Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Crystal chemistry and synthesis of selected borosilicate minerals. Scott, Graeme 2012

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2013_spring_scott_graeme.pdf [ 17.44MB ]
Metadata
JSON: 24-1.0073482.json
JSON-LD: 24-1.0073482-ld.json
RDF/XML (Pretty): 24-1.0073482-rdf.xml
RDF/JSON: 24-1.0073482-rdf.json
Turtle: 24-1.0073482-turtle.txt
N-Triples: 24-1.0073482-rdf-ntriples.txt
Original Record: 24-1.0073482-source.json
Full Text
24-1.0073482-fulltext.txt
Citation
24-1.0073482.ris

Full Text

   Crystal	Chemistry	and	Synthesis	of	Selected Borosilicate	Minerals  by  Graeme	Scott      B.Sc.,	Queen’s	University,	2010   A	THESIS	SUBMITTED	IN	PARTIAL	FULFILLMENT	OF THE	REQUIREMENTS	FOR	THE	DEGREE	OF   MASTER	OF	SCIENCE   in     THE	FACULTY	OF	GRADUATE	STUDIES  (Geological	Sciences)     THE	UNIVERSITY	OF	BRITISH	COLUMBIA (Vancouver)   December	2012    ©	Graeme	Scott,	2012  Abstract  Borosilicates are oxygen-bearing boron minerals in which SiO4 tetrahedra form an important structural component. They represent widespread constituents of rocks originating in the Earth’s crust and commonly provide insight into the rock-forming processes. Important borosilicates include tourmaline, axinite, werdingite, boralsilite, dumortierite, holtite, howlite, and grandidierite. Tourmaline is the most widespread borosilicate mineral and it can be used to study a wide variety of geological processes based on its high compositional variability. Dumortierite [(Al,☐)Al6(BO3)Si3O13(O,OH)2] is second only to tourmaline as the most abundant borosilicate mineral, but remains relatively understudied in comparison. Isostructural holtite [(Al,Ta,Nb,☐)Al6(BO3)(Si,Sb,As)3O12(O,OH,☐)3] is poorly constrained chemically. The ability to incorporate elements such as As, Sb, Bi, Nb and Ta make dumortierite and holtite unusual for silicate minerals. Synthesis experiments designed to better determine the relationship between holtite and dumortierite by synthesizing dumortierite and gradually replacing Si with As and Sb were carried out at the GeoForschungZentrum (GFZ) in Potsdam, Germany. Synthesis conditions were designed based on the previous work by Werding and Schreyer (1990). Experiments ranged from 3-5 kbar at 550-650 °C and 15-20 kbar at 600-700 °C. The less common borosilicate boralsilite [Al16B6Si2O37] was the dominant phase produced in the attempts at synthesizing dumortierite. The results showed an increased stability range for boralsilite than had been previously studied and gave insight to simpler methods of synthesis. A detailed case study of the mineralogy of the Uvil’dy Lake pegmatite revealed a potentially unique locality for dumortierite and tourmaline evolution. The tourmaline shows a high Mn/(Fe ii  + Mg) ratio within primary phases and increased Li, Fe and Mn-enrichment in later phases. Apart from being unusually yellow, the dumortierite from Uvil’dy was also anomalously high in Bi (~0.03 apfu). Eight additional samples of dumortierite from different global localities were analysed and were compared to approximately 1100 dumortierite and holtite compositions assembled from both published and unpublished data from worldwide localities. Including the analysed Uvil’dy samples, this extensive dataset gives a detailed look at the chemical relationship between dumortierite and holtite and allows them to be better constrained in terms of their chemical constituents.  iii  Preface  Chapter 3 is based on experimental work conducted at the GeoForschungZentrum (GFZ) in Potsdam, Brandenburg, Germany under the close advisement and supervision of Professor Dr. W. Heinrich and Dr. D. Harlov. I was responsible for all experiment preparation, execution and examination of results. Powder X-ray diffractions of the products were run by H. P. Nabein at the GFZ.  Single crystal X-ray refinement data for the Uvil’dy samples were measured and processed by Dr. J. Cempírek and Dr. R. J. Evans at the University of British Columbia, Vancouver, B.C. Canada. I was responsible for all research and analytical work done on the Uvil’dy samples using the SEM and EMPA. Interpretation of mineral paragenesis and crystal chemistry were written with consultation from Dr. J. Cempírek.  The eight dumortierite samples described in chapter 5 as well as unpublished data from other worldwide dumortierite and holtite localities were provided by Professor L. A. Groat. I was responsible for all analytical work conducted on the eight samples and their interpretation.  iv  Table of Contents Abstract ................................................................................................................................ ii Preface ..................................................................................................................................iv Table of Contents .................................................................................................................. v List of Tables ........................................................................................................................ vii List of Figures ...................................................................................................................... viii Acknowledgements ...............................................................................................................ix Chapter 1: Introduction ......................................................................................................... 1 1.1 Context .......................................................................................................................... 1 1.2 Objectives...................................................................................................................... 3 Chapter 2: Crystal Chemistry Background of the Studied Borosilicates ...................................... 4 2.1 Tourmaline .................................................................................................................... 4 2.2 Dumortierite ................................................................................................................. 5 2.3 Holtite ........................................................................................................................... 9 2.4 Boralsilite .................................................................................................................... 11 Chapter 3: Synthesis ..................................................................................................................... 15 3.1 Objectives.................................................................................................................... 15 3.2 Materials and methods ............................................................................................... 17 3.3 Results ......................................................................................................................... 23 Chapter 4: Uvil’dy Lake Pegmatite .............................................................................................. 34 4.1 Geology and mineralogy ............................................................................................. 34 4.2 Optical mineralogy and SEM ....................................................................................... 35 4.3 Composition (EPMA) .................................................................................................. 39 4.4 Single crystal (XRD) .................................................................................................... 49 4.5 Discussion.................................................................................................................... 52 Chapter 5: Composition of dumortierte from Other Localities .................................................. 57 5.1 Sample description and localities ............................................................................... 57 5.2 Composition ................................................................................................................ 62 5.3 Dumortierite colour .................................................................................................... 70 v  Chapter 6: Conclusions................................................................................................................. 73 References .................................................................................................................................... 76 Appendix A: Synthesis Data ......................................................................................................... 81 A.1 Starting materials ....................................................................................................... 81 A.2 Powder XRD paterns ................................................................................................... 82 Appendix B: EPMA analyses ...................................................................................................... 100 B.1 Uvil’dy tourmaline .................................................................................................... 100 B.2 Uvil’dy dumortierite.................................................................................................. 117 B.3 Uvil’dy Nb-Ta-Ti-oxides ............................................................................................. 122 B.4 Analysed dumortierite from other localities ............................................................ 125 Appendix C: Crystal Refinement Data and Results ................................................................... 139 C.1 Uvil’dy dumortierite.................................................................................................. 139 C.2 Uvil’dy tourmaline .................................................................................................... 145  vi  List of Tables  Table 3.1 Table 4.1 Table 4.2 Table 4.3 Table A.1 Table B.1 Table B.2 Table B.3 Table B.4 Table C.1 Table C.2 Table C.3 Table C.4 Table C.5 Table C.6 Table C.7 Table C.8 Table C.9 Table C.10 Table C.11 Table C.12 Table C.13  Summary of synthesis experiments ...................................................................... 22 EMPA of representative Uvil’dy tourmaline ......................................................... 40 EMPA of representative Uvil’dy dumortierite ...................................................... 45 EMPA of representative Uvil’dy Nb-Ta-Ti-oxides ................................................. 48 Starting materials used in synthesis ..................................................................... 81 EMPA of Uvil’dy tourmaline................................................................................ 100 EMPA of Uvil’dy dumortierite ............................................................................. 117 EMPA of Uvil’dy Nb-Ta-Ti-oxides ........................................................................ 122 EMPA of analysed dumortierite from other localities ........................................ 125 X-ray refinement information of Uvildy dumortierite ........................................ 139 Positional and displacement parameters of Uvil’dy dumortierite ..................... 140 Anisotropic displacement parameters of Uvil’dy dumortierite.......................... 141 Bond distances of Uvil’dy dumortierite .............................................................. 142 Bond angles of Uvil’dy dumortierite ................................................................... 143 X-ray refinement information of colourless Uvil’dy tourmaline ........................ 145 Positional and displacement parameters of colourless Uvil’dy tourmaline ....... 146 Anisotropic displacement parameters of colourless Uvil’dy tourmaline ........... 146 Bond distances of colourless Uvil’dy tourmaline................................................ 147 X-ray refinement information of blue Uvil’dy tourmaline.................................. 148 Positional and displacement parameters of blue Uvil’dy tourmaline ................ 149 Anisotropic displacement parameters of blue Uvil’dy tourmaline .................... 149 Bond distances of blue Uvil’dy tourmaline ......................................................... 150  vii  List of Figures Figure 2.1 Figure 2.2 Figure 2.3 Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 3.12 Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 5.7 Figure 5.8 Figure 5.9 Figure 5.10 Figure 5.11 Figure 5.12 Figure 5.13 Figure 5.14 Figure 5.15 Figure 5.16 Figure 5.17 Figure 5.18  Dumortierite structure............................................................................................ 8 Disposition of SiO4 tetrahedra and (As,Sb)O3 groups ........................................... 11 Boralsilite structure............................................................................................... 13 Experimental hydrothermal bomb apparatus ...................................................... 19 Experimental piston-cylinder apparatus............................................................... 20 SEM image of experiment DuHp-1 ....................................................................... 24 SEM image of experiment DuHp-2 ....................................................................... 24 SEM image of experiment DuLp-1 ........................................................................ 25 SEM image of experiment DuHp-3(II) .................................................................. 27 SEM image of experiment DuHp-4(II) .................................................................. 27 SEM image of experiment DuLp-2 ........................................................................ 28 SEM image of experiment DuLp-3 ........................................................................ 28 SEM image of experiment DuHp-12 ..................................................................... 32 SEM image of experiment DuHp-14 ..................................................................... 33 SEM image of experiment DuHp-16 ..................................................................... 33 SEM images of Uvild’y tourmaline ........................................................................ 37 SEM images of Uvil’dy dumortierite + ixiolite ...................................................... 38 Uvil’dy tourmaline compositional range .............................................................. 42 Uvil’dy tourmaline composition and classification ............................................... 43 Uvildy dumortierite compositions I ...................................................................... 44 Uvil’dy dumortierite substitution trends .............................................................. 46 Uvil’dy Nb-Ta-Ti-oxide compositions .................................................................... 47 Uvil’dy tourmaline compositional evolution ........................................................ 55 Uvil’dy tourmaline compositions II ....................................................................... 56 D54 hand sample .................................................................................................. 59 D55 hand sample .................................................................................................. 59 D57 hand sample .................................................................................................. 60 D58 hand sample .................................................................................................. 60 D59 hand sample .................................................................................................. 61 D64 hand sample .................................................................................................. 61 D65 hand sample .................................................................................................. 61 Analysed dumortierite samples compositions ..................................................... 64 Analysed dumortierite samples substitutions ...................................................... 65 World localities Si + P vs. Ti ................................................................................... 66 World localities As + Sb + Bi vs. Ti ......................................................................... 66 World localities As + Sb + Bi vs. Ti + Nb + Ta......................................................... 67 World localities Nb vs. Ta...................................................................................... 67 World localities Al vs. Fe + Mg .............................................................................. 68 World localities Si + P vs. Sb + As + Bi ................................................................... 68 World localities As vs. Bi ....................................................................................... 69 Analysed dumortierite samples Fe vs. Ti .............................................................. 71 World dumortierite localities Fe vs. Ti .................................................................. 72 viii  Acknowledgements Most importantly, I would like to thank my supervisors Professor L. A. Groat (University of British Columbia), for his unfailing encouragement and guidance and Dr. J Cempírek for his valuable consultation, patience and extensive knowledge of borosilicates.  I would like to thank from, Hemholtz-Zentrum, Deutsches GeoForschungZentrum, Potsdam, Professor Dr. W. Heinrich for graciously permitting me to use the laboratories, materials and resources available at the GFZ; and Dr. D. Harlov for his patience, expertise in mineral synthesis and guidance on good laboratory technique.  The beneficial advice and frequent consultations with Dr. R. J. Evans no doubt enriched the production of this paper and further enhanced my understanding and appreciation for crystal chemistry.  I would like to thank M. Raudsepp for his valued advice and support and E. Czech for her generous help and expertise with the EMPA.  Lastly I would like to thank my parents for their unwavering support of my education both financially and emotionally. I will be forever grateful.  ix  Chapter 1 Introduction 1.1 Context Boron is a typical element for the Earth’s crust, being frequently present in magmatic, metamorphic and sedimentary rocks formed during various stages of the orogenic cycle. Boron minerals containing oxygen can be grouped into two broad categories: borates and borosilicates. The borates were the first minerals to be identified as containing boron compounds and in 1808 elemental boron was isolated from the reduction of boric acid derived from the borate mineral, borax. Reliable analysis of boron was not possible until the late 19th century. As a result of these challenges, boron was overlooked in many early descriptions of borosilicates. Boron-bearing minerals can form in a wide variety of geological environments with borosilicates comprising important constituents in plutonic systems and metamorphic rocks (Anovitz and Grew 1996). A borosilicate is an oxygen-bearing boron mineral in which SiO4 tetrahedra form an important structural component. Boron in borosilicates can be either three- or fourcoordinated. Substitutions in B3+ triangles are uncommon and usually result in a change of coordination to tetrahedral. The majority of borosilicates contain only minor hydroxyl or are completely anhydrous (Anovitz and Grew 1996). Important borosilicates include tourmaline, axinite, werdingite, boralsilite, dumortierite, holtite, bakerite, howlite, and grandidierite.  1  Tourmaline research is a complex and rapidly evolving field because variation in its chemical and isotopic composition can be used to study a wide variety of geological processes including magmatic, hydrothermal, sedimentary and metamorphic systems as well as fluid mixing. It is stable over a wide range of pressure and temperature conditions (Werding and Schreyer 1996) and highly resistant to chemical and mechanical breakdown and therefore it is commonly found in most types of rocks within the Earth’s crust. Dumortierite is the second most common borosilicate after tourmaline but comparatively understudied. It is commonly associated with tourmaline and incorporates some elements tourmaline is unable to accommodate. Its ability to incorporate elements such as Nb, Ta, As, and Sb make it unique among silicate minerals in pegmatites. The crystal structure of dumortierite and the isostructural holtite possesses several unusual features including chains of face-sharing octahedra, large hexagonal channels and double chains of edge-sharing octahedra. Boralsilite is a relatively newly described borosilicate mineral previously known only from experimental studies (Grew et al. 1998). As a less common mineral compared to (but often associated with) tourmaline, dumortierite and holtite, its formation conditions and stability are not well understood.  2  1.2 Objectives The primary objective was to synthesize dumortierite-group minerals in an effort to determine the roles played by Nb, Ta, As, Sb, Bi, H, and vacancies in holtite and dumortierite, to determine the maximum possible substitution of (As, Sb) for Si, and if possible to synthesize an ideal Si-free end-member holtite  ☐Al (Sb 6  3+  ,As3+)3BO16. This would result in all SiO4 groups being  replaced by trigonal pyramidal (As3+,Sb3+)O3 groups and leaving the dumortierite / holtite Al1 site completely vacant. A vacant Al1 site would result in large empty hexagonal channels running the full length of the b-axis of the mineral; which could have strong industrial potential as a molecular sieve. The second objective was a thorough investigation into the mineralogy of pegmatite samples from Uvil’dy Lake, Southern Urals, Russia. The Uvil’dy Lake pegmatite is poorly studied and exhibits unusual yellow dumortierite and complex tourmaline generations. These results were then compared to other dumortierite compositions from varied lithologies and worldwide localities in order to better constrain and understand the full compositional range exhibited by natural dumortierite and holtite minerals.  