Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A comparative study of the origin of carbonate-hosted gem corundum deposits in Canada Dzikowski, Tashia Jayne 2013

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2013_fall_dzikowski_tashia.pdf [ 33.51MB ]
Metadata
JSON: 24-1.0074110.json
JSON-LD: 24-1.0074110-ld.json
RDF/XML (Pretty): 24-1.0074110-rdf.xml
RDF/JSON: 24-1.0074110-rdf.json
Turtle: 24-1.0074110-turtle.txt
N-Triples: 24-1.0074110-rdf-ntriples.txt
Original Record: 24-1.0074110-source.json
Full Text
24-1.0074110-fulltext.txt
Citation
24-1.0074110.ris

Full Text

A COMPARATIVE STUDY OF THE ORIGIN OF CARBONATE-HOSTED  GEM CORUNDUM DEPOSITS IN CANADA  by  Tashia Jayne Dzikowski  B.Sc., The University of Manitoba, 2004 M.Sc., The University of British Columbia, 2006   A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF  DOCTOR OF PHILOSOPHY  in  THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES  (Geological Sciences)  THE UNIVERSITY OF BRITISH COLUMBIA  (Vancouver)    August 2013  ? Tashia Jayne Dzikowski, 2013  ii Abstract This detailed scientific study of the carbonate-hosted gem corundum occurrences near Revelstoke, British Columbia and Kimmirut, Nunavut, Canada was completed in order to: (1) characterize the gem corundum mineralization; (2) develop genetic models for gem corundum mineralization; and (3) develop exploration strategies for gem corundum in carbonate-hosted deposits.  These unique localities were chosen to help develop exploration strategies for gem corundum deposits in Canada since existing models of gem corundum genesis are unable to explain their origin. The Revelstoke occurrence is located in the Monashee Complex of the Omineca belt of the Canadian Cordillera.  Pink (locally red or purple) corundum crystals occur in thin, folded and stretched layers containing the assemblage of green muscovite + Ba-bearing K-feldspar + anorthite ? phlogopite ? Na-poor scapolite.  Mineral assemblages and textures in these silicate layers and thermodynamic modeling suggest that corundum formed from muscovite dehydration at the peak of metamorphism (~650-700 ?C at 8.5-9 kbar).  Observed trends in whole rock geochemical data indicate that the corundum-bearing silicate (mica-feldspar) layers formed by mechanical mixing of carbonate with the host gneiss protolith; the bulk composition of the silicate layers was modified by Si and Fe depletion during prograde metamorphism. High element mobility is supported by homogenization of ?18O and ?13C values in carbonates and silicates for the marble and silicate layers.  The Kimmirut Sapphire Occurrence is located in the Lake Harbour Marble of the Baffin Island segment of the Trans Hudson Orogen. Blue and colourless zoned gem corundum crystals occur in coarse-grained calc-silicate pods with albite + calcite + muscovite ? K-feldspar.  Corundum-bearing zones are separated from a phlogopite + plagioclase symplectite around violet diopside crystals by scapolite which fluoresces in UV light.  Corundum likely formed during retrograde metamorphism at P-T < 710?C and 6 kbar due to: 1) hydrous fluid alteration of the assemblages nepheline + scapolite and/or nepheline + anorthite or 2) Na-bearing hydrous fluid alteration of anorthite.   Comparison of the prograde mineral assemblages, whole rock geochemistry, field relations, and one oxygen isotope measurement of corundum suggest that the most likely protolith is the metamorphism and metasomatism of evaporite-black shale layers within marble.    iii Preface  This dissertation is original, unpublished, independent work by the author, Tashia Dzikowski, with assistance in data interpretation in Chapter 3 from Jan Cemp?rek, Greg Dipple, Lee Groat, and Dan Marshall and Chapter 4 from Andrew Fagnan, David Turner, and Lee Groat.  ivTable of Contents  Abstract .................................................................................................................................... ii Preface ..................................................................................................................................... iii Table of Contents ................................................................................................................... iv List of Tables .......................................................................................................................... ix List of Figures .......................................................................................................................... x Acknowledgements ............................................................................................................. xvii Dedication ............................................................................................................................. xix Chapter  1: Introduction .......................................................................................................... 1 1.1 Why Study Ruby and Sapphire Deposits in Marble? ............................................................ 1 1.2 What are Rubies and Sapphires? ........................................................................................... 2 1.3 Why is Corundum Rare? ....................................................................................................... 2 1.4 Overview of Gem Corundum Deposits in Marble ................................................................ 3 1.5 Relevance of Proposed Study Localities ............................................................................... 6 1.6 Previous Studies on the Revelstoke Occurrence Area .......................................................... 6 1.7 Previous Studies on the Kimmirut Sapphire Occurrence (KSO) Area ................................. 6 1.8 Objectives of Thesis .............................................................................................................. 7 1.9 Research Approach ............................................................................................................... 7 Chapter  2: Methods ............................................................................................................... 11 Chapter  3: Revelstoke Occurrence: High-pressure Origin of Gem Corundum in Micaceous Layers in Marble ................................................................................................ 15 3.1 Introduction ......................................................................................................................... 15 3.2 Geological Setting ............................................................................................................... 15 3.3 Lithological Units of the Monashee Complex .................................................................... 16 3.4 Geology and Petrography of the Revelstoke Occurrence ................................................... 17 3.4.1 Marble ............................................................................................................................. 17 3.4.2 Mica-Feldspar-Rich Layers ............................................................................................ 18 3.4.3 Diopside-Tremolite Laminations .................................................................................... 20 3.4.4 Minor Assemblages in the Marble .................................................................................. 20  v3.4.5 Non-Siliceous Laminations ............................................................................................ 20 3.4.6 Brittle Deformation in Marble ........................................................................................ 21 3.4.7 Calc-Gneiss ..................................................................................................................... 21 3.4.8 SEDEX Mineralization ................................................................................................... 23 3.5 Mineralogy .......................................................................................................................... 23 3.5.1 Corundum ....................................................................................................................... 23 3.5.2 Calcite and Dolomite ...................................................................................................... 24 3.5.3 Trioctahedral Mg,Fe-Micas ............................................................................................ 24 3.5.4 Muscovite and Margarite ................................................................................................ 25 3.5.5 Feldspars ......................................................................................................................... 26 3.5.6 Scapolite ......................................................................................................................... 26 3.5.7 Pyroxene ......................................................................................................................... 27 3.5.8 Garnet ............................................................................................................................. 27 3.5.9 Amphiboles ..................................................................................................................... 27 3.5.10 Other Accessory Minerals .......................................................................................... 28 3.6 Whole Rock Geochemistry ................................................................................................. 29 3.7 40Ar-39Ar Dating of Micas ................................................................................................... 30 3.8 Stable Isotopes .................................................................................................................... 31 3.9 Fluid Inclusions ................................................................................................................... 31 3.10 Discussion ........................................................................................................................... 32 3.10.1 Protolith of Silicate Assemblages in the Marble ........................................................ 32 3.10.2 Chromium and Vanadium Enrichment ....................................................................... 35 3.10.3 P-T Metamorphic Path in Frenchman Cap Dome ...................................................... 36 3.10.4 P-T-X Evolution of the Marble .................................................................................. 37 3.10.5 Retrograde Fluids ....................................................................................................... 39 3.10.6 Comparison to Other Deposits ................................................................................... 41 3.11 Summary ............................................................................................................................. 42 Chapter  4: Kimmirut Sapphire Occurrence ....................................................................... 67 4.1 Introduction ......................................................................................................................... 67 4.2 Regional Geology ............................................................................................................... 67 4.3 Local Geology: .................................................................................................................... 69 4.4 Lake Harbour Marble .......................................................................................................... 70 4.5 Geology and Petrography of the Sapphire Occurrence ....................................................... 70 4.5.1 Marble ............................................................................................................................. 70  vi4.5.2 Course-Grained Calc-Silicate Pods in Marble ................................................................ 71 4.5.2.1 Beluga .................................................................................................................... 71 4.5.2.2 Bowhead ................................................................................................................ 73 4.6 Mineralogy .......................................................................................................................... 73 4.6.1 Sapphire .......................................................................................................................... 73 4.6.2 Nepheline ........................................................................................................................ 74 4.6.3 Diopside .......................................................................................................................... 74 4.6.4 Phlogopite ....................................................................................................................... 74 4.6.5 Muscovite ....................................................................................................................... 75 4.6.6 Plagioclase ...................................................................................................................... 75 4.6.7 Scapolite ......................................................................................................................... 75 4.6.8 Other Accessory Minerals .............................................................................................. 77 4.7 Whole Rock Geochemistry ................................................................................................. 77 4.7.1 Major and Trace Elements .............................................................................................. 77 4.7.2 Rare Earth Elements ....................................................................................................... 78 4.8 Oxygen Isotopes of Corundum ........................................................................................... 79 4.9 U-Pb Geochronology .......................................................................................................... 79 4.10 40Ar-39Ar dating ................................................................................................................... 80 4.11 Discussion ........................................................................................................................... 80 4.11.1 Prograde and Retrograde Mineral Assemblages at both the Beluga and Bowhead Showings 80 4.11.2 Retrograde Corundum + Albite + Muscovite-Bearing Zones at the Beluga Showing82 4.11.3 Isotopic Evidence ....................................................................................................... 85 4.11.4 Protolith of the Beluga Showing ................................................................................ 85 4.11.4.1 Contact Metamorphism of a Mafic Protolith ......................................................... 85 4.11.4.2 Alkaline Intrusions Formed by the Assimilation of Carbonate and Siliciclastic Rocks into a Mafic Magma ..................................................................................................... 86 4.11.4.3 Alkaline Intrusions into Marble ............................................................................. 87 4.11.4.4 Na-Metasomatism of Metasediments or Volcanic Rocks ...................................... 88 4.11.4.5 Metamorphism of an Evaporite-Shale-Marble Protolith ........................................ 89 4.11.5 Proposed Beluga Model of Formation ....................................................................... 90 4.11.6 Late Fluid Infiltration ................................................................................................. 91 Chapter  5: Comparison of the Revelstoke and Kimmirut corundum occurrences ....... 117 5.1 Introduction ....................................................................................................................... 117  vii 5.2 Age .................................................................................................................................... 117 5.3 Petrology ........................................................................................................................... 117 5.4 Whole Rock Composition ................................................................................................. 118 5.5 Mineral Chemistry ............................................................................................................ 119 5.5.1 Corundum ..................................................................................................................... 119 5.5.2 Micas ............................................................................................................................ 119 5.5.3 Scapolite ....................................................................................................................... 120 5.6 Oxygen Isotopes of Corundum ......................................................................................... 120 5.7 Discussion ......................................................................................................................... 120 Chapter  6: Exploration Strategies ..................................................................................... 128 6.1 Introduction to Exploration Strategies .............................................................................. 128 6.2 Recommended Exploration Techniques and Strategies .................................................... 128 6.2.1 Review of Known Geology and Mapping .................................................................... 129 6.2.2 Prospecting and Indicator Minerals .............................................................................. 130 6.2.3 Detailed Sampling Grid ................................................................................................ 130 6.2.4 Whole Rock Analyses ................................................................................................... 131 6.2.5 Airborne Hyperspectral Imaging Surveys for Identification of Indicator Minerals ..... 131 6.2.6 Identification of Chromophore Sources ........................................................................ 132 6.2.7 Magnetic Geophysical Survey ...................................................................................... 132 6.2.8 Heavy Mineral Concentrates ........................................................................................ 133 6.2.9 Ultraviolet Light Surveys for Identification of Scapolite Associated with Corundum . 133 6.2.10 Ground Penetrating Radar (GPR) for 3-D imaging of Target Zones at Depth ......... 133 6.3 Exploration for Revelstoke-type Occurrences in Other Parts of the World ...................... 134 6.4 Exploration for Beluga-type Occurrences in Other Parts of the World ............................ 134 6.5 Summary ........................................................................................................................... 134 Chapter  7: Conclusions and Future Work ........................................................................ 140 7.1 Conclusions - Revelstoke .................................................................................................. 140 7.2 Conclusions - Kimmirut Sapphire Occurrence ................................................................. 141 7.3 Conclusions from Comparison of the Revelstoke Occurrence with the Beluga Showing 142 7.4 Conclusions from Comparison of the Revelstoke Occurrence with the KSO and other Gem Corundum Deposits Around the World ......................................................................................... 143 7.5 Future Work ...................................................................................................................... 143 7.5.1 Revelstoke..................................................................................................................... 143  viii 7.5.2 Kimmirut Sapphire Occurrence .................................................................................... 144 References ............................................................................................................................ 146 Appendices ........................................................................................................................... 160 Appendix A Compositional Data for the Revelstoke Occurrence ................................................. 160 A.1 Corundum ..................................................................................................................... 161 A.2 Carbonates .................................................................................................................... 166 A.3 Phlogopite ..................................................................................................................... 178 A.4 Muscovite and Margarite .............................................................................................. 192 A.5 Feldspars ....................................................................................................................... 200 A.6 Scapolite ....................................................................................................................... 211 A.7 Diopside ........................................................................................................................ 215 A.8 Garnet ........................................................................................................................... 219 A.9 Amphibole .................................................................................................................... 221 A.10 Other Accessory Minerals ............................................................................................ 222 A.11 Classification of allanite ............................................................................................... 223 A.12 Classification of tourmaline .......................................................................................... 224 A.13 Whole-Rock Geochemistry of Lithologies from the Revelstoke Occurrence. ............. 225 A.14 Microthermometry Results of Fluid Inclusions within Corundum at the Revelstoke Occurrence ................................................................................................................................. 226 Appendix B Compositional Data for the Kimmirut Sapphire Occurrence .................................... 227 B.1 Corundum ..................................................................................................................... 228 B.2 Nepheline ...................................................................................................................... 230 B.3 Diopside ........................................................................................................................ 232 B.4 Phlogopite ..................................................................................................................... 236 B.5 Muscovite ..................................................................................................................... 241 B.6 Plagioclase .................................................................................................................... 242 B.7 Scapolite ....................................................................................................................... 248 B.8 Other Accessory Minerals ............................................................................................ 255 B.9 Whole Rock Major and Trace Elements ....................................................................... 258   ixList of Tables  Table 3.1: Mineral Assemblages from Different Lithologies within the Revelstoke Occurrence. ............................................................................................................................. 44 Table 5.1  Comparison between the Revelstoke and Kimmirut Sapphire Occurrences. ...... 122 Table 6.1: Factors to consider for exploration ? a comparison between the Revelstoke and Beluga occurrences ............................................................................................................... 139   xList of Figures  Figure 1.1: Major and minor commercial world sources of gem corundum (Giuliani et al. 2007). ........................................................................................................................................ 9 Figure 1.2: Map of Canadian gem corundum localities. Blue stars indicate sapphire occurrences, and red stars indicate ruby and pink sapphire occurrences.  The study localities are denoted by RO = Revelstoke Occurrence and KSO = Kimmirut Sapphire Occurrence, and other Canadian localities are denoted as: 1 = Slocan Valley, 2 = Bancroft-York River area, 3 = Nova Scotia, 4 Labrador. ....................................................................................................... 9 Figure 1.3: Calculated theoretical corundum-producing reactions at different XH2O [XH2O = H2O/(H2O+CO2)]. Mineral equilibria were calculated with the program Theriak-Domino (de Capitani and Petrakakis 2010) using end member compositions and the internally consistent thermodynamic database of Holland and Powell (1998). A) Breakdown of diaspore, margarite, and spinel.  B) Breakdown of muscovite. .............................................................. 10 Figure 2.1:  Comparison of ?13C and ?18O values collected using an Isotope Ratio Mass Spectrometer (IRMS) and Mineral Isotope Analyzer (MIA). ................................................ 13 Figure 3.1:  Position and geology of the Revelstoke occurrence.  (A) Map of Canadian carbonate-hosted gem-corundum localities;  (B) Tectonic assemblage map of part of the Monashee complex (modified after H?y 2001). The studied area is marked by a star; (C) Regional geological map of the Revelstoke occurrence (modified after H?y 1987). The studied localities (from east to west: float, outcrop 1, outcrop 2) are marked by yellow stars.  Map legend: (1)  orthogneiss, (2) paragneiss, (3) quartzite, micaceous schist, (4a) Calc-silicate gneiss, kyanite-sillinanite schist, quartzite, amphibolite, (4b) Kyanite-sillimanite schist, gneiss, minor quartzite (q),( 4c) Calc-silicate schist, gneiss, kyanite-sillimanite schist, marble (m), quartzite (q), (5) marble, (6a) Calc-silicate gneiss, kyanite-sillimanite schist, marble (m), (6b) Kyanite-sillimanite schist, minor amphibolite, marble (m), quartzite (q). .. 45 Figure 3.2:  Revelstoke corundum.  (A) Zoned corundum grain in marble (picture width 3 cm); (B) Faceted Revelstoke sapphire and ruby (photo courtesy of B.S. Wilson). ................ 46 Figure 3.3:  Photographs of the Revelstoke occurrence.  (A) The corundum-bearing marble within diopside gneiss (unit 6a);  (B) Pyroxene-gneiss with pelitic layers, containing garnet porphyroblasts (dark spots);  (C) Corundum-bearing mica-feldspar layers, with secondary  xiscapolite after anorthite;  (D) Coarse-grained diopside-tremolite zone and fine-grained, graphite -enriched cataclasite layers;  (E) Magnetite and graphite layers in marble;  (F) Deformed, altered muscovite-feldspar nodules in phlogopite and graphite layers in marble. 47 Figure 3.4:  Schematic drawing of mineralogical zoning of mica-feldspar layers.  Hexagons represent corundum crystals; solid pink hexagons are not zoned, pink hexagons with blue rims are zoned crystals.  The pink hexagons represent corundum, which sometimes are zoned. ...................................................................................................................................... 48 Figure 3.5:  Optical microscope photographs and BSE images of mineral assemblages in mica-feldspar layers and garnet in marble.  (5A) SEM photomicrograph of replacement of muscovite by anorthite and K-feldspar.  Note relicts of muscovite in anorthite and phlogopite and muscovite in K-feldspar.  (5B) SEM photomicrograph of replacement of muscovite by anorthite and K-feldspar.  Note the intergrowth of anorthite and K-feldspar as well as relicts of muscovite in anorthite and phlogopite in K-feldspar.  (5C) SEM photomicrograph of Ba-enrichment in K-feldspar replacing muscovite and anorthite.  The light areas in the K-feldspar and muscovite are enriched in Ba.  (5D) SEM photomicrograph of corundum alteration to muscovite then K-feldspar.  The corundum has inclusions of apatite, zircon, muscovite, K-feldspar, and rutile.  (5E) SEM photomicrograph of corundum with anorthite inclusions surrounded by anorthite, phlogopite, and calcite, altered to margarite.  (5F) CPL optical microscope image of Type 2 skeletal euhedral corundum with calcite inclusions within marble.  (5G) SEM photomicrograph of Type 3 fine-grained corundum with alteration to margarite and Ba-enriched muscovite within plagioclase.  (5H)  SEM photomicrograph of scapolite and amphibole coronas around garnet.  Amphibole also replaces pyroxene. .......... 50 Figure 3.6: Optical microscope photographs and BSE images of the host rock thin sections 51 Figure 3.7:  Trace elements in corundum of different color. .................................................. 52 Figure 3.8: Chemical composition of trioctahedral micas.  A) Fe vs. V; B) Ti vs. [6]Al and Ba+Ca vs. [6]Al; C) [4]Al vs. Mg/(Mg+Fe); D) [6]Al vs. [4]Al. ................................................. 53 Figure 3.9:  Chemical composition of muscovite. A) V vs. Ti; B) Cr vs. Ti; C) Ba vs. Ti; D) Fe+Mg vs. Ti. .......................................................................................................................... 54 Figure 3.10: Variation of Ba and Na vs. K in K-feldspar. ...................................................... 55 Figure 3.11:  Compositional diagram for scapolite showing the meionite, marialite, mizzonite solid solution in terms of Cl/(Cl + CO3 + SO4) and equivalent anorthite EqAn = (Al-3)/3.   xii The curves indicate NaCl content of fluids according to the experimental data of Ellis (1978) for 4 kbar and 750 ?C. ............................................................................................................. 56 Figure 3.12: Composition of (A)clinopyroxene and (B) garnet from marble, SEDEX, host rocks and the garnet assemblage in the marble. ...................................................................... 57 Figure 3.13: Composition of amphiboles. A) Classification diagram for Ca-amphiboles with (Na+K) < 0.5 apfu; B) Classification diagram for Ca-amphiboles with (Na+K) > 0.5 apfu. . 58 Figure 3.14:  Contents of immobile trace elements (Cr, Ti, and V), selected mobile major elements (Si, Fe), and partially mobile elements K, Ca, Mg) in different lithologies. ........... 59 Figure 3.15:  Geochemistry of selected trace elements in host rock and marble.  Data for amphibolites in Unit 6B are from H?y (2001). ....................................................................... 60 Figure 3.16:  Chondrite-normalized (Sun and McDonough 1989) REE-plots for (A) calc-gneiss and marble, (B) mica-feldspar layers in the marble. .................................................... 61 Figure 3.17: 40Ar-39Ar plateau ages for Revelstoke corundum occurrence from A) phlogopite; B) muscovite. .......................................................................................................................... 62 Figure 3.18:  Coupled ?13C-?18O values for carbonate from different lithologies.  (A) Published values for other marbles from the Mica Creek (MC), Esplanade Range (E), and Dogtooth Range (DT) ~ 50 km north of the Monashee Complex in the Selkirk Allochthon (Ghent and O'Neil 1985), Thor-Odin Dome (Holk and Taylor 2000) and Asian ruby deposits in marble (Garnier et al. 2008) compared to the studied Revelstoke lithologies.  (B) Values for the studied lithologies from the Revelstoke (Rev) occurrence. ........................................ 63 Figure 3.19:  Range of ?18O values for carbonate and silicate minerals compared to potential protoliths in the Monashee Complex near the Thor Odin dome (Holk and Taylor 2000) and to average values for pelites (Hoefs 2004), skarns (Bowman 1998), and marbles (Valley 1986). ................................................................................................................................................. 64 Figure 3.20: Two-phase primary liquid-vapour CO2 (with minor CH4-N2) fluid inclusions in corundum. ............................................................................................................................... 65 Figure 3.21:  Major mineral forming reactions and PT evolution of the Revelstoke occurrence marble.  Bolded mineral names indicate observed mineral assemblages. Arrows indicate position of curves with increasing XH2O. Corundum fluid inclusion isochores are also plotted. ................................................................................................................................................. 66  xiii Figure 4.1:  Location and regional geology of the Kimmirut Sapphire Occurrence (KSO). A)  Map of Canadian gem-corundum localities. RO = Revelstoke occurrence, 1 = Slocan Valley, 2 = Bancroft-York River area, 3 = Nova Scotia, 4 Labrador.  B) Geological map of southern Baffin Island.  The Level 1-2 terrane boundary fault is the Bergeron suture and the Level 2-3 terrane boundary fault is the Soper River suture (St-Onge et al. 2000).  The yellow star indicates the location of the Kimmirut Sapphire Occurrence (KSO). .................................... 92 Figure 4.2:  A) Distinctive texture of the coarse-grained Beluga lens in contact with finer-grained marble. Note the rectangular outline of violet diopside + symplectite (phlogopite + plagioclase). B) Muscovite-albite-calcite-sapphire zone. ....................................................... 93 Figure 4.3:  Sample B8-04b in A) incandescent and B) UV light.  Note the bright yellow fluorescence of scapolite in UV light. ..................................................................................... 93 Figure 4.4:  Plagioclase-phlogopite symplectite rimmed by scapolite.  Note random orientation of phlogopite and inclusions of calcite in plagioclase. FOV = 0.9 mm ............... 94 Figure 4.5:  Photomicrographs displaying the distinctive texture and mineralogical zones of calc-silicate rocks from the Beluga showing. A) Zoning of mineral phases; diopside (at the upper left corner) is rimmed by the plagioclase-phlogopite symplectite, followed by scapolite, then the corundum-albite zone. Note the presence of the area of extensive alteration which can occur as an inclusion within scapolite, but also as part of the corundum-bearing zone. B) Zoning of mineral phases; diopside is not visible in this photomicrograph possibly because it has all been consumed in the production of the plagioclase-phlogopite symplectite.  Note the random orientation of phlogopite grains within the symplectite, the presence of scapolite within the corundum zone, and the presence of the area of extensive alteration along the boundary between scapolite and the corundum-bearing zone, possibly indicating fluid pathways. ........................................................................................................................ 95 Figure 4.6:  Albite and calcite surrounding corundum next to scapolite. ............................... 96 Figure 4.7:  Symplectite with calcite and titanite on the edge of scapolite. ........................... 97 Figure 4.8:  Calcite inclusions in phlogopite, on the edge of phlogopite, or in the intergranular space between plagioclase. ................................................................................ 97 Figure 4.9:  Symplectite with scapolite and plagioclase inclusions in phlogopite. ................ 98 Figure 4.10:  Symplectite with calcite and titanite. ................................................................ 98 Figure 4.11:  Plagioclase-phlogopite-calcite  and phlogopite inclusions in scapolite. ........... 99  xiv Figure 4.12:  Photomicrographs of the nepheline-bearing Bowhead showing.  A) The plagioclase-phlogopite symplectite develops between diopside and nepheline grains.  B) Scapolite rimming plagioclase-phlogopite symplectite and nepheline. FOV = 0.8 mm, C) Plagioclase-phlogopite symplectite in contact with calcite. FOV = 0.5 mm, D) Plagioclase-muscovite nodule within scapolite. FOV = 0.3 mm ............................................................. 100 Figure 4.13:  A) Beluga blue and colourless cut sapphires from the Beluga showing.  C) 1.17 ct. in pavilion view with tweezers for scale.  All sapphires are natural and untreated.  Photos are courtesy of True North Gems. ......................................................................................... 101 Figure 4.14:  A) Barrel-shaped corundum crystal from the Beluga showing. Image is from Wilson (2010).  B) Scanning electron microscope image of a zoned sapphire crystal with calcite (cc) and rare apatite (ap) inclusions. Prismatic thomsonite (th) crystals penetrate corundum along fractures. Image is from LeCheminant et al. (2005). ................................. 101 Figure 4.15:  Compositional variation of sapphires from the Beluga occurrence. ............... 102 Figure 4.16:  Pyroxene classification and major elemental variation diagram. .................... 103 Figure 4.17:  Compositional variation of pyroxene at the Beluga and Bowhead showings: A) Al vs Na apfu; B); Mg vs Fe3+ apfu; C) Ti vs Fe3+ apfu; and D) Ti vs Mg apfu. ................. 104 Figure 4.18:  Compositional variation of phlogopite from the Beluga and Bowhead showings.  A) [4]Al vs. Mg/(Mg+ Fe2+); B) [6]Al vs. [4]Al; C) Ti vs. Fe2+; D) Ti vs.Mg; E) F vs Fe2+ + Mg + Mn. ..................................................................................................................................... 105 Figure 4.19:  Chemical composition of muscovite from the Beluga and Bowhead showings: A) Al vs Ti and B) K vs Na. ................................................................................................. 106 Figure 4.20:  Compositional variation of scapolite from the Beluga and Bowhead showings.  Meionite, marialite, mizzonite solid solution end members are expressed in terms of XCl = Cl/(Cl + CO3 + SO4) and equivalent anorthite EqAn = (Al-3)/3.  The curves indicate NaCl content of fluids according to the experimental data of Ellis (1978) for 4 kbar and 750 ?C. 107 Figure 4.21:  Compositional variation of scapolite. A) Zoning of EqAn across scapolite grains at the Beluga showing. B) Tie-lines of coexisting scapolite-plagioclase pairs at the Beluga and Bowhead showings. ........................................................................................... 107 Fig. 4.22:  High resolution hyperspectral image of a rock from the Beluga showing collected by David Turner.  The two generations of scapolite are identified by blue and purple. ....... 108  xv Figure 4.23:  Major element variation for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith: A) Fe2O3 vs SiO2, B) SiO2 vs Al2O3, C) Fe2O3 vs MgO, D) Na2O vs MgO, and E) CaO vs MgO. .................................................................... 109 Figure 4.24:  Major elements vs TiO2 wt.% for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith. ............................................................................... 110 Figure 4.25:  Major elements vs V ppm for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith. ............................................................................... 111 Figure 4.26:  REE patterns of lithologies from the Lake Harbour Group compared to the Beluga showing. .................................................................................................................... 112 Figure 4.27:  REE patterns of lithologies with elevated V (170-280 ppm) from the Beluga showing, Narsajuaq terrane (Nar), Lake Harbour Group (LHG), and Blandford Bay assemblage (BB). .................................................................................................................. 113 Figure 4.28:  The ?18O values of gem corundum from different protoliths (Giuliani et al. 2005).  The Beluga sapphire is denoted as a blue hexagon. ................................................. 114 Figure 4.29:  U-Pb ages of deformation, metamorphic and magmatic events in the Meta Incognita microcontinent and Narsajuaq arc (St-Onge et al. 2007).  A U-Pb zircon date from the Beluga showing (LeCheminant et al. 2005) plots amongst other post-D2 thermal/fluid activity ages. (BS = Bergeron suture; SRS = Soper River suture.) ...................................... 115 Figure 4.30:  40Ar-39Ar age spectra of (A) phlogopite and (B) muscovite from the Beluga showing. Box heights are 2?, plateau steps are filled, and rejected steps are open. ............. 116 Figure 5.1: Comparison of the whole rock compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence. .......................................................................... 123 Figure 5.2: Comparison of corundum compositions from the Beluga showing and the Revelstoke occurrence. ......................................................................................................... 124 Figure 5.3: Comparison of phlogopite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence (excluding host rocks). ........................................................ 125 Figure 5.4: Comparison of muscovite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence. ............................................................................................. 126  xvi Figure 5.5: Comparison of scapolite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence (including host rocks). ........................................................ 127 Figure 6.1: Corundum-bearing mica-feldspar layers, with secondary scapolite after anorthite exposed on a foliation plane. ................................................................................................ 136 Figure 6.2: Schematic drawing of the mineralogical zoning of mica-feldspar layers.  The pink hexagons represent non-zoned corundum and the pink hexagon rimmed with blue represents zoned corundum with a pink core and blue rim. ................................................................... 136 Figure 6.3:  Scapolite- and corundum-bearing rocks under incandescent and ultraviolet light.  Note the yellow fluorescence of scapolite in ultraviolet light. ............................................. 137 Figure 6.4:  Schematic of a geochemical sampling grid that could be applied to exploration for corundum deposits. Results are plotted on Fig. 6.5 to facilitate interpretation. .............. 137 Figure 6.5: Whole rock or Niton XRF geochemical diagrams highlighting target zones at the Revelstoke occurrence. The gray shaded areas highlight where values should lie if there was mechanical mixing between the two lithologies without any element loss or gain.  The target area highlights samples that are depleted in SiO2 and FeOTOT. ............................................ 138  xviiAcknowledgements  First and foremost, I would like to thank my PhD supervisors Lee Groat and Greg Dipple for all of their support and guidance.  Thank you Lee for providing me with this project, all of your help in the field, and your unique perspective as a mineralogist.  Thank you Greg for your help in Revelstoke, your unique perspective as a metamorphic petrologist, and for helping me see the big picture.  I have learned so much from both of you and am very grateful for all of our discussions.    I would like to sincerely thank Jan Cemp?rek for being incredibly supportive over the past 2 years.  I really appreciate all of your hands on help and for spending those long days in the lab with me hashing out details.  Your guidance during the completion of my Revelstoke chapter will never be forgotten.  I would like to thank various organizations for providing me with funding during completion of this dissertation.  The National Sciences and Engineering Research Council of Canada (NSERC) awarded me a 2-year Post Graduate Scholarship (PGSD) scholarship and the University of British of Columbia for awarded me a 2-year University Graduate Scholarship.  In addition, the Society of Economic Geologists and Geoscience BC awarded me research grants which assisted with the costs of my field work and thin section preparation.  I would not have been able to complete this project without the support of Brad Wilson for the Revelstoke project and True North Gems for the Kimmirut project.  They allowed me access to their claims, provided me with samples, and assisted me with my field work.  Data collection was assisted by many people: Dan Marshall helped me collect fluid inclusion data, Janet Gabites, Shaun Barker, and Gaston Giuliani helped me collect oxygen isotope data, Jenny Lai and Elisabetta Pani for being there when I needed help with the SEM, and Mati Raudsepp and Edith Czech helped me collect numerous electron microprobe data.  I would especially like to thank Mati Raudsepp for all the wonderful conversations over the years.  I always looked forward to spending time with you.  I would like to thank my lab members Leo Millonig, David Turner, and Andrew Fagan, Andrea Dixon, Jim Evans, and Mallory Dixon for your camaraderie and the bi-weekly tea parties.  More specifically I would like to thank Leo for introducing me to Theriak  xviiiDomino and for helping me improve speaking German, Dave for our discussions about gemstones and exploration geology, and especially Andrew for reviewing many chapters of this thesis and helping me see the light at the end of the tunnel.  I really appreciate all that you did during my final push to finish.  I would also like to thank Mackenzie Parker for proof reading this thesis and for providing me with constructive feedback.  Last but not least I would like to thank my friends and family.  Victoria, Janina, Julia, Laura were a great source of support for me and helped me have an amazing time while living in this great city of Vancouver.  My partner Frank was always there when I needed him (thank you for being my 'tide' and an amazing source of encouragement) and I'm looking forward to our new adventure together.  I would like to thank my parents and sister for encouraging me to achieve my dreams; I would not have made it this far without your support.  This thesis was written in loving memory of my father who introduced me to the world of science and geology in both the classroom and the field.  You are a source of inspiration to me and I know you would be very proud to see how far I've come.   xix Dedication      To my father, Raymond Dzikowski    1Chapter  1: Introduction  1.1 Why Study Ruby and Sapphire Deposits in Marble?  The origin of gem corundum (Al2O3), which includes ruby (red variety) and sapphire (blue and other colors), has recently been the subject of significant interest due to the growing economic potential of the gem corundum market, the discovery of new deposits, and advances in understanding of their geological origin (e.g., see reviews in Giuliani et al. 2007, Simonet et al. 2008).  Ruby and sapphire are arguably the world?s most widely sold colored gemstones, accounting for approximately one-third of global colored stone sales by value (BUZ Consulting 2009, in Shor and Weldon 2009), and commanding some of the highest prices paid for any gem.  Gem corundum deposits can be very valuable and are rare; currently, one of the most valuable gem corundum specimens is a 6.04ct Burmese ruby that sold in 2011 for $3.3 million (or $551,000/ct) and there are fewer than 25 producing regions in the world (Fig. 1.1). Given that rubies are the world's most valuable gemstone, and that some of the best quality deposits are being exhausted and occur in politically volatile areas, it is even more important to explore for new deposits to meet the market demand.  Currently there are five known gem corundum deposits in Canada (Fig. 1.2): carbonate-hosted red, pink, and zoned pink-blue sapphires near Revelstoke, British Columbia (this study), carbonate-hosted blue, yellow, and colorless sapphire near Kimmirut on Baffin Island (discovered in 2002; LeCheminant et al. 2005, Gertzbein 2005); sapphire in southeastern Newfoundland (discovered in 1987; Wight 1999); carbonate-hosted ?low-grade ruby? near Sydney, Nova Scotia (discovered in 2004; Durstling 2005); carbonate-associated blue sapphire near Bancroft, Ontario (Wight 2004); and star sapphire hosted in plumasite dikes, calcareous biotite syenite gneiss, and felsic augen gneiss from several localities near Passmore in south-central British Columbia (discovered in the early 1980s; Wilson 2010; Walker 2012).  Four of the Canadian gem corundum occurrences are associated with carbonate rocks.    Despite much previous research, the origin of many gem corundum (Al2O3) deposits remains unclear and, as a result, only primitive exploration strategies exist for some deposit types.  Five hypotheses have been proposed for the origin of carbonate-hosted gem corundum 1 2deposits in Asia, the US, Europe, Africa, and the Middle East (Giuliani et al. 2007), but these hypotheses do not  explain the genesis of the Canadian gem deposits in this study (see Chapters 3 and 4).  An understanding of the origin and development of exploration strategies for carbonate-hosted deposits is important because some of the best rubies have historically originated from this type of deposit.  I chose to study two very different carbonate-hosted gem corundum occurrences in Canada: (1) the Revelstoke gem corundum occurrence in British Columbia, and (2) the Kimmirut sapphire occurrence (KSO) in Nunavut. The main goals of this project were to: (1) characterize the corundum/sapphire/ruby mineralization; (2) develop genetic models for mineralization at these occurrences; and (3) develop exploration strategies for these carbonate-hosted gem corundum deposits.     1.2 What are Rubies and Sapphires?  Rubies and sapphires are the gem form of corundum (Al2O3); ruby is red and sapphire is any other colour of gem corundum. Pure corundum is colourless (white), and coloured varieties form because of impurities that substitute for Al into the crystal structure. The red colour in ruby is caused by the substitution of Cr for Al, which can also impart red fluorescence (Muhlmeister et al. 1998). A blue colour in sapphires is caused by intervalence charge transfer between Fe and Ti when they substitute for Al (Fritsch and Rossman 1988). A very small amount of Fe and Ti (0.01 wt %) is needed to produce intense colour in sapphire, whereas a much larger amount of Cr (0.2-2.5 wt %) is needed to produce a similar intensity of colour in ruby.   1.3 Why is Corundum Rare?  Corundum only forms in Al-rich assemblages deficient in Si; in order to form ruby and sapphire, chromophores such as Cr, V, Ti, and Fe must also be present and available to substitute into the crystal structure (i.e., they must not be locked up in other minerals).  The enrichment in both Al and Cr is problematic because both are considered to be immobile elements and require special conditions to reach the necessary concentrations.  Gem corundum deposits are rare and in general poorly understood because they originate in a 2 3variety of tectonic settings, under variable pressure and temperature (P-T) conditions, and are derived from diverse source materials.  In addition, they are commonly involved in multi-stage metamorphic, metasomatic and retrograde processes that can obscure the primary textures of the host mineral assemblages.  As a result, no general exploration strategies can currently be applied to prospecting for gem corundum (Groat and Laurs 2009, Simonet et al. 2008, Garnier et al. 2008).   1.4 Overview of Gem Corundum Deposits in Marble  Carbonate-hosted deposits are one of the most important sources of high-quality gem corundum.  They are usually minor constituents of large metasedimentary sequences typically metamorphosed in amphibolite or lower granulite-facies (Kievlenko 2003, Simonet et al. 2008).  The corundum mineralization is usually stratiform and occurs in veinlets, gash-veins, lenses, or disseminated in the carbonate gangue.  Accessory minerals present in corundum-bearing marbles typically include spinel, diopside, phlogopite, Cr-muscovite, feldspar, garnet, chlorite, margarite, tremolite, pargasite, edenite, and forsterite; less common are scapolite, zoisite, epidote, uvite, and sulfides (Giuliani et al. 2007).  Kievlenko (2003), Giuliani et al. (2007), and Simonet et al. (2008) provide comprehensive reviews and classifications of gem corundum deposits.  Deposits are classified as either primary (magmatic or metamorphic) or secondary (xenocrysts or placers).  Metamorphic deposits can be subdivided into metamorphic sensu stricto (s.s) (meta-limestones, mafic granulites, aluminous gneisses and granulites), metasomatic (desilicated rocks, skarns), or anatectic types (Simonet et al. 2008).  Carbonate-hosted corundum occurrences can be either metamorphic s.s. or metasomatic.  The concentration mechanisms of Al and chromophore elements can be related to:  (1) depositional and/or weathering processes prior to metamorphism, such as bauxite formation, or clay sedimentation within a sedimentary sequence; and (2) metasomatic processes such as skarn formation, desilicification, or hydrothermal transport in vein systems (Giuliani et al. 2007 and references therein).  Corundum in carbonate rocks is most commonly produced by the following reactions:  3 4[1]  2 diaspore ? corundum + H2O [2]  margarite ? anorthite + corundum + H2O + CO2 [3]  3 dolomite + muscovite ? phlogopite + 3 calcite + corundum + 3 CO2 [4]  calcite + spinel + CO2 ? dolomite + corundum [5]  muscovite ? K-feldspar + corundum + H2O   More than one of these reactions can take place in a deposit (Garnier et al. 2008; this work).  The pressure-temperature conditions of these reactions are strongly dependent on CO2/H2O activity of the system (Fig. 1.3).  In some deposits, the stability of corundum also appears to be dependent on the activity of Mg in the system; Kissin (1994) argued that the activities of Mg and CO2 are more critical factors in corundum formation during the retrograde breakdown of spinel than the actual Al2O3 content of the marble.  The higher the activity of Mg, the higher likelihood that spinel will be stable over corundum.  Various interpretations of the origin and mechanism of Al-enrichment in gem-corundum deposits of metamorphic origin (s.s.) exist.  At the well-known Hunza Valley locality in Pakistan, aluminum enrichment in carbonate sediments due to lateritic (Okrusch et al. 1976), weathered pelitic (?terrigenous?; Rossovskii et al. 1982), and non-marine evaporate sedimentation (Garnier et al. 2008) have all been suggested.  Terrigenous or non-marine evaporate sedimentation has also been proposed for other ruby localities, e.g. Jegdalek, Afghanistan; Mogok, Myanmar (Rossovskii et al. 1982, Spiridonov 1998, Garnier et al. 2008); and south-western Pamirs (Rossovskii et al. 1982).  At all localities, corundum preferentially formed by reaction [4], or less commonly by reaction [5], or by a combination of [1] and [2].  Aluminum-enrichment in carbonate sediments due to lateritic weathering of an impure limestone has been well documented in the Naxos metamorphic complex where corundum forms by reaction [1] during prograde metamorphism (Feenstra and Wunder 2002).  The role of an evaporite sedimentary precursor in the origin of carbonate-hosted gem corundum occurrences has been discussed by Spiridonov (1998) and Garnier et al. (2008).  For ruby deposits in central and southeastern Asia, Garnier et al. (2008) suggested that corundum precipitated from CO2-H2S-COS-S8-AlO(OH)-bearing fluids during retrograde metamorphism as the result of ?molten salts [that] mobilized in situ Al and metal transition 4 5elements contained in marbles, leading to crystallization of ruby?.  The corundum formed predominantly by retrograde reaction [4] at high CO2 fugacity, and rarely by reaction [5] at these localities.  The metasomatic origin of gem corundum deposits typically includes the interaction of carbonate rocks with mineralogically contrasting intrusive rocks, e.g., pegmatite, granite or syenite intrusions (Silva and Siriwardena 1988, Harlow et al. 2006, Rakotondrazafy et al. 2008).  At the Bakamuna deposit in Sri Lanka (Silva and Siriwardena 1988), skarn mineralization occurs around a coarse-grained orthoclase-quartz-bearing pegmatite within a calcite-dolomite marble.  The deposit is characterized by zones with spinel + scapolite ? corundum ? phlogopite and scapolite + corundum + spinel assemblages.  Corundum is commonly replaced by spinel.  The skarn formed by the interaction of Al-rich fluid from the intrusion with an impure marble.  Other examples of skarn-generated corundum deposits occur in the Tranomaro area of Madagascar (Rakotondrazafy et al. 2008), where corundum formed along with meionite, spinel, and thorianite in skarn zones (scapolite + clinopyroxene ? titanite) in calcitic marble at peak P-T conditions of T ~850 ?C and P ~5 kbar.  The sapphire formed in late veins (K-feldspar + F-apatite + calcite + phlogopite) at T ~500 ?C and P ~2 kbar.  