UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Glaucous-winged gulls Larus glaucescens as sentinels for a century of ecosystem change : long-term trends.. 2012

You don't seem to have a PDF reader installed, try download the pdf

Item Metadata


ubc_2013_spring_blight_louise.pdf [ 2.92MB ]
JSON: 1.0073422.json
JSON-LD: 1.0073422+ld.json
RDF/XML (Pretty): 1.0073422.xml
RDF/JSON: 1.0073422+rdf.json
Turtle: 1.0073422+rdf-turtle.txt
N-Triples: 1.0073422+rdf-ntriples.txt

Full Text

GLAUCOUS‐WINGED GULLS LARUS GLAUCESCENS AS SENTINELS FOR A CENTURY OF  ECOSYSTEM CHANGE – LONG‐TERM TRENDS IN POPULATION, DIET, AND EGG PRODUCTION  IN NORTH AMERICA’S SALISH SEA      by        Louise Katherine Blight      M.Sc., Simon Fraser University, 2000        A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  THE REQUIREMENTS FOR THE DEGREE OF  DOCTOR OF PHILOSOPHY      in      The Faculty of Graduate Studies    (Forestry)            THE UNIVERSITY OF BRITISH COLUMBIA  (Vancouver)    December 2012            © Louise Katherine Blight, 2012  ii    Abstract Ecological studies characterising population trends over decades or centuries can help to  describe the range of variability in a study system, with well‐studied species being strong  candidates for providing the long‐term data required for retrospective studies. Seabirds  represent useful real‐time monitors of marine systems and may also play this role in studies  characterizing historical ecological change. The glaucous‐winged gull L. glaucescens is a  generalist marine bird occurring in the Salish Sea, an urbanized coastal area of southwestern  British Columbia and northwestern Washington, where it has been studied or collected since  the mid‐1800s. Its twentieth‐century populations experienced dramatic growth followed by a  steep decline, with recent trajectories unclear. I used multiple methods to characterise long‐ term trends in gull number, diet, and egg production, and to test hypotheses about causes of  population change. My approach combined meta‐analysis of historical reproductive traits,  statistical modeling of population trend, and stable isotope analysis (δ13C, δ15N) of historical  and modern gull feathers and forage fish, with modeled population trend showing a continued  decline in gull numbers from the 1970s to the present. Meta‐analytical results pointed to  decreasing egg and clutch size and a delayed lay date over the twentieth century to the  present, while stable isotope analysis showed declining feather δ13C and δ15N since 1860, all of  which was consistent with a growing reliance by gulls on non‐fish foods. Demographic modeling  showed that declining clutch size and productivity were largely sufficient to account for the gull  population decline, and pointed to recovery from cessation of nineteenth‐century egging as  being an important contributor to the increase phase. These modeling results implied that  iii   declining consumption of forage fish affected gull productivity. Additional results from stable  isotope analysis also supported a hypothesis of dietary change; namely, declining forage fish  C:N ratios over time indicated a decrease in fish lipid content, and thus a decline in prey quality.  Overall, my results highlight the value of compiling multiple retrospective studies to better  understand the complex factors affecting long‐term trends in animal populations.      iv    Preface The field research component of my dissertation was carried out under Permit No. A07‐0309  from the University of British Columbia’s Animal Care Committee, Scientific Permits Nos. BC‐10‐ 0057, BC‐09‐0290 and 10596 P from Environment Canada, and Research Permit No. 102098  from the BC Ministry of Environment (BC Parks). Collection of author‐generated data was  carried out using protocols that explicitly minimised disturbance to breeding birds.   I wrote this dissertation as a series of publishable manuscripts. A version of Chapter 2 was  published as Blight, L.K. 2011. Egg production in a coastal seabird, the glaucous‐winged gull  (Larus glaucescens), declines during the last century. PLoS ONE 6(7):e22027.doi:10.1371/  journal.pone.0022027. I conceived of the research (with the assistance of my supervisory  committee), conducted or supervised the data collection, analysed the data, and wrote the  manuscript.   I wrote Chapter 3 as a draft manuscript for publication in collaboration with Drs. Mark Drever  (Environment Canada) and Peter Arcese (UBC), under the proposed title “Generalist foragers  affected by multiple factors over time: a century‐long population trend of glaucous‐winged  gulls in the Georgia Basin, Canada”. I was responsible for determining the research questions  and approach, collecting the data and supervising its compilation, and writing most of the  manuscript. Mark Drever and I collaborated in determining the questions to be addressed by  the chapter’s population trends model and the secondary analyses of those results. Mark also  wrote the R code for analysing the data, and contributed the relevant text for those sections of  v   the Methods and Results sections. Peter Arcese suggested the use of balance models (following  Walters and Martell 2004) to test hypotheses about causes of population trends, and  developed the prototype demographic models to do so, while I compiled the data that  parameterised the models, and revised model parameters. I also revised the manuscript based  on comments by these two co‐authors.   I also wrote Chapter 4 as a draft manuscript for publication, in collaboration with Drs. Keith  Hobson (Environment Canada) and Peter Arcese (UBC). Its working title is “Changing gull diets  in a changing world: a 150‐year feather isotope record from a northeast Pacific coastal zone”. I  designed the study, collected or coordinated the collection of feather samples and forage fish  muscle tissue from museums, prepared 50% of museum samples for isotopic analysis and  supervised the preparation of the remaining 50%, analysed the data, and wrote the manuscript.  