3  Chapter 2 Backround on Crystal Chemistry of the Studied Borosilicates 2.1 Tourmaline Tourmaline [XY3Z6T6O18(BO3)3V3W] is an important borosilicate mineral both in abundance and the amount of petrologic information it contains (Henry and Dutrow 1996; Henry et al. 2011). The large X site is typically dominated by Na+, Ca2+, and K+ in lesser amounts. Several tourmalines have been synthesized with vacancies at the X site (Werding and Schreyer, 1984) and there are frequent vacancies observed at this site in natural minerals. The Y site can accommodate a wide variety of multivalent cations such as Li1+, Mg2+, Fe2+, Mn2+, Al3+, Cr3+, Fe3+, and Ti4+. The Z site is slightly distorted in shape and is mainly occupied by trivalent cations including Al3+, Fe3+, Cr3+, and divalent cations Mg2+ and Fe2+. The T site is most commonly contains Si4+ but can also contain minor B3+ and Al3+. The V and W sites house the anion constituents of tourmaline and can include OH- or O2- and OH-, O2 or F- respectively (Henry et al. 2011). The crystal structure of tourmaline is defined by a stacking of 6-membered rings of TO4 tetrahedra whose apexes are all aligned in the same direction. This alignment is the principal reason for the strong polarity exhibited by tourmaline. Above these rings of tetrahedra are located triangular BO3 groups parallel to the (001) plane (Henry and Dutrow 1996). Each planar ring is linked to the one above and below it by Z and Y edge-sharing octahedra. The X site is a large nine-coordinated polyhedron which is situated within the rings created by the TO4 tetrahedra. Tourmaline is found in numerous rock types and covers a wide formational and chemical stability range. Tourmaline displays strong asymmetry physically due to the TO4 4  alignment within the crystal structure. Because of its ability to incorporate a wide range of elements at different sites, tourmaline also tends to vary in chemical composition as the crystal grows reflecting change in growing environment conditions. There are currently eighteen IMA recognized tourmaline end-members based on composition and modified by dominant substitutions at a particular site. A revised tourmaline nomenclature was recently described by Henry et al. (2011)  2.2 Dumortierite Dumortierite [(Al,☐)Al6(BO3)Si3O13(O,OH)2] is second only to tourmaline as the most abundant borosilicate in aluminous metamorphic and metasomatic rocks (Grew 2002). The three members of the dumortierite group, of which dumortierite is the most widespread, consist of dumortierite, magnesiodumortierite and holtite. Magnesiodumortierite [Mg,Ti,)Al4(Al,Mg)2(BO3)Si3O12(OH,O)3], is a rare mineral found in ultrahigh-pressure rocks of the western Alps (Chopin et al. 1995). In their revision of pegmatite classification, Černý & Ercit (2005) noted dumortierite as a common constituent of the abyssal class of pegmatites. Dumortierite remains a relatively restricted occurrence in granitic pegmatites compared to the much more prolific tourmaline. Dumortierite is orthorhombic, Pnma (space group no. 62), with unit cell parameters a = 4.69 Å, b = 11.80 Å, c = 20.19 Å (Groat et al. 2012). Common octahedral substituents for Al are Fe2+, Fe3+, Ti, Mg, Ta, Nb, with minor Ca, Mn and Sc; some of the Al sites are typically vacant. Common tetrahedral substituents for Si are Al, As3+ and Sb3+; minor amounts of P have also 5  been reported (Grew 2002; Evans et al. 2012, Groat et al. 2012). Some of the anion sites are occupied by OH- and rarely by F and Cl. Vacancies at oxygen sites accompany As and Sb substitutions at the tetrahedral sites (Groat et al. 2012). No substituents or vacancies have been detected at the B site in any naturally occurring dumortierite group mineral (Evans et al. 2012). The crystal structure of dumortierite was first described by Golovastikov (1965) and further refined by Moore and Araki (1978) as a design on the semi-regular planar net. The structure can be broken down into four principle regions: (1) [AlO3] chains of face-sharing octahedra (the Al1 sites) surrounded by “pinwheels” of six SiO4 tetrahedra, two Si1 and four Si2 sites; (2) [Al4O12] cubic close-packed chains, containing the Al2 and Al3 octahedral sites, that are joined to equivalent chains by reflection at the O1 corners of the Al2 octahedra to form [Al4O11] sheets oriented parallel to (010); (3) [Al4O12] double-chains containing the Al4 octahedral sites; and (4) BO3 triangles between the Al-chains (Fig. 2.1). The approximate Al1-Al1 distance is 2.35 Å, which is unusually short for face-sharing octahedra, and the Al1 site is on average between 75% and 90% occupied (Moore and Araki 1978, Alexander et al. 1986, Fuchs et al. 2005; Evans et al. 2012). In addition to several distinctive structural features such as face-sharing Al octahedra, and vacancies at both cation and anion sites, dumortierite-group minerals are unique among aluminosilicate minerals because they incorporate substantial amounts of the lithophile (Nb, Ta) and chalcophile (As, Sb, Bi) elements not normally abundant in silicate minerals. Despite significant progress in recent studies, many questions remain concerning the crystal chemistry and stabilities of these minerals. In particular, the role played by Nb, Ta, As, Sb, Bi, H, and vacancies in the structure is still unclear. Calculations based on the complete chemical analysis 6  of synthesized dumortierite suggest that H2O is an essential constituent of dumortierite (Werding and Schreyer 1990). The analyses show a consistent Si deficiency below the ideal 3.0 apfu as well as Al values above the stoichiometric 7.0 apfu. Charge balancing in these studies indicates the addition of H+ in order to compensate for these deficiencies. Dumortierite is isostructural with holtite with the latter being characterized by composition of Ta + Nb + Ti at the Al1 site > 0.25 apfu, based on a gap in Ta + Nb + Ti contents evident in compositional data for holtite and dumortierite from the Szklary pegmatite in Poland (Pieczka et al. 2011). There remains debate about the exact distinction between the two minerals as none of the four constituents that distinguish holtite from dumortierite is dominant at a specific crystallographic site, i.e., Si is dominant over Sb3+ and As3+ at the two tetrahedral sites and Al is dominant over Ta, Nb and vacancy at the Al1 site in both dumortierite and holtite (Groat et al. 2012). Significant Nb, Ta, As, Sb and Bi in dumortierite has blurred the distinction with holtite including some dumortierite reported by Groat et al. (2012) containing up to 0.02 Nb apfu, 0.05 Ta apfu, 0.18 As apfu, 0.04 Sb apfu and 0.03 Bi apfu. These elements are considered to be characteristic of holtite, thus making the distinction between the two minerals unclear (Groat et al. 2009).  7  Figure 2.1: Dumortierite structure viewed along the a-axis. Al1-Al4, S1-S12, and B sites labeled in one quadrant of the planar net with Al1 chains occupying the centres of large hexagonal channels. (Groat et al. 2012)  8  2.4 Holtite  Holtite [(Al,Ta,Nb,☐)Al6(BO3)(Si,Sb,As)3O12(O,OH,☐)3] is generally light-buff to brown in colour and occurs as blocky crystals or pseudo-hexagonal needles. First identified by Pryce (1971) in an alluvial deposit derived from pegmatite in the tin fields of Greenbushes, Western Australia, holtite was determined to have the same crystal structure as dumortierite (Pryce and Chester 1978; Groat et al. 2009). The most notable difference at that time, however, was discovered in the chemical analysis in which the new mineral contained 18.0 wt.% Sb2O3, 11.24 wt.% Ta2O5 and 0.76 wt.% Nb2O5. Voloshin at al. (1977) described the second discovery of holtite from a pegmatite in Mount Vasin-Myl’k, Voron’i Tundry, Kola Peninsula, Russia. They reported a more intermediate composition between dumortierite and the Greenbushes holtite with 5.8 – 6.4 wt.% Sb2O3, in addition to 2.5 – 3.2 wt.% As2O3. At Voron’i Tundry there were two varieties of holtite identified; the early formed low-Sb holtite and a later high-Sb holtite which contained SiO2 and Sb2O3 amounts close to those of the type material from Greenbushes. A third holtite occurrence was described by Pieczka and Marszalek (1996) in a pegmatite in Szklary, Lower Silesia, Poland. This sample contains close to 12.9 wt.% Sb2O3 which would imply another intermediate composition between type holtite and dumortierite (Groat et al. 2009). However, when As is added to Sb, then the Si:(As+Sb) ratio is similar to the Sb-rich holtite from Voron’i Tundry and the type material from Greenbushes. The Ta2O5 content of the Szklary holtite is half that reported in the three previous samples of holtite (Pryce 1971; Voloshin et al. 1977; Voloshin and Pakhomovskiy 1988). All samples of holtite discovered to date contain significant amounts of both As and Sb. Both varieties of holtite were subsequently discovered at 9  the type locality of Greenbushes by Groat et al. (2009). The samples from Szklary and Virorco do not appear to conform to the high- and low-Sb holtites due to the broad compositional range produced by the substitution of Si4+ by As3++Sb3+ at the Si/Sb sites and of Ta5+ by Nb5+ or Ti4+ at the Al1 site (Fig. 2.1). This suggest the possibility of a solid solution between As/Sb-poor holtite “type I”, As/Sb-rich holtite “type II”, dumortierite and an unnamed (As+Sb)-dominant dumortierite-like mineral discovered at Szklary as a few tiny inclusions in quartz grains (Pieczka et al. 2011; Galliski et al. 2012). “Holtite I” and “II” are so named based on the amounts of Sb and As which are less than the dominant Si that they replace. Locock et al. (2006) stated this terminology has not been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (CNMNC IMA) since elements need to dominate (>50%) a specific site in order to constitute a new species. Groat et al. (2009) declare holtite to have become a “catch-all” term for pegmatitic dumortierite-like minerals with significant Sb, As, Ta, and Nb rather than a unique mineral with a defined chemical composition. Hoskins et al. (1989) were the first to determine the crystal structure of the Greenbushes holtite. As described previously, holtite is isostructural with dumortierite but the differences lie within the hexagonal channels (Moore and Araki, 1978). In the tunnels, the SiO4 tetrahedra are partially replaced by Sb3+O3 (and As3+O3) triangular pyramids with no apparent preference for the Si1 or the Si2 site. Pentavalent tantalum replaces Al3+ at the Al1 site which runs through the centre of the tunnels. Vacancies at the Al1 site is in part a result of Ta substitution for Al, as well as O2 and O7 anion vacancies due to the substitution of Sb/As at the Si1 and Si2 sites (Fig. 2.2). Because the Sb3+ - anion bonds are longer than the Si4+ - anion bonds, 10  the Sb3+ sites are shifted approximately 0.5 Å closer to the Al1 site (Kazantsev et al. 2005; Groat et al. 2009).  Figure 2.2: Disposition of SiO4 tetrahedra (left) and (Sb,As)O3 groups (right) and the coordinated central Al1 site in holtite. (Groat et al. 2012)  2.5 Boralsilite Boralsilite [Al16B6Si2O37] is a monoclinic mineral (space group C 2/m) typically forming small aggregates of colourless fibrous/needle-like bundles. It is the first anhydrous Al-B-silicate to be discovered in nature (Grew et al. 1998). Boralsilite is found predominantly at two localities; within pegmatites cutting granulite-facies metapelitic rocks from Stornes Peninsula, Larsemann Hills, Prydz Bay, east Antarctica, and Almgjotheii within the aureole of the Rogaland intrusive complex of southwestern Norway. A third boralsilite occurrence was recently described, along with several other rare borosilicates, in a veinlet cutting a leucocratic granulite 11  within the Bory Granulite Massif of the central Czech Republic (Cempírek et al. 2010). Prior to the first identification of the mineral in nature from Antarctica by Grew et al (1998), boralsilite was described as a phase intergrown with werdingite from Almogjotheii (Huijsmans et al. 1982), but the specimen was not suitable for X-ray study. Werding and Schreyer (1984, 1996) were also believed to have synthesized a borosilicate with the same composition as boralsilite and placed within the broad group of “boron-mullites” of the BAS system. Boromullite (Al2BSi2O19) is distinctive from boralsilite (Buick et al. 2008) in that it is orthorhombic, closely resembles a sillimanite stoichiometry, and Si is frequently replaced by B in triangular coordination and Al in tetrahedral coordination. Peacor et al. (1999) first analysed and described the structure of boralsilite (Fig. 2.3). It is described as having 3 sets of edge-sharing chains of Al octahedra, Al5, Al6 and Al7, running along [010], and 4 interchain Al sites, Al1, Al2, Al3 and Al4, with fivefold coordination forming trigonal bipyramids. These fivefold Al sites imply a close relation to the andalusite structure as well as the werdingite structure in which some of the interchain polyhedra have the same coordination. Another similarity to werdingite is the distortion of the cation found at the boralsilite interchain Al sites, particularly Al4, in which the cation is shifted significantly toward one apical vertex. Werdingite has the same ambiguous fivefold- or fourfold-coordination at the Al5 site (Niven at al. 1991). Boralsilite is described as a sorosilicate due to the presence of disilicate groups in which silica tetrahedra share an apical oxygen atom at the O5 site. In addition, boron is present in both trignonal planar (e.g. dumortierite) and in tetrahedral coordination linking both Al chains and other B polyhedral forming B2O7 groups. The overall crystallography can be best described as having a “pinwheel” structure centered around the Al5 12  octahedra chains (Peacor et al. 1999). Pöter et al. (1998) were the first to successfully synthesize ordered crystals of boralsilite under hydrothermal conditions which were further refined and compared to natural specimens by Grew et al. (2008).  Figure 2.3: Projection parallel to b-axis of the crystal structure of boralsilite. Small dark spheres represent B atoms, medium-sized grey circles are Al atoms and big circles represent O atoms outside of the octahedral chain. (Fischer et al. 2008) 13  The best-studied natural boralsilite samples occur within the Larsemann Hills locality, where it is a minor yet widespread mineral phase in two generations of pegmatite. The first generation is associated with the D2-D3 deformation event and the second is associated with a D4 event as described by Carson et al. (1995). Irregular pods and veins up to a metre in thickness characterize the first generation pegmatite whereas the second generation is relatively planar, with undeformed crosscutting veins up to a few decimetres in thickness. The boralsilite forms bundles and sprays of prisms in quartz most commonly near tourmaline-quartz intergrowths (Grew et al. 1998). Associated minerals include quartz, plagioclase, primary dumortierite and grandidierite. Werdingite and sillimanite were identified in only one sample, and prismatine in another (Grew at al. 2008). In the primary sample collected by Grew at al. (1998), boralsilite is reported as being replaced by foititic-olenitic tourmaline, diaspore and probable kaolinite. It has been determined that tourmaline in graphic intergrowth with quartz, primary dumortierite and some grandidierite formed early at the Antarctic locality; followed by boralsilite, werdingite and most of the grandidierite which crystalized later, before a second generation of tourmaline and secondary blue dumortierite (Grew et al. 2008). Two types of boralsilite have been identified from the Larsemann Hills pegmatites based on compostion. Type I appears to have a very limited solid solution toward sillimanite, whereas Type II appears to have a solid solution of up to 30% ideal werdingite component [(Fe,Mg)2Al14B4Si4O37]. Type II appears to be the most similar to the compositions of boralsilite found in the Almgjotheii pegmatites of Norway, however the Almgjotheii boralsilite occurs as intergrowths with werdingite, suggesting an exsolution between the two minerals which is not apparent in the Larsemann Hills samples. 14  Chapter 3 Synthesis 3.1 Objectives My goals were to synthesize dumortierite-group minerals in an effort to determine the roles played by Nb, Ta, As, Sb, Bi, H, and vacancies in holtite and dumortierite. The primary goal was to determine the maximum possible substitution of (As,Sb) for Si, and if possible to synthesize an ideal Si-free end-member holtite □Al6(Sb3+,As3+)3BO15 with all SiO4 groups replaced by trigonal pyramidal (As3+,Sb3+)O3 groups and the dumortierite Al1 site completely vacant. The resulting hexagonal channel would be vacant for the full length of the b-axis, which would have interesting potential for industrial uses as a molecular sieve. The most comprehensive previous synthesis attempts of dumortierite-group minerals were conducted by Werding and Schreyer (1990). With synthesis conditions ranging from 3 to 5 and 15 to 20 kbar fluid pressure at 650 to 880 °C; they synthesized dumortierite in the system Al2O3-B2O3-SiO2-H2O using gels with variable Al/Si ratios mixed with H3BO3 and H2O in known proportions as starting materials and defined some key structural and formation parameters. They found that synthetic dumortierite has a relatively narrow Al/Si range which varies from 2.77-2.94 at low pressures (3-5 kbar) to 2.33-2.55 at high pressures (15-20 kbar). Outside of these homogeneity limits, dumortierite coexisted with quartz or corundum, depending on the starting composition. Independently of the synthesis conditions, dumortierite was found always to be orthorhombic, with c/b deviating slightly but significantly from the √3 valid for hexagonal lattice geometry. As a function of increasing Al/Si in the synthetic crystals, b, a, and unit cell  15  volume increased, whereas c decreased. Thus c/b decreases most sensitively with rising Al/Si, and also with increasing [4]Al at the Si sites. This paper initially formed the basis for the synthesis experiments conducted at the Deutches Geoforschungzentrum (GFZ) in Potsdam, Germany. Synthetic materials with structures similar to dumortierite have been synthesized by several groups (Marcos et al. 1993a, Marcos et al. 1993b, Pizarro et al. 1993, Attfield et al. 1994, Amorós et al. 1996, Zhang et al. 1999, Rojo et al. 2002, Hughes et al. 2003) in both orthorhombic and hexagonal space groups, featuring cations such as Co2+, Ni2+, Zn2+, Mn2+, and Mg2+ at the octahedral sites and anionic groups such as PO33-, HPO32-, AsO43-, SeO32-, and VO43replacing the trigonal BO33- and tetrahedral SiO44- groups. Other synthesized minerals with similar structures include the phosphites, such as the Fe11(HPO3)8(OH)6 and Mn11(HPO3)8(OH)6 synthesized by Attfield et al. (1994), which have vacant hexagonal channels similar to the hypothetical end-member holtite. The layout of the six-month project at the GFZ was to first replicate the results of Werding and Schreyer (1990). Once pure Si end-member dumortierite had been generated, further experiments involving the gradual introduction of Sb and As would create a mineral with an increasingly more holtite-like composition. Using these results the natural limit of Si/(As,Sb) substitution in dumortierite and holtite could be better determined, with the possibility of synthesizing end-member Si-free holtite.  16  3.2 Materials and Methods The initial experiments were designed to follow the procedure set down by Werding and Schreyer (1990) as closely as possible. After consulting with researchers at the GFZ and due to the difficulty of working with gels, we believed that oxide mixes would be a more practical solution to producing dumortierite. A complete summary of all the experiments conducted can be found in Table 3.1; Information on starting materials can be found in Appendix A.1. The experiments were initially prepared starting from a pure dumortierite end-member composition corresponding to an oxide mixture with a molar ratio of 3.8 γ-Al2O3 : 3.0 SiO2 (Al/Si = 2.53) for low-pressure synthesis and 3.375 Al2O3 : 3.0 SiO2 (Al/Si = 2.25) for high pressure synthesis. In all experiments, H3BO3 was used in excess of 200 mol% in addition to 50-100 mg H2O for low-pressure synthesis and 5-10 mg H2O for high-pressure synthesis. These ratios are described in Werding and Schreyer (1990), gel 3 and gel 5 respectively, as achieving the best results for producing dumortierite. Due to limited capsule space, water contents were less than those reported by Werding and Schreyer (1990). The molar amounts of Si in the experiments carried out at the GFZ varied from 1.5-12.0 SiO2 in low-pressure syntheses and 1.5-9.0 SiO2 in high-pressure syntheses. These values varied due both to the introduction of As and Sb to replace Si, added as As2O3 and Sb2O3, and by flooding the system with excess SiO2. Four experiments were also prepared with gels as starting materials following Werding and Schreyer (1990) compositions and using tetraethyl orthosilicate (TEOS) in the place of SiO2 oxide. The gels were prepared using standard techniques as described by Hamilton and Henderson (1968), in which pure Al powder was measured and transferred to a Teflon beaker and dissolved in hot nitric acid (HNO3) for several hours; the powder was then dried and re-  17  dissolved in a small amount of H2O. The measured amount of TEOS (corresponding to 3.0 moles SiO2) was washed into the beaker with ethyl alcohol until miscible, and ammonium hydroxide was slowly added to precipitate the silica and form the gel. Once precipitation was completed, the gel was dried overnight in an oven at 110 °C, and the residue was then ground into a fine powder and fired in a furnace at 900 °C for 3 hours. Final products were then analysed by powder XRD to ensure no crystalline material was generated, prior to experimentation. In some of the oxide experiments, mixtures were seeded with natural dumortierite (D34) to encourage nucleation, and additional experiments were conducted in an effort to produce As and Sb-enriched replacement rims on the grains of natural sample D34 using 2.0 μl of AsCl3 and SbCl3 with 5.0 mg of H2O or 1.0 M HCl used as fluxes. All of the experiments were performed at 550, 600, 650, and 700 °C at 3-5 Kbar for lowpressure synthesis and 15 Kbar for high-pressure synthesis with a an experiment running for 1 to 16 days. Starting materials for the experiments were sealed inside heat-treated Au capsules measuring 3-5 mm in diameter and 1, 2 and 4 cm in length. A few experiments were also conducted using 1 cm long Pt capsules. Capsules were weighed with each new material addition and after sealing to ensure no fluid was lost in the welding process. Prior to actual pressure experiments, the capsules were weighed again after approximately 12 hours at 200 °C in a drying oven to ensure there were no leaks. Low-pressure experiments were conducted using standard cold-seal hydrothermal techniques (Von Goerne et al. 2011). The temperature was monitored by a NiCr thermocouple closely adjoining the capsule position within the autoclave (Fig. 3.1). Temperature uncertainties at the GFZ facility are estimated to be ± 5 °C.  18  Cold seal  Pressurized water input valve  NiCr thermocouple  Autoclave  Oven  Capsule position  Figure 3.1: Schematic diagram of low-pressure hydrothermal synthesis apparatus showing position of capsule and thermocouple within the autoclave. Nickel spacers were also added inside autoclave to prevent the capsule from shifting position.  A calibrated strain gauge measured pressure to known values within ± 100 bars. Upon completion, the experiments were quenched by removing the oven and cooling the bombs with compressed air to less than 200 °C in approximately three minutes. High-pressure experiments were conducted in a specially designed piston cylinder apparatus. Capsule sizes of 1 and 2 cm were used with two capsules at a time being run together in a single experiment. The experiments were separated using a small sheet of biotite and packed with finely ground NaCl inside a small NaCl capsule with a custom made NiCr thermocouple coated with Al2O3 to prevent corrosion and inserted into the base of the salt cell. This was then placed within a thin graphite oven and encased in a larger NaCl cylinder and capped with two copper conducting rings and pyrophillite rings to act as seals (Fig. 3.2). The whole assemblage was then placed within the piston cylinder apparatus and gradually brought under pressure to allow  19  Upper piston  Pyrophillite seal  Graphite oven  NaCl cap  External NaCl cylinder  Biotite separator  Internall NaCl cylinder  Capsule positions  Thermocouple Pyrophillite seal  Lower piston  Copper conducting ring  Figure 3.2: Schematic diagram of internal assemblage for the high-pressure piston cylinder apparatus showing position of capsules and thermocouple within the NaCl cell. Assemblage was then placed in the piston cylinder bomb with a circulation water cooling system and gradually brought under pressure.  