Skarn-generated corundum deposits may also occur in the Mogok Stone Tract in Myanmar (Harlow et al. 2006), where rubies are locally found with cancrinite + scapolite + sodalite ? nepheline and phlogopite ? spinel ? pargasite ? tourmaline.  The rubies are interpreted to have originated from skarn metasomatism because of the typical skarn silicate mineral assemblages and because the rubies are surrounded by or are connected to skarn-silicate veins.  Terekhov et al. (1999) suggested that corundum from the Kukurt gemstone field, eastern Pamirs, Tadjikistan, formed as a result of Al-precipitation from fluids during alkaline metasomatism of marble.  Further work by Dufour et al. (2007) on the same localities suggested that the corundum-bearing lenses originated from the alkaline metasomatism of terrigenous (pelitic?) layers in marble.  In the Kukurt field the corundum occurs with biotite, spinel, pyrite, tourmaline, apatite, and rutile, and minor amounts of Mg-calcite, scapolite, and muscovite.   5 6 1.5 Relevance of Proposed Study Localities  As outlined above, the origin of gem corundum (Al2O3) deposits remains unclear and as a result, only primitive exploration strategies exist for some deposit types.  These localities are unique in terms of their mode of occurrence, mineral assemblages, age, colour, and genesis.  At the Revelstoke occurrence, pink sapphire and ruby occur with muscovite, phlogopite, K-feldspar, anorthite, and accessory minerals such as rutile in thin and laterally extensive layers throughout marble lenses within a calc-gneiss unit. At the KSO, blue, yellow, and colourless sapphire occurs with albite, muscovite, calcite, scapolite, phlogopite, oligoclase, and violet diopside in pod-shaped calc-silicate lenses within a regionally extensive marble unit.  An understanding of how the Revelstoke occurrence formed will be used to help determine the origin of the more complex KSO.   1.6 Previous Studies on the Revelstoke Occurrence Area  The Revelstoke occurrence is located in the Shuswap Metamorphic Core Complex (MCC), in the southern part of the Omineca belt of the Canadian Cordillera in British Columbia (Fig. 1.2).  It is hosted in a marble layer within the Monashee complex cover sequence northwest of the Frenchman Cap dome. The regional geology and PT conditions affecting the Frenchman Cap dome (Brown 1980, Brown et al. 1986, Journeay 1986, H?y 1987, Johnson 2006, Crowley 1999, Crowley and Parish 2001) and nearby Thor Odin Dome (Teyssier et al. 2005, Hinchey et al. 2006, Gervais et al. 2010, and Gervais and Brown 2011) have been extensively studied and thus provide a basis for my study.   1.7 Previous Studies on the Kimmirut Sapphire Occurrence (KSO) Area  The KSO occurs in a localized area of the Paleoproterozoic Lake Harbour marble of the metasedimentary Lake Harbour Group (LHG) on Baffin Island near the town of Kimmirut, Nunavut (Fig. 1.2; LeCheminant et al. 2005, Butler 2007, Fagan & Miller 2012), as part of the Meta Incognita microcontinent (MIM) within the Quebec-Baffin segment of the Trans Hudson orogen (St-Onge et al. 1996).  Various studies on the tectonostratigraphy, 6 7polymetamorphic events (St-Onge et al. 2007), and age dating have been completed here, providing a basis for my study (Davison 1959, Jackson and Taylor 1972, Scott and Gauthier 1996, St-Onge et al. 1996, Scott 1997, Wodicka and Scott 1997, Scott and Wodicka 1998, St-Onge et al. 1998, Scott et al. 2002, and St-Onge et al. 2007).   1.8 Objectives of Thesis The primary questions that I intend to answer in my study are:  1. How does gem corundum form in carbonate rocks at the Revelstoke occurrence and at the Kimmirut sapphire occurrence?    2. How do these localities compare to each other and to other localities in terms of: (1) the type of gem corundum present, (2) P-T conditions, (3) nature of the protolith, and (4) nature of the fluid?   3. Can existing models of corundum genesis explain the genesis of corundum at the Revelstoke and Kimmirut occurrences? If these models are unable to do so, new models will be proposed.    4. What is unique about these localities relative to other corundum deposits that make them conducive to the formation of gem corundum?    5. What are the implications of mode of occurrence and formation for the exploration of other deposits?    1.9 Research Approach  In order to address the objectives, I  determined the following for each occurrence: (1)  The nature of the protolith.  The localities that I am studying have been metamorphosed to upper amphibolite-granulite facies; as a result, the nature of the protolith is not 7 8obvious from field observations.  Whole rock geochemistry, mineral associations, and oxygen isotopes were used to determine  the protolith and source of aluminum and chromophores.   I also compared my results to other gem-corundum localities to determine similarities and differences. (2)  Conditions of formation. This study addresses how the protolith was affected during deformation and metamorphism and the conditions necessary for corundum formation.  I determined the P-T conditions and fluid characteristics that affected the corundum-bearing zones.   (3)  The influence of local and regional geology on mineralization.  This study examined the unique geological environment at each corundum-bearing locality,  including stratigraphic, structural, and metasomatic controls on mineralization. (4)  The role of marble in corundum formation. This study determined that the silica-depleted environment and production of CO2 during decarbonation assisted in corundum formation.  The answers to these questions were used to evaluate existing models of gem corundum formation and were used to propose new models for the Revelstoke and Kimmirut occurrences. Similarities and differences between the different localities were  outlined new exploration strategies were developed.  8 9  Figure 1.1: Major and minor commercial world sources of gem corundum (Giuliani et al. 2007).  Figure 1.2: Map of Canadian gem corundum localities. Blue stars indicate sapphire occurrences, and red stars indicate ruby and pink sapphire occurrences.  The study localities are denoted by RO = Revelstoke Occurrence and KSO = Kimmirut Sapphire Occurrence, and other Canadian localities are denoted as: 1 = Slocan Valley, 2 = Bancroft-York River area, 3 = Nova Scotia, 4 Labrador.  9 10  Figure 1.3: Calculated theoretical corundum-producing reactions at different XH2O [XH2O = H2O/(H2O+CO2)]. Mineral equilibria were calculated with the program Theriak-Domino (de Capitani and Petrakakis 2010) using end member compositions and the internally consistent thermodynamic database of Holland and Powell (1998). A) Breakdown of diaspore, margarite, and spinel.  B) Breakdown of muscovite.     10 11Chapter  2: Methods  At the Revelstoke occurrence, samples of the host gneiss, marble, and corundum-bearing mica-feldspar layers within marble were sampled from both float and outcrop.  Outcrop samples were collected from two parallel north-south traverses across the marble unit including samples of the host gneiss at both the north and south contacts.  Calc-silicate samples from the Kimmirut Sapphire Occurrence were collected by Lee Groat and True North Gems from the Beluga pit using a rock saw.  Representative polished thin sections of host gneiss, marble, and corundum-bearing calc-silicate layers within marble were studied using optical and scanning electron microscopy (SEM) and cathodoluminescence (CL) microscopy to characterize the minerals and determine the paragenetic sequence.  Whole rock major and trace element analyses of the major rock types were done at ALS Chemex in Vancouver using a combination of ICP-AES and ICP-MS (package CCP-PKG01).  Chondrite normalization after Sun and McDonough (1989) is used for data presentation.  Chemical compositions of minerals were determined using a fully automated CAMECA SX-50 electron microprobe, operating in the wavelength-dispersion mode.  The following operating conditions were used for , feldspars, scapolite, rutile:  excitation voltage, 15 kV; beam current, 20 nA; peak count time, 20 s; background count-time, 10 s; spot diameter, 5 ?m.  The following operating conditions were used for corundum:  excitation voltage, 15 kV; beam current, 40 nA; peak count time, 20 s for Al, 180 s for others; background count-time, 10 s for Al, 90 s for others; spot diameter, 10 ?m.  The following operating conditions were used for calcite: excitation voltage, 15 kV; beam current, 10 nA; peak count time, 20 s; background count-time, 10 s; spot diameter, 5 ?m.  The following operating conditions were used for amphibole and pyroxene: excitation voltage, 15 kV; beam current, 20 nA; peak count time, 20 s (40 s for F, Cl); background count-time, 10 s (20 s for F, Cl); spot diameter, 5 ?m.  The following operating conditions were used for micas: excitation voltage, 15 kV; beam current, 10 nA; peak count time, 20 s (40 s for F, Cl); background count-time, 10 s (20 s for F, Cl); spot diameter, 10 ?m.  Data reduction was done using the 'PAP' ?(?Z) method (Pouchou and Pichoir 1985).  The standards used are listed in tables containing the analytical data within Appendix A and B of this thesis. 11 12 The carbon and oxygen stable isotopic composition of carbonate from the Revelstoke occurrence was analyzed using different techniques at different labs.  Whole rock carbonate and calcite mineral separates were analyzed at the Pacific Centre of Isotopic and Geochemical Research at UBC in Vancouver, Canada.  Analyses were carried out using the gas bench and a Delta PlusXL stable isotope ratio mass spectrometer in continuous flow mode.  Samples were acidified with 99% phosphoric acid in helium-flushed sealed vials, and the headspace gas was measured in a helium flow.  The ?13C (VPDB) and ?18O (VSMOW) results are based on an average of multiple analyses of NBS-18 and -19 standards.  The analyses were corrected for fractionation using repeated analyses of UBC internal carbonate standards BN 13, BN 83-2, and H6M, which were previously calibrated against NBS-18 and -19.  Carbonate drill powder analyses were also performed at UBC using the Mineral Deposit Research Unit Mineral Isotope Analyzer (MDRU-MIA; Barker et al. 2011).  Samples were acidified with 85% phosphoric acid in sealed, non-flushed glass vials and the headspace gas was measured. The analyses were corrected for fractionation using repeated analyses of UBC internal carbonate standards BN 13, BN 83-2, and H6M, which were previously calibrated against NBS-18 and -19.  A majority of the carbonate ?13C and ?18O values collected by the Stable Isotope Ratio Mass Spectrometer (IRMS) and the Mineral Isotope Analyzer (MIA) correlate within error (Fig. 2.1).  Interpretations of data collected by these two methods can be made with confidence.  12 13 Figure 2.1:  Comparison of ?13C and ?18O values collected using an Isotope Ratio Mass Spectrometer (IRMS) and Mineral Isotope Analyzer (MIA).    Whole rock carbonate and silicate analyses were performed at Queen?s Facility for Isotope Research, Queen?s University, Canada.  Analyses were carried out using the Finnigan GasBench II and a Finnigan MAT 252 isotope-ratio mass spectrometer.  The analytical procedure was analogous to that used by Uvarova et al. (2011).  Corundum ?18O analyses were performed at the Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, Glasgow Scotland, using the method described by Giuliani et al. (2005).  Only unaltered corundum grains embedded in calcite were analyzed.  Ar-Ar dating of muscovite and phlogopite from corundum-bearing calc-silicate layers were analyzed at the Noble Gas Laboratory, Pacific Centre for Isotopic and Geochemical Research (PCIGR), University of British Columbia, Vancouver, BC, Canada.  Mineral separates were hand-picked, washed in acetone, dried, wrapped in aluminum foil and stacked in an irradiation capsule with similar-aged samples and neutron flux monitors (Fish Canyon Tuff sanidine, 28.02 Ma; Renne et al., 1998).  The samples were irradiated at the McMaster Nuclear Reactor in Hamilton, Ontario, for 90 MWH, with a neutron flux of approximately 6 ? 1013 neutrons/cm2/s.  Analyses (n = 45) of 15 neutron flux monitor positions produced errors of <0.5% in the J value.  Subsequently, they were analyzed at PCIGR.  The mineral 13 14separates were step-heated at incrementally higher powers in the defocused beam of a 10W CO2 laser (New Wave Research MIR10) until fused.  The gas evolved from each step was analyzed by a VG5400 mass spectrometer equipped with an ion-counting electron multiplier.  All measurements were corrected for total system blank, mass spectrometer sensitivity, mass discrimination, radioactive decay during and subsequent to irradiation, as well as interfering Ar from atmospheric contamination and the irradiation of Ca, Cl, and K.  The plateau and correlation ages were calculated using Isoplot ver.3.09 (Ludwig, 2003).  Errors are quoted at the 2-sigma (95% confidence) level and are propagated from all sources except mass spectrometer sensitivity and age of the flux monitor.  The best statistically justified plateau and plateau age were picked based on the following criteria:  (1) three or more contiguous steps comprising more than 50% of the 39Ar; (2) probability of fit of the weighted mean age greater than 5%; (3) slope of the error-weighted line through the plateau ages equals zero at 5% confidence; (4) ages of the two outermost steps on a plateau are not significantly different from the weighted-mean plateau age (at 1.8?, six or more steps only); and (5) outermost two steps on either side of a plateau must not have nonzero slopes with the same sign (at 1.8?, nine or more steps only).  Mineral abbreviations used follow Whitney and Evans (2010).   14 15Chapter  3: Revelstoke Occurrence: High-pressure Origin of Gem Corundum in Micaceous Layers in Marble  3.1 Introduction A carbonate-hosted gem corundum locality northwest of Revelstoke in British Columbia (at 51? 31.3? N, 118? 46.7? W, 82M/10) was staked as the Goat claims by Bradley S. Wilson in 2002 (Fig. 3.1).  Several gem-quality sapphires and rubies from this locality have been faceted with the largest being slightly less than 0.5 ct. (Fig. 3.2A,B). The objectives of this work are to: 1) characterize the geology, geochemistry, mineralogy, and corundum fluid inclusions; 2) compare the mineralogy and geochemistry of different lithologies at the occurrence, and 3) identify a genetic model of mineralization at the Revelstoke occurrence in order to develop an exploration strategy for this type of deposit.   3.2 Geological Setting The Revelstoke occurrence is located in the Shuswap Metamorphic Core Complex (MCC), in the southern part of the Omineca belt of the Canadian Cordillera in British Columbia.  It is hosted in a marble layer within the Monashee complex cover sequence northwest of the Frenchman Cap dome (Fig. 3.1A,B). The Omineca Belt is a northwest trending uplifted region of metamorphic and plutonic rocks separating accreted terranes from the ancestral North America continental margin in the Canadian Cordillera (Johnson 2006).  Rocks within the Omineca Belt are typically highly deformed and variably metamorphosed. The Shuswap MCC is the most deeply exhumed part of the southern Omineca Belt in the core of the Canadian Cordillera (Johnson 2006).  The Monashee complex is the lowest exposed part of the Shuswap MCC and is the largest exposure of Precambrian crystalline rock in the Canadian Cordillera (Crowley 1999).  The Monashee complex, which contains the Frenchman Cap dome to the north and the Thor-Odin dome to the south (Fig. 3.1B), is bounded by the Monashee d?collement in the west and the Columbia River fault in the east (Brown 1980, Brown et al. 1986, Journeay 1986, Johnson 2006, Crowley 1999). 15 16During the formation of the Frenchman Cap and Thor-Odin domes, initial compressional tectonism was succeeded by extension of the orogen along the Columbia River and Okanagan-Eagle River fault system following a path of isothermal decompression and isobaric cooling.  The exact mechanism of decompression and uplift is discussed by Teyssier et al. (2005), Hinchey et al. (2006), Gervais et al. (2010), and Gervais and Brown (2011).  All suggest similar P-T paths with peak metamorphic conditions of ca. 750-800 ?C and 8-10 kbar followed by isothermal decompression to 300-150 ?C and <5 kbar.  The observed inverted metamorphic gradient in the northern part of the Frenchman Cap dome (Journeay 1986) was explained by Crowley and Parish (2001) as a juxtaposition of high-grade rocks over a lower-grade metapelitic rock sequence with regular metamorphic zonation.  The Monashee d?collement was active during both Mesozoic orogenesis (Read and Brown 1981) and early Tertiary (~58 Ma) extension and uplift (Lane 1984).  Work by Crowley and Parrish (1999) shows that the pelitic schist which borders the marble hosting the Revelstoke occurrence has thermal peak U-Pb monazite and zircon ages that range from 57 to 51 Ma.   3.3 Lithological Units of the Monashee Complex The Monashee complex contains Paleoproterozoic to Cambrian shallow marine metasedimentary cover rocks up to 2-3 km thick which uncomformably overlay a core of Paleoproterozoic basement migmatitic paragneiss and granitoid orthogneiss rocks (Crowley 1999, Crowley et al. 2001).  H?y (1987) suggested the marble-hosting metapelitic sedimentary sequence in the northern part of the Frenchman Cap dome was deposited on a shallow marine shelf to intertidal platform environment.  He interpreted the scapolite-bearing metapelitic assemblages as former muds and silts with varying amounts of carbonate that were deposited under saline conditions, with halite as a possible constituent of the original sedimentary rock. According to H?y (1987), the stratigraphic succession of autochthonous cover rocks above the basement gneiss is divided into three units (Fig. 3.1C):  the lower assemblage (Unit 3, quartzite), the middle assemblage (Unit 4, calcareous and pelitic schists with the extrusive Mount Grace carbonatite, and Unit 5, marble), and the upper assemblage (Unit 6a,b, 16 17calcareous and pelitic schist).  The Revelstoke gem corundum occurrence occurs in a marble layer within the upper assemblage (Unit 6a). The upper assemblage is divided into two parts.  Unit 6a contains interlayered light grey to green scapolite-bearing calc-silicate gneiss and sillimanite schist, an impure marble (which hosts the corundum), and the Cottonbelt sulfide-magnetite layer, which is interpreted as a sedimentary-exhalative (SEDEX) deposit with some features of Broken Hill-type deposits (H?y 2001).  Unit 6b contains interlayered sillimanite schist, quartz feldspar gneiss, thin chert, and impure quartzite layers (H?y 1987).   3.4 Geology and Petrography of the Revelstoke Occurrence The corundum-bearing marble is exposed for several kilometers along strike within unit 6a (Fig 3.1C) and is bounded on both sides by a heterogeneous calc-gneiss with pelitic layers (Fig 3.3A,B).  The boundaries between the marble and the host gneiss are sharp, but intercalations of the marble with gneiss layers at the boundaries are common.  Minor sediment-hosted Pb-Zn ("SEDEX") mineralization is associated with the marble layer, especially west and north of the studied area (H?y 2001).  The host rocks and the marble are extensively folded. Rock samples were obtained from boulders of marble float with common corundum and green muscovite, as well as from a marble outcrop with common green muscovite and rare corundum (outcrop 1), and a marble outcrop with common scapolite and rare corundum and muscovite (outcrop 2; Fig. 3.1C).  Samples of gneiss and various layers in marble (diopside, magnetite, graphite, and garnet) were collected from the outcrops.  A sample of SEDEX mineralization in contact with marble was observed near outcrop 2.  A tourmaline sample was collected between the float locality and outcrop 1.  Mineral assemblages for all lithologies are in Table 3.1.  3.4.1 Marble The marble is composed of fine- to medium-grained calcite; only very rare dolomite was observed at the contact with the host rock and as microscopic relicts in calcite within the magnetite-rich layers.  The calcite matrix contains impure siliceous and non-siliceous 17 18laminations and layers, generally parallel to the contact.  The siliceous layers can be divided into 3 contrasting types:  (1) mica-feldspar-bearing (with corundum; Fig. 3.3C); (2) diopside-tremolite-bearing (Fig. 3.3D); and very rare (3) diopside-garnet-amphibole-scapolite-bearing.  The non-siliceous layers are graphite- and/or magnetite-bearing (Fig. 3.3E).  The graphite layers are more common than the siliceous ones, and the magnetite layers are relatively rare.  The marble is commonly folded, with boudins and broken grains of feldspars and scapolite enclosed in deformed mica-feldspar-bearing layers.  The marble locally shows evidence of post-metamorphic pressure-induced calcite grain boundary migration recrystallization and cataclasis.  Rare cross-cutting calcite veins with deformed coarse-grained carbonate crystals in a fine-grained matrix have been observed.  3.4.2 Mica-Feldspar-Rich Layers Mica-feldspar-rich layers with minor corundum (Fig. 3.3C) are dispersed throughout the marble unit and individual layers can be traced for several tens of meters on the outcrop surface.  They range in thickness from 1 to 20 cm and are thickest near the contact with the host gneiss.  The grain size ranges from ~0.1-40 mm.  The layers are foliated, and are commonly folded and boudinaged (Fig. 3.3F). The layers are locally mineralogically zoned (Fig. 3.4); they contain green muscovite aggregates rimmed by anorthite, K-feldspar, phlogopite, and corundum (zone 1), which are enclosed by calcite + phlogopite ? plagioclase ? K-feldspar ? corundum (zone 2).  Surrounding calcite layers (zone 3) rarely contain crystals of corundum or aggregates of anorthite + K-feldspar + muscovite, which are isolated from the adjacent silicate layer due to shearing of the marble.  Zones 1 and 2 sometimes contain minor amounts of scapolite; zones 2 and 3 may also contain accessory quartz.  Corundum can occur in all three zones, but it has never been observed in contact with quartz. Zone 1 contains deformed lensoidal aggregates of green muscovite (V- and Cr-bearing) which are commonly rimmed by phlogopite, anorthite, K-feldspar and minor corundum (Figs. 3.3C, 4, 5A-D).  Anorthite and K-feldspar usually contain common inclusions of coarse-grained phlogopite, muscovite and calcite, and minor rutile and apatite.  Muscovite aggregates contain only minor fine-grained phlogopite, rutile, apatite and rare zircon and Th-rich uraninite (Fig. 3.5A,B).  Anorthite and K-feldspar can occur as isolated grains in the 18 19calcite matrix or they can occur as aggregates of intergrown crystals with K-feldspar typically concentrated around the rim of the aggregates as the latest phase.  K-feldspar grains are commonly zoned and enriched in Ba on their rims (Fig. 3.5C).  Phlogopite in the marble is rarely overgrown by muscovite.  Pseudomorphs after titanite are locally present as an assemblage of rutile + K-feldspar + anorthite ? calcite ? titanite in the muscovite aggregates.  Where large rutile inclusions are in contact with calcite or anorthite, newly formed titanite is rarely observed. Zone 2 is characterized by calcite with dispersed phlogopite, anorthite, K-feldspar, and minor aggregates of anorthite and K-feldspar with relict muscovite.  Accessory phases present in this zone are corundum, scapolite, and rutile, along with trace amounts of apatite, Fe-oxide, graphite ? quartz ? pyrite.  Scapolite locally occurs as isolated anhedral grains replacing anorthite, or as euhedral crystals in sulfide-filled pockets in carbonate veinlets. Zone 3 marble layers contain calcite ? trace quartz ? apatite ? euhedral corundum.  The calcite in the marble layers is mostly coarse-grained (0.5-2 mm), although it is locally rimmed by fine-grained calcite (<0.1 mm) as a result of recrystallization.  Apatite and quartz occur with the fine-grained calcite, but their crystals are rounded and not recrystallized. Corundum occurs in three morphological types:  (1) euhedral, sometimes zoned crystals or their fragments enclosed in Zone 1, in feldspars or in muscovite aggregates (Fig. 3.5D,E); (2) euhedral zoned corundum with calcite inclusions, enclosed in calcite or in feldspar on the border of muscovite aggregates (Zones 2 and 3; Fig. 3.5F); and (3) fine-grained aggregates of corundum with very common inclusion of rutile and apatite, enclosed in feldspar or calcite (Zones 2 and 3; Fig. 3.5G).  The euhedral type (1) forms crystals ~3-10 mm in diameter, with minor euhedral inclusions of rutile, apatite and rare zircon; in mica-feldspar aggregates it locally encloses grains of muscovite and Ba-rich K-feldspar.  Rare inclusions of anorthite were found in anorthite-rimmed corundum.  In phlogopite-rich mica-feldspar layers, corundum may enclose phlogopite crystals.  The euhedral corundum type (2) forms large crystals up to 3 cm long and 1 cm wide, with an average width of 5-10 mm, sometimes with typical hexagonal dipyramids.  The corundum crystals usually contain rounded inclusions of calcite, and if the inclusions are abundant, they give the crystals a skeletal appearance.  The fine-grained type (3) grain size is generally less than 1 mm.  The aggregates are usually rather small (<1 cm), sometimes intergrown with Ba-rich K-feldspar 19 20or anorthite, overgrown by phlogopite and can be strongly altered.  All of the corundum types seem to have non-preferred orientations. In some instances euhedral crystals of scapolite replace anorthite; they can enclose common muscovite.  Corundum associated with anorthite, scapolite and K-feldspar was replaced by margarite or Ba-enriched muscovite where it was accessible to late fluids (Fig. 3.5G).  3.4.3 Diopside-Tremolite Laminations Laminations with common fibrous tremolite replacing euhedral crystals of diopside occur sporadically throughout the marble unit (Fig. 3.3D).  The laminations are occasionally folded and vary in grain size and thickness; euhedral diopside crystals can be up to 8 cm long (typically 2-4 cm), and the thickness ranges between 1 and 15 cm.  The pseudomorphed diopside grains contain tremolite with very small quartz and calcite blebs.  Graphite laminations sometimes intersect the diopside-bearing layers as veinlets along the intergranular spaces between calcite grains; graphite aggregates form around the tremolite pseudomorphs and around diopside relics within them.  A rare prograde tremolite + calcite assemblage was found in the marble.  3.4.4 Minor Assemblages in the Marble Very rare diopside-garnet-K-amphibole-scapolite assemblage was found close to a rare quartz lens in the marble. Garnet and diopside are primary minerals in the assemblage.  The garnet is rimmed by coronas of scapolite and Na-K-amphibole (major ferropargasite and minor hastingsite).  The Na-K amphibole appears to replace diopside when in contact with garnet and scapolite (Fig. 3.5H), otherwise the diopside is replaced by tremolite. A single sample of a fine-grained aggregate of brown tourmaline was found in a coarse-grained calcite layer. The tourmaline rarely forms euhedral crystals up to 5 mm in a calcite pockets.  3.4.5 Non-Siliceous Laminations Rare magnetite-rich layers occur in the marble.  The magnetite is enclosed in calcite with relicts of dolomite.  The graphite laminations are common throughout the marble and 20 21they also occur as irregular veinlets in other zones.  In most cases they appear to post-date the metamorphic assemblages.  3.4.6 Brittle Deformation in Marble Cataclasite zones extend for many meters on the surface of the outcrop and vary in grain size and mineral abundance (Fig. 3.3D).  Their thickness ranges from 1 mm to 20 cm.  The amount of grain size-reduction varies depending on the abundance of mineral phases.  Very fine-grained laminations are very dark and typically contain graphite, apatite, and pyrite, whereas coarser laminations are grey in color and contain more silicate minerals. The matrix of the cataclasites is composed of fine-grained calcite.  Its grain size is highly variable, ranging from below 0.2 mm (the prevailing fraction) to deformed grains up to 4 mm.  The matrix contains abundant graphite and broken and deformed rounded grains (<0.5 mm) of apatite, anorthite, K-feldspar, pyrite, titanite, ? scapolite ? Fe-oxide ? quartz ? corundum.  Some relict muscovite-K-feldspar and K-feldspar-anorthite aggregates remain in the fine-grained areas.  Anorthite and minor K-feldspar grains are altered to muscovite, quartz, and albite.  Pyrite and titanite occur both as euhedral grains and as broken to anhedral fragments.  Graphite, pyrite, and fine-grained muscovite locally rim silicate and apatite grains.  One corundum grain enclosed in anorthite was found in the fine-grained cataclasite. Carbonate near the cataclasite zones shows extremely irregular and lobate grain borders due to extensive grain boundary migration recrystallization.  This feature gradually disappears away from the cataclasite zones.  3.4.7 Calc-Gneiss The calc-gneiss, which hosts the marble, is strongly foliated, with biotite and feldspathic leucosome layers defining the foliation of the rock (Fig. 3.3B).  The gneiss is inhomogeneous and contains variable proportions of Ca-rich minerals; with increasing calcium in the rock, diopside, K-feldspar, calcite, and titanite increase in abundance, and biotite, quartz, plagioclase, and garnet decrease.  The rock fabric is heterogeneous with:  (1) K-feldspar and diopside-rich (Fig. 3.6A,B), (2) plagioclase-rich (Fig. 3.6C), and (3) biotite-rich/pelitic layers (Fig. 3.6D,E).  Trace amounts of graphite are locally present.  All minerals are anhedral with the exception of subhedral diopside and titanite. 21 22The K-feldspar and diopside-rich layers contain the stable assemblage K-feldspar (Or90-95) + diopside ? titanite ? phlogopite ? plagioclase (~An93).  The diopside grains contain inclusions of titanite and allanite, and are enclosed in K-feldspar and minor plagioclase; sometimes they are overgrown by phlogopite (XMg~0.4-0.6).  Rare garnet (~Alm52-53Grs31-40) was observed in an assemblage with clinopyroxene (Wo47-49En25-35Fs16-27), K-feldspar, and minor plagioclase (Fig. 3.6B).  Myrmekites are frequent on the plagioclase contacts with K-feldspar.  The assemblage of tremolite + calcite + quartz and later phlogopite commonly replace diopside; phlogopite is replaced by chlorite. Plagioclase-rich layers with stable assemblage plagioclase feldspar (An91-94) + calcite + clinopyroxene (Wo48En26Fs25) ? K-feldspar (Or91-93Ab7-9) ? titanite ? scapolite typically contain diopside and scapolite in the plagioclase matrix, together with common titanite, K-feldspar, calcite, and rare quartz.  Scapolite may occur as inclusions in diopside (Fig. 3.6C).  K-feldspar in the matrix has tartan twinning and contains inclusions of diopside and biotite; K-feldspar rimming diopside porphyroblasts does not show twinning.  Replacement of diopside by tremolite or phlogopite is common. The less-common biotite-rich pelitic layers (biotite + quartz + plagioclase feldspar ? garnet) are up to 30 cm thick, fine-grained, heterogeneous, and foliated, with thin layers of feldspar-rich leucosome containing rare garnet porphyroblasts; biotite, kyanite, sillimanite, and late-stage hematite are major minerals defining the foliation in the rock (Fig. 3.6D,E,F).  The typical mineral assemblage in the biotite-rich layers is K-feldspar (~Or93Ab7) + quartz + biotite (XMg~0.45-0.55) + kyanite/sillimanite + garnet + plagioclase, where the quartz is always enclosed in K-feldspar.  Garnet porphyroblasts are usually corroded, rimmed by plagioclase (An33-50)-quartz-kyanite/sillimanite leucosome and together with K-feldspar replaced by biotite, or by chlorite and muscovite; relic grains of K-feldspar in biotite typically display myrmekitic textures.  In some samples, the original biotite + kyanite + K-feldspar + quartz assemblage was replaced by the assemblage biotite + sillimanite + muscovite ? K-feldspar ? kyanite.  Common zoned tourmaline crystals were observed replacing biotite, sillimanite and plagioclase (Fig. 3.6E).  Accessory phases include allanite, graphite, fluorapatite, zircon, monazite and rutile.  The andalusite and cordierite identified by H?y (1987) were not observed in this study. 22 23Porphyroblasts of plagioclase (~An47) and garnet (~Alm66-69Grs17-21) are common in sillimanite-free assemblages (Fig. 3.6F).  The lens-shaped, twinned plagioclase grains (~An47) up to 2 mm in diameter have abundant randomly oriented inclusions of quartz, minor biotite, and graphite ? apatite.  The garnet porphyroblasts (4-8 mm) contain abundant inclusions of quartz, minor plagioclase, biotite, chlorite, ilmenite, rutile, and rare kyanite; the inclusions form trails with curved ends indicating syn-metamorphic origin.  Relics of an equilibrium assemblage of biotite + plagioclase feldspar + kyanite + quartz were observed in garnet, equivalent to the metamorphic peak reaction biotite + albite + sillimanite + quartz = garnet + K-feldspar + liquid observed by Hinchey et al. (2006) in the Thor-Odin dome.  The rock displays evidence of syn-kinematic partial melting, e.g., poorly developed layers and ribbons of plagioclase + quartz leucosome, myrmekites, or concentration of accessory phases in pressure shadows of porphyroblasts and in the leucosome.  3.4.8 SEDEX Mineralization One sample of olivine-hedenbergite rock in contact with marble was found near the contact of marble with calc-gneiss.  Sulfide minerals form void fillings and veinlets within secondary assemblages together with coarse grained aggregates of graphite.  Olivine (Fa87Fo10Tep3 in the core to Fa89Fo8Tep4 on the grain rim) and hedenbergite (XMg~0.4) are partially replaced by secondary amphiboles.  The sulfide minerals are sometimes altered to Fe-oxides.  Associated calcite appears to be in equilibrium with olivine.   3.5 Mineralogy  3.5.1 Corundum Most of the studied corundum is pink, but blue, violet and colorless varieties were found as well.  The amount of gem-quality material is limited and a very small percentage can be called ruby. Some crystals have a pink core and blue-violet rim alternating with colorless zones.  Growth zoning is visible in the pink grains under cathodoluminescence.  All except the small amount of colorless material fluoresce brilliantly in long wave ultraviolet light.  The pink 23 24corundum is characterized by elevated contents of Cr2O3 and low to moderate amounts of TiO2 (Fig. 3.7, Appendix A.1).  The blue corundum is enriched in TiO2; the Fe2O3 content in such grains is generally similar to that in the pink variety, ranging from 0.01 to 0.07 wt.%.  Contents of V2O3 are low in both varieties (usually <0.03 wt.%).  The colorless variety exhibits extremely low contents of all trace elements (Fig. 3.7).  3.5.2 Calcite and Dolomite Calcite is the dominant carbonate in the marble.  It contains only trace amounts of MgO (<1.1 wt.%), FeO (<1.8 wt.%), and MnO (<0.63 wt.%; Appendix A.2).  There is a slight enrichment in Mn and Fe near the contact with the gneiss.  There is also a slight enrichment in FeO near the contact of mica-feldspar layers with marble. The trace MgO contents appear to vary randomly within the marble body.  Dolomite was identified in a single sample by powder XRD, but was not analyzed by EPMA.  Dolomite was also identified as small relict crystals within calcite in a magnetite-rich layer in the marble.  3.5.3 Trioctahedral Mg,Fe-Micas Phlogopite from the float locality was observed in two textural and compositional varieties.  Rare phlogopite that occurs as inclusions within calcite grains in the carbonate matrix shows elevated contents of V (0.05-0.08 apfu), Ti (0.1-0.12 apfu), and Cr (0.012-0.016 apfu).  The most common phlogopite type occurs within mica-feldspar layers, either in the calcite matrix or rimming muscovite aggregates.  It has higher contents of Al (~1.9 apfu), and lower contents of the trace elements (<0.025 apfu V; 0.06-0.10 apfu Ti; 0-0.011 apfu Cr).  Both phlogopite varieties contain low contents of F (0.05-0.2 apfu), Na (<0.025 apfu) and Ba (<0.05 apfu). In rocks from both outcrop locations phlogopite was observed as inclusions in anorthite (aggregates with Ba-rich K-feldspar ? corundum); it shows significantly elevated contents of Fe (0.25-0.35 apfu) compared to the normal values for phlogopite in samples from the float (Fig. 3.8; Appendix A.3).  Several trace elements in phlogopite (e.g., F, Ti, and Ca) are on average slightly higher in samples from outcrop locations. The K,Mg-micas observed in the marble represent a solid solution between major phlogopite (42-77 %) and eastonite (42-0 %), minor muscovite and low amounts of oxy-phlogopite and kinoshitalite/ganterite components.  Although Ba and Ti could substitute for 24 25K and Mg in the phlogopite structure as a kinoshitalite component, their high ratio and negative correlation of Ti and Mg suggest that they enter the mica independently by substitutions BaAlK-1Si (phlogopite/muscovite ? kinoshitalite/ganterite), and (Ti?)Mg-2 (phlogopite ? oxy-phlogopite).  Barium-rich phlogopite is a common accessory mineral in marbles or schists associated with metavolcanics (Bol et al. 1989) or with base metal and barite hydrothermal deposits (e.g., Pan and Fleet 1991, Dole?alov? et al. 2006). Fe,Mg-micas from the host rocks show significantly higher Fe/Mg ratio, lower amounts of [6]Al and elevated contents of Ti (<0.29 apfu) compared to micas from marble.  Micas from diopside-rich layers contain higher amounts of [4]Al than those in biotite-rich layers. Host rock micas are solid solution between major annite and phlogopite, and minor eastonite and siderophyllite.  The major substitutions are Al2(Mg,Fe)-1Si-1 (to eastonite/siderophyllite), Al2?(Mg,Fe)-3 (muscovite) and FeMg-1.    3.5.4 Muscovite and Margarite Muscovite in marble contains elevated contents of Ti (? 0.094 apfu) and Mg (? 0.297 apfu); contents of Fe, Ba, and Na are low (Fig. 3.9; Appendix A.4).  The main chromophores responsible for the green color in micas (Cr and V) are present in trace amounts only; the green muscovite contains 0-0.23 wt.% Cr2O3 (0.07 wt.% avg; < 0.013 apfu) and 0-0.29 wt.% V2O3 (0.09 wt.% avg; < 0.016 apfu).  While contents of V3+ increase with Ti, Cr3+ does not show a similar trend in most samples, although its ionic radius is more similar to that of Ti4+ in octahedral coordination (Shannon 1976).  The composition of some of the muscovite from outcrop is enriched in Ba and Fe + Mg compared to the majority of data from both float and outcrop localities (Fig. 3.9).  The enrichment is related to patchy zoning in muscovite inclusions in K-feldspar replacing the muscovite aggregates. Fine-grained margarite locally replaces corundum crystals along fractures and rims.  Its composition is (Ca0.82Na0.11K0.07)Al3.84Si2.16O10(OH)2, and it contains minor paragonite and muscovite components.  The high Na content is similar to  the composition of retrograde  scapolite and rare albite.  25 263.5.5 Feldspars The prevailing feldspar in the mica-feldspar layers is plagioclase.  Its composition ranges from An0.85 to An1.00, but most of the data fall in the range An0.90 to An0.98 (Fig. 3.10; Appendix A.5).  The outcrop samples are less variable (An89-An97).  Contents of trace elements (K, Ba, Fe) are below their detection limits. The compositional data for K-feldspar in the mica-feldspar zones show low amounts of Na (Ab3-10) and elevated contents of Ba, ranging from ~0.02 to 0.16 apfu (Appendix A.5), falling in the field of hyalophane (Deer et al. 2001).  The highest Ba and Na-contents were found in anhedral grains of fine-zoned K-feldspar around muscovite aggregates (especially from the outcrop) where it forms at the expense of Ba-bearing muscovite.  3.5.6 Scapolite Scapolite from mica-feldspar layers exhibits narrow compositional variability in meionite-marialite components ranging in XCa [Ca/(Ca + Na + K)] from ~0.66-0.80, except for two isolated analytical spots from tips in a carbonate pocket showing only XCa ~0.48 (Fig. 3.11; Appendix A.6).  The Cl contents between 0.05 and 0.27 apfu are lower than expected for ideal marialite-meionite solid solution due to a significant ?mizzonite? component (Na-bearing, Cl-free meionite) introduced in the scapolite structure by the substitution (NaSi)(Ca-1Al-1).  Minor amounts of K (0.05-0.32 apfu) show positive correlation with Na and Cl contents.  Rare scapolite in coronas around garnet in marble have high amounts of the marialite component (<0.5 apfu Cl, <2.17 apfu Na + K) comparable to the extreme values from mica-feldspar layers.  Scapolite from the host rocks is compositionally distinct; it is Cl-free and contains significant ?mizzonite? with XCa = 0.81-0.84 only (Fig. 3.11).  Any results containing lower Na and higher Cl than expected for ideal marialite-meionite solid solution are likely the result of Na mobility away from (and Cl mobility towards) the electron beam during electron microprobe analysis (Fig. 4.20; Vanko and Bishop 1982). The anorthite associated with scapolite shows a wide compositional range of An0.85-An1.00.  The scapolite which originated by anorthite replacement has higher Na contents, which is expressed by lower equivalent anorthite values (0.47-0.74).  This feature was also observed in secondary scapolite after anorthite at other localities (Pan et. al 1994, Markl and Piazolo 1998, Kullerud and Erambert 1999).  The elevated albite component in plagioclase 26 27associated with steeper tie-lines in Figure 3.11 indicates partial reequilibration of plagioclase with late Na,Cl-enriched fluids at the end of scapolite crystallization.  3.5.7 Pyroxene The pyroxene in the marble is pure diopside with negligible amounts of Na, Fe, and Al.  The pyroxene observed in SEDEX assemblage is hedenbergite with average composition Hdn60Di40 (Fig. 3.12A; Appendix A.7).  The Fe content slightly increases from core to rim of the hedenbergite crystals.  In the garnet-scapolite assemblage, the pyroxene is compositionally zoned with XMg ranging from 0.53 to 0.65. Clinopyroxene in the host rock exhibits compositional zoning with XMg = 0.64-0.71 in the crystal cores and XMg = 0.47-0.58 on their rims.  Elevated contents of Al2O3 up to 1.81 wt.% and Na2O up to 0.25 wt.% were locally found in crystal cores, most likely representing non-equilibrated remnants of the peak metamorphic assemblage.  3.5.8 Garnet Rare garnet found in marble (Alm48-67Grs21-35Sps6-11Prp5-10) is compositionally similar to the garnet that occurs in the host rocks (Fig. 3.12B; Appendix A.8).  In the pelite, the garnet is Ca-poor and falls within the compositional range of Alm66-69Grs17-21Sps1Prp9-16 with slightly elevated Mg and Ca in the rims; in the diopside gneiss the garnet is enriched in Ca with composition Alm31-40Grs52-53Sps2-4Prp5-14.  3.5.9 Amphiboles Amphibole that replaces diopside within the marble is tremolite containing minor TAl and Na (tschermakite and edenite components; Fig. 3.13; Appendix A.9).  In the garnet assemblage in the marble, the amphibole has a lower Mg/Fe ratio, higher contents of Al and Fe3+, and the composition ranges from ferro-actionlite and actinolite to ferrohornblende, with very low amounts of Na + K (Fig. 3.13B).  However, amphiboles replacing garnet in the same assemblage are major potassic-ferropargasite and minor hastingsite; they are rich in Na + K (>0.5 apfu) and Al + Fe3+ (>1.5 apfu), and have Mg>Fe2+.  The major chemical changes in the amphiboles can be expressed by combination of edenite (NaTAl?-1Si-1) and tschermakite (AlTAlR2+-1Si-1) substitutions (Fig. 3.13C).  For most of the data they show 27 28ideal trend with 1:1 ratio towards hastingsite/pargasite as a substitution (Na,K)(Al,Fe3+)1TAl2?-1(Mg,Fe2+)-1Si-2.  However, data lying out of the ideal trend, and those with Si < 6 apfu indicate minor substitution (Na,K)(Al,Fe3+)2TAl3?-1(Mg,Fe2+)-2Si-3 (1:2 ratio of edenite:tschermakite substitutions) towards sadangaite occurs as well. At the contact between the marble and calc-gneiss, ferro-actinolite occurs as a breakdown product of clinopyroxene, whereas associated olivine is replaced by grunerite or ferro-anthophyllite (Fig. 3.13A).  Both substitution schemes observed in tremolite apply to a lesser extent in ferro-actinolite (Al + Fe3+ ? 0.18 apfu) and grunerite (Al + Fe3+ ? 0.14) as well; contents of Na are lower than 0.04 apfu in both amphiboles.  3.5.10 Other Accessory Minerals Apatite is the most common accessory phase.  It contains low concentrations of the usual minor cations like Mn, Fe, Mg, and Sr (<0.004 apfu).  It is always F-dominant (0.63-0.79 apfu) with elevated Cl (0.07-0.17 apfu) and OH (0.08-0.23) contents.  Rarely, compositions with 0.51 apfu F, 0.13 apfu Cl, and 0.36 apfu OH were observed (Appendix A.10). The elevated chlorine content is in contrast with pure fluorapatite reported from the nearby Mount Grace carbonatite (H?y 1987). Rutile in mica-feldspar layers contains elevated contents of Nb2O5 (< 1.24 wt.%), V2O3 (< 0.64 wt.%), and trace amounts of Cr2O3 (< 0.18 wt.%), CaO (< 0.38 wt.%), and FeO (< 0.12. wt.%; Appendix A.10).  Rutile from host rocks is V-free and contains trace amounts of Nb2O5 (<0.35 wt.%), Cr2O3 (< 0.22 wt.%), and FeO (<0.47 wt%).  Elevated Nb2O5 (up to 0.9 wt.%) and V2O3 (up to 5.39 wt.%) are commonly reported from graphite-rich metasedimentary rocks worldwide (e.g., Canet et al. 2003, Houzar and Cemp?rek 2011). Titanite in the marble and host rock have very similar chemical composition (Appendix A.10).  They exhibit significant (Al,Fe3+)( OH,F) (TiO)-1 substitution with up to 0.14 apfu F, 0.14 apfu Al, and 0.03 apfu Fe3+, commonly with (Al+Fe) >>F.  Other substitutions (involving e.g. Nb, Zr, Sn. Cr, V; Cemp?rek et al. 2008) usually observed in titanite are below detection limits.  The substitution of Al and OH in titanite is typical in high pressure metamorphic rocks (e.g. Tropper et al. 2002, Harlov et al. 2006) whereas Al,F-rich titanite is typical in low-pressure calcsilicate rocks (e.g. Markl and Piazolo 1999, Cemp?rek et al. 2008).  Allanite was also observed in the calc-gneiss (Appendix A.11). 28 29 Rare tourmaline from marble is Ca,F,O-rich dravite (Ca ? 0.36 apfu, F ? 0.31 apfu, WO ? 0.38 apfu; Appendix A.12).  A single spot representing fluor-dravite was observed.  It differs from the tourmaline in the host rocks, which contain cores of Ca,F-rich dravite (Ca ? 0.34 apfu, F ? 0.21 apfu) and rims of Na-rich uvite and fluor-uvite (0.33-0.41 apfu Na, 0.53-0.20 apfu F). Members of dravite-uvite solid solution with variable contents of F are common in metacarbonates with an evaporite component (e.g. Garnier et al. 2008).    3.6 Whole Rock Geochemistry Marble, calc-silicate within marble, and the gneiss were analyzed for major and trace elements in order to determine possible sources of elements in corundum (Al, V, Cr, Ti, Fe) and their relative mobility (Appendix A.13). Figure 3.14 shows major and trace element of analyzed samples compared to Al2O3 which is considered one of the least mobile elements in skarn systems (Meinert et al. 2005) and represents the aluminosilicate components in each rock.  Contents of the main immobile elements (Ti, Cr, and V) in marble and host rocks positively correlate within a narrow range with Al2O3 (Fig. 3.14) suggesting the same homogenous source of the calc-gneiss and mica-feldspar layers and their formation by mechanical mixing of the two lithologies.   Contents of SiO2 are strongly depleted in mica-feldspar layers compared to the mechanical mixing line between marble and calc-gneiss (Fig. 3.14); the same feature is present in FeO contents whereas, K2O and CaO in the mica-feldspar layers fit to the mechanical mixing range.  Contents of MgO are variable in agreement with their higher mobility and original heterogeneity within marble.  Diopside-rich calc-gneiss samples are depleted in major elements (except for V) compared to the biotite-rich calc-gneiss samples.  In mica feldspar layers, contents of U and Th are elevated and slightly depleted, respectively (Fig. 3.14). Besides the aluminosilicate component, the contents of V also correlate well with Ti, Cr, Ni, and Co (Fig. 3.15).  The correlation of Ti and V can be also observed in the partial chemical data from metapelitic rocks and amphibolites in Units 6a and 6b published by H?y (2001). 29 30The REE patterns in the gneiss show elevated REE-contents (~244 ppm), enrichment in LREE (LaCN/LuCN ~ 15.5), and distinct negative Eu-anomaly (Eu/Eu* ~ 0.55; Fig. 3.16).  The marble REE values are close to their detection limits (0.11-1.66 ppm); their patterns are enriched in LREE.  The carbonate layers between mica-feldspar layers are enriched in REE (8.15-15.09 ppm) compared to the pure marble.  They are enriched in LREE (LaCN/LuCN ~ 8.3-18.2) and exhibit a positive Eu anomaly (Eu/Eu* 1.53-2.86).  The mica-feldspar layers are compositionally heterogeneous and the REE contents vary between 5.48 and 165.15 ppm (Fig. 3.16).  All samples are enriched in LREE (LaCN/LuCN ~ 6.4-23.7).  The Eu anomaly is most pronounced and negative in REE- and silicate-rich samples (Eu/Eu* ~0.3) and it gradually increases to positive values in more carbonate-rich samples (Eu/Eu* 0.5-1.27).  Contents of Y show positive correlation with Dy and Ho and with REE in general.   3.7 40Ar-39Ar Dating of Micas Phlogopite and muscovite from samples of mica-feldspar layers within marble from the float locality were dated using the 40Ar-39Ar method in order to help constrain the thermal history of the study area. Both micas provided similar ages of 47.32 (? 0.29) Ma and 47.10 (? 0.26) Ma, respectively.  Data are provided in Fig. 3.17. Closure temperatures of phlogopite and muscovite are ~500 and 529 ?C (for cooling gradient of 100 ?C/Ma; Baxter 2010), so both ages are interpreted to represent late cooling stage of the marble. Crowley and Parrish (1999) and Crowley et al. (2001) summarized and provided new age data for the Monashee Complex and reconstructed the uplift history of units below the Monashee d?collement.  Using zircon and monazite U-Pb data, they identified the thermal peak conditions of the Frenchman Cap dome rocks around 58 Ma.  Subsequent isothermal decompression was followed by fast isobaric cooling starting from ~51 Ma in the Monashee cover sequence (Crowley and Parish 1999).   Our phlogopite and muscovite ages are ~ 1 Ma younger than those reported by Sanborn (1996) for biotite and confirm the fast exhumation in the Frenchman Cap dome.   30 313.8 Stable Isotopes Carbonate ?18O values for marble (13.4-17.5 ?), mica-feldspar layers within marble (13.5-16.6 ?), and host calc-gneiss (14.8-15.4 ?) at the Revelstoke occurrence are variable (Fig. 3.18A).  An anomalously low ?18O was recorded in a magnetite-bearing marble sample (12.1 ?).   Most of the values of ?13C in the marble are between ~ 0 and -1.2 ? with several lower values down to -2.9 ? in samples with minor fluid alteration or close proximity to mica-feldspar layers; dolomite-marble has a low value of ?13C  of -2.8 ?. Most ?13C carbonate values from mica-feldspar layers range between -3.1 to -1.1 ? and are generally lower than carbonate from marble.  The lowest ?13C values were found in the garnet-scapolite rock (-3.2 ?) and host calc-gneiss (-4.48 to -2.55 ?).  The ?13C values generally decrease in the direction from the marble to mica-feldspar layers (Fig. 3.18A). Whole rock ?18O silicate values for mica-feldspar layers within marble (11.1-16.2 ?) and calc-gneiss (14.4-15.8 ?) at the Revelstoke occurrence are generally high compared to average pelite, but fall within the data range from metasediments in the Monashee Complex and Selkirk Allochthon (Fig. 3.18B, Fig. 3.19).  Isolated grains of corundum in calcite have ?18O values of 10.7 and 11.1 ?.   3.9 Fluid Inclusions Two-phase liquid CO2-vapor (LCO2-V) primary fluid inclusions occur within color zones of corundum at the Revelstoke occurrence.  The inclusions are ~30 ?m to 144 ?m in size and include concave, rectangular, elongate and irregularly shapes (Fig. 3.20).  The CO2 vapor at room temperature occupies ~4% of the inclusion volume.  The composition of fluid inclusions within corundum was determined by microthermometry (Appendix A.14).  After rapid cooling of the sample to -190 ?C, slow warming caused phase changes from solid to liquid to vapor; i.e., melting of CO2 ice (-93.5 to -73 ?C), CO2 solid (-58.2 to -56.6 ?C), and homogenization of CO2-liquid-vapor (24.7-27.2 ?C).  Melting temperatures below the triple point for CO2 (-56.6 ?C) indicate the presence of minor CH4 and/or N2 (Vanden Kerkhof and Thi?ry 2001).  Isochores calculated for carbonic (CO2-CH4-N2) fluid inclusions within corundum at the Revelstoke occurrence using the Flincor program (Brown 1989). 31 32Fluid inclusions in corundum from a variety of different protoliths typically have irregular or negative shapes and commonly contain nearly pure CO2 fluids (Giuliani et al. 2003).  Other fluids in addition to CO2 that can occur within corundum fluid inclusions are H2O, H2S, N2, and COS (Limtrakun et al. 2001, Takayuki et al. 2001, Giuliani et al 2003).  Solids are uncommon in corundum fluid inclusions, however, crush leach analysis of fluid inclusions in corundum within marble has revealed the presence of Na, Cl, K, NO3, and SO4 at the ppb level (Giuliani et al. 2003).  Laser Raman analysis is commonly used to detect other liquid species in corundum fluid inclusions, but use of this technique was not possible for the Revelstoke corundum due to its high fluorescence under the laser beam.  The pure CO2 fluid inclusions in the Revelstoke samples indicate the prevalence of CO2 over H2O in the metamorphic fluids and low aH2O during corundum crystallization.   3.10 Discussion  3.10.1 Protolith of Silicate Assemblages in the Marble The whole-rock geochemical data show that the silicate-rich part of the marble has the same or similar protolith as the host gneisses.  Ratios of immobile elements suggest that the two lithologies were mechanically mixed without change in the ratio of aluminosilicates and the main Ti-,V-, Cr-bearing minerals i.e. rutile and titanite (Fig. 3.14).  The mixing could have occurred during primary sedimentation or during tectonic emplacement of the gneiss into the marble.  Depletion in SiO2 and FeO in mica-feldspar layers suggests that these elements were removed from the original silicate layers mixed within marble.  Textural evidence for fluid flow and mass exchange typical for reaction zones (skarns) between rocks with contrasting compositions (e.g., Meinert et al. 2005) was not observed, which suggest the depletion process took place during the prograde path of metamorphism before the main mineral transformations. Prograde fluid-assisted removal of SiO2 and FeO from the silicate layers, due to high chemical potential gradients between the silicate layers and the marble, is in agreement with the homogenization of oxygen isotopes in carbonates and silicates observed in the marble, mica-feldspar layers, and host calc-gneiss (Figs. 3.14 and 3.18) and with the general chemical mobility trends documented at other localities at the contacts of 32 33two contrasting lithologies (e.g. Brady 1977 and Joesten 1977).  The combination of the high chemical potential gradient of SiO2 between the silicate layers and marble, along with the increasing solubility of SiO2 with increasing temperatures and the formation of H3SiO4- complexes in aqueous fluids (Walther and Woodland 1993, Seward 1974), could cause extensive SiO2 mobilization and explain the depletion in mica-feldspar layers. Furthermore, the chemical potential (and diffusion) gradients could have been enhanced by the thinning of silicate layers within marble during tectonism because of stretching and folding.  The reduced solubility and mobility of K and Na compare to Si could be due to the low salinity of reacting fluids (Fig. 1 in Pak et al. 2003). The low Sr contents and their positive correlation with CaO (Appendix A.13) are consistent with a non-evaporitic origin for the original sediment (Moine et al. 1981), and the compositions of all the rock types correspond to those of shales or marls derived from platform sediments (Moine et al. 1981, Garnier et al. 2008).  This is in agreement with the original interpretation of the Revelstoke metasedimentary sequence by H?y (1987).  Contents of V, Ti Cr, Co, and Ni show positive correlation (Fig. 3.15), which could indicate a common source from a mafic protolith (e.g., Grapes and Palmer 1996).  With regard to the local geology and presence of SEDEX mineralization in contact with the marble and common sulfide minerals within the marble, we also considered the influence of the sedimentary-exhalative protolith (e.g., Canet et al. 2003).  The scarce data from the Monashee complex SEDEX mineralization show no correlation of V with Ti, Co, and Ni contents (H?y 2001), and there is no evidence of significant mixing of the two lithologies.  Therefore, the preferred explanation for the elevated Cr and V contents in the marble is the dispersed mafic component (protolith of amphibolites) in the pelitic sediments in Units 6a and 6b and its mixing with the carbonate material before metamorphic overprint. The variation in REE and Y contents is generally related to the amounts of silicate component in the individual samples.  