Keith Hobson provided input on interpretation of results, and suggested the use of C:N ratios in  order to compare results with other studies. The sourcing of feathers from museum specimens  was carried out using an international database of museum‐held marine birds compiled by Drs.  Peter Arcese and Ryan Norris, with additional specimens located by me via museums’ online  databases. As co‐authors, Drs. Arcese and Hobson provided editorial comments, and I  incorporated these into the manuscript.  See the first pages of these chapters for footnotes with similar information.  vi    Table of Contents Abstract .......................................................................................................................................... ii  Preface ........................................................................................................................................... iv  Table of Contents .......................................................................................................................... vi  List of Tables ................................................................................................................................... x  List of Figures ................................................................................................................................. xi  Acknowledgements ...................................................................................................................... xii  Dedication .................................................................................................................................... xv  Chapter 1: Introduction .................................................................................................................. 1  1.1 Background ....................................................................................................................... 1  1.2 Study System .................................................................................................................... 9  1.2.1 Study Species and Historical Population Trends ........................................................ 9  1.2.2 Study Area ............................................................................................................... 12  1.3 Hypotheses and Predictions ........................................................................................... 14  1.4 Data Collection: Methods and Rationale ........................................................................ 19  1.4.1 Population Trends ................................................................................................... 20  1.4.2 Diet (stable isotope analysis) ................................................................................... 20  1.4.3 Reproductive Success .............................................................................................. 22  1.4.4 Bald Eagle Predation ................................................................................................ 23  1.5 Overview of the Data Chapters ...................................................................................... 23  vii   Chapter 2: Egg Production in a Coastal Seabird, the Glaucous‐Winged Gull, Declines during the  Last Century .................................................................................................................................. 26  2.1 Introduction .................................................................................................................... 26  2.2 Study Area and Methods ................................................................................................ 30  2.2.1 Study Area ............................................................................................................... 30  2.2.2 Data Sources and Inclusion Criteria ......................................................................... 30  2.2.3 Statistical Analyses .................................................................................................. 35  2.3 Results ............................................................................................................................ 37  2.3.1 Egg Size .................................................................................................................... 37  2.3.2 Clutch Size and First Egg Date .................................................................................. 37  2.4 Discussion ....................................................................................................................... 43  2.4.1 Egg Size, Clutch Size and Lay Date ........................................................................... 43  2.4.2 Alternative Hypotheses ........................................................................................... 47  2.5 Conclusions ..................................................................................................................... 47  2.6 Acknowledgements ........................................................................................................ 49  Chapter 3: A Century of Change in Glaucous‐Winged Gull Populations in a Dynamic Coastal  Environment ................................................................................................................................. 50  3.1 Introduction .................................................................................................................... 50  3.1.1 Food Limitation Hypothesis ..................................................................................... 52  3.1.2 Predation Limitation Hypothesis ............................................................................. 