructures.	 ?	 ?	 ?At	 ?the	 ?building	 ?level,	 ?intelligent	 ?buildings	 ?with	 ?advanced	 ?controls	 ?and	 ?metering	 ?strategies	 ?are	 ?in	 ?some	 ?ways	 ?acting	 ?as	 ?their	 ?own	 ?smart	 ?grids	 ?and	 ?as	 ?they	 ?become	 ?networked	 ?will	 ?share	 ?more	 ?of	 ?the	 ?issues	 ?facing	 ?current	 ?smart	 ?grid	 ?implementation.	 ?	 ?Issues	 ?with	 ?institutional	 ?structures	 ?and	 ?technology	 ?advances	 ?are	 ?also	 ?present	 ?in	 ?the	 ?building	 ?industry,	 ?and	 ?in	 ?particular	 ?may	 ?be	 ?present	 ?with	 ?networked	 ?sustainable	 ?buildings.	 ?2.2.2 What	 ?is	 ?its	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?	 ?The	 ?main	 ?claim	 ?of	 ?the	 ?smart	 ?grid	 ?literature	 ?is	 ?that	 ?the	 ?energy	 ?sector	 ?should	 ?move	 ?from	 ?centralized	 ?power	 ?production,	 ?transmission	 ?and	 ?control	 ?to	 ?a	 ?network	 ?structure	 ?with	 ??digitalized?	 ?ability	 ?to	 ?integrate	 ?communication	 ?and	 ?control	 ?at	 ?end	 ?points.	 ?	 ?This	 ?is	 ?thought	 ?to	 ?allow	 ?for	 ?potential	 ??value	 ?added?	 ?services,	 ?such	 ?as	 ?automated	 ?demand	 ?response	 ?and	 ?user-??specified	 ?control	 ?options,	 ?that	 ?have	 ?economic	 ?and	 ?environmental	 ?benefits	 ?(Carrie	 ?Armel,	 ?Gupta,	 ?Shrimali,	 ?&	 ?Albert,	 ?2012;	 ?Giordano	 ?&	 ?Fulli,	 ?2011;	 ?Steer,	 ?Wirth,	 ?&	 ?Halgamuge,	 ?2012;	 ?Wade,	 ?Taylor,	 ?Lang,	 ?&	 ?Jones,	 ?2010).	 ?	 ?Energy	 ?security,	 ?cost,	 ?and	 ?carbon	 ?considerations	 ?are	 ?often	 ?touted	 ?as	 ?the	 ?three	 ?main	 ?issues	 ?to	 ?consider	 ?with	 ?regards	 ?to	 ?sustainable	 ?energy	 ?transitions	 ?(Boston,	 ?2013).	 ?	 ?Smart	 ?grid	 ?technologies	 ?promise	 ?assistance	 ?with	 ?all	 ?three	 ?of	 ?these	 ?issues	 ?through	 ?increased	 ?information	 ?and	 ?optimization.	 ?	 ?Current	 ?projects	 ?focus	 ?on	 ?ICT	 ?and	 ?electrical	 ?transmission	 ?technologies	 ?with	 ?the	 ?claim	 ?that	 ?this	 ?will	 ?reduce	 ?associated	 ?emissions	 ?through	 ?better	 ?demand	 ?side	 ?management	 ?and	 ?renewables	 ?integration	 ?(Alagoz,	 ?Kaygusuz,	 ?&	 ?Karabiber,	 ?2012).	 ?	 ?The	 ?main	 ?benefits	 ?of	 ?these	 ?projects	 ?are	 ?on	 ?the	 ?utility	 ?side,	 ?with	 ?potential	 ?long	 ?term	 ?cost	 ?savings	 ?from	 ?better	 ?measurement	 ?and	 ?control	 ?strategies	 ?as	 ?well	 ?as	 ?increased	 ?grid	 ?security	 ?and	 ?ability	 ?to	 ?better	 ?manage	 ?possible	 ?black-??outs	 ?and	 ?brown-??outs	 ?(Boston,	 ?2013;	 ?Carrie	 ?Armel	 ?et	 ?al.,	 ?2012;	 ?Krishnamurti	 ?et	 ?al.,	 ?2012b).	 ?	 ?Some	 ?projects	 ?and	 ?approaches	 ?attempt	 ?to	 ?go	 ?beyond	 ?this	 ?utility	 ?side	 ?focus,	 ?to	 ?enable	 ?benefits	 ?to	 ?other	 ?network	 ?actors	 ?and	 ?consumers.	 ?	 ?Additional	 ?potential	 ?for	 ?emissions	 ?reductions	 ?due	 ?to	 ?smart	 ?grid	 ?implementation	 ?could	 ?come	 ?through	 ?value	 ?added	 ?services	 ?that	 ?allow	 ?customers	 ?to	 ?change	 ?their	 ?energy	 ?use	 ?behaviour	 ?(Burgess	 ?&	 ?Nye,	 ?2008;	 ?Krishnamurti	 ?et	 ?al.,	 ?2012a),	 ?distributed	 ?generation	 ?that	 ?reduces	 ?transmission	 ?losses,	 ?improvements	 ?in	 ?generation	 ?and	 ?transmission	 ?technology	 ?which	 ?can	 ?delay	 ?the	 ?development	 ?of	 ?peaking	 ?power	 ?plants	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012),	 ?and	 ?the	 ?integration	 ?of	 ?	 ?renewables	 ?into	 ?the	 ?grid	 ?(Coll-??Mayor,	 ?Picos,	 ?&	 ?Garci?-??Moreno,	 ?2004).	 ?	 ?However,	 ?if	 ?these	 ?value-??added	 ?services	 ?are	 ?not	 ?available	 ?or	 ?not	 ?able	 ?to	 ?be	 ?provided	 ?based	 ?on	 ?the	 ?software,	 ?hardware	 ?and	 ?supportive	 ?institutional	 ?processes	 ?installed	 ?and	 ?available,	 ?these	 ?savings	 ?cannot	 ?come	 ?to	 ?fruition	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?	 ?In	 ?addition,	 ?little	 ?work	 ?on	 ?the	 ?real	 ?world	 ?	 ? 9	 ?applicability	 ?of	 ?these	 ?systems	 ?has	 ?been	 ?undertaken;	 ?more	 ?work	 ?is	 ?needed,	 ?for	 ?example	 ?on	 ?the	 ?question	 ?of	 ?energy	 ?poverty	 ?and	 ?behavioural	 ?path	 ?dependence	 ?(Sarah	 ?J.	 ?Darby,	 ?2012).	 ?	 ?Without	 ?carefully	 ?looking	 ?at	 ?the	 ?social	 ?and	 ?political	 ?contexts	 ?of	 ?advances	 ?in	 ?this	 ?industry,	 ?or	 ?that	 ?of	 ?the	 ?building	 ?industry,	 ?issues	 ?to	 ?do	 ?with	 ?who	 ?benefits	 ?and	 ?at	 ?what	 ?potential	 ?cost	 ?may	 ?be	 ?overlooked	 ?at	 ?a	 ?detriment	 ?to	 ?certain	 ?groups.	 ?	 ?More	 ?research	 ?is	 ?needed	 ?in	 ?this	 ?area	 ?with	 ?respect	 ?to	 ?the	 ?smart	 ?grid	 ?sector	 ?and	 ?the	 ?claim	 ?that	 ?large	 ?possible	 ?benefits	 ?will	 ?be	 ?achieved	 ?based	 ?on	 ?new	 ?technologies.	 ?2.2.3 What	 ?Issues	 ?are	 ?Emerging?	 ?	 ?	 ?	 ?Smart	 ?grid	 ?hardware	 ?and	 ?its	 ?component	 ?technology	 ?is	 ?not	 ?new,	 ?however	 ?the	 ?emergent	 ?capabilities	 ?of	 ?combining	 ?these	 ?previously	 ?used	 ?technologies	 ?has	 ?the	 ?potential	 ?to	 ?change	 ?the	 ?way	 ?customers	 ?and	 ?utilities	 ?interact	 ?with	 ?the	 ?energy	 ?system	 ?and	 ?each	 ?other	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012).	 ?	 ?Many	 ?stakeholders	 ?see	 ?the	 ?transition	 ?to	 ?smart	 ?grids	 ?as	 ?a	 ?way	 ?to	 ?use	 ?market	 ?influence	 ?to	 ?promote	 ?competition	 ?and	 ?increase	 ?efficiency	 ?while	 ?at	 ?the	 ?same	 ?time	 ?increasing	 ?grid	 ?security	 ?and	 ?contributing	 ?to	 ?slowing	 ?climate	 ?change	 ??	 ?particularly	 ?through	 ?integration	 ?of	 ?renewables	 ?into	 ?the	 ?new	 ?grid	 ?(Clastres,	 ?2011).	 ?	 ?Despite	 ?the	 ?promise,	 ?research	 ?on	 ?smart	 ?grid	 ?and	 ?smart	 ?meter	 ?roll-??out	 ?is	 ?already	 ?showing	 ?efficiencies	 ?and	 ?energy	 ?savings	 ?less	 ?than	 ?predicted,	 ?with	 ?researchers	 ?emphasizing	 ?the	 ?influence	 ?of	 ?upfront	 ?institutional	 ?and	 ?hardware	 ?decisions	 ?that	 ?affect	 ?the	 ?energy	 ?efficiencies	 ?and	 ?savings	 ?within	 ?the	 ?network	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?	 ?This	 ?shows	 ?the	 ?importance	 ?of	 ?developing	 ?early	 ?understanding	 ?of	 ?how	 ?design	 ?and	 ?institutional	 ?processes	 ?may	 ?affect	 ?how	 ?close	 ?projects	 ?come	 ?in	 ?achieving	 ?their	 ?stated	 ?goals.	 ?	 ?Smart	 ?grid	 ?operations	 ?focus	 ?on	 ?six	 ?areas:	 ?optimization	 ?of	 ?grid	 ?operation	 ?and	 ?utilization,	 ?optimization	 ?of	 ?grid	 ?infrastructure,	 ?integration	 ?of	 ?decentralized	 ?energy	 ?resources,	 ?enhanced	 ?information	 ?and	 ?communications	 ?technology	 ?(ICT)	 ?services,	 ?active	 ?distribution	 ?grids,	 ?and	 ?new	 ?markets	 ?and	 ?end	 ?users	 ?(Agrell	 ?et	 ?al.,	 ?2012).	 ?	 ?	 ?These	 ?areas	 ?represent	 ?the	 ?more	 ?European	 ?approach	 ?to	 ?looking	 ?at	 ?smart	 ?grids,	 ?and	 ?there	 ?have	 ?been	 ?technical	 ?and	 ?social	 ?lessons	 ?learned	 ?within	 ?these	 ?areas	 ??	 ?from	 ?the	 ?need	 ?to	 ?horizontally	 ?integrate	 ?market	 ?actors	 ?to	 ?technical	 ?issues	 ?with	 ?grid	 ?interconnections.	 ?	 ?The	 ?energy	 ?system	 ?or	 ??grid?	 ?consists	 ?of	 ?generation,	 ?transmission	 ?and	 ?distribution,	 ?supply	 ?or	 ?access	 ?interface,	 ?and	 ?a	 ?customer	 ?load.	 ?	 ?Due	 ?to	 ?current	 ?institutional	 ?structures,	 ?actors	 ?working	 ?at	 ?various	 ?levels	 ?and	 ?on	 ?various	 ?energy	 ?services	 ?can	 ?have	 ?competing	 ?interests	 ?and	 ?economic	 ?incentives	 ?for	 ?various	 ?grid	 ?upgrades	 ?(Agrell	 ?et	 ?al.,	 ?2012).	 ?	 ?Electricity	 ?or	 ?gas	 ?utilities	 ?and	 ?network	 ?operators	 ?are	 ?often	 ?market	 ?monopolies,	 ?and	 ?for	 ?electrical	 ?distribution	 ?monopolies	 ?are	 ?often	 ?reinforced	 ?by	 ?high	 ?barriers	 ?to	 ?entry	 ?for	 ?incoming	 ?providers	 ?(Agrell	 ?et	 ?al.,	 ?2012).	 ?	 ?	 ?	 ?In	 ?order	 ?for	 ?a	 ?transition	 ?towards	 ?smart	 ?grids	 ?to	 ?result	 ?in	 ?many	 ?of	 ?the	 ?benefits	 ?being	 ?proclaimed,	 ?it	 ?may	 ?be	 ?necessary	 ?to	 ?more	 ?explicitly	 ?review	 ?barriers	 ?to	 ?entry	 ?for	 ?new	 ?actors	 ?in	 ?the	 ?system	 ?as	 ?well	 ?as	 ?to	 ?consider	 ?carefully	 ?unbundling	 ?requirements	 ?for	 ?	 ? 10	 ?energy	 ?producers	 ?and	 ?transmitters	 ?(Agrell	 ?et	 ?al.,	 ?2012).	 ?	 ?Many	 ?current	 ?electricity	 ?policies	 ?are	 ?biased	 ?towards	 ?assisting	 ?institutions	 ?that	 ?are	 ?already	 ?within	 ?the	 ?market,	 ?and	 ?promoting	 ?existing	 ?technologies	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012).	 ?	 ?	 ?	 ?It	 ?has	 ?been	 ?noted	 ?that	 ?smart	 ?grid	 ?deployment	 ?and	 ?implementation	 ?is	 ?outpacing	 ?associated	 ?public	 ?policy	 ?and	 ?even	 ?consideration	 ?of	 ?project	 ?implications	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012).	 ?	 ?Such	 ?developments	 ?have	 ?resulted	 ?in	 ?a	 ?call	 ?to	 ?carefully	 ?analyze	 ?the	 ?scope	 ?of	 ?social	 ?benefits	 ?of	 ?such	 ?rollouts	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012).	 ?	 ?Appropriate	 ?regulation	 ?for	 ?smart	 ?grids	 ?is	 ?particularly	 ?important	 ?due	 ?to	 ?uncertainty	 ?about	 ?the	 ?potential	 ?benefits	 ?achieved	 ?by	 ?the	 ?technology,	 ?uncertainty	 ?in	 ?how	 ?this	 ?technology	 ?may	 ?influence	 ?consumer	 ?behaviour,	 ?and	 ?uncertainty	 ?in	 ?how	 ?benefits	 ?will	 ?be	 ?distributed	 ?or	 ?shared	 ?between	 ?actors	 ?(Clastres,	 ?2011).	 ?	 ?Although	 ?significant	 ?investment	 ?is	 ?going	 ?into	 ?the	 ?roll-??out	 ?of	 ?smart	 ?meters	 ?and	 ?smart	 ?grids,	 ?it	 ?is	 ?clear	 ?that	 ?if	 ?the	 ?human	 ?and	 ?social	 ?dimensions	 ?of	 ?these	 ?projects	 ?are	 ?not	 ?addressed	 ??	 ?inclusive	 ?of	 ?questions	 ?regarding	 ?who	 ?will	 ?reap	 ?the	 ?benefits	 ?	 ??	 ?then	 ?these	 ?technologies	 ?will	 ?not	 ?be	 ?able	 ?to	 ?achieve	 ?their	 ?promised	 ?benefits	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?	 ?If	 ?smart	 ?grids	 ?are	 ?to	 ?become	 ?a	 ?highly	 ?utilized,	 ?mainstream	 ?technology,	 ?institutional	 ?power	 ?dynamics,	 ?arrangements,	 ?and	 ?incentives	 ?will	 ?need	 ?to	 ?be	 ?examined	 ?(Ngar-??yin	 ?Mah,	 ?Van	 ?der	 ?Vleuten,	 ?Chi-??man	 ?Ip,	 ?&	 ?Ronald	 ?Hills,	 ?2012)	 ?as	 ?will	 ?issues	 ?of	 ?energy	 ?poverty	 ?(Sarah	 ?J.	 ?Darby,	 ?2012)	 ?and	 ?public	 ?perception	 ?(Mah,	 ?Van	 ?der	 ?Vleuten,	 ?Hills,	 ?&	 ?Tao,	 ?2012).	 ?2.2.4 What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?	 ?Smart	 ?grid	 ?literature	 ?currently	 ?treats	 ?integrated	 ?thinking	 ?as	 ?synonymous	 ?with	 ?integrated	 ?technology.	 ?	 ?Although	 ?it	 ?directly	 ?impacts	 ?the	 ?adoption	 ?and	 ?success	 ?of	 ?technologies,	 ?little	 ?focus	 ?seems	 ?to	 ?be	 ?placed	 ?on	 ?social	 ?and	 ?institutional	 ?learning	 ?beyond	 ?creating	 ?technical	 ?capabilities	 ?for	 ?smart	 ?grid	 ?integration	 ?and	 ?expansion	 ?(Verbong	 ?et	 ?al.,	 ?2013).	 ?	 ?Such	 ?learning	 ?would	 ?be	 ?useful	 ?in	 ?order	 ?to	 ?integrate	 ?the	 ?human	 ?and	 ?technical	 ?elements	 ?of	 ?the	 ?systems.	 ?	 ?At	 ?the	 ?same	 ?time	 ?that	 ?a	 ?mainly	 ?technical	 ?focus	 ?is	 ?being	 ?shown	 ?by	 ?this	 ?literature,	 ?there	 ?are	 ?however	 ?claims	 ?made	 ?that	 ?smart	 ?grids	 ?will	 ?allow	 ?for	 ?customer	 ?learning	 ?that	 ?will	 ?result	 ?in	 ?the	 ?ability	 ?to	 ?reduce	 ?energy	 ?bills	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?2.2.5 What	 ?Design	 ?Criteria	 ?Emerge?	 ?	 ?Smart	 ?grid	 ?implementation	 ?may	 ?result	 ?in	 ?classically	 ?vertical	 ?institutional	 ?systems	 ?moving	 ?towards	 ?horizontally	 ?integrated	 ?systems	 ?with	 ?actors	 ?having	 ?control	 ?at	 ?a	 ?local	 ?level	 ?(Agrell	 ?et	 ?al.,	 ?2012).	 ?	 ?Due	 ?to	 ?this	 ?new	 ?structure	 ?of	 ?actors,	 ?Agrell	 ?et	 ?al.	 ?call	 ?for	 ?analysis	 ?of	 ?agent	 ?interactions	 ?using	 ?team	 ?theory	 ?rather	 ?than	 ?viewing	 ?agents	 ?individually.	 ?While	 ?little	 ?effort	 ?is	 ?being	 ?placed	 ?on	 ?the	 ?social	 ?side	 ?of	 ?smart	 ?grid	 ?implementation,	 ?more	 ?emphasis	 ?in	 ?this	 ?area	 ?may	 ?be	 ?beneficial	 ??	 ?a	 ?lesson	 ?that	 ?could	 ?also	 ?be	 ?used	 ?by	 ?the	 ?buildings	 ?industry	 ?where	 ?a	 ?similar	 ?neglect	 ?exists.	 ?	 ?On	 ?the	 ?other	 ?hand,	 ?engineering	 ?effort	 ?is	 ?being	 ?focused	 ?on	 ?how	 ?new	 ?technological	 ?innovations	 ?enable	 ?distributed	 ?energy	 ?generation,	 ?distributed	 ?energy	 ?storage,	 ?and	 ?demand	 ?side	 ?	 ? 11	 ?load	 ?management	 ?(Alagoz	 ?et	 ?al.,	 ?2012).	 ?	 ?While	 ?technical	 ?lessons	 ?are	 ?not	 ?discussed	 ?at	 ?length	 ?in	 ?this	 ?paper,	 ?they	 ?provide	 ?knowledge	 ?that	 ?should	 ?be	 ?transferred	 ?to	 ?the	 ?building	 ?industry	 ?should	 ?these	 ?types	 ?of	 ?technologies	 ?be	 ?integrated	 ?into	 ?projects.	 ?	 ?Lessons	 ?with	 ?respect	 ?to	 ?load	 ?balancing	 ?are	 ?of	 ?particular	 ?importance.	 ?	 ?	 ?From	 ?this	 ?brief	 ?overview	 ?analysis	 ?of	 ?the	 ?smart	 ?grid	 ?literature,	 ?the	 ?smart	 ?grid	 ?movement	 ?provides	 ?design	 ?criteria	 ?for	 ?building	 ?networks	 ?through	 ?its	 ?analysis	 ?of	 ?energy	 ?balance	 ?within	 ?a	 ?network,	 ?demand-??side	 ?management	 ?opportunities,	 ?and	 ?institutional	 ?dynamics	 ?analysis.	 ?	 ?Issues	 ?for	 ?consideration	 ?include	 ?the	 ?integration	 ?of	 ?capacity	 ?building	 ?for	 ?actors	 ?within	 ?the	 ?energy	 ?network	 ?such	 ?as	 ?on	 ?the	 ?side	 ?of	 ?building	 ?operators	 ?and	 ?independent	 ?power	 ?producers.	 ?	 ?This	 ?could	 ?include	 ?understanding	 ?capacities	 ?of	 ?current	 ?and	 ?planned	 ?systems	 ?in	 ?terms	 ?of	 ?their	 ?ability	 ?to	 ?be	 ?used	 ?for	 ?demand	 ?response,	 ?and	 ?how	 ?the	 ?functioning	 ?of	 ?institutions	 ?aids	 ?or	 ?prevents	 ?system	 ?effectiveness	 ?and	 ?efficiencies.	 ?	 ?	 ?	 ?As	 ?a	 ?starting	 ?point,	 ?the	 ?current	 ?framing	 ?of	 ?smart	 ?grids	 ?as	 ?a	 ?technical	 ?problem	 ?and	 ?advancement	 ?would	 ?benefit	 ?from	 ?a	 ?reframing	 ?that	 ?takes	 ?into	 ?account	 ?an	 ?understanding	 ?of	 ?the	 ?institutional	 ?and	 ?social	 ?dimensions	 ?of	 ?the	 ?energy	 ?network	 ?(Agrell	 ?et	 ?al.,	 ?2012;	 ?Mah	 ?et	 ?al.,	 ?2012;	 ?Ngar-??yin	 ?Mah	 ?et	 ?al.,	 ?2012).	 ?	 ?Such	 ?an	 ?understanding	 ?could	 ?again,	 ?also	 ?be	 ?applied	 ?to	 ?the	 ?buildings	 ?sector.	 ?	 ?Based	 ?on	 ?current	 ?understanding	 ?of	 ?smart	 ?grid	 ?benefits	 ?and	 ?issues,	 ?it	 ?would	 ?also	 ?be	 ?wise	 ?not	 ?to	 ?assume	 ?that	 ?increased	 ?monitoring	 ?and	 ?controls	 ?equipment	 ?is	 ?an	 ?efficiency	 ?panacea	 ?for	 ?the	 ?buildings	 ?industry	 ?and	 ?to	 ?carefully	 ?analyze	 ?issues	 ?that	 ?have	 ?arisen	 ?in	 ?this	 ?field	 ?before	 ?applying	 ?the	 ?strategy	 ?to	 ?buildings.	 ?	 ?	 ?Smart	 ?Grids	 ?	 ? ? May	 ?require	 ?classically	 ?vertical	 ?institutional	 ?regimes	 ?to	 ?function	 ?as	 ?horizontal	 ?networks	 ?? Need	 ?for	 ?local	 ?control	 ?? Projects	 ?focus	 ?on	 ?enabling	 ?of	 ?distributed	 ?generation	 ?? Stabilization	 ?of	 ?grid	 ?through	 ?control,	 ?information,	 ?and	 ?storage	 ?? Important	 ?to	 ?understand	 ?demand	 ?side	 ?load	 ?management	 ?and	 ?load	 ?balancing	 ?? Desire	 ?for	 ?increasing	 ?share	 ?of	 ?renewables	 ?? Social	 ?and	 ?behavioural	 ?issues	 ?need	 ?to	 ?be	 ?considered	 ?? Energy	 ?balance	 ?issues	 ?key	 ?to	 ?feasibility	 ?? Actor	 ?capacity	 ?building	 ?key	 ?to	 ?success	 ?	 ? Table	 ?2-??	 ?1?	 ?Themes	 ?from	 ?the	 ?Smart	 ?Grid	 ?Literature	 ?	 ?2.3 Distributed	 ?Energy	 ?Systems	 ?2.3.1 What	 ?are	 ?They?	 ?	 ?Decentralized	 ?or	 ?distributed	 ?energy	 ?systems	 ?(DES)	 ?are	 ?increasingly	 ?being	 ?prioritized	 ?in	 ?energy	 ?policy	 ?such	 ?as	 ?that	 ?in	 ?the	 ?UK	 ?(Wolfe,	 ?2008).	 ?	 ?Wolfe	 ?(2008)	 ?	 ? 12	 ?defines	 ??decentralized?	 ?or	 ??on-??site?	 ?energy	 ?systems	 ?as	 ??the	 ?production	 ?and	 ?distribution	 ?of	 ?energy	 ?within	 ?the	 ?boundaries	 ?of,	 ?or	 ?located	 ?nearby	 ?and	 ?directly	 ?connected	 ?to,	 ?a	 ?building,	 ?community	 ?or	 ?development?	 ?inclusive	 ?of	 ?heat,	 ?electricity,	 ?or	 ?energy-??carrying	 ?gas	 ?(Wolfe,	 ?2008).	 ?	 ?	 ?	 ?Like	 ?the	 ?smart-??grid	 ?literature,	 ?the	 ?distributed	 ?generation	 ?literature	 ?stresses	 ?the	 ?advantages	 ?of	 ?reducing	 ?peak	 ?demand,	 ?lowering	 ?costs,	 ?reducing	 ?emissions,	 ?and	 ?providing	 ?new	 ?options	 ?for	 ?consumers	 ?in	 ?how	 ?they	 ?interact	 ?with	 ?the	 ?energy	 ?utility	 ?(Coll-??Mayor	 ?et	 ?al.,	 ?2004).	 ?	 ?Some	 ?literature	 ?also	 ?points	 ?to	 ?future	 ?energy	 ?management	 ?systems	 ?(EMS)	 ?that	 ?can	 ?communicate	 ?between	 ?producers	 ?and	 ?end-??users	 ?in	 ?order	 ?to	 ?optimize	 ?the	 ?system,	 ?acting	 ?as	 ?a	 ??smart	 ?grid?	 ?or	 ??virtual	 ?utility?	 ?(Coll-??Mayor	 ?et	 ?al.,	 ?2004).	 ?	 ?Some	 ?researchers	 ?are	 ?calling	 ?this	 ?integration	 ?the	 ??Super	 ?Smart	 ?Grid?	 ?approach	 ?(Battaglini,	 ?Lilliestam,	 ?Haas,	 ?&	 ?Patt,	 ?2009).	 ?	 ?In	 ?most	 ?research,	 ?smart	 ?grids	 ?and	 ?distributed	 ?energy	 ?systems	 ?(DES)	 ?are	 ?not	 ?considered	 ?to	 ?be	 ?wholly	 ?separate.	 ?	 ?Smart	 ?grid	 ?literature	 ?has	 ?obvious	 ?links	 ?to	 ?other	 ?areas,	 ?such	 ?as	 ?through	 ?research	 ?that	 ?has	 ?looked	 ?at	 ?how	 ?combining	 ?strategies	 ?for	 ?increasing	 ?distributed	 ?wind	 ?power	 ?generation	 ?and	 ?the	 ?market	 ?share	 ?of	 ?electric	 ?vehicles	 ?may	 ?benefit	 ?both	 ?transportation	 ?and	 ?energy	 ?systems	 ?(Bellekom,	 ?Benders,	 ?Pelgr?m,	 ?&	 ?Moll,	 ?2012).	 ?	 ?Smart	 ?grid	 ?literature	 ?is	 ?focused	 ?on	 ?the	 ?electrical	 ?grid,	 ?whereas	 ?distributed	 ?energy	 ?literature	 ?looks	 ?at	 ?both	 ?thermal	 ?energy	 ?systems	 ?as	 ?well	 ?as	 ?electrical	 ?networks	 ?with	 ?various	 ?points	 ?of	 ?production	 ?and	 ?use.	 ?2.3.2 What	 ?is	 ?its	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?	 ?The	 ?main	 ?claim	 ?of	 ?this	 ?literature	 ?is	 ?that	 ?decentralization	 ?of	 ?energy	 ?production	 ?will	 ?allow	 ?for	 ?an	 ?increased	 ?share	 ?of	 ?renewables,	 ?new	 ?market	 ?participants,	 ?a	 ?decreased	 ?need	 ?for	 ?additional	 ?capacity,	 ?and	 ?decreased	 ?transportation	 ?losses	 ?which	 ?result	 ?in	 ?higher	 ?overall	 ?efficiencies.	 ?	 ?Decentralized	 ?energy	 ?systems	 ?are	 ?considered	 ?to	 ?offer	 ?new	 ?approaches	 ?for	 ?energy	 ?producers,	 ?networks,	 ?delivery	 ?mechanisms,	 ?user	 ?interfaces,	 ?and	 ?policy	 ?frameworks	 ?(Wolfe,	 ?2008).	 ?	 ?Networks	 ?that	 ?utilize	 ?technologies	 ?such	 ?as	 ?combined	 ?heat	 ?and	 ?power	 ?or	 ?that	 ?produce	 ?better	 ?energy	 ?quality	 ?matching	 ?between	 ?provision	 ?and	 ?end-??use	 ?lead	 ?to	 ?better	 ?network	 ?energy	 ?efficiencies	 ?(Wolfe,	 ?2008).	 ?	 ?Current	 ?projects	 ?focus	 ?on	 ?distributed	 ?energy	 ?generation	 ?either	 ?as	 ?a	 ?subsidized	 ?market	 ?integration	 ?into	 ?the	 ?main	 ?grid	 ?(Brandoni	 ?&	 ?Polonara,	 ?2012)	 ?or	 ?to	 ?form	 ?micro	 ?grids	 ?for	 ?islanded	 ?communities	 ?(Cosentino	 ?et	 ?al.,	 ?2012).	 ?	 ?The	 ?main	 ?benefits	 ?of	 ?these	 ?projects	 ?accrue	 ?to	 ?subsidized	 ?generators	 ?who	 ?are	 ?able	 ?to	 ?make	 ?a	 ?return	 ?on	 ?their	 ?investment	 ?through	 ?guaranteed	 ?power	 ?purchasing	 ?of	 ?the	 ?utility	 ?(Clastres,	 ?2011)	 ?and	 ?for	 ?communities	 ?that	 ?are	 ?able	 ?to	 ?gain	 ?efficiencies	 ?through	 ?use	 ?of	 ?	 ?technologies	 ?such	 ?as	 ?combined-??heat	 ?and	 ?power	 ?generation	 ?(Strachan	 ?&	 ?Dowlatabadi,	 ?2002).	 ?	 ?These	 ?projects	 ?require	 ?a	 ?strong	 ?business	 ?case	 ?that	 ?may	 ?be	 ?dependent	 ?on	 ?government	 ?subsidies	 ?or	 ?avoided	 ?payments	 ?such	 ?as	 ?carbon	 ?taxes	 ?(Giordano	 ?&	 ?Fulli,	 ?2011).	 ?	 ?If	 ?the	 ?renewables	 ?generation	 ?mix	 ?is	 ?high,	 ?storage	 ?becomes	 ?an	 ?issue	 ?(Boston,	 ?2013;	 ?Clastres,	 ?2011;	 ?Stoeglehner,	 ?Niemetz,	 ?&	 ?Kettl,	 ?2011).	 ?	 ?One	 ?of	 ?the	 ?main	 ?claimed	 ?benefits	 ?is	 ?the	 ?reduction	 ?of	 ?transmission	 ?losses	 ?when	 ?generation	 ?is	 ?able	 ?to	 ?be	 ?closer	 ?	 ? 13	 ?to	 ?consumption	 ?(Bayod-??R?jula,	 ?2009;	 ?Strachan	 ?&	 ?Dowlatabadi,	 ?2002).	 ?	 ?Political	 ?and	 ?social	 ?benefits	 ?may	 ?be	 ?gained	 ?by	 ?having	 ?local	 ?control	 ?over	 ?distributed	 ?energy	 ?systems,	 ?providing	 ?opportunities	 ?for	 ?learning	 ?(O?Brien	 ?&	 ?Hope,	 ?2010).	 ?	 ?There	 ?are	 ?however	 ?often	 ?tensions	 ?over	 ?implementation	 ?strategy	 ?based	 ?on	 ?existing	 ?relationships	 ?between	 ?power	 ?generation	 ?companies,	 ?transmission	 ?companies,	 ?jurisdictional	 ?governments,	 ?and	 ?consumers	 ?(O?Brien	 ?&	 ?Hope,	 ?2010).	 ?	 ?	 ?	 ?Distributed	 ?generation	 ?technologies	 ?are	 ?expected	 ?to	 ?offer	 ?new	 ?market	 ?opportunities	 ?and	 ?the	 ?potential	 ?for	 ?lowering	 ?prices	 ?through	 ?market	 ?forces,	 ?yet	 ?are	 ?faced	 ?with	 ?many	 ?technical	 ?issues	 ?with	 ?respect	 ?to	 ?grid	 ?integration	 ?and	 ?overall	 ?system	 ?reliability	 ?(Bayod-??R?jula,	 ?2009).	 ?	 ?While	 ?innovations	 ?of	 ?the	 ?network	 ?architecture	 ?of	 ?the	 ?grid	 ?itself	 ?are	 ?often	 ?mentioned	 ?in	 ?the	 ?literature,	 ?few	 ?researchers	 ?mention	 ?innovations	 ?needed	 ?in	 ?the	 ?institutional	 ?and	 ?community	 ?architectures	 ?that	 ?support	 ?such	 ?distributed	 ?generation	 ?systems.	 ?	 ?Such	 ?research	 ?would	 ?be	 ?beneficial	 ?in	 ?understanding	 ?how	 ?to	 ?adopt	 ?these	 ?technologies	 ?into	 ?the	 ?building	 ?landscape.	 ?	 ?Smart	 ?micro	 ?grids	 ?are	 ?envisioned	 ?in	 ?which	 ?energy	 ?consumers	 ?that	 ?formerly	 ?only	 ?had	 ?the	 ?ability	 ?to	 ?consume	 ?from	 ?the	 ?grid	 ?will	 ?be	 ?able	 ?to	 ?actively	 ?switch	 ?between	 ?acting	 ?as	 ?a	 ?consumer	 ?or	 ?a	 ?local	 ?energy	 ?distributer,	 ?contributing	 ?to	 ?the	 ?energy	 ?supply	 ?(Alagoz	 ?et	 ?al.,	 ?2012).	 ?	 ?Such	 ?a	 ?shift	 ?could	 ?allow	 ?a	 ?dynamic	 ?hierarchy	 ?of	 ?roles	 ?to	 ?emerge	 ?for	 ?actors	 ?within	 ?the	 ?energy	 ?network,	 ?currently	 ?being	 ?called	 ?a	 ??User-??Mode	 ?Network?	 ?model	 ?(Alagoz	 ?et	 ?al.,	 ?2012).	 ?	 ?Metabolic	 ?networks	 ?are	 ?used	 ?as	 ?an	 ?analogy	 ?for	 ?distributed	 ?systems	 ?that	 ?balance	 ?energy	 ?consumption	 ?and	 ?demand	 ?and	 ?promote	 ?energy	 ?efficiency	 ?and	 ?social	 ?development	 ?(Alagoz	 ?et	 ?al.,	 ?2012).	 ?2.3.3 What	 ?Issues	 ?are	 ?Emerging?	 ?	 ?	 ?	 ?Smart	 ?micro	 ?grid	 ?projects	 ?are	 ?sometimes	 ?considered	 ?through	 ?a	 ?socio-??technical	 ?systems	 ?lens,	 ?with	 ?an	 ?emphasis	 ?on	 ?the	 ?social	 ?and	 ?cultural	 ?transformation	 ?needed	 ?to	 ?successfully	 ?implement	 ?such	 ?projects	 ?(Alvial-??Palavicino	 ?et	 ?al.,	 ?2011).	 ?	 ?The	 ?flexible	 ?nature	 ?of	 ?distributed	 ?generation	 ?is	 ?considered	 ?to	 ?be	 ?an	 ?ideal	 ?analogy	 ??	 ?a	 ?new	 ?opportunity	 ?to	 ?re-??conceptualize	 ?the	 ?energy	 ?system	 ?in	 ?a	 ?way	 ?that	 ?allows	 ?more	 ?participation	 ?-??	 ?to	 ?the	 ?flexible	 ?social	 ?and	 ?institutional	 ?structures	 ?that	 ?allow	 ?the	 ?community	 ?to	 ?engage	 ?with	 ?projects	 ?(Alvial-??Palavicino	 ?et	 ?al.,	 ?2011).	 ?	 ?Alvial-??Palavicino	 ?et	 ?al.?s	 ?approach	 ?looks	 ?at	 ?social	 ?practice,	 ?industrial	 ?networks,	 ?regulation,	 ?and	 ?symbolic	 ?meaning	 ?in	 ?addition	 ?to	 ?technology	 ?change.	 ?	 ?	 ?Themes	 ?that	 ?emerge	 ?through	 ?this	 ?framework	 ?include	 ?the	 ?building	 ?of	 ?social	 ?capital,	 ?trust,	 ?and	 ?reflexivity	 ?within	 ?the	 ?system	 ?(Alvial-??Palavicino	 ?et	 ?al.,	 ?2011).	 ?	 ??Cultural	 ?and	 ?social	 ?aspects	 ?of	 ?energy	 ?and	 ?technology	 ?are	 ?reflected	 ?on	 ?the	 ?way	 ?communities	 ?react	 ?to	 ?the	 ?introduction	 ?of	 ?non-??conventional	 ?renewable	 ?energy,	 ?with	 ?locality,	 ?ownership,	 ?trust,	 ?symbolic,	 ?affective	 ?and	 ?discursive	 ?aspects	 ?affecting	 ?the	 ?behavior	 ?of	 ?people	 ?in	 ?relation	 ?with	 ?energy?	 ?-??	 ?(Walker	 ?et	 ?al.,	 ?2010;	 ?Devine-??Wright,	 ?2007).	 ?	 ?Questions	 ?of	 ?cultural	 ?understanding	 ?and	 ?interaction	 ?with	 ?energy	 ?grids	 ??	 ?particularly	 ?with	 ?respect	 ?to	 ?situations	 ?when	 ?demand	 ?is	 ?greater	 ?than	 ?available	 ?supply	 ??	 ?have	 ?been	 ?shown	 ?to	 ?influence	 ?community	 ?understanding	 ?and	 ?interaction	 ?with	 ?their	 ?renewable	 ?energy	 ?	 ? 14	 ?systems	 ?(Blasques	 ?&	 ?Pinho,	 ?2012).	 ?	 ?Specific	 ?technical	 ?issues	 ?have	 ?also	 ?emerged,	 ?such	 ?as	 ?how	 ?to	 ?integrate	 ?various	 ?capacities	 ?with	 ?the	 ?grid	 ?in	 ?an	 ?efficient	 ?manner,	 ?what	 ?communication	 ?protocols	 ?should	 ?be	 ?used,	 ?or	 ?how	 ?to	 ?ensure	 ?that	 ?certain	 ?portions	 ?of	 ?the	 ?network	 ?can	 ?be	 ?protected	 ?from	 ?failure	 ?of	 ?other	 ?components.	 ?	 ?These	 ?and	 ?other	 ?issues	 ?should	 ?be	 ?considered	 ?when	 ?transporting	 ?these	 ?types	 ?of	 ?systems	 ?to	 ?other	 ?industries.	 ?2.3.4 What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?	 ?Distributed	 ?generation	 ?literature	 ?uses	 ??integrated?	 ?thinking	 ?to	 ?combine	 ?current	 ?power	 ?production	 ?and	 ?transmission	 ?systems	 ?with	 ?newer	 ?renewable	 ?systems.	 ?	 ?It	 ?offers	 ?the	 ?potential	 ?to	 ?use	 ?differences	 ?in	 ?resources,	 ?inclusive	 ?of	 ?efficiency	 ?and	 ?cost	 ?differences,	 ?for	 ?optimizing	 ?energy	 ?production	 ?(Dowlatabadi,	 ?1984).	 ?	 ?Combined	 ?heat	 ?and	 ?power	 ?(CHP)	 ?projects	 ?that	 ?tie	 ?into	 ?district	 ?energy	 ?systems	 ?integrate	 ?the	 ?heating	 ?and	 ?electrical	 ?use	 ?of	 ?the	 ?community	 ?that	 ?they	 ?serve.	 ?	 ?Institutional	 ?capacity	 ?building	 ?for	 ?local	 ?utilities	 ?as	 ?they	 ?integrate	 ?and	 ?work	 ?with	 ?larger	 ?scale	 ?providers	 ?is	 ?posited	 ?as	 ?a	 ?societal	 ?and	 ?economic	 ?benefit	 ?through	 ?creation	 ?of	 ?skills,	 ?relationships,	 ?and	 ?jobs	 ?(O?Brien	 ?&	 ?Hope,	 ?2010).	 ?2.3.5 What	 ?Design	 ?Criteria	 ?Emerge?	 ?	 ?The	 ?balance	 ?of	 ?generation	 ?capacity	 ?through	 ?integration	 ?of	 ?wind	 ?and	 ?solar	 ?is	 ?seen	 ?as	 ?a	 ?future	 ?integrated	 ?approach,	 ?as	 ?are	 ?dual	 ?and	 ?tri-??generation	 ?CHP	 ?district	 ?energy	 ?systems.	 ?	 ?Storage	 ?integration	 ?will	 ?be	 ?a	 ?main	 ?technical	 ?issue,	 ?with	 ?possible	 ?implications	 ?for	 ?the	 ?transportation	 ?sector	 ?and	 ?the	 ?use	 ?of	 ?electric	 ?vehicles	 ?(Kiviluoma	 ?&	 ?Meibom,	 ?2010).	 ?	 ?Thermal	 ?storage	 ?is	 ?not	 ?as	 ?frequently	 ?spoken	 ?of	 ?but	 ?could	 ?be	 ?part	 ?of	 ?this	 ?discussion	 ?and	 ?links	 ?to	 ?the	 ?green	 ?building	 ?literature	 ??	 ?both	 ?through	 ?storage	 ?in	 ?additional	 ?thermal	 ??batteries?	 ?and	 ?thermal	 ?mass	 ?of	 ?buildings	 ?which	 ?could	 ?shift	 ?load	 ?curves	 ?(Ban,	 ?Kraja?i?,	 ?Grozdek,	 ??urko,	 ?&	 ?Dui?,	 ?2012;	 ?Blarke,	 ?Yazawa,	 ?Shakouri,	 ?&	 ?Carmo,	 ?2012;	 ?T.	 ?Y.	 ?Chen,	 ?2001).	 ?	 ?Thermal	 ?storage	 ?and	 ?CHP	 ?systems	 ?increase	 ?the	 ?need	 ?for	 ?geographical	 ?understanding	 ?of	 ?solutions	 ?(Stoeglehner	 ?et	 ?al.,	 ?2011).	 ?	 ?For	 ?systems	 ?in	 ?remote	 ?communities,	 ?integration	 ?with	 ?local	 ?operators	 ?and	 ?consumers	 ?likely	 ?becomes	 ?even	 ?more	 ?important	 ?in	 ?thinking	 ?about	 ?institutional	 ?learning.	 ?	 ?Combined	 ?generation	 ?projects	 ?have	 ?in	 ?recent	 ?years	 ?been	 ?the	 ?venue	 ?for	 ?study	 ?of	 ?exergy,	 ?environmental,	 ?and	 ?economic	 ?assessment,	 ?with	 ?studies	 ?showing	 ?comparatively	 ?higher	 ?efficiencies	 ?as	 ?one	 ?moves	 ?from	 ?net	 ?electricity	 ?generation	 ?to	 ?trigeneration	 ?plants	 ?(Ahmadi,	 ?Rosen,	 ?&	 ?Dincer,	 ?2012).	 ?	 ?Such	 ?approaches	 ?show	 ?a	 ?proficiency	 ?in	 ?matching	 ?quality	 ?of	 ?energy	 ?with	 ?end-??use	 ?service	 ?and	 ?increasing	 ?overall	 ?efficiency.	 ?	 ?This	 ?analysis	 ?could	 ?assist	 ?in	 ?preventing	 ?high-??quality	 ?energy	 ?sources	 ?being	 ?used	 ?for	 ?low-??quality	 ?energy	 ?end-??uses	 ?such	 ?as	 ?space	 ?heating	 ?and	 ?identifying	 ?locations	 ?and	 ?significance	 ?of	 ?energy	 ?degradation	 ?(Ahmadi	 ?et	 ?al.,	 ?2012;	 ?Al-??Ghandoor,	 ?Phelan,	 ?Villalobos,	 ?&	 ?Jaber,	 ?2010).	 ?	 ?	 ?	 ?Challenges	 ?for	 ?distributed	 ?generation	 ?include	 ?meeting	 ?increasing	 ?peak	 ?load	 ?demands	 ?and	 ?balancing	 ?increasing	 ?percentages	 ?of	 ?intermittent	 ?distributed	 ?energy	 ?	 ? 15	 ?contributions	 ?to	 ?the	 ?grid	 ?(Blokhuis,	 ?Brouwers,	 ?Putten,	 ?&	 ?Schaefer,	 ?2011).	 ?	 ?Blokhuis	 ?et	 ?al.	 ?bring	 ?attention	 ?to	 ?the	 ?fact	 ?that	 ?distributed	 ?generation	 ?issues	 ?have	 ?been	 ?studied	 ?in	 ?detail	 ?using	 ?perspectives	 ?from	 ?finance,	 ?policy,	 ?regulation,	 ?and	 ?network	 ?control,	 ?but	 ?not	 ?peak	 ?load	 ?issues.	 ?	 ?Yet	 ?peak	 ?loads	 ?in	 ?urban	 ?environments	 ?are	 ?expected	 ?to	 ?be	 ?an	 ?energy	 ?issue	 ?for	 ?the	 ?network	 ?(Blokhuis	 ?et	 ?al.,	 ?2011).	 ?	 ?Blokhuis	 ?et	 ?al.	 ?stress	 ?that	 ?sustainable	 ?energy	 ?transitions	 ?will	 ?have	 ?a	 ?large	 ?consequence	 ?for	 ?the	 ?economic	 ?and	 ?financial	 ?viability	 ?of	 ?the	 ?energy	 ?network	 ?and	 ?choices	 ?about	 ?sustainable	 ?energy	 ?systems	 ??should	 ?be	 ?made	 ?from	 ?the	 ?viewpoint	 ?of	 ?the	 ?integral	 ?energy	 ?system?	 ?(Blokhuis	 ?et	 ?al.,	 ?2011).	 ?	 ?Taking	 ?this	 ?view	 ?would	 ?prioritize	 ?understanding	 ?system	 ?integrations	 ?and	 ?potential	 ?consequences	 ?for	 ?the	 ?network.	 ?	 ?The	 ?authors	 ?suggest	 ?that	 ?the	 ?greatest	 ?uncertainties	 ?of	 ?future	 ?scenarios	 ?arise	 ?from	 ?future	 ?socio-??demographic	 ?developments	 ?as	 ?well	 ?as	 ?uncertainty	 ?in	 ?the	 ?market	 ?penetration	 ?of	 ?new	 ?technologies.	 ?	 ?Heat	 ?pumps	 ?and	 ?electric	 ?vehicles	 ?are	 ?concluded	 ?to	 ?be	 ?the	 ?largest	 ?threat	 ?to	 ?peak	 ?load	 ?increases	 ?in	 ?such	 ?examples	 ?as	 ?in	 ?the	 ?Netherlands	 ?(Blokhuis	 ?et	 ?al.,	 ?2011).	 ?	 ?Such	 ?conclusions	 ?could	 ?have	 ?serious	 ?implications	 ?for	 ?the	 ?buildings	 ?industry,	 ?where	 ?heat	 ?pumps	 ?and	 ?electric	 ?vehicle	 ?stations	 ?are	 ?often	 ?incorporated.	 ?	 ?Several	 ?authors	 ?stress	 ?the	 ?importance	 ?of	 ?combining	 ??centralized?	 ?and	 ??decentralized?	 ?energy	 ?strategies	 ?to	 ?better	 ?integrate	 ?local	 ?and	 ?national	 ?energy	 ?landscapes	 ?(Brandoni	 ?&	 ?Polonara,	 ?2012).	 ?Authors	 ?such	 ?as	 ?Brandoni	 ?&	 ?Polonara	 ?argue	 ?that	 ?the	 ?site-??specific	 ?nature	 ?of	 ?renewable	 ?energy	 ?projects	 ?makes	 ?it	 ?particularly	 ?important	 ?to	 ?involve	 ?community	 ?members	 ?in	 ?the	 ?planning	 ?process.	 ?	 ?Establishing	 ?a	 ?Community	 ?Energy	 ?System	 ?(CES)	 ?is	 ?suggested	 ?as	 ?a	 ?possible	 ?way	 ?to	 ?increase	 ?energy	 ?efficiency,	 ?combining	 ?buildings	 ?so	 ?as	 ?to	 ?have	 ?a	 ?high	 ?enough	 ?overall	 ?demand	 ?to	 ?support	 ?technologies	 ?such	 ?as	 ?cogeneration.	 ?	 ?CES	 ?projects	 ?are	 ?also	 ?thought	 ?to	 ?allow	 ?opportunities	 ?to	 ?recover	 ?waste	 ?heat	 ?(Chung	 ?&	 ?Park,	 ?2010).	 ?	 ?The	 ?DES	 ?literature	 ?stresses	 ?the	 ?importance	 ?of	 ?load	 ?estimation	 ?in	 ?order	 ?to	 ?determine	 ?project	 ?feasibility	 ?and	 ?design	 ?(Chung	 ?&	 ?Park,	 ?2010).	 ?	 ?Feasibility	 ?studies	 ?also	 ?generally	 ?look	 ?at	 ?network	 ?consistency	 ?and	 ?security,	 ?demand	 ?management	 ?possibilities,	 ?metering	 ?and	 ?automation	 ?opportunities,	 ?and	 ?possibilities	 ?for	 ?use	 ?of	 ?local	 ?and	 ?renewable	 ?energy	 ?sources	 ?(Cosentino	 ?et	 ?al.,	 ?2012).	 ?	 ?These	 ?lessons	 ?of	 ?how	 ?to	 ?determine	 ?project	 ?feasibility	 ?and	 ?network	 ?integration	 ??	 ?both	 ?technically	 ?and	 ?socially	 ??	 ?are	 ?valuable	 ?should	 ?buildings	 ?be	 ?increasingly	 ?integrated	 ?as	 ?part	 ?of	 ?a	 ?distributed	 ?energy	 ?network.	 ?	 ?	 ? 16	 ?Distributed	 ?Generation	 ? ? Increased	 ?efficiency	 ?? Need	 ?for	 ?local	 ?control	 ?? Requires	 ?control	 ?of	 ?peak	 ?load	 ?? Enabling	 ?increasing	 ?share	 ?of	 ?renewables	 ?? Requires	 ?storage	 ?integration	 ?? Need	 ?to	 ?consider	 ?consistency	 ?of	 ?supply	 ?issues	 ?? Thermal	 ?considerations	 ?need	 ?to	 ?be	 ?accounted	 ?for	 ?? Actor	 ?network	 ?integration	 ?and	 ?capacity	 ?building	 ?needed	 ?? Matching	 ?of	 ?energy	 ?quality	 ?and	 ?use	 ?required	 ?? Network	 ?control	 ?and	 ?institutional	 ?integration	 ?planning	 ?needed	 ?? Financial	 ?feasibility	 ?must	 ?be	 ?met	 ?? Requires	 ?integration	 ?of	 ?various	 ?levels	 ?of	 ?energy	 ?policy	 ?? Best	 ?with	 ?involvement	 ?of	 ?local	 ?actors	 ?? Load	 ?estimation	 ?and	 ?demand	 ?key	 ?to	 ?success	 ?? Network	 ?consistency	 ?and	 ?security	 ?must	 ?be	 ?considered	 ?? Socio-??technical	 ?/cultural	 ?systems	 ?integration	 ?must	 ?be	 ?considered	 ?	 ? Table	 ?2-??	 ?2	 ??Themes	 ?from	 ?the	 ?Distributed	 ?Generation	 ?Literature	 ?	 ?2.4 Industrial	 ?Ecology	 ?2.4.1 What	 ?is	 ?it?	 ?	 ?	 ?	 ?Industrial	 ?ecology	 ?has	 ?no	 ?single	 ?definition.	 ?	 ?It	 ?has	 ?been	 ?called	 ??the	 ?science	 ?of	 ?sustainability?,	 ??a	 ?new	 ?paradigm	 ?with	 ?the	 ?potential	 ?to	 ?break	 ?through	 ?the	 ?stalemate	 ?in	 ?the	 ?game	 ?of	 ?sustainability?	 ?(Ehrenfeld,	 ?2004),	 ??an	 ?evolving	 ?framework	 ?for	 ?the	 ?analysis	 ?and	 ?design	 ?of	 ?public	 ?policy,	 ?corporate	 ?strategy,	 ?and	 ?technological	 ?systems	 ?and	 ?products?	 ?(Ehrenfeld,	 ?2000),	 ?and	 ??the	 ?study	 ?of	 ?all	 ?interactions	 ?between	 ?industrial	 ?systems	 ?and	 ?the	 ?environment?	 ?(Davis,	 ?Nikolic,	 ?&	 ?Dijkema,	 ?2010).	 ?	 ?At	 ?its	 ?core	 ?it	 ?is	 ?concerned	 ?with	 ?taking	 ?a	 ?systems	 ?perspective	 ?of	 ?socio-??technical	 ?networks	 ?in	 ?the	 ?pursuit	 ?of	 ?sustainability	 ?(Davis,	 ?Nikolic,	 ?&	 ?Dijkema,	 ?2010).	 ?	 ?In	 ?academia,	 ?industry,	 ?and	 ?government	 ?policy,	 ?various	 ?ideas	 ?and	 ?norms	 ?of	 ?what	 ?constitute	 ?best	 ?practices	 ?in	 ?industrial	 ?ecology	 ?have	 ?arisen	 ?(Ehrenfeld,	 ?2004).	 ?	 ?For	 ?the	 ?purposes	 ?of	 ?this	 ?thesis,	 ?industrial	 ?ecology	 ?can	 ?be	 ?considered	 ?to	 ?be	 ?the	 ?design	 ?and	 ?evaluation	 ?of	 ?human-??made	 ?processes	 ?and	 ?systems	 ?in	 ?terms	 ?of	 ?ecologically	 ?inspired	 ?principles.	 ?	 ?Such	 ?processes	 ?and	 ?systems	 ?are	 ?intended	 ?to	 ?enable	 ?resource	 ?sharing	 ?between	 ?previously	 ?separate	 ?systems.	 ?	 ?Some	 ?of	 ?the	 ?tools	 ?used	 ?within	 ?industrial	 ?ecology	 ?include	 ?substance	 ?flow	 ?analysis	 ?(Brunner,	 ?2012),	 ?the	 ?urban	 ?harvest	 ?approach	 ?(Agudelo-??Vera,	 ?Mels,	 ?Keesman,	 ?&	 ?Rijnaarts,	 ?2012),	 ?exergy	 ?analysis	 ?(Al-??Ghandoor	 ?et	 ?al.,	 ?2010;	 ?Seager	 ?&	 ?Theis,	 ?2002),	 ?and	 ?other	 ?quantifiable	 ?flow	 ?analyses.	 ?	 ?Industry	 ?applications	 ?of	 ?industrial-??ecology	 ?	 ? 17	 ?type	 ?approaches	 ?can	 ?be	 ?seen	 ?in	 ?programs	 ?such	 ?as	 ?the	 ?Natural	 ?Step,	 ?Natural	 ?Capitalism,	 ?or	 ?Cradle	 ?to	 ?Cradle	 ?(Ehrenfeld,	 ?2004).	 ?	 ?Many	 ?projects	 ?focus	 ?on	 ?industrial	 ?parks	 ?changing	 ?their	 ?flows	 ?of	 ?input	 ?and	 ?output	 ?materials	 ?in	 ?order	 ?to	 ?move	 ?to	 ?a	 ?more	 ?closed	 ?system	 ?operation	 ?(For	 ?examples	 ?see	 ?Behera,	 ?Kim,	 ?Lee,	 ?Suh,	 ?&	 ?Park,	 ?2012;	 ?Block	 ?et	 ?al.,	 ?2011;	 ?Cohen-??Rosenthal,	 ?2004;	 ?Park	 ?&	 ?Won,	 ?2007;	 ?Yang	 ?&	 ?Lay,	 ?2004).	 ?	 ?However,	 ?the	 ?process	 ?by	 ?which	 ?this	 ?evaluation	 ?takes	 ?place	 ?may	 ?be	 ?of	 ?use	 ?to	 ?neighbourhoods	 ?and	 ?communities	 ?that	 ?are	 ?not	 ?specifically	 ?industrial	 ?parks	 ?(Broto,	 ?Allen,	 ?&	 ?Rapoport,	 ?2012).	 ?	 ?	 ?2.4.2 What	 ?is	 ?the	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?	 ?The	 ?main	 ?claim	 ?of	 ?this	 ?literature	 ?is	 ?that	 ?evaluating	 ?industrial	 ?processes?	 ?material	 ?and	 ?waste	 ?streams	 ?in	 ?terms	 ?of	 ?the	 ?interaction	 ?among	 ?flows	 ?and	 ?their	 ?lifecycle	 ?environmental	 ?impact	 ?will	 ?allow	 ?for	 ?synergetic	 ?connections	 ?to	 ?reduce	 ?waste	 ?and	 ?raw	 ?material	 ?use.	 ?	 ?Benefits	 ?include	 ?reducing	 ?costs	 ?through	 ?minimizing	 ?need	 ?for	 ?raw	 ?materials	 ?and	 ?energy	 ??	 ?resulting	 ?in	 ?waste	 ?reduction	 ?(Cohen-??Rosenthal,	 ?2004;	 ?Hiete,	 ?Ludwig,	 ?&	 ?Schultmann,	 ?2012).	 ?	 ?While	 ?many	 ?argue	 ?over	 ?the	 ??best?	 ?approach	 ?for	 ?industrial	 ?ecology,	 ?it	 ?has	 ?also	 ?been	 ?stated	 ?that	 ?the	 ?ambiguity	 ?of	 ?the	 ?concept	 ?is	 ?fundamentally	 ?positive	 ?for	 ?the	 ?discipline	 ?(Ehrenfeld,	 ?2000).	 ?	 ?It	 ?has	 ?been	 ?conceptualized	 ?that	 ?such	 ?a	 ?holistic	 ?perspective,	 ?with	 ?the	 ?ability	 ?to	 ?be	 ?reinterpreted	 ?by	 ?various	 ?parties,	 ?allows	 ?for	 ?expansion	 ?beyond	 ?traditionally	 ?narrow	 ?knowledge	 ?disciplines	 ?(Ehrenfeld,	 ?2000)	 ?and	 ?leads	 ?to	 ?greater	 ?understanding	 ?between	 ?various	 ?parties	 ?and	 ?theorists.	 ?	 ?With	 ?its	 ?ability	 ?to	 ?allow	 ?stakeholders	 ?to	 ?begin	 ?understanding	 ?potentials	 ?for	 ?resource	 ?sharing	 ?and	 ?interactions	 ?among	 ?flows	 ?with	 ?a	 ?common	 ?language,	 ?it	 ?may	 ?provide	 ?discourse	 ?valuable	 ?to	 ?the	 ?building	 ?industry.	 ?	 ?2.4.3 What	 ?Issues	 ?are	 ?Emerging?	 ?	 ?	 ?	 ?While	 ?industrial	 ?ecology	 ?has	 ?been	 ?in	 ?conceptual	 ?existence	 ?for	 ?more	 ?than	 ?two	 ?decades,	 ?some	 ?practitioners	 ?and	 ?theorists	 ?have	 ?questioned	 ?its	 ?efficacy	 ?in	 ?bringing	 ?about	 ?sustainable	 ?industrial	 ?outcomes	 ?(Jensen,	 ?Basson,	 ?&	 ?Leach,	 ?2011).	 ?	 ?Problems	 ?that	 ?have	 ?arisen	 ?with	 ?implementation	 ?of	 ?industrial	 ?ecology	 ?solutions	 ?seem	 ?to	 ?be	 ?linked	 ?to	 ?human	 ?factors	 ?such	 ?as	 ?lack	 ?of	 ?cooperation	 ?or	 ?misaligned	 ?economic	 ?incentives	 ?that	 ?prevent	 ?planned	 ?development	 ?(Jensen	 ?et	 ?al.,	 ?2011).	 ?	 ?Issues	 ?of	 ??cherry-??picking?	 ?source	 ?science	 ?have	 ?also	 ?been	 ?claimed,	 ?with	 ?authors	 ?stating	 ?that	 ?in	 ?order	 ?to	 ?apply	 ?industrial	 ?ecology,	 ?the	 ?source	 ?sciences	 ?of	 ?ecology,	 ?physics,	 ?and	 ?complexity	 ?science	 ?need	 ?to	 ?be	 ?more	 ?rigorously	 ?applied	 ?(Jensen	 ?et	 ?al.,	 ?2011).	 ?	 ?Industrial	 ?ecology	 ?literature	 ?seems	 ?to	 ?be	 ?moving	 ?towards	 ?a	 ?socio-??technical	 ?systems	 ?perspective	 ?which	 ?looks	 ?at	 ?both	 ?the	 ?ecological	 ?perspectives	 ?as	 ?well	 ?as	 ?their	 ?interface	 ?with	 ?human	 ?and	 ?institutional	 ?dimensions	 ?(Hodson,	 ?Marvin,	 ?Robinson,	 ?&	 ?Swilling,	 ?2012).	 ?	 ? 	 ?	 ? 18	 ?2.4.4 What	 ?Does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?	 ?Industrial	 ?ecology	 ?positions	 ?itself	 ?as	 ?being	 ?concerned	 ?with	 ?integrated	 ?or	 ??systems	 ?thinking?	 ?(Rob?rt	 ?et	 ?al.,	 ?2002)	 ??	 ?this	 ?is	 ?achieved	 ?through	 ?understanding	 ?material	 ?and	 ?energy	 ?throughput	 ?patterns	 ?in	 ?multiple	 ?industries	 ?and	 ?companies	 ?and	 ?closed	 ?loop	 ?systems	 ?where	 ?flows	 ?are	 ?redirected,	 ?thereby	 ?integrating	 ?the	 ?functioning	 ?of	 ?infrastructure	 ?(Mirata	 ?&	 ?Emtairah,	 ?2005).	 ?	 ?Forward	 ?thinking	 ?institutions	 ?engaging	 ?in	 ?industrial	 ?ecology	 ?approaches	 ?use	 ?design	 ?approaches	 ?that	 ?build	 ?institutional	 ?capacity	 ?to	 ?rethink	 ?the	 ?systems	 ?supply	 ?chain	 ?(Behera	 ?et	 ?al.,	 ?2012;	 ?Hodson	 ?et	 ?al.,	 ?2012).	 ?2.4.5 What	 ?Design	 ?Criteria	 ?Emerge?	 ?	 ??The	 ?laws	 ?of	 ?thermodynamics	 ?are	 ?the	 ?biggest	 ?constraint	 ?to	 ?production	 ?within	 ?industrial	 ?and	 ?natural	 ?ecosystems?	 ?Exactly	 ?how	 ?the	 ?laws	 ?of	 ?thermodynamics	 ?manifest	 ?themselves	 ?within	 ?the	 ?evolution	 ?of	 ?biotic	 ?systems	 ?is,	 ?however,	 ?a	 ?point	 ?of	 ?debate.?	 ?-??	 ?(Jensen	 ?et	 ?al.,	 ?2011).	 ?	 ?Such	 ?statements	 ?underscore	 ?the	 ?importance	 ?of	 ?taking	 ?physical	 ?system	 ?constraints	 ?into	 ?account	 ?when	 ?designing	 ?or	 ?evaluating	 ?systems	 ?of	 ?resource	 ?use.	 ?	 ?They	 ?also	 ?highlight	 ?the	 ?importance	 ?of	 ?the	 ?social	 ?and	 ?human	 ?system	 ?that	 ?does	 ?the	 ?evaluation.	 ?	 ?Evaluation	 ?of	 ?industrial	 ?ecology	 ?has	 ?shown	 ?that	 ?its	 ?principles	 ?are	 ?not	 ?universally	 ?applicable	 ?and	 ?need	 ?to	 ?be	 ?contextually	 ?understood	 ?prior	 ?to	 ?their	 ?application,	 ?however	 ?they	 ?do	 ?provide	 ?a	 ?good	 ?basis	 ?for	 ?looking	 ?at	 ?processes	 ?if	 ?used	 ?in	 ?a	 ?context-??specific	 ?manner	 ?(Jensen	 ?et	 ?al.,	 ?2011).	 ?	 ?	 ?	 ?In	 ?terms	 ?of	 ?additional	 ?design	 ?criteria	 ?to	 ?consider,	 ?the	 ?industrial	 ?ecology	 ?movement	 ?has	 ?been	 ?successful	 ?in	 ?starting	 ?to	 ?go	 ?beyond	 ?the	 ?single	 ?goal	 ?to	 ?minimize	 ?end-??of-??pipe	 ?emissions	 ?and	 ?wastes	 ?to	 ?look	 ?for	 ?integrated	 ?systems	 ?and	 ?strategic	 ?partnerships	 ?which	 ?could	 ?result	 ?in	 ?building	 ?new	 ?products,	 ?networks,	 ?and	 ?value-??added	 ?services	 ?(Mirata	 ?&	 ?Emtairah,	 ?2005).	 ?	 ?Looking	 ?at	 ?industrial	 ?ecology	 ?through	 ?the	 ?lenses	 ?of	 ?institutional	 ?capacity	 ?building	 ?and	 ?innovation	 ?could	 ?produce	 ?more	 ?than	 ?end-??of-??pipe	 ?reductions	 ?(Mirata	 ?&	 ?Emtairah,	 ?2005).	 ?	 ?Taking	 ?a	 ?social	 ?learning	 ?approach	 ?to	 ?industrial	 ?ecology	 ?may	 ?also	 ?help	 ?to	 ?overcome	 ?some	 ?of	 ?the	 ?institutional	 ?barriers	 ?and	 ?problems	 ?associated	 ?with	 ?lack	 ?of	 ?cooperation	 ?and	 ?incentive	 ?alignment.	 ?	 ?These	 ?social	 ?and	 ?process	 ?insights	 ?may	 ?be	 ?useful	 ?in	 ?other	 ?disciplines.	 ?	 ?Design	 ?criteria	 ?may	 ?also	 ?be	 ?derived	 ?from	 ?specific	 ?industrial	 ?ecology	 ?methods	 ?such	 ?as	 ?	 ?	 ?urban	 ?metabolism,	 ?which	 ?looks	 ?for	 ?primary	 ?and	 ?secondary	 ?resources	 ?that	 ?may	 ?have	 ?been	 ?overlooked	 ?or	 ?not	 ?fed	 ?back	 ?into	 ?the	 ?resource	 ?system.	 ?	 ?The	 ??Urban	 ?Harvest	 ?Approach?	 ?(UHA)	 ?promotes	 ?the	 ?concept	 ?of	 ?urban	 ?sustainability	 ?through	 ?minimizing	 ?resource	 ?demand,	 ?minimizing	 ?outputs	 ?of	 ?processes,	 ?and	 ?multi-??sourcing	 ?material	 ?and	 ?energy	 ?inputs	 ?(Agudelo-??Vera	 ?et	 ?al.,	 ?2012).	 ?	 ?Approaches	 ?such	 ?as	 ?the	 ?UHA	 ?are	 ?placing	 ?new	 ?emphasis	 ?not	 ?just	 ?on	 ?quantitative	 ?resource	 ?provision	 ?of	 ?high-??quality	 ?resources,	 ?but	 ?on	 ?capturing	 ?what	 ?may	 ?be	 ?considered	 ?low-??quality	 ?resources	 ?for	 ?appropriate	 ?uses	 ??	 ?allowing	 ?cities	 ?to	 ??be	 ?seen	 ?as	 ?producers	 ?and	 ?reservoirs	 ?of	 ?secondary	 ?resources?	 ?and	 ?creating	 ?closed-??loop	 ?urban	 ?cycles	 ?(Agudelo-??Vera	 ?et	 ?al.,	 ?2012).	 ?	 ?	 ? 19	 ?These	 ?types	 ?of	 ?movements	 ?place	 ?high	 ?value	 ?on	 ?local	 ?context	 ?for	 ?determining	 ?appropriate	 ?resource	 ?solutions.	 ?	 ?Analysis	 ?of	 ?this	 ?kind	 ?requires	 ?data	 ?on	 ?flow	 ?quantity,	 ?quality,	 ?temporal	 ?availability,	 ?spatial	 ?distribution,	 ?impact	 ?to	 ?other	 ?resource	 ?flows,	 ?and	 ?community	 ?acceptance	 ?(Agudelo-??Vera	 ?et	 ?al.,	 ?2012).	 ?	 ?	 ?	 ?Industrial	 ?symbiosis	 ?is	 ?at	 ?the	 ?heart	 ?of	 ?industrial	 ?ecology.	 ?	 ?Symbiosis	 ?opportunities	 ?are	 ?looked	 ?for	 ?between	 ?traditionally	 ?separate	 ?actors	 ?that	 ?may	 ?both	 ?benefit	 ?from	 ?the	 ?physical	 ?exchange	 ?of	 ?energy	 ?and/or	 ?materials.	 ?	 ?Spatial	 ?elements	 ?such	 ?as	 ?proximity	 ?are	 ?a	 ?critical	 ?component	 ?of	 ?good	 ?industrial	 ?symbiosis	 ?opportunities,	 ?as	 ?is	 ?the	 ?willingness	 ?of	 ?participants	 ?to	 ?engage	 ?in	 ?collaboration	 ?(Chertow,	 ?2000).	 ?	 ?Industrial	 ?symbiosis	 ?opportunities	 ?are	 ?often	 ?expected	 ?to	 ?arise	 ?spontaneously	 ?between	 ?actors	 ?(Chertow,	 ?2000;	 ?Jacobsen,	 ?2006),	 ?through	 ?current	 ?market	 ?conditions	 ?resulting	 ?in	 ?possibilities	 ?for	 ?exchange	 ?(Behera	 ?et	 ?al.,	 ?2012).	 ?	 ?While	 ?spontaneous	 ?eco-??industrial	 ?park	 ?(EIP)	 ?relationships	 ?may	 ?emerge	 ?and	 ?flourish,	 ?research	 ?has	 ?shown	 ?that	 ?such	 ?systems	 ?can	 ?be	 ?influenced	 ?by	 ?policy	 ?instruments	 ?(Behera	 ?et	 ?al.,	 ?2012).	 ?	 ?Selection	 ?of	 ?partners,	 ?development	 ?of	 ?rules	 ?to	 ?be	 ?followed,	 ?creation	 ?of	 ?a	 ?sustainable	 ?business	 ?model,	 ?and	 ?principles	 ?of	 ?negotiation	 ?have	 ?been	 ?put	 ?forth	 ?by	 ?some	 ?authors	 ?as	 ?the	 ?key	 ?framework	 ?components	 ?for	 ?successful	 ?EIP	 ?implementation	 ?(Behera	 ?et	 ?al.,	 ?2012).	 ?	 ?As	 ?a	 ?result,	 ?it	 ?has	 ?been	 ?argued	 ?that	 ?EIP	 ?networks	 ?need	 ?to	 ?be	 ??socially	 ?adaptable?	 ?in	 ?order	 ?to	 ?succeed	 ?(Behera	 ?et	 ?al.,	 ?2012).	 ?	 ?Other	 ?disciplines	 ?may	 ?benefit	 ?from	 ?these	 ?insights	 ?such	 ?as	 ?those	 ?of	 ?needing	 ?to	 ?be	 ?socially	 ?adaptable,	 ?implementing	 ?rigorous	 ?systems	 ?evaluation	 ?processes,	 ?and	 ?looking	 ?to	 ?promote	 ?resource	 ?sharing	 ?in	 ?ways	 ?that	 ?expand	 ?the	 ?possibilities	 ?of	 ?efficiency	 ?and	 ?effectiveness.	 ?	 ?Industrial	 ?Ecology	 ? ? Minimize	 ?waste	 ?? Create	 ?cyclical	 ?flows/	 ?closed	 ?loop	 ?cycles	 ?? Design	 ?appropriate	 ?scale	 ?of	 ?production	 ?? Work	 ?to	 ?match	 ?supply	 ?and	 ?demand	 ?? Prioritize	 ?network	 ?optimization,	 ?consistency	 ?and	 ?security	 ?	 ?? Socio-??technical	 ?integration	 ?must	 ?be	 ?considered	 ?? Create	 ?and	 ?design	 ?for	 ?ecological	 ?resilience	 ?criteria	 ?? Consider	 ?the	 ?laws	 ?of	 ?thermodynamics	 ?in	 ?design	 ?? Prioritize	 ?energy	 ?quality	 ?matching/resource	 ?quality	 ?matching	 ?? Look	 ?for	 ?opportunities	 ?for	 ??Up	 ?cycling?	 ?? Integrate	 ?social	 ?context	 ?considerations	 ?? Prioritize	 ?social	 ?learning	 ?? Consider	 ?spatial	 ?proximity	 ?implications	 ?? Prioritize	 ?financial	 ?feasibility	 ?? Design	 ?partnership	 ?creation	 ?and	 ?negotiation/	 ?engagement	 ?strategy	 ?? Enable	 ?social	 ?adaptation	 ?	 ? Table	 ?2-??	 ?3	 ??	 ?Themes	 ?from	 ?the	 ?Industrial	 ?Ecology	 ?Literature	 ?	 ? 20	 ?2.5 Sustainable	 ?Buildings	 ?2.5.1 What	 ?are	 ?They?	 ?	 ?	 ?Sustainable	 ?or	 ??green?	 ?buildings	 ?practices	 ?emerged	 ?out	 ?of	 ?a	 ?desire	 ?of	 ?building	 ?professionals	 ?to	 ?reduce	 ?the	 ?environmental	 ?impact	 ?of	 ?buildings	 ?construction	 ?and	 ?operation	 ?(Cole,	 ?2012a).	 ?	 ?Current	 ?methods,	 ?goals,	 ?and	 ?strategies	 ?in	 ?green	 ?building	 ?focus	 ?on	 ?mitigation	 ?of	 ?environmental	 ?damage	 ?associated	 ?with	 ?building	 ?construction	 ?and	 ?operation	 ?(Cole,	 ?2012a;	 ?Mang	 ?&	 ?Reed,	 ?2012).	 ?	 ?Projects	 ?focus	 ?on	 ?process	 ?and	 ?technical	 ?infrastructure,	 ?claiming	 ?that	 ?integrated	 ?design	 ?and	 ?an	 ?environmental	 ?focus	 ?will	 ?result	 ?in	 ?efficiency	 ?gains	 ?(Butera,	 ?2013).	 ?	 ?Assessment	 ?tools	 ?and	 ?rating	 ?systems	 ?such	 ?as	 ?Leadership	 ?in	 ?Environmental	 ?and	 ?Energy	 ?Design	 ?(LEED)	 ?have	 ?brought	 ?green	 ?building	 ?practice	 ?into	 ?the	 ?conventional	 ?construction	 ?marketplace	 ?(Z.	 ?Chen,	 ?Clements-??Croome,	 ?Hong,	 ?Li,	 ?&	 ?Xu,	 ?2006;	 ?Cole,	 ?2012a).	 ?	 ?The	 ?main	 ?benefits	 ?of	 ?these	 ?projects	 ?have	 ?been	 ?in	 ?building	 ?industry	 ?capacity	 ?in	 ?the	 ?field	 ?of	 ?environmental	 ?design	 ?and	 ?shifting	 ?the	 ?market	 ?focus,	 ?however	 ?there	 ?is	 ?a	 ?gap	 ?between	 ?the	 ?predicted	 ?and	 ?actual	 ?performance	 ?of	 ?these	 ?buildings	 ?(Gann,	 ?Salter,	 ?&	 ?Whyte,	 ?2003;	 ?Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?It	 ?has	 ?been	 ?shown	 ?that	 ?building	 ?rating	 ?is	 ?not	 ?always	 ?a	 ?good	 ?indicator	 ?of	 ?energy	 ?efficiency	 ?or	 ?performance,	 ?with	 ?performance	 ?data	 ?showing	 ?that	 ?some	 ?LEED	 ?buildings	 ?use	 ?more	 ?energy	 ?than	 ?conventional	 ?buildings	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?Beyond	 ?material	 ?and	 ?efficiency	 ?implications,	 ?the	 ?green	 ?buildings	 ?sector	 ?has	 ?developed	 ?criteria	 ?for	 ?indoor	 ?environmental	 ?quality	 ?considerations	 ?and	 ?comfort	 ?(Z.	 ?Chen	 ?et	 ?al.,	 ?2006;	 ?Cole,	 ?2012a).	 ?	 ?	 ?This	 ?has	 ?moved	 ?the	 ?green	 ?building	 ?movement	 ?into	 ?alignment	 ?with	 ?concepts	 ?of	 ?socio-??technical	 ?understanding	 ?such	 ?as	 ?those	 ?described	 ?by	 ?Shove	 ?(Shove,	 ?2003).	 ?	 ?Others	 ?have	 ?proposed	 ?that	 ??occupants?	 ?should	 ?be	 ?reframed	 ?as	 ??inhabitants?	 ?of	 ?a	 ?building	 ??	 ?resulting	 ?in	 ?their	 ?playing	 ?a	 ?more	 ?active	 ?role	 ?in	 ?how	 ?the	 ?building	 ?enables	 ?their	 ?comfort	 ?(Brown,	 ?Cole,	 ?Shea,	 ?&	 ?Robinson,	 ?2010).	 ?	 ?This	 ?incorporation	 ?of	 ?social	 ?factors	 ?has	 ?allowed	 ?for	 ?moving	 ?further	 ?beyond	 ??green?	 ?efficiency	 ?measures	 ?in	 ?buildings	 ?to	 ?thinking	 ?about	 ?the	 ??regenerative?	 ?possibilities	 ?for	 ?building	 ?infrastructures	 ?(Cole,	 ?2012a).	 ?2.5.2 What	 ?is	 ?the	 ?Appeal	 ?and	 ?why	 ?is	 ?This	 ?Being	 ?Proposed?	 ?	 ?Sustainable	 ?building	 ?promises	 ?increases	 ?in	 ?energy	 ?efficiency	 ?and	 ?other	 ?environmental	 ?performance	 ?measures.	 ?	 ?In	 ?the	 ?literature	 ?this	 ?initial	 ?goal	 ?of	 ?reducing	 ?the	 ?negative	 ?environmental	 ?(and	 ?in	 ?some	 ?cases	 ?social)	 ?impacts	 ?of	 ?buildings	 ?has	 ?been	 ?recently	 ?expanded	 ?to	 ?set	 ?goals	 ?for	 ?creating	 ?buildings	 ?that	 ?are	 ?net	 ?positive	 ?or	 ?regenerative	 ?in	 ?various	 ?respects	 ?(Cole,	 ?2012a),	 ?with	 ?a	 ?strong	 ?focus	 ?on	 ?energy	 ?and	 ?systems,	 ?and	 ?demand-??side	 ?management	 ?(Zeng,	 ?Zhao,	 ?&	 ?Yang,	 ?2012).	 ?	 ?The	 ?buildings	 ?sector	 ?has	 ?been	 ?targeted	 ?as	 ?an	 ?industry	 ?that	 ?could	 ?provide	 ?significant	 ?reductions	 ?in	 ?carbon	 ?emissions	 ?at	 ?the	 ?same	 ?time	 ?as	 ?providing	 ?increases	 ?in	 ?human	 ?health	 ?(Thomas,	 ?2010).	 ?	 ?These	 ?factors,	 ?along	 ?with	 ?desired	 ?energy	 ?cost	 ?reductions	 ?for	 ?building	 ?owners,	 ?have	 ?led	 ?to	 ?significant	 ?market	 ?penetration	 ?for	 ?sustainable	 ?buildings.	 ?	 ?It	 ?has	 ?also	 ?resulted	 ?in	 ?the	 ?adoption	 ?of	 ?rating	 ?systems	 ?and	 ?regulations	 ?aimed	 ?at	 ?promoting	 ?	 ? 21	 ?and	 ?advancing	 ?building	 ?sustainability	 ?and	 ?efficiency	 ?(Taylor,	 ?Rajagopalan,	 ?&	 ?Tony,	 ?2012).	 ?	 ?2.5.3 What	 ?Issues	 ?are	 ?Emerging?	 ?	 ?	 ?	 ?There	 ?appears	 ?to	 ?be	 ?a	 ?disconnection	 ?between	 ?design	 ?and	 ?construction	 ?and	 ?commissioning	 ?and	 ?operation,	 ?yet	 ?integrating	 ?these	 ?processes	 ?would	 ?improve	 ?overall	 ?building	 ?performance.	 ?	 ?There	 ?is	 ?a	 ?need	 ?to	 ?consider	 ?all	 ?stages	 ?of	 ?a	 ?building?s	 ?life	 ?cycle	 ?in	 ?order	 ?to	 ?create	 ?better	 ?performing	 ?buildings.	 ?	 ?Chen	 ?et	 ?al.	 ?state	 ?that	 ??sustainable	 ?building	 ?design,	 ?construction	 ?and	 ?operation	 ?require	 ?innovations	 ?in	 ?both	 ?engineering	 ?and	 ?management	 ?areas	 ?at	 ?all	 ?stages	 ?of	 ?a	 ?building?s	 ?life.?	 ?-??	 ?(Z.	 ?Chen	 ?et	 ?al.,	 ?2006)	 ?	 ?Based	 ?on	 ?analysis	 ?of	 ?individual	 ?building	 ?and	 ?system	 ?performance,	 ?there	 ?is	 ?a	 ?need	 ?to	 ?create	 ?institutional	 ?changes	 ?that	 ?enable	 ?better	 ?building	 ?performance	 ?and	 ?correlation	 ?between	 ?practices	 ?such	 ?as	 ?design,	 ?commissioning,	 ?and	 ?measurement	 ?and	 ?verification	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?While	 ?early	 ?stages	 ?of	 ?environmental	 ?assessment	 ?tools	 ?in	 ?the	 ?green	 ?building	 ?sector	 ?had	 ?the	 ?priority	 ?of	 ?creating	 ?scalable	 ?adoption	 ?through	 ?engaging	 ?both	 ?the	 ?supply	 ?and	 ?demand	 ?side,	 ?these	 ?tools	 ?are	 ?increasingly	 ?being	 ?used	 ?in	 ?projects	 ?of	 ?larger	 ?scope	 ?and	 ?must	 ?expand	 ?their	 ?priorities	 ?and	 ?tools	 ?appropriately	 ?(Cole,	 ?2012a;	 ?Reed,	 ?2007).	 ?	 ?Cole	 ?(2012a)	 ?notes	 ?that	 ?there	 ?is	 ?now	 ?a	 ??need	 ?to	 ?understand	 ?buildings	 ?and	 ?their	 ?physical,	 ?social,	 ?and	 ?ecological	 ?context	 ?as	 ?a	 ?nested	 ?and	 ?hierarchically	 ?linked	 ?system.?	 ?	 ?This	 ?new	 ?approach	 ?suggests	 ?the	 ?potential	 ?benefits	 ?of	 ?taking	 ?into	 ?consideration	 ?possibilities	 ?for	 ?the	 ?building	 ?to	 ?contribute	 ?to	 ?a	 ?neighbourhood	 ?resource	 ?system.	 ?	 ?An	 ?example	 ?of	 ?this	 ?might	 ?be	 ?enabling	 ?a	 ?neighbourhood	 ?to	 ?reach	 ?the	 ?demand	 ?threshold	 ?required	 ?for	 ?district	 ?energy	 ?system	 ?implementation,	 ?achieving	 ?efficiencies	 ?of	 ?scale.	 ?	 ?	 ?	 ?The	 ?emerging	 ?concept	 ?of	 ?regenerative	 ?design	 ?places	 ?more	 ?focus	 ?on	 ?building	 ?social	 ?capital	 ?in	 ?addition	 ?to	 ?improving	 ?natural	 ?systems	 ?(Cole,	 ?2012a).	 ?	 ?Although	 ?green	 ?building	 ?practice	 ?is	 ?traditionally	 ?often	 ?based	 ?on	 ?a	 ?set	 ?of	 ?managerial	 ?checklists,	 ?the	 ?regenerative	 ?movement	 ?is	 ?beginning	 ?to	 ?incorporate	 ?systems-??thinking	 ?approaches	 ?to	 ?the	 ?processes	 ?of	 ?design	 ?(Cole,	 ?2012a;	 ?du	 ?Plessis	 ?&	 ?Cole,	 ?2011;	 ?Mang	 ?&	 ?Reed,	 ?2012).	 ?Because	 ?most	 ?of	 ?the	 ?criteria	 ?used	 ?in	 ?green	 ?building	 ?rating	 ?systems	 ?are	 ?generic	 ?and	 ?applied	 ?to	 ?many	 ?different	 ?building	 ?types	 ?and	 ?contexts,	 ?these	 ?rating	 ?systems	 ?have	 ?not	 ?adequately	 ?addressed	 ?regional	 ?and	 ?context	 ?specific	 ?issues	 ?of	 ?building	 ?design	 ?(Cole,	 ?2012a;	 ?Reed,	 ?2007).	 ?	 ??The	 ?way	 ?that	 ?building	 ?environmental	 ?assessment	 ?methods	 ?identify	 ?discrete	 ?performance	 ?requirements	 ?often	 ?translates	 ?into	 ?design	 ?as	 ?a	 ?series	 ?of	 ?isolated	 ?design	 ?gestures	 ?to	 ?meet	 ?them	 ?rather	 ?than	 ?encouraging	 ?creative	 ?synergies,	 ?closing	 ?loops,	 ?and	 ?responding	 ?appropriately	 ?to	 ?the	 ?local	 ?ecological	 ?and	 ?social	 ?contexts?	 ?-??	 ?(Cole,	 ?2012a).	 ?	 ?Some	 ?authors	 ?conceptualize	 ?the	 ?built	 ?environment	 ?as	 ?a	 ?social-??ecological	 ?system,	 ?emphasizing	 ?the	 ?metabolism	 ?of	 ?flows	 ?in	 ?a	 ?network	 ?of	 ?connected	 ?technological,	 ?social,	 ?and	 ?ecological	 ?components	 ?(Moffatt	 ?&	 ?Kohler,	 ?2008).	 ?	 ?	 ? 22	 ?2.5.4 What	 ?does	 ?Integration	 ?Mean	 ?in	 ?This	 ?Context?	 ?	 ?The	 ?green	 ?buildings	 ?movement	 ?typically	 ?considers	 ?technical	 ?integration	 ?of	 ?building	 ?systems	 ?to	 ?the	 ?utility,	 ?and	 ?integration	 ?of	 ?the	 ?ideas	 ?and	 ?work	 ?of	 ?design	 ?participants	 ?(Cole,	 ?2012a;	 ?Stylianou,	 ?2011).	 ?	 ?An	 ??Integrated	 ?Design	 ?Process?	 ?has	 ?emerged	 ?for	 ?the	 ?design	 ?phase	 ?of	 ?the	 ?building,	 ?thereby	 ?adding	 ?to	 ?the	 ?technology	 ?focus	 ?an	 ?institutional	 ?learning	 ?focus	 ?on	 ?the	 ?part	 ?of	 ?designers	 ?and	 ?consultants	 ?involved	 ?at	 ?the	 ?design	 ?stage	 ?(Cole,	 ?2012a).	 ?More	 ?recently	 ?a	 ?design	 ?approach	 ?has	 ?emerged	 ?which	 ?focuses	 ?on	 ?net	 ?positive	 ?environmental	 ?and	 ?social	 ?outcomes,	 ?and	 ?in	 ?thinking	 ?about	 ?the	 ?building	 ?in	 ?the	 ?context	 ?of	 ?its	 ?local	 ?neighbourhood	 ?(Cole,	 ?2012a;	 ?Mang	 ?&	 ?Reed,	 ?2012).	 ?2.5.5 What	 ?Design	 ?Criteria	 ?Emerge?	 ?	 ?The	 ?sustainable	 ?building	 ?movement	 ?has	 ?shown	 ?that	 ?there	 ?is	 ?a	 ?need	 ?for	 ?further	 ?understanding	 ?and	 ?integration	 ?of	 ?the	 ?design	 ?and	 ?operation	 ?of	 ?buildings	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?Combining	 ?this	 ?learning	 ?with	 ?other	 ?literature	 ?shows	 ?that	 ?storage	 ?options,	 ?network	 ?optimization	 ?through	 ?waste	 ?heat	 ?use,	 ?and	 ?institutional	 ?learning	 ?through	 ?integration	 ?with	 ?system	 ?operators	 ?are	 ?important	 ?aspects	 ?to	 ?consider	 ?when	 ?thinking	 ?of	 ?buildings	 ?as	 ?part	 ?of	 ?a	 ?community	 ?energy	 ?planning	 ?process.	 ?	 ?Starting	 ?to	 ?see	 ?buildings	 ?as	 ?nodes	 ?in	 ?networks	 ?of	 ?structures	 ?and	 ?functions	 ?does	 ?however	 ?raise	 ?important	 ?technical,	 ?institutional	 ?and	 ?policy-??related	 ?challenges.	 ?	 ?While	 ?the	 ?energy	 ?efficiency	 ?of	 ?building	 ?systems	 ?may	 ?be	 ?increasing,	 ?certain	 ?loads	 ?such	 ?as	 ?cooling	 ?have	 ?been	 ?increasing	 ?across	 ?the	 ?building	 ?sector,	 ?leading	 ?to	 ?a	 ?need	 ?for	 ?increased	 ?thermal	 ?storage	 ?in	 ?the	 ?built	 ?environment	 ?(Ban	 ?et	 ?al.,	 ?2012).	 ?	 ?Thermal	 ?storage	 ?may	 ?be	 ?especially	 ?beneficial	 ?for	 ?allowing	 ?the	 ?integration	 ?of	 ?intermittent	 ?renewables	 ?into	 ?the	 ?grid	 ?due	 ?to	 ?its	 ?ability	 ?to	 ?change	 ?the	 ?load	 ?curve	 ?as	 ?well	 ?as	 ?its	 ?cost	 ?efficiency	 ?(Blarke	 ?et	 ?al.,	 ?2012)	 ??	 ?see	 ?also	 ?(T.	 ?Y.	 ?Chen,	 ?2001).	 ?	 ?Plug	 ?loads	 ?in	 ?buildings	 ?have	 ?also	 ?been	 ?increasing,	 ?to	 ?the	 ?point	 ?of	 ?negating	 ?other	 ?efficiency	 ?gains	 ?in	 ?electricity	 ?use	 ?and	 ?causing	 ?high	 ?energy	 ?consumption	 ?despite	 ?highly	 ?efficient	 ?technologies	 ?(Kaneda	 ?&	 ?Jacobson,	 ?2010).	 ?	 ?Understanding	 ?patterns	 ?for	 ?electricity	 ?demand	 ?in	 ?individual	 ?buildings	 ?will	 ?contribute	 ?to	 ?understanding	 ?their	 ?influence	 ?on	 ?the	 ?network	 ?system	 ?(Alagoz	 ?et	 ?al.,	 ?2012).	 ?	 ?With	 ?the	 ?increased	 ?use	 ?of	 ?terms	 ?such	 ?as	 ??smart?	 ?and	 ??intelligent?	 ?to	 ?describe	 ?infrastructure,	 ?it	 ?is	 ?important	 ?to	 ?remember	 ?that	 ?the	 ?true	 ??intelligence?	 ?of	 ?a	 ?facility	 ?comes	 ?from	 ?its	 ?designed	 ?ability	 ?to	 ?serve	 ?specific	 ?functions	 ?and	 ?services	 ?in	 ?a	 ?useful	 ?and	 ?convenient	 ?way	 ?(Z.	 ?Chen,	 ?2010).	 ?	 ?Attributes	 ?such	 ?as	 ?social	 ?impact,	 ?environmental	 ?performance,	 ?capital	 ?utilization,	 ?and	 ?flexibility	 ?all	 ?contribute	 ?to	 ?how	 ?a	 ?building	 ?or	 ?facility	 ?functions	 ?for	 ?its	 ?user	 ?group	 ?(	 ?Chen,	 ?2010).	 ?	 ?	 ??The	 ?intelligence	 ?of	 ?a	 ?facility	 ?can	 ?be	 ?defined	 ?as	 ?the	 ?designed	 ?capacity	 ?of	 ?a	 ?facility	 ?to	 ?acquire	 ?and	 ?process	 ?data	 ?and	 ?information	 ?to	 ?perform	 ?its	 ?adaptability	 ?to	 ?lifecycle	 ?circumstance	 ?changes	 ?in	 ?terms	 ?of	 ?people?s	 ?requirements	 ?of	 ?wellbeing	 ?and	 ?energy	 ?efficiency.?	 ?-??	 ?(Z.	 ?Chen,	 ?2010).	 ?	 ?People,	 ?products,	 ?and	 ?processes	 ?must	 ?all	 ?be	 ?considered	 ?in	 ?order	 ?to	 ?create	 ?a	 ?truly	 ?intelligent	 ?building	 ?(Chen	 ?et	 ?al.,	 ?2006).	 ?	 ?Both	 ?inhabitant	 ?well-??being	 ?and	 ?energy	 ?efficiency	 ?should	 ?be	 ?at	 ?the	 ?forefront	 ?of	 ?intelligent	 ?building	 ?design.	 ?	 ?This	 ?is	 ?inclusive	 ?	 ? 23	 ?of	 ?understanding	 ?well-??being	 ?as	 ?incorporating	 ?various	 ?human	 ?factors	 ?inclusive	 ?of	 ?those	 ?related	 ?to	 ?mental	 ?and	 ?physical	 ?health,	 ?community	 ?and	 ?social	 ?and	 ?physical	 ?aspects	 ?of	 ?comfort.	 ?	 ?Community	 ?engagement	 ?has	 ?emerged	 ?as	 ?a	 ?strong	 ?theme	 ?in	 ?the	 ?regenerative	 ?design	 ?literature	 ?(Hoxie,	 ?Berkebile,	 ?Todd,	 ?&	 ?Anntodd,	 ?2012),	 ?with	 ?focus	 ?being	 ?placed	 ?on	 ?the	 ?need	 ?for	 ?coevolution	 ?of	 ?social	 ?systems,	 ?learning	 ?and	 ?participation	 ?(Cole,	 ?2012b;	 ?Cole	 ?et	 ?al.,	 ?2011;	 ?du	 ?Plessis	 ?&	 ?Cole,	 ?2011).	 ?	 ?In	 ?a	 ?community	 ?energy	 ?network,	 ?engagement	 ?and	 ?social	 ?learning	 ?will	 ?become	 ?important	 ?design	 ?criteria	 ?for	 ?individual	 ?and	 ?networked	 ?projects.	 ?	 ?Lessons	 ?from	 ?the	 ?other	 ?above	 ?disciplines	 ?will	 ?also	 ?apply	 ?should	 ?buildings	 ?be	 ?considered	 ?as	 ?network	 ?nodes.	 ?	 ?Sustainable	 ?Buildings	 ? ? Need	 ?for	 ?performance	 ?metrics	 ?? Comfort	 ?and	 ?inhabitant	 ?well-??being	 ?criteria	 ?? Efficiency	 ?considerations	 ?? Integration	 ?between	 ?design	 ?and	 ?operation	 ?? Thermal	 ?considerations	 ?? Life-??cycle	 ?learning	 ?approaches	 ?? Buildings	 ?as	 ?nodes	 ?in	 ?networks	 ?? Institutional	 ?learning	 ?	 ?? Ability	 ?for	 ?system	 ?to	 ?be	 ?useful	 ?and	 ?convenient	 ?to	 ?its	 ?serviced	 ?population	 ?? Social	 ?impact	 ?? Process-??driven	 ?criteria	 ?? Community	 ?engagement	 ?? Engagement	 ?and	 ?social	 ?learning	 ?	 ?Table	 ?2-??	 ?4	 ??	 ?Themes	 ?from	 ?the	 ?Sustainable	 ?Building	 ?Literature	 ?2.6 Common	 ?Themes	 ?and	 ?Conclusions	 ?	 ?Common	 ?lessons	 ?or	 ?themes	 ?that	 ?emerge	 ?from	 ?the	 ?literatures	 ?on	 ?the	 ?disciplines	 ?above	 ?include	 ?the	 ?use	 ?of	 ?system-??based	 ?or	 ?ecosystem	 ?approaches,	 ?and	 ?the	 ?need	 ?for	 ?enabling	 ?learning	 ?processes.	 ?	 ?System	 ?approaches	 ?that	 ?look	 ?for	 ?complex	 ?system	 ?symbioses	 ?are	 ?most	 ?evident	 ?in	 ?the	 ?industrial	 ?ecology	 ?literature	 ?yet	 ?are	 ?also	 ?found	 ?in	 ?the	 ?sustainable	 ?buildings	 ?literature	 ?and	 ?complex	 ?systems	 ?architecture	 ?of	 ?distributed	 ?generation	 ?and	 ?smart	 ?grid	 ?networks.	 ?	 ?Learning	 ?arises	 ?as	 ?a	 ?theme	 ?based	 ?on	 ?the	 ?stated	 ?current	 ?barriers	 ?to	 ?adoption	 ?of	 ?community	 ?energy	 ?technologies	 ?and	 ?plans	 ??	 ?this	 ?can	 ?also	 ?be	 ?seen	 ?in	 ?the	 ?literature	 ?for	 ?industrial	 ?ecology,	 ?sustainable	 ?buildings,	 ?smart	 ?grids,	 ?and	 ?also	 ?distributed	 ?generation.	 ?	 ?It	 ?may	 ?be	 ?useful	 ?to	 ?think	 ?of	 ?system-??based	 ?approaches	 ?that	 ?integrate	 ?human	 ?dimension	 ?considerations	 ?as	 ?a	 ?possible	 ?path	 ?to	 ?both	 ?technological	 ?opportunities	 ?as	 ?well	 ?as	 ?possible	 ?social	 ?and	 ?environmental	 ?benefits	 ?of	 ?projects.	 ?	 ?A	 ?lens	 ?of	 ?process-??based	 ?learning	 ?may	 ?then	 ?be	 ?useful	 ?in	 ?creating	 ?an	 ?integration	 ?of	 ?technology	 ?and	 ?social	 ?systems.	 ?	 ?	 ?	 ? 24	 ?	 ?These	 ?common	 ?themes	 ?and	 ?conclusions	 ?emerged	 ?from	 ?the	 ?literature	 ?review	 ?and	 ?the	 ?previous	 ?summary	 ?tables	 ?of	 ?themes	 ?from	 ?each	 ?literature.	 ?	 ?The	 ?following	 ?case	 ?studies	 ?from	 ?UBC	 ?campus	 ?that	 ?make	 ?up	 ?Chapter	 ?3	 ?and	 ?Chapter	 ?4	 ?draw	 ?on	 ?this	 ?understanding	 ?of	 ?common	 ?lessons	 ?and	 ?themes	 ?within	 ?these	 ?literatures.	 ?	 ?The	 ?framing	 ?of	 ?the	 ?case	 ?studies,	 ?looking	 ?at	 ?integrations,	 ?energy	 ?systems,	 ?controls,	 ?and	 ?learning	 ?opportunities,	 ?emerged	 ?from	 ?the	 ?summary	 ?understanding	 ?developed	 ?in	 ?this	 ?chapter.	 ?2.6.1 Discussion	 ?and	 ?Future	 ?Research	 ?	 ?A	 ?community	 ?energy	 ?network	 ?has	 ?three	 ?main	 ?subcomponents	 ??	 ?generation,	 ?conveyance,	 ?and	 ?end	 ?uses	 ?or	 ?energy	 ?services	 ?provided.	 ?	 ?With	 ?new	 ??smart?	 ?grid	 ?architecture,	 ?infrastructure	 ?that	 ?was	 ?previously	 ?only	 ?an	 ?energy	 ?end-??use,	 ?can	 ?now	 ?at	 ?certain	 ?times	 ?be	 ?an	 ?energy	 ?provider.	 ?	 ?Using	 ?the	 ?model	 ?of	 ?a	 ?network	 ?with	 ?connected	 ?nodes,	 ?the	 ?infrastructure	 ?systems	 ?that	 ?deliver	 ?energy	 ?are	 ?the	 ?connecting	 ?networks,	 ?and	 ?the	 ?nodes	 ?are	 ?the	 ?buildings	 ?or	 ?other	 ?end	 ?uses,	 ?as	 ?well	 ?as	 ?energy	 ?generation	 ?infrastructure.	 ?	 ?In	 ?certain	 ?cases	 ?a	 ?node	 ?may	 ?at	 ?one	 ?time	 ?be	 ?an	 ?energy	 ?source	 ?and	 ?at	 ?another	 ?time	 ?an	 ?energy	 ?sink.	 ?	 ?Using	 ?this	 ?network	 ?understanding,	 ?nodes	 ?can	 ?be	 ?analyzed	 ?in	 ?terms	 ?of	 ?what	 ?type	 ?of	 ?energy	 ?service	 ?is	 ?requested	 ?and	 ?how	 ?they	 ?are	 ?affecting	 ?the	 ?overall	 ?system.	 ?	 ?Dependent	 ?on	 ?the	 ?types	 ?of	 ?services	 ?needed	 ?at	 ?different	 ?nodes,	 ?possibilities	 ?for	 ?energy	 ?cascading	 ?may	 ?arise.	 ?	 ?If	 ?nodes	 ?can	 ?be	 ?cascaded	 ?but	 ?are	 ?not	 ?currently	 ?connected,	 ?there	 ?may	 ?be	 ?possibility	 ?for	 ?creation	 ?of	 ?a	 ?new	 ?delivery	 ?network	 ?to	 ?facilitate	 ?better	 ?efficiency	 ?in	 ?provision	 ?of	 ?services.	 ?	 ?Collections	 ?of	 ?nodes	 ?and	 ?networks	 ?connecting	 ?nodes	 ?can	 ?then	 ?be	 ?viewed	 ?as	 ?to	 ?their	 ?local	 ?and	 ?more	 ?global	 ?properties,	 ?with	 ?local	 ?being	 ?at	 ?the	 ?building	 ?scale	 ?and	 ?global	 ?being	 ?at	 ?the	 ?community	 ?or	 ?neighbourhood	 ?scale.	 ?	 ?Research	 ?is	 ?needed	 ?on	 ?design	 ?of	 ?network	 ?architectures	 ?to	 ?facilitate	 ?efficiency,	 ?feedback,	 ?and	 ?energy	 ?cascading.	 ?	 ?Smart	 ?Grids	 ?fit	 ?into	 ?this	 ?community	 ?energy	 ?planning	 ?and	 ?energy	 ?network	 ?idea	 ?by	 ?providing	 ?a	 ?basis	 ?for	 ?transmission	 ?of	 ?energy	 ?throughout	 ?the	 ?network,	 ?combined	 ?with	 ?communication	 ?between	 ?network	 ?components.	 ?	 ?As	 ?such,	 ?this	 ?provides	 ?an	 ?opportunity	 ?for	 ?institutional	 ?decentralization	 ?and	 ?collaboration	 ??	 ?stated	 ?as	 ?key	 ?to	 ?successful	 ?implementation	 ?of	 ?many	 ?projects	 ?throughout	 ?this	 ?literature.	 ?	 ?Sustainable	 ?Buildings	 ?have	 ?seen	 ?a	 ?historic	 ?shift	 ?from	 ?being	 ?simply	 ?a	 ?technical	 ?process	 ?of	 ?construction	 ?and	 ?design	 ?to	 ?a	 ?process	 ?that	 ?includes	 ?parameters	 ?for	 ?social	 ?integration	 ?and	 ?inhabitant	 ?well	 ?being.	 ?	 ?Systems	 ?integration	 ?in	 ?this	 ?context	 ?could	 ?provide	 ?better	 ?performing	 ?buildings	 ?and	 ?better	 ?alignment	 ?of	 ?actor	 ?incentives.	 ?	 ?Expanding	 ?the	 ?context	 ?of	 ?consideration,	 ?buildings	 ?could	 ?then	 ?be	 ?considered	 ?with	 ?respect	 ?to	 ?their	 ?role	 ?as	 ?nodes	 ?in	 ?the	 ?community	 ?network	 ?and	 ?could	 ?enable	 ?better	 ?performance	 ?of	 ?energy	 ?systems.	 ?	 ?	 ?	 ?Using	 ?the	 ?common	 ?themes	 ?discussed	 ?above,	 ?the	 ?evaluative	 ?priorities	 ?and	 ?issues	 ?discovered	 ?through	 ?the	 ?literature	 ?of	 ?Smart	 ?Grids,	 ?Distributed	 ?Generation,	 ?and	 ?Sustainable	 ?Buildings,	 ?could	 ?be	 ?the	 ?basis	 ?for	 ?evaluating	 ?network	 ?architecture	 ?of	 ?community	 ?energy	 ?planning	 ?and	 ?sustainable	 ?building	 ?design.	 ?	 ?Industrial	 ?ecology	 ?themes	 ?provide	 ?the	 ?language	 ?to	 ?tie-??in	 ?of	 ?these	 ?various	 ?literatures,	 ?making	 ?sense	 ?of	 ?	 ? 25	 ?various	 ?theories	 ?while	 ?also	 ?providing	 ?potential	 ?framings	 ?for	 ?qualitative	 ?and	 ?quantitative	 ?evaluation.	 ?	 ?The	 ?main	 ?themes	 ?drawn	 ?from	 ?these	 ?literatures	 ?may	 ?be	 ?summarized	 ?in	 ?the	 ?following:	 ?	 ?Institutional	 ?and	 ?Social	 ?Learning	 ?Considerations	 ?	 ?Each	 ?of	 ?the	 ?above	 ?four	 ?literatures	 ?pointed	 ?to	 ?lessons	 ?learned	 ?concerning	 ?the	 ?need	 ?for	 ?institutional	 ?alignment	 ?and	 ?social	 ?learning	 ?throughout	 ?the	 ?process	 ?of	 ?implementing	 ?community	 ?energy	 ?and	 ?sustainability	 ?projects.	 ?	 ?Place-??based,	 ?Local	 ?Context	 ?Considerations	 ?	 ?Each	 ?of	 ?the	 ?above	 ?four	 ?literatures	 ?also	 ?pointed	 ?to	 ?lessons	 ?learned	 ?concerning	 ?the	 ?need	 ?to	 ?consider	 ?local	 ?context	 ?when	 ?implementing	 ?community	 ?energy	 ?projects.	 ?	 ?Systems	 ?and	 ?Network	 ?Considerations	 ?	 ?Each	 ?of	 ?the	 ?literatures	 ?pointed	 ?to	 ?the	 ?need	 ?to	 ?think	 ?of	 ?the	 ?underlying	 ?and	 ?linked	 ?systems	 ?that	 ?were	 ?a	 ?part	 ?of	 ?the	 ?projects	 ?implemented	 ?or	 ?considered.	 ?	 ?While	 ?the	 ?industrial	 ?ecology	 ?literature	 ?in	 ?particular	 ?referred	 ?to	 ?this	 ?systems	 ?theory	 ?in	 ?the	 ?context	 ?of	 ?ecosystems,	 ?all	 ?literatures	 ?pointed	 ?to	 ?a	 ?need	 ?for	 ?understanding	 ?and	 ?implementing	 ?network	 ?solutions	 ?with	 ?an	 ?understanding	 ?of	 ?the	 ?underlying	 ?drivers	 ?of	 ?the	 ?system.	 ?	 ?Technical	 ?and	 ?Physical	 ?Criteria	 ?	 ?Within	 ?the	 ?literatures	 ?of	 ?each	 ?of	 ?these	 ?four	 ?areas	 ?there	 ?are	 ?also	 ?physical	 ?design	 ?criteria	 ?and	 ?technical	 ?specifications	 ?for	 ?making	 ?projects	 ?function.	 ?	 ?From	 ?thermodynamic	 ?considerations	 ?to	 ?load	 ?criteria	 ?for	 ?operation,	 ?these	 ?criteria	 ?have	 ?a	 ?role	 ?to	 ?play	 ?in	 ?the	 ?optimization	 ?and	 ?design	 ?of	 ?community	 ?energy	 ?projects.	 ?	 ?In	 ?order	 ?to	 ?create	 ?truly	 ??smart?	 ?infrastructure,	 ?I	 ?propose	 ?research	 ?that	 ?evaluates	 ?projects	 ?in	 ?terms	 ?of	 ?their	 ?system	 ?integration	 ?and	 ?in	 ?terms	 ?of	 ?their	 ?capacity	 ?and	 ?success	 ?to	 ?use	 ?advances	 ?in	 ?controls	 ?and	 ?monitoring	 ?to	 ?enabling	 ?better	 ?decision-??making	 ?throughout	 ?their	 ?lifecycle.	 ?	 ?Such	 ?research	 ?could	 ?look	 ?to	 ?create	 ?further	 ?potential	 ?for	 ?system	 ?improvement	 ?through	 ?institutional	 ?learning	 ?as	 ?well	 ?as	 ?technological	 ?system	 ?advancement	 ?that	 ?better	 ?met	 ?the	 ?objectives	 ?of	 ?the	 ?serviced	 ?community.	 ?	 ?This	 ?conceptualization	 ?of	 ?smart	 ?infrastructure	 ?could	 ?take	 ?the	 ?motivating	 ?framing	 ?of	 ?industrial	 ?ecology	 ?and	 ?use	 ?the	 ?practical	 ?lessons	 ?learned	 ?of	 ?smart	 ?grids,	 ?distributed	 ?energy,	 ?and	 ?sustainable	 ?buildings	 ?and	 ?use	 ?those	 ?to	 ?fill	 ?in	 ?the	 ?gaps	 ?and	 ?address	 ?some	 ?of	 ?the	 ?critiques	 ?of	 ?industrial	 ?ecology.	 ?	 ?In	 ?order	 ?to	 ?take	 ?these	 ?lessons	 ?and	 ?find	 ?their	 ?application	 ?to	 ?the	 ?sustainable	 ?building	 ?industry,	 ?further	 ?research	 ?and	 ?a	 ?more	 ?detailed	 ?understanding	 ?of	 ?design	 ?and	 ?operation	 ?of	 ?infrastructure	 ?systems	 ?that	 ?attempt	 ?to	 ?view	 ?the	 ?building	 ?unit	 ?as	 ?a	 ?node	 ?	 ? 26	 ?is	 ?necessary.	 ?	 ?	 ?Further	 ?understanding	 ?of	 ?the	 ?optimal	 ?design	 ?and	 ?operation	 ?of	 ?controls	 ?systems	 ?that	 ?enable	 ?networked	 ?system	 ?functioning	 ?in	 ?real	 ?trials/examples	 ?is	 ?also	 ?needed	 ?in	 ?order	 ?to	 ?provide	 ?industry	 ?with	 ?tangible	 ?lessons	 ?that	 ?can	 ?be	 ?applied	 ?throughout	 ?the	 ?lifecycle	 ?of	 ?infrastructure	 ?projects	 ?such	 ?as	 ?buildings.	 ?	 ?Similar	 ?to	 ?the	 ?lessons	 ?of	 ?the	 ?above	 ?literatures,	 ?greater	 ?system	 ?understanding	 ?of	 ?building	 ?node	 ?networks	 ?is	 ?required.	 ?	 ?During	 ?the	 ?formulation	 ?and	 ?carrying	 ?out	 ?of	 ?such	 ?research,	 ?possible	 ?implications	 ?of	 ?the	 ?Hawthorne	 ?effect	 ?and	 ?participant	 ?changes	 ?in	 ?behaviour	 ?due	 ?to	 ?participation	 ?in	 ?studies	 ?should	 ?be	 ?acknowledged	 ?and	 ?accounted	 ?for.	 ?	 ?Such	 ?issues	 ?could	 ?arise	 ?in	 ?studies	 ?such	 ?as	 ?those	 ?to	 ?determine	 ?how	 ?energy	 ?dashboards	 ?and	 ?smart	 ?meters	 ?change	 ?consumption	 ?behaviour	 ?(Schwartz,	 ?Fischhoff,	 ?Krishnamurti,	 ?&	 ?Sowell,	 ?2013).	 ?	 ?The	 ?following	 ?chapters,	 ?chapter	 ?3	 ?and	 ?chapter	 ?4	 ?of	 ?the	 ?thesis,	 ?will	 ?use	 ?the	 ?above	 ?understanding	 ?of	 ?networked	 ?systems	 ?to	 ?examine	 ?a	 ?building	 ?at	 ?the	 ?UBC	 ?Vancouver	 ?campus	 ?which	 ?was	 ?designed	 ?as	 ?part	 ?of	 ?a	 ?two-??building	 ?energy	 ?network	 ?system.	 ?	 ?This	 ?building,	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS),	 ?will	 ?be	 ?used	 ?as	 ?a	 ?research	 ?example	 ?for	 ?these	 ?concepts	 ?and	 ?evaluating	 ?what	 ?makes	 ?a	 ?building	 ?truly	 ??smart?	 ?and	 ??sustainable.?	 ? 	 ? 27	 ?3 Chapter	 ?3:	 ?An	 ?Exploration	 ?of	 ?Energy	 ?Systems	 ??Systems	 ?Integration	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?	 ?This	 ?paper	 ?takes	 ?a	 ?retrospective	 ?look	 ?at	 ?the	 ?design,	 ?integration,	 ?and	 ?operation	 ?of	 ?the	 ?energy	 ?system	 ?at	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS)	 ?building	 ?on	 ?the	 ?University	 ?of	 ?British	 ?Columbia	 ?(UBC)	 ?campus.	 ?	 ?It	 ?examines	 ?various	 ?the	 ?energy	 ?flows	 ?of	 ?the	 ?building,	 ?and	 ?draws	 ?lessons	 ?learned	 ?through	 ?looking	 ?at	 ?specific	 ?system	 ?examples	 ?during	 ?the	 ?early	 ?stages	 ?of	 ?their	 ?operation.	 ?	 ?In	 ?particular,	 ?it	 ?looks	 ?at	 ?the	 ?functioning	 ?of	 ?the	 ?two-??building	 ?energy	 ?system	 ?of	 ?which	 ?CIRS	 ?is	 ?a	 ?part	 ?and	 ?draws	 ?lessons	 ?for	 ?system	 ?integration	 ?considerations	 ?for	 ?future	 ?projects.	 ?	 ?It	 ?finds	 ?that	 ?without	 ?proper	 ?processes	 ?for	 ?systems	 ?integration	 ?and	 ?monitoring	 ?and	 ?assessment,	 ?even	 ?buildings	 ?that	 ?have	 ?been	 ?designed	 ?to	 ?be	 ?highly	 ?efficient	 ?and	 ?sustainable	 ?will	 ?fall	 ?short	 ?of	 ?achieving	 ?their	 ?performance	 ?goals	 ?and	 ?intended	 ?system	 ?functioning.	 ?3.1 Introduction	 ?	 ?The	 ?building	 ?construction	 ?industry	 ?has	 ?seen	 ?an	 ?increased	 ?focus	 ?on	 ?providing	 ??sustainable?	 ?buildings,	 ?with	 ?much	 ?activity	 ?being	 ?implemented	 ?at	 ?the	 ?individual	 ?building	 ?scale	 ?to	 ?design	 ?more	 ?efficient	 ?and	 ?environmentally	 ?beneficial	 ?infrastructure	 ?(Cole,	 ?2012a).	 ?	 ?And	 ?yet	 ?even	 ?with	 ?such	 ?efforts	 ?focused	 ?on	 ?creating	 ?efficient	 ?and	 ??green?	 ?buildings,	 ?the	 ?performance	 ?of	 ?these	 ?buildings	 ?has	 ?often	 ?not	 ?lived	 ?up	 ?to	 ?expectations,	 ?resulting	 ?in	 ?a	 ?gap	 ?between	 ?theoretical	 ?and	 ?actual	 ?performance	 ?of	 ?buildings	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?Although	 ?the	 ?field	 ?of	 ?sustainable	 ?buildings	 ?has	 ?seen	 ?an	 ?increasing	 ?share	 ?of	 ?the	 ?construction	 ?market	 ?sector,	 ?with	 ?links	 ?being	 ?made	 ?to	 ?the	 ?idea	 ?of	 ??smart?	 ?cities	 ?and	 ?sustainable	 ?neighbourhoods,	 ?much	 ?of	 ?this	 ?work	 ?is	 ?still	 ?focused	 ?on	 ?the	 ?building	 ?as	 ?an	 ?isolated	 ?entity	 ?that	 ?can	 ?achieve	 ?incremental	 ?process	 ?or	 ?technology	 ?improvements	 ?to	 ?make	 ?it	 ?more	 ?sustainable	 ?(Cole,	 ?2012a).	 ?	 ?Incremental	 ?strategies	 ?meant	 ?to	 ?improve	 ?building	 ?designs	 ?have	 ?included	 ?the	 ?use	 ?of	 ?renewable	 ?energy	 ?sources	 ?and	 ?advanced	 ?metering	 ?and	 ?controls	 ?strategies	 ?such	 ?as	 ??smart	 ?meters?	 ?(Stylianou,	 ?2011).	 ?	 ?	 ?There	 ?has	 ?been	 ?an	 ?expressed	 ?desire	 ?of	 ?industry	 ?to	 ?connect	 ?Net	 ?Zero	 ?Energy	 ?Buildings	 ?(NZEB)	 ?processes	 ?with	 ?smart	 ?grid	 ?standards	 ?and	 ?technologies	 ?emerging	 ?on	 ?the	 ?utility	 ?side.	 ?	 ?This	 ?has	 ?been	 ?due	 ?to	 ?a	 ?recognition	 ?of	 ?the	 ?general	 ?movement	 ?towards	 ??smart	 ?grids?	 ?and	 ??smart	 ?buildings?	 ?that	 ?integrate	 ?renewables,	 ?connect	 ?with	 ?the	 ?smart	 ?grid,	 ?and	 ?promote	 ?energy	 ?efficiency,	 ?(Ames,	 ?2010).	 ?	 ?This	 ?trend	 ?towards	 ?systems	 ?integration	 ?moves	 ?us	 ?towards	 ?a	 ?larger	 ?scale	 ?movement	 ?in	 ?the	 ?area	 ?of	 ?neighbourhood	 ?sustainability	 ?and	 ?energy	 ?planning	 ?that	 ?has	 ?begun	 ?to	 ?incorporate	 ?distributed	 ?technologies	 ?and	 ?networks	 ?-??	 ?including	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?generation,	 ?and	 ?industrial	 ?ecology	 ?symbiosis	 ?opportunities.	 ?	 ?At	 ?a	 ?broad	 ?level,	 ?integration	 ?of	 ?resource	 ?uses	 ?such	 ?as	 ?water	 ?and	 ?energy	 ?are	 ?taking	 ?a	 ?more	 ?prominent	 ?position	 ?in	 ?industry	 ?news	 ?and	 ?events	 ?(ASHRAE,	 ?2013a).	 ?	 ?	 ? 28	 ?Buildings	 ?are	 ?becoming	 ?more	 ?integrated	 ?into	 ?these	 ?networks,	 ?even	 ?starting	 ?to	 ?become	 ?nodes	 ?within	 ?larger	 ?networks	 ?of	 ?buildings	 ?such	 ?as	 ?can	 ?be	 ?the	 ?case	 ?with	 ?district	 ?energy	 ?systems	 ?integrating	 ?heat	 ?pumps.	 ?	 ?Because	 ?of	 ?this,	 ?these	 ?larger	 ?scale	 ?movements	 ?can	 ?provide	 ?lessons	 ?useful	 ?for	 ?sustainable	 ?buildings.	 ?	 ?In	 ?the	 ?smart	 ?grid	 ?literature	 ??smart?	 ?has	 ?generally	 ?been	 ?conceptualized	 ?as	 ?giving	 ?automated	 ?control	 ?and	 ?monitoring	 ?capabilities	 ?to	 ?infrastructure	 ?(Alvial-??Palavicino	 ?et	 ?al.,	 ?2011),	 ?and	 ?yet	 ?the	 ?implementation	 ?of	 ??smart	 ?meters?	 ?and	 ?other	 ??smart?	 ?strategies	 ?in	 ?buildings	 ?has	 ?not	 ?yet	 ?been	 ?shown	 ?to	 ?bring	 ?significant	 ?benefits	 ?to	 ?building	 ?operations	 ?and	 ?inhabitants	 ?(S.	 ?J.	 ?Darby,	 ?2012;	 ?Krishnamurti	 ?et	 ?al.,	 ?2012b).	 ?	 ?This	 ?is	 ?seemingly	 ?at	 ?odds	 ?with	 ?industry	 ?literature	 ?on	 ?the	 ?implementation	 ?of	 ?further	 ?monitoring	 ?and	 ?controls	 ?in	 ?buildings	 ?which	 ?is	 ?being	 ?projected	 ?to	 ?have	 ?huge	 ?energy	 ?and	 ?cost	 ?savings	 ?based	 ?on	 ?theoretically	 ?modelled	 ?opportunities	 ?for	 ?energy	 ?reduction	 ?(ASHRAE,	 ?2013b;	 ?Hastbacka	 ?et	 ?al.,	 ?2013).	 ?	 ?Due	 ?to	 ?these	 ?kind	 ?of	 ?performance	 ?gaps	 ?and	 ?lessons	 ?being	 ?learned	 ?from	 ?case	 ?studies	 ?and	 ?literatures	 ?such	 ?as	 ?industrial	 ?ecology,	 ?smart	 ?grids,	 ?and	 ?distributed	 ?energy	 ?generation,	 ?it	 ?may	 ?be	 ?useful	 ?to	 ?apply	 ?these	 ?lessons	 ?to	 ?the	 ?conceptualization	 ?of	 ?the	 ?building	 ?landscape	 ?as	 ?a	 ?networked	 ?system.	 ?	 ?Case	 ?studies,	 ?process	 ?learning	 ?and	 ?feedback	 ?could	 ?be	 ?used	 ?in	 ?order	 ?to	 ?improve	 ?performance.	 ?	 ?This	 ?paper	 ?looks	 ?at	 ?the	 ?specific	 ?case	 ?study	 ?of	 ?the	 ?energy	 ?systems	 ?at	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability,	 ?a	 ?building	 ?designed	 ?to	 ?be	 ?part	 ?of	 ?a	 ?two	 ?building	 ?heat-??pump	 ?based	 ?energy	 ?system.	 ?	 ?It	 ?is	 ?hoped	 ?that	 ?such	 ?a	 ?case	 ?study	 ?will	 ?be	 ?useful	 ?in	 ?drawing	 ?lessons	 ?from	 ?the	 ?design	 ?and	 ?early	 ?operation	 ?of	 ?a	 ?sustainable	 ?building	 ?intended	 ?to	 ?operate	 ?as	 ?part	 ?of	 ?a	 ?larger	 ?infrastructure	 ?system.	 ?	 ?The	 ?purpose	 ?of	 ?this	 ?analysis	 ?is	 ?to	 ?enable	 ?a	 ?structured	 ?learning	 ?process	 ?based	 ?on	 ?the	 ?extensive	 ?design	 ?and	 ?operation	 ?experience	 ?of	 ?those	 ?individuals	 ?who	 ?have	 ?contributed	 ?to	 ?these	 ?kinds	 ?of	 ?sustainable	 ?design	 ?projects	 ??	 ?in	 ?particular	 ?projects	 ?that	 ?include	 ?building	 ?networks	 ??	 ?and	 ?to	 ?create	 ?a	 ?feedback	 ?loop	 ?that	 ?can	 ?enable	 ?improvements	 ?in	 ?future	 ?projects.	 ?	 ?The	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS)	 ?at	 ?the	 ?University	 ?of	 ?British	 ?Columbia?s	 ?(UBC)	 ?Vancouver	 ?campus	 ?began	 ?as	 ?a	 ?concept	 ?originating	 ?over	 ?a	 ?decade	 ?before	 ?it	 ?was	 ?constructed	 ?in	 ?2009-??2011.	 ?	 ?The	 ?vision	 ?and	 ?goals	 ?for	 ?the	 ?building	 ?emerged	 ?out	 ?of	 ?a	 ?desire	 ?to	 ?create	 ?a	 ?building	 ?scale	 ?test-??bed	 ?for	 ?concepts	 ?in	 ?sustainability.	 ?	 ?With	 ?the	 ?core	 ?goals	 ?of	 ?being	 ??smart?,	 ??green?,	 ?and	 ??humane?,	 ?CIRS	 ?followed	 ?an	 ?adaptive	 ?Integrated	 ?Design	 ?Process	 ?(IDP)	 ?meant	 ?to	 ?integrate	 ?all	 ?project	 ?phases	 ?and	 ?result	 ?in	 ?a	 ?building	 ?that	 ?would	 ?	 ??seamlessly	 ?integrate	 ?the	 ?design	 ?and	 ?ongoing	 ?operations?	 ?(Goal	 ?20	 ?of	 ?2004	 ??	 ?2006	 ?Sustainable	 ?Design	 ?Goals	 ?and	 ?Strategies	 ?Matrix).	 ?1	 ?	 ?The	 ?preliminary	 ?design	 ?budget	 ?for	 ?the	 ?building	 ?(as	 ?of	 ?the	 ?Board	 ?of	 ?Governors	 ?meeting	 ?in	 ?September	 ?of	 ?20092)	 ?was	 ?approximately	 ?14%	 ?of	 ?total	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?1	 ?22	 ?design	 ?goals	 ?for	 ?CIRS	 ?were	 ?created	 ?during	 ?the	 ?original	 ?design	 ?process.	 ?See	 ?http://cirs.ubc.ca/building/building-??manual/building-??design.	 ?2	 ?The	 ?UBC	 ?Board	 ?of	 ?Governors	 ?(BOG)	 ?is	 ?responsible	 ?for	 ?property,	 ?revenue,	 ?and	 ?business	 ?affairs.	 ?	 ?Reviews	 ?of	 ?budget	 ?considerations	 ?for	 ?new	 ?construction	 ?occur	 ?at	 ?BOG	 ?meetings	 ?	 ?	 ? 29	 ?construction	 ?costs3,	 ?as	 ?compared	 ?to	 ?the	 ?average	 ?10%	 ?design	 ?cost	 ?for	 ?comparable	 ?buildings	 ?at	 ?the	 ?UBC	 ?campus.	 ?	 ?The	 ?intent	 ?was	 ?to	 ?design	 ?a	 ?building	 ?at	 ?the	 ?forefront	 ?of	 ?sustainability	 ?performance	 ?that	 ?could	 ?be	 ?used	 ?as	 ?a	 ?model	 ?for	 ?how	 ?buildings	 ?could	 ?be	 ?designed	 ?and	 ?built	 ?and	 ?to	 ?serve	 ?as	 ?a	 ?living	 ?laboratory	 ?for	 ?sustainable	 ?building	 ?research.	 ?A	 ?smooth	 ?transition	 ?from	 ?design	 ?to	 ?operations,	 ?resulting	 ?in	 ?decreased	 ?operational	 ?costs	 ?over	 ?the	 ?lifetime	 ?of	 ?the	 ?building,	 ?was	 ?also	 ?a	 ?goal.	 ?	 ?Since	 ?such	 ?a	 ?focus	 ?was	 ?placed	 ?on	 ?integrated	 ?design	 ?and	 ?lifecycle	 ?analysis	 ?during	 ?the	 ?design	 ?phase,	 ?it	 ?is	 ?interesting	 ?to	 ?uncover	 ?how	 ?the	 ?process	 ?from	 ?design	 ?through	 ?operation	 ?was	 ?executed	 ?and	 ?whether	 ?it	 ?has	 ?resulted	 ?in	 ?significant	 ?operational	 ?gains.	 ?	 ?In	 ?2008,	 ?key	 ?members	 ?of	 ?the	 ?design	 ?team	 ?for	 ?CIRS	 ?stated	 ?that	 ??[the]	 ?goal	 ?will	 ?be	 ?to	 ?accelerate	 ?sustainability	 ?in	 ?the	 ?region	 ?and	 ?beyond	 ?by	 ?contributing	 ?knowledge,	 ?practices,	 ?lessons	 ?and	 ?models	 ?that	 ?can	 ?be	 ?used	 ?by	 ?others	 ?in	 ?fostering	 ?sustainable	 ?design	 ?and	 ?practice	 ?in	 ?the	 ?marketplace?	 ?(CIRS	 ?Goals	 ?Summary	 ?20084).	 ?	 ?This	 ?goes	 ?beyond	 ?current	 ?methods,	 ?goals,	 ?and	 ?strategies	 ?in	 ?green	 ?building	 ?which	 ?primarily	 ?focus	 ?on	 ?mitigation	 ?of	 ?environmental	 ?damage	 ?associated	 ?with	 ?building	 ?construction	 ?and	 ?operation	 ?(Cole,	 ?2012c).	 ?	 ?The	 ?building	 ?itself	 ?was	 ?viewed	 ?as	 ?a	 ?connection	 ?point	 ?to	 ?the	 ?greater	 ?campus	 ?and	 ?region	 ?to	 ?find	 ?sustainability	 ?solutions,	 ?and	 ?the	 ?final	 ?design	 ?incorporated	 ?a	 ?physical	 ?connection	 ?for	 ?waste-??heat	 ?harvesting	 ?from	 ?the	 ?nearby	 ?Earth	 ?and	 ?Ocean	 ?Sciences	 ?(EOS)	 ?laboratory.	 ?	 ?This	 ?connection	 ?to	 ?the	 ?adjacent	 ?building	 ?became	 ?one	 ?of	 ?the	 ?main	 ?points	 ?of	 ?physical	 ?systems	 ?integration	 ?of	 ?the	 ?project	 ?as	 ?well	 ?as	 ?a	 ?symbol	 ?for	 ?campus	 ?scale	 ?integrations	 ?in	 ?a	 ?broader	 ?sense.	 ?	 ?High-??level	 ?design	 ?goals	 ?relating	 ?to	 ?energy	 ?performance	 ?of	 ?CIRS	 ?included:	 ?minimizing	 ?the	 ?energy	 ?needs	 ?for	 ?building	 ?operation;	 ?matching	 ?the	 ?quality	 ?of	 ?energy	 ?with	 ?its	 ?use;	 ?installation	 ?of	 ?controls	 ?and	 ?monitoring	 ?systems	 ?to	 ?minimize	 ?total	 ?building	 ?energy	 ?consumption,	 ?thereby	 ?ensuring	 ?the	 ?building	 ?works	 ?by	 ?itself	 ?and	 ?that	 ?it	 ?responds	 ?actively	 ?and	 ?autonomously	 ?to	 ?environmental	 ?stimuli;	 ?and	 ?enabling	 ?a	 ?net	 ?effect	 ?of	 ?reducing	 ?campus	 ?energy	 ?use	 ?through	 ?renewable	 ?technologies	 ?and	 ?waste-??heat	 ?harvesting5.	 ?	 ?CIRS	 ?was	 ?intended	 ?to	 ?show	 ?how	 ?the	 ?use	 ?of	 ?aspirational	 ?design	 ?strategies	 ?could	 ?result	 ?in	 ?net	 ?benefits	 ?in	 ?human	 ?and	 ?environmental	 ?terms	 ?beyond	 ?the	 ?building	 ?boundary,	 ?thereby	 ?starting	 ?the	 ?process	 ?of	 ?considering	 ?the	 ?building	 ?not	 ?to	 ?be	 ?a	 ?stand-??alone,	 ?isolated	 ?project,	 ?but	 ?an	 ?integral	 ?part	 ?of	 ?the	 ?campus-??wide	 ?system	 ?of	 ?infrastructure	 ?(Robinson,	 ?Cole,	 ?Kingstone,	 ?&	 ?Cayuela,	 ?2013).	 ?CIRS	 ?is	 ?part	 ?of	 ?a	 ?campus-??level	 ?planning	 ?approach	 ?that	 ?is	 ?attempting	 ?to	 ?find	 ?design	 ?strategies	 ?for	 ?sustainable	 ?energy,	 ?water,	 ?waste	 ?and	 ?food	 ?systems	 ?through	 ?practical	 ?implementation	 ?and	 ?learning	 ?(Robinson	 ?et	 ?al.,	 ?2013).	 ?	 ?Like	 ?many	 ?sustainable	 ?building	 ?projects,	 ?the	 ?CIRS	 ?design	 ?and	 ?construction	 ?process	 ?attempted	 ?to	 ?follow	 ?an	 ?Integrated	 ?Design	 ?Process	 ?(IDP).	 ?	 ?IDP	 ?is	 ?a	 ?process	 ?intended	 ?to	 ?help	 ?deliver	 ?sustainable	 ?projects;	 ?it	 ?is	 ?meant	 ?to	 ?be	 ?a	 ?collaborative	 ?process	 ?that	 ?helps	 ?the	 ?project	 ?transition	 ?smoothly	 ?through	 ?design,	 ?construction,	 ?and	 ?operation.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?3	 ?This	 ?cost	 ?calculation	 ?excludes	 ?sunk	 ?costs	 ?from	 ?previous	 ?design	 ?iterations	 ?4	 ?During	 ?the	 ?2008	 ?IDP	 ?process	 ?this	 ?goals	 ?summary	 ?was	 ?created	 ?5	 ?http://cirs.ubc.ca/about/mission-??vision-??goals	 ?	 ? 30	 ?IDP	 ?strives	 ?to	 ?integrate	 ?solutions	 ?for	 ?the	 ?entire	 ?life	 ?cycle	 ?of	 ?a	 ?building	 ?while	 ?remaining	 ?iterative	 ?and	 ?flexible,	 ?allowing	 ?the	 ?best	 ?possible	 ?processes	 ?and	 ?solutions	 ?to	 ?emerge	 ?out	 ?of	 ?the	 ?project	 ?team	 ?(BC	 ?Green	 ?Building	 ?Roundtable,	 ?2007).	 ?	 ?The	 ?Integrated	 ?Design	 ?Process	 ?has	 ?roots	 ?in	 ?the	 ?lean	 ?manufacturing	 ?movement	 ?of	 ?the	 ?automobile	 ?industry	 ?and	 ?as	 ?such	 ?places	 ?importance	 ?on	 ?the	 ?understanding	 ?of	 ?the	 ?flows	 ?of	 ?materials	 ?(Koskela	 ?&	 ?Vrijhoef,	 ?2001).	 ?	 ?3.2 Methods	 ?	 ?This	 ?research	 ?was	 ?conducted	 ?by	 ?performing	 ?an	 ?analysis	 ?of	 ?both	 ?the	 ?design	 ?process,	 ?and	 ?operational	 ?performance	 ?of	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?at	 ?UBC.	 ?	 ?The	 ?system	 ?design	 ?process	 ?was	 ?examined	 ?through	 ?analysis	 ?of	 ?major	 ?design	 ?and	 ?contract	 ?documentation	 ?for	 ?the	 ?building,	 ?including	 ?meetings	 ?of	 ?the	 ?CIRS	 ?Integrated	 ?Design	 ?Process	 ?(IDP)	 ?team	 ?and	 ?meeting	 ?minutes	 ?from	 ?design	 ?meetings	 ?such	 ?as	 ?facilitated	 ?design	 ?charettes.	 ?	 ?The	 ?system	 ?operation	 ?was	 ?examined	 ?through	 ?on-??site	 ?physical	 ?assessment	 ?of	 ?building	 ?systems	 ?as	 ?well	 ?as	 ?through	 ?analysis	 ?of	 ?data	 ?recorded	 ?by	 ?the	 ?CIRS	 ?Building	 ?Management	 ?System	 ?(BMS).	 ?	 ?The	 ?CIRS	 ?BMS	 ?system	 ?logs	 ?data	 ?from	 ?the	 ?building?s	 ?over	 ?3,000	 ?monitoring	 ?points.	 ?In	 ?order	 ?to	 ?evaluate	 ?the	 ?performance	 ?of	 ?the	 ?building	 ?systems	 ?relative	 ?to	 ?their	 ?design	 ?intent,	 ?the	 ?BMS	 ?database	 ?was	 ?queried	 ?for	 ?data	 ?on	 ?electrical	 ?and	 ?heat	 ?systems	 ?at	 ?hourly	 ?and	 ?daily	 ?resolutions.	 ?	 ?The	 ?overall	 ?operation	 ?of	 ?the	 ?energy	 ?system	 ?for	 ?CIRS	 ?was	 ?evaluated	 ?through	 ?the	 ?use	 ?of	 ?the	 ?CIRS	 ?BMS	 ?data	 ?in	 ?addition	 ?to	 ?a	 ?survey	 ?conducted	 ?with	 ?building	 ?inhabitants	 ?and	 ?operators.	 ?	 ?This	 ?paper	 ?explores	 ?the	 ?energy	 ?performance	 ?of	 ?the	 ?CIRS	 ?building	 ?using	 ?the	 ?aforementioned	 ?sources.	 ?	 ?3.3 CIRS	 ?Energy	 ?Systems	 ??	 ?A	 ?Conceptual	 ?Understanding	 ?	 ?Following	 ?the	 ?design	 ?goal	 ?to	 ?be	 ??net	 ?positive?	 ?in	 ?energy,	 ?the	 ?design	 ?of	 ?the	 ?energy	 ?systems	 ?for	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?evolved	 ?out	 ?of	 ?knowledge	 ?of	 ?the	 ?site	 ?and	 ?its	 ?surrounding	 ?environment	 ?on	 ?the	 ?UBC	 ?campus.	 ?	 ?Since	 ?CIRS	 ?was	 ?situated	 ?next	 ?to	 ?the	 ?energy	 ?hungry	 ?and	 ?highly	 ?ventilated	 ?EOS	 ?laboratory	 ?building,	 ?it	 ?was	 ?proposed	 ?that	 ?CIRS	 ?could	 ?harvest	 ?waste	 ?heat	 ?energy	 ?from	 ?the	 ?exhaust	 ?ventilation	 ?of	 ?EOS.	 ?	 ?Estimates	 ?of	 ?the	 ?amount	 ?of	 ?heat	 ?that	 ?might	 ?be	 ?harvested	 ?significantly	 ?exceeded	 ?estimates	 ?of	 ?the	 ?demand	 ?for	 ?heat	 ?at	 ?CIRS.	 ?Given	 ?this	 ?resource,	 ?it	 ?was	 ?proposed	 ?that	 ?the	 ?building	 ?have	 ?an	 ?additional	 ?heating	 ?connection	 ?back	 ?to	 ?the	 ?EOS	 ?preheat	 ?system	 ?such	 ?that	 ?some	 ?of	 ?the	 ?harvested	 ?waste	 ?heat	 ?could	 ?be	 ?returned	 ?to	 ?EOS.	 ?	 ?	 ?As	 ?the	 ?design	 ?for	 ?the	 ?energy	 ?system	 ?at	 ?CIRS	 ?evolved,	 ?it	 ?was	 ?decided	 ?that	 ?the	 ?main	 ?thermal	 ?energy	 ?source	 ?for	 ?the	 ?building	 ?would	 ?be	 ?the	 ?heat	 ?harvesting	 ?from	 ?the	 ?adjacent	 ?EOS	 ?building	 ?and	 ?that	 ?various	 ?other	 ?systems	 ?included	 ?in	 ?the	 ?design	 ?would	 ?act	 ?as	 ?supplementary	 ?systems.	 ?	 ?CIRS	 ?was	 ?designed	 ?to	 ?run	 ?entirely	 ?on	 ?electricity	 ?as	 ?its	 ?primary	 ?energy	 ?source,	 ?using	 ?heat	 ?pumps	 ?to	 ?harvest	 ?thermal	 ?energy	 ?from	 ?various	 ?	 ? 31	 ?sources	 ?including	 ?exhaust	 ?heat	 ?recovery	 ?both	 ?from	 ?CIRS	 ?and	 ?from	 ?the	 ?neighbouring	 ?EOS	 ?building,	 ?a	 ?geothermal	 ?field	 ?under	 ?the	 ?building,	 ?a	 ?solar	 ?hot	 ?water	 ?system,	 ?and	 ?a	 ?back-??up	 ?electric	 ?boiler.	 ?	 ?	 ?Solar	 ?photovoltaic	 ?panels	 ?were	 ?included	 ?in	 ?the	 ?building	 ?design	 ?to	 ?provide	 ?supplemental	 ?electrical	 ?energy.	 ?	 ?It	 ?was	 ?estimated	 ?that	 ?CIRS	 ?would	 ?use	 ?585	 ?MWh	 ?of	 ?electricity	 ?yearly,	 ?be	 ?able	 ?to	 ?harvest	 ?306	 ?MWh	 ?of	 ?heating	 ?from	 ?EOS	 ?exhaust	 ?for	 ?its	 ?own	 ?use,	 ?and	 ?be	 ?able	 ?to	 ?harvest	 ?an	 ?additional	 ?600	 ?MWh	 ?of	 ?heating	 ?from	 ?EOS	 ?that	 ?could	 ?be	 ?sent	 ?back	 ?to	 ?the	 ?EOS	 ?building.	 ?	 ?This	 ?would	 ?therefore	 ?reduce	 ?the	 ?EOS	 ?building	 ?heating	 ?demand	 ?by	 ?600	 ?MWh	 ?of	 ?steam,	 ?which	 ?in	 ?turn	 ?was	 ?estimated	 ?to	 ?correspond	 ?to	 ?860	 ?MWh	 ?of	 ?natural	 ?gas	 ?use	 ?at	 ?the	 ?UBC	 ?steam	 ?plant.	 ?	 ?The	 ?design	 ?team	 ?felt	 ?that	 ?this	 ?would	 ?mean	 ?that	 ?adding	 ?CIRS	 ?to	 ?the	 ?UBC	 ?campus	 ?would	 ?increase	 ?electricity	 ?use	 ?by	 ?585	 ?MWh	 ?and	 ?reduce	 ?natural	 ?gas	 ?use	 ?by	 ?860	 ?MWh,	 ?making	 ?CIRS	 ?net	 ?positive	 ?in	 ?energy	 ?use.	 ?	 ?	 ?The	 ?connection	 ?at	 ?EOS	 ?is	 ?therefore	 ?an	 ?integral	 ?component	 ?to	 ?the	 ?system	 ?allowing	 ?the	 ?design	 ?to	 ?meet	 ?its	 ?intent.	 ?	 ?Based	 ?on	 ?document	 ?analysis	 ?of	 ?meeting	 ?minutes	 ?from	 ?the	 ?design	 ?phase,	 ?as	 ?well	 ?as	 ?information	 ?from	 ?various	 ?project	 ?team	 ?members,	 ?it	 ?was	 ?found	 ?that	 ?the	 ?CIRS	 ?design	 ?was	 ?able	 ?to	 ?maintain	 ?its	 ?high	 ?performance	 ?standards	 ?and	 ?goals	 ?by	 ?maintaining	 ?a	 ?constant	 ?framing	 ?of	 ?the	 ?project	 ?within	 ?the	 ?larger	 ?goal	 ?of	 ?campus	 ?sustainability	 ?and	 ?sustainability	 ?leadership.	 ?	 ?The	 ?normal	 ?pressures	 ?of	 ?value	 ?engineering	 ?were	 ?not	 ?able	 ?to	 ?change	 ?the	 ?design	 ?intent	 ?and	 ?goals	 ?of	 ?the	 ?project	 ?at	 ?CIRS	 ?because	 ?these	 ?sustainability	 ?goals	 ?were	 ?considered	 ?part	 ?of	 ?the	 ?research	 ?program	 ?of	 ?CIRS	 ?as	 ?a	 ?living	 ?laboratory,	 ?and	 ?thus	 ?had	 ?an	 ?added	 ?academic	 ?justification.	 ?	 ?The	 ?main	 ?goals	 ?for	 ?the	 ?project,	 ?inclusive	 ?of	 ?being	 ?an	 ?energy	 ?leader	 ?and	 ?demonstration	 ?of	 ?the	 ?highest	 ?levels	 ?of	 ?green	 ?practice	 ?for	 ?industry,	 ?were	 ?consistently	 ?brought	 ?back	 ?into	 ?the	 ?conversation	 ?and	 ?helped	 ?to	 ?coalesce	 ?the	 ?group	 ?in	 ?working	 ?towards	 ?creating	 ?the	 ?greatest	 ?opportunities	 ?for	 ?energy	 ?effectiveness.	 ?3.3.1 Electrical	 ?System	 ?Description	 ?	 ?The	 ?primary	 ?energy	 ?source	 ?for	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?at	 ?UBC	 ?is	 ?electricity.	 ?	 ?Thermal	 ?energy	 ?is	 ?harvested	 ?using	 ?heat	 ?pumps	 ?that	 ?run	 ?on	 ?electricity,	 ?the	 ?functioning	 ?of	 ?the	 ?thermal	 ?systems	 ?will	 ?be	 ?discussed	 ?in	 ?the	 ?next	 ?section.	 ?	 ?Electrical	 ?systems	 ?in	 ?the	 ?building	 ?include	 ?the	 ?photovoltaic	 ?shading	 ?and	 ?skylight	 ?panels,	 ?Heating	 ?Ventilation	 ?and	 ?Air	 ?Conditioning	 ?(HVAC),	 ?lighting,	 ?associated	 ?metering	 ?and	 ?controls,	 ?and	 ?smaller	 ?systems	 ?that	 ?may	 ?be	 ?considered	 ?building	 ?plug-??loads.	 ?	 ? 	 ?	 ? 32	 ?	 ?3.3.2 Electrical	 ?System	 ?Concept	 ?Diagram	 ?	 ?	 ?	 ?Figure	 ?3-??	 ?1	 ??	 ?CIRS	 ?Electricity	 ?Flow	 ?Diagram	 ?3.3.3 Electrical	 ?System	 ?Metering	 ?Description	 ?	 ?Metering	 ?of	 ?the	 ?electrical	 ?system	 ?at	 ?CIRS	 ?is	 ?done	 ?with	 ?a	 ?utility	 ?grade	 ?electricity	 ?meter	 ?owned	 ?by	 ?BC	 ?Hydro	 ?as	 ?well	 ?as	 ?by	 ?the	 ?more	 ?than	 ?30	 ?electrical	 ?sub-??meters	 ?installed	 ?in	 ?the	 ?CIRS	 ?building,	 ?which	 ?are	 ?monitored	 ?by	 ?the	 ?local	 ?Honeywell	 ?Building	 ?Management	 ?System	 ?(BMS).	 ?	 ?These	 ?individual	 ?electrical	 ?sub-??meters	 ?monitor	 ?the	 ?electrical	 ?use	 ?of	 ?each	 ?electrical	 ?panel	 ?as	 ?well	 ?as	 ?the	 ?electrical	 ?power	 ?at	 ?each	 ?transformer.	 ?3.3.4 Thermal	 ?Energy	 ?System	 ?Description	 ?	 ?The	 ?thermal	 ?systems	 ?in	 ?CIRS	 ?were	 ?designed	 ?to	 ?be	 ?low	 ?temperature	 ?to	 ?make	 ?use	 ?of	 ?low	 ?grade	 ?heat	 ?sources	 ?including	 ?waste	 ?heat	 ?from	 ?the	 ?nearby	 ?Earth	 ?and	 ?Ocean	 ?Sciences	 ?laboratory	 ?building,	 ?local	 ?heat	 ?recovery	 ?from	 ?CIRS	 ?ventilation	 ?exhaust,	 ?and	 ?an	 ?on-??site	 ?geothermal	 ?field.	 ?A	 ?solar	 ?hot	 ?water	 ?system	 ?and	 ?a	 ?back-??up	 ?electric	 ?boiler	 ?are	 ?also	 ?part	 ?of	 ?the	 ?CIRS	 ?thermal	 ?system,	 ?operating	 ?at	 ?higher	 ?temperatures.	 ?	 ?All	 ?thermal	 ?energy	 ?sources	 ?require	 ?electrical	 ?energy	 ?to	 ?run	 ?various	 ?associated	 ?pumps	 ?and	 ?fans	 ?that	 ?transport	 ?the	 ?heat,	 ?as	 ?well	 ?as	 ?to	 ?operate	 ?the	 ?heat	 ?pumps	 ?that	 ?raise	 ?the	 ?harvested	 ?energy	 ?to	 ?a	 ?temperature	 ?usable	 ?in	 ?the	 ?building.	 ?	 ? 	 ?	 ? 33	 ?	 ?3.3.5 Thermal	 ?Energy	 ?Flow	 ?Diagram	 ?	 ?	 ?	 ?Figure	 ?3-??	 ?2?	 ?CIRS	 ?Thermal	 ?Energy	 ?Flow	 ?Diagram	 ?3.3.6 Thermal	 ?Energy	 ?Metering	 ?Description	 ?	 ?The	 ?metering	 ?of	 ?the	 ?thermal	 ?systems	 ?in	 ?CIRS	 ?is	 ?done	 ?using	 ?independent	 ?flow	 ?meters	 ?and	 ?temperature	 ?sensors,	 ?as	 ?well	 ?as	 ?totalizing	 ?thermal	 ?energy	 ?meters	 ?measuring	 ?the	 ?equivalent	 ?kilowatt-??hours	 ?of	 ?energy	 ?exchange	 ?of	 ?various	 ?sub-??systems	 ?such	 ?as	 ?the	 ?geothermal	 ?field	 ?or	 ?EOS	 ?heat	 ?recovery	 ?system.	 ?	 ? 	 ?	 ? 34	 ?	 ?3.3.7 Theoretical	 ?Energy	 ?Flows	 ?	 ?The	 ?following	 ?diagram	 ?shows	 ?the	 ?design	 ?intent	 ?and	 ?estimated	 ?flows	 ?of	 ?the	 ?energy	 ?systems	 ?at	 ?CIRS	 ?at	 ?the	 ?end	 ?of	 ?the	 ?design	 ?process.	 ?	 ?Calculated	 ?estimates	 ?were	 ?taken	 ?from	 ?the	 ?LEED	 ?energy	 ?model	 ?performed	 ?by	 ?the	 ?energy-??modelling	 ?consultant.	 ?	 ?	 ?	 ? Figure	 ?3-??	 ?3?	 ?CIRS	 ?Design	 ?Sankey	 ?Diagram	 ?3.4 Energy	 ?System	 ?Performance	 ?	 ?In	 ?order	 ?to	 ?understand	 ?how	 ?the	 ?building	 ?was	 ?performing	 ?in-??situ,	 ?data	 ?was	 ?collected	 ?from	 ?the	 ?sensors	 ?and	 ?energy	 ?meters	 ?installed	 ?in	 ?CIRS	 ?using	 ?a	 ?query	 ?system	 ?able	 ?to	 ?access	 ?the	 ?installed	 ?Building	 ?Monitoring	 ?System	 ?(BMS).	 ?	 ?	 ?	 ?The	 ?first	 ?data	 ?points	 ?(March	 ?2012)	 ?were	 ?taken	 ?from	 ?the	 ?readings	 ?of	 ?the	 ?three	 ?energy	 ?meters	 ?monitoring	 ?the	 ?flow	 ?of	 ?thermal	 ?energy	 ?between	 ?the	 ?buildings	 ?at	 ?the	 ?heat	 ?pumps.	 ?	 ?These	 ?energy	 ?meters	 ?monitor	 ?the	 ?flow	 ?in	 ?equivalent	 ?kilowatt-??hours	 ?of	 ?thermal	 ?energy.	 ?	 ?One	 ?meter	 ?monitors	 ?the	 ?energy	 ?flow	 ?between	 ?the	 ?exhaust	 ?of	 ?EOS	 ?and	 ?the	 ?CIRS	 ?thermal	 ?heating	 ?system	 ?intake,	 ?(energy	 ?meter	 ?16	 ?or	 ?EM16),	 ?one	 ?meter	 ?monitors	 ?the	 ?energy	 ?flow	 ?between	 ?CIRS	 ?and	 ?the	 ?outdoor	 ?make-??up	 ?air	 ?intake	 ?of	 ?EOS,	 ?(energy	 ?meter	 ?14	 ?or	 ?EM14),	 ?and	 ?one	 ?meter	 ?measures	 ?the	 ?energy	 ?flow	 ?between	 ?the	 ?	 ? 35	 ?outdoor	 ?make-??up	 ?air	 ?intake	 ?and	 ?EOS	 ?(energy	 ?meter	 ?15	 ?or	 ?EM15).	 ?	 ?The	 ?intended	 ?function	 ?of	 ?the	 ?heat	 ?pump	 ?associated	 ?with	 ?the	 ?EOS	 ?exhaust	 ?is	 ?to	 ?extract	 ?heat	 ?from	 ?the	 ?exhaust	 ?ventilation	 ?and	 ?transfer	 ?it	 ?to	 ?CIRS.	 ?	 ?The	 ?intended	 ?function	 ?of	 ?the	 ?heat	 ?pump	 ?associated	 ?with	 ?the	 ?make-??up	 ?air	 ?unit	 ?of	 ?EOS	 ?is	 ?to	 ?transfer	 ?excess	 ?heat	 ?from	 ?CIRS	 ?to	 ?EOS	 ?as	 ?preheat	 ?for	 ?its	 ?ventilation	 ?system.	 ?	 ?Each	 ?of	 ?these	 ?heat	 ?pumps	 ?has	 ?the	 ?following	 ?meters	 ?and	 ?sensors	 ?that	 ?were	 ?queried:	 ?	 ?Energy_Total	 ?(Energy	 ?meter)	 ?Energy_Rate	 ?(Based	 ?on	 ?flow	 ?at	 ?energy	 ?meter)	 ?Return_Temperature	 ?(Individual	 ?temperature	 ?sensor)	 ?Supply_Temperature	 ?(Individual	 ?temperature	 ?sensor)	 ?	 ?Unfortunately	 ?the	 ?more	 ?detailed	 ?readings	 ?were	 ?not	 ?logged	 ?for	 ?the	 ?heat	 ?pump	 ?between	 ?CIRS	 ?and	 ?the	 ?EOS	 ?Make-??Up	 ?Air	 ?(MUA)	 ?unit	 ?(i.e.	 ?energy	 ?meter	 ?14	 ?or	 ?15?s	 ?energy	 ?rate)	 ?until	 ?December	 ?of	 ?2012.	 ?	 ?Consequently,	 ?it	 ?was	 ?only	 ?possible	 ?to	 ?observe	 ?the	 ?overall	 ??net?	 ?energy	 ?totals	 ?for	 ?each	 ?of	 ?these	 ?meters	 ?between	 ?the	 ?period	 ?of	 ?March	 ?and	 ?December	 ?2012.	 ?	 ?More	 ?detailed	 ?calculations	 ?were	 ?subsequently	 ?performed	 ?using	 ?data	 ?between	 ?December	 ?2012	 ?and	 ?April	 ?2013.	 ?3.4.1 Understanding	 ?the	 ?System	 ?Operation	 ?	 ?While	 ?it	 ?is	 ?convenient	 ?to	 ?think	 ?of	 ?the	 ?heat	 ?transfer	 ?system	 ?between	 ?CIRS	 ?and	 ?EOS	 ?as	 ?having	 ?one	 ?connection	 ?for	 ?unidirectional	 ?heat	 ?extraction	 ?from	 ?EOS	 ?and	 ?one	 ?connection	 ?for	 ?unidirectional	 ?heat	 ?transfer	 ?to	 ?EOS,	 ?in	 ?reality	 ?these	 ?two	 ?connections	 ?could	 ?allow	 ?heat	 ?flow	 ?in	 ?either	 ?direction	 ?dependent	 ?on	 ?the	 ?temperature	 ?gradient.	 ?	 ?	 ?	 ?In	 ?order	 ?to	 ?better	 ?understand	 ?the	 ?system	 ?operation	 ?and	 ?integration,	 ?it	 ?is	 ?helpful	 ?to	 ?explicitly	 ?recognize	 ?the	 ?following	 ?options	 ?for	 ?system	 ?operation.	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?16	 ?(EM16)?	 ?Return	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Supply	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?CIRS	 ?is	 ?harvesting	 ?thermal	 ?energy	 ?from	 ?EOS	 ?exhaust	 ?air,	 ?as	 ?anticipated	 ?in	 ?the	 ?design.	 ?	 ?I	 ?establish	 ?the	 ?convention	 ?of	 ?energy	 ?transfer	 ?to	 ?CIRS	 ?as	 ?the	 ?positive	 ?energy	 ?case,	 ?the	 ?other	 ?operation	 ?sequences	 ?will	 ?be	 ?described	 ?accordingly.	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?16	 ?(EM16)?	 ?Supply	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Return	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?CIRS	 ?is	 ?gaining	 ?cooling	 ?energy	 ?from	 ?EOS	 ?exhaust	 ?air.	 ?	 ?This	 ?situation	 ?is	 ?equivalent	 ?to	 ?sending	 ?heat	 ?from	 ?CIRS	 ?to	 ?be	 ?vented	 ?through	 ?EOS	 ?exhaust,	 ?using	 ?the	 ?connection	 ?as	 ?a	 ?cooling	 ?tower.	 ?	 ?Using	 ?the	 ?convention	 ?stated	 ?above,	 ?this	 ?would	 ?be	 ?a	 ??negative?	 ?energy	 ?case.	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?14	 ?(EM14)?	 ?Return	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Supply	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?CIRS	 ?is	 ?extracting	 ?thermal	 ?energy	 ?from	 ?the	 ?makeup	 ?air	 ?unit	 ?of	 ?EOS.	 ?	 ?This	 ?is	 ?equivalent	 ?to	 ?pre-??cooling	 ?the	 ?air	 ?for	 ?the	 ?makeup-??unit	 ?of	 ?EOS.	 ?	 ?While	 ?this	 ?would	 ?be	 ?a	 ??positive?	 ?	 ? 36	 ?energy	 ?case	 ?because	 ?energy	 ?is	 ?gained	 ?at	 ?CIRS,	 ?it	 ?would	 ?be	 ?counter	 ?to	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?system.	 ?	 ?	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?14	 ?(EM14)?	 ?Supply	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Return	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?CIRS	 ?is	 ?providing	 ?heating	 ?to	 ?the	 ?MUA	 ?unit	 ?for	 ?EOS,	 ?as	 ?intended	 ?in	 ?the	 ?design.	 ?	 ?This	 ?is	 ?equivalent	 ?to	 ?pre-??heating	 ?the	 ?air	 ?for	 ?the	 ?makeup-??unit	 ?of	 ?EOS	 ?and	 ?removing	 ?unnecessary	 ?heat	 ?for	 ?CIRS.	 ?With	 ?our	 ?convention,	 ?this	 ?is	 ?a	 ??negative?	 ?energy	 ?case	 ?from	 ?the	 ?reference	 ?point	 ?of	 ?CIRS.	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?15	 ?(EM15)	 ??	 ?Return	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Supply	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?the	 ?EOS	 ?MUA	 ?is	 ?receiving	 ?heat	 ?from	 ?the	 ?heat	 ?exchanger	 ?between	 ?the	 ?buildings.	 ?	 ?This	 ?is	 ?equivalent	 ?to	 ?pre-??heating	 ?the	 ?MUA	 ?for	 ?EOS,	 ?as	 ?intended	 ?in	 ?the	 ?design.	 ?	 ?Heat	 ?Pump	 ?at	 ?Energy	 ?Meter	 ?15	 ?(EM15)	 ??	 ?Supply	 ?Temperature	 ?of	 ?HP	 ?greater	 ?than	 ?Return	 ?Temperature	 ?of	 ?HP	 ??	 ?if	 ?this	 ?occurs,	 ?it	 ?can	 ?be	 ?understood	 ?that	 ?the	 ?EOS	 ?MUA	 ?is	 ?receiving	 ?cooling	 ?between	 ?the	 ?heat	 ?exchanger	 ?and	 ?the	 ?MUA	 ?unit.	 ?	 ?Once	 ?this	 ?understanding	 ?of	 ?the	 ?possible	 ?operational	 ?modes	 ?of	 ?the	 ?heat	 ?exchange	 ?between	 ?CIRS	 ?and	 ?EOS	 ?is	 ?understood,	 ?it	 ?becomes	 ?clear	 ?that	 ?unless	 ?the	 ?energy	 ?meters	 ?at	 ?each	 ?connection	 ?have	 ?the	 ?ability	 ?to	 ?record	 ?the	 ?directionality	 ?of	 ?flow	 ?they	 ?cannot	 ?be	 ?used	 ?to	 ?meaningfully	 ?assess	 ?heat	 ?exchanges	 ?between	 ?the	 ?buildings	 ?from	 ?a	 ?total	 ?energy	 ?flow	 ?reading.	 ?	 ?However,	 ?by	 ?tracking	 ?the	 ?data	 ?from	 ?these	 ?energy	 ?meters	 ?and	 ?observing	 ?the	 ?temperature	 ?differential	 ?across	 ?the	 ?heat	 ?pump	 ?it	 ?has	 ?been	 ?determined	 ?that	 ?these	 ?energy	 ?meters	 ?in	 ?fact	 ?do	 ?not	 ?log	 ?the	 ?directionality	 ?of	 ?flow	 ?and	 ?therefore	 ?count	 ?both	 ?heat	 ?loss	 ?and	 ?heat	 ?gain	 ?as	 ?positive	 ?quantities.	 ?This	 ?means	 ?that	 ?these	 ?readings	 ?are	 ?giving	 ?the	 ?absolute	 ?value	 ?of	 ?energy	 ?flow	 ?and	 ?not	 ?allowing	 ?us	 ?to	 ?understand	 ?the	 ?energy	 ?balance	 ?between	 ?the	 ?buildings	 ?without	 ?additional	 ?monitoring	 ?to	 ?look	 ?at	 ?the	 ?temperature	 ?gradient	 ?and	 ?flow	 ?directionality.	 ?	 ?3.4.2 Metered	 ?and	 ?Calculated	 ?Flows	 ?	 ?From	 ?these	 ?absolute,	 ?non-??directional	 ?metered	 ?energy	 ?totals	 ?for	 ?the	 ?heat	 ?pumps	 ?located	 ?between	 ?the	 ?buildings,	 ?the	 ?following	 ?patterns	 ?were	 ?seen	 ?for	 ?the	 ?time	 ?period	 ?between	 ?April	 ?2012	 ?and	 ?April	 ?2013.	 ?	 ?Note	 ?that	 ?while	 ?the	 ?graph	 ?below	 ?shows	 ??net?	 ?heat	 ?transfer	 ?as	 ?the	 ?difference	 ?between	 ?heat	 ?transferred	 ?from	 ?EOS	 ?to	 ?CIRS	 ?and	 ?heat	 ?transferred	 ?from	 ?CIRS	 ?back	 ?to	 ?EOS,	 ?due	 ?to	 ?the	 ?metering	 ?issue	 ?described	 ?above	 ?this	 ?provides	 ?an	 ?incomplete	 ?performance	 ?representation	 ?for	 ?buildings	 ?operation	 ?assessment.	 ? 	 ?	 ? 37	 ?	 ?	 ?Figure	 ?3-??	 ?4?	 ?Metered	 ?Heat	 ?Transfer	 ?Between	 ?CIRS	 ?and	 ?EOS6	 ?	 ?Month	 ?Heat	 ?Harvested	 ?From	 ?EOS	 ?(kWheq)	 ?Heat	 ?Transferred	 ?to	 ?EOS	 ?(kWheq)	 ?Heat	 ?Accepted	 ?by	 ?EOS	 ?(kWheq)	 ? Net	 ?EOS	 ?Energy	 ?Exchange	 ?(kWheq)	 ?Apr-??12	 ? 21,000	 ? -??6,000	 ? 0	 ? 15,000	 ?May-??12	 ? 18,000	 ? -??3,000	 ? 0	 ? 15,000	 ?Jun-??12	 ? 15,000	 ? 0	 ? 0	 ? 14,000	 ?Jul-??12	 ? 18,000	 ? 0	 ? 0	 ? 18,000	 ?Aug-??12	 ? 22,000	 ? 0	 ? 0	 ? 22,000	 ?Sep-??12	 ? 22,000	 ? 0	 ? 0	 ? 22,000	 ?Oct-??12	 ? 22,000	 ? -??5,000	 ? 0	 ? 17,000	 ?Nov-??12	 ? 23,000	 ? -??10,000	 ? 0	 ? 14,000	 ?Dec-??12	 ? 30,000	 ? -??34,000	 ? -??1,000	 ? -??4,000	 ?Jan-??13	 ? 30,000	 ? -??39,000	 ? 0	 ? -??9,000	 ?Feb-??13	 ? 23,000	 ? -??21,000	 ? 0	 ? 2,000	 ?Mar-??13	 ? 27,000	 ? -??11,000	 ? 0	 ? 7,000	 ?Sub-??total	 ?Dec-??12	 ?to	 ?Mar-??13	 ? 110,000	 ? -??105,000	 ?	 ?	 ?-??1,000	 ? -??4000	 ?Year	 ?Total	 ? 271,000	 ? -??129,000	 ? 	 ?-??1,000	 ? 133,000	 ?	 ?Table	 ?3-??	 ?1?	 ?Energy	 ?Meter	 ?Values	 ?for	 ?Heat	 ?Transfer	 ?Between	 ?CIRS/EOS	 ??	 ?to	 ?the	 ?nearest	 ?MWh	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?6	 ?Average	 ?mean	 ?outdoor	 ?temperature	 ?in	 ?all	 ?graphs	 ?from	 ?here	 ?on	 ?taken	 ?from	 ?historical	 ?weather	 ?records	 ?at	 ?YVR	 ?international	 ?airport	 ?-??	 ?http://climate.weather.gc.ca/climateData/dailydata_e.html?StationID=889	 ?	 ? 38	 ?	 ?Compared	 ?to	 ?the	 ?predicted	 ?906	 ?MWh	 ?of	 ?harvested	 ?thermal	 ?energy	 ?for	 ?the	 ?design,	 ?the	 ?above	 ?table	 ?indicates	 ?that	 ?CIRS	 ?was	 ?only	 ?able	 ?to	 ?harvest	 ?271	 ?MWh	 ?of	 ?thermal	 ?energy	 ?from	 ?EOS	 ?exhaust,	 ?and	 ?only	 ?sent	 ?back	 ?129	 ?MWh	 ?to	 ?EOS	 ?as	 ?compared	 ?to	 ?the	 ?estimated	 ?600	 ?MWh	 ?that	 ?was	 ?to	 ?be	 ?sent	 ?to	 ?EOS.	 ?	 ?EOS	 ?was	 ?only	 ?able	 ?to	 ?accept	 ?approximately	 ?1	 ?MWh	 ?of	 ?thermal	 ?energy	 ?versus	 ?the	 ?estimated	 ?600	 ?MWh.	 ?	 ?It	 ?can	 ?also	 ?be	 ?seen	 ?in	 ?the	 ?above	 ?table	 ?that	 ?in	 ?the	 ?months	 ?of	 ?December	 ?and	 ?January	 ?it	 ?seems	 ?as	 ?though	 ?CIRS	 ?sent	 ?more	 ?heat	 ?to	 ?EOS	 ?than	 ?it	 ?was	 ?able	 ?to	 ?extract	 ??	 ?indicating	 ?that	 ?in	 ?effect	 ?during	 ?these	 ?heating	 ?season	 ?months	 ?EOS	 ?was	 ?essentially	 ?cooling	 ?CIRS.	 ?	 ?This	 ?would	 ?not	 ?be	 ?consistent	 ?with	 ?the	 ?design	 ?intent,	 ?and	 ?shows	 ?the	 ?need	 ?to	 ?fully	 ?understand	 ?the	 ?energy	 ?flows	 ?in	 ?order	 ?to	 ?evaluate	 ?the	 ?performance	 ?of	 ?the	 ?building	 ?systems.	 ?	 ?In	 ?order	 ?to	 ?obtain	 ?a	 ?more	 ?accurate	 ?picture	 ?of	 ?the	 ?energy	 ?flows	 ?it	 ?is	 ?necessary	 ?to	 ?look	 ?at	 ?the	 ?Energy	 ?Rate	 ?as	 ?well	 ?as	 ?the	 ?Supply	 ?and	 ?Return	 ?Temperatures	 ?at	 ?each	 ?heat	 ?pump7.	 ?	 ?Unfortunately	 ?this	 ?information	 ?has	 ?only	 ?been	 ?logged	 ?since	 ?December	 ?of	 ?2012	 ?due	 ?to	 ?commissioning	 ?issues.	 ?	 ?The	 ?following	 ?table	 ?shows	 ?the	 ?results	 ?of	 ?this	 ?analysis	 ?between	 ?December	 ?2012	 ?and	 ?March,	 ?2013	 ?inclusive.	 ?	 ?Month	 ?Heat	 ?Harvested	 ?From	 ?EOS	 ?(kWheq)	 ?Heat	 ?Transferred	 ?to	 ?EOS	 ?(kWheq)	 ?Heat	 ?Exhausted	 ?at	 ?EOS	 ?Exhaust	 ?(kWheq)	 ?Heat	 ?Accepted	 ?at	 ?EOS	 ?MUA	 ?(kWheq)	 ?Net	 ?EOS	 ?Energy	 ?Exchange	 ?(kWheq)	 ?Dec-??12	 ? 24,000	 ? -??30,000	 ? -??3,000	 ? -??1,000	 ? -??9,000	 ?Jan-??13	 ? 29,000	 ? -??39,000	 ? -??1,000	 ? 0	 ? -??11,000	 ?Feb-??13	 ? 19,000	 ? -??21,000	 ? -??3,000	 ? 0	 ? -??5,000	 ?Mar-??13	 ? 13,000	 ? -??11,000	 ? -??9,000	 ? 0	 ? -??7,000	 ?Four	 ?Month	 ?Total	 ? 85,000	 ? -??101,000	 ? 	 ?-??16,000	 ? 	 ?-??1,000	 ? -??32,000	 ?%	 ?Difference	 ?from	 ?Metered	 ?Four	 ?Month	 ?Total	 ?(Refer	 ?to	 ?Table	 ?1)	 ? -??23%	 ? -??196%	 ?	 ?	 ?	 ?N/A	 ?	 ?	 ?	 ?0%	 ? 700%	 ?	 ? Table	 ?3-??	 ?2?	 ?Calculated	 ?Values	 ?for	 ?Heat	 ?Transfer	 ?Between	 ?CIRS/EOS	 ??	 ?to	 ?the	 ?nearest	 ?MWh	 ?	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?the	 ?above	 ?dataset,	 ?there	 ?exists	 ?a	 ?fairly	 ?significant	 ?discrepancy	 ?between	 ?the	 ?values	 ?logged	 ?each	 ?month	 ?for	 ?the	 ?energy	 ?meters	 ?and	 ?those	 ?logged	 ?using	 ?the	 ?temperature	 ?flow	 ?directionality	 ?using	 ?the	 ?supply	 ?and	 ?return	 ?temperatures	 ?and	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?7	 ?Programming	 ?of	 ?meters	 ?for	 ?heating	 ?loops	 ?did	 ?not	 ?properly	 ?account	 ?for	 ?time	 ?lags	 ?between	 ?the	 ?supply	 ?and	 ?return	 ?side	 ?of	 ?the	 ?loop,	 ?this	 ?introduces	 ?a	 ?small	 ?error	 ?into	 ?calculations.	 ?	 ? 39	 ?the	 ?energy	 ?rate	 ?observed	 ?each	 ?hour	 ?of	 ?operation.	 ?	 ?Instead	 ?of	 ?the	 ?net	 ?heat	 ?exchange	 ?between	 ?December	 ?2012	 ?and	 ?March	 ?2013	 ?being	 ?4,000	 ?kWheq	 ?of	 ?heat	 ?transferred	 ?to	 ?EOS	 ?from	 ?CIRS	 ?as	 ?per	 ?the	 ?metering	 ?results	 ?(see	 ?Table	 ?1),	 ?our	 ?calculated	 ?values	 ?indicate	 ?that	 ?the	 ?net	 ?heat	 ?transferred	 ?to	 ?the	 ?EOS	 ?MUA	 ?from	 ?CIRS	 ?is	 ?32,000	 ?kWheq	 ?(see	 ?Table	 ?2)	 ?and	 ?yet	 ?the	 ?heat	 ?accepted	 ?by	 ?the	 ?EOS	 ?connection	 ?was	 ?only	 ?1,000	 ?kWheq.	 ?	 ?This	 ?means	 ?that	 ?CIRS	 ?is	 ?sending	 ?significantly	 ?more	 ?heat	 ?to	 ?EOS	 ?than	 ?it	 ?is	 ?getting	 ?from	 ?EOS	 ?(even	 ?though	 ?EOS	 ?is	 ?not	 ?accepting	 ?this	 ?heat)	 ??	 ?this	 ?is	 ?not	 ?consistent	 ?with	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?system	 ?connection.	 ?	 ?A	 ?further	 ?breakdown	 ?of	 ?this	 ?can	 ?be	 ?seen	 ?looking	 ?at	 ?the	 ?month	 ?of	 ?March	 ?2013.	 ?	 ?Heat	 ?Transferred	 ?from	 ?EOS	 ?Exhaust	 ?Connection	 ?to	 ?CIRS	 ?=	 ?13,000	 ?kWheq	 ?Heat	 ?Transferred	 ?to	 ?EOS	 ?at	 ?MUA	 ?Connection	 ?=	 ?-??11,000	 ?kWheq	 ?Heat	 ?Accepted	 ?by	 ?EOS	 ?at	 ?MUA	 ?Connection	 ?=	 ?0	 ?kWheq	 ?Heat	 ?Exhausted	 ?to	 ?EOS	 ?Exhaust	 ?Connection	 ?=	 ?-??9,000	 ?kWheq	 ?Total	 ?Electrical	 ?Energy	 ?Consumed	 ?at	 ?CIRS	 ?=	 ?66,000	 ?kWh	 ?	 ?Since	 ?the	 ?connection	 ?between	 ?CIRS	 ?and	 ?the	 ?EOS	 ?Exhaust	 ?only	 ?enables	 ?transfer	 ?of	 ?heat	 ?between	 ?CIRS	 ?and	 ?to	 ?the	 ?atmosphere	 ?and	 ?not	 ?EOS	 ?directly,	 ?we	 ?see	 ?that	 ?13,000	 ?kWh	 ?of	 ?heat	 ?was	 ?transferred	 ?from	 ?EOS	 ?exhaust	 ?to	 ?CIRS	 ?while	 ?9,000	 ?kWh	 ?of	 ?heat	 ?was	 ?taken	 ?from	 ?CIRS	 ?and	 ?exhausted	 ?to	 ?the	 ?atmosphere	 ?(providing	 ?a	 ?heat	 ?dump	 ?or	 ?cooling	 ?for	 ?CIRS).	 ?	 ?This	 ?means	 ?that	 ?in	 ?actuality	 ?only	 ?a	 ?net	 ?of	 ?4,000	 ?kWh	 ?of	 ?heat	 ?was	 ?transferred	 ?at	 ?EM16	 ?to	 ?CIRS	 ?during	 ?the	 ?month	 ?of	 ?March.	 ?	 ?This	 ?is	 ?much	 ?lower	 ?than	 ?the	 ?27,000	 ?kWh	 ?logged	 ?by	 ?the	 ?energy	 ?meter	 ?at	 ?that	 ?location	 ?(see	 ?Table	 ?1).	 ?	 ?This	 ?confirms	 ?that	 ?the	 ?energy	 ?meter	 ?between	 ?the	 ?exhaust	 ?air	 ?of	 ?EOS	 ?and	 ?the	 ?heat	 ?pump	 ?at	 ?CIRS	 ?does	 ?not	 ?differentiate	 ?between	 ?the	 ?mode	 ?when	 ?CIRS	 ?is	 ?extracting	 ?heat	 ?and	 ?the	 ?mode	 ?when	 ?CIRS	 ?is	 ?dumping	 ?heat.	 ?	 ?Since	 ?theoretically	 ?the	 ?connection	 ?at	 ?the	 ?EOS	 ?MUA	 ?unit	 ?could	 ?enable	 ?heat	 ?transfer	 ?in	 ?both	 ?directions	 ?with	 ?the	 ?mixed	 ?outdoor	 ?air,	 ?the	 ?summation	 ?works	 ?differently	 ?here	 ?versus	 ?at	 ?the	 ?EOS	 ?exhaust	 ?connection	 ?where	 ?heat	 ?from	 ?CIRS	 ?cannot	 ?be	 ?transferred	 ?to	 ?EOS.	 ?	 ?During	 ?the	 ?month	 ?of	 ?March	 ?2013,	 ?11,000	 ?kWh	 ?of	 ?thermal	 ?heat	 ?was	 ?transferred	 ?from	 ?CIRS	 ?to	 ?EOS	 ?while	 ?cooling	 ?energy	 ?transferred	 ?was	 ?negligible.	 ?	 ?Although	 ?cooling	 ?energy	 ?provided	 ?to	 ?EOS	 ?was	 ?negligible	 ?for	 ?this	 ?month,	 ?this	 ?is	 ?an	 ?interesting	 ?operational	 ?mode	 ?to	 ?consider.	 ?It	 ?means	 ?that	 ?CIRS	 ?would	 ?be	 ?receiving	 ?heat	 ?and	 ?giving	 ?cooling	 ?to	 ?the	 ?MUA	 ?unit	 ?at	 ?times	 ?when	 ?the	 ?return	 ?temperature	 ?of	 ?the	 ?heat	 ?pump	 ?at	 ?this	 ?unit	 ?was	 ?greater	 ?than	 ?the	 ?supply	 ?temperature.	 ?	 ?Given	 ?the	 ?current	 ?configuration	 ?of	 ?the	 ?MUA	 ?unit	 ?on	 ?EOS,	 ?detailed	 ?later	 ?in	 ?this	 ?paper,	 ?this	 ?mode	 ?of	 ?operation	 ?could	 ?overall	 ?result	 ?in	 ?energy	 ?efficiency	 ?gains	 ?through	 ?a	 ?lesser	 ?amount	 ?of	 ?cooling	 ?energy	 ?called	 ?for	 ?at	 ?EOS.	 ?	 ?Since	 ?11,000	 ?kWh	 ?of	 ?heat	 ?was	 ?transferred	 ?at	 ?the	 ?EOS	 ?MUA	 ?unit	 ?whereas	 ?only	 ?a	 ?net	 ?of	 ?4,000	 ?kWh	 ?was	 ?transferred	 ?to	 ?CIRS	 ?from	 ?the	 ?EOS	 ?Exhaust	 ?unit,	 ?one	 ?can	 ?see	 ?that	 ?the	 ?actual	 ?balance	 ?between	 ?the	 ?two	 ?buildings	 ?for	 ?the	 ?month	 ?of	 ?March	 ?is	 ?-??7,000	 ?kWh	 ?of	 ?thermal	 ?energy	 ?from	 ?CIRS.	 ?	 ?Since	 ?it	 ?is	 ?unlikely	 ?that	 ?CIRS	 ?required	 ?this	 ?much	 ?cooling	 ?during	 ?the	 ?month	 ?of	 ?March,	 ?2013,	 ?it	 ?is	 ?clear	 ?that	 ?the	 ?system?s	 ?functioning	 ?has	 ?not	 ?yet	 ?	 ? 40	 ?achieved	 ?the	 ?design	 ?intent	 ?and	 ?is	 ?instead	 ?creating	 ?a	 ?more	 ?significant	 ?energy	 ?draw	 ?on	 ?the	 ?campus	 ?than	 ?before	 ?the	 ?connection	 ?was	 ?established.	 ?	 ?Looking	 ?at	 ?the	 ?data	 ?from	 ?EM	 ?15,	 ?which	 ?shows	 ?that	 ?the	 ?EOS	 ?connection	 ?did	 ?not	 ?accept	 ?any	 ?heat	 ?from	 ?CIRS	 ?during	 ?this	 ?month,	 ?we	 ?can	 ?confirm	 ?that	 ?this	 ?system	 ?is	 ?not	 ?working	 ?as	 ?intended.	 ?	 ?In	 ?fact,	 ?by	 ?looking	 ?at	 ?data	 ?from	 ?the	 ?pump	 ?status	 ?we	 ?can	 ?see	 ?that	 ?during	 ?times	 ?when	 ?the	 ?heating	 ?loop	 ?on	 ?the	 ?EOS	 ?side	 ?of	 ?the	 ?heat	 ?exchanger	 ?was	 ?not	 ?running	 ?there	 ?was	 ?still	 ?flow	 ?and	 ?heat	 ?transfer	 ?on	 ?the	 ?CIRS	 ?side	 ?of	 ?the	 ?heat	 ?exchanger.	 ?	 ?Upon	 ?physical	 ?inspection	 ?it	 ?was	 ?found	 ?that	 ?even	 ?when	 ?the	 ?pump	 ?on	 ?this	 ?side	 ?of	 ?the	 ?heat	 ?exchanger	 ?was	 ?not	 ?on,	 ?the	 ?associated	 ?valve	 ?was	 ?allowing	 ?flow	 ?through	 ?the	 ?loop	 ?and	 ?hence	 ?heat	 ?transfer.	 ?	 ?This	 ?is	 ?likely	 ?an	 ?installation	 ?and	 ?commissioning	 ?issue,	 ?this	 ?valve	 ?has	 ?been	 ?recently	 ?adjusted	 ?and	 ?will	 ?be	 ?monitored	 ?for	 ?future	 ?functioning.	 ?	 ?While	 ?this	 ?level	 ?of	 ?data	 ?granularity	 ??	 ?hourly	 ?averages	 ?of	 ?energy	 ?rates	 ?and	 ?temperatures	 ??	 ?is	 ?not	 ?available	 ?for	 ?EM14/EM15	 ?before	 ?December	 ?of	 ?2012,	 ?this	 ?data	 ?is	 ?available	 ?at	 ?EM16.	 ?	 ?Since	 ?EM16	 ?is	 ?where	 ?there	 ?is	 ?most	 ?likely	 ?to	 ?be	 ?a	 ?discrepancy	 ?in	 ?the	 ?data	 ??	 ?with	 ?the	 ?meter	 ?not	 ?logging	 ?the	 ?difference	 ?between	 ?dumping	 ?heat	 ?to	 ?the	 ?atmosphere	 ?and	 ?extracting	 ?heat	 ?from	 ?the	 ?EOS	 ?exhaust	 ?connection	 ??	 ?this	 ?data	 ?can	 ?be	 ?used	 ?as	 ?an	 ?approximate	 ?correction	 ?factor	 ?for	 ?the	 ?overall	 ?energy	 ?meter	 ?at	 ?this	 ?location	 ?for	 ?months	 ?when	 ?temperature	 ?data	 ?was	 ?not	 ?available	 ?due	 ?to	 ?poor	 ?metering	 ?implementation.	 ?	 ?	 ?The	 ?following	 ?charts	 ?show	 ?the	 ?monthly	 ?values	 ?of	 ?the	 ?total	 ?(non-??directional)	 ?energy	 ?at	 ?meter	 ?16	 ?as	 ?well	 ?as	 ?the	 ?comparison	 ?of	 ?approximated	 ?values	 ?using	 ?directional	 ?flow	 ?and	 ?calculated	 ?energy	 ?transfer	 ?at	 ?EM16.	 ?	 ? 	 ?	 ? 41	 ?	 ?	 ?	 ?	 ?Figure	 ?3-??	 ?5?	 ?Metered	 ?Vs.	 ?Calculated	 ?Heat	 ?Transferred	 ?from	 ?EOS	 ?Exhaust	 ?to	 ?CIRS	 ?	 ?When	 ?this	 ?new	 ?approximated	 ?value	 ?of	 ?heat	 ?transferred	 ?from	 ?EOS	 ?exhaust	 ?air	 ?to	 ?CIRS	 ?is	 ?compared	 ?to	 ?the	 ?total	 ?flows	 ?heat	 ?transferred	 ?back	 ?to	 ?EOS,	 ?we	 ?can	 ?also	 ?see	 ?the	 ?net	 ?value	 ?of	 ?heat	 ?transfer	 ?between	 ?the	 ?buildings	 ?shown	 ?below.	 ?	 ?	 ? 42	 ?	 ?	 ? Figure	 ?3-??	 ?6?	 ?Calculated	 ?Heat	 ?Transfer	 ?Between	 ?CIRS	 ?and	 ?EOS8	 ?	 ?With	 ?this	 ?understanding	 ?we	 ?can	 ?see	 ?that	 ?during	 ?the	 ?months	 ?of	 ?December	 ?2012,	 ?January	 ?2013,	 ?and	 ?February	 ?2013,	 ?CIRS	 ?was	 ?sending	 ?EOS	 ?more	 ?heat	 ?than	 ?it	 ?was	 ?extracting	 ?from	 ?EOS	 ??	 ?resulting	 ?in	 ?a	 ?net	 ?cooling	 ?of	 ?the	 ?building	 ?during	 ?typically	 ?cold	 ?months.	 ?	 ?This	 ?mode	 ?of	 ?operation	 ?is	 ?considerably	 ?less	 ?efficient	 ?than	 ?the	 ?intended	 ?design,	 ?as	 ?CIRS	 ?is	 ?losing	 ?valuable	 ?heat	 ?while	 ?EOS	 ?is	 ?not	 ?even	 ?able	 ?to	 ?accept	 ?the	 ?heat	 ?being	 ?lost.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?8	 ?Note	 ?that	 ?accepted	 ?heat	 ?by	 ?EOS	 ?would	 ?be	 ?0	 ?except	 ?for	 ?the	 ?month	 ?of	 ?December	 ?when	 ?it	 ?would	 ?be	 ?1,000	 ?kWh	 ?	 ?	 ? 43	 ?	 ?	 ?Figure	 ?3-??	 ?7?	 ?Calculated	 ?Heat	 ?Dumped	 ?at	 ?EOS	 ?Exhaust	 ?	 ?We	 ?can	 ?also	 ?see	 ?that	 ?the	 ?current	 ?building	 ?operation	 ?mode	 ?results	 ?in	 ?dumping	 ?heat	 ?at	 ?the	 ?EOS	 ?exhaust	 ?connection,	 ?i.e.	 ?cooling	 ?CIRS,	 ?during	 ?all	 ?months	 ?of	 ?the	 ?year	 ?due	 ?to	 ?the	 ?low	 ?exhaust	 ?temperature	 ?of	 ?EOS9.	 ?	 ?Such	 ?a	 ?low	 ?exhaust	 ?temperature	 ?was	 ?likely	 ?not	 ?predicted	 ?during	 ?the	 ?design	 ?of	 ?the	 ?two-??building	 ?heat	 ?exchange	 ?system.	 ?	 ?This	 ?new	 ?understanding	 ?allows	 ?us	 ?to	 ?estimate	 ?that	 ?during	 ?this	 ?period,	 ?CIRS	 ?had	 ?a	 ?net	 ?129	 ?MWh	 ?of	 ?thermal	 ?energy	 ?transferred	 ?from	 ?EOS	 ?exhaust,	 ?compared	 ?to	 ?the	 ?906	 ?MWh	 ?projected	 ?for	 ?the	 ?design,	 ?and	 ?sent	 ?back	 ?129	 ?MWh	 ?to	 ?EOS	 ?as	 ?compared	 ?to	 ?the	 ?projected	 ?600MWh.	 ?	 ?It	 ?also	 ?shows	 ?us	 ?that	 ?there	 ?were	 ?months	 ?when	 ?the	 ?connection	 ?at	 ?the	 ?EOS	 ?exhaust	 ?was	 ?acting	 ?as	 ?a	 ?cooling	 ?tower	 ?for	 ?CIRS	 ?10and	 ?over	 ?the	 ?course	 ?of	 ?a	 ?year	 ?exhausted	 ?128	 ?MWh	 ?of	 ?thermal	 ?energy	 ?to	 ?this	 ?connection	 ?(See	 ?table	 ?3	 ?for	 ?summary).	 ?3.4.3 Issue	 ?Investigation	 ?	 ?Since	 ?the	 ?metered	 ?totals	 ?were	 ?significantly	 ?less	 ?than	 ?the	 ?predicted	 ?values	 ?for	 ?heat	 ?exchange	 ?between	 ?the	 ?two	 ?buildings,	 ?the	 ?rooftop	 ?units	 ?on	 ?EOS	 ?where	 ?heat	 ?exchange	 ?takes	 ?place	 ?were	 ?physically	 ?examined.	 ?	 ?This	 ?physical	 ?examination	 ?led	 ?to	 ?the	 ?discovery	 ?that	 ?the	 ?rooftop	 ?unit	 ?intake	 ?for	 ?outside	 ?air	 ?to	 ?EOS	 ?did	 ?not	 ?function	 ?as	 ?was	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?9	 ?Exhaust	 ?air	 ?temperature	 ?of	 ?EOS	 ?is	 ?often	 ?significantly	 ?lower	 ?than	 ?internal	 ?temperatures	 ?and	 ?may	 ?indicate	 ?that	 ?exhaust	 ?air	 ?is	 ?being	 ?mixed	 ?with	 ?outdoor	 ?air	 ?prior	 ?to	 ?reaching	 ?the	 ?heat	 ?exchanger	 ?to	 ?extract	 ?thermal	 ?energy	 ?for	 ?CIRS	 ?10	 ?This	 ?connection	 ?is	 ?meant	 ?to	 ?act	 ?as	 ?a	 ?cooling	 ?tower	 ?during	 ?hot	 ?summer	 ?months	 ?	 ? 44	 ?assumed	 ?during	 ?the	 ?design	 ?of	 ?the	 ?building.	 ?	 ?Two	 ?issues	 ?in	 ?particular	 ?were	 ?discovered	 ??	 ?that	 ?the	 ?EOS	 ?building	 ?was	 ?taking	 ?in	 ?much	 ?less	 ?outside	 ?air	 ?than	 ?was	 ?assumed	 ?during	 ?design	 ?(with	 ?the	 ?majority	 ?of	 ?air	 ?in	 ?the	 ?building	 ?being	 ?recirculated),	 ?and	 ?that	 ?the	 ?design	 ?of	 ?the	 ?intake	 ?ventilation	 ?unit	 ?was	 ?such	 ?that	 ?the	 ?cooling	 ?coil	 ?for	 ?the	 ?EOS	 ?building	 ?was	 ?located	 ?sequentially	 ?before	 ?the	 ?heating	 ?coil	 ?of	 ?the	 ?building,	 ?meaning	 ?that	 ?if	 ?the	 ?heated	 ?air	 ?from	 ?CIRS	 ?was	 ?actually	 ?being	 ?accepted	 ?by	 ?the	 ?MUA	 ?it	 ?would	 ?have	 ?been	 ?being	 ?cooled	 ?before	 ?entering	 ?the	 ?EOS	 ?building.	 ?	 ?This	 ?is	 ?what	 ?has	 ?prevented	 ?the	 ?pump	 ?on	 ?the	 ?EOS	 ?side	 ?of	 ?the	 ?MUA	 ?unit	 ?from	 ?running	 ?and	 ?enabling	 ?heat	 ?transfer.	 ?	 ?EOS	 ?will	 ?likely	 ?be	 ?able	 ?to	 ?accept	 ?very	 ?little	 ?heat	 ?from	 ?CIRS	 ?and	 ?CIRS	 ?will	 ?send	 ?EOS	 ?little	 ?heat	 ?until	 ?a	 ?retrofit	 ?of	 ?the	 ?intake	 ?system	 ?is	 ?undertaken.	 ?	 ?Since	 ?these	 ?physical	 ?realities	 ?so	 ?greatly	 ?prevent	 ?the	 ?building	 ?system	 ?from	 ?achieving	 ?its	 ?design	 ?intent,	 ?it	 ?is	 ?likely	 ?that	 ?neither	 ?of	 ?these	 ?facts	 ?about	 ?the	 ?operation	 ?of	 ?the	 ?EOS	 ?rooftop	 ?unit	 ?was	 ?fully	 ?understood	 ?during	 ?the	 ?design	 ?of	 ?the	 ?energy	 ?system.	 ?	 ?With	 ?regards	 ?to	 ?outdoor	 ?air	 ?intake,	 ?since	 ?the	 ?EOS	 ?building	 ?is	 ?a	 ?laboratory,	 ?typically	 ?a	 ?building	 ?type	 ?with	 ?many	 ?air	 ?changes,	 ?one	 ?would	 ?expect	 ?that	 ?the	 ?building	 ?would	 ?intake	 ?a	 ?large	 ?amount	 ?of	 ?outside	 ?air	 ?due	 ?to	 ?possible	 ?issues	 ?with	 ?indoor	 ?air	 ?quality.	 ?EOS	 ?operation	 ?inspections	 ?show	 ?that	 ?in	 ?actual	 ?operation	 ?a	 ?relatively	 ?small	 ?proportion	 ?of	 ?outside	 ?air	 ?is	 ?used.	 ?With	 ?regards	 ?to	 ?the	 ?intake	 ?at	 ?EOS	 ?of	 ?heated	 ?air	 ?from	 ?CIRS,	 ?since	 ?the	 ?cooling	 ?coil	 ?is	 ?located	 ?before	 ?the	 ?building?s	 ?heating	 ?coil,	 ?there	 ?results	 ?in	 ?very	 ?few	 ?hours	 ?of	 ?operation	 ?in	 ?a	 ?year	 ?when	 ?the	 ?outdoor	 ?air	 ?is	 ?cold	 ?enough	 ?that	 ?it	 ?could	 ?be	 ?mixed	 ?with	 ?the	 ?preheat	 ?being	 ?delivered	 ?from	 ?CIRS	 ?and	 ?still	 ?be	 ?below	 ?the	 ?cooling	 ?coil	 ?temperature	 ?set	 ?point	 ?that	 ?would	 ?call	 ?for	 ?cooling.	 ?	 ?The	 ?consequence	 ?of	 ?this	 ?being	 ?that	 ?CIRS	 ?is	 ?unable	 ?to	 ?send	 ?large	 ?quantities	 ?of	 ?useful	 ?heat	 ?to	 ?EOS,	 ?as	 ?per	 ?the	 ?design	 ?intent.	 ?	 ?There	 ?were	 ?likely	 ?many	 ?occasions	 ?when	 ?these	 ?issues	 ?might	 ?have	 ?been	 ?discovered	 ?and	 ?addressed.	 ?	 ?During	 ?pre-??design	 ?and	 ?the	 ?design	 ?phase,	 ?had	 ?there	 ?been	 ?better	 ?communication	 ?or	 ?more	 ?thorough	 ?site	 ?visits	 ?this	 ?issue	 ?could	 ?have	 ?been	 ?discovered	 ?and	 ?the	 ?design	 ?changed	 ?accordingly.	 ?	 ?During	 ?construction	 ?and	 ?commissioning	 ?it	 ?could	 ?have	 ?been	 ?possible	 ?to	 ?question	 ?if	 ?the	 ?system	 ?integration	 ?was	 ?as	 ?it	 ?should	 ?be,	 ?and	 ?finally	 ?there	 ?has	 ?now	 ?been	 ?a	 ?significant	 ?period	 ?of	 ?regular	 ?operation	 ?when	 ?the	 ?functioning	 ?of	 ?the	 ?system	 ?was	 ?recognized	 ?to	 ?be	 ?less	 ?than	 ?intended.	 ?	 ?Had	 ?the	 ?energy	 ?flows	 ?been	 ?broken	 ?down	 ?and	 ?understood	 ?(as	 ?we	 ?have	 ?done	 ?above)	 ?and	 ?the	 ?system	 ?integration	 ?and	 ?sequences	 ?of	 ?operations	 ?looked	 ?at	 ?during	 ?construction,	 ?commissioning,	 ?and	 ?operation,	 ?some	 ?of	 ?these	 ?issues	 ?may	 ?have	 ?been	 ?addressed	 ?prior	 ?to	 ?post-??occupancy	 ?performance	 ?evaluation.	 ?	 ?It	 ?is	 ?possible	 ?that	 ?multiple	 ?parties	 ?may	 ?have	 ?either	 ?all	 ?overlooked	 ?the	 ?issue,	 ?felt	 ?this	 ?issue	 ?was	 ?not	 ?within	 ?their	 ?realm	 ?of	 ?responsibility	 ?or	 ?control,	 ?or	 ?may	 ?have	 ?felt	 ?that	 ?raising	 ?the	 ?issue	 ?with	 ?institutional	 ?management	 ?would	 ?not	 ?be	 ?well	 ?received	 ?politically.	 ?	 ?	 ?The	 ?issues	 ?with	 ?the	 ?EOS	 ?connections	 ?were	 ?discovered	 ?during	 ?the	 ?operation	 ?and	 ?performance	 ?evaluation	 ?of	 ?the	 ?building,	 ?which,	 ?in	 ?this	 ?case,	 ?arose	 ?late	 ?in	 ?the	 ?lifecycle	 ?of	 ?the	 ?project.	 ?	 ?This	 ?underscores	 ?both	 ?the	 ?importance	 ?of	 ?having	 ?performance	 ?feedback	 ?for	 ?a	 ?building?s	 ?operation	 ?versus	 ?design	 ?as	 ?well	 ?as	 ?the	 ?importance	 ?of	 ?facilitating	 ?strong	 ?cooperative	 ?relationships	 ?during	 ?all	 ?stages	 ?of	 ?building	 ?operation.	 ?	 ?It	 ?is	 ?possible	 ?that	 ?this	 ?issue	 ?would	 ?have	 ?been	 ?discovered	 ?and	 ?remedied	 ?earlier	 ?had	 ?	 ? 45	 ?the	 ?practice	 ?of	 ?consistently	 ?reviewing	 ?overall	 ?goals	 ?and	 ?project	 ?understanding	 ?been	 ?extended	 ?through	 ?the	 ?commissioning	 ?and	 ?operations	 ?stages.	 ?	 ?This	 ?process	 ?of	 ?coming	 ?back	 ?to	 ?overall	 ?project	 ?goals	 ?was	 ?used	 ?and	 ?emphasized	 ?in	 ?the	 ?design	 ?process,	 ?and	 ?may	 ?have	 ?been	 ?useful	 ?during	 ?the	 ?full	 ?lifecycle	 ?of	 ?the	 ?building.	 ?	 ?In	 ?this	 ?way,	 ?the	 ?energy	 ?system	 ?performance	 ?issues	 ?articulated	 ?in	 ?this	 ?paper	 ?may	 ?have	 ?been	 ?avoided	 ?earlier	 ?in	 ?the	 ?project	 ?timeline.	 ?	 ?While	 ?there	 ?have	 ?been	 ?performance	 ?issues	 ?with	 ?the	 ?energy	 ?system	 ?in	 ?CIRS,	 ?the	 ?system	 ?still	 ?represents	 ?a	 ?particularly	 ?interesting	 ?energy	 ?design	 ?solution	 ?in	 ?that	 ?it	 ?takes	 ?into	 ?account	 ?the	 ?local	 ?context	 ?of	 ?the	 ?building	 ?and	 ?puts	 ?to	 ?the	 ?test	 ?the	 ?concept	 ?of	 ?system	 ?optimization	 ?at	 ?a	 ?level	 ?beyond	 ?a	 ?single	 ?building.	 ?	 ?This	 ?allows	 ?the	 ?building	 ?to	 ?be	 ?part	 ?of	 ?a	 ?multi-??building	 ?resource-??sharing	 ?network	 ?or	 ?building	 ?integrated	 ?distributed	 ?energy	 ?system.	 ?	 ?It	 ?extends	 ?the	 ?boundary	 ?of	 ?the	 ?building	 ?systems	 ?past	 ?the	 ?building	 ?shell	 ?and	 ?was	 ?designed	 ?with	 ?not	 ?just	 ?the	 ?building	 ?scale	 ?in	 ?mind	 ?but	 ?instead	 ?the	 ?campus	 ?or	 ?multi-??building	 ?scale	 ?was	 ?made	 ?a	 ?priority,	 ?much	 ?like	 ?a	 ?community	 ?energy	 ?utility.	 ?	 ?With	 ?this	 ?in	 ?mind,	 ?it	 ?is	 ?imperative	 ?to	 ?draw	 ?the	 ?boundary	 ?of	 ?analysis	 ?at	 ?the	 ?right	 ?place	 ?in	 ?order	 ?to	 ?optimize	 ?design.	 ?All	 ?analysis	 ?and	 ?testing	 ?consistently	 ?through	 ?the	 ?whole	 ?project	 ?cycle	 ?and	 ?especially	 ?during	 ?design	 ?and	 ?commissioning	 ?should	 ?have	 ?included	 ?both	 ?EOS	 ?and	 ?CIRS.	 ?3.4.4 Electricity	 ?	 ?	 ?	 ? Figure	 ?3-??	 ?8?	 ?Metered	 ?Electricity	 ?Use	 ?	 ?The	 ?total	 ?metered	 ?grid	 ?electricity	 ?use	 ?for	 ?CIRS	 ?during	 ?the	 ?one-??year	 ?period	 ?from	 ?April	 ?2012	 ??	 ?April	 ?2013	 ?was	 ?755	 ?MWh,	 ?while	 ?the	 ?theoretical	 ?electricity	 ?use	 ?for	 ?the	 ?building	 ?based	 ?on	 ?design	 ?estimates	 ?was	 ?585	 ?MWh.	 ?	 ?Without	 ?considering	 ?the	 ?reductions	 ?in	 ?energy	 ?gained	 ?at	 ?EOS	 ?through	 ?the	 ?transfer	 ?of	 ?excess	 ?heat,	 ?this	 ?results	 ?	 ? 46	 ?in	 ?a	 ?building	 ?Energy	 ?Utility	 ?Index	 ?(EUI)	 ?of	 ?approximately	 ?130	 ?kWh/m2.	 ?This	 ?is	 ?as	 ?compared	 ?to	 ?the	 ?EUI	 ?of	 ?approximately	 ?70	 ?kWh/m2	 ?based	 ?on	 ?LEED	 ?submissions11	 ?for	 ?EAc112.	 ?	 ?While	 ?an	 ?office	 ?building	 ?EUI	 ?of	 ?130	 ?kWh/m2	 ?may	 ?not	 ?obviously	 ?indicate	 ?anything	 ?wrong,	 ?we	 ?can	 ?see	 ?from	 ?our	 ?energy	 ?flow	 ?analysis	 ?that	 ?the	 ?system	 ?is	 ?not	 ?functioning	 ?as	 ?intended	 ?and	 ?this	 ?number	 ?is	 ?much	 ?higher	 ?than	 ?should	 ?be	 ?the	 ?case.	 ?.	 ?	 ?	 ?Considering	 ?the	 ?discussion	 ?above	 ?about	 ?the	 ?performance	 ?of	 ?the	 ?heat	 ?transfer	 ?system	 ?between	 ?CIRS	 ?and	 ?EOS,	 ?as	 ?well	 ?as	 ?the	 ?configuration	 ?of	 ?the	 ?EOS	 ?MUA	 ?unit	 ?which	 ?first	 ?cools	 ?then	 ?heats	 ?incoming	 ?air,	 ?it	 ?is	 ?not	 ?appropriate	 ?at	 ?this	 ?time	 ?to	 ?calculate	 ?a	 ?building	 ?Energy	 ?Utilization	 ?Index	 ?(EUI)	 ?for	 ?CIRS	 ?that	 ?assumes	 ?all	 ?heat	 ?transferred	 ?to	 ?EOS	 ?results	 ?in	 ?an	 ?overall	 ?campus	 ?steam	 ?reduction	 ?and	 ?therefore	 ?reduces	 ?the	 ?EUI	 ?of	 ?CIRS.	 ?	 ?The	 ?following	 ?data	 ?extracted	 ?from	 ?the	 ?EOS	 ?steam	 ?meter	 ?and	 ?normalized	 ?for	 ?weather	 ?shows	 ?that	 ?we	 ?cannot	 ?assume	 ?that	 ?heat	 ?sent	 ?to	 ?EOS	 ?results	 ?in	 ?reduced	 ?steam	 ?use.	 ?	 ?The	 ?boundary	 ?analysis	 ?requires	 ?us	 ?to	 ?look	 ?at	 ?the	 ?EOS	 ?steam	 ?meter,	 ?which	 ?has	 ?not	 ?yet	 ?shown	 ?a	 ?reduction	 ?in	 ?steam	 ?use	 ?at	 ?EOS.	 ?	 ?	 ?Figure	 ?3-??	 ?9?	 ?Baseline	 ?versus	 ?actual	 ?steam	 ?consumption	 ?at	 ?EOS13	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?11	 ?Energy	 ?calculations	 ?for	 ?LEED	 ?EAc1	 ?submissions	 ?are	 ?not	 ?considered	 ?representative	 ?as	 ?they	 ?did	 ?not	 ?include	 ?process	 ?loads	 ?and	 ?required	 ?substantial	 ?work	 ?arounds	 ?12	 ?LEED	 ?EAc1	 ??	 ?Energy	 ?and	 ?Atmosphere	 ?credit	 ?1	 ?is	 ?based	 ?on	 ?energy	 ?cost	 ?reduction	 ?of	 ?design	 ?versus	 ?a	 ?theoretical	 ?base	 ?building	 ?13	 ?Baseline	 ?steam	 ?use	 ?is	 ?calculated	 ?using	 ?historical	 ?EOS	 ?steam	 ?meter	 ?readings	 ?with	 ?2010	 ?as	 ?base	 ?year	 ?and	 ?normalized	 ?using	 ?weather	 ?data	 ?from	 ?YVR	 ?international	 ?airport	 ?weather	 ?station.	 ?	 ? 47	 ?3.4.5 New	 ?Conceptual	 ?System	 ?Understanding	 ?	 ?	 ?	 ? Figure	 ?3-??	 ?10?	 ?CIRS	 ?Conceptual	 ?Sankey	 ?Diagram	 ?The	 ?above	 ?figure	 ?integrates	 ?our	 ?new	 ?performance	 ?based	 ?understanding	 ?of	 ?CIRS.	 ?	 ?A	 ?comparison	 ?table	 ?of	 ?modelled	 ?versus	 ?actual	 ?performance	 ?can	 ?be	 ?found	 ?below	 ?-??	 ?essentially	 ?comparing	 ?Figure	 ?3-??	 ?3	 ?and	 ?Figure	 ?3-??	 ?10.	 ?	 ?	 ? Estimated	 ? Actual	 ?Heat	 ?Recovered	 ?from	 ?EOS	 ? 906	 ?MWh	 ? 129	 ?MWh	 ?Heat	 ?Sent	 ?to	 ?EOS	 ? 600	 ?MWh	 ? 129	 ?MWh	 ?Heat	 ?Received	 ?by	 ?EOS	 ? Should	 ?be	 ?the	 ?same	 ?600	 ?MWh	 ?as	 ?above	 ? 	 ?1	 ?MWh	 ?Electrical	 ?Use	 ? 585	 ?MWh14	 ? 755	 ?MWh	 ?	 ? Table	 ?3-??	 ?3?	 ?Modelled	 ?versus	 ?Measured	 ?Net	 ?Energy	 ?Flows	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?14	 ?Modelled	 ?electrical	 ?usage	 ?does	 ?not	 ?include	 ?process	 ?loads	 ?such	 ?as	 ?computers	 ?and	 ?refrigeration	 ?equipment	 ?(as	 ?per	 ?EAc1)	 ?whereas	 ?actual	 ?usage	 ?does	 ?	 ? 48	 ?These	 ?numbers	 ?show	 ?that	 ?the	 ?performance	 ?of	 ?CIRS	 ?has	 ?not	 ?been	 ?consistent	 ?with	 ?either	 ?modelled	 ?estimations	 ?or	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?building.	 ?	 ?3.5 Understanding	 ?the	 ?Integrations	 ??	 ?Lessons	 ?Learned	 ?	 ?This	 ?section	 ?discusses	 ?the	 ?lessons	 ?learned	 ?through	 ?this	 ?investigation.	 ?Table	 ?3-??	 ?4	 ?summarizes	 ?the	 ?conclusions	 ?discussed	 ?in	 ?this	 ?section.	 ?	 ?The	 ?main	 ?lesson	 ?from	 ?this	 ?investigation	 ?comes	 ?from	 ?the	 ?new	 ?understanding	 ?of	 ?the	 ?functioning	 ?of	 ?the	 ?energy	 ?transfer	 ?system	 ?between	 ?CIRS	 ?and	 ?EOS.	 ?	 ?The	 ?two-??building	 ?system	 ?has	 ?simply	 ?not	 ?performed	 ?as	 ?per	 ?the	 ?design	 ?intent.	 ?	 ?The	 ?monitored	 ?performance	 ?and	 ?operation	 ?has	 ?shown	 ?that	 ?it	 ?is	 ?necessary	 ?to	 ?understand	 ?not	 ?just	 ?one	 ?operational	 ?sequence	 ?but	 ?all	 ?of	 ?the	 ?possible	 ?operating	 ?sequences	 ?and	 ?cascades	 ?of	 ?energy	 ?flows	 ?in	 ?networked	 ?energy	 ?systems.	 ?	 ?If	 ?we	 ?are	 ?to	 ?move	 ?towards	 ?fully	 ?integrated	 ?energy	 ?systems	 ?in	 ?our	 ?built	 ?environment,	 ?all	 ?possibilities	 ?for	 ?how	 ?these	 ?systems	 ?will	 ?affect	 ?each	 ?component	 ?as	 ?well	 ?as	 ?the	 ?affect	 ?on	 ?the	 ?larger	 ?system	 ?should	 ?be	 ?rigorously	 ?articulated	 ?and	 ?conceptualized	 ?so	 ?that	 ?their	 ?operation	 ?can	 ?be	 ?optimized.	 ?	 ?Taking	 ?this	 ?step	 ?at	 ?all	 ?stages	 ?of	 ?the	 ?project?s	 ?life	 ?cycle	 ?would	 ?help	 ?to	 ?enable	 ?intended	 ?system	 ?functioning	 ?and	 ?overall	 ?efficiency	 ?gains	 ?afforded	 ?by	 ?such	 ?systems.	 ?	 ?In	 ?addition,	 ?these	 ?issues	 ?have	 ?highlighted	 ?the	 ?importance	 ?of	 ?communication	 ?at	 ?all	 ?stages	 ?of	 ?project	 ?life,	 ?particularly	 ?that	 ?of	 ?operational	 ?feedback	 ?during	 ?the	 ?ongoing	 ?operation	 ?of	 ?systems.	 ?	 ?When	 ?project	 ?scope	 ?or	 ?boundaries	 ?change	 ?such	 ?that	 ?design	 ?or	 ?operational	 ?teams	 ?may	 ?begin	 ?to	 ?consider	 ?new	 ?components	 ?that	 ?are	 ?in	 ?fact	 ?integral	 ?to	 ?the	 ?operation	 ?and	 ?function	 ?of	 ?the	 ?system	 ?as	 ?a	 ?whole,	 ?it	 ?is	 ?necessary	 ?to	 ?understand	 ?all	 ?new	 ?ways	 ?in	 ?which	 ?components	 ?could	 ?affect	 ?each	 ?other.	 ?	 ?In	 ?order	 ?to	 ?make	 ?sure	 ?that	 ?integral	 ?system	 ?components	 ?do	 ?not	 ?end	 ?up	 ?outside	 ?the	 ?scope	 ?of	 ?inquiry,	 ?it	 ?is	 ?necessary	 ?to	 ?develop	 ?an	 ?understanding	 ?of	 ?how	 ?to	 ?adjust	 ?project	 ?boundaries	 ?based	 ?on	 ?the	 ?new	 ?system	 ?networks.	 ?	 ?This	 ?is	 ?likely	 ?to	 ?be	 ?a	 ?challenge	 ?considering	 ?that	 ?the	 ?norm	 ?for	 ?building	 ?construction	 ?is	 ?to	 ?only	 ?consider	 ?what	 ?is	 ?inside	 ?the	 ?building	 ?envelope	 ?of	 ?the	 ?project.	 ?	 ?If	 ?it	 ?is	 ?outside	 ?standard	 ?practice	 ?to	 ?draw	 ?a	 ?system	 ?boundary	 ?containing	 ?two	 ?buildings	 ?or	 ?a	 ?network	 ?of	 ?building	 ?components,	 ?the	 ?process	 ?of	 ?understanding	 ?system	 ?boundaries	 ?should	 ?be	 ?prioritized	 ?and	 ?a	 ?new	 ?norm	 ?of	 ?questioning	 ?the	 ?system	 ?boundary	 ?while	 ?keeping	 ?it	 ?flexible	 ?is	 ?needed.	 ?	 ?This	 ?may	 ?require	 ?redefining	 ??ownership?	 ?over	 ?project	 ?responsibilities.	 ?	 ?In	 ?addition,	 ?there	 ?may	 ?be	 ?a	 ?need	 ?for	 ?incentive	 ?alignment,	 ?re-??scoping,	 ?and	 ?a	 ?commitment	 ?to	 ?big-??picture,	 ?system	 ?goals	 ?past	 ?the	 ?design	 ?phase	 ?of	 ?a	 ?project	 ?and	 ?into	 ?construction,	 ?commissioning,	 ?and	 ?operation	 ??	 ?particularly	 ?for	 ?projects	 ?that	 ?start	 ?to	 ?situate	 ?the	 ?building	 ?as	 ?a	 ?node	 ?in	 ?a	 ?larger	 ?system.	 ?	 ?When	 ?the	 ?system	 ?operational	 ?boundary	 ?includes	 ?multiple	 ?buildings,	 ?it	 ?becomes	 ?imperative	 ?that	 ?all	 ?analysis	 ?needs	 ?to	 ?coordinate	 ?the	 ?requirements	 ?of	 ?multiple	 ?buildings.	 ?	 ?In	 ?this	 ?case,	 ?integrated	 ?design	 ?needs	 ?be	 ?extended	 ?to	 ?the	 ?operation	 ?of	 ?both	 ?EOS	 ?and	 ?CIRS.	 ?	 ?	 ? 49	 ?In	 ?general,	 ?a	 ?recurring	 ?lesson	 ?learned	 ?from	 ?examination	 ?of	 ?all	 ?of	 ?the	 ?heat	 ?transfer	 ?systems	 ?of	 ?CIRS	 ?was	 ?that	 ?it	 ?is	 ?necessary	 ?to	 ?consider	 ?all	 ?modes	 ?of	 ?operation	 ?and	 ?potential	 ?flows	 ?of	 ?heat	 ?transfer	 ?in	 ?order	 ?to	 ?design	 ?and	 ?implement	 ?adequate	 ?controls,	 ?measurement,	 ?and	 ?operational	 ?strategies.	 ?	 ?Without	 ?this	 ?understanding,	 ?it	 ?is	 ?likely	 ?that	 ?monitoring	 ?strategies	 ?will	 ?not	 ?deliver	 ?accurate	 ?reports	 ?due	 ?to	 ?misrepresentation	 ?or	 ?insufficient	 ?information.	 ?	 ?It	 ?is	 ?not	 ?enough	 ?to	 ?simply	 ?have	 ?access	 ?to	 ?high	 ?quantities	 ?of	 ?data.	 ?	 ?Without	 ?a	 ?proper	 ?understanding	 ?of	 ?what	 ?the	 ?data	 ?means	 ?and	 ?a	 ?sense	 ?of	 ?which	 ?data	 ?sets	 ?are	 ?important,	 ?more	 ?data	 ?may	 ?simply	 ?result	 ?in	 ?more	 ?confusion	 ?and	 ?operational	 ?problems.	 ?	 ?As	 ?systems	 ?become	 ?more	 ?complex,	 ?it	 ?is	 ?necessary	 ?to	 ?assess	 ?what	 ?is	 ?needed	 ?to	 ?make	 ?information	 ?accessible	 ??	 ?the	 ?ease	 ?of	 ?access	 ?to	 ?information	 ?and	 ?intellectual	 ?understandability	 ?for	 ?various	 ?parties	 ?that	 ?will	 ?interface	 ?with	 ?that	 ?information	 ?should	 ?be	 ?considered.	 ?	 ?With	 ?the	 ?increased	 ?use	 ?of	 ?terms	 ?such	 ?as	 ??smart?	 ?and	 ??intelligent?	 ?to	 ?describe	 ?infrastructure,	 ?it	 ?is	 ?important	 ?to	 ?remember	 ?that	 ?the	 ?true	 ??intelligence?	 ?of	 ?a	 ?facility	 ?comes	 ?from	 ?its	 ?designed	 ?ability	 ?to	 ?serve	 ?specific	 ?functions	 ?and	 ?services	 ?in	 ?a	 ?useful	 ?and	 ?convenient	 ?way	 ?(Z.	 ?Chen,	 ?2010).	 ?	 ?	 ?	 ?It	 ?was	 ?also	 ?found	 ?that	 ?the	 ?building?s	 ?operational	 ?energy	 ?utility	 ?index	 ?(EUI)	 ?was	 ?not	 ?an	 ?adequate	 ?indicator	 ?of	 ?building	 ?performance	 ?and	 ?functioning.	 ?	 ?As	 ?is	 ?the	 ?case	 ?with	 ?many	 ?aggregate	 ?and	 ?average	 ?numbers	 ?used	 ?to	 ?indicate	 ?performance	 ?of	 ?a	 ?large	 ?system,	 ?it	 ?simply	 ?does	 ?not	 ?show	 ?the	 ?complex	 ?interactions	 ?of	 ?sub-??system	 ?performance	 ?and	 ?provide	 ?understanding	 ?of	 ?how	 ?to	 ?find	 ?energy	 ?savings	 ?and	 ?optimizations.	 ?	 ?Various	 ?metering	 ?problems	 ?encountered	 ?such	 ?as	 ?those	 ?associated	 ?and	 ?the	 ?EOS	 ?heat	 ?exchange	 ?metering	 ?system	 ?not	 ?functioning	 ?until	 ?December	 ?2012,	 ?as	 ?well	 ?as	 ?the	 ?difficulty	 ?seen	 ?in	 ?extracting	 ?data	 ?from	 ?the	 ?BMS	 ?system,	 ?have	 ?highlighted	 ?the	 ?need	 ?to	 ?understand	 ?both	 ?the	 ?hardware	 ?and	 ?human	 ?needs	 ?for	 ?monitoring	 ?systems.	 ?	 ?As	 ?has	 ?been	 ?found	 ?by	 ?other	 ?researchers,	 ?energy	 ?savings	 ?can	 ?not	 ?be	 ?realized	 ?through	 ?metering	 ?and	 ?advanced	 ?systems	 ?if	 ?the	 ?human	 ?element	 ?is	 ?not	 ?carefully	 ?considered	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?	 ?Many	 ?examples	 ?arose	 ?within	 ?this	 ?research	 ?as	 ?to	 ?how	 ?human	 ?interaction	 ?with	 ?technical	 ?systems	 ?could	 ?have	 ?been	 ?optimized	 ??	 ?from	 ?BMS	 ?data	 ?extraction	 ?to	 ?the	 ?determination	 ?of	 ?system	 ?boundaries.	 ?	 ?Even	 ?though	 ?the	 ?CIRS	 ?building	 ?used	 ?an	 ?IDP	 ?process,	 ?meant	 ?to	 ?allow	 ?for	 ?team	 ?communication	 ?and	 ?integration	 ?at	 ?all	 ?stages	 ?of	 ?the	 ?building	 ?lifecycle	 ?(Stylianou,	 ?2011),	 ?this	 ?study	 ?has	 ?nonetheless	 ?uncovered	 ?a	 ?need	 ?for	 ?yet	 ?further	 ?increased	 ?integration	 ?and	 ?communication.	 ?	 ?Perhaps	 ?many	 ?IDP	 ?processes	 ?focus	 ?mainly	 ?on	 ?the	 ?design	 ?phase,	 ?whereas	 ?many	 ?opportunities	 ?for	 ?improvement	 ?and	 ?detailed	 ?in-??situ	 ?streamlining	 ?of	 ?processes	 ?could	 ?occur	 ?during	 ?the	 ?construction,	 ?commissioning,	 ?and	 ?initial	 ?operations	 ?phases	 ?of	 ?the	 ?building.	 ?	 ?This	 ?lesson	 ?is	 ?consistent	 ?with	 ?the	 ?conclusions	 ?of	 ?other	 ?researchers	 ?who	 ?have	 ?found	 ?that	 ??sustainable	 ?building	 ?design,	 ?construction	 ?and	 ?operation	 ?require	 ?innovations	 ?in	 ?both	 ?engineering	 ?and	 ?management	 ?areas	 ?at	 ?all	 ?stages	 ?of	 ?a	 ?building?s	 ?life.?	 ?-??	 ?(Z.	 ?Chen	 ?et	 ?al.,	 ?2006)	 ?	 ?Other	 ?authors	 ?have	 ?also	 ?found	 ?that	 ?based	 ?on	 ?analysis	 ?of	 ?individual	 ?building	 ?and	 ?system	 ?performance,	 ?there	 ?is	 ?clearly	 ?a	 ?need	 ?to	 ?create	 ?institutional	 ?changes	 ?that	 ?enable	 ?better	 ?building	 ?performance	 ?and	 ?correlation	 ?between	 ?practices	 ?such	 ?as	 ?commissioning	 ?and	 ?measurement	 ?and	 ?verification	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?In	 ?general,	 ?practices	 ?such	 ?as	 ?commissioning,	 ?monitoring	 ?and	 ?assessment	 ?should	 ?be	 ?	 ? 50	 ?carried	 ?out	 ?to	 ?take	 ?a	 ?detailed	 ?look	 ?at	 ?overall	 ?system	 ?integration	 ?and	 ?functioning	 ?with	 ?the	 ?lifecycle	 ?needs	 ?of	 ?the	 ?infrastructure	 ?operation	 ?in	 ?mind.	 ?	 ?Community	 ?engagement	 ?has	 ?emerged	 ?as	 ?a	 ?strong	 ?theme	 ?in	 ?the	 ?regenerative	 ?design	 ?literature	 ?(Hoxie	 ?et	 ?al.,	 ?2012),	 ?with	 ?great	 ?focus	 ?being	 ?placed	 ?on	 ?the	 ?need	 ?for	 ?coevolution	 ?of	 ?social	 ?systems,	 ?learning	 ?and	 ?participation	 ?(Cole,	 ?2012b;	 ?du	 ?Plessis	 ?&	 ?Cole,	 ?2011).	 ?	 ?I	 ?feel	 ?that	 ?this	 ?research	 ?supports	 ?the	 ?idea	 ?that	 ?as	 ?we	 ?begin	 ?to	 ?see	 ?buildings	 ?as	 ?nodes	 ?in	 ?a	 ?community	 ?energy	 ?network,	 ?engagement	 ?and	 ?social	 ?learning	 ?will	 ?become	 ?important	 ?design	 ?criteria	 ?for	 ?individual	 ?and	 ?networked	 ?projects.	 ?	 ?Without	 ?learning	 ?in	 ?both	 ?the	 ?design	 ?and	 ?operations	 ?communities,	 ?it	 ?is	 ?likely	 ?that	 ?further	 ?opportunities	 ?for	 ?system	 ?optimization	 ?will	 ?be	 ?missed.	 ?	 ?While	 ?it	 ?was	 ?seen	 ?through	 ?document	 ?analysis	 ?of	 ?the	 ?design	 ?stage	 ?of	 ?the	 ?process	 ?that	 ?the	 ?ability	 ?to	 ?re-??align	 ?with	 ?previously	 ?agreed	 ?upon	 ?high-??level	 ?goals	 ?allowed	 ?for	 ?better	 ?functioning	 ?of	 ?meetings	 ?and	 ?stakeholder	 ?contributions,	 ?I	 ?believe	 ?that	 ?a	 ?similar	 ?process	 ?could	 ?be	 ?used	 ?successfully	 ?for	 ?all	 ?other	 ?stages.	 ?	 ?Having	 ?clearly	 ?aligned	 ?goals	 ?and	 ?incentives	 ?for	 ?construction,	 ?commissioning,	 ?and	 ?operations	 ?teams	 ?to	 ?work	 ?towards	 ?higher	 ?levels	 ?of	 ?performance	 ?would	 ?provide	 ?a	 ?framework	 ?and	 ?communication	 ?link	 ?that	 ?could	 ?lead	 ?to	 ?more	 ?efficient	 ?and	 ?effective	 ?building	 ?operations.	 ?	 ?This	 ?cannot	 ?happen	 ?however	 ?if	 ?there	 ?is	 ?no	 ?institutional	 ?capacity	 ?and	 ?opportunity	 ?to	 ?devote	 ?time	 ?and	 ?attention	 ?to	 ?these	 ?goals.	 ?	 ?It	 ?is	 ?hoped	 ?that	 ?the	 ?process	 ?of	 ?specifying	 ?and	 ?planning	 ?ways	 ?to	 ?implement	 ?these	 ?high-??level	 ?goals	 ?after	 ?the	 ?design	 ?stage	 ?could	 ?create	 ?dialogue	 ?and	 ?opportunity	 ?to	 ?find	 ?new	 ?norms	 ?for	 ?operation.	 ?	 ?While	 ?it	 ?may	 ?be	 ?a	 ?simple	 ?observation	 ?to	 ?note	 ?that	 ?clearly	 ?defined	 ?goals	 ?and	 ?unprejudiced	 ?accountability	 ?structures	 ?related	 ?to	 ?those	 ?goals	 ?can	 ?improve	 ?building	 ?performance,	 ?I	 ?believe	 ?it	 ?is	 ?an	 ?important	 ?idea	 ?to	 ?prioritize.	 ?	 ?While	 ?developing	 ?goals	 ?and	 ?accountability	 ?structures,	 ?it	 ?is	 ?also	 ?necessary	 ?to	 ?at	 ?the	 ?same	 ?time	 ?reconcile	 ?tensions	 ?between	 ?accountability	 ?and	 ?incentives.	 ?	 ?If	 ?accountability	 ?results	 ?in	 ?stakeholder	 ?actions	 ?being	 ?classified	 ?as	 ??failures?,	 ?then	 ?the	 ?process	 ?will	 ?not	 ?produce	 ?the	 ?intended	 ?results	 ?and	 ?will	 ?not	 ?be	 ?embraced.	 ?	 ?It	 ?is	 ?important	 ?to	 ?establish	 ?a	 ?strong	 ?culture	 ?of	 ?learning	 ?and	 ?of	 ?targeting	 ?overall	 ?performance	 ?should	 ?we	 ?wish	 ?to	 ?capitalize	 ?on	 ?opportunities	 ?for	 ?improvement.	 ?	 ?In	 ?addition,	 ?one	 ?of	 ?the	 ?main	 ?lessons	 ?learned	 ?from	 ?this	 ?research	 ?is	 ?that	 ?even	 ?in	 ?buildings	 ?that	 ?are	 ?designed	 ?to	 ?be	 ?highly	 ?sustainable	 ?and	 ?that	 ?have	 ?aspirational	 ?efficiency	 ?and	 ?energy	 ?goals,	 ?major	 ?operational	 ?savings	 ?are	 ?still	 ?possible.	 ?	 ?Through	 ?better	 ?processes	 ?of	 ?commissioning,	 ?monitoring,	 ?and	 ?operation,	 ?our	 ??green?	 ?buildings	 ?could	 ?become	 ?much	 ?better.	 ?	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?the	 ?examples	 ?given	 ?in	 ?this	 ?paper,	 ?if	 ?the	 ?basic	 ?functioning	 ?of	 ?building	 ?systems	 ?is	 ?not	 ?correct,	 ?fine	 ?tuning	 ?individual	 ?component	 ?efficiencies	 ?and	 ?other	 ?details	 ?within	 ?the	 ?design	 ?will	 ?not	 ?result	 ?in	 ?highly	 ?efficient	 ?buildings.	 ?	 ?There	 ?is	 ?a	 ?need	 ?for	 ?team	 ?members	 ?to	 ?better	 ?understand	 ?the	 ?basic	 ?flows	 ?and	 ?thermodynamics	 ?of	 ?all	 ?component	 ?building	 ?systems	 ?prior	 ?to	 ?detailed	 ?component	 ?design.	 ?	 ?	 ?	 ?	 ? 51	 ?Finally,	 ?the	 ?importance	 ?of	 ?feedback	 ?at	 ?all	 ?stages	 ?of	 ?the	 ?building	 ?process	 ??	 ?particularly	 ?during	 ?operation	 ??	 ?has	 ?been	 ?highlighted	 ?in	 ?this	 ?paper.	 ?	 ?Many	 ?opportunities	 ?exist	 ?for	 ?improving	 ?feedback	 ?mechanisms	 ?and	 ?it	 ?will	 ?be	 ?necessary	 ?to	 ?close	 ?the	 ?loop	 ?between	 ?building	 ?operations	 ?and	 ?design	 ?if	 ?we	 ?are	 ?to	 ?achieve	 ?truly	 ?high-??performance	 ?buildings	 ?in	 ?the	 ?long	 ?run.	 ?	 ?Since	 ?in	 ?many	 ?cases	 ?the	 ?implementation	 ?of	 ?new	 ??smart?	 ?technologies	 ?is	 ?outpacing	 ?the	 ?understanding	 ?of	 ?the	 ?subsequent	 ?complexities	 ?that	 ?are	 ?introduced	 ?(Blumsack	 ?&	 ?Fernandez,	 ?2012),	 ?it	 ?is	 ?important	 ?to	 ?establish	 ?good	 ?feedback	 ?systems	 ?and	 ?take	 ?time	 ?to	 ?produce	 ?lessons	 ?learned	 ?that	 ?industry	 ?can	 ?access.	 ?3.5.1 Lessons	 ?Learned	 ?Summary	 ?	 ?Area	 ?of	 ?Focus	 ? Lesson	 ?Learned	 ?IDP	 ? -?? IDP	 ?principles	 ?need	 ?to	 ?be	 ?extended	 ?beyond	 ?design	 ?to	 ?include	 ?the	 ?entire	 ?project	 ?lifecycle;	 ?IDP	 ?should	 ?also	 ?be	 ?extended	 ?to	 ?the	 ?proper	 ?system	 ?boundary	 ?(inclusive	 ?of	 ?the	 ?entire	 ?multi-??building	 ?system)	 ?System	 ?boundaries	 ? -?? Systems	 ?boundaries	 ?and	 ?network	 ?design	 ?implications	 ?need	 ?to	 ?be	 ?considered	 ?from	 ?the	 ?outset,	 ?inclusive	 ?of	 ?actor	 ?responsibilities	 ?for	 ?the	 ?system	 ?Feedback	 ? -?? Communication,	 ?feedback,	 ?and	 ?goal	 ?setting	 ?is	 ?necessary	 ?right	 ?through	 ?to	 ?building	 ?operation	 ?Feedback	 ? -?? Feedback	 ?is	 ?needed	 ?at	 ?all	 ?stages	 ?and	 ?particularly	 ?from	 ?commissioning	 ?back	 ?to	 ?design	 ?and	 ?from	 ?operation	 ?back	 ?to	 ?design	 ?Feedback	 ? -?? Monitoring	 ?and	 ?assessment	 ?is	 ?a	 ?key	 ?mechanism	 ?to	 ?ensure	 ?that	 ?systems	 ?are	 ?performing	 ?as	 ?intended.	 ?	 ?This	 ?capacity	 ?should	 ?be	 ?considered	 ?during	 ?design.	 ?Institutional	 ?Capacity	 ? -?? Without	 ?institutional	 ?capacity	 ?and	 ?opportunities	 ?to	 ?implement	 ?solutions	 ?or	 ?communicate	 ?issues,	 ?projects	 ?will	 ?not	 ?perform	 ?as	 ?intended	 ?Performance	 ?of	 ?Green	 ?Buildings	 ? -?? Large	 ?Commissioning	 ?and	 ?operational	 ?opportunities	 ?for	 ?energy	 ?efficiency	 ?exist,	 ?even	 ?in	 ??green?	 ?or	 ??sustainable?	 ?buildings	 ?System	 ?boundaries	 ?and	 ?performance	 ?-?? Simplified	 ?models	 ?need	 ?to	 ?be	 ?fully	 ?understood	 ?at	 ?the	 ?design	 ?stage,	 ?and	 ?individual	 ?optimization	 ?of	 ?small	 ?components	 ?will	 ?not	 ?add	 ?up	 ?to	 ?large	 ?savings	 ?if	 ?the	 ?underlying	 ?operation	 ?of	 ?systems	 ?is	 ?incorrect	 ?Learning	 ? -?? A	 ?culture	 ?of	 ?learning	 ?and	 ?embracing	 ?failures	 ?is	 ?necessary	 ?in	 ?order	 ?to	 ?achieve	 ?overall	 ?building	 ?performance	 ?success	 ?	 ? Table	 ?3-??	 ?4?	 ?Summary	 ?of	 ?Lessons	 ?Learned	 ?from	 ?CIRS	 ?Energy	 ?Systems	 ?	 ?	 ? 52	 ?	 ?	 ?Figure	 ?3-??	 ?11?	 ?Linear	 ?to	 ?Feedback	 ?Driven	 ?Project	 ?Lifecycle	 ?	 ?	 ? 53	 ?4 Chapter	 ?4:	 ?Lessons	 ?from	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ??	 ?An	 ?Exploration	 ?of	 ?Building	 ?Monitoring	 ?and	 ?Controls	 ?	 ?This	 ?paper	 ?explores	 ?the	 ?implementation	 ?and	 ?operation	 ?of	 ?building	 ?monitoring	 ?and	 ?controls	 ?through	 ?a	 ?retrospective	 ?case	 ?study	 ?on	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS)	 ?at	 ?the	 ?University	 ?of	 ?British	 ?Columbia	 ?(UBC).	 ?	 ?It	 ?looks	 ?at	 ?the	 ?proposed	 ?environmental	 ?benefits	 ?of	 ?such	 ?systems,	 ?their	 ?interaction	 ?with	 ?operator	 ?and	 ?inhabitant	 ?control,	 ?and	 ?draws	 ?lessons	 ?from	 ?specific	 ?examples	 ?of	 ?monitoring	 ?and	 ?controls	 ?during	 ?the	 ?early	 ?stages	 ?of	 ?building	 ?operation.	 ?	 ?While	 ?a	 ?theoretical	 ?argument	 ?has	 ?been	 ?made	 ?in	 ?the	 ?literature	 ?that	 ?energy	 ?consuming	 ?infrastructure	 ?will	 ?use	 ?less	 ?energy	 ?when	 ?coupled	 ?with	 ?information	 ?technology,	 ?this	 ?paper	 ?describes	 ?a	 ?case	 ?study	 ?that	 ?shows	 ?how	 ?the	 ?interaction	 ?of	 ?designers,	 ?inhabitants	 ?and	 ?operators	 ?with	 ?the	 ?controls	 ?systems	 ?can	 ?provide	 ?an	 ?opportunity	 ?for	 ?reduced	 ?energy	 ?use.	 ?	 ?The	 ?results	 ?of	 ?this	 ?analysis	 ?suggest	 ?that	 ?increasing	 ?monitoring	 ?and	 ?controls	 ?will	 ?not	 ?reduce	 ?energy	 ?use	 ?if	 ?not	 ?well	 ?integrated	 ?with	 ?the	 ?human	 ?systems	 ?that	 ?interact	 ?with	 ?them.	 ?4.1 Introduction	 ?	 ?This	 ?chapter	 ?takes	 ?a	 ?brief	 ?look	 ?at	 ?the	 ?literature	 ?connecting	 ?sustainable	 ?buildings	 ?and	 ?controls	 ?systems	 ?and	 ?then	 ?uses	 ?the	 ?case	 ?study	 ?of	 ?CIRS	 ?to	 ?examine	 ?the	 ?integration	 ?and	 ?feedback	 ?of	 ?advanced	 ?building	 ?controls	 ?in	 ?the	 ?context	 ?of	 ?a	 ?project	 ?built	 ?at	 ?UBC.	 ?	 ?The	 ?case	 ?study	 ?and	 ?data	 ?is	 ?meant	 ?to	 ?provide	 ?lessons	 ?about	 ?the	 ?use	 ?of	 ?advanced	 ?metering	 ?and	 ?controls	 ?in	 ?sustainable	 ?infrastructure	 ?projects	 ?and	 ?to	 ?look	 ?at	 ?the	 ?interactions	 ?between	 ?operators	 ?and	 ?controls	 ?systems,	 ?inhabitants	 ?and	 ?controls	 ?systems,	 ?and	 ?also	 ?the	 ?physical	 ?system	 ?optimization	 ?based	 ?on	 ?controls	 ?and	 ?monitoring	 ?systems.	 ?	 ?Subjective	 ?data	 ?from	 ?interviews	 ?and	 ?surveys	 ?conducted	 ?with	 ?building	 ?operations	 ?is	 ?presented	 ?first,	 ?followed	 ?by	 ?subjective	 ?survey	 ?data	 ?from	 ?CIRS	 ?inhabitants.	 ?	 ?An	 ?objective	 ?analysis	 ?of	 ?the	 ?physical	 ?and	 ?software	 ?implementation	 ?of	 ?the	 ?controls	 ?system	 ?is	 ?presented	 ?following	 ?the	 ?subjective	 ?data.	 ?	 ?The	 ?chapter	 ?concludes	 ?with	 ?lessons	 ?from	 ?survey	 ?data	 ?and	 ?the	 ?controls	 ?analysis.	 ?	 ?4.1.1 Background	 ??	 ?Sustainable	 ?Buildings	 ?and	 ?Infrastructure	 ?Networks	 ?	 ?The	 ?market	 ?for	 ??green?	 ?or	 ??sustainable?	 ?buildings	 ?has	 ?been	 ?largely	 ?developed	 ?through	 ?the	 ?use	 ?of	 ?green	 ?building	 ?rating	 ?systems	 ?such	 ?as	 ?LEED	 ?(Leadership	 ?for	 ?Energy	 ?and	 ?Environmental	 ?Design)	 ?(Cole,	 ?2012c).	 ?	 ?These	 ?rating	 ?systems	 ?are	 ?generally	 ?prescriptive	 ?versus	 ?performance	 ?based,	 ?meaning	 ?that	 ?they	 ?do	 ?not	 ?evaluate	 ?the	 ?realized	 ?environmental	 ?and	 ?energy	 ?performance	 ?of	 ?a	 ?building	 ?but	 ?instead	 ?give	 ?credit	 ?based	 ?on	 ?following	 ?specific	 ?design	 ?methodologies	 ?set	 ?out	 ?within	 ?the	 ?rating	 ?system	 ?guides.	 ?	 ?While	 ?this	 ?has	 ?been	 ?an	 ?effective	 ?way	 ?to	 ?shift	 ?the	 ?market	 ?focus	 ?towards	 ?taking	 ?energy	 ?and	 ?environmental	 ?goals	 ?into	 ?account,	 ?this	 ?prescriptive	 ?approach	 ?has	 ?not	 ?necessarily	 ?resulted	 ?in	 ?buildings	 ?that	 ?use	 ?less	 ?energy	 ?or	 ?have	 ?reduced	 ?lifecycle	 ?environmental	 ?impact	 ?(Newsham	 ?et	 ?al.,	 ?2009).	 ?	 ?Neither	 ?has	 ?it	 ?always	 ?resulted	 ?in	 ?an	 ?	 ? 54	 ?increased	 ?focus	 ?on	 ?creating	 ?system	 ?synergies,	 ?resource	 ?reuse,	 ?or	 ?integrating	 ?local	 ?social	 ?and	 ?environmental	 ?contexts.	 ?Instead	 ?it	 ?often	 ?encourages	 ?a	 ??series	 ?of	 ?discrete	 ?design	 ?gestures?	 ?that	 ?attempt	 ?to	 ?provide	 ?a	 ?signal	 ?that	 ?environmental	 ?design	 ?has	 ?been	 ?considered	 ?(Cole,	 ?2012c).	 ?	 ?Fortunately,	 ?results-??based	 ?approaches	 ?are	 ?gaining	 ?a	 ?foothold	 ?through	 ?revised	 ?versions	 ?of	 ?LEED	 ?and	 ?rating	 ?systems	 ?such	 ?as	 ?the	 ?Living	 ?Building	 ?Challenge.	 ?	 ?Recently	 ?however,	 ?there	 ?has	 ?been	 ?a	 ?shift	 ?in	 ?the	 ?building	 ?industry	 ?towards	 ?the	 ?design	 ?of	 ??intelligent?	 ?buildings	 ?with	 ?increased	 ?monitoring	 ?and	 ?controls	 ?capabilities	 ?in	 ?the	 ?hopes	 ?that	 ?such	 ?capabilities	 ?will	 ?facilitate	 ?increased	 ?energy	 ?efficiency	 ?and	 ?operational	 ?performance	 ?(Z.	 ?Chen,	 ?2010).	 ?	 ?There	 ?has	 ?also	 ?been	 ?interest	 ?in	 ?monitoring	 ?and	 ?controls	 ?capabilities	 ?of	 ?buildings	 ?so	 ?as	 ?to	 ?allow	 ?them	 ?to	 ?contribute	 ?to	 ?and	 ?integrate	 ?with	 ?future	 ??smart	 ?grids?	 ?(Lawrence	 ?et	 ?al.,	 ?2012).	 ?	 ?Particularly	 ?as	 ?we	 ?move	 ?towards	 ?integrated	 ?and	 ?distributed	 ?energy	 ?systems	 ?for	 ?communities	 ?and	 ?neighbourhoods,	 ?the	 ?ability	 ?to	 ?monitor,	 ?control,	 ?and	 ?understand	 ?how	 ?systems	 ?are	 ?functioning	 ?becomes	 ?even	 ?more	 ?important	 ?than	 ?on	 ?an	 ?individual	 ?building	 ?basis.	 ?	 ?This	 ?makes	 ?having	 ?a	 ?performance-??based	 ?approach	 ?even	 ?more	 ?valuable.	 ?	 ?Improved	 ?monitoring	 ?and	 ?assessment	 ?is	 ?necessary	 ?in	 ?order	 ?to	 ?assist	 ?the	 ?move	 ?towards	 ?effective	 ?performance	 ?evaluation	 ?of	 ?buildings,	 ?and	 ?is	 ?a	 ?complementary	 ?component	 ?linking	 ?interests	 ?in	 ?sustainable	 ?design	 ?with	 ??intelligent?	 ?or	 ??smart?	 ?capabilities.	 ?4.1.2 ?Smart?	 ?Buildings	 ?and	 ?Infrastructure	 ?	 ?The	 ?goal	 ?to	 ?create	 ??smart?	 ?systems	 ?and	 ?infrastructure	 ?with	 ?extensive	 ?monitoring	 ?and	 ?controls	 ?systems	 ?has	 ?become	 ?prevalent	 ?within	 ?industry	 ?(Ames,	 ?2010).	 ?There	 ?has	 ?been	 ?an	 ?expressed	 ?desire	 ?of	 ?industry	 ?to	 ?connect	 ?Net	 ?Zero	 ?Energy	 ?Buildings	 ?15(NZEB)	 ?processes	 ?with	 ?smart	 ?grid	 ?standards	 ?and	 ?technologies	 ?emerging	 ?on	 ?the	 ?utility	 ?side.	 ?	 ?This	 ?comes	 ?in	 ?conjunction	 ?with	 ?recognition	 ?of	 ?the	 ?general	 ?movement	 ?towards	 ??smart	 ?grids?	 ?and	 ??smart	 ?buildings?	 ?that	 ?integrate	 ?renewables,	 ?connect	 ?with	 ?a	 ?smart	 ?grid,	 ?and	 ?promote	 ?energy	 ?efficiency	 ?(Ames,	 ?2010).	 ?	 ?This	 ?trend	 ?towards	 ?both	 ?increasing	 ?interconnectivity	 ?and	 ?use	 ?of	 ?sensing	 ?capabilities	 ?creates	 ?a	 ?need	 ?to	 ?understand	 ?the	 ?potential	 ?gains	 ?and	 ?potential	 ?pitfalls	 ?of	 ?these	 ?systems	 ?and	 ?their	 ?implementation.	 ?	 ?This	 ?research	 ?attempts	 ?to	 ?draw	 ?out	 ?some	 ?of	 ?these	 ?lessons,	 ?using	 ?the	 ?integrated	 ?two-??building	 ?system	 ?of	 ?the	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS)	 ?as	 ?a	 ?case	 ?study.	 ?	 ?4.1.3 CIRS	 ?Controls	 ?Goals	 ?	 ?	 ?The	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?(CIRS)	 ?building	 ?at	 ?the	 ?University	 ?of	 ?British	 ?Columbia	 ?(UBC),	 ?opened	 ?in	 ?late	 ?2011,	 ?is	 ?a	 ?relatively	 ?new	 ?building	 ?that	 ?was	 ?built	 ?with	 ?aspirational	 ?goals	 ?with	 ?respect	 ?to	 ?its	 ?intended	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?15	 ?A	 ?Net	 ?Zero	 ?Energy	 ?Building	 ?(NZEB)	 ?is	 ?considered	 ?to	 ?be	 ?a	 ?building	 ?that	 ?over	 ?the	 ?period	 ?of	 ?one	 ?year	 ?generates	 ?as	 ?much	 ?energy	 ?from	 ?renewables	 ?as	 ?it	 ?consumes	 ?(Stylianou,	 ?2011)	 ?	 ?	 ? 55	 ?sustainability	 ?performance	 ?(Robinson	 ?et	 ?al.,	 ?2013).	 ?	 ?With	 ?the	 ?overarching	 ?goals	 ?of	 ?creating	 ?a	 ?building	 ?that	 ?would	 ?be	 ??smart?,	 ??green?,	 ?and	 ??humane?,	 ?the	 ?CIRS	 ?design	 ?team	 ?specified	 ?design	 ?goals	 ?including	 ?to	 ??provide	 ?feedback	 ?to	 ?building	 ?operations	 ?staff	 ?for	 ?identifying	 ?systems	 ?performing	 ?poorly?;	 ??provide	 ?feedback	 ?to	 ?building	 ?inhabitants	 ?as	 ?to	 ?how	 ?their	 ?behaviour	 ?affects	 ?energy,	 ?water,	 ?and	 ?material	 ?use?;	 ??allow	 ?building	 ?inhabitants	 ?to	 ?express	 ?preferences	 ?for	 ?building	 ?operating	 ?conditions	 ?and	 ?procedures?;	 ?and	 ?to	 ?provide	 ??detailed,	 ?ongoing	 ?monitoring	 ?to	 ?understand	 ?the	 ?energy	 ?and	 ?water	 ?flows	 ?through	 ?and	 ?within	 ?CIRS,	 ?both	 ?from	 ?quantitative	 ?and	 ?qualitative	 ?standpoints?	 ?(Robinson	 ?et	 ?al.,	 ?2013).	 ?	 ?The	 ?building	 ?was	 ?also	 ?built	 ?as	 ?a	 ??living	 ?laboratory?	 ?for	 ?sustainable	 ?practices	 ?and	 ?was	 ?designed	 ?while	 ?keeping	 ?in	 ?mind	 ?the	 ?campus?	 ?goal	 ?of	 ?creating	 ?a	 ?fully	 ?integrated	 ?energy	 ?and	 ?water	 ?system	 ?(Robinson	 ?et	 ?al.,	 ?2013).	 ?	 ?Because	 ?CIRS	 ?was	 ?built	 ?as	 ?a	 ?two-??building	 ?system	 ?with	 ?aspirational	 ?performance	 ?goals	 ?and	 ?an	 ?intention	 ?to	 ?consistently	 ?learn	 ?and	 ?develop	 ?new	 ?monitoring	 ?and	 ?engagement	 ?strategies,	 ?the	 ?monitoring	 ?and	 ?controls	 ?of	 ?CIRS	 ?is	 ?a	 ?particularly	 ?interesting	 ?system	 ?for	 ?retrospective	 ?research	 ?of	 ?its	 ?early	 ?operation.	 ?	 ?4.2 Background	 ?4.2.1 Intelligent	 ?Buildings	 ??	 ?What	 ?They	 ?are,	 ?What	 ?They	 ?Hope	 ?to	 ?Accomplish	 ?	 ?Recently	 ?the	 ?term	 ??smart?	 ?has	 ?been	 ?used	 ?to	 ?prefix	 ?many	 ?different	 ?technologies	 ?at	 ?varying	 ?scales,	 ?including	 ?electrical	 ?grids,	 ?buildings,	 ?and	 ?meters.	 ?	 ?While	 ?there	 ?is	 ?no	 ?standardized	 ?consensus	 ?of	 ?what	 ?it	 ?means	 ?for	 ?infrastructure	 ?or	 ?technology	 ?to	 ?be	 ??smart?,	 ?there	 ?is	 ?a	 ?general	 ?conception	 ?that	 ??smart?	 ?equates	 ?to	 ?increased	 ?monitoring	 ?and	 ?automated	 ?control	 ?capabilities.	 ?	 ?With	 ?the	 ?advent	 ?of	 ?low	 ?cost	 ?sensors	 ?into	 ?the	 ?marketplace,	 ??energy	 ?informatics?,	 ?or	 ?the	 ?use	 ?of	 ?energy	 ?data	 ?to	 ?analyze	 ?and	 ?design	 ?efficient	 ?energy	 ?supply	 ?and	 ?demand	 ?systems,	 ?has	 ?resulted	 ?in	 ?monitoring	 ?and	 ?control	 ?systems	 ?becoming	 ?ever	 ?more	 ?complex	 ?and	 ?also	 ?common	 ?in	 ?building	 ?infrastructure	 ?(Lawrence	 ?et	 ?al.,	 ?2012).	 ?	 ?The	 ?use	 ?of	 ?building	 ?automation	 ?systems	 ?(BAS)	 ?has	 ?given	 ?building	 ?operators	 ?the	 ?ability	 ?to	 ?collect	 ?large	 ?data	 ?sets	 ?on	 ?the	 ?functioning	 ?of	 ?buildings	 ?and	 ?it	 ?is	 ?hoped	 ?that	 ?such	 ?capabilities	 ?will	 ?enable	 ?insights	 ?that	 ?result	 ?in	 ?increased	 ?energy	 ?efficiency,	 ?inhabitant	 ?comfort,	 ?and	 ?ability	 ?to	 ?integrate	 ?with	 ?renewable	 ?energy	 ?systems	 ?(Lawrence	 ?et	 ?al.,	 ?2012).	 ?	 ?Building	 ?information	 ?modeling	 ?(BIM)	 ?has	 ?given	 ?design	 ?teams	 ?the	 ?ability	 ?to	 ?use	 ?integrated	 ?digital	 ?representations	 ?shared	 ?between	 ?disciplines	 ?and	 ?team	 ?members	 ?in	 ?order	 ?to	 ?manage	 ?and	 ?design	 ?projects	 ?(Lawrence	 ?et	 ?al.,	 ?2012).	 ?	 ?4.2.2 Operator	 ?Control	 ??	 ?Espoused	 ?Benefits	 ?and	 ?Abilities	 ?	 ?Increased	 ?monitoring	 ?of	 ?building	 ?systems	 ?and	 ?equipment	 ?is	 ?generally	 ?rationalized	 ?by	 ?the	 ?idea	 ?that	 ?if	 ?building	 ?operators	 ?have	 ?more	 ?information	 ?and	 ?automation,	 ?it	 ?will	 ?result	 ?in	 ?reduced	 ?energy	 ?use	 ?in	 ?the	 ?operation	 ?of	 ?a	 ?facility	 ?and	 ?greater	 ?comfort	 ?for	 ?inhabitants.	 ?	 ?This	 ?has	 ?led	 ?to	 ?greater	 ?automation	 ?of	 ?building	 ?systems	 ?and	 ?equipment	 ??	 ?circumventing	 ?manual	 ?operator	 ?control	 ?in	 ?the	 ?hopes	 ?of	 ?creating	 ?buildings	 ?that	 ?optimize	 ?themselves	 ?(Carrie	 ?Armel	 ?et	 ?al.,	 ?2012).	 ?	 ?It	 ?should	 ?be	 ?noted	 ?that	 ?while	 ?there	 ?	 ? 56	 ?is	 ?a	 ?trend	 ?in	 ?sustainable	 ?buildings	 ?towards	 ?monitoring	 ?and	 ?modeling,	 ?there	 ?is	 ?also	 ?a	 ?trend	 ?that	 ?shifts	 ?away	 ?from	 ?automation	 ?of	 ?systems	 ?towards	 ?passive	 ?design	 ?such	 ?as	 ?for	 ?ventilation	 ?and	 ?heating	 ?that	 ?are	 ?not	 ?mechanically	 ?driven	 ?(Cole,	 ?Robinson,	 ?Brown,	 ?&	 ?O?shea,	 ?2008).	 ?	 ?A	 ?distinction	 ?between	 ?information	 ?and	 ?automation	 ?is	 ?important,	 ?due	 ?to	 ?these	 ?separate	 ?movements	 ?in	 ?design	 ?and	 ?analytics	 ?at	 ?the	 ?building	 ?level	 ?and	 ?energy	 ?system	 ?level.	 ?	 ?Buildings	 ?are	 ?shifting	 ?from	 ?being	 ?considered	 ?passive	 ?loads	 ?on	 ?the	 ?electrical	 ?system	 ?to	 ?active	 ?participants	 ?in	 ?integrated	 ?energy	 ?networks	 ?(Stylianou,	 ?2011).	 ?	 ?Giving	 ?more	 ?monitoring	 ?and	 ?control	 ?capabilities	 ?to	 ?buildings	 ?is	 ?an	 ?individual	 ?design	 ?improvement	 ?often	 ?assumed	 ?to	 ?be	 ?key	 ?in	 ?helping	 ?create	 ?advanced	 ?energy	 ?networks	 ?between	 ?buildings.	 ?	 ?And	 ?yet,	 ?while	 ?monitoring	 ?capability	 ?and	 ?operational	 ?complexity	 ?increases	 ?are	 ?in	 ?some	 ?ways	 ?meant	 ?to	 ?decrease	 ?the	 ?need	 ?for	 ?human	 ?operational	 ?oversight,	 ?there	 ?is	 ?an	 ?increasing	 ?recognition	 ?that	 ?information	 ?systems	 ?affect	 ?human	 ?interaction	 ?with	 ?the	 ?built	 ?environment	 ?in	 ?new	 ?ways	 ?(Liu,	 ?Nakata,	 ?&	 ?Harty,	 ?2010),	 ?and	 ?there	 ?have	 ?been	 ?many	 ?cases	 ?where	 ?usability	 ?of	 ?systems	 ?is	 ?negatively	 ?affected	 ?by	 ?inappropriate	 ?design	 ?of	 ?controls	 ?systems	 ?(Karjalainen	 ?&	 ?Lappalainen,	 ?2011).	 ?	 ?Case	 ?studies	 ?have	 ?also	 ?shown	 ?that	 ?in	 ?order	 ?to	 ?effectively	 ?implement	 ?demand	 ?reduction	 ?programs,	 ?social	 ?learning	 ?strategies	 ?must	 ?be	 ?in	 ?place	 ?(Glad,	 ?2012).	 ?	 ?	 ?4.2.3 Inhabitant	 ?Control	 ??	 ?Espoused	 ?Benefits	 ?and	 ?Abilities	 ?	 ?	 ?As	 ?monitoring	 ?capabilities	 ?have	 ?become	 ?more	 ?prevalent,	 ?there	 ?has	 ?been	 ?movement	 ?towards	 ?giving	 ?inhabitants	 ?of	 ?buildings	 ??	 ?both	 ?commercial	 ?and	 ?residential	 ??	 ?increased	 ?information	 ?about	 ?building	 ?performance.	 ?	 ?Energy	 ?displays	 ?are	 ?argued	 ?to	 ?be	 ?a	 ?possible	 ?way	 ?to	 ?allow	 ?inhabitants	 ?to	 ?understand	 ?how	 ?their	 ?behaviour	 ?affects	 ?their	 ?energy	 ?usage	 ?and	 ?thereby	 ?reduce	 ?their	 ?energy	 ?use	 ?(Chiang,	 ?Natarajan,	 ?&	 ?Walker,	 ?2012).	 ?	 ?However,	 ?while	 ??smart	 ?meters?	 ?and	 ?energy	 ?displays	 ?have	 ?seen	 ?significant	 ?uptake,	 ?their	 ?implementation	 ?does	 ?not	 ?necessarily	 ?result	 ?in	 ?energy	 ?reductions	 ?(Krishnamurti	 ?et	 ?al.,	 ?2012a).	 ?	 ?While	 ?efficiency	 ?is	 ?one	 ?intended	 ?outcome	 ?of	 ?adding	 ?controls	 ?capabilities,	 ?inhabitant	 ?comfort	 ?is	 ?another.	 ?	 ?Research	 ?on	 ?inhabitant	 ?comfort	 ?criteria	 ?has	 ?shown	 ?a	 ?correlation	 ?between	 ?increased	 ?inhabitant	 ?controllability	 ?of	 ?indoor	 ?environments	 ?and	 ?their	 ?comfort	 ?in	 ?social	 ?dimensions	 ?(Cole,	 ?Robinson,	 ?Brown,	 ?&	 ?O?Shea,	 ?2008).	 ?	 ?Even	 ?if	 ?increasing	 ?control	 ?may	 ?result	 ?in	 ?decreasing	 ?energy	 ?efficiency,	 ?this	 ?correlation	 ?to	 ?comfort	 ?should	 ?be	 ?explored,	 ?as	 ?the	 ?purpose	 ?of	 ?buildings	 ?is	 ?to	 ?meet	 ?the	 ?needs	 ?of	 ?their	 ?inhabitants.	 ?	 ?Increased	 ?monitoring	 ?and	 ?control	 ?thereby	 ?has	 ?both	 ?possible	 ?social	 ?and	 ?environmental	 ?benefits	 ?from	 ?an	 ?inhabitant	 ?perspective.	 ?4.2.4 Overall	 ?Proposed	 ?Benefits	 ?	 ?	 ?The	 ?proposed	 ?benefits	 ?of	 ?increased	 ?controls	 ?in	 ?the	 ?built	 ?environment	 ?are	 ?mainly	 ?environmental,	 ?with	 ?increased	 ?energy	 ?efficiency	 ?and	 ?therefore	 ?decreased	 ?resource	 ?use	 ?being	 ?the	 ?most	 ?often	 ?cited	 ?reason	 ?for	 ?increasing	 ?monitoring	 ?and	 ?control.	 ?	 ?Social	 ?benefits	 ?are	 ?also	 ?cited	 ?through	 ?the	 ?improvement	 ?of	 ?operability,	 ?fault	 ?detection,	 ?and	 ?comfort	 ?claimed	 ?by	 ?proponents	 ?of	 ??intelligent?	 ?buildings.	 ?	 ?While	 ?these	 ?benefits	 ?may	 ?	 ? 57	 ?be	 ?possible	 ?in	 ?theory,	 ?few	 ?studies	 ?have	 ?examined	 ?the	 ?circumstances	 ?and	 ?processes	 ?that	 ?lead	 ?to	 ?their	 ?achievement	 ?in	 ?practice	 ?through	 ?an	 ?improvement	 ?in	 ?the	 ?design	 ?of	 ?controls	 ?and	 ?monitoring	 ?in	 ?buildings.	 ?4.2.5 The	 ?Case	 ?Study	 ?	 ?This	 ?research	 ?was	 ?conducted	 ?by	 ?performing	 ?an	 ?analysis	 ?of	 ?both	 ?the	 ?operational	 ?performance	 ?and	 ?the	 ?perceived	 ?performance	 ?of	 ?the	 ?controls	 ?and	 ?monitoring	 ?systems	 ?at	 ?CIRS.	 ?	 ?The	 ?system	 ?operation	 ?was	 ?examined	 ?through	 ?on-??site	 ?physical	 ?assessment	 ?of	 ?building	 ?systems	 ?as	 ?well	 ?as	 ?through	 ?analysis	 ?of	 ?data	 ?recorded	 ?by	 ?the	 ?CIRS	 ?Building	 ?Management	 ?System	 ?(BMS).	 ?	 ?	 ?The	 ?overall	 ?operation	 ?of	 ?the	 ?controls	 ?and	 ?monitoring	 ?system	 ?for	 ?CIRS	 ?was	 ?evaluated	 ?through	 ?the	 ?use	 ?of	 ?data	 ?from	 ?the	 ?CIRS	 ?BMS,	 ?in	 ?addition	 ?to	 ?a	 ?survey16	 ?conducted	 ?with	 ?building	 ?inhabitants	 ?and	 ?building	 ?operations.	 ?	 ?Operational	 ?survey	 ?data	 ?is	 ?presented	 ?first,	 ?followed	 ?by	 ?inhabitant	 ?survey	 ?data,	 ?a	 ?controls	 ?analysis,	 ?and	 ?a	 ?discussion	 ?section	 ?drawing	 ?out	 ?lessons	 ?from	 ?the	 ?case	 ?study.	 ?4.3 Case	 ?Study	 ??	 ?CIRS	 ??	 ?Operational	 ?Control	 ?and	 ?Monitoring	 ?	 ?CIRS	 ?was	 ?designed	 ?with	 ?the	 ?goal	 ?of	 ?using	 ?increased	 ?monitoring	 ?and	 ?controls	 ?capabilities	 ?to	 ?improve	 ?inhabitant	 ?comfort,	 ?reduce	 ?resource	 ?use,	 ?and	 ?provide	 ?feedback	 ?about	 ?the	 ?quantitative	 ?and	 ?qualitative	 ?functioning	 ?of	 ?building	 ?systems.	 ?	 ?As	 ?a	 ?reference,	 ?the	 ?building	 ?logs	 ?data	 ?multiple	 ?times	 ?per	 ?hour	 ?from	 ?over	 ?3,000	 ?monitoring	 ?points	 ?which	 ?track	 ?energy	 ?use,	 ?equipment	 ?status,	 ?and	 ?environmental	 ?conditions	 ?among	 ?other	 ?measures,	 ?as	 ?compared	 ?to	 ?most	 ?buildings	 ?on	 ?UBC	 ?campus	 ?which	 ?only	 ?log	 ?metered	 ?electrical,	 ?steam,	 ?and	 ?water	 ?use.	 ?	 ?This	 ?case	 ?study	 ?considers	 ?the	 ?controls	 ?specific	 ?goals	 ?within	 ?the	 ?context	 ?of	 ?the	 ?building?s	 ?design	 ?and	 ?early	 ?operation	 ?stages.	 ?	 ?From	 ?an	 ?operational	 ?standpoint,	 ?the	 ?controls	 ?system	 ?at	 ?CIRS	 ?may	 ?be	 ?conceptualized	 ?to	 ?consist	 ?of	 ?both	 ?physical	 ?controls	 ?such	 ?as	 ?valves	 ?and	 ?dampers	 ?as	 ?well	 ?as	 ?digitally	 ?accessed	 ?controls	 ?available	 ?either	 ?through	 ?individual	 ?systems	 ?and	 ?meters	 ?or	 ?through	 ?the	 ?BAS.	 ?	 ?The	 ?overall	 ?controls	 ?design	 ?was	 ?meant	 ?to	 ?allow	 ?operators	 ?and	 ?building	 ?inhabitants	 ?to	 ?learn	 ?about	 ?system	 ?functioning	 ?and	 ?enable	 ?reductions	 ?in	 ?resource	 ?use	 ?through	 ?access	 ?to	 ?logged	 ?data	 ?about	 ?the	 ?systems.	 ?	 ?As	 ?part	 ?of	 ?the	 ?LEED	 ?certification	 ?process,	 ?a	 ?measurement	 ?and	 ?verification	 ?plan	 ?was	 ?designed	 ?in	 ?order	 ?to	 ?make	 ?sure	 ?that	 ?appropriate	 ?metering	 ?was	 ?in	 ?place	 ?to	 ?allow	 ?the	 ?achievement	 ?of	 ?this	 ?goal.	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?16	 ?Survey	 ?questions	 ?and	 ?response	 ?rates	 ?can	 ?be	 ?found	 ?in	 ?References	 ?	 ?	 ?	 ? 58	 ?In	 ?addition	 ?to	 ?a	 ?measurement	 ?and	 ?verification	 ?plan,	 ?an	 ?operational	 ?dashboard	 ?and	 ?energy	 ?management	 ?system	 ?was	 ?designed	 ?for	 ?CIRS.	 ?	 ?This	 ?dashboard	 ?and	 ?energy	 ?management	 ?system	 ?were	 ?designed	 ?and	 ?implemented	 ?by	 ?the	 ?controls	 ?contractor,	 ?while	 ?an	 ?outside	 ?consultant	 ?designed	 ?the	 ?measurement	 ?and	 ?verification	 ?plan.	 ?	 ?The	 ?energy	 ?management	 ?system	 ?is	 ?meant	 ?to	 ?act	 ?as	 ?a	 ?virtual	 ?portal	 ?to	 ?allow	 ?the	 ?building	 ?operators	 ?to	 ?access	 ?metering	 ?data	 ?from	 ?the	 ?more	 ?than	 ?3,000	 ?monitoring	 ?points	 ?installed	 ?in	 ?the	 ?building.	 ?	 ?Operator	 ?control	 ?of	 ?systems	 ?at	 ?CIRS	 ?has	 ?been	 ?conceptualized	 ?in	 ?Figure	 ?4-??	 ?1:	 ?	 ?	 ?	 ? Figure	 ?4-??	 ?1?	 ?Operator	 ?Influence	 ?Diagram	 ?4.3.1 Operator	 ?Control	 ?Systems	 ??	 ?Operational	 ?Team	 ?Perspectives	 ?	 ?Based	 ?on	 ?interview	 ?data	 ?from	 ?those	 ?in	 ?building	 ?operations	 ?17	 ?that	 ?were	 ?most	 ?familiar	 ?with	 ?the	 ?in-??building	 ?monitoring	 ?and	 ?controls	 ?systems	 ?at	 ?CIRS,	 ?satisfaction	 ?with	 ?the	 ?CIRS	 ?controls	 ?systems	 ?was	 ?substantially	 ?lower	 ?than	 ?satisfaction	 ?with	 ?operational	 ?monitoring	 ?systems.	 ?	 ?Stated	 ?rationale	 ?and	 ?pros	 ?and	 ?cons	 ?for	 ?the	 ?system	 ?are	 ?below	 ?and	 ?were	 ?taken	 ?directly	 ?from	 ?survey	 ?results.	 ?	 ?These	 ?survey	 ?comments	 ?and	 ?results	 ?will	 ?be	 ?further	 ?discussed	 ?later	 ?in	 ?the	 ?paper.	 ?	 ?Pros:	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?17	 ?It	 ?should	 ?be	 ?noted	 ?that	 ?the	 ?building	 ?operations	 ?staff	 ?that	 ?was	 ?able	 ?to	 ?answer	 ?this	 ?survey	 ?would	 ?be	 ?considered	 ?to	 ?have	 ??expert?	 ?abilities	 ?with	 ?regards	 ?to	 ?building	 ?controls	 ?systems.	 ?	 ?	 ? 59	 ?1. The	 ?user	 ?interface	 ?is	 ?easy	 ?to	 ?navigate	 ?and	 ?the	 ?graphics	 ?provide	 ?a	 ?fair	 ?representation	 ?of	 ?most	 ?systems.	 ?2. Trending	 ?data	 ?and	 ?configuring	 ?the	 ?trends	 ?is	 ?easy.	 ?3. Adding	 ?and	 ?configuring	 ?user	 ?levels	 ?is	 ?easy.	 ?4. Adjusting	 ?the	 ?schedules	 ?is	 ?straightforward.	 ?Cons:	 ?1. The	 ?naming	 ?convention	 ?of	 ?the	 ?points	 ?is	 ?very	 ?inconsistent	 ?and	 ?the	 ?descriptions	 ?are	 ?less	 ?descriptive	 ?than	 ?the	 ?point	 ?name	 ?in	 ?many	 ?cases.	 ?2. Location	 ?of	 ?point	 ?dynamic	 ?values	 ?on	 ?graphics	 ?is	 ?confusing	 ?in	 ?some	 ?cases.	 ?	 ?[Ex:]	 ?Supply	 ?temperature	 ?reading	 ?displayed	 ?beside	 ?the	 ?return	 ?temperature	 ?sensor.	 ?3. Points	 ?in	 ?the	 ?system	 ?(CO2,	 ?VOC,	 ?valves	 ?etc.)	 ?are	 ?not	 ?all	 ?displayed	 ?on	 ?the	 ?graphics.	 ?4. Controllers	 ?need	 ?to	 ?be	 ?taken	 ?offline	 ?to	 ?make	 ?database	 ?changes.	 ?	 ?This	 ?would	 ?be	 ?a	 ?huge	 ?concern	 ?if	 ?there	 ?were	 ?fume	 ?hoods	 ?or	 ?other	 ?devices/systems	 ?in	 ?the	 ?building	 ?that	 ?could	 ?not	 ?be	 ?taken	 ?offline.	 ?	 ?Comments	 ?from	 ?Building	 ?Operations	 ?about	 ?the	 ?CIRS	 ?monitoring	 ?system	 ?included	 ?that	 ?it	 ?is	 ?possible	 ?to	 ??get	 ?a	 ?good	 ?visualization	 ?of	 ?what	 ?you	 ?are	 ?interested	 ?in?	 ?however	 ?that	 ??extracting	 ?the	 ?data	 ?using	 ?a	 ?query	 ?through	 ?Excel	 ?is	 ?cumbersome,	 ?time	 ?consuming	 ?and	 ?the	 ?options	 ?for	 ?the	 ?sample	 ?frequency	 ?is	 ?limited?	 ?and	 ??numerous	 ?sensors	 ?(space	 ?temperature	 ?&	 ?duct	 ?air	 ?flow)	 ?have	 ?never	 ?worked	 ?correctly.?	 ?	 ?	 ?	 ?Design	 ?intent	 ?for	 ?lighting	 ?was	 ?questioned,	 ?with	 ?the	 ?comment	 ?that	 ??with	 ?the	 ?lights	 ?for	 ?more	 ?than	 ?one	 ?room	 ?being	 ?controlled	 ?by	 ?one	 ?relay	 ?(mostly	 ?washrooms,	 ?all	 ?without	 ?windows)	 ?and	 ?other	 ?rooms	 ?with	 ?six	 ?fixtures	 ?having	 ?a	 ?relay	 ?for	 ?each	 ?fixture	 ?I	 ?have	 ?trouble	 ?understanding	 ?the	 ?intent	 ?for	 ?these	 ?areas.?	 ?	 ?	 ?	 ?Additional	 ?comments	 ?included:	 ?? Mechanical	 ?spaces	 ?are	 ?cramped	 ?which	 ?will	 ?make	 ?maintenance	 ?a	 ?challenge,	 ?which	 ?could	 ?affect	 ?the	 ?long	 ?term	 ?performance	 ?of	 ?the	 ?building?s	 ?systems.	 ?	 ?	 ?? Heat	 ?recovery	 ?generally	 ?works	 ?well	 ?but	 ?there	 ?are	 ?some	 ?improvements	 ?that	 ?could	 ?be	 ?made.	 ?	 ?Diffusers	 ?in	 ?floor	 ?restrict	 ?air	 ?more	 ?than	 ?they	 ?should	 ?causing	 ?limited	 ?air	 ?flow	 ?in	 ?areas	 ?with	 ?numerous	 ?occupants	 ?such	 ?as	 ?policy	 ?lab	 ?and	 ?meeting	 ?rooms.	 ?	 ?The	 ?monitoring	 ?interface	 ?was	 ?considered	 ?to	 ?be	 ??Very	 ?Functional?	 ?except	 ?for	 ?lighting	 ?and	 ?acoustics	 ??	 ?this	 ?is	 ?consistent	 ?with	 ?the	 ?fact	 ?that	 ?there	 ?are	 ?no	 ?monitoring	 ?systems	 ?in	 ?place	 ?for	 ?acoustics.	 ?	 ?An	 ?additional	 ?comment	 ?included	 ?that	 ?the	 ??interface	 ?between	 ?lighting	 ?control	 ?and	 ?primary	 ?BMS	 ?is	 ?limited.?	 ?	 ?In	 ?terms	 ?of	 ?meeting	 ?the	 ?goal	 ?to	 ??provide	 ?feedback	 ?to	 ?building	 ?operations	 ?staff	 ?for	 ?identifying	 ?systems	 ?performing	 ?poorly,?	 ?building	 ?operations	 ?felt	 ?that	 ?in	 ?general	 ?the	 ?current	 ?controls	 ?system	 ?works	 ??Very	 ?Well?	 ?in	 ?achieving	 ?this	 ?goal.	 ?	 ?Considering	 ?that	 ?these	 ?systems	 ?allowed	 ?us	 ?to	 ?discover	 ?various	 ?performance	 ?issues	 ?through	 ?	 ? 60	 ?performance	 ?monitoring	 ?and	 ?feedback,	 ?this	 ?is	 ?consistent	 ?with	 ?our	 ?discoveries.	 ?	 ?Building	 ?operations	 ?commented	 ?that	 ?there	 ?are	 ??plenty	 ?of	 ?sensors	 ?to	 ?troubleshoot	 ?problems	 ?if	 ?they	 ?occur,	 ?having	 ?a	 ?logged	 ?history	 ?of	 ?the	 ?sensor	 ?readings	 ?means	 ?checking	 ?on	 ?previous	 ?occurrences	 ?of	 ?a	 ?problem	 ?is	 ?easy.?	 ?	 ?Building	 ?operations	 ?felt	 ?that	 ?there	 ?was	 ?a	 ??High	 ?level	 ?of	 ?ability?	 ?to	 ?optimize	 ?and	 ?influence	 ?building	 ?system	 ?performance	 ?through	 ?the	 ?CIRS	 ?controls	 ?and	 ?monitoring	 ?system	 ?in	 ?general	 ?and	 ?for	 ?heating	 ?and	 ?cooling	 ?as	 ?well	 ?as	 ?energy	 ?harvesting	 ?systems.	 ?	 ?However	 ?ability	 ?to	 ?optimize	 ?and	 ?influence	 ?ventilation	 ?and	 ?air	 ?quality	 ?and	 ?lighting	 ?were	 ?significantly	 ?lower	 ?and	 ?it	 ?was	 ?commented	 ?that	 ?there	 ?was	 ?no	 ?ability	 ?to	 ?optimize	 ?acoustics.	 ?	 ?Additional	 ?comments	 ?included	 ?that	 ??Using	 ?the	 ?BMS	 ?to	 ?control	 ?the	 ?lights	 ?can	 ?cause	 ?conflicts	 ?with	 ?the	 ?lighting	 ?control	 ?system	 ?which	 ?has	 ?caused	 ?the	 ?BMS	 ?control	 ?to	 ?be	 ?turned	 ?off	 ?in	 ?the	 ?atrium	 ?area	 ?to	 ?improve	 ?reliability?	 ?and	 ?that	 ??the	 ?ventilation	 ?system	 ?is	 ?divided	 ?into	 ?two	 ?large	 ?zones	 ?per	 ?floor	 ?with	 ?no	 ?occupancy	 ?feedback	 ?from	 ?these	 ?areas	 ?so	 ?currently	 ?these	 ?areas	 ?would	 ?be	 ?getting	 ?mechanical	 ?ventilation	 ?even	 ?when	 ?there	 ?are	 ?no	 ?occupants.?	 ?	 ?When	 ?asked	 ?the	 ?question	 ??How	 ?much	 ?ability	 ?do	 ?you/did	 ?you	 ?have	 ?to	 ?optimize	 ?the	 ?controls	 ?and	 ?monitoring	 ?interfaces	 ?for	 ?the	 ?building??,	 ?building	 ?operations	 ?answered	 ?that	 ?during	 ?design	 ?they	 ?had	 ??No	 ?ability?	 ?while	 ?during	 ?commissioning	 ?and	 ?operation	 ?they	 ?have	 ?had	 ??high	 ?levels	 ?of	 ?ability.?	 ?	 ?Building	 ?operations	 ?felt	 ?that	 ?through	 ?the	 ?current	 ?configuration	 ?of	 ?controls	 ?systems,	 ?they	 ?were	 ??very	 ?able	 ?to	 ?influence?	 ?whether	 ?CIRS	 ?was	 ?able	 ?to	 ?meet	 ?its	 ?comfort	 ?related	 ?goals,	 ?however	 ?there	 ?was	 ?less	 ?ability	 ?to	 ?influence	 ?goals	 ?related	 ?to	 ?energy	 ?and	 ?little	 ?ability	 ?to	 ?influence	 ?goals	 ?related	 ?to	 ?water.	 ?	 ?Additional	 ?comments	 ?included	 ?that	 ??There	 ?is	 ?room	 ?for	 ?improvement	 ?with	 ?respect	 ?to	 ?energy,	 ?the	 ?trick	 ?will	 ?be	 ?to	 ?do	 ?so	 ?without	 ?adversely	 ?effecting	 ?functionality	 ?of	 ?the	 ?building.?	 ?And	 ??Once	 ?the	 ?water	 ?systems	 ?are	 ?operating	 ?as	 ?intended	 ?I	 ?don?t	 ?see	 ?much	 ?that	 ?can	 ?be	 ?done	 ?to	 ?streamline	 ?them.?	 ?	 ?	 ?	 ?When	 ?asked	 ?the	 ?question	 ??If	 ?you	 ?were	 ?to	 ?change	 ?the	 ?controls	 ?and	 ?monitoring	 ?interfaces	 ?for	 ?the	 ?building,	 ?what	 ?would	 ?you	 ?change??,	 ?building	 ?operations	 ?listed	 ?the	 ?following:	 ?? I	 ?would	 ?change	 ?the	 ?controllers	 ?programming	 ?and	 ?live	 ?monitoring	 ?access.	 ?	 ?Compiling	 ?the	 ?software	 ?to	 ?machine	 ?code	 ?prior	 ?to	 ?downloading	 ?is	 ?unnecessary	 ?with	 ?the	 ?current	 ?cost	 ?of	 ?memory	 ?and	 ?processors.	 ?	 ?	 ?? I	 ?would	 ?also	 ?prefer	 ?a	 ?text	 ?based	 ?programming	 ?language,	 ?it	 ?may	 ?be	 ?more	 ?difficult	 ?and	 ?time	 ?consuming	 ?to	 ?write	 ?but	 ?it	 ?[would	 ?be]	 ?easier	 ?to	 ?troubleshoot	 ?later.	 ?? The	 ?EBI	 ?graphical	 ?interface	 ?monitoring	 ?is	 ?good,	 ?I	 ?would	 ?like	 ?to	 ?see	 ?the	 ?process	 ?to	 ?write	 ?a	 ?query	 ?simplified	 ?and	 ?more	 ?options	 ?on	 ?the	 ?sample	 ?rates	 ?that	 ?can	 ?be	 ?specified.	 ?	 ?	 ? 61	 ?4.3.2 Accessibility	 ?of	 ?Data	 ?	 ?As	 ?articulated	 ?by	 ?building	 ?operators,	 ?the	 ?current	 ?system	 ?for	 ?downloading	 ?building	 ?data	 ?at	 ?CIRS	 ?is	 ?cumbersome	 ?and	 ?not	 ?streamlined.	 ?	 ?This	 ?results	 ?in	 ?the	 ?building	 ?data	 ?being	 ?effectively	 ?inaccessible	 ?to	 ?many	 ?users	 ?who	 ?are	 ?not	 ?experts	 ?in	 ?data	 ?querying	 ?or	 ?may	 ?not	 ?have	 ?the	 ?time	 ?to	 ?go	 ?through	 ?the	 ?tedious	 ?download	 ?process.	 ?	 ?This	 ?means	 ?that	 ?even	 ?though	 ?the	 ?quantity	 ?of	 ?data	 ?available	 ?is	 ?extensive,	 ?with	 ?over	 ?3,000	 ?monitoring	 ?points	 ?throughout	 ?the	 ?building,	 ?the	 ?usefulness	 ?of	 ?this	 ?information	 ?is	 ?diminished.	 ?	 ?While	 ?this	 ?may	 ?be	 ?fine	 ?for	 ?researchers	 ?in	 ?the	 ?building	 ?who	 ?have	 ?the	 ?ability	 ?to	 ?perform	 ?necessary	 ?queries	 ?and	 ?calculations,	 ?it	 ?does	 ?not	 ?allow	 ?operators	 ?and	 ?inhabitants	 ?to	 ?quickly	 ?gain	 ?the	 ?information	 ?they	 ?need	 ?to	 ?enhance	 ?their	 ?understanding	 ?of	 ?building	 ?systems.18	 ?4.4 CIRS	 ?Case	 ?Study	 ?-??	 ?Inhabitant	 ?Control	 ?and	 ?Monitoring	 ?	 ?From	 ?an	 ?inhabitant	 ?control	 ?standpoint,	 ?the	 ?accessible	 ?and	 ?implemented	 ?controls	 ?at	 ?CIRS	 ?consist	 ?of	 ?a	 ?few	 ?physical	 ?controls	 ?such	 ?as	 ?windows,	 ?air	 ?vents,	 ?and	 ?certain	 ?light	 ?switches.	 ?	 ?The	 ?overall	 ?design	 ?goals	 ?for	 ?the	 ?building	 ?included	 ?converting	 ??occupants	 ?to	 ?inhabitants	 ?with	 ?a	 ?sense	 ?of	 ?place	 ?and	 ?engagement	 ?with	 ?the	 ?building?	 ?(Robinson	 ?et	 ?al.,	 ?2013).	 ?	 ?Data	 ?available	 ?to	 ?building	 ?inhabitants	 ?includes	 ?an	 ?information	 ??dashboard?	 ?in	 ?the	 ?main	 ?atrium	 ?of	 ?CIRS,	 ?with	 ?data	 ?taken	 ?directly	 ?from	 ?the	 ?BMS	 ?system	 ?and	 ?put	 ?into	 ?an	 ?auto-??generated	 ?power	 ?point.	 ?	 ?The	 ?dashboard	 ?was	 ?an	 ?attempt	 ?to	 ?display	 ?information	 ?on	 ?the	 ?building?s	 ?energy	 ?and	 ?water	 ?consumption.	 ?	 ?It	 ?was	 ?intended	 ?that	 ?this	 ?display	 ?system	 ?would	 ?be	 ?available	 ?on	 ?the	 ?desktops	 ?of	 ?inhabitants,	 ?and	 ?also	 ?that	 ?they	 ?would	 ?have	 ?desktop	 ?access	 ?to	 ?a	 ??voting?	 ?system	 ?for	 ?indoor	 ?condition	 ?preferences,	 ?however	 ?as	 ?of	 ?yet	 ?	 ?(Sept,	 ?2013)	 ?these	 ?features	 ?have	 ?not	 ?been	 ?implemented.	 ?	 ? 	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?18	 ?This	 ?is	 ?in	 ?part	 ?due	 ?to	 ?the	 ?limited	 ?licensing	 ?agreement	 ?for	 ?the	 ?monitoring	 ?software	 ?as	 ?well	 ?as	 ?the	 ?inability	 ?to	 ?create	 ?new	 ?user	 ?profiles	 ?that	 ?allow	 ?access	 ?to	 ?data	 ?without	 ?ability	 ?to	 ?change	 ?systems.	 ?	 ? 62	 ?	 ?Inhabitant	 ?control	 ?of	 ?systems	 ?at	 ?CIRS	 ?has	 ?been	 ?conceptualized	 ?in	 ?Figure	 ?4-??	 ?2:	 ?	 ?	 ?Figure	 ?4-??	 ?2-??	 ?Inhabitant	 ?Influence	 ?Diagram	 ?4.4.1 Inhabitant	 ?Control	 ?Systems	 ??	 ?Inhabitant	 ?Experience	 ?	 ?Physical	 ?controls	 ?available	 ?to	 ?inhabitants	 ?include	 ?light	 ?switches	 ?(though	 ?not	 ?all	 ?light	 ?switches	 ?have	 ?inhabitant	 ?controls	 ??	 ?many	 ?are	 ?activated	 ?by	 ?motion	 ?sensors	 ?which	 ?currently	 ?have	 ?no	 ?manual	 ?override),	 ?air	 ?vents	 ?that	 ?can	 ?be	 ?opened	 ?or	 ?closed,	 ?and	 ?operable	 ?windows	 ?in	 ?office	 ?areas.	 ?	 ?Inhabitants	 ?may	 ?also	 ?influence	 ?their	 ?physical	 ?environment	 ?by	 ?using	 ?plug	 ?in	 ?devices	 ?such	 ?as	 ?desk	 ?lights,	 ?fans	 ?or	 ?space	 ?heaters.	 ?	 ?A	 ?few	 ?survey	 ?respondents	 ?mentioned	 ?that	 ?they	 ?had	 ?brought	 ?fans	 ?into	 ?the	 ?building	 ?due	 ?to	 ?high	 ?summer	 ?temperatures.	 ?	 ?	 ?The	 ?inhabitant	 ?survey	 ?on	 ?building	 ?controls	 ?was	 ?distributed	 ?to	 ?all	 ?those	 ?on	 ?the	 ?administrators	 ??inhabitant?	 ?list	 ?19for	 ?the	 ?building,	 ?and	 ?a	 ?response	 ?from	 ?approximately	 ?40	 ?inhabitants	 ?was	 ?achieved.	 ?	 ?While	 ?this	 ?response	 ?rate	 ?cannot	 ?be	 ?taken	 ?as	 ?fully	 ?indicative	 ?of	 ?all	 ?inhabitants?	 ?views,	 ?it	 ?is	 ?felt	 ?to	 ?be	 ?representative	 ?of	 ?some	 ?significant	 ?concerns	 ?and	 ?perceptions.	 ?	 ?From	 ?the	 ?survey	 ?feedback	 ?given	 ?by	 ?building	 ?inhabitants,	 ?lighting	 ?controllability	 ?was	 ?seen	 ?to	 ?be	 ?an	 ?area	 ?of	 ?concern.	 ?	 ?Most	 ?negative	 ?comments	 ?were	 ?with	 ?respect	 ?to	 ?lighting,	 ?the	 ?issue	 ?with	 ?the	 ?next	 ?highest	 ?number	 ?of	 ?negative	 ?comments	 ?was	 ?acoustical	 ?conditions	 ?in	 ?the	 ?building.	 ?	 ?	 ?	 ? 	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?19	 ?While	 ?the	 ??inhabitant	 ?list?	 ?had	 ?approximately	 ?200	 ?individuals	 ?on	 ?it,	 ?it	 ?is	 ?estimated	 ?that	 ?the	 ?typical	 ?occupancy	 ?during	 ?the	 ?survey	 ?period	 ?was	 ?only	 ?60	 ?inhabitants	 ?	 ? 63	 ?	 ?Examples	 ?of	 ?Inhabitant	 ?Concerns	 ?with	 ?Lighting	 ?Included:	 ?	 ? ? On	 ?sunny	 ?days,	 ?there	 ?is	 ?far	 ?too	 ?much	 ?glare	 ?off	 ?any	 ?computer	 ?monitor	 ?on	 ?the	 ?south	 ?side	 ?of	 ?the	 ?building.	 ?The	 ?windows	 ?on	 ?the	 ?south	 ?side	 ?ought	 ?to	 ?have	 ?been	 ?equipped	 ?with	 ?blinds	 ?that	 ?block	 ?more	 ?light,	 ?or	 ?much	 ?better,	 ?with	 ?double	 ?blinds.	 ?? The	 ?motion	 ?activated	 ?control	 ?of	 ?lights	 ?in	 ?offices	 ?is	 ?bothersome	 ?as	 ?the	 ?light	 ?goes	 ?off	 ?far	 ?too	 ?often	 ?when	 ?I	 ?am	 ?working	 ?in	 ?a	 ?concentrated	 ?manner	 ?for	 ?a	 ?long	 ?time,	 ?and	 ?thus	 ?not	 ?moving	 ?about.	 ?? The	 ?lighting	 ?is	 ?pretty	 ?annoying	 ?at	 ?times.	 ?I	 ?wish	 ?I	 ?could	 ?just	 ?turn	 ?it	 ?off.	 ?There	 ?seems	 ?to	 ?be	 ?a	 ?lot	 ?of	 ?lights	 ?on	 ?for	 ?no	 ?reason	 ?(e.g.	 ?in	 ?Atrium).	 ?	 ?? Lighting	 ?design	 ?is	 ?good	 ?but	 ?the	 ?light	 ?sensors	 ?don't	 ?work	 ?? Light	 ?never	 ?goes	 ?out	 ?in	 ?bike	 ?storage	 ?? Can't	 ?control	 ?lights	 ?in	 ?my	 ?office	 ?? I	 ?have	 ?very	 ?little	 ?control	 ?over	 ?my	 ?light	 ?? The	 ?light	 ?in	 ?our	 ?entry	 ?area	 ?is	 ?tied	 ?to	 ?lights	 ?in	 ?an	 ?office	 ?area	 ?at	 ?the	 ?other	 ?end	 ?of	 ?the	 ?corridor,	 ?so	 ?we	 ?can't	 ?turn	 ?it	 ?off.	 ?? Lighting	 ?received	 ?a	 ?+	 ?20	 ?not	 ?because	 ?of	 ?the	 ?daylighting	 ?(which	 ?is	 ?great)	 ?but	 ?for	 ?the	 ?reduced	 ?quality	 ?of	 ?light	 ?sensors	 ?and	 ?their	 ?controllability	 ?	 ?There	 ?were	 ?many	 ?other	 ?comments	 ?about	 ?lack	 ?of	 ?control	 ?of	 ?lighting	 ?or	 ?lights	 ?that	 ?do	 ?not	 ?seem	 ?to	 ?turn	 ?off	 ??	 ?this	 ?is	 ?consistent	 ?with	 ?the	 ?understanding	 ?of	 ?lighting	 ?controls	 ?discussed	 ?in	 ?the	 ?next	 ?section.	 ?	 ?It	 ?should	 ?be	 ?noted	 ?that	 ?some	 ?of	 ?these	 ?control	 ?issues	 ?will	 ?be	 ?corrected	 ?once	 ?a	 ?functioning	 ?interface	 ?is	 ?developed	 ?that	 ?inhabitants	 ?can	 ?access	 ?remotely.	 ?	 ? 	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?20	 ?In	 ?this	 ?case	 ?a	 ?+	 ?on	 ?the	 ?satisfaction	 ?scale	 ?related	 ?to	 ?being	 ?just	 ?above	 ?satisfied	 ?versus	 ?unsatisfied	 ?	 ? 64	 ?	 ?Ability	 ?to	 ?influence	 ?performance	 ?	 ? 	 ?Figure	 ?4-??	 ?3?	 ?Inhabitant	 ?Perception	 ?of	 ?Ability	 ?to	 ?Influence	 ?Building	 ?Performance21	 ?	 ?The	 ?ability	 ?of	 ?inhabitants	 ?to	 ?influence	 ?building	 ?performance,	 ?shown	 ?in	 ?Figure	 ?4-??	 ?3,	 ?in	 ?the	 ?building	 ?has	 ?been	 ?felt	 ?to	 ?be	 ?small	 ?due	 ?to	 ?a	 ?lack	 ?of	 ?controls	 ?and	 ?information	 ?given	 ?to	 ?inhabitants	 ?about	 ?how	 ?their	 ?behaviour	 ?affects	 ?building	 ?performance.	 ?	 ?	 ?	 ?Note	 ?that	 ?each	 ?box	 ?plot	 ?in	 ?Figure	 ?4-??	 ?3	 ?to	 ?Figure	 ?4-??	 ?10	 ?shows	 ?survey	 ?data	 ?in	 ?quartiles,	 ?with	 ?the	 ?bottom	 ?of	 ?each	 ?box	 ?representing	 ?the	 ?first	 ?quartile	 ?of	 ?data,	 ?the	 ?top	 ?of	 ?the	 ?box	 ?representing	 ?the	 ?third	 ?quartile	 ?of	 ?data,	 ?and	 ?the	 ?middle	 ?division	 ?being	 ?the	 ?median	 ?of	 ?the	 ?data.	 ?	 ?The	 ?whiskers	 ?show	 ?the	 ?minimum	 ?and	 ?maximum	 ?of	 ?the	 ?data.	 ?	 ?Should	 ?an	 ?example	 ?of	 ?a	 ?box	 ?plot	 ?not	 ?show	 ?two	 ?different	 ?coloured	 ?areas,	 ?it	 ?is	 ?because	 ?the	 ?median	 ?of	 ?the	 ?data	 ?sits	 ?at	 ?the	 ?same	 ?point	 ?as	 ?either	 ?the	 ?third	 ?or	 ?first	 ?quartile	 ?of	 ?data.	 ?	 ?This	 ?can	 ?be	 ?seen	 ?in	 ?Figure	 ?4-??	 ?4where	 ?overall	 ?satisfaction	 ?with	 ?the	 ?indoor	 ?environment	 ?in	 ?CIRS	 ?is	 ?seen	 ?to	 ?have	 ?a	 ?median	 ?value	 ?of	 ?5	 ?and	 ?a	 ?first	 ?quartile	 ?division	 ?of	 ?5.	 ?	 ?This	 ?shows	 ?that	 ?the	 ?data	 ?for	 ?this	 ?question	 ?is	 ?skewed,	 ?with	 ?most	 ?respondents	 ?rating	 ?their	 ?satisfaction	 ?as	 ?between	 ?5	 ?and	 ?6,	 ?and	 ?less	 ?than	 ?twenty-??five	 ?percent	 ?of	 ?respondents	 ?rating	 ?their	 ?satisfaction	 ?as	 ?below	 ?a	 ?5.	 ?	 ? 	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?21	 ?Statistical	 ?analysis	 ?of	 ?all	 ?numerically	 ?evaluated	 ?inhabitant	 ?survey	 ?questions	 ?can	 ?be	 ?found	 ?in	 ?Appendix	 ?I	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?With	 ?respect	 ?to	 ?comfort	 ?With	 ?respect	 ?to	 ?resource	 ?ef?ciency	 ?Perceived	 ?Ability	 ?to	 ?In?luence	 ?Building	 ?Performance	 ?	 ? 65	 ?	 ?Satisfaction	 ?with	 ?Indoor	 ?Environment	 ?	 ?	 ? 	 ?	 ?Figure	 ?4-??	 ?4-??	 ?Inhabitant	 ?Satisfaction	 ?with	 ?Indoor	 ?Environment	 ?	 ?As	 ?can	 ?be	 ?seen	 ?in	 ?Figure	 ?4-??	 ?4,	 ?overall	 ?satisfaction	 ?with	 ?the	 ?indoor	 ?environment	 ?in	 ?CIRS	 ?is	 ?high,	 ?and	 ?many	 ?respondents	 ?left	 ?comments	 ?indicating	 ?how	 ?much	 ?they	 ?enjoy	 ?the	 ?building.	 ?	 ?Enjoyment	 ?of	 ?specific	 ?aspects	 ?such	 ?as	 ?the	 ?access	 ?to	 ?natural	 ?light	 ?was	 ?expressed	 ?through	 ?some	 ?of	 ?the	 ?comments	 ?left.	 ?	 ?Some	 ?of	 ?the	 ?comments	 ?of	 ?this	 ?nature	 ?included	 ?the	 ?following:	 ?? Having	 ?access	 ?to	 ?natural	 ?light	 ?is	 ?wonderful.	 ?	 ?So	 ?wonderful	 ?that	 ?I	 ?prefer	 ?coming	 ?in	 ?to	 ?work	 ?than	 ?working	 ?at	 ?home.	 ?? Building	 ?temperature	 ?and	 ?air	 ?quality	 ?are	 ?great.	 ?? I	 ?also	 ?love	 ?the	 ?sound	 ?of	 ?coming	 ?up	 ?the	 ?main	 ?stairs,	 ?the	 ?hollow	 ?thumps	 ?resonate	 ?like	 ?a	 ?musical	 ?instrument	 ?in	 ?the	 ?main	 ?lobby	 ?and	 ?it	 ?is	 ?a	 ?distinctive	 ?(if	 ?unplanned)	 ?feature	 ?of	 ?the	 ?building	 ?? Overall	 ?a	 ?very	 ?pleasant	 ?work	 ?environment,	 ?good	 ?air	 ?quality,	 ?temperature	 ?range	 ?is	 ?fine.	 ?	 ? 	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?In	 ?general	 ? Lighting	 ? Heating	 ?&	 ?cooling	 ?Ventilation	 ?