The LREE enrichment in all patterns is compatible with the presence of accessory apatite, allanite, zircon, and titanite in the gneiss and silicate-rich parts of the marble.  The difference in LREE/HREE fractionation in the host gneiss and the most LREE-enriched mica-feldspar layers may be related to the partial melting and remobilization processes in the host gneiss which may have also caused the observed 33 34depletion in U due to partial dissolution/alteration of accessory phases (e.g., Rubatto et al. 2008). The ?18O and ?13C values from carbonate vary at the Revelstoke occurrence (Fig. 3.18A).  ?18O carbonate values for marble (13.5-17.5 ?) are lower than expected for normal marble (20-28 ?; Valley 1986; Fig 3.19), but the ?13C values (-2.7-0.1 ?) are within the normal range for marine carbonates (Hoefs 2004).  The distribution of ?18O and ?13C carbonate values follow a generalized devolatization trend (Valley 1986) where ?13C is more greatly affected than ?18O.  The decrease of ?13C values in calcite towards silicate assemblages is likely the result of decarbonation reactions that produce silicates during metamorphism (Fig. 3.18A; Valley 1986). The ?18O and ?13C results fall within the range of values observed in marbles from the Mica Creek area and the Thor-Odin dome (Fig. 3.18B; Ghent and O'Neil 1985, Holk and Taylor 2000). The ?13C values also fall within the range of Asian ruby-bearing marbles, but the ?18O values are much lower (19.9-28.9 ?; Garnier et al. 2008).  The similarity of ?18O and ?13C values of carbonates and ?18O values silicates at the Revelstoke occurrence, Mica Creek area, and Thor-Odin dome likely indicate that sediments at these localities had similar protoliths and/or underwent similar fluid-rock interactions during metamorphism (Valley 1986), unlike those of the Asian ruby deposits.  Ghent and O'Neil (1985) attribute the range of ?18O values at the Mica Creek area to varied protoliths and metamorphic formation conditions; whereas, the elevated ?13C values could be attributed to depositional processes prior to metamorphism: 1) Precambrian carbonate-secreting algae, 2) organic material, or 3) travertines.  Holk and Taylor (2000) suggest the homogenized ?18O values in rocks above and less than 200 m below the Monashee d?collement at the Thor-Odin dome were caused by the interaction of recycled H2O -bearing fluids (derived from anatectic and metamorphic processes) and CO2-fluids (derived from devolatization of calc-silicate rocks) with the host rocks during the metamorphic evolution of the core complex.  These fluids didn't penetrate >200 m into the Monashee Complex because they were channeled along the Monashee d?collement.  Thick marble units at the Thor-Odin dome are interpreted to be relatively impermeable and retained higher ?18O values (18-22 ?) in contrast to thinner units in leucogranite-rich sections (12.4-15.2 ?). 34 35Even though Holk and Taylor (2000) did not see any homogenization of ?18O values in the Monashee complex between 200 to 400 m below the Monashee d?collement, extensive fluid-rock interaction must have affected the Revelstoke rocks which are much deeper (~2 km) below the Monashee d?collement because of: 1) the lack of preservation of any normal marine carbonate ?18O values throughout the entire marble unit (Fig. 3.18A), 2) similar carbonate ?18O values in the calc-gneiss and marble (Fig. 3.18A), and 3) similar silicate ?18O values in the calc-gneiss and mica-feldspar layers (Fig. 3.19).  The small variation and depletion of ?18O values of carbonates across the entire marble unit is likely due to variability in the isotopic composition of the original sediments and fluid-rock interactions during metamorphism between carbonate sediments mixed with thin layers of pelitic sediments.  Elevated ?18O silicate values in the host gneiss were also likely influenced by mixing of carbonate and pelitic components or infiltration of late CO2-rich fluids from the marble.  Stretching of pelite layers within marble during deformation would have decreased their thickness increasing the rate at which exchange could take place between the two lithologies.  Recrystallization of carbonate minerals during retrograde metamorphism could also have affected the ?18O values. The corundum ?18O values are much lower than those from worldwide corundum occurrences in marbles, and plot in the skarn field according to Giuliani et al. (2005).  However, this classification does not include corundum from mixed pelitic and marble protoliths.  The low corundum ?18O values reflect the ?18O values of the host marble and mica-feldspar layers.  Previous studies of Revelstoke occurrence host rocks (Unit 6ab) by Journeay (1986) and H?y (1987) characterize the unit as a metamorphic equivalent of marls and attributed the presence of scapolite to the salt content of original sediments.  Our geochemical and isotopic data support this interpretation and show that mixing of pelitic and carbonate sedimentary material caused elevated Cr and V contents in the marble.  3.10.2 Chromium and Vanadium Enrichment Occurrences of Cr- and V-bearing minerals in marbles, dolomites, and skarns are rather common; they typically occur as a part of metasedimentary sequence containing black shales, SEDEX mineralization, and/or mafic rocks (e.g., Treloar 1987, Pan and Fleet 1991, Canet et al. 2003, Uher et al. 2008).  Genetically similar Cr- or V-rich assemblages are also 35 36commonly found in graphite quartzites and graphite metacherts (e.g., Snetsinger 1966, Lee and Lee 2003, Houzar and Cemp?rek 2011, Ba??k et al. 2011).  The common association of high vanadium contents with reduced carbonate rocks is not coincidental.  Breit and Wanty (1991) showed mechanisms of vanadium accumulation in carbonaceous rocks with high contents of organically bound sulfur.  Vanadium is deposited in sediments under reduced conditions where it is adsorbed to clay minerals; further metamorphic overprint can cause vanadium incorporation in newly formed muscovite and silicates.  Geochemical data show that the increased amounts of Cr and V most likely originate from the breakdown of mafic rocks.  If the Cr and V were released from their original minerals, their retention in reducing conditions could be an important factor in the Revelstoke rocks, which typically contain minor amounts of sulfide minerals and graphite.  Enrichment in Cr and V in the corundum-bearing assemblages is also significantly related to their preferential binding in phlogopite and muscovite.  Although minor rutile is enriched in V2O3 and Cr2O3 (?0.64 and ?0.18 wt.%), the majority of Cr, V, and Ti in the marble is stored in micas (?0.09 wt.% V2O3 and ?0.23 wt.% Cr2O3 in muscovite; ?1.41 wt.% V2O3 and ?0.27 wt.% Cr2O3 in phlogopite).  At the Revelstoke occurrence Cr and V were likely originally bound in silicates and clay minerals, making them available to micas during diagenesis. If Cr and V were originally bound in detrital chromite or rutile, their release would be restricted to high metamorphic temperatures in a H2O-poor and quartz-free marble system.  3.10.3 P-T Metamorphic Path in Frenchman Cap Dome The observed mineral assemblages in metapelites at the Frenchman Cap dome are in agreement with similar rocks at the Thor-Odin dome as described by Hinchey et al. (2006). The P-T path defining assemblages include prograde reaction biotite + albite + sillimanite + quartz = garnet + K-feldspar + melt (Spear et al. 1999).  Journeay (1986) and H?y (1987) identified the clockwise P-T metamorphic path for the pelitic rocks of the Frenchman Cap dome, with the peak metamorphic assemblages followed by the medium-pressure overprint during unroofing and isobaric cooling. Calculations of stable equilibrium assemblages from whole rock data were done using Theriak-Domino software package (De Capitani and Petrakakis 2010) using the 36 37thermodynamic dataset HP98 (Holland and Powell 1998) and employing the activity-composition relationships outlined by White et al. (2001).  The observed assemblage of garnet + biotite + plagioclase + K-feldspar + kyanite is stable in the range of 700-900 ?C and 7.0-12 kbar.  The minimum P-T conditions of 720 ?C and 8.0 kbar are well constrained by the absence of phengite/muscovite and the presence of kyanite.  Ilmenite is not stable in the phengite-free kyanite assemblages; hence, the observed inclusions of ilmenite in garnet are interpreted as relicts of pre-peak prograde metamorphism.  During decompression, the retrograde assemblages observed in sillimanite-bearing metapelite of biotite+ sillimanite + K-feldspar and biotite + muscovite + plagioclase feldspar became stable between 575-700 ?C and 4-8 kbar.  These values generally agree with the P-T path defined by Norlander et al. (2002) and Hinchey et al. (2006). However, the presence of andalusite and cordierite identified by H?y (1987) indicate that the retrograde part of the P-T path took place at lower pressure than suggested for Thor-Odin dome by Hinchey et al. (2006). The assemblage of garnet + biotite on the border of garnet porphyroblasts in biotite-rich layers and the garnet + clinopyroxene assemblage (core compositions) rarely observed in the K-feldspar-rich layers were used for estimation of equilibrium temperatures (Bhattacharya et al. 1992, Krogh 1988).  The calculated temperatures using garnet + biotite and garnet + clinopyroxene thermometers are 675-695 ?C and 766-771 ?C, respectively.  The garnet + biotite temperatures are about 25 ?C lower than the lowest values observed by Norlander et al. (2002) in the Thor-Odin dome.  The values may be influenced by biotite re-equilibration during retrograde metamorphism and do not represent the peak of metamorphic conditions.  On the other hand, the garnet + clinopyroxene temperatures should reflect the peak metamorphic conditions.  3.10.4 P-T-X Evolution of the Marble Major equilibrium mineral assemblages in the marble are diopside + calcite, phlogopite + calcite, rare tremolite + calcite, and fibrous tremolite + calcite + quartz in the siliceous layers, and magnetite + calcite ? dolomite in the non-siliceous layers.  The assemblages of garnet + diopside + scapolite + K,Na-amphiboles are rare. 37 38Dolomite and quartz remnants identified in thin section and the observed metamorphic products suggest that the original material was a hydrated dolomitic marble (Spear 1995).  The first likely prograde reactions that occurred were:  [6]  dolomite + 2 quartz = diopside + 2 CO2  [7]  3 dolomite + K-feldspar + H2O = phlogopite + 3 calcite + 3 CO2  The occurrence of major diopside + calcite and rare prograde tremolite + calcite assemblages found in the marble agrees with the steep P-T path proposed by Hinchey et al. (2006) and high XCO2 in the marble at the pressure peak of metamorphic conditions (Fig. 3.21A). Textural relations in the mica-feldspar layers suggest that the mineral assemblage before formation of corundum was muscovite + K-feldspar + anorthite + calcite ? dolomite.  Most of the quartz was likely removed from the system by the following prograde reaction at ~600 ?C and ~9 kbar, which produced the K-feldspar and anorthite rims around muscovite aggregates:  [8]  muscovite + calcite + 2 quartz ? K-feldspar + anorthite + H2O + CO2  Absence of relict kyanite and zoisite in products of the reaction [8] indicates that the maximum pressure should be ~9 kbars, which is ~approx.1 kbar lower than the prograde P-T-evolution at the Thor-Odin Dome (Hinchey et al. 2006).  Decarbonation reactions forming phlogopite [7] and feldspars [8] during prograde metamorphism increased the activity of CO2 in the system and decreased the reaction temperatures of subsequent reactions promoting the formation of the corundum from muscovite in the absence of quartz:  muscovite ? corundum + K-feldspar + H2O 3 dolomite + muscovite ? phlogopite + corundum + 3 calcite + 3CO2  38 39The corundum-forming reactions probably started during prograde metamorphism and high XCO2 in the range ~650-700 ?C at 8.5-9 kbar (Fig. 3.21B) and continued during marble decompression.  The dry conditions are supported by the pure CO2 fluid inclusions observed in corundum and by formation of new phlogopite overgrowing muscovite and corundum; the reaction started at the beginning of decompression at ~760 ?C and 9 kbar (Fig. 3.21A). The majority of corundum (types I and II) at the Revelstoke occurrence was produced by the dehydration of muscovite (reaction 5).  This is inferred from the presence of corundum with muscovite and K-feldspar and the absence of diaspore, margarite, dolomite, and spinel.  In some cases, breakdown of muscovite together with rare dolomite (reaction 3) probably took place, producing corundum (type III), phlogopite, calcite, and fluids.  We assume that the system retained high XCO2 during the prograde stage and part of decompression, until influx of scapolite-forming fluids. The observed mineral assemblages resulted from non-ideal stoichiometry of the reacting phases.  When the dehydration curve for muscovite + calcite is calculated using the electron microprobe analysis of the muscovite from the muscovite-anorthite-K-feldspar aggregates in association with corundum, the resulting stable mineral assemblage is consistent with those observed in thin sections:  Mg,Ti-bearing muscovite + K-feldspar + anorthite + calcite + H2O + CO2 ? K-feldspar + phlogopite + anorthite + rutile + corundum + calcite + H2O + CO2  The model results indicate minor formation of anorthite in the corundum stability field. It explains the presence of rare anorthite + corundum assemblage (Fig. 3.5E). This corundum-forming reaction takes place at the same PT conditions as when calculated using the theoretical muscovite formula.  3.10.5 Retrograde Fluids The occurrence of scapolite, retrograde alteration of diopside, feldspars and corundum, and breakdown of titanite in mica-feldspar layers all indicate the presence of retrograde fluids.  Although most of the alteration features can be attributed to hydration of the system during decompression and cooling, the presence of scapolite indicates high salinity of fluids 39 40at relatively high temperature.  For the observed scapolite composition, most authors estimate its origin in the range 600-750 ?C and pressure ~2-5 kbar (Ellis 1978, Piazolo and Markl 1999).  At the Revelstoke occurrence, these PT conditions match with the end of decompression and their validity is supported by the late origin of scapolite, after formation of feldspars, micas and corundum.  Scapolite in the marble formed after crystallization of corundum, by the replacement of anorthite and calcite by saline fluids. The NaCl content of the late fluids was estimated from the scapolite compositions using the experimental data of Ellis (1978) for 4 kbar and 750 ?C (cf. Markl and Piazolo 1998).  The experimental data assume only NaCl-H2O fluid without CO2; therefore, the results should be regarded as rough estimations of the maximum contents of NaCl in the fluids (for detailed discussion see Mora and Valley 1989, Markl and Piazolo 1998).  The estimated ratio NaCl/(NaCl + H2O) varies between 0.05 and 0.3 for most of the data, corresponding to ~15 to 58 wt.% NaCl present in the fluid; the highest marialite compositions in garnet assemblage in the marble indicate the presence of highly saline fluids with the ratio NaCl/(NaCl + H2O) up to 0.5 (~76 wt.% NaCl).  Although similar values are reported for evaporite brines, the source of high Na and Cl contents in Revelstoke marble is not clear.  The only Cl- or Na-bearing phases are apatite, scapolite, amphiboles and late albite in alteration products; the origin of the amphiboles and albite can be related to the scapolite-forming saline fluids, but apatite appears to be one of the earliest primary minerals in the marble.  The Cl- and S-absent composition of scapolite from the host rock indicates low salinity of fluids at peak metamorphic conditions; therefore, the fluids must have been derived from an isolated external source or by dissolution of speculative evaporite beds in the marble.  Scapolite in the marble and in the host rock is typically accompanied by crack-filling sulfide mineralization.  The sulfide minerals in the host rock are commonly concentrated on fractures along foliation planes and in retrograde assemblages, especially those replacing garnet porphyroblasts.  A sulfide veinlet cross-cutting the gneiss was observed on its contact with marble, depositing silicate and sulfide minerals in the marble.  The scapolite is always free of (SO4)2- and it does not contain sulfide inclusions; hence, the sulfide mineralization likely represents a different stage of fluid flow.  Replacement of clinopyroxene by tremolite, calcite and quartz by the reaction: 40 41 diopside + H2O + 3 CO2 = tremolite + 3 calcite + 2 quartz  took place below ~550 ?C at 4 kbar (Fig. 3.21A); its low Na-contents suggest significant removal of NaCl, either due to fractionation or mixing of the fluids with an external low-saline source.  At approximately the same temperature, low-saline fluids altered primary minerals in the marble assemblages; replacement of corundum and anorthite, scapolite and K-feldspar by margarite and muscovite took place at ~520-550 ?C (Fig. 3.21B).  Further late fluid-driven reactions also include chloritization of biotite, sericitization of feldspars, and veinlets of Fe-oxides. Graphite in the marble mineral assemblages usually occurs as fissure filling and coats and rims both prograde and retrograde minerals.  We assume that it precipitated from late retrograde fluids during cooling and during cataclasis of the rock at low temperature during brittle deformation in the marble.  The physical and chemical breakdown (decarbonation) of calcite during cataclasis was the likely source of carbon which precipitated graphite.  3.10.6 Comparison to Other Deposits Different models have been used to explain corundum formation in carbonate rocks (e.g. Giuliani et al. 2007).  The Revelstoke deposit shares some common features with other ruby deposits from central and southeast Asia (Garnier et al. 2008) including:  ?(1) they are hosted by metamorphosed marine carbonates (within gneisses); (2) they formed during amphibolite to lower granulite facies metamorphism; (3) ruby has no relationship with dikes or pegmatites; and (4) the ruby-bearing marbles contain scattered ruby mineralization which is concordant with the surrounding stratigraphic units.?  Moreover, the corundum assemblages were affected by highly saline retrograde fluids producing scapolite, which is a typical feature of south-Asian gem corundum deposits (Garnier et al. 2008). However, numerous differences exist between the Revelstoke occurrence and other localities including corundum-bearing mineral assemblages, mineral and fluid inclusions in corundum, oxygen isotopes of corundum and marble, and the quality and intensity of color of corundum crystals. Most importantly, the Revelstoke corundum formed by prograde 41 42muscovite breakdown at high pressure whereas the Asian rubies are the product of retrograde low pressure breakdown of spinel. At the south-Asian ruby deposits, Garnier et al. (2008) observed the following which are not present at Revelstoke:  (1) corundum formation by the breakdown of spinel during retrograde metamorphism, (2) Na,S,B mineralization (tourmaline, aspidolite, pargasite, edenite, anhydrite) and Mg mineralization (chlorite and saphirine) associated with corundum; (3) fluid inclusions in corundum with the composition of COS-S8-AlO(OH); and (4) inclusions of anhydrite and salts in corundum.  In contrast at the Revelstoke occurrence, corundum formed prior to spinel by prograde muscovite dehydration and the Na,S,B minerals are either not directly associated with ruby (pargasite, hastingsite, edenite, tourmaline) or clearly post-date its formation (scapolite, sulfide minerals).  The scapolite associated with corundum is also sulfur-free and poor in Na (~0.75-1.5 apfu in scapolite) and Cl (usually <0.3 apfu Cl in scapolite).  Even though we did not see evidence for anhydrite or COS-S8-AlO(OH) fluid inclusions in corundum, we cannot discount that they exist. Although the brines responsible for formation of scapolite could have originated from evaporite pods in the rock, it was volumetrically insignificant compared to the siliciclastic component. This is expressed by the lower values of oxygen isotopes for corundum and marble minerals and the scarcity of Na,S,B-mineralization, which differ significantly from those observed by Garnier et al. (2008).   3.11 Summary This study has contributed to both the petrology of metasediments in the Frenchman Cap dome as well as the formation of gem corundum in carbonate rocks during prograde metamorphism and metasomatism of pelitic layers within marble.  Whole rock geochemistry data indicate that the corundum-bearing silicate (mica-feldspar) layers formed by the mechanical mixing of carbonate with the protolith of the host gneiss.  The silicate layers and the gneiss contain elevated contents of Cr and V due to the presence of a volcanoclastic component in their protolith.  The bulk composition of the silicate layers was depleted in Si and Fe during prograde metamorphism.  Si and Fe depletion was also enhanced by extensive 42 43fluid-rock interaction, which is also evident in the homogenization of ?18O and ?13C values in carbonates and silicates in the marble and silicate layers as well as low ?18O in corundum.   Corundum occurs in thin, folded and stretched layers with the predominant assemblage of green muscovite + Ba-bearing K-feldspar + anorthite (An0.85-1) ? phlogopite ? Na-poor scapolite.  Gem corundum was produced in the mica-feldspar layers by mica dehydration at the peak of metamorphism (~650-700 ?C at 8.5-9 kbar) following a clockwise PT path.  Fluid inclusions in corundum are pure CO2 indicating the presence of a CO2- rich fluid during corundum formation. The micas associated with corundum in the mica-feldspar layers have elevated Cr, V, Ti, indicating that they were the source of Cr, V and Ti in the corundum crystals.  The mica-feldspar layers were an ideal environment for corundum formation because of the lack of Si and Fe, and enrichment of Cr, V and Ti.   43 44Table 3.1: Mineral Assemblages from Different Lithologies within the Revelstoke Occurrence.  Rock Type Mineral Assemblages Mica-Feldspar Layers Ms+Phl+Kfs+An+Cal?Rt?Fe-oxide?Crn  Phl+An+Scp+Cal+Crn?Ms  Phl+Cal?Scp?Crn  Mrg+An+Crn    Diopside Layers Di+Tr+Cal?Qtz Minor Assemblage Di+K-amp+Grt+Scp+Cal Non-siliceous layers Mag+Cal?Dol    Host-Rock   Calc-Gneiss (Bt) Bt+Grt+Kfs+Plg+Ky+Sil+Qtz?Hem?Tur Calc-Gneiss (Di+Kfs) Di+Phl+Kfs+Ttn?Tr?Grt Calc-Gneiss (Di+Plg) Di+Scp+Cal+Kfs+Plg+Ttn?Qtz    SEDEX Hd+Ol+Cal+Sulphides?Fe-oxides   44 45   Figure 3.1:  Position and geology of the Revelstoke occurrence.  (A) Map of Canadian carbonate-hosted gem-corundum localities;  (B) Tectonic assemblage map of part of the Monashee complex (modified after H?y 2001). The studied area is marked by a star; (C) Regional geological map of the Revelstoke occurrence (modified after H?y 1987). The studied localities (from east to west: float, outcrop 1, outcrop 2) are marked by yellow stars.  Map legend: (1)  orthogneiss, (2) paragneiss, (3) quartzite, micaceous schist, (4a) Calc-silicate gneiss, kyanite-sillinanite schist, quartzite, amphibolite, (4b) Kyanite-sillimanite schist, gneiss, minor quartzite (q),( 4c) Calc-silicate schist, gneiss, kyanite-sillimanite schist, marble (m), quartzite (q), (5) marble, (6a) Calc-silicate gneiss, kyanite-sillimanite schist, marble (m), (6b) Kyanite-sillimanite schist, minor amphibolite, marble (m), quartzite (q).  45 46 Figure 3.2:  Revelstoke corundum.  (A) Zoned corundum grain in marble (picture width 3 cm); (B) Faceted Revelstoke sapphire and ruby (photo courtesy of B.S. Wilson).   46 47 Figure 3.3:  Photographs of the Revelstoke occurrence.  (A) The corundum-bearing marble within diopside gneiss (unit 6a);  (B) Pyroxene-gneiss with pelitic layers, containing garnet porphyroblasts (dark spots);  (C) Corundum-bearing mica-feldspar layers, with secondary scapolite after anorthite;  (D) Coarse-grained diopside-tremolite zone and fine-grained, graphite -enriched cataclasite layers;  (E) Magnetite and graphite layers in marble;  (F) Deformed, altered muscovite-feldspar nodules in phlogopite and graphite layers in marble.    47 48   Figure 3.4:  Schematic drawing of mineralogical zoning of mica-feldspar layers.  Hexagons represent corundum crystals; solid pink hexagons are not zoned, pink hexagons with blue rims are zoned crystals.  The pink hexagons represent corundum, which sometimes are zoned.   48 49       49 50   Figure 3.5:  Optical microscope photographs and BSE images of mineral assemblages in mica-feldspar layers and garnet in marble.  (5A) SEM photomicrograph of replacement of muscovite by anorthite and K-feldspar.  Note relicts of muscovite in anorthite and phlogopite and muscovite in K-feldspar.  (5B) SEM photomicrograph of replacement of muscovite by anorthite and K-feldspar.  Note the intergrowth of anorthite and K-feldspar as well as relicts of muscovite in anorthite and phlogopite in K-feldspar.  (5C) SEM photomicrograph of Ba-enrichment in K-feldspar replacing muscovite and anorthite.  The light areas in the K-feldspar and muscovite are enriched in Ba.  (5D) SEM photomicrograph of corundum alteration to muscovite then K-feldspar.  The corundum has inclusions of apatite, zircon, muscovite, K-feldspar, and rutile.  (5E) SEM photomicrograph of corundum with anorthite inclusions surrounded by anorthite, phlogopite, and calcite, altered to margarite.  (5F) CPL optical microscope image of Type 2 skeletal euhedral corundum with calcite inclusions within marble.  (5G) SEM photomicrograph of Type 3 fine-grained corundum with alteration to margarite and Ba-enriched muscovite within plagioclase.  (5H)  SEM photomicrograph of scapolite and amphibole coronas around garnet.  Amphibole also replaces pyroxene.    50 51      Figure 3.6: Optical microscope photographs and BSE images of the host rock thin sections   A) K-feldspar-diopside rich layer with scapolite, plagioclase titanite, and biotite; B) K-feldspar-rich layer with an assemblage of diopside, garnet, K-feldspar and plagioclase; C) Plagioclase-rich layer, diopside with inclusions of scapolite; D) Biotite-rich layer with poikioblastic plagioclase in quartz, biotite, K-feldspar groundmass with muscovite in its pressure shadow; E) Biotite-rich layer with tourmaline, biotite, plagioclase, and garnet porphyroblasts; F) Garnet porphyroblasts in biotite-rich pelitic layers.   51 52     Figure 3.7:  Trace elements in corundum of different color.    52 53    Figure 3.8: Chemical composition of trioctahedral micas.  A) Fe vs. V; B) Ti vs. [6]Al and Ba+Ca vs. [6]Al; C) [4]Al vs. Mg/(Mg+Fe); D) [6]Al vs. [4]Al.    53 54    Figure 3.9:  Chemical composition of muscovite. A) V vs. Ti; B) Cr vs. Ti; C) Ba vs. Ti; D) Fe+Mg vs. Ti.     54 55   Figure 3.10: Variation of Ba and Na vs. K in K-feldspar.    55 56    Figure 3.11:  Compositional diagram for scapolite showing the meionite, marialite, mizzonite solid solution in terms of Cl/(Cl + CO3 + SO4) and equivalent anorthite EqAn = (Al-3)/3.  The curves indicate NaCl content of fluids according to the experimental data of Ellis (1978) for 4 kbar and 750 ?C.    56 57     Figure 3.12: Composition of (A)clinopyroxene and (B) garnet from marble, SEDEX, host rocks and the garnet assemblage in the marble.         57 58     Figure 3.13: Composition of amphiboles. A) Classification diagram for Ca-amphiboles with (Na+K) < 0.5 apfu; B) Classification diagram for Ca-amphiboles with (Na+K) > 0.5 apfu.   58 59  Figure 3.14:  Contents of immobile trace elements (Cr, Ti, and V), selected mobile major elements (Si, Fe), and partially mobile elements K, Ca, Mg) in different lithologies.    59 60   Figure 3.15:  Geochemistry of selected trace elements in host rock and marble.  Data for amphibolites in Unit 6B are from H?y (2001).    60 61  Figure 3.16:  Chondrite-normalized (Sun and McDonough 1989) REE-plots for (A) calc-gneiss and marble, (B) mica-feldspar layers in the marble.    61 62     Figure 3.17: 40Ar-39Ar plateau ages for Revelstoke corundum occurrence from A) phlogopite; B) muscovite.    62 63    Figure 3.18:  Coupled ?13C-?18O values for carbonate from different lithologies.  (A) Published values for other marbles from the Mica Creek (MC), Esplanade Range (E), and Dogtooth Range (DT) ~ 50 km north of the Monashee Complex in the Selkirk Allochthon (Ghent and O'Neil 1985), Thor-Odin Dome (Holk and Taylor 2000) and Asian ruby deposits in marble (Garnier et al. 2008) compared to the studied Revelstoke lithologies.  (B) Values for the studied lithologies from the Revelstoke (Rev) occurrence.      63 64    Figure 3.19:  Range of ?18O values for carbonate and silicate minerals compared to potential protoliths in the Monashee Complex near the Thor Odin dome (Holk and Taylor 2000) and to average values for pelites (Hoefs 2004), skarns (Bowman 1998), and marbles (Valley 1986).    64 65    Figure 3.20: Two-phase primary liquid-vapour CO2 (with minor CH4-N2) fluid inclusions in corundum.    65 66   Figure 3.21:  Major mineral forming reactions and PT evolution of the Revelstoke occurrence marble.  Bolded mineral names indicate observed mineral assemblages. Arrows indicate position of curves with increasing XH2O. Corundum fluid inclusion isochores are also plotted.      66 67Chapter  4: Kimmirut Sapphire Occurrence  4.1 Introduction  The Kimmirut sapphire occurrence (KSO) is hosted in calc-silicate lenses within a localized area of the Paleoproterozoic Lake Harbour marble of the metasedimentary Lake Harbour Group (LHG) approximately 1.5 km southwest of Kimmirut (formerly Lake Harbour), near the south coast of Baffin Island, Nunavut (62?49.7?N, 69?53?W, 25K/13, 1:50,000, Fig. 4.1; Rohtert and Pemberton 2004, Rohtert 2005, Gertzbein 2004 and 2005, Lecheminant et al. 2004 and 2005, Wilson 2009, Fagan and Miller 2012).  The KSO was discovered by local Kimmirut prospectors Seemeega and Nowdla Aqpik in 2002.  Subsequently, True North Gems Inc. bought the project from the brothers and went on to discover 35 additional sapphire showings.   Southern Baffin Island is exceptional because it contains complexly deformed, high-grade metamorphic rocks (St-Onge et al. 2007) that host many gem minerals in addition to sapphire, including garnet (almandine), spinel, tourmaline, cordierite (Walker 1915; Wilson 2009), scapolite (Walker 1915), pargasite (Wight 1986; Tait et al. 2001), lapis lazuli (Hogarth and Griffin 1978), and zircon (Wilson 2007).  For the most part, these gem localities were discovered serendipitously and have not been studied in detail.    The objectives of this work are to characterize the sapphire mineralization in the KSO and to develop a genetic model of mineralization in order to develop an exploration strategy for this type of deposit.  The mineralogy and geochemistry of two coarse-grained calc-silicate pods called the Beluga (sapphire-bearing) and Bowhead (nepheline-bearing without sapphire) showings are compared because of their close proximity (170 m between showings) and similar mineralogy and texture.  The results from these two deposits are also compared to the whole rock geochemistry of different lithologies in the region (Th?riault et al. 2001, Butler 2007) in an attempt to find potential protoliths for the deposit.   4.2 Regional Geology  The Kimmirut sapphire occurrence is hosted within calc-silicate lenses within a marble unit (Fagan 2010) of the metasedimentary Lake Harbour Group (LHG), which is part 67 68of the Meta Incognita microcontinent (MIM) within the Quebec-Baffin segment of the Trans Hudson orogen (St-Onge et al. 1996).  The Trans-Hudson orogen is a Himalayan-scale collisional orogenic belt extending over 4600 km in strike length from the central part to the northeastern edge of North America (St-Onge et al. 2007).  The Meta Incognita micro-continent is separated from the Narsajuaq magmatic arc by the Soper River suture (Fig. 4.1).  The MIM is composed of (1) a clastic-carbonate shelf succession (Lake Harbour Group; Davison 1959, Jackson and Taylor 1972, Scott 1997) and its crystalline basement (Ramsay River orthogneiss; St-Onge et al. 1998); (2) an overlying foreland basin succession (Blandford Bay assemblage; Scott et al. 1997); and (3) an extensive suite of quartz diorite to monzongranitic plutons (Cumberland batholith; Jackson and Taylor 1972) that intrude the platformal and foreland basin rocks and underlying crystalline basement (St-Onge et al. 1999).   Two metamorphic and three deformation events are recorded in the area over a ca. 80 Ma period (St-Onge et al. 2007). The first deformation event, D0, post-dates deposition of the Lake Harbour Group and pre-dates emplacement of the Cumberland Batholith (St-Onge et al. 1999, St-Onge et al. 2007).  This event involved the accretion of the MIM to the Rae craton and closing of the Baffin suture.  The second event, D1a, involved continued convergence of the southern margin of the MIM to the Narsajuaq arc and formation of the Soper River suture.  The Soper River suture is the structural base of the MIM.  The first metamorphic event (M1) corresponds with the waning stages of the Cumberland batholith magmatism and crustal thickening (D1a) related to collision and accretion of the Narsajuaq arc (St-Onge et al. 2007).  It can be further subdivided into: 1) M1a, a granulite-facies metamorphic event characterized by a compressional P-T path with peak P-T conditions of up to 810 ?C and 8.3 kbar, and 2) M1b, a high-temperature thermal perturbation event that occurred, possibly related to either a prolonged M1, or to the intrusion of felsic dikes and plugs.   The third deformation event (D2) involved collision of the northern Churchill plate, consisting of the Rae craton plus the MIM, Narsajuaq arc, and ophiolite units, with the Superior craton.  This resulted in (1) closure of the Bergeron suture and (2) reactivation and further shortening of the Soper River suture. 68 69 The second metamorphic event (M2) is characterized by retrograde upper-amphibolite facies metamorphism of granulites related to a clockwise decompression P-T path with P-T conditions of up to 710 ?C and 6.0 kbar, and crustal deformation corresponding to D2 (St-Onge et al. 2007).    The final event recorded in the area is characterized by greenschist facies retrograde assemblages, which may be related to post-D2 thermal and fluid activity associated with crustal magmatism (St-Onge et al. 2007).  This event corresponds to the emplacement of syenogranite pegmatite dykes in the Churchill plate (St-Onge et al. 2007).  The continental collision setting, as well as the type, duration and extent of polymetamorphic evolution in southern Baffin Island, is believed to be analogous to gem-producing areas within the India-Asia collision zone (i.e., from Afghanistan to Vietnam) (LeCheminant et al. 2005; St-Onge et al. 2007 and references therein).   Both orogens, "underwent early thermal metamorphism related to the emplacement of pre-collisional, Andean-type plutonic suites, followed by subsequent metamorphic events that were related to continental collision or to post-collisional crustal fluid flow" (St-Onge et al. 2007).   4.3 Local Geology:   The LHG is exposed as a continuous belt extending up to 500 km northwestward along the southern shore of Baffin Island, Nunavut.  It dominantly contains: (1) semi-pelite and garnetiferous psammite, (2) garnetiferous psammite and quartzite, and (3) marble and calcsilicate schist (which hosts the Kimmirut sapphire occurrence) (Fagan 2010; St-Onge et al. 2007). These lithological layers are interpreted to be due to primary deposition in a shallow marine environment.  Minor amounts of mafic schist are also present; granitoid plutons and gneisses surround the LHG (Scott and Godin 1995).  The marble and calc-silicate schist are the characteristic features of the LHG.    Ultramafic (peridotite to pyroxenite) to mafic (diorite) sills intrude the LHG and predate the emplacement of the Cumberland batholith (St-Onge et al. 2000). Following the emplacement of the Cumberland batholith, other magmatic events include granitoid intrusions, partial melting derived monzogranites, and late undeformed syenite and syenogranite pegmatites (Scott 1997, Scott and Godin 1995, St-Onge et al. 2007).  69 70  4.4 Lake Harbour Marble  The composition of the Lake Harbour Marble and associated calc-silicate and micaceous siliciclastic layers vary considerably across the unit.  The compositional layering ranges in thickness from centimeters to meters and extends up to tens of metres along strike.  This layering is interpreted as relict primary compositional variation due to varying degrees of carbonate and siliciclastic input from an unknown source onto an unknown basement at <1.93 Ga (Scott 1997; St-Onge et al. 1998).  The marble dominantly contains coarsely recrystallized calcite and diopside, along with minor amounts of forsterite, phlogopite, spinel, graphite, wollastonite, tremolite, pargasite, nepheline, and /or K-feldspar (Scott 1997, Herd et al. 2000, Butler 2007, Davison, 2005, 2006).  Calc-silicate layers within the marble commonly contain diopside, pargasite, scapolite, phlogopite, calcite, titanite, quartz, and plagioclase (Herd et al. 2000, Butler 2007).  Near the town of Kimmirut, calc-silicate lenses within the marble host sapphires (Cade et al. 2005, LeCheminant et al. 2005, True North Gems Inc. 2003).  Throughout the marble there are also individual isolated bodies of micaceous siliciclastic rocks that commonly occur near contacts with adjacent siliciclastic rocks.  These contact zones typically contain phlogopite, hornblende, diopside, hematite, and graphite with secondary goethite (Scott and Godwin 1995).  These siliciclastic rocks may be associated with tabular bodies, concordant layers, or irregular pods of monzogranite likely derived from partial melting of host siliciclastic rocks during regional metamorphism (St-Onge et al. 2007; Scott and Gauthier 1996).   4.5 Geology and Petrography of the Sapphire Occurrence  4.5.1 Marble  The marble immediately surrounding the Beluga occurrence contains medium to very course grained (3 to 5 mm) calcite with fine to medium grained silicate layering composed of varying proportions of phlogopite + diopside (violet or green) + graphite + plagioclase  + apatite ? scapolite (Gertzbein 2005).  It rarely contains rafts or veins of extensively altered 70 71mafic rocks and very rarely contains late tourmaline- (dravite) and Mg-chlorite-bearing veins.  Graphite can also occur in late veins.    4.5.2 Course-Grained Calc-Silicate Pods in Marble  The pods (or boudins) range in diameter from 20 cm to 4 m and appear to occur randomly throughout the marble (Gertzbein 2005, Fagan pers. comm. 2013). In contrast to the surrounding marble, they are typically composed of the following coarse to very coarse-grained minerals: diopside (green or purple) + phlogopite + plagioclase + apatite (blue or green) ? graphite.  Rare sapphire- or nepheline-bearing calc-silicate pods are always associated with scapolite.  Very rare coarse-grained plagioclase (1-2 cm) or calcite (up to 20 cm) can also occur in the pods along with the typical assemblage.  The Beluga and Bowhead showings are very coarse-grained calc-silicate pods with their own unique mineralogy (described below).  They have sharp contacts with the surrounding marble (Fig. 4.2).  The Bowhead showing is 170 m SSW of the Beluga showing and has a surface exposure of 2 meters by 1.5 meters, whereas the Beluga has a surface exposure of 4.2 meters by 3.7 meters.  There is speculation that the Beluga showing and the nearby Narwhale showing merge at depth; this could have potentially important economic implications (Fagan, pers. comm. 2013). 4.5.2.1 Beluga  The Beluga showing is characterized by randomly oriented, rectangular blocks of prograde (violet) diopside enclosed and eroded by a rim of retrograde phlogopite-plagioclase symplectite (Fig. 4.2, 4.3). The symplectite is commonly surrounded by scapolite (Fig. 4.3, 4.4, 4.5). This scapolite separates the symplectite from a very fine-grained and altered zone containing muscovite, albite, euhedral corundum (sapphire), minor calcite and scapolite, and rare graphite (Fig. 4.3, 4.4, 4.5).  K-feldspar perthite was also observed in other sapphire-bearing calc-silicate pods, but not at the Beluga showing (Hansen 2008).  Scapolite also surrounds zones of extensive alteration (Fig. 4.5).  The diopside grains range in size from 3 by 1 cm to <1 by <1 mm and have irregular edges (Fig. 4.5A).  Large grains occasionally contain inclusions of phlogopite. 71 72 The phlogopite + plagioclase symplectite contains minor calcite, and accessory titanite, zircon, and relict diopside (Fig. 4.4, 4.7, 4.8, 4.9).  Phlogopite within the symplectite can occur as randomly oriented groups of fine-grained subhedral grains (Fig. 4.5B), and/or preferentially oriented fine- to medium-grained subhedral grains aligned parallel to the length of the diopside grains (Fig. 4.5A).  In both cases, subhedral plagioclase grains separate phlogopite grains (Fig. 4.7, 4.8, 4.9, 4.10).  The preferentially oriented phlogopite grains give the diopside rimmed by phlogopite + plagioclase symplectite a rectangular appearance (Fig. 4.2, 4.3).  Occasionally, medium-grained phlogopite surrounded by calcite occurs on the edge of diopside grains (Fig. 4.5A).  Anhedral calcite grains with rounded edges typically occur in contact with or as inclusions within phlogopite, but can also occur in contact with both phlogopite and calcite, or as isolated grains between subhedral plagioclase (Fig. 4.7, 4.8, 4.10).  Phlogopite adjacent to scapolite on the edge of the symplectite contains inclusions of scapolite and plagioclase (Fig. 4.11). Rare titanite rims calcite in contact with phlogopite and plagioclase (Fig. 4.7) or rims phlogopite in contact with plagioclase (Fig. 4.10). Extremely rare very fine-grained zircon occurs along the grain boundary between calcite and plagioclase grains.    Scapolite separates the phlogopite-plagioclase symplectite from the muscovite-albite-calcite-corundum zone. It contains minor inclusions of the symplectite and forms a distinct boundary next to the muscovite-albite-calcite-corundum zone.  The scapolite crystals range in width from 0.6 mm to 2 cm (Fig. 4.3, 4.5, 4.11).  They are typically monomineralic and rarely contain inclusions of phlogopite, plagioclase, and calcite. They are altered along fractures to calcite and plagioclase.  It appears that fluids entered the crystals from the muscovite-albite-calcite-corundum side of the grain towards the symplectite side.   Zones of extensive alteration typically occur on the boundary between scapolite and the muscovite-albite-calcite-corundum zone.   They are comprised of many very fine-grained intergrown minerals that cannot be distinguished or identified by SEM or petrography.  These zones are commonly surrounded by scapolite and appear to be light brown in plane polarized light (Fig. 4.5A).  X-ray diffraction analysis of these zones identified possible thomsonite, faujasite, muscovite, nepheline, prehnite, and sodian meionite.  Euhedral corundum (sapphire) occurs in a light-coloured, highly altered matrix of fine- to medium-grained muscovite and albite, minor calcite and scapolite, and rare graphite 72 73(Fig. 4.2, 4.3, 4.5, 4.6).  Albite commonly armors corundum.  Corundum crystals may be fractured and have corroded grain boundaries. They may also contain ovoid calcite and apatite inclusions, and a coating of prismatic thomsonite, which can penetrate deeply into the crystals.   4.5.2.2 Bowhead  The Bowhead showing has similar mineralogy and textures to the Beluga occurrence, but is distinct because of the presence of nepheline and lack of both the mineralized albite-muscovite-corundum zone and the areas of extensive alteration.  The Bowhead showing is characterized by randomly oriented, rectangular blocks of violet diopside grains that are enclosed and eroded by a rim of phlogopite-plagioclase symplectite when in close proximity to nepheline (Fig. 4.12).  The symplectite only forms on the side of the nepheline nearest to the diopside, and will not form when nepheline is surrounded by coarse-grained calcite.  Nepheline is altered along cleavage planes to an unidentified grainy isotropic mineral. The symplectite and nepheline are commonly rimmed by scapolite (Fig. 4.12).  As at the Beluga showing, the scapolite also contains inclusions of possible relict phlogopite-plagioclase symplectite.  Visually the pods appear to be quite similar.   4.6 Mineralogy  4.6.1 Sapphire  The following is summarized from LeCheminant et al. (2004). The Beluga showing dominantly contains deep blue sapphires with violet overtones, but colourless varieties are common as well (Fig. 4.13A).  Throughout the KSO, corundum crystals are commonly euhedral barrel-shaped crystals with tapering ends (Fig. 4.14A).  The average size of sapphire crystals at the Beluga showing is 15 x 4 mm, but large crystals up to 7.7 x 2.1 cm also occur.  Most of the sapphires are characterized by colour and compositional zoning (Fig. 4.13B, 4.14A, B).  Rarely, needles of thomsonite coat sapphire grain boundaries and may penetrate into the core of crystals.  Smaller crystals are generally free of inclusions, whereas the larger 73 74ones are more fractured and, in most cases, are included with calcite and/or apatite.  There is no apparent link between the size of sapphire crystals and their clarity or colour; furthermore, the quality of sapphire crystals appears to be randomly distributed throughout the KSO (Fagan pers. comm. 2013).  Blue and colourless sapphires from the Beluga showing contain elevated FeO and TiO2; FeO contents range from 0.01-0.13 wt%, with a majority of samples also having <0.15 wt% TiO2 (Appendix B.1; Fig 4.15).  A maximum of 0.30 wt% TiO2 was recorded.  V2O3 was below the detection limit.  4.6.2 Nepheline  Nepheline only occurs at the Bowhead showing; none was identified at the Beluga showing.  Analyses from several grains of nepheline at the Bowhead showing are fairly homogeneous, with an average composition of Na2.89K0.500.39Ca0.26Al3.89Si4.18O16 (Appendix B.2); the Na/(Na+Ca+K) ratio ranges from 0.79 to 0.81.  4.6.3 Diopside  Violet coloured diopside is very rare around the world, but is common within the LHM and KSO (Herd et al. 2000).  The composition of diopside from the Beluga and Bowhead showings is distinct.  Diopside from the Beluga showing has an average composition of Di90Jd7Ae3, whereas diopside from the Bowhead showing has an average composition of Di93Jd6Ae2 (Fig 4.16; Appendix B.3).  Diopside at the Beluga showing is enriched in Al (0.23 to 0.33 apfu), Fe3+ (0.04 to 0.05 apfu), and Ti (0.03 to 0.04 apfu) and depleted in Mg compared to the Bowhead showing (Al: 0.15 to 0.29 apfu, Fe3+: 0.03 to 0.04 apfu, and Ti: 0.01 to 0.03 apfu; Fig. 4.17).    4.6.4 Phlogopite  Phlogopite within the symplectite from the Beluga and Bowhead showings can be distinguished.  Phlogopite from both showings has a minor muscovite component (Fig. 4.18A, B; Appendix B.4) and the amount of [4]Al overlaps in the lower range (1.22 to 1.26 apfu); however the highest amounts of [4]Al (up to 1.37 apfu) and [6]Al (up to 0.11 apfu) are from the Beluga showing.  The major distinction between the two localities can be observed 74 75in terms of Ti, Fe2+, Mg, and F contents (Fig. 4.18 C, D, E).  In general, Beluga phlogopites have elevated Ti (0.11 to 0.16 apfu), lower Mg (2.36 to 2.60 apfu), and lower F (0.25-0.41) than Bowhead phlogopites (Ti: 0.09 to 0.11 apfu; Mg: 2.57 to 2.65 apfu; F: 0.41 to 0.46 apfu).    4.6.5 Muscovite  Muscovite predominantly occurs in the muscovite-albite-calcite-corundum mineralized zone at the Beluga showing, but extremely fine-grained muscovite was also found at the Bowhead showing within a nodule enclosed by plagioclase and scapolite.  Muscovite from the Beluga showing has contents of Al (2.94 to 2.97 apfu), Ti (0 to 0.009 apfu), K (0.87 to 0.94 apfu), and Na (0.085 to 0.135 apfu) (Fig. 4.19; Appendix B.5).  Muscovite from the Bowhead showing has a significant paragonite component (Na: 0.21 to 0.25 apfu), elevated Al (3.01 apfu), and lower K (0.73 to 0.79 apfu) when compared to the Beluga showing.  4.6.6 Plagioclase  Plagioclase from within the symplectite at both showings is different from plagioclase in the muscovite + plagioclase + calcite + corundum-bearing mineralized zone at the Beluga showing.  The composition of plagioclase in the symplectite is similar at both the Beluga (Ab71 up to maximum of Ab90) and Bowhead showings (Ab74 to Ab79) (Appendix B.6).  At the Beluga showing, the anorthite content of plagioclase in the symplectite decreases (from ~An25 to An14) with increasing distance from the scapolite crystals.  The composition of plagioclase in the muscovite + plagioclase + calcite + corundum-bearing zone at the Beluga showing is almost pure end-member albite (Ab93 to Ab100) as is the plagioclase (Ab97 to Ab99) in the plagioclase-muscovite nodule at the Bowhead showing; however, this does not mean that the Bowhead nodule and the corundum bearing zones at Beluga are similar.  4.6.7 Scapolite  Scapolite from the Beluga showing has a wide range of EqAn (0.36-0.69), whereas the scapolite from the Bowhead showing has a much narrower compositional range (EqAn = 0.50 to 0.67; Fig. 4.20; Appendix B.7).  At both localities, XCl varies significantly (Beluga: 75 76XCl = 0.15 to 1.0; Bowhead: XCl = 0.43 to 0.83).  Analyses that contain lower Na and higher Cl than expected for ideal marialite-meionite solid solution are likely the result of Na mobility away from (and Cl mobility towards) the electron beam during electron microprobe analysis (Fig. 4.20; Vanko and Bishop 1982).  The compositional range for scapolite grains varies depending on the sample analyzed.  At both localities there is a cluster of analyses around XCl 0.7 to 0.9.  Minor compositional zoning exists in grains at each locality, but the magnitude and direction of zoning appears to be random and is not related to proximity to other phases (Fig. 4.21A).    Preliminary high resolution hyperspectral images show two different reflectance spectra which may represent minor compositional differences in scapolite (Fig. 4.22; David Turner pers. comm. 2013).  This suggests that two different generations of scapolite may exist at the Beluga occurrence, but they were not noticeable using traditional optical microscopy or back scatter electron images from scanning electron microscopy.  If detailed high resolution hyperspectral images are collected from the thin sections, they could be used to target areas for future microprobe analysis.   One important characteristic of the scapolite from both the Beluga and Bowhead showings is that it fluoresces under UV light due to the presence of S2-.  This has successfully been used as an exploration tool to find corundum (and scapolite)-bearing calc-silicate pods (Fagan, 2010).  The composition of plagioclase (~An0.23) associated with the symplectite and the plagioclase + muscovite + calcite + corundum on either side (An0.01) of scapolite was compared at both localities (Fig. 4.21B).  It is typical for scapolite to be Ca- and Al-rich (have greater anorthite content) relative to coexisting plagioclase (Rebbert and Rice 1997).  Positively sloped tie lines between associated plagioclase and scapolite at both localities indicate possible equilibration of the plagioclase with a late Na-Cl enriched fluid phase (Rebbert and Rice 1997; Kullerud and Erambert 1999), possibly with a NaCl content of 0.3 to 0.5 (Fig. 4.21B; Ellis 1978).  The slope of most natural scapolite-plagioclase pairs in equilibrium is ~74-78? (Rebbert and Rice 1997; Kullerud and Erambert 1999), suggesting that the plagioclase that is most likely in equilibrium with scapolite at both showings is the plagioclase from the symplectite (Fig. 4.21B).    76 77  4.6.8 Other Accessory Minerals  Accessory minerals from the Beluga showing were analyzed by a previous researcher (Andrea Cade), but maps containing the location of analyzed points cannot be found. See Appendix B.8 for the compositions of tourmaline (dravite) and sanbornite.  See Appendix B.9 for the compositions of thorianite, monazite, and zircon.  Other than titanite, most of these analyses were from metamict grains.   4.7 Whole Rock Geochemistry  4.7.1  Major and Trace Elements  Major and trace elements values from whole rock samples were only determined for the Beluga showing (Appendix B.10).  The whole rock geochemical signature of the Beluga showing was compared to igneous, gneissic and siliciclastic metasedimentary lithologies from different packages of rocks within the Meta Incognita micro-continent (MIM; Th?riault et al. 2001, Butler 2007) in an attempt to identify a potential protolith for the Beluga calc-silicates.  The geochemistry of the Beluga showing is correlated with most of these packages in terms of CaO/MgO (Fig. 4.23E), SiO2/V, MgO/V, and TiO2/V (Fig. 4.25A,D,E) and it has average amounts of Al2O3 (11.47-15.32 wt.%) and Na2O (2.43-2.96 wt.%; Figs. 4.23-4.25); however, it has the following distinct whole rock geochemical signature: (1) depletion in Fe2O3 (1.43-1.83 wt.%), SiO2 (45.19-46.54 wt%), and Cr (100-130 ppm); and (2) enrichment in MgO (9.28-11.46 wt.%), CaO (15.82-18.86 wt.%), TiO2 (0.92-1.07 wt.%), and V (218-263 ppm).   The Beluga showing was compared to a calc-silicate, marble, and quartz-feldspar metasediment from Aliguq Island (AI), which is within the LHG northwest of the Beluga showing (Fig. 4.23A; Butler 2007).  The Beluga showing and calcsilicate rock are both depleted in Fe2O3 and SiO2, but the Beluga showing has higher Al2O3, Na2O, and TiO2, (Fig. 4.23B,D, 4.24) and lower MgO. The Beluga showing and marble have very similar Fe2O3/MgO (Fig. 4.23C).  The Fe2O3/MgO, Na2O/MgO and CaO/MgO ratios of the Beluga 77 78showing are roughly correlated with the quartz-feldspar metasediment and calc-silicate (Fig. 4.23 C,D,E). Vanadium and Cr were not analyzed in samples from Aliguq Island, so they could not be compared to Figure 4.25. The Aliguq Island quartz-feldspar metasediment sample has similar contents of Fe2O3, SiO2, Al2O3, and TiO2 and elevated contents of Na2O and MgO when compared to other regional metasediments (Fig. 4.23, 4.24).    The Beluga showing and the lapis lazuli rocks within the LHM both have very low Fe2O3 and SiO2, average Al2O3, and high CaO and MgO (Fig. 4.23).  The lapis lazuli rocks, however, have much higher Na2O and much lower TiO2 than the Beluga rocks (Fig. 4.23D, 4.24).  Vanadium, Cr, and REEs were not analyzed in samples from the lapis lazuli rocks, so they could not be compared to Figures 4.24 and 4.25.  The Beluga showing and two diorite samples from the Narsajuaq terrane have similar contents of SiO2, Al2O3, Na2O, MgO, CaO, TiO2, and V (Fig. 4.23 B,D,E, 4.24A,B, 4.25A,C,D,E), but the Beluga showing has much less Fe2O3 and Cr (Fig. 4.23A,C, 4.24C, 4.25B,F).    The Beluga showing has similar V contents to two semipelites (210 ppm) from the Blandford Bay assemblage, and a pelite (210 ppm), semipelite (170 ppm) and psammite (213 ppm) from the LHG.  These pelites and semipelites are also slightly depleted in SiO2 and strongly enriched in TiO2 (Fig. 4.25A,E).  4.7.2 Rare Earth Elements  The Rare Earth element (REE) patterns of the Beluga showing are characterized by low total REE-contents (~18 ppm), slightly enriched LREE (LaCN/LuCN ~ 2.88), and a negative Eu-anomaly (Eu/Eu* ~ 0.13; Fig. 4.26).  The HREE pattern from Gd-Lu is highly variable.  The REE patterns of the Beluga showing were compared to the other lithologies within the Lake Harbour Group.  Calc-silicate, metasedimentary, and monzogranite samples are all enriched in LREE (LaCN/LuCN = 5.8 to 28.6) and total REE (71.6 to 375.3 ppm) compared to the Beluga showing.  Most lithologies have a distinct negative Eu anomaly, but two pelites have a positive Eu anomaly, and three pelites have no Eu anomaly.  The REE patterns of the Beluga showing were compared to other regional rocks with high V (Fig. 4.27). The LHG pelite, semipelite, and psammite are enriched in total REE (98, 78 79375.3, 285.8 ppm) compared to the Beluga showing. They all have distinct Eu anomalies (Eu/Eu* = 0.1), enrichment in LREE (LaCN/LuCN = 16.1, 7.0, 17.9) and smooth, fairly flat HREE (GdCN/YbCN = 1.9, 0.79, 1.74).  Heavy REE in the LHG pelite are only slightly elevated compare to Beluga. The Blandford Bay assemblage pelites are also enriched in total REE-contents (165-359 ppm) compared to Beluga.  Their LREE slopes are similar the LHG patterns, but the HREE patterns are significantly depleted compared to LHG and they also do not have a Eu anomaly.  The Narsajuaq arc diorites have low total REE-contents (24.9 and 41.1 ppm) and a very shallow slope (almost flat).  One sample is enriched in LREE and one is depleted, but both are enriched in HREE compared to Beluga.  Granodiorite from the Narsajuaq arc has high total REE-contents (152.3 ppm), strong enrichment in LREE (LaCN/LuCN = 476.9), depleted and steep HREE (GdCN/YbCN = 7.03), and no Eu anomaly.  