55  3.1.3 Egging Hypothesis .................................................................................................... 55  viii   3.2 Methods ......................................................................................................................... 57  3.2.1 Study Area and Count Data ..................................................................................... 57  3.2.2 Statistical Analyses .................................................................................................. 59  3.2.3 Testing Causes of Population Trends ....................................................................... 61  3.3 Results ............................................................................................................................ 65  3.3.1 Colony Count Data ................................................................................................... 65  3.3.2 Temporal Trends ...................................................................................................... 66  3.3.3 Causes of Population Trends ................................................................................... 71  3.4 Discussion ....................................................................................................................... 73  3.4.1 Colony Counts and Temporal Trends ...................................................................... 73  3.4.2 Causes of Population Trends ................................................................................... 75  3.5 Conclusions ..................................................................................................................... 79  3.6 Acknowledgements ........................................................................................................ 80  Chapter 4: Changing Gull Diets in a Changing World: A 150‐year Feather Isotope Record from a  Northeast Pacific Coastal Zone ..................................................................................................... 82  4.1 Introduction .................................................................................................................... 82  4.2 Methods ......................................................................................................................... 87  4.2.1 Study Area ............................................................................................................... 87  4.2.2 Sample Collection And Stable Isotope Analysis – Feathers ..................................... 89  4.2.3 Sample Collection and Stable Isotope Analysis – Fish ............................................. 92  4.2.4 Statistical Analyses .................................................................................................. 93  ix   4.3 Results ............................................................................................................................ 95  4.3.1 Feather Samples ...................................................................................................... 95  4.3.2 Fish Samples ............................................................................................................ 96  4.4 Discussion ....................................................................................................................... 99  4.5 Conclusions ................................................................................................................... 106  4.6 Acknowledgements ...................................................................................................... 107  Chapter 5: Conclusion ................................................................................................................ 109  5.1 Chapter 2 ...................................................................................................................... 110  5.2 Chapter 3 ...................................................................................................................... 112  5.3 Chapter 4 ...................................................................................................................... 113  5.4 General Conclusions ..................................................................................................... 115  5.5 Limitations of the Study ................................................................................................ 119  5.6 Management implications ............................................................................................ 121  Literature Cited .......................................................................................................................... 122  Appendix 1 .................................................................................................................................. 153  Appendix 2 .................................................................................................................................. 155   x   List of Tables Table 1.1: Initial hypotheses and related predictions for changes in glaucous‐winged gull  populations in the Georgia Basin, British Columbia, over the study period. ................................ 18  Table 2.1: Summary of studies used in standard and meta‐analyses. ......................................... 34  Table 2.2: Summary of all effect sizes used in meta‐analyses of changes in egg and clutch size  over time. ..................................................................................................................................... 40  Table 3.1: Survival estimates for five age classes of glaucous‐winged gulls in the Georgia Basin..  ...................................................................................................................................................... 62  Table 3.2: Parameter estimates for model depicting temporal trends in colony counts of  glaucous‐winged gulls in the Georgia Basin, 1900‐2010. ............................................................. 