&	 ?Air	 ?Quality	 ?Acoustics	 ?Satisfaction	 ?with	 ?Indoor	 ?Environment	 ?in	 ?CIRS	 ?	 ? 66	 ?	 ?Perceived	 ?Knowledge	 ?of	 ?Design	 ?Intent	 ?and	 ?Perceived	 ?Performance	 ?	 ?	 ? 	 ?	 ?Figure	 ?4-??	 ?5?	 ?Inhabitant	 ?Self-??perceived	 ?Knowledge	 ?of	 ?Design	 ?Intent	 ?	 ?	 ?	 ?Figure	 ?4-??	 ?6?	 ?Inhabitant	 ?Perception	 ?of	 ?Success	 ?in	 ?Achieving	 ?Design	 ?Intent	 ?	 ?In	 ?terms	 ?of	 ?inhabitants?	 ?self-??perceived	 ?knowledge	 ?of	 ?both	 ?the	 ?design	 ?intent	 ?(Figure	 ?4-??	 ?5)	 ?and	 ?design	 ?success	 ?(Figure	 ?4-??	 ?6)	 ?of	 ?CIRS,	 ?both	 ?were	 ?rated	 ?as	 ?generally	 ?high,	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?In	 ?General	 ? Lighting	 ? Heating	 ?&	 ?cooling	 ?Energy	 ?Harvesting	 ?Ventilation	 ?&	 ?Air	 ?Quality	 ?Acoustics	 ?Self-??perceived	 ?Knowledge	 ?of	 ?Design	 ?Intent	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?In	 ?General	 ? Lighting	 ? Heating	 ?&	 ?cooling	 ?Energy	 ?Harvesting	 ?Ventilation	 ?&	 ?Air	 ?Quality	 ?Acoustics	 ?Perceived	 ?Success	 ?in	 ?Achieving	 ?Design	 ?Intent	 ?	 ? 67	 ?however	 ?for	 ?certain	 ?systems	 ?such	 ?as	 ?energy	 ?harvesting	 ?systems	 ?like	 ?the	 ?EOS	 ?heat	 ?exchange,	 ?more	 ?than	 ?30%	 ?of	 ?survey	 ?respondents	 ?felt	 ?they	 ?did	 ?not	 ?have	 ?enough	 ?knowledge	 ?to	 ?evaluate	 ?the	 ?success	 ?of	 ?achieving	 ?the	 ?design	 ?intent.22	 ?	 ?This	 ?makes	 ?Figure	 ?4-??	 ?6	 ?less	 ?representative,	 ?however	 ?it	 ?also	 ?indicates	 ?that	 ?inhabitants	 ?have	 ?not	 ?sought	 ?out	 ?or	 ?received	 ?sufficient	 ?information	 ?on	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?building	 ?systems	 ?or	 ?their	 ?performance	 ?to	 ?evaluate	 ?the	 ?success	 ?of	 ?the	 ?building	 ?in	 ?achieving	 ?its	 ?design	 ?intent.	 ?	 ?Noted	 ?Inefficiencies	 ?and	 ?Systems	 ?to	 ?be	 ?Improved	 ?	 ?Building	 ?inhabitants	 ?responded	 ?to	 ?the	 ?question	 ?of	 ?whether	 ?or	 ?not	 ?they	 ?had	 ?observed	 ?building	 ?inefficiencies	 ?with	 ?a	 ?variety	 ?of	 ?responses.	 ?	 ?Many	 ?noted	 ?the	 ?lack	 ?of	 ?lighting	 ?controls	 ?and	 ?lights	 ?that	 ?seemed	 ?to	 ?be	 ?on	 ?without	 ?being	 ?necessary.	 ?	 ?It	 ?is	 ?hoped	 ?that	 ?the	 ?mentioned	 ?development	 ?of	 ?a	 ?desktop	 ?inhabitant	 ?interface	 ?for	 ?lighting	 ?control	 ?will	 ?assist	 ?in	 ?giving	 ?required	 ?lighting	 ?control	 ?and	 ?a	 ?future	 ?lighting	 ?retrofit	 ?will	 ?remove	 ?some	 ?lighting	 ?circuits	 ?from	 ?what	 ?was	 ?previously	 ?deemed	 ??emergency?	 ?lighting.	 ?	 ?Other	 ?inhabitants	 ?noted	 ?issues	 ?with	 ?the	 ?accessibility	 ?of	 ?the	 ?green	 ?roof	 ?and	 ?whether	 ?it	 ?receives	 ?irrigation	 ?or	 ?attention23.	 ?	 ?Accessibility	 ?of	 ?windows,	 ?inefficiencies	 ?at	 ?the	 ?local	 ?cafeteria,	 ?underuse	 ?of	 ?building	 ?space,	 ?acoustical	 ?issues,	 ?and	 ?excessive	 ?use	 ?of	 ?glazing	 ?were	 ?also	 ?noted.	 ?	 ?Overall,	 ?this	 ?question	 ?resulted	 ?in	 ?high	 ?respondent	 ?engagement	 ?(with	 ?56%	 ?of	 ?survey	 ?respondents	 ?leaving	 ?at	 ?least	 ?one	 ?comment),	 ?and	 ?there	 ?was	 ?significant	 ?evidence	 ?that	 ?inhabitants	 ?were	 ?interested	 ?in	 ?helping	 ?to	 ?improve	 ?the	 ?building	 ?experience	 ?for	 ?inhabitants,	 ?in	 ?particular	 ?through	 ?care	 ?of	 ?green	 ?spaces.	 ?	 ?One	 ?respondent	 ?left	 ?the	 ?comment	 ?that	 ??It	 ?seems	 ?to	 ?me	 ?that	 ?this	 ?building	 ?was	 ?planned	 ?by	 ?very	 ?passionate	 ?and	 ?thoughtful	 ?architects	 ?thinking	 ?more	 ?about	 ?energy	 ?and	 ?efficiency	 ?and	 ?inhabitant	 ?interior	 ?experience	 ?than	 ?the	 ?interior/exterior	 ?interface	 ?and	 ?the	 ?quality	 ?and	 ?usage	 ?of	 ?the	 ?green	 ?spaces	 ?as	 ?well	 ?as	 ?the	 ?opportunities	 ?they	 ?offer	 ?to	 ?make	 ?the	 ?building	 ?feel	 ?more	 ?like	 ?a	 ?home	 ?than	 ?only	 ?a	 ?place	 ?you	 ?go	 ?to	 ?work.?	 ?	 ? 	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?22	 ?Individual	 ?question	 ?response	 ?rates	 ?can	 ?be	 ?found	 ?in	 ?Appendix	 ?I,	 ?with	 ??7.0?	 ?being	 ?equivalent	 ?to	 ?a	 ??don?t	 ?know?	 ?response	 ?23	 ?The	 ?survey	 ?was	 ?taken	 ?in	 ?August,	 ?during	 ?a	 ?particularly	 ?dry	 ?month	 ?and	 ?when	 ?the	 ?irrigation	 ?system	 ?was	 ?not	 ?functioning	 ?properly	 ?	 ? 68	 ?	 ?Ability	 ?to	 ?Learn	 ?about	 ?Building	 ?Design	 ?and	 ?Performance	 ?	 ?	 ?Figure	 ?4-??	 ?7?	 ?Inhabitant	 ?Engagement	 ?with	 ?Opportunities	 ?to	 ?Learn	 ?About	 ?CIRS	 ?	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?Figure	 ?4-??	 ?7,	 ?which	 ?depicts	 ?the	 ?percentage	 ?of	 ?respondents	 ?who	 ?have	 ?engaged	 ?with	 ?various	 ?options	 ?available	 ?to	 ?them	 ?to	 ?learn	 ?about	 ?the	 ?building,	 ?the	 ?most	 ?common	 ?ways	 ?of	 ?engaging	 ?with	 ?feedback	 ?about	 ?the	 ?building	 ?include	 ?informal	 ?conversations	 ?and	 ?the	 ??dashboard?	 ?displayed	 ?on	 ?the	 ?video	 ?wall	 ?in	 ?the	 ?main	 ?atrium	 ?of	 ?CIRS.	 ?	 ?Currently,	 ?the	 ?main	 ?opportunity	 ?for	 ?inhabitants	 ?to	 ?receive	 ?data	 ?on	 ?building	 ?performance	 ?and	 ?system	 ?functioning	 ?is	 ?through	 ?observation	 ?of	 ?the	 ??dashboard?	 ?located	 ?in	 ?the	 ?atrium	 ?or	 ?through	 ?speaking	 ?directly	 ?with	 ?those	 ?involved	 ?in	 ?building	 ?operations.	 ?	 ?However,	 ?since	 ?the	 ?dashboard	 ?does	 ?not	 ?yet	 ?display	 ?information	 ?that	 ?is	 ?meaningful	 ?to	 ?most	 ?inhabitants,	 ?they	 ?more	 ?often	 ?obtain	 ?information	 ?about	 ?the	 ?building	 ?systems	 ?through	 ?conversation.	 ?	 ?While	 ?this	 ?may	 ?be	 ?good	 ?for	 ?building	 ?social	 ?rapport	 ?between	 ?building	 ?inhabitants	 ?and	 ?operators,	 ?it	 ?is	 ?not	 ?ideal	 ?for	 ?providing	 ?inhabitants	 ?with	 ?the	 ?ability	 ?to	 ?better	 ?understand	 ?and	 ?influence	 ?building	 ?performance.	 ?	 ?	 ? 69	 ?	 ?	 ?Figure	 ?4-??	 ?8?	 ?Inhabitant	 ?Perception	 ?of	 ?Current	 ?Feedback	 ?on	 ?Performance	 ?Affect	 ?of	 ?Behaviour	 ?	 ?As	 ?shown	 ?in	 ?Figure	 ?4-??	 ?8,	 ?inhabitants	 ?do	 ?not	 ?currently	 ?feel	 ?that	 ?feedback	 ?on	 ?how	 ?inhabitant	 ?behaviour	 ?may	 ?affect	 ?building	 ?performance	 ?is	 ?adequate.	 ?	 ?Comments	 ?included	 ?in	 ?the	 ?survey	 ?indicated	 ?that	 ?currently	 ?no	 ?feedback	 ?of	 ?this	 ?sort	 ?is	 ?provided,	 ?and	 ?any	 ?feedback	 ?on	 ?this	 ?would	 ?be	 ?interesting	 ?to	 ?many	 ?inhabitants.	 ?	 ?In	 ?particular	 ?feedback	 ?about	 ?the	 ?resource	 ?use	 ?in	 ?various	 ?parts	 ?of	 ?the	 ?building	 ?over	 ?time	 ?would	 ?be	 ?interesting.	 ?	 ?Other	 ?suggestions	 ?included	 ?feedback	 ?on	 ?how	 ?various	 ?actions	 ?such	 ?as	 ?opening	 ?a	 ?window	 ?may	 ?effect	 ?the	 ?overall	 ?ventilation	 ?system	 ?as	 ?well	 ?as	 ?detailing	 ?of	 ??current	 ??imperfections?	 ?and	 ?successes?	 ?of	 ?the	 ?building	 ?along	 ?with	 ??A	 ?performance	 ?meter,	 ?reasons	 ?for	 ?why	 ?the	 ?system/component	 ?is	 ?performing	 ?how	 ?it	 ?is,	 ?methods	 ?to	 ?improve/fix	 ?the	 ?system/component,	 ?and	 ?timelines	 ?to	 ?improve/fix	 ?the	 ?system/component.?	 ?	 ? 	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?In	 ?General	 ? With	 ?respect	 ?to	 ?energy	 ?use	 ?With	 ?respect	 ?to	 ?water	 ?use	 ?With	 ?respect	 ?to	 ?material	 ?use	 ?Perceived	 ?Success	 ?of	 ?Providing	 ?Feedback	 ?to	 ?Inhabitants	 ?	 ? 70	 ?	 ?Ability	 ?to	 ?Control	 ?Environment	 ?	 ?	 ? 	 ?	 ?Figure	 ?4-??	 ?9?	 ?Inhabitant	 ?Perception	 ?of	 ?Ability	 ?to	 ?Control	 ?Environment	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?Figure	 ?4-??	 ?9,	 ?current	 ?inhabitant	 ?perception	 ?is	 ?that	 ?ability	 ?to	 ?control	 ?the	 ?indoor	 ?environment	 ?in	 ?CIRS	 ?ranges	 ?from	 ?adequate	 ?to	 ?poor.	 ?	 ?This	 ?is	 ?an	 ?interesting	 ?finding	 ?considering	 ?this	 ?was	 ?one	 ?of	 ?the	 ?main	 ?goals	 ?from	 ?an	 ?inhabitant	 ?standpoint	 ?for	 ?the	 ?building,	 ?and	 ?links	 ?between	 ?controllability	 ?and	 ?social	 ?comfort	 ?have	 ?been	 ?found	 ?in	 ?the	 ?literature.	 ?	 ?	 ? 	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?Lighting	 ? Heating	 ?&	 ?cooling	 ?Ventilation	 ?&	 ?Air	 ?Quality	 ?Acoustics	 ?Effectiveness	 ?of	 ?Inhabitant	 ?Controls	 ?	 ? 71	 ?	 ?Monitoring	 ?	 ?	 ?	 ?Figure	 ?4-??	 ?10?	 ?Inhabitant	 ?Perception	 ?of	 ?Monitoring	 ?Effectiveness	 ?Figure	 ?4-??	 ?10	 ?shows	 ?that	 ?current	 ?inhabitant	 ?perceptions	 ?are	 ?that	 ?monitoring	 ?effectiveness	 ?of	 ?the	 ?various	 ?systems	 ?in	 ?CIRS	 ?is	 ?poor	 ??	 ?this	 ?is	 ?consistent	 ?with	 ?the	 ?current	 ?unimplemented	 ?status	 ?of	 ?the	 ?individual	 ?monitoring	 ?systems	 ?expected	 ?to	 ?be	 ?available	 ?to	 ?inhabitants.	 ?	 ?The	 ?issue	 ?of	 ?monitoring	 ?and	 ?control	 ?in	 ?terms	 ?of	 ?how	 ?it	 ?relates	 ?to	 ?inhabitant	 ?comfort	 ?could	 ?benefit	 ?from	 ?further	 ?exploration.	 ?	 ?For	 ?example	 ?in	 ?terms	 ?of	 ?lighting	 ?effectiveness	 ?and	 ?visual	 ?comfort,	 ?simply	 ?understanding	 ?what	 ?lighting	 ?is	 ?on	 ?or	 ?off	 ?and	 ?how	 ?much	 ?energy	 ?it	 ?is	 ?using	 ?does	 ?little	 ?to	 ?optimize	 ?visual	 ?comfort	 ?or	 ?even	 ?provide	 ?adequate	 ?lighting.	 ?	 ?We	 ?must	 ?consider	 ?what	 ?it	 ?is	 ?we	 ?are	 ?trying	 ?to	 ?deliver	 ??	 ?comfort	 ?parameters	 ?such	 ?as	 ?visual	 ?comfort	 ?and	 ?thermal	 ?comfort,	 ?and	 ?even	 ?parameters	 ?such	 ?as	 ?social	 ?comfort,	 ?convenience,	 ?and	 ?cleanliness	 ?may	 ?be	 ?our	 ?true	 ?goals	 ?and	 ?not	 ?simply	 ?energy	 ?efficiency	 ?and	 ?delivery.	 ?	 ?This	 ?section	 ?has	 ?shown	 ?a	 ?strong	 ?desire	 ?of	 ?the	 ?inhabitants	 ?of	 ?CIRS	 ?to	 ?have	 ?greater	 ?access	 ?to	 ?information	 ?and	 ?feedback	 ?about	 ?the	 ?building	 ?systems,	 ?their	 ?performance,	 ?the	 ?influence	 ?of	 ?inhabitant	 ?actions	 ?on	 ?their	 ?performance,	 ?and	 ?how	 ?inhabitants	 ?can	 ?become	 ?involved	 ?in	 ?furthering	 ?the	 ?goals	 ?of	 ?the	 ?building	 ?and	 ?inhabitant	 ?community.	 ?	 ?Many	 ?comments	 ?were	 ?left	 ?showing	 ?a	 ?desire	 ?to	 ?assist	 ?in	 ?creating	 ?a	 ?positive	 ?inhabitant	 ?experience	 ?through	 ?becoming	 ?involved	 ?with	 ?issues	 ?such	 ?as	 ?maintenance	 ?and	 ?care	 ?for	 ?the	 ?green	 ?roof	 ?or	 ?through	 ?furthering	 ?understanding	 ?to	 ?be	 ?used	 ?in	 ?future	 ?projects.	 ?	 ?While	 ?overall	 ?inhabitant	 ?satisfaction	 ?with	 ?the	 ?building	 ?was	 ?high,	 ?satisfaction	 ?with	 ?controls	 ?and	 ?monitoring	 ?systems	 ?did	 ?not	 ?meet	 ?the	 ?same	 ?standard.	 ?	 ?Inhabitants	 ?showed	 ?a	 ?strong	 ?desire	 ?to	 ?have	 ?further	 ?1	 ?1.5	 ?2	 ?2.5	 ?3	 ?3.5	 ?4	 ?4.5	 ?5	 ?5.5	 ?6	 ?In	 ?General	 ? Lighting	 ? Heating	 ?&	 ?cooling	 ?Energy	 ?Harvesting	 ?Ventilation	 ?&	 ?Air	 ?Quality	 ?Effectiveness	 ?of	 ?Monitoring	 ?Available	 ?to	 ?Inhabitants	 ?	 ? 72	 ?control	 ?of	 ?systems	 ?such	 ?as	 ?lighting	 ?and	 ?seemed	 ?to	 ?care	 ?both	 ?about	 ?how	 ?it	 ?affected	 ?their	 ?own	 ?comfort	 ?and	 ?the	 ?social	 ?perception	 ?of	 ?the	 ?buildings?	 ?energy	 ?performance.	 ?	 ?Additional	 ?Thoughts	 ?on	 ?Patterns	 ?of	 ?Inhabitant	 ?Response	 ?	 ?As	 ?can	 ?be	 ?seen	 ?in	 ?Figure	 ?4-??	 ?4,	 ?overall	 ?inhabitant	 ?satisfaction	 ?with	 ?the	 ?indoor	 ?environment	 ?in	 ?CIRS	 ?is	 ?high	 ?even	 ?though	 ?constituent	 ?factors	 ?of	 ?satisfaction	 ?are	 ?rated	 ?as	 ?less	 ?satisfactory.	 ?	 ?This	 ?could	 ?mean	 ?that	 ?there	 ?are	 ?other	 ?factors	 ?strongly	 ?related	 ?to	 ?satisfaction	 ?that	 ?were	 ?not	 ?given	 ?as	 ?constituent	 ?options,	 ?or	 ?could	 ?be	 ?explained	 ?by	 ?theories	 ?such	 ?as	 ?superadditivity,	 ?cognitive	 ?dissonance	 ?reduction,	 ?priming	 ?of	 ?the	 ?physical	 ?context,	 ?or	 ?construal	 ?of	 ?the	 ?satisfaction	 ?question.	 ?	 ?Superadditivity	 ?occurs	 ?when	 ?the	 ?sum	 ?of	 ?probability	 ?judgments	 ?does	 ?not	 ?add	 ?to	 ?one	 ?for	 ?possible	 ?elements	 ?and	 ?unpacking	 ?a	 ?category	 ?leads	 ?to	 ?decreases	 ?in	 ?perceived	 ?probability	 ?for	 ?individual	 ?categories.	 ?	 ?This	 ?may	 ?occur	 ?because	 ?unpacked	 ?categories	 ?are	 ?perceived	 ?narrowly	 ?as	 ?typical	 ?instances	 ?and	 ?not	 ?evaluated	 ?as	 ?all	 ?experiences	 ?with	 ?the	 ?category	 ?(Macchi,	 ?Osherson,	 ?&	 ?Krantz,	 ?1999).	 ?	 ?Cognitive	 ?dissonance	 ?could	 ?occur	 ?if	 ?certain	 ?aspects	 ?of	 ?their	 ?reality	 ?do	 ?not	 ?compute	 ?well	 ?with	 ?their	 ?desired	 ?overall	 ?experience.	 ?	 ?For	 ?example,	 ?even	 ?though	 ?inhabitants	 ?may	 ?be	 ?dissatisfied	 ?with	 ?various	 ?aspects	 ?of	 ?the	 ?building,	 ?when	 ?they	 ?consider	 ?their	 ?current	 ?situation	 ?of	 ?being	 ?a	 ?regular	 ?inhabitant	 ?of	 ?a	 ?building	 ?considered	 ?to	 ?be	 ?at	 ?the	 ?forefront	 ?of	 ?sustainability,	 ?they	 ?may	 ?rationalize	 ?their	 ?discomfort	 ?in	 ?order	 ?to	 ?allow	 ?their	 ?overall	 ?satisfaction	 ?to	 ?fit	 ?with	 ?their	 ?desired	 ?concept	 ?of	 ?the	 ?building	 ?and	 ?their	 ?place	 ?within	 ?it.	 ?	 ?This	 ?would	 ?essentially	 ?fit	 ?with	 ?the	 ?idea	 ?that	 ?available	 ?or	 ?already	 ?decided	 ?upon	 ?choices	 ?can	 ?shape	 ?preferences	 ?(Egan,	 ?Bloom,	 ?&	 ?Santos,	 ?2010).	 ?	 ?It	 ?is	 ?also	 ?possible	 ?that	 ?when	 ?asked	 ?about	 ?general	 ?satisfaction,	 ?inhabitants	 ?are	 ?construing	 ?more	 ?abstract	 ?high-??level	 ?assessments	 ?into	 ?their	 ?satisfaction	 ?rating.	 ?	 ?For	 ?more	 ?concrete,	 ?individual	 ?component	 ?systems	 ?that	 ?influence	 ?satisfaction	 ?these	 ?abstract	 ?concepts	 ?are	 ?not	 ?involved	 ?as	 ?they	 ?can	 ?better	 ?contextualize	 ?these	 ?systems.	 ?	 ?This	 ?is	 ?consistent	 ?with	 ?the	 ?idea	 ?of	 ?psychological	 ?distance	 ?and	 ?construal	 ?theory	 ?(Liberation	 ?&	 ?Trope,	 ?1998;	 ?Trope	 ?&	 ?Liberman,	 ?2010).	 ?	 ?It	 ?is	 ?also	 ?possible	 ?that	 ?simply	 ?being	 ?an	 ?inhabitant	 ?of	 ?CIRS	 ?would	 ?prime	 ?a	 ?positive	 ?evaluation	 ?of	 ?the	 ?building	 ?as	 ?a	 ?whole	 ?but	 ?not	 ?of	 ?individual	 ?elements.	 ?	 ?Another	 ?interesting	 ?observation	 ?based	 ?on	 ?the	 ?inhabitant	 ?survey	 ?responses	 ?has	 ?been	 ?that	 ?knowledge	 ?of	 ?design	 ?intent	 ?was	 ?rated	 ?fairly	 ?high	 ?overall	 ?even	 ?though	 ?the	 ?rated	 ?monitoring	 ?effectiveness	 ?and	 ?feedback	 ?available	 ?to	 ?inhabitants	 ?is	 ?low.	 ?	 ?It	 ?is	 ?possible	 ?that	 ?this	 ?could	 ?be	 ?explained	 ?by	 ?an	 ?overconfidence	 ?bias	 ?or	 ?again	 ?be	 ?a	 ?way	 ?of	 ?reducing	 ?cognitive	 ?dissonance.	 ?	 ?Overconfidence	 ?of	 ?respondent	 ?certainty	 ?is	 ?a	 ?well	 ?documented	 ?phenomenon	 ?(Fischhoff	 ?&	 ?Hall,	 ?1992;	 ?Fischhoff,	 ?Slovic,	 ?&	 ?Lichtenstein,	 ?1977).	 ?	 ?As	 ?could	 ?be	 ?expected,	 ?the	 ?levels	 ?of	 ?satisfaction	 ?that	 ?inhabitants	 ?feel	 ?about	 ?individual	 ?elements	 ?is	 ?strongly	 ?correlated	 ?to	 ?their	 ?responses	 ?on	 ?ability	 ?to	 ?adequately	 ?control	 ?these	 ?elements.	 ?	 ?This	 ?is	 ?consistent	 ?with	 ?well-??being	 ?literature	 ?and	 ?the	 ?correlation	 ?between	 ?a	 ?sense	 ?of	 ?control	 ?and	 ?a	 ?sense	 ?of	 ?well-??being	 ?(Lachman	 ?&	 ?Weaver,	 ?1998;	 ?Ryff,	 ?1989).	 ?	 ? 73	 ?4.5 Case	 ?Study	 ??	 ?CIRS	 ?Control	 ?and	 ?Monitoring	 ?Issues	 ??	 ?System	 ?Examples	 ?	 ?Section	 ?4	 ?and	 ?5	 ?of	 ?this	 ?chapter	 ?presented	 ?subjective	 ?data	 ?from	 ?inhabitants	 ?and	 ?operators	 ?about	 ?the	 ?controls	 ?and	 ?monitoring	 ?systems	 ?of	 ?CIRS.	 ?	 ?The	 ?following	 ?section,	 ?section	 ?6,	 ?looks	 ?at	 ?specific	 ?building	 ?systems	 ?in	 ?CIRS	 ?such	 ?as	 ?lighting,	 ?water	 ?metering,	 ?and	 ?various	 ?energy	 ?exchange	 ?systems	 ?in	 ?order	 ?to	 ?find	 ?representative	 ?examples	 ?of	 ?controls	 ?and	 ?monitoring	 ?implementations	 ?that	 ?could	 ?be	 ?further	 ?optimized.	 ?	 ?This	 ?analysis	 ?was	 ?completed	 ?through	 ?extracting	 ?data	 ?from	 ?the	 ?CIRS	 ?BMS	 ?and	 ?comparing	 ?the	 ?understanding	 ?compiled	 ?from	 ?the	 ?extracted	 ?monitoring	 ?data	 ?with	 ?the	 ?design	 ?intention	 ?for	 ?the	 ?building.	 ?	 ?These	 ?system	 ?examples	 ?build	 ?on	 ?the	 ?social	 ?process	 ?understanding	 ?obtained	 ?through	 ?the	 ?subjective	 ?analysis	 ?of	 ?sections	 ?4	 ?and	 ?5.	 ?4.5.1 Lighting	 ?	 ?Lighting	 ?accounts	 ?for	 ?a	 ?significant	 ?fraction	 ?of	 ?electricity	 ?use	 ?in	 ?the	 ?CIRS	 ?building.	 ?	 ?Measured	 ?annual	 ?energy	 ?associated	 ?with	 ?lighting	 ?in	 ?the	 ?building	 ?was	 ?over	 ?150	 ?MWh,	 ?as	 ?compared	 ?to	 ?the	 ?estimate	 ?of	 ?less	 ?than	 ?88	 ?MWh	 ?submitted	 ?for	 ?LEED	 ?credit	 ?EAc1.	 ?One	 ?of	 ?the	 ?main	 ?energy	 ?goals	 ?for	 ?CIRS	 ?was	 ?to	 ?use	 ?daylighting	 ?during	 ?hours	 ?when	 ?possible,	 ?and	 ?to	 ?overall	 ?reduce	 ?lighting	 ?energy	 ?needs	 ?of	 ?the	 ?building.	 ?	 ?While	 ?the	 ?intent	 ?of	 ?the	 ?lighting	 ?system	 ?in	 ?the	 ?building	 ?was	 ?to	 ?use	 ?high	 ?efficiency	 ?lighting,	 ?photocells,	 ?occupancy	 ?sensors,	 ?and	 ?narrow	 ?floor	 ?plates	 ?so	 ?as	 ?to	 ?allow	 ?for	 ?maximum	 ?hours	 ?of	 ?use	 ?of	 ?daylight	 ?only,	 ?the	 ?operation	 ?of	 ?the	 ?building	 ?has	 ?been	 ?such	 ?that	 ?many	 ?lights	 ?remain	 ?on	 ?as	 ?emergency	 ?lighting,	 ?and	 ?only	 ?some	 ?lighting	 ?is	 ?accurately	 ?controlled	 ?by	 ?occupancy	 ?and	 ?daylight	 ?sensors.	 ?	 ?Moreover,	 ?the	 ?occupants	 ?have	 ?not	 ?yet	 ?been	 ?given	 ?the	 ?ability	 ?to	 ?override	 ?the	 ?sensor	 ?when	 ?it	 ?is	 ?not	 ?needed	 ?(only	 ?the	 ?auditorium	 ?and	 ?atrium	 ?have	 ?photocell	 ?daylight	 ?sensors).	 ?	 ?As	 ?was	 ?seen	 ?from	 ?inhabitants?	 ?survey	 ?responses,	 ?this	 ?lack	 ?of	 ?lighting	 ?control	 ?seems	 ?to	 ?be	 ?a	 ?significant	 ?issue	 ?for	 ?building	 ?occupants.	 ?	 ?In	 ?addition	 ?to	 ?there	 ?being	 ?opportunity	 ?to	 ?reduce	 ?the	 ?number	 ?of	 ?hours	 ?lights	 ?are	 ?on	 ?and	 ?how	 ?much	 ?lighting	 ?is	 ?considered	 ?emergency	 ?egress,	 ?a	 ?recent	 ?lighting	 ?audit	 ?shows	 ?possibilities	 ?for	 ?retrofits	 ?for	 ?lower	 ?energy	 ?using	 ?lamps	 ?and	 ?ballasts24,	 ?and	 ?increasing	 ?sensor	 ?capabilities.	 ?	 ?A	 ?lighting	 ?retrofit	 ?as	 ?well	 ?as	 ?the	 ?future	 ?implementation	 ?of	 ?an	 ?inhabitant	 ?interface	 ?to	 ?control	 ?lights	 ?should	 ?assist	 ?with	 ?some	 ?of	 ?these	 ?issues.	 ?	 ?While	 ?the	 ?issues	 ?of	 ?lighting	 ?efficiency	 ?and	 ?the	 ?use	 ?of	 ?excess	 ?emergency	 ?lighting	 ?may	 ?be	 ?considered	 ?design	 ?issues,	 ?several	 ?installation	 ?and	 ?commissioning	 ?issues	 ?occurred	 ?as	 ?well.	 ?	 ?As	 ?an	 ?example,	 ?lighting	 ?circuits	 ?in	 ?bathrooms	 ?were	 ?installed	 ?in	 ?series	 ?instead	 ?of	 ?in	 ?parallel	 ??meaning	 ?for	 ?example	 ?that	 ?in	 ?some	 ?bathrooms	 ?in	 ?the	 ?building	 ?turning	 ?a	 ?light	 ?off	 ?in	 ?one	 ?bathroom	 ?meant	 ?that	 ?lighting	 ?went	 ?off	 ?in	 ?all	 ?other	 ?bathrooms.	 ?	 ?This	 ?issue	 ?was	 ??fixed?	 ?by	 ?installing	 ?an	 ?override	 ?on	 ?the	 ?ability	 ?to	 ?manually	 ?turn	 ?off	 ?bathroom	 ?lighting.	 ?	 ?While	 ?the	 ?issue	 ?of	 ?lighting	 ?being	 ?turned	 ?off	 ?by	 ?those	 ?not	 ?physically	 ?in	 ?the	 ?space	 ?was	 ?resolved,	 ?the	 ??solution?	 ?has	 ?resulted	 ?in	 ?higher	 ?lighting	 ?energy	 ?use,	 ?less	 ?inhabitant	 ?control,	 ?and	 ?thereby	 ?less	 ?comfort.	 ?	 ?This	 ?inference	 ?is	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?	 ?24	 ?This	 ?audit	 ?estimates	 ?potential	 ?lighting	 ?savings	 ?of	 ?35MWh	 ?per	 ?year	 ?	 ? 74	 ?based	 ?on	 ?the	 ?strong	 ?connection	 ?between	 ?inhabitant	 ?control	 ?and	 ?comfort	 ?(Cole	 ?et	 ?al.,	 ?2008).	 ?	 ?An	 ?override	 ?of	 ?the	 ?daylight	 ?sensors	 ?including	 ?those	 ?in	 ?the	 ?loop	 ?caf?	 ?was	 ?also	 ?put	 ?in	 ?place	 ?due	 ?to	 ?operational	 ?issues	 ?related	 ?to	 ?the	 ?sensor	 ?not	 ?working	 ?as	 ?intended.	 ?	 ?While	 ?the	 ?flickering	 ?of	 ?the	 ?lighting	 ?system	 ?that	 ?caused	 ?inhabitant	 ?discomfort	 ?has	 ?been	 ?resolved,	 ?this	 ?solution	 ?has	 ?also	 ?resulted	 ?in	 ?higher	 ?energy	 ?use	 ?for	 ?lighting.	 ?It	 ?has	 ?been	 ?observed	 ?that	 ?calibration	 ?of	 ?occupancy	 ?sensors	 ?in	 ?office	 ?areas	 ?has	 ?not	 ?been	 ?adequate	 ??	 ?resulting	 ?in	 ?inhabitant	 ?dissatisfaction.	 ?	 ?This	 ?dissatisfaction	 ?is	 ?consistent	 ?with	 ?the	 ?finding	 ?that	 ?generally	 ?many	 ?comfort	 ?related	 ?criteria	 ?are	 ?not	 ?included	 ?within	 ?typical	 ?mechanical	 ?set	 ?points	 ?(Cole	 ?et	 ?al.,	 ?2008).	 ?	 ?	 ?	 ?Installation	 ?issues	 ?also	 ?resulted	 ?in	 ?a	 ?need	 ?to	 ?override	 ?lighting	 ?controls	 ?in	 ?large	 ?areas	 ?of	 ?the	 ?building?s	 ?basement.	 ?	 ?This	 ?lighting	 ?installation	 ?issue,	 ?having	 ?controls	 ?that	 ?did	 ?not	 ?prevent	 ?one	 ?occupant	 ?from	 ?affecting	 ?lighting	 ?circuitry	 ?in	 ?separated	 ?rooms,	 ?resulted	 ?in	 ?a	 ?safety	 ?issue	 ?that	 ?was	 ?resolved	 ?through	 ?lighting	 ?controls	 ?being	 ?overridden	 ?in	 ?certain	 ?zones	 ?so	 ?as	 ?to	 ?remain	 ?on	 ?and	 ?not	 ?be	 ?of	 ?concern.	 ?	 ?For	 ?safety	 ?reasons	 ?emergency	 ?lighting	 ?is	 ?needed	 ?in	 ?basement	 ?equipment	 ?rooms,	 ?however	 ?because	 ?lighting	 ?circuits	 ?were	 ?not	 ?separated	 ?this	 ?has	 ?resulted	 ?in	 ?storage	 ?room	 ?lighting	 ?remaining	 ?on	 ?constantly	 ?as	 ?well.	 ?	 ?This	 ?was	 ?a	 ?result	 ?of	 ?three	 ?rooms	 ?being	 ?installed	 ?on	 ?the	 ?same	 ?relay	 ?(the	 ?bike	 ?and	 ?janitorial	 ?rooms)	 ?versus	 ?other	 ?areas	 ?of	 ?the	 ?building,	 ?which	 ?have	 ?as	 ?many	 ?as	 ?one	 ?relay	 ?per	 ?light	 ?fixture.	 ?	 ?Emergency	 ?lighting	 ?requirements	 ?in	 ?various	 ?portions	 ?of	 ?the	 ?building	 ?are	 ?not	 ?clear	 ?or	 ?seem	 ?to	 ?work	 ?against	 ?the	 ?overall	 ?lighting	 ?design	 ?goal.	 ?4.5.2 AHU	 ?Heat	 ?Recovery	 ?	 ?	 ?	 ?Figure	 ?4-??	 ?11?	 ?CIRS	 ?Heat	 ?Recovered	 ?at	 ?local	 ?AHU	 ?Exhaust	 ?	 ? 75	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?Figure	 ?4-??	 ?11,	 ?based	 ?on	 ?calculated	 ?energy	 ?values	 ?using	 ?temperature	 ?and	 ?flow	 ?sensors,	 ?the	 ?heat	 ?exchange	 ?at	 ?the	 ?local	 ?air	 ?handling	 ?unit	 ?(AHU)	 ?exhaust	 ?for	 ?the	 ?building	 ?primarily	 ?functions	 ?as	 ?cooling	 ?during	 ?the	 ?summer	 ?months	 ?and	 ?heating	 ?during	 ?the	 ?winter	 ?months.	 ?	 ?This	 ?is	 ?consistent	 ?with	 ?the	 ?design	 ?intent	 ?of	 ?CIRS.	 ?However,	 ?as	 ?was	 ?the	 ?case	 ?with	 ?the	 ?EOS	 ?heat	 ?exchange	 ?metering	 ?system,	 ?the	 ?installed	 ?energy	 ?meters	 ?at	 ?this	 ?location	 ?do	 ?not	 ?differentiate	 ?the	 ?directionality	 ?of	 ?energy	 ?flow,	 ?thereby	 ?making	 ?it	 ?difficult	 ?to	 ?uncover	 ?issues	 ?where	 ?systems	 ?are	 ?not	 ?operating	 ?in	 ?line	 ?with	 ?the	 ?design	 ?intent	 ?as	 ?it	 ?is	 ?not	 ?immediately	 ?obvious	 ?as	 ?to	 ?when	 ?the	 ?system	 ?is	 ?providing	 ?heating	 ?or	 ?cooling.	 ?4.5.3 Geothermal	 ?Heat	 ?Exchange	 ?	 ?	 ?	 ?Figure	 ?4-??	 ?12-??	 ?Geothermal	 ?Field	 ?Energy	 ?Exchange	 ?	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?Figure	 ?4-??	 ?12,	 ?based	 ?on	 ?calculated	 ?energy	 ?values	 ?using	 ?temperature	 ?and	 ?flow	 ?sensors,	 ?the	 ?heat	 ?exchange	 ?at	 ?the	 ?geothermal	 ?field	 ?for	 ?the	 ?building	 ?primarily	 ?functions	 ?as	 ?cooling	 ?during	 ?the	 ?summer	 ?months	 ?and	 ?heating	 ?during	 ?the	 ?winter	 ?months,	 ?according	 ?to	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?building.	 ?	 ?However,	 ?as	 ?was	 ?the	 ?case	 ?with	 ?the	 ?EOS	 ?heat	 ?exchange	 ?metering	 ?system,	 ?the	 ?installed	 ?energy	 ?meters	 ?at	 ?this	 ?location	 ?do	 ?not	 ?differentiate	 ?the	 ?directionality	 ?of	 ?energy	 ?flow.	 ?	 ?This	 ?metering	 ?issue	 ?results	 ?in	 ?it	 ?being	 ?difficult	 ?to	 ?understand	 ?the	 ?operational	 ?functioning	 ?of	 ?these	 ?systems.	 ?	 ?In	 ?fact,	 ?without	 ?additional	 ?information	 ?more	 ?than	 ?the	 ?totalized	 ?heat	 ?flow	 ?it	 ?is	 ?impossible	 ?to	 ?understand	 ?if	 ?the	 ?system	 ?is	 ?functioning	 ?properly.	 ?	 ?Another	 ?issue	 ?at	 ?this	 ?location	 ?as	 ?well	 ?as	 ?the	 ?solar	 ?thermal	 ?hot	 ?water	 ?system	 ?was	 ?that	 ?the	 ?general	 ?convention	 ?of	 ?what	 ??supply?	 ?and	 ??return?	 ?sensors	 ?referred	 ?to	 ?was	 ?not	 ?followed	 ??	 ?making	 ?interpretation	 ?of	 ?this	 ?data	 ?less	 ?accessible	 ?for	 ?users	 ?as	 ?the	 ?naming	 ?convention	 ?is	 ?different	 ?from	 ?what	 ?is	 ?used	 ?on	 ?other	 ?systems	 ?and	 ?inhibiting	 ?	 ? 76	 ?troubleshooting	 ?and	 ?optimization	 ?capabilities.	 ?	 ?This	 ?requires	 ?extra	 ?time	 ?for	 ?operators	 ?to	 ?look	 ?into	 ?the	 ?data,	 ?understand	 ?what	 ?is	 ?going	 ?on,	 ?and	 ?determine	 ?whether	 ?the	 ?system	 ?is	 ?operating	 ?properly	 ?and	 ?meeting	 ?the	 ?intent	 ?of	 ?the	 ?design.	 ?4.5.4 Solar	 ?Thermal	 ?Hot	 ?Water	 ?System	 ?	 ?The	 ?controls	 ?and	 ?monitoring	 ?for	 ?the	 ?rooftop	 ?solar	 ?hot	 ?water	 ?system	 ?is	 ?a	 ?particularly	 ?good	 ?example	 ?of	 ?a	 ?disconnection	 ?between	 ?intent	 ?and	 ?reality	 ?for	 ?CIRS	 ?controls.	 ?	 ?While	 ?some	 ?of	 ?the	 ?metering	 ?and	 ?monitoring	 ?for	 ?the	 ?SHW	 ?system	 ?can	 ?be	 ?accessed	 ?through	 ?the	 ?BMS	 ?and	 ?Honeywell	 ?EMS,	 ?control	 ?of	 ?the	 ?system	 ?must	 ?be	 ?done	 ?through	 ?a	 ?separate,	 ?stand-??alone	 ?system	 ?that	 ?does	 ?not	 ?communicate	 ?with	 ?the	 ?BMS/EMS.	 ?	 ?This	 ?has	 ?resulted	 ?in	 ?operational	 ?issues	 ?with	 ?the	 ?system	 ?and	 ?the	 ?need	 ?to	 ?devise	 ?alternative	 ?operational	 ?strategies	 ?for	 ?this	 ?individual	 ?system.	 ?	 ?In	 ?addition,	 ?no	 ?energy	 ?monitor	 ?was	 ?installed	 ?for	 ?the	 ?SHW	 ?system	 ?of	 ?CIRS,	 ?meaning	 ?that	 ?accurate	 ?readings	 ?of	 ?system	 ?performance	 ?are	 ?not	 ?yet	 ?available.	 ?	 ?A	 ?retrofit	 ?of	 ?the	 ?metering	 ?for	 ?the	 ?SHW	 ?system	 ?is	 ?currently	 ?underway.	 ?	 ?Issues	 ?in	 ?the	 ?controls	 ?sequences	 ?of	 ?operations	 ?have	 ?also	 ?been	 ?observed	 ?with	 ?the	 ?SHW	 ?system	 ?as	 ?well	 ?as	 ?other	 ?energy	 ?using	 ?systems,	 ?however	 ?the	 ?interface	 ?between	 ?the	 ?controls	 ?and	 ?the	 ?building	 ?is	 ?such	 ?that	 ?it	 ?is	 ?not	 ?possible	 ?to	 ?easily	 ?understand	 ?what	 ?Boolean	 ?operators	 ?are	 ?used	 ?for	 ?various	 ?systems	 ?nor	 ?is	 ?it	 ?possible	 ?for	 ?the	 ?building	 ?operations	 ?team	 ?to	 ?independently	 ?change	 ?sequences	 ?without	 ?requiring	 ?the	 ?controls	 ?contractor	 ?to	 ?come	 ?back	 ?to	 ?the	 ?site.	 ?	 ?Building	 ?operations	 ?can	 ?only	 ?independently	 ?restore	 ?the	 ?factory	 ?default	 ?of	 ?the	 ?system,	 ?however	 ?this	 ?lack	 ?of	 ?integration	 ?with	 ?the	 ?BMS	 ?does	 ?not	 ?allow	 ?for	 ?optimization	 ?of	 ?the	 ?solar	 ?hot	 ?water	 ?system.	 ?	 ?Considering	 ?that	 ?many	 ?of	 ?these	 ?sequences	 ?run	 ?in	 ?a	 ?way	 ?that	 ?is	 ?not	 ?enabling	 ?the	 ?original	 ?design	 ?intent,	 ?this	 ?is	 ?a	 ?major	 ?operational	 ?issue.	 ?One	 ?of	 ?the	 ?key	 ?lessons	 ?learned	 ?from	 ?this	 ?process	 ?has	 ?been	 ?that	 ?a	 ?better	 ?process	 ?for	 ?linking	 ?design,	 ?programming,	 ?monitoring,	 ?and	 ?reprogramming	 ?of	 ?controls	 ?systems	 ?is	 ?needed	 ?for	 ?sustainable	 ?buildings.	 ?	 ?In	 ?addition	 ?to	 ?issues	 ?of	 ?metering	 ?affecting	 ?operation	 ?and	 ?commissioning,	 ?commissioning	 ?issues	 ?were	 ?found	 ?to	 ?affect	 ?metering.	 ?	 ?For	 ?example,	 ?due	 ?to	 ?low	 ?flow	 ?rates	 ?in	 ?the	 ?SHW	 ?system	 ?it	 ?was	 ?found	 ?that	 ?the	 ?fluid	 ?was	 ?able	 ?to	 ?overheat	 ??	 ?causing	 ?temperature	 ?sensors	 ?to	 ?burn	 ?out	 ?and	 ?need	 ?replacement.	 ?	 ?A	 ?systematic	 ?commissioning	 ?process	 ?for	 ?the	 ?controls	 ?and	 ?monitoring	 ?systems	 ?in	 ?sustainable	 ?buildings	 ?could	 ?assist	 ?in	 ?many	 ?of	 ?these	 ?problems.	 ?	 ?The	 ?installed	 ?solar	 ?thermal	 ?hot	 ?water	 ?system	 ?at	 ?CIRS	 ?encountered	 ?multiple	 ?issues	 ?throughout	 ?the	 ?phases	 ?of	 ?design,	 ?commissioning	 ?and	 ?installation,	 ?and	 ?operation.	 ?	 ?While	 ?the	 ?intent	 ?of	 ?the	 ?system	 ?was	 ?to	 ?integrate	 ?with	 ?all	 ?other	 ?thermal	 ?systems	 ?in	 ?the	 ?building,	 ?a	 ?design	 ?oversight	 ?resulted	 ?in	 ?the	 ?system	 ?being	 ?a	 ?stand-??alone	 ?system	 ?only	 ?integrated	 ?with	 ?the	 ?domestic	 ?hot	 ?water	 ?loop.	 ?	 ?Because	 ?of	 ?this	 ?oversight,	 ?it	 ?became	 ?necessary	 ?to	 ?install	 ?a	 ?heat	 ?dump	 ?for	 ?the	 ?system	 ?such	 ?that	 ?when	 ?it	 ?is	 ?producing	 ?more	 ?heat	 ?than	 ?can	 ?be	 ?taken	 ?up	 ?by	 ?the	 ?domestic	 ?hot	 ?water	 ?system,	 ?additional	 ?heat	 ?will	 ?be	 ?vented	 ?to	 ?the	 ?atmosphere.	 ?	 ?Commissioning	 ?issues	 ?included	 ?those	 ?associated	 ?with	 ?the	 ?balancing	 ?of	 ?the	 ?flow	 ?of	 ?the	 ?system,	 ?resulting	 ?in	 ?flow	 ?rates	 ?that	 ?were	 ?less	 ?than	 ?	 ? 77	 ?adequate	 ?for	 ?dissipating	 ?heat	 ?and	 ?subsequently	 ?one	 ?of	 ?the	 ?temperature	 ?sensors	 ?for	 ?the	 ?system	 ?overheated	 ?and	 ?became	 ?non-??functional.	 ?	 ?In	 ?the	 ?graph	 ?below	 ?we	 ?have	 ?used	 ?the	 ?temperature	 ?sensor	 ?readings	 ?and	 ?an	 ?assumed	 ?flow	 ?rate	 ?in	 ?order	 ?to	 ?understand	 ?the	 ?functioning	 ?of	 ?the	 ?system	 ?in	 ?terms	 ?of	 ?energy	 ?directionality	 ?and	 ?approximate	 ?orders	 ?of	 ?magnitude.	 ?	 ?	 ?	 ?Figure	 ?4-??	 ?13?	 ?Approximated	 ?SHW	 ?Energy	 ?Exchange	 ?	 ?As	 ?can	 ?be	 ?seen	 ?from	 ?Figure	 ?4-??	 ?13,	 ?the	 ?approximation	 ?of	 ?energy	 ?using	 ?an	 ?assumed	 ?flow	 ?rate	 ?and	 ?the	 ?temperature	 ?differential	 ?between	 ?the	 ?incoming	 ?and	 ?outgoing	 ?water	 ?temperatures	 ?resulted	 ?in	 ?an	 ?understanding	 ?that	 ?the	 ?system	 ?was	 ?often	 ?functioning	 ?in	 ?a	 ?way	 ?that	 ?was	 ?cooling	 ?rather	 ?than	 ?heating	 ?the	 ?domestic	 ?hot	 ?water.	 ?	 ?This	 ?would	 ?thereby	 ?result	 ?in	 ?an	 ?increase	 ?of	 ?energy	 ?use	 ?needed	 ?to	 ?heat	 ?domestic	 ?hot	 ?water	 ?instead	 ?of	 ?a	 ?decrease	 ??	 ?evidently	 ?not	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?system.	 ?	 ?In	 ?part	 ?this	 ?was	 ?due	 ?to	 ?poor	 ?balancing	 ?and	 ?commissioning	 ?of	 ?the	 ?system,	 ?and	 ?in	 ?part	 ?this	 ?is	 ?a	 ?controls	 ?issue.	 ?	 ?The	 ?functioning	 ?of	 ?the	 ?system	 ?was	 ?observed	 ?to	 ?be	 ?such	 ?that	 ?the	 ?system	 ?was	 ?running	 ?at	 ?all	 ?times,	 ?with	 ?no	 ?control	 ?in	 ?place	 ?to	 ?change	 ?the	 ?operation	 ?based	 ?on	 ?whether	 ?the	 ?system	 ?was	 ?functioning	 ?as	 ?a	 ?heating	 ?or	 ?cooling	 ?system.	 ?	 ?Since	 ?this	 ?system	 ?is	 ?only	 ?meant	 ?for	 ?heating,	 ?an	 ?operational	 ?sequence	 ?should	 ?be	 ?in	 ?place	 ?such	 ?that	 ?when	 ?the	 ?system	 ?senses	 ?temperature	 ?readings	 ?that	 ?mean	 ?the	 ?SHW	 ?system	 ?is	 ?acting	 ?as	 ?a	 ?heat	 ?sink	 ?instead	 ?of	 ?a	 ?source,	 ?the	 ?system	 ?should	 ?be	 ?shut	 ?down.	 ?	 ?This	 ?would	 ?save	 ?both	 ?on	 ?heating	 ?needs	 ?and	 ?electrical	 ?needs	 ?associated	 ?with	 ?the	 ?operation	 ?of	 ?mechanical	 ?loads	 ?for	 ?this	 ?system.	 ?	 ?This	 ?system	 ?has	 ?evidently	 ?been	 ?underperforming	 ?relative	 ?to	 ?design	 ?expectations.	 ?	 ? 	 ?	 ? 78	 ?4.5.5 Photovoltaic	 ?Panels	 ?	 ?In	 ?addition	 ?to	 ?other	 ?installed	 ?renewable	 ?energy	 ?systems	 ?at	 ?CIRS,	 ?solar	 ?photovoltaic	 ?(PV)	 ?panels	 ?were	 ?installed	 ?on	 ?the	 ?building.	 ?	 ?Unfortunately	 ?due	 ?to	 ?commissioning	 ?and	 ?institutional	 ?issues,	 ?the	 ?PV	 ?system	 ?was	 ?not	 ?fully	 ?integrated	 ?or	 ?being	 ?made	 ?use	 ?of	 ?until	 ?mid	 ?June	 ?2012.	 ?	 ?In	 ?addition,	 ?the	 ?installed	 ?energy	 ?meter	 ?for	 ?the	 ?system	 ?was	 ?initially	 ?thought	 ?to	 ?be	 ?faulty	 ?due	 ?to	 ?its	 ?low	 ?readings	 ?as	 ?compared	 ?to	 ?observed	 ?readings	 ?from	 ?the	 ?building	 ?transformers.	 ?	 ?Through	 ?investigation	 ?into	 ?the	 ?system,	 ?it	 ?was	 ?found	 ?that	 ?the	 ?meter	 ?meant	 ?to	 ?read	 ?the	 ?solar	 ?energy	 ?harvested	 ?by	 ?the	 ?rooftop	 ?photovoltaic	 ?panels	 ?was	 ?installed	 ?such	 ?that	 ?it	 ?can	 ?only	 ?read	 ?the	 ?energy	 ?draw	 ?of	 ?the	 ?panels	 ?on	 ?the	 ?grid	 ?and	 ?not	 ?the	 ?solar	 ?energy	 ?transferred	 ?from	 ?the	 ?panels	 ?to	 ?the	 ?building.	 ?Once	 ?this	 ?was	 ?understood,	 ?a	 ?workaround	 ?was	 ?devised	 ?such	 ?that	 ?the	 ?building	 ?operator	 ?could	 ?read	 ?the	 ?PV	 ?energy	 ?generated	 ?via	 ?the	 ?logged	 ?hourly	 ?energy	 ?rate	 ?instead	 ?of	 ?the	 ?energy	 ?meter,	 ?however	 ?this	 ?system	 ?was	 ?only	 ?linked	 ?to	 ?the	 ?BMS	 ?in	 ?September	 ?of	 ?2012.	 ?	 ?	 ?4.5.6 Water	 ?Meters	 ?	 ?Issues	 ?encountered	 ?with	 ?water	 ?meters	 ?have	 ?included	 ?(i)	 ?the	 ?installation	 ?of	 ?two	 ?water	 ?meters	 ?along	 ?the	 ?same	 ?water	 ?line,	 ?(ii)	 ?commissioning	 ?issues	 ?including	 ?those	 ?that	 ?prevented	 ?meters	 ?from	 ?beginning	 ?to	 ?track	 ?water	 ?flows,	 ?and	 ?(iii)	 ?overall	 ?strategy	 ?issues	 ?including	 ?installing	 ?only	 ?volume	 ?meters	 ?where	 ?it	 ?may	 ?have	 ?been	 ?beneficial	 ?to	 ?install	 ?a	 ?flow	 ?meter.	 ?	 ?Like	 ?other	 ?system	 ?monitoring,	 ?it	 ?would	 ?have	 ?been	 ?beneficial	 ?to	 ?the	 ?controls	 ?and	 ?monitoring	 ?design	 ?to	 ?have	 ?better	 ?understood	 ?the	 ?specific	 ?performance	 ?monitoring	 ?characteristics	 ?that	 ?would	 ?be	 ?required	 ?by	 ?the	 ?system	 ?and	 ?to	 ?have	 ?put	 ?these	 ?into	 ?the	 ?design	 ?specifications	 ?for	 ?controls.	 ?	 ?The	 ?water	 ?meters	 ?have	 ?also	 ?been	 ?found	 ?to	 ?be	 ?particularly	 ?problematic	 ?in	 ?terms	 ?of	 ?having	 ?accurate	 ?readings	 ??	 ?potentially	 ?this	 ?could	 ?have	 ?been	 ?righted	 ?during	 ?commissioning	 ?or	 ?could	 ?be	 ?corrected	 ?through	 ?automatic	 ?computation	 ?through	 ?the	 ?BMS.	 ?	 ?	 ?4.6 Summary	 ?of	 ?Successes	 ?	 ?While	 ?the	 ?monitoring	 ?and	 ?controls	 ?system	 ?for	 ?CIRS	 ?evidently	 ?has	 ?many	 ?opportunities	 ?for	 ?improvement,	 ?one	 ?of	 ?the	 ?major	 ?successes	 ?of	 ?its	 ?implementation	 ?has	 ?been	 ?the	 ?discovery	 ?of	 ?design	 ?and	 ?operational	 ?faults	 ?with	 ?not	 ?only	 ?the	 ?controls	 ?system	 ?but	 ?also	 ?other	 ?building	 ?systems	 ?such	 ?as	 ?the	 ?energy	 ?exchange	 ?between	 ?CIRS	 ?and	 ?the	 ?nearby	 ?Earth	 ?and	 ?Ocean	 ?Sciences	 ?building	 ?(EOS).	 ?	 ?Though	 ?the	 ?controllability	 ?of	 ?building	 ?systems	 ?that	 ?contribute	 ?to	 ?inhabitant	 ?comfort	 ?is	 ?not	 ?yet	 ?where	 ?the	 ?designers	 ?and	 ?inhabitants	 ?would	 ?like,	 ?the	 ?building	 ?has	 ?provided	 ?control	 ?over	 ?systems	 ?such	 ?as	 ?ventilation	 ?that	 ?are	 ?often	 ?not	 ?available	 ?to	 ?inhabitants,	 ?particularly	 ?in	 ?office	 ?buildings.	 ?	 ?The	 ?process	 ?of	 ?trying	 ?to	 ?understand	 ?system	 ?performance,	 ?controls,	 ?and	 ?operation	 ?has	 ?resulted	 ?in	 ?a	 ?better	 ?understanding	 ?amongst	 ?the	 ?building	 ?team	 ?of	 ?the	 ?needs	 ?for	 ?controls	 ?systems	 ?of	 ?future	 ?projects.	 ?	 ?For	 ?example,	 ?it	 ?is	 ?now	 ?understood	 ?that	 ?specific	 ?	 ? 79	 ?monitoring	 ?points	 ?are	 ?more	 ?valuable	 ?for	 ?operational	 ?control	 ?than	 ?others	 ?and	 ?that	 ?meters	 ?installed	 ?at	 ?points	 ?that	 ?may	 ?have	 ?two-??directional	 ?energy	 ?flow	 ?need	 ?to	 ?have	 ?capabilities	 ?to	 ?understand	 ?flow	 ?directionality.	 ?	 ?As	 ?noted	 ?above,	 ?there	 ?are	 ?still	 ?many	 ?opportunities	 ?for	 ?improvement	 ?of	 ?the	 ?monitoring	 ?and	 ?controls	 ?systems	 ?at	 ?CIRS.	 ?	 ?Giving	 ?more	 ?controllability,	 ?better	 ?monitoring	 ?of	 ?the	 ?integration	 ?of	 ?systems	 ?and	 ?their	 ?controls,	 ?and	 ?better	 ?interfaces	 ?for	 ?interaction	 ?with	 ?building	 ?data	 ?are	 ?all	 ?areas	 ?where	 ?major	 ?improvements	 ?could	 ?be	 ?seen.	 ?4.7 Understanding	 ?Control	 ?and	 ?Monitoring	 ?Needs	 ??	 ?Lessons	 ?Learned	 ?	 ?A	 ?main	 ?lesson	 ?of	 ?this	 ?investigation	 ?is	 ?that	 ?the	 ?technical	 ?capacity	 ?for	 ?controls	 ?and	 ?monitoring	 ?will	 ?not	 ?achieve	 ?its	 ?full	 ?potential	 ?for	 ?inhabitant	 ?satisfaction,	 ?operator	 ?controllability,	 ?or	 ?building	 ?energy	 ?performance	 ?without	 ?thorough	 ?integration	 ?of	 ?the	 ?human	 ?elements	 ?that	 ?interface	 ?with	 ?the	 ?systems	 ?during	 ?design,	 ?construction,	 ?commissioning,	 ?and	 ?operation.	 ?	 ?A	 ?second	 ?key	 ?lesson	 ?is	 ?that	 ?alignment	 ?of	 ?operational	 ?and	 ?design	 ?goals	 ?for	 ?the	 ?overall	 ?systems	 ?need	 ?to	 ?be	 ?integrated	 ?into	 ?controls	 ?throughout	 ?all	 ?stages	 ?of	 ?a	 ?building?s	 ?lifecycle.	 ?	 ?In	 ?order	 ?to	 ?create	 ?control	 ?and	 ?monitoring	 ?systems	 ?that	 ?improve	 ?inhabitant	 ?comfort	 ?and	 ?optimize	 ?operator	 ?control,	 ?it	 ?is	 ?necessary	 ?to	 ?consider	 ?how	 ?these	 ?systems	 ?will	 ?be	 ?operated	 ?and	 ?incorporate	 ?those	 ?lessons	 ?into	 ?the	 ?design	 ?and	 ?commissioning	 ?of	 ?the	 ?systems.	 ?	 ?Pathways	 ?for	 ?action	 ?and	 ?control	 ?based	 ?upon	 ?information	 ?from	 ?monitoring	 ?systems	 ?must	 ?be	 ?considered	 ?in	 ?order	 ?to	 ?ensure	 ?that	 ?these	 ?systems	 ?are	 ?useful	 ?and	 ?able	 ?to	 ?achieve	 ?their	 ?intent.	 ?	 ?Complex	 ?building	 ?systems	 ?monitoring	 ?and	 ?controls	 ?require	 ?both	 ?high-??level	 ?understanding	 ?of	 ?system	 ?functions	 ?as	 ?well	 ?as	 ?detailed	 ?understanding	 ?of	 ?control	 ?operations	 ?in	 ?order	 ?to	 ?be	 ?useful	 ?and	 ?informative.	 ?	 ?This	 ?will	 ?be	 ?particularly	 ?important	 ?as	 ?individual	 ?control	 ?and	 ?monitoring	 ?networks	 ?become	 ?integrated	 ?with	 ?other	 ?infrastructures	 ?at	 ?a	 ?neighbourhood	 ?scale.	 ?	 ?From	 ?this	 ?case	 ?study	 ?we	 ?can	 ?see	 ?that	 ?increasing	 ?the	 ?number	 ?of	 ?monitoring	 ?points	 ?does	 ?not	 ?automatically	 ?equate	 ?to	 ?utility	 ?or	 ?success	 ?in	 ?terms	 ?of	 ?operations.	 ?	 ?Energy	 ?efficiency,	 ?operational	 ?alignment	 ?with	 ?system	 ?intent,	 ?and	 ?contributions	 ?to	 ?comfort	 ?all	 ?require	 ?more	 ?than	 ?installation	 ?of	 ?controls.	 ?	 ?While	 ?increasing	 ?the	 ?data	 ?from	 ?buildings	 ?may	 ?be	 ?a	 ?good	 ?starting	 ?point	 ?for	 ?optimizing	 ?controls	 ?design,	 ?it	 ?will	 ?be	 ?necessary	 ?to	 ?understand	 ?which	 ?monitoring	 ?points	 ?matter	 ?in	 ?which	 ?contexts	 ?and	 ?for	 ?which	 ?goals.	 ?	 ?Suggestions	 ?for	 ?how	 ?some	 ?of	 ?these	 ?lessons	 ?could	 ?be	 ?translated	 ?into	 ?process	 ?and	 ?design	 ?improvements	 ?are	 ?made	 ?later	 ?on	 ?in	 ?this	 ?section.	 ?4.7.1 Inhabitants	 ?	 ?Inhabitants	 ?of	 ?the	 ?building	 ?were	 ?generally	 ?very	 ?satisfied	 ?with	 ?the	 ?indoor	 ?environment	 ?and	 ?it	 ?seems	 ?as	 ?though	 ?they	 ?enjoy	 ?the	 ?building	 ?and	 ?are	 ?interested	 ?in	 ?being	 ?engaged	 ?through	 ?feedback	 ?about	 ?how	 ?the	 ?building	 ?is	 ?performing	 ?and	 ?the	 ?	 ? 80	 ?indoor	 ?conditions.	 ?	 ?	 ?One	 ?of	 ?the	 ?main	 ?points	 ?of	 ?dissatisfaction	 ?seems	 ?to	 ?be	 ?the	 ?inability	 ?to	 ?control	 ?lighting,	 ?as	 ?mentioned	 ?in	 ?section	 ?4.5.1.	 ?	 ?It	 ?is	 ?hoped	 ?that	 ?the	 ?future	 ?inhabitant	 ?control	 ?interface	 ?for	 ?lighting	 ?will	 ?help	 ?with	 ?this	 ?issue.	 ?	 ?This	 ?link	 ?between	 ?control	 ?and	 ?satisfaction	 ?is	 ?consistent	 ?with	 ?previous	 ?findings	 ?that	 ?show	 ?a	 ?link	 ?between	 ?social	 ?comfort	 ?and	 ?controllability,	 ?and	 ?shows	 ?that	 ?a	 ?fully	 ?automated	 ?system	 ?may	 ?not	 ?provide	 ?the	 ?most	 ?optimal	 ?design	 ?for	 ?inhabitants	 ?even	 ?if	 ?it	 ?were	 ?an	 ?optimally	 ?efficient	 ?design.	 ?	 ?Unexpected	 ?benefits	 ?from	 ?various	 ?design	 ?features	 ?were	 ?also	 ?seen	 ?through	 ?inhabitant	 ?responses	 ?to	 ?the	 ?controls	 ?survey,	 ?such	 ?as	 ?in	 ?the	 ?comment	 ??I	 ?like	 ?the	 ?fact	 ?that	 ?the	 ?lights	 ?go	 ?out	 ?if	 ?I	 ?don?t	 ?move	 ?enough	 ??	 ?[it	 ?has	 ?the]	 ?added	 ?benefit	 ?of	 ?making	 ?sure	 ?we	 ?don?t	 ?sit	 ?at	 ?computers	 ?for	 ?too	 ?long.?	 ?4.7.2 Design	 ?Strategy	 ?	 ?As	 ?an	 ?example	 ?of	 ?design	 ?strategy,	 ?metering	 ?of	 ?energy	 ?systems	 ?requires	 ?an	 ?understanding	 ?of	 ?intended	 ?energy	 ?flows	 ?and	 ?functioning.	 ?This	 ?requirement	 ?is	 ?emphasized	 ?by	 ?the	 ?findings	 ?outlined	 ?in	 ?section	 ?6	 ?regarding	 ?ineffective	 ?metering	 ?of	 ?the	 ?photovoltaic	 ?panels	 ?and	 ?thermal	 ?systems.	 ?The	 ?meter	 ?outputs	 ?were	 ?not	 ?initially	 ?useful	 ?in	 ?providing	 ?insight	 ?into	 ?the	 ?key	 ?functioning	 ?of	 ?these	 ?systems.	 ?	 ?Had	 ?they	 ?been	 ?easier	 ?to	 ?interpret,	 ?some	 ?of	 ?the	 ?operational	 ?issues	 ?would	 ?have	 ?been	 ?discovered	 ?sooner.	 ?	 ?As	 ?metering	 ?and	 ?monitoring	 ?become	 ?more	 ?complex,	 ?it	 ?becomes	 ?necessary	 ?to	 ?spend	 ?more	 ?time	 ?on	 ?upfront	 ?planning	 ?and	 ?feedback	 ?of	 ?information	 ?at	 ?all	 ?stages	 ?so	 ?that	 ?we	 ?are	 ?monitoring	 ?and	 ?measuring	 ?what	 ?matters	 ?for	 ?decision-??making	 ?and	 ?system	 ?optimization.	 ?	 ?Technical	 ?systems	 ?are	 ?inevitably	 ?dependent	 ?on	 ?the	 ?human	 ?systems	 ?that	 ?interact	 ?with	 ?them.	 ?	 ?It	 ?is	 ?important	 ?to	 ?remember	 ?that	 ?if	 ?feedback	 ?and	 ?controls	 ?systems	 ?are	 ?to	 ?be	 ?truly	 ?useful,	 ?they	 ?must	 ?be	 ?co-??created	 ?with	 ?users.	 ?	 ?It	 ?is	 ?the	 ?process	 ?of	 ?building	 ?systems	 ?of	 ?interaction	 ?that	 ?helps	 ?promote	 ?desired	 ?outcomes	 ?such	 ?as	 ?informed	 ?feedback	 ?on	 ?building	 ?operations.	 ?	 ?Buildings	 ?will	 ?need	 ?to	 ?streamline	 ?access	 ?to	 ?controls	 ?and	 ?implement	 ?lessons	 ?learned	 ?in	 ?order	 ?for	 ?us	 ?to	 ?move	 ?in	 ?the	 ?direction	 ?of	 ?smart	 ?integrated	 ?systems	 ?and	 ?smart	 ?grids.	 ?	 ??Smart?	 ?is	 ?not	 ?simply	 ?about	 ?increasing	 ?the	 ?amount	 ?of	 ?control	 ?and	 ?monitoring	 ?data	 ?of	 ?a	 ?system	 ?but	 ?is	 ?instead	 ?about	 ?enabling	 ?the	 ?system	 ?to	 ?become	 ?better	 ?optimized	 ?and	 ?enable	 ?learning.	 ?	 ?As	 ?has	 ?been	 ?seen	 ?by	 ?much	 ?of	 ?the	 ?data	 ?coming	 ?from	 ?the	 ?meters	 ?and	 ?monitoring	 ?devices	 ?in	 ?CIRS,	 ?data	 ?can	 ?be	 ?either	 ?wrong	 ?or	 ?misleading.	 ?	 ?An	 ?understanding	 ?of	 ?the	 ?underlying	 ?systems	 ?being	 ?metered	 ?is	 ?always	 ?necessary	 ?in	 ?order	 ?to	 ?make	 ?informed	 ?evaluations	 ?of	 ?performance.	 ?	 ?	 ?System	 ?goals	 ?and	 ?system	 ?integration	 ?need	 ?to	 ?be	 ?taken	 ?into	 ?account	 ?when	 ?designing	 ?monitoring	 ?and	 ?control	 ?systems.	 ?	 ?For	 ?example,	 ?it	 ?should	 ?be	 ?considered	 ?how	 ?adjustments	 ?of	 ?equipment	 ?might	 ?affect	 ?comfort,	 ?the	 ?functioning	 ?of	 ?sub-??systems,	 ?the	 ?overall	 ?building,	 ?and	 ?the	 ?connection	 ?with	 ?grid	 ?infrastructure.	 ?	 ?Similar	 ?to	 ?how	 ?the	 ?use	 ?of	 ?individual,	 ?prescriptive	 ?building	 ?techniques	 ?cannot	 ?together	 ?achieve	 ?optimal	 ?integrated	 ?functioning,	 ?prescriptive	 ?controls	 ?and	 ?monitoring	 ?design	 ?and	 ?implementation	 ?cannot	 ?achieve	 ?optimal	 ?performance.	 ?In	 ?addition,	 ?if	 ?the	 ?interfaces	 ?of	 ?	 ? 81	 ?controls	 ?and	 ?monitoring	 ?systems	 ?are	 ?not	 ?designed	 ?for	 ?intelligent	 ?interaction	 ?with	 ?operators	 ?and	 ?inhabitants,	 ?the	 ?quantity	 ?or	 ?even	 ?the	 ?accuracy	 ?of	 ?the	 ?data	 ?is	 ?of	 ?no	 ?value	 ?in	 ?optimizing	 ?systems	 ?and	 ?decisions.	 ?	 ?Measurement	 ?and	 ?modeling	 ?is	 ?a	 ??means	 ?towards	 ?the	 ?end	 ?goal	 ?of	 ?high-??quality	 ?decision	 ?making?,	 ?therefore	 ?an	 ?understanding	 ?of	 ?the	 ?decision	 ?making	 ?context,	 ?ability	 ?of	 ?decision	 ?makers	 ?to	 ?influence	 ?outcomes,	 ?and	 ?decision	 ?making	 ?process	 ?is	 ?a	 ?prerequisite	 ?for	 ?the	 ?design	 ?of	 ?good	 ?measurement	 ?and	 ?modeling	 ?systems	 ?(Lawrence	 ?et	 ?al.,	 ?2012).	 ?	 ?It	 ?also	 ?matters	 ?what	 ?our	 ?end	 ?goals	 ?are,	 ?and	 ?is	 ?important	 ?to	 ?remember	 ?that	 ?energy	 ?efficiency	 ?is	 ?not	 ?equal	 ?to	 ?occupant	 ?comfort.	 ?	 ?They	 ?often	 ?may	 ?work	 ?together	 ?but	 ?occasionally	 ?they	 ?may	 ?be	 ?in	 ?conflict	 ?as	 ?well.	 ?	 ?Because	 ?controls	 ?integrate	 ?across	 ?all	 ?levels	 ?of	 ?interaction	 ?and	 ?systems,	 ?controls	 ?design	 ?and	 ?strategy	 ?should	 ?not	 ?be	 ?thought	 ?of	 ?as	 ?a	 ?separate	 ?discipline	 ?or	 ?simply	 ?integrated	 ?into	 ?a	 ?facility	 ?at	 ?the	 ?end	 ?of	 ?construction	 ?as	 ?is	 ?customary.	 ?	 ?To	 ?the	 ?same	 ?end,	 ?for	 ?proper	 ?functioning	 ?of	 ?controls	 ?systems	 ?it	 ?is	 ?necessary	 ?to	 ?align	 ?sensor	 ?and	 ?metering	 ?calibration	 ?with	 ?the	 ?overall	 ?design	 ?intent	 ?of	 ?the	 ?systems	 ?during	 ?the	 ?commissioning	 ?stage	 ?of	 ?a	 ?project.	 ?	 ?	 ?4.7.3 Accessibility	 ?and	 ?System	 ?Integration	 ?	 ?Integration	 ?should	 ?also	 ?be	 ?kept	 ?in	 ?mind	 ?for	 ?the	 ?overall	 ?system	 ?design,	 ?enabling	 ?various	 ?data	 ?systems	 ?and	 ?groups	 ?of	 ?people	 ?to	 ?work	 ?together.	 ?	 ?Particularly	 ?from	 ?an	 ?operational	 ?point	 ?of	 ?view,	 ?integration	 ?or	 ?coordination	 ?of	 ?various	 ?controls	 ?systems	 ?is	 ?important.	 ?	 ?Often	 ?human	 ?and	 ?technical	 ?protocols	 ?and	 ?systems	 ?across	 ?different	 ?buildings	 ?can	 ?be	 ?at	 ?odds,	 ?preventing	 ?networked	 ?buildings	 ?from	 ?working	 ?together,	 ?as	 ?has	 ?been	 ?the	 ?case	 ?to	 ?some	 ?extent	 ?at	 ?UBC.	 ?	 ?This	 ?was	 ?observed	 ?in	 ?the	 ?functioning	 ?of	 ?building	 ?operations	 ?and	 ?their	 ?involvement	 ?with	 ?the	 ?CIRS	 ?building	 ??	 ?while	 ?a	 ?large	 ?team	 ?of	 ?operators	 ?interface	 ?with	 ?the	 ?building	 ?in	 ?some	 ?way,	 ?very	 ?few	 ?operators	 ?interact	 ?with	 ?the	 ?in-??building	 ?BMS	 ?interface	 ?as	 ?highlighted	 ?in	 ?section	 ?4.3.	 ?	 ?Instead,	 ?data	 ?from	 ?the	 ?building	 ?is	 ?filtered	 ?through	 ?another	 ?system	 ?used	 ?for	 ?the	 ?overall	 ?campus	 ?and	 ?even	 ?though	 ?the	 ?underlying	 ?data	 ?may	 ?be	 ?coming	 ?from	 ?the	 ?same	 ?meter,	 ?the	 ?representation	 ?and	 ?access	 ?is	 ?different.	 ?	 ?This	 ?means	 ?that	 ?while	 ?operators	 ?may	 ?be	 ?working	 ?on	 ?the	 ?same	 ?issue,	 ?the	 ?representation	 ?of	 ?data	 ?at	 ?which	 ?they	 ?are	 ?looking	 ?and	 ?the	 ?interface	 ?through	 ?which	 ?they	 ?access	 ?that	 ?data	 ?will	 ?be	 ?different.	 ?	 ?This	 ?can	 ?be	 ?a	 ?detriment	 ?to	 ?team	 ?understanding	 ?of	 ?operational	 ?issues	 ?both	 ?at	 ?the	 ?point	 ?of	 ?technical	 ?interface	 ?with	 ?the	 ?system	 ?as	 ?well	 ?as	 ?in	 ?communications	 ?between	 ?operators	 ?about	 ?issues	 ?that	 ?arise.	 ?	 ?In	 ?order	 ?to	 ?understand	 ?the	 ?underlying	 ?design	 ?intent	 ?of	 ?systems,	 ?it	 ?may	 ?be	 ?useful	 ?to	 ?include	 ?in	 ?controls	 ?specifications	 ?the	 ?ability	 ?to	 ?easily	 ?correlate	 ?current	 ?operational	 ?sequences	 ?with	 ?the	 ?intended	 ?sequence	 ?of	 ?operation	 ?of	 ?various	 ?systems	 ?and	 ?equipment.	 ?	 ?This	 ?could	 ?prevent	 ?overly	 ?time	 ?intensive	 ?issue	 ?investigations	 ?or	 ?operational	 ?issues	 ?being	 ?overlooked.	 ?	 ?As	 ?has	 ?been	 ?seen	 ?from	 ?metering	 ?data,	 ?it	 ?is	 ?possible	 ?for	 ?aggregate	 ?meter	 ?readings	 ?to	 ?be	 ?misleading	 ?and	 ?often	 ?the	 ?systems	 ?may	 ?be	 ?working	 ?against	 ?underlying	 ?design	 ?intent.	 ?	 ?Without	 ?easily	 ?accessible	 ?information	 ?	 ? 82	 ?about	 ?intended	 ?sequences	 ?of	 ?operation	 ?(SOO),	 ?and	 ?what	 ?modes	 ?of	 ?operation	 ?should	 ?be	 ?expected,	 ?it	 ?could	 ?be	 ?extremely	 ?difficult	 ?to	 ?uncover	 ?systems	 ?that	 ?are	 ?working	 ?against	 ?their	 ?design	 ?intent,	 ?particularly	 ?when	 ?they	 ?are	 ?not	 ?causing	 ?immediate	 ?inhabitant	 ?discomfort.	 ?	 ?It	 ?is	 ?also	 ?difficult	 ?to	 ?make	 ?operational	 ?decisions	 ?without	 ?understanding	 ?the	 ?difference	 ?between	 ?what	 ?is	 ?currently	 ?occurring	 ?and	 ?what	 ?is	 ?meant	 ?to	 ?occur.	 ?	 ?Including	 ?SOO	 ?information	 ?in	 ?controls	 ?may	 ?aid	 ?this	 ?process.	 ?	 ?Troubleshooting	 ?of	 ?systems	 ?is	 ?one	 ?of	 ?the	 ?most	 ?important	 ?functions	 ?of	 ?the	 ?controls	 ?and	 ?systems	 ?should	 ?be	 ?designed	 ?and	 ?commissioned	 ?with	 ?this	 ?in	 ?mind.	 ?	 ?	 ?	 ?In	 ?order	 ?to	 ?improve	 ?operator	 ?controllability,	 ?controls	 ?specifications	 ?should	 ?allow	 ?operators	 ?the	 ?ability	 ?to	 ?add	 ?points	 ?to	 ?the	 ?monitoring/controls	 ?system	 ?and	 ?to	 ?see	 ??inside?	 ?workings	 ?of	 ?components	 ?and	 ?systems.	 ?	 ?Such	 ?ability	 ?should	 ?not	 ?be	 ?overridden	 ?by	 ?having	 ?specific	 ?vendors	 ?on	 ?a	 ?project	 ?who	 ?enforce	 ?limiting	 ?proprietary	 ?systems.	 ?	 ?Because	 ?of	 ?the	 ?effect	 ?this	 ?can	 ?have	 ?on	 ?the	 ?overall	 ?usability	 ?of	 ?the	 ?controls	 ?and	 ?monitoring	 ?system,	 ?this	 ?could	 ?be	 ?something	 ?useful	 ?to	 ?put	 ?in	 ?the	 ?design	 ?specifications	 ?and	 ?tender	 ?documents	 ?for	 ?a	 ?project.	 ?	 ?Another	 ?point	 ?to	 ?note	 ?in	 ?project	 ?management	 ?is	 ?that	 ?controls	 ?contractors	 ?and	 ?commissioning	 ?agents	 ?are	 ?usually	 ?among	 ?the	 ?last	 ?consultants	 ?to	 ?have	 ?time	 ?onsite	 ?during	 ?construction.	 ?	 ?Most	 ?construction	 ?timelines	 ?run	 ?over,	 ?yet	 ?project	 ?completion	 ?dates	 ?are	 ?still	 ?enforced,	 ?this	 ?tends	 ?to	 ?induce	 ?a	 ?time	 ?crunch	 ?on	 ?the	 ?controls	 ?contractors	 ?at	 ?the	 ?final	 ?stage	 ?and	 ?results	 ?in	 ?sub-??optimal	 ?controls	 ?systems.	 ?	 ?Timelines	 ?on	 ?construction	 ?works	 ?are	 ?well	 ?understood,	 ?however	 ?elevating	 ?the	 ?importance	 ?and	 ?time	 ?allotted	 ?to	 ?ensuring	 ?functioning	 ?systems	 ?integration	 ?and	 ?controls	 ?at	 ?the	 ?beginning	 ?of	 ?a	 ?project	 ?may	 ?assist	 ?with	 ?this	 ?issue	 ?of	 ?having	 ?enough	 ?time	 ?for	 ?controls.	 ?	 ?Adequate	 ?time	 ?for	 ?controls	 ?and	 ?commissioning	 ?is	 ?particularly	 ?important	 ?for	 ?systems	 ?that	 ?require	 ?significant	 ?programming	 ?and	 ?testing	 ?of	 ?complex	 ?operational	 ?sequences.	 ?	 ?It	 ?should	 ?be	 ?realized	 ?that	 ?in	 ?order	 ?to	 ?function	 ?with	 ?a	 ?high	 ?degree	 ?of	 ?reliability,	 ?it	 ?is	 ?necessary	 ?that	 ?the	 ?operator	 ?interfacing	 ?with	 ?building	 ?controls	 ?have	 ?both	 ?the	 ?time	 ?and	 ?expertise	 ?to	 ?troubleshoot	 ?systems.	 ?	 ?While	 ?this	 ?can	 ?and	 ?should	 ?be	 ?thought	 ?of	 ?in	 ?terms	 ?of	 ?how	 ?controls	 ?and	 ?monitoring	 ?systems	 ?are	 ?designed,	 ?if	 ?operators	 ?do	 ?not	 ?have	 ?access	 ?to	 ?information	 ?due	 ?to	 ?insufficient	 ?time	 ?to	 ?devote	 ?to	 ?troubleshooting,	 ?performance	 ?issues	 ?will	 ?likely	 ?result.	 ?	 ?CIRS	 ?has	 ?been	 ?fortunate	 ?to	 ?have	 ?an	 ?expert	 ?in	 ?building	 ?controls	 ?on	 ?hand	 ?to	 ?uncover	 ?many	 ?of	 ?the	 ?issues	 ?detailed	 ?above,	 ?though	 ?many	 ?buildings	 ?with	 ?similar	 ?systems	 ?would	 ?not	 ?have	 ?the	 ?same	 ?expertise	 ?available	 ?and	 ?may	 ?have	 ?significant	 ?and	 ?overlooked	 ?system	 ?issues.	 ?4.7.4 Root	 ?Cause	 ?Solutions	 ?	 ?Some	 ?of	 ?the	 ?issues	 ?described	 ?in	 ?this	 ?paper	 ?already	 ?have	 ?been	 ?subject	 ?to	 ?workarounds	 ?or	 ??fixes?	 ?such	 ?as	 ?those	 ?described	 ?for	 ?lighting	 ?controls.	 ?	 ?While	 ?these	 ?actions	 ?have	 ?resulted	 ?in	 ?achieving	 ?a	 ?minimum	 ?standard	 ?of	 ?operation,	 ?they	 ?are	 ?not	 ?optimal	 ?solutions	 ?that	 ?take	 ?into	 ?account	 ?the	 ?root	 ?cause	 ?of	 ?the	 ?issue	 ?and	 ?the	 ?design	 ?intent	 ?of	 ?the	 ?system.	 ?	 ?And	 ?they	 ?typically	 ?have	 ?worked	 ?against	 ?the	 ?energy	 ?efficiency	 ?goals	 ?of	 ?CIRS.	 ?More	 ?optimal	 ?solutions	 ?may	 ?still	 ?be	 ?found	 ?through	 ?retrofitting.	 ?	 ?	 ? 83	 ?Addressing	 ?these	 ?issues	 ?into	 ?the	 ?operational	 ?stage	 ?will	 ?require	 ?devoted	 ?time	 ?and	 ?resources	 ?just	 ?as	 ?they	 ?would	 ?during	 ?design,	 ?construction,	 ?or	 ?commissioning.	 ?	 ?4.7.5 Learning	 ?	 ?This	 ?case	 ?study	 ?of	 ?CIRS	 ?highlights	 ?the	 ?importance	 ?of	 ?human	 ?feedback	 ?systems	 ?that	 ?promote	 ?learning	 ?through	 ?co-??investigation	 ?and	 ?dialogue.	 ?	 ?Without	 ?technical	 ?monitoring	 ?systems	 ?in	 ?place	 ?it	 ?would	 ?not	 ?have	 ?been	 ?possible	 ?to	 ?investigate	 ?performance	 ?issues	 ?in	 ?detail	 ?and	 ?many	 ?of	 ?the	 ?system	 ?issues	 ?that	 ?have	 ?been	 ?highlighted	 ?would	 ?have	 ?been	 ?overlooked.	 ?	 ?	 ?However,	 ?it	 ?was	 ?not	 ?specifically	 ?the	 ?controls	 ?system	 ?that	 ?brought	 ?to	 ?light	 ?these	 ?issues	 ??	 ?it	 ?was	 ?the	 ?human	 ?system	 ?that	 ?interacted	 ?with	 ?it	 ?and	 ?went	 ?through	 ?the	 ?co-??investigation	 ?process	 ?of	 ?troubleshooting	 ?and	 ?creating	 ?better	 ?system	 ?understanding.	 ?	 ?This	 ?human	 ?investigation	 ?also	 ?enabled	 ?better	 ?understanding	 ?and	 ?filtering	 ?of	 ?data	 ?from	 ?the	 ?controls	 ?system	 ?that	 ?was	 ?incorrect	 ?or	 ?misleading.	 ?	 ?From	 ?this	 ?case	 ?study,	 ?I	 ?would	 ?propose	 ?that	 ?building	 ?and	 ?system	 ??intelligence?	 ?be	 ?defined	 ?not	 ?by	 ?extensiveness	 ?of	 ?controls	 ?capability	 ?but	 ?instead	 ?by	 ?the	 ?built-??in	 ?ability	 ?and	 ?opportunities	 ?for	 ?learning	 ?of	 ?both	 ?the	 ?human	 ?and	 ?technical	 ?systems	 ?of	 ?the	 ?network.	 ?	 ?While	 ?the	 ?design	 ?goals	 ?of	 ?the	 ?controls	 ?systems	 ?at	 ?CIRS	 ?may	 ?not	 ?yet	 ?be	 ?met,	 ?the	 ?process	 ?of	 ?investigation	 ?of	 ?their	 ?design,	 ?implementation,	 ?and	 ?operation	 ?is	 ?fulfilling	 ?the	 ?promise	 ?of	 ?serving	 ?as	 ?a	 ?living	 ?laboratory	 ?for	 ?sustainable	 ?practices.	 ?	 ?Similar	 ?to	 ?the	 ?findings	 ?of	 ?chapter	 ?2	 ?and	 ?chapter	 ?3	 ?of	 ?this	 ?thesis,	 ?this	 ?case	 ?study	 ?has	 ?highlighted	 ?the	 ?importance	 ?of	 ?understanding	 ?the	 ?ability	 ?to	 ?create	 ?functioning	 ?and	 ?understandable	 ?system	 ?integrations	 ?over	 ?the	 ?lifecycle	 ?of	 ?a	 ?project.	 ?	 ?It	 ?has	 ?also	 ?highlighted	 ?the	 ?importance	 ?of	 ?monitoring,	 ?assessment,	 ?and	 ?feedback	 ?as	 ?combined	 ?with	 ?processes	 ?that	 ?enable	 ?learning	 ?and	 ?collaboration.	 ?	 ?This	 ?is	 ?a	 ?process	 ?necessary	 ?both	 ?within	 ?and	 ?between	 ?projects.	 ?	 ?	 ? 84	 ?5 Conclusions	 ?	 ?From	 ?chapter	 ?2,	 ?a	 ?literature	 ?review	 ?of	 ?discourses	 ?related	 ?to	 ?smart	 ?energy	 ?systems,	 ?we	 ?have	 ?seen	 ?that	 ?many	 ?of	 ?the	 ?lessons	 ?learned	 ?from	 ?industrial	 ?ecology,	 ?sustainable	 ?buildings,	 ?smart	 ?grids,	 ?and	 ?distributed	 ?energy	 ?systems	 ?can	 ?be	 ?transferrable	 ?to	 ?the	 ?design	 ?of	 ?other	 ?integrated	 ?systems.	 ?	 ?The	 ?themes	 ?of	 ?learning,	 ?feedback,	 ?and	 ?systems	 ?integration	 ?emerge	 ?as	 ?important	 ?to	 ?successful	 ?projects	 ?and	 ?have	 ?informed	 ?the	 ?case	 ?studies	 ?of	 ?the	 ?energy	 ?and	 ?controls	 ?systems	 ?at	 ?CIRS.	 ?	 ?This	 ?understanding	 ?of	 ?networked	 ?system	 ?lessons	 ?led	 ?to	 ?a	 ?framework	 ?of	 ?evaluation	 ?that	 ?looked	 ?not	 ?at	 ?the	 ?building	 ?as	 ?a	 ?single	 ?unconnected	 ?project	 ?but	 ?as	 ?a	 ?part	 ?of	 ?a	 ?larger	 ?infrastructure	 ?and	 ?social	 ?network	 ?with	 ?specific	 ?integrations	 ?and	 ?overall	 ?systems	 ?to	 ?be	 ?optimized.	 ?	 ?This	 ?framework	 ?proved	 ?useful	 ?in	 ?conceptualizing	 ?and	 ?analyzing	 ?specific	 ?systems	 ?and	 ?assisted	 ?in	 ?creating	 ?boundaries	 ?for	 ?the	 ?analysis	 ?that	 ?result	 ?in	 ?greater	 ?understanding	 ?of	 ?performance	 ?than	 ?would	 ?have	 ?been	 ?seen	 ?at	 ?the	 ?sub-??component	 ?level.	 ?In	 ?addition,	 ?the	 ?framework	 ?informed	 ?these	 ?case	 ?studies	 ?through	 ?the	 ?selection	 ?of	 ?which	 ?systems	 ?to	 ?study	 ?and	 ?gave	 ?insight	 ?as	 ?to	 ?potential	 ?ways	 ?to	 ?evaluate	 ?success.	 ?	 ?The	 ?energy	 ?system	 ?was	 ?chosen	 ?in	 ?order	 ?to	 ?look	 ?at	 ?the	 ?integration	 ?of	 ?the	 ?network	 ?of	 ?sub-??components	 ?within	 ?and	 ?between	 ?CIRS	 ?and	 ?EOS,	 ?using	 ?the	 ?perspective	 ?gained	 ?from	 ?network	 ?literatures.	 ?	 ?The	 ?controls	 ?system	 ?was	 ?chosen	 ?in	 ?order	 ?to	 ?understand	 ?what	 ?it	 ?means	 ?to	 ?add	 ??smart?	 ?monitoring	 ?and	 ?controls	 ?to	 ?building	 ?networks,	 ?drawing	 ?on	 ?understanding	 ?from	 ??smart?	 ?grid	 ?and	 ?building	 ?literature,	 ?and	 ?how	 ?this	 ?could	 ?aid	 ?in	 ?feedback	 ?and	 ?learning.	 ?	 ?Criteria	 ?for	 ?evaluation	 ?hence	 ?became	 ?the	 ?success	 ?of	 ?the	 ?energy	 ?systems	 ?integration	 ?in	 ?meeting	 ?design	 ?intent,	 ?and	 ?the	 ?ability	 ?of	 ?the	 ?controls	 ?system	 ?to	 ?enable	 ?feedback	 ?and	 ?learning.	 ?	 ?From	 ?chapter	 ?3,	 ?a	 ?case	 ?study	 ?of	 ?the	 ?energy	 ?systems	 ?at	 ?CIRS,	 ?we	 ?have	 ?seen	 ?that	 ?there	 ?are	 ?many	 ?opportunities	 ?for	 ?improved	 ?environmental	 ?performance	 ?in	 ?buildings	 ?designed	 ?to	 ?be	 ??sustainable?	 ?buildings.	 ?	 ?It	 ?suggests	 ?that	 ?even	 ?when	 ?using	 ?an	 ?integrated	 ?design	 ?process	 ?and	 ?high-??performance	 ?building	 ?standards,	 ?the	 ?process	 ?of	 ?moving	 ?all	 ?the	 ?way	 ?from	 ?design	 ?through	 ?operations	 ?could	 ?benefit	 ?from	 ?additional	 ?feedback	 ?and	 ?learning.	 ?	 ?The	 ?case	 ?study	 ?shows	 ?the	 ?need	 ?for	 ?strong	 ?understanding	 ?of	 ?system	 ?integrations	 ?and	 ?affects	 ?of	 ?various	 ?components	 ?and	 ?operational	 ?modes	 ?on	 ?the	 ?overall	 ?network.	 ?	 ?Design,	 ?commissioning,	 ?and	 ?operational	 ?strategies	 ?that	 ?focus	 ?on	 ?the	 ?various	 ?infrastructure	 ?systems	 ?versus	 ?individual	 ?components	 ?or	 ?disciplines	 ?are	 ?found	 ?to	 ?be	 ?important.	 ?	 ?The	 ?case	 ?study	 ?also	 ?shows	 ?the	 ?need	 ?for	 ?incentive	 ?alignment	 ?and	 ?process	 ?learning	 ?over	 ?the	 ?entirety	 ?of	 ?a	 ?projects	 ?lifecycle.	 ?	 ?It	 ?also	 ?shows	 ?a	 ?need	 ?for	 ?systems	 ?based	 ?prioritization	 ?to	 ?aid	 ?understanding	 ?and	 ?processes.	 ?	 ?Based	 ?on	 ?the	 ?concept	 ?of	 ?viewing	 ?buildings	 ?as	 ?part	 ?of	 ?a	 ?larger	 ?network,	 ?this	 ?case	 ?study	 ?aligns	 ?with	 ?the	 ?lessons	 ?pulled	 ?from	 ?the	 ?literature	 ?including	 ?the	 ?need	 ?for	 ?context	 ?and	 ?network	 ?based	 ?system	 ?understanding.	 ?	 ?Combining	 ?this	 ?network	 ?understanding	 ?with	 ?sustainable	 ?buildings,	 ?we	 ?can	 ?see	 ?that	 ?it	 ?is	 ?perhaps	 ?the	 ?network	 ?integrations,	 ?efficiencies,	 ?and	 ?overall	 ?social	 ?and	 ?technological	 ?system	 ?functioning	 ?that	 ?becomes	 ?important	 ?for	 ?designing	 ?sustainable	 ?communities.	 ?	 ?The	 ?case	 ?study	 ?does	 ?however	 ?show	 ?that	 ?the	 ?same	 ?network	 ?understanding	 ?that	 ?can	 ?provide	 ?overall	 ?	 ? 85	 ?efficiencies	 ?may	 ?also	 ?indicate	 ?in	 ?certain	 ?instances	 ?that	 ?there	 ?are	 ?no	 ?efficiencies	 ?to	 ?be	 ?gained	 ?by	 ?creating	 ?a	 ?new	 ?connection	 ?in	 ?the	 ?system.	 ?	 ?In	 ?these	 ?cases,	 ?it	 ?may	 ?be	 ?more	 ?effective	 ?to	 ?look	 ?at	 ?resource	 ?use	 ?and	 ?reuse	 ?within	 ?a	 ?building	 ?than	 ?between	 ?buildings.	 ?	 ?From	 ?chapter	 ?4,	 ?a	 ?case	 ?study	 ?of	 ?the	 ?monitoring	 ?and	 ?controls	 ?systems	 ?at	 ?CIRS,	 ?we	 ?have	 ?seen	 ?that	 ?having	 ?an	 ?integrated	 ?and	 ?well	 ?understood	 ?interface	 ?of	 ?human	 ?and	 ?technical	 ?systems	 ?provides	 ?an	 ?opportunity	 ?for	 ?achieving	 ?high	 ?performing	 ?systems.	 ?	 ?We	 ?see	 ?that	 ?control	 ?and	 ?monitoring	 ?systems	 ?do	 ?not	 ?on	 ?their	 ?own	 ?achieve	 ?high	 ?performance	 ?of	 ?infrastructure	 ?systems	 ?and	 ?that	 ?on	 ?the	 ?human	 ?side	 ?it	 ?is	 ?necessary	 ?to	 ?enable	 ?understanding,	 ?troubleshooting,	 ?and	 ?learning	 ?through	 ?system	 ?accessibility.	 ?	 ?Feedback	 ?systems	 ?of	 ?building	 ?operators	 ?and	 ?inhabitants,	 ?integrated	 ?with	 ?technical	 ?systems,	 ?are	 ?shown	 ?to	 ?provide	 ?great	 ?opportunities	 ?for	 ?increased	 ?efficiency	 ?and	 ?enabling	 ?designs	 ?to	 ?meet	 ?their	 ?intent.	 ?	 ?It	 ?is	 ?seen	 ?that	 ?in	 ?order	 ?to	 ?create	 ?optimal	 ?controls	 ?systems,	 ?those	 ?involved	 ?with	 ?both	 ?controls	 ?and	 ?commissioning	 ?need	 ?to	 ?understand	 ?the	 ?system	 ?intent	 ?and	 ?sequence	 ?of	 ?operations.	 ?	 ?These	 ?lessons	 ?are	 ?consistent	 ?with	 ?the	 ?understanding	 ?gained	 ?from	 ?the	 ?literature	 ?review	 ?of	 ?chapter	 ?1,	 ?and	 ?emphasize	 ?the	 ?social	 ?processes	 ?that	 ?interface	 ?with	 ?the	 ?technical	 ?systems.	 ?	 ?It	 ?reiterates	 ?that	 ?a	 ??smart?	 ?system	 ?is	 ?more	 ?than	 ?one	 ?with	 ?advanced	 ?monitoring	 ?and	 ?controls	 ?and	 ?in	 ?the	 ?case	 ?of	 ?networked	 ?buildings	 ?the	 ?controls	 ?systems	 ?need	 ?to	 ?be	 ?optimized	 ?both	 ?for	 ?the	 ?building	 ?and	 ?network.	 ?	 ?The	 ?concepts	 ?of	 ?looking	 ?at	 ?systems	 ?integration	 ?and	 ?learning	 ?as	 ?criteria	 ?for	 ?evaluation	 ?of	 ?the	 ?case	 ?studies	 ?proved	 ?useful	 ?in	 ?finding	 ?potential	 ?avenues	 ?to	 ?close	 ?the	 ?performance	 ?gap	 ?in	 ?sustainable	 ?buildings.	 ?	 ?Had	 ?the	 ?system	 ?based	 ?lessons	 ?found	 ?in	 ?the	 ?literatures	 ?on	 ?smart	 ?grids,	 ?distributed	 ?energy	 ?systems,	 ?sustainable	 ?buildings,	 ?and	 ?industrial	 ?ecology	 ?not	 ?been	 ?used	 ?as	 ?a	 ?framing	 ?for	 ?the	 ?project	 ?it	 ?is	 ?possible	 ?that	 ?some	 ?of	 ?the	 ?issues	 ?discovered	 ?may	 ?not	 ?have	 ?occurred.	 ?	 ?These	 ?lessons	 ?also	 ?have	 ?provided	 ?a	 ?strong	 ?basis	 ?on	 ?which	 ?to	 ?build	 ?a	 ?process	 ?for	 ?feedback	 ?over	 ?the	 ?building?s	 ?lifecycle	 ?that	 ?could	 ?enable	 ?further	 ?optimization,	 ?meeting	 ?of	 ?design	 ?intent,	 ?and	 ?steering	 ?towards	 ?meaningful	 ?and	 ?agreed	 ?upon	 ?sustainability	 ?goals.	 ?	 ?These	 ?case	 ?study	 ?findings,	 ?showing	 ?lessons	 ?in	 ?optimizing	 ?system	 ?infrastructure	 ?and	 ?feedback	 ?processes	 ?to	 ?enable	 ?better	 ?lifecycle	 ?performance	 ?of	 ?these	 ?systems,	 ?have	 ?implications	 ?at	 ?a	 ?broader	 ?industry	 ?level.	 ?	 ?One	 ?of	 ?these	 ?implications	 ?is	 ?that	 ?without	 ?significant	 ?monitoring	 ?and	 ?assessment	 ??	 ?inclusive	 ?of	 ?human	 ?and	 ?technical	 ?monitoring	 ?capabilities	 ?devoted	 ?to	 ?a	 ?project	 ??	 ?many	 ?buildings	 ?and	 ?infrastructure	 ?systems	 ?are	 ?likely	 ?not	 ?performing	 ?as	 ?intended	 ?or	 ?assumed	 ?during	 ?design.	 ?	 ?This	 ?has	 ?further	 ?implications	 ?for	 ?the	 ?potential	 ?to	 ?reduce	 ?the	 ?environmental	 ?impacts	 ?of	 ?infrastructure	 ?over	 ?their	 ?operational	 ?lifetime	 ?and	 ?suggests	 ?that	 ?there	 ?is	 ?significant	 ?potential	 ?for	 ?reducing	 ?lifecycle	 ?impacts	 ?through	 ?focusing	 ?on	 ?lifecycle	 ?stages	 ?past	 ?initial	 ?design.	 ?	 ?Even	 ?for	 ?infrastructure	 ?with	 ?wonderful	 ?design	 ?and	 ?design	 ?strategy,	 ?this	 ?study	 ?suggests	 ?that	 ?commissioning	 ?and	 ?operations	 ?need	 ?to	 ?be	 ?prioritized	 ?both	 ?in	 ?their	 ?planning	 ?and	 ?implementation	 ?in	 ?order	 ?to	 ?have	 ?high	 ?performance	 ?buildings.	 ?	 ?Many	 ?buildings	 ?designed	 ?to	 ?be	 ?high-??performance	 ?buildings	 ?may	 ?have	 ?similar	 ?performance	 ?issues	 ?and	 ?the	 ?research	 ?suggests	 ?that	 ?there	 ?may	 ?be	 ?a	 ?need	 ?to	 ?take	 ?on	 ?	 ? 86	 ?overall	 ?system	 ?analyses	 ?in	 ?order	 ?to	 ?create	 ?buildings	 ?that	 ?function	 ?to	 ?their	 ?full	 ?potential	 ?over	 ?their	 ?lifecycle.	 ?	 ?These	 ?case	 ?studies	 ?also	 ?suggest	 ?that	 ?many	 ?performance	 ?issues	 ?may	 ?be	 ?currently	 ?invisible	 ?to	 ?operations	 ?based	 ?on	 ?current	 ?monitoring	 ?systems	 ?and	 ?processes.	 ?	 ?Without	 ?the	 ?ability	 ?to	 ?query	 ?the	 ?extensive	 ?monitoring	 ?system	 ?in	 ?CIRS,	 ?inclusive	 ?of	 ?being	 ?able	 ?to	 ?perform	 ?calculations	 ?based	 ?on	 ?individual	 ?sensors,	 ?and	 ?devote	 ?time	 ?and	 ?resources	 ?to	 ?the	 ?inquiry,	 ?these	 ?issues	 ?may	 ?not	 ?have	 ?been	 ?discovered.	 ?	 ?It	 ?may	 ?be	 ?the	 ?case	 ?that	 ?many	 ?building	 ?performance	 ?reports	 ?based	 ?on	 ?aggregate	 ?meter	 ?readings	 ?and	 ?data	 ?are	 ?misleading	 ?and	 ?cannot	 ?provide	 ?the	 ?level	 ?of	 ?detail	 ?needed	 ?to	 ?properly	 ?troubleshoot	 ?a	 ?system.	 ?	 ?This	 ?research	 ?stresses	 ?the	 ?need	 ?to	 ?devote	 ?time	 ?and	 ?attention	 ?to	 ?understanding	 ?system	 ?functioning	 ?and	 ?operation	 ?starting	 ?in	 ?the	 ?conceptual	 ?design	 ?phase.	 ?	 ?Opportunities	 ?for	 ?improvement	 ?of	 ?building	 ?sustainability	 ?may	 ?be	 ?found	 ?in	 ?the	 ?commissioning	 ?and	 ?operations	 ?stages	 ?of	 ?a	 ?project	 ?and	 ?should	 ?be	 ?considered	 ?when	 ?creating	 ?infrastructure	 ?systems	 ?and	 ?processes	 ?to	 ?interface	 ?with	 ?them.	 ?	 ?This	 ?research	 ?suggests	 ?that	 ?standard	 ?performance	 ?metrics	 ?such	 ?as	 ?energy	 ?used	 ?per	 ?unit	 ?of	 ?floor	 ?area	 ?(Energy	 ?Utilization	 ?Index)	 ?do	 ?not	 ?provide	 ?enough	 ?detail	 ?to	 ?evaluate	 ?project	 ?outcomes.	 ?	 ?Not	 ?only	 ?do	 ?they	 ?miss	 ?other	 ?important	 ?factors	 ?such	 ?as	 ?level	 ?of	 ?use,	 ?building	 ?type,	 ?occupancy,	 ?well	 ?being	 ?related	 ?variables	 ?and	 ?others,	 ?but	 ?they	 ?also	 ?mask	 ?underlying	 ?system	 ?performance	 ?issues.	 ?	 ?Looking	 ?at	 ?system	 ?performance	 ?may	 ?assist	 ?with	 ?this	 ?issue.	 ?	 ?It	 ?may	 ?also	 ?assist	 ?in	 ?changing	 ?the	 ?expectation	 ?for	 ?how	 ?buildings	 ?are	 ?used	 ?and	 ?operated	 ?and	 ?how	 ?this	 ?is	 ?taken	 ?into	 ?account	 ?during	 ?design	 ?and	 ?process	 ?planning.	 ?	 ?The	 ?research	 ?suggests	 ?that	 ?sub	 ?optimizing	 ?on	 ?specific	 ?metrics	 ?and	 ?outcomes	 ?does	 ?not	 ?result	 ?in	 ?systems	 ?that	 ?function	 ?effectively	 ?at	 ?a	 ?higher	 ?level.	 ?	 ?Overall	 ?the	 ?thesis	 ?shows	 ?the	 ?need	 ?to	 ?create	 ?feedback	 ?processes	 ?to	 ?enable	 ?learning	 ?and	 ?optimization	 ?from	 ?design	 ?all	 ?the	 ?way	 ?through	 ?to	 ?operation	 ?and	 ?lessons	 ?for	 ?retrofits	 ?and	 ?new	 ?projects.	 ?	 ?In	 ?order	 ?to	 ?accomplish	 ?this,	 ?alignment	 ?of	 ?actor	 ?incentives,	 ?responsibilities,	 ?and	 ?time	 ?will	 ?need	 ?to	 ?be	 ?considered.	 ?	 ?Integrated	 ?design	 ?needs	 ?to	 ?be	 ?prioritized	 ?across	 ?the	 ?lifecycle	 ?of	 ?the	 ?project	 ?from	 ?design	 ?through	 ?construction,	 ?commissioning,	 ?and	 ?operation	 ?and	 ?not	 ?only	 ?in	 ?the	 ?design	 ?process.	 ?	 ?	 ? 87	 ?	 ?Figure	 ?5-??	 ?1	 ??	 ?Feedback	 ?Diagram	 ?	 ?This	 ?research	 ?shows	 ?emergent	 ?lessons	 ?from	 ?a	 ?high-??performance	 ?design	 ?project	 ?that	 ?may	 ?be	 ?useful	 ?and	 ?applicable	 ?to	 ?other	 ?systems	 ?and	 ?projects.	 ?	 ?As	 ?we	 ?reach	 ?further	 ?as	 ?an	 ?industry,	 ?it	 ?is	 ?important	 ?to	 ?look	 ?back	 ?and	 ?see	 ?what	 ?we	 ?have	 ?learned,	 ?while	 ?also	 ?being	 ?cognizant	 ?that	 ?the	 ?higher	 ?we	 ?set	 ?the	 ?bar	 ?the	 ?more	 ?opportunity	 ?there	 ?is	 ?to	 ?learn	 ?and	 ?the	 ?higher	 ?the	 ?probability	 ?that	 ?we	 ?will	 ?fall	 ?short	 ?of	 ?expectations	 ??	 ?but	 ?we	 ?will	 ?be	 ?further	 ?along	 ?than	 ?had	 ?we	 ?not	 ?reached	 ?and	 ?aimed	 ?higher.	 ?	 ?This	 ?research	 ?also	 ?suggests	 ?a	 ?need	 ?to	 ?explore	 ?tangential	 ?questions	 ?that	 ?have	 ?emerged	 ?through	 ?the	 ?work.	 ?	 ?These	 ?questions	 ?include	 ?those	 ?related	 ?to	 ?creating	 ?a	 ?culture	 ?of	 ?learning	 ?within	 ?the	 ?building	 ?industry,	 ?developing	 ?processes	 ?to	 ?assist	 ?operation	 ?and	 ?design	 ?teams	 ?with	 ?system	 ?integrations,	 ?and	 ?analyzing	 ?projects	 ?in	 ?ways	 ?that	 ?allow	 ?for	 ?the	 ?most	 ?effective	 ?design	 ?and	 ?operational	 ?solutions	 ?to	 ?be	 ?used.	 ?	 ?The	 ?following	 ?table	 ?introduces	 ?some	 ?of	 ?these	 ?questions.	 ?	 ?Emergent	 ?Questions	 ?? How	 ?does	 ?the	 ?building	 ?industry	 ?currently	 ?embrace	 ??failure?,	 ?and	 ?what	 ?processes	 ?would	 ?assist	 ?with	 ?shifting	 ?towards	 ?lifecycle	 ?project	 ?assessment,	 ?improvement,	 ?and	 ?learning?	 ?	 ? ? What	 ?processes	 ?would	 ?assist	 ?operations	 ?and	 ?design	 ?teams	 ?in	 ?implementing	 ?better	 ?systems	 ?to	 ?make	 ?use	 ?of	 ?possible	 ?system	 ?synergies	 ?with	 ?good	 ?system	 ?integrations?	 ?	 ? ? Is	 ?there	 ?a	 ?need	 ?to	 ?expand	 ?and	 ?articulate	 ?a	 ?new	 ?definition	 ?for	 ?what	 ?constitutes	 ?a	 ??smart	 ?energy	 ?system?	 ?and	 ?best	 ?practices	 ?for	 ?their	 ?design	 ?and	 ?implementation?	 ?	 ?	 ? 88	 ?Emergent	 ?Questions	 ?	 ? ? Do	 ?current	 ?contractual	 ?agreements	 ?in	 ?the	 ?building	 ?industry	 ?facilitate	 ?learning,	 ?feedback,	 ?and	 ?system	 ?integrations?	 ?	 ? ? What	 ?are	 ?the	 ?minimum	 ?monitoring	 ?and	 ?assessment	 ?points	 ?needed	 ?in	 ?order	 ?to	 ?assist	 ?in	 ?feedback	 ?and	 ?optimization	 ?of	 ?buildings?	 ?	 ? ? What	 ?processes	 ?are	 ?needed	 ?to	 ?assist	 ?in	 ?feedback	 ?and	 ?learning	 ?for	 ?building	 ?operators,	 ?designers,	 ?and	 ?inhabitants?	 ?	 ? ? What	 ?additional	 ?metrics	 ?are	 ?useful	 ?to	 ?understand	 ?building	 ?and	 ?system	 ?performance?	 ?	 ? ? When	 ?are	 ?multi-??node	 ?building	 ?systems	 ?more	 ?complex	 ?and	 ?less	 ?practical	 ?than	 ?investing	 ?in	 ?making	 ?each	 ?building	 ?more	 ?efficient?	 ?	 ? 	 ?Table	 ?5-??	 ?1	 ??	 ?Emergent	 ?Questions	 ?from	 ?the	 ?Research	 ?Overall,	 ?the	 ?research	 ?shows	 ?that	 ?efficiencies	 ?and	 ?optimizations	 ?can	 ?occur	 ?through	 ?taking	 ?a	 ?systems	 ?view	 ?of	 ?infrastructure	 ?and	 ?that	 ?this	 ?view	 ?should	 ?be	 ?extended	 ?past	 ?the	 ?technical	 ?systems	 ?to	 ?include	 ?the	 ?social	 ?systems	 ?and	 ?learning	 ?that	 ?occurs	 ?within	 ?projects	 ?and	 ?from	 ?building	 ?upon	 ?lessons	 ?of	 ?previous	 ?projects.	 ?	 ?	 ?	 ? 89	 ?References	 ?Agrell,	 ?P.	 ?J.,	 ?Bogetoft,	 ?P.,	 ?&	 ?Mikkers,	 ?M.	 ?(2012).	 ?Smart-??grid	 ?investments,	 ?regulation	 ?and	 ?organization.	 ?Energy	 ?Policy,	 ?52,	 ?656?666.	 ?	 ?Agudelo-??Vera,	 ?C.	 ?M.,	 ?Mels,	 ?A.,	 ?Keesman,	 ?K.,	 ?&	 ?Rijnaarts,	 ?H.	 ?(2012).	 ?The	 ?Urban	 ?Harvest	 ?Approach	 ?as	 ?an	 ?Aid	 ?for	 ?Sustainable	 ?Urban	 ?Resource	 ?Planning.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?16(6).	 ?Ahmadi,	 ?P.,	 ?Rosen,	 ?M.	 ?a.,	 ?&	 ?Dincer,	 ?I.	 ?(2012).	 ?Multi-??objective	 ?exergy-??based	 ?optimization	 ?of	 ?a	 ?polygeneration	 ?energy	 ?system	 ?using	 ?an	 ?evolutionary	 ?algorithm.	 ?Energy,	 ?46(1),	 ?21?31.	 ?	 ?Al-??Ghandoor,	 ?a.,	 ?Phelan,	 ?P.	 ?E.,	 ?Villalobos,	 ?R.,	 ?&	 ?Jaber,	 ?J.	 ?O.	 ?(2010).	 ?Energy	 ?and	 ?exergy	 ?utilizations	 ?of	 ?the	 ?U.S.	 ?manufacturing	 ?sector.	 ?Energy,	 ?35(7),	 ?3048?3065.	 ?	 ?Alagoz,	 ?B.	 ?B.,	 ?Kaygusuz,	 ?a.,	 ?&	 ?Karabiber,	 ?a.	 ?(2012).	 ?A	 ?user-??mode	 ?distributed	 ?energy	 ?management	 ?architecture	 ?for	 ?smart	 ?grid	 ?applications.	 ?Energy,	 ?44(1),	 ?167?177.	 ?	 ?Alvial-??Palavicino,	 ?C.,	 ?Garrido-??Echeverr?a,	 ?N.,	 ?Jim?nez-??Est?vez,	 ?G.,	 ?Reyes,	 ?L.,	 ?&	 ?Palma-??Behnke,	 ?R.	 ?(2011).	 ?A	 ?methodology	 ?for	 ?community	 ?engagement	 ?in	 ?the	 ?introduction	 ?of	 ?renewable	 ?based	 ?smart	 ?microgrid.	 ?Energy	 ?for	 ?Sustainable	 ?Development,	 ?15(3),	 ?314?323.	 ?	 ?Ames,	 ?M.	 ?(2010).	 ?ASHRAE	 ?Connecting	 ?NZEB,	 ?Smart	 ?Grid.	 ?ASHRAE	 ?Journal,	 ?52(12),	 ?144?145.	 ?ASHRAE.	 ?(2013a).	 ?Energy	 ?,	 ?Water	 ?Efficiency	 ?ISH	 ?Focus.	 ?ASHRAE	 ?Journal,	 ?55(7),	 ?6?9.	 ?ASHRAE.	 ?(2013b).	 ?Device	 ?Could	 ?Reduce	 ?Energy	 ?Bill	 ?by	 ?18%.	 ?ASHRAE	 ?Journal,	 ?55(7),	 ?10.	 ?Ban,	 ?M.,	 ?Kraja?i?,	 ?G.,	 ?Grozdek,	 ?M.,	 ??urko,	 ?T.,	 ?&	 ?Dui?,	 ?N.	 ?(2012).	 ?The	 ?role	 ?of	 ?cool	 ?thermal	 ?energy	 ?storage	 ?(CTES)	 ?in	 ?the	 ?integration	 ?of	 ?renewable	 ?energy	 ?sources	 ?(RES)	 ?and	 ?peak	 ?load	 ?reduction.	 ?Energy,	 ?48,	 ?108?117.	 ?	 ?Battaglini,	 ?A.,	 ?Lilliestam,	 ?J.,	 ?Haas,	 ?A.,	 ?&	 ?Patt,	 ?A.	 ?(2009).	 ?Development	 ?of	 ?SuperSmart	 ?Grids	 ?for	 ?a	 ?more	 ?efficient	 ?utilisation	 ?of	 ?electricity	 ?from	 ?renewable	 ?sources.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?17(10),	 ?911?918.	 ?Bayod-??R?jula,	 ?A.	 ?a.	 ?(2009).	 ?Future	 ?development	 ?of	 ?the	 ?electricity	 ?systems	 ?with	 ?distributed	 ?generation.	 ?Energy,	 ?34(3),	 ?377?383.	 ?	 ?BC	 ?Green	 ?Building	 ?Roundtable.	 ?(2007).	 ?Roadmap	 ?for	 ?the	 ?Integrated	 ?Design	 ?Process.	 ?Building	 ?(pp.	 ?1?35).	 ?Behera,	 ?S.	 ?K.,	 ?Kim,	 ?J.-??H.,	 ?Lee,	 ?S.-??Y.,	 ?Suh,	 ?S.,	 ?&	 ?Park,	 ?H.-??S.	 ?(2012).	 ?Evolution	 ?of	 ??designed?	 ?industrial	 ?symbiosis	 ?networks	 ?in	 ?the	 ?Ulsan	 ?Eco-??industrial	 ?Park:	 ??research	 ?and	 ?	 ? 90	 ?development	 ?into	 ?business?	 ?as	 ?the	 ?enabling	 ?framework.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?29-??30,	 ?103?112.	 ?	 ?Bellekom,	 ?S.,	 ?Benders,	 ?R.,	 ?Pelgr?m,	 ?S.,	 ?&	 ?Moll,	 ?H.	 ?(2012).	 ?Electric	 ?cars	 ?and	 ?wind	 ?energy:	 ?Two	 ?problems,	 ?one	 ?solution?	 ?A	 ?study	 ?to	 ?combine	 ?wind	 ?energy	 ?and	 ?electric	 ?cars	 ?in	 ?2020	 ?in	 ?The	 ?Netherlands.	 ?Energy,	 ?45(1),	 ?859?866.	 ?	 ?Blarke,	 ?M.	 ?B.,	 ?Yazawa,	 ?K.,	 ?Shakouri,	 ?A.,	 ?&	 ?Carmo,	 ?C.	 ?(2012).	 ?Thermal	 ?battery	 ?with	 ?CO2	 ?compression	 ?heat	 ?pump:	 ?Techno-??economic	 ?optimization	 ?of	 ?a	 ?high-??efficiency	 ?Smart	 ?Grid	 ?option	 ?for	 ?buildings.	 ?Energy	 ?and	 ?Buildings,	 ?50,	 ?128?138.	 ?	 ?Blasques,	 ?L.	 ?C.	 ?M.,	 ?&	 ?Pinho,	 ?J.	 ?T.	 ?(2012).	 ?Metering	 ?systems	 ?and	 ?demand-??side	 ?management	 ?models	 ?applied	 ?to	 ?hybrid	 ?renewable	 ?energy	 ?systems	 ?in	 ?micro-??grid	 ?configuration.	 ?Energy	 ?Policy,	 ?45,	 ?721?729.	 ?	 ?Block,	 ?C.,	 ?Van	 ?Praet,	 ?B.,	 ?Windels,	 ?T.,	 ?Vermeulen,	 ?I.,	 ?Dangreau,	 ?G.,	 ?Overmeire,	 ?a.,	 ?D?Hooge,	 ?E.,	 ?et	 ?al.	 ?(2011).	 ?Toward	 ?a	 ?Carbon	 ?Dioxide	 ?Neutral	 ?Industrial	 ?Park.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?15(4),	 ?584?596.	 ?	 ?Blokhuis,	 ?E.,	 ?Brouwers,	 ?B.,	 ?Putten,	 ?E.	 ?Van	 ?Der,	 ?&	 ?Schaefer,	 ?W.	 ?(2011).	 ?Peak	 ?loads	 ?and	 ?network	 ?investments	 ?in	 ?sustainable	 ?energy	 ?transitions.	 ?Energy	 ?Policy,	 ?39(10),	 ?6220?6233.	 ?	 ?Blumsack,	 ?S.,	 ?&	 ?Fernandez,	 ?A.	 ?(2012).	 ?Ready	 ?or	 ?not,	 ?here	 ?comes	 ?the	 ?smart	 ?grid!	 ?Energy,	 ?37(1),	 ?61?68.	 ?	 ?Boston,	 ?A.	 ?(2013).	 ?Delivering	 ?a	 ?secure	 ?electricity	 ?supply	 ?on	 ?a	 ?low	 ?carbon	 ?pathway.	 ?Energy	 ?Policy,	 ?52,	 ?55?59.	 ?	 ?Brandoni,	 ?C.,	 ?&	 ?Polonara,	 ?F.	 ?(2012).	 ?The	 ?role	 ?of	 ?municipal	 ?energy	 ?planning	 ?in	 ?the	 ?regional	 ?energy-??planning	 ?process.	 ?Energy,	 ?48(1),	 ?323?338.	 ?	 ?Broto,	 ?V.	 ?C.,	 ?Allen,	 ?A.,	 ?&	 ?Rapoport,	 ?E.	 ?(2012).	 ?Interdisciplinary	 ?Perspectives	 ?on	 ?Urban	 ?Metabolism.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?16(6).	 ?Brown,	 ?Z.,	 ?Cole,	 ?R.	 ?J.,	 ?Shea,	 ?M.	 ?E.	 ?G.	 ?O.,	 ?&	 ?Robinson,	 ?J.	 ?(2010).	 ?New	 ?Expectations	 ?in	 ?Delivering	 ?Sustainable	 ?Buildings	 ?From	 ?occupant	 ?to	 ?inhabitant.	 ?PLEA2009	 ?-??	 ?The	 ?26th	 ?Conference	 ?on	 ?Passive	 ?adn	 ?Low	 ?Energy	 ?architecture	 ?(pp.	 ?22?24).	 ?Quebec	 ?City,	 ?Canada.	 ?Brunner,	 ?P.	 ?H.	 ?(2012).	 ?Substance	 ?Flow	 ?Analysis.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?16(3),	 ?293?295.	 ?	 ?Burgess,	 ?J.,	 ?&	 ?Nye,	 ?M.	 ?(2008).	 ?Re-??materialising	 ?energy	 ?use	 ?through	 ?transparent	 ?monitoring	 ?systems.	 ?Energy	 ?Policy,	 ?36(12),	 ?4454?4459.	 ?	 ?	 ? 91	 ?Butera,	 ?F.	 ?M.	 ?(2013).	 ?Zero-??energy	 ?buildings:	 ?the	 ?challenges.	 ?Advances	 ?in	 ?Building	 ?Energy	 ?Research,	 ?(March),	 ?1?15.	 ?	 ?Carrie	 ?Armel,	 ?K.,	 ?Gupta,	 ?A.,	 ?Shrimali,	 ?G.,	 ?&	 ?Albert,	 ?A.	 ?(2012).	 ?Is	 ?disaggregation	 ?the	 ?holy	 ?grail	 ?of	 ?energy	 ?efficiency?	 ?The	 ?case	 ?of	 ?electricity.	 ?Energy	 ?Policy,	 ?52,	 ?213?234.	 ?	 ?Chen,	 ?T.	 ?Y.	 ?(2001).	 ?Real-??time	 ?predictive	 ?supervisory	 ?operation	 ?of	 ?building	 ?thermal	 ?systems	 ?with	 ?thermal	 ?mass.	 ?Energy	 ?and	 ?Buildings,	 ?33(2),	 ?141?150.	 ?	 ?Chen,	 ?Z.	 ?(2010).	 ?Facilities	 ?intelligence	 ?and	 ?evaluation:	 ?A	 ?multi-??criteria	 ?assessment	 ?approach.	 ?Energy	 ?and	 ?Buildings,	 ?42(5),	 ?728?734.	 ?	 ?Chen,	 ?Z.,	 ?Clements-??Croome,	 ?D.,	 ?Hong,	 ?J.,	 ?Li,	 ?H.,	 ?&	 ?Xu,	 ?Q.	 ?(2006).	 ?A	 ?multicriteria	 ?lifespan	 ?energy	 ?efficiency	 ?approach	 ?to	 ?intelligent	 ?building	 ?assessment.	 ?Energy	 ?and	 ?Buildings,	 ?38(5),	 ?393?409.	 ?	 ?Chiang,	 ?T.,	 ?Natarajan,	 ?S.,	 ?&	 ?Walker,	 ?I.	 ?(2012).	 ?A	 ?laboratory	 ?test	 ?of	 ?the	 ?efficacy	 ?of	 ?energy	 ?display	 ?interface	 ?design.	 ?Energy	 ?and	 ?Buildings,	 ?55,	 ?471?480.	 ?	 ?Chung,	 ?M.,	 ?&	 ?Park,	 ?H.-??C.	 ?(2010).	 ?Development	 ?of	 ?a	 ?software	 ?package	 ?for	 ?community	 ?energy	 ?system	 ?assessment	 ??	 ?Part	 ?I:	 ?Building	 ?a	 ?load	 ?estimator.	 ?Energy,	 ?35(7),	 ?2767?2776.	 ?	 ?Clastres,	 ?C.	 ?(2011).	 ?Smart	 ?grids:	 ?Another	 ?step	 ?towards	 ?competition,	 ?energy	 ?security	 ?and	 ?climate	 ?change	 ?objectives.	 ?Energy	 ?Policy,	 ?39(9),	 ?5399?5408.	 ?	 ?Cohen-??Rosenthal,	 ?E.	 ?(2004).	 ?Making	 ?sense	 ?out	 ?of	 ?industrial	 ?ecology:	 ?a	 ?framework	 ?for	 ?analysis	 ?and	 ?action.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?12(8-??10),	 ?1111?1123.	 ?	 ?Cole,	 ?R.	 ?J.	 ?(2012a).	 ?Transitioning	 ?from	 ?green	 ?to	 ?regenerative	 ?design	 ?Transitioning	 ?from	 ?green	 ?to	 ?regenerative	 ?design.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(1),	 ?39?53.	 ?Cole,	 ?R.	 ?J.	 ?(2012b).	 ?Regenerative	 ?design	 ?and	 ?development?:	 ?current	 ?theory	 ?and	 ?practice.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(1),	 ?1?6.	 ?Cole,	 ?R.	 ?J.	 ?(2012c).	 ?Transitioning	 ?from	 ?green	 ?to	 ?regenerative	 ?design	 ?Transitioning	 ?from	 ?green	 ?to	 ?regenerative	 ?design,	 ?(December	 ?2011),	 ?37?41.	 ?Cole,	 ?R.	 ?J.,	 ?Busby,	 ?P.,	 ?Guenther,	 ?R.,	 ?Briney,	 ?L.,	 ?Blaviesciunaite,	 ?A.,	 ?&	 ?Alencar,	 ?T.	 ?(2011).	 ?A	 ?regenerative	 ?design	 ?framework?:	 ?setting	 ?new	 ?aspirations	 ?and	 ?initiating	 ?new	 ?discussions.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(1),	 ?95?111.	 ?Cole,	 ?R.	 ?J.,	 ?Robinson,	 ?J.,	 ?Brown,	 ?Z.,	 ?&	 ?O?shea,	 ?M.	 ?(2008).	 ?Re-??contextualizing	 ?the	 ?notion	 ?of	 ?comfort.	 ?Building	 ?Research	 ?&	 ?Information,	 ?36(4),	 ?323?336.	 ?	 ?	 ? 92	 ?Coll-??Mayor,	 ?D.,	 ?Picos,	 ?R.,	 ?&	 ?Garci?-??Moreno,	 ?E.	 ?(2004).	 ?State	 ?of	 ?the	 ?art	 ?of	 ?the	 ?virtual	 ?utility:	 ?the	 ?smart	 ?distributed	 ?generation	 ?network.	 ?International	 ?Journal	 ?of	 ?Energy	 ?Research,	 ?28(1),	 ?65?80.	 ?	 ?Cosentino,	 ?V.,	 ?Favuzza,	 ?S.,	 ?Graditi,	 ?G.,	 ?Ippolito,	 ?M.	 ?G.,	 ?Massaro,	 ?F.,	 ?Riva	 ?Sanseverino,	 ?E.,	 ?&	 ?Zizzo,	 ?G.	 ?(2012).	 ?Smart	 ?renewable	 ?generation	 ?for	 ?an	 ?islanded	 ?system.	 ?Technical	 ?and	 ?economic	 ?issues	 ?of	 ?future	 ?scenarios.	 ?Energy,	 ?39(1),	 ?196?204.	 ?	 ?Darby,	 ?S.	 ?J.	 ?(2012).	 ?Load	 ?management	 ?at	 ?home:	 ?advantages	 ?and	 ?drawbacks	 ?of	 ?some	 ??active	 ?demand	 ?side?	 ?options.	 ?Proceedings	 ?of	 ?the	 ?Institution	 ?of	 ?Mechanical	 ?Engineers,	 ?Part	 ?A:	 ?Journal	 ?of	 ?Power	 ?and	 ?Energy,	 ?227(1),	 ?9?17.	 ?	 ?Darby,	 ?Sarah	 ?J.	 ?(2012).	 ?Metering:	 ?EU	 ?policy	 ?and	 ?implications	 ?for	 ?fuel	 ?poor	 ?households.	 ?Energy	 ?Policy,	 ?49,	 ?98?106.	 ?	 ?Davis,	 ?C.,	 ?Nikolic,	 ?I.,	 ?&	 ?Dijkema,	 ?G.	 ?P.	 ?J.	 ?(2010).	 ?Industrial	 ?Ecology	 ?2.0.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?14(5),	 ?707?726.	 ?	 ?Dowlatabadi,	 ?H.	 ?(1984).	 ?Electricity	 ?Interchange	 ?Between	 ?Integrated	 ?Grid	 ?Systems:	 ?Methods	 ?and	 ?Case	 ?Studies.	 ?Cambridge	 ?University.	 ?Du	 ?Plessis,	 ?C.,	 ?&	 ?Cole,	 ?R.	 ?J.	 ?(2011).	 ?Motivating	 ?change:	 ?shifting	 ?the	 ?paradigm.	 ?Building	 ?Research	 ?&	 ?Information,	 ?39(5),	 ?436?449.	 ?	 ?Egan,	 ?L.	 ?C.,	 ?Bloom,	 ?P.,	 ?&	 ?Santos,	 ?L.	 ?R.	 ?(2010).	 ?Choice-??induced	 ?preferences	 ?in	 ?the	 ?absence	 ?of	 ?choice:	 ?Evidence	 ?from	 ?a	 ?blind	 ?two	 ?choice	 ?paradigm	 ?with	 ?young	 ?children	 ?and	 ?capuchin	 ?monkeys.	 ?Journal	 ?of	 ?Experimental	 ?Social	 ?Psychology,	 ?46(1),	 ?204?207.	 ?	 ?Ehrenfeld,	 ?J.	 ?(2004).	 ?Industrial	 ?ecology:	 ?a	 ?new	 ?field	 ?or	 ?only	 ?a	 ?metaphor?	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?12(8-??10),	 ?825?831.	 ?	 ?Ehrenfeld,	 ?J.	 ?R.	 ?(2000).	 ?Industrial	 ?ecology?:	 ?Paradigm	 ?shift	 ?or	 ?normal	 ?science?	 ?The	 ?American	 ?Behavioural	 ?Scientist,	 ?44(2),	 ?229?244.	 ?Fischhoff,	 ?B.,	 ?&	 ?Hall,	 ?J.	 ?(1992).	 ?The	 ?Weighing	 ?of	 ?Evidence	 ?and	 ?the	 ?Determinants	 ?of	 ?Confidence,	 ?411435,	 ?411?435.	 ?Fischhoff,	 ?B.,	 ?Slovic,	 ?P.,	 ?&	 ?Lichtenstein,	 ?S.	 ?(1977).	 ?Knowing	 ?with	 ?certainty:	 ?The	 ?appropriateness	 ?of	 ?extreme	 ?confidence.	 ?Journal	 ?of	 ?Experimental	 ?Psychology:	 ?Human	 ?Perception	 ?and	 ?Performance,	 ?3(4),	 ?552?564.	 ?	 ?Gann,	 ?D.,	 ?Salter,	 ?A.,	 ?&	 ?Whyte,	 ?J.	 ?(2003).	 ?Design	 ?Quality	 ?Indicator	 ?as	 ?a	 ?tool	 ?for	 ?thinking.	 ?Building	 ?Research	 ?&	 ?Information,	 ?31(5),	 ?318?333.	 ?	 ?Giordano,	 ?V.,	 ?&	 ?Fulli,	 ?G.	 ?(2011).	 ?A	 ?business	 ?case	 ?for	 ?Smart	 ?Grid	 ?technologies:	 ?A	 ?systemic	 ?perspective.	 ?Energy	 ?Policy,	 ?40,	 ?252?259.	 ?	 ?	 ? 93	 ?Glad,	 ?W.	 ?(2012).	 ?social	 ?learning	 ?Housing	 ?renovation	 ?and	 ?energy	 ?systems?:	 ?the	 ?need	 ?for	 ?social	 ?learning.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(3),	 ?37?41.	 ?Hastbacka,	 ?B.	 ?M.,	 ?Ponoum,	 ?R.,	 ?&	 ?Bouza,	 ?A.	 ?(2013).	 ?Monitoring	 ?&	 ?Control.	 ?ASHRAE	 ?Journal,	 ?55(5),	 ?92?94.	 ?Hiete,	 ?M.,	 ?Ludwig,	 ?J.,	 ?&	 ?Schultmann,	 ?F.	 ?(2012).	 ?Intercompany	 ?Energy	 ?Integration.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?16(5),	 ?689?698.	 ?	 ?Hodson,	 ?M.,	 ?Marvin,	 ?S.,	 ?Robinson,	 ?B.,	 ?&	 ?Swilling,	 ?M.	 ?(2012).	 ?Reshaping	 ?Urban	 ?Infrastructure.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?16(6).	 ?Hoxie,	 ?C.,	 ?Berkebile,	 ?R.,	 ?Todd,	 ?J.	 ?A.,	 ?&	 ?Anntodd,	 ?J.	 ?(2012).	 ?Stimulating	 ?regenerative	 ?development	 ?through	 ?community	 ?dialogue.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(1),	 ?65?80.	 ?Jensen,	 ?P.	 ?D.,	 ?Basson,	 ?L.,	 ?&	 ?Leach,	 ?M.	 ?(2011).	 ?Reinterpreting	 ?Industrial	 ?Ecology.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?15(5),	 ?680?692.	 ?	 ?Kaneda,	 ?D.,	 ?&	 ?Jacobson,	 ?B.	 ?(2010).	 ?Plug	 ?Load	 ?Reduction?:	 ?The	 ?Next	 ?Big	 ?Hurdle	 ?for	 ?Net	 ?Zero	 ?Energy	 ?Building	 ?Design,	 ?120?130.	 ?Karjalainen,	 ?S.,	 ?&	 ?Lappalainen,	 ?V.	 ?(2011).	 ?Integrated	 ?control	 ?and	 ?user	 ?interfaces	 ?for	 ?a	 ?space.	 ?Building	 ?and	 ?Environment,	 ?46(4),	 ?938?944.	 ?	 ?Kiviluoma,	 ?J.,	 ?&	 ?Meibom,	 ?P.	 ?(2010).	 ?Influence	 ?of	 ?wind	 ?power,	 ?plug-??in	 ?electric	 ?vehicles,	 ?and	 ?heat	 ?storages	 ?on	 ?power	 ?system	 ?investments.	 ?Energy,	 ?35(3),	 ?1244?1255.	 ?	 ?Koskela,	 ?L.,	 ?&	 ?Vrijhoef,	 ?R.	 ?(2001).	 ?Is	 ?the	 ?current	 ?theory	 ?of	 ?construction	 ?a	 ?hindrance	 ?to	 ?innovation?	 ?Building	 ?Research	 ?&	 ?Information,	 ?29(3),	 ?197?207.	 ?	 ?Krishnamurti,	 ?T.,	 ?Schwartz,	 ?D.,	 ?Davis,	 ?A.,	 ?Fischhoff,	 ?B.,	 ?De	 ?Bruin,	 ?W.	 ?B.,	 ?Lave,	 ?L.,	 ?&	 ?Wang,	 ?J.	 ?(2012a).	 ?Preparing	 ?for	 ?smart	 ?grid	 ?technologies:	 ?A	 ?behavioral	 ?decision	 ?research	 ?approach	 ?to	 ?understanding	 ?consumer	 ?expectations	 ?about	 ?smart	 ?meters.	 ?Energy	 ?Policy,	 ?41,	 ?790?797.	 ?	 ?Krishnamurti,	 ?T.,	 ?Schwartz,	 ?D.,	 ?Davis,	 ?A.,	 ?Fischhoff,	 ?B.,	 ?De	 ?Bruin,	 ?W.	 ?B.,	 ?Lave,	 ?L.,	 ?&	 ?Wang,	 ?J.	 ?(2012b).	 ?Preparing	 ?for	 ?smart	 ?grid	 ?technologies:	 ?A	 ?behavioral	 ?decision	 ?research	 ?approach	 ?to	 ?understanding	 ?consumer	 ?expectations	 ?about	 ?smart	 ?meters.	 ?Energy	 ?Policy,	 ?41,	 ?790?797.	 ?	 ?Lachman,	 ?M.	 ?E.,	 ?&	 ?Weaver,	 ?S.	 ?L.	 ?(1998).	 ?The	 ?sense	 ?of	 ?control	 ?as	 ?a	 ?moderator	 ?of	 ?social	 ?class	 ?differences	 ?in	 ?health	 ?and	 ?well-??being.	 ?Journal	 ?of	 ?personality	 ?and	 ?social	 ?psychology,	 ?74(3),	 ?763?73.	 ?	 ?	 ? 94	 ?Lawrence,	 ?T.	 ?M.,	 ?Watson,	 ?R.	 ?T.,	 ?Boudreau,	 ?M.-??C.,	 ?Johnsen,	 ?K.,	 ?Perry,	 ?J.,	 ?&	 ?Ding,	 ?L.	 ?(2012).	 ?A	 ?new	 ?paradigm	 ?for	 ?the	 ?design	 ?and	 ?management	 ?of	 ?building	 ?systems.	 ?Energy	 ?and	 ?Buildings,	 ?51,	 ?56?63.	 ?	 ?Liberation,	 ?N.,	 ?&	 ?Trope,	 ?Y.	 ?(1998).	 ?The	 ?Role	 ?of	 ?Feasibility	 ?and	 ?Desirability	 ?Considerations	 ?in	 ?Near	 ?and	 ?Distant	 ?Future	 ?Decisions?:	 ?A	 ?Test	 ?of	 ?Temporal	 ?Construal	 ?Theory,	 ?75(1),	 ?5?18.	 ?Liu,	 ?K.,	 ?Nakata,	 ?K.,	 ?&	 ?Harty,	 ?C.	 ?(2010).	 ?Pervasive	 ?informatics:	 ?theory,	 ?practice	 ?and	 ?future	 ?directions.	 ?Intelligent	 ?Buildings	 ?International,	 ?2(1),	 ?5?19.	 ?	 ?Macchi,	 ?L.,	 ?Osherson,	 ?D.,	 ?&	 ?Krantz,	 ?D.	 ?H.	 ?(1999).	 ?THEORETICAL	 ?NOTES	 ?A	 ?Note	 ?on	 ?Superadditive	 ?Probability	 ?Judgment,	 ?106(1),	 ?210?214.	 ?Mah,	 ?D.	 ?N.,	 ?Van	 ?der	 ?Vleuten,	 ?J.	 ?M.,	 ?Hills,	 ?P.,	 ?&	 ?Tao,	 ?J.	 ?(2012).	 ?Consumer	 ?perceptions	 ?of	 ?smart	 ?grid	 ?development:	 ?Results	 ?of	 ?a	 ?Hong	 ?Kong	 ?survey	 ?and	 ?policy	 ?implications.	 ?Energy	 ?Policy,	 ?49,	 ?204?216.	 ?Mang,	 ?P.,	 ?&	 ?Reed,	 ?B.	 ?(2012).	 ?Designing	 ?from	 ?place?:	 ?a	 ?regenerative	 ?framework	 ?and	 ?methodology.	 ?Building	 ?Research	 ?&	 ?Information,	 ?40(1),	 ?23?28.	 ?Mirata,	 ?M.,	 ?&	 ?Emtairah,	 ?T.	 ?(2005).	 ?Industrial	 ?symbiosis	 ?networks	 ?and	 ?the	 ?contribution	 ?to	 ?environmental	 ?innovation.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?13(10-??11),	 ?993?1002.	 ?	 ?Moffatt,	 ?S.,	 ?&	 ?Kohler,	 ?N.	 ?(2008).	 ?Conceptualizing	 ?the	 ?built	 ?environment	 ?as	 ?a	 ?social?ecological	 ?system.	 ?Building	 ?Research	 ?&	 ?Information,	 ?36(3),	 ?248?268.	 ?	 ?Newsham,	 ?G.	 ?R.,	 ?Mancini,	 ?S.,	 ?&	 ?Birt,	 ?B.	 ?J.	 ?(2009).	 ?Do	 ?LEED-??certified	 ?buildings	 ?save	 ?energy?	 ?Yes,	 ?but.	 ?Energy	 ?and	 ?Buildings,	 ?41(8),	 ?897?905.	 ?	 ?Ngar-??yin	 ?Mah,	 ?D.,	 ?Van	 ?der	 ?Vleuten,	 ?J.	 ?M.,	 ?Chi-??man	 ?Ip,	 ?J.,	 ?&	 ?Ronald	 ?Hills,	 ?P.	 ?(2012).	 ?Governing	 ?the	 ?transition	 ?of	 ?socio-??technical	 ?systems:	 ?A	 ?case	 ?study	 ?of	 ?the	 ?development	 ?of	 ?smart	 ?grids	 ?in	 ?Korea.	 ?Energy	 ?Policy,	 ?45,	 ?133?141.	 ?	 ?O?Brien,	 ?G.,	 ?&	 ?Hope,	 ?A.	 ?(2010).	 ?Localism	 ?and	 ?energy:	 ?Negotiating	 ?approaches	 ?to	 ?embedding	 ?resilience	 ?in	 ?energy	 ?systems.	 ?Energy	 ?Policy,	 ?38(12),	 ?7550?7558.	 ?	 ?Park,	 ?H.-??S.,	 ?&	 ?Won,	 ?J.-??Y.	 ?(2007).	 ?Ulsan	 ?Eco-??industrial	 ?Park.	 ?Journal	 ?of	 ?Industrial	 ?Ecology,	 ?11(3),	 ?11?13.	 ?Reed,	 ?B.	 ?(2007).	 ?Shifting	 ?from	 ??sustainability?	 ?to	 ?regeneration.	 ?Building	 ?Research	 ?&	 ?Information,	 ?35(6),	 ?674?680.	 ?	 ?Rob?rt,	 ?K.-??H.,	 ?Schmidt-??Bleek,	 ?B.,	 ?Aloisi	 ?de	 ?Larderel,	 ?J.,	 ?Basile,	 ?G.,	 ?Jansen,	 ?J.	 ?L.,	 ?Kuehr,	 ?R.,	 ?Price	 ?Thomas,	 ?P.,	 ?et	 ?al.	 ?(2002).	 ?Strategic	 ?sustainable	 ?development	 ??	 ?selection,	 ?design	 ?and	 ?synergies	 ?of	 ?applied	 ?tools.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?10(3),	 ?197?214.	 ?	 ?	 ? 95	 ?Robinson,	 ?J.,	 ?Cole,	 ?R.	 ?J.,	 ?Kingstone,	 ?A.,	 ?&	 ?Cayuela,	 ?A.	 ?(2013).	 ?The	 ?Centre	 ?for	 ?Interactive	 ?Research	 ?on	 ?Sustainability	 ?,	 ?UBC?:	 ?Creating	 ?Net	 ?Positive	 ?Benefits	 ?at	 ?Multiple	 ?Scales	 ?(pp.	 ?1?11).	 ?Ryff,	 ?C.	 ?D.	 ?(1989).	 ?Happiness	 ?is	 ?everything,	 ?or	 ?is	 ?it?	 ?Explorations	 ?on	 ?the	 ?meaning	 ?of	 ?psychological	 ?well-??being.	 ?Journal	 ?of	 ?Personality	 ?and	 ?Social	 ?Psychology,	 ?57(6),	 ?1069?1081.	 ?	 ?Schwartz,	 ?D.,	 ?Fischhoff,	 ?B.,	 ?Krishnamurti,	 ?T.,	 ?&	 ?Sowell,	 ?F.	 ?(2013).	 ?The	 ?Hawthorne	 ?effect	 ?and	 ?energy	 ?awareness,	 ?2013.	 ?	 ?Seager,	 ?T.	 ?.,	 ?&	 ?Theis,	 ?T.	 ?.	 ?(2002).	 ?A	 ?uniform	 ?definition	 ?and	 ?quantitative	 ?basis	 ?for	 ?industrial	 ?ecology.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?10(3),	 ?225?235.	 ?	 ?Shove,	 ?E.	 ?(2003).	 ?Users,	 ?Technologies	 ?and	 ?Expectations	 ?of	 ?Comfort,	 ?Cleanliness	 ?and	 ?Convenience.	 ?Innovation:	 ?The	 ?European	 ?Journal	 ?of	 ?Social	 ?Science	 ?Research,	 ?16(2),	 ?193?206.	 ?	 ?Steer,	 ?K.	 ?C.	 ?B.,	 ?Wirth,	 ?A.,	 ?&	 ?Halgamuge,	 ?S.	 ?K.	 ?(2012).	 ?Decision	 ?tree	 ?ensembles	 ?for	 ?online	 ?operation	 ?of	 ?large	 ?smart	 ?grids.	 ?Energy	 ?Conversion	 ?and	 ?Management,	 ?59,	 ?9?18.	 ?	 ?Stoeglehner,	 ?G.,	 ?Niemetz,	 ?N.,	 ?&	 ?Kettl,	 ?K.-??H.	 ?(2011).	 ?Spatial	 ?dimensions	 ?of	 ?sustainable	 ?energy	 ?systems:	 ?new	 ?visions	 ?for	 ?integrated	 ?spatial	 ?and	 ?energy	 ?planning.	 ?Energy,	 ?Sustainability	 ?and	 ?Society,	 ?1(1),	 ?2.	 ?	 ?Strachan,	 ?N.,	 ?&	 ?Dowlatabadi,	 ?H.	 ?(2002).	 ?Distributed	 ?generation	 ?and	 ?distribution	 ?utilities.	 ?Energy	 ?Policy,	 ?30,	 ?649?661.	 ?Stylianou,	 ?M.	 ?(2011).	 ?Smart	 ?Net	 ?Zero	 ?Energy	 ?Buildings	 ?and	 ?Their	 ?Integration	 ?in	 ?the	 ?Electrical	 ?Grid.	 ?ASHRAE	 ?Transactions,	 ?322?330.	 ?Taylor,	 ?P.,	 ?Rajagopalan,	 ?P.,	 ?&	 ?Tony,	 ?C.	 ?Y.	 ?L.	 ?(2012).	 ?Advances	 ?in	 ?Building	 ?Energy	 ?Research	 ?Progress	 ?on	 ?building	 ?energy	 ?labelling	 ?techniques,	 ?(March	 ?2013),	 ?37?41.	 ?Thomas,	 ?L.	 ?E.	 ?(2010).	 ?Evaluating	 ?design	 ?strategies,	 ?performance	 ?and	 ?occupant	 ?satisfaction:	 ?a	 ?low	 ?carbon	 ?office	 ?refurbishment.	 ?Building	 ?Research	 ?&	 ?Information,	 ?38(6),	 ?610?624.	 ?	 ?Trope,	 ?Y.,	 ?&	 ?Liberman,	 ?N.	 ?(2010).	 ?Construal-??level	 ?theory	 ?of	 ?psychological	 ?distance.	 ?Psychological	 ?review,	 ?117(2),	 ?440?63.	 ?	 ?Verbong,	 ?G.	 ?P.	 ?J.,	 ?Beemsterboer,	 ?S.,	 ?&	 ?Sengers,	 ?F.	 ?(2013).	 ?Smart	 ?grids	 ?or	 ?smart	 ?users??	 ?Involving	 ?users	 ?in	 ?developing	 ?a	 ?low	 ?carbon	 ?electricity	 ?economy.	 ?Energy	 ?Policy,	 ?52,	 ?117?125.	 ?	 ?	 ? 96	 ?Wade,	 ?N.	 ?S.,	 ?Taylor,	 ?P.	 ?C.,	 ?Lang,	 ?P.	 ?D.,	 ?&	 ?Jones,	 ?P.	 ?R.	 ?(2010).	 ?Evaluating	 ?the	 ?benefits	 ?of	 ?an	 ?electrical	 ?energy	 ?storage	 ?system	 ?in	 ?a	 ?future	 ?smart	 ?grid.	 ?Energy	 ?Policy,	 ?38(11),	 ?7180?7188.	 ?	 ?Wolfe,	 ?P.	 ?(2008).	 ?The	 ?implications	 ?of	 ?an	 ?increasingly	 ?decentralised	 ?energy	 ?system.	 ?Energy	 ?Policy,	 ?36(12),	 ?4509?4513.	 ?	 ?Yang,	 ?P.	 ?P.-??J.,	 ?&	 ?Lay,	 ?O.	 ?B.	 ?(2004).	 ?Applying	 ?ecosystem	 ?concepts	 ?to	 ?the	 ?planning	 ?of	 ?industrial	 ?areas:	 ?a	 ?case	 ?study	 ?of	 ?Singapore?s	 ?Jurong	 ?Island.	 ?Journal	 ?of	 ?Cleaner	 ?Production,	 ?12(8-??10),	 ?1011?1023.	 ?	 ?Zeng,	 ?Z.,	 ?Zhao,	 ?R.,	 ?&	 ?Yang,	 ?H.	 ?(2012).	 ?Micro-??sources	 ?Design	 ?of	 ?an	 ?Intelligent	 ?Building	 ?Integrated	 ?with	 ?Micro-??grid.	 ?Energy	 ?and	 ?Buildings,	 ?57,	 ?261?267.	 ?	 ? 	 ? 97	 ?Appendix	 ?I	 ??	 ?Statistical	 ?Analysis	 ?of	 ?Inhabitant	 ?Controls	 ?Survey	 ? Number of completed surveys (45) ? Response rate = 22.6%.  This response rate is based on the survey link being sent to the list of current CIRS inhabitants (199 inhabitants excluding the researchers).  This response rate is relatively low, however the survey was delivered in August when many inhabitants were away.  60 people were estimated to be in the building during the month of August.  1. How satisfied are you with the indoor environment at CIRS with respect to the following systems?   With this question we hope to uncover general satisfaction with the indoor environment in CIRS.  Descriptive Statistics  N Minimum Maximum Mean Std. Deviation In General 40 1.0 6.0 5.200 1.0427 Lighting 45 1.0 6.0 4.244 1.4327 Heating & Cooling 44 1.0 6.0 4.250 1.4163 Ventilation & Air Quality 45 1.0 6.0 4.978 1.2879 Acoustics 45 1.0 6.0 3.267 1.5136 Valid N (listwise) 39      Frequencies Statistics  In General Lighting Heating & Cooling Ventilation & Air Quality Acoustics N Valid 40 45 44 45 45 Missing 5 0 1 0 0    	 ? 98	 ?Frequency Table  General satisfaction with indoor environment  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 1 2.2 2.5 2.5 3.0 1 2.2 2.5 5.0 4.0 5 11.1 12.5 17.5 5.0 14 31.1 35.0 52.5 6.0 19 42.2 47.5 100.0 Total 40 88.9 100.0  Missing System 5 11.1   Total 45 100.0    Satisfaction with lighting  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 4.4 4.4 2.0 3 6.7 6.7 11.1 3.0 9 20.0 20.0 31.1 4.0 10 22.2 22.2 53.3 5.0 10 22.2 22.2 75.6 6.0 11 24.4 24.4 100.0 Total 45 100.0 100.0   Satisfaction with Heating and Cooling  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 1 2.2 2.3 2.3 2.0 7 15.6 15.9 18.2 3.0 3 6.7 6.8 25.0 4.0 11 24.4 25.0 50.0 5.0 13 28.9 29.5 79.5 6.0 9 20.0 20.5 100.0 Total 44 97.8 100.0  Missing System 1 2.2   Total 45 100.0   	 ? 99	 ? Satisfaction with Ventilation and Air Quality  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 4.4 4.4 3.0 4 8.9 8.9 13.3 4.0 5 11.1 11.1 24.4 5.0 14 31.1 31.1 55.6 6.0 20 44.4 44.4 100.0 Total 45 100.0 100.0   Satisfaction with acoustics  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 6 13.3 13.3 13.3 2.0 9 20.0 20.0 33.3 3.0 11 24.4 24.4 57.8 4.0 10 22.2 22.2 80.0 5.0 4 8.9 8.9 88.9 6.0 5 11.1 11.1 100.0 Total 45 100.0 100.0     	 ? 100	 ?3. How knowledgeable do you feel you are about the design intent of systems in CIRS? Note that we are using design intent to mean the design goals, intended system functioning, and the performance that the project was intended to achieve. With this question we hope to uncover how much communication of design intent has existed for inhabitants as well as have a calibration point against which to measure levels of success in achieving design intent and operational optimizations. Descriptive Statistics  N Minimum Maximum Mean Std. Deviation In General  40 1 6 4.55 1.260 Lighting  43 2.0 6.0 4.512 1.0992 Heating & cooling  43 1.0 6.0 4.535 1.2974 Energy harvesting systems such as the EOS heat exchange, geothermal loop, solar hot water system and photovoltaic panels 44 1.0 6.0 4.318 1.4105 Ventilation & Air Quality  43 1.0 6.0 4.256 1.2927 Acoustics  43 1.0 6.0 3.698 1.3369 Valid N (listwise) 40      Frequencies Statistics  In General  Lighting  Heating & cooling  Energy harvesting systems  Ventilation & Air Quality  Acoustics  N Valid 40 43 43 44 43 43 Missing 5 2 2 1 2 2    	 ? 101	 ?Frequency Table  In General (Knowledge of Intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1 1 2.2 2.5 2.5 2 2 4.4 5.0 7.5 3 4 8.9 10.0 17.5 4 10 22.2 25.0 42.5 5 13 28.9 32.5 75.0 6 10 22.2 25.0 100.0 Total 40 88.9 100.0  Missing 7 1 2.2   System 4 8.9   Total 5 11.1   Total 45 100.0    Lighting (Knowledge of Intent)  Frequency Percent Valid Percent Cumulative Percent Valid 2.0 3 6.7 7.0 7.0 3.0 2 4.4 4.7 11.6 4.0 17 37.8 39.5 51.2 5.0 12 26.7 27.9 79.1 6.0 9 20.0 20.9 100.0 Total 43 95.6 100.0  Missing 7.0 1 2.2   System 1 2.2   Total 2 4.4   Total 45 100.0    	 ? 	 ?	 ? 102	 ?Heating & cooling (knowledge of intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 1 2.2 2.3 2.3 2.0 3 6.7 7.0 9.3 3.0 4 8.9 9.3 18.6 4.0 10 22.2 23.3 41.9 5.0 14 31.1 32.6 74.4 6.0 11 24.4 25.6 100.0 Total 43 95.6 100.0  Missing 7.0 1 2.2   System 1 2.2   Total 2 4.4   Total 45 100.0    Energy harvesting systems (knowledge of intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 4.5 4.5 2.0 3 6.7 6.8 11.4 3.0 8 17.8 18.2 29.5 4.0 6 13.3 13.6 43.2 5.0 16 35.6 36.4 79.5 6.0 9 20.0 20.5 100.0 Total 44 97.8 100.0  Missing System 1 2.2   Total 45 100.0    	 ? 	 ?	 ? 103	 ?Ventilation & Air Quality (knowledge of intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 4.7 4.7 3.0 11 24.4 25.6 30.2 4.0 10 22.2 23.3 53.5 5.0 12 26.7 27.9 81.4 6.0 8 17.8 18.6 100.0 Total 43 95.6 100.0  Missing 7.0 1 2.2   System 1 2.2   Total 2 4.4   Total 45 100.0    Acoustics (knowledge of intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 4.7 4.7 2.0 7 15.6 16.3 20.9 3.0 10 22.2 23.3 44.2 4.0 10 22.2 23.3 67.4 5.0 11 24.4 25.6 93.0 6.0 3 6.7 7.0 100.0 Total 43 95.6 100.0  Missing 7.0 1 2.2   System 1 2.2   Total 2 4.4   Total 45 100.0      	 ? 104	 ?5. How successful do you feel CIRS has been in achieving the design intent of systems in CIRS? Note that we are using design intent to mean the design goals, intended system functioning, and the performance that the project was intended to achieve. With this question we hope to uncover whether there is a gap between how inhabitants view the building as functioning and the performance of systems at CIRS to date. Descriptive Statistics  N Minimum Maximum Mean Std. Deviation In General  39 1.0 6.0 4.333 1.2212 Lighting  41 1.0 6.0 4.146 1.3334 Heating & cooling  40 1.0 6.0 4.325 1.3471 Energy harvesting systems  31 1.0 6.0 4.258 1.4825 Ventilation & Air Quality 40 1.0 6.0 4.425 1.1742 Acoustics  36 1.0 6.0 3.306 1.4701 Valid N (listwise) 27      Frequencies Statistics  In General  Lighting  Heating & cooling  Energy harvesting systems  Ventilation & Air Quality  Acoustics  N Valid 39 41 40 31 40 36 Missing 6 4 5 14 5 9    	 ? 105	 ?Frequency Table  In General (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 1 2.2 2.6 2.6 2.0 3 6.7 7.7 10.3 3.0 3 6.7 7.7 17.9 4.0 13 28.9 33.3 51.3 5.0 13 28.9 33.3 84.6 6.0 6 13.3 15.4 100.0 Total 39 86.7 100.0  Missing 7.0 3 6.7   System 3 6.7   Total 6 13.3   Total 45 100.0    Lighting (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 1 2.2 2.4 2.4 2.0 5 11.1 12.2 14.6 3.0 5 11.1 12.2 26.8 4.0 13 28.9 31.7 58.5 5.0 10 22.2 24.4 82.9 6.0 7 15.6 17.1 100.0 Total 41 91.1 100.0  Missing 7.0 3 6.7   System 1 2.2   Total 4 8.9   Total 45 100.0    	 ? 	 ?	 ? 106	 ?Heating & cooling (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 5.0 5.0 2.0 2 4.4 5.0 10.0 3.0 7 15.6 17.5 27.5 4.0 5 11.1 12.5 40.0 5.0 18 40.0 45.0 85.0 6.0 6 13.3 15.0 100.0 Total 40 88.9 100.0  Missing 7.0 3 6.7   System 2 4.4   Total 5 11.1   Total 45 100.0    Energy harvesting systems (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 3 6.7 9.7 9.7 2.0 1 2.2 3.2 12.9 3.0 3 6.7 9.7 22.6 4.0 8 17.8 25.8 48.4 5.0 10 22.2 32.3 80.6 6.0 6 13.3 19.4 100.0 Total 31 68.9 100.0  Missing 7.0 13 28.9   System 1 2.2   Total 14 31.1   Total 45 100.0    	 ? 	 ?	 ? 107	 ?Ventilation & Air Quality (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 2 4.4 5.0 5.0 2.0 1 2.2 2.5 7.5 3.0 2 4.4 5.0 12.5 4.0 13 28.9 32.5 45.0 5.0 17 37.8 42.5 87.5 6.0 5 11.1 12.5 100.0 Total 40 88.9 100.0  Missing 7.0 4 8.9   System 1 2.2   Total 5 11.1   Total 45 100.0     Acoustics (success in intent)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 7 15.6 19.4 19.4 2.0 3 6.7 8.3 27.8 3.0 7 15.6 19.4 47.2 4.0 11 24.4 30.6 77.8 5.0 7 15.6 19.4 97.2 6.0 1 2.2 2.8 100.0 Total 36 80.0 100.0  Missing 7.0 7 15.6   System 2 4.4   Total 9 20.0   Total 45 100.0       	 ? 108	 ?7. How effectively do you feel the systems in CIRS allow inhabitants to monitor their environment? (such as knowing how much energy has been used or how many people are in the building) With this question we hope to uncover whether inhabitants feel their ability to monitor their environment and the building is adequate. Note that this question does not necessarily imply that specific monitoring capabilities are available. Descriptives  Descriptive Statistics  N Minimum Maximum Mean Std. Deviation In General  35 1.0 5.0 2.314 1.4095 Lighting  37 1.0 5.0 2.216 1.3152 Heating & cooling  37 1.0 5.0 2.216 1.3771 Ventilation & Air Quality  37 1.0 6.0 2.432 1.5553 Acoustics  35 1.0 6.0 2.200 1.3677 Valid N (listwise) 33      Frequencies Statistics  In General  Lighting  Heating & cooling  Ventilation & Air Quality  Acoustics  N Valid 35 37 37 37 35 Missing 10 8 8 8 10    	 ? 109	 ?Frequency Table In General (effective monitoring)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 15 33.3 42.9 42.9 2.0 5 11.1 14.3 57.1 3.0 8 17.8 22.9 80.0 4.0 3 6.7 8.6 88.6 5.0 4 8.9 11.4 100.0 Total 35 77.8 100.0  Missing .0 1 2.2   7.0 5 11.1   System 4 8.9   Total 10 22.2   Total 45 100.0   	 ?	 ? 110	 ?Lighting (effective monitoring)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 16 35.6 43.2 43.2 2.0 6 13.3 16.2 59.5 3.0 9 20.0 24.3 83.8 4.0 3 6.7 8.1 91.9 5.0 3 6.7 8.1 100.0 Total 37 82.2 100.0  Missing .0 1 2.2   7.0 5 11.1   System 2 4.4   Total 8 17.8   Total 45 100.0    Heating & cooling (effective monitoring)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 17 37.8 45.9 45.9 2.0 5 11.1 13.5 59.5 3.0 9 20.0 24.3 83.8 4.0 2 4.4 5.4 89.2 5.0 4 8.9 10.8 100.0 Total 37 82.2 100.0  Missing .0 1 2.2   7.0 5 11.1   System 2 4.4   Total 8 17.8   Total 45 100.0     Ventilation & Air Quality (effective monitoring)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 16 35.6 43.2 43.2 2.0 4 8.9 10.8 54.1 3.0 8 17.8 21.6 75.7 4.0 5 11.1 13.5 89.2 5.0 2 4.4 5.4 94.6 6.0 2 4.4 5.4 100.0 Total 37 82.2 100.0  Missing .0 1 2.2   7.0 5 11.1   System 2 4.4   Total 8 17.8   Total 45 100.0    	 ?	 ?	 ? 111	 ?Acoustics (effective monitoring)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 16 35.6 45.7 45.7 2.0 6 13.3 17.1 62.9 3.0 5 11.1 14.3 77.1 4.0 7 15.6 20.0 97.1 6.0 1 2.2 2.9 100.0 Total 35 77.8 100.0  Missing .0 1 2.2   7.0 7 15.6   System 2 4.4   Total 10 22.2   Total 45 100.0    14. The CIRS design team specified as a design goal to ?provide feedback to building inhabitants as to how their behaviour affects energy, water, and material use? How well do you feel the current feedback system in CIRS achieves this goal? With this question we hope to uncover inhabitants? viewpoint on whether this goal is being achieved. Additional comments are helpful.  Descriptives Descriptive Statistics  N Minimum Maximum Mean Std. Deviation In General  39 1.0 6.0 2.487 1.4667 With respect to energy use  39 1.0 6.0 2.359 1.3667 With respect to water use  39 1.0 6.0 2.333 1.3637 With respect to material use  38 1.0 6.0 2.342 1.4003 Valid N (listwise) 38      Frequencies Statistics  In General  With respect to energy use  With respect to water use  With respect to material use  N Valid 39 39 39 38 Missing 6 6 6 7  	 ? 112	 ?Frequency Table In General (feedback goal)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 15 33.3 38.5 38.5 2.0 6 13.3 15.4 53.8 3.0 6 13.3 15.4 69.2 4.0 9 20.0 23.1 92.3 5.0 2 4.4 5.1 97.4 6.0 1 2.2 2.6 100.0 Total 39 86.7 100.0  Missing 7.0 2 4.4   System 4 8.9   Total 6 13.3   Total 45 100.0    With respect to energy use (feedback goal)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 15 33.3 38.5 38.5 2.0 7 15.6 17.9 56.4 3.0 8 17.8 20.5 76.9 4.0 7 15.6 17.9 94.9 5.0 1 2.2 2.6 97.4 6.0 1 2.2 2.6 100.0 Total 39 86.7 100.0  Missing 7.0 2 4.4   System 4 8.9   Total 6 13.3   Total 45 100.0      	 ? 113	 ? With respect to water use (feedback goal)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 15 33.3 38.5 38.5 2.0 8 17.8 20.5 59.0 3.0 7 15.6 17.9 76.9 4.0 7 15.6 17.9 94.9 5.0 1 2.2 2.6 97.4 6.0 1 2.2 2.6 100.0 Total 39 86.7 100.0  Missing 7.0 2 4.4   System 4 8.9   Total 6 13.3   Total 45 100.0    With respect to material use (feedback goal)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 14 31.1 36.8 36.8 2.0 10 22.2 26.3 63.2 3.0 5 11.1 13.2 76.3 4.0 6 13.3 15.8 92.1 5.0 2 4.4 5.3 97.4 6.0 1 2.2 2.6 100.0 Total 38 84.4 100.0  Missing 7.0 3 6.7   System 4 8.9   Total 7 15.6   Total 45 100.0      	 ? 114	 ? 17. Based on the current configuration of controls and monitoring systems available to you at CIRS, to what extent do you feel you are able to influence whether CIRS is meeting its goals for inhabitant comfort and resource efficiency? With this question we hope to uncover if inhabitants feel they are able to affect whether or not CIRS meets its design goals and whether the data provided to them is actionable for this goal. Descriptives  Descriptive Statistics  N Minimum Maximum Mean Std. Deviation With respect to comfort  37 1.0 6.0 3.216 1.5300 With respect to resource efficiency  38 1.0 5.0 2.921 1.4590 Valid N (listwise) 35      Statistics  With respect to comfort  With respect to resource efficiency  N Valid 37 38 Missing 8 7  With respect to comfort (influence goals achievement)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 7 15.6 18.9 18.9 2.0 5 11.1 13.5 32.4 3.0 8 17.8 21.6 54.1 4.0 10 22.2 27.0 81.1 5.0 4 8.9 10.8 91.9 6.0 3 6.7 8.1 100.0 Total 37 82.2 100.0  Missing 7.0 3 6.7   System 5 11.1   Total 8 17.8   Total 45 100.0    	 ? 115	 ?With respect to resource efficiency (influence goals achievement)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 10 22.2 26.3 26.3 2.0 5 11.1 13.2 39.5 3.0 7 15.6 18.4 57.9 4.0 10 22.2 26.3 84.2 5.0 6 13.3 15.8 100.0 Total 38 84.4 100.0  Missing .0 1 2.2   7.0 3 6.7   System 3 6.7   Total 7 15.6   Total 45 100.0    19. How effectively do you feel the systems in CIRS allow inhabitants to control their environment? With this question we hope to uncover whether inhabitants feel the current controls systems available to them are adequate. Descriptives Descriptive Statistics  N Minimum Maximum Mean Std. Deviation Lighting Control  40 1.0 5.0 2.925 1.2276 Heating and cooling control  41 1.0 6.0 3.415 1.5649 Ventilation and Air Quality Control  40 1.0 6.0 3.750 1.6756 Acoustics Control  40 1.0 6.0 2.175 1.1959 Valid N (listwise) 40      Frequencies Statistics  Lighting Control  Heating and cooling control  Ventilation and Air Quality Control  Acoustics Control  N Valid 40 41 40 40 Missing 5 4 5 5   	 ? 116	 ?Frequency Table  Lighting Control (effective control)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 7 15.6 17.5 17.5 2.0 7 15.6 17.5 35.0 3.0 11 24.4 27.5 62.5 4.0 12 26.7 30.0 92.5 5.0 3 6.7 7.5 100.0 Total 40 88.9 100.0  Missing 7.0 1 2.2   System 4 8.9   Total 5 11.1   Total 45 100.0    Heating and cooling control (effective control)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 7 15.6 17.1 17.1 2.0 6 13.3 14.6 31.7 3.0 4 8.9 9.8 41.5 4.0 15 33.3 36.6 78.0 5.0 5 11.1 12.2 90.2 6.0 4 8.9 9.8 100.0 Total 41 91.1 100.0  Missing System 4 8.9   Total 45 100.0      	 ? 117	 ? Ventilation and Air Quality Control (effective control)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 6 13.3 15.0 15.0 2.0 4 8.9 10.0 25.0 3.0 6 13.3 15.0 40.0 4.0 9 20.0 22.5 62.5 5.0 8 17.8 20.0 82.5 6.0 7 15.6 17.5 100.0 Total 40 88.9 100.0  Missing 7.0 1 2.2   System 4 8.9   Total 5 11.1   Total 45 100.0    Acoustics Control (effective control)  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 15 33.3 37.5 37.5 2.0 10 22.2 25.0 62.5 3.0 10 22.2 25.0 87.5 4.0 4 8.9 10.0 97.5 6.0 1 2.2 2.5 100.0 Total 40 88.9 100.0  Missing 7.0 1 2.2   System 4 8.9   Total 5 11.1   Total 45 100.0      	 ? 118	 ? 22. CIRS has provided the following ways for inhabitants to learn about how the building has been designed and operated. Please let us know which of these options, if any, you have used in order to learn more about the building. With this question we hope to uncover the current level of engagement with options available to inhabitants for learning about CIRS and whether inhabitants feel these options meet their needs. Frequencies Statistics  Lunch and learns The ?dashboard? displayed on the video wall in the main atrium The ?building manual? available on the CIRS website Informal conversations with colleagues in the building Building tours N Valid 45 29 19 39 21 Missing 0 16 26 6 24  Frequency Table Lunch and learns  Frequency Percent Valid Percent Cumulative Percent Valid  30 66.7 66.7 66.7 1 15 33.3 33.3 100.0 Total 45 100.0 100.0   The ?dashboard? displayed on the video wall in the main atrium  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 29 64.4 100.0 100.0 Missing System 16 35.6   Total 45 100.0      	 ? 119	 ? The ?building manual? available on the CIRS website  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 19 42.2 100.0 100.0 Missing System 26 57.8   Total 45 100.0    Informal conversations with colleagues in the building  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 39 86.7 100.0 100.0 Missing System 6 13.3   Total 45 100.0    Building tours  Frequency Percent Valid Percent Cumulative Percent Valid 1.0 21 46.7 100.0 100.0 Missing System 24 53.3   Total 45 100.0      	 ? 120	 ? 25. How knowledgeable are you about how the technical systems in your own home work? This question will be used in order to calibrate technical knowledge of inhabitants. Descriptives Descriptive Statistics  N Minimum Maximum Mean Std. Deviation Technical knowledge of my home's building systems 42 .0 6.0 3.595 1.4660 Valid N (listwise) 42      Frequencies Statistics Technical knowledge of my home's building systems   N Valid 42 Missing 3  Technical knowledge of my home's building systems  Frequency Percent Valid Percent Cumulative Percent Valid .0 1 2.2 2.4 2.4 1.0 3 6.7 7.1 9.5 2.0 4 8.9 9.5 19.0 3.0 12 26.7 28.6 47.6 4.0 10 22.2 23.8 71.4 5.0 8 17.8 19.0 90.5 6.0 4 8.9 9.5 100.0 Total 42 93.3 100.0  Missing System 3 6.7   Total 45 100.0    	 ?

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0165715/manifest

Comment

Related Items