The HREE from Tb to Er are similar to Beluga.   4.8 Oxygen Isotopes of Corundum  Blue sapphire from the Beluga showing has a ?18O value of 16.4? (Fig. 4.28).  This is consistent with the lower range of ?18O from pink sapphire and ruby in marble from southeast Asia (Mogok, Myanamar, Afghanistan, Pakistan, Nepal, Tadjikistan, and Vietnam) as well as Tanzania, Ural Mountains in Russia, Switzerland, and Macedonia, which range from 16.3? to 23?, but is slightly higher than blue sapphires from desilicated pegmatites in marble (15.5? and 15.9?, Mogok and Myanmar), as well as sapphires in marble skarn (10.7? to 15.6?, Andranondambo, Madagascar; Giuliani et al. 2005, 2007).  This means the isotopic values correlate well with the expected deposit-type model.   4.9 U-Pb Geochronology  LeCheminant et al. (2005) analyzed the U-Pb geochronology of zircons from the Beluga showing in order to constrain the timing of sapphire crystallization. Zircon was chosen as a proxy for sapphire crystallization because both minerals have similar growth zones as well as calcite inclusions.  The zircon fractions have high U contents (608-1258 ppm) and there is no evidence of an inherited component.  The U-Pb age of 1782.5 +3.7/-0.8 79 80Ma, defined using five zircon fractions from the Beluga showing, is consistent with the timing of post-D2 thermal/fluid activity (1797 ? 2 to 1784 +7/-9 Ma; Scott and Gauthier 1996, Wodicka and Scott 1997, Scott 1997, Scott and Wodicka 1998, Scott et al. 2002, St-Onge et al. 2007) in the Meta Incognita microcontinent (Fig. 4.29).   4.10 40Ar-39Ar dating  Phlogopite and muscovite from the Beluga showing were dated during Andrea Cade's research using the 40Ar-39Ar method in order to help constrain the thermal history of the study area.  Phlogopite has a non-ideal saddle-shaped spectrum with a flat minimum yielding a plateau age of 1646.8?8.6 Ma (Fig. 4.30A).  Muscovite has a flat spectrum yielding a plateau age of 1510.4?8.3 Ma (Fig. 4.30B).  Closure temperatures of phlogopite and muscovite are ~500 and 529 ?C (for a cooling gradient of 100 ?C/Ma; Baxter 2010), so both ages are interpreted to represent late cooling stage of the marble, and thus the mineralization must pre-date this closure temperature date.   4.11 Discussion  This discussion will focus on the petrogenetic history of the Beluga showing and possible models of corundum formation using petrographic, geochemical, and isotopic evidence.  Further research needs to be completed in order to identify thermodynamically possible corundum-forming reactions and to provide stronger arguments for the model of formation of the Beluga showing.  All reactions identified in the following sections are based on mineral textures; their stability under different P-T conditions was not determined.  4.11.1 Prograde and Retrograde Mineral Assemblages at both the Beluga and Bowhead Showings  At both the Beluga and Bowhead showings, nepheline and diopside were identified as primary minerals based on mineral textures.  Assuming that they formed from a carbonate + feldspar precursor, the assemblage could have been produced during M1 at P-T conditions ? 80 81810 ?C and 8.3 kbar (St-Onge et al. 2007) in either dolomite- or calcite-rich areas by the reactions:  [1]  3albite + dolomite + K-feldspar ? diopside + nepheline + CO2 [2]  phlogopite + 3calcite + 4quartz + 3albite ? 3diopside + nepheline + H2O + CO2 + F  The presence of Al and Na in the diopside can be used as a barometer, and this indicates high pressures of formation (Deer et al. 2001).    The retrograde plagioclase-phlogopite symplectite and scapolite crystals at these showings formed at the expense of nepheline and diopside, likely during M2 retrograde metamorphism at PT conditions ? 710 ?C and 6 kbar due to the influx of fluids. Based on textural relationships, the following reactions occurred during the addition of (H2O + CO2 + Cl)-bearing fluids:  [3] diopside + nepheline + (H2O + CO2 fluid)  ?  phlogopite + albite + calcite + Na+ [4]  3anorthite + calcite + Na,Cl-fluid ? scapolite  The reaction [3] stoichiometry using actual mineral compositions is: 2.76(CaMg0.85Na0.15)Si2O6 + 1.23(Na2.9 K0.5Ca0.24) (Al3.9Si4.1)O16 + 0.18K+ + H2O + CO2 ? 0.8(KMg2.8Al0.2Al1.3Si2.7O10(OH)2 + 3(Na0.8Ca0.2)Al1.2Si2.8O8 + 2.45CaCO3 + 0.1Mg2+ + 1.58Na+  The absence of nepheline and the presence of alteration minerals at the Beluga showing could suggest that all the nepheline was consumed by this reaction.  Similar enrichment of Fe, Ti and Mg in both diopside and phlogopite from the Bowhead and Beluga showings provides evidence that diopside was the source of these elements in the phlogopite product.  The symplectite texture indicates that the breakdown of diopside + nepheline may have proceeded very quickly (Passchier and Trouw 2005) and the elevated Ti in phlogopite indicates temperatures were between 600-700 ?C (Henry et al 2005).  Increased Ti in both diopside and phlogopite at the Bowhead showing may indicate higher temperatures of formation (Henry et al. 2005) or that the original protolith was more enriched in Ti.  As Mg, 81 82Fe, and Ti were depleted in areas distal to the diopside grains, scapolite was able to form around the symplectite and nepheline.  Inclusions of plagioclase and phlogopite in some scapolite grains and the fact that scapolite coats the symplectite areas indicate that the scapolite formed after the symplectite.  The scapolite is enriched in Ca compared to the plagioclase because it forms by the addition of Ca and CO3 into the structure.  4.11.2 Retrograde Corundum + Albite + Muscovite-Bearing Zones at the Beluga Showing  The retrograde formation of the corundum + albite + muscovite-bearing zones at the Beluga showing is difficult to explain. It is likely that these zones were subjected to intense fluid infiltration after the formation of the symplectite. This is evident by the alteration of most minerals in this zone, as well as the alteration of scapolite, which separates this zone from the symplectite.  These zones are entirely absent at the Bowhead showing, hence why there is no corundum mineralization at that locality.  Throughout the KSO, sapphires are only associated with extensively altered rocks that contain scapolite, indicating that the formation of sapphires is probably closely linked to the formation of scapolite.  One suggestion for the absence of nepheline at the Beluga showing is that it is much more altered than the Bowhead showing. This means that nepheline was destabilized during retrograde metamorphism during the addition of fluids which may or may not have contained SiO2(aq).  If nepheline broke down due to the addition of siliceous fluids without reacting with any other phases, it could produce K-feldspar and albite by the following reaction:  [5]  nepheline + 5SiO2 ? K-feldspar + 3albite  Reaction [5] however, does not explain the presence of muscovite and corundum.     Seven possible reactions exist to explain the minerals present within the corundum + albite + muscovite-bearing zones at the Beluga Showing.  These reactions only take mineral associations into account, and not thermodynamic stability. The first possible reaction could occur if the Beluga showing was not as enriched in nepheline as the Bowhead showing and 82 83the majority of corundum formed by the breakdown of anorthite due to the infiltration of Na-CO2-fluids by the reaction:  [14] anorthite + Na+(aq.) + CO2 ? 5 albite + 2 corundum + 3 calcite  The source of Na+(aq.) in this reaction may have been produced during the destabilization of nepheline or it may be from another regional source.   The second possibility is if nepheline broke down due to the addition of H2O-bearing fluids without reacting with any other phases, it could produce similar assemblages and excess alkalis by the following reactions:  [6]  nepheline + H2O ? K-feldspar + 1.33 albite + 1.66 corundum + 1.66 Na+(aq.) [7]  nepheline + H2O ? muscovite + 1.33 albite + 1.66 Na+(aq.) + K+(aq.)  Reactions [6] and [7] are plausible; the dominance of K-feldspar + corundum over muscovite can be dependent on the activity of CO2 in the system (see Chapter 1 Introduction).  Alternatively, if muscovite formed first in reaction [7], it could have dehydrated to form K-feldspar and corundum during the post-D2 thermal/fluid activity because of increased temperatures, or increased CO2 or a combination of the two (see the Revelstoke chapter).  Reactions [6] and [7] are unlikely to have formed all of the corundum, however, because albite is the predominant feldspar (sometimes the only feldspar) in the corundum-bearing zones.  If corundum was produced by muscovite breakdown, there would be an approximate ratio of K-feldspar to corundum of 1:1, but this was not observed.  Albite commonly armors the corundum, indicating that albite either formed at the same time or shortly after corundum.   Although I did not see K-feldspar in the thin sections I studied from the Beluga showing, I cannot assume that it is not present in other parts of the showing, because it was documented in other corundum-bearing calc-silicate rocks within the KSO by Hansen (2008).  The third possible way of producing mineral assemblages within the corundum + albite + muscovite-bearing zones at the Beluga Showing is if nepheline and plagioclase (or nepheline 83 84and scapolite) are destabilized by the addition of CO2-SiO2-bearing fluids; K-feldspar, albite, corundum, and calcite could form by the following reactions:  [10] nepheline + anorthite + 6SiO2 + CO2 ? K-feldspar + 3albite + corundum + 2.5 calcite [11] nepheline + (Na,Ca)scapolite + 4SiO2 + CO2 ? K-feldspar + 4albite + 2corundum + 2.5 calcite This is reaction is unlikely because of the low probability of producing purely anhydrous fluids in this environment.  This reaction could possibly occur in a hydrous environment if the products formed above the muscovite stability field.   The fourth possible way of producing mineral assemblages within the corundum + albite + muscovite-bearing zones at the Beluga Showing is if nepheline and scapolite react with the addition of SiO2-H2O-CO2-bearing fluids. In this case, the fluids could produce muscovite, albite, corundum and calcite by the reaction:  [12] nepheline + scapolite + 2SiO2 + H2O +CO2 ? muscovite + 3albite + corundum + 4calcite   The last and most probable way of producing mineral assemblages within the corundum + albite + muscovite-bearing zones at the Beluga Showing is if nepheline and scapolite react with the addition of non-siliceous, H2O-CO2-bearing fluids. In this case, the fluids could produce muscovite, albite, corundum and calcite by the reaction:  [13] nepheline + scapolite + H2O ? muscovite + albite + corundum + calcite +Na+ (aq.) 0.78(Na2.9 K0.5Ca0.24) (Al3.9Si4.1)O16 +0.79(Ca2.9 Na1K0.1Al5Si7[(CO3)0.25,Cl0.75)] H2O + CO2 ?0.61(K0.9Na0.1Al3Si3O10OH) + 2.47(Na0.8Ca0.2Al1.2Si2.8O8) + 1.1Al2O3 + 2CaCO3 + 1Na+  This reaction can explain the presence of the major minerals within the corundum-bearing zone and the relative proportion of all minerals in this zone, while not requiring a highly siliceous fluid.   84 854.11.3 Isotopic Evidence  Analysis of zircon grains within the sapphire-bearing lens at the Kimmirut sapphire occurrence by LeCheminant et al. (2005) yielded an age of 1782.5 Ma.  This date is consistent with post D2 thermal/fluid activity and probably indicates that the sapphires formed during retrograde metamorphism when P-T conditions were < 710 ?C and 6 kbar.  The >100 Ma difference between the Ar-Ar cooling age of the phlogopite and muscovite may be the result of muscovite cooling much later (or slower) than the phlogopite.The data obtained from the phlogopite used in this study was non-ideal; additional analysis of muscovite and phlogopite grains is needed before proceeding with any further interpretations or conclusions.  4.11.4 Protolith of the Beluga Showing  The mineralogy, major, trace, and REE chemistry, and oxygen isotopes of the Beluga showing were compared to potential igneous (alkaline and mafic), metasomatic (metasediments altered by Na-metasomatism), and metasedimentary (evaporite, black shale, and other siliciclastic metasedimentary rocks) protoliths.  Only protoliths with low Fe and Si and/or high V, which contain the assemblage nepheline + CPX + plagioclase ? scapolite were considered. 4.11.4.1 Contact Metamorphism of a Mafic Protolith  Hellingwerf (1985) suggested that nepheline, scapolite and diopside were produced by contact metamorphism of fragments of a metabasic flow breccia cemented by calcite near Bergslagen, Sweden.  Depending on the proximity to a granitic intrusion, different mineral assemblages were identified within the metabasic breccia; the distal mineral assemblage is hornblende + andesine + biotite + calcite + quartz + titanite, whereas the proximal assemblage is nepheline + scapolite + diopside +andesine + biotite + calcite with minor pyrrhotite + ilmenite + chalcopyrite + hematite + cubanite.  The reaction that likely produced the nepheline-bearing assemblage was: andesine + calcite + hornblende + SO2 = nepheline + meinonite + diopside + CO2 + 2H2O + FeS.    Corundum-bearing rocks are also found nearby within the contact metamorphosed metatuffites containing the assemblage corundum + microcline + sericite + scapolite + 85 86andalusite + biotite + titanite.  Unaltered assemblages nearby are hornblende + biotite + quartz + plagioclase and microcline + diopside + scapolite + biotite + titanite.  Based on the major mineral assemblage alone, a mafic protolith within a calcite matrix could explain the Beluga assemblage.  However, the presence of Fe-bearing major and minor mineral phases suggests that this source may have contained too much Fe to be the same source at the Beluga showing.  The nepheline crystals at this locality are zoned with lower Ca in the core than the rim contrary to homogeneous nepheline at Beluga. Diopside has Fe represented as 30% hedenbergite component and scapolite has ~70% Me component, which is much more calcic than scapolite from Beluga. No comparisons of whole rock geochemical or oxygen isotope data are able to be made between the Beluga showing and the Bergslagen locality because this data was not collected at the Bergslagen locality.  Serpentinized or chloritized intrusive amphibolites have been mapped across the wider Beluga Property, but none are proximal to the Beluga or Bowhead showings and none of the intrusions appear to have reacted with the surrounding marble (Fagan, pers. comm. 2013).  Based on the Fe-bearing mineral compositions, the presence of Fe-bearing minerals at the Bergslagen locality, and the absence of any late intrusions causing contact metamorphism of the Beluga showing, it is highly unlikely that this model is valid for the Beluga showing.   4.11.4.2 Alkaline Intrusions Formed by the Assimilation of Carbonate and Siliciclastic Rocks into a Mafic Magma  A nepheline, pyroxene, and scapolite assemblage can also be produced by the assimilation of carbonate and siliciclastic metasediments in mafic magmas (Barnes et al 2005).  At the Hortav?r complex in Norway, this process can produce a nepheline-bearing monzodiorite with the typical mineral assemblage of plagioclase + K-feldspar + nepheline + amphibole + pyroxene + accessory scapolite + calcite + apatite + titanite + biotite + pyrrhotite + pyrite, and a nepheline-bearing monzonite with the typical mineral assemblage of clinopyroxene + ferropargasite + biotite + andesine or oligoclase ? nepheline and accessory apatite + pyrite + zircon.  Geochemically, these granitoid rocks have some similarities and differences to the Beluga showing.  Clinopyroxene in these rocks has a Mg# = 0.25-0.77, which is much lower 86 87than diopside from the KSO, but plagioclase and scapolite fall within the compositional range for the KSO (Barnes et al. 2005).  These granitoid rocks also have higher Fe2O3, similar SiO2, Al2O3, K2O, CaO, lower Na2O, MgO, V and Cr than the Beluga showing.  Furthermore, they are enriched in LREE  (?REE 32-173 ppm) relative to the Beluga showing.  Stable oxygen and carbon isotopes of igneous carbonate within nepheline-bearing diorites with ~7.6% carbonate and <0.5% carbonate is ?18O = 14.12? and 11.87? and ?13C = 2.53? and 0.29?.  The ?18O is higher than expected for a typical monzonite intrusion. In addition, the variation of ?13C in the complex can be modelled using Rayleigh fractionation, which supports the theory of metasedimentary carbon contamination in a mafic magma.    Even though the mineral assemblages of this protolith are similar to those at the Beluga showing, the presence of Fe-bearing minerals and elevated Fe2O3 whole rock geochemistry suggest that this in an unlikely protolith of the Beluga showing.  Furthermore, the low values of Cr and V and elevated LREE also suggest that this protolith is not a good fit for the Beluga showing.  Also, the ?18O values of carbonate are likely somewhat lower than the carbonate from the Beluga showing. The ?18O of corundum from the Beluga showing of 16.4? indicates that the host carbonate was likely higher in ?18O because the ?18O of corundum within marble is usually lower than that of the host carbonate (see Revelstoke chapter).  4.11.4.3 Alkaline Intrusions into Marble  Nepheline-syenite pegmatite boudins within marble at the Cabonga Nepheline syenite complex in southwestern Quebec contain nepheline, plagioclase, orthoclase, perthite, microcline, blue to yellow euhedral corundum and biotite with locally abundant scapolite and calcite (Hudon et al. 2006).  The host coarse-grained marble also occurs as enclaves in the nepheline syenite gneiss.  The host marble contains calcite with minor phlogopite, blue scapolite, diopside, plagioclase, and hornblende with accessory titanite and apatite.  Regionally, this corundum-bearing syenite is poor in Ti, Fe, and Mn and is enriched in calcite compared to other nepheline-bearing rocks in the area.  Low Fe and Mn are also 87 88similar at the Beluga showing, but the Beluga showing is enriched in V and Ti, making this protolith unlikely.   4.11.4.4 Na-Metasomatism of Metasediments or Volcanic Rocks  In the York River area of southern Ontario, poly-metamorphosed and -deformed alkaline rocks are associated with metasediments (marbles, amphibolites, and paragneisses) and intrusive rocks (gabbros and granites; Anderson and Cermignani 1991).  The mineral assemblage of corundum-bearing rocks is: nepheline + alkali feldspars + corundum + amphibole (hornblende?) + biotite + magnetite + scapolite + calcite + apatite with locally abundant zircon, tourmaline, and garnet (Moyd 1949).  At some locations, the nepheline-rich gneisses were partially altered to rocks rich in alkali feldspars and corundum (Moyd 1949), similar to the association of corundum with alkali feldspars in the Beluga rocks.  There are three main theories that can be applied to the alkaline nature and presence of nepheline in these rocks: (1) Na-metasomatism of metasedimentary or volcanic rocks by granitic fluids (Gummer and Burr 1946) or alkaline fluids (Gittins 1961); (2) metasomatism of metasediments with Cl-rich brines from evaporitic layers (Appelyard and Stott 1975; Appleyard and Williams 1981); or (3) the protolith was an alkaline igneous rock that underwent very little metasomatism (Miller 1985).  Anderson and Cermignani (1991) modeled the stability of different phases in calcite-saturated solutions containing carbonate and chloride ions of Na, Ca, and K with varying activities of NaCl and identified that nepheline could form from plagioclase while in equilibrium with K-feldspar and calcite in solutions with 0.3 to 1 molar NaCl.  They also identified 3-phase liquid-vapour-NaCl solid fluid inclusions in diopside and nepheline, which could represent relict primary igneous inclusions or metasomatic inclusions.  Corundum in these rocks may have formed by: (1) the destabilization of muscovite (Carlson 1957) [muscovite ? K-feldspar + corundum], or (2) the destabilization of nepheline by the addition of CO2-rich siliceous fluids to form perthite + corundum + sodium carbonate (Moyd 1949), or (3) the destabilization of Na,Ca plagioclase to corundum + albite + calcite by the addition of CO2-rich fluids and Na2CO3 (Moyd 1949).   88 89 No whole rock geochemistry, mineral chemistry, or isotopic data exists for this locality, making it difficult to make a comparison with the Beluga showing.  Furthermore, the model of formation for this locality has been debated by many authors.  There are similarities between this locality and the Beluga showing in terms of the primary mineral assemblages and the alteration of nepheline zones to alkali-feldspar with corundum, but the presence of magnetite indicates that these rocks were more iron rich.  Model 1 may be a valid protolith, but the enrichment of V and depletion of LREE cannot be explained by this model.  Model 2 may be a valid protolith for the Beluga showing, if the primary metasediments were enriched in V.  Model 3 is an unlikely protolith because the Beluga showing would be expected to have higher LREE and lower ?18O of corundum.  4.11.4.5  Metamorphism of an Evaporite-Shale-Marble Protolith  Silica-undersaturated and Fe-depleted rocks can also be produced in metamorphosed evaporite-shale-marble sequences, such as has been proposed for the lapis lazuli locality within the LHM (Hogarth 1971, Hogarth and Griffin 1978).  This locality commonly contains calcite + lazurite + diopside + phlogopite + amphibole (pargasite) + plagioclase (oligoclase) ? nepheline ? scapolite ? titanite ? sodalite ? pyrite (Hogarth and Griffin 1978).  Select minerals from the Lapis deposit have the following composition: diopside = Di90Jd10, scapolite = EqAn = 0.44-0.48, plagioclase = Ab75-84An14-24Or0-1.6, and nepheline = Ne80-87, end member phlogopite = (XMg100).  Diopside from the Beluga showing has more Fe, Ti and Al than the diopside from the nearby lapis deposit, and the phlogopite from the lapis deposit contains more Mg and less Fe and Ti than the Beluga showing.  Plagioclase and nepheline have similar compositions at both localities.  As described earlier, the Beluga showing and the lapis lazuli rocks within the LHM both have very low Fe2O3 and SiO2, typically average Al2O3, and high CaO and MgO (Fig. 4.23).  The lapis lazuli rocks, however, contain higher Na2O and much lower TiO2 than the Beluga rocks (Fig. 4.23D, 4.24).  V, Cr, and REEs were not analyzed in samples from the lapis lazuli rocks, so they could not be compared to figures 4.25 and 4.26.  Even though there are some geochemical similarities, the lapis rocks have slightly different mineral assemblage, grain size, and much lower TiO2 compared to the Beluga 89 90deposit.  If the primary shale had a different composition, this could explain the geochemical differences, but not the difference in grain size.  The absence of oxygen isotopes, REE, V and Cr values make it difficult to compare the Lapis locality in its entirety to the Beluga showing.  However the proximity of this showing to the sapphire deposits regionally throughout the LHM could indicate that the reactions responsible for the formation of the lapis showing could also have affected the development of the Beluga showing.  4.11.5 Proposed Beluga Model of Formation  The proposed model of formation for the Beluga Showing is the metamorphism of an evaporite-black shale-marble protolith, which was altered by late fluid infiltration.  The destabilization of nepheline + (scapolite or anorthite), or the destabilization of anorthite formed the corundum-albite-muscovite assemblage.  The interaction of evaporites and interbedded shales was proposed as a model for the formation of alkaline corundum-bearing rocks near York River, Ontario (Appelyard and Williams 1981) and the lapis lazuli deposit within the LHM on Baffin Island (Hogarth 1978).  These rocks have similar primary mineral assemblages as well as elevated whole rock Mg and Ca and low Fe and Si, similar to the Beluga showing.  If the primary sedimentary carbonate was dominantly dolomitic, it could explain the elevated Mg in the rocks. There are distinct dolomitic marble areas within the LHG marble near to the Beluga showing; these are clearly different from the majority of the marble host-rocks (Fagan, 2010).  Elevated V (especially in comparison to Cr) at the Beluga Showing could be the result of primary accumulation in anoxic black shale deposits with greater than 10% total organic carbon (TOC; Brumsack 2006, Algeo and Maynard 2004).  Vanadium can be enriched relative to Cr in nepheline syenites, but low total REE values and very low Fe relative to Si are not consistent with this protolith (Hudon et al 2006). Elevated Ti may be explained by large amounts of rutile accumulated in the primary sediment or by Ti-mobilization during prograde metamorphism.    Black shales are typically enriched in LREE, but low LREE values in the Beluga rocks may be explained by the dissolution of REE-bearing minerals, such as apatite or monazite, during diagenesis or as a result of dilution with carbonate minerals (Lev et al. 1999). 90 91 The relatively high ?18O of corundum overlaps with the low end of corundum from marble-shale-evaporite protoliths (Giuliani et al. 2005).  This result is consistent with a metasedimentary-metasomatic origin of corundum from the Beluga Showing.   4.11.6 Late Fluid Infiltration  LeCheminant et al. (2005) observed that the zoning and mineral inclusions within zircons from the Beluga showing are similar to corundum.  They determined the date of zircon formation to be (1782.5 Ma) and presumed that this age is similar to the date of corundum crystallization.  This date also corresponds to the age of post D2 thermal/fluid activity of 1784 +7/-9 Ma determined by Scott (1997), which is related to syenite intrusions within the LHG.  Butler (2007) also proposed fluids from syenogranites may have produced late scapolite in marble nearby within the LHM.  These late intrusions could be the source of corundum producing fluids, but further research is needed to confirm or deny this.  The presence of corundum at the Beluga showing, and not at the Bowhead showing, suggests that the Bowhead showing was not infiltrated by the secondary fluids to the same extent (or at all) as the Beluga showing.  This can possibly be explained the presence of a fault separating the two showings, but this needs to be confirmed with structural field work and laboratory oxygen isotope evidence. If the fault formed prior to or during late stage fluid infiltration, it may have acted as an impermeable barrier preventing the altering fluid from reaching the Bowhead showing.  Alternatively, if the fault formed post-corundum formation it may have juxtaposed the showings which formed at different structural positions in the LHM with different geochemical characteristics.   91 92 Figure 4.1:  Location and regional geology of the Kimmirut Sapphire Occurrence (KSO). A)  Map of Canadian gem-corundum localities. RO = Revelstoke occurrence, 1 = Slocan Valley, 2 = Bancroft-York River area, 3 = Nova Scotia, 4 Labrador.  B) Geological map of southern Baffin Island.  The Level 1-2 terrane boundary fault is the Bergeron suture and the Level 2-3 terrane boundary fault is the Soper River suture (St-Onge et al. 2000).  The yellow star indicates the location of the Kimmirut Sapphire Occurrence (KSO).   B 92 93   Figure 4.2:  A) Distinctive texture of the coarse-grained Beluga lens in contact with finer-grained marble. Note the rectangular outline of violet diopside + symplectite (phlogopite + plagioclase). B) Muscovite-albite-calcite-sapphire zone.        Figure 4.3:  Sample B8-04b in A) incandescent and B) UV light.  Note the bright yellow fluorescence of scapolite in UV light.   93 94   Figure 4.4:  Plagioclase-phlogopite symplectite rimmed by scapolite.  Note random orientation of phlogopite and inclusions of calcite in plagioclase. FOV = 0.9 mm   94 95A)  B)  Figure 4.5:  Photomicrographs displaying the distinctive texture and mineralogical zones of calc-silicate rocks from the Beluga showing. A) Zoning of mineral phases; diopside (at the upper left corner) is rimmed by the plagioclase-phlogopite symplectite, followed by scapolite, then the corundum-albite zone. Note the presence of the area of extensive alteration which can occur as an inclusion within scapolite, but also as part of the corundum-bearing zone. B) Zoning of mineral phases; diopside is not visible in this photomicrograph possibly because it has all been consumed in the production of the plagioclase-phlogopite symplectite.  Note the random orientation of phlogopite grains within the symplectite, the presence of scapolite within the corundum zone, and the presence of the area of extensive alteration along the boundary between scapolite and the corundum-bearing zone, possibly indicating fluid pathways.  95 96        Figure 4.6:  Albite and calcite surrounding corundum next to scapolite.  96 97 Figure 4.7:  Symplectite with calcite and titanite on the edge of scapolite.   Figure 4.8:  Calcite inclusions in phlogopite, on the edge of phlogopite, or in the intergranular space between plagioclase.  97 98 Figure 4.9:  Symplectite with scapolite and plagioclase inclusions in phlogopite.    Figure 4.10:  Symplectite with calcite and titanite. 98 99  Figure 4.11:  Plagioclase-phlogopite-calcite  and phlogopite inclusions in scapolite. 99 100      Figure 4.12:  Photomicrographs of the nepheline-bearing Bowhead showing.  A) The plagioclase-phlogopite symplectite develops between diopside and nepheline grains.  B) Scapolite rimming plagioclase-phlogopite symplectite and nepheline. FOV = 0.8 mm, C) Plagioclase-phlogopite symplectite in contact with calcite. FOV = 0.5 mm, D) Plagioclase-muscovite nodule within scapolite. FOV = 0.3 mm  100 101     Figure 4.13:  A) Beluga blue and colourless cut sapphires from the Beluga showing.  C) 1.17 ct. in pavilion view with tweezers for scale.  All sapphires are natural and untreated.  Photos are courtesy of True North Gems.         Figure 4.14:  A) Barrel-shaped corundum crystal from the Beluga showing. Image is from Wilson (2010).  B) Scanning electron microscope image of a zoned sapphire crystal with calcite (cc) and rare apatite (ap) inclusions. Prismatic thomsonite (th) crystals penetrate corundum along fractures. Image is from LeCheminant et al. (2005).   10 102 Figure 4.15:  Compositional variation of sapphires from the Beluga occurrence.   102 103 Figure 4.16:  Pyroxene classification and major elemental variation diagram.    103 104  Figure 4.17:  Compositional variation of pyroxene at the Beluga and Bowhead showings: A) Al vs Na apfu; B); Mg vs Fe3+ apfu; C) Ti vs Fe3+ apfu; and D) Ti vs Mg apfu.  104 105    Figure 4.18:  Compositional variation of phlogopite from the Beluga and Bowhead showings.  A) [4]Al vs. Mg/(Mg+ Fe2+); B) [6]Al vs. [4]Al; C) Ti vs. Fe2+; D) Ti vs.Mg; E) F vs Fe2+ + Mg + Mn.  105 106  Figure 4.19:  Chemical composition of muscovite from the Beluga and Bowhead showings: A) Al vs Ti and B) K vs Na.     106 107 Figure 4.20:  Compositional variation of scapolite from the Beluga and Bowhead showings.  Meionite, marialite, mizzonite solid solution end members are expressed in terms of XCl = Cl/(Cl + CO3 + SO4) and equivalent anorthite EqAn = (Al-3)/3.  The curves indicate NaCl content of fluids according to the experimental data of Ellis (1978) for 4 kbar and 750 ?C.   Figure 4.21:  Compositional variation of scapolite. A) Zoning of EqAn across scapolite grains at the Beluga showing. B) Tie-lines of coexisting scapolite-plagioclase pairs at the Beluga and Bowhead showings.  107 108 Fig. 4.22:  High resolution hyperspectral image of a rock from the Beluga showing collected by David Turner.  The two generations of scapolite are identified by blue and purple. 108 109 Figure 4.23:  Major element variation for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith: A) Fe2O3 vs SiO2, B) SiO2 vs Al2O3, C) Fe2O3 vs MgO, D) Na2O vs MgO, and E) CaO vs MgO.  109 110   Figure 4.24:  Major elements vs TiO2 wt.% for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith.   110 111  Figure 4.25:  Major elements vs V ppm for the Beluga rocks as well as other lithologies from the Lake Harbour Group, Blandford Bay assemblage, Narsajuaq Terrane, Ramsay River orthogneiss, and Cumberland batholith.  11 112 Figure 4.26:  REE patterns of lithologies from the Lake Harbour Group compared to the Beluga showing.    112 113 Figure 4.27:  REE patterns of lithologies with elevated V (170-280 ppm) from the Beluga showing, Narsajuaq terrane (Nar), Lake Harbour Group (LHG), and Blandford Bay assemblage (BB).   113 114  Figure 4.28:  The ?18O values of gem corundum from different protoliths (Giuliani et al. 2005).  The Beluga sapphire is denoted as a blue hexagon.   114 115 Figure 4.29:  U-Pb ages of deformation, metamorphic and magmatic events in the Meta Incognita microcontinent and Narsajuaq arc (St-Onge et al. 2007).  A U-Pb zircon date from the Beluga showing (LeCheminant et al. 2005) plots amongst other post-D2 thermal/fluid activity ages. (BS = Bergeron suture; SRS = Soper River suture.)  115 116   Figure 4.30:  40Ar-39Ar age spectra of (A) phlogopite and (B) muscovite from the Beluga showing. Box heights are 2?, plateau steps are filled, and rejected steps are open.   116 117Chapter  5: Comparison of the Revelstoke and Kimmirut corundum occurrences  5.1 Introduction  Even though there are some similarities between the Revelstoke occurrence and the Kimmirut sapphire occurrence (KSO), there are more differences (Table 5.1).  Both of the carbonate-hosted gem corundum occurrences are found in poly-stage metamorphosed (peak metamorphism up to granulite facies) and highly deformed metasedimentary sequences that were subjected to extensive fluid infiltration (Chapters 3 and 4).  At both localities, barrel shaped-corundum crystals with tapered ends (Chapter 3, LeCheminant et al. 2004) occur in lithologies that are depleted in Si and Fe compared to other local lithologies.  The protolith of corundum-bearing rocks at each occurrence is composed of siliciclastic and evaporite components hosted in marble.  The differences between the two localities are discussed in detail in the following text and are summarized in Table 5.1.    5.2 Age The Revelstoke occurrence is hosted in much younger rocks than the Kimmirut sapphire occurrence.  It is hosted within the Monashee cover sequence of British Columbia which contains Paleoproterozoic to Cambrian sediments that were metamorphosed from 62 Ma to older than 47 Ma.  The Kimmirut Sapphire occurrence is hosted within the Trans-Hudson Orogen on Baffin Island, Nunavut in < 1.93 Ga sediments that were metamorphosed from 1844 Ma to 1784 Ma (Scott 1997; St-Onge et al. 2007 and references within).   5.3 Petrology  At the Beluga showing of the KSO, blue sapphire occurs in medium- to coarse-grained calc-silicate pods with the assemblage diopside + phlogopite + plagioclase + scapolite + albite + muscovite + calcite, whereas at the Revelstoke occurrence, pink sapphire occurs in fine- to medium-grained foliated layers with green muscovite + anorthite + K-117 118feldspar + calcite ? scapolite ? rutile.  Scapolite is always present in corundum-bearing rocks at the Kimmirut occurrence, but is only sometimes present at the Revelstoke occurrence.  Gem corundum formed by two very different mechanisms at the Beluga showing and the Revelstoke occurrence.  At the Beluga showing, blue sapphire formed during late fluid infiltration from the destabilization of anorthite or nepheline + scapolite or nepheline + anorthite, whereas pink sapphire at the Revelstoke occurrence formed during the peak of metamorphism from the dehydration of muscovite.  Indicator minerals at the Revelstoke occurrence are green muscovite aggregates, whereas scapolite and violet diopside are the indicator minerals at the Beluga showing.   5.4 Whole Rock Composition  The whole rock composition of corundum-bearing rocks at each locality is unique (Fig. 5.1).  When comparing the mica-feldspar rocks from the Revelstoke occurrence with the calc-silicate rocks from the Beluga showing, the Beluga showing rocks are highly enriched in V (~220 to 275 ppm), SiO2 (~45 wt. %), MgO (~9 to 12 wt. %), TiO2 (~ 0.9 to 1.1 wt.%), Cr (~100 to 130 ppm), Al2O3 (12 to 15 wt.%) and Na2O (2.3 to 3.1 wt.%).  Both localities have similar contents of Fe2O3 (0 to 2 wt. %), but the mica-feldspar layers from the Revelstoke occurrence have elevated CaO (~30 to 50 wt. %).  When comparing the host rocks from the Revelstoke occurrence with the calc-silicate rocks of the Beluga showing, the Revelstoke host rocks have significantly lower Na2O (< 1.5 wt.%) and MgO (<4 wt.%) and higher Fe2O3TOT contents (5 to7.5 wt.%; Figure 5.1). Revelstoke host rocks also have slightly elevated SiO2 (~46 to 58 wt.%), and Al2O3 (15 to 18 wt.%), and slightly lower CaO (~1 to 20 wt.%), TiO2 (~0.6 to 0.6 wt.%) and Cr (~90 to 120 ppm).    118 1195.5 Mineral Chemistry  5.5.1 Corundum  The colour, composition, and quality of gem corundum is unique at each locality.  Pink sapphire from the Revelstoke occurrence contains elevated Cr2O3 (? 0.21 wt.%), TiO2 (? 0.25 wt.%), and minor FeO (? 0.05 wt.%), whereas blue rims contain moderate Cr2O3 (? 0.11 wt.%), elevated TiO2 (? 0.53 wt.%), and minor FeO (? 0.06 wt.%). In comparison, blue sapphire from the Beluga showing contains elevated TiO2 (? 0.30 wt.%) and FeO (? 0.13 wt.%), with Cr2O3 near detection limits (? 0.01 wt.%).  The main difference between the two localities is that the Revelstoke corundum contains elevated Cr, whereas the Beluga corundum is Cr-poor (Fig. 5.2);  the total contents of Fe and Ti and the Fe/Ti ratio in corundum are similar at both localities.  The difference in corundum composition from each locality is not related to whole rock composition, but rather to the composition of minerals and fluid involved in corundum-producing reactions.    The quality, quantity, and intensity of colour of gem corundum at the Kimmirut sapphire occurrence is much greater than at the Revelstoke occurrence.  5.5.2 Micas  Phlogopite composition at each locality is unique (Fig. 5.3).  Revelstoke phlogopite is enriched in Al (~1.4 to 2.1 apfu) and depleted in Mg (~1.7 to 2.3 apfu) compared to Beluga and Bowhead phlogopite, which is depleted in Al (~1.1 to 1.2 apfu) and enriched in Mg (~2.3 to 2.7 apfu).  Beluga and Bowhead phlogopite is enriched in Ti (? 0.16 apfu), but the lowest values overlap with some phlogopite from the Revelstoke occurrence with elevated Ti (~0.09 to 0.12 apfu). The Fe content of Revelstoke phlogopite is dependent on the outcrop analyzed.  One population of Revelstoke phlogopite contains elevated (0.27 to 0.34 apfu) and depleted (~0.06 to 0.10 apfu) Fe compared to the Beluga and Bowhead showings.  Moderate Fe values from the Revelstoke occurrence overlap with the Beluga and Bowhead showings (~0.15 to 0.2 apfu).  Muscovite composition and colour at each locality is unique as well (Fig. 5.4).  Revelstoke muscovite is green and contains elevated Fe+Mg (~0.05 to 0.34 apfu) and Cr (~0 to 0.013 apfu), and depleted Al (~2.65 to 2.92 apfu) and Na (0.015 to 0.06 apfu) compared to 119 120the Beluga and Bowhead muscovite, which is colourless and contains very little Fe+Mg (~0 to 0.015 apfu), Cr (~0 to 0.004 apfu), and Ti (~0 to 0.01 apfu), and elevated Na (0.07 to 0.25 apfu). The Revelstoke and Beluga muscovite contain similar amounts of K (~0.85 to 0.98 apfu).    5.5.3 Scapolite  The composition of scapolite is unique at each locality (Fig. 5.5).  The Beluga and Bowhead scapolite is enriched in Na and Cl compared to the scapolite from mica-feldspar layers at the Revelstoke occurrence.  The Beluga and Bowhead analyses are outside of the normal range of analyses forming the solid solution between marialite and meionite because of Na and Cl mobility during electron microprobe analysis (See Chapter 4).  Scapolite from non-corundum-bearing lithologies at the Revelstoke occurrence are either near pure end-member meionite containing no Cl, or enriched in Cl and Na compared to corundum-bearing lithologies.   5.6 Oxygen Isotopes of Corundum  Despite both the Revelstoke occurrence and the Kimmirut sapphire occurrence being carbonate-hosted, the ?18O values of corundum from each locality are very different; pink corundum from the Revelstoke occurrence has ?18O values of 10.7 and 11.1?, whereas blue corundum from the Beluga showing has a ?18O value of 16.4 ?.  The difference in these values reflects the ?18O values of the different protoliths for each locality, as well as the composition of fluids during corundum crystallization.   5.7 Discussion  There are many more differences between the Revelstoke occurrence and the Kimmirut sapphire occurrence than there are similarities.  The most striking differences between localities are: the geological position, age of deposition and metamorphism, mineral assemblages and mineral compositions, mineral textures, occurrence morphology, corundum forming reactions, timing of corundum crystallization, composition, colour and quality of 120 121gem corundum, whole rock composition, protolith composition, and the ?18O of corundum.  All of these differences indicate that the two localities had different protolith compositions and conditions of formation.  Additional evidence to support this is that, even though the whole rock composition of the Beluga calc-silicate rocks contain elevated Cr and V similar to the host rocks at the Revelstoke occurrence, the corundum at the Beluga showing contains almost no Cr and V, indicating that either the Cr and V were not mobile during corundum crystallization, or Cr and V were trapped in minerals that were not involved in the corundum producing reactions.  The whole rock composition of corundum-bearing lithologies therefore may not be a good indication of the variety of corundum that can be found in the deposit.  The amount of gem quality corundum at the Kimmirut sapphire occurrence is far greater than at the Revelstoke occurrence.  Asian ruby deposits which formed during retrograde metamorphism from a siliciclastic-evaporite protolith, also contain a large amount of gem quality material similar to the Kimmirut sapphire occurrence;  however the colour (pink-red at the Asian deposits; blue to colourless at the KSO), morphology of the deposit (layers at the Asian deposits; pods at the KSO), whole rock composition, and mineral assemblages are very different compared to the KSO.  Some possible reasons why retrograde gem corundum is better quality than prograde is that there is typically a lack of deformation after corundum crystallization, retrograde fluids may enhance crystallization, and P-T conditions may be more appropriate for better quality crystals.  At the Revelstoke deposit, there is clear evidence that the sapphire-bearing layers are the products of mechanical mixing between the host sediments and the marble, whereas at the Kimmirut sapphire occurrence and the Asian deposits, there is no indicator of the source of siliciclastic material.   12 122  Table 5.1  Comparison between the Revelstoke and Kimmirut Sapphire Occurrences.   Mineral Assemblage Corundum Colour and Chromophores PT of Corundum Formation RO Ms + An + Kfs + Cal ? Phl ? Scp ? Rt ? Crn Pink-red (Cr), blue rims (Fe+Ti) ~650-700 ?C at 8.5-9 kbar KSO Di + Phl + Plg + Scp + Ab + Ms + Cal ? Crn Blue (Fe + Ti), colourless Most likely < 710?C and 6 kbar*             Timing of Corundum Formation Deposit morphology   RO ~58 Ma Layers, fine-med-grained   KSO ~1782.5 Ma Pods, med-coarse-grained              Protolith      RO Mechanical mixing of host sediments into marble followed by Fe and Si depletion before prograde corundum crystallization  KSO Black shale-evaporite protolith that was infiltrated by late (Si)-H2O-fluids during retrograde corundum crystallization RO = Revelstoke Occurrence, KSO = Kimmirut Sapphire Occurrence *(St-Onge et al. 2007)  123  Figure 5.1: Comparison of the whole rock compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence.    124  Figure 5.2: Comparison of corundum compositions from the Beluga showing and the Revelstoke occurrence.   125  Figure 5.3: Comparison of phlogopite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence (excluding host rocks).  126  Figure 5.4: Comparison of muscovite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence.    127  Figure 5.5: Comparison of scapolite compositions from the Kimmirut sapphire occurrence and the Revelstoke occurrence (including host rocks).     128 Chapter  6: Exploration Strategies  6.1 Introduction to Exploration Strategies When considering exploration strategies for carbonate-hosted gem corundum deposits, it is important to recognize that each deposit is unique; therefore, the application of one exploration strategy to all deposit types will not be effective.  Currently no formal or published exploration strategies exist for marble-hosted gem corundum deposits, but some standard exploration techniques have been proposed to locate magmatic gem corundum deposits or metamorphic deposits associated with magmatic bodies. Examples of these techniques include geological mapping, soil and stream geochemistry, detailed sample grids, satellite imagery, and airborne or land geophysical methods (Key and Ochieng 1991, Simonet and Okundi 2003). These techniques could also be useful for locating marble-hosted deposits, but the specific methods and application of each technique must be tailored to a specific type of carbonate-hosted deposit before any exploration project can begin.  Many factors about each target area must be considered during development of an exploration strategy to ensure feasibility and success.  Just because something can be done, does not mean it should be done.  It is important to take both geological and geographical features into consideration when choosing the best exploration methods to incorporate into an exploration strategy. The following should all be evaluated:  (1) amount of exposed outcrop , (2) the topography (steep ridges vs. low rolling hills), (3) weathering rates (low rates may make placer accumulation and drainage zone tracing difficult), (4) the 3-dimensional shape and size of mineralized zones (laminar or podiform) and whether the deposit is lithologically controlled or not, (5) grain size of mineralized and non-mineralized areas, (6) indicator minerals and mineralogical contrasts, and (7) regional and local deformation.   6.2 Recommended Exploration Techniques and Strategies Different approaches can be applied to extending the known size of a deposit or locating a new deposit during green-fields exploration (exploration far away from a known deposit).  Both long established and newly proposed exploration techniques that can readily be applied to gem corundum exploration are outlined below.  Some exploration techniques can be applied at both  129 the Revelstoke and Kimmirut gem corundum occurrences, but others will only be effective at one.  Unless otherwise stated, all techniques mentioned are applicable at both Revelstoke and Kimmirut. The goal of each technique is to identify target zones which may contain corundum.  Once target zones are identified, the presence of gem corundum should be confirmed in person.  6.2.1 Review of Known Geology and Mapping  Prior to mapping, analysis of the regional and local scale structural geology is needed to identify where metamorphic isograds indicating upper amphibolite to granulite facies are located; this will ensure the geological mapping is completed in areas with the right P-T conditions for corundum formation.  An understanding of the regional and local scale structural geology will be of assistance in extending the size of known mineralized areas, especially if the structural data can identify areas of high fluid flow or help predict the morphology of the deposit (folded, elongated, or boudinaged). Fold hinges are commonly found to concentrate fluids and will also contain the thickest units of corundum mineralization. Geological mapping can be used to determine the extent of surface mineralization at both occurrences.  Detailed mapping at a scale of 1:500 should be used to document the location of mineralized pods and/or layers.  These mineralized zones are typically small and can be easily overlooked; only highly detailed mapping can document such mineralization.  Corundum-bearing laminations at the Revelstoke occurrence are very thin (<20 cm thickness) and corundum-bearing calc-silicate pods at the Beluga occurrence are typically only a few metres in diameter. Mapping at the Revelstoke occurrence should continue along strike of the marble in Unit 6A of the Monashee cover sequence (see chapter 3 for a full description of this unit) because the corundum mineralization is lithologically controlled and will likely extend out along strike from the known occurrence.  Corundum-bearing mica-feldspar layers, which represent former pelite layers, will be thickest in fold hinges and thinnest along fold limbs ? these are the highest priority targets for geological mapping and surface prospecting.  Highly tectonized areas containing extensive stretching and folding prior to or during peak metamorphism are important at the Revelstoke occurrence because thinning of former pelite layers in marble enhanced  130 reactions between the pelitic material and the surrounding carbonate.  These structures can also act as fluid pathways, which greatly enhance Si removal, and therefore corundum stability. Mapping at the Kimmirut occurrence should continue within the Lake Harbour Group marble.  The corundum mineralization within the calc-silicate pods is not predictable; in the absence of additional data, mapping must continue along the entire extent of the marble.  6.2.2 Prospecting and Indicator Minerals  At the Revelstoke occurrence, the primary indicator mineral is green muscovite which occurs as aggregates of crystals (Fig. 6.1, 6.2). The fastest way of determining the potential location of corundum is to locate a green muscovite-bearing mica-feldspar layer within the marble of Unit 6A of the Monashee cover sequence and trace its extent along strike. Whenever mica-feldspar layers are discovered they should be mapped in detail.  It is fairly common to find phlogopite throughout the marble, but it is not as common to find the green muscovite aggregates.  Locations of this key mineral should be recorded on the map.   At the Beluga occurrence, one should look for coarse-grained calc-silicate pods with scapolite and violet diopside within the Lake Harbour marble (LHM; Fig. 6.3).  The location of corundum-bearing calc-silicate pods is not predictable within the very large LHM.  Any information about scapolite-bearing zones that can be collected beforehand would be advantageous.  6.2.3 Detailed Sampling Grid Completing a detailed geochemical sampling grid perpendicular to the strike of the marble and host rocks will provide rock-chip samples for geochemical assay.  By following a sampling grid (Fig. 6.4), a representative amount of marble, mica-feldspar layers or calc-silicate pods, and host rocks can be obtained.  Caution must be used when sampling to make sure that potential corundum-bearing layers are not overlooked because of their size, especially at the Revelstoke occurrence.  The best exposure of corundum-bearing layers is on exposed foliation planes that are common in areas of talus.  Collected samples can be analyzed by the whole rock analysis method below in order to define target areas on a map.    131 6.2.4 Whole Rock Analyses Whole rock analyses can be determined in a lab or in the field.  A handheld XRF can be utilized in the field to quickly determine the major element geochemistry of a particular rock sample and discriminate between corundum mineralized and non-mineralized layers within marble at the Revelstoke occurrence.  By plotting the whole rock geochemical data (FeO and SiO2 vs Al2O3) for each sample it should be possible to identify samples with lower SiO2/Al2O3 and FeO/Al2O3 ratios; these are primary target areas for corundum mineralization (Fig. 6.5).  This tool is new and to the author's knowledge has not been used for gem corundum exploration.  This method can readily, cheaply and easily aid in the identification of corundum prospective zones in marble in the field.  6.2.5 Airborne Hyperspectral Imaging Surveys for Identification of Indicator Minerals Hyperspectral surveys can quickly collect imagery and mineral abundance data from a large area by detecting reflected light from the surface of rocks.  Currently, satellite hyperspectral surveys have a resolution of only ~30 m pixels and airborne hyperspectral surveys have a resolution of ~4 m pixels, depending on flight altitude (e.g., Bedini 2009).  For this technique to be applied, the reflectance spectra of the known deposit host-rocks and minerals must first be characterized.  Once this reference has been established, the ability to identify key corundum indicator minerals, such as phlogopite and muscovite at Revelstoke and scapolite at Kimmirut, can be applied on a regional scale using airborne data to identify potential targets.  Ideally, this type of survey would be completed during the early stages of exploration and used to place ground exploration teams, saving both time and money.  Currently, the cost of conducting fine-resolution airborne hyperspectral surveys is quite high, but ground based ?pan and tilt? hyperspectral cameras could be used locally at a lower cost than airborne surveys.  In addition to the cost, the primary drawbacks to this technique is that cloud cover, extreme weathering, and lichens can prevent reliable data from being collected. Because there is good surface exposure at the Revelstoke occurrence, an airborne hyperspectral survey could potentially be used to identify indicator grains of phlogopite and muscovite in the marble (Clark 1999). However, the fine to medium-grain size of the minerals, very thin corundum-bearing mica layers (< 20 cm), and steep topography could make distinction between target and non-target rocks very difficult.  Improvements will be required in the  132 resolution of hyperspectral surveys before they can be easily applied to the Revelstoke occurrence.  Examples of such improvements are the implemention of more accurate detectors, low flying unmanned aircraft systems, and faster and more accurate data processing techniques.  An airborne hyperspectral dataset was collected over an area in southwestern Baffin Island in 2004 (Rogge et al 2009, Harris et al. 2010) with a ground sampling pixel size of ~7 m.  This area is well suited to hyperspectral surveys because the rock exposure is excellent, the grain size of calc-silicate pods is medium to coarse, and the surface is relatively flat.  Different lithological units were delineated from the data and correspond with traditional geological maps.  Calcite, dolomite, and calc-silicate-(diopside)-bearing marbles, quartzites, iron-bearing metasediments, and gossans were successfully mapped (Harris et al. 2010) at this scale, but scapolite was neither sought nor identified in this survey.   Preliminary high resolution laboratory-based hyperspectral imagery of corundum and scapolite-bearing rocks from the Kimmirut occurrence shows that scapolite-bearing pods on the surface associated with sapphire would be an excellent target in the future because scapolite has a distinct reflectance spectrum.  6.2.6 Identification of Chromophore Sources Pure corundum is colourless; therefore, common chromophore elements such as V, Ti, Cr and Fe are required to produce desirable colours.  Locating a Cr-source near rocks with low SiO2/Al2O3 and FeO/Al2O3 values would be helpful when searching for ruby and pink sapphire showings. Rocks with high concentrations of mafic elements are usually intrusive mafic rocks or pelitic layers in marble.  Chromium is essential to producing the red colour in corundum; low Cr produces pink, moderate Cr produces red, and high Cr produces intense red corundum (ruby).  The more intense the colour, the more valuable the gemstone will be.  Iron will suppress the red colour in ruby, so it is important to avoid prospecting in areas with Fe-rich sediments when searching for rubies.  6.2.7 Magnetic Geophysical Survey Mafic rocks commonly occur in association with magnetic minerals. Geophysically determining where the magnetic rocks occur in contact with or near the marble complex could indicate where the chromophore elements are concentrated, thus where economic corundum may  133 be located.  This can be done on the ground or using airborne platforms and is a common exploration technique.  6.2.8 Heavy Mineral Concentrates Heavy-mineral concentrates can be collected from stream sediments in areas of high weathering.  Corundum has a specific gravity of 4, and will concentrate in stream sediments, like black sand and gold do.  A simple panning or jigging system can be used to assess streams for corundum. After corundum is identified in a stream, individual drainage basins can be identified to trace the source of the corundum.  6.2.9 Ultraviolet Light Surveys for Identification of Scapolite Associated with Corundum  Ultraviolet light surveys done on foot during twilight with hand-held UV lamps have been successfully used to identify scapolite-bearing calc-silicate zones at the Beluga sapphire occurrence (Lepage, 2007).  