deformation of the salt cell to achieve isostatic pressure conditions surrounding the capsules. A second thermocouple was attached to the pistons to measure external temperature. Temperature (accuracy ± 5 °C) and pressure (± 100 bars) was closely monitored throughout the duration of the experiments. Upon completion, the experiments were rapidly quenched by circulating water at 18 °C. The salt cell was then removed from the pistons and the capsules were carefully extracted and checked for deformation or evidence of electrical arcing within the graphite oven. In both low-pressure and high-pressure experiments, capsules were carefully weighed and checked for leaks during experimental runs. They were then  20  opened and left to dry at 150 °C in a drying oven for 4-8 hours and reweighed. Products were extracted and rinsed repeatedly in warm distilled water to dissolve any excess H3BO3. Solid products were analysed by optical microscope, scanning electron microscope (SEM) and powder X-ray diffraction (XRD). Some rim experiments were additionally analysed using a fully automated CAMECA SX-50 electron microprobe (EMP) using the “PAP” ɸ(ρZ) method (Pouchou and Pichoir, 1985). Standard operating conditions were: excitation voltage, 20 kV; beam current, 20 nA; peak count time, 20 s; background count time, 10 s; and a beam diameter of 10 μm. The following standards and X-ray lines were used: kyanite, AlKα, SiKα; apatite, PKα; rutile, TiKα; synthetic fayalite, FeKα; tennantite, AsKα; columbite, NbLα; tetrahedrite, SbLα; microlite, TaMα.  21  22  3.3 Results DuHp-1 and DuHp-2 were the first two experiments tried in the attempt to make dumortierite. Using an Al2O3/SiO2 molar ratio of 3.375/3.0 (Werding and Schreyer, 1990) the powder mixes were made using silica and γ-aluminum oxides ground together with excess 200 mol% boric acid (H3BO3) and 10 mg of distilled water. These capsules were allowed to progress for 9 days at 15 kbar and 700 °C in the piston cylinder apparatus. Upon completion of the experiment, the products were extracted and evaluated by SEM and X-ray diffraction. Figs. 3.3 and 3.4 are representative images of the products of DuHp-1 and DuHp-2 under SEM magnification. XRD analysis determined the products to be boralsilite with a chemical formula of Al16B6Si2O37. Compared to orthorhombic dumortierite, the main differences between the two minerals are the anhydrous nature of boralsilite and an Al/Si ratio of 8/1 versus an idealized 7/3 found in end-member dumortierite (Al7Si3BO18). Similar experiments were designed using much larger Au capsules at a lower pressure and temperature of 5 kbar and 650 °C. This series of experiments were carried out in the hydrothermal bomb laboratory and left to progress for longer periods of time. DuLp-1 was also by made using an oxide mix together with excess boric acid (H3BO3) and distilled water. The Al2O3/SiO2 molar ratio for this experiment was 3.8/3.0 which was found to be ideal for this pressure and temperature in producing dumortierite as described by Werding and Schreyer (1990). After 16 days, the experiment was taken down and the products analyzed using both SEM and XRD. The crystals produced appeared quite different from the previous high-pressure experiments. Fig. 3.5 shows a homogenous mix of tiny needlelike crystals which suggests a very high nucleation rate. As before, the XRD analysis determined the product to be pure boralsilite.  23  Figure 3.3: DuHp-1 – 15 kbar at 700 °C for 9 days – boralsilite.  Figure 3.4: DuHp-2 – 15 kbar at 700 °C for 9 days – boralsilite.  24  Figure 3.5: DuLp-1 – 5 kbar at 650 °C for 16 days – boralsilite.  Due to a delay in obtaining XRD results, the next experiments were designed with the assumption that dumortierite had been successfully synthesized and arsenic and antimony oxides were added to the original mixes based on percent silica replacement. DuHp-3 and DuHp-4 were made with the same Al2O3/SiO2 molar ratio of 3.375/3.0 as previously stated, but with the introduction of 50% replacement of Si by As and Sb added as oxides respectively. Similar experiments were designed using the lower pressures of the hydrothermal laboratory and an Al2O3/SiO2 molar ratio of 3.8/3.0 with 50% replacement of Si by As and Sb added as oxides in the experiments DuLp-2 and DuLp-3. The high-pressure experiments DuHp-3 and DuHp-4 experienced capsule failure and were subsequently repeated. Again the capsules  25  experienced damage, but some product was recoverable. DuLp-2 and DuLp-3 in the hydrothermal laboratory experienced only mild deformation and the products were fully recovered. Once again pending the results of XRD analysis, two more experiments DuHp-5 and DuHp-6 were constructed using 75% replacement of Si by As and Sb respectively. The capsule deterioration was too extensive to recover any definitive material from these runs. Figs. 3.6 and 3.7 are representative SEM images of the run products of DuHp-3 and DuHp-4 and Figs. 3.8 and 3.9 are representative of DuLp-2 and DuLp-3 respectively. A substitution of 50% As for Si in DuHp-3 at 15 kbar and 700 °C resulted in a heterogeneous mix of dominantly boralsilite with some corundum, amorphous Si-quench product and several minor unknown phases. DuHp-4 generated small amounts of boralsilte, corundum and unknown phases. While the lower pressure experiments fared better under the decreased pressure and temperature conditions, the product of DuLp-2 was indistinguishable from that of DuLp-1. As observed in DuLp-1, numerous tiny crystals of boralsilite were generated, despite the addition of As which was not detectable in the crystal mass (Fig. 3.8). DuLp-3 however, resulted in a nearly homogenous assemblage of an unknown phase resembling pseudohexagonal crystals (Fig. 3.9). Experiments DuLp-5 and DuLp-6 were designed as a duplication of the results of DuLp-2 and DuLp-3 to rule out random error, whereas DuLp-4 was a scaled-down recreation of DuLp-1 using the original Al2O3/SiO2 molar ratio of 3.8/3.0. The same observations and products were successfully replicated, indicating the absence of random error in determining the experimental outcomes. The next sets of experiments were designed to follow more closely the original procedures of Werding and Schreyer (1990). Amorphous starting gels were prepared for both the high-pressure and low-pressure experiment sets using TEOS and dissolved Al metal.  26  Figure 3.6: DuHp-3(II) – 15 kbar at 700 °C for 9 days – boralsilite; Si-quench; corundum.  Figure 3.7: DuHp-4(II), Sb 50 % – 15 kbar at 700 °C for 9 days – boralsilite; Si-quench, corundum; unknown phase. 27  Figure 3.8: DuLp-2, As 50 % – 5 kbar at 650 °C for 16 days – boralsilite.  Figure 3.9: DuLp-3, Sb 50 % – 5 kbar at 650 °C for 16 days – unknown phase.  28  Two capsules labelled DuHp-7 and DuHp-8 containing the same mix of gel along with excess boric acid and distilled water were run at 15 kbar and 700 °C in the piston cylinder apparatus for a total of 4 days. A similar experiment was conducted in the hydrothermal laboratory at 5 kbar and 650 °C using a gel Al2O3/SiO2 molar ratio of 3.8/3.0 and labelled DuLp-7 for a total of 9 days. In the two high-pressure experiments, DuHp-7 experienced capsule failure, whereas DuHp-8 containing the exact same mix composition was fully recovered. DuLp-7 was also extracted and evaluated. X-ray diffraction analysis of both samples revealed a boralsilite composition. Two further experiments were constructed using near Si-end member natural dumortierite labelled D34 from a locality in Madagascar. The purpose of this natural mineral was to provide an opportunity for seeding of synthetic dumortierite in the otherwise boralsilitedominant system. Finely ground D34 was added to DuLp-8 which contained a gel mixture and DuLp-9 containing oxides. Both experiments were run at 5 kbar and 650 °C for a total of 8 days. Upon completion of the experiment, the products were extracted and evaluated and in both cases, seeding failed to occur and resulted in fine needle-like masses of pure boralsilite with the unaltered D34 grains throughout. Based on the difference in Al/Si ratios of dumortierite and boralsilite, it is apparent that boralsilite contains significantly less Si than dumortierite. In an effort to force the synthesis of dumortierite over boralsilite, DuLp-10, DuLp-11 and DuLp-12 had double, triple and quadruple the moles of Si in starting mix Al2O3/SiO2 molar ratios; this corresponded to ratios of 3.8/6.0, 3.8/9.0. and 3.8/12.0 respectively. All three capsules were again run at 5 kbar and 650 °C for a total of 6 days each. Upon completion of the experiments, the products were extracted and  29  determined to once again be fine needles of boralsilite. Only upon lowering the temperature to 550 °C and using a Al2O3/SiO2 molar ratio oxide mix of 3.8/9.0 in DuLp-13, was free quartz generated in addition to boralsilite. Similar experiments designed for the piston cylinder apparatus were also conducted at 15 kbar and 600 °C using a starting Al2O3/SiO2 molar ratio of 3.375/9.0. Labelled DuHp-9 and DuHp-10, the experiment failed after only 1 day due to partial melting of the capsules from an arc generated by moisture in the surrounding NaCl salt cell. The products were recovered and determined to be an unknown phase containing no dumortierite, boralsilite or quartz. DuLp-14 was designed to test the possibility that increased water content might help generate the more hydrous mineral dumortierite over anhydrous boralsilite. The amount of excess distilled water was doubled from 50 mg to 100 mg in addition to doubling the moles of SiO2 to a Al2O3/SiO2 molar ratio of 3.8/6.0 and temperature of 600 °C. Once again, after 6 days boralsilite and quartz remained the only phases present. One further attempt at seeding was made with DuLp-15 in which finely ground D34 sample was mixed with a tripled Al2O3/SiO2 molar ratio of 3.8/9.0 and increased water content of 75 mg. After 6 days the experiment was evaluated and resulted in no new crystal growth on the D34 grains with quartz and boralsilite as the only new phases present. The remaining experiments conducted at the GFZ involved an attempt at forced replacement of Si in natural D34 dumortierite with differing concentrations of As and Sb, as well as both H2O and 1 M HCl for fluids in Pt capsules. DuHp-11 and DuHp-12 both contained roughly 8 mg of crushed D34 in addition to 5 mg of AsCl3 and 5 mg distilled water and 1 M HCl respectively. DuHp-13 and DuHp-14 used 5 mg of SbCl3 and 5 mg distilled water and 1 M HCl  30  respectively. The four experiments were run at the same time and were terminated after 1 day due to fluctuating internal temperatures. Upon evaluation of the capsules, it was apparent that the AsCl3 and SbCl3 reacted negatively with the Pt capsule walls, causing them to become brittle and contaminating the sample with NaCl from the surrounding salt cell. The grains were examined under SEM and showed no noticeable reaction from the experiments containing AsCl3, but nearly complete breakdown of dumortierite to albite and corundum in the two experiments containing SbCl3 (Figs. 3.10 and 3.11). The presence of Na in albite suggests strong contamination of the sample from the salt cell during the experiment. Two experiments were designed again using D34 crystals, but with a decreased AsCl3 concentration of 0.1 M and less than 1.0 mg of Sb2O3 instead of 5.0 mg SbCl3. Labelled DuHp-15 and DuHp-16, the experiments were run at 15 kbar and 650 °C for a duration of 8 days. Although the As-enriched DuHp-15 showed no reaction, DuHp-16 appears to have strong enrichment of Sb in the form of visible bright rims on several grains (Fig. 3.12). Both DuHp-15 and DuHp-16 were analysed using EMP. As expected, there appeared to be no detectable arsenic incorporated into the dumortierite grains. The rims found in DuHp-16 appear to be a reaction product between the dumortierite and the Sb-enriched fluid and does not represent Sb incorporating itself into the dumortierite structure, but rather a semi-detached alteration phase. Over the six month stay at the GFZ in Potsdam, Germany, we were unable to replicate any of the results of Werding and Schreyer (1990). Due to time constraints, many of the experiments were reduced in duration although this is not believed to be a determining factor in the synthesis of dumortierite. The dominant differences between orthorhombic dumortierite  31  and monoclinic boralsilite are the Al/Si ratio of each mineral and the hydrous nature of dumortierite versus the anhydrous nature of boralsilite. Based on our observations of the synthesis experiments, it would appear that the activation energy to crystalize boralsilite is far less than that which is required to cause dumortierite nucleation. This can be seen in the persistent generation of millions of tiny boralsilite crystals in the low-pressure experiments. In terms of the experimental setup, it would appear that pure Au and Pt are semi-reactive to reactive in the presence of As and Sb, both as oxides and in particular salts. Despite less Si in the boralsilite crystal structure than in dumortierite, the mineral appears to be stable in a quartz-saturated system under varying temperatures and pressures. Piezka et al. (2008) considered ordered boralsilite to be unstable above 10 kbar, although these experiments generated well ordered boralsilite at pressures reaching 15 kbar.  Figure 3.10: DuHp-12, As+HCl+D34 – 15 kbar at 700 °C for 1 day – no reaction. 32  Figure 3.11: DuHp-14, Sb+HCl+D34 – 15 kbar at 700 °C for 1 day – corundum; albite.  Figure 3.12: DuHp-16, Sb+H2O+D34 –15 kbar at 650 °C for 1 day – Sb-enriched alteration phase.  33  Chapter 4 Uvil’dy Lake Pegmatite 4.1 Geology and Mineralogy The Uvil’dy locality consists of several pegmatite veins cutting gabbro and serpentinized peridotite on the west shore of Lake Uvil’dy in the Il’men Mountains, southern Urals, Russia (Kuznetsov 1923, Avdonin 1987). In addition to quartz, microcline and albite, some of the pegmatites contain black tourmaline (one sample with pink tourmaline), garnet, muscovite and cordierite, but none of these accessory minerals occur with dumortierite. Kuznetsov (1923) and Avdonin (1987) also described from one pegmatite a yellow dumortierite with aragonite-like triply twinned crystals, one of which Golovastikov (1965) used for a refinement of the crystal structure. Avdonin (1987) reported the chemical composition of the yellow variety, including qualitative spectral data giving a few tenths weight % As. The structure and crystal chemistry of a blue As-rich dumortierite from Uvil’dy was reported by Groat et al. (2012). Despite the descriptions provided by Kuznetsov (1923) and Avdonin (1987), the Uvil’dy Lake pegmatite remains poorly understood and could represent a potentially unique locality for yellow dumortierite. The samples studied consist of a medium-grained matrix of white feldspars and grey quartz containing aggregates of dark blue tourmaline and green to yellow dumortierite up to 1.0 cm in length. The samples exhibit brittle deformation textures including fractured and brecciated quartz, feldspars and alignment of broken tourmaline and dumortierite prisms. The tourmaline and dumortierite crystals are sometimes embedded in a fine clay matrix.  34  4.2 Optical mineralogy and SEM In thin section albite is more common than K-feldspar. Albite aggregates frequently display polysynthetic twinning and are often brecciated, rimmed by two generations of finegrained quartz and locally overgrown by dumortierite. Potassium feldspar is perthitic and weakly altered. Interlocking quartz grains are elongated, exhibiting undulose extinction and recrystallization indicated by boundary migration texture. The quartz always encloses the dumortierite and tourmaline grains. The tourmaline appears colourless to dark blue in thin section and was observed in four textural varieties with different compositions. The primary colourless tourmaline I occurs in the centres of crystals and exhibits concentric zonation (Fig. 1). Tourmaline II was found as irregular fragments with sharp boundaries enclosed in tourmaline I (Fig. 2). Colourless tourmaline III forms skeletal or prismatic, sector-zoned fragmented crystals embedded in quartz (Fig. 3); its relationship to the tourmaline I is not clear from their textures (i.e. they were not found in the same thin section) but their habits and compositions strongly suggest that tourmaline III may represent a primary generation which followed after tourmaline I. Tourmaline IV replaces tourmaline I and III and dumortierite; it has blue and rarely olive green colour. Dumortierite I forms sector-zoned, twinned pseudohexagonal crystals. It seems to be coeval with the skeletal tourmaline III. The crystals are commonly fragmented and replaced by tourmaline IV. Numerous inclusions of Nb, Ta, W, Ti oxides and As, Sb-rich dumortierite II occur along fractures within the original dumortierite, along its boundary and within the fine-grained assemblage. A fine-grained assemblage of quartz and K-feldspar crosscuts and rims the grains of all primary minerals (feldspars, tourmaline, quartz and dumortierite); blue overgrowths of 35  tourmaline IV on earlier tourmaline generations are restricted to these fine-grained assemblages. Local overgrowth of green tourmaline IV on dumortierite is also observed. Where the fine-grained assemblage is in contact with dumortierite, it is being replaced by Nb, Ta, W, Ti oxides and As, Sb-rich dumortierite. Rare muscovite and phlogopite were found associated with tourmaline IV in the fine-grained assemblage.  36  A  B  C  D  E  F  Figure 4.1: SEM backscattered electron images of Uvil’dy samples magnified 200x: (A) Tourmaline I with IV overgrowth; (B) Inclusions of tourmaline II; (C) Overgrowth of tourmaline IV; (D)Tourmaline III and IV; (E) Tourmaline III; (F) Skeletal tourmaline III being replaced by tourmaline IV and fine-grained assemblage.  37  A  B  C  D  E  F  Figure 4.2: SEM backscattered electron images of Uvil’dy samples magnified 200x: (A) Zoned twinned dumortierite I; (B) Dumortierite I with fine-grained matrix and wodginite/ixiolite; (C) Sector zoned brittle deformed dumortierite I; (D) Pseudo-haxagonal sector-zoned dumortierite I; (E) Dumortierite I being replaced by albite and tourmaline IV; (F) 600x mag. of tourmaline IV and dumortierite II replacing dumortierite I. 38  4.3 Composition (EPMA) Both feldspars in the Uvil’dy Lake pegmatite are close to their respective ideal endmember compositions. Contents of K and Ca in albite are extremely low (0.006 apfu K and 0.01 apfu Ca) and the K-feldspar composition shows 0.03 - 0.07 apfu Na. The four tourmaline varieties differ significantly in their chemical composition. The primary tourmaline I shows a compositional range between foitite and manganofoitite in the crystal cores and schorl-tsilaisite on crystal rims, featuring Na between 0.4 and 0.6 apfu, respectively (Fig. 4.3 C). Tourmaline I generally has Ca values below 0.02 apfu, low Li (0.42 – 0.59 apfu), (XMg [Mg/(Mg+Fe+Mn)] below 0.06, and a Fe/Mn ratio between 1.23 and 0.85 which remains variable in both the crystal cores and their rims (Figs. 4.4 B and 4.9 E). Contents of F vary between 0.0 and 1.0 apfu in both the crystal cores and rims (Fig. 4.3 C). The inclusions of tourmaline II show two distinct compositions; the inclusion cores and part of the data from the rims belong to the elbaite-schorl-tsilaisite solid solution and exhibit similar composition as tourmaline I whereas the rims sometimes have higher contents of Mg and Li. The cores can be classified as elbaite with high contents of Fe and Mn (Fe/Mn = 0.8 – 1.2); they feature elevated contents of Na (0.58 – 0.64 apfu), Ca (0.03 – 0.05 apfu) and Li (0.49 – 0.60 apfu) compared to tourmaline I.  39  Table 4.1: Representative compositions of Uvil'dy tourmaline Sample  U4-10  U4-3  U4-22  U4-28  U3-22  U3-4  U3-41  U3-48  Type  I core  I rim  II core  II rim  II rim  III core  III rim  IV  SiO2 wt.%  34.31  34.77  33.15  33.09  33.61  34.96  33.22  33.76  Al2O3  38.01  38.12  41.35  41.48  44.43  44.42  44.98  37.74  B2O3  10.42  10.52  10.62  10.63  10.96  11.06  10.96  10.47  FeO  5.08  4.66  3.81  3.80  2.61  0.88  2.74  11.70  MnO  4.49  4.57  3.66  3.84  0.62  2.85  0.74  0.37  MgO  0.16  0.14  0.16  0.15  1.46  0.26  1.07  0.80  Li2O  0.64  0.77  0.81  0.77  0.92  1.15  0.95  0.21  CaO  0.00  0.03  0.22  0.20  0.35  0.12  0.38  0.06  Na2O  1.58  1.81  2.02  1.94  1.63  1.57  1.72  1.66  F  0.46  0.63  0.29  0.35  0.21  0.48  0.00  0.44  H2O  3.38  3.33  3.53  3.50  3.68  3.59  3.78  3.40  (O=F)  -0.19  -0.26  -0.12  -0.15  -0.09  -0.20  0.00  -0.19  TOTAL  98.33  99.09  99.49  99.60  100.39  101.14  100.55  100.44  Si apfu  5.72  5.75  5.42  5.41  5.33  5.49  5.27  5.60  3+  0.28  0.25  0.58  0.59  0.67  0.51  0.73  0.40  4+  TAl 3+  B *  3.00  3.00  3.00  3.00  3.00  3.00  3.00  3.00  Z  3+  6.00  6.00  6.00  6.00  6.00  6.00  6.00  6.00  Y  3+  1.19  1.17  1.40  1.41  1.64  1.72  1.68  0.98  Fe  2+  0.71  0.64  0.52  0.52  0.35  0.12  0.36  1.62  Mn  2+  0.63  0.64  0.51  0.53  0.08  0.38  0.10  0.05  Mg  2+  0.04  0.04  0.04  0.04  0.34  0.06  0.25  0.20  0.43  0.51  0.54  0.50  0.59  0.73  0.61  0.14  0.00  0.01  0.04  0.03  0.06  0.02  0.07  0.01  Al  Al  +  Li * Ca  2+  Na  +  0.51  0.58  0.64  0.62  0.50  0.48  0.53  0.53  vac.  0.49  0.41  0.32  0.35  0.44  0.50  0.41  0.46  -  0.24  0.33  0.15  0.18  0.11  0.24  0.00  0.23  OH  3.76  3.67  3.85  3.82  3.89  3.76  4.00  3.77  2-  27.00  27.00  27.00  27.00  27.00  27.00  27.00  27.00  X  F  -  O  The data were collected with an electron microprobe. * Formulae were calculated assuming: Li = (15-T-Z-Y), B3+ = 3 apfu, Fe2+ = Fe tot, and (O + OH + F) = 31 apfu.  40  The compositions of the rims of tourmaline II are extremely variable. A major part of the data belongs to elbaite-schorl and its compositional range resembles that of the inclusion cores; part of the data belongs to Mg-rich rossmanite-elbaite with low contents of Na (0.44 – 0.52 apfu) and F (0.0 – 0.14 apfu), high contents of Li (0.56 – 0.68 apfu), and elevated XMg (0.34 – 0.70) along with low XMn (0.09 – 0.19) (Figs. 4.3 C, 4.4 B and 4.9 E). Tourmaline III corresponds to rossmanite with minor elbaite and Na contents ranging between 0.41 and 0.52 apfu and Ca up to 0.08 apfu. Fluorine contents are variable between 0.0 and 0.34 apfu with two outliers containing 0.67 and 0.89 apfu F. The data suggests compositional evolution from Mn-rich elbaite-rossmanite (0.63 apfu Mn) to Mn, Fe-poor elbaite-rossmanite (Mn + Fe + Mg ~ 0.22 apfu) and Mg, Fe-rich elbaite-rossmanite (Mg+Fe ≤ 0.75 apfu, Mg/Fe ~ 0.7 – 1.1). Tourmaline IV belongs to elbaite, schorl and dravite with elevated contents of Na (0.46 – 0.65 apfu) and Ca (0.01 – 0.10 apfu) and generally low F (0.0 – 0.30 apfu, single outlier with 0.54 apfu). This generation of tourmaline shows compositional evolution from Mg, Fe, Mn-rich elbaite to schorl and dravite with highly variable Mg/Fe between 0.13 and 1.61. All tourmaline generations show elevated amounts of tetrahedral aluminum (Fig. 4.3 A and B). In tourmaline I, contents of TAl reach up to 0.36 apfu and increase in tourmaline II and III (up to 0.79 apfu). Tourmaline IV shows variable contents of TAl between 0.20 and 0.78 apfu.  41  A  B  C  Figure 4.3: Compositional range of Uvil’dy tourmaline: (A) ratio of cations in Y-site; (B) variation of tetrahedral Al and divalent cations at Y-site; (C) variation of Na and F.  42  A  B  Figure 4.4: Uvil’dy tourmaline compositions (A) classification diagram for sodic and vacant tourmalines: Mn vs. 2 x Li vs. Fe + Mg; (B) ratio of Mg vs. Mn vs. Fe.  43  The green-yellow dumortierite that was analysed from Uvil’dy comprises of two distinct generations. Another dark blue variety of dumortierite from the Uvil’dy locality labelled D27 was analysed by Groat et al. (2012). The primary yellow-green dumortierite I has TiO2 and Ta2O5 values ranging 1.07 – 1.97 wt.% and 1.28 – 5.37 wt.% respectively (corresponding to 0.08 – 0.15 apfu Ti and 0.04 – 0.15 apfu Ta) and a maximum Ta + Nb + Ti value of 0.36 apfu which is considerably higher than the 0.0 – 0.1 apfu range reported for As, Sb-rich dumortierite from the Szklary pegmatite by Pieczka et al. (2011). Dumortierite I also contains elevated As and Sb with maximum values of 1.75 wt.% As2O3 (0.11 As3+ apfu) and 1.03 wt.% Sb2O3 (0.04 Sb3+ apfu). Groat et al. (2012) reported 1.07 wt.% Bi2O3 from Uvil’dy sample D27 and is slightly lower than the observed maximum of 1.30 wt.% Bi2O3 (0.03 Bi3+ apfu) for Dumortierite I which also contains up to 0.32 wt.% Fe2O3 (0.03 Fe apfu) and trace MgO. The small inclusions of dumortierite II contain up to 6.45 wt.% Ta2O5 (0.19 Ta apfu) and 2.61 wt.% TiO2 (0.21 Ti apfu).  