UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Investigation of variation of motions between free field and foundation in seismic soil-structure interaction of structures with rigid shallow foundation Pandey, Bishnu Hari

Abstract

Soil-foundation-structure interaction (SFSI) in buildings during earthquakes is characterized by several aspects including the variation between the free-field and foundation motions. Past procedures for analysing the effect of the foundation on the free-field input motions are all based on the assumptions that the foundation slabs always reduce the motion. Recent guidelines, standard and codes including FEMA-440 and ASCE/SEI41-06 also recognize that foundations with interconnected grade beams or concrete slab will always reduce the free-field motions. It implies that SFSI is beneficial and can be conservatively neglected in regular building design practice. A large number of instrumented buildings that have experienced a numbers of earthquakes in the past provide an opportunity to investigate the SFSI effects and evaluate the methods of estimating the foundation motion based on field data. In this research study, investigation is carried out on the records of past earthquakes from sites of instrumented buildings over a wide range foundation configurations and site conditions in California. Analysis of records among 26 buildings that have shallow rigid foundation shows that foundation motions are reduced in two-third cases and amplified in one-third cases. The estimations of variation of motion by the ASCE procedure are not in good agreement, even for the cases of reduction of foundation-base motion. It was obvious that the amplification of the motion cannot be captured by the procedure. Time history simulations of soil-building system have been carried out for varied parameters in 2D continuum finite element models using computer program ABAQUS. The results from simulations confirm that motion may amplify at the foundation depending on period of the building, soil deposit and the predominant period of input motion. This thesis develops a simple mass–spring–dashpot-based system of soil–foundation–structure interaction, called the 3DOF SFS model, for calculating the foundation-base motion that accounts for dynamic interaction between soil, foundation and building. The 3DOF SFS model was verified for a building-structure system with varied parameters and for different input motions using results from ABAQUS. Both amplification and reduction cases of foundation motion compared with free field were predicted by the model.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-ShareAlike 2.5 Canada