Special filters were used in the lamps to enhance the optimum wavelength needed to easily detect scapolite at the occurrence.  The benefit of this technique is that the hand-held UV lamps have a beam diameter of ~5 meters allowing for rapid coverage of outcrop with little expense.  Unfortunately, the surveys must be done at night or twilight, and human error may account for missed targets if a scapolite-bearing zone is overlooked.  6.2.10 Ground Penetrating Radar (GPR) for 3-D imaging of Target Zones at Depth  Once targets are identified, 3-D imaging of these zones at depth can be completed to assess the shape and size of the layers or pods. Ground penetrating radar surveys have been successfully used to determine the shape and depth of gem corundum-bearing pods within marble at the Beluga occurrence (Andrew Fagan, pers. comm. 2013).  This technique uses radar pulses to image the subsurface.  The effective depth of penetration is dependent on the complexity of geological features at depth, dielectric constants between adjacent rock types, degree of signal attenuation with each horizon, and the transmitting frequency (Francke and Utsi 2009).      134 6.3 Exploration for Revelstoke-type Occurrences in Other Parts of the World Ideal targets are metasedimentary sequences of alternating carbonate and pelite sediments, metamorphosed to upper amphibolite to granulite facies and extensively deformed (folded and stretched) and flushed with fluids.  Mica-feldspar layers in fold hinges and limbs are ideal targets.  These layers may be identified remotely by hyperspectral surveys, or by mapping on foot.  Once a location is identified, follow the procedure outlined above for mapping and sampling at the Revelstoke occurrence by prospecting or using a detailed sampling grid followed by whole rock analysis for the identification of SiO2 and FeO depleted layers.  The presence of Cr-bearing rocks, such as pelites or ultramafics, in the vicinity can also be useful.  In areas of high weathering, heavy-mineral concentrates from corundum-bearing stream sediments may also help in tracing drainage basins back to their source.   6.4 Exploration for Beluga-type Occurrences in Other Parts of the World As with Revelstoke-type occurrences, ideal targets for exploration are well exposed metasedimentary sequences containing calcic carbonate and pelitic sediments, which were metamorphosed from upper amphibolite to granulite facies.  There is greater exposure of potential mineralized rocks in well exposed areas such as those above tree line.  Each exploration strategy should involve the search for scapolite-bearing calc-silicate pods in marble units with odd mineralogy.  The random nature of these pods requires that large-scale exploration such as hyperspectral surveys be completed first to constrain target areas.  As with exploration for Revelstoke-type deposits, heavy-mineral concentrates from corundum-bearing stream sediments found in areas of high weathering may help to trace drainage basins back to the source of corundum.   6.5 Summary Regardless of which type of carbonate-hosted gem corundum deposit is being sought, the search should focus on areas or rocks within the amphibolite to medium pressure granulite metamorphic facies (Simonet et al. 2008).  Although corundum occurs in many rock-types, this study focused on mixed sedimentary packages within calcic marbles.  Classical exploration  135 techniques ? mapping, prospecting, and geochemical sampling  ? can be readily utilized, as can newer more advanced exploration techniques, such as hyperspectral analysis. Important factors to consider for marble-hosted gem corundum exploration are:  (1) the grade of metamorphism in the host-rocks;  (2) availability of Cr and other chromophores from mixing of units;  (3) lithologic control of mineralization (Garnier et al. 2008);  (4) deformation; and (5) the presence of indicator minerals (dependent on deposit type; Table 6.1).    136  Figure 6.1: Corundum-bearing mica-feldspar layers, with secondary scapolite after anorthite exposed on a foliation plane.     Figure 6.2: Schematic drawing of the mineralogical zoning of mica-feldspar layers.  The pink hexagons represent non-zoned corundum and the pink hexagon rimmed with blue represents zoned corundum with a pink core and blue rim.    137  Figure 6.3:  Scapolite- and corundum-bearing rocks under incandescent and ultraviolet light.  Note the yellow fluorescence of scapolite in ultraviolet light.       Figure 6.4:  Schematic of a geochemical sampling grid that could be applied to exploration for corundum deposits. Results are plotted on Fig. 6.5 to facilitate interpretation.    138    Figure 6.5: Whole rock or Niton XRF geochemical diagrams highlighting target zones at the Revelstoke occurrence. The gray shaded areas highlight where values should lie if there was mechanical mixing between the two lithologies without any element loss or gain.  The target area highlights samples that are depleted in SiO2 and FeOTOT.    139 Table 6.1: Factors to consider for exploration ? a comparison between the Revelstoke and Beluga occurrences Deposit Type Indicator Minerals Depositional Environment Lithologic control of mineralization Peak Metamorphic Grade Prograde or Retrograde fm of gem crn Regional deformation Revelstoke Green muscovite + K-feldspar + anorthite, or muscovite + phlogopite 1Sediments deposited on a shallow marine shelf to intertidal platform. Muds and silts with varying amounts of carbonate deposited under saline conditions yes Upper Amphibolite/ Granulite Prograde 650-700 ?C 8.5-9 kbar extensive Baffin scapolite, violet diopside 2Carbonate platform no 2Upper Amphibolite/ Granulite Retrograde 2extensive  1(H?y 1987) 2(St-Onge)  140Chapter  7: Conclusions and Future Work  7.1 Conclusions - Revelstoke  This study has contributed to both the understanding of the formation of gem corundum in carbonate rocks during prograde metamorphism and metasomatism of pelitic layers within marble as well as the petrology of metasediments in the Frenchman Cap dome.  Whole rock geochemistry data indicate that the corundum-bearing silicate (mica-feldspar) layers formed by the mechanical mixing of carbonate with the protolith of the host gneiss.  The silicate layers and the gneiss contain elevated contents of Cr and V due to the presence of a volcanoclastic component in their protolith.  The bulk composition of the silicate layers was depleted in Si and Fe during prograde metamorphism.  Silica and Fe depletion was also enhanced by extensive fluid-rock interaction, which is evident in the homogenization of ?18O and ?13C values in carbonates and silicates in the marble and silicate layers as well as low ?18O in the corundum. Corundum occurs in thin, folded and stretched layers with the predominant assemblage of green muscovite + Ba-bearing K-feldspar + anorthite (An0.85-1) ? phlogopite ? Na-poor scapolite.  Gem corundum was produced in the mica-feldspar layers by mica dehydration at the peak of metamorphism (~650-700 ?C at 8.5-9 kbar) following a clockwise P-T path.  Fluid inclusions in the corundum are pure CO2, indicating the presence of a CO2-rich fluid during corundum formation. The micas associated with corundum in the mica-feldspar layers have elevated Cr, V, and Ti, indicating that they were the source of these elements in the corundum crystals.  The mica-feldspar layers were an ideal environment for corundum formation because of the depletion of Si and Fe, and enrichment of Cr, V and Ti.    Existing models of gem corundum genesis (Giuliani et al 2007) cannot explain the formation of sapphire at the Revelstoke occurrence.  The Asian ruby deposits described by Garnier et al. (2008) share some common features with the Revelstoke occurrence, but there are also numerous differences that exist between the two localities, the most important of which is the prograde formation of corundum by muscovite dehydration at high pressure, compared to the retrograde alteration of spinel at low pressure. 140 141 The unique features of the Revelstoke occurrence that make it conducive to corundum formation are the presence of Si- and Fe-depleted Cr-mica-feldspar layers within marble that were subjected to granulite facies metamorphism.  Exploration strategies that have the greatest potential to be effective for expanding the extent of the Revelstoke occurrence are:  1) field based or lab based major element comparison between host rocks and micaceous laminations within marble.  2) detailed mapping and prospecting for micaceous laminations that contain green muscovite pods and phlogopite with feldspars.   7.2 Conclusions - Kimmirut Sapphire Occurrence  Two very similar coarse-grained calc-silicate rocks forming part of the Kimmirut Sapphire Occurrence within the Lake Harbour Marble (the less altered Bowhead nepheline-bearing corundum absent calc-silicate and the more altered Beluga corundum-bearing nepheline absent calc-silicate) were compared in order to identify possible sapphire producing reaction(s) and identify potential protoliths.  The prograde assemblage of diopside + nepheline in these calc-silicate rocks likely formed at a P-T of ?810 ?C and 8.3 kbar and was likely altered by hydrous-NaCl-bearing fluids at a P-T of ? 710 ?C and 6 kbar, forming a phlogopite-plagioclase symplectite rimmed by scapolite. Subsequently, either additional hydrous-fluids altered the assemblage of nepheline + scapolite (or anorthite) to form albite + muscovite + corundum, or Na-bearing hydrous fluids altered anorthite to form corundum during post D2 thermal/fluid activity.    The Beluga and Bowhead showings are geochemically and texturally unique compared to other lithologies within the Lake Harbour Group.  Comparison of the prograde mineral assemblages, whole rock geochemistry, field relations, and one oxygen isotope measurement of corundum suggest that the most likely protolith is the metamorphism and metasomatism of evaporite-black shale layers within marble that produced blue and colourless sapphire during late fluid infiltration around 1782.5 Ma.  Existing models of gem corundum genesis (Giuliani et al 2007) cannot explain the formation of sapphire at the Bowhead showing. 141 142 The unique features of the Beluga showing that make it conducive to corundum formation are the presence of Si- and Fe-depleted calc-silicate layers within marble that were subjected to late fluid infiltration which catalyzed corundum producing reactions.  Exploration strategies that have the greatest potential to be effective for expanding the extent of the Kimmirut Sapphire Occurrence are:  1) Identification of scapolite in coarse-grained, violet diopside-bearing calc-silicates by handheld UV lights or airborne hyperspectral surveys.  2) Identification of V-rich, coarse-grained, violet diopside-bearing calc-silicates  3) Use of ground penetration radar to determined the size and depth of sapphire-bearing calc-silicate pods.   7.3 Conclusions from Comparison of the Revelstoke Occurrence with the Beluga Showing  There are more differences than similarities between the carbonate-hosted Revelstoke (pink to red sapphire hosted in mica-feldspar layers) and Kimmirut (blue to colourless sapphire hosted in calc-silicate pods) sapphire occurrences.  Both localities contain barrel shaped-corundum crystals with tapered ends (Chapter 3, LeCheminant et al. 2004) hosted in Si- and Fe-depleted siliciclastic- and evaporite-bearing lithologies which were subjected to poly-stage metamorphism (peak metamorphism up to granulite facies), intense deformation, and extensive fluid infiltration (Chapters 3 and 4).   The most striking differences between localities are: geographic location, age of deposition and metamorphism, mineral assemblages and mineral compositions, mineral textures, occurrence morphology, corundum forming reactions, prograde vs retrograde corundum crystallization, composition, colour and quality of gem corundum, whole rock composition, protolith composition, and the ?18O of corundum.  All of these differences indicate that the two localities had different protolith compositions and conditions of formation.  Additional evidence to support this is that, even though the whole rock composition of the Beluga calc-silicate rocks contain elevated Cr and V similar to the host rocks at the Revelstoke occurrence, the corundum at the Beluga showing contains almost no Cr and V, indicating that either the Cr and V were not mobile during corundum 142 143crystallization, or Cr and V were trapped in minerals that were not involved in the corundum producing reactions.  The whole rock composition of corundum-bearing lithologies therefore may not be a good indication of the variety of corundum that can be found in the deposit.     7.4  Conclusions from Comparison of the Revelstoke Occurrence with the KSO and other Gem Corundum Deposits Around the World  The Revelstoke and Kimmirut gem corundum deposits in marble are unique compared to other world localities and as a result, existing models of formation are unable to explain these deposits.  Comparison of the two study localities with other deposits indicates that the best quality rubies and sapphires from marble-hosted deposits are retrograde.  The very low ?18O carbonate and corundum values from the Revelstoke occurrence suggest that this method is not a reliable tool for identifying corundum from marble hosted deposits.  More complete studies of ruby and sapphire occurrences in marble are needed in order to be able to accurately compare localities and define applicable exploration strategies.   7.5 Future Work  7.5.1 Revelstoke  Whole rock geochemistry (using the same element package as previous analyses) needs to be determined for pristine, non-carbonate contaminated host gneiss at varying distances from the corundum-bearing marble in order to determine a more realistic protolith composition.    Oxygen isotopes need to be determined for pristine, non-carbonate contaminated host gneiss at varying distances from the corundum-bearing marble in order to determine a more realistic protolith composition, and identify the extent of fluid infiltration.  The oxygen isotopes of the marker marble in Unit 5 should also be collected to help constrain the extent fluid infiltration and provide a 'normal' value for marble in the area. 143 144 Additional P-T modeling should be completed using whole rock data for pristine, non-carbonate contaminated host gneiss in order to further constrain peak metamorphic conditions at the Frenchman Cap dome and corundum formation.   7.5.2 Kimmirut Sapphire Occurrence  Additional petrographic analysis of different rock types and mineralogic zones within the KSO is needed.  Within the corundum-bearing zones, the following mineral phases will need to be identified: perthite, potassium feldspar, nepheline, and/or anorthite.  Some reports have identified these phases in other corundum-bearing zones within the LHM, but they have not been observed by the author.  If they are present in the Beluga rocks and are associated with corundum in some way, this information can be used to help constrain the corundum-producing reaction(s). It is also important to locate and identify any minor oxides, sulfides, titanite, zircon, and/or monazite phases in order to determine where Ti and REEs are hosted.  Furthermore, mineral phases and textures within the host marble and other calc-silicate lenses, including other 'Beluga-type' calc-silicates, Bowhead-type calc-silicates, and regular calc-silicate layers within the LHM, will need to be determined in order to identify which mineralogy/geochemistry is considered ?normal? for the LHG calc-silicates, identify other areas of potential sapphire mineralization, constrain possible protoliths, and identify the type of fluid infiltration.  Additional geochemical analysis will also need to be completed on some existing and newly identified mineral phases as well as other rock types within the LHM.  The V and Cr content of diopside, phlogopite, titanite, and rutile will need to be identified by EMPA in order to determine which phases contain V (V was not analyzed in previous experiments).  Any newly identified phases will also need to be analyzed by EMPA in order to assist with reaction stoichiometries and P-T modeling.  The whole rock geochemistry of the following rock types (using the same element program used in previous analyses for the Belgua showing) will need to be determined on the following rocks in order to help constrain the model of formation for the KSO: the Bowhead showing, the host marble of the Beluga calc-silicate units, any other calc-silicate layers/lenses within the LHM whether they are Beluga-type or not, and any igneous rocks near to the KSO. 144 145 Only one ?18O analysis of corundum from the Beluga showing was determined.  Additional ?18O values of carbonates, silicates, and corundum within the rock types mentioned previously are needed to compile a complete dataset of values from different mineral phases and rock types in order to constrain potential protoliths and identify fluid composition and potential pathways.  No fluid inclusions were identified in corundum from the Beluga showing.  It will be necessary to identify if there are any fluid inclusions in corundum from other showings, in order to determine fluid composition and P-T conditions during fluid entrapment.  It will also be necessary to identify if fluid inclusions are present in diopside, scapolite, and/or nepheline in order to help constrain the prograde and retrograde fluid compositions and help identify potential protoliths.   P-T modeling using a program such as Theriak-Domino, Perplex, or Thermocalc will need to be completed in order to identify which proposed corundum forming reactions are thermodynamically possible and to constrain the PT conditions of corundum formation.  Modeling of T-XCO2 and P-XCO2 reactions will be useful to help constrain the fluid composition during corundum crystallization.     145 146References  Algeo, T.J. and Maynard, J.B. (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289?318 Anderson, G.M. and Cermignani, C. (1991) Mineralogical and thermodynamic constraints on the metasomatic origin of the York River nepheline gneisses, Bancroft, Ontario. Canadian Mineralogist, 29: 965?980 Appelyard , E.C. and Stott, G. M. (1975) Grenville gneisses in the Madawaska highlands, eastern Ontario. Geological Association of Canada, Mineralogical Association of Canada, Geological Society of America Field Trips Guidebook, Part A, 26-62 Appleyard, E.C. and Williams, S.E. (1981) Metasomatic effects in the Faraday metagabbro, Bancroft, Ontario, Canada. Tschermaks mineralogische und petrographische Mitteilungen, 28: 81?97 Ba??k, P., M?res, S., Uher, P. (2011) Vanandium-bearing tourmaline in metacherts from Chvojnica, Slovak Republic: crystal chemistry and multistage evolution.  Canadian Mineralogist, 49: 195-206 Barker, S.L.L., Dipple, G.M., Dong, F., Baer, D.S. (2011) Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals. Analytical Chemistry, 83: 2220-2226 Barnes, C.G., Prestvik, T., Sundvoll, B., and Surratt, D. (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortav?r igneous complex, north-central Norway. Lithos, 80: 179?199 Baxter, E.F. (2010) Diffusion of Noble Gases in Minerals. Reviews in Mineralogy and Geochemistry, 72: 509-557 Bedini, E. (2009): Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sens. Environ.  113, 1208?1219. Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K., and Raith, M. (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet thermometer.  Contributions to Mineralogy and Petrology, 111: 87-93 146 147Bol, L.C.G.M., Bos, A., Sauter, C.C., and Jansen, J.B.H. (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway.  American Mineralogist, 74: 439-447 Bowman, J.R. (1998) Stable-isotope systematics of skarns.   Mineralogical Association of Canada Short Course: 26,99-146 Brady, J.B. (1977) Metasomatic zones in metamorphic rocks. Geochimica et Cosmochimica Acta, 41: 113-125 Breit, G.N. and Wanty, R.B. (1991) Vanadium accumulation in carbonaceous rocks:  A review of geochemical controls during deposition and diagenesis.  Chemical Geology, 91: 83-97 Brown, P. (1989) FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data.  American Mineralogist, v. 74, p. 1390-1393. Brown, R.L. (1980) Frenchman Cap Dome, Shuswap Complex, British Columbia, in Current Research, Part A, Geological Survey of Canada, Paper 80-1A, 47-51  Brown, R.L., Journeay, J.M., Lane, L.S., Murphy, D.C., and Rees, C.J. (1986) Obduction, backfolding and piggyback thrusting in the metamorphic hinterland of the southeastern Canadian Cordillera.  Journal of Structural Geology, 8: 225-268  Brumsack, H.-J. (2006) The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 344?361 Butler, J.P. (2007) Petrogenesis of nepheline- and scapolite-bearing metacarbonates from southwestern Baffin Island, Nunavut, Canada. B.Sc. thesis, Dalhousie University, Halifax, Nova Scotia. Cade, A.M., Dipple, G.M., and Groat, L.A. (2005) Geochemical study of the Kimmirut sapphire occurrence, Baffin Island, Canada. Geochimica et Cosmochimica Acta, 69: pp.279 Canet, C., Alfonso, P., Melgarejo, J-C., and Jorge, S. (2003) V-rich minerals in contact-metamorphosed silurian SEDEX deposits in the Poblet area, southwestern Catalonia, Spain.  Canadian Mineralogist, 41: 561-579 Carlson, H.D. (1957) Origin of the corundum deposits of Renfrew County, Ontario, Canada. Bulletin of the Geological Society of America, 68: 1605-1636 147 148Cemp?rek, J., Houzar, S., and Nov?k, M. (2008) Complexly zoned niobian titanite from hedenbergite skarn at P?sek, Czech Republic, constrained by substitutions Al(Nb, Ta)Ti?2, Al(F, OH)(TiO)?1 and SnTi?1. Mineralogical Magazine, 76, 1293-1305. Clark, R. N. (1999): Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, 3-58. Crowley, J.L. (1999) U-Pb geochronologic constraints on Paleoproterozoic tectonism in the Monashee complex, Canadian Cordillera:  Elucidating an overprint geologic history. GSA Bulletin, 111: 560-577  Crowley, J.L. and Parrish, R.R. (1999) U-Pb isotopic constraints on diachronous metamorphism in the northern Monashee complex, southern Canadian Cordillera.  Journal of Metamorphic Petrology, 17: 483-502  Crowley, J.L. Brown, R.L., and Parrish, R.R. (2001) Diachronous deformation and a strain gradient beneath the Selkirk allochthon, northern Monashee complex, southeaster Canadian Cordillera.  Journal of Structural Geology, 23: 1103-1121 Davison, W .L. (1959) Geology, Lake Harbour, Baffin Island, District of Franklin, Northwest Territories. Geological Survey of Canada, Map 29- 1958, scale 1:63 360 Davison, W .L. (2005) Assessment Report for True North Gems Inc. Davison, W .L. (2006) Assessment Report for True North Gems Inc. De Capitani, C., and Petrakakis, K. (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software.  American Mineralogist, 95, 1006?1016. Deer, W.A., Howie, R.A., and Zussman, J. (2001) Framework silicates: Feldspars. Volume 4A Second Edition.  The Geological Society of London, p.972 Dole?alov?, H., Houzar, S., Losos, Z, and ?koda, R. (2006) Kinoshitalite with a high magnesium content in sulphide-rich marbles from the Ro?n? uranium deposit, Western Moravia, Czech Republic.  Neues Jahrbuch f?r Mineralogie Abhandlungen. 182: 165-171 Dufour, M.S., Kol?tsov, A.B., Zolotarev, A.A., Kuznetsov, A.B. (2007) Corundum-bearing metasomatic rocks in the central Pamirs.  Petrology, 15: 151-167 Durstling, H. (2005) New Discovery: Rubies in Nova Scotia.  Canadian Gemmologist, 26: 93-94 148 149Ellis, D.E. (1978)  Stability and phase equilibria of chloride and carbonate bearing scapolites at 750?C and 4000 bar.  Geochimica et Cosmochimica Acta, 42: 1271-1281 Fagan. A.F. 2010 Assessment Report for True North Gems Inc. Fagan, A.F and Miller, E. (2012) Assessment Report describing prospecting, mapping, geochemical and water sampling at the beluga Sapphire Project, Nunavut; Confidential Report for True North Gems Inc. Feenstra, A. and Wunder, B (2002) Dehydration of diasporite to corundite in nature and experiment. Geology, 30: 119-122 Francke, J. and Utsi, V. (2009) Advances in long-range GPR systems and their applications to mineral exploration, geotechnical and static correction problems. Mining Geoscience, 27: 85-93 Fritsch, E. and Rossman, G.R. (1988) An update on color in gems. Part II. Colors caused by charge transfers and color centers. Gems and Gemology, 24: 3-15 Garnier, V., Giuliani, G., Ohnenstetter, D., Fallick, A.E., Dubessy, J., Banks, D., Vinh, H.Q., Lhomme, T., Maluski, H., P?cher, A., Bakhsh, KA, Van Long, P., Trong Trinh, P.,Schwarz, D. (2008) Marble-hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geology Reviews, 34: 169-191 Gertzbein, P.J. (2004) The Coloured Gem Potential of Baffin Island and Nunavut. Canadian Gemmologist, 25: 10-17 Gertzbein, P.J. (2005) Geology surrounding the Beluga sapphire occurrence, Kimmirut, Nunavut: A preliminary examination. Canadian Gemmologist, 26: 50?57 Gervais, F. and Brown, R.L. (2011) Testing modes of exhumation in collisional orogens: synconvergent channel flow in the southeastern Canadian Cordillera.  Lithosphere, 3: 55-75 Gervais, F., Brown, R.L., Crowley, J.L. (2010) Tectonic implications for a Cordilleran orogenic base in the Frenchman Cap dome, southeastern Canadian Cordillera.  Journal of Structural Geology, 32: 941-959 Ghent, E.D., and O'Neil, J.R. (1985) Late Precambrian marbles of unusual carbon-isotope composition, southeastern British Columbia. Canadian Journal of Earth Sciences, 22: 324-329 149 150Gittins, J. (1961) Nephelinization in the Haliburton-Bancroft, Ontario, Canada. Journal of Geology, 69: 291-308 Giuliani, G., Dubessy, J., Banks, D., Hoang Quang, V., Lhomme, T., Pironon, J., Garnier, V., Phan Trong, T., Pham Van, L. Ohnenstetter, D., Schwarz, D. (2003) CO2-H2S-COS-S8 AlO-(OH)-bearing fluid inclusions in ruby from marble-hosted deposits in Luc Yen area, North Vietnam.  Chemical Geology, 194: 167-185 Giuliani, G., Fallick, A.E., Garnier, V., France-Lanord, C., Ohnenstetter, D., and Schwarz, D. (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology, 33: 249?252 Giuliani, G., Ohnenstetter, D., Garnier, V., Fallick, A.E., Rakotondrazafy, M., and Schwarz, D. (2007) Chapter 2: The geology and genesis of gem corundum deposits. Mineralogical Association of Canada Short Course 37, 23?78 Grapes, R. and Palmer, K. (1996) (Ruby-sapphire)-chromian mica-tourmaline rocks from Westland, New Zealand.  Journal of Petrology, 37: 293-315 Groat, L.A. and Laurs, B.M. (2009) Gem formation, production, and exploration:  why gem deposits are rare and what is being done to find them. Elements, 5: 153-158 Gummer, W.K. and Burr, S.V. (1946) Nephelinized paragneisses in the Bancroft area, Ontario. Journal of Geology, 54: 137-168 Hansen, M. (2008) A comparison of sapphire-bearing and non-sapphire bearing lenses from the Lake Harbour Group, southeastern Baffin Island. B.Sc. thesis, Carleton University Harlov, D., Tropper, P., Seifert, W., Nijland, T., and F?rster, H-J. (2006) Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2.  Lithos, 898: 72-84 Harlow, G.E. and Pamukcu, A., Naung, U., Thu, U.K. (2006) Mineral Assemblages and the Origin of Ruby in the Mogok Stone Tract, Myanmar. Gems and Gemology, 42: 147 Harris, J.R., McGregor, R., Budkewitsch, P. (2010) Geological analysis of hyperspectral data over southwest Baffin Island: methods for producing spectral maps that relate to variations in surface lithologies. Canadian Journal of Remote Sensing, 36: 412-435 Hellingwer, R.H. (1985) A contact-metamorphic occurrence of the assemblage nepheline-scapolite-diopside in a metabasic flow breccia from Bergslagen, Sweden. Mineralogical Magazine, 49: 606-610 150 151Henry, D.J., Guidotti, C.V., and Thomson, J.A. (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90: 316?328 Herd, C.D., Peterson, R.C., and Rossman, G.R. (2000) Violet-colored diopside from southern Baffin Island, Nunavut, Canada. Canadian Mineralogist, 38: 1193?1199 Hinchey, A.M., Carr, S.D., McNeill, P.D., Rayner, N. (2006) Paleocene-Eocene high-grade metamorphism, anatexis, and deformation in the Thor-Odin dome, Monashee complex, southeastern British Columbia. Canadian Journal of Earth Science, 43: 1341-1365 Hoefs, J. (2004) Stable isotope geochemistry. 5th edition Springer p. 244 Hogarth, D.D., (1971) Lapis Lazuli near Lake Harbour, Southern Baffin Island, Canada. Canadian Journal of Earth Sciences, 8: 1210?1217 Hogarth, D.D., and Griffin, W.L. (1978) Lapis lazuli from Baffin Island ? a Precambrian meta-evaporite. Lithos, 11: 37?60 Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set of petrological interest. Journal of Metamorphic Geology 16, 309?343 Holk, G.J. and Taylor, H.P. (2000) Water as a Petrologic Catalyst Driving 18O/16O Homogenization and Anatexis of the Middle Crust in the Metamorphic Core Complexes of British Columbia.  International Geology Review, 42: 97-130 Houzar, S., and Cemp?rek, J. (2011): Akcesorick? schreyerit ve vanadem bohat?m grafitick?m kvarcitu z B?tov?nek (moldanubikum, z?padn? Morava). ? Acta Mus. Moraviae, Sci. geol., 96, 2, 35?43. (in Czech) H?y, T. (1987) Geology of the Cottonbelt lead-zinc-magnetite layer, carbonatites and alkalic rocks in the Mount Grace area, Frenchman Cap Dome, southeastern British Columbia. Bulletin - Ministry of Energy, Mines and Petroleum Resources, vol.80, 99 pp.  H?y, T. (2001) Sedex and Broken  Hill-type deposits, northern Monashee mountains, southern British Columbia. British Columbia Geological Survey, Geological Fieldwork 2000, Paper 2001-1: 85-114 Hudon, P., Friedman, R.M., Gauthier, G., and Martignole, J. (2006) Age of the Cabonga nepheline syenite, Grenville Province, western Quebec. Canadian Journal of Earth Sciences, 43: 1237?1249 151 152Jackson, G.D. and Taylor, F.C. (1972) Correlation of major Aphebian rock units in the northeastern Canadian Shield. Canadian Journal of Earth Sciences, 9: 1650 - 1669 Joesten, R. (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochimica et Cosmochimica Acta, 41: 649-670 Johnson, B.J. (2006) Extensional shear zones, granitic melts, and linkage of overstepping normal faults bounding the Shuswap metamorphic core complex, British Columbia.  Geological Society of America Bulletin, 118: 366-382  Journeay, J.M. (1986) Stratigraphy, internal strain and thermo-tectonic evolution of northern Frenchman Cap Dome; an exhumed duplex structure, Omineca Hinterland, S. E. Canadian Cordillera. Ph.D. thesis, Queen's University, Kingston, Ontario Key, R.M. and Ochieng, J.O. (1991).  Ruby and garnet gemstone deposits in southeast Kenya:  their genesis and recommendations for exploration.  In:  African Mining 91, Harare, June 10-12, 1991, Elsevier Science Publishers, Barking, Essex, p. 121-127. Kievlenko, E.Y. (2003) Geology of Gems. Ocean Pictures Ltd, Littleton, CO, USA  Kissin, A.J. (1994) Ruby and sapphire from the southern Ural Mountains, Russia.  Gems and Gemology, 30: 243-252 Krogh, E.J. (1988) The garnet?clinopyroxene Fe-Mg geothermometer ? a reinterpretation of existing experimental data.  Contributions to Mineralogy and Petrology, 99, 44?48. Kullerud, K. and Erambert, M. (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: Implications for fluid compositional evolution during fluid-mineral interaction in the deep crust.  Geochimica et Cosmochimica Acta, 63: 3829-3844 Lane, L.S. (1984) Brittle deformation in the Columbia River fault zone near Revelstoke, southeastern British Columbia.  Canadian Journal of Earth Sciences, 21: 584-598 LeCheminant, A.N., Groat, L.A., Dipple, G.M., Mortensen, J.K., Gertzbein, P.J., Rohtert, W., and Quinn, E.P. (2004)  Sapphire from Baffin Island, Canada.  Gems and Gemology, 40: 344-345 LeCheminant, A.N., Groat, L.A., Mortensen, J.K., Gertzbein, P., Rohtert, W. (2005) Sapphires from Kimmirut, Baffin Island, Nunavut, Canada.  Geochimica et Cosmochimica Acta, 69: A280  152 153Lee, C.H. and Lee, H.K. (2003) Vanadium- and barium-bearing green mica within coaly metapelite from the Ogcheon Supergroup, Republic of Korea.  Journal of Asian Earth Sciences, 21: 343-351 Lepage, L. (2007) Exploration advances with ultraviolet LED technology - Beluga sapphire, Nunavut. abstract, Geological Association of Canada-Mineralogical Association Canada Annual Meeting 2007. Lev, S.M., McLennan, S.M., and Hanson, G.N. (1999) Mineralogic controls on REE mobility during black-shale diagenesis. Journal of Sedimentary Research, 69: 1071-1082 Limtrakun, P., Zaw, K., Ryan, C.G., Mernagh, T.P. (2001) Formation of the Denchai gem sapphires, northern Thailand:  evidence from mineral chemistry and fluid/melt inclusion characteristics.  Mineralogical Magazine, 65: 725-735 Ludwig, K.R. (2003) Isoplot 3.09: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4 Markl, G. and Piazolo, S. (1998) Halogen-bearing minerals in syenites and high-grade marbles of Dronning Maud Land, Antarctica: monitors of fluid compositional changes during late-magmatic fluid-rock interaction processes.  Contributions to Mineralogy and Petrology, 132: 246-268 Markl, G. and Piazolo, S. (1999) Stability of high-Al titanite from low-pressure calcsilicates in light of fluid and host-rock composition. American Mineralogist, 84, 37-47. Meinert L.D. (1992): Skarns and skarn deposits.  Geoscience Canada 19, 145-162. Miller, R. (1985) Age and Petrological Relationships of Some lgneous-Textured and Gneissic Alkaline Rocks in the Haliburton - Bancroft Area. Ph.D. thesis, Univ. Toronto, Toronto, Ontario Moine, B., Sauvan,P., Jarousse, J. (1981) Geochemistry of evaporite-bearing series: a tentative guide for the identification of metaevaporites.  Contributions to Mineralogy and Petrology,76: 401-412 Mora, C.I. and Valley, J.W. (1989) Halogen-rich scapolite and biotite: implication for metamorphic fluid rock interaction.  American Mineralogist, 74: 721-737 Moyd, L., (1949) Petrology of the nepheline and corundum rocks of southeastern Ontario. American Mineralogist, 34: 736?751 153 154Muhlmeister, S., Fritsch, E., Devouard, B., Laurs, B.M. (1998)  Separating natural and synthetic rubies on the basis of trace - element chemistry.  Gems & Gemology, 34: 80-101  Norlander, B.H., Whitney, D.L., Teyssier, C., Vanderhaeghe, O. (2002) Partial melting and decompression of the Thor-Odin dome, Shuswap metamorphic complex, Canadian Cordillera.  Lithos, 61: 103-125 Okrush, M., Bunch, T.E., Bank, H. (1976) Paragenesis and petrogenesis of a corundum-bearing marble at Hunza (Kashmir). Mineralium Deposita (Berlin), 11: 278-297 Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the Hemlo area, ON. Canadian Mineralogist, 29: 481-498 Pan, Y, Fleet, M.E., and Ray, G.E. (1994) Scapolite in two Canadian gold deposits: Nickel Plate, British Columbia and Hemlo, Ontario. Canadian Mineralogist, 32: 825-837 Passchier, C.C.W., and Trouw, R.A.R.A.J. (2005) Microtectonics. Springer-Verlag Berlin Heidelberg. Pouchou, J.L. and Pichoir, F. (1985) PAP ?(?Z) procedure for improved quantitative microanalysis. Microbeam Analysis, 1985, 104?106 Piazolo, S. and Markl, G. (1999) Humite- and scapolite-bearing assemblages in marbles and calcsilicates of Dronning Maud Land, Antarctica: new data for Gondwana reconstructions. Journal of Metamorphic Petrology, 17: 91-107 Rakotondrazafy, A.F.M., Giuliani, G., Ohnenstetter, D, Fallick, A.E., Rakotosamizanany, S., Andriamamonjy, A., Ralantoarison, T., Razanatseheno, M., Offant, Y., Garnier, V., Maluski, H., Dunaigre, C., Schwarz, D. and Ratrimo, V. (2008) Gem corundum deposits of Madagascar: A Review. Ore Geology Reviews: 34: 134-154 Read, P.B. and Brown, R.L. (1981) Columbia River Fault Zone: Southeastern Margin of the Shuswap and Monashee Complexes, Southeastern British Columbia. Canadian Journal of Earth Sciences, 18: 1127-1145 Rebbert, C.R. and Rice, J.M. (1997)  Scapolite-plagioclase exchange:  Cl-CO3 scapolite solution chemistry and implications for peristerite plagioclase.  Geochimica et Cosmochimica Acta, 61: 555-567 154 155Renne, P.R., C.Swisher, C.C., III, Deino, A.L., Karner, D.B., Owens, T. and DePaolo, D.J. (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1-2): 117-152. Rogge, D.M., Rivard, B., Harris, J., and Zhang, J. 2009, Application of hyperspectral data for remote predictive mapping, Baffin Island, Canada, In Remote Sensing and Spectral Geology, Eds. R. Bedell, A.P. Crosta, and E. Grunsky, Reviews In Economic Geology, Vol. 16, pp. 209-222. Rohtert, (2005) Assessment Report for True North Gems Inc. Rohtert and Pemberton (2004) Assessment Report for True North Gems Inc. Rossovskii, L.N., Konovalenko, S.I., and Ananjev, S.A. (1982) Conditions of ruby formation in marbles. Geologiya Rudnyh Mestorozhdeniy 24: 57-66 (in Russian) Rubatto D., M?ntener O., Barnhoorn A., Gregory C. (2008): Dissolution-reprecipitation of zircon at low-temperature, high-pressure conditions (Lanzo Massif, Italy). American Mineralogist, 93: 1519-1529. Sanborn, N.M. (1996) Constraints on the timing and conditions of Cordilleran tectonism in Frenchman Cap dome, Monashee complex, southeast British Columbia, from 40Ar/39Ar geochronology. Unpublished BSc Thesis, Queens University, Kingston, Ontario, Canada Scott, D.J., and Gauthier, G. (1996) Comparison of TIMS (U-Pb) and laser ablation microprobe ICP-MS (Pb) techniques for age determination of detrital zircons from Paleoproterozoic metasedimentary rocks from northeastern Laurentia, Canada, with tectonic implications. Chemical Geology, 131: 127?142 Scott, D.J., and Godin, L. (1995) Preliminary geological investigation of the Lake Harbour Group and surrounding gneissic rocks near Lake Harbour and Markham Bay, southern Baffin Island, NWT. Geological Survey of Canada, Paper 1995-lC, 67-76 Scott, D.J. (1997) Geology, U-Pb, and Pb-Pb geochronology of the Lake Harbour area, southern Baffin Island: Implications for the Paleoproterozoic tectonic evolution of northeastern Laurentia. Canadian Journal of Earth Sciences, 34: 140?155 Scott, D.J., Stern, R.A., St-Onge, M.R., and McMullen, S.M. (2002) U?Pb geochronology of detrital zircons in metasedimentary rocks from southern Baffin Island: implications for 155 156the Paleoproterozoic tectonic evolution of Northeastern Laurentia. Canadian Journal of Earth Sciences, 39: 611?623 Scott, D. J., and Wodicka, N. (1998) A second report on the U-Pb geochronology of southern Baffin Island. Geological Survey of Canada, Paper 1998-F: 47-57 Seward, T.M. (1974) Determination of the first ionization constant of silicic acid from quartz solubility in borate buffer solutions to 350?C. Geochimica et Cosmochimica Acta, 38: 1651-1664 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32: 751-767 Silva, K.K.M. and Siriwardena, C.H.E.R. (1988) Geology and the origin of corundum-bearing skarn at Bakamuna, Sri Lanka. Mineralium Deposita, 23: 186-190 Simonet, C., Fritsch, E., and Lasnier, B. (2008) A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, 34: 127-133 Simonet, C. and Okundi, S. (2003).  Prospecting methods for coloured gemstone deposits in Kenya.  African Journal of Science and Technology 4, 44-55. Shor, R. and Weldon, R. (2009) Ruby and Sapphire Production and Distribution: A Quarter Century of Change. Gems and Gemology, 45: 236-259 Spear, F.S. (1995) Metamorphic phase equilibria and pressure-temperature- time paths. Mineralogical Society of America, p.799 Spear, F.S. and Cheney, J.T. (1989) A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-K2O-H2O. Contributions to Mineralogy and Petrology, 101: 149-164 Spiridonov, E.M. (1998) Gemstone deposits of the former Soviet Union. Journal of Gemmology, 26: 111-124 Snetsinger, K.G. (1966) Barium-vanadium muscovite and vanadium tourmaline from Mariposa County, California. American Mineralogist, 51: 1623-1639 St-Onge, M.R., Scott, D.J., Wodicka, N., and Lucas, S.B. (1998) Geology of the McKellar Bay-Wight Inlet-Frobisher bay area, southern Baffin Island, Northwest Territories, Geological Survey of Canada, Paper 1998-C: 43-53 St-Onge, M. R., Lucas, S. B., Scott, D. J. and Wodicka, N. (1999) Upper and lower plate juxtaposition, deformation and metamorphism during crustal convergence, Trans-Hudson Orogen (Quebec-Baffin segment), Canada. Precambrian Research, 93: 27-49 156 157St-Onge, M.R., Hanmer, S., and Scott, D.J. (1996): Geology of the Meta Incognita Peninsula, south Baffin Island, Northwest Territories: tectonostratigraphic units and regional correlations. Geological Survey of Canada, Paper 1996-C, 63-72. St-Onge, M. R.,Wodicka, N. & Lucas, S. B. (2000). Granulite- and amphibolite-facies metamorphism in a convergent-plate margin setting: synthesis of the Quebec-Baffin segment of theTrans-Hudson Orogen. Canadian Mineralogist 38, 379-398. St-Onge, M.R., Wodicka, N., and Ijewliw, O. (2007) Polymetamorphic Evolution of the Trans-Hudson Orogen, Baffin Island, Canada: Integration of Petrological, Structural and Geochronological Data. Journal of Petrology, 48: 271?302 Sun, S.-s. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313-345 Tait, K.T., Hawthorne, F.C., and Ventura, G.D. (2001) Al?Mg disorder in a gem-quality pargasite from Baffin Island, Nunavut, Canada. Canadian Mineralogist, 39: 1725?1732 Takayuki, S., Sasaki, M., Fujimoto, K., Takeno, N., Tsukamoto, H., Sanada, K., and Maeda, S. (2001) Corundum and zincian spinel from the Kakkonda geothermal system, Iwate Prefecture, northeastern Japan. Journal of Mineralogical and Petrological Sciences, 96: 137-147  Terekhov, E.N., Kruglov, V.A., and Levitski, V.I. (1999) Rare earth elements in corundum-bearing metasomatic and related rocks of the Eastern Pamirs. Geochimica International, 37: 202-212 Teyssier, C., Ferr?, E., Whitney, D.L., Norlander, B., Vanderhaeghe, O., and Parkinson, D. (2005) Flow of partially molten crust and origin of detachments during collapse of the Cordilleran orogen. In High-strain zones: structure and physical properties. Edited by D. Bruhn and L. Burlini.  Geological Society Special Publication (London), No. 245, pp. 39-64  Th?riault, R., St-Onge, M., and Scott, D. (2001) Nd isotopic and geochemical signature of the Paleoproterozoic Trans-Hudson Orogen, southern Baffin Island, Canada: implications for the evolution of eastern Laurentia. Precambrian Research, 108: 113?138 157 158Treloar, P.J. (1987) The Cr-minerals of Outokumpu - their chemistry and significance.  Journal of Petrology, 28: 867-886 Tropper, P., Manning, C.E., Essene, E.J. (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties.  Journal of Petrology, 43: 1787-1814 True North Gems (2003) True North Gems acquires Baffin Island sapphire discovery. Press Release Uher, P., Kov??ik, M., Kubi?, M., Shtukenberg, A., Ozd?n, D. (2008) Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Mal? Karpaty Mountains, Western Carpathians, Slovakia.  American Mineralogist, 93: 63-73 Uvarova, Y.A., Kyser, T.K., Sokolova, E., Kazansky, V.I., Lobanov, K.V. (2011) Significance of stable isotope variations in crustal rocks from the Kola Superdeep Borehole and their surface analogues.  Precambrian Research, 189: 104-113 Valley, J.W. (1986) Stable isotope geochemistry of metamorphic rocks.  Reviews in Mineralogy and Geochemistry. 16: 445-489 Vanden Kerkhof, A., and Thi?ry, R. (2001) Carbonic inclusions.  Lithos, 55: 49-68 Vanko, D.A., and Bishop, F.C. (1982) Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N.W. Nevada. Contributions to Mineralogy and Petrology, 81: 277-289 Walker, T. L. (1915) Minerals from Baffin Land. Ottawa Naturalist, 29:63?66 Walker, R.T. (2012) Project report: Blu Starr Property, British Columbia, Canada. p.105  Walther, J.V. and Woodland, A.B. (1993) Experimental determination and interpretation of the solubility of the assemblage microcline, muscovite, and quartz in supercritical H2O. Geochimica et Cosmochimica Acta, 57: 2431-2437 White, R.W., Powell, R., Holland, T.J.B., (2001) Calculation of partial melting equilibria in the system Na2O?CaO?K2O?FeO?MgO?Al2O3?SiO2?H2O (NCKFMASH). Journal of Metamorphic Geology 19, 139?153 Whitney, D.L., and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185-187 158 159Wight, W. (1986) Canadian gems in the national museum of Canada. Canadian Gemmologist, 7: 34?45, 50?55. Wight, W. (1999) Explosion of new interest in Canadian gemstones.  Canadian Gemmologist, 20: 45-53  Wight, W. (2004) Sapphire from Ontario.  Canadian Gemmologist, 25: 30-32 Wilson, B. (2010) Colored gemstones from Canada.  Rocks and Minerals, 85: 24-43 Wilson, B.S. (2007)  Chapter 10: Colored gemstones from Canada. Mineralogical Association of Canada Short Course. 37, 255-270. Wilson, B.S. (2009) Colored Gemstones from Canada. Rocks & Minerals, 85, 24?43 Wodicka, N. and Scott, D. J. (1997) A preliminary report on the U-Pb geochronology of the Meta Incognita Peninsula, southern Baffin Island, Northwest Territories. Geological Survey of Canada Paper 1997-C: 167-178  159 158Appendices Appendix A   Compositional Data for the Revelstoke Occurrence   160Appendix A.1: Representative compostions of corundum from the Revelstoke Occurrence cor sur by muscovite altered cor to micaspos. and min. assoc. c m r ms c m c c c c m r ms c m r r c rEPMA pointG10-01-02-1G10-01-02-2G10-01-02-3G10-01-10-1G10-01-10-2G11-02-09-1G11-02-09-3G11-02-09-4G11-02-01-1G11-02-01-2G11-02-01-3TD-G007-07-7-1TD-G007-07-7-2TD-G007-07-7-3TD-G007-07-4-4TD-G007-07-4-5TD-G007-07-4-6TIO2 wt.% 0.09 0.03 0.05 0.13 0.15 0.02 0.08 0.10 0.04 0.04 0.12 0.02 0.00 0.06 0.01 0.00 0.04Al2O3 99.68 99.83 99.82 99.77 99.70 99.47 99.73 99.92 99.74 99.83 99.77 100.50 100.80 97.81 100.50 100.30 100.20Cr2O3 0.21 0.13 0.15 0.02 0.05 0.15 0.09 0.06 0.05 0.05 0.06 0.04 0.08 0.06 0.03 0.05 0.05V2O3 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00MgO 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00MnO 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01FeO 0.04 0.03 0.04 0.01 0.01 0.04 0.05 0.04 0.02 0.03 0.03 0.02 0.01 0.04 0.02 0.01 0.01TOTAL 100.03 100.04 100.09 99.96 99.93 99.70 99.98 100.15 99.88 99.97 100.00 100.58 100.90 97.99 100.57 100.36 100.31Ti4+ apfu 0.001 0.000 0.001 0.002 0.002 0.000 0.001 0.001 0.001 0.001 0.002 0.000 0.000 0.001 0.000 0.000 0.001Al3+ 1.995 1.997 1.996 1.997 1.996 1.997 1.997 1.997 1.998 1.998 1.997 1.999 1.999 1.997 1.999 1.999 1.998Cr3+ 0.003 0.002 0.002 0.000 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001V3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Mg2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Mn2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Fe2+ 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000NOTE: The following standards, X-ray lines and crystals were used for the EMP analyses: corundum, AlKa, TAP; diopside, MgKa, TAP; rutile, TiKa, PET; V element, VKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF.  Compositions were recalculated on the basis of 3 O apfu.c = core, m = middle, r = rimaltered cor within phl altered cor by ms161pos. and min. assoc.EPMA pointTIO2 wt.%Al2O3Cr2O3V2O3MgOMnOFeOTOTALTi4+ apfuAl3+Cr3+V3+Mg2+Mn2+Fe2+Appendix A.1: Representative compostions of corundum from the Revelstoke Occurrence (con't)c m r cal c m r c m r c m m r m rTD-G014-07A1-12-1TD-G014-07A1-12-2TD-G014-07A1-12-3TD-G014-07A1-12-4TD-G014-07A1-12-5TD-G014-07A1-12-6TD-G014-07-A2-5-1TD-G014-07-A2-5-2TD-G014-07-A2-5-3TD-G014-07-A2-4TD-G014-07-A2-5TD-G014-07-A2-6TD-G014-07-A2-7TD-G014-07-A2-8TD-G014-07-A2-90.14 0.12 0.06 0.17 0.02 0.03 0.15 0.11 0.20 0.02 0.25 0.03 0.21 0.16 0.2299.80 99.61 99.63 99.94 99.91 100.10 99.55 98.92 98.79 98.68 98.73 99.27 99.22 98.40 99.270.13 0.08 0.05 0.04 0.01 0.05 0.07 0.08 0.09 0.07 0.11 0.06 0.09 0.05 0.070.03 0.01 0.02 0.01 0.01 0.00 0.02 0.01 0.01 0.02 0.03 0.01 0.02 0.03 0.020.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.000.04 0.03 0.04 0.03 0.04 0.04 0.03 0.02 0.03 0.03 0.04 0.01 0.03 0.05 0.03100.15 99.86 99.80 100.20 99.99 100.22 99.83 99.15 99.14 98.82 99.17 99.38 99.57 98.70 99.620.002 0.002 0.001 0.002 0.000 0.000 0.002 0.001 0.003 0.000 0.003 0.000 0.003 0.002 0.0031.995 1.996 1.998 1.996 1.999 1.998 1.996 1.997 1.995 1.998 1.993 1.998 1.995 1.995 1.9950.002 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0010.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.001 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000altered cor within an cor within ms zone; altered at edges to ms and kfs162pos. and min. assoc.EPMA pointTIO2 wt.%Al2O3Cr2O3V2O3MgOMnOFeOTOTALTi4+ apfuAl3+Cr3+V3+Mg2+Mn2+Fe2+Appendix A.1: Representative compostions of corundum from the Revelstoke Occurrence (con't)pink cor grain with blue zones; also contains flincsblue blue blue blue r cal c r cal c m r scp c mTD-G014-07-B1-1TD-G014-07-B1-2TD-G014-07-B1-3TD-G014-07-B1-4TD-G014-07-B1-5TD-G014-07-B1-6TD-G014-07-B1-7TD-G014-07-B1-8TD-G014-07-B1-9TD-G063b-09-19-1TD-G063b-09-19-2TD-G063b-09-19-3TD-G063b-09-5-4TD-G063b-09-5-5TD-G063b-09-5-6TD-G063b-09-23-7TD-G063b-09-23-80.42 0.29 0.07 0.15 0.04 0.39 0.37 0.17 0.15 0.26 0.26 0.02 0.02 0.01 0.01 0.00 0.0199.11 99.31 99.39 99.24 99.53 98.55 98.58 98.99 98.76 99.56 99.86 99.87 99.87 99.50 99.61 99.69 99.740.04 0.07 0.08 0.12 0.04 0.09 0.11 0.11 0.05 0.12 0.10 0.15 0.10 0.11 0.09 0.05 0.050.02 0.02 0.01 0.02 0.01 0.03 0.03 0.02 0.02 0.05 0.03 0.01 0.00 0.00 0.00 0.01 0.000.02 0.01 0.00 0.01 0.00 0.01 0.02 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.05 0.04 0.03 0.01 0.03 0.06 0.06 0.05 0.03 0.05 0.05 0.04 0.04 0.03 0.04 0.03 0.0399.66 99.74 99.58 99.55 99.65 99.13 99.17 99.36 99.02 100.05 100.32 100.09 100.03 99.65 99.75 99.78 99.840.005 0.004 0.001 0.002 0.001 0.005 0.005 0.002 0.002 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.0001.991 1.993 1.997 1.995 1.998 1.991 1.991 1.995 1.996 1.993 1.993 1.997 1.998 1.998 1.998 1.999 1.9990.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.0010.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000granular agg163pos. and min. assoc.EPMA pointTIO2 wt.%Al2O3Cr2O3V2O3MgOMnOFeOTOTALTi4+ apfuAl3+Cr3+V3+Mg2+Mn2+Fe2+Appendix A.1: Representative compostions of corundum from the Revelstoke Occurrence (con't)pink pink blue blue blue blue blue pinkr ms r m m m m m m c m m mTD-G063b-09-23-9zc-1zc-2zc-3zc-4zc-5zc-6zc-7zc-8zc-9zc-10zc-11zc-12zc-13zc-14zc-15zc-160.04 0.05 0.05 0.05 0.03 0.01 0.01 0.01 0.00 0.03 0.03 0.14 0.17 0.20 0.51 0.53 0.0399.89 98.79 98.52 98.45 98.58 98.67 98.42 97.80 98.59 98.77 98.82 99.45 99.37 98.13 98.45 98.17 97.590.14 0.03 0.02 0.03 0.03 0.04 0.03 0.01 0.01 0.11 0.10 0.02 0.01 0.01 0.01 0.00 0.020.00 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.03 0.01 0.01 0.01 0.010.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.000.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.03 0.03 0.02 0.01 0.02 0.03 0.02 0.01 0.02 0.01 0.01 0.02 0.04 0.02 0.04 0.03 0.01100.10 98.90 98.63 98.55 98.69 98.77 98.50 97.84 98.63 98.93 98.97 99.66 99.62 98.37 99.03 98.76 97.660.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.003 0.007 0.007 0.0001.997 1.998 1.998 1.998 1.998 1.999 1.999 1.999 2.000 1.998 1.998 1.997 1.996 1.996 1.990 1.990 1.9990.002 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000white + blue, but only white seems to have been probed164pos. and min. assoc.EPMA pointTIO2 wt.%Al2O3Cr2O3V2O3MgOMnOFeOTOTALTi4+ apfuAl3+Cr3+V3+Mg2+Mn2+Fe2+Appendix A.1: Representative compostions of corundum from the Revelstoke Occurrence (con't)pink pink pink pinkm m m rzc-17zc-18zc-20zc-19TD-G022-07C-17-1TD-G022-07C-17-2TD-G022-07C-17-30.03 0.01 0.04 0.00 0.13 0.01 0.0198.64 97.69 98.77 98.53 99.51 99.94 99.770.03 0.07 0.08 0.07 0.08 0.03 0.040.02 0.01 0.01 0.02 0.06 0.03 0.020.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.01 0.00 0.00 0.000.03 0.02 0.02 0.01 0.04 0.02 0.0398.75 97.80 98.92 98.64 99.82 100.03 99.870.000 0.000 0.001 0.000 0.002 0.000 0.0001.999 1.999 1.998 1.999 1.996 1.999 1.9990.000 0.001 0.001 0.001 0.001 0.000 0.0010.000 0.000 0.000 0.000 0.001 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.001 0.000 0.000165Appendix A.2: Compositions of Calcite from the Revelstoke OccurrenceCal in matrix with Phl near Crn retro rxn near Crn retro rxn inclu in Kfs sm grainc m r r Ms m c r Cal m c c r Kfs r Cal c r Scp c r ScpEPMA pointG11-02-08-01G11-02-08-02G11-02-08-03G11-02c4G11-02-01-5G11-02-01-6G11-02-01-7G11-02-01-8G11-02-01-9G11-02-01-10G11-02-02-11G11-02-02-12G11-02-02-13G11-02-02-14TD-G007-07-03-15TD-G007-07-03-16TD-G007-07-03-17CO2* wt.% 44.41 44.21 44.36 43.91 44.64 44.84 44.90 44.45 44.32 44.43 44.30 44.48 44.11 44.35 44.24 44.08 43.56MgO 0.42 0.36 0.43 0.38 0.36 0.38 0.38 0.44 0.46 0.38 0.37 0.35 0.48 0.46 0.74 0.48 0.35CaO 55.02 55.27 55.17 55.52 54.97 54.76 54.52 54.98 55.09 55.17 55.22 55.03 55.38 55.01 54.85 55.21 56.03MnO 0.11 0.03 0.02 0.08 0.00 0.00 0.09 0.08 0.03 0.02 0.08 0.06 0.03 0.07 0.06 0.08 0.00FeO 0.05 0.12 0.03 0.11 0.02 0.02 0.12 0.05 0.11 0.00 0.03 0.09 0.00 0.11 0.10 0.15 0.06TOTAL 100.01 99.99 100.01 100.00 99.99 100.00 100.01 100.00 100.01 100.00 100.00 100.01 99.99 99.99 99.99 100.00 100.00C4+ apfu 1.005 1.003 1.004 0.999 1.008 1.011 1.012 1.006 1.004 1.005 1.004 1.006 1.001 1.004 1.002 1.001 0.994Mg2+ 0.010 0.009 0.011 0.009 0.009 0.009 0.009 0.011 0.011 0.009 0.009 0.009 0.012 0.011 0.018 0.012 0.009Ca2+ 0.977 0.984 0.980 0.991 0.974 0.969 0.964 0.976 0.979 0.980 0.982 0.977 0.986 0.978 0.975 0.984 1.003Mn2+ 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.000Fe2+ 0.001 0.002 0.000 0.002 0.000 0.000 0.002 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.002 0.001NOTE: For the elements considered, the following stAndards, X-ray lines And crystals were used: dolomite, MgKa, TAP; Calcite, CaKa, PET; rhodochrosite, MnKa, LIF; siderite, FeKa, LIF.  Compositions were reCalculated on the basis of 3 O apfu.  *C determined by stoichiometryc = Crn, m = middle, r = rimCal incl in Scp166EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)near Crn, lrg grainr Crn c c m r Cal c r An c r Scp m c rim middle Crn Crn middle rimTD-G007-07-42-18TD-G007-07-42-19TD-G007-07-4-20TD-G007-07-4-21TD-G007-07c23TD-G007-07-5-24TD-G007-07-5-25TD-G007-07-5-26TD-G007-07-5-27TD-G007-07-15-28TD-G007-07-15-29TD-G007-07-15-30TD-G014-07A1-1-1TD-G014-07A1-1-2TD-G014-07A1-1-3TD-G014-07A1-2-4TD-G014-07A1-2-5TD-G014-07A1-2-643.57 43.70 43.83 43.42 42.74 43.01 43.59 43.60 43.32 43.28 43.51 42.72 43.61 43.47 43.45 43.79 44.13 43.100.66 0.71 0.47 0.49 0.26 0.15 0.61 0.58 0.51 0.53 0.51 0.56 0.60 0.37 0.27 0.59 0.65 0.2055.65 55.44 55.55 56.02 56.90 56.69 55.72 55.69 56.03 55.94 55.80 56.47 55.54 56.02 56.19 55.33 55.03 56.490.07 0.08 0.05 0.00 0.10 0.08 0.05 0.02 0.06 0.10 0.09 0.10 0.06 0.02 0.03 0.05 0.02 0.120.05 0.06 0.09 0.07 0.00 0.08 0.03 0.12 0.08 0.14 0.09 0.15 0.20 0.12 0.05 0.25 0.17 0.09100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.01 100.00 99.99 99.99 100.00 100.01 100 99.99 100.01 100 1000.993 0.995 0.997 0.991 0.983 0.987 0.994 0.994 0.990 0.990 0.993 0.982 0.994 0.993 0.992 0.996 1.001 0.9880.016 0.018 0.012 0.012 0.007 0.004 0.015 0.014 0.013 0.013 0.013 0.014 0.015 0.009 0.007 0.015 0.016 0.0050.996 0.991 0.992 1.004 1.027 1.021 0.997 0.996 1.005 1.004 0.999 1.019 0.993 1.004 1.007 0.988 0.980 1.0160.001 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.0020.001 0.001 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.003 0.002 0.001inclusion in crn 1 next to Phl,Pl,Ms aggAll surrounded by Cal on edge of Phl, Pl, Ms zone, except 6 next to Phlr Ms alt167EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)rim middle Crn Crn middle rim Crn middle rim Crn middle rim rim middle Crn Crn middle rimTD-G014-07A1-3-7TD-G014-07A1-3-8TD-G014-07A1-3-9TD-G014-07A1-7-10TD-G014-07A1-7-11TD-G014-07A1-7-12TD-G014-07A1-8-13TD-G014-07A1-8-14TD-G014-07A1-8-15TD-G014-07A1-8-16TD-G014-07A1-8-17TD-G014-07A1-8-18TD-G014-07A2-12-1TD-G014-07A2-12-2TD-G014-07A2-12-3TD-G014-07A2-12-4TD-G014-07A2-12-5TD-G014-07A2-12-643.86 43.91 43.97 43.88 43.80 43.94 43.45 43.99 43.68 44.07 44.49 43.84 43.69 43.74 43.80 43.91 43.72 44.270.28 0.53 0.63 0.43 0.46 0.64 0.32 0.38 0.35 0.39 0.42 0.61 0.24 0.50 0.62 0.50 0.49 0.6655.76 55.29 55.17 55.48 55.58 55.14 56.10 55.45 55.72 55.41 54.82 55.38 55.98 55.65 55.43 55.37 55.52 54.770.04 0.13 0.08 0.01 0.06 0.06 0.03 0.06 0.07 0.00 0.13 0.05 0.00 0.06 0.01 0.02 0.05 0.040.05 0.13 0.15 0.20 0.10 0.21 0.11 0.13 0.18 0.13 0.15 0.12 0.10 0.04 0.14 0.19 0.23 0.2599.99 99.99 100 100 100 99.99 100.01 100.01 100 100 100.01 100 100.01 99.99 100 99.99 100.01 99.990.998 0.998 0.999 0.998 0.997 0.998 0.992 1.000 0.996 1.001 1.006 0.997 0.996 0.996 0.996 0.998 0.996 1.0030.007 0.013 0.016 0.011 0.011 0.016 0.008 0.009 0.009 0.010 0.010 0.015 0.006 0.012 0.015 0.012 0.012 0.0160.996 0.987 0.984 0.990 0.993 0.983 1.005 0.989 0.997 0.987 0.973 0.988 1.001 0.994 0.990 0.988 0.992 0.9740.001 0.002 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.000 0.002 0.001 0.000 0.001 0.000 0.000 0.001 0.0010.001 0.002 0.002 0.003 0.001 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.001 0.001 0.002 0.003 0.003 0.003partly surround by Cal, partly surrounded by Phl surrounded by Cal, large All surrounded by Calsurrounded by Cal And small Phl grains, large Cal grainAll surrounded by Cal, small grainAll surrounded by Cal, med grain168EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)rim middle Crn rim middle Crn Crn middle rim Crn middle rim Crn middle rimTD-G014-07A2-13-7TD-G014-07A2-13-8TD-G014-07A2-13-9TD-G014-07A2-13-10TD-G014-07A2-13-11TD-G014-07A2-13-12TD-G014-07A2-14-13TD-G014-07A2-14-14TD-G014-07A2-14-15TD-G014-07B1-1-1TD-G014-07B1-1-2TD-G014-07B1-1-3TD-G014-07B1-1-4TD-G014-07B1-1-5TD-G014-07B1-1-6TD-G014-07B1-4-7TD-G014-07B1-4-8TD-G014-07B1-4-943.92 43.42 43.88 43.52 44.31 43.50 44.07 43.77 44.24 43.50 43.28 43.63 43.88 43.77 44.09 44.11 43.94 43.910.53 0.43 0.42 0.44 0.65 0.67 0.51 0.52 0.70 0.38 0.40 0.34 0.70 0.70 0.74 0.70 0.74 0.1455.32 55.97 55.44 55.88 54.82 55.57 55.23 55.52 54.87 56.02 56.19 55.93 55.20 55.30 54.97 54.97 55.12 55.870.05 0.04 0.04 0.00 0.05 0.08 0.02 0.02 0.00 0.01 0.06 0.00 0.07 0.06 0.02 0.05 0.02 0.050.19 0.14 0.21 0.17 0.17 0.18 0.17 0.16 0.19 0.08 0.08 0.10 0.15 0.17 0.19 0.17 0.18 0.03100.01 100 99.99 100.01 100 100 100 99.99 100 99.99 100.01 100.00 100.00 100.00 100.01 100.00 100.00 100.000.998 0.992 0.998 0.993 1.003 0.992 1.000 0.996 1.002 0.993 0.990 0.995 0.997 0.996 1.000 1.001 0.998 0.9990.013 0.011 0.010 0.011 0.016 0.017 0.013 0.013 0.017 0.009 0.010 0.008 0.017 0.017 0.018 0.017 0.018 0.0030.987 1.003 0.990 1.001 0.974 0.995 0.984 0.992 0.976 1.003 1.008 1.001 0.985 0.988 0.979 0.979 0.983 0.9980.