A  B  Figure 4.5: Uvil’dy dumortierite compositions (yellow/green = dumortierite I; orange = dumortierite II). (A) As + Sb + Bi vs. Ta + Nb; (B) As + Sb + Bi vs. Ti  44  Table 4.2: Representative compositions of Uvil'dy dumortierite Sample Type  UVD2-1 I  UVD2-8 I  UVD2-17 I  UVD4-3 I  UVD4-8 I  UVD4-12 I  UVD2-4 II  UVD4-18 II  P2O5 wt.%  0.00  0.02  0.02  0.03  0.05  0.00  0.00  0.00  Nb2O5 Ta2O5  0.92 3.69  0.62 2.48  0.92 4.15  0.77 3.31  1.08 4.32  1.05 4.71  0.68 6.45  0.52 3.42  SiO2 TiO2  25.53 1.90  27.09 1.56  25.81 1.87  26.25 1.89  25.60 1.87  25.85 1.76  22.68 2.61  23.36 1.39  B2O3 Al2O3  5.66 56.06  5.77 57.39  5.64 55.52  5.72 56.54  5.65 55.60  5.63 55.35  5.51 51.61  5.60 54.06  Fe2O3 As2O3  0.21 1.75  0.12 1.40  0.14 1.62  0.16 1.61  0.21 1.54  0.11 1.40  0.20 4.22  0.07 5.20  Sb2O3 Bi2O3  0.81 1.30  0.83 0.90  0.83 0.88  0.95 0.95  0.77 1.17  0.66 0.97  3.52 0.71  3.15 1.10  Sc2O3 MnO MgO CaO K2 O  0.04 0.03 0.00 0.00 0.00  0.04 0.04 0.00 0.00 0.00  0.00 0.06 0.00 0.00 0.00  0.04 0.07 0.00 0.01 0.01  0.04 0.02 0.00 0.00 0.01  0.00 0.05 0.01 0.00 0.00  0.13 0.00 0.10 0.00 0.01  0.09 0.02 0.00 0.00 0.01  Na2O F O=F  0.01 0.00 0.00  0.00 0.17 -0.07  0.01 0.00 0.00  0.02 0.10 -0.04  0.02 0.12 -0.05  0.01 0.10 -0.04  0.01 0.09 -0.04  0.04 0.00 0.00  97.92  98.35  97.49  98.38  97.99  97.64  98.49  98.02  P apfu  0.000  0.001  0.002  0.002  0.004  0.000  0.000  0.000  5+  0.043 0.103  0.028 0.068  0.043 0.116  0.035 0.091  0.050 0.120  0.049 0.132  0.032 0.185  0.024 0.096  Si 4+ Ti  2.613 0.146  2.718 0.117  2.652 0.145  2.658 0.144  2.624 0.144  2.659 0.137  2.386 0.206  2.418 0.108  3+  1.000 6.761  1.000 6.786  1.000 6.722  1.000 6.746  1.000 6.718  1.000 6.711  1.000 6.398  1.000 6.595  Fe 3+ As  3+  0.016 0.109  0.009 0.085  0.011 0.101  0.012 0.099  0.016 0.096  0.009 0.088  0.016 0.269  0.005 0.327  3+  0.034 0.034  0.034 0.023  0.035 0.023  0.040 0.025  0.032 0.031  0.028 0.026  0.153 0.019  0.134 0.029  Sc 2+ Mn  3+  0.004 0.003  0.004 0.003  0.000 0.005  0.003 0.006  0.004 0.001  0.000 0.004  0.012 0.000  0.008 0.002  Mg 2+ Ca  2+  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.001  0.000 0.000  0.001 0.000  0.015 0.000  0.000 0.000  +  0.000 0.003  0.000 0.001  0.000 0.002  0.001 0.004  0.001 0.003  0.000 0.003  0.001 0.001  0.001 0.007  0.000 17.822  0.053 17.805  0.000 17.841  0.031 17.805  0.040 17.801  0.034 17.825  0.031 17.528  0.000 17.509  TOTAL 5+  NB 5+ Ta 4+  B 3+ Al  Sb 3+ Bi  K + Na -  F 2O  As+Sb+Bi 0.178 0.143 0.159 0.163 0.159 0.141 0.441 0.491 Ta+Nb+Ti 0.291 0.213 0.304 0.270 0.314 0.317 0.423 0.229 The data were acquired with an electron microprobe. The formulae were calculated on the basis of 18 (O + F + As + Sb) per formula unit assuming 1 B pfu.  45  A  B  C  D  Figure 4.6: Substitution trends for Uvil’dy dumortierite (yellow/green = dumortierite I; orange = dumortierite II). (A) Si + P vs. As + Sb +Bi; (B) Nb vs. Ta; (C) As vs. Sb; (D) As vs. Bi  Dumortierite II also consists of elevated values of As and Sb at 5.20 wt.% As2O3 (0.33 As3+ apfu) and 3.15 wt.% Sb2O3 (0.13 Sb3+ apfu). The reversed trend observed in Si + P vs. As + Sb + Bi (Fig. 4.6A) suggests that Si is replaced by As, Sb, and Bi. Also observed is the position of  46  all of the points to the left of the 1:1 line, which indicates the presence of TAl also substituting at the Si sites. The small inclusions of Nb, Ta, W, Ti oxides consist of a wodginite-group mineral and/or ixiolite; rare Ti-rich manganotantalite and Ta-rich rutile were also observed. Inclusions of W-rich wodginite/ixiolite could not be analysed due to small crystal size. The wodginite (Nb + Ta ~ 5 apfu) and ixiolite (Nb+ Ta ~ 4 apfu) are both rather homogeneous in their Nb + Ta contents. In wodginite the Nb + Ta is higher than in ixiolite (Fig. 4.7 and Table 4.3) and both species feature strongly variable amounts of Ti (2.5 – 3.9 apfu) and Fe3+ (2.4 – 3.5 apfu).  Figure 4.7: Composition of Nb-Ta-Ti oxides.  47  Table 4.3: Representative compositions of Uvil'dy Nb-Ta-Ti-oxides Sample Type Nb2O5 wt.%  UVD2-4 wod./ix.  UVD2-5 wod./ix.  UVD4-18 wod./ix.  UVD2-8 wod./ix.  UVD2-3 wod./ix.  UVD4-21 rutile  UVD4-22 tantalite  UVD4-23 tantalite  12.54  8.16  17.31  18.33  21.32  4.76  27.08  27.12 52.54  Ta2O5  51.95  47.26  44.51  41.59  38.89  39.26  51.42  TiO2  13.50  27.28  13.40  15.47  12.95  52.12  3.48  2.59  SnO2  0.21  0.10  0.16  0.09  0.11  0.07  0.03  0.00  Al2O3  0.43  0.25  0.23  0.37  0.28  0.99  0.03  0.02  Fe2O3 FeO MnO  14.80 4.75 0.12  9.95 5.15 0.09  13.45 5.25 0.44  16.91 3.63 0.21  16.96 4.01 0.24  0.00 5.73 0.96  0.67 4.34 10.88  0.09 1.93 13.71  TOTAL  98.30  98.24  94.75  96.60  94.78  103.90  97.94  98.00  5+  1.49  0.90  2.08  2.09  2.48  0.44  3.48  3.52  5+  3.70  3.13  3.21  2.85  2.72  2.18  3.97  4.10  Nb apfu Ta Ti  4+  Sn Al  4+  4+  2.66  5.00  2.67  2.93  2.51  8.00  0.74  0.56  0.02  0.01  0.02  0.01  0.01  0.01  0.00  0.00  0.13  0.07  0.07  0.11  0.09  0.24  0.01  0.01  Fe  3+  2.92  1.82  2.69  3.21  3.28  0.00  0.14  0.02  Fe  2+  1.04  1.05  1.16  0.77  0.86  0.98  1.03  0.46  Mn 2-  O  2+  0.03  0.02  0.10  0.05  0.05  0.17  2.62  3.33  24.00  24.00  24.00  24.00  24.00  24.04  24.00  24.00  The data were acquired with an electron microprobe. The formulae were calculated on the basis of 24 O atoms and 12 cations.  48  4.4 Single Crystal (XRD) In order to ascertain uncertainties in tourmaline formula calculations (theoretical presence of tetrahedral boron) and to find if the yellow dumortierite represents a different generation than the As, Bi-rich dumortierite reported by Groat et al. (2012) one dumortierite and two tourmaline structures were measured using single-crystal X-ray diffraction. Single crystal X-ray diffraction measurements of the Uvil’dy samples were conducted at C-HORSE (the Centre for Higher Order Structural Elucidation, in the Department of Chemistry at the University of British Columbia) using a Bruker X8 APEX II diffractometer with graphitemonochromated MoKα radiation. With a crystal-to-detector distance of 40 mm, data collection was done in a series of ɸ and ω scans in 0.50° oscillations with 20.0 second exposures for dumortierite and 10.0 second exposures for tourmaline. Collection was done at room temperature and integrated using the Bruker SAINT software package. Data were corrected for absorption effects using the multi-scan technique (SADABS) and for Lorentz and polarization effects. Refinements were performed using the SHELXTL crystallographic software package of Bruker AXS. The structure for the Uvil’dy tourmaline was solved using SHELXS and refined using the SHELXTL crystallographic software package of Bruker AXS. After initial isotopic refinement, the position of the hydrogen site H3 was located in the residual electron density. The structure was refined anisotropically and occupancies of all cation sites were refined as free variables. The refinement showed full-occupancy at Z and T sites; occupancy of the Y site was refined using two atoms (Mn vs. Al for tourmaline I and Fe vs. Al for tourmaline IV). Structure acquisition and refinement data and results are listed in appendix C.2. 49  The refinements of the Uvil’dy dumortierite were performed starting from the same lgje014 coordinates used by Groat et al. (2012) for sample D21. All atoms were initially refined as isotropic and neutral charged with a constrained full occupancy for the O1, O)-O6, O8-O11 and B sites, leaving Al, Si, O2 and O7 susceptible to variability in occupancy. Scattering factors for neutral atoms were taken from Cromer and Waber (1974). After these initial refinements, the natural Al1 population exceeded full occupancy and was split with Ta. The As1 and As2 sites were added based on electron density from the Fourier peaks list. The total As plus Si occupancy was constrained to equal 1, and the isotropic temperature factor of As was constrained to equal that of Si. Since O2 is only present if the Si1 site is occupied and the same for O7 and Si2, the following constraints were added; O2 = Si1, and O7 = Si2 which resulted in a R1 value of 0.0945. Anisotropies were then added to Al2-Al4, B, and O1-O11 which resulted in a slightly lower R1 value of 0.0939. The As = Si isotropy constraint was then released, and anisotropy was assigned to Al1 and Ta1 to give an updated R1 of 0.0364. A high U11 factor of 0.07430 Å on Al1 indicates that most of the positional displacement is along the a-axis (along the channel). Anisotropies were finally applied to the Si and As sites which resulted in an improved R1 of 0.0349. Scattering factors for O2- taken from Azavant and Lichanot (1993), and releasing the weighting scheme based on counting statistics resulted in final R1 of 0.0319. Since vacancies at Al1 cannot accurately be calculated directly due to the site already being split between two atoms, they were assumed based on the total Al1 occupancy = minimum O2 and O7 occupancy. The single crystal refinements gave a final calculated formula of [(Al0.895Ta0.070  ☐  0.035)Al6(Si2.900As0.100)BO17.765(OH)0.135],  in which hydrogen was added as OH –  groups for charge balance; the observed electron density at Al1 and tetrahedral sites  50  approximately matches with the EMPA measured formula of (Al0.30Ta0.10Nb0.04Ti0.13Fe0.01  ☐  0.15)Al6(Si2.66As0.09Sb0.04Bi0.02Al0.19)BO17.82F0.03.  Structure acquisition  and refinement data and results are listed in Appendix C.1. The measured tetrahedral bond-lengths in both tourmaline samples are higher than 1.620 Å which confirms the significant prevalence of tetrahedral Al assumed during formula calculations. The observed average tetrahedral bond-length is analogous to the olenite reported by Cempírek et al. (2006), which contained only tetrahedral Al. The refined dumoritierite structure is equivalent to the dumortierite from sample D27 as reported by Groat et al. (2012).  51  4.5 Discussion The texture of tourmaline and different generations of feldspar suggest a possibility of two deformation events during evolution of the Uvil’dy pegmatite. The fragments of tourmaline II enclosed in tourmaline I show evidence for a deformation event during primary crystallization; the composition of tourmaline II cores generally corresponds to that of tourmaline I with exception of slightly higher Na and Li contents (Figs. 4.3C and 4.9D). The elevated Na and Li suggests earlier formation of tourmaline II (Selway et al. 1999). The second deformation event is witnessed by the fine-grained assemblage of K-feldspar, quartz and tourmaline IV replacing earlier minerals. Similar deformation textures were observed e.g. by Cempírek and Novák (2006) and Galliski et al. (2012). Tourmaline in the Uvil’dy pegmatite generally follows the evolutionary path of tourmaline from lepidolite and petalite pegmatites (Selway et al. 1999; Tindle et al. 2002); showing increase of Mn and Li contents in more fractionated parts of the dyke and Fe, Mg enrichment in the late stage tourmaline (Figs. 4.8 and 4.9). The most striking differences at Uvil’dy include a very high Mn/(Fe + Mg) ratio in primary tourmaline, which increases along with Li contents in part of the late stage tourmaline, and a second generation of Fe, Mg-rich tourmaline due to opening of the system. This pattern is more similar to the recently described metamorphosed holtite-bearing pegmatite at Virorco, Argentina (Galliski et al. 2012) which also features pegmatite-host rock interaction in primary and metamorphic stages evidenced by transition from dravite to Mn-rich elbaite-rossmanite and Al-rich schorl-foitite; however data in Uvil’dy show only part of this trend because only samples from the most fractionated part were available. 52  Classification of the Uvil’dy tourmaline samples is ambiguous because Li2O and B2O3 were not analysed. The recalculation of tourmaline analyses using 31 anions, OH = 4 – F, and Li = 15-T-Z-Y, was chosen because the observed contents of Mn and Al matches well with Li-rich tourmalines from highly-fractionated pegmatites (Selway et al. 1999; Tindle et al. 2002) and the high average values (> 1.620 Å) of the tetrahedral bond lengths (Appendix C.2) in tourmaline I and IV suggest none or very low [4]B (Cempírek et al. 2006). The recently described tsilaisite (Bosi et al. 2012) also contains high amounts of Li (0.54 apfu). To-date, no Li-free Mn and Al-rich tourmaline compositions have been described and according to Bosi and Lucchesi (2007), Lifree Mn-tourmaline end members (tsilaisite, “mangano-foitite”) are unstable. The Li - M2+ - Al diagram (Fig. 4.3A), however, suggests that at least a minor oxy- component must be present due to points plotting close to oxy-schorl and darrellhenryite compositions. Hence, the real composition of the Uvil’dy tourmaline lies between the currently used elbaite-rossmanitefoitite solid solution and a hypothetical Li-free olenite-oxy-schorl solid solution; however the exact ratio of Li and WO2- cannot be estimated from EMPA data. The crystal chemistry of tourmaline reflects both localized and bulk compositional changes of the system, including fractional crystallization of the pegmatite and communication with the host rock. The fractional crystallization of the pegmatite is reflected by the gradual change of tourmaline composition from schorl-tsilaisite to elbaite and rossmanite, which is observed by the increase of Li and Mn in tourmaline I, II and III (Figs. 4.8 and 4.9). Opening of the system at the end of primary crystallization is evidenced by elevated amounts of Mg and Fe in tourmaline III. The event that produced the fine-grained assemblage and tourmaline IV caused reopening of the system; this is reflected in the high Fe content of tourmaline IV. The  53  same event caused the partial deformation and breakdown of dumortierite I and subsequent crystallization of dumortierite II and Nb-Ta-Ti-W-oxides. Dumortierite compositions with high Ti and high Nb + Ta are rather unusual and so far observed only in the Szklary pegmatite (Pieczka et al. 2011) and in three so far unpublished localities in Madagascar (see chapter 5). The contents of Nb + Ta and Ti are too low for holtite or its Nb and Ti-analogues. The observed Sb/As ratios between 1/2 and 1/3 (Figs. 4.6B, 4.6C) are normal for dumortierite (with exception of the Sb-rich dumortierite of Cempírek et al. 2010); in holtite Sb/As is commonly > 1 (e.g. Pieczka et al. 2011). The Nb/Ta ratio is high compared to holtite from Greenbushes, Australia and Voron’i Tundry, Russia and is comparable only to Szklary, Poland with Nb/Ta ~0.1 – 34.0 (Pieczka et al. 2011). The contents of Bi at Uvil’dy are unusually high for dumortierite (Groat et al. 2012) and the ratio of Bi/As ~0.32 – 0.50 also seems to be extremely high (see chapter 5 for comparison to global localities). Substitution of As in the dumortierite structure is rather common; Cempírek and Novák (2004) reported up to 3.77 wt.% As2O3 (0.22 As3+ apfu) in dumortierite from Vémyslice pegmatite, Czech Republic and Pieczka et al. (2011) described dumortierite from Szklary which contained up to 5.56 wt.% As2O3 (0.34 As3+ apfu). Galliski et al. (2012) also reported dumortierite from Virorco, Argentina with up to 14.51 wt.% As2O3 (0.92 As3+ apfu). Observed simultaneous entrance of As along with Sb and Bi is less common, however, and typically only associated with holtite (Groat et al. 2009; 2012; Evans et al. 2012, Galliski et al. 2012). The composition of wodginite-ixiolite is rather unusual due to high contents of trivalent cations. The high amount of Fe3+ suggests a transition towards the hypothetical end-member FeTaO4 (Fe-equivalent of heftetjernite; Kolitsch et al. 2010); the transition was previously  54  observed by Spilde and Shearer (1992). The wodginite-group mineral at Uvil’dy can therefore be classified as ferrotitanowodginite due to substitution of 3 Fe3+ → 2 Fe2+ + 1 Nb5+. The ixiolite is also unusually Fe3+-rich; high amounts of trivalent cations in ixiolite were observed previously by Bergstøl and Juve (1988), Wise et al. (1998), and Cerny and Chapman, (2001).  Figure 4.8: Compositional evolution of tourmaline in the Uvil’dy pegmatite.  55  A  B  C  D  E  Figure 4.9: Uvil’dy tourmaline compositions. (A) Li vs. Fe; (B) Li vs. Mn; (C) Li vs. Mg; (D) Li vs. Na; (E) Li vs. Ca. 56  Chapter 5 Composition of dumortierite from other localities 5.1 Sample Description and Localities Seven dumortierite samples from different localities were analysed via optical microscopy, SEM and EMPA to determine their composition and relationship to holtite and dumortierite from other localities. Samples D54 and D55 (Figs. 5.1 and 5.2) come from two different zones (stratigraphically higher and lower respectively) of the same locality which is a few miles east of Dehesa, San Diego County, California (Schaller 1905). Lavender dumortierite occurs within a disintigrated biotite granite with a thickness of 30-40 feet. The rock grades from an upper unit of fine-grained quartz-sillimanite to a lower unit consisting of coarse-grained quartzdumortierite, muscovite and sillimanite in lesser quantities and rare accessory rutile, magnetite, titanite, apatite and zircon (Schaller 1905). The dumortierite occurs as two separate phases of growth which appear as primary crystals in fan-shaped bundles up to 5 cm in length and finegrained secondary dumortierite growing perpendicular to the primary crystals. Sample D57 (Fig. 5.3) comes from an unknown locality in the Karibib Desert, Namibia. The dumortierite is hosted in a hydrothermally-altered fine-grained leucocratic rock. Very finegrained masses of pale to dark blue dumortierite occur as rounded splotches approximately 2 cm in diameter in a fine-grained quartz and mica matrix with accessory blue tourmaline. Two thin sections were made, one from the dark blue dumortierite zone and one from the light blue  57  dumortierite zone. The strong blue colour in hand specimen appears brown to tan in thin section. Sample D58 (Fig. 5.4) comes from an unknown location along the Mazoe River, Tete Province, Mozambique. It consists of a secondary very fine-grained quartzite with disseminated fine-grained dumortierite which appears strongly dark blue in hand sample and near colourless in thin section. Aluminium-rich light blue tourmaline occurs as small elongate prisms in clusters and loosely defined veinlets. Sample D59 (Fig. 5.5) is from a locality near Cahora Basa Dam, Tete Province, Eastern Mozambique. It consists of a fine-grained secondary quartzite with masses of roughly circular, radiating dark blue dumortierite approximately 1 cm in diameter within fine grained quartz matrix. Strong clay-mineral alteration appears throughout the sample and surrounds the dumortierite clusters. Sample D64 (Fig. 5.6) comes from a hydrothermally altered granodiorite with secondary quartz and muscovite described by Mac Murphy (1930) from the Temescal Canyon, Southern California. Dark purple dumortierite sprays are embedded in a dark grey coarse-grained quartz matrix with muscovite alteration surrounding the dumortierite and appearing throughout the matrix. Sample D65 is a coarse-grained metamorphosed pegmatite from an unknown locality in the Okanagan Lake region, BC. The sample consists of a medium-grained quartz and albite matrix with large black tourmaline crystals up to 3 cm in length and small stringers of isolated blue to violet dumortierite overgrowing pale green kyanite crystals. Dumortierite is locally replaced by blue tourmaline in thin section.  58  dumortierite  Figure 5.1: Sample D54 from Dehesa, California.  dumortierite  Figure 5.2: Sample D55 from Dehesa California.  59  dumortierite  Figure 5.3: Sample D57 from the Karibib Desert, Namibia. dumortierite  Figure 5.4 Sample D58 from Mazoe River, Mozambique.  60  dumortierite  Figure 5.5: Sample D59 from Kahora Bassa Dam, Mozambique. dumortierite  Figure 5.6: Sample D64 from Temescal Canyon, California.  dumortierite  Figure 5.7: Sample D65 from the Okanagan Lake region, B.C.  61  5.2 Composition The dumortierite formulae were calculated as anhydrous, based on sum of anions equal to 18 – As – Sb – Bi as recommended by Groat et al. (2012) because the amounts of vacancies in Al1 and H2O cannot be reasonably estimated from EMPA analysis. The dumortierite data are far from the idealized formula of Al7Si3BO18 due to extensive Al(OH)[SiO]-1 substitution at the tetrahedral site. The replacement of Al for Si is expressed by the variable ratio of cations typical for octahedral sites (Al + Nb + Ta + Ti + Fe + Mg) and cations typical for tetrahedral sites (Si + As + Sb + Bi) (Fig. 5.8 A). Another significant substitution that must take place is the incorporation of vacancies at the Al1 site and OH- groups via substitution ☐(OH)3[AlO3]-1 (at least 0.25 vacancies pfu according to Alexander et al. 1986) which would shift the data points to a region with amounts of tetrahedral cations lower or equal to 3 apfu and octahedral cations lower or equal to 6.75 apfu (Fig. 5.8 A). All analysed dumortierite samples contain low amounts of substituent elements; the most common are Ti, Mg, Fe, and As in sample D59 (Figs. 5.8 B, C; 5.9). However, the compositional trends of Ti, Mg, and Fe do not follow any general substitution scheme reported so far, e.g. TiAl(AlSi)-1 (Werding and Schreyer, 1996), (Mg)TiAl-2 or MgOH(AlO)-1 (Grew, 2002). The possible exceptions are samples D65 where MgOH(AlO)-1 probably occurs, and D64 where . TiAl(AlSi)-1 and/or MgTiAl-2 seems to occur (Fig. 5.9 A, B) although the ratio Mg/Ti is slightly higher than 1 (Fig. 5.8 C). In the eight samples analysed here, in addition to those from Uvil’dy and other worldwide localities, Ti seems to be negatively correlated to Si, at least at the localities containing high Ti and low As (Figs. 5.10 and 5.11). Arsenic-rich dumortierite and holtite from Szklary, Poland shows a unique trend of Ti increasing with Si content (Figs. 5.10 and  62  5.11). This is most likely related to the coupled substitution of Ti with Nb and Ta, but the same trend is not observed in the Uvil’dy samples (Fig. 5.12). The Uvil’dy samples also show a stable Nb/Ta ratio compared to the Szklary samples (Fig. 5.13). The contents of Fe and Mg seem to be negatively correlated to Al in dumortierite and holtite from worldwide localities (Fig. 5.14), but they do not appear to follow any obvious trend and their substitutional mechanisms most likely vary among individual localities. Contents of As and Sb from the eight analysed dumortierite samples are relatively low (Fig. 5.9 C) and do not appear to follow any clear linear substitutional trend as observed in dumortierite and holtite (Fig. 5.15) by Groat et al. (2012). The Uvil’dy samples are unique in their high Bi contents compared to all other localities worldwide (Fig. 5.16). The observed contents of Bi and structural data for the yellow Uvil’dy dumortierite (Chapter 4, Appendix B) are equivalent to those obtained by Groat et al. (2012) for to sample D27 of the same locality.  63  A  B  C  Figure 5.8: Composition of dumortierite (A) ratios of typical octahedral cations (Al + Nb + Ta + Ti + Fe + Mg) vs. typical tetrahedral cations (Si + As + Sb + Bi); (B) Si vs. Ti; (C) Ti vs. Mg  64  A  B  C  Figure 5.9: Composition of dumortierite (A) Al vs. Ti; (B) Al vs. Fe, Mg; (C) Si vs. As, Sb.  65  Figure 5.10: Variation of Si + P and Ti in dumortierite and holtite from worldwide localities.  Figure 5.11: Variation of As + Sb + Bi and Ti in dumortierite and holtite from worldwide localities  66  Figure 5.12: Variation of As + Sb + Bi and Nb + Ta + Ti in dumortierite and holtite from worldwide localities  Figure 5.13: Variation of Nb and Ta in dumortierite and holtite from worldwide localities  67  Figure 5.14: Variation of Al and Fe + Mg in dumortierite and holtite from worldwide localities  Figure 5.15: Variation of Si + P and Sb +As + Bi in dumortierite and holtite from worldwide localities.  