- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Design and characterization of a dumbbell micro-ring...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Design and characterization of a dumbbell micro-ring resonator reflector Yun, Han
Abstract
A dumbbell shape micro-ring resonator reflector fabricated using the silicon-on-insulator (SOI) technology for use as a reflective notch filter is presented. The development of this dumbbell micro-ring reflector is motivated by the increasing demand for highly confined resonant structures as integrated optical components in modern optical communication and sensor applications. In this thesis, we have analyzed and simulated the reflection properties of dumbbell micro-ring reflectors based on SOI strip waveguides. We have optimized our design based on the analytic modeling and simulation results and had our devices fabricated at a foundry. An automated optical probe station has been developed for characterizing the performance of the fabricated dumbbell micro-ring reflectors. Measurement results on the reflection spectrum showed an extinction ratio of 20 dB with a quality factor of ~11,000. Thermal tuning responses showed the potential for those resonators in sensor applications.
Item Metadata
Title |
Design and characterization of a dumbbell micro-ring resonator reflector
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2013
|
Description |
A dumbbell shape micro-ring resonator reflector fabricated using the silicon-on-insulator (SOI) technology for use as a reflective notch filter is presented. The development of this dumbbell micro-ring reflector is motivated by the increasing demand for highly confined resonant structures as integrated optical components in modern optical communication and sensor applications. In this thesis, we have analyzed and simulated the reflection properties of dumbbell micro-ring reflectors based on SOI strip waveguides. We have optimized our design based on the analytic modeling and simulation results and had our devices fabricated at a foundry. An automated optical probe station has been developed for characterizing the performance of the fabricated dumbbell micro-ring reflectors. Measurement results on the reflection spectrum showed an extinction ratio of 20 dB with a quality factor of ~11,000. Thermal tuning responses showed the potential for those resonators in sensor applications.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2013-06-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0073871
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2013-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International