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.0010.003 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.003 0.001 0.001 0.001 0.002 0.002 0.003 0.002 0.003 0.00015 next to Cal (other side next to Phl) inclusion within Pl on edge of altered CrnAll surrounded by Cal, large grainAll surrounded by Cal, med grain169EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)Crn middle rim Crn middle rim Crn middle rim rim Crn rim middle Crn rim middle Crn rimTD-G014-07B1-5-10TD-G014-07B1-5-11TD-G014-07B1-5-12TD-G014-07B1-5-13TD-G014-07B1-5-14TD-G014-07B1-5-15TD-G014-07B1-5-16TD-G014-07B1-5-17TD-G014-07B1-5-18TD-G063b-09bc31TD-G063b-09bc32TD-G063b-09bc33TD-G063b-09bc34TD-G063b-09bc35TD-G063b-09b-8-36TD-G063b-09b-8-37TD-G063b-09b-8-38TD-G063b-09b-8-4044.23 44.41 44.43 44.13 44.40 44.27 43.95 43.79 43.64 43.24 43.75 43.78 43.83 43.65 43.06 43.43 42.98 43.310.35 0.33 0.59 0.60 0.55 0.67 0.73 0.71 0.55 0.72 0.76 0.91 0.81 0.76 0.27 0.64 0.75 0.1955.31 55.14 54.80 55.12 54.85 54.84 55.05 55.27 55.65 55.73 55.20 55.01 55.06 55.38 56.59 55.72 56.16 56.330.00 0.03 0.08 0.01 0.00 0.03 0.07 0.00 0.04 0.08 0.10 0.09 0.09 0.04 0.08 0.09 0.10 0.050.12 0.08 0.11 0.13 0.20 0.20 0.20 0.23 0.12 0.22 0.20 0.21 0.21 0.17 0.00 0.13 0.02 0.12100.01 99.99 100.01 99.99 100.00 100.01 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.01 100.01 100.011.003 1.005 1.005 1.001 1.005 1.003 0.998 0.996 0.994 0.989 0.996 0.996 0.997 0.994 0.987 0.991 0.985 0.9910.009 0.008 0.015 0.015 0.014 0.017 0.018 0.018 0.014 0.018 0.019 0.022 0.020 0.019 0.007 0.016 0.019 0.0050.984 0.980 0.973 0.981 0.974 0.975 0.981 0.987 0.995 1.000 0.986 0.982 0.983 0.990 1.018 0.998 1.010 1.0110.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0010.002 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.000 0.002 0.000 0.002across Cal veinsurrounded by Cal, large grainall surrounded by Cal, small grainsmall grain, All surrounded by Cal, except one next to Phlall surrounded by Callarge grain, partly surrounded by Cal, partly surrounded by Phl170EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)Crn Crn Crn rim rim middle Crn rim Phl middle rim Phl c r Cal c c rTD-G063b-09b-5-42TD-G063b-09b-5-43TD-G063b-09b-5-44TD-G063b-09b-5-45TD-G063b-09b-1-46TD-G063b-09b-1-47TD-G063b-09b-1-48TD-G063b-09b10-49TD-G063b-09b10-50TD-G063b-09b10-51TD-G063b-09bc52TD-G063b-09bc53TD-G020-07A1-19-1TD-G020-07A1-19-2TD-G020-07A1-21-3TD-G020-07A1-21-4TD-G020-07A1-21-543.11 43.51 43.52 43.52 43.47 43.22 43.33 43.76 43.80 44.45 44.60 44.40 42.89 43.18 43.57 43.81 43.90.04 0.00 0.07 0.06 0.34 0.65 0.62 0.55 0.71 0.31 0.29 0.26 0.46 0.41 0.39 0.47 0.4556.78 56.30 56.18 56.30 56.16 55.84 55.67 55.38 55.20 53.33 53.41 53.56 56.59 56.29 56 55.61 55.490.05 0.09 0.11 0.08 0.01 0.11 0.09 0.09 0.14 0.56 0.53 0.63 0.04 0.01 0.01 0.01 0.050.02 0.10 0.12 0.04 0.02 0.19 0.29 0.22 0.15 1.36 1.18 1.15 0.02 0.1 0.03 0.1 0.11100.00 100.00 100.01 99.99 100.00 100.01 100.00 100.00 100.00 100.00 100.01 100.00 100 99.99 100 100 1000.988 0.994 0.994 0.994 0.992 0.989 0.990 0.996 0.996 1.008 1.010 1.007 0.984 0.988 0.994 0.997 0.9980.001 0.000 0.002 0.001 0.009 0.016 0.015 0.014 0.018 0.008 0.007 0.006 0.012 0.01 0.01 0.012 0.0111.022 1.009 1.007 1.009 1.006 1.002 0.999 0.989 0.986 0.949 0.949 0.954 1.019 1.011 1.002 0.993 0.990.001 0.001 0.002 0.001 0.000 0.002 0.001 0.001 0.002 0.008 0.007 0.009 0.001 0 0 0 0.0010.000 0.001 0.002 0.001 0.000 0.003 0.004 0.003 0.002 0.019 0.016 0.016 0 0.001 0 0.001 0.002next to altered Crn grain And pyritesurrounded by scap And muscsurrounded by Pl, musc And scapCalcite in matrix near Phl segregationlarge grain in Cal matrix med grain in Cal matrix171EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)c r Cal r Cal c c r Cal c r Cal c r Cal r Cal m c r s s c rTD-G020-07A1-22-6TD-G020-07A1-22-7TD-G020-07A1-22-8TD-G020-07A1-22-9TD-G020-07A1-24-10TD-G020-07A1-24-11TD-G020-07A1-24-12TD-G020-07A1-24-13TD-G020-7A1-25-14TD-G020-7A1-25-15TD-G020-07A1-25-16TD-G020-07A1-25-17TD-G020-07A1-25-18G020-7A1-19G020-7A1-20G020-7A1-21G020-7A1-22G020-7A1-2343.45 43.84 43.64 44.01 42.67 43.17 43.45 43.66 43.29 42.85 43.42 43.14 43.2 42.87 43.14 43.24 42.92 430.4 0.32 0.44 0.37 0.44 0.39 0.43 0.38 0.4 0.42 0.41 0.47 0.42 0.45 0.44 0.53 0.42 0.4655.99 55.78 55.76 55.55 56.85 56.3 56.05 55.88 56.18 56.46 56.11 56.26 56.25 56.6 56.3 56.14 56.59 56.430.01 0.02 0 0 0.02 0.07 0.01 0 0.05 0.11 0.04 0.03 0.02 0.01 0.07 0.06 0.03 0.020.15 0.04 0.15 0.08 0.03 0.07 0.05 0.09 0.08 0.16 0.03 0.11 0.11 0.07 0.05 0.04 0.05 0.09100 100 99.99 100.01 100.01 100 99.99 100.01 100 100 100.01 100.01 100 100 100 100.01 100.01 1000.992 0.998 0.995 1 0.981 0.988 0.992 0.995 0.99 0.984 0.992 0.988 0.989 0.984 0.988 0.989 0.985 0.9860.01 0.008 0.011 0.009 0.011 0.01 0.011 0.009 0.01 0.011 0.01 0.012 0.01 0.011 0.011 0.013 0.011 0.0121.003 0.996 0.997 0.99 1.026 1.012 1.004 0.999 1.008 1.018 1.006 1.011 1.01 1.02 1.012 1.008 1.019 1.0150 0 0 0 0 0.001 0 0 0.001 0.002 0.001 0 0 0 0.001 0.001 0 00.002 0.001 0.002 0.001 0 0.001 0.001 0.001 0.001 0.002 0 0.002 0.002 0.001 0.001 0.001 0.001 0.001med grain in Cal matrixmed grain in Cal matrixsm grain in Cal matrixlrg grain in Cal matrix sm grain sm grain sm grainlarge grainlarge grain172EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)c c c c c c c r c c r c r c rG020-7A1-24G020-7A1-25G020-7A1-26G020-7A1-27G020-7A1-28G020-7A1-29G020-7A1-30G020-07B-34G020-07B-35G020-07B-36G020-07B-37G020-07B-38G020-07B-39G020-07B-40G020-07B-41G020-07B-42G020-07B-43G020-07B-4443.23 43.39 43.45 42.7 43.92 42.77 44.26 42.54 42.96 43.26 43.16 42.89 42.89 42.77 43.17 43.34 42.83 42.960.04 0.48 0.58 0.48 0.69 0.22 1.1 0.65 0.68 0.66 0.62 0.62 0.78 0.56 0.48 0.50 0.44 0.4956.7 56.08 55.87 56.69 55.14 56.9 53.17 56.71 56.31 55.96 56.08 56.33 56.10 56.53 56.19 56.08 56.67 56.430.02 0.03 0.01 0.04 0.07 0.05 0.05 0.04 0.00 0.00 0.00 0.05 0.05 0.04 0.00 0.04 0.00 0.010 0.03 0.1 0.1 0.19 0.07 1.41 0.06 0.05 0.13 0.14 0.11 0.17 0.10 0.16 0.03 0.06 0.1099.99 100.01 100.01 100.01 100.01 100.01 99.99 100.00 100.00 100.01 100.00 100.00 99.99 100.00 100.00 99.99 100.00 99.990.99 0.991 0.992 0.982 0.998 0.983 1.003 0.979 0.985 0.989 0.988 0.984 0.984 0.982 0.988 0.990 0.983 0.9850.001 0.012 0.014 0.012 0.017 0.006 0.027 0.016 0.017 0.016 0.015 0.016 0.020 0.014 0.012 0.012 0.011 0.0121.019 1.005 1.001 1.023 0.983 1.026 0.946 1.024 1.013 1.004 1.007 1.014 1.010 1.019 1.009 1.006 1.021 1.0160 0 0 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.0000 0 0.001 0.001 0.003 0.001 0.02 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.000 0.001 0.001med grain in Cal matrixsm grain sm grain sm grainmed grain sm grain sm grain sm grain173EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)large grain in Cal matrix sm sm sm sm sm sm sm med med med sm large large medc m r c r c c c c c c r c c r c cG020-07B-45G020-07B-46G020-07B-47G020-07B-48G022-07C-1G022-07C-2G022-07C-3G022-07C-4G022-07C-5G022-07C-6G022-07C-7G022-07C-8G022-07C-9G022-07C-10G022-07C-11G022-07C-12G022-07C-13G022-07C-1442.98 42.67 42.91 42.96 43.21 42.61 43.13 42.51 42.99 42.86 42.76 42.65 42.87 42.84 43.01 42.6 42.53 42.770.45 0.40 0.42 0.39 0.8 0.41 0.78 0.15 0.44 0.87 0.94 0.77 0.73 0.78 0.8 0.77 0.75 0.8356.36 56.69 56.52 56.49 55.83 56.83 56 57.31 56.48 56.16 56.15 56.42 56.3 56.19 56.17 56.44 56.6 56.320.02 0.03 0.00 0.04 0.02 0.04 0 0 0 0 0.05 0 0 0.03 0 0.04 0.08 0.050.18 0.21 0.16 0.12 0.14 0.11 0.08 0.02 0.09 0.12 0.1 0.16 0.11 0.16 0.03 0.15 0.04 0.0399.99 100.00 100.01 100.00 100 100 99.99 99.99 100 100.01 100 100 100.01 100 100.01 100 100 1000.986 0.982 0.985 0.985 0.988 0.981 0.987 0.98 0.986 0.983 0.981 0.98 0.983 0.983 0.985 0.98 0.979 0.9820.011 0.010 0.011 0.010 0.02 0.01 0.019 0.004 0.011 0.022 0.024 0.019 0.018 0.02 0.02 0.019 0.019 0.0211.014 1.023 1.018 1.017 1.002 1.026 1.006 1.037 1.016 1.011 1.011 1.018 1.013 1.012 1.01 1.019 1.022 1.0150.000 0.000 0.000 0.001 0 0.001 0 0 0 0 0.001 0 0 0 0 0.001 0.001 0.0010.003 0.003 0.002 0.002 0.002 0.002 0.001 0 0.001 0.002 0.001 0.002 0.002 0.002 0 0.002 0.001 0174EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)med med large large med med med grain next to An, ap, And kfsr c c r r c r c r c r c r r c c rG022-07C-15G022-07C-16G022-07C-17G022-07C-18G022-07C-19G022-07C-20G022-07C-5-21G022-07C-5-22G022-07C-5-23G022-07C-5-24G022-07C-3-25G022-07C-3-26G022-07C-3-27G022-07C-3-28G022-07C-29G022-07C-30G022-07C-31G022-07C-3243.09 42.99 42.89 42.75 42.88 43.33 43.02 42.25 42.52 42.42 42.2 42.47 42.9 42.15 42.27 43.13 42.27 43.330.72 0.68 0.88 0.87 0.74 0.86 0.73 0.83 0.76 0.74 0.68 0.64 0.69 0.67 0.46 0.59 0.55 0.6756.12 56.18 56.17 56.36 56.32 55.7 56.06 56.87 56.68 56.6 56.94 56.7 56.41 56.99 57.06 56.2 57.04 55.870.04 0.03 0 0.02 0.01 0.03 0.04 0.01 0.03 0.04 0 0.05 0 0.07 0.08 0.04 0.03 0.020.03 0.12 0.07 0 0.04 0.07 0.15 0.04 0.01 0.19 0.17 0.14 0 0.13 0.13 0.04 0.11 0.11100 100 100.01 100 99.99 99.99 100 100 100 99.99 99.99 100 100 100.01 100 100 100 1000.986 0.985 0.983 0.981 0.983 0.989 0.986 0.974 0.978 0.977 0.974 0.978 0.984 0.974 0.976 0.987 0.976 0.990.018 0.017 0.022 0.022 0.019 0.021 0.018 0.021 0.019 0.019 0.017 0.016 0.017 0.017 0.012 0.015 0.014 0.0171.008 1.01 1.011 1.015 1.014 0.998 1.008 1.029 1.024 1.023 1.032 1.025 1.015 1.033 1.034 1.01 1.033 1.0020.001 0 0 0 0 0 0.001 0 0 0.001 0 0.001 0 0.001 0.001 0.001 0 00 0.002 0.001 0 0.001 0.001 0.002 0.001 0 0.003 0.002 0.002 0 0.002 0.002 0.001 0.002 0.002med grain next to An med grain next to An med grain sm grain sm grain175EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)Crn middle rim rim middle Crn rim middle Crn Crn middle rim Crn middle rimG022-07C-33TD-G013-07-2-01TD-G013-07-2-02TD-G013-07-2-03TD-G013-07-3-04TD-G013-07-3-05TD-G013-07-3-06TD-G013-07-4a-07TD-G013-07-4a-08TD-G013-07-4a-09TD-G013-07-4a-10TD-G013-07-4a-11TD-G013-07-4a-12TD-G013-07-4a-13TD-G013-07-4a-14TD-G013-07-4a-1542.91 43.46 44.04 43.76 43.57 43.82 43.41 42.83 43.67 43.49 43.26 42.98 43.44 42.90 43.37 43.370.39 0.67 0.63 0.67 0.74 0.66 0.74 0.88 0.84 0.79 0.84 0.83 0.84 0.82 0.82 0.8056.62 55.82 55.28 55.56 55.66 55.45 55.79 56.18 55.46 55.66 55.80 56.13 55.62 56.13 55.75 55.770.02 0.00 0.05 0.00 0.00 0.04 0.01 0.01 0.00 0.03 0.04 0.03 0.00 0.05 0.01 0.000.06 0.05 0.01 0.01 0.03 0.03 0.06 0.11 0.03 0.03 0.05 0.03 0.10 0.11 0.05 0.06100 100 100.01 100 100 100 100.01 100.01 100 100 99.99 100 100 100.01 100 1000.985 0.992 0.999 0.996 0.993 0.997 0.991 0.982 0.994 0.992 0.989 0.985 0.991 0.984 0.990 0.9900.01 0.017 0.016 0.017 0.018 0.016 0.018 0.022 0.021 0.020 0.021 0.021 0.021 0.021 0.020 0.0201.02 0.999 0.985 0.992 0.995 0.990 0.999 1.011 0.991 0.996 1.001 1.009 0.996 1.010 0.999 0.9990 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.0000.001 0.001 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.000 0.001 0.002 0.001 0.001All surrounded by Cal, large grain All surrounded by CalAll surrounded by Cal, small grain3 is next to Cal, opposite side next to amph All surrounded by Cal176EPMA pointCO2* wt.%MgOCaOMnOFeOTOTALC4+ apfuMg2+Ca2+Mn2+Fe2+Appendix A.2: Compositions of Calcite from the Revelstoke Occurrence (con't)rim middle Crn Crn middle rim Crn middle rim rim Crn rim Crn rim middle CrnTD-G013-07-4b-16TD-G013-07-4b-17TD-G013-07-4b-18TD-G013-07-4b-19TD-G013-07-4b-20TD-G013-07-4b-21TD-G025-09-6-54TD-G025-09-6-55TD-G025-09-6-56TD-G025-09-5-57TD-G025-09-5-58TD-G025-09-5-59TD-G025-09-5-60TD-G025-09-7-61TD-G025-09-7-62TD-G025-09-7-6343.21 43.31 43.43 42.91 43.87 43.34 44.51 43.93 44.35 44.48 44.31 44.82 44.44 44.10 44.43 44.630.75 0.62 0.60 0.66 0.61 0.67 0.38 0.43 0.41 0.23 0.34 0.50 0.38 0.50 0.45 0.5456.00 55.96 55.87 56.36 55.45 55.90 52.97 53.28 53.10 53.46 53.77 52.88 53.56 53.20 52.82 52.620.00 0.06 0.03 0.00 0.00 0.04 0.52 0.63 0.53 0.61 0.60 0.61 0.53 0.54 0.60 0.450.04 0.05 0.08 0.08 0.06 0.05 1.62 1.74 1.61 1.22 0.99 1.19 1.09 1.67 1.71 1.77100 100 100.01 100.01 99.99 100 100.00 100.01 100.00 100.00 100.00 100.00 100.00 100.01 100.01 100.010.988 0.990 0.991 0.984 0.997 0.990 1.009 1.001 1.007 1.009 1.006 1.013 1.007 1.003 1.008 1.0100.019 0.015 0.015 0.017 0.015 0.017 0.010 0.011 0.010 0.006 0.008 0.012 0.009 0.012 0.011 0.0131.005 1.004 1.001 1.014 0.989 1.002 0.942 0.953 0.946 0.951 0.958 0.938 0.953 0.950 0.941 0.9350.000 0.001 0.000 0.000 0.000 0.001 0.007 0.009 0.007 0.009 0.008 0.009 0.007 0.008 0.008 0.0060.001 0.001 0.001 0.001 0.001 0.001 0.022 0.024 0.022 0.017 0.014 0.016 0.015 0.023 0.024 0.024all surrounded by Cal, large grainin contact w/ px, otherwise surrounded by Calsurrounded by Cal, except 57 next to Px surrounded by Calsm grain, All surrounded by Cal, except 16 near px grain All surrounded by Cal, very small grain177Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrencepos. And min. assoc. r Cal m c r Phl c c c r Phl r m c m r CalEPMA point G10-01-21-1 G10-01-21-2 G10-01-21-3 G10-01-21-4 G10-01-21-10 G10-01-21-11 G10-01-20b-2 G10-01-20b-3 G11-02-1 G11-02-9-2 G11-02-9-3 G11-02-9-4 G11-02-9-5 G11-02-9-9SiO2 wt.% 38.4 37.36 36.65 37.37 36.68 36.84 36.86 36.17 37.05 37.38 37.45 36.67 37.14 37.39TiO2 1.5 1.53 1.56 1.28 1.6 1.53 1.35 1.33 1.2 1.35 1.57 1.24 1.21 1.76Al2O3 23.67 22.85 23.37 23.53 22.48 22.94 23.83 23.14 23.16 23.3 23.21 23.6 23.46 22.53Cr2O3 0.1 0.05 0.13 0.04 0.05 0.09 0.22 0.08 0.05 0.14 0.04 0.09 0.13 0.03V2O3Fe2O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0MgO 17.49 18.86 19 18.08 18.2 17.95 18.34 18.73 20.07 19.57 19.57 19.73 19.59 19.08MnO 0.04 0.03 0.01 0.02 0.02 0 0.07 0 0.06 0.04 0.04 0.06 0 0.04FeOtot 3.18 3.17 3.34 3.01 3.04 3.37 3.28 3.23 2.57 2.84 2.8 2.7 2.62 2.74ZnOCaO 0.08 0.02 0.05 0.06 0.07 0.06 0.04 0.05 0.01 0.05 0.01 0.02 0.02 0.05BaO 0.36 0.38 0.23 0.16 0.3 0.26 0.22 0.15 0.06 0.12 0.18 0.06 0.06 0.45Na2O 0.14 0.12 0.15 0.14 0.19 0.15 0.13 0.14 0.16 0.16 0.14 0.14 0.13 0.14K2O 10.52 10.86 10.33 10.29 10.37 10.1 9.58 10.59 10.64 10.87 10.89 10.86 11.01 10.63F 0.24 0.27 0.23 0.22 0.22 0.23 0.23 0.22 0.29 0.31 0.3 0.28 0.29 0.36CL 0.02 0 0.02 0.01 0.01 0.03 0 0.01 0.02 0 0 0.02 0 0H2O * 4.16 4.11 4.11 4.11 4.04 4.05 4.11 4.06 4.11 4.13 4.14 4.11 4.12 4.06-(O=F,Cl) -0.11 -0.11 -0.10 -0.09 -0.09 -0.10 -0.10 -0.09 -0.13 -0.13 -0.13 -0.12 -0.12 -0.15TOTAL 99.79 99.50 99.08 98.23 97.18 97.50 98.16 97.81 99.32 100.13 100.21 99.46 99.66 99.11Si4+ apfu 2.693 2.643 2.599 2.659 2.650 2.649 2.622 2.601 2.612 2.620 2.623 2.588 2.614 2.650Ti4+ 0.079 0.081 0.083 0.069 0.087 0.083 0.072 0.072 0.064 0.071 0.083 0.066 0.064 0.094Al3+ 1.956 1.905 1.953 1.973 1.914 1.944 1.998 1.961 1.925 1.925 1.916 1.963 1.946 1.882Cr3+ 0.006 0.003 0.007 0.002 0.003 0.005 0.012 0.005 0.003 0.008 0.002 0.005 0.007 0.002V3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Mg2+ 1.828 1.989 2.009 1.917 1.960 1.924 1.945 2.008 2.110 2.045 2.043 2.076 2.055 2.016Mn2+ 0.002 0.002 0.001 0.001 0.001 0.000 0.004 0.000 0.004 0.002 0.002 0.004 0.000 0.002Fe2+ 0.186 0.188 0.198 0.179 0.184 0.203 0.195 0.194 0.152 0.166 0.164 0.159 0.154 0.162Zn2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ca2+ 0.006 0.002 0.004 0.005 0.005 0.005 0.003 0.004 0.001 0.004 0.001 0.002 0.002 0.004Ba2+ 0.010 0.011 0.006 0.004 0.008 0.007 0.006 0.004 0.002 0.003 0.005 0.002 0.002 0.012Na+ 0.019 0.016 0.021 0.019 0.027 0.021 0.018 0.020 0.022 0.022 0.019 0.019 0.018 0.019K+ 0.941 0.980 0.935 0.934 0.956 0.927 0.869 0.971 0.957 0.972 0.973 0.978 0.988 0.961F- 0.053 0.060 0.052 0.049 0.050 0.052 0.052 0.050 0.065 0.069 0.066 0.062 0.065 0.081Cl- 0.002 0.000 0.002 0.001 0.001 0.004 0.000 0.001 0.002 0.000 0.000 0.002 0.000 0.000OH- 1.944 1.940 1.946 1.949 1.949 1.944 1.948 1.949 1.933 1.931 1.934 1.935 1.935 1.919vac. (M) 0.249 0.189 0.150 0.200 0.201 0.192 0.152 0.159 0.132 0.162 0.166 0.139 0.160 0.192O2- 10 10 10 10 10 10 10 10 10 10 10 10 10 10*calculated from electroneutral formula assuming 12 anions and (OH+F+Cl)=2.NOTE: Following standards, X-ray lines and crystals were used during EMP analysis: synthetic phlogopite, F Ka , MgKa , SiKa , TAP, KKa , PET; albite, NaKa, TAP; kyanite, AlKa, TAP; scapolite, ClKa, PET; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF; barite, BaLa, PET.178pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)m c r c r m c c r Kfs r Kfs c r PlG11-02-9-10 G11-02-9-11 G11-02-01-14 G11-02-01-15 G11-02-08-16 G11-02-08-17 G11-02-08-18 G11-02-08-19 G11-02-7c-24 G11-02-7c-25 G11-02-7c-26 G11-02-7c-27 G11-02-07b-3036.78 36.86 37.36 37.84 36.93 37.09 36.75 36.65 37.2 37.37 37.16 37.37 37.751.54 1.43 1.53 1.55 1.45 1.73 1.36 1.13 1.25 1.24 1.28 1.08 1.8823.41 23.34 23.19 23.01 22.72 23.11 22.71 23.5 24.36 24.37 24.33 23.99 23.520.01 0.01 0.07 0.03 0 0.03 0.08 0.16 0.07 0.13 0.11 0.13 0.150.19 0.18 0.17 0.15 0.180 0 0 0 0 0 0 0 0 0 0 0 019.05 19.31 18.97 19.31 19.22 18.97 19.79 19.45 20.03 19.73 19.71 19.92 19.060.02 0.02 0.01 0 0.07 0.01 0 0.01 0.04 0 0.05 0.04 0.072.76 2.89 2.65 2.9 2.92 2.87 3.23 2.9 2.92 2.96 3.15 2.9 2.820.03 0 0.09 0.09 0.05 0 0.01 0.02 0 0 0 0 0.040.11 0.17 0.33 0.35 0.3 0.28 0.11 0.11 0.13 0.23 0.12 0.1 0.350.14 0.13 0.13 0.08 0.12 0.12 0.12 0.13 0.12 0.18 0.12 0.15 0.1210.82 10.83 10.94 10.85 10.69 10.86 10.54 10.83 11.15 10.94 11 10.88 11.170.22 0.26 0.3 0.31 0.28 0.26 0.28 0.24 0.55 0.53 0.5 0.66 0.380 0 0.02 0.02 0.02 0 0.01 0.02 0.01 0.02 0 0.01 0.014.12 4.11 4.10 4.13 4.07 4.12 4.09 4.11 4.08 4.08 4.09 4.00 4.14-0.09 -0.11 -0.13 -0.14 -0.12 -0.11 -0.12 -0.11 -0.23 -0.23 -0.21 -0.28 -0.1698.92 99.25 99.56 100.33 98.72 99.34 98.96 99.15 101.87 101.73 101.58 101.10 101.482.608 2.608 2.635 2.648 2.630 2.623 2.610 2.597 2.569 2.582 2.574 2.595 2.6190.082 0.076 0.081 0.082 0.078 0.092 0.073 0.060 0.065 0.064 0.067 0.056 0.0981.957 1.946 1.928 1.898 1.907 1.927 1.901 1.962 1.983 1.985 1.986 1.964 1.9230.001 0.001 0.004 0.002 0.000 0.002 0.004 0.009 0.004 0.007 0.006 0.007 0.0080.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.010 0.009 0.008 0.0100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002.014 2.037 1.995 2.015 2.040 2.000 2.095 2.054 2.062 2.032 2.035 2.062 1.9710.001 0.001 0.001 0.000 0.004 0.001 0.000 0.001 0.002 0.000 0.003 0.002 0.0040.164 0.171 0.156 0.170 0.174 0.170 0.192 0.172 0.169 0.171 0.182 0.168 0.1640.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.002 0.000 0.007 0.007 0.004 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.0030.003 0.005 0.009 0.010 0.008 0.008 0.003 0.003 0.004 0.006 0.003 0.003 0.0100.019 0.018 0.018 0.011 0.017 0.016 0.017 0.018 0.016 0.024 0.016 0.020 0.0160.979 0.978 0.985 0.969 0.971 0.980 0.955 0.979 0.982 0.964 0.972 0.964 0.9890.049 0.058 0.067 0.069 0.063 0.058 0.063 0.054 0.120 0.116 0.110 0.145 0.0830.000 0.000 0.002 0.002 0.002 0.000 0.001 0.002 0.001 0.002 0.000 0.001 0.0011.951 1.942 1.931 1.929 1.935 1.942 1.936 1.944 1.879 1.882 1.890 1.854 1.9150.173 0.160 0.200 0.186 0.167 0.186 0.125 0.145 0.135 0.148 0.138 0.136 0.20310 10 10 10 10 10 10 10 10 10 10 10 10179pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)r Ms r c r r r Cal c c r Cal c cG11-02-07b-31 G11-02-07a-35 G11-02-07a-36 G11-02-07a-37 G11-02-07a-38 G11-02-11-42 G11-02-11-43 G11-02-11-44 G11-02-11-45 G11-02-11-48 TD-G014-07A2-01-5737.64 37.19 37.1 37.69 37.58 36.96 37.12 38.45 37.54 37.78 35.521.97 1.43 1.46 1.67 1.53 1.36 1.7 1.35 1.18 1.44 1.6323.66 24.25 24.09 23.43 23.6 23.69 23.32 23.71 23.7 23.18 23.180.04 0.04 0 0.06 0.16 0.05 0.05 0.06 0.01 0.12 0.190.2 0.19 0.12 0.15 0.17 0.2 0.17 0.12 0.12 0.12 0.270 0 0 0 0 0 0 0 0 0 019.59 20 20.06 19.59 20.01 19.79 19.28 19.74 20.67 19.7 17.990.08 0.04 0 0.04 0.03 0.08 0.04 0.1 0.02 0.05 02.94 2.98 2.95 2.74 2.9 2.96 2.95 2.81 2.86 3.01 5.020.03 0.04 0.02 0.03 0.02 0.01 0.03 0 0.02 0.03 0.10.28 0.11 0.02 0.33 0.17 0.17 0.16 0.3 0.29 0.35 0.140.16 0.15 0.12 0.13 0.15 0.17 0.13 0.15 0.13 0.13 0.1610.96 11.04 11.1 10.99 11.02 10.99 10.96 11.01 11.03 10.9 10.150.3 0.28 0.42 0.51 0.57 0.37 0.47 0.21 0.57 0.24 0.610.01 0.02 0 0.01 0 0 0 0.01 0 0.02 0.024.20 4.20 4.13 4.07 4.07 4.12 4.05 4.26 4.08 4.19 3.87-0.13 -0.12 -0.18 -0.22 -0.24 -0.16 -0.20 -0.09 -0.24 -0.11 -0.26101.93 101.84 101.41 101.22 101.74 100.76 100.23 102.19 101.98 101.15 98.592.598 2.568 2.571 2.617 2.598 2.582 2.605 2.640 2.590 2.627 2.5570.102 0.074 0.076 0.087 0.080 0.071 0.090 0.070 0.061 0.075 0.0881.925 1.974 1.968 1.918 1.923 1.951 1.929 1.919 1.927 1.900 1.9660.002 0.002 0.000 0.003 0.009 0.003 0.003 0.003 0.001 0.007 0.0110.011 0.011 0.007 0.008 0.009 0.011 0.010 0.007 0.007 0.007 0.0160.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002.016 2.059 2.072 2.028 2.062 2.061 2.017 2.020 2.126 2.042 1.9300.005 0.002 0.000 0.002 0.002 0.005 0.002 0.006 0.001 0.003 0.0000.170 0.172 0.171 0.159 0.168 0.173 0.173 0.161 0.165 0.175 0.3020.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.002 0.003 0.001 0.002 0.001 0.001 0.002 0.000 0.001 0.002 0.0080.008 0.003 0.001 0.009 0.005 0.005 0.004 0.008 0.008 0.010 0.0040.021 0.020 0.016 0.018 0.020 0.023 0.018 0.020 0.017 0.018 0.0220.965 0.973 0.981 0.974 0.972 0.980 0.981 0.964 0.971 0.967 0.9320.065 0.061 0.092 0.112 0.125 0.082 0.104 0.046 0.124 0.053 0.1390.001 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.002 0.0021.933 1.937 1.908 1.887 1.875 1.918 1.896 1.953 1.876 1.945 1.8590.172 0.138 0.135 0.176 0.150 0.143 0.171 0.174 0.122 0.164 0.13010 10 10 10 10 10 10 10 10 10 10180pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)r Kfs c c r Cal r An c r Cal c mTD-G014-07A2-01-64 TD-G014-07A2-01-65 TD-G014-07A2-01-70 TD-G014-07A2-01-71 TD-G014-07B1-1-4 TD-G014-07B1-1-5 TD-G014-07B1-1-6 TD-G014-07B1-1-7 TD-G014-07B1-1-835.79 35.46 36.47 35.93 37.6 36.7 36.96 36.98 36.871.65 1.78 1.66 1.5 1.74 1.91 1.85 1.71 1.6323.51 23.35 23.65 23.73 22.45 22.65 22.49 23.46 230.11 0.06 0.16 0.13 0.11 0.04 0.12 0.15 0.070.22 0.25 0.2 0.21 0.26 0.19 0.16 0.24 0.220 0 0 0 0 0 0 0 017.47 16.96 17.85 17.99 18.01 17.58 17.84 17.93 17.770 0.03 0.06 0 0.05 0 0 0 05.37 5.57 5.08 4.73 4.95 5.04 5.03 4.84 4.830.14 0.1 0.12 0.23 0.02 0.05 0.02 0.04 0.070.32 0.18 0.33 0.26 0.33 0.32 0.37 0.22 0.220.18 0.18 0.2 0.19 0.18 0.12 0.13 0.24 0.1310.47 10.51 10.59 10.32 10.42 10.61 10.42 10.49 10.490.7 0.7 0.54 0.72 1.11 0.63 0.64 0.43 0.420.01 0.01 0.01 0.01 0.01 0.02 0 0.03 0.023.85 3.82 3.99 3.86 3.72 3.90 3.91 4.05 4.01-0.30 -0.30 -0.23 -0.31 -0.47 -0.27 -0.27 -0.19 -0.1899.49 98.66 100.68 99.50 100.49 99.49 99.67 100.62 99.572.562 2.562 2.575 2.560 2.652 2.620 2.631 2.603 2.6210.089 0.097 0.088 0.080 0.092 0.103 0.099 0.091 0.0871.983 1.988 1.968 1.993 1.866 1.906 1.887 1.946 1.9270.006 0.003 0.009 0.007 0.006 0.002 0.007 0.008 0.0040.013 0.014 0.011 0.012 0.015 0.011 0.009 0.014 0.0130.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.864 1.826 1.879 1.911 1.894 1.871 1.893 1.881 1.8840.000 0.002 0.004 0.000 0.003 0.000 0.000 0.000 0.0000.321 0.337 0.300 0.282 0.292 0.301 0.299 0.285 0.2870.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.011 0.008 0.009 0.018 0.002 0.004 0.002 0.003 0.0050.009 0.005 0.009 0.007 0.009 0.009 0.010 0.006 0.0060.025 0.025 0.027 0.026 0.025 0.017 0.018 0.033 0.0180.956 0.969 0.954 0.938 0.938 0.966 0.946 0.942 0.9520.158 0.160 0.121 0.162 0.248 0.142 0.144 0.096 0.0940.001 0.001 0.001 0.001 0.001 0.002 0.000 0.004 0.0021.840 1.839 1.878 1.837 1.751 1.855 1.856 1.901 1.9030.162 0.171 0.166 0.154 0.180 0.186 0.175 0.173 0.17710 10 10 10 10 10 10 10 10181pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)r Cal r An c c r Cal c r AnTD-G014-07B1-1-9 TD-G014-07B1-1-10 TD-G014-07B1-1-11 TD-G014-07B1-3-28 TD-G014-07B1-3-29 TD-G014-07B1-4-38 TD-G014-07B1-4-39 14A1-17-1 14A1-17-2 14A1-17-3 14A1-26-1036.59 35.99 36.17 37.19 39.52 36.79 36.41 36.2266 37.3617 37.2372 36.55981.46 1.6 1.86 1.52 0.82 1.8 1.92 1.5418 1.9072 1.8636 1.589523.51 23.33 23.34 24.02 19.7 22.68 23.13 23.4996 23.0792 22.2697 23.9450.05 0.28 0.23 0.21 0.08 0 0.01 0.0547 0 0.0295 0.04630.21 0.14 0.21 0.13 0.05 0.15 0.16 0.1721 0.1879 0.2486 0.08960 0 0 0 0 0 0 0 0 0 017.94 18.15 17.26 16.83 20.47 17.96 17.62 18.0761 18.0039 18.251 17.49370.01 0.02 0.02 0 0.04 0.01 0 0.0034 0.0238 0.017 0.03734.95 4.93 5.26 5.19 4.19 4.91 4.91 4.8286 4.9241 4.7143 4.91510.0631 0 0.0253 0.03790.13 0.04 0.05 0.12 0.14 0.1 0.09 0 0.0012 0.0072 0.14290.28 0.25 0.22 0.17 0.15 0.26 0.46 0.2595 0.4113 0.3209 0.28420.17 0.13 0.14 0.15 0.15 0.14 0.14 0.1422 0.1587 0.1284 0.121810.71 10.65 10.36 10.19 10.4 10.56 10.45 10.5402 10.6474 10.6677 10.58980.67 0.38 0.67 0.62 0.97 0.42 0.49 0.3654 0.8502 0.8181 0.55690 0.01 0 0.04 0.05 0.01 0.01 0.0183 0.0207 0.0207 0.01913.92 4.03 3.88 3.94 3.79 4.01 3.97 3.84 3.42 3.41 3.67-0.28 -0.16 -0.28 -0.27 -0.42 -0.18 -0.21 -0.16 -0.36 -0.35 -0.24100.32 99.77 99.39 100.05 100.10 99.62 99.56 99.48 100.63 99.68 99.862.590 2.564 2.584 2.626 2.781 2.619 2.596 2.578 2.623 2.639 2.5880.078 0.086 0.100 0.081 0.043 0.096 0.103 0.083 0.101 0.099 0.0851.961 1.959 1.965 1.999 1.634 1.903 1.944 1.971 1.909 1.860 1.9980.003 0.016 0.013 0.012 0.004 0.000 0.001 0.003 0.000 0.002 0.0030.012 0.008 0.012 0.007 0.003 0.009 0.009 0.010 0.011 0.014 0.0050.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.893 1.928 1.838 1.771 2.148 1.906 1.873 1.917 1.884 1.928 1.8460.001 0.001 0.001 0.000 0.002 0.001 0.000 0.000 0.001 0.001 0.0020.293 0.294 0.314 0.306 0.247 0.292 0.293 0.287 0.289 0.279 0.2910.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001 0.0020.010 0.003 0.004 0.009 0.011 0.008 0.007 0.000 0.000 0.001 0.0110.008 0.007 0.006 0.005 0.004 0.007 0.013 0.007 0.011 0.009 0.0080.023 0.018 0.019 0.021 0.020 0.019 0.019 0.020 0.022 0.018 0.0170.967 0.968 0.944 0.918 0.934 0.959 0.951 0.957 0.953 0.964 0.9560.150 0.086 0.151 0.138 0.216 0.095 0.111 0.082 0.189 0.183 0.1250.000 0.001 0.000 0.005 0.006 0.001 0.001 0.002 0.002 0.002 0.0021.850 1.913 1.849 1.857 1.778 1.904 1.888 1.916 1.809 1.814 1.8730.169 0.144 0.171 0.198 0.137 0.175 0.181 0.151 0.182 0.178 0.18310 10 10 10 10 10 10 10 10 10 10182pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)14A1-26-11 14A1-26-16 14A1-26-17 14A1-26-18 14A1-26-19 14A1-26-20 14A1-26-21 14A1-28-25 14A1-28-26 14A1-28-27 14A1-28-28 14A1-28-29 14A1-28-30 14A1-28-31 14A1-28-3236.7757 36.3563 35.811 36.4399 36.0712 36.1432 35.8142 36.7551 36.4966 36.2832 35.9563 36.5601 38.3428 36.3876 36.18241.7055 1.485 1.3922 1.5017 1.7258 1.7052 1.7062 1.1993 1.5256 1.4765 1.4472 1.6011 1.5759 1.4984 1.579723.6625 24.3793 24.2577 24.2611 23.0603 23.3698 23.5771 23.9083 23.5638 23.741 23.8561 23.3334 22.3622 22.2766 22.19950.0084 0.1096 0.0295 0.0126 0 0.0462 0.0631 0.0757 0.0547 0.0462 0.0421 0 0.0379 0.1052 0.11360.0783 0.0435 0.0791 0.0513 0.1664 0.086 0.1185 0.1211 0.1551 0.1162 0.1504 0.0335 0.137 0.1612 0.08520 0 0 0 0 0 0 0 0 0 0 0 0 0 017.1737 17.3956 17.5728 17.9402 17.226 17.2104 17.3333 17.2964 17.4681 17.7893 17.7353 17.2377 17.3167 18.3477 18.2050.0204 0.0136 0.017 0.0577 0 0.0475 0 0.0916 0.0339 0.0203 0.0509 0.078 0.0373 0.0034 04.8956 4.7717 4.8015 5.0144 4.9933 5.3167 5.0332 5.4401 5.4424 5.5706 5.3761 5.4778 5.2157 5.235 5.26250 0.0295 0 0 0.0757 0.0841 0.1177 0.0421 0 0.0589 0.059 0.0084 0.0421 0 00.03 0.0301 0.0204 0.0625 0.1283 0.1139 0.1571 0 0.0409 0.0588 0.048 0.0672 0.1345 0.0852 0.14650.3479 0.2451 0.1937 0.1226 0.5213 0.4011 0.5162 0.1714 0.0784 0.3547 0.071 0.3596 0.2205 0.3304 0.22770.0969 0.1111 0.1567 0.1595 0.1432 0.1305 0.125 0.1011 0.1432 0.1658 0.1787 0.1568 0.146 0.1526 0.135310.9328 10.7288 10.7861 10.7886 10.5185 10.5495 10.553 10.6292 10.7694 10.659 10.4698 10.799 10.6637 10.8153 10.62550.5749 0.6609 0.815 0.6949 0.5549 0.6577 0.8287 0.3475 0.3488 0.5182 0.7786 0.7604 0.6616 1.0004 0.57270.0278 0.0119 0.0111 0.0008 0.0032 0 0.019 0.0262 0.0008 0.0119 0.0183 0.0087 0.0318 0.0143 0.03653.64 3.57 3.39 3.57 3.61 3.54 3.35 3.87 3.88 3.71 3.43 3.45 3.59 3.19 3.58-0.25 -0.28 -0.35 -0.29 -0.23 -0.28 -0.35 -0.15 -0.15 -0.22 -0.33 -0.32 -0.29 -0.42 -0.2599.72 99.66 98.98 100.38 98.57 99.12 98.96 99.92 99.85 100.36 99.33 99.61 100.23 99.18 98.702.610 2.576 2.556 2.565 2.597 2.587 2.567 2.605 2.592 2.569 2.561 2.604 2.700 2.604 2.6030.091 0.079 0.075 0.080 0.093 0.092 0.092 0.064 0.082 0.079 0.078 0.086 0.083 0.081 0.0851.979 2.036 2.041 2.013 1.956 1.972 1.992 1.997 1.972 1.981 2.002 1.959 1.856 1.879 1.8820.000 0.006 0.002 0.001 0.000 0.003 0.004 0.004 0.003 0.003 0.002 0.000 0.002 0.006 0.0060.004 0.002 0.005 0.003 0.010 0.005 0.007 0.007 0.009 0.007 0.009 0.002 0.008 0.009 0.0050.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.817 1.837 1.870 1.883 1.849 1.837 1.852 1.827 1.849 1.878 1.883 1.830 1.818 1.957 1.9520.001 0.001 0.001 0.003 0.000 0.003 0.000 0.005 0.002 0.001 0.003 0.005 0.002 0.000 0.0000.291 0.283 0.287 0.295 0.301 0.318 0.302 0.322 0.323 0.330 0.320 0.326 0.307 0.313 0.3170.000 0.002 0.000 0.000 0.004 0.004 0.006 0.002 0.000 0.003 0.003 0.000 0.002 0.000 0.0000.002 0.002 0.002 0.005 0.010 0.009 0.012 0.000 0.003 0.004 0.004 0.005 0.010 0.007 0.0110.010 0.007 0.005 0.003 0.015 0.011 0.015 0.005 0.002 0.010 0.002 0.010 0.006 0.009 0.0060.013 0.015 0.022 0.022 0.020 0.018 0.017 0.014 0.020 0.023 0.025 0.022 0.020 0.021 0.0190.990 0.970 0.982 0.969 0.966 0.963 0.965 0.961 0.976 0.963 0.951 0.981 0.958 0.987 0.9750.129 0.148 0.184 0.155 0.126 0.149 0.188 0.078 0.078 0.116 0.175 0.171 0.147 0.226 0.1300.003 0.001 0.001 0.000 0.000 0.000 0.002 0.003 0.000 0.001 0.002 0.001 0.004 0.002 0.0041.868 1.850 1.815 1.845 1.873 1.851 1.810 1.919 1.922 1.883 1.822 1.828 1.849 1.772 1.8650.206 0.180 0.164 0.157 0.195 0.184 0.184 0.167 0.168 0.153 0.142 0.188 0.224 0.151 0.15010 10 10 10 10 10 10 10 10 10 10 10 10 10 10183pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)14A1-28-33 14A1-28-34 14A1-28-35 14A1-28-36 14A1-28-37 14A1-28-38 14A1-28-39 14A1-28-40 14A1-28-41 14A1-28-42 14A1-28-43 14A1-28-44 14A1-28-45 14A1-28-47 14A1-28-4836.2701 36.6534 36.2373 36.1166 36.3998 37.7722 36.4431 36.487 36.3932 36.3142 36.15 36.2004 35.9659 36.753 36.21891.6256 1.6435 1.5525 1.4039 1.4765 1.8889 1.7339 1.4161 1.5697 1.5964 1.74 1.6791 1.5642 1.8434 1.869723.5753 22.8551 22.7861 23.9293 23.2544 22.1357 22.9452 23.2935 23.4449 24.0196 23.1244 23.3163 23.2238 22.8712 23.2890.0883 0.0462 0.0631 0.0673 0.122 0.0126 0.0084 0.0968 0.0715 0.0883 0.0757 0.0714 0.0757 0.1345 0.03780.1342 0.0975 0.1892 0.108 0.1162 0.1469 0.1283 0.0878 0.0985 0.1328 0.1048 0.1669 0.1273 0.1093 0.11620 0 0 0 0 0 0 0 0 0 0 0 0 0 017.5134 17.4364 17.664 18.1534 18.2936 17.4743 17.4527 18.091 17.2188 17.3234 17.2487 17.1692 17.5367 17.8034 17.22140.0237 0.0203 0 0.017 0.0712 0 0.0034 0.0238 0.0305 0.0034 0.0678 0.0678 0 0 0.04755.3091 5.5888 5.1916 5.2911 5.2701 5.3533 5.5587 5.2718 5.5732 5.6528 5.5014 5.6644 5.2639 5.4753 5.39240.1178 0.164 0.0084 0.0884 0 0 0.0295 0.021 0 0 0.0463 0.0463 0.0547 0 0.10930 0.0264 0.0468 0.024 0.0432 0.0036 0.0228 0.0529 0.0384 0.2305 0.0468 0.0648 0.1405 0.0216 00.2227 0.3692 0.5162 0.1371 0.3011 0.3182 0.23 0.2351 0.1444 0.1346 0.1908 0.2079 0.1641 0.4182 0.29350.1539 0.1215 0.125 0.0957 0.1351 0.1093 0.1305 0.1153 0.1385 0.1474 0.0884 0.1004 0.0749 0.1225 0.105510.7634 10.5893 10.4789 10.6642 10.6436 10.7859 10.6167 10.9294 10.7361 10.6399 10.8918 11.0962 10.8811 10.6823 10.94660.5554 0.6386 0.7766 0.6234 0.3821 0.4532 0.7268 0.2958 0.9165 0.3482 0.5219 0.6595 0.66 0.3476 0.57320.0183 0.0143 0.0056 0.004 0.0143 0.027 0.0262 0.0103 0.004 0 0.0174 0.0166 0.0309 0.0127 0.01113.66 3.56 3.40 3.62 3.85 3.77 3.46 3.93 3.29 3.89 3.66 3.54 3.51 3.88 3.63-0.24 -0.27 -0.33 -0.26 -0.16 -0.20 -0.31 -0.13 -0.39 -0.15 -0.22 -0.28 -0.28 -0.15 -0.2499.79 99.56 98.71 100.08 100.20 100.06 99.21 100.23 99.28 100.38 99.25 99.79 98.99 100.33 99.612.579 2.615 2.603 2.557 2.579 2.675 2.604 2.587 2.596 2.568 2.589 2.583 2.579 2.604 2.5850.087 0.088 0.084 0.075 0.079 0.101 0.093 0.076 0.084 0.085 0.094 0.090 0.084 0.098 0.1001.976 1.921 1.929 1.996 1.942 1.847 1.933 1.946 1.971 2.002 1.952 1.961 1.963 1.910 1.9590.005 0.003 0.004 0.004 0.007 0.001 0.000 0.005 0.004 0.005 0.004 0.004 0.004 0.008 0.0020.008 0.006 0.011 0.006 0.007 0.008 0.007 0.005 0.006 0.008 0.006 0.010 0.007 0.006 0.0070.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.857 1.854 1.892 1.916 1.932 1.845 1.859 1.912 1.831 1.826 1.842 1.826 1.875 1.881 1.8320.001 0.001 0.000 0.001 0.004 0.000 0.000 0.001 0.002 0.000 0.004 0.004 0.000 0.000 0.0030.316 0.333 0.312 0.313 0.312 0.317 0.332 0.313 0.332 0.334 0.330 0.338 0.316 0.324 0.3220.006 0.009 0.000 0.005 0.000 0.000 0.002 0.001 0.000 0.000 0.002 0.002 0.003 0.000 0.0060.000 0.002 0.004 0.002 0.003 0.000 0.002 0.004 0.003 0.017 0.004 0.005 0.011 0.002 0.0000.006 0.010 0.015 0.004 0.008 0.009 0.006 0.007 0.004 0.004 0.005 0.006 0.005 0.012 0.0080.021 0.017 0.017 0.013 0.019 0.015 0.018 0.016 0.019 0.020 0.012 0.014 0.010 0.017 0.0150.976 0.964 0.960 0.963 0.962 0.974 0.968 0.989 0.977 0.960 0.995 1.010 0.995 0.966 0.9970.125 0.144 0.176 0.140 0.086 0.101 0.164 0.066 0.207 0.078 0.118 0.149 0.150 0.078 0.1290.002 0.002 0.001 0.000 0.002 0.003 0.003 0.001 0.000 0.000 0.002 0.002 0.004 0.002 0.0011.873 1.854 1.823 1.860 1.913 1.895 1.833 1.932 1.793 1.922 1.880 1.849 1.847 1.921 1.8690.172 0.179 0.166 0.133 0.138 0.207 0.170 0.155 0.175 0.172 0.179 0.185 0.172 0.169 0.18910 10 10 10 10 10 10 10 10 10 10 10 10 10 10184pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)14A1-28-49 14A1-28-53 14A1-28-54 14A1-28-55 1102-06-1 1102-06-2 1102-06-3 1102-06-4 1102-06-5 1102-06-6 1102-06-9 1102-06-10 1102-06-11 1102-06-12 1102-06-1336.74 37.718 37.4951 37.3636 37.566 37.6133 36.8518 36.0931 37.3544 37.3291 36.5199 37.0895 36.9883 36.7633 36.58641.9224 2.1825 2.1745 2.1025 1.6445 1.6136 1.2588 1.2846 1.6396 1.6522 1.4962 1.5261 1.2524 1.354 1.197323.159 22.7373 22.3471 22.5368 23.0619 23.186 23.5329 24.0587 23.8519 23.2193 24.0216 23.5764 23.6238 24.249 24.11610.0042 0.08 0.0546 0.0631 0 0.0212 0 0.0212 0.0255 0 0.0127 0.0594 0.0382 0.0637 00.1431 0.1747 0.1507 0.1472 0.1212 0.1248 0.138 0.116 0.1616 0.0819 0.091 0.1037 0.118 0.1068 0.13810 0 0 0 0 0 0 0 0 0 0 0 0 0 017.5186 17.1839 16.8048 17.0197 19.5313 19.434 19.722 19.2034 18.9872 19.2279 19.6666 19.4717 19.5096 19.93 19.73410.0034 0 0 0.0203 0.0204 0.0715 0.0238 0 0.0989 0.0102 0.0068 0.017 0 0.058 0.03415.6338 5.2356 5.582 5.4449 2.8902 2.9488 2.9198 3.61 2.6722 2.5964 2.8656 2.6261 3.1152 2.8902 2.78270.0126 0 0.0673 0.0294 0 0.0253 0.1013 0.0802 0 0 0.0634 0.1351 0.076 0.0085 0.01690 0 0.0539 0.0408 0.0277 0.0675 0.1388 0.0374 0.0278 0.0205 0.0097 0.0012 0.076 0.0229 00.2201 0.3719 0.3276 0.3522 0.5584 0.5705 0.3103 0.1844 0.1823 0.4433 0.1896 0.3545 0.133 0.0961 0.12570.1531 0.1028 0.1482 0.0767 0.1039 0.0951 0.1242 0.1492 0.1163 0.161 0.124 0.1304 0.0896 0.1672 0.122510.6887 10.7539 10.6923 10.7609 10.7082 10.9493 11.211 10.7842 10.8191 10.9755 10.8667 10.7137 10.6612 10.7666 11.03320.6935 0.6109 0.54 0.6614 0.6492 0.7886 0.5097 0.3679 0.4083 0.4942 0.5632 0.5632 0.4399 0.4761 0.59860 0 0.0341 0.019 0.0104 0.0127 0.0096 0.0319 0.0128 0 0 0.008 0.0072 0.004 0.01043.55 3.66 3.67 3.56 3.64 3.51 3.76 3.86 3.88 3.78 3.72 3.71 3.83 3.83 3.67-0.29 -0.26 -0.24 -0.28 -0.28 -0.33 -0.22 -0.16 -0.17 -0.21 -0.24 -0.24 -0.19 -0.20 -0.25100.15 100.55 99.91 99.92 100.25 100.70 100.40 99.72 100.06 99.78 99.98 99.85 99.77 100.59 99.922.601 2.654 2.662 2.650 2.628 2.623 2.585 2.551 2.612 2.624 2.562 2.602 2.599 2.561 2.5670.102 0.116 0.116 0.112 0.087 0.085 0.066 0.068 0.086 0.087 0.079 0.081 0.066 0.071 0.0631.932 1.886 1.870 1.884 1.901 1.906 1.945 2.004 1.966 1.924 1.986 1.949 1.956 1.991 1.9940.000 0.004 0.003 0.004 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.003 0.002 0.004 0.0000.008 0.010 0.009 0.008 0.007 0.007 0.008 0.007 0.009 0.005 0.005 0.006 0.007 0.006 0.0080.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.849 1.803 1.779 1.800 2.037 2.021 2.062 2.023 1.979 2.015 2.057 2.037 2.043 2.070 2.0640.000 0.000 0.000 0.001 0.001 0.004 0.001 0.000 0.006 0.001 0.000 0.001 0.000 0.003 0.0020.334 0.308 0.331 0.323 0.169 0.172 0.171 0.213 0.156 0.153 0.168 0.154 0.183 0.168 0.1630.001 0.000 0.004 0.002 0.000 0.001 0.005 0.004 0.000 0.000 0.003 0.007 0.004 0.000 0.0010.000 0.000 0.004 0.003 0.002 0.005 0.010 0.003 0.002 0.002 0.001 0.000 0.006 0.002 0.0000.006 0.010 0.009 0.010 0.015 0.016 0.009 0.005 0.005 0.012 0.005 0.010 0.004 0.003 0.0030.021 0.014 0.020 0.011 0.014 0.013 0.017 0.020 0.016 0.022 0.017 0.018 0.012 0.023 0.0170.965 0.965 0.968 0.974 0.956 0.974 1.003 0.972 0.965 0.984 0.973 0.959 0.955 0.957 0.9880.155 0.136 0.121 0.148 0.144 0.174 0.113 0.082 0.090 0.110 0.125 0.125 0.098 0.105 0.1330.000 0.000 0.004 0.002 0.001 0.002 0.001 0.004 0.002 0.000 0.000 0.001 0.001 0.000 0.0011.845 1.864 1.875 1.849 1.855 1.825 1.886 1.914 1.908 1.890 1.875 1.874 1.901 1.895 1.8660.174 0.220 0.230 0.217 0.171 0.181 0.162 0.133 0.184 0.192 0.141 0.167 0.144 0.126 0.13810 10 10 10 10 10 10 10 10 10 10 10 10 10 10185pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)1102-06-14 1102-06-15 1102-06-16 1102-06-17 1102-06-18 III-1 III-2 III-3 III-4 III-5 III-6 III-7 III-10 III-11 III-12 III-13 III-14 III-15 III-16 III-17 III-18 III-1936.8622 38.1143 36.8742 38.2357 37.019 40.312 40.06 37.95 36.957 37.9 37.71 36.78 38.326 38.26 39.416 39.154 39.498 38.15 37.25 37.21 37.18 37.491.2375 1.7167 1.3279 1.6046 1.4104 0.8451 0.843 0.828 0.9354 0.885 0.861 0.63 1.1507 1.087 1.04 1.1266 1.1224 1.115 0.881 1.011 0.947 1.10323.774 23.1203 24.6414 22.5399 23.9995 18.343 17.34 19.78 21.471 20.24 20.7 22 19.429 19.36 19.43 18.87 18.756 20.05 21.09 20.69 20.93 20.440.034 0.0297 0.0679 0.0552 0.0255 0 0.051 0.03 0.0508 0 0.072 0 0.0381 0 0.1228 0.0594 0 0 0.004 0.038 0.047 0.110.0952 0.0942 0.0388 0.0884 0.1452 0.2357 0.154 0.155 0.2945 0.238 0.242 0.228 0.3172 0.259 0.2439 0.2724 0.2702 0.334 0.335 0.257 0.295 0.2610 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 019.9118 18.828 19.2116 19.2938 19.3466 24.406 24.31 23.69 22.869 23.34 23.11 22.4 23.735 23.56 23.952 24.091 24.158 23.54 22.69 23.28 22.62 22.730.0273 0.0409 0.0034 0.0068 0.0545 0 0 0 0.0473 0.034 0 0 0 0 0 0 0.0169 0 0 0.024 0.041 02.7902 2.6573 2.9629 2.5899 2.757 1.3443 1.28 1.508 1.3645 1.305 1.217 1.377 1.5282 1.623 1.7436 1.4186 1.464 1.364 1.44 1.476 1.331 1.4750.0929 0.1013 0.0507 0.0887 0.0549 0.0623 0 0.046 0.0166 0 0.087 0.083 0.0539 0.046 0.0788 0.1162 0.0955 0.046 0.05 0.095 0 0.0790.0133 0 0 0.0338 0.0048 0.0049 0 0.057 0.0448 0.013 0.018 0.108 0 0.022 0.0085 0.0389 0 0.049 0.05 0.069 0.052 0.0170.1626 0.298 0.2487 0.3768 0.357 0.3763 0.366 0.796 1.3722 0.933 1.053 1.376 0.7952 0.798 0.7462 0.5431 0.5407 1.158 1.279 1.294 1.26 1.4430.1418 0.1063 0.1331 0.1269 0.1306 0.4571 0.4 0.499 0.6196 0.513 0.562 0.538 0.4742 0.484 0.5297 0.4782 0.456 0.512 0.638 0.518 0.572 0.48410.9517 10.7671 10.9749 10.6771 11.1716 9.9142 9.909 9.597 9.6135 9.579 9.601 9.504 9.8162 9.902 9.7262 9.9495 9.7345 9.56 9.485 9.724 9.667 9.5070.6501 0.478 0.5624 0.8966 0.7032 2.2755 1.542 1.445 1.5993 1.085 1.297 0.911 1.3849 1.514 0.9878 1.2091 0.8927 0.786 0.732 0.766 0.768 1.160.0167 0.0112 0.0128 0.0207 0.0159 0 0.008 0.005 0.0199 0.002 0.02 0.007 0.0176 0.022 0.0038 0.0238 0.0246 0.022 0.015 0.015 0 0.0153.63 3.81 3.74 3.38 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59-0.28 -0.20 -0.24 -0.38 -0.30 -0.96 -0.65 -0.61 -0.68 -0.46 -0.55 -0.39 -0.59 -0.64 -0.42 -0.51 -0.38 -0.34 -0.31 -0.33 -0.32 -0.49100.11 99.97 100.61 99.63 100.48 101.20 99.20 99.36 100.18 99.20 99.58 99.15 100.07 99.88 101.20 100.42 100.23 99.93 99.21 99.72 98.97 99.412.581 2.665 2.570 2.679 2.587 2.787 2.817 2.677 2.601 2.670 2.654 2.602 2.687 2.692 2.720 2.726 2.744 2.670 2.630 2.621 2.633 2.6520.065 0.090 0.070 0.085 0.074 0.044 0.045 0.044 0.050 0.047 0.046 0.034 0.061 0.058 0.054 0.059 0.059 0.059 0.047 0.054 0.050 0.0591.962 1.905 2.024 1.861 1.976 1.495 1.437 1.645 1.781 1.681 1.717 1.834 1.605 1.606 1.580 1.548 1.536 1.654 1.755 1.718 1.747 1.7040.002 0.002 0.004 0.003 0.001 0.000 0.003 0.002 0.003 0.000 0.004 0.000 0.002 0.000 0.007 0.003 0.000 0.000 0.000 0.002 0.003 0.0060.005 0.005 0.002 0.005 0.008 0.013 0.009 0.009 0.017 0.013 0.014 0.013 0.018 0.015 0.013 0.015 0.015 0.019 0.019 0.015 0.017 0.0150.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002.079 1.963 1.996 2.015 2.015 2.516 2.548 2.491 2.399 2.452 2.424 2.362 2.481 2.472 2.464 2.500 2.502 2.456 2.388 2.444 2.388 2.3970.002 0.002 0.000 0.000 0.003 0.000 0.000 0.000 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.0000.163 0.155 0.173 0.152 0.161 0.078 0.075 0.089 0.080 0.077 0.072 0.081 0.090 0.096 0.101 0.083 0.085 0.080 0.085 0.087 0.079 0.0870.005 0.005 0.003 0.005 0.003 0.003 0.000 0.002 0.001 0.000 0.005 0.004 0.003 0.002 0.004 0.006 0.005 0.002 0.003 0.005 0.000 0.0040.001 0.000 0.000 0.003 0.000 0.000 0.000 0.004 0.003 0.001 0.001 0.008 0.000 0.002 0.001 0.003 0.000 0.004 0.004 0.005 0.004 0.0010.004 0.008 0.007 0.010 0.010 0.010 0.010 0.022 0.038 0.026 0.029 0.038 0.022 0.022 0.020 0.015 0.015 0.032 0.035 0.036 0.035 0.0400.019 0.014 0.018 0.017 0.018 0.061 0.054 0.068 0.085 0.070 0.077 0.074 0.064 0.066 0.071 0.065 0.061 0.069 0.087 0.071 0.078 0.0660.978 0.960 0.976 0.954 0.996 0.875 0.889 0.864 0.863 0.861 0.862 0.857 0.878 0.889 0.856 0.884 0.863 0.853 0.854 0.874 0.873 0.8580.144 0.106 0.124 0.199 0.155 0.498 0.343 0.322 0.356 0.242 0.289 0.204 0.307 0.337 0.216 0.266 0.196 0.174 0.164 0.171 0.172 0.2600.002 0.001 0.002 0.002 0.002 0.000 0.001 0.001 0.002 0.000 0.002 0.001 0.002 0.003 0.000 0.003 0.003 0.003 0.002 0.002 0.000 0.0021.854 1.893 1.875 1.799 1.843 1.502 1.656 1.677 1.642 1.758 1.709 1.795 1.691 1.661 1.784 1.731 1.801 1.823 1.835 1.828 1.828 1.7390.140 0.212 0.161 0.201 0.174 0.067 0.067 0.043 0.067 0.057 0.071 0.075 0.056 0.063 0.062 0.066 0.059 0.064 0.076 0.059 0.081 0.08010 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10186pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)r Kfs r Kfs c m r Cal cIII-20 III-21 IV-22 IV-23 IV-24 IV-25 IV-26 IV-27 IV-28 IV-29 IV-30 TD-G063B-09-15-7 TD-G063B-09-15-8 TD-G063B-09-9 TD-G063B-09-10 TD-G063B-09-11 TD-G020-07B2-11-938.05 37.253 39.94 39.19 38.78 38.71 38.64 37.35 39.382 37.46 38.957 36.12 36.64 37.44 36.97 36.76 38.261.131 0.9878 1.142 1.137 1.133 1.087 1.095 1.132 1.1355 1.012 1.1568 1.94 1.95 2.23 2.01 1.68 2.1219.43 21.201 17.75 18.45 18.93 18.73 19.21 20.54 18.75 20.27 19.002 22.14 22.31 20.42 21.91 22.84 18.510.076 0.0804 0 0.042 0.068 0.03 0.025 0.14 0.0424 0.123 0.144 0.07 0.09 0.05 0.11 0 0.170.358 0.2658 0.221 0.218 0.29 0.31 0.295 0.314 0.2779 0.348 0.2557 0.05 0.09 0.06 0.07 0.09 1.180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 023.49 23.103 24.24 23.79 23.71 23.53 23.67 23.16 24.129 23.25 24.025 18.62 18.52 18.14 18.25 18.67 21.90 0.0439 0.058 0.017 0 0 0.017 0.034 0 0.01 0 0 0.04 0.04 0.05 0.04 01.416 1.497 1.43 1.479 1.511 1.304 1.4 1.356 1.5203 1.592 1.4543 4.44 4.45 4.99 4.88 4.74 3.180.012 0.0538 0.087 0 0.12 0 0.021 0.037 0 0.021 0.07470.001 0.0157 0.08 0.09 0.073 0.009 0.018 0.041 0.0194 0 0.0279 0.03 0.01 0.01 0 0.04 0.061.04 1.3648 0.55 0.403 0.842 0.867 0.744 1.504 0.5922 1.157 0.923 0.5 0.49 0.51 0.38 0.32 0.130.457 0.518 0.422 0.488 0.49 0.477 0.521 0.529 0.4515 0.492 0.4994 0.16 0.18 0.08 0.12 0.19 0.049.668 9.4889 9.751 9.569 9.383 9.742 9.72 9.409 9.983 9.648 9.7684 10.47 10.42 10.6 10.56 10.34 10.590.938 0.9791 1.159 0.728 0.839 1.156 0.924 0.997 1.1262 1.098 0.6392 0.68 0.8 0.71 0.77 0.78 0.710.005 0.0245 0.035 0.032 0.034 0.003 0.008 0.018 0.0606 0.022 0.0038 0.05 0.05 0.02 0.03 0.02 0.023.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.59 3.83 3.81 3.82 3.83 3.86 3.92-0.40 -0.42 -0.50 -0.31 -0.36 -0.49 -0.39 -0.42 -0.49 -0.47 -0.27 -0.30 -0.35 -0.30 -0.33 -0.33 -0.3099.26 100.04 99.95 98.91 99.42 99.05 99.50 99.72 100.57 99.62 100.25 98.80 99.50 98.82 99.61 100.04 100.492.685 2.614 2.788 2.753 2.722 2.734 2.711 2.632 2.737 2.642 2.714 2.597 2.613 2.696 2.637 2.604 2.6930.060 0.052 0.060 0.060 0.060 0.058 0.058 0.060 0.059 0.054 0.061 0.105 0.105 0.121 0.108 0.090 0.1121.616 1.753 1.460 1.528 1.566 1.559 1.589 1.705 1.536 1.685 1.560 1.876 1.875 1.733 1.842 1.907 1.5360.004 0.004 0.000 0.002 0.004 0.002 0.001 0.008 0.002 0.007 0.008 0.004 0.005 0.003 0.006 0.000 0.0090.020 0.015 0.012 0.012 0.016 0.018 0.017 0.018 0.015 0.020 0.014 0.003 0.005 0.003 0.004 0.005 0.0670.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002.470 2.417 2.522 2.491 2.481 2.477 2.476 2.433 2.499 2.445 2.495 1.996 1.969 1.947 1.940 1.971 2.2980.000 0.003 0.003 0.001 0.000 0.000 0.001 0.002 0.000 0.001 0.000 0.000 0.002 0.002 0.003 0.002 0.0000.084 0.088 0.083 0.087 0.089 0.077 0.082 0.080 0.088 0.094 0.085 0.267 0.265 0.300 0.291 0.281 0.1870.001 0.003 0.004 0.000 0.006 0.000 0.001 0.002 0.000 0.001 0.004 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.001 0.006 0.007 0.005 0.001 0.001 0.003 0.001 0.000 0.002 0.002 0.001 0.001 0.000 0.003 0.0050.029 0.038 0.015 0.011 0.023 0.024 0.020 0.042 0.016 0.032 0.025 0.014 0.014 0.014 0.011 0.009 0.0040.063 0.070 0.057 0.066 0.067 0.065 0.071 0.072 0.061 0.067 0.067 0.022 0.025 0.011 0.017 0.026 0.0050.870 0.849 0.868 0.858 0.840 0.878 0.870 0.846 0.885 0.868 0.868 0.960 0.948 0.974 0.961 0.934 0.9510.209 0.217 0.256 0.162 0.186 0.258 0.205 0.222 0.247 0.245 0.141 0.155 0.180 0.162 0.174 0.175 0.1580.001 0.003 0.004 0.004 0.004 0.000 0.001 0.002 0.007 0.003 0.000 0.006 0.006 0.002 0.004 0.002 0.0021.790 1.780 1.740 1.834 1.810 1.741 1.794 1.776 1.745 1.752 1.859 1.839 1.814 1.836 1.823 1.823 1.8400.061 0.054 0.072 0.065 0.063 0.077 0.066 0.063 0.063 0.053 0.064 0.152 0.161 0.194 0.170 0.141 0.09810 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10187pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within marble at the Revelstoke Occurrence (con't)m r Cal c m r CalTD-G020-07B2-11-10 TD-G020-07B2-11-11 TD-G020-07B2-12-12 TD-G020-07B2-12-13 TD-G020-07B2-12-1437.76 40.72 37.83 38.18 37.951.89 1.74 2.17 2.22 2.0218.06 14.92 19.51 18.24 19.370.24 0.23 0.28 0.27 0.271.32 0.97 1.26 1.41 1.350 0 0 0 021.43 23.38 21.07 21.56 21.430.02 0 0 0.04 0.033.16 2.86 2.96 3.09 2.910.08 0.11 0.05 0.01 0.110.33 0.09 0.24 0.16 0.180.06 0.05 0.08 0.05 0.0910.37 10 10.69 10.44 10.520.76 1.19 0.5 0.57 0.640.04 0.05 0.03 0.04 0.033.82 3.67 4.01 3.96 3.96-0.33 -0.51 -0.22 -0.25 -0.2899.01 99.47 100.46 99.99 100.582.703 2.877 2.664 2.701 2.6670.102 0.092 0.115 0.118 0.1071.524 1.242 1.619 1.521 1.6040.014 0.013 0.016 0.015 0.0150.076 0.055 0.071 0.080 0.0760.000 0.000 0.000 0.000 0.0002.287 2.462 2.212 2.274 2.2450.001 0.000 0.000 0.002 0.0020.189 0.169 0.174 0.183 0.1710.000 0.000 0.000 0.000 0.0000.006 0.008 0.004 0.001 0.0080.009 0.002 0.007 0.004 0.0050.008 0.007 0.011 0.007 0.0120.947 0.901 0.960 0.942 0.9430.172 0.266 0.111 0.128 0.1420.005 0.006 0.004 0.005 0.0041.823 1.728 1.885 1.868 1.8540.105 0.089 0.128 0.107 0.11310 10 10 10 10188pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within calc-gneiss at the Revelstoke Occurrence (con't)edge of grt edge of grt leuc n to grt leuc n to grt incl w kyin grt edge of grt edge of grt edge of grt edge of grt tourmaline tourmaline tourmaline tourmaline53-1-1 53-1-2 53-1-4 53-1-5 53-2-6 53-2-1 53-2-2 53-2-3 53-2-4 53-3-1 53-3-2 53-6-1 53-7-1 71-3-1 71-3-2 71-3-335.2759 34.6496 34.5449 34.5387 35.5582 34.8246 34.2328 34.7 34.4756 36.5454 36.2756 36.0692 37.1324 36.679 36.736 37.1964.037 3.9525 4.9175 4.6059 4.2438 3.5226 3.4681 3.4837 3.6533 4.0607 4.1079 3.3971 3.4747 4.306 4.1604 4.464617.5003 17.8112 17.3677 17.6986 18.406 19.4885 19.7196 19.5788 19.3451 19.7928 19.0447 19.0747 20.4718 15.336 15.215 14.3160.0912 0.1111 0.1626 0.0873 0.0599 0.0476 0.0159 0.0635 0.0357 0.1011 0 0.0893 0.2235 0.08 0.016 0.1320 0 0 0.0536 0.0096 0 0 0.0527 0.0178 0.1627 0.1577 0.0954 0.1369 0.005 0 0.03650 0 0 0 0 0 0 0 0 0 0 0 0 0 0 09.2746 9.2688 8.8057 8.7905 9.4804 8.0221 7.9194 7.9947 8.1162 10.2047 10.8289 12.2876 11.1201 11.934 11.969 12.4290.0819 0.0328 0.0752 0.059 0 0.118 0.0885 0.0197 0.0689 0.0795 0.0497 0 0.0398 0.0461 0.0494 0.108620.2091 20.198 20.4074 20.5809 18.5756 20.1534 20.5961 20.387 20.3815 14.9101 14.9627 13.8707 13.5742 18.687 18.68 18.5090.041 0.0451 0.1023 0.041 0.111 0 0.0862 0.0287 0 0 0 0.0207 0.0166 0.1399 0.0905 0.04530.0669 0.0808 0.0265 0.0161 0.022 0.0197 0 0.0486 0.0046 0.0782 0.014 0.0363 0.0562 0.0777 0.2086 0.20290.4237 0.4428 0.4536 0.4049 0.3108 0.1735 0.1594 0.1079 0.1431 0.2492 0.3132 0.0619 0.2049 0.2615 0.2826 0.28270.0516 0.0849 0.1417 0.1112 0.1136 0.0604 0.0971 0.0727 0.0788 0.1246 0.1348 0.1316 0.0942 0.0403 0.0837 0.04189.195 8.7907 9.5283 9.29 9.9248 9.7602 9.3948 9.4454 9.8432 9.6573 9.7016 9.5369 9.7033 9.963 9.3304 9.7270.9931 0.2724 0.4412 0.061 0.2928 0 0 0.2583 0.0915 0.0794 0.3629 0.4583 0.3505 0.0772 0.6272 0.2630.0138 0.0208 0 0.01 0.0054 0.0108 0 0.0108 0.0015 0.0047 0 0 0 0.0162 0.0116 03.43 3.77 3.70 3.89 3.84 3.94 3.92 3.80 3.89 4.01 3.84 3.78 3.92 3.97 3.67 3.88-0.42 -0.12 -0.19 -0.03 -0.12 0.00 0.00 -0.11 -0.04 -0.03 -0.15 -0.19 -0.15 -0.04 -0.27 -0.11100.26 99.41 100.49 100.21 100.83 100.14 99.70 99.95 100.10 100.03 99.64 98.72 100.37 101.58 100.86 101.522.683 2.654 2.636 2.637 2.671 2.647 2.617 2.640 2.628 2.703 2.701 2.692 2.714 2.741 2.757 2.7770.231 0.228 0.282 0.265 0.240 0.201 0.199 0.199 0.209 0.226 0.230 0.191 0.191 0.242 0.235 0.2511.568 1.608 1.562 1.593 1.629 1.746 1.777 1.755 1.738 1.725 1.671 1.678 1.763 1.351 1.346 1.2600.005 0.007 0.010 0.005 0.004 0.003 0.001 0.004 0.002 0.006 0.000 0.005 0.013 0.005 0.001 0.0080.000 0.000 0.000 0.003 0.001 0.000 0.000 0.003 0.001 0.010 0.009 0.006 0.008 0.000 0.000 0.0020.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.051 1.059 1.002 1.001 1.061 0.909 0.903 0.907 0.922 1.125 1.202 1.367 1.212 1.330 1.339 1.3830.005 0.002 0.005 0.004 0.000 0.008 0.006 0.001 0.004 0.005 0.003 0.000 0.002 0.003 0.003 0.0071.285 1.294 1.302 1.314 1.167 1.281 1.317 1.297 1.299 0.922 0.932 0.866 0.830 1.168 1.172 1.1560.002 0.003 0.006 0.002 0.006 0.000 0.005 0.002 0.000 0.000 0.000 0.001 0.001 0.008 0.005 0.0020.005 0.007 0.002 0.001 0.002 0.002 0.000 0.004 0.000 0.006 0.001 0.003 0.004 0.006 0.017 0.0160.013 0.013 0.014 0.012 0.009 0.005 0.005 0.003 0.004 0.007 0.009 0.002 0.006 0.008 0.008 0.0080.008 0.013 0.021 0.016 0.017 0.009 0.014 0.011 0.012 0.018 0.019 0.019 0.013 0.006 0.012 0.0060.892 0.859 0.928 0.905 0.951 0.946 0.916 0.917 0.957 0.911 0.921 0.908 0.905 0.950 0.893 0.9270.239 0.066 0.106 0.015 0.070 0.000 0.000 0.062 0.022 0.019 0.085 0.108 0.081 0.018 0.149 0.0620.002 0.003 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.001 0.0001.759 1.931 1.894 1.984 1.930 1.999 2.000 1.936 1.978 1.981 1.915 1.892 1.919 1.980 1.850 1.9380.171 0.148 0.200 0.179 0.228 0.206 0.180 0.193 0.196 0.278 0.252 0.196 0.267 0.161 0.148 0.15610 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10189pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within calc-gneiss at the Revelstoke Occurrence (con't)next to grt next to grt next to grt next to grt inclu71-3-5 71-3-6 71-4b-1 72-1 72-2 72-3 72-4 72-5 72-6 72-8 72-9 72-10 72-11 72-12 72-13 72-14 72-16 72-17 72-18 72-19 72-20 12-136.809 36.323 36.32 37.422 36.838 37.507 37.09 36.62 37.251 36.4669 36.4407 36.2698 36.8488 36.168 35.8 36.52 36.45 37.128 37.259 36.64 37.492 36.6972.9505 2.6592 3.869 4.6268 4.1576 3.9595 3.354 3.195 3.3847 2.1662 2.1065 2.0189 3.4066 3.6676 3.057 2.573 2.969 3.1401 3.1875 3.056 3.4731 2.757614.728 14.611 14.295 14.208 13.923 14.139 14.021 14.28 14.252 14.6643 14.743 15.0714 14.964 15.437 14.66 14.66 14.55 14.308 14.634 14.41 14.553 19.2060.0396 0.0435 0.1259 0.0998 0.0834 0.0716 0.0635 0.032 0.0952 0.0433 0.0906 0 0.1194 0.0914 0 0 0.115 0.0518 0.0838 0.072 0.0679 0.04410.0216 0.0562 0.0459 0 0 0 0 0.003 0 0 0 0 0.0115 0 0.023 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 011.705 11.554 9.3412 11.565 11.612 11.803 12.376 11.44 11.8 10.7139 10.9353 11.0673 11.295 11.065 12.04 12.07 12.27 12.397 12.413 12.08 11.984 11.3520 0.0622 0.1273 0.0986 0.0721 0.1116 0.1279 0.161 0.1737 0.1894 0.2548 0.3265 0.1444 0.1967 0.122 0.128 0.118 0.2003 0.171 0.142 0.1152 0.036321.471 21.534 23.376 18.847 20.107 19.955 20.219 19.38 20.642 22.1915 22.2301 22.8414 19.3297 19.8 19.21 18.95 19.36 19.273 18.512 18.26 18.755 17.8920.0616 0.0329 0.0287 0 0.0287 0.0984 0.082 0.021 0.0205 0.1801 0.1474 0 0.078 0.0328 0.156 0 0.16 0.0575 0.115 0.156 0.037 0.09060.1135 0.118 0.1232 0.232 0.0605 0.0114 0.0629 0.601 0.1017 0.1733 0.0879 0.0262 0.1979 0.0137 0.803 0.106 0.172 0.0584 0.0757 0.054 0.1721 00.0493 0.1101 0.049 0.1599 0.1853 0.1479 0.1268 0.217 0.1853 0.1449 0.0678 0.028 0.2092 0.2394 0.092 0.141 0.111 0.167 0.2214 0.245 0.1037 0.31210.0866 0.0457 0.0761 0.0722 0.0592 0.0469 0.0257 0.041 0.0137 0.1398 0.1383 0.0892 0.1175 0.0998 0.042 0.061 0.069 0.0361 0.0628 0.064 0.045 0.13859.5213 9.1563 9.3334 9.3246 9.1395 9.6932 9.55 9.136 9.6863 8.721 9.2744 8.9087 9.4186 9.5317 8.185 9.192 9.376 9.4779 9.5466 9.553 9.608 9.90530.4044 0.5803 0.1648 0.8695 0.9502 0.811 1.0545 1.249 0.883 0.8005 1.1079 0.8905 0.8893 1.0593 0.821 0.962 0.869 1.0437 1.0329 1.032 1.1325 00.0062 0.0139 0.0061 0.027 0.0308 0.0154 0.0224 0.02 0.0223 0.037 0.0208 0.037 0.0208 0.0246 0.041 0.046 0.039 0.0154 0.0201 0.04 0.0255 0.00543.77 3.62 3.83 3.53 3.45 3.58 3.42 3.26 3.52 3.47 3.34 3.45 3.49 3.39 3.45 3.38 3.47 3.42 3.43 3.36 3.39 4.09-0.17 -0.25 -0.07 -0.37 -0.41 -0.34 -0.45 -0.53 -0.38 -0.35 -0.47 -0.38 -0.38 -0.45 -0.36 -0.42 -0.37 -0.44 -0.44 -0.44 -0.48 0.00101.56 100.27 101.04 100.72 100.29 101.60 101.15 99.13 101.66 99.76 100.51 100.64 100.16 100.37 98.14 98.38 99.72 100.33 100.33 98.72 100.47 102.532.775 2.775 2.780 2.811 2.797 2.810 2.797 2.810 2.801 2.806 2.791 2.772 2.795 2.748 2.763 2.812 2.780 2.810 2.811 2.814 2.823 2.6890.167 0.153 0.223 0.261 0.237 0.223 0.190 0.184 0.191 0.125 0.121 0.116 0.194 0.210 0.177 0.149 0.170 0.179 0.181 0.177 0.197 0.1521.309 1.316 1.289 1.258 1.246 1.249 1.246 1.292 1.263 1.330 1.331 1.358 1.338 1.382 1.333 1.330 1.308 1.276 1.301 1.304 1.291 1.6590.002 0.003 0.008 0.006 0.005 0.004 0.004 0.002 0.006 0.003 0.005 0.000 0.007 0.005 0.000 0.000 0.007 0.003 0.005 0.004 0.004 0.0030.001 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.315 1.316 1.066 1.295 1.314 1.318 1.391 1.309 1.323 1.229 1.249 1.261 1.277 1.253 1.386 1.386 1.396 1.399 1.396 1.382 1.345 1.2400.000 0.004 0.008 0.006 0.005 0.007 0.008 0.010 0.011 0.012 0.017 0.021 0.009 0.013 0.008 0.008 0.008 0.013 0.011 0.009 0.007 0.0021.354 1.376 1.496 1.184 1.277 1.251 1.275 1.244 1.298 1.428 1.424 1.460 1.226 1.258 1.240 1.220 1.235 1.220 1.168 1.173 1.181 1.0970.003 0.002 0.002 0.000 0.002 0.005 0.005 0.001 0.001 0.010 0.008 0.000 0.004 0.002 0.009 0.000 0.009 0.003 0.006 0.009 0.002 0.0050.009 0.010 0.010 0.019 0.005 0.001 0.005 0.049 0.008 0.014 0.007 0.002 0.016 0.001 0.066 0.009 0.014 0.005 0.006 0.004 0.014 0.0000.001 0.003 0.001 0.005 0.006 0.004 0.004 0.007 0.005 0.004 0.002 0.001 0.006 0.007 0.003 0.004 0.003 0.005 0.007 0.007 0.003 0.0090.013 0.007 0.011 0.011 0.009 0.007 0.004 0.006 0.002 0.021 0.021 0.013 0.017 0.015 0.006 0.009 0.010 0.005 0.009 0.010 0.007 0.0200.916 0.893 0.911 0.893 0.885 0.927 0.919 0.894 0.929 0.856 0.906 0.869 0.911 0.924 0.806 0.903 0.912 0.915 0.919 0.936 0.923 0.9260.096 0.140 0.040 0.207 0.228 0.192 0.252 0.303 0.210 0.195 0.268 0.215 0.213 0.255 0.200 0.234 0.210 0.250 0.246 0.251 0.270 0.0000.001 0.002 0.001 0.003 0.004 0.002 0.003 0.003 0.003 0.005 0.003 0.005 0.003 0.003 0.005 0.006 0.005 0.002 0.003 0.005 0.003 0.0011.903 1.858 1.959 1.790 1.768 1.806 1.746 1.694 1.787 1.800 1.729 1.780 1.784 1.742 1.794 1.760 1.785 1.748 1.751 1.744 1.727 1.9990.076 0.054 0.127 0.179 0.119 0.137 0.087 0.149 0.107 0.066 0.062 0.011 0.153 0.131 0.092 0.095 0.096 0.101 0.128 0.138 0.151 0.15910 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10190pos. And min. assoc.EPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3Fe2O3MgOMnOFeOtotZnOCaOBaONa2OK2OFCLH2O *-(O=F,Cl)TOTALSi4+ apfuTi4+Al3+Cr3+V3+Fe3+Mg2+Mn2+Fe2+Zn2+Ca2+Ba2+Na+K+F-Cl-OH-vac. (M)O2-Appendix A.3: Compositions of phlogopite from lithologies within calc-gneiss at the Revelstoke Occurrence (con't)inclu edge edge n to Pl poik n to Pl poik incl in ky12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 12-1035.868 36.314 36.249 36.585 36.598 36.6769 36.2281 36.6999 37.1553.0896 2.8913 3.1229 3.1545 2.8808 2.8569 3.0109 2.8055 3.186119.042 19.139 19.373 18.817 19.117 19.6239 19.3237 19.6646 18.7620.008 0.0887 0.0161 0.0443 0.0081 0.0888 0.0323 0.0968 0.08060.004 0.0225 0.0212 0.0049 0 0.0034 0 0.0156 0.03950 0 0 0 0 0 0 0 011.443 12.086 11.816 11.925 11.924 11.9695 12.0093 11.6759 11.4230.1252 0.0198 0.076 0.076 0.0529 0.0331 0.0629 0.0562 0.115617.57 15.64 15.726 16.064 16.054 15.5266 15.3267 15.8561 15.9790.0822 0.0989 0.0783 0.099 0.0784 0.0041 0.1362 0.0165 00 0.0323 0.053 0.0254 0.0046 0.0704 0.0254 0.0104 0.03570.3637 0.3082 0.2253 0.2514 0.223 0.2326 0.2328 0.2089 0.3340.1339 0.1176 0.1073 0.1224 0.1382 0.1459 0.1115 0.1162 0.067110.143 9.8685 10.215 9.8747 9.79 10.0414 9.8096 10.1398 9.88550.0646 0.8253 0.2942 0.4557 0.3738 0.1964 0.2454 0.5215 0.73190.0008 0.0217 0.014 0.0008 0 0.0109 0 0 0.00234.02 3.62 3.91 3.83 3.87 3.98 3.92 3.82 3.69-0.03 -0.35 -0.13 -0.19 -0.16 -0.09 -0.10 -0.22 -0.31101.93 100.74 101.17 101.14 100.96 101.38 100.37 101.48 101.182.653 2.686 2.674 2.698 2.700 2.689 2.683 2.693 2.7350.172 0.161 0.173 0.175 0.160 0.158 0.168 0.155 0.1761.660 1.669 1.684 1.636 1.662 1.696 1.686 1.701 1.6280.000 0.005 0.001 0.003 0.000 0.005 0.002 0.006 0.0050.