68  Figure 5.16: Variation of As and Bi in dumortierite and holtite from worldwide localities  69  5.3 Dumortierite Colour Platonov et al. (2000) attempted to predict the colour of dumortierite based on its relative amounts of Fe vs. Ti (Fig. 5.17 A). The analysed dumortierite samples do not appear to follow the same trend, with pink to violet dumortierite containing less than ~0.02 apfu Fe and blue dumorierite containing greater than ~0.02 apfu Fe (Fig. 5.17 B). The observed trend does not contradict the findings of Platonov et al. (2000), who constrained their lines to the origin of (0,0). Comparison to the published and unpublished dumortierite data from other localities worldwide (Fig. 5.18) shows high uncertainty regarding the colour identification; the two blue data points with the highest Ti represent thin Ti-rich zones in blue dumortierite crystals from sample D59. In data points with low amounts of Fe and Ti we cannot equivocally distinguish colour of anomalous zones which may be present among points with Fe below 0.02 apfu and Ti lower than ~0.1 apfu (Fig. 5.18). The colour of yellow dumortierite from Uvil’dy and green dumortierite from the Czech Republic do not seem to be dependent on the Fe and Ti ratio. The origins of these colours are not clear; however Cempírek and Novák (2005) suggest the deformation of Al1 octahedra due to ordering of substituting cations and very low contents of Fe may be responsible for greenish colouration.  70  A  B  Figure 5.17: Relationship of dumortierite colour to its Fe / Ti ratio (A) after Platonov et al. (2000) – open circles represent red colour, closed circles (blue) and half filled circles (violet or purple), and (B) in the seven analysed dumortierite samples. 71  Figure 5.18: Relationship of dumortierite colour to its Fe / Ti ratio using the analysed data, published data by Cempírek and Novák (2004; 2006), Borghi et al. (2004), Vaggelli et al. (2004) and unpublished data from Lee A. Groat. – Symbol colours represent dumortierite hand specimen colours (violet/pink, blue, green-blue, yellow, green, blue-violet). Star symbols represent Uvil’dy samples.  72  Chapter 6 Conclusions  The primary objective, which was to synthesize dumortierite-group minerals, in an effort to determine the maximum possible substitution of (As, Sb) for Si in dumortierite was not accomplished. The results of the experiments carried out at the Deutsches GeoForschungZentrum (GFZ) in Potsdam, Germany however, shed some light on the formation parameters of synthetic boralsilite. Of particular note is the inadvertent discovery of the ability to generate ordered boralsilite at both high and low pressures and temperatures (3-5 kbar at 550-650 °C and 15-20 kbar at 600-700 °C respectively). Powder XRD patterns from both of these pressure and temperature ranges (Appendix C) also show the typical pattern represented by ordered borosilicate structures as expressed by Grew et al. (2008) that were not shown to be stable at pressures exceeding 10 kbar. The experiments also demonstrated the ability for boralsilite to be generated in both silica undersaturated and silica oversaturated systems. In terms of experimental mineralogy, synthesis conditions for boralsilite are easily replicable and achievable through the use of oxide starting materials in the place of costly gel preparation methods. The effects of As and Sb in a boralsilite system remain unclear, however forced substitution of As and Sb into existing dumortierite crystals through As, Sb-enriched solution appears to be ineffective. Investigation into the mineralogy of the Uvil’dy pegmatite revealed a complex evolution of the system as reflected by the variation in the compositions of at least four separate  73  generations of tourmaline. The Uvil’dy tourmaline followed generally the same compositional path as tourmalines from lepidolite and petalite pegmatites (Selway et al. 1999; Tindle et al. 2002) in which there are increased Li and Mn in more fractionated parts of the pegmatite and late Fe, Mg-enrichment. The unusually high Mn/(Fe + Mg) ratio in the primary tourmaline I and increasing in subsequent generations along with Li is relatively unique for pegmatite tourmalines, with a similar trend only being observed in a holtite-bearing pegmatite in Virorco, Argentina (Galliski et al. 2012). Also unusual, given that dumortierite is usually blue or purple, is the presence at Uvil’dy of yellow dumortierite which has not been reported from any other known locality. The dumortierite at Uvil’dy is highly zoned and contains a second generation of Sb-enriched dumortierite. Both generations of dumortierite are highly-enriched in Bi with levels reaching up to 0.034 apfu which is far greater than any other reported dumortierite or holtite composition from worldwide localities. In the case of pegmatite systems, dumortierite is often associated with tourmaline and incorporates elements that tourmaline cannot. Through detailed analysis of both of these minerals, in addition to precise mapping and structural interpretation, a representation of the formational conditions for the pegmatite can be presented. This study into the Uvil’dy Lake pegmatite is the most detailed look at its mineralogy since its first description by Kuznetsov (1923) and it shows characteristics of being rather unique in terms of its chemistry and petrology which should warrant further scientific investigation. Eight additional dumortierite samples from 6 different localities were analysed and compared to other dumortierite and holtite compositions from published and unpublished localities worldwide totalling up to 1125 individual compositions. The trends observed show  74  strong chemical relationships between dumortierite and holtite and a possible new colour association between blue and pink + purple dumortierite. Depending on the Ti/Fe ratio, samples with less than 0.02 Fe apfu appear dominantly purple to pink whereas those with greater than 0.02 Fe apfu are predominantly blue. This is the most likely the most compositionally detailed and extensive collection of dumortierite and holtite data assembled to date. The information presented here outlined some previously unknown stability conditions for synthetic boralsilite and demonstrated the wide range of global occurrences and variability in compositions of dumortierite and holtite, which allows them to be better constrained in terms of their chemical constituents. The data further seemed to blur the current distinction between holtite and dumortierite and introduced us to a mineralogically unique natural system represented by the Uvil’dy Lake pegmatite. .  75  References Alexander, V.D., Griffin, D.T., and Martin, T.J. (1986) Crystal chemistry of some Fe- and Ti-poor dumortierites. American Mineralogist, 71, 786-794. Amorós, P., Marcos, M.D., Roca, M., Beltrán-Porter, A., and Beltrán-Porter, D. (1996) Synthetic pathways for new tubular transition metal hydroxy- and fluoro-selenites: crystal structures of M12(X)2(SeO3)8(OH)6 (M = Co2+, Ni2+; X = OH–). Journal of Solid State Chemistry, 126, 169-176. Attfield, M.P., Morris, R.E., and Cheetham, A.K. (1994) Synthesis and structures of two isostructural phosphites, Fe11(HPO3)8(OH)6 and Mn11(HPO3)8(OH)6. Acta Crystallographica, C50, 981-984. Avdonin, V.N. (1987) Dumortierite in a pegmatite vein from the western shore of Lake Uvil’dy. Mineraly Mestorozhd. Urala, Sverdlovsk, 68-70. (in Russian) Azavant, P., and Lichanot, A. (1993) X-ray scattering factors of oxygen and sulfur ions: An ab initio Hartree-Fock calculation. Acta Crystallographica, A49, 91-97. Bergstøl, S., and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in Tørdal, Telemark, Norway. A contribution of the mineralogy and geochemistry of scandium and tin. Mineralogy and Petrology, 38, 229-243. Borghi, A., Cossio, R., Fiora, L., Olmi, F., and Vaggelli, G. (2004) Chemical determination of coloured zoned minerals in “natural stones” by EDS/WDS electron microprobe: an example from dumortierite quartzites. X-Ray Spectrometry, 33, 21-27. Bosi, F., and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 1054-1063. Bosi, F., Skogby, H., Agrosì, G., and Scandale, E. (2012) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta D’Oggi, San Peitro in Campo, island of Elba, Italy. American Mineralogist, 97, 989-994. Buick, I.S., Grew, E.S., Armbruster, T., Medenbach, O., Yates, M.G., Bebout, G.E., and Clarke, G.L. (2008) Boromullite, Al2BSi2O19, a new mineral from granulite-facies metapelites, Mount Stafford, central Australia: A natural analogue of a synthetic “boron-mullite”. European Journal of Mineralogy, 20, 5, 935-950. Carson, C.J., Dirks, P.G.H.M., Hand, M., Sims, J.P., and Wilson, C.J.L. (1995) Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica. Geological Magazine, 132, 151-170. Cempírek, J., and Novák, M. (2004) Dumortierite and tourmaline from abyssal pegmatites at Vémyslice near Moravský Krumlov, Gföhl unit, Moldanubicum. Acta Musei Moraviae, Sci. Geol., 89, 1, 4554.  76  Cempírek, J., and Novák, M. (2005) A green dumortierite from Kutná Hora region, Czech Republic: spectroscopic and structural study. In Crystallization Processes in Granitic Pegmatites (Elba), 4-5. (abstract) Cempírek, J., and Novák, M. (2006) Mineralogy of dumortierite-bearing abyssal pegmatites of Starkoč and Běstvina, Kutná Hora crystalline complex. Journal of the Czech Geological Society, 51, 3-4, 259-270. Cempírek, J., Novák, M., Dolníček, Z., Kotková, J., and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 1533-1547. Černý, P., and Chapman, R. (2001) Exsolution and breakdown of scandian and tungstenian NbTa-Ti-Fe-Mn phases in niobian rutile. The Canadian Mineralogist, 39, 93-101. Černý, P., and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, 43, 2005-2026. Chopin, C., Ferraris, G., Ivaldi, G., Schertl, H.P., Schreyer, W., Compagnoni, R., Davidson, C., and Davis, A.M. (1995) Magnesiodumortierite, a new mineral from very-high pressure rocks (western Alps). II. Crystal chemistry and petrological significance. European Journal of Mineralogy, 7, 525-535. Cromer, D.T., and Waber, J.T. (1974) International Tables for X-ray Crystallography. Vol. IV, The Kynoch Press, Birmingham, U.K. Evans, R.J., Fyfe, C.A., Groat, L.A., and Lam, A.E. (2012) MAS NMR measurements and ab initio calculations of the 29Si chemical shifts in dumortierite and holtite. American Mineralogist, 97, 329-340. Fuchs, Y., Ertl, A., Hughes, J.M., Prowatke, S., Brandstaetter, F., and Schuster, R. (2005) Dumortierite from the Gföhl unit: Lower Austria; chemistry, structure, and infra-red spectroscopy. European Journal of Mineralogy, 17, 173-183. Galliski, M.A., Márquez-Zavalía, M.F., Lira, R., Cempírek, J., and Škoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. Canadian Mineralogist, 50, 873-894. Golovastikov, N.I. (1965) The crystal structure of dumortierite. Soviet Physics Doklady, 10, 493-495. Grew, E.S., McGee, J.J., Yates, M.G., Peacor, D.R., Rouse, R.C., Huijsmans, J.P.P., Shearer, C.K., Wiedenbeck, M., Thost, D.E., and Su, S.C. (1998) Boralsilite (Al16B6Si2O37): A new mineral related to sillimanite from pegmatites in granulite-facies rocks. American Mineralogist, 83, 638-551. Grew, E.S. (2002) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology, and Geochemistry, 33 (2nd rev. edition), p. 387-502. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.  77  Grew, E.S., Graetsch, H.A., Pöter, B., Yates, M.G., Buick, I., Bernhardt, H.J., Schreyer W., Werding, G., Carson, C.J., and Clarke, G.L. (2008) Boralsilite, Al16B6Si2O37, and “boron-mullite:” Compositional variations and associated phases in experiment and nature. American Mineralogist, 93, 283-299. Groat, L.A., Evans, R.J., Grew, E.S., Pieczka, A.A. (2012) Crystal chemistry of As- and Sb- bearing dumortierite. The Canadian Mineralogist, 50, 855-872. Groat, L.A., Evans, R.J., Grew, E.S., Pieczka, A.A., and Ercit, T.S. (2009) The crystal chemistry of holtite. Mineralogical Magazine, 73, 1033-1050. Hamilton, D.L., and Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 282, 832-838. Henry, D.J., and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. In E.S. Grew and L.M. Anovitz, Eds., Boron: Mineralogy, Petrology, and Geochemistry, 33, p. 503-557. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia. Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895-913.  ☐ )  Hoskins, B.F., Mumme, W.G., and Pryce, M.W. (1989) Holtite, (Si2.25Sb0.07)B[(Al6(Al0.43Ta0.27 0.30 O15 (O,OH)2.25]: crystal structure and crystal chemistry. Mineralogical Magazine, 53, 457-643. Hughes, R.W., Gerrard, L.A., Price, D.J., and Weller, M.T. (2003) A hybrid metalloarsenate 3D framework1D interrupted metal oxide. Inorganic Chemistry, 42, 4160-4164. Huijsmans, J.P.P., Barton, M., and van Bergen, M.J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogaland, S.W. Norway. Neues Jahrbuch für Mineralogie Abhandlungen, 143, 249-261. Kazantsev, S.S., Pushcharovsky, D.Yu., Pasero, M., Merlino, S., Zubkova, N.V., Kabalov, Yu.K., and Voloshin, A.V. (2005) Crystal structure of holtite I. Crystallography Reports, 50, 1, 42-47. Kuznetsov, E.A. (1923) The rocks of Uvil’dy Lake, Kyshtym Tract. Proceedings of the Institute of Applied Mineralogy and Petrography., Moscow. 2, 1-40. (in Russian with English summary) Locock, A.J., Piilonen, P.C., Ercit, T.S., and Rowe, R. (2006) New mineral names. American Mineralogist, 91, 216-224 Mac Murphy, F. (1930) Geology of the Panamint silver district, California. Economic Geology, 25, 305325. Marcos, M.D., Amorós, P., Beltrán, A. and Beltrán, D. (1993) New tubular transition metal oxoanionic derivatives: a systematic approach to condensed phases of the dumortierite family. Solid State Ionics, 63-65, 87-95.  78  Marcos, M.D., Amorós, P., Beltrán-Porter, A., Martínez-Máñez, R., and Attfield, J.P. (1993) Novel crystalline microporous transition-metal phosphites M11(HPO3)8(OH)6 (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the Co and Ni derivatives. Chemistry of Materials, 5, 121-128.  ☐  Moore, P.B., and Araki, T. (1978) Dumortierite, Si3B[Al6.75 0.25O17.25(OH)0.75]: a detailed structure analysis. Neues Jahrbuck für Mineralogie, Abhandlungen, 132, 3, 231-241. Niven, M.L., Waters, D.J., and Moore, J.M. (1991) The crystal structure of werdingite, (Mg,Fe)2Al12(Al,Fe)2Si4(B,Al)4O37, and its relationship to sillimanite, mullite, and grandidierite. American Mineralogist, 76, 1-2, 246-256. Pizarro, J.L., Arriortua, M.I., Lezama, L., and Rojo, T. (1993) Synthetic pathways to obtain phosphates and arsenates of Co(II) and Ni(II) related to minerals: magnetic properties. Solid State Ionics, 63-65, 71-77. Peacor, D.R., Rouse, R.C., and Grew, E.S. (1999) Crystal structure of boralsilite and its relation to a family of boroaluminosilicates, sillimanite, and andalusite. American Mineralogist, 84, 1152-1161. Pieczka, A., Grew, E.S., Groat, L.A., and Evans, R.J., (2011) Holtite and dumortierite from the Szklary pegmatite, Lower Silesia, Poland. Mineralogical Magazine, 75, 303-315. Pieczka, A.A., and Marszalek, M. (1996) Holtite - the first occurrence in Poland. Mineralogia Polonica, 27, 3-8. Platonov, A.N., Langer, K., Chopin, C., Andrut, M., and Taran, M.N. (2000) Fe2+-Ti4+ charge-transfer in dumortierite. European Journal of Mineralogy, 12, 521-528. Pöter, B., Werding, G., Schreyer, W., and Bernhardt, H.J. (1998) Synthesis and properties of the new borosilicate mineral boralsilite. Berichte der Deutschen Mineralogischen Gesellschaft, 1, 220. Pouchou, J.L., and Pichoir, F. (1985) PAP ɸ(ρZ) procedure for improved quantitative microanalysis. Microbeam Analysis, 1985, 104-106. Pryce, M.W. (1971) Holtite: a new mineral allied to dumortierite. Mineralogical Magazine, 38, 21-25 Pryce, M.W., and Chester, J. (1978) Minerals of the Greenbushes Tinfield. Mineralogical Record, 9, 81-84. Rojo, J.M., Mesa, J.L., Pizarro, J.L., García-Tojal, G., Arriortua, M.I., and Rojo, T. (2002) Hydrothermal synthesis at high pressure and temperature of the Mg7.5Ni6H3(AsO4)8(OH)6 and Mg8Ni6H3(PO4)8(OH)6 compounds. High Pressure Research, 22, 569-572. Schaller, W.T. (1905) Dumortierite. American Journal of Science, 19, 211-224. Selway, J.B., Novák, M., Černý, P., and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569-584.  79  Spilde, M., and Shearer, C.K. (1992) A comparison of tantalum-niobium oxide assemblages in two mineralogically distinct rare-element granitic pegmatites, Black Hills, South Dakota. The Canadian Mineralogist, 30, 719-737. Tindle, A.G., Breaks, F.W., and Selway, J.B., (2002) Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of Northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753-788. Vaggelli, G., Olmi, F., Massi, M., Giuntini, L., Fedi, M., Fiora, L., Cossio, R., amd Borghi, A. (2004) Chemical investigation of coloured minerals in natural stones of commercial interest. Microchimica Acta, 145, 249-254. Voloshin, A.V., and Pakhomovskiy, Ya.A. (1988) Mineralogy of tantalum and niobium in rare-metal pegmatites. Nauka, Leningrad (in Russian). Voloshin, A.V., Gordienko, V.V., Gel’man, Ye.M., Zorina, M.L., Yelina, N.A., Kul’chitskaya, Ya.A., Men’shikov, Yu.P., Polezhayeva, L.I., Ryzhova, R.I., Sokolov, P.B., and Utochkina, G.I. (1977) Holtite (first find in the USSR) and its relationship with other tantalum minerals in rare-metal pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 106, 337-347 (in Russian). Von Goerne, G., Franz, G., and Van Hinsberg, V.J. (2011) Experimental determination of Na-Ca distribution between tourmaline and fluid in the system CaO-Na2O-MgO-Al2O3-SiO2-B2O3-H2O. The Canadian Mineralogist, 49, 137-152. Werding, G., and Schreyer, W. (1984) Alkali-free tourmaline in the system MgO- Al2O3-B2O3-SiO2-H2O. Geochimica et Cosmochimica Acta, 48, 1331-1344. Werding, G., and Schreyer, W. (1990) Synthetic dumortierite: its PTX-dependent compositional variations in the system Al2O3-B2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 105, 11-24. Werding, G., and Schreyer, W. (1996) Experimental studies on borosilicates and selected borates. In Mineralogical Society of America Reviews in Mineralogy, 33, 117-163. Wise, M.A., Černý, P., and Falster, A.U. (1998) Scandium substitution in columbite-group minerals and ixiolite. The Canadian Mineralogist, 36, 673-680. Zhang F., Zavalij, P.Y., and Whittingham, M.S. (1999) Synthesis and characterization of a pipe-structure manganese vanadium oxide by hydrothermal reaction. Journal of Materials Chemistry, 9, 31373140. Zubkova, N.V., Pushcharovskiĭ, D.Yu., Kabalov, Yu.K., Kazantsev, S.S., and Voloshin, A.V. (2006) Crystal structure of holtite II, Crystallography Reports, 51, 1, 16-22.  80  Appendices Appendix A  A.1 Starting Materials used in Synthesis  Compound  Purity  Source  Size  SiO2  99.5% (trace metals basis)  Sigma-Aldrich  ~325 mesh  γ-Al2O3  99.997% (metals basis)  Alfa Aesar  3 µm powder  H3BO3  99.999%  Sigma-Aldrich  N/A  Sb2O3  99.999% (metals basis)  Alfa Aesar, Puratronic  N/A  As2O3  99.99% (metals basis)  Alfa Aesar  ~100 mesh  SbCl3  99.999% (metals basis)  Alfa Aesar, Puratronic  N/A  AsCl3  99.99%  Aldrich  Liquid at RT  TEOS (C8H20O4Si)  > 99% from GC  Merck  Liquid at RT  Al-powder  99.97% (metals basis)  Alfa Aesar, Puratronic  -100+325 mesh  81  A.2 Powder XRD Patterns  Theoretical diffraction pattern of ideal boralsilte.  82  dumortierite  83  boralsilite  84  boralsilite  85  unknown phase  86  boralsilite  87  boralsilite  88  unknown phase  89  boralsilite  90  boralsilite  91  boralsilite  92  Q  quartz+ boralsilite  93  Q  quartz + boralsilite  94  quartz + boralsilite  95  quartz + boralsilite  96  boralsilite  97  boralsilite + corundum + unkown phases  98  gold  99  Appendix B  B.1: Table of EMPA analyses of Uvil’dy tourmaline  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-8 34.60 38.55 10.51 4.79 4.17 0.14 0.73 0.00 1.68 0.45 3.42 -0.19  U4-9 34.98 38.47 10.58 4.96 4.39 0.12 0.73 0.00 1.68 0.63 3.35 -0.27  U4-10 34.31 38.01 10.42 5.08 4.49 0.16 0.64 0.00 1.58 0.46 3.38 -0.19  U4-15 34.66 38.66 10.51 4.56 4.02 0.13 0.76 0.01 1.56 0.25 3.51 -0.11  U4-16 34.30 38.41 10.46 4.95 4.46 0.12 0.65 0.02 1.59 0.19 3.52 -0.08  U4-44 34.57 38.35 10.47 4.92 4.14 0.29 0.63 0.00 1.37 0.15 3.54 -0.06  U4-45 35.12 38.45 10.58 5.13 4.22 0.15 0.70 0.02 1.50 0.90 3.22 -0.38  U4-46 34.79 38.07 10.49 5.04 4.33 0.17 0.69 0.01 1.54 0.53 3.37 -0.22  Total  98.86  99.62  98.33  98.52  98.60  98.36  99.61  98.80  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.719 0.281 3 6 1.230 0.662 0.584 0.036 0.488 0.001 0.538 0.461 0.234 3.766 27.000  5.748 0.252 3 6 1.198 0.681 0.611 0.029 0.482 0.000 0.536 0.464 0.329 3.671 27.000  5.722 0.278 3 6 1.192 0.708 0.634 0.039 0.427 0.000 0.512 0.488 0.240 3.760 27.000  5.733 0.267 3 6 1.268 0.630 0.564 0.032 0.506 0.002 0.501 0.497 0.131 3.869 27.000  5.698 0.302 3 6 1.219 0.687 0.628 0.031 0.436 0.004 0.511 0.485 0.098 3.902 27.000  5.740 0.260 3 6 1.242 0.683 0.581 0.073 0.421 0.000 0.440 0.560 0.079 3.921 27.000  5.767 0.233 3 6 1.210 0.705 0.587 0.036 0.462 0.004 0.476 0.520 0.470 3.530 27.000  5.763 0.237 3 6 1.196 0.698 0.608 0.041 0.457 0.002 0.494 0.503 0.276 3.724 27.000  100  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-47 34.28 37.86 10.42 5.18 4.60 0.19 0.62 0.04 1.62 0.48 3.37 -0.20  U4-48 34.44 38.12 10.46 4.89 4.56 0.15 0.67 0.01 1.65 0.00 3.61 0.00  U4-49 35.16 38.33 10.58 4.98 4.42 0.10 0.72 0.02 1.56 2.05 2.68 -0.87  U4-50 34.70 38.35 10.51 4.92 4.47 0.13 0.68 0.00 1.57 0.36 3.45 -0.15  U4-51 34.74 38.90 10.57 4.61 4.30 0.13 0.74 0.02 1.65 0.34 3.49 -0.14  U4-52 34.20 39.33 10.52 4.39 4.18 0.15 0.70 0.00 1.61 0.19 3.54 -0.08  U4-59 35.10 39.06 10.58 3.62 4.03 0.11 0.89 0.10 1.43 0.52 3.40 -0.22  U4-60 34.77 39.63 10.59 3.83 3.86 0.15 0.80 0.02 1.39 0.37 3.48 -0.15  Total  98.46  98.57  99.73  99.01  99.35  98.74  98.62  98.74  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.719 0.281 3 6 1.163 0.723 0.649 0.046 0.419 0.007 0.524 0.469 0.252 3.748 27.000  5.724 0.276 3 6 1.190 0.680 0.642 0.037 0.451 0.002 0.533 0.465 0.000 4.000 27.000  5.776 0.224 3 6 1.198 0.684 0.615 0.025 0.478 0.004 0.496 0.500 1.067 2.933 27.000  5.737 0.263 3 6 1.210 0.680 0.626 0.033 0.451 0.000 0.504 0.496 0.190 3.810 27.000  5.710 0.290 3 6 1.247 0.634 0.599 0.031 0.489 0.003 0.526 0.471 0.178 3.822 27.000  5.648 0.352 3 6 1.304 0.607 0.585 0.036 0.468 0.000 0.516 0.484 0.097 3.903 27.000  5.766 0.234 3 6 1.329 0.498 0.561 0.026 0.586 0.017 0.457 0.526 0.272 3.728 27.000  5.707 0.293 3 6 1.372 0.525 0.536 0.038 0.529 0.004 0.442 0.554 0.190 3.810 27.000  101  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-3 34.77 38.12 10.52 4.66 4.57 0.14 0.77 0.03 1.81 0.63 3.33 -0.26  U4-4 34.51 38.48 10.54 4.90 4.67 0.15 0.70 0.04 1.85 0.00 3.64 0.00  U4-5 35.07 38.28 10.59 4.89 4.63 0.14 0.73 0.00 1.76 0.60 3.37 -0.25  U4-6 34.50 38.17 10.47 4.99 4.23 0.16 0.73 0.01 1.77 0.59 3.33 -0.25  U4-7 34.55 37.75 10.45 5.16 4.36 0.15 0.73 0.03 1.82 0.54 3.35 -0.23  U4-11 34.61 38.06 10.46 4.87 4.19 0.14 0.74 0.02 1.66 0.01 3.61 0.00  U4-12 34.80 38.30 10.53 4.91 4.19 0.17 0.75 0.01 1.74 0.29 3.49 -0.12  U4-13 34.82 38.31 10.50 4.54 4.05 0.14 0.80 0.00 1.64 0.27 3.49 -0.11  Total  99.09  99.48  99.80  98.69  98.66  98.37  99.07  98.44  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.746 0.254 3 6 1.171 0.644 0.640 0.035 0.509 0.006 0.579 0.415 0.328 3.672 27.000  5.691 0.309 3 6 1.169 0.676 0.653 0.036 0.466 0.007 0.592 0.401 0.000 4.000 27.000  5.758 0.242 3 6 1.165 0.671 0.644 0.035 0.484 0.000 0.560 0.439 0.311 3.689 27.000  5.724 0.276 3 6 1.190 0.692 0.595 0.039 0.485 0.001 0.568 0.430 0.309 3.691 27.000  5.745 0.255 3 6 1.143 0.718 0.614 0.037 0.488 0.005 0.588 0.406 0.284 3.716 27.000  5.750 0.250 3 6 1.203 0.677 0.590 0.035 0.495 0.004 0.535 0.462 0.004 3.996 27.000  5.744 0.256 3 6 1.194 0.678 0.586 0.042 0.500 0.002 0.557 0.441 0.153 3.847 27.000  5.764 0.236 3 6 1.239 0.628 0.567 0.035 0.530 0.000 0.527 0.473 0.142 3.858 27.000  102  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-14 34.54 38.47 10.50 4.77 4.06 0.09 0.79 0.01 1.83 0.41 3.43 -0.17  U4-25 34.23 38.14 10.41 4.71 4.51 0.15 0.67 0.02 1.57 0.00 3.59 0.00  U4-26 34.80 38.61 10.57 4.74 4.45 0.14 0.73 0.00 1.71 0.51 3.40 -0.22  U4-30 34.39 38.29 10.44 4.62 4.44 0.14 0.69 0.01 1.54 0.17 3.52 -0.07  U4-41 33.96 38.50 10.45 4.87 4.58 0.17 0.66 0.03 1.84 0.34 3.44 -0.14  U4-42 33.70 