68  Table 4.1: Estimated years of commencement of forage fish fisheries and population declines in  the Salish Sea, Canada and USA ................................................................................................... 88  Table 4.2: Trends in glaucous‐winged gull feather δ13C and δ15N, based on linear regression for  all feather types. ........................................................................................................................... 96   xi   List of Figures Figure 1.1: The Georgia Basin and Salish Sea ................................................................................. 6  Figure 2.1: Meta‐regression of glaucous‐winged gull egg and clutch size vs. year, Salish Sea (SW  Canada & NW USA). ..................................................................................................................... 38  Figure 2.2: Meta‐regression of glaucous‐winged gull clutch size vs. date of first egg.  ............... 39  Figure 2.3: Date of first egg retreated significantly from 1959 – 2010 ........................................ 39  Figure 3.1: Simple graphical representation of three possible hypotheses to explain glaucous‐ winged gull population trends from 1900 to present  ................................................................. 54  Figure 3.2: Modelled annual bald eagle predation rate on glaucous‐winged gull eggs and chicks  over time, with rate proportional to eagle population size ......................................................... 65  Figure 3.3: Trends in colony counts (loge) of glaucous‐winged gulls in the Georgia Basin, 1900 –  2010 .............................................................................................................................................. 69  Figure 3.4: Variation in location‐specific trend estimates of gull colony counts as a function of  geographical location and colony size class ................................................................................. 70  Figure 3.5: Glaucous‐winged gull population trend, 1900 – 2010, with trajectories from  demographic models .................................................................................................................... 72  Figure 4.1: δ13C and δ15N of feathers from glaucous‐winged gulls, 1860‐2009 (adults) and 1893‐ 2008 (sub‐adults). ......................................................................................................................... 98  Figure 4.2: Trends in stable isotope values of preserved forage fish over time ........................... 99   xii   Acknowledgements Thanks to my academic supervisor, Peter Arcese, for many hours of stimulating conversation on  my research, and for his enthusiasm for this project and for science in general. His love for the  terrestrial and marine ecosystems of the Salish Sea is contagious, and it has been a pleasure to  work with him at university and in the field. I also offer my gratitude to my committee  members John Elliott, Keith Hobson and Kathy Martin. They generously gave of their time and  shared their diverse research backgrounds, and our conversations on their respective areas of  expertise have enhanced my research and writing. Special thanks to David Ainley for providing  his always‐insightful comments on my initial research proposal and the resulting manuscripts.  His ongoing friendship and mentoring have contributed greatly to my development as a  scientist within and outside my PhD.   I would particularly like to acknowledge my amazing field assistant, Tella Osler, who enriched  my dissertation experience by providing two seasons of humour, enthusiasm, friendship,  ingenuity, ideas, and general hard work. Amy Medve did an exemplary job of compiling  historical data into files that are paragons of organisational clarity. Jane Shen meticulously  collected data during my preliminary field season, and always asked good questions. Thanks  also to fellow researchers Joe Bennett, Ryan Germain, Tomás Ibarra, Cheyney Jackson, Andrea  Norris, Rebecca and Jason Sardell, Richard Schuster for providing advice, encouragement and  friendship, and to Mikaela Davis (Simon Fraser University) for thought‐provoking conversations  on gull diet and for generously sharing stable isotope and diet data.  xiii   I am grateful to the following agencies or organisations for funding my research: American  Museum of Natural History (Lerner Gray Grant for Marine Research); Canadian Federation of  University Women (Dr. Alice E. Wilson Award); Green College (Student Travel Award Fund); the  Koerner Foundation (Graduate Fellowship in Sustainable Forestry); Natural Sciences and  Engineering Research Council (NSERC; NSERC CREATE Training Program in Biodiversity  Research, NSERC Postgraduate Scholarship PGS‐D); Pacific Seabird Group (Student Travel  Award); UBC Faculty of Forestry (Graduate Travel Award); Waterbirds Society (Nisbet Grant);  Werner and Hildegard Hesse Research Award in Ornithology; and Western Foundation of  Vertebrate Zoology (in‐kind grant of measurements from their egg collection). I particularly  thank Steve Koerner and Laurie Peers of the Koerner Foundation for their personal interest in  and encouragement of my research. Aspects of my fieldwork and lab analyses were supported  via Peter Arcese’s NSERC Discovery Grant and his funding from the BC Ministry of Forests  (Forest Investment Account).  A wildlife study investigating 150‐year trends in population and diet must draw upon data  compiled from a multitude of sources. For my dissertation I not only collected my own data but  also utilised museum specimens, museum records, and the published and unpublished studies  of several generations of researchers, with data collected and analysed using a variety of field‐ based, lab‐based and statistical techniques. This project would not have been possible without  the assistance of numerous people, and I thank them all. These many collaborators and  contributors are listed in the specific chapters to which they contributed.   