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.0020.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0001.262 1.333 1.299 1.311 1.311 1.308 1.326 1.277 1.2530.008 0.001 0.005 0.005 0.003 0.002 0.004 0.003 0.0071.087 0.968 0.970 0.991 0.990 0.952 0.949 0.973 0.9840.004 0.005 0.004 0.005 0.004 0.000 0.007 0.001 0.0000.000 0.003 0.004 0.002 0.000 0.006 0.002 0.001 0.0030.011 0.009 0.007 0.007 0.006 0.007 0.007 0.006 0.0100.019 0.017 0.015 0.018 0.020 0.021 0.016 0.017 0.0100.957 0.931 0.961 0.929 0.921 0.939 0.927 0.949 0.9280.015 0.193 0.069 0.106 0.087 0.046 0.057 0.121 0.1700.000 0.003 0.002 0.000 0.000 0.001 0.000 0.000 0.0001.985 1.804 1.930 1.894 1.913 1.953 1.943 1.879 1.8290.158 0.176 0.193 0.181 0.173 0.190 0.182 0.192 0.21010 10 10 10 10 10 10 10 10191Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrenceposition r m c r m c r c r r mEPMA point G10-01-19-1 G10-01-19-2 G10-01-19-3 G10-01-08-1 G10-01-08-2 G10-01-08-3 G10-01-08-4 G10-01-08-5 G10-01-mt-1 G10-01-mt-2 G10-01-mt-3 G10-01-mt-4 G10-01-mt-5SiO2 wt.% 43.96 45.49 44.50 44.21 45.18 44.27 44.17 43.87 45.30 45.53 46.00 45.73 46.35TiO2 1.66 0.83 1.57 0.74 1.27 0.82 0.45 0.51 1.09 0.99 0.93 0.80 0.60Al2O3 35.17 34.10 34.98 36.21 35.22 36.08 36.39 36.21 35.05 34.82 34.70 34.67 34.65Cr2O3 0.04 0.20 0.17 0.14 0.09 0.00 0.09 0.13 0.08 0.03 0.09 0.08 0.02V2O3MgO 0.86 1.13 0.86 0.60 0.73 0.55 0.38 0.42 0.79 0.93 1.01 0.95 1.00CaO 0.05 0.01 0.02 0.04 0.05 0.10 0.05 0.14 0.02 0.02 0.00 0.00 0.01MnO 0.00 0.00 0.01 0.05 0.01 0.07 0.00 0.04 0.00 0.03 0.02 0.01 0.00FeO 0.16 0.14 0.19 0.24 0.15 0.16 0.13 0.11 0.06 0.08 0.16 0.12 0.07BaO 1.47 1.04 1.13 1.52 1.16 1.15 1.70 1.59 1.19 1.19 1.20 1.08 0.98Na2O 0.25 0.22 0.23 0.35 0.22 0.28 0.27 0.32 0.23 0.21 0.23 0.23 0.26K2O 10.91 10.79 10.76 10.39 11.00 9.95 10.71 10.80 11.02 11.04 11.01 10.79 10.53F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00CL 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00H2O * 4.40 4.42 4.43 4.42 4.46 4.41 4.41 4.40 4.45 4.45 4.47 4.44 4.46O=F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O=CL -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TOTAL 98.95 98.37 98.85 98.92 99.54 97.84 98.75 98.54 99.28 99.33 99.83 98.91 98.93Si4+ apfu 2.987 3.088 3.014 2.994 3.038 3.011 3.000 2.990 3.052 3.066 3.081 3.084 3.113Ti4+ 0.085 0.042 0.080 0.038 0.064 0.042 0.023 0.026 0.055 0.050 0.047 0.041 0.030Al3+ 2.817 2.728 2.792 2.890 2.791 2.892 2.913 2.909 2.783 2.764 2.739 2.756 2.743Cr3+ 0.002 0.011 0.009 0.007 0.005 0.000 0.005 0.007 0.004 0.002 0.005 0.004 0.001V3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Mg2+ 0.087 0.114 0.087 0.061 0.073 0.056 0.038 0.043 0.079 0.093 0.101 0.096 0.100Ca2+ 0.004 0.001 0.001 0.003 0.004 0.007 0.004 0.010 0.001 0.001 0.000 0.000 0.001Mn2+ 0.000 0.000 0.001 0.003 0.001 0.004 0.000 0.002 0.000 0.002 0.001 0.001 0.000Fe2+ 0.009 0.008 0.011 0.014 0.008 0.009 0.007 0.006 0.003 0.005 0.009 0.007 0.004Ba2+ 0.039 0.028 0.030 0.040 0.031 0.031 0.045 0.042 0.031 0.031 0.031 0.029 0.026Na+ 0.033 0.029 0.030 0.046 0.029 0.037 0.036 0.042 0.030 0.027 0.030 0.030 0.034K+ 0.946 0.934 0.930 0.898 0.944 0.863 0.928 0.939 0.947 0.948 0.941 0.928 0.902F- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Cl- 0.003 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000OH- 1.993 2.000 2.000 1.998 2.000 2.000 2.000 2.000 2.000 1.998 1.998 1.998 2.000O2- 10.003 10.000 10.000 10.001 10.000 10.000 10.000 10.000 10.000 10.001 10.001 10.001 10.000*calculated from electroneutral formula assuming 12 anions and (OH+F+Cl)=2.NOTE: Following standards, X-ray lines and crystals were used during EMP analysis: synthetic phlogopite, FKa , MgKa , SiKa , TAP, KKa , PET; albite, NaKa, TAP; kyanite, AlKa, TAP; scapolite, ClKa, PET; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF; barite, BaLa, PET.192positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)c r c r c r cG10-01-mt-6 G10-01-mt-7 G10-01-mt-8 G10-01-mt-9 G10-01-04-1 G10-01-04-2 G10-01-04-3 G10-01-02-1 G10-01-02-2 G10-01-02-3 G10-01-02-4 G10-01-02-5 G10-01-02-645.69 45.18 44.87 45.44 44.17 45.77 45.03 45.74 43.79 44.27 44.42 44.45 43.940.60 1.06 1.20 1.10 1.68 0.91 0.79 1.10 1.73 1.86 1.11 1.61 1.3334.54 34.63 34.36 34.84 34.97 34.77 34.81 34.69 35.25 35.39 35.48 35.05 35.320.01 0.04 0.06 0.07 0.18 0.10 0.11 0.10 0.08 0.01 0.13 0.02 0.020.91 0.94 0.96 0.93 0.74 1.02 0.95 0.92 0.84 0.75 0.49 0.72 0.800.02 0.03 0.01 0.01 0.03 0.00 0.02 0.01 0.01 0.00 0.07 0.01 0.000.00 0.00 0.00 0.02 0.03 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.060.00 0.14 0.12 0.06 0.20 0.00 0.09 0.15 0.22 0.19 0.15 0.13 0.161.04 1.35 1.21 1.26 0.73 1.10 1.15 1.23 0.76 0.72 1.22 0.76 1.430.26 0.21 0.23 0.16 0.30 0.23 0.21 0.25 0.27 0.29 0.31 0.27 0.2110.69 10.74 10.77 10.72 10.99 10.86 11.14 10.96 11.19 10.95 10.76 11.26 10.920.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.01 0.004.42 4.43 4.40 4.45 4.41 4.45 4.42 4.46 4.40 4.44 4.41 4.42 4.400.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0098.18 98.75 98.19 99.06 98.43 99.22 98.76 99.65 98.55 98.87 98.55 98.70 98.593.098 3.061 3.057 3.063 3.003 3.078 3.053 3.071 2.978 2.992 3.017 3.014 2.9940.031 0.054 0.062 0.056 0.086 0.046 0.040 0.056 0.089 0.095 0.057 0.082 0.0682.760 2.765 2.759 2.768 2.802 2.756 2.782 2.745 2.826 2.819 2.840 2.801 2.8360.001 0.002 0.003 0.004 0.010 0.005 0.006 0.005 0.004 0.001 0.007 0.001 0.0010.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.092 0.095 0.097 0.093 0.075 0.102 0.096 0.092 0.085 0.076 0.050 0.073 0.0810.001 0.002 0.001 0.001 0.002 0.000 0.001 0.001 0.001 0.000 0.005 0.001 0.0000.000 0.000 0.000 0.001 0.002 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.0030.000 0.008 0.007 0.003 0.011 0.000 0.005 0.008 0.013 0.011 0.009 0.007 0.0090.028 0.036 0.032 0.033 0.019 0.029 0.031 0.032 0.020 0.019 0.032 0.020 0.0380.034 0.028 0.030 0.021 0.040 0.030 0.028 0.033 0.036 0.038 0.041 0.035 0.0280.925 0.928 0.936 0.922 0.953 0.932 0.964 0.939 0.971 0.944 0.932 0.974 0.9490.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000 0.000 0.000 0.001 0.002 0.000 0.001 0.001 0.000 0.000 0.001 0.0002.000 2.000 2.000 2.000 1.998 1.995 2.000 1.998 1.998 2.000 2.000 1.998 2.00010.000 10.000 10.000 10.000 10.001 10.002 10.000 10.001 10.001 10.000 10.000 10.001 10.000193positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)r c c m rG10-01-10-1 G10-01-10-2 G10-01-10-3 G10-01-10-4 G10-01-10-5 G10-01-17-1 G10-01-17-2 G10-01-17-3 G10-01-21-5 G10-01-21-6 G10-01-21-7 G10-01-21-8 G10-01-21-944.02 44.20 45.12 44.70 45.35 44.68 46.13 44.77 45.35 43.62 44.34 44.12 44.640.84 0.77 1.31 1.20 1.28 0.54 0.78 1.07 1.92 1.76 1.75 1.51 1.4236.54 36.15 34.89 35.06 35.60 33.96 34.36 34.21 33.95 34.74 35.20 35.29 35.350.09 0.00 0.11 0.10 0.10 0.03 0.03 0.11 0.09 0.03 0.02 0.08 0.000.68 0.72 0.95 0.84 0.90 1.11 1.20 1.08 1.25 0.94 0.97 0.68 0.610.07 0.02 0.02 0.06 0.00 0.01 0.00 0.01 0.01 0.00 0.04 0.05 0.020.00 0.00 0.00 0.01 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.020.18 0.10 0.15 0.12 0.18 0.21 0.17 0.08 0.28 0.20 0.12 0.17 0.161.59 1.31 0.89 1.11 1.43 2.51 1.07 1.10 1.10 1.49 1.28 0.86 0.910.28 0.29 0.21 0.25 0.23 0.38 0.20 0.22 0.26 0.22 0.22 0.26 0.2710.35 10.98 11.10 10.96 10.99 10.18 10.61 10.74 10.67 10.99 11.02 10.82 10.980.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.004.43 4.43 4.45 4.43 4.49 4.35 4.46 4.38 4.45 4.38 4.44 4.41 4.430.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0099.08 98.97 99.20 98.84 100.56 97.97 99.07 97.78 99.33 98.37 99.40 98.25 98.812.976 2.993 3.041 3.028 3.024 3.073 3.102 3.060 3.055 2.986 2.994 3.001 3.0200.043 0.039 0.066 0.061 0.064 0.028 0.039 0.055 0.097 0.091 0.089 0.077 0.0722.911 2.885 2.771 2.799 2.798 2.753 2.723 2.756 2.695 2.802 2.801 2.829 2.8180.005 0.000 0.006 0.005 0.005 0.002 0.002 0.006 0.005 0.002 0.001 0.004 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.069 0.073 0.095 0.085 0.089 0.114 0.120 0.110 0.126 0.096 0.098 0.069 0.0620.005 0.001 0.001 0.004 0.000 0.001 0.000 0.001 0.001 0.000 0.003 0.004 0.0010.000 0.000 0.000 0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.0010.010 0.006 0.008 0.007 0.010 0.012 0.010 0.005 0.016 0.011 0.007 0.010 0.0090.042 0.035 0.024 0.029 0.037 0.068 0.028 0.029 0.029 0.040 0.034 0.023 0.0240.037 0.038 0.027 0.033 0.030 0.051 0.026 0.029 0.034 0.029 0.029 0.034 0.0350.893 0.949 0.954 0.947 0.935 0.893 0.910 0.937 0.917 0.960 0.949 0.939 0.9480.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.001 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.0001.998 2.000 2.000 2.000 1.998 1.998 2.000 1.998 2.000 1.998 2.000 2.000 2.00010.001 10.000 10.000 10.000 10.001 10.001 10.000 10.001 10.000 10.001 10.000 10.000 10.000194positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)G11-02-6 G11-02-7 G11-02-8 G11-02-12 G11-02-13 G11-02-20 G11-02-21 G11-02-22 G11-02-23 G022-07C-12 G022-07C-13 G022-07C-3045.30 44.60 45.04 44.90 44.85 44.88 45.55 45.07 44.07 47.47 47.27 46.361.17 0.99 1.08 0.89 0.64 1.04 0.89 0.06 0.05 0.62 0.19 0.0335.84 36.21 36.06 36.45 36.85 34.53 34.24 35.39 35.62 34.17 33.63 37.270.00 0.05 0.00 0.03 0.04 0.06 0.04 0.00 0.05 0.00 0.00 0.040.04 0.01 0.010.58 0.56 0.63 0.55 0.60 1.20 1.25 0.73 0.92 1.45 2.18 0.640.29 0.16 0.12 0.03 0.08 0.05 0.88 0.03 8.41 0.28 0.38 2.180.02 0.02 0.00 0.00 0.03 0.00 0.04 0.02 0.04 0.02 0.00 0.010.18 0.14 0.09 0.08 0.19 0.15 0.21 0.21 0.55 0.11 0.20 0.191.35 0.95 1.05 0.96 1.20 1.32 1.05 0.73 0.17 0.84 0.98 1.620.36 0.30 0.21 0.23 0.24 0.19 0.20 0.26 0.44 0.25 0.20 0.4810.42 10.63 10.73 11.27 11.01 11.10 10.53 10.69 3.25 10.74 9.64 7.590.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.100.00 0.01 0.00 0.01 0.00 0.01 0.01 0.02 0.05 0.03 0.01 0.024.49 4.45 4.47 4.47 4.49 4.42 4.45 4.39 4.46 4.52 4.23 4.470.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.11 -0.040.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.00100.00 99.06 99.48 99.87 100.22 98.94 99.34 97.60 98.07 100.53 99.07 100.973.028 3.004 3.020 3.006 2.995 3.044 3.067 3.071 2.944 3.140 3.162 3.0370.059 0.050 0.054 0.045 0.032 0.053 0.045 0.003 0.003 0.031 0.010 0.0012.823 2.874 2.850 2.876 2.900 2.760 2.718 2.842 2.805 2.664 2.652 2.8770.000 0.003 0.000 0.002 0.002 0.003 0.002 0.000 0.003 0.000 0.000 0.0020.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.0010.058 0.056 0.063 0.055 0.060 0.121 0.125 0.074 0.092 0.143 0.217 0.0620.021 0.012 0.009 0.002 0.006 0.004 0.063 0.002 0.602 0.020 0.027 0.1530.001 0.001 0.000 0.000 0.002 0.000 0.002 0.001 0.002 0.001 0.000 0.0010.010 0.008 0.005 0.004 0.011 0.009 0.012 0.012 0.031 0.006 0.011 0.0100.035 0.025 0.028 0.025 0.031 0.035 0.028 0.019 0.004 0.022 0.026 0.0420.047 0.039 0.027 0.030 0.031 0.025 0.026 0.034 0.057 0.032 0.026 0.0610.888 0.913 0.918 0.963 0.938 0.960 0.905 0.929 0.277 0.906 0.823 0.6340.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.055 0.0210.000 0.001 0.000 0.001 0.000 0.001 0.001 0.002 0.006 0.003 0.001 0.0022.000 1.998 2.000 1.998 2.000 1.998 1.998 1.995 1.989 1.993 1.888 1.95410.000 10.001 10.000 10.001 10.000 10.001 10.001 10.002 10.006 10.003 10.056 10.023195positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)G014-07B1-27 G014-07B1-29 G014-07B1-31 G014-07B1-32 G014-07B1-33 G014-07B1-34 G014-07B1-56 G014-07B1-36 G014-07B1-37 G014-07A2-56 G014-07A2-5845.67 44.79 44.54 44.22 44.53 45.98 45.86 46.77 45.19 43.67 44.960.27 0.45 1.18 1.11 1.85 1.18 1.24 0.85 1.29 1.68 0.0435.58 34.56 35.83 36.11 36.07 34.99 35.13 34.99 35.50 35.64 33.720.00 0.01 0.07 0.13 0.03 0.04 0.09 0.00 0.02 0.02 0.000.00 0.05 0.18 0.17 0.17 0.12 0.05 0.10 0.12 0.12 0.001.64 1.97 1.17 0.61 0.79 1.38 1.10 1.38 1.18 0.82 1.870.12 0.08 0.05 0.05 0.04 0.05 0.04 0.03 0.06 0.12 0.060.04 0.06 0.00 0.00 0.00 0.00 0.03 0.02 0.08 0.05 0.010.36 0.54 0.42 0.27 0.29 0.22 0.13 0.30 0.22 0.23 0.520.92 0.95 1.44 1.75 0.71 1.05 0.95 1.06 1.04 1.13 2.810.25 0.28 0.25 0.24 0.22 0.17 0.21 0.24 0.18 0.30 0.1810.94 10.67 10.40 10.51 10.48 10.88 10.71 10.96 10.49 10.50 10.150.00 0.04 0.10 0.01 0.16 0.09 0.05 0.03 0.12 0.30 0.120.01 0.03 0.02 0.00 0.00 0.00 0.02 0.03 0.02 0.00 0.014.50 4.37 4.36 4.44 4.32 4.42 4.44 4.50 4.36 4.12 4.250.00 -0.02 -0.04 0.00 -0.07 -0.04 -0.02 -0.01 -0.05 -0.13 -0.050.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00100.29 98.83 99.97 99.61 99.60 100.54 100.02 101.24 99.81 98.57 98.653.042 3.035 2.989 2.982 2.982 3.057 3.058 3.086 3.024 2.973 3.0830.014 0.023 0.060 0.056 0.093 0.059 0.062 0.042 0.065 0.086 0.0022.793 2.760 2.834 2.870 2.847 2.742 2.760 2.721 2.800 2.859 2.7250.000 0.001 0.004 0.007 0.002 0.002 0.005 0.000 0.001 0.001 0.0000.000 0.003 0.010 0.009 0.009 0.006 0.003 0.005 0.006 0.007 0.0000.163 0.199 0.117 0.061 0.079 0.137 0.109 0.136 0.118 0.083 0.1910.009 0.006 0.004 0.004 0.003 0.004 0.003 0.002 0.004 0.009 0.0040.002 0.003 0.000 0.000 0.000 0.000 0.002 0.001 0.005 0.003 0.0010.020 0.031 0.024 0.015 0.016 0.012 0.007 0.017 0.012 0.013 0.0300.024 0.025 0.038 0.046 0.019 0.027 0.025 0.027 0.027 0.030 0.0750.032 0.037 0.033 0.031 0.029 0.022 0.027 0.031 0.023 0.040 0.0240.930 0.922 0.890 0.904 0.895 0.923 0.911 0.923 0.895 0.912 0.8880.000 0.009 0.021 0.002 0.034 0.019 0.011 0.006 0.025 0.065 0.0260.001 0.003 0.002 0.000 0.000 0.000 0.002 0.003 0.002 0.000 0.0011.998 1.976 1.953 1.996 1.932 1.962 1.974 1.981 1.945 1.871 1.94610.001 10.012 10.023 10.002 10.034 10.019 10.013 10.010 10.028 10.065 10.027196positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)G014-07A2-59 G014-07A2-60 G014-07A2-61 G014-07A2-62 G014-07A2-63 G014-07A2-66 G014-07A2-67 G014-07A2-68 G014-07A2-69 G063b-09-19 G063b-09-21 G063b-09-22 G063b-09-3343.91 44.02 45.08 42.90 43.19 43.03 45.26 43.78 43.16 45.75 44.61 45.42 43.751.47 1.47 0.96 1.42 1.80 1.84 0.97 1.35 1.33 0.26 0.14 0.09 0.5835.37 35.15 34.49 35.38 36.25 35.79 33.96 34.75 35.16 35.91 35.35 35.57 36.140.03 0.14 0.08 0.13 0.10 0.10 0.00 0.07 0.08 0.00 0.00 0.04 0.090.11 0.10 0.05 0.28 0.27 0.29 0.09 0.08 0.19 0.02 0.01 0.01 0.130.83 0.91 1.44 0.61 0.78 0.72 1.27 1.00 0.76 1.03 2.33 2.02 1.320.02 0.01 0.01 0.03 0.00 0.12 0.08 0.00 0.01 0.01 0.05 0.02 0.000.07 0.00 0.00 0.03 0.05 0.03 0.00 0.00 0.01 0.01 0.01 0.04 0.000.28 0.22 0.24 0.27 0.29 0.28 0.19 0.20 0.19 0.25 0.38 0.49 0.401.43 1.27 0.95 1.39 1.29 1.12 0.94 1.11 1.43 2.10 2.22 1.47 3.080.17 0.21 0.21 0.22 0.24 0.35 0.26 0.21 0.24 0.37 0.36 0.33 0.3410.33 10.93 11.13 10.74 10.34 10.55 10.56 10.91 10.61 10.33 10.31 10.67 10.120.02 0.00 0.19 0.00 0.00 0.14 0.10 0.05 0.04 0.00 0.19 0.12 0.160.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.014.38 4.41 4.25 4.36 4.43 4.26 4.30 4.32 4.31 4.49 4.27 4.38 4.27-0.01 0.00 -0.08 0.00 0.00 -0.06 -0.04 -0.02 -0.02 0.00 -0.08 -0.05 -0.070.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0098.42 98.85 99.00 97.76 99.03 98.57 97.95 97.81 97.51 100.54 100.15 100.62 100.322.990 2.991 3.052 2.954 2.925 2.934 3.084 3.003 2.975 3.051 3.005 3.030 2.9600.075 0.075 0.049 0.074 0.092 0.094 0.050 0.070 0.069 0.013 0.007 0.005 0.0302.838 2.815 2.752 2.871 2.894 2.876 2.727 2.809 2.856 2.823 2.807 2.796 2.8820.002 0.008 0.004 0.007 0.005 0.005 0.000 0.004 0.004 0.000 0.000 0.002 0.0050.006 0.005 0.003 0.015 0.015 0.016 0.005 0.004 0.010 0.001 0.001 0.001 0.0070.084 0.092 0.145 0.063 0.079 0.073 0.129 0.102 0.078 0.102 0.234 0.201 0.1330.001 0.001 0.001 0.002 0.000 0.009 0.006 0.000 0.001 0.001 0.004 0.001 0.0000.004 0.000 0.000 0.002 0.003 0.002 0.000 0.000 0.001 0.001 0.001 0.002 0.0000.016 0.013 0.014 0.016 0.016 0.016 0.011 0.011 0.011 0.014 0.021 0.027 0.0230.038 0.034 0.025 0.038 0.034 0.030 0.025 0.030 0.039 0.055 0.059 0.038 0.0820.022 0.028 0.028 0.029 0.032 0.046 0.034 0.028 0.032 0.048 0.047 0.043 0.0450.897 0.947 0.961 0.943 0.893 0.918 0.918 0.955 0.933 0.879 0.886 0.908 0.8740.004 0.000 0.041 0.000 0.000 0.030 0.022 0.011 0.009 0.000 0.040 0.025 0.0340.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.0011.991 1.998 1.919 2.000 2.000 1.940 1.955 1.978 1.980 1.998 1.919 1.949 1.92910.004 10.001 10.041 10.000 10.000 10.030 10.023 10.011 10.010 10.001 10.040 10.025 10.035197positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of muscovite from lithologies within marble at the Revelstoke Occurrence (con't)G063b-09-34 G063b-09-35 G063b-09-36 G063b-09-37 G063b-09-38 G063b-09-39 G063b-09-40 G063b-09-41 G063b-09-4244.11 43.63 43.26 43.74 44.13 43.62 43.52 43.50 44.460.69 0.79 0.59 0.69 0.68 0.61 0.41 0.52 0.2136.23 35.42 34.67 35.86 35.23 34.70 35.88 35.14 36.010.12 0.23 0.14 0.19 0.21 0.04 0.02 0.06 0.000.15 0.08 0.09 0.03 0.02 0.01 0.01 0.05 0.001.07 1.52 2.93 1.68 2.14 2.90 2.30 2.90 1.980.02 0.00 0.00 0.00 0.07 0.00 0.01 0.02 0.070.00 0.00 0.02 0.03 0.04 0.00 0.01 0.01 0.000.32 0.37 0.58 0.48 0.41 0.46 0.63 0.59 0.402.91 3.10 2.84 3.23 2.94 2.84 2.60 2.72 2.970.30 0.35 0.35 0.28 0.33 0.37 0.32 0.27 0.3910.19 10.18 10.23 10.13 10.11 10.06 10.29 10.20 9.950.20 0.05 0.17 0.00 0.20 0.02 0.28 0.23 0.020.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.004.26 4.37 4.24 4.44 4.26 4.40 4.17 4.20 4.45-0.08 -0.02 -0.07 0.00 -0.08 -0.01 -0.12 -0.10 -0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00100.48 100.07 100.04 100.79 100.68 100.02 100.33 100.33 100.912.974 2.963 2.946 2.950 2.977 2.960 2.945 2.948 2.9800.035 0.040 0.030 0.035 0.035 0.031 0.021 0.027 0.0112.879 2.835 2.782 2.850 2.801 2.775 2.862 2.806 2.8450.006 0.012 0.008 0.010 0.011 0.002 0.001 0.003 0.0000.008 0.004 0.005 0.002 0.001 0.001 0.001 0.003 0.0000.108 0.154 0.297 0.169 0.215 0.293 0.232 0.293 0.1980.001 0.000 0.000 0.000 0.005 0.000 0.001 0.001 0.0050.000 0.000 0.001 0.002 0.002 0.000 0.001 0.001 0.0000.018 0.021 0.033 0.027 0.023 0.026 0.036 0.033 0.0220.077 0.082 0.076 0.085 0.078 0.076 0.069 0.072 0.0780.039 0.046 0.046 0.037 0.043 0.049 0.042 0.035 0.0510.877 0.882 0.889 0.872 0.870 0.871 0.888 0.882 0.8510.043 0.011 0.037 0.000 0.043 0.004 0.060 0.049 0.0040.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.0001.915 1.979 1.927 1.998 1.915 1.991 1.880 1.897 1.99210.043 10.011 10.037 10.001 10.043 10.004 10.060 10.052 10.004198positionEPMA pointSiO2 wt.%TiO2Al2O3Cr2O3V2O3MgOCaOMnOFeOBaONa2OK2OFCLH2O *O=FO=CLTOTALSi4+ apfuTi4+Al3+Cr3+V3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+F-Cl-OH-O2-Appendix A.4: Compositions of margarite from lithologies within marble at the Revelstoke Occurrence (con't)MargariteG063b-09-53 G063b-09-20 G022-07C-3137.91 32.60 38.021.96 0.06 0.4821.23 49.17 24.770.08 0.00 0.210.06 0.00 0.9219.08 0.06 4.440.10 11.57 23.190.01 0.00 0.034.51 0.13 1.550.58 0.16 0.050.15 0.89 0.0010.28 0.79 0.000.86 0.00 0.350.05 0.01 0.013.37 4.53 3.86-0.36 0.00 -0.15-0.01 0.00 0.0099.85 99.96 97.742.702 2.157 2.7130.105 0.003 0.0261.783 3.835 2.0830.005 0.000 0.0120.003 0.000 0.0532.027 0.006 0.4720.008 0.820 1.7730.001 0.000 0.0020.269 0.007 0.0920.016 0.004 0.0010.021 0.114 0.0000.935 0.067 0.0000.194 0.000 0.0790.006 0.001 0.0011.600 1.998 1.84010.200 10.001 10.080199Appendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrencepos. and min. assoc. c c r r Ms r c c c r Ms r Kfs r Kfs r Kfs c c c r r c r Ms r ScpEPMA pointG10-01-55G10-01-56G10-01-57G11-02-07a-2G11-02-07a-3G11-02-07a-4G11-02-5G11-02-07b-9G11-02-07b-10G11-02-07b-13G11-02-07b-14G11-02-07c-18G11-02-07c-19G11-02-07c-22G11-02-07c-23G11-02-07c-24G11-02-07c-25G11-02-07c-29G11-02-11-40G11-02-11-41TD-G007-07-5-4SiO2 wt% 43.93 44.00 44.03 43.88 42.43 42.63 44.23 43.50 43.56 43.86 44.57 44.55 44.37 43.88 42.43 42.63 44.23 43.50 44.33 44.00 45.93Al2O3 36.17 35.79 36.40 36.15 36.11 36.21 35.78 36.07 36.14 36.06 35.98 35.85 35.88 36.15 36.11 36.21 35.78 36.07 35.93 36.14 34.47MgO 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00CaO 19.58 19.51 19.76 19.37 19.38 19.58 19.18 19.21 19.59 19.31 19.16 19.16 19.28 19.37 19.38 19.58 19.18 19.21 19.23 19.50 18.13MnO 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00FeO 0.04 0.00 0.00 0.12 0.06 0.05 0.03 0.04 0.00 0.00 0.00 0.01 0.00 0.12 0.06 0.05 0.03 0.04 0.01 0.00 0.01BaO 0.06 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02Na2O 0.52 0.62 0.47 0.58 0.55 0.46 0.62 0.44 0.40 0.62 0.66 0.61 0.67 0.58 0.55 0.46 0.62 0.44 0.59 0.50 1.31K2O 0.00 0.01 0.00 0.02 0.02 0.02 0.00 0.00 0.01 0.04 0.05 0.02 0.00 0.02 0.02 0.02 0.00 0.00 0.02 0.00 0.04TOTAL 100.30 99.93 100.72 100.13 98.55 98.95 99.84 99.27 99.72 99.90 100.46 100.27 100.23 100.13 98.55 98.95 99.84 99.27 100.12 100.16 99.91Si4+ apfu 2.027 2.037 2.023 2.028 1.996 1.997 2.047 2.025 2.021 2.031 2.050 2.052 2.046 2.028 1.996 1.997 2.047 2.025 2.045 2.031 2.117Al3+ 1.967 1.953 1.971 1.969 2.002 1.999 1.951 1.979 1.976 1.968 1.950 1.946 1.950 1.969 2.002 1.999 1.951 1.979 1.954 1.966 1.873Mg2+ 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000Ca2+ 0.968 0.968 0.973 0.959 0.977 0.983 0.951 0.958 0.974 0.958 0.944 0.946 0.953 0.959 0.977 0.983 0.951 0.958 0.951 0.965 0.896Mn2+ 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Fe2+ 0.002 0.000 0.000 0.005 0.002 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.005 0.002 0.002 0.001 0.002 0.000 0.000 0.000Ba2+ 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Na 0.047 0.056 0.042 0.052 0.050 0.042 0.056 0.040 0.036 0.056 0.059 0.054 0.060 0.052 0.050 0.042 0.056 0.040 0.053 0.045 0.117K+ 0.000 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.003 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.002An mol% 0.95 0.94 0.96 0.95 0.95 0.96 0.94 0.96 0.96 0.94 0.94 0.95 0.94 0.95 0.95 0.96 0.94 0.96 0.95 0.96 0.883Ab 0.05 0.05 0.04 0.05 0.05 0.04 0.06 0.04 0.04 0.06 0.06 0.05 0.06 0.05 0.05 0.04 0.06 0.04 0.05 0.04 0.115Or 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.002NOTE: The following standards, X-ray lines and crystals were used during EMP analysis: albite, Na Ka , TAP; anorthite, AlKa , TAP; diopside, MgKa, TAP; orthoclase, SiKa, TAP; orthoclase, KKa, PET; anorthite, CaKa, PET; synthetic fayalite, FeKa, LIF; barite, BaLa PET.  Compositions were recalculated on the basis of 8 O apfuc = core, m = middle, r = rim200pos. and min. assoc.EPMA pointSiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+NaK+An mol%AbOrAppendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrence (con't)c r Cal m Scp? r alt r alt r Cal r alt r Scpc Scp r Scp c r mica r Cal r Kfs r Cal m c r Scp r Cal r Pl c r KfsTD-G007-07-5-5TD-G007-07-5-6TD-G007-07-5-8TD-G007-07-5-13TD-G007-07-4-14TD-G007-07-4-15TD-G007-07-12-24TD-G007-07-12-25TD-G007-07-12-26TD-G014-07A1-02-1TD-G014-07A1-02-2TD-G014-07A1-02-3TD-G014-07A1-02-4TD-G014-07A1-04-10TD-G014-07A1-04-11TD-G014-07A1-04-12TD-G014-07A1-03-13TD-G014-07A1-03-14TD-G014-07A1-03-15TD-G014-07A1-08-16TD-G014-07A1-08-1744.16 44.33 45.82 44.70 44.12 44.03 44.72 46.32 45.83 44.28 44.57 43.84 44.17 43.73 44.11 43.77 44.23 44.17 43.77 43.79 43.8835.12 35.67 34.44 35.18 35.52 35.79 35.05 33.54 33.91 35.80 35.67 35.74 35.53 35.49 35.65 35.85 35.72 35.31 35.70 35.58 35.680.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.0019.47 19.63 18.20 19.43 19.60 19.47 18.48 17.06 17.42 19.55 19.34 19.65 19.58 19.65 19.69 19.96 19.28 19.40 19.81 19.86 19.880.05 0.00 0.01 0.00 0.01 0.01 0.00 0.05 0.02 0.00 0.04 0.02 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.03 0.000.05 0.01 0.00 0.00 0.03 0.08 0.00 0.00 0.07 0.00 0.09 0.03 0.04 0.00 0.01 0.00 0.01 0.02 0.00 0.02 0.000.00 0.02 0.00 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.04 0.03 0.000.49 0.55 1.36 0.67 0.46 0.49 0.99 1.62 1.68 0.50 0.54 0.34 0.58 0.36 0.36 0.34 0.53 0.58 0.40 0.36 0.380.00 0.00 0.01 0.01 0.01 0.02 0.01 0.03 0.01 0.01 0.02 0.02 0.03 0.00 0.02 0.01 0.03 0.02 0.00 0.02 0.0099.34 100.21 99.85 100.06 99.76 99.89 99.25 98.62 98.95 100.15 100.28 99.64 99.94 99.23 99.85 99.94 99.86 99.53 99.72 99.70 99.822.056 2.046 2.114 2.066 2.046 2.039 2.078 2.156 2.132 2.044 2.054 2.036 2.045 2.039 2.043 2.028 2.047 2.053 2.033 2.035 2.0351.927 1.941 1.873 1.916 1.941 1.953 1.919 1.840 1.859 1.948 1.937 1.956 1.939 1.950 1.946 1.958 1.948 1.934 1.954 1.948 1.9500.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.0000.971 0.971 0.900 0.962 0.974 0.966 0.920 0.851 0.868 0.967 0.955 0.978 0.972 0.982 0.977 0.991 0.956 0.966 0.986 0.989 0.9880.002 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.0000.002 0.000 0.000 0.000 0.001 0.003 0.000 0.000 0.003 0.000 0.003 0.001 0.002 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.0000.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.0000.044 0.049 0.122 0.060 0.041 0.044 0.089 0.146 0.152 0.045 0.048 0.031 0.052 0.033 0.032 0.031 0.048 0.052 0.036 0.032 0.0340.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.000 0.001 0.001 0.002 0.001 0.000 0.001 0.0000.957 0.952 0.880 0.940 0.959 0.955 0.911 0.852 0.850 0.955 0.951 0.968 0.947 0.967 0.967 0.969 0.950 0.948 0.965 0.968 0.9670.043 0.048 0.119 0.059 0.040 0.044 0.088 0.146 0.149 0.044 0.048 0.031 0.051 0.033 0.032 0.030 0.048 0.051 0.035 0.031 0.0330.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.000 0.001 0.001 0.002 0.001 0.000 0.001 0.000201pos. and min. assoc.EPMA pointSiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+NaK+An mol%AbOrAppendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrence (con't)r mica r Pl r mica r Pl mica r mica r m c r r r Pl c c r Pl r Pl m c c mTD-G014-07A1-01-30TD-G014-07A1-01-31TD-G014-07A1-01-32TD-G014-07A1-01-33TD-G014-07A1-01-34TD-G014-07A2-01-53TD-G014-07A2-01-54TD-G014-07A2-01-55TD-G014-07A2-05-72TD-G014-07A2-05-73TD-G014-07A2-05-74TD-G014-07A2-05-77TD-G014-07A2-05-75TD-G014-07A2-05-76TD-G014-07A2-09-78TD-G014-07A2-09-79TD-G014-07A2-09-80TD-G014-07B1-01-1TD-G014-07B1-01-244.12 44.15 43.93 44.04 44.15 45.19 44.60 44.73 44.88 44.92 44.77 44.53 45.03 45.02 44.47 44.90 44.52 44.78 44.9935.87 35.76 36.06 36.02 35.86 35.54 36.12 36.12 36.12 35.92 35.42 35.62 35.84 35.75 35.90 35.79 35.63 36.01 35.330.01 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.0019.48 19.58 20.04 19.61 19.69 19.17 19.74 19.73 19.43 19.43 19.38 19.42 19.30 19.42 19.58 19.26 19.49 19.54 19.220.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.04 0.02 0.00 0.00 0.00 0.000.01 0.02 0.00 0.00 0.00 0.03 0.02 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.030.00 0.02 0.02 0.03 0.01 0.00 0.00 0.02 0.05 0.00 0.03 0.00 0.08 0.00 0.00 0.00 0.02 0.00 0.000.45 0.54 0.40 0.52 0.46 0.68 0.47 0.43 0.55 0.58 0.74 0.57 0.52 0.60 0.49 0.61 0.58 0.44 0.690.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.0099.97 100.09 100.47 100.27 100.18 100.62 100.96 101.06 101.09 100.86 100.36 100.15 100.78 100.86 100.47 100.56 100.28 100.77 100.262.040 2.041 2.026 2.033 2.039 2.072 2.043 2.046 2.051 2.057 2.062 2.054 2.063 2.062 2.046 2.061 2.053 2.052 2.0721.955 1.948 1.960 1.959 1.952 1.921 1.950 1.947 1.946 1.938 1.923 1.937 1.935 1.930 1.947 1.936 1.936 1.945 1.9170.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.0000.965 0.970 0.990 0.970 0.974 0.942 0.969 0.967 0.952 0.953 0.957 0.960 0.947 0.953 0.965 0.947 0.963 0.959 0.9480.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.0000.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.0010.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.0000.040 0.048 0.036 0.047 0.041 0.060 0.042 0.038 0.049 0.051 0.066 0.051 0.046 0.053 0.044 0.054 0.052 0.039 0.0620.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.0000.959 0.952 0.964 0.953 0.959 0.939 0.958 0.961 0.950 0.948 0.935 0.949 0.953 0.946 0.956 0.946 0.948 0.961 0.9390.040 0.047 0.035 0.046 0.040 0.060 0.042 0.038 0.049 0.051 0.064 0.050 0.046 0.053 0.044 0.054 0.051 0.039 0.0610.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.000202pos. and min. assoc.EPMA pointSiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+NaK+An mol%AbOrAppendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrence (con't)r Cal r Ms + Cal m c r Kfs m c r Kfs c r Phl c r Crn r Ms m c cTD-G014-07B1-01-3TD-G014-07B1-12TD-G014-07B1-13TD-G014-07B1-14TD-G014-07B1-03-20TD-G014-07B1-03-21TD-G014-07B1-22TD-G014-07B1-03-25TD-G014-07B1-03-26TD-G014-07B1-04-40TD-G014-07B1-04-41TD-G014-07B1-04-42TD-G014-07B1-04-43TD-G014-07B1-04-44TD-G014-07B1-04-45TD-G014-07B1-04-46TD-G014-07B1-04-47TD-G063B-09-15-1244.22 44.90 44.60 46.07 44.87 44.56 44.36 44.26 44.55 44.85 44.87 44.36 44.82 44.51 44.80 44.73 44.61 43.7736.18 35.95 35.84 34.92 36.07 36.44 36.18 36.20 35.75 35.95 35.94 35.60 35.86 36.17 35.83 35.87 35.96 35.510.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.0019.92 19.53 19.34 18.14 19.77 19.68 19.71 19.69 19.64 19.49 19.43 19.51 19.55 19.48 19.33 19.54 19.79 19.410.02 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.04 0.000.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.01 0.02 0.00 0.01 0.05 0.03 0.00 0.000.04 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.06 0.01 0.01 0.000.34 0.47 0.55 1.18 0.40 0.40 0.36 0.37 0.44 0.44 0.44 0.53 0.41 0.38 0.56 0.49 0.43 0.620.01 0.04 0.02 0.03 0.03 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00100.73 100.90 100.36 100.37 101.14 101.11 100.63 100.56 100.44 100.86 100.70 100.07 100.68 100.56 100.65 100.70 100.84 99.312.032 2.055 2.053 2.112 2.050 2.037 2.038 2.035 2.051 2.054 2.057 2.050 2.056 2.044 2.057 2.053 2.046 2.0391.959 1.939 1.944 1.887 1.942 1.963 1.959 1.961 1.939 1.941 1.941 1.939 1.939 1.957 1.938 1.940 1.944 1.9500.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.0000.981 0.958 0.954 0.891 0.968 0.964 0.970 0.970 0.969 0.957 0.954 0.966 0.961 0.958 0.951 0.961 0.972 0.9690.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.002 0.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.002 0.001 0.000 0.0000.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.0000.030 0.042 0.049 0.105 0.035 0.035 0.032 0.033 0.039 0.039 0.039 0.047 0.036 0.034 0.050 0.044 0.038 0.0560.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.0000.969 0.956 0.950 0.893 0.963 0.964 0.967 0.966 0.960 0.960 0.960 0.953 0.963 0.965 0.949 0.955 0.962 0.950.030 0.042 0.049 0.105 0.035 0.035 0.032 0.033 0.039 0.039 0.039 0.046 0.036 0.034 0.050 0.044 0.038 0.050.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.00incl in Crn203pos. and min. assoc.EPMA pointSiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+NaK+An mol%AbOrAppendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrence (con't)near Kfs near calm r Cal r Kfs c r Ms alt with Calr c r m c c m r c m r c rTD-G063B-09-15-13TD-G063B-09-15-14TD-G063B-09-19-23TD-G063B-09-19-24TD-G063B-09-05-30TD-G063B-09-31TD-G063B-09-32TD-G063B-09-51TD-G063B-09-03-50TD-G063B-09-03-52TD-G022-07c-15-16TD-G022-07c-15-17TD-G022-07c-15-18TD-G022-07c-17-25TD-G022-07c-17-26TD-G022-07c-17-27TD-G022-07c-25-28TD-G022-07c-25-2944.17 44.23 45.24 44.64 44.15 44.41 43.96 43.70 43.49 44.25 45.20 44.94 45.59 43.84 44.05 44.04 43.88 43.7035.81 35.86 34.64 35.52 36.16 35.89 35.71 35.78 36.09 35.41 35.74 35.81 35.38 36.07 36.03 36.07 36.36 36.260.01 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.0019.48 19.43 18.18 18.63 19.40 19.46 19.07 19.33 19.55 19.06 19.02 19.27 18.77 20.24 19.90 20.03 20.19 20.090.03 0.04 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.03 0.00 0.00 0.02 0.05 0.000.02 0.00 0.05 0.04 0.03 0.08 0.05 0.01 0.00 0.00 0.00 0.00 0.29 0.03 0.03 0.00 0.00 0.030.00 0.03 0.01 0.03 0.00 0.04 0.05 0.02 0.02 0.01 0.07 0.03 0.00 0.08 0.03 0.05 0.07 0.000.53 0.52 1.11 0.91 0.53 0.52 0.64 0.59 0.36 0.51 0.75 0.65 0.88 0.10 0.22 0.21 0.14 0.160.01 0.00 0.03 0.04 0.00 0.02 0.01 0.02 0.00 0.08 0.02 0.03 0.05 0.02 0.03 0.01 0.03 0.01100.06 100.11 99.27 99.83 100.28 100.42 99.49 99.46 99.52 99.35 100.85 100.73 101.00 100.38 100.29 100.43 100.72 100.252.041 2.043 2.100 2.064 2.035 2.045 2.043 2.033 2.022 2.057 2.069 2.060 2.084 2.024 2.032 2.030 2.019 2.0181.951 1.952 1.895 1.936 1.964 1.948 1.956 1.962 1.977 1.940 1.928 1.935 1.906 1.962 1.959 1.960 1.971 1.9740.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.0000.965 0.961 0.904 0.923 0.958 0.960 0.949 0.963 0.974 0.949 0.933 0.947 0.919 1.001 0.984 0.989 0.995 0.9940.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.001 0.000 0.000 0.001 0.002 0.0000.001 0.000 0.002 0.002 0.001 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.011 0.001 0.001 0.000 0.000 0.0010.000 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.0000.047 0.047 0.100 0.082 0.047 0.046 0.058 0.053 0.032 0.046 0.067 0.058 0.078 0.009 0.020 0.019 0.012 0.0140.001 0.000 0.002 0.002 0.000 0.001 0.001 0.001 0.000 0.005 0.001 0.002 0.003 0.001 0.002 0.001 0.002 0.0010.95 0.95 0.90 0.92 0.95 0.95 0.94 0.95 0.97 0.95 0.93 0.94 0.92 0.99 0.98 0.98 0.99 0.990.05 0.05 0.10 0.08 0.05 0.05 0.06 0.05 0.03 0.05 0.07 0.06 0.08 0.01 0.02 0.02 0.01 0.010.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Pl agg with Ap and PyPl w Ms alt sur by Ap204pos. and min. assoc.EPMA pointSiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+NaK+An mol%AbOrAppendix A.5: Compositions of plagioclase from lithologies within marble at the Revelstoke Occurrence (con't)lrg grain near Kfsc r c m r Cal c r Kfs c m r Cal r Cal c m r Fe oxideTD-G022-07c-16-34TD-G022-07c-16-35TD-G020-07B2-03-15TD-G020-07B2-03-16TD-G020-07B2-03-17TD-G020-07B2-01-21TD-G020-07B2-01-22TD-G020-07B2-04-26TD-G020-07B2-04-27TD-G020-07B2-04-28TD-G020-07B2-04-30TD-G020-07B2-18-35TD-G020-07B2-18-36TD-G020-07B2-18-3745.07 44.88 45.39 44.44 44.07 44.32 44.39 44.72 44.69 44.73 44.68 43.96 43.96 45.6935.31 35.83 35.55 35.85 36.11 35.59 35.60 35.53 35.50 35.60 35.79 35.85 35.78 35.190.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.0119.34 19.43 18.92 19.88 19.87 19.60 19.66 19.44 19.46 19.61 19.60 19.89 19.77 19.190.00 0.01 0.00 0.02 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.000.07 0.00 0.00 0.00 0.07 0.00 0.03 0.08 0.00 0.01 0.03 0.00 0.02 0.200.00 0.02 0.00 0.02 0.00 0.01 0.05 0.01 0.01 0.00 0.00 0.00 0.04 0.000.59 0.51 0.75 0.42 0.27 0.42 0.44 0.45 0.46 0.45 0.48 0.27 0.21 0.670.04 0.03 0.09 0.04 0.01 0.03 0.04 0.02 0.03 0.04 0.04 0.05 0.01 0.07100.42 100.71 100.72 100.67 100.41 99.98 100.24 100.25 100.15 100.45 100.64 100.02 99.79 101.022.073 2.058 2.078 2.043 2.031 2.049 2.049 2.061 2.061 2.058 2.052 2.034 2.038 2.0881.914 1.936 1.918 1.942 1.961 1.940 1.937 1.930 1.930 1.930 1.937 1.955 1.955 1.8960.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.0010.953 0.955 0.928 0.979 0.981 0.971 0.972 0.960 0.962 0.967 0.965 0.986 0.982 0.9400.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.003 0.000 0.000 0.000 0.003 0.000 0.001 0.003 0.000 0.000 0.001 0.000 0.001 0.0080.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.0000.053 0.045 0.067 0.037 0.024 0.038 0.039 0.040 0.041 0.040 0.043 0.024 0.019 0.0590.002 0.002 0.005 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.001 0.0040.95 0.95 0.93 0.96 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.98 0.940.05 0.04 0.07 0.04 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 0.060.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00205Appendix A.5: Compositions of K-feldspar from lithologies within marble at the Revelstoke Occurrencer c r c c c c r An r An r An c r An r An c r Kfs c r Kfs r KfsG10-01-58G10-01-59G11-02-01-1G11-02-01-2G11-02-07a-6G11-02-07a-7G11-02-07a-8G11-02-11G11-02-12G11-02-07b-15G11-02-07b-16G11-02-07b-17G11-02-07c-20G11-02-07c-21G11-02-07c-22G11-02-07c-23G11-02-07c-26G11-02-07c-27SiO2 wt% 60.55 61.92 62.34 62.29 62.91 61.62 63.18 61.96 63.38 62.35 63.01 62.52 62.99 62.39 62.73 62.04 62.91 61.62Al2O3 19.66 19.54 19.22 19.28 19.28 19.23 19.29 19.33 19.16 19.28 19.33 19.51 19.37 19.34 19.42 19.16 19.28 19.23MgO 0.00 0.00 0.02 0.00 0.01 0 0 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00CaO 0.05 0.04 0.06 0.08 0.08 0.01 0.06 0.06 0.08 0.07 0.05 0.09 0.07 0.07 0.07 0.05 0.08 0.01MnO 0.00 0.02 0.00 0.02 0.01 0 0 0.01 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.00FeO 0.03 0.01 0.00 0.01 0 0.05 0.04 0.00 0.02 0.00 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.05BaO 4.46 3.26 2.78 2.93 2.59 2.72 2.22 2.74 2.34 2.38 2.50 2.48 2.51 2.50 2.38 2.65 2.59 2.72Na2O 0.93 0.85 0.86 0.79 1.08 0.67 1.03 0.95 0.92 0.89 0.89 0.95 0.75 0.99 0.86 0.84 1.08 0.67K2O 14.13 14.61 14.58 14.74 14.64 14.95 15.01 14.56 14.91 14.82 15.00 14.88 14.90 14.81 14.81 14.91 14.64 14.95TOTAL 99.81 100.25 99.86 100.14 100.6 99.25 100.83 99.62 100.83 99.79 100.81 100.44 100.59 100.13 100.28 99.65 100.60 99.25Si4+ apfu 2.890 2.916 2.934 2.930 2.936 2.925 2.939 2.925 2.947 2.932 2.936 2.925 2.938 2.928 2.933 2.930 2.936 2.925Al3+ 1.106 1.085 1.066 1.069 1.06 1.076 1.057 1.075 1.050 1.069 1.062 1.076 1.065 1.070 1.070 1.067 1.060 1.076Mg2+ 0.000 0.000 0.001 0.000 0.001 0 0 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000Ca2+ 0.003 0.002 0.003 0.004 0.004 0.001 0.003 0.003 0.004 0.004 0.002 0.005 0.003 0.004 0.004 0.003 0.004 0.001Mn2+ 0.000 0.001 0.000 0.001 0 0 0 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000Fe2+ 0.001 0.000 0.000 0.000 0 0.002 0.002 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002Ba2+ 0.083 0.060 0.051 0.054 0.047 0.051 0.04 0.051 0.043 0.044 0.046 0.045 0.046 0.046 0.044 0.049 0.047 0.051Na+ 0.086 0.078 0.078 0.072 0.098 0.062 0.093 0.087 0.083 0.081 0.080 0.086 0.068 0.090 0.078 0.077 0.098 0.062K+ 0.860 0.878 0.875 0.884 0.872 0.905 0.891 0.877 0.884 0.889 0.892 0.888 0.887 0.887 0.883 0.898 0.872 0.905An mol% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00Ab 0.09 0.08 0.08 0.08 0.10 0.06 0.09 0.09 0.09 0.08 0.08 0.09 0.07 0.09 0.08 0.08 0.10 0.06Or 0.91 0.92 0.92 0.92 0.90 0.93 0.90 0.91 0.91 0.91 0.92 0.91 0.93 0.90 0.92 0.92 0.90 0.93NOTE: The following standards, X-ray lines and crystals were used during EMP Analysis: albite, NaKa, TAP; Anorthite, AlKa, TAP; diopside, MgKa, TAP; orthoclase, SiKa, TAP; orthoclase, KKa, PET; Anorthite, CaKa, PET; synthetic fayalite, FeKa, LIF; barite, BaLa PET.  Compositions were recalculated on the basis of 8 O apfu;  c = core, m = middle, r = rimKfs near cor alt to Ms Kfs alt to Ms near An Kfs w/n An Ms zone206SiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+An mol%AbOrAppendix A.5: Compositions of K-feldspar from lithologies within marble at the Revelstoke Occurrence (con't)m c m c r Ms c r Pl r mica c r mica r Pl c r Cal c m r CalG11-02-07c-29G11-02-11-50G11-02-11-51G11-02-11-52G11-02-11-53G11-02-11-54TD-G014-07A1-02-5TD-G014-07A1-02-6TD-G014-07A1-02-7TD-G014-07A1-02-8TD-G014-07A1-02-9TD-G014-07A1-08-24TD-G014-07A1-08-25TD-G014-07A1-08-26TD-G014-07A1-10-27TD-G014-07A1-10-28TD-G014-07A1-10-2963.18 62.00 61.94 62.28 61.93 62.06 61.38 61.71 62.04 61.78 62.22 62.29 62.13 61.33 61.93 61.08 62.3919.29 19.30 19.11 19.23 19.35 19.37 19.27 19.28 19.34 19.34 19.16 19.24 19.08 19.35 19.16 19.25 19.140.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00   0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.000.06 0.15 0.08 0.06 0.07 0.08 0.06 0.06 0.08 0.05 0.06 0.06 0.06 0.02 0.06 0.05 0.050.00 0.03 0.02 0.00 0.00 0.04 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.000.04 0.01 0.00 0.03 0.03 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.03 0.00 0.042.22 2.73 2.39 2.31 2.60 2.65 3.62 4.15 3.49 3.23 3.58 3.47 3.11 4.10 3.16 5.03 3.161.03 0.80 0.94 0.89 0.86 0.97 0.85 0.87 0.76 0.78 0.83 0.71 0.69 0.77 0.71 0.68 0.7515.01 14.76 14.88 14.98 14.84 14.83 14.33 14.24 14.41 14.86 14.16 14.68 15.03 14.37 14.93 14.00 14.61100.83 99.79 99.37 99.78 99.68 100.00 99.58 100.33 100.15 100.04 100.02 100.45 100.14 99.95 100.01 100.09 100.142.939 2.925 2.930 2.931 2.923 2.922 2.917 2.919 2.925 2.919 2.934 2.930 2.931 2.913 2.926 2.912 2.9361.057 1.073 1.065 1.067 1.076 1.075 1.079 1.075 1.075 1.077 1.065 1.067 1.061 1.083 1.067 1.082 1.0620.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.0000.003 0.008 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.001 0.003 0.003 0.0030.000 0.001 0.001 0.000 0.000 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.0000.002 0.000 0.000 0.001 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.0020.040 0.050 0.044 0.043 0.048 0.049 0.067 0.077 0.064 0.060 0.066 0.064 0.057 0.076 0.059 0.094 0.0580.093 0.073 0.086 0.081 0.079 0.089 0.078 0.080 0.069 0.071 0.076 0.065 0.063 0.071 0.065 0.063 0.0680.891 0.888 0.898 0.899 0.894 0.891 0.869 0.859 0.867 0.896 0.852 0.881 0.905 0.871 0.900 0.851 0.8770.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.09 0.08 0.09 0.08 0.08 0.09 0.08 0.08 0.07 0.07 0.08 0.07 0.06 0.08 0.07 0.07 0.070.90 0.92 0.91 0.91 0.92 0.91 0.91 0.91 0.92 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.93pseudomor Ms by Kfs Kfs An Ms agg Kfs An Ms agg207SiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+An mol%AbOrAppendix A.5: Compositions of K-feldspar from lithologies within marble at the Revelstoke Occurrence (con't)looks like Ms grain that was altered to Kfsdark light mid light dark mid light light light med med med lightr r r c c r c c r Cal c r An r An r An r An r Kfs r mTD-G014-07A2-1TD-G014-07A2-3B-2TD-G014-07A2-3B-3TD-G014-07A2-3B-4TD-G014-07A2-01-48TD-G014-07A2-01-49TD-G014-07A2-01-50TD-G014-07A2-01-51TD-G014-07A2-01-52TD-G014-07B1-3-15TD-G014-07B1-3-16TD-G014-07B1-3-17TD-G014-07B1-3-18TD-G014-07B1-3-19TD-G014-07B1-3-23TD-G014-07B1-3-24TD-G063B-09-15-1TD-G063B-09-15-262.78 61.73 61.36 62.65 58.62 62.83 61.10 59.76 59.01 60.85 63.51 63.23 61.21 62.63 63.51 60.42 59.74 58.8319.60 19.78 19.72 19.50 20.08 19.51 19.77 20.05 20.18 19.68 19.25 19.32 19.79 19.23 19.18 20.01 19.82 19.920.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.000.10 0.08 0.03 0.07 0.05 0.06 0.08 0.05 0.04 0.03 0.07 0.08 0.08 0.10 0.06 0.07 0.06 0.060.00 0.00 0.00 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.01 0.02 0.02 0.00 0.00 0.010.00 0.02 0.05 0.00 0.02 0.00 0.03 0.03 0.00 0.02 0.00 0.00 0.00 0.05 0.00 0.03 0.00 0.002.40 4.15 4.43 3.69 8.31 3.68 5.39 7.26 8.29 5.98 2.79 2.46 5.32 2.98 2.46 6.61 5.17 6.670.82 0.77 0.76 0.80 0.73 0.78 0.85 0.77 0.75 0.83 0.97 0.83 0.87 0.93 0.91 0.91 0.99 1.0514.97 14.17 14.28 14.54 12.70 14.38 13.71 13.12 12.81 13.19 14.78 15.07 13.59 14.46 14.62 13.04 13.36 12.94100.67 100.73 100.63 101.25 100.55 101.24 100.95 101.04 101.08 100.58 101.41 101.00 100.87 100.40 100.76 101.09 99.15 99.482.927 2.905 2.901 2.925 2.844 2.929 2.893 2.863 2.846 2.896 2.943 2.939 2.896 2.935 2.951 2.875 2.877 2.8551.077 1.097 1.099 1.073 1.148 1.072 1.103 1.132 1.147 1.104 1.051 1.058 1.103 1.062 1.050 1.122 1.125 1.1390.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.0000.005 0.004 0.002 0.004 0.003 0.003 0.004 0.003 0.002 0.002 0.003 0.004 0.004 0.005 0.003 0.004 0.003 0.0030.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.0000.000 0.001 0.002 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.0000.044 0.077 0.082 0.068 0.158 0.067 0.100 0.136 0.157 0.112 0.051 0.045 0.099 0.055 0.045 0.123 0.098 0.1270.074 0.070 0.070 0.072 0.069 0.071 0.078 0.072 0.070 0.077 0.087 0.075 0.080 0.084 0.082 0.084 0.092 0.0990.890 0.851 0.861 0.866 0.786 0.855 0.828 0.802 0.788 0.801 0.874 0.894 0.820 0.864 0.867 0.792 0.821 0.8010.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.000.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.08 0.09 0.09 0.08 0.09 0.09 0.09 0.10 0.10 0.110.92 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.92 0.91 0.91 0.92 0.91 0.91 0.91 0.90 0.90 0.89208SiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+An mol%AbOrAppendix A.5: Compositions of K-feldspar from lithologies within marble at the Revelstoke Occurrence (con't)light med light lightm m c c c r Cal c m r r An c r Kfs c m r c r cTD-G063B-09-15-3TD-G063B-09-15-4TD-G063B-09-15-5TD-G063B-09-15-6TD-G020-07B2-8-1TD-G020-07B2-8-2TD-G020-07B2-3-18TD-G020-07B2-3-19TD-G020-07B2-3-20TD-G020-07B2-1-23TD-G020-07B2-1-24TD-G020-07B2-1-25TD-G022-07C-14-1TD-G022-07C-14-2TD-G022-07C-14-3TD-G022-07C-14-4TD-G022-07C-14-5TD-G022-07C-15-1959.15 59.49 58.30 59.18 63.63 63.71 63.37 63.88 63.89 63.72 63.62 63.65 64.72 64.55 64.46 64.58 64.94 64.6119.95 19.56 19.75 19.83 18.22 18.28 18.81 18.69 18.68 18.98 18.94 18.92 18.65 18.77 18.56 18.69 18.39 18.850.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.000.04 0.05 0.07 0.04 0.03 0.03 0.09 0.07 0.06 0.09 0.04 0.05 0.05 0.07 0.15 0.05 0.05 0.090.01 0.02 0.02 0.00 0.01 0.00 0.04 0.00 0.00 0.03 0.05 0.00 0.00 0.05 0.01 0.02 0.03 0.010.05 0.08 0.02 0.04 0.05 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.075.97 5.32 6.47 5.85 1.72 1.50 2.11 2.01 2.18 2.31 2.37 2.33 1.29 1.46 1.22 1.28 1.10 1.291.10 0.95 0.85 0.81 0.68 0.72 0.65 0.56 0.55 0.64 0.59 0.61 0.70 0.71 0.70 0.68 0.73 0.7013.19 13.58 13.25 13.53 15.23 15.39 15.18 15.29 15.33 15.03 15.24 15.20 15.45 15.33 15.40 15.62 15.51 15.6599.46 99.06 98.73 99.28 99.57 99.64 100.26 100.51 100.69 100.81 100.85 100.76 100.91 100.94 100.50 100.93 100.76 101.272.860 2.878 2.854 2.866 2.984 2.983 2.960 2.972 2.971 2.960 2.959 2.960 2.983 2.977 2.983 2.979 2.994 2.9731.137 1.115 1.139 1.132 1.007 1.009 1.035 1.025 1.024 1.039 1.038 1.037 1.013 1.020 1.012 1.016 0.999 1.0220.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.0000.002 0.003 0.004 0.002 0.002 0.002 0.005 0.003 0.003 0.004 0.002 0.002 0.002 0.003 0.007 0.002 0.002 0.0040.000 0.001 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.002 0.000 0.001 0.001 0.0000.002 0.003 0.001 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.0030.113 0.101 0.124 0.111 0.032 0.028 0.039 0.037 0.040 0.042 0.043 0.042 0.023 0.026 0.022 0.023 0.020 0.0230.103 0.089 0.081 0.076 0.062 0.065 0.059 0.051 0.050 0.058 0.053 0.055 0.063 0.063 0.063 0.061 0.065 0.0620.813 0.838 0.827 0.836 0.911 0.919 0.905 0.907 0.909 0.891 0.904 0.902 0.909 0.902 0.909 0.919 0.912 0.9190.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.000.11 0.10 0.09 0.08 0.06 0.07 0.06 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.07 0.060.89 0.90 0.91 0.91 0.93 0.93 0.93 0.94 0.94 0.93 0.94 0.94 0.93 0.93 0.93 0.94 0.93 0.93rimming Scp w Ms alt. sur by Cal Py Aprimming scp sur by CalKfs in scp zone large isolated grain intergrowth of Kfs An Msinclusion in An, w Ms alteration209SiO2 wt%Al2O3MgOCaOMnOFeOBaONa2OK2OTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Ba2+Na+K+An mol%AbOrAppendix A.5: Compositions of K-feldspar from lithologies within marble at the Revelstoke Occurrence (con't)r c c m r c m rTD-G022-07C-15-20TD-G022-07C-15-21TD-G022-07C-15-22TD-G022-07C-15-23TD-G022-07C-15-24TD-G022-07C-16-31TD-G022-07C-16-32TD-G022-07C-16-3364.51 68.12 64.51 64.40 64.38 63.67 63.58 64.3218.78 20.72 18.41 18.63 18.64 18.84 18.88 18.380.00 0.00 0.01 0.00 0.00 0.01 0.00 0.000.08 1.14 0.09 0.10 0.09 0.15 0.12 0.060.03 0.00 0.00 0.03 0.01 0.00 0.00 0.010.00 0.08 0.00 0.00 0.01 0.00 0.01 0.011.39 0.05 1.27 1.27 1.41 2.07 2.18 1.230.76 11.12 0.69 0.69 0.81 0.69 0.72 0.7615.31 0.06 15.57 15.28 15.56 15.27 15.13 15.46100.86 101.29 100.55 100.40 100.91 100.70 100.62 100.232.977 2.946 2.987 2.982 2.976 2.961 2.959 2.9871.021 1.056 1.005 1.017 1.015 1.032 1.036 1.0060.000 0.000 0.001 0.000 0.000 0.001 0.000 0.0000.004 0.053 0.004 0.005 0.004 0.007 0.006 0.0030.001 0.000 0.000 0.001 0.000 0.000 0.000 0.0000.000 0.003 0.000 0.000 0.000 0.000 0.000 0.0000.025 0.001 0.023 0.023 0.026 0.038 0.040 0.0220.068 0.932 0.062 0.062 0.073 0.062 0.065 0.0680.901 0.003 0.920 0.903 0.917 0.906 0.898 0.9160.00 0.05 0.00 0.01 0.00 0.01 0.01 0.000.07 0.94 0.06 0.06 0.07 0.06 0.07 0.070.93 0.00 0.93 0.93 0.92 0.93 0.93 0.93inclusion in An, w Ms alterationnext to Ap incluMs alteration around edge next to Anlarge grain sur by Cal near large An grain210Appendix A.6: Compositions of scapolite from lithologies within marble at the Revelstoke Occurrence TD-G020-07B2-8-3TD-G020-07B2-8-4TD-G020-07B2-8-5TD-G020-07B2-10-6TD-G020-07B2-10-7TD-G020-07B2-10-8TD-G022-07C-14-6TD-G022-07C-14-7TD-G022-07C-14-8TD-G022-07C-14-9TD-G022-07C-14-10TD-G022-07C-14-11TD-G007-07-16-1TD-G007-07-16-2TD-G007-07-16-3TD-G007-07-05-9TD-G007-07-05-10TD-G007-07-05-11SiO2 wt.% 46.00 46.49 47.83 45.55 46.96 46.12 46.19 46.03 45.90 46.44 46.58 46.22 46.19 45.00 45.97 46.85 45.91 46.65Al2O3 28.06 28.19 28.12 28.13 28.19 28.10 28.71 28.35 28.96 28.92 28.46 28.73 27.82 27.60 27.63 27.35 27.47 27.48MgO 0.01 0.00 0.10 0.05 0.03 0.01 0.07 0.05 0.06 0.08 0.05 0.08 0.01 0.03 0.04 0.01 0.02 0.00CaO 18.83 18.78 16.54 18.88 18.44 19.02 19.04 19.50 19.82 19.58 19.33 19.38 18.35 18.05 18.31 16.97 17.83 17.23MnO 0.00 0.02 0.02 0.00 0.01 0.02 0.04 0.05 0.03 0.00 0.00 0.01 0.00 0.02 0.02 0.01 0.03 0.00FeO 0.06 0.03 0.20 0.20 0.04 0.07 0.03 0.06 0.03 0.01 0.02 0.01 0.04 0.00 0.05 0.00 0.02 0.05Na2O 2.87 2.90 3.31 2.51 2.99 2.80 2.72 2.67 2.55 2.66 2.61 2.76 3.42 3.26 3.22 3.89 3.53 3.81K2O 0.31 0.29 0.50 0.32 0.41 0.29 0.33 0.31 0.28 0.32 0.36 0.34 0.39 0.32 0.40 0.40 0.36 0.37SO3 0.00 0.01 0.02 0.01 0.02 0.00 0.05 0.01 0.05 0.05 0.01 0.00 0.12 0.01 0.05 0.00 0.00 0.01Cl 0.38 0.30 0.47 0.27 0.35 0.30 0.23 0.20 0.22 0.22 0.21 0.24 0.33 0.30 0.31 0.80 0.50 0.86CO2 1.78 1.84 1.78 1.83 1.82 1.83 1.87 1.88 1.88 1.89 1.89 1.88 1.78 1.78 1.79 1.57 1.70 1.54O=Cl -0.09 -0.07 -0.11 -0.06 -0.08 -0.07 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.07 -0.07 -0.07 -0.18 -0.11 -0.19TOTAL 98.22 98.78 98.78 97.69 99.18 98.49 99.23 99.07 99.73 100.12 99.48 99.59 98.37 96.30 97.72 97.67 97.26 97.80Si4+ apfu 6.981 6.999 7.088 6.945 7.028 6.985 6.926 6.953 6.882 6.921 6.976 6.926 7.018 6.965 7.024 7.109 7.037 7.083Al3+ 5.019 5.001 4.912 5.055 4.972 5.015 5.074 5.047 5.118 5.079 5.024 5.074 4.982 5.035 4.976 4.891 4.963 4.917Mg2+ 0.002 0.000 0.022 0.011 0.007 0.002 0.016 0.011 0.013 0.018 0.011 0.018 0.002 0.007 0.009 0.002 0.005 0.000Ca2+ 3.062 3.029 2.626 3.084 2.957 3.086 3.059 3.156 3.184 3.126 3.102 3.112 2.987 2.993 2.998 2.759 2.928 2.803Mn2+ 0.000 0.003 0.003 0.000 0.001 0.003 0.005 0.006 0.004 0.000 0.000 0.001 0.000 0.003 0.003 0.001 0.004 0.000Fe2+ 0.008 0.004 0.025 0.026 0.005 0.009 0.004 0.008 0.004 0.001 0.003 0.001 0.005 0.000 0.006 0.000 0.003 0.006Na+ 0.844 0.846 0.951 0.742 0.868 0.822 0.791 0.782 0.741 0.769 0.758 0.802 1.008 0.978 0.954 1.144 1.049 1.122K+ 0.060 0.056 0.095 0.062 0.078 0.056 0.063 0.060 0.054 0.061 0.069 0.065 0.076 0.063 0.078 0.077 0.070 0.072S6+ 0.000 0.001 0.002 0.001 0.002 0.000 0.006 0.001 0.006 0.006 0.001 0.000 0.014 0.001 0.006 0.000 0.000 0.001Cl- 0.098 0.077 0.118 0.070 0.089 0.077 0.058 0.051 0.056 0.056 0.053 0.061 0.085 0.079 0.080 0.206 0.130 0.221C4+ 0.902 0.922 0.880 0.929 0.909 0.923 0.936 0.948 0.938 0.939 0.946 0.939 0.901 0.920 0.914 0.794 0.870 0.778O2- 24.063 24.029 23.811 24.035 24.010 24.070 24.025 24.109 24.094 24.071 24.048 24.059 24.143 24.050 24.107 24.031 24.083 24.062CatSum 15.976 15.938 15.721 15.925 15.916 15.978 15.937 16.023 16.000 15.975 15.942 15.999 16.078 16.044 16.048 15.984 16.059 16.002EqAn 0.673 0.667 0.637 0.685 0.657 0.672 0.691 0.682 0.706 0.693 0.675 0.691 0.661 0.678 0.659 0.630 0.654 0.639XCl 0.098 0.077 0.118 0.070 0.089 0.077 0.058 0.051 0.056 0.056 0.053 0.061 0.085 0.079 0.080 0.206 0.130 0.221*calculated from electroneutral formula assuming (Si+Al) = 12 apfu and (Cl+S+C)=1 apfu.NOTE: Following standards, X-ray lines and crystals were used for EMP analysis: albite, NaKa , TAP; anorthite, AlKa , TAP; diopside, MgKa, TAP; orthoclase, SiKa, TAP; barite, SKa PET; scapolite, ClKa ,PET; orthoclase, KKa, PET; anorthite, CaKa, PET; synthetic fayalite, FeKa, LIF.EqAn = (Al-3)/3211SiO2 wt.%Al2O3MgOCaOMnOFeONa2OK2OSO3ClCO2O=ClTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Na+K+S6+Cl-C4+O2-CatSumEqAnXClAppendix A.6: Compositions of scapolite from lithologies within marble at the Revelstoke Occurrence (con't)TD-G007-07-05-12TD-G007-07-04-16TD-G007-07-04-17TD-G007-07-15-20TD-G007-07-15-21TD-G007-07-15-22TD-G007-07-12-23TD-G007-07-18TD-G007-07-19TD-G014-07A1-03-16TD-G014-07A1-03-17TD-G014-07A1-03-18TD-G014-07A1-09-19TD-G014-07A1-09-20TD-G014-07A1-09-21TD-G063B-09-05-25TD-G063B-09-05-26TD-G063B-09-05-2845.82 44.98 43.87 44.21 44.27 44.24 45.58 44.42 45.91 45.89 45.45 45.95 46.69 44.01 45.34 47.47 47.05 47.0027.97 28.14 28.64 28.70 28.28 28.73 28.41 28.77 27.51 27.67 27.74 27.52 26.79 28.83 28.62 28.53 28.75 29.240.00 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.01 0.00 0.03 0.0017.93 18.29 19.08 19.39 19.00 19.05 18.68 19.24 18.24 17.90 18.43 17.94 16.97 19.16 18.71 17.05 17.19 17.470.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.04 0.02 0.00 0.000.04 0.01 0.00 0.02 0.01 0.08 0.00 0.00 0.07 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.08 0.003.76 3.16 2.64 2.65 2.69 2.57 3.06 2.59 3.10 3.24 2.88 3.06 3.56 2.51 2.64 3.57 3.92 3.730.26 0.48 0.42 0.46 0.42 0.56 0.39 0.40 0.44 0.70 0.57 0.61 0.71 0.59 0.88 0.97 1.04 0.770.08 0.00 0.07 0.08 0.04 0.07 0.03 0.01 0.06 0.00 0.02 0.07 0.04 0.00 0.02 0.03 0.01 0.000.67 0.39 0.35 0.33 0.33 0.37 0.53 0.29 0.30 0.44 0.38 0.37 0.53 0.40 0.54 1.01 1.05 1.021.61 1.75 1.75 1.76 1.76 1.75 1.70 1.81 1.79 1.74 1.75 1.75 1.68 1.75 1.70 1.51 1.49 1.52-0.15 -0.09 -0.08 -0.07 -0.07 -0.08 -0.12 -0.07 -0.07 -0.10 -0.09 -0.08 -0.12 -0.09 -0.12 -0.23 -0.24 -0.2397.99 97.13 96.76 97.57 96.74 97.34 98.26 97.46 97.35 97.52 97.16 97.23 96.85 97.16 98.37 99.98 100.37 100.526.979 6.907 6.782 6.798 6.846 6.797 6.918 6.805 7.033 7.015 6.979 7.035 7.159 6.772 6.881 7.024 6.976 6.9245.021 5.093 5.218 5.202 5.154 5.203 5.082 5.195 4.967 4.985 5.021 4.965 4.841 5.228 5.119 4.976 5.024 5.0760.000 0.002 0.005 0.005 0.002 0.000 0.000 0.000 0.000 0.009 0.002 0.000 0.000 0.000 0.002 0.000 0.007 0.0002.926 3.009 3.160 3.195 3.148 3.136 3.038 3.158 2.994 2.932 3.032 2.943 2.788 3.159 3.042 2.703 2.731 2.7570.000 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.004 0.000 0.000 0.005 0.003 0.000 0.0000.005 0.001 0.000 0.003 0.001 0.010 0.000 0.000 0.009 0.000 0.000 0.001 0.000 0.000 0.000 0.006 0.010 0.0001.110 0.941 0.791 0.790 0.807 0.766 0.900 0.769 0.921 0.960 0.857 0.908 1.058 0.749 0.777 1.024 1.127 1.0650.051 0.094 0.083 0.090 0.083 0.110 0.076 0.078 0.086 0.137 0.112 0.119 0.139 0.116 0.170 0.183 0.197 0.1450.009 0.000 0.008 0.009 0.005 0.008 0.003 0.001 0.007 0.000 0.002 0.008 0.005 0.000 0.002 0.003 0.001 0.0000.173 0.101 0.092 0.086 0.086 0.096 0.136 0.075 0.078 0.114 0.099 0.096 0.138 0.104 0.139 0.253 0.264 0.2550.818 0.899 0.900 0.905 0.909 0.896 0.860 0.924 0.915 0.886 0.899 0.896 0.858 0.896 0.859 0.743 0.735 0.74524.124 24.035 24.071 24.124 24.081 24.065 24.067 24.027 24.089 24.054 24.069 24.059 24.053 24.029 24.042 23.968 24.034 23.95116.092 16.048 16.039 16.085 16.041 16.023 16.014 16.006 16.010 16.038 16.005 15.975 15.985 16.023 15.997 15.919 16.071 15.9670.674 0.698 0.739 0.734 0.718 0.734 0.694 0.732 0.656 0.662 0.674 0.655 0.614 0.743 0.706 0.659 0.675 0.6920.173 0.101 0.092 0.086 0.086 0.096 0.136 0.075 0.078 0.114 0.099 0.096 0.138 0.104 0.139 0.253 0.264 0.255212SiO2 wt.%Al2O3MgOCaOMnOFeONa2OK2OSO3ClCO2O=ClTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Na+K+S6+Cl-C4+O2-CatSumEqAnXClAppendix A.6: Compositions of scapolite from lithologies within marble at the Revelstoke Occurrence (con't)TD-G063B-09-04-47TD-G063B-09-04-48TD-G063B-09-04-4971-3-171-3-271-3-371-3-571-3-671-7-171-7-271-7-371-7-4GR2-35GR2-36GR2-37GR2-38GR2-39GR2-4046.77 46.77 46.24 45.11 45.29 46.54 45.08 45.57 44.87 45.43 45.81 45.66 51.92 49.03 52.16 51.88 49.56 50.7828.55 28.33 28.75 29.69 29.35 28.72 29.03 29.11 28.74 29.00 29.08 28.91 25.56 26.86 25.32 25.66 27.20 26.310.00 0.00 0.01 0.05 0.02 0.03 0.01 0.02 0.05 0.03 0.00 0.03 0.03 0.00 0.01 0.00 0.02 0.0016.89 16.62 16.98 20.59 20.48 18.86 20.39 20.52 20.05 20.24 19.98 20.17 12.07 14.90 11.62 12.49 14.96 13.880.02 0.00 0.01 0.02 0.00 0.03 0.00 0.00 0.03 0.04 0.00 0.03 0.05 0.02 0.02 0.00 0.00 0.000.04 0.06 0.08 0.18 0.16 0.32 0.25 0.33 0.31 0.32 0.12 0.22 0.37 0.05 0.11 0.02 0.12 0.003.61 3.55 3.49 2.19 2.35 2.25 2.23 2.30 2.41 2.07 2.33 2.49 6.80 5.49 7.13 6.72 5.24 5.821.19 1.68 1.46 0.06 0.05 0.13 0.06 0.06 0.08 0.12 0.03 0.07 0.72 0.51 0.76 0.53 0.49 0.350.04 0.00 0.02 0.05 0.00 0.03 0.00 0.00 0.01 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.041.03 1.08 1.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 1.83 1.30 2.01 1.82 1.22 1.391.48 1.45 1.49 1.99 2.00 2.00 1.98 2.00 1.96 1.98 2.00 1.99 1.12 1.35 1.03 1.12 1.41 1.33-0.23 -0.24 -0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.41 -0.29 -0.45 -0.41 -0.28 -0.3199.38 99.30 99.30 99.93 99.70 98.91 99.03 99.91 98.52 99.26 99.35 99.58 100.06 99.22 99.73 99.84 99.96 99.596.979 7.002 6.925 6.758 6.804 6.947 6.822 6.846 6.838 6.848 6.864 6.872 7.594 7.291 7.633 7.582 7.286 7.4505.021 4.998 5.075 5.242 5.196 5.053 5.178 5.154 5.162 5.152 5.136 5.128 4.406 4.709 4.367 4.418 4.714 4.5500.000 0.000 0.002 0.011 0.004 0.007 0.002 0.004 0.011 0.007 0.000 0.007 0.007 0.000 0.002 0.001 0.004 0.0002.700 2.666 2.725 3.305 3.296 3.016 3.306 3.303 3.274 3.269 3.208 3.253 1.891 2.375 1.822 1.955 2.357 2.1820.003 0.000 0.001 0.003 0.000 0.004 0.000 0.000 0.004 0.005 0.000 0.004 0.006 0.002 0.003 0.000 0.000 0.0000.005 0.008 0.010 0.023 0.020 0.040 0.032 0.041 0.040 0.040 0.015 0.028 0.045 0.006 0.013 0.003 0.014 0.0001.044 1.030 1.013 0.636 0.684 0.651 0.654 0.670 0.712 0.605 0.677 0.727 1.929 1.584 2.023 1.905 1.493 1.6540.227 0.321 0.279 0.011 0.010 0.025 0.012 0.011 0.016 0.023 0.006 0.013 0.135 0.098 0.142 0.098 0.092 0.0650.004 0.000 0.002 0.006 0.000 0.003 0.000 0.000 0.001 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.0040.260 0.274 0.254 0.000 0.000 0.003 0.003 0.000 0.005 0.000 0.000 0.000 0.453 0.328 0.499 0.452 0.305 0.3450.735 0.726 0.744 0.994 1.000 0.994 0.997 1.000 0.994 0.997 1.000 0.999 0.547 0.672 0.501 0.548 0.694 0.65123.981 23.987 23.983 24.050 24.070 23.893 24.085 24.113 24.119 24.073 23.996 24.101 24.005 24.033 23.989 23.977 23.969 23.95715.979 16.025 16.031 15.989 16.015 15.743 16.006 16.030 16.056 15.949 15.906 16.031 16.013 16.064 16.006 15.961 15.961 15.9020.674 0.666 0.692 0.747 0.732 0.684 0.726 0.718 0.721 0.717 0.712 0.709 0.469 0.570 0.456 0.473 0.571 0.5170.260 0.274 0.254 0.000 0.000 0.003 0.003 0.000 0.005 0.000 0.000 0.000 0.453 0.328 0.499 0.452 0.305 0.345213SiO2 wt.