38.25 10.38 4.96 4.40 0.14 0.68 0.02 1.90 0.38 3.40 -0.16  U4-43 34.08 38.39 10.46 5.18 4.34 0.19 0.66 0.03 1.82 0.68 3.29 -0.29  U4-53 34.25 38.48 10.48 4.87 4.40 0.21 0.69 0.00 1.82 0.55 3.35 -0.23  Total  98.73  98.00  99.44  98.17  98.71  98.04  98.83  98.89  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.716 0.284 3 6 1.221 0.660 0.569 0.023 0.527 0.002 0.587 0.411 0.212 3.788 27.000  5.715 0.285 3 6 1.219 0.658 0.637 0.038 0.448 0.004 0.507 0.490 0.000 4.000 27.000  5.725 0.275 3 6 1.212 0.652 0.619 0.034 0.483 0.001 0.544 0.455 0.267 3.733 27.000  5.725 0.275 3 6 1.236 0.643 0.626 0.034 0.462 0.003 0.496 0.501 0.091 3.909 27.000  5.647 0.353 3 6 1.192 0.677 0.645 0.043 0.443 0.006 0.592 0.402 0.180 3.820 27.000  5.642 0.358 3 6 1.190 0.694 0.624 0.035 0.457 0.004 0.616 0.379 0.200 3.800 27.000  5.663 0.337 3 6 1.181 0.720 0.611 0.048 0.440 0.005 0.587 0.408 0.357 3.643 27.000  5.677 0.323 3 6 1.196 0.675 0.618 0.051 0.460 0.000 0.586 0.414 0.291 3.709 27.000  103  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-54 34.38 38.46 10.49 4.83 4.23 0.14 0.75 0.05 1.80 1.86 2.74 -0.79  U4-61 34.48 38.70 10.50 4.23 4.36 0.15 0.75 0.02 1.63 0.71 3.29 -0.30  U4-62 34.18 38.38 10.44 4.14 4.73 0.16 0.75 0.01 1.84 0.55 3.34 -0.23  U3-50 34.75 40.70 10.73 1.69 5.45 0.24 0.86 0.03 1.63 0.87 3.29 -0.37  U4-20 32.82 41.18 10.55 3.91 3.86 0.16 0.73 0.20 1.93 0.19 3.55 -0.08  U4-21 33.65 41.10 10.66 3.66 3.86 0.11 0.85 0.21 1.97 0.35 3.51 -0.15  U4-22 33.15 41.35 10.62 3.81 3.66 0.16 0.81 0.22 2.02 0.29 3.53 -0.12  U4-23 33.03 41.37 10.59 3.99 3.34 0.16 0.79 0.15 1.95 0.59 3.37 -0.25  Total  98.94  98.52  98.28  99.86  99.01  99.78  99.49  99.09  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.696 0.304 3 6 1.205 0.669 0.593 0.035 0.498 0.008 0.580 0.412 0.977 3.023 27.000  5.709 0.291 3 6 1.263 0.586 0.612 0.037 0.502 0.004 0.522 0.474 0.370 3.630 27.000  5.688 0.312 3 6 1.217 0.576 0.666 0.040 0.501 0.001 0.593 0.406 0.291 3.709 27.000  5.632 0.368 3 6 1.406 0.229 0.747 0.057 0.561 0.005 0.513 0.481 0.448 3.552 27.000  5.405 0.595 3 6 1.397 0.538 0.539 0.040 0.486 0.035 0.615 0.350 0.100 3.900 27.000  5.485 0.515 3 6 1.382 0.499 0.532 0.027 0.560 0.036 0.622 0.343 0.181 3.819 27.000  5.423 0.577 3 6 1.396 0.521 0.508 0.040 0.535 0.038 0.639 0.323 0.151 3.849 27.000  5.423 0.577 3 6 1.427 0.547 0.464 0.039 0.522 0.026 0.621 0.353 0.309 3.691 27.000  104  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-24 33.01 41.07 10.57 4.02 3.32 0.18 0.83 0.30 1.95 0.00 3.65 0.00  U4-37 33.23 42.30 10.73 3.65 3.69 0.15 0.78 0.15 1.95 0.58 3.43 -0.24  U4-38 33.26 42.03 10.71 3.52 3.90 0.14 0.79 0.20 1.95 0.58 3.42 -0.24  U4-63 33.15 42.77 10.71 2.64 3.36 0.14 0.89 0.19 1.83 0.27 3.57 -0.11  U4-65 33.00 43.04 10.71 2.50 3.13 0.14 0.92 0.22 1.83 0.00 3.69 0.00  U4-17 33.54 41.62 10.68 3.40 4.01 0.08 0.81 0.23 1.77 0.29 3.55 -0.12  U4-18 32.70 39.96 10.43 4.78 3.61 0.17 0.72 0.22 2.02 0.46 3.38 -0.19  U4-19 33.33 40.83 10.60 4.70 3.55 0.16 0.72 0.17 1.90 0.55 3.40 -0.23  Total  98.90  100.39  100.25  99.41  99.18  99.86  98.26  99.68  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.430 0.570 3 6 1.391 0.553 0.463 0.044 0.549 0.054 0.620 0.326 0.000 4.000 27.000  5.383 0.617 3 6 1.458 0.494 0.506 0.035 0.506 0.026 0.613 0.361 0.295 3.705 27.000  5.398 0.602 3 6 1.437 0.477 0.535 0.033 0.518 0.034 0.615 0.351 0.297 3.703 27.000  5.380 0.620 3 6 1.562 0.359 0.463 0.034 0.583 0.033 0.575 0.392 0.140 3.860 27.000  5.358 0.642 3 6 1.593 0.340 0.430 0.033 0.604 0.038 0.576 0.386 0.000 4.000 27.000  5.456 0.544 3 6 1.436 0.462 0.552 0.019 0.531 0.040 0.559 0.402 0.152 3.848 27.000  5.450 0.550 3 6 1.300 0.666 0.509 0.043 0.482 0.040 0.653 0.307 0.242 3.758 27.000  5.462 0.538 3 6 1.349 0.645 0.493 0.038 0.475 0.030 0.603 0.367 0.285 3.715 27.000  105  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-27 33.57 40.95 10.62 3.52 3.75 0.14 0.87 0.18 1.95 0.18 3.58 -0.08  U4-28 33.09 41.48 10.63 3.80 3.84 0.15 0.77 0.20 1.94 0.35 3.50 -0.15  U4-29 33.61 40.85 10.62 4.83 3.08 0.16 0.74 0.15 1.73 0.62 3.37 -0.26  U4-31 33.45 42.44 10.77 2.90 4.01 0.12 0.86 0.17 2.01 0.19 3.63 -0.08  U4-32 33.13 41.24 10.59 3.64 3.97 0.11 0.77 0.19 1.84 0.31 3.51 -0.13  U4-33 33.76 42.22 10.80 2.91 4.13 0.10 0.89 0.19 2.03 0.47 3.50 -0.20  U4-34 33.19 41.73 10.65 3.41 3.89 0.11 0.81 0.18 1.94 0.00 3.68 0.00  U4-35 33.19 40.41 10.55 5.01 3.70 0.16 0.67 0.14 1.91 0.40 3.45 -0.17  Total  99.22  99.60  99.51  100.46  99.17  100.79  99.57  99.41  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.495 0.505 3 6 1.395 0.482 0.519 0.033 0.571 0.031 0.618 0.351 0.093 3.907 27.000  5.412 0.588 3 6 1.407 0.519 0.533 0.036 0.505 0.034 0.617 0.349 0.181 3.819 27.000  5.502 0.498 3 6 1.383 0.661 0.428 0.040 0.488 0.027 0.548 0.425 0.323 3.677 27.000  5.400 0.600 3 6 1.473 0.391 0.549 0.028 0.559 0.029 0.629 0.343 0.096 3.904 27.000  5.437 0.563 3 6 1.416 0.500 0.552 0.027 0.505 0.034 0.585 0.381 0.160 3.840 27.000  5.435 0.565 3 6 1.445 0.392 0.563 0.025 0.576 0.032 0.632 0.336 0.238 3.762 27.000  5.415 0.585 3 6 1.441 0.465 0.538 0.027 0.530 0.031 0.613 0.356 0.000 4.000 27.000  5.467 0.533 3 6 1.315 0.690 0.516 0.039 0.441 0.025 0.609 0.366 0.206 3.794 27.000  106  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-36 33.07 38.70 10.29 5.11 3.59 0.17 0.64 0.14 1.56 0.00 3.55 0.00  U4-64 32.88 42.49 10.67 2.81 4.18 0.13 0.77 0.20 1.81 0.00 3.68 0.00  U4-66 32.50 41.97 10.56 2.82 4.15 0.11 0.77 0.22 1.85 0.37 3.46 -0.16  U3-20 34.03 44.03 10.95 2.54 0.51 1.35 1.00 0.36 1.57 0.00 3.78 0.00  U3-21 34.00 44.94 11.01 1.96 0.51 1.15 1.06 0.35 1.52 0.01 3.80 0.00  U3-22 33.61 44.43 10.96 2.61 0.62 1.46 0.92 0.35 1.63 0.21 3.68 -0.09  U3-26 33.36 45.15 10.98 2.68 0.64 1.20 0.89 0.26 1.59 0.00 3.79 0.00  U3-28 33.61 44.81 10.97 2.47 0.58 1.34 0.91 0.32 1.45 0.00 3.78 0.00  Total  96.83  99.62  98.61  100.13  100.30  100.39  100.53  100.24  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.585 0.415 3 6 1.287 0.722 0.514 0.044 0.434 0.026 0.510 0.464 0.000 4.000 27.000  5.354 0.646 3 6 1.507 0.382 0.576 0.031 0.503 0.034 0.573 0.393 0.000 4.000 27.000  5.351 0.649 3 6 1.495 0.388 0.579 0.026 0.512 0.038 0.590 0.372 0.195 3.805 27.000  5.399 0.601 3 6 1.635 0.337 0.069 0.320 0.639 0.062 0.482 0.456 0.000 4.000 27.000  5.366 0.634 3 6 1.726 0.259 0.068 0.271 0.676 0.058 0.466 0.475 0.004 3.996 27.000  5.331 0.669 3 6 1.637 0.346 0.083 0.345 0.589 0.060 0.500 0.439 0.106 3.894 27.000  5.283 0.717 3 6 1.708 0.355 0.086 0.284 0.567 0.045 0.487 0.469 0.000 4.000 27.000  5.327 0.673 3 6 1.699 0.328 0.078 0.316 0.579 0.054 0.446 0.500 0.000 4.000 27.000  107  B.1 (cont.)  U3-30 33.85 46.32 11.14 2.10 0.75 0.84 1.02 0.32 1.52 0.10 3.80 -0.04  U3-32 33.66 46.21 11.07 1.78 0.70 0.72 1.07 0.36 1.44 0.00 3.82 0.00  U3-35 33.66 45.38 11.05 2.42 0.70 1.26 0.93 0.31 1.58 0.12 3.76 -0.05  U3-37 34.69 43.66 11.06 1.11 0.93 2.71 0.89 0.33 1.52 0.07 3.78 -0.03  U3-47 33.15 44.78 10.89 2.64 2.17 0.24 0.90 0.30 1.49 0.26 3.63 -0.11  U5-55 34.34 42.39 10.84 1.36 4.78 0.14 0.96 0.12 1.80 0.66 3.43 -0.28  U3-1 35.45 45.40 11.19 0.67 2.03 0.21 1.24 0.09 1.39 0.44 3.65 -0.19  U3-2 34.95 45.41 11.12 0.74 2.09 0.22 1.18 0.07 1.38 1.38 3.18 -0.58  Total  101.73  100.84  101.11  100.72  100.34  100.54  101.57  101.14  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.279 0.721 3 6 1.793 0.274 0.099 0.195 0.639 0.053 0.461 0.486 0.049 3.951 27.000  5.283 0.717 3 6 1.830 0.234 0.093 0.169 0.673 0.061 0.438 0.501 0.000 4.000 27.000  5.294 0.706 3 6 1.706 0.318 0.093 0.296 0.586 0.053 0.482 0.466 0.060 3.940 27.000  5.451 0.549 3 6 1.535 0.146 0.124 0.634 0.561 0.055 0.464 0.481 0.036 3.964 27.000  5.293 0.707 3 6 1.719 0.353 0.293 0.057 0.578 0.052 0.461 0.487 0.133 3.867 27.000  5.506 0.494 3 6 1.514 0.182 0.650 0.034 0.620 0.020 0.559 0.420 0.335 3.665 27.000  5.507 0.493 3 6 1.820 0.087 0.267 0.049 0.777 0.015 0.420 0.565 0.217 3.783 27.000  5.465 0.535 3 6 1.833 0.096 0.277 0.052 0.741 0.012 0.420 0.569 0.683 3.317 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  108  B.1 (cont.)  U3-3 34.71 44.32 11.05 1.10 3.06 0.27 1.12 0.18 1.68 0.00 3.81 0.00  U3-4 34.96 44.42 11.06 0.88 2.85 0.26 1.15 0.12 1.57 0.48 3.59 -0.20  U3-5 34.78 44.47 11.04 1.00 2.53 0.28 1.17 0.12 1.63 0.22 3.71 -0.09  U3-6 34.40 44.55 10.96 0.86 2.36 0.25 1.14 0.11 1.48 0.14 3.72 -0.06  U3-7 33.86 45.66 11.01 1.14 1.66 0.26 1.14 0.34 1.39 0.07 3.76 -0.03  U3-10 33.62 45.46 11.00 1.88 0.59 0.98 1.04 0.32 1.49 0.01 3.79 -0.01  U3-11 33.66 44.39 10.96 2.66 0.44 1.54 0.92 0.38 1.56 0.12 3.72 -0.05  U3-13 33.86 44.01 10.97 2.87 0.48 1.74 0.88 0.41 1.55 0.00 3.78 0.00  Total  101.31  101.14  100.86  99.92  100.27  100.17  100.29  100.54  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.459 0.541 3 6 1.676 0.144 0.407 0.064 0.709 0.030 0.513 0.456 0.000 4.000 27.000  5.492 0.508 3 6 1.716 0.115 0.379 0.062 0.728 0.021 0.478 0.501 0.238 3.762 27.000  5.475 0.525 3 6 1.725 0.132 0.338 0.065 0.740 0.021 0.498 0.481 0.108 3.892 27.000  5.455 0.545 3 6 1.781 0.114 0.317 0.059 0.728 0.018 0.456 0.526 0.069 3.931 27.000  5.346 0.654 3 6 1.841 0.151 0.222 0.061 0.725 0.057 0.424 0.519 0.036 3.964 27.000  5.314 0.686 3 6 1.781 0.249 0.079 0.231 0.660 0.054 0.456 0.490 0.007 3.993 27.000  5.340 0.660 3 6 1.638 0.353 0.059 0.365 0.585 0.065 0.478 0.457 0.060 3.940 27.000  5.364 0.636 3 6 1.583 0.380 0.064 0.412 0.561 0.069 0.475 0.456 0.000 4.000 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  109  B.1 (cont.)  U3-16 33.74 44.44 10.98 2.62 0.46 1.56 0.93 0.39 1.57 0.00 3.79 0.00  U3-18 33.45 44.72 10.95 2.61 0.50 1.31 0.95 0.44 1.58 0.08 3.74 -0.03  U3-19 34.01 44.66 11.03 2.47 0.44 1.37 1.01 0.40 1.60 0.23 3.70 -0.09  U3-29 34.62 45.68 11.12 1.18 0.96 0.55 1.23 0.24 1.53 0.13 3.78 -0.05  U3-31 33.90 46.35 11.09 1.15 1.02 0.50 1.14 0.29 1.40 0.12 3.77 -0.05  U3-33 35.20 46.70 11.28 0.83 0.97 0.31 1.27 0.11 1.39 0.59 3.61 -0.25  U3-34 34.00 45.73 11.05 1.25 0.91 0.55 1.19 0.21 1.64 0.46 3.59 -0.19  U3-36 33.51 46.49 11.04 1.18 0.99 0.40 1.13 0.30 1.44 0.39 3.62 -0.17  Total  100.47  100.30  100.82  100.96  100.67  101.99  100.39  100.32  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.341 0.659 3 6 1.633 0.346 0.061 0.368 0.591 0.067 0.483 0.450 0.000 4.000 27.000  5.306 0.694 3 6 1.668 0.347 0.067 0.311 0.608 0.075 0.485 0.440 0.039 3.961 27.000  5.360 0.640 3 6 1.655 0.326 0.059 0.321 0.639 0.068 0.488 0.445 0.112 3.888 27.000  5.408 0.592 3 6 1.819 0.155 0.127 0.129 0.770 0.040 0.462 0.498 0.064 3.936 27.000  5.315 0.685 3 6 1.880 0.150 0.135 0.117 0.718 0.049 0.425 0.527 0.060 3.940 27.000  5.426 0.574 3 6 1.909 0.107 0.127 0.071 0.786 0.019 0.414 0.567 0.286 3.714 27.000  5.351 0.649 3 6 1.831 0.164 0.122 0.129 0.755 0.036 0.500 0.463 0.227 3.773 27.000  5.275 0.725 3 6 1.902 0.156 0.131 0.094 0.717 0.050 0.439 0.511 0.195 3.805 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  110  B.1 (cont.)  U3-39 34.06 45.69 11.06 1.84 0.56 0.72 1.12 0.29 1.46 0.35 3.65 -0.15  U3-40 33.50 44.95 10.91 2.07 0.54 0.87 1.05 0.32 1.47 0.66 3.45 -0.28  U3-44 33.77 45.99 11.04 1.16 1.61 0.40 1.08 0.29 1.35 0.00 3.81 0.00  U3-45 34.02 46.02 11.08 1.12 1.30 0.41 1.17 0.26 1.54 0.17 3.74 -0.07  U5-54 34.74 43.52 10.95 1.13 3.66 0.10 1.05 0.07 1.53 0.36 3.61 -0.15  U5-58 34.83 41.97 10.83 1.23 4.48 0.13 1.03 0.08 1.67 0.47 3.51 -0.20  U5-59 34.85 42.18 10.87 1.24 4.73 0.12 1.00 0.07 1.69 0.31 3.60 -0.13  U5-61 35.29 43.41 11.03 0.95 4.11 0.10 1.07 0.05 1.55 0.67 3.49 -0.28  Total  100.65  99.50  100.48  100.77  100.57  100.03  100.53  101.43  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.350 0.650 3 6 1.811 0.241 0.074 0.170 0.705 0.049 0.445 0.506 0.172 3.828 27.000  5.336 0.664 3 6 1.774 0.275 0.072 0.207 0.672 0.055 0.454 0.492 0.332 3.668 27.000  5.319 0.681 3 6 1.855 0.153 0.215 0.094 0.683 0.048 0.413 0.539 0.000 4.000 27.000  5.337 0.663 3 6 1.846 0.147 0.172 0.095 0.739 0.044 0.468 0.488 0.082 3.918 27.000  5.517 0.483 3 6 1.661 0.151 0.492 0.024 0.673 0.012 0.471 0.517 0.180 3.820 27.000  5.591 0.409 3 6 1.530 0.165 0.609 0.031 0.665 0.013 0.518 0.469 0.239 3.761 27.000  5.573 0.427 3 6 1.523 0.165 0.640 0.030 0.642 0.012 0.523 0.465 0.157 3.843 27.000  5.562 0.438 3 6 1.626 0.126 0.548 0.023 0.677 0.008 0.472 0.519 0.336 3.664 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  111  B.1 (cont.)  U5-62 35.01 42.99 10.91 1.07 3.94 0.10 1.02 0.03 1.34 0.29 3.63 -0.12  U3-8 33.43 44.08 10.90 2.84 0.47 1.55 0.90 0.37 1.63 0.03 3.75 -0.01  U3-9 34.10 45.16 11.10 2.38 0.71 1.19 1.02 0.35 1.68 0.30 3.69 -0.12  U3-38 33.52 45.86 11.03 1.92 0.74 0.82 1.04 0.33 1.53 0.04 3.79 -0.02  U3-41 33.22 44.98 10.96 2.74 0.74 1.07 0.95 0.38 1.72 0.00 3.78 0.00  U3-42 33.39 45.31 10.97 2.04 1.21 0.76 0.99 0.37 1.50 0.55 3.52 -0.23  U3-43 33.03 45.87 11.01 2.68 1.20 0.72 0.90 0.28 1.68 1.76 2.97 -0.74  U4-1 33.62 40.77 10.62 4.09 3.60 0.13 0.82 0.20 1.87 0.00 3.66 0.00  Total  100.20  99.92  101.54  100.60  100.55  100.37  101.35  99.38  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.578 0.422 3 6 1.650 0.143 0.531 0.024 0.651 0.005 0.413 0.582 0.144 3.856 27.000  5.331 0.669 3 6 1.615 0.379 0.064 0.368 0.574 0.062 0.503 0.435 0.014 3.986 27.000  5.340 0.660 3 6 1.675 0.311 0.094 0.278 0.643 0.059 0.510 0.431 0.147 3.853 27.000  5.281 0.719 3 6 1.797 0.254 0.098 0.194 0.657 0.056 0.467 0.477 0.021 3.979 27.000  5.269 0.731 3 6 1.677 0.364 0.100 0.254 0.605 0.065 0.529 0.406 0.000 4.000 27.000  5.292 0.708 3 6 1.755 0.270 0.163 0.179 0.633 0.063 0.460 0.477 0.277 3.723 27.000  5.214 0.786 3 6 1.747 0.353 0.160 0.170 0.570 0.048 0.513 0.439 0.878 3.122 27.000  5.504 0.496 3 6 1.370 0.560 0.499 0.033 0.538 0.035 0.594 0.371 0.000 4.000 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  112  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-2 33.07 40.85 10.55 4.03 3.49 0.15 0.82 0.25 1.99 0.00 3.64 0.00  U4-39 33.52 40.63 10.59 4.27 3.76 0.14 0.76 0.17 1.84 0.29 3.52 -0.12  U4-40 32.89 41.34 10.57 4.14 3.67 0.14 0.71 0.17 1.86 0.54 3.39 -0.23  U4-55 33.58 42.59 10.79 1.28 5.56 0.03 0.88 0.13 2.01 0.49 3.49 -0.20  U4-56 32.97 40.23 10.46 4.16 4.13 0.14 0.66 0.16 1.68 0.00 3.61 0.00  U4-57 32.84 41.15 10.54 3.89 4.04 0.13 0.67 0.20 1.68 0.00 3.63 0.00  U4-58 33.48 40.71 10.61 4.04 4.07 0.14 0.76 0.18 1.88 0.32 3.51 -0.14  U4-71 33.88 39.85 10.61 7.54 0.70 0.87 0.62 0.32 1.59 0.00 3.66 0.00  Total  98.85  99.37  99.20  100.62  98.20  98.78  99.55  99.64  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.447 0.553 3 6 1.375 0.555 0.487 0.037 0.546 0.045 0.634 0.321 0.000 4.000 27.000  5.500 0.500 3 6 1.356 0.585 0.522 0.033 0.503 0.030 0.586 0.383 0.151 3.849 27.000  5.406 0.594 3 6 1.414 0.568 0.511 0.035 0.472 0.030 0.593 0.378 0.280 3.720 27.000  5.408 0.592 3 6 1.491 0.172 0.758 0.007 0.572 0.022 0.629 0.349 0.248 3.752 27.000  5.480 0.520 3 6 1.362 0.579 0.582 0.035 0.443 0.029 0.542 0.428 0.000 4.000 27.000  5.418 0.582 3 6 1.420 0.537 0.565 0.033 0.445 0.036 0.536 0.428 0.000 4.000 27.000  5.487 0.513 3 6 1.350 0.553 0.565 0.033 0.498 0.032 0.597 0.371 0.167 3.833 27.000  5.551 0.449 3 6 1.246 1.034 0.097 0.213 0.410 0.055 0.503 0.441 0.000 4.000 27.000  113  B.1 (cont.)  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  U4-72 33.53 36.92 10.35 9.18 0.57 1.95 0.31 0.28 1.67 0.00 3.57 0.00  U4-73 33.90 38.62 10.55 8.94 0.58 1.19 0.48 0.25 1.77 0.10 3.59 -0.04  U3-12 34.43 41.09 10.87 5.08 0.39 2.68 0.59 0.36 1.62 0.21 3.65 -0.09  U3-14 34.17 40.47 10.81 5.51 0.29 3.02 0.51 0.28 1.84 0.00 3.73 0.00  U3-15 34.35 43.56 11.00 2.41 0.42 2.20 0.89 0.42 1.51 0.59 3.52 -0.25  U3-17 34.26 41.17 10.86 5.58 0.37 2.44 0.59 0.30 1.77 0.00 3.75 0.00  U3-23 33.85 45.79 11.14 2.22 0.59 1.59 0.89 0.30 1.55 0.15 3.77 -0.06  U3-24 34.32 41.45 10.82 4.86 0.60 1.65 0.78 0.29 1.69 0.01 3.73 -0.01  Total  98.33  99.92  100.89  100.62  100.62  101.09  101.77  100.18  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.629 0.371 3 6 0.935 1.289 0.080 0.488 0.208 0.050 0.543 0.407 0.000 4.000 27.000  5.584 0.416 3 6 1.080 1.231 0.080 0.291 0.317 0.044 0.565 0.391 0.052 3.948 27.000  5.505 0.495 3 6 1.249 0.679 0.053 0.638 0.381 0.062 0.503 0.435 0.108 3.892 27.000  5.495 0.505 3 6 1.165 0.741 0.039 0.724 0.331 0.049 0.572 0.379 0.000 4.000 27.000  5.427 0.573 3 6 1.539 0.319 0.056 0.518 0.569 0.070 0.462 0.467 0.294 3.706 27.000  5.482 0.518 3 6 1.244 0.747 0.050 0.581 0.378 0.052 0.548 0.400 0.000 4.000 27.000  5.283 0.717 3 6 1.704 0.290 0.079 0.369 0.558 0.051 0.470 0.480 0.073 3.927 27.000  5.515 0.485 3 6 1.366 0.653 0.082 0.395 0.505 0.049 0.526 0.425 0.007 3.993 27.000  114  B.1 (cont.)  U3-25 33.92 43.85 10.97 3.90 0.52 1.20 0.89 0.36 1.66 0.00 3.78 0.00  U3-27 34.53 42.15 10.90 4.26 0.74 1.48 0.87 0.35 1.65 0.22 3.66 -0.09  U3-46 32.18 43.17 10.71 5.98 1.12 0.68 0.60 0.25 1.90 0.00 3.69 0.00  U3-48 33.76 37.74 10.47 11.70 0.37 0.80 0.21 0.06 1.66 0.44 3.40 -0.19  U3-49 33.80 37.98 10.49 11.25 0.38 0.78 0.26 0.09 1.63 0.21 3.52 -0.09  U5-51 35.05 36.26 10.49 8.53 0.23 2.41 0.46 0.32 1.56 0.00 3.62 0.00  U5-52 33.60 36.85 10.37 11.42 0.22 0.85 0.37 0.43 1.74 0.00 3.58 0.00  U5-53 34.57 37.47 10.59 9.25 0.20 2.10 0.40 0.40 1.63 0.03 3.64 -0.01  Total  101.06  100.73  100.28  100.44  100.29  98.94  99.44  100.27  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.374 0.626 3 6 1.562 0.517 0.070 0.282 0.569 0.062 0.510 0.428 0.000 4.000 27.000  5.504 0.496 3 6 1.422 0.568 0.100 0.351 0.558 0.060 0.511 0.429 0.109 3.891 27.000  5.223 0.777 3 6 1.481 0.812 0.154 0.164 0.389 0.044 0.598 0.359 0.000 4.000 27.000  5.602 0.398 3 6 0.984 1.624 0.052 0.198 0.141 0.011 0.534 0.456 0.232 3.768 27.000  5.601 0.399 3 6 1.020 1.559 0.053 0.192 0.175 0.016 0.523 0.461 0.110 3.890 27.000  5.805 0.195 3 6 0.884 1.182 0.032 0.595 0.306 0.057 0.502 0.441 0.000 4.000 27.000  5.628 0.372 3 6 0.904 1.601 0.031 0.213 0.252 0.078 0.564 0.358 0.000 4.000 27.000  5.676 0.324 3 6 0.926 1.270 0.027 0.514 0.263 0.071 0.520 0.410 0.014 3.986 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  115  B.1 (cont.)  U5-56 32.86 43.01 10.80 4.97 1.48 1.10 0.66 0.54 1.63 0.10 3.68 -0.04  U5-57 34.14 42.30 10.83 3.39 2.44 0.80 0.84 0.32 1.50 0.00 3.74 0.00  U5-60 33.15 42.36 10.78 5.13 2.32 0.67 0.67 0.57 1.57 0.00 3.72 0.00  U5-63 34.15 38.61 10.61 7.86 1.26 1.68 0.43 0.20 1.78 0.45 3.45 -0.19  U5-64 33.31 42.24 10.76 4.34 3.33 0.24 0.73 0.16 1.96 0.54 3.45 -0.23  U5-65 32.82 41.68 10.72 6.87 1.35 1.00 0.54 0.28 2.06 1.07 3.19 -0.45  U5-66 34.91 39.61 10.72 2.66 3.51 1.94 0.71 0.21 1.61 0.48 3.47 -0.20  Total  100.78  100.28  100.96  100.28  100.84  101.12  99.63  Si4+ TAl3+ B3+* ZAl3+ YAl3+ Fe2+ Mn2+ Mg2+ Li+* Ca2+ Na+ Xvac. FOHO2-  5.287 0.713 3 6 1.442 0.668 0.201 0.264 0.425 0.093 0.510 0.397 0.050 3.950 27.000  5.481 0.519 3 6 1.483 0.455 0.332 0.191 0.540 0.055 0.467 0.478 0.000 4.000 27.000  5.346 0.654 3 6 1.397 0.692 0.317 0.161 0.433 0.099 0.492 0.409 0.000 4.000 27.000  5.596 0.404 3 6 1.053 1.077 0.174 0.411 0.285 0.036 0.565 0.400 0.231 3.769 27.000  5.381 0.619 3 6 1.424 0.587 0.455 0.058 0.476 0.028 0.615 0.357 0.278 3.722 27.000  5.323 0.677 3 6 1.288 0.931 0.186 0.241 0.354 0.048 0.647 0.305 0.550 3.450 27.000  5.659 0.341 3 6 1.225 0.360 0.481 0.469 0.464 0.037 0.506 0.457 0.247 3.753 27.000  SIO2 AL2O3 B2O3 FEO MNO MGO Li2O CAO NA2O F H2O -(O=F)  116  B.2: Table of EMPA Analyses of Uvil’dy dumortierite  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  UVD2-1 0.00 0.01 0.00 56.06 25.53 0.00 0.00 0.00 0.04 1.90 0.03 0.21 1.75 0.92 0.81 3.69 1.30 5.66 0.00  UVD2-2 0.12 0.01 0.00 55.21 25.07 0.03 0.00 0.00 0.01 1.84 0.03 0.16 1.40 1.35 0.68 5.33 0.86 5.60 -0.05  UVD2-3 0.03 0.00 0.00 55.69 25.36 0.01 0.00 0.01 0.03 1.85 0.03 0.18 1.38 1.33 0.66 4.59 0.83 5.63 -0.01  UVD2-4 0.09 0.01 0.10 51.61 22.68 0.00 0.01 0.00 0.13 2.61 0.00 0.20 4.22 0.68 3.52 6.45 0.71 5.51 -0.04  UVD2-5 0.08 0.01 0.02 56.32 25.64 0.00 0.00 0.00 0.04 1.81 0.07 0.16 1.55 1.04 0.76 3.83 1.04 5.67 -0.03  UVD2-6 0.06 0.00 0.01 55.90 25.83 0.01 0.01 0.00 0.02 1.87 0.00 0.25 1.46 0.91 0.73 4.02 0.98 5.66 -0.03  UVD2-7 0.09 0.01 0.00 56.78 26.62 0.00 0.00 0.00 0.03 1.82 0.04 0.13 1.43 0.67 0.83 2.95 0.95 5.73 -0.04  UVD2-8 0.17 0.00 0.00 57.39 27.09 0.02 0.00 0.00 0.04 1.56 0.04 0.12 1.40 0.62 0.83 2.48 0.90 5.77 -0.07  TOTAL  97.92  97.65  97.59  98.49  98.00  97.69  98.04  98.35  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.003 0.000 6.761 2.613 0.000 0.000 0.000 0.004 0.146 0.003 0.016 0.109 0.043 0.034 0.103 0.034 1.000 17.822  0.039 0.002 0.001 6.730 2.593 0.003 0.000 0.000 0.001 0.143 0.002 0.012 0.088 0.063 0.029 0.150 0.023 1.000 17.821  0.011 0.000 0.000 6.758 2.612 0.001 0.000 0.001 0.003 0.143 0.003 0.014 0.086 0.062 0.028 0.129 0.022 1.000 17.852  0.031 0.001 0.015 6.398 2.386 0.000 0.001 0.000 0.012 0.206 0.000 0.016 0.269 0.032 0.153 0.185 0.019 1.000 17.528  0.025 0.002 0.002 6.777 2.618 0.000 0.000 0.000 0.003 0.139 0.006 0.012 0.096 0.048 0.032 0.106 0.027 1.000 17.819  0.020 0.000 0.001 6.748 2.645 0.001 0.002 0.000 0.002 0.144 0.000 0.019 0.091 0.042 0.031 0.112 0.026 1.000 17.833  0.027 0.002 0.000 6.769 2.692 0.000 0.000 0.000 0.003 0.139 0.003 0.010 0.088 0.031 0.034 0.081 0.025 1.000 17.825  0.053 0.001 0.000 6.786 2.718 0.001 0.000 0.000 0.004 0.117 0.003 0.009 0.085 0.028 0.034 0.068 0.023 1.000 17.805  Colour  yellow  yellow  yellow  yellow  yellow  yellow  yellow  yellow  117  B.2 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  UVD2-9 0.15 0.02 0.01 58.96 27.72 0.00 0.00 0.00 0.03 1.07 0.03 0.06 1.25 0.42 0.75 1.28 0.92 5.84 -0.06  UVD210 0.04 0.02 0.00 60.42 28.56 0.00 0.01 0.00 0.04 0.40 0.03 0.04 0.91 0.34 0.53 0.47 0.87 5.90 -0.02  UVD211 0.12 0.01 0.00 56.63 25.87 0.01 0.00 0.00 0.06 1.40 0.03 0.10 1.72 0.95 1.00 3.37 1.07 5.69 -0.05  UVD212 0.11 0.01 0.00 57.04 27.36 0.00 0.00 0.00 0.02 1.69 0.02 0.13 0.74 0.94 0.37 3.06 0.44 5.74 -0.05  UVD213 0.20 0.02 0.00 55.59 25.70 0.00 0.00 0.00 0.02 1.91 0.01 0.22 1.56 1.20 0.78 4.12 1.00 5.66 -0.08  UVD214 0.06 0.01 0.00 55.72 25.76 0.00 0.00 0.00 0.04 1.86 0.04 0.17 1.67 0.85 0.84 3.98 0.99 5.65 -0.02  UVD215 0.13 0.01 0.01 55.47 25.48 0.03 0.01 0.00 0.02 1.85 0.04 0.17 1.45 1.21 0.75 4.55 0.95 5.63 -0.06  UVD216 0.12 0.02 0.00 55.71 25.84 0.03 0.01 0.00 0.03 1.58 0.07 0.13 1.62 0.97 0.88 3.85 0.99 5.64 -0.05  TOTAL  98.44  98.56  97.98  97.62  97.91  97.62  97.71  97.42  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.047 0.003 0.001 6.895 2.750 0.000 0.000 0.000 0.002 0.080 0.003 0.005 0.076 0.019 0.031 0.035 0.024 1.000 17.824  0.014 0.003 0.000 6.996 2.806 0.000 0.001 0.000 0.004 0.029 0.002 0.003 0.054 0.015 0.021 0.013 0.022 1.000 17.888  0.038 0.002 0.000 6.793 2.634 0.000 0.000 0.000 0.005 0.107 0.003 0.008 0.106 0.044 0.042 0.093 0.028 1.000 17.786  0.034 0.002 0.000 6.788 2.763 0.000 0.000 0.000 0.002 0.129 0.002 0.010 0.046 0.043 0.015 0.084 0.011 1.000 17.893  0.064 0.004 0.001 6.708 2.631 0.000 0.000 0.000 0.002 0.147 0.001 0.017 0.097 0.056 0.033 0.115 0.026 1.000 17.779  0.019 0.001 0.000 6.734 2.642 0.000 0.000 0.000 0.003 0.143 0.004 0.013 0.104 0.040 0.035 0.111 0.026 1.000 17.816  0.044 0.002 0.002 6.725 2.621 0.003 0.002 0.000 0.002 0.143 0.003 0.013 0.090 0.056 0.032 0.127 0.025 1.000 17.809  0.038 0.004 0.000 6.739 2.652 0.002 0.001 0.000 0.002 0.122 0.006 0.010 0.101 0.045 0.037 0.107 0.026 1.000 17.797  Colour  yellow  yellow  yellow  yellow  yellow  yellow  yellow  yellow  118  B.2 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  UVD217 0.00 0.01 0.00 55.52 25.81 0.02 0.00 0.00 0.00 1.87 0.06 0.14 1.62 0.92 0.83 4.15 0.88 5.64 0.00  UVD218 0.00 0.01 0.00 55.27 25.42 0.01 0.00 0.00 0.03 1.81 0.04 0.13 1.45 1.25 0.72 5.11 0.92 5.62 0.00  UVD219 0.13 0.01 0.01 58.33 28.87 0.01 0.00 0.00 0.00 1.29 0.05 0.13 0.20 0.51 0.11 2.74 0.21 5.84 -0.05  UVD4-1 0.01 0.01 0.00 55.48 25.65 0.04 0.01 0.00 0.04 1.74 0.03 0.13 1.75 1.04 0.95 3.97 1.11 5.64 0.00  UVD4-2 0.04 0.02 0.00 55.26 25.23 0.00 0.01 0.00 0.03 1.84 0.01 0.12 1.37 1.21 0.69 5.02 0.99 5.60 -0.02  UVD4-3 0.10 0.02 0.00 56.54 26.25 0.03 0.01 0.01 0.04 1.89 0.07 0.16 1.61 0.77 0.95 3.31 0.95 5.72 -0.04  UVD4-4 0.07 0.02 0.00 55.49 25.73 0.00 0.01 0.00 0.03 