UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Exploring multiple-mode vibrations of capacitive micromachined ultrasonic transducers (CMUTs) You, Wei

Abstract

Capacitive Micromachined Ultrasonic Transducers (CMUTs) are considered advantageous over piezoelectric transducers for ultrasound imaging for the high bandwidth, ease of integration with electronics and miniaturization. Research efforts over the past two decades have been focusing on manufacturing and system integration of CMUTs to achieve comparable and better performance than the piezoelectric counterparts, while the uniqueness of the CMUT structure and physics is barely exploited. This thesis explores the complex behavior of CMUTs from a mode superposition perspective, and demonstrates imaging applications using CMUTs' multi-modal operation. The operation of CMUTs is first analytically modeled as a coupled electro-mechano-acoustical system using plate vibration theory. As the simplest case, the first symmetric and asymmetric modes of vibration can be excited simultaneously via asymmetric electrostatic actuation, resulting in a vibration profile with a shifted center. Finite element modeling (FEM) is used to verify the theoretical calculation, and an equivalent circuit consisting of two sub-circuits for the symmetric and asymmetric vibration modes is built to show the possibility of fast simulation of complex CMUT array behavior. Experimental characterization of fabricated CMUT chips show that asymmetric vibration can be achieved with multi-electrode CMUTs. Two imaging applications using the multi-modal operation of CMUTs are proposed. The first concept, tiltable transducers, explores the benefits of orienting each transducer element toward the focal point to concentrate the acoustic energy and reduce grating lobes and side lobes. Imaging simulation shows the grating lobes can be reduced by 20dB while the main lobe energy is preserved. FEM simulation demonstrates that CMUTs capable of asymmetric vibration can be a viable candidate as tiltable transducers with careful design of the cell dimension and central frequency. The second imaging application takes advantage of the ringing response of a CMUT to off-axis acoustic sources to achieve super-resolution imaging with low computational cost. The differential responses across all CMUT cells form a more decorrelated pattern than the regular average responses, which leads to better estimation performance of the proposed super-resolution algorithm. While only preliminary experimental results for the proposed applications are presented, the multi-modal operation concept shows potential in improving several aspects of ultrasound imaging.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International