%Al2O3MgOCaOMnOFeONa2OK2OSO3ClCO2O=ClTOTALSi4+ apfuAl3+Mg2+Ca2+Mn2+Fe2+Na+K+S6+Cl-C4+O2-CatSumEqAnXClAppendix A.6: Compositions of scapolite from lithologies within marble at the Revelstoke Occurrence (con't)GR2-41GR2-42GR2-43GR1-83GR1-84GR1-85GR1-8650.32 49.60 49.15 52.19 52.70 52.65 51.8326.50 26.79 26.98 25.43 25.09 25.40 25.280.00 0.11 0.00 0.00 0.01 0.00 0.0114.38 15.15 14.94 11.65 11.75 12.43 12.320.02 0.05 0.00 0.01 0.01 0.01 0.030.00 0.18 0.02 0.12 0.08 0.06 0.335.72 4.83 5.43 7.87 6.99 6.49 6.810.39 0.42 0.41 0.35 0.48 0.63 0.720.00 0.05 0.00 0.00 0.00 0.04 0.001.37 1.13 1.27 1.92 1.84 1.72 1.691.34 1.44 1.37 1.08 1.12 1.18 1.18-0.31 -0.26 -0.29 -0.43 -0.42 -0.39 -0.3899.74 99.51 99.29 100.19 99.65 100.22 99.817.404 7.333 7.286 7.622 7.687 7.650 7.6204.596 4.667 4.714 4.378 4.313 4.350 4.3800.000 0.024 0.000 0.000 0.002 0.000 0.0012.267 2.399 2.373 1.823 1.836 1.935 1.9410.002 0.007 0.000 0.001 0.001 0.001 0.0040.000 0.023 0.002 0.015 0.009 0.008 0.0411.632 1.385 1.562 2.228 1.976 1.827 1.9400.074 0.079 0.077 0.065 0.089 0.116 0.1340.000 0.006 0.000 0.000 0.000 0.004 0.0000.342 0.284 0.320 0.476 0.456 0.424 0.4220.658 0.710 0.680 0.524 0.544 0.572 0.57823.995 24.016 23.997 24.035 23.951 23.969 24.04515.975 15.918 16.014 16.133 15.912 15.886 16.0610.532 0.556 0.571 0.459 0.438 0.450 0.4600.342 0.284 0.320 0.476 0.456 0.424 0.422214Appendix A.7: Compositions of pyroxene from lithologies within marble at the Revelstoke Occurrencec r c c r c r c r m c m r mG013-1 G013-3 G013-5 G013-7 G013-9 G013-11 G013-13 G013-15 G013-17 G013-19 G013-21 G013-23 G013-25 G013-26SiO2 wt.% 55.34 54.84 55.90 54.27 54.56 55.21 55.57 54.94 55.17 55.35 54.94 55.73 56.12 53.46TiO2 0.00 0.04 0.00 0.02 0.03 0.05 0.07 0.02 0.02 0.03 0.07 0.04 0.01 0.08Al2O3 0.76 0.85 0.75 0.56 0.52 0.50 0.44 0.63 0.73 0.67 0.70 0.35 0.44 0.79V2O3 - - - - - - - - - - - - - -Cr2O3 0.00 0.00 0.00 0.03 0.02 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.04MgO 17.91 17.78 17.82 18.05 18.22 18.15 18.20 17.96 17.84 17.98 17.74 17.94 17.91 17.77CaO 25.43 25.59 25.75 25.58 25.77 25.62 25.88 25.48 25.67 25.71 25.86 25.99 26.07 25.76MnO 0.00 0.02 0.03 0.00 0.02 0.01 0.03 0.01 0.05 0.02 0.04 0.05 0.03 0.07FeO 1.17 1.20 1.26 0.85 0.67 0.68 0.69 0.88 0.90 0.91 1.12 1.20 1.12 1.18NiO 0.04 0.00 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00ZnO - - - - - - - - - - - - - -Na2O 0.18 0.21 0.19 0.16 0.14 0.13 0.08 0.18 0.20 0.20 0.16 0.10 0.11 0.15TOTAL 100.83 100.52 101.70 99.54 99.95 100.44 100.96 100.10 100.59 100.87 100.66 101.39 101.82 99.30Si4+ apfu 1.986 1.978 1.990 1.976 1.977 1.987 1.990 1.986 1.985 1.986 1.979 1.992 1.995 1.959Ti4+ 0.000 0.001 0.000 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.000 0.002Al3+ 0.050 0.050 0.054 0.024 0.022 0.029 0.028 0.040 0.047 0.042 0.039 0.022 0.033 0.034V3+ - - - - - - - - - - - - - -Cr3+ 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001Mg2+ 0.958 0.956 0.946 0.980 0.984 0.974 0.971 0.968 0.957 0.962 0.953 0.956 0.949 0.971Ca2+ 0.978 0.989 0.982 0.998 1.000 0.988 0.993 0.987 0.990 0.988 0.998 0.995 0.993 1.011Mn2+ 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.002Fe2+ 0.035 0.036 0.037 0.026 0.020 0.021 0.021 0.027 0.027 0.027 0.034 0.036 0.033 0.036Ni2+ 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000Zn2+ - - - - - - - - - - - - - -Na+ 0.013 0.014 0.013 0.012 0.010 0.009 0.006 0.013 0.014 0.014 0.011 0.007 0.008 0.011   Note: Following standards, X-ray lines and crystals were used for EMP analysis: albite, NaKa, TAP; kyanite,                      AlKa, TAP; diopside, MgKa, TAP; diopside, SiKa, TAP; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF: synthetic Ni2SiO4, NiKa, LIF. Formulae are normalized on 6 anions.         215SiO2 wt.%TiO2Al2O3V2O3Cr2O3MgOCaOMnOFeONiOZnONa2OTOTALSi4+ apfuTi4+Al3+V3+Cr3+Mg2+Ca2+Mn2+Fe2+Ni2+Zn2+Na+Appendix A.7: Compositions of pyroxene from SEDEX layers within marble at the Revelstoke Occurrence (con't)TD-G025-09-05-04 TD-G025-09-05-05 TD-G025-09-05-06 TD-G025-09-13-19 TD-G025-09-13-20 TD-G025-09-13-21 TD-G025-09-12-22 TD-G025-09-12-2350.34 50.20 50.37 49.48 49.25 49.36 49.80 49.690.00 0.00 0.00 0.00 0.01 0.01 0.03 0.020.08 0.17 0.10 0.41 0.43 0.37 0.16 0.18- - - - - - - -0.03 0.00 0.07 0.00 0.00 0.01 0.05 0.027.49 7.60 7.23 6.21 6.23 6.26 7.39 7.3222.84 21.34 22.43 21.58 21.49 21.49 21.73 21.540.72 0.77 0.73 0.74 0.76 0.68 0.61 0.6517.06 18.65 18.27 20.65 20.32 19.98 19.16 18.950.00 0.00 0.05 0.01 0.04 0.01 0.03 0.00- - - - - - - -0.14 0.17 0.15 0.29 0.18 0.20 0.12 0.1598.70 98.90 99.40 99.37 98.71 98.37 99.08 98.521.994 1.991 1.990 1.976 1.977 1.984 1.979 1.9840.000 0.000 0.000 0.000 0.000 0.000 0.001 0.0010.004 0.008 0.005 0.019 0.020 0.018 0.007 0.008- - - - - - - -0.001 0.000 0.002 0.000 0.000 0.000 0.002 0.0010.442 0.449 0.426 0.370 0.373 0.375 0.438 0.4360.969 0.907 0.949 0.923 0.925 0.926 0.925 0.9210.024 0.026 0.024 0.025 0.026 0.023 0.021 0.0220.565 0.618 0.604 0.690 0.682 0.672 0.637 0.6330.000 0.000 0.002 0.000 0.001 0.000 0.001 0.000- - - - - - - -0.011 0.013 0.011 0.022 0.014 0.016 0.009 0.012216SiO2 wt.%TiO2Al2O3V2O3Cr2O3MgOCaOMnOFeONiOZnONa2OTOTALSi4+ apfuTi4+Al3+V3+Cr3+Mg2+Ca2+Mn2+Fe2+Ni2+Zn2+Na+Appendix A.7: Compositions of pyroxene from the host calc-gneiss at the Revelstoke Occurrence (con't)c m r r r r r m c c m m r r r c r71-7-1 71-7-2 71-7-3 71-7-1b 71-7-2b 71-7-3b 71-3-3 71-3-4 71-3-5 71-4B-1 71-4B-2 71-4B-3 71-4B-4 71-4B-5 71-4B-6 71-4B-7 71-4B-8 71-4b-9 71-4b-1051.91 51.89 51.92 51.09 51.17 51.67 51.85 52.06 51.88 51.67 51.54 50.91 50.98 51.09 50.52 50.85 50.67 50.83 50.940.08 0.11 0.08 0.09 0.08 0.06 0.03 0.11 0.06 0.10 0.19 0.08 0.04 0.08 0.06 0.04 0.05 0.04 0.081.39 1.40 1.37 1.15 0.78 0.77 0.64 1.24 0.58 1.66 1.81 0.97 0.64 0.99 0.88 0.97 1.19 0.87 0.620.03 0.06 0.02 0.04 0.01 0.00 0.01 0.02 0.04 0.07 0.02 0.03 0.04 0.03 0.03 0.03 0.04 0.08 0.050.00 0.05 0.00 0.01 0.01 0.04 0.00 0.01 0.04 0.05 0.01 0.05 0.03 0.00 0.02 0.00 0.02 0.29 0.0211.98 12.17 12.31 9.44 9.58 11.08 10.62 12.42 11.56 11.90 11.84 9.33 9.78 9.30 8.54 9.51 8.31 8.99 9.1623.11 23.58 23.44 22.87 23.36 23.36 22.75 23.57 24.10 23.48 23.45 22.94 23.20 23.11 22.62 23.07 22.69 22.98 22.970.10 0.08 0.12 0.16 0.19 0.16 0.13 0.14 0.15 0.17 0.13 0.16 0.37 0.29 0.42 0.21 0.27 0.29 0.3511.09 9.97 10.42 14.29 15.05 12.54 13.35 10.59 11.62 10.94 10.72 15.06 14.99 15.10 16.74 14.94 16.41 15.48 15.480.01 0.04 0.01 0.04 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.01 0.03 0.00 0.02 0.03 0.00 0.04 0.050.00 0.12 0.05 0.02 0.06 0.00 0.00 0.04 0.04 0.00 0.00 0.01 0.04 0.05 0.07 0.00 0.07 0.02 0.060.14 0.21 0.25 0.20 0.12 0.16 0.15 0.19 0.12 0.24 0.19 0.16 0.13 0.12 0.18 0.15 0.11 0.19 0.1299.84 99.68 99.99 99.40 100.41 99.84 99.53 100.44 100.19 100.28 99.90 99.71 100.27 100.16 100.10 99.80 99.83 100.10 99.901.961 1.957 1.951 1.972 1.959 1.966 1.986 1.950 1.961 1.942 1.944 1.963 1.953 1.963 1.955 1.957 1.966 1.959 1.9670.002 0.003 0.002 0.003 0.002 0.002 0.001 0.003 0.002 0.003 0.005 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.0020.062 0.062 0.061 0.052 0.035 0.035 0.029 0.055 0.026 0.074 0.080 0.044 0.029 0.045 0.040 0.044 0.054 0.040 0.0280.001 0.002 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.0020.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.002 0.001 0.000 0.001 0.000 0.001 0.009 0.0010.675 0.684 0.690 0.543 0.547 0.628 0.607 0.693 0.651 0.667 0.666 0.536 0.559 0.533 0.493 0.546 0.481 0.516 0.5270.935 0.953 0.944 0.946 0.958 0.952 0.934 0.946 0.976 0.945 0.948 0.948 0.952 0.951 0.938 0.951 0.943 0.949 0.9500.003 0.003 0.004 0.005 0.006 0.005 0.004 0.004 0.005 0.005 0.004 0.005 0.012 0.009 0.014 0.007 0.009 0.009 0.0110.350 0.314 0.328 0.461 0.482 0.399 0.428 0.332 0.367 0.344 0.338 0.486 0.480 0.485 0.542 0.481 0.533 0.499 0.5000.000 0.001 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.0020.000 0.003 0.001 0.001 0.002 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.002 0.001 0.0020.010 0.015 0.018 0.015 0.009 0.012 0.011 0.014 0.009 0.017 0.014 0.012 0.010 0.009 0.014 0.011 0.008 0.014 0.009217SiO2 wt.%TiO2Al2O3V2O3Cr2O3MgOCaOMnOFeONiOZnONa2OTOTALSi4+ apfuTi4+Al3+V3+Cr3+Mg2+Ca2+Mn2+Fe2+Ni2+Zn2+Na+Appendix A.7: Compositions of pyroxene from the host calc-gneiss at the Revelstoke Occurrence (con't)c r r c c m r72-1 72-2 72-4 72-5 72-27-6 72-27-7 72-28-8 72-28-9 72-28-10 72-28-11 72-29-12 72-29-13 72-29-14 72-28-1 72-28-251.71 52.17 51.03 51.26 51.97 51.86 50.63 51.83 51.28 51.36 51.11 51.29 51.26 50.60 51.870.08 0.08 0.12 0.25 0.01 0.09 0.09 0.04 0.04 0.06 0.15 0.07 0.10 0.06 0.001.31 1.43 1.11 1.44 0.48 0.73 0.96 0.72 0.54 0.67 0.94 1.02 0.81 1.32 0.650.04 0.04 0.01 0.04 0.02 0.02 0.03 0.00 0.02 0.02 0.01 0.01 0.01 0.01 0.010.00 0.04 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.03 0.03 0.00 0.0112.70 12.73 10.31 10.60 10.93 11.06 10.64 10.68 11.08 11.02 10.05 10.15 10.51 11.43 10.8023.55 23.57 23.16 23.11 23.51 23.10 23.20 23.08 23.43 23.24 23.14 22.98 23.04 21.27 23.170.12 0.11 0.25 0.24 0.27 0.25 0.23 0.25 0.24 0.25 0.29 0.29 0.23 0.28 0.299.18 9.30 13.13 12.67 13.00 12.53 12.63 12.96 12.33 12.57 13.30 13.29 13.46 13.44 12.440.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.000.03 0.00 0.09 0.00 0.06 0.00 0.01 0.07 0.00 0.01 0.06 0.08 0.09 0.00 0.010.21 0.22 0.16 0.19 0.09 0.19 0.16 0.14 0.15 0.15 0.14 0.18 0.15 0.13 0.1398.94 99.69 99.39 99.81 100.34 99.83 98.59 99.81 99.12 99.36 99.19 99.39 99.69 98.54 99.381.956 1.959 1.959 1.954 1.973 1.974 1.954 1.979 1.965 1.965 1.970 1.971 1.962 1.951 1.9860.002 0.002 0.003 0.007 0.000 0.003 0.003 0.001 0.001 0.002 0.004 0.002 0.003 0.002 0.0000.058 0.063 0.050 0.065 0.021 0.033 0.044 0.032 0.024 0.030 0.043 0.046 0.037 0.060 0.0290.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.0000.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.0000.716 0.713 0.590 0.602 0.619 0.628 0.612 0.608 0.633 0.628 0.577 0.581 0.600 0.657 0.6160.955 0.948 0.953 0.944 0.956 0.942 0.959 0.944 0.962 0.952 0.955 0.946 0.945 0.878 0.9500.004 0.003 0.008 0.008 0.009 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.007 0.009 0.0090.290 0.292 0.421 0.404 0.413 0.399 0.408 0.414 0.395 0.402 0.429 0.427 0.431 0.433 0.3980.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.001 0.000 0.003 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.002 0.002 0.003 0.000 0.0000.015 0.016 0.012 0.014 0.007 0.014 0.012 0.010 0.011 0.011 0.010 0.013 0.011 0.010 0.010218Appendix A.8: Compositions of garnet from the garnet-scapolite assemblage within marble at the Revelstoke OccurrenceG2-50 G2-54 G2-55 G2-52 G2-53 G2-28 G2-29 G2-30 G2-31 G2-32 G2-56 G2-57 G2-58 G2-59 G2-60 G2-61 G2-64 G2-65 G1-87 G1-88 G1-89 G1-90SiO2 wt.% 37.60 37.25 37.45 37.86 37.63 36.91 36.96 36.86 37.11 36.57 36.96 36.63 36.86 36.68 36.98 36.68 36.55 37.02 37.07 36.87 36.92 36.61TiO2 0.10 0.11 0.09 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Al2O3 20.95 20.86 20.92 20.97 20.95 21.29 21.24 21.29 21.23 21.18 21.13 21.08 21.13 21.08 21.09 21.16 21.10 21.29 21.38 21.12 21.15 20.98Cr2O3 0.01 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.01 0.00 0.04 0.01 0.01 0.00 0.02 0.00 0.04 0.02 0.00 0.05 0.01 0.02FeO 27.52 27.85 28.05 22.01 22.48 27.76 28.31 29.04 29.47 30.19 29.58 29.08 30.73 29.89 30.25 30.52 29.91 29.28 29.89 30.21 30.74 30.20MnO 3.83 3.35 3.35 4.66 4.96 3.01 3.14 3.10 2.86 2.95 2.97 3.01 2.97 3.01 3.13 2.91 2.96 3.05 3.02 3.02 2.90 2.99MgO 2.68 2.54 2.59 1.64 1.71 2.32 2.11 1.84 1.43 1.38 1.44 1.59 1.44 1.52 1.66 1.43 1.87 1.90 1.51 1.48 1.48 1.42CaO 7.34 7.56 7.56 12.68 12.57 8.73 8.58 8.56 8.44 7.84 8.78 8.42 7.68 8.04 7.65 7.87 7.56 7.83 7.98 8.13 7.66 7.52Na2O 0.00 0.00 0.00 0.00 0.03 0.02 0.03 0.00 0.03 0.00 0.02 0.03 0.01 0.03 0.00 0.00 0.03 0.02 0.00 0.00 0.02 0.03TOTAL 100.03 99.54 100.02 99.85 100.38 100.05 100.36 100.71 100.59 100.12 100.92 99.85 100.83 100.23 100.78 100.58 100.02 100.42 100.86 100.89 100.89 99.77Si4+ apfu 2.993 2.982 2.983 2.999 2.968 2.935 2.936 2.926 2.956 2.933 2.935 2.936 2.938 2.934 2.945 2.929 2.926 2.948 2.947 2.934 2.94 2.947Ti4+ 0.006 0.007 0.005 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Al3+ 1.966 1.968 1.964 1.958 1.947 1.995 1.988 1.992 1.993 2.002 1.978 1.991 1.985 1.987 1.979 1.992 1.991 1.998 2.003 1.981 1.985 1.991Cr3+ 0.001 0.001 0 0 0.001 0 0 0.001 0.001 0 0.003 0.001 0.001 0 0.001 0 0.003 0.001 0 0.003 0.001 0.001Fe2+ 1.832 1.864 1.869 1.458 1.483 1.846 1.88 1.928 1.963 2.025 1.964 1.949 2.048 2 2.014 2.038 2.003 1.95 1.987 2.01 2.047 2.033Mn2+ 0.258 0.227 0.226 0.313 0.331 0.203 0.211 0.208 0.193 0.2 0.2 0.204 0.2 0.204 0.211 0.197 0.201 0.206 0.203 0.204 0.196 0.204Mg2+ 0.318 0.303 0.308 0.194 0.201 0.275 0.25 0.218 0.17 0.165 0.17 0.19 0.171 0.181 0.197 0.17 0.223 0.226 0.179 0.176 0.176 0.17Ca2+ 0.626 0.648 0.645 1.076 1.062 0.744 0.73 0.728 0.72 0.674 0.747 0.723 0.656 0.689 0.653 0.673 0.649 0.668 0.68 0.693 0.654 0.649Na+ 0 0 0 0 0.005 0.003 0.005 0 0.005 0 0.003 0.005 0.002 0.005 0 0 0.005 0.003 0 0 0.003 0.005   Note: Following standards, X-ray lines and crystals were used for EMP analysis: albite, NaKa, TAP; kyanite,                      AlKa, TAP; diopside, MgKa, TAP; diopside, SiKa, TAP; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF: synthetic Ni2SiO4, NiKa, LIF. Formulae are normalized on 12 anions.         219Appendix A.8: Compositions of garnet from the host calc-gneiss at the Revelstoke Occurrence (con't)c m m m r n to incl rim core mid n t incl53-1-1 53-1-2 53-1-3 53-1-4 53-1-5 53-2-6 53-2-7 53-2-8 53-2-9 53-2-10 12-1 12-2 72-3-1 72-3-2 72-3-3 72-3-4 72-3-5 71-4b-1 71-4b-2 71-4b-3 71-4b-4 71-4b-537.35 37.33 37.2 37.25 37.36 37.04 37.46 37.47 37.09 37.39 37.36 37.32 37.01 37.35 37.01 37.2 37.32 37.68 37.93 38.24 38.04 37.73- - - - - - - - - - - - - - - - - - - - - -21.66 21.65 21.49 21.51 21.65 21.57 21.59 21.5 21.75 21.65 21.79 21.85 21.62 21.76 21.66 21.69 21.65 21.33 21.83 22.05 22.12 21.360 0 0.03 0.05 0.02 0 0 0.01 0.04 0 0.05 0.02 0 0.01 0.03 0.03 0.02 0.06 0.01 0.05 0 0.042.65 2.52 2.57 2.71 3.11 2.84 2.91 2.39 2.49 2.66 4 3.93 2.98 3 2.89 3.11 3.34 1.3 3.48 3.75 3.75 1.436.93 7.48 7.1 7.08 6.93 6.85 6.99 7.51 6.9 7.01 6.37 6.2 6.84 6.86 6.82 6.84 7.13 14.25 11.23 11.39 11.67 13.810.52 0.55 0.4 0.36 0.41 1.02 0.35 0.44 0.49 0.31 0.31 0.34 0.53 0.49 0.55 0.37 0.42 1.74 1.09 1.15 1.02 1.3831.21 31.03 30.75 31.09 30.66 30.49 30.41 30.85 31.31 31.49 30.29 31 30.9 31.02 30.56 30.91 30.18 23.87 24.76 23.93 24.36 24.50 0.04 0.02 0.05 0.01 0.02 0.03 0.03 0 0 0 0 0.04 0.04 0 0 0 0 0.03 0.04 0 0.02100.32 100.6 99.56 100.1 100.15 99.83 99.74 100.2 100.07 100.51 100.17 100.66 99.92 100.53 99.52 100.15 100.06 100.23 100.36 100.6 100.96 100.272.964 2.954 2.974 2.960 2.960 2.950 2.981 2.978 2.954 2.962 2.946 2.933 2.942 2.951 2.955 2.949 2.954 2.970 2.958 2.967 2.942 2.972- - - - - - - - - - - - - - - - - - - - - -2.026 2.019 2.024 2.015 2.022 2.025 2.025 2.014 2.041 2.021 2.025 2.024 2.026 2.026 2.038 2.026 2.020 1.981 2.007 2.016 2.016 1.9830.000 0.000 0.002 0.003 0.001 0.000 0.000 0.001 0.003 0.000 0.003 0.001 0.000 0.001 0.002 0.002 0.001 0.004 0.001 0.003 0.000 0.0020.314 0.297 0.306 0.321 0.367 0.337 0.345 0.283 0.296 0.314 0.470 0.460 0.353 0.353 0.344 0.368 0.394 0.153 0.405 0.434 0.432 0.1680.589 0.634 0.608 0.603 0.588 0.585 0.596 0.640 0.589 0.595 0.538 0.522 0.583 0.581 0.583 0.581 0.605 1.203 0.938 0.947 0.967 1.1660.035 0.037 0.027 0.024 0.028 0.069 0.024 0.030 0.033 0.021 0.021 0.023 0.036 0.033 0.037 0.025 0.028 0.116 0.072 0.076 0.067 0.0922.072 2.053 2.056 2.066 2.032 2.031 2.024 2.050 2.085 2.086 1.997 2.037 2.054 2.050 2.040 2.049 1.998 1.573 1.615 1.552 1.576 1.6140.000 0.006 0.003 0.008 0.002 0.003 0.005 0.005 0.000 0.000 0.000 0.000 0.006 0.006 0.000 0.000 0.000 0.000 0.005 0.006 0.000 0.003   Note: Following standards, X-ray lines and crystals were used for EMP analysis: albite, NaKa, TAP; kyanite,                      AlKa, TAP; diopside, MgKa, TAP; diopside, SiKa, TAP; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF: synthetic Ni2SiO4, NiKa, LIF. Formulae are normalized on 12 anions.         220Appendix A.9: Representative compositions of amphibole from the marble, garnet-scapolite assemblage, and host calc-gneiss at the Revelstoke Occurrencetremolite edenite ferro-pargasiteSample 13-23 71-1 25-1 25-17 25-24 G2-25 GR2-27 g2-10 g2-11 g1-74 g2-17 g2-49 g1-66 g2-44SiO2 56.23 51.25 52.13 50.50 50.14 47.70 47.69 41.70 37.84 39.34 39.42 38.18 38.03 35.05TiO2 0.15 0.06 0.00 0.00 0.00 0.48 0.47 0.36 0.36 0.10 0.11 0.18 0.77 0.23Al2O3 2.69 4.03 0.33 0.32 0.42 5.28 5.22 9.37 11.80 9.90 14.03 14.30 14.61 17.47Fe2O3* 0.00 0.99 0.87 0.33 0.05 1.37 0.13 2.82 4.31 5.50 2.28 2.20 1.13 2.62V2O3 0.00 0.04 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.03 0.03 0.00 0.01 0.03Cr2O3 0.01 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.01 0.01 0.00MgO 22.84 13.57 10.64 9.25 8.25 10.01 9.61 6.79 4.48 4.96 6.62 5.56 5.88 3.22FeO* 1.74 14.91 20.86 33.60 34.95 18.95 20.15 20.45 21.79 21.18 18.63 19.69 20.09 21.22MnO 0.02 0.13 0.50 1.31 1.22 0.38 0.41 0.30 0.38 0.32 0.30 0.40 0.48 0.47CaO 13.42 11.86 11.30 1.31 1.36 11.83 11.45 11.60 11.40 11.39 11.72 11.54 11.48 11.15Na2O 0.35 0.34 0.16 0.14 0.10 0.82 0.84 1.20 1.54 1.40 1.52 1.10 1.23 1.45K2O 0.14 0.30 0.00 0.00 0.00 0.58 0.52 1.53 1.98 1.28 1.74 2.58 2.83 2.38F 0.17 0.29 0.08 0.18 0.16 0.15 0.36 0.16 0.00Cl 0.01 0.46 0.43 1.64 2.48 1.97 1.02 1.63 1.43 2.16H2O* 2.11 1.91 1.98 1.91 1.89 1.86 1.85 1.45 1.14 1.28 1.59 1.30 1.46 1.30-(O=F,Cl) -0.07 -0.12 0.00 0.00 0.00 -0.10 -0.10 -0.40 -0.63 -0.51 -0.29 -0.52 -0.39 -0.49Total 99.80 99.56 98.80 98.67 98.39 99.65 98.69 98.91 99.08 98.30 98.90 98.50 99.22 98.26TSi 7.708 7.512 7.896 7.929 7.942 7.219 7.293 6.580 6.121 6.357 6.155 6.075 6.007 5.672TAl 0.292 0.488 0.059 0.059 0.058 0.781 0.707 1.420 1.879 1.643 1.845 1.925 1.993 2.328CAl 0.143 0.208 0.000 0.000 0.021 0.162 0.234 0.322 0.370 0.243 0.737 0.757 0.727 1.003  Ti 0.015 0.007 0.000 0.000 0.000 0.055 0.054 0.043 0.044 0.013 0.013 0.021 0.092 0.029  Fe3+ 0.000 0.109 0.099 0.039 0.006 0.156 0.015 0.335 0.524 0.669 0.268 0.263 0.135 0.319  V 0.000 0.005 0.000 0.000 0.000 0.002 0.000 0.002 0.002 0.003 0.004 0.000 0.001 0.003  Cr 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.003 0.001 0.002 0.000  Mg 4.668 2.965 2.402 2.165 1.948 2.258 2.190 1.598 1.081 1.194 1.540 1.317 1.383 0.777CFe2+ 0.173 1.706 2.495 2.795 3.025 2.367 2.506 2.698 2.948 2.863 2.433 2.620 2.653 2.869CMn2+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.029 0.016 0.001 0.021 0.008 0.000CCa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000BFe2+ 0.027 0.121 0.147 1.617 1.605 0.033 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.002BMn2+ 0.002 0.016 0.064 0.174 0.164 0.048 0.053 0.038 0.024 0.027 0.039 0.033 0.057 0.064BCa 1.971 1.863 1.789 0.209 0.231 1.919 1.876 1.962 1.976 1.973 1.961 1.967 1.943 1.934BNa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000ACa 0.000 0.000 0.045 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000ANa 0.093 0.097 0.047 0.043 0.031 0.239 0.248 0.367 0.484 0.439 0.459 0.339 0.376 0.455AK 0.024 0.056 0.000 0.000 0.000 0.112 0.102 0.308 0.409 0.264 0.347 0.523 0.570 0.490WF 0.074 0.134 0.000 0.000 0.000 0.000 0.000 0.040 0.092 0.080 0.075 0.181 0.082 0.000WCl 0.000 0.002 0.000 0.000 0.000 0.119 0.110 0.437 0.679 0.540 0.270 0.440 0.384 0.594WOH 1.926 1.863 2.000 2.000 2.000 1.881 1.890 1.522 1.229 1.380 1.655 1.379 1.534 1.406O2- 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.000Note: The following standards, X-ray lines and crystals were used: synthetic phlogopite, FKa , TAP; albite, NaKa , TAP; kyanite, AlKa , TAP; diopside, MgKa, TAP; diopside, SiKa, TAP; scapolite, ClKa, PET; orthoclase, KKa, PET; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF.*calculated from electroneutral formula assuming 24 anions, (T+C+B)=15 and OH=(2-F-Cl). Cation site assignment after Leake et al. (2004): Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association?s amphibole nomenclature. European Journal of Mineralogy 16, 191-196.ferroactinolite grunerite / ferro anthophyllite ferrohornblende hastingsite potassic-ferropargasite221Appendix A.10: Representative compositional data for apatite and rutile from marble, and for Al,F-rich titanite in marble and calc-gneiss.Al,F-titanitePoint # 20-6 20-1 22-6 20-6 calc-gneiss (in Grt) Point # 45-12-1645-13-2071-13-3671-13-4171-29-4571-27-50SO3 wt% 0.01 0.01 0.02 0.03 Nb2O5 wt% 1.24 0.44 0.04 0.35 Nb2O5 wt% 0.11 0.12 0.08 0.13 0.07 0.23P2O5 41.06 40.86 41.01 41.13 Ta2O5 0.05 0.00 0 0 Ta2O5 0.02 0.02 0.20 0.02 0.06 0.25Al2O3 0.01 0.01 0.01 0.01 SiO2 0.05 0.01 0.04 0.66 ZrO2 0.11 0.00 0.08 0.00 0.00 0.00MgO 0.03 0.01 0.01 0.02 TiO2 98.89 97.80 99.27 96.34 SnO2 0.04 0.05 0.03 0.02 0.01 0.00CaO 55.33 55.65 55.71 55.37 Al2O3 0.00 0.00 0.00 0.00 TiO2 34.74 35.37 33.43 33.79 34.64 33.29MnO 0.00 0.05 0.01 0.02 V2O3 0.64 0.09 0.00 0.00 SiO2 29.96 30.42 30.14 30.57 30.54 29.78FeO 0.02 0.01 0.02 0.03 Cr2O3 0.18 0.09 0.09 0.22 V2O3 0.21 0.12 0.28 0.17 0.25 0.16SrO 0.00 0.02 0.00 0.00 MgO 0.00 0.00 0.00 0.00 Cr2O3 0.18 0.08 0.11 0.07 0.00 0.13F 2.32 2.93 2.50 1.90 CaO 0.38 0.07 0.03 0.00 Fe2O3 0.30 0.26 0.74 0.74 0.62 0.90CL 0.99 0.92 1.19 0.86 MnO 0.06 0.00 0.02 0.04 Al2O3 2.94 2.75 3.44 3.16 3.09 3.43H2O * 0.40 0.13 0.27 0.64 FeO 0.12 0.04 0.33 0.47 MnO 0.04 0.07 0.05 0.09 0.03 0.03O=F -0.98 -1.23 -1.05 -0.80 NiO 0.07 0.00 0.00 0.00 BaO 0.27 0.27 0.00 0.21 0.18 0.07O=CL -0.22 -0.21 -0.27 -0.19 SnO 0.04 0.00 0.00 0.10 CaO 27.49 27.38 27.50 27.75 27.74 26.89TOTAL 98.97 99.16 99.43 99.01 TOTAL 101.72 98.54 99.82 98.18 Na2O 0.01 0.01 0.01 0.00 0.01 0.02F 0.61 0.66 1.23 1.33 1.19 1.14S6+ apfu 0.001 0.001 0.001 0.002 Nb5+ apfu 0.008 0.003 0.000 0.002 TOTAL 97.03 97.58 97.31 98.05 98.42 96.34P5+ 2.970 2.957 2.961 2.970 Ta5+ 0.000 0.000 0.000 0.000Al3+ 0.001 0.001 0.001 0.001 Si4+ 0.001 0.000 0.001 0.009 TSi4+  apfu 1.001 1.011 1.006 1.014 1.009 1.006Mg2+ 0.004 0.001 0.001 0.003 Ti4+ 0.991 0.987 0.994 0.980 MNb5+ 0.002 0.002 0.001 0.002 0.001 0.004Ca2+ 5.066 5.097 5.090 5.061 Al3+ 0.000 0.000 0.000 0.000    Ta5+ 0.000 0.000 0.002 0.000 0.001 0.002Mn2+ 0.000 0.004 0.001 0.001 V3+ 0.007 0.001 0.000 0.000    Ti4+ 0.873 0.885 0.839 0.843 0.861 0.846Fe2+ 0.001 0.001 0.001 0.002 Cr3+ 0.002 0.001 0.001 0.002    Zr4+ 0.002 0.000 0.001 0.000 0.000 0.000Sr2+ 0.000 0.001 0.000 0.000 Mg2+ 0.000 0.000 0.000 0.000    Sn4+ 0.001 0.001 0.000 0.000 0.000 0.000F- 0.627 0.792 0.674 0.513 Ca2+ 0.005 0.001 0.000 0.000    V3+ 0.006 0.003 0.007 0.005 0.007 0.004Cl- 0.143 0.133 0.172 0.124 Mn2+ 0.001 0.000 0.000 0.000    Cr3+ 0.005 0.002 0.003 0.002 0.000 0.003OH- 0.230 0.075 0.154 0.363 Fe2+ 0.001 0.000 0.004 0.005    Fe3+ 0.008 0.007 0.019 0.018 0.015 0.023Ni2+ 0.001 0.000 0.000 0.000    Al3+ 0.116 0.108 0.135 0.124 0.120 0.136Sn2+ 0.000 0.000 0.000 0.001 ACa2+ 0.984 0.975 0.984 0.986 0.982 0.973  Mn2+ 0.001 0.002 0.001 0.003 0.001 0.001  Ba2+ 0.004 0.004 0.000 0.003 0.002 0.001  Na+ 0.001 0.001 0.001 0.000 0.001 0.001F- 0.064 0.069 0.130 0.140 0.124 0.122O2- 4.913 4.925 4.869 4.865 4.881 4.882apatite rutile marble calc-gneissmarble (in Crn)222 223A.11 Classification of allanite     223 224A.12 Classification of tourmaline  224 225A.13 Whole-Rock Geochemistry of Lithologies from the Revelstoke Occurrence.   Di-Gneiss Bt-Gneiss Marble Mica-Feldspar Layers   G071P G070P G055P G058P G069AM G014MU G046X G014CSU G023CSD G023CSU G063BCSM G069BCS P2O5  (wt%) 0.11 0.16 0.06 0.03 0.01 <0.01 <0.01 0.17 0.05 0.08 0.03 0.04 SiO2 47.7 55.5 55.6 55.8 0.17 0.65 1.29 8.20 3.18 7.57 16.35 4.46 TiO2 0.64 0.71 0.78 0.77 <0.01 0.01 0.01 0.21 0.05 0.13 0.61 0.10 Al2O3 15.3 17.15 18.8 18.8 0.03 0.32 0.32 6.43 2.21 6.65 11.60 2.08 Cr2O3 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 Fe2O3 5.29 6.74 5.47 7.16 0.54 0.21 1.99 0.66 0.21 0.41 2.18 1.33 MnO 0.06 0.09 0.07 0.07 0.03 0.03 0.13 0.03 0.04 0.03 0.05 0.17 MgO 3.31 3.42 2.77 2.92 0.34 0.57 9.48 1.31 1.41 2.32 7.66 4.40 CaO 17.25 8.32 7.17 3.97 55.6 54.3 41.5 44.40 51.80 44.70 29.90 45.80 SrO 0.08 0.06 0.03 0.05 0.03 0.07 0.08 0.07 0.08 0.08 0.05 0.07 BaO 0.07 0.14 0.41 0.08 0.06 0.01 0.01 0.12 0.02 0.06 0.21 0.09 Na2O 1.02 0.38 0.57 1.32 0.05 0.05 0.06 0.12 0.07 0.12 0.22 0.14 K2O 2.29 1.77 4.21 2.84 0.01 0.12 0.14 1.04 0.31 0.80 3.42 0.91 LOI (%) 3.09 0.89 1.2 1.7 43.4 43.9 43.6 35.4 40.4 34.7 24.7 39.2 Total (%) 96.2 95.3 97.2 95.5 100.5 100 98.6 98.2 99.8 97.7 97 98.8                   C 1.37 0.25 0.32 0.36 12.25 12.1 12.15 9.82 11.15 9.81 6.78 11.55 S 0.27 0.33 0.36 0.31 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.26 <0.01                   Rb (ppm) 120 125 179.5 150 0.2 2.6 6.5 39.7 15.7 31.7 143 42.3 Cs 4.77 6.49 4.85 5.63 0.02 0.07 0.44 0.72 0.6 1.3 5.25 1.85 Sr 755 519 292 397 287 584 654 581 641 632 414 564 Ba  678 1080 3430 710 9.7 59.4 76.6 1065 259 535 1705 831 V  142 110 87 91 7 11 10 66 28 58 91 32 Cr 90 90 120 100 <10 <10 <10 40 <10 30 70 10 Zr 121 183 127 114 <2 15 9 41 17 22 86 13 Hf 3.5 5.1 4.3 3.4 <0.2 0.4 0.3 1.2 0.5 0.8 2.7 0.4 Nb 16.9 36.1 22.4 18.3 <0.2 0.3 0.2 5.7 1.6 3.7 11.6 1.4 Ta 1.2 2.3 1.6 1.3 <0.1 <0.1 <0.1 0.4 0.1 0.2 0.9 0.1 Mo <1 <1 <1 <1 <1 <1 <1 <1 <1 16 3 23 W 2 2 2 2 1 1 1 1 1 1 2 1 Co 13 10 13 12 <1 <1 <1 6 <1 <1 7 <1 Ni 30 26 33 40 <1 <1 <1 25 <1 3 23 4 Cu 27 30 31 34 <1 <1 <1 3 <1 1 18 <1 Zn 105 109 45 132 5 15 82 44 11 20 387 61 Ag  <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.2 <0.5 Cd <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.9 <0.5 Hg <0.005 <0.005 0.009 0.007 0.012 0.008 0.013 0.012 0.013 0.009 0.012 0.012 Ga 24.2 26.9 28.2 28.3 <0.1 0.3 0.4 9.3 2.5 6.4 19.8 1.8 Tl 0.8 0.7 1.2 0.7 <0.5 <0.5 <0.5 <0.5 0.5 0.6 0.7 <0.5 Sn 2 3 3 3 <1 <1 <1 1 <1 <1 2 <1 Pb 19 12 21 19 6 19 28 12 7 6 758 19 As <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 Sb <0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 0.06 0.06 0.06 2.17 0.15 Bi 0.14 0.24 0.13 0.22 <0.01 0.11 <0.01 0.03 0.01 0.01 0.73 0.04 Se 0.5 0.5 0.6 0.4 0.2 0.2 0.3 0.3 0.2 0.2 0.9 0.2 Te 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.01 0.02 0.03 Y 24.1 28.6 27.3 24.7 <0.5 3.5 2.6 4.7 2 2.3 6.3 1.1 La 51.2 63.9 57.4 57.1 <0.5 3.1 1.6 5.8 3.9 4.2 33.2 1.2 Ce 89.9 114 102 100.5 <0.5 5.5 3.7 9.9 6.2 6.7 56.3 2 Pr 11.15 14.2 11.75 12.7 0.04 0.72 0.59 1.22 0.79 0.85 6.08 0.26 Nd 39.3 49.4 43.9 44.6 0.2 2.9 2.8 4.5 2.9 3.2 17.3 1.1 Sm 6.63 8.35 7.49 7.45 0.03 0.63 0.7 0.96 0.51 0.59 1.84 0.21 Eu 1.2 1.39 1.25 1.31 <0.03 0.32 0.52 0.31 0.08 0.09 0.19 0.04 Gd 5.96 7.47 6.71 6.61 <0.05 0.64 0.57 0.93 0.45 0.49 2.17 0.17 Tb 0.77 0.99 0.96 0.88 <0.01 0.08 0.08 0.13 0.06 0.07 0.22 0.03 Dy 4.21 5.37 4.93 4.68 <0.05 0.49 0.39 0.73 0.31 0.35 1.19 0.14 Ho 0.83 1.06 0.94 0.92 <0.01 0.1 0.07 0.15 0.06 0.07 0.26 0.03 Er 2.55 3.12 2.94 2.84 <0.03 0.29 0.18 0.46 0.2 0.23 0.88 0.12 Tm 0.36 0.43 0.42 0.4 <0.01 0.04 0.03 0.07 0.03 0.03 0.13 0.02 Yb 2.28 2.84 2.71 2.51 <0.03 0.24 0.17 0.49 0.18 0.22 0.99 0.14 Lu 0.36 0.42 0.43 0.38 <0.01 0.04 0.02 0.07 0.03 0.04 0.17 0.02 Th 15.55 18.45 17.35 17.8 <0.05 0.45 0.41 7.33 0.91 1.95 7.82 0.37 U 3.47 3.12 2.86 2.84 0.57 0.54 1.59 14.45 4.39 9.37 4.69 2.05                      LaCN/LuCN 15.2 16.3 14.3 16.1   8.3 8.6 8.9 13.9 11.3 20.9 6.4 Eu / Eu* = (SmN+GdN)/2 0.57 0.53 0.53 0.56   1.53 2.44 0.99 0.50 0.50 0.29 0.63   225 226 A.14 Microthermometry Results of Fluid Inclusions within Corundum at the Revelstoke Occurrence  (N=5) max ?C min ?C avg ?C ? homogenization temperature of CO2 bubble 23 15 18.2 2.9 melting temperature of CO2-Ice -73 -93.5 -82.1 9.0 melting temperature of CO2-solid -56.6 -58.2 -57.5 0.7 homogenization temperature of CO2-vapour-liquid 27.2 24.7 25.7 1.0 % CO2 100 92 94.8 3.5 molar volume 65.3 61.5 63.0 1.5   226 223Appendix B  Compositional Data for the Kimmirut Sapphire Occurrence   227Appendix B.1: Representative compostions of corundum from the Beluga ShowingB6-1 6B-2 6B-3 6A-1 6A-2 6A-3 H-1 H-2 G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10TiO2  wt.% 0.00 0.01 0.01 0.00 0.01 0.00 0.12 0.08 0.12 0.05 0.05 0.07 0.07 0.08 0.04 0.00 0.06 0.05Al2O3 100.39 100.91 100.53 100.76 100.25 100.68 99.96 100.05 95.56 99.78 99.36 98.04 99.08 97.55 99.75 97.90 99.41 99.07V2O3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Cr2O3 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Ga2O3 - - - - - - 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.02 0.01MgO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01FeO 0.04 0.04 0.05 0.04 0.04 0.04 0.12 0.12 0.07 0.08 0.13 0.04 0.02 0.06 0.07 0.02 0.06 0.07NOTE: The following standards, X-ray lines and crystals were used for the EMP analyses: corundum, AlKa, TAP; diopside, MgKa, TAP; rutile, TiKa, PET; V element, VKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF.228TiO2  wt.%Al2O3V2O3Cr2O3Ga2O3MgOMnOFeOAppendix B.1: Representative compostions of corundum from the Beluga Showing (con't)G-11 G-12 G-13 G-14 A-1 A-2 A-3 A-4 A-5 Max Min Avg ?0.11 0.05 0.30 0.21 0.16 0.14 0.04 0.12 0.13 0.30 0.00 0.08 0.0799.57 99.36 99.25 99.71 99.93 100.39 99.71 100.28 99.63 100.91 95.56 99.51 1.130.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.000.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.000.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.00 0.02 0.00 0.01 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.000.05 0.09 0.07 0.04 0.09 0.08 0.13 0.11 0.10 0.13 0.02 0.07 0.03229Appendix B.2: Compositions of Nepheline from the Bowhead Showing39-2-1 39-2-2 39-2-3 39-2-4 39-2-5 39-2-6 39-2-7 39-2-8 39-2-9 39-2-10 39-2-12 39-2-13 39-2-14 39-2-18 39-2-19 39-2-20SiO2 43.03 44.19 43.28 43.58 43.09 43.54 43.42 43.81 43.57 43.63 43.05 43.76 43.58 44.28 43.61 43.66Al2O3 34.40 34.34 34.28 34.28 34.42 34.69 34.70 34.37 34.29 34.60 34.64 34.75 34.59 34.32 34.08 34.51MgO 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00CaO 2.41 2.37 2.41 2.36 2.31 2.52 2.41 2.27 2.28 2.32 2.56 2.36 2.30 2.29 2.26 2.35MnO 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00FeO 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Na2O 15.66 15.53 15.85 15.68 15.77 15.55 15.75 15.90 15.82 15.86 15.61 15.70 15.45 15.71 15.75 15.37K2O 3.84 3.93 3.93 3.87 3.79 4.08 3.89 3.73 3.91 3.90 4.06 3.92 3.97 3.77 3.79 3.89TOTAL 99.34 100.37 99.76 99.78 99.38 100.40 100.20 100.10 99.87 100.32 99.93 100.49 99.89 100.38 99.49 99.78Si4+ 4.121 4.179 4.131 4.151 4.123 4.127 4.122 4.157 4.149 4.136 4.105 4.138 4.143 4.184 4.164 4.152Al3+ 3.882 3.827 3.856 3.848 3.882 3.875 3.882 3.844 3.848 3.866 3.892 3.873 3.876 3.822 3.835 3.868Mg2+ 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ca2+ 0.247 0.240 0.246 0.241 0.237 0.256 0.245 0.231 0.233 0.236 0.262 0.239 0.234 0.232 0.231 0.239Mn2+ 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000Fe2+ 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Na+ 2.907 2.847 2.933 2.896 2.926 2.858 2.899 2.925 2.921 2.915 2.886 2.878 2.848 2.878 2.916 2.834K+ 0.469 0.474 0.479 0.470 0.463 0.493 0.471 0.452 0.475 0.472 0.494 0.473 0.482 0.454 0.462 0.472NOTE: The following standards, X-ray lines and crystals were used during EMP analysis: albite, NaKa , TAP; anorthite, AlKa , TAP; diopside, MgKa, TAP; orthoclase, SiKa, TAP; orthoclase, KKa, PET; anorthite, CaKa, PET; synthetic fayalite, FeKa, LIF; barite, BaLa PET.  Compositions were recalculated on the basis of 16 O apfu230SiO2Al2O3MgOCaOMnOFeONa2OK2OTOTALSi4+Al3+Mg2+Ca2+Mn2+Fe2+Na+K+Appendix B.2: Compositions of Nepheline from the Bowhead Showing (con't)39-2-40 39-2-41 39-2-42 39-2-43 avg stdev min max43.52 43.05 43.24 42.96 43.49 0.36 42.96 44.2834.58 34.51 34.46 34.21 34.45 0.18 34.08 34.750.00 0.00 0.00 0.00 0.00 0.00 0.00 0.012.40 2.33 2.51 2.43 2.37 0.08 2.26 2.560.00 0.00 0.01 0.02 0.00 0.01 0.00 0.020.00 0.00 0.01 0.00 0.00 0.01 0.00 0.0315.60 15.82 15.61 15.72 15.69 0.14 15.37 15.904.03 3.98 4.08 3.96 3.92 0.10 3.73 4.08100.13 99.69 99.92 99.30 99.93 0.36 99.30 100.494.134 4.113 4.122 4.121 4.139 0.021 4.105 4.1843.871 3.886 3.872 3.868 3.864 0.020 3.822 3.8920.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0010.244 0.238 0.256 0.250 0.242 0.009 0.231 0.2620.000 0.000 0.001 0.002 0.000 0.001 0.000 0.0020.000 0.000 0.001 0.000 0.000 0.001 0.000 0.0022.873 2.930 2.885 2.924 2.894 0.030 2.834 2.9330.488 0.485 0.496 0.485 0.475 0.012 0.452 0.496231Appendix B.3: Compositions of diopside from the Beluga Showing1-1 1-2 1-3 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3SiO2 wt.% 51.21 51.14 50.82 51.16 51.65 51.26 51.63 51.49 51.21 51.58 51.12 51.44 51.07 51.86TiO2 1.27 1.42 1.30 1.34 1.33 1.32 1.31 1.34 1.29 1.21 1.27 1.30 1.28 1.10Al2O3 7.20 7.32 7.37 7.39 6.81 7.53 6.83 7.36 7.61 6.86 7.48 6.98 7.50 5.29Cr2O3 0.01 0.04 0.04 0.04 0.03 0.02 0.03 0.02 0.03 0.00 0.02 0.01 0.01 0.03MgO 14.37 14.07 14.31 14.29 14.36 14.08 14.41 14.09 13.86 14.44 14.18 14.26 14.16 15.09CaO 22.72 22.40 22.40 22.56 22.48 22.65 22.55 22.59 22.35 22.76 22.48 22.57 22.50 22.78MnO 0.03 0.04 0.04 0.00 0.04 0.06 0.03 0.03 0.04 0.06 0.06 0.09 0.04 0.07FeO 1.73 1.61 1.64 1.56 1.54 1.53 1.56 1.48 1.54 1.62 1.65 1.59 1.62 1.58Na2O 1.65 1.68 1.67 1.63 1.70 1.74 1.70 1.70 1.80 1.75 1.68 1.70 1.75 1.52TOTAL 100.19 99.72 99.59 99.97 99.94 100.18 100.05 100.10 99.73 100.27 99.93 99.93 99.93 99.31Si4+ apfu 1.846 1.854 1.842 1.848 1.867 1.848 1.863 1.858 1.854 1.856 1.847 1.859 1.845 1.885Ti4+ 0.034 0.039 0.035 0.036 0.036 0.036 0.036 0.036 0.035 0.033 0.035 0.035 0.035 0.030Al3+ 0.306 0.313 0.315 0.315 0.290 0.320 0.291 0.313 0.325 0.291 0.319 0.297 0.319 0.227Cr3+ 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.001Fe3+ 0.047 0.044 0.045 0.042 0.042 0.041 0.042 0.040 0.042 0.044 0.045 0.043 0.044 0.043Mg2+ 0.772 0.760 0.773 0.770 0.774 0.757 0.775 0.758 0.748 0.775 0.764 0.768 0.762 0.818Ca2+ 0.878 0.870 0.870 0.873 0.870 0.875 0.872 0.874 0.867 0.878 0.870 0.874 0.871 0.887Mn2+ 0.001 0.001 0.001 0.000 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.003 0.001 0.002Na+ 0.115 0.118 0.117 0.114 0.119 0.122 0.119 0.119 0.126 0.122 0.118 0.119 0.123 0.107Di = Ca+Mg 90.909 90.455 90.773 90.673 90.980 90.416 91.146 90.315 89.672 91.276 90.276 90.919 90.421 93.169Jd = [6]Al 6.501 7.103 6.740 7.009 6.696 7.313 6.530 7.471 7.996 6.295 7.238 6.700 7.143 4.481Ae = Fe3+ 2.590 2.442 2.486 2.318 2.324 2.271 2.324 2.214 2.332 2.430 2.486 2.381 2.436 2.350   Note: Following standards, X-ray lines and crystals were used for EMP analysis: albite, NaKa, TAP; kyanite,                      AlKa, TAP; diopside, MgKa, TAP; diopside, SiKa, TAP; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF: synthetic Ni2SiO4, NiKa, LIF. Formulae are normalized on 6 anions.         232SiO2 wt.%TiO2Al2O3Cr2O3MgOCaOMnOFeONa2OTOTALSi4+ apfuTi4+Al3+Cr3+Fe3+Mg2+Ca2+Mn2+Na+Di = Ca+MgJd = [6]AlAe = Fe3+Appendix B.3: Compositions of diopside from the Beluga Showing (con't)4-4 4-5 4-6 4-7 max min avg ?50.68 50.83 51.05 51.12 51.86 50.68 51.24 0.311.26 1.29 1.31 1.29 1.42 1.10 1.29 0.067.78 7.75 7.67 7.78 7.78 5.29 7.25 0.570.00 0.05 0.05 0.00 0.05 0.00 0.02 0.0214.15 13.95 14.07 14.09 15.09 13.86 14.24 0.2622.37 22.18 22.56 22.47 22.78 22.18 22.52 0.150.08 0.03 0.04 0.02 0.09 0.00 0.04 0.021.54 1.63 1.53 1.62 1.73 1.48 1.59 0.061.70 1.67 1.68 1.73 1.80 1.52 1.69 0.0699.55 99.38 99.96 100.12 100.27 99.31 99.88 0.271.837 1.848 1.845 1.843 1.89 1.84 1.85 0.010.034 0.035 0.036 0.035 0.04 0.03 0.04 0.000.332 0.332 0.327 0.331 0.33 0.23 0.31 0.020.000 0.001 0.001 0.000 0.00 0.00 0.00 0.000.042 0.045 0.042 0.044 0.05 0.04 0.04 0.000.764 0.756 0.758 0.757 0.82 0.75 0.77 0.010.869 0.864 0.873 0.868 0.89 0.86 0.87 0.000.002 0.001 0.001 0.001 0.00 0.00 0.00 0.000.119 0.118 0.118 0.121 0.13 0.11 0.12 0.0090.221 89.503 90.160 89.878 93.17 89.50 90.62 0.787.459 8.011 7.518 7.688 8.01 4.48 6.99 0.782.320 2.486 2.322 2.434 2.59 2.21 2.39 0.09233SiO2 wt.%TiO2Al2O3Cr2O3MgOCaOMnOFeONa2OTOTALSi4+ apfuTi4+Al3+Cr3+Fe3+Mg2+Ca2+Mn2+Na+Di = Ca+MgJd = [6]AlAe = Fe3+Appendix B.3: Compositions of diopside from the Bowhead Showing (con't)39-2b-P16 39-2b-P17 39-2b-P18 39-2b-P19 39-2b-P20 39-2b-P21 39-2b-P22 39-2c-P23 39-2c-P2451.63 52.09 52.85 51.86 51.87 51.38 51.63 52.29 52.350.82 0.67 0.51 0.86 0.88 0.71 0.83 1.18 0.566.68 6.60 3.55 6.36 6.23 6.40 5.90 5.38 4.740.02 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.0014.54 14.82 16.09 14.65 15.04 14.84 14.85 14.97 15.2722.82 23.03 24.20 23.01 23.47 22.82 23.50 23.12 23.580.00 0.00 0.04 0.03 0.04 0.00 0.02 0.06 0.101.28 1.11 1.14 1.24 1.25 1.20 1.15 1.25 1.181.72 1.53 1.17 1.68 1.54 1.65 1.53 1.65 1.5599.51 99.87 99.55 99.69 100.32 99.00 99.41 99.90 99.321.868 1.878 1.913 1.874 1.862 1.866 1.871 1.888 1.8970.022 0.018 0.014 0.023 0.024 0.019 0.023 0.032 0.0150.285 0.280 0.151 0.271 0.264 0.274 0.252 0.229 0.2020.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.035 0.030 0.031 0.034 0.034 0.033 0.031 0.034 0.0320.784 0.796 0.868 0.789 0.805 0.803 0.802 0.806 0.8250.885 0.890 0.939 0.891 0.903 0.888 0.913 0.894 0.9160.000 0.000 0.001 0.001 0.001 0.000 0.001 0.002 0.0030.121 0.107 0.082 0.118 0.107 0.116 0.108 0.115 0.10990.954 90.841 95.710 91.503 92.625 91.653 92.904 93.458 93.7537.139 7.543 2.648 6.645 5.531 6.558 5.417 4.673 4.5231.907 1.616 1.642 1.852 1.844 1.789 1.679 1.869 1.723234SiO2 wt.%TiO2Al2O3Cr2O3MgOCaOMnOFeONa2OTOTALSi4+ apfuTi4+Al3+Cr3+Fe3+Mg2+Ca2+Mn2+Na+Di = Ca+MgJd = [6]AlAe = Fe3+Appendix B.3: Compositions of diopside from the Bowhead Showing (con't)max min avg ?52.85 51.38 51.99 0.431.18 0.51 0.78 0.196.68 3.55 5.76 0.980.02 0.00 0.01 0.0116.09 14.54 15.01 0.4324.20 22.82 23.28 0.420.10 0.00 0.03 0.031.28 1.11 1.20 0.061.72 1.17 1.56 0.15100.32 99.00 99.62 0.361.91 1.86 1.88 0.020.03 0.01 0.02 0.010.29 0.15 0.25 0.040.00 0.00 0.00 0.000.04 0.03 0.03 0.000.87 0.78 0.81 0.020.94 0.89 0.90 0.020.00 0.00 0.00 0.000.12 0.08 0.11 0.0195.71 90.84 92.60 1.487.54 2.65 5.63 1.451.91 1.62 1.77 0.10235Appendix B.4: Compositional data of phlogopite from the Beluga ShowingBeluga1-1-1 1-1-2 1-1-3 1-1-4 1-1-5 1-1-6 1-1-7 1-1-8 1-1-9 1-1-10 1-1-11 1-1-12 1-1-13 1-1-14 1-1-15 1-1-16SiO2 wt% 39.17 39.53 39.17 39.38 39.77 39.91 39.84 39.12 39.03 38.96 39.87 39.94 39.33 39.21 39.36 39.58TiO2 2.28 2.40 2.32 2.43 2.71 2.69 2.51 2.50 2.46 2.39 2.47 2.44 2.21 2.13 2.68 2.57Al2O3 17.82 16.83 17.48 16.06 15.68 15.55 15.71 17.05 17.40 16.21 16.78 16.27 17.01 17.62 15.23 15.30Cr2O3 0.04 0.00 0.00 0.00 0.06 0.06 0.02 0.05 0.00 0.07 0.11 0.02 0.00 0.04 0.04 0.04MgO 22.68 22.72 22.66 22.96 23.02 23.12 23.17 22.43 22.63 22.45 22.75 22.91 22.56 22.52 23.39 23.61CaO 0.01 0.02 0.00 0.02 0.07 0.04 0.04 0.00 0.02 0.03 0.02 0.01 0.01 0.01 0.00 0.00BaO 0.07 0.07 0.09 0.00 0.07 0.02 0.10 0.07 0.03 0.00 0.07 0.02 0.03 0.00 0.02 0.03MnO 0.07 0.01 0.02 0.00 0.07 0.04 0.00 0.01 0.00 0.03 0.03 0.00 0.02 0.03 0.00 0.02FeO 3.08 2.83 2.90 3.07 2.91 2.77 2.88 3.05 2.95 2.81 3.01 2.91 2.77 3.05 2.83 3.05Na2O 0.28 0.26 0.22 0.19 0.22 0.23 0.23 0.22 0.25 0.29 0.37 0.31 0.27 0.27 0.28 0.24K2O 10.68 10.63 10.64 10.52 10.71 10.89 10.42 10.42 10.49 10.30 10.65 10.59 10.54 10.89 10.81 10.37F 1.12 1.27 1.13 1.34 1.37 1.39 1.41 1.16 1.13 1.29 1.26 1.36 1.26 1.31 1.42 1.41CL 0.00 0.03 0.01 0.00 0.02 0.03 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.07H2O * 3.75 3.64 3.71 3.58 3.58 3.57 3.56 3.67 3.70 3.56 3.68 3.61 3.63 3.64 3.52 3.53O=F -0.47 -0.53 -0.48 -0.56 -0.58 -0.59 -0.59 -0.49 -0.48 -0.54 -0.53 -0.57 -0.53 -0.55 -0.60 -0.59O=CL 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 -0.02Total 100.57 99.69 99.88 98.98 99.68 99.72 99.30 99.28 99.63 97.85 100.54 99.81 99.11 100.16 99.01 99.21Si4+ apfu 2.746 2.792 2.762 2.803 2.816 2.824 2.825 2.775 2.758 2.801 2.795 2.816 2.791 2.761 2.809 2.814Ti4+ 0.120 0.127 0.123 0.130 0.144 0.143 0.134 0.133 0.131 0.129 0.130 0.129 0.118 0.113 0.144 0.137Al3+ 1.473 1.401 1.453 1.347 1.308 1.297 1.313 1.425 1.449 1.374 1.386 1.352 1.422 1.463 1.281 1.282Cr3+ 0.002 0.000 0.000 0.000 0.003 0.003 0.001 0.003 0.000 0.004 0.006 0.001 0.000 0.002 0.002 0.002Mg2+ 2.371 2.392 2.382 2.437 2.430 2.439 2.449 2.372 2.384 2.406 2.378 2.408 2.386 2.364 2.488 2.502Ca2+ 0.001 0.002 0.000 0.002 0.005 0.003 0.003 0.000 0.002 0.002 0.002 0.001 0.001 0.001 0.000 0.000Ba2+ 0.002 0.002 0.002 0.000 0.002 0.001 0.003 0.002 0.001 0.000 0.002 0.001 0.001 0.000 0.001 0.001Mn2+ 0.004 0.001 0.001 0.000 0.004 0.002 0.000 0.001 0.000 0.002 0.002 0.000 0.001 0.002 0.000 0.001Fe2+ 0.181 0.167 0.171 0.183 0.172 0.164 0.171 0.181 0.174 0.169 0.176 0.172 0.164 0.180 0.169 0.181Na+ 0.038 0.036 0.030 0.026 0.030 0.032 0.032 0.030 0.034 0.040 0.050 0.042 0.037 0.037 0.039 0.033K+ 0.955 0.958 0.957 0.955 0.967 0.983 0.942 0.943 0.946 0.945 0.952 0.953 0.954 0.978 0.984 0.940F- 0.248 0.284 0.252 0.302 0.307 0.311 0.316 0.260 0.252 0.293 0.279 0.303 0.283 0.292 0.321 0.317Cl- 0.000 0.004 0.001 0.000 0.002 0.004 0.001 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.005 0.008H+ 1.752 1.713 1.747 1.698 1.691 1.685 1.683 1.737 1.745 1.707 1.721 1.697 1.717 1.708 1.675 1.675O2- 11.752 11.713 11.747 11.698 11.691 11.685 11.683 11.737 11.745 11.707 11.721 11.697 11.717 11.708 11.675 11.675*calculated from electroneutral formula assuming 12 anions and (OH+F+Cl)=2.NOTE: Following standards, X-ray lines and crystals were used during EMP analysis: synthetic phlogopite, FKa , MgKa , SiKa , TAP, KKa , PET; albite, NaKa , TAP; kyanite, AlKa, TAP; scapolite, ClKa, PET; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF; barite, BaLa, PET.236SiO2 wt%TiO2Al2O3Cr2O3MgOCaOBaOMnOFeONa2OK2OFCLH2O *O=FO=CLTotalSi4+ apfuTi4+Al3+Cr3+Mg2+Ca2+Ba2+Mn2+Fe2+Na+K+F-Cl-H+O2-Appendix B.4: Compositional data of phlogopite from the Beluga Showing (con't)1-1-17 1-1-18 1-1-19 1-1-20 1-1-22 1-1-23 1-1-24 F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-940.45 40.27 40.73 40.85 40.58 39.46 40.08 40.43 39.76 39.96 39.83 39.87 39.92 40.07 39.98 39.852.70 2.63 2.38 2.30 2.44 2.51 2.75 2.94 2.56 2.53 2.60 2.70 2.75 2.80 2.65 2.8415.03 15.06 13.71 13.46 13.64 14.95 14.89 14.77 15.26 15.34 15.29 14.74 15.18 14.85 14.14 14.690.00 0.06 0.07 0.04 0.00 0.06 0.03 0.00 0.07 0.05 0.05 0.05 0.07 0.02 0.01 0.0023.44 23.61 24.10 24.34 24.51 23.73 23.63 23.75 23.39 23.28 23.57 23.87 23.49 23.52 24.02 23.590.05 0.03 0.06 0.07 0.05 0.01 0.00 0.00 0.03 0.01 0.01 0.00 0.01 0.00 0.00 0.000.04 0.01 0.00 0.17 0.08 0.04 0.06 0.03 0.00 0.02 0.05 0.02 0.00 0.05 0.00 0.090.09 0.01 0.03 0.06 0.07 0.00 0.06 0.00 0.00 0.04 0.04 0.00 0.02 0.00 0.06 0.143.01 2.84 2.77 2.63 2.79 3.08 2.97 3.16 3.02 3.00 2.78 2.61 2.96 2.99 2.96 3.080.22 0.21 0.26 0.20 0.22 0.25 0.22 0.25 0.30 0.28 0.30 0.31 0.37 0.34 0.18 0.3410.82 10.40 10.61 10.59 10.56 10.12 10.74 10.53 10.55 10.62 10.20 10.61 10.48 10.58 10.35 10.651.46 1.52 1.80 1.71 1.71 1.38 1.45 1.49 1.46 1.42 1.41 1.39 1.38 1.34 1.44 1.430.00 0.09 0.07 0.00 0.03 0.00 0.03 0.01 0.01 0.00 0.01 0.04 0.07 0.02 0.03 0.083.57 3.50 3.35 3.40 3.40 3.54 3.54 3.55 3.53 3.56 3.55 3.55 3.57 3.59 3.51 3.53-0.61 -0.64 -0.76 -0.72 -0.72 -0.58 -0.61 -0.63 -0.61 -0.60 -0.59 -0.59 -0.58 -0.56 -0.61 -0.600.00 -0.02 -0.02 0.00 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.02 0.00 -0.01 -0.02100.26 99.58 99.16 99.10 99.36 98.55 99.84 100.28 99.32 99.51 99.10 99.16 99.67 99.60 98.72 99.692.848 2.846 2.896 2.906 2.882 2.821 2.835 2.843 2.824 2.832 2.827 2.834 2.825 2.838 2.854 2.8290.143 0.140 0.127 0.123 0.130 0.135 0.146 0.156 0.137 0.135 0.139 0.144 0.146 0.149 0.142 0.1521.247 1.254 1.149 1.128 1.142 1.260 1.241 1.224 1.277 1.281 1.279 1.235 1.266 1.240 1.190 1.2290.000 0.003 0.004 0.002 0.000 0.003 0.002 0.000 0.004 0.003 0.003 0.003 0.004 0.001 0.001 0.0002.460 2.487 2.554 2.581 2.595 2.529 2.492 2.490 2.477 2.459 2.494 2.529 2.478 2.484 2.557 2.4960.004 0.002 0.005 0.005 0.004 0.001 0.000 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.000 0.0000.001 0.000 0.000 0.005 0.002 0.001 0.002 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.0030.005 0.001 0.002 0.004 0.004 0.000 0.004 0.000 0.000 0.002 0.002 0.000 0.001 0.000 0.004 0.0080.177 0.168 0.165 0.156 0.166 0.184 0.176 0.186 0.179 0.178 0.165 0.155 0.175 0.177 0.177 0.1830.030 0.029 0.036 0.028 0.030 0.035 0.030 0.034 0.041 0.038 0.041 0.043 0.051 0.047 0.025 0.0470.972 0.938 0.962 0.961 0.957 0.923 0.969 0.945 0.956 0.960 0.924 0.962 0.946 0.956 0.943 0.9640.325 0.340 0.405 0.385 0.384 0.312 0.324 0.331 0.328 0.318 0.317 0.312 0.309 0.300 0.325 0.3210.000 0.011 0.008 0.000 0.004 0.000 0.004 0.001 0.001 0.000 0.001 0.005 0.008 0.002 0.004 0.0101.675 1.649 1.587 1.615 1.612 1.688 1.672 1.667 1.671 1.682 1.682 1.683 1.683 1.697 1.671 1.66911.675 11.649 11.587 11.615 11.612 11.688 11.672 11.667 11.671 11.682 11.682 11.683 11.683 11.697 11.671 11.669237SiO2 wt%TiO2Al2O3Cr2O3MgOCaOBaOMnOFeONa2OK2OFCLH2O *O=FO=CLTotalSi4+ apfuTi4+Al3+Cr3+Mg2+Ca2+Ba2+Mn2+Fe2+Na+K+F-Cl-H+O2-Appendix B.4: Compositional data of phlogopite from the Beluga Showing (con't)F-10 F-11 F-12 F-13 F-14 F-15 F-16 F-17 F-18 max min avg ?38.72 39.76 39.69 39.91 40.49 40.00 39.84 39.93 39.70 40.85 38.72 39.79 0.482.08 2.22 2.24 2.58 2.83 2.63 2.85 2.53 2.51 2.94 2.08 2.53 0.2016.74 16.20 15.58 15.59 14.89 14.62 14.73 15.84 15.62 17.82 13.46 15.58 1.070.00 0.02 0.00 0.00 0.03 0.01 0.10 0.00 0.00 0.11 0.00 0.03 0.0323.00 23.20 23.03 23.30 24.25 23.87 23.83 23.09 23.10 24.51 22.43 23.32 0.530.00 0.01 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.07 0.00 0.02 0.020.00 0.00 0.07 0.03 0.07 0.04 0.04 0.02 0.11 0.17 0.00 0.04 0.040.09 0.05 0.00 0.04 0.02 0.04 0.01 0.06 0.06 0.14 0.00 0.03 0.032.78 2.91 2.75 2.90 3.10 3.03 2.91 3.02 2.86 3.16 2.61 2.92 0.130.32 0.20 0.36 0.26 0.38 0.26 0.32 0.38 0.34 0.38 0.18 0.27 0.0610.58 10.47 10.55 10.52 10.65 10.69 10.66 10.34 10.49 10.89 10.12 10.56 0.161.25 1.41 1.59 1.40 1.27 1.41 1.39 1.40 1.52 1.80 1.12 1.39 0.140.05 0.00 0.00 0.02 0.05 0.04 0.00 0.04 0.02 0.09 0.00 0.02 0.023.59 3.57 3.44 3.57 3.68 3.55 3.57 3.57 3.49 3.75 3.35 3.57 0.08-0.53 -0.59 -0.67 -0.59 -0.53 -0.59 -0.59 -0.59 -0.64 -0.47 -0.76 -0.59 0.06-0.01 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01 0.00 0.00 -0.02 -0.01 0.0198.66 99.43 98.64 99.52 101.16 99.58 99.68 99.66 99.18 101.16 97.85 99.48 0.592.767 2.813 2.834 2.824 2.827 2.838 2.823 2.821 2.822 2.91 2.75 2.82 0.030.112 0.118 0.120 0.137 0.149 0.140 0.152 0.134 0.134 0.16 0.11 0.13 0.011.410 1.351 1.311 1.300 1.225 1.222 1.230 1.319 1.309 1.47 1.13 1.30 0.090.000 0.001 0.000 0.000 0.002 0.001 0.006 0.000 0.000 0.01 0.00 0.00 0.002.451 2.447 2.452 2.458 2.524 2.524 2.517 2.432 2.448 2.60 2.36 2.46 0.060.000 0.001 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.01 0.00 0.00 0.000.000 0.000 0.002 0.001 0.002 0.001 0.001 0.001 0.003 0.01 0.00 0.00 0.000.005 0.003 0.000 0.002 0.001 0.002 0.001 0.004 0.004 0.01 0.00 0.00 0.000.166 0.172 0.164 0.172 0.181 0.180 0.172 0.178 0.170 0.19 0.16 0.17 0.010.044 0.027 0.050 0.036 0.051 0.036 0.044 0.052 0.047 0.05 0.03 0.04 0.010.965 0.945 0.961 0.950 0.949 0.967 0.964 0.932 0.951 0.98 0.92 0.95 0.010.283 0.316 0.359 0.313 0.280 0.316 0.312 0.313 0.342 0.41 0.25 0.31 0.030.006 0.000 0.000 0.002 0.006 0.005 0.000 0.005 0.002 0.01 0.00 0.00 0.001.711 1.684 1.641 1.684 1.714 1.679 1.688 1.682 1.656 1.75 1.59 1.69 0.0311.711 11.684 11.641 11.684 11.714 11.679 11.688 11.682 11.656 11.75 11.59 11.69 0.03238SiO2 wt%TiO2Al2O3Cr2O3MgOCaOBaOMnOFeONa2OK2OFCLH2O *O=FO=CLTotalSi4+ apfuTi4+Al3+Cr3+Mg2+Ca2+Ba2+Mn2+Fe2+Na+K+F-Cl-H+O2-Appendix B.4: Compositional data of phlogopite from the Bowhead Showing (con't)BowheadM31 M38 M39 M35 M30 M34 M40 M32 M33 M36 M37 M41 M26 M27 M25 M2641.14 40.61 41.19 41.17 40.99 40.83 41.21 41.01 41.08 40.61 40.49 41.07 41.22 40.79 41.21 41.222.02 1.69 1.79 1.91 2.00 1.96 1.81 2.01 2.02 1.77 1.74 1.76 1.77 1.76 1.81 1.7714.39 15.84 14.82 14.62 14.91 14.50 15.22 14.52 14.48 15.00 15.49 15.11 15.09 15.34 15.20 15.090.02 0.00 0.07 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.01 0.0025.44 24.71 25.21 25.52 25.23 25.41 25.26 25.35 25.08 25.03 24.78 25.14 25.26 24.73 24.98 25.260.00 0.01 0.00 0.01 0.02 0.01 0.00 0.02 0.01 0.02 0.00 0.01 0.01 0.00 0.00 0.010.03 0.10 0.10 0.13 0.02 0.08 0.03 0.00 0.00 0.03 0.01 0.08 0.03 0.16 0.02 0.030.05 0.01 0.00 0.03 0.03 0.01 0.03 0.00 0.00 0.01 0.03 0.02 0.06 0.00 0.00 0.062.20 2.27 2.18 2.08 2.28 2.10 1.96 2.10 2.11 2.20 2.07 2.28 1.96 2.18 2.21 1.960.34 0.33 0.30 0.38 0.30 0.27 0.29 0.35 0.30 0.29 0.31 0.29 0.28 0.30 0.29 0.2810.56 10.55 10.63 10.43 10.55 10.78 10.68 10.68 10.73 10.56 10.51 10.56 10.65 10.69 10.73 10.652.05 1.86 1.98 2.08 1.89 1.96 1.90 2.00 2.04 1.94 1.83 1.99 2.09 1.86 1.92 2.090.01 0.00 0.07 0.04 0.00 0.00 0.00 0.03 0.00 0.05 0.01 0.01 0.04 0.05 0.00 0.043.32 3.41 3.35 3.31 3.41 3.35 3.42 3.34 3.31 3.34 3.40 3.36 3.31 3.39 3.40 3.31-0.86 -0.78 -0.83 -0.88 -0.80 -0.83 -0.80 -0.84 -0.86 -0.82 -0.77 -0.84 -0.88 -0.78 -0.81 -0.880.00 0.00 -0.02 -0.01 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 -0.01 -0.01 0.00 -0.01100.71 100.61 100.84 100.83 100.90 100.45 101.01 100.56 100.31 100.02 99.94 100.87 100.88 100.46 100.97 100.882.870 2.834 2.870 2.867 2.854 2.859 2.860 2.865 2.876 2.852 2.842 2.859 2.866 2.854 2.865 2.8660.106 0.089 0.094 0.100 0.105 0.103 0.095 0.106 0.106 0.094 0.092 0.092 0.093 0.093 0.095 0.0931.183 1.303 1.217 1.200 1.223 1.197 1.245 1.196 1.195 1.242 1.281 1.240 1.236 1.265 1.245 1.2360.001 0.000 0.004 0.001 0.003 0.001 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.001 0.0002.646 2.571 2.619 2.649 2.618 2.653 2.614 2.640 2.618 2.621 2.593 2.609 2.618 2.580 2.589 2.6180.000 0.001 0.000 0.001 0.001 0.001 0.000 0.001 0.001 0.002 0.000 0.001 0.001 0.000 0.000 0.0010.001 0.003 0.003 0.004 0.001 0.002 0.001 0.000 0.000 0.001 0.000 0.002 0.001 0.004 0.001 0.0010.003 0.001 0.000 0.002 0.002 0.001 0.002 0.000 0.000 0.001 0.002 0.001 0.004 0.000 0.000 0.0040.128 0.132 0.127 0.121 0.133 0.123 0.114 0.123 0.124 0.129 0.121 0.133 0.114 0.128 0.128 0.1140.046 0.045 0.041 0.051 0.040 0.037 0.039 0.047 0.041 0.039 0.042 0.039 0.038 0.041 0.039 0.0380.940 0.939 0.945 0.927 0.937 0.963 0.946 0.952 0.958 0.946 0.941 0.938 0.945 0.954 0.952 0.9450.452 0.411 0.436 0.458 0.416 0.434 0.417 0.442 0.452 0.431 0.406 0.438 0.460 0.412 0.422 0.4600.001 0.000 0.008 0.005 0.000 0.000 0.000 0.004 0.000 0.006 0.001 0.001 0.005 0.006 0.000 0.0051.546 1.589 1.555 1.537 1.584 1.566 1.583 1.554 1.548 1.563 1.593 1.561 1.536 1.582 1.578 1.53611.546 11.589 11.555 11.537 11.584 11.566 11.583 11.554 11.548 11.563 11.593 11.561 11.536 11.582 11.578 11.536239SiO2 wt%TiO2Al2O3Cr2O3MgOCaOBaOMnOFeONa2OK2OFCLH2O *O=FO=CLTotalSi4+ apfuTi4+Al3+Cr3+Mg2+Ca2+Ba2+Mn2+Fe2+Na+K+F-Cl-H+O2-Appendix B.4: Compositional data of phlogopite from the Bowhead Showing (con't)M27 M25 max min avg ?40.79 41.21 41.22 40.49 40.99 0.241.76 1.81 2.02 1.69 1.84 0.1115.34 15.20 15.84 14.39 15.01 0.380.00 0.01 0.07 0.00 0.01 0.0224.73 24.98 25.52 24.71 25.12 0.250.00 0.00 0.02 0.00 0.01 0.010.16 0.02 0.16 0.00 0.06 0.050.00 0.00 0.06 0.00 0.02 0.022.18 2.21 2.28 1.96 2.14 0.100.30 0.29 0.38 0.27 0.31 0.0310.69 10.73 10.78 10.43 10.63 0.091.86 1.92 2.09 1.83 1.96 0.080.05 0.00 0.07 0.00 0.02 0.023.39 3.40 3.42 3.31 3.36 0.04-0.78 -0.81 -0.77 -0.88 -0.83 0.04-0.01 0.00 0.00 -0.02 -0.01 0.01100.46 100.97 101.01 99.94 100.65 0.312.854 2.865 2.88 2.83 2.86 0.010.093 0.095 0.11 0.09 0.10 0.011.265 1.245 1.30 1.18 1.23 0.030.000 0.001 0.00 0.00 0.00 0.002.580 2.589 2.65 2.57 2.61 0.020.000 0.000 0.00 0.00 0.00 0.000.004 0.001 0.00 0.00 0.00 0.000.000 0.000 0.00 0.00 0.00 0.000.128 0.128 0.13 0.11 0.12 0.010.041 0.039 0.05 0.04 0.04 0.000.954 0.952 0.96 0.93 0.95 0.010.412 0.422 0.46 0.41 0.43 0.020.006 0.000 0.01 0.00 0.00 0.001.582 1.578 1.59 1.54 1.57 0.0211.582 11.578 11.59 11.54 11.57 0.02240Appendix B.5: Compositional data of muscovite from the Beluga and Bowhead ShowingsBeluga BowheadD-1 C-1 C-2 C-3 C-4 C-6 C-7 C-9 C-10 C-11 C-12 C-14 max min avg ? M28 M29SiO2 wt% 44.17 45.26 44.84 45.85 45.46 44.89 44.60 44.87 45.05 45.19 44.68 44.68 45.85 44.17 44.96 0.42 44.83 45.18TiO2 0.05 0.07 0.18 0.02 0.04 0.00 0.00 0.03 0.05 0.00 0.00 0.02 0.18 0.00 0.04 0.05 0.03 0.04Al2O3 37.01 37.46 36.92 37.86 37.70 37.25 37.32 37.32 37.64 37.65 37.20 37.30 37.86 36.92 37.39 0.27 38.33 38.61Cr2O3 0.03 0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.00 0.01 0.02 0.00 0.00MgO 0.03 0.02 0.03 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.03 0.04 0.04 0.00 0.02 0.01 0.12 0.03CaO 0.05 0.01 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.05 0.00 0.01 0.02 0.12 0.17BaO 0.00 0.05 0.02 0.04 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.00 0.05 0.00 0.01 0.02 0.17 0.01MnO 0.01 0.02 0.00 0.00 0.00 0.00 0.07 0.00 0.05 0.04 0.00 0.00 0.07 0.00 0.02 0.02 0.00 0.00FeO 0.10 0.05 0.06 0.00 0.04 0.07 0.03 0.04 0.01 0.01 0.08 0.01 0.10 0.00 0.04 0.03 0.02 0.04Na2O 0.74 0.78 0.77 1.01 1.05 0.80 0.65 0.66 0.71 0.88 0.70 0.92 1.05 0.65 0.81 0.13 1.61 1.91K2O 10.68 10.84 10.79 10.39 10.28 10.83 10.80 10.84 10.71 10.57 10.91 10.50 10.91 10.28 10.68 0.19 9.30 8.63F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00CL 0.00 0.02 0.08 0.03 0.02 0.00 0.06 0.00 0.00 0.02 0.03 0.00 0.08 0.00 0.02 0.02 0.00 0.07H2O * 4.40 4.48 4.42 4.52 4.50 4.45 4.42 4.45 4.48 4.48 4.43 4.45 4.52 4.40 4.46 0.03 4.51 4.52O=F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00O=CL 0.00 0.00 -0.02 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 -0.02 0.00 0.01 0.00 -0.02Total 97.27 99.08 98.09 99.72 99.16 98.35 97.95 98.22 98.70 98.84 98.11 98.00 99.72 97.27 98.46 0.64 99.04 99.19Si4+ apfu 3.007 3.024 3.027 3.033 3.025 3.021 3.014 3.021 3.016 3.020 3.017 3.014 3.033 3.007 3.020 0.007 2.982 2.989Ti4+ 0.003 0.004 0.009 0.001 0.002 0.000 0.000 0.002 0.003 0.000 0.000 0.001 0.009 0.000 0.002 0.002 0.002 0.002Al3+ 2.969 2.949 2.937 2.952 2.956 2.955 2.972 2.962 2.970 2.966 2.960 2.965 2.972 2.937 2.959 0.010 3.005 3.010Cr3+ 0.002 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.000 0.001 0.001 0.000 0.000Mg2+ 0.003 0.002 0.003 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.003 0.004 0.004 0.000 0.002 0.001 0.012 0.003Ca2+ 0.004 0.001 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.002 0.001 0.004 0.000 0.001 0.001 0.009 0.012Ba2+ 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.004 0.000Mn2+ 0.001 0.001 0.000 0.000 0.000 0.000 0.004 0.000 0.003 0.002 0.000 0.000 0.004 0.000 0.001 0.001 0.000 0.000Fe2+ 0.006 0.003 0.003 0.000 0.002 0.004 0.002 0.002 0.001 0.001 0.005 0.001 0.006 0.000 0.003 0.002 0.001 0.002Na+ 0.098 0.101 0.101 0.130 0.135 0.104 0.085 0.086 0.092 0.114 0.092 0.120 0.135 0.085 0.105 0.016 0.208 0.245K+ 0.927 0.924 0.929 0.877 0.873 0.930 0.931 0.931 0.915 0.901 0.940 0.904 0.940 0.873 0.915 0.021 0.789 0.728F- 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Cl- 0.000 0.002 0.009 0.003 0.002 0.000 0.007 0.000 0.000 0.002 0.003 0.000 0.009 0.000 0.002 0.003 0.000 0.008H+ 2.000 1.998 1.991 1.997 1.998 2.000 1.993 2.000 2.000 1.998 1.997 2.000 2.000 1.991 1.998 0.003 2.000 1.992O2- 12 12 12 12 12 12 12 12 12 12 12 12 12 12*calculated from electroneutral formula assuming 12 anions and (OH+F+Cl)=2.NOTE: The following standards, X-ray lines and crystals were used during EMP analysis: synthetic phlogopite, FKa , MgKa , SiKa , TAP, KKa , PET; albite, NaKa , TAP; kyanite, AlKa, TAP; scapolite, ClKa, PET; diopside, CaKa, PET; rutile, TiKa, PET; synthetic magnesiochromite, CrKa, LIF; synthetic rhodonite, MnKa, LIF; synthetic fayalite, FeKa, LIF; barite, BaLa, PET.241Appendix B.6: Compositional data of plagioclase from the Beluga ShowingSymplectite1-1-1 1-1-2 1-1-3 1-1-4 1-1-5 1-1-6 1-1-7 1-1-8 1-1-9 1-1-16 1-1-17 1-1-18 1-1-19 1-1-20 1-1-21 1-1-22 10-3SiO2 wt.% 61.61 60.68 60.76 60.33 61.22 60.33 61.24 60.91 61.47 61.84 62.19 61.69 62.11 63.75 64.50 63.81 67.18Al2O3 24.61 24.36 24.62 23.96 24.86 24.65 24.37 24.29 24.14 23.36 23.25 23.35 23.37 21.98 22.12 21.73 21.94MgO 0.00 0.00 0.00 1.56 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00CaO 5.47 5.44 5.44 4.89 5.51 5.09 5.42 5.12 5.07 4.07 4.21 4.09 3.97 2.67 2.50 2.68 2.20MnO 0.00 0.00 0.04 0.01 0.02 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05FeO 0.08 0.04 0.00 0.06 0.02 0.05 0.05 0.00 0.00 0.00 0.03 0.00 0.04 0.04 0.06 0.06 0.00Na2O 8.47 8.48 8.43 8.30 8.40 8.42 8.46 8.51 8.60 9.15 9.24 9.13 9.45 9.97 10.24 10.09 10.57K2O 0.11 0.15 0.11 0.09 0.07 0.27 0.11 0.17 0.16 0.20 0.23 0.22 0.41 0.16 0.17 0.22 0.03TOTAL 100.35 99.15 99.40 99.20 100.10 98.86 99.65 99.05 99.45 98.62 99.15 98.48 99.37 98.57 99.59 98.62 101.97Si4+ apfu 2.724 2.718 2.713 2.700 2.713 2.710 2.727 2.728 2.740 2.774 2.778 2.772 2.772 2.849 2.853 2.853 2.892Al3+ 1.282 1.286 1.296 1.264 1.298 1.305 1.279 1.282 1.268 1.235 1.224 1.237 1.229 1.158 1.153 1.145 1.113Mg2+ 0.000 0.000 0.000 0.104 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000Ca2+ 0.259 0.261 0.260 0.234 0.262 0.245 0.259 0.246 0.242 0.196 0.201 0.197 0.190 0.128 0.118 0.128 0.101Mn2+ 0.000 0.000 0.002 0.000 0.001 0.002 0.000 0.