1.90 0.03 0.20 1.42 1.32 0.75 4.60 1.10 5.66 -0.03  UVD4-5 0.01 0.02 0.01 55.98 26.45 0.02 0.00 0.00 0.02 1.94 0.06 0.25 1.57 0.80 0.85 3.65 0.99 5.71 0.00  TOTAL  97.49  97.79  98.37  97.60  97.40  98.38  98.27  98.32  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.002 0.000 6.722 2.652 0.002 0.000 0.000 0.000 0.145 0.005 0.011 0.101 0.043 0.035 0.116 0.023 1.000 17.841  0.000 0.002 0.000 6.720 2.623 0.001 0.000 0.000 0.002 0.140 0.003 0.010 0.091 0.058 0.031 0.143 0.024 1.000 17.854  0.040 0.001 0.002 6.824 2.866 0.000 0.000 0.000 0.000 0.097 0.004 0.009 0.012 0.023 0.005 0.074 0.005 1.000 17.937  0.004 0.002 0.000 6.719 2.636 0.003 0.001 0.000 0.004 0.134 0.002 0.010 0.109 0.048 0.040 0.111 0.029 1.000 17.817  0.013 0.003 0.000 6.742 2.612 0.000 0.001 0.000 0.002 0.143 0.001 0.009 0.086 0.057 0.030 0.141 0.026 1.000 17.845  0.031 0.004 0.000 6.746 2.658 0.002 0.001 0.001 0.003 0.144 0.006 0.012 0.099 0.035 0.040 0.091 0.025 1.000 17.805  0.024 0.003 0.000 6.699 2.636 0.000 0.001 0.000 0.002 0.146 0.003 0.015 0.088 0.061 0.032 0.128 0.029 1.000 17.828  0.002 0.003 0.002 6.698 2.686 0.001 0.000 0.000 0.002 0.148 0.005 0.019 0.097 0.037 0.036 0.101 0.026 1.000 17.839  Colour  yellow  yellow  yellow  yellow  yellow  yellow  yellow  yellow  119  B.2 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  UVD4-6 0.00 0.02 0.03 55.78 26.03 0.01 0.00 0.00 0.03 1.46 0.00 0.29 1.37 0.87 0.73 4.65 0.87 5.65 0.00  UVD4-8 0.12 0.02 0.00 55.60 25.60 0.05 0.01 0.00 0.04 1.87 0.02 0.21 1.54 1.08 0.77 4.32 1.17 5.65 -0.05  UVD4-9 0.12 0.02 0.01 55.05 25.46 0.02 0.02 0.01 0.01 1.77 0.04 0.32 1.47 1.12 0.77 5.10 1.04 5.62 -0.05  UVD410 0.12 0.02 0.01 56.02 26.26 0.00 0.00 0.00 0.01 1.93 0.02 0.26 1.55 0.74 0.90 3.33 0.92 5.69 -0.05  UVD411 0.14 0.02 0.00 55.39 25.22 0.00 0.00 0.01 0.03 1.80 0.03 0.12 1.39 1.42 0.66 5.37 0.93 5.62 -0.06  UVD412 0.10 0.01 0.01 55.35 25.85 0.00 0.00 0.00 0.00 1.76 0.05 0.11 1.40 1.05 0.66 4.71 0.97 5.63 -0.04  UVD413 0.02 0.01 0.00 55.21 25.88 0.03 0.01 0.00 0.03 1.88 0.05 0.08 1.49 0.98 0.77 4.56 0.87 5.63 -0.01  UVD414 0.10 0.01 0.02 58.03 28.38 0.00 0.01 0.00 0.01 1.31 0.03 0.09 0.47 0.53 0.24 3.03 0.35 5.81 -0.04  TOTAL  97.80  97.99  97.90  97.72  98.08  97.64  97.49  98.39  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.003 0.005 6.743 2.670 0.001 0.000 0.000 0.002 0.113 0.000 0.022 0.085 0.040 0.031 0.130 0.023 1.000 17.860  0.040 0.003 0.000 6.718 2.624 0.004 0.001 0.000 0.004 0.144 0.001 0.016 0.096 0.050 0.032 0.120 0.031 1.000 17.801  0.039 0.003 0.001 6.690 2.625 0.002 0.003 0.001 0.001 0.137 0.003 0.025 0.092 0.052 0.033 0.143 0.028 1.000 17.808  0.038 0.004 0.001 6.726 2.675 0.000 0.000 0.000 0.001 0.148 0.001 0.020 0.096 0.034 0.038 0.092 0.024 1.000 17.804  0.045 0.003 0.000 6.726 2.598 0.000 0.000 0.001 0.002 0.140 0.003 0.009 0.087 0.066 0.028 0.150 0.025 1.000 17.816  0.034 0.003 0.001 6.711 2.659 0.000 0.000 0.000 0.000 0.137 0.004 0.009 0.088 0.049 0.028 0.132 0.026 1.000 17.825  0.008 0.001 0.000 6.698 2.663 0.003 0.001 0.000 0.003 0.146 0.004 0.006 0.093 0.046 0.033 0.128 0.023 1.000 17.843  0.030 0.002 0.004 6.818 2.829 0.000 0.001 0.000 0.001 0.099 0.002 0.007 0.028 0.024 0.010 0.082 0.009 1.000 17.923  Colour  yellow  yellow  yellow  yellow  yellow  yellow  yellow  yellow  120  B.2 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  UVD415 0.13 0.03 0.00 56.07 26.16 0.00 0.01 0.01 0.02 1.92 0.05 0.09 1.59 0.75 0.93 3.29 1.01 5.68 -0.06  UVD416 0.12 0.01 0.00 55.70 26.10 0.01 0.01 0.00 0.04 1.89 0.05 0.08 1.56 0.78 1.03 3.57 1.18 5.67 -0.05  UVD417 0.09 0.01 0.00 56.24 26.23 0.02 0.00 0.00 0.03 1.97 0.04 0.08 1.64 0.75 0.89 3.49 1.08 5.71 -0.04  UVD418 0.00 0.04 0.00 54.06 23.36 0.00 0.01 0.00 0.09 1.39 0.02 0.07 5.20 0.52 3.15 3.42 1.10 5.60 0.00  UVD419 0.06 0.02 0.01 55.29 25.76 0.06 0.01 0.00 0.02 1.85 0.04 0.05 1.36 1.01 0.77 4.53 0.89 5.62 -0.03  UVD420 0.10 0.02 0.00 56.59 26.45 0.00 0.01 0.00 0.01 1.74 0.03 0.07 1.64 0.78 0.90 3.08 1.02 5.72 -0.04  TOTAL  97.69  97.74  98.23  98.02  97.30  98.12  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.043 0.006 0.000 6.737 2.666 0.000 0.001 0.001 0.002 0.147 0.005 0.007 0.098 0.034 0.039 0.091 0.027 1.000 17.793  0.038 0.002 0.000 6.710 2.668 0.001 0.002 0.000 0.003 0.145 0.004 0.006 0.097 0.036 0.044 0.099 0.031 1.000 17.791  0.029 0.001 0.000 6.730 2.663 0.002 0.000 0.000 0.003 0.150 0.004 0.006 0.101 0.034 0.037 0.096 0.028 1.000 17.805  0.000 0.007 0.000 6.595 2.418 0.000 0.001 0.000 0.008 0.108 0.002 0.005 0.327 0.024 0.134 0.096 0.029 1.000 17.509  0.021 0.003 0.001 6.717 2.656 0.005 0.001 0.000 0.002 0.143 0.004 0.004 0.085 0.047 0.033 0.127 0.024 1.000 17.838  0.031 0.004 0.000 6.755 2.679 0.000 0.001 0.000 0.001 0.133 0.003 0.005 0.101 0.036 0.038 0.085 0.027 1.000 17.804  Colour  yellow  yellow  yellow  yellow  yellow  yellow  121  B.3 Table of EMPA Analyses of Ta-Nb-Ti-W-oxides  uvd2-1 21.25 39.33 12.01 0.18 0.34 17.68 3.76 0.19  uvd2-2 22.12 37.15 15.03 0.14 0.33 17.55 3.68 0.21  uvd2-3 21.32 38.89 12.95 0.11 0.28 16.96 4.01 0.24  uvd2-4 12.54 51.95 13.50 0.21 0.43 14.80 4.75 0.12  uvd2-6 19.99 39.24 14.65 0.17 0.33 16.71 3.88 0.15  19.67  19.47  19.27  18.06  18.92  18.85  16.92  16.71  Total  94.74  96.22  94.78  98.30  95.11  96.60  97.00  97.37  Nb Ta Ti Sn Al Fe3+ Fe2+ Mn O2-  2.484 2.766 2.337 0.019 0.102 3.439 0.813 0.041 24.000  2.484 2.509 2.809 0.014 0.097 3.280 0.765 0.043 24.000  2.479 2.720 2.506 0.012 0.086 3.282 0.862 0.053 24.000  1.487 3.705 2.663 0.022 0.134 2.920 1.042 0.027 24.000  2.301 2.717 2.807 0.017 0.098 3.202 0.827 0.032 24.000  2.087 2.849 2.931 0.009 0.109 3.206 0.765 0.046 24.000  1.289 3.854 2.923 0.007 0.103 2.609 1.174 0.041 24.000  1.910 2.911 3.526 0.010 0.071 2.394 1.092 0.086 24.000  wodginite  wodginite  wodginite  wodginite  wodginite  wodginite  wodginite  wodginite  Nb2O5 Ta2O5 TiO2 SnO2 Al2O3 Fe2O3 FeO MnO FeO tot  mineral  uvd2-8 uvd4-16 uvd4-17 18.33 10.66 16.94 41.59 53.01 42.91 15.47 14.54 18.79 0.09 0.06 0.10 0.37 0.33 0.24 16.91 12.97 12.75 3.63 5.25 5.24 0.21 0.18 0.41  122  B.3 (cont.)  uvd4-18 17.31 44.51 13.40 0.16 0.23 13.45 5.25 0.44 17.36  uvd2-5 8.16 47.26 27.28 0.10 0.25 9.95 5.15 0.09 14.10  uvd2-7 9.42 43.91 31.40 0.08 0.17 9.48 5.22 0.08 13.75  uvd2-9 12.95 41.13 31.20 0.02 0.03 9.35 5.77 0.19 14.18  uvd210 12.26 40.88 29.08 0.01 0.20 10.29 4.86 0.32 14.12  uvd211 12.23 39.28 28.25 0.03 0.20 8.13 5.75 0.14 13.07  uvd212 13.66 37.91 31.81 0.07 0.04 11.06 4.64 0.21 14.59  uvd213 12.00 42.80 29.21 0.00 0.09 9.81 5.51 0.21 14.34  94.75  98.24  99.76  100.63  97.89  94.00  99.40  99.63  Nb 2.075 Ta 3.211 Ti 2.674 Sn 0.017 Al 0.073 Fe3+ 2.686 Fe2+ 1.165 Mn 0.099 O224.000 mineral wodginite  0.899 3.130 4.998 0.010 0.073 1.824 1.048 0.018 24.000 ixiolite  0.990 2.776 5.491 0.007 0.048 1.658 1.015 0.015 24.000 ixiolite  1.336 2.553 5.358 0.002 0.009 1.605 1.101 0.036 24.000 ixiolite  1.307 2.623 5.162 0.001 0.057 1.827 0.960 0.063 24.000 ixiolite  1.361 2.629 5.230 0.003 0.058 1.506 1.184 0.029 24.000 ixiolite  1.402 2.340 5.431 0.006 0.010 1.889 0.881 0.040 24.000 ixiolite  1.268 2.722 5.140 0.000 0.025 1.727 1.078 0.042 24.000 ixiolite  Nb2O5 Ta2O5 TiO2 SnO2 Al2O3 Fe2O3 FeO MnO FeO tot Total  123  B.3 (cont.)  Nb2O5 Ta2O5 TiO2 SnO2 Al2O3 Fe2O3 FeO MnO FeO tot Total Nb Ta Ti Sn Al Fe3+ Fe2+ Mn O2mineral  uvd4-14 9.96 40.73 29.52 0.03 0.72 7.63 5.21 0.15 12.08  uvd4-15 8.63 47.32 28.69 0.00 0.23 9.32 5.54 0.13 13.93  uvd4-20 11.76 39.63 31.32 0.00 1.42 3.87 6.68 0.19 10.16  uvd4-21 4.76 39.26 52.12 0.07 0.99 0.00 5.73 0.96 5.73  uvd4-22 27.08 51.42 3.48 0.03 0.03 0.67 4.34 10.88 4.94  uvd4-23 27.12 52.54 2.59 0.00 0.02 0.09 1.93 13.71 2.02  93.96  99.84  94.88  103.90  97.94  98.00  1.105 2.719 5.451 0.003 0.210 1.410 1.070 0.032 24.000 ixiolite  0.929 3.065 5.142 0.000 0.064 1.670 1.104 0.026 24.000 ixiolite  1.276 2.587 5.656 0.000 0.402 0.699 1.341 0.039 24.000 ixiolite  0.439 3.478 3.518 2.177 3.972 4.100 7.997 0.745 0.558 0.006 0.004 0.000 0.238 0.011 0.008 0.000 0.143 0.020 0.978 1.031 0.464 0.167 2.617 3.332 24.045 24.000 24.000 rutile tantalite tantalite  124  B.4 Table of EMPA for analysed dumoriterite samples from other localities  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D54-1 0.19 0.01 0.10 60.72 28.74 0.02 0.00 0.00 0.01 1.82 0.00 0.11 0.03 0.00 0.02 0.01 0.02 5.91 -0.08  D54-2 0.18 0.00 0.11 60.74 29.06 0.00 0.00 0.00 0.00 1.72 0.00 0.08 0.04 0.01 0.00 0.00 0.00 5.92 -0.08  D54-3 0.00 0.00 0.17 59.83 29.61 0.03 0.01 0.01 0.00 1.72 0.01 0.13 0.05 0.02 0.03 0.07 0.00 5.91 0.00  D54-4 0.15 0.00 0.11 61.11 29.16 0.01 0.01 0.00 0.00 1.79 0.01 0.10 0.04 0.01 0.01 0.00 0.01 5.96 -0.06  D54-5 0.14 0.01 0.12 60.09 28.88 0.04 0.00 0.00 0.00 1.86 0.02 0.18 0.02 0.04 0.01 0.00 0.03 5.88 -0.06  D54-6 0.10 0.00 0.13 60.87 29.24 0.04 0.00 0.00 0.00 1.75 0.00 0.11 0.02 0.00 0.04 0.00 0.00 5.95 -0.04  D54-7 0.14 0.00 0.11 60.20 28.65 0.00 0.01 0.00 0.01 1.86 0.00 0.07 0.01 0.04 0.00 0.05 0.00 5.87 -0.06  D54-8 0.20 0.01 0.08 60.92 28.48 0.02 0.01 0.00 0.00 1.77 0.00 0.07 0.03 0.03 0.00 0.09 0.00 5.90 -0.08  TOTAL  97.63  97.78  97.57  98.43  97.26  98.20  96.97  97.50  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.060 0.002 0.015 7.017 2.818 0.002 0.000 0.001 0.000 0.134 0.000 0.008 0.002 0.000 0.001 0.000 0.000 1.000 17.937  0.056 0.001 0.016 7.002 2.842 0.000 0.000 0.000 0.000 0.126 0.000 0.006 0.002 0.000 0.000 0.000 0.000 1.000 17.941  0.000 0.000 0.024 6.917 2.904 0.002 0.001 0.001 0.000 0.127 0.001 0.010 0.003 0.001 0.001 0.002 0.000 1.000 17.996  0.046 0.000 0.017 7.003 2.835 0.001 0.001 0.000 0.000 0.131 0.001 0.008 0.002 0.000 0.000 0.000 0.000 1.000 17.951  0.042 0.001 0.017 6.972 2.843 0.003 0.000 0.000 0.000 0.138 0.001 0.013 0.001 0.002 0.000 0.000 0.001 1.000 17.955  0.032 0.001 0.019 6.990 2.849 0.003 0.001 0.000 0.000 0.128 0.000 0.008 0.001 0.000 0.002 0.000 0.000 1.000 17.965  0.045 0.000 0.017 7.004 2.829 0.000 0.001 0.000 0.000 0.138 0.000 0.005 0.001 0.002 0.000 0.001 0.000 1.000 17.954  0.061 0.002 0.011 7.051 2.797 0.001 0.001 0.000 0.000 0.131 0.000 0.005 0.002 0.001 0.000 0.002 0.000 1.000 17.937  Colour  purple  purple  purple  purple  purple  purple  purple  purple  125  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D54-9 0.14 0.00 0.11 60.41 28.60 0.02 0.00 0.00 0.00 1.63 0.00 0.08 0.05 0.04 0.00 0.05 0.00 5.87 -0.06  D54-10 0.00 0.00 0.12 60.62 28.90 0.01 0.00 0.01 0.00 1.83 0.01 0.15 0.03 0.00 0.00 0.00 0.02 5.90 0.00  D54-11 0.06 0.01 0.11 60.91 28.92 0.01 0.00 0.00 0.01 1.70 0.00 0.09 0.04 0.00 0.00 0.01 0.03 5.92 -0.02  D54-12 0.08 0.00 0.08 60.85 28.32 0.04 0.01 0.01 0.00 2.13 0.00 0.05 0.04 0.00 0.04 0.00 0.00 5.90 -0.03  D54-13 0.06 0.00 0.11 60.45 28.54 0.03 0.00 0.00 0.00 1.77 0.00 0.13 0.04 0.00 0.00 0.00 0.00 5.87 -0.02  D54-14 0.00 0.00 0.11 60.81 28.54 0.03 0.00 0.01 0.00 1.76 0.01 0.09 0.01 0.00 0.02 0.03 0.04 5.89 0.00  D54-15 0.04 0.00 0.06 59.82 28.54 0.17 0.00 0.00 0.00 2.42 0.02 0.04 0.00 0.00 0.00 0.00 0.00 5.87 -0.02  D54-16 0.14 0.00 0.07 61.24 28.68 0.02 0.00 0.01 0.00 1.69 0.03 0.05 0.02 0.00 0.00 0.03 0.00 5.92 -0.06  TOTAL  96.93  97.60  97.78  97.50  96.98  97.34  96.97  97.85  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.043 0.000 0.016 7.030 2.824 0.002 0.000 0.000 0.000 0.121 0.000 0.006 0.003 0.002 0.000 0.001 0.000 1.000 17.954  0.000 0.000 0.018 7.010 2.836 0.000 0.000 0.001 0.000 0.135 0.001 0.011 0.002 0.000 0.000 0.000 0.000 1.000 17.998  0.017 0.002 0.015 7.028 2.831 0.001 0.000 0.000 0.001 0.125 0.000 0.007 0.002 0.000 0.000 0.000 0.001 1.000 17.980  0.025 0.000 0.011 7.047 2.783 0.004 0.001 0.001 0.000 0.157 0.000 0.004 0.002 0.000 0.002 0.000 0.000 1.000 17.972  0.017 0.001 0.016 7.033 2.818 0.003 0.000 0.000 0.000 0.132 0.000 0.009 0.002 0.000 0.000 0.000 0.000 1.000 17.981  0.000 0.000 0.017 7.054 2.809 0.002 0.000 0.001 0.000 0.130 0.000 0.007 0.000 0.000 0.001 0.001 0.001 1.000 17.998  0.014 0.000 0.009 6.963 2.819 0.014 0.000 0.000 0.000 0.180 0.001 0.003 0.000 0.000 0.000 0.000 0.000 1.000 17.986  0.042 0.000 0.010 7.060 2.805 0.002 0.000 0.001 0.000 0.124 0.002 0.004 0.001 0.000 0.000 0.001 0.000 1.000 17.957  Colour  purple  purple  purple  purple  purple  purple  purple  purple  126  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D54-17 0.13 0.01 0.18 60.30 29.39 0.03 0.01 0.00 0.02 1.57 0.03 0.14 0.03 0.00 0.01 0.00 0.00 5.92 -0.05  D54-18 0.07 0.00 0.13 59.88 29.29 0.03 0.01 0.00 0.00 1.80 0.00 0.07 0.03 0.00 0.01 0.00 0.00 5.89 -0.03  D55-1 0.04 0.00 0.22 59.80 30.02 0.01 0.00 0.00 0.00 0.96 0.00 0.16 0.00 0.00 0.00 0.00 0.02 5.89 -0.02  D55-2 0.24 0.00 0.06 60.77 28.21 0.00 0.01 0.01 0.00 1.82 0.01 0.09 0.05 0.00 0.00 0.01 0.00 5.87 -0.10  D55-3 0.02 0.00 0.18 59.28 29.55 0.00 0.00 0.00 0.00 2.09 0.00 0.14 0.00 0.02 0.00 0.00 0.05 5.88 -0.01  D55-4 0.05 0.00 0.03 60.48 28.47 0.21 0.00 0.00 0.00 2.36 0.00 0.07 0.01 0.00 0.02 0.03 0.00 5.90 -0.02  D55-5 0.17 0.01 0.10 60.69 29.45 0.02 0.00 0.00 0.01 1.06 0.00 0.11 0.04 0.00 0.02 0.01 0.00 5.92 -0.07  D55-6 0.13 0.00 0.11 59.89 28.79 0.11 0.01 0.00 0.02 2.41 0.00 0.12 0.00 0.02 0.01 0.16 0.01 5.90 -0.06  TOTAL  97.72  97.18  97.13  97.06  97.21  97.62  97.54  97.65  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.040 0.003 0.027 6.956 2.877 0.003 0.001 0.000 0.001 0.116 0.003 0.011 0.002 0.000 0.000 0.000 0.000 1.000 17.958  0.023 0.000 0.018 6.945 2.883 0.003 0.001 0.001 0.000 0.133 0.000 0.006 0.002 0.000 0.001 0.000 0.000 1.000 17.975  0.012 0.000 0.033 6.929 2.951 0.001 0.000 0.000 0.000 0.071 0.000 0.012 0.000 0.000 0.000 0.000 0.001 1.000 17.987  0.075 0.001 0.008 7.065 2.782 0.000 0.001 0.001 0.000 0.135 0.001 0.007 0.003 0.000 0.000 0.000 0.000 1.000 17.921  0.006 0.000 0.027 6.880 2.910 0.000 0.000 0.000 0.000 0.155 0.000 0.010 0.000 0.001 0.000 0.000 0.001 1.000 17.992  0.016 0.000 0.004 6.995 2.794 0.018 0.000 0.000 0.000 0.174 0.000 0.005 0.001 0.000 0.001 0.001 0.000 1.000 17.982  0.054 0.002 0.014 7.004 2.884 0.002 0.000 0.000 0.001 0.078 0.000 0.008 0.002 0.000 0.001 0.000 0.000 1.000 17.943  0.041 0.001 0.015 6.931 2.827 0.010 0.001 0.000 0.002 0.178 0.000 0.009 0.000 0.001 0.001 0.004 0.000 1.000 17.958  Colour  purple  purple  purple  purple  purple  purple  purple  purple  127  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D55-7 0.26 0.00 0.03 60.95 28.30 0.21 0.01 0.01 0.00 2.31 0.00 0.05 0.01 0.00 0.01 0.00 0.09 5.93 -0.11  D55-8 0.02 0.00 0.07 60.62 28.32 0.02 0.00 0.01 0.00 1.45 0.01 0.08 0.04 0.06 0.01 0.00 0.02 5.84 -0.01  D55-9 0.10 0.00 0.02 60.87 28.51 0.16 0.01 0.01 0.00 2.30 0.02 0.08 0.01 0.00 0.01 0.01 0.01 5.93 -0.04  D55-10 0.11 0.00 0.07 60.74 29.30 0.00 0.00 0.00 0.05 1.36 0.01 0.08 0.05 0.04 0.04 0.00 0.02 5.92 -0.04  D55-11 0.11 0.00 0.05 60.99 28.32 0.01 0.00 0.01 0.00 1.38 0.02 0.09 0.02 0.00 0.00 0.00 0.00 5.86 -0.05  D55-12 0.02 0.01 0.13 60.57 29.24 0.00 0.00 0.01 0.00 1.19 0.00 0.12 0.05 0.02 0.01 0.00 0.00 5.89 -0.01  D55-13 0.19 0.00 0.07 60.83 28.68 0.02 0.00 0.01 0.00 1.57 0.00 0.10 0.05 0.00 0.03 0.00 0.00 5.90 -0.08  D55-14 0.07 0.00 0.08 60.83 28.13 0.01 0.00 0.02 0.02 1.48 0.00 0.07 0.04 0.01 0.01 0.00 0.03 5.85 -0.03  TOTAL  98.06  96.56  98.00  97.74  96.81  97.25  97.38  96.60  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.082 0.000 0.004 7.018 2.765 0.017 0.001 0.001 0.000 0.170 0.000 0.004 0.001 0.000 0.000 0.000 0.002 1.000 17.915  0.006 0.000 0.010 7.083 2.808 0.002 0.000 0.001 0.000 0.108 0.001 0.006 0.002 0.003 0.000 0.000 0.001 1.000 17.990  0.030 0.000 0.004 7.013 2.787 0.014 0.001 0.001 0.000 0.169 0.002 0.006 0.000 0.000 0.000 0.000 0.000 1.000 17.969  0.033 0.001 0.010 7.004 2.867 0.000 0.000 0.001 0.004 0.100 0.001 0.006 0.003 0.002 0.001 0.000 0.000 1.000 17.962  0.036 0.000 0.007 7.103 2.799 0.001 0.000 0.001 0.000 0.103 0.001 0.007 0.001 0.000 0.000 0.000 0.000 1.000 17.963  0.007 0.001 0.019 7.018 2.875 0.000 0.000 0.001 0.000 0.088 0.000 0.009 0.003 0.001 0.001 0.000 0.000 1.000 17.990  0.059 0.001 0.010 7.043 2.818 0.002 0.000 0.001 0.000 0.116 0.000 0.008 0.003 0.000 0.001 0.000 0.000 1.000 17.937  0.022 0.000 0.012 7.106 2.788 0.000 0.000 0.002 0.002 0.110 0.000 0.005 0.002 0.000 0.000 0.000 0.001 1.000 17.975  Colour  purple  purple  purple  purple  purple  purple  purple  purple  128  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D55-15 0.08 0.00 0.17 59.24 29.37 0.05 0.01 0.01 0.00 2.46 0.01 0.14 0.03 0.00 0.03 0.00 0.00 5.90 -0.03  D55-16 0.13 0.00 0.07 61.00 29.42 0.00 0.00 0.01 0.01 1.04 0.00 0.10 0.06 0.02 0.05 0.00 0.00 5.93 -0.05  D55-17 0.04 0.01 0.12 60.85 28.57 0.00 0.01 0.00 0.00 1.33 0.00 0.10 0.03 0.01 0.04 0.00 0.01 5.87 -0.01  D55-18 0.03 0.00 0.06 60.80 29.24 0.04 0.02 0.00 0.00 0.97 0.00 0.10 0.04 0.04 0.00 0.06 0.03 5.90 -0.01  D57-1-1 0.11 0.01 0.17 61.38 29.71 0.11 0.01 0.04 0.03 0.00 0.02 0.43 0.03 0.00 0.00 0.00 0.00 5.94 -0.05  D57-1-2 0.04 0.02 0.20 58.93 30.95 0.06 0.01 0.03 0.01 0.00 0.01 0.42 0.03 0.01 0.02 0.06 0.05 5.87 -0.02  D57-1-3 0.08 0.02 0.14 60.71 30.10 0.12 0.00 0.04 0.01 0.01 0.00 0.48 0.05 0.01 0.01 0.00 0.00 5.93 -0.03  D57-1-4 0.08 0.00 0.15 60.24 30.24 0.10 0.01 0.03 0.00 0.00 0.00 0.46 0.05 0.00 0.04 0.00 0.00 5.91 -0.03  TOTAL  97.48  97.78  96.98  97.30  97.94  96.70  97.67  97.28  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.025 0.001 0.026 6.860 2.886 0.004 0.002 0.001 0.000 0.182 0.001 0.011 0.002 0.000 0.001 0.000 0.000 1.000 17.972  0.039 0.000 0.010 7.025 2.875 0.000 0.000 0.001 0.001 0.076 0.000 0.008 0.003 0.001 0.002 0.000 0.000 1.000 17.956  0.011 0.002 0.017 7.078 2.819 0.000 0.002 0.000 0.000 0.099 0.000 0.008 0.002 0.000 0.002 0.000 0.000 1.000 17.985  0.008 0.000 0.009 7.041 2.873 0.003 0.002 0.000 0.000 0.072 0.000 0.007 0.002 0.002 0.000 0.002 0.001 1.000 17.988  0.035 0.002 0.025 7.053 2.897 0.009 0.001 0.004 0.002 0.000 0.002 0.031 0.002 0.000 0.000 0.000 0.000 1.000 17.963  0.014 0.004 0.029 6.851 3.053 0.005 0.001 0.003 0.001 0.000 0.001 0.031 0.002 0.000 0.001 0.002 0.001 1.000 17.983  0.024 0.003 0.020 6.993 2.942 0.010 0.000 0.004 0.001 0.001 0.000 0.035 0.003 0.001 0.001 0.000 0.000 1.000 17.973  0.025 0.001 0.022 6.964 2.966 0.008 0.002 0.003 0.000 0.000 0.000 0.034 0.003 0.000 0.002 0.000 0.000 1.000 17.971  Colour  purple  purple  purple  purple  blue  blue  blue  blue  129  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D57-22-3 0.20 0.01 0.09 59.76 30.26 0.30 0.01 0.08 0.02 0.01 0.01 0.54 0.04 0.02 0.00 0.00 0.04 5.90 -0.08  D57-24-1 0.07 0.00 0.29 59.80 30.55 0.28 0.01 0.09 0.01 0.00 0.00 0.87 0.05 0.01 0.00 0.09 0.02 5.94 -0.03  D57-24-2 0.05 0.01 0.26 58.79 31.64 0.29 0.01 0.08 0.00 0.01 0.02 1.15 0.03 0.00 0.00 0.03 0.01 5.96 -0.02  D57-27-1 0.00 0.02 0.26 59.78 30.17 0.23 0.00 0.05 0.00 0.00 0.00 0.45 0.01 0.04 0.04 0.00 0.08 5.89 0.00  D57-29-2 0.10 0.02 0.25 59.29 31.10 0.19 0.06 0.06 0.01 0.06 0.01 0.30 0.00 0.00 0.01 0.07 0.00 5.92 -0.04  D57-29-3 0.00 0.02 0.26 60.17 30.40 0.08 0.02 0.06 0.03 0.09 0.01 0.30 0.03 0.07 0.01 0.00 0.04 5.92 0.00  D58-11-1 0.06 0.01 0.17 60.07 27.49 0.13 0.02 0.08 0.00 2.52 0.00 0.53 0.04 0.00 0.05 0.07 0.01 5.85 -0.03  D58-11-2 0.06 0.01 0.15 60.34 28.99 0.16 0.02 0.06 0.00 0.21 0.03 0.34 0.06 0.00 0.04 0.07 0.01 5.84 -0.02  TOTAL  97.20  98.06  98.34  97.03  97.41  97.50  97.08  96.36  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.062 0.002 0.013 6.913 2.970 0.025 0.001 0.008 0.002 0.000 0.000 0.040 0.002 0.001 0.000 0.000 0.001 1.000 17.935  0.023 0.001 0.042 6.872 2.979 0.023 0.001 0.010 0.001 0.000 0.000 0.064 0.003 0.001 0.000 0.002 0.001 1.000 17.974  0.015 0.003 0.037 6.733 3.074 0.024 0.001 0.009 0.000 0.000 0.002 0.084 0.002 0.000 0.000 0.001 0.000 1.000 17.983  0.001 0.004 0.038 6.934 2.970 0.019 0.000 0.006 0.000 0.000 0.000 0.033 0.001 0.002 0.002 0.000 0.002 1.000 17.994  0.030 0.005 0.036 6.839 3.044 0.016 0.008 0.006 0.001 0.004 0.001 0.022 0.000 0.000 0.001 0.002 0.000 1.000 17.969  0.000 0.003 0.038 6.944 2.977 0.007 0.002 0.007 0.003 0.007 0.001 0.022 0.002 0.003 0.000 0.000 0.001 1.000 17.997  0.019 0.003 0.025 7.017 2.725 0.011 0.002 0.008 0.000 0.188 0.000 0.039 0.002 0.000 0.002 0.002 0.000 1.000 17.976  0.017 0.002 0.023 7.055 2.876 0.013 0.002 0.007 0.000 0.016 0.002 0.025 0.004 0.000 0.002 0.002 0.000 1.000 17.977  Colour  blue  blue  blue  blue  blue  blue  blue  blue  130  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D58-11-3 0.06 0.01 0.18 60.24 29.00 0.14 0.02 0.09 0.00 0.23 0.00 0.36 0.03 0.00 0.05 0.00 0.04 5.83 -0.03  D58-12-3 0.08 0.02 0.21 58.84 31.38 0.12 0.03 0.07 0.00 0.24 0.00 0.32 0.03 0.00 0.01 0.00 0.00 5.91 -0.03  D58-13-2 0.18 0.02 0.12 62.19 27.98 0.12 0.00 0.02 0.01 0.13 0.00 0.26 0.05 0.00 0.08 0.00 0.00 5.87 -0.07  D58-13-3 0.12 0.01 0.10 62.36 27.48 0.14 0.00 0.04 0.00 0.15 0.00 0.21 0.04 0.00 0.05 0.01 0.00 5.84 -0.05  D58-14-1 0.05 0.03 0.19 60.41 29.09 0.08 0.00 0.01 0.00 0.48 0.01 0.31 0.01 0.03 0.07 0.10 0.00 5.86 -0.02  D58-14-2 0.03 0.00 0.23 60.81 29.22 0.12 0.02 0.04 0.00 0.29 0.00 0.24 0.02 0.02 0.03 0.00 0.00 5.88 -0.01  D58-17-2 0.00 0.02 0.15 61.26 28.53 0.17 0.01 0.05 0.02 0.22 0.00 0.30 0.03 0.00 0.04 0.04 0.02 5.86 0.00  D58-17-3 0.03 0.01 0.12 61.63 27.94 0.20 0.01 0.01 0.03 0.44 0.00 0.16 0.16 0.06 0.08 0.00 0.04 5.86 -0.01  TOTAL  96.25  97.22  96.94  96.49  96.71  96.93  96.72  96.76  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.019 0.002 0.026 7.051 2.880 0.012 0.003 0.009 0.000 0.017 0.000 0.027 0.002 0.000 0.002 0.000 0.001 1.000 17.976  0.025 0.004 0.030 6.797 3.075 0.010 0.004 0.007 0.000 0.018 0.000 0.023 0.002 0.000 0.000 0.000 0.000 1.000 17.973  0.055 0.003 0.018 7.228 2.759 0.010 0.001 0.002 0.001 0.010 0.000 0.019 0.003 0.000 0.003 0.000 0.000 1.000 17.939  0.037 0.002 0.015 7.285 2.724 0.012 0.000 0.004 0.000 0.011 0.000 0.016 0.002 0.000 0.002 0.000 0.000 1.000 17.958  0.016 0.006 0.028 7.043 2.878 0.006 0.000 0.001 0.000 0.036 0.001 0.023 0.000 0.001 0.003 0.003 0.000 1.000 17.981  0.009 0.001 0.034 7.063 2.879 0.010 0.002 0.004 0.000 0.021 0.000 0.018 0.001 0.001 0.001 0.000 0.000 1.000 17.989  0.000 0.003 0.022 7.140 2.822 0.014 0.002 0.006 0.001 0.016 0.000 0.022 0.002 0.000 0.002 0.001 0.000 1.000 17.996  0.009 0.003 0.017 7.185 2.763 0.017 0.001 0.002 0.003 0.033 0.000 0.012 0.010 0.002 0.003 0.000 0.001 1.000 17.977  Colour  blue  blue  blue  blue  blue  blue  blue  blue  131  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D58-17-4 0.01 0.01 0.16 60.90 28.78 0.18 0.04 0.07 0.02 0.30 0.01 0.28 0.04 0.00 0.05 0.00 0.01 5.86 0.00  D59-1-2 0.10 0.01 0.12 59.80 27.99 0.19 0.00 0.03 0.02 1.21 0.01 0.47 0.58 0.02 0.06 0.00 0.04 5.82 -0.04  D59-1-3 0.03 0.01 0.11 60.27 28.60 0.17 0.01 0.01 0.00 1.07 0.00 0.54 0.74 0.03 0.03 0.03 0.00 5.89 -0.01  D59-2-1 0.03 0.01 0.13 60.47 28.30 0.75 0.00 0.02 0.02 1.03 0.00 0.61 0.30 0.02 0.00 0.01 0.03 5.90 -0.01  D59-2-2 0.00 0.01 0.12 60.46 27.85 1.18 0.00 0.03 0.03 1.32 0.01 0.56 0.29 0.01 0.04 0.02 0.00 5.92 0.00  D59-2-3 0.08 0.00 0.15 60.50 28.02 0.25 0.00 0.01 0.00 0.69 0.00 0.57 0.60 0.00 0.00 0.04 0.03 5.85 -0.03  D59-3-2 0.04 0.00 0.19 59.97 28.65 0.09 0.00 0.01 0.02 1.01 0.01 0.47 0.59 0.04 0.00 0.00 0.00 5.86 -0.02  D59-3-3 0.00 0.00 0.14 60.11 28.56 0.10 0.00 0.01 0.00 1.29 0.00 0.55 0.73 0.00 0.04 0.00 0.02 5.88 0.00  TOTAL  96.71  96.43  97.55  97.62  97.84  96.74  96.94  97.43  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.004 0.002 0.024 7.097 2.845 0.015 0.004 0.007 0.001 0.022 0.001 0.021 0.002 0.000 0.002 0.000 0.000 1.000 17.992  0.032 0.002 0.018 7.011 2.785 0.016 0.000 0.003 0.002 0.091 0.001 0.035 0.035 0.001 0.003 0.000 0.001 1.000 17.930  0.009 0.002 0.016 6.984 2.813 0.014 0.002 0.001 0.000 0.079 0.000 0.040 0.044 0.001 0.001 0.001 0.000 1.000 17.946  0.010 0.001 0.019 6.994 2.777 0.062 0.000 0.002 0.002 0.076 0.000 0.045 0.018 0.001 0.000 0.000 0.001 1.000 17.972  0.000 0.002 0.017 6.979 2.728 0.098 0.000 0.003 0.002 0.097 0.001 0.041 0.017 0.000 0.002 0.001 0.000 1.000 17.981  0.026 0.000 0.022 7.065 2.777 0.021 0.000 0.001 0.000 0.051 0.000 0.042 0.036 0.000 0.000 0.001 0.001 1.000 17.937  0.014 0.001 0.028 6.987 2.833 0.008 0.000 0.001 0.002 0.075 0.001 0.035 0.035 0.002 0.000 0.000 0.000 1.000 17.951  0.000 0.000 0.021 6.977 2.813 