xiv   Discussions with friends and colleagues working on gulls, other seabirds, and related  ecosystems also helped me to develop my overall research approaches. Thanks to Doug  Bertram (Environment Canada), Russ Bradley (Point Reyes Bird Observatory), Carmen Cadrin  (BC Ministry of Environment), Joe Galusha (Walla Walla University), Jim Hayward (Andrews  University), Stephanie Hazlitt (UBC and BC Ministry of Environment), Kees Vermeer  (Environment Canada, retired), Scott Pearson (Washington Department of Fish and Wildlife),  and Tony Williams (Simon Fraser University). Ryan Norris provided initial comments on an early  iteration of the stable isotope portion of my research proposal, and contributed his detailed  template for museum sampling proposals. Moira Galbraith and her students identified  invertebrates in gull food samples, and Peter Pyle engaged in useful discussions on moult  patterns in glaucous‐winged gulls. Our fieldwork at Mandarte Island was conducted as guests of  the Tswaout and Tseycum First Nations.  Finally, thank you to my friends and family for their ongoing personal support and  encouragement. I particularly thank Iain, for reintroducing me to playing music and otherwise  reminding me of the joyful side of life, and Jo, for always making me laugh. Robbie Robinson’s  initial financial advice and assistance got me going on my PhD, and Thomi Glover was always  there with welcome advice. And thanks to Jon Wiltse and Burgundy Brixx for keeping the right  side of my brain engaged with piano and dance lessons during the write‐up phase.  xv    Dedication For Iain, Andréa, and the seagulls     1  Chapter 1:  Introduction 1.1 Background One of the big questions in ecology is what constitutes a natural change in animal populations.  Increasing awareness about the limitations of short‐term datasets (e.g., Pauly 1995, Jackson et  al. 2011) has spurred efforts to reconstruct population trends over timescales of decades,  centuries, and even millennia for a host of taxa including fish, birds, marine mammals, and  invertebrates (Holmgren‐Urba and Baumgartner 1993, Chamberlain et al. 2005, Lotze et al.  2006, Schindler et al. 2006). Similar approaches over similar timelines have been used to  reconstruct other aspects of animal biology, including diet, community composition, size‐at‐ age, genetic diversity, and geographical range (Weber et al. 2000, McClenachan et al. 2006,  Emslie and Patterson 2007, Norris et al. 2007, Ainley and Blight 2009, McClenachan 2009). In  applied situations, long‐term baselines are useful because ecosystems have often been shaped  by human activities, and accurate historical information on the range of variability improves our  estimates of accumulated changes (Wiens 1984, Arcese and Sinclair 1997), as well as our  predictions about future states and our ability to manage them (Lotze et al. 2006). Additionally,  identifying long‐term baseline conditions contributes to our basic understanding of the  mechanisms that allow ecosystems to withstand perturbations and maintain overall resilience  (Pauly et al. 1998a, b, Folke et al. 2004).  Though useful, the development of such baselines over scales of more than a few decades is  hindered by a paucity of relevant data (Pinnegar and Engelhard 2008). While some long‐term  studies are able to use the relatively straightforward approach of contrasting early surveys with   2  modern population records (e.g., Tingley et al. 2009), such records do not exist for the majority  of species. Even when they are available, published population or occurrence records selcom  extend back more than a century for any taxon. Applied historical ecology is a synoptic and  sometimes multi‐disciplinary approach that uses historical knowledge, broadly defined, to  reconstruct long‐term trends in order to inform our understanding of ecological baselines, as  well as to contribute to ecosystem management (Swetnam et al. 1999, Schrope 2006, HMAP  2008). Due to the seminal work of prominent ecologists (e.g., Pauly 1995, Pauly et al. 1998a,  Jackson et al. 2001, Schrope 2006, Lotze and Worm 2009, Jackson et al. 2011), efforts to  reconstruct historical trends are now particularly advanced for marine systems, with some  reconstructions dating back to the early days of European exploitation of the seas.   The study of causes of changes in marine ecosystems through time, marine historical ecology  uses diverse sources of early biological information that often pre‐date modern collection  methods such as population surveys. These may include more conventional historical sources  (e.g., archived data or unpublished museum records), but also less traditional ones such as old  logbooks and other historical documents, and genetic or stable isotope analysis of museum or  archaeological specimens (e.g., Sáenz‐Arroyo et al. 2006, Pinnegar and Engelhard 2008,  Gutowsky et al. 2009). For example, McClenachan et al. (2006) used explorers’ accounts and  trade records to map historical nesting beaches of Caribbean sea turtles back to the 1600s,  concluding that current populations are currently at <1% of their pre‐exploitation abundance.  Ferretti et al. (2008) utilised multiple historical sources and extracted data from fisheries  landings, sightings records and scientific surveys to reconstruct the population trends of large  Mediterranean sharks for the nineteenth and twentieth centuries, revealing similarly steep   3  declines. Even studies that are primarily archaeological in nature may provide a context against  which to measure current states, such as the changing nesting or migratory distribution of  seabirds over hundreds to thousands of years (e.g., Causey et al. 2005, Bovy 2007).   Although the unconventional nature of these and other data sources can complicate  comparisons with data collected in modern times, this problem can be addressed by application  of robust methods such as Bayesian statistics or meta‐analysis, with the resulting output  providing credible information on long‐term trends (e.g., Ferretti et al. 2008 and in prep, Blight  2011). Oral histories are less frequently used (Claesson et al. 2010), but present their own  particular set of issues regarding validation of potential data and are not discussed further here.   Many historical reconstructions focus on species thought to be indicative of broader ecosystem  trends by virtue of their links to essential system processes or trophic levels. The concept of  indicator or sentinel species is well established as a way to monitor current or emerging  ecosystem conditions, but the same approach, used retrospectively, can also provide insight  into past ecological states or long‐term changes. “Sentinel” species have been described as  those that provide “early warning in the case of unsustainable harvesting practices” (Grémillet  and Charmantier 2010: 1499), or sound “an alarm that may indicate an unknown pollution or  food supply problem” (Furness and Camphuysen 1997: 727); similarly, an indicator species can  be “a species that reflects the effects of a disturbance regime” (Lindenmayer et al. 2000: 943),  or, more broadly, something that is used as a “surrogate measure” (Landres et al. 1988: 317).  Colonial seabird species are seen as ideal environmental indicators as they are easily  monitored, and frequently consume prey species that are also consumed by humans (i.e., birds   4  can help to monitor fish stocks; Montevecchi 1993, Furness and Camphuysen 1997, Piatt et al.  2007), sampling marine environments at a nested hierarchy of spatial and temporal scales  (Woehler 2012). In addition, a number of seabird species are common, or occur in high  numbers at relatively few breeding locations. This coloniality facilitates sampling by  researchers, and commonly occurring species can allow for study designs that provide greater  statistical power (Koch et al. 2011).   With their reduced predictive power, short‐term studies can limit the reliability of seabirds as  indicators (Woehler 2012), but there are now a number of datasets in existence that track  seabird populations over multiple decades (e.g., Coulson and Thomas 1985, Ainley 2002, Mills  et al. 2008, Cury et al. 2011). However, fewer studies have taken a synoptic approach and  provided a detailed overview of changes in seabird biology over a century or more, thus  capturing the effects of early exploitation, rare stochastic events, or multi‐generational  environmental change (for examples see Thompson et al. 1995, Rauzon 2001, Lotze 2005, Bovy  2007, Emslie and Patterson 2007, Garthe and Flore 2007, Grandgeorge et al. 2008). These long‐ term studies are of interest not only for the general scientific reasons mentioned above, but  because the very traits that have made seabirds reliable indicators – their coloniality,  competition with humans for fish prey, and sensitivity to environmental changes – have also  made them vulnerable to human impacts (cf. Croxall et al. 2012). Because of this, many seabird  species now occur at only a fraction of their former abundance, in habitats as diverse as the  North Sea coast and the uninhabited archipelagos of the tropical Pacific Ocean (Lotze 2005,  Blight et al. 2006). Studies that promote a greater understanding of these declines and their  causes are of considerable value for purposes of conservation.    5  A wealth of research worldwide has shown quantitatively how seabird survival and  reproductive output (as well as other traits such as behaviour, phenology, and physiology) are  linked with the availability of prey at sea, and how natural or anthropogenic crashes in fish  stocks or changes in prey phenology can dramatically affect the population trajectories of  seabird predators (reviewed in Piatt et al. 2007). For example, Crawford et al. (2007) suggested  that by the latter part of the twentieth century, the carrying capacity of the Benguela Current  for African penguins Spheniscus demersus was reduced to 10 –20% of that of the 1920s, as a  result of environmental variability and competition for forage fish with humans and with  growing populations of fur seals Arctocephalus pusillus. Similarly, effects of both climate change  and the harvesting of fish and krill have been linked to declines in certain seabird populations  breeding in Antarctic waters (Ainley and Blight 2009, Trivelpiece et al. 2010). In the California  Current system, breeding behaviour and success of auk species have been correlated with both  prey declines and changes to the timing of prey availability, linked to sea surface temperature  shifts (Bertram et al. 2001, 2005, Blight et al. 2010). Mechanisms linking seabird population  trends with declining availability of their prey include breeding propensity (Schreiber and  Schreiber 1984, Murphy et al. 1992), decreased egg production and number of chicks fledged  (Hiom et al. 1991, Bertram et al. 2001, 2005, Wanless et al. 2005, 2007), and even survival of  adults when conditions are particularly poor (Barber and Chavez 1983).  Seabird population changes related to food or other stressors may occur system‐wide, as in the  examples above, or may take place at a more local level. In the inshore waters of the Salish Sea    6    Figure 1.1: The Georgia Basin and Salish Sea. Grey line showing Canada/US border denotes boundary between Georgia Basin (Canada) and Puget Sound (USA) regions, which together approximately form the Salish Sea. © The SeaDoc Society / Norman Maher, with permission.   (coastal Washington (WA) and British Columbia (BC); Fig. 1.1; described in Study Area, below),  the by