0.008 0.001 0.001 0.000 0.096 0.000 0.041 0.043 0.000 0.002 0.000 0.000 1.000 17.955  Colour  blue  blue  blue  blue  blue  blue  blue  blue  132  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D59-4-1 0.04 0.00 0.16 56.98 26.57 0.09 0.02 0.00 0.04 3.19 0.01 0.12 3.46 0.06 0.89 0.09 0.00 5.82 -0.02  D59-4-2 0.06 0.01 0.22 59.06 27.60 0.63 0.00 0.00 0.03 2.06 0.00 0.32 1.07 0.00 0.39 0.05 0.00 5.86 -0.03  D59-4-3 0.05 0.00 0.19 57.19 28.17 0.08 0.00 0.02 0.06 3.14 0.00 0.12 2.14 0.00 0.57 0.01 0.02 5.86 -0.02  D59-5-1 0.10 0.01 0.14 60.75 28.87 0.17 0.00 0.01 0.00 0.84 0.00 0.54 0.52 0.00 0.01 0.09 0.04 5.92 -0.04  D59-5-2 0.07 0.00 0.11 60.12 28.31 0.13 0.00 0.00 0.01 1.01 0.02 0.48 0.72 0.00 0.06 0.06 0.03 5.85 -0.03  D59-5-3 0.09 0.01 0.03 61.24 27.78 0.11 0.01 0.00 0.01 0.83 0.00 0.57 0.60 0.02 0.01 0.08 0.00 5.87 -0.04  D59-6-1 0.01 0.02 0.14 59.94 28.10 0.14 0.00 0.01 0.00 1.46 0.01 0.46 0.68 0.03 0.09 0.00 0.04 5.85 0.00  D59-6-2 0.22 0.01 0.14 59.85 27.83 0.25 0.00 0.02 0.00 1.19 0.01 0.48 0.87 0.07 0.04 0.00 0.03 5.84 -0.09  TOTAL  97.51  97.35  97.58  97.97  96.95  97.21  96.96  96.75  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.011 0.000 0.023 6.689 2.646 0.008 0.003 0.000 0.003 0.239 0.001 0.009 0.209 0.003 0.036 0.002 0.000 1.000 17.743  0.019 0.002 0.032 6.880 2.728 0.053 0.000 0.000 0.002 0.153 0.000 0.024 0.064 0.000 0.016 0.001 0.000 1.000 17.901  0.014 0.000 0.029 6.669 2.787 0.006 0.000 0.002 0.005 0.234 0.000 0.009 0.129 0.000 0.023 0.000 0.000 1.000 17.833  0.031 0.002 0.021 7.005 2.824 0.014 0.000 0.001 0.000 0.061 0.000 0.040 0.031 0.000 0.001 0.003 0.001 1.000 17.937  0.021 0.001 0.016 7.011 2.801 0.011 0.000 0.000 0.001 0.075 0.001 0.036 0.043 0.000 0.002 0.002 0.001 1.000 17.932  0.027 0.001 0.005 7.125 2.742 0.009 0.001 0.000 0.001 0.061 0.000 0.042 0.036 0.001 0.000 0.002 0.000 1.000 17.937  0.002 0.004 0.021 6.997 2.782 0.012 0.000 0.002 0.000 0.109 0.000 0.034 0.041 0.001 0.004 0.000 0.001 1.000 17.953  0.070 0.002 0.021 6.996 2.760 0.021 0.000 0.002 0.000 0.089 0.001 0.036 0.052 0.003 0.002 0.000 0.001 1.000 17.875  Colour  blue  blue  blue  blue  blue  blue  blue  blue  133  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D59-6-3 0.10 0.01 0.11 60.59 28.46 0.17 0.01 0.01 0.00 1.21 0.00 0.53 0.73 0.00 0.00 0.00 0.00 5.91 -0.04  D64-1 0.00 0.00 0.82 60.42 29.91 0.03 0.00 0.00 0.01 0.66 0.00 0.16 0.21 0.05 0.18 0.01 0.02 5.96 0.00  D64-2 0.05 0.01 0.69 60.35 29.67 0.11 0.01 0.01 0.01 0.79 0.00 0.17 0.25 0.00 0.21 0.00 0.05 5.95 -0.02  D64-3 0.04 0.00 0.79 59.61 29.87 0.03 0.01 0.03 0.00 1.07 0.00 0.24 0.17 0.01 0.21 0.00 0.03 5.93 -0.02  D64-4 0.07 0.02 0.62 59.86 30.35 0.10 0.49 0.04 0.01 0.06 0.01 0.25 0.14 0.00 0.13 0.00 0.00 5.93 -0.03  D64-5 0.05 0.03 0.63 59.94 30.09 0.09 0.41 0.09 0.03 0.07 0.00 0.22 0.21 0.00 0.15 0.00 0.00 5.92 -0.02  D64-6 0.02 0.04 0.57 60.55 28.96 0.13 0.14 0.29 0.00 0.10 0.01 0.20 0.25 0.01 0.16 0.00 0.02 5.88 -0.01  D64-7 0.00 0.02 0.74 59.62 29.35 0.06 0.00 0.01 0.03 1.20 0.00 0.18 0.27 0.00 0.30 0.04 0.02 5.91 0.00  TOTAL  97.82  98.44  98.31  98.03  98.07  97.90  97.31  97.76  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.032 0.001 0.016 7.001 2.791 0.014 0.001 0.001 0.000 0.089 0.000 0.039 0.044 0.000 0.000 0.000 0.000 1.000 17.925  0.000 0.000 0.119 6.924 2.908 0.002 0.000 0.000 0.001 0.048 0.000 0.012 0.012 0.002 0.007 0.000 0.001 1.000 17.980  0.017 0.001 0.100 6.928 2.890 0.009 0.002 0.001 0.001 0.058 0.000 0.012 0.015 0.000 0.009 0.000 0.001 1.000 17.959  0.014 0.001 0.115 6.865 2.919 0.002 0.002 0.003 0.000 0.078 0.000 0.018 0.010 0.000 0.008 0.000 0.001 1.000 17.967  0.022 0.005 0.090 6.892 2.964 0.008 0.061 0.004 0.001 0.005 0.001 0.018 0.008 0.000 0.005 0.000 0.000 1.000 17.964  0.016 0.005 0.092 6.913 2.944 0.008 0.052 0.009 0.002 0.005 0.000 0.016 0.013 0.000 0.006 0.000 0.000 1.000 17.966  0.007 0.008 0.084 7.029 2.853 0.011 0.017 0.031 0.000 0.008 0.000 0.015 0.015 0.000 0.007 0.000 0.000 1.000 17.971  0.000 0.004 0.109 6.894 2.879 0.005 0.001 0.001 0.002 0.088 0.000 0.013 0.016 0.000 0.012 0.001 0.000 1.000 17.971  Colour  blue  purple  purple  purple  purple  purple  purple  purple  134  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D64-8 0.00 0.00 0.80 59.10 29.38 0.04 0.01 0.02 0.02 1.24 0.00 0.20 0.25 0.00 0.22 0.00 0.00 5.87 0.00  D64-9 0.00 0.00 0.73 59.91 29.71 0.04 0.01 0.00 0.00 1.23 0.00 0.18 0.32 0.00 0.24 0.00 0.02 5.94 0.00  D64-10 0.00 0.00 0.69 59.68 28.99 0.09 0.01 0.00 0.00 1.29 0.00 0.16 0.24 0.00 0.27 0.13 0.00 5.88 0.00  D64-11 0.00 0.01 0.65 59.78 29.26 0.12 0.00 0.01 0.02 1.40 0.01 0.23 0.35 0.00 0.32 0.00 0.00 5.92 0.00  D64-12 0.05 0.01 0.62 59.31 30.02 0.23 0.05 0.00 0.00 1.82 0.01 0.11 0.07 0.06 0.06 0.00 0.01 5.95 -0.02  D64-13 0.11 0.02 0.69 60.10 30.24 0.11 0.44 0.03 0.01 0.40 0.00 0.29 0.18 0.04 0.18 0.09 0.04 5.97 -0.05  D64-15 0.08 0.01 0.75 60.41 30.21 0.06 0.00 0.01 0.00 0.62 0.02 0.17 0.17 0.01 0.16 0.00 0.00 5.97 -0.03  D64-16 0.01 0.00 0.71 60.69 29.79 0.06 0.00 0.00 0.00 0.83 0.01 0.19 0.23 0.00 0.22 0.00 0.00 5.97 0.00  TOTAL  97.16  98.34  97.44  98.09  98.36  98.90  98.61  98.71  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.001 0.117 6.871 2.898 0.003 0.002 0.002 0.002 0.092 0.000 0.015 0.015 0.000 0.009 0.000 0.000 1.000 17.976  0.000 0.000 0.106 6.881 2.895 0.003 0.001 0.000 0.000 0.090 0.000 0.014 0.019 0.000 0.010 0.000 0.001 1.000 17.971  0.000 0.001 0.101 6.925 2.855 0.008 0.002 0.000 0.000 0.095 0.000 0.012 0.014 0.000 0.011 0.003 0.000 1.000 17.975  0.000 0.002 0.095 6.891 2.862 0.010 0.000 0.001 0.002 0.103 0.001 0.017 0.020 0.000 0.013 0.000 0.000 1.000 17.967  0.016 0.001 0.090 6.803 2.921 0.019 0.007 0.000 0.000 0.133 0.001 0.008 0.004 0.003 0.002 0.000 0.000 1.000 17.978  0.034 0.003 0.100 6.873 2.934 0.009 0.054 0.003 0.001 0.029 0.000 0.021 0.011 0.002 0.007 0.002 0.001 1.000 17.948  0.023 0.001 0.108 6.903 2.929 0.005 0.000 0.001 0.000 0.045 0.001 0.012 0.010 0.000 0.006 0.000 0.000 1.000 17.960  0.003 0.000 0.103 6.937 2.890 0.005 0.000 0.000 0.000 0.061 0.000 0.014 0.013 0.000 0.009 0.000 0.000 1.000 17.975  Colour  purple  purple  purple  purple  purple  purple  purple  purple  135  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D64-17 0.04 0.00 0.78 59.72 30.16 0.08 0.00 0.00 0.00 1.23 0.01 0.27 0.12 0.00 0.10 0.00 0.01 5.96 -0.02  D64-18 0.02 0.00 0.76 60.70 29.34 0.06 0.01 0.01 0.01 1.02 0.00 0.18 0.24 0.03 0.20 0.03 0.00 5.96 -0.01  D65-1 0.00 0.29 0.10 59.90 31.32 0.16 0.00 0.02 0.00 0.19 0.00 0.71 0.02 0.04 0.01 0.00 0.02 5.99 0.00  D65-2 0.00 0.00 0.11 60.27 29.80 0.24 0.00 0.01 0.02 0.19 0.00 0.74 0.02 0.08 0.01 0.01 0.01 5.90 0.00  D65-3 0.00 0.01 0.12 60.34 30.09 0.11 0.00 0.01 0.01 0.19 0.00 0.84 0.02 0.08 0.00 0.00 0.00 5.92 0.00  D65-4 0.06 0.01 0.14 61.28 29.27 0.30 0.03 0.02 0.01 0.02 0.01 0.43 0.20 0.00 0.00 0.09 0.06 5.93 -0.03  D65-5 0.06 0.01 0.17 61.21 29.92 0.24 0.01 0.01 0.00 0.04 0.02 0.47 0.16 0.00 0.05 0.00 0.02 5.96 -0.03  D65-6 0.06 0.01 0.14 61.49 29.32 0.32 0.03 0.03 0.03 0.05 0.00 0.40 0.25 0.00 0.04 0.08 0.01 5.95 -0.03  TOTAL  98.46  98.58  98.78  97.41  97.75  97.80  98.34  98.17  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.012 0.000 0.113 6.842 2.932 0.006 0.000 0.000 0.000 0.090 0.000 0.020 0.007 0.000 0.004 0.000 0.000 1.000 17.976  0.006 0.001 0.110 6.956 2.853 0.005 0.001 0.001 0.001 0.075 0.000 0.013 0.014 0.001 0.008 0.001 0.000 1.000 17.972  0.000 0.054 0.014 6.831 3.031 0.013 0.000 0.002 0.000 0.014 0.000 0.052 0.001 0.002 0.001 0.000 0.000 1.000 17.998  0.000 0.000 0.016 6.971 2.924 0.020 0.000 0.002 0.002 0.014 0.000 0.055 0.001 0.004 0.000 0.000 0.000 1.000 17.998  0.000 0.001 0.018 6.958 2.944 0.009 0.001 0.001 0.001 0.014 0.000 0.062 0.001 0.003 0.000 0.000 0.000 1.000 17.999  0.018 0.001 0.020 7.061 2.861 0.025 0.003 0.002 0.001 0.001 0.001 0.031 0.012 0.000 0.000 0.002 0.001 1.000 17.968  0.020 0.002 0.025 7.008 2.906 0.019 0.001 0.001 0.000 0.003 0.002 0.034 0.010 0.000 0.002 0.000 0.001 1.000 17.968  0.020 0.002 0.020 7.058 2.855 0.027 0.003 0.003 0.002 0.003 0.000 0.029 0.015 0.000 0.002 0.002 0.000 1.000 17.964  Colour  purple  purple  blue  blue  blue  blue  blue  blue  136  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D65-7 0.00 0.00 0.12 61.55 29.23 0.47 0.02 0.02 0.01 0.02 0.00 0.42 0.23 0.00 0.05 0.00 0.03 5.95 0.00  D65-9 0.00 0.02 0.08 61.09 29.68 0.53 0.02 0.00 0.00 0.09 0.02 0.72 0.18 0.02 0.01 0.02 0.10 5.97 0.00  D65-10 0.00 0.00 0.13 60.36 29.99 0.08 0.01 0.00 0.00 0.11 0.02 0.87 0.01 0.01 0.00 0.00 0.01 5.91 0.00  D65-11 0.00 0.00 0.10 60.73 30.30 0.13 0.01 0.00 0.00 0.13 0.01 0.87 0.04 0.04 0.01 0.05 0.08 5.96 0.00  D65-12 0.00 0.02 0.08 61.26 29.32 0.68 0.02 0.01 0.01 0.09 0.00 0.71 0.16 0.01 0.02 0.00 0.10 5.96 0.00  D65-13 0.00 0.02 0.15 61.42 29.98 0.35 0.00 0.01 0.02 0.07 0.02 0.50 0.09 0.02 0.01 0.00 0.02 5.98 0.00  D65-14 0.04 0.01 0.19 60.47 30.95 0.21 0.22 0.02 0.00 0.08 0.01 0.57 0.06 0.00 0.02 0.08 0.00 5.99 -0.01  D65-15 0.01 0.02 0.14 61.17 29.52 0.56 0.01 0.00 0.00 0.02 0.02 0.61 0.08 0.00 0.00 0.05 0.00 5.95 0.00  TOTAL  98.14  98.55  97.50  98.46  98.44  98.67  98.90  98.15  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.000 0.018 7.064 2.847 0.039 0.003 0.002 0.001 0.002 0.000 0.031 0.013 0.000 0.002 0.000 0.001 1.000 17.984  0.000 0.004 0.012 6.989 2.881 0.043 0.003 0.000 0.000 0.007 0.002 0.052 0.010 0.001 0.001 0.000 0.003 1.000 17.986  0.000 0.001 0.019 6.976 2.941 0.006 0.001 0.000 0.000 0.008 0.002 0.064 0.001 0.001 0.000 0.000 0.000 1.000 17.999  0.000 0.000 0.014 6.956 2.945 0.010 0.001 0.000 0.000 0.010 0.001 0.064 0.002 0.002 0.000 0.001 0.002 1.000 17.995  0.000 0.004 0.011 7.015 2.849 0.056 0.002 0.001 0.001 0.006 0.000 0.052 0.009 0.000 0.001 0.000 0.003 1.000 17.987  0.000 0.003 0.022 7.008 2.903 0.029 0.000 0.001 0.001 0.005 0.002 0.037 0.005 0.001 0.000 0.000 0.000 1.000 17.994  0.011 0.002 0.027 6.889 2.991 0.018 0.027 0.002 0.000 0.006 0.000 0.041 0.004 0.000 0.001 0.002 0.000 1.000 17.985  0.003 0.003 0.020 7.018 2.874 0.046 0.001 0.000 0.000 0.001 0.002 0.045 0.005 0.000 0.000 0.001 0.000 1.000 17.992  Colour  blue  blue  blue  blue  blue  blue  blue  blue  137  B.4 (cont.)  F NA2O MGO AL2O3 SIO2 P2O5 K2O CAO SC2O3 TIO2 MNO FE2O3 AS2O3 NB2O5 SB2O3 TA2O5 BI2O3 B2O3 * O=F  D65-16 0.00 0.01 0.16 61.36 30.25 0.24 0.01 0.01 0.04 0.05 0.03 0.54 0.03 0.03 0.00 0.00 0.00 5.99 0.00  D65-17 0.00 0.00 0.14 61.18 30.33 0.10 0.01 0.00 0.00 0.06 0.00 0.59 0.00 0.00 0.00 0.02 0.02 5.97 0.00  TOTAL  98.75  98.43  FNA+ MG2+ AL3+ SI4+ P5+ K+ CA2+ SC3+ TI4+ MN2+ FE3+ AS3+ NB5+ SB3+ TA5+ BI3+ B3+ O2-  0.000 0.001 0.023 6.995 2.925 0.020 0.001 0.001 0.003 0.004 0.003 0.039 0.002 0.002 0.000 0.000 0.000 1.000 17.998  0.000 0.000 0.021 6.996 2.943 0.008 0.001 0.001 0.000 0.004 0.000 0.043 0.000 0.000 0.000 0.001 0.000 1.000 18.000  Colour  blue  blue  138  Appendix C C.1 Crystal refinement data and results for Uvil’dy dumortierite  Table C.1: Single-crystal X-ray collection and refinement information for Uvil'dy dumortierite. a (Å) b (Å) c (Å) V (Å3) Space Group Z  4.7026(1) 11.8442(3) 20.2754(5) 1129.32(6) Pnma 4  Crystal size (mm) Dcalc. (Mg m-3)  Radiation Monochromator Total Fo Unique Fo Fo > 4σ Fo Rint  L.s. parameters Range of h, k, l R1 for Fo > 4σ Fo  3.433 MoKα Graphite 14396 2038 1798 0.0275 160 -7 < h < 7, -17 < k < 17, -24 < l < 30 0.0319  0.0378 wR2 0.0835 aw 0.0476 bw 1.7068 GooF (= S) 1.070 -3 ∆ρmax (e Ǻ ) 1.576 -3 ∆ρmin (e Ǻ ) -1.857 2 2 2 w = 1/[σ (F0 ) + (awP) + bwP] where P = [Max(F02,0) + 2Fc2)]/3 R1 for all unique Fo  139  Table C.2: Positional and displacement parameters of Uvil'dy dumortierite. Site  Multiplicity  x/a  y/b  z/c  Ueq  Population  Al1  2  0.3966(3)  3/4  0.25020(3)  0.0284(3)  0.895(1) Al + 0.071(1) Ta + 0.034 *  Al2  1  0.5579(1)  0.61035(5) 0.47256(3)  0.0050(1)  1 Al  Al3  1  0.0598(1)  0.49080(5) 0.43102(3)  0.0051(1)  1 Al  Al4  1  0.0578(1)  0.35787(5) 0.28897(3)  0.0069(1)  1 Al  Si1  2  0.0867(5)  0.40590(8)  0.0059(3)  0.969(4) Si  S2  1  0.5871(2)  0.52344(8) 0.32841(5)  0.0058(2)  0.966(3) Si  As1  2  0.115(8)  3/4  0.389(2)  0.03(1)  0.031(4) As3+  As2  1  0.608(3)  0.561(2)  0.3168(7)  0.027(5)  0.034(3) As3+  B  2  0.2262(6)  1/4  0.4161(1)  0.0052(5)  1B  O1  2  0.3773(4)  3/4  0.45446(9)  0.0066(3)  1O  O2  2  0.1527(5)  3/4  0.3268(1)  0.0108(4)  0.969(4) O  O3  1  0.8956(3)  0.6391(1)  0.42433(6)  0.0057(2)  1O  O4  1  0.3997(3)  0.4358(1)  0.28238(6)  0.0056(2)  1O  O5  1  0.3952(3)  0.5501(1)  0.39354(6)  0.0056(2)  1O  O6  1  0.8813(3)  0.4532(1)  0.35049(6)  0.0071(3)  1O  O7  1  0.6507(3)  0.6384(1)  0.28713(7)  0.0105(3)  0.966(3) O  O8  2  0.1661(5)  1/4  0.35063(9)  0.0083(4)  1O  O9  1  0.2547(3)  0.3510(1)  0.44820(6)  0.0065(2)  1O  O10  2  0.7607(4)  1/4  0.27217(9)  0.0068(3)  1O  O11 1 0.7504(3) 0.4665(1) 0.48812(6) * Al1 vacancy constrained to maximum of As1, As2 occupancy.  0.0040(2)  1O  3/4  140  Table C.3: Anisotropic displacement parameters of Uvil'dy dumortierite. Site  U11  U22  U33  U23  U13  U12  Al1  0.0743(7)  0.0047(3)  0.0061(3)  0  -0.0025(3)  0  Al2  0.0047(2)  0.0048(2)  0.0056(2)  -0.0001(2)  -0.0003(2)  0.0001(2)  Al3  0.0042(2)  0.0054(2)  0.0055(2)  -0.0003(2)  0.0001(2)  0.0001(2)  Al4  0.0070(3)  0.0071(3)  0.0068(2)  0.0010(2)  -0.0007(2)  -0.0002(2)  Si1  0.0036(7)  0.0041(5)  0.0099(4)  0  -0.0007(4)  0  S2  0.0041(3)  0.0079(3)  0.0054(3)  -0.0017(2)  -0.0001(2)  0.0005(3)  As1  0.004(7)  0.003(6)  0.10(3)  0  0.00(2)  0  As2  0.008(4)  0.05(1)  0.019(6)  -0.023(7)  -0.002(4)  0.001(6)  B  0.006(1)  0.005(1)  0.005(1)  0  -0.0005(9)  0  O1  0.0063(8)  0.0039(7)  0.0097(8)  0  -0.0012(6)  0  O2  0.0107(9)  0.0110(9)  0.0105(1)  0  0.0029(7)  0  O3  0.0050(6)  0.0048(5)  0.0074(5)  -0.0003(4)  0.0004(4)  0.0004(4)  O4  0.0049(6)  0.0063(5)  0.0057(5)  -0.0011(4)  0.0005(4)  -0.0002(4)  O5  0.0045(5)  0.0077(6)  0.0048(5)  0.0001(4)  0.0000(4)  -0.0006(4)  O6  0.0061(6)  0.0089(6)  0.0062(5)  -0.0027(4)  -0.0011(4)  0.0011(5)  O7  0.0107(7)  0.0107(7)  0.0101(6)  0.0010(5)  0.0011(5)  -0.0029(5)  O8  0.0162(1)  0.0048(8)  0.0040(7)  0  -0.0015(7)  0  O9  0.0088(6)  0.0045(5)  0.0062(5)  -0.0009(4)  -0.0014(4)  -0.0001(4)  O10  0.0044(8)  0.0059(8)  0.0101(8)  0  -0.0002(6)  0  O11  0.0032(5)  0.0041(5)  0.0048(5)  -0.0002(4)  0.0001(4)  -0.0006(4)  141  Table C.4: Bond distances for Uvil'dy dumortierite (Å). Al1-O7a  1.912(2)  Al2-O11e  1.889(1)  Al1-O7b  1.912(2)  Al2-O9e  1.889(1)  Al1-O2  1.931(2)  Al2-O1  1.895(1)  Al1-O7  1.932(2)  Al2-O3  1.896(1)  Al1-O7c  1.932(2)  Al2-O5  1.913(1)  Al1-O2d  1.971(2)  Al2-O11  1.955(1)  <Al1-O>  1.932  <Al2-O>  1.906  Al3-O11f  1.882(1)  Al4-O4  1.859(2)  Al3-O5  1.887(1)  Al4-O8  1.859(2)  Al3-O6f  1.889(1)  Al4-O4a  1.870(1)  Al3-O3f  1.923(1)  Al4-O6f  1.876(1)  Al3-O9  1.924(1)  Al4-O10f  1.923(2)  Al3-O11e  1.934(1)  Al4-O10a  2.020(2)  <Al3-O>  1.906  <Al4-O>  1.901  Si1-O2  1.634(2)  S2-O7  1.627(2)  Si1-O3f  1.635(2)  S2-O5  1.630(2)  Si1-O3g  1.635(2)  S2-O4  1.651(2)  Si1-O1  1.684(3)  S2-O6  1.676(2)  <Si1-O>  1.647  <S2-O>  1.646  As1-O1  1.81(4)  As2-O5  1.86(2)  As1-O3f  1.81(3)  As2-O4  1.91(2)  As1-O3g  1.81(3)  As2-O6  1.93(2)  <As1-O>  1.81  B-O8  1.358(3)  B-O9h  1.368(2)  B-O9  1.368(2)  <B-O>  <As2-O>  1.90  1.365  a: x–1/2, y, –z+1/2; b: x–1/2, –y+3/2, –z+1/2; c: x, –y+3/2, z; d: x+1/2, y, –z+1/2; e: –x+1, –y+1, –z+1; f: x–1, y, z; g: x–1, –y+3/2, z; h: x, –y+1/2, z  142  Table C.5: Bond angles for Uvil'dy dumortierite (°). O7b-Al1-O7a  87.4(1)  O9e-Al2-O11e  96.65(6)  O2-Al1-O7a  87.64(8)  O1-Al2-O11e  99.12(7)  O7-Al1-O7a  93.14(7)  O5-Al2-O11e  82.34(6)  O2d-Al1-O7a  93.21(7)  O11-Al2-O11e  82.36(6)  O2-Al1-O7b  87.64(8)  O1-Al2-O9e  99.34(7)  O7c-Al1-O7b  93.15(7)  O3-Al2-O9e  90.26(6)  O2d-Al1-O7b  93.21(7)  O11-Al2-O9e  81.82(6)  O7-Al1-O2  93.20(7)  O3-Al2-O1  96.83(7)  O7c-Al1-O2  93.19(7)  O5-Al2-O1  89.08(7)  O7c-Al1-O7  86.3(1)  O5-Al2-O3  88.28(6)  O2d-Al1-O7  85.94(8)  O11-Al2-O3  81.47(6)  O2d-Al1-O7c  85.94(8)  O11-Al2-O5  89.74(6)  90.0  <O-Al2-O>  89.77  O6f-Al3-O11f  98.75(6)  O8-Al4-O4  98.78(8)  O3f-Al3-O11f  82.67(6)  O4a-Al4-O4  92.49(6)  O9-Al3-O11f  97.22(6)  O6f-Al4-O4  97.57(6)  O11e-Al3-O11f  82.84(6)  O10a-Al4-O4  82.02(6)  O6f-Al3-O5  96.38(6)  O6f-Al4-O8  95.02(7)  O3f-Al3-O5  88.11(6)  O10f-Al4-O8  82.03(8)  O9-Al3-O5  89.72(6)  O10a-Al4-O8  81.29(7)  O11e-Al3-O5  81.85(6)  O6f-Al4-O4a  92.39(6)  O3f-Al3-O6f  88.62(6)  O10f-Al4-O4a  84.38(7)  O9-Al3-O6f  99.51(6)  O10a-Al4-O4a  91.45(7)  O11e-Al3-O3f  90.37(6)  O10f-Al4-O6f  101.32(7)  O11e-Al3-O9  81.46(6)  O10a-Al4-O10f  79.30(4)  <O-Al1-O>  <O-Al3-O>  89.79  <O-Al4-O>  89.84  O3f-Si1-O2  109.2(1)  O5-S2-O7  110.87(9)  O3g-Si1-O2  109.2(1)  O4-S2-O7  109.51(9)  O1-Si1-O2  114.8(2)  O6-S2-O7  113.7(1)  O3g-Si1-O3f  107.0(2)  O4-S2-O5  106.53(9)  O1-Si1-O3f  108.20(9)  O6-S2-O5  109.69(8) 143  Table C.5 (cont.)  O1-Si1-O3g  108.20(9)  O6-S2-O4  106.23(8)  <O-Si1-O>  109.4  <O-S2-O>  109.4  O3f-As1-O1  96(2)  O4-As2-O5  88.7(8)  O3g-As1-O1  96(2)  O6-As2-O5  91.0(9)  O3g-As1-O3f  93(2)  O6-As2-O4  87.7(8)  <O-As1-O>  95  <O-As2-O>  89.1  O9h-B-O8  119.0(1)  O9-B-O8  119.0(1)  O9-B-O9h  121.9(2)  <O-B-O>  120  a: x–1/2, y, –z+1/2; b: x–1/2, –y+3/2, –z+1/2; c: x, –y+3/2, z; d: x+1/2, y, – z+1/2; e: –x+1, –y+1, –z+1; f: x–1, y, z; g: x–1, –y+3/2, z; h: x, –y+1/2, z  144  C.2: Crystal refinement data and results for Uvil’dy tourmaline  Table C.6: Single-crystal X-ray collection and refinement information for Uvil'dy colourless tourmaline I.  a (Å)  a = 15.906 (5) Å  c (Å)  c = 7.126 (3) Å  V (Å3)  1561.4 (9) Å3  Space Group  R3m 3  Z Crystal size (mm)  0.3 x 0.08 x 0.08  Radiation  MoKa  Monochromator  Graphite  Observed reflections  12757  Unique reflections  1303  Fo > 4  1294  Fo  0.0343  Rint  L.s. parameters  98  Range of h, k, l  -24 < h < 24, -24 < k < 24, -10 < l < 10  R1 for Fo > 4σ Fo  0.0154  R1 for all unique Fo  0.0155  wR2  0.0376  aw  0.0233  bw  0.3444  GooF (= S)  1.073  -3  ∆ρmax (e Ǻ )  0.35  -3  ∆ρmin (e Ǻ ) 2  w = 1/[s  (F02)  -0.247 2  + (awP) + bwP] where P = [Max(F02,0) + 2Fc2)]/3  145  Table C.7: Positional and displacement parameters (Å2) for Uvil'dy colourless tourmaline I.  Na YMn ZAl  x/a  y/b  z/c  Uiso*/Ueq  Occ.  0.0000  0.0000  0.2072 (4)  0.0244 (8)  0.588 (9)  0.61616 (7)  0.01043 (13)  −0.061165 (15) 0.061165 (15)  Mn 0.202 (5) Al 0.798 (5)  0.29727 (2)  0.26068 (2)  0.59426 (5)  0.00714 (10)  1.004 (4)  Si  0.191709 (18)  0.189770 (19)  −0.01369 (5)  0.00628 (10)  0.990 (4)  B  0.10975 (6)  0.21951 (11)  0.4386 (3)  0.0078 (3)  O1  0.0000  0.0000  0.7557 (4)  0.0263 (5)  O2  −0.12205 (9)  −0.06102 (4)  0.4731 (2)  0.0172 (3)  O3  0.26255 (10)  0.13128 (5)  0.49363 (18)  0.0147 (2)  O4  0.18769 (9)  0.09385 (4)  0.08023 (17)  0.0117 (2)  O5  0.09436 (4)  0.18873 (9)  0.05805 (18)  0.0111 (2)  O6  0.19526 (5)  0.18489 (6)  −0.23984 (14)  0.00952 (16)  O7  0.28646 (5)  0.28646 (5)  0.06307 (12)  0.00846 (16)  O8  0.20963 (6)  0.27059 (6)  0.42391 (12)  0.00921 (16)  H3  0.251 (3)  0.1254 (17)  0.369 (4)  0.074 (14)*  Tabel C.8: Anisotropic displacement parameters (Å2) for Uvil'dy colourless tourmaline I. U11  U22  U33  U12  U13  U23  Na 0.0262 (10) 0.0262 (10) 0.0208 (15) 0.0131 (5) 0.000 0.000 YMN 0.00752 (14) 0.00752 (14) 0.0149 (2) 0.00273 (12) 0.00141 (6) −0.00141 (6) −0.00008 ZAL 0.00722 (14) 0.00847 (14) 0.00564 (15) 0.00385 (10) 0.00078 (10) (10) Si 0.00657 (14) 0.00626 (13) 0.00599 (15) 0.00318 (9) −0.00034 (9) −0.00063 (9) B 0.0082 (4) 0.0084 (6) 0.0070 (7) 0.0042 (3) 0.0005 (2) 0.0009 (5) O1 0.0352 (8) 0.0352 (8) 0.0086 (12) 0.0176 (4) 0.000 0.000 −0.00032 O2 0.0069 (5) 0.0244 (5) 0.0145 (7) 0.0034 (2) −0.0006 (4) (19) O3 0.0288 (6) 0.0135 (3) 0.0069 (5) 0.0144 (3) −0.0004 (4) −0.0002 (2) O4 0.0176 (5) 0.0099 (3) 0.0102 (6) 0.0088 (3) 0.0008 (4) 0.0004 (2) −0.00091 O5 0.0093 (3) 0.0157 (5) 0.0104 (5) 0.0078 (2) −0.0018 (4) (19) O6 0.0107 (3) 0.0113 (3) 0.0062 (4) 0.0052 (3) −0.0001 (2) −0.0004 (2) O7 0.0081 (3) 0.0078 (3) 0.0071 (4) 0.0021 (2) 0.0003 (3) −0.0011 (2) O8 0.0074 (3) 0.0124 (3) 0.0088 (4) 0.0057 (3) 0.0008 (3) 0.0026 (2)  146  Table C.9: Selected bond distances (Å) for Uvil'dy colourless tourmaline I.  Na—O2  2.533 (3)  ZAL—O8  1.9135 (10)  Na—O4  2.7393 (17)  ZAL—O7v  1.9454 (9)  Na—O5  2.8087 (18)  ZAL—O3  1.9797 (9)  YMN—O1  1.9565 (16)  Si—O6  1.6158 (12)  YMN—O2  1.9678 (10)  Si—O7  1.6181 (9)  YMN—O6i  1.9972 (10)  Si—O5  1.6228 (7)  YMN—O3ii  2.1198 (15)  Si—O4  1.6379 (7)  ZAL—O6iii  1.8783 (10)  B—O2vi  1.365 (2)  ZAL—O7iv  1.8812 (10)  B—O8  1.3800 (12)  ZAL—O8iv  1.8871 (9)  Symmetry codes: (i) −y, x−y, z+1; (ii) −y, x−y, z; (iii) x, y, z+1; (iv) −y+2/3, x−y+1/3, z+1/3; (v) −x+y+1/3, −x+2/3, z+2/3; (vi) −x+y, −x, z.  147  Table C.10: Single-crystal X-ray collection and refinement information for Uvil'dy blue tourmaline IV.  a (Å)  15.920 (5) Å  c (Å)  7.117 (2) Å  3  V (Å )  1562.0 (8) Å3  Space Group  R3m 3  Z Crystal size (mm)  0.1 x 0.1 x 0.1  Radiation  MoKa  Monochromator  Graphite  Observed reflections  11896  Unique reflections  1258  Fo > 4  1248  Fo  0.0239  Rint L.s. parameters  96  Range of h, k, l  -24 < h < 24, -24 < k < 24, -10 < l < 10  R1 for Fo > 4  0.0114  Fo  R1 for all unique Fo  0.0117  wR2  0.0276  aw  0.0140  bw  0  GooF (= S)  1.078  ∆ρmax (e Ǻ-3)  0.24  ∆ρmin (e Ǻ-3) 2  w = 1/[s  (F02)  -0.16 2  2  + (awP) + bwP] where P = [Max(F0 ,0) + 2Fc2)]/3  148  Table C.11: Positional and displacement parameters (Å2) for Uvil'dy blue tourmaline IV.  Na  x/a  y/b  z/c  Uiso*/Ueq  Occ.  0  0  0.2019 (3)  0.0215 (6)  0.666 (6) Fe 0.290 (3) +  YFe  −0.061069 (11) 0.061069 (11)  0.61819 (5)  0.00896 (9)  ZAl  0.297325 (19)  0.260956 (19)  0.59326 (4)  0.00665 (8)  1.003 (3)  Si  0.191976 (15)  0.189911 (16)  −0.01419 (4)  0.00602 (8)  0.982 (3)  B  0.10962 (5)  0.21924 (10)  0.4370 (2)  0.0081 (2)  O1  0  0  0.7572 (3)  0.0225 (4)  O2  −0.12199 (7)  −0.06099 (3)  0.47246 (16)  0.0151 (2)  O3  0.26261 (8)  0.13130 (4)  0.49172 (15)  0.0131 (2)  O4  0.18771 (7)  0.09386 (4)  0.08031 (14)  0.01228 (19)  O5  0.09422 (4)  0.18843 (8)  0.05732 (15)  0.01226 (19)  O6  0.19572 (4)  0.18470 (5)  −0.24135 (11)  0.00909 (13)  O7  0.28680 (4)  0.28675 (4)  0.06211 (10)  0.00851 (13)  O8  0.20934 (5)  0.27020 (5)  0.42229 (10)  0.00915 (14)  H3  0.250 (3)  0.1251 (14)  0.380 (4)  0.094 (13)*  Al 0.710 (3)  Table C.12: Anisotropic displacement parameters (Å2) for Uvil'dy blue tourmaline IV. U11  U22  U33  U12  U13  U23  Na  0.0232 (7)  0.0232 (7)  0.0181 (10)  0.0116 (3)  0  0  YFe  0.00670 (11)  0.00670 (11)  0.01243 (17)  0.00256 (10)  0.00123 (5)  −0.00123 (5)  ZAl  0.00679 (12)  0.00741 (12)  0.00583 (13)  0.00362 (9)  −0.00004 (9)  0.00046 (9)  Si  0.00607 (12)  0.00576 (11)  0.00625 (13)  0.00297 (8)  −0.00036 (8)  −0.00060 (8)  B  0.0083 (4)  0.0086 (5)  0.0075 (6)  0.0043 (3)  0.0002 (2)  0.0005 (4)  O1  0.0283 (6)  0.0283 (6)  0.0108 (9)  0.0142 (3)  0  0  O2  0.0068 (4)  0.0214 (4)  0.0121 (5)  0.00338 (19)  −0.0004 (3)  −0.00019 (16)  O3  0.0249 (5)  0.0122 (3)  0.0063 (4)  0.0124 (2)  0.0007 (4)  0.00034 (18)  O4  0.0182 (5)  0.0105 (3)  0.0108 (5)  0.0091 (2)  0.0001 (4)  0.00006 (18)  O5  0.0102 (3)  0.0171 (4)  0.0119 (5)  0.0085 (2)  −0.00118 (17)  −0.0024 (3)  O6  0.0098 (3)  0.0111 (3)  0.0061 (3)  0.0051 (2)  0.0002 (2)  −0.0002 (2)  O7  0.0080 (3)  0.0077 (3)  0.0079 (3)  0.0024 (2)  0.0003 (2)  −0.0012 (2)  O8  0.0068 (3)  0.0112 (3)  0.0098 (3)  0.0048 (2)  0.0008 (2)  0.0025 (2)  149  Table C.13: Selected bond distances (Å) for Uvil'dy blue tourmaline IV.  Na—O2i  2.5563 (18)  ZAL—O8  1.9158 (8)  Na—O4  2.7289 (14)  ZAL—O7vi  1.9384 (8)  Na—O5ii  2.7943 (15)  ZAL—O3  1.9867 (8)  YFE—O1  1.9531 (12)  Si—O7  1.6196 (8)  YFE—O2i  1.9768 (9)  Si—O6  1.6214 (10)  YFE—O6iii  1.9848 (9)  Si—O5  1.6263 (6)  YFE—O3ii  2.1355 (12)  Si—O4  1.6405 (6)  ZAL—O6iv  1.8740 (9)  B—O2i  1.3644 (17)  ZAL—O7v  1.8772 (8)  B—O8  1.3789 (10)  ZAL—O8v  1.8895 (8)  Symmetry codes: (i) −x+y, −x, z; (ii) −y, x−y, z; (iii) −x+y, y, z+1; (iv) x, y, z+1; (v) −y+2/3, x−y+1/3, z+1/3; (vi) −x+y+1/3, −x+2/3, z+2/3.  150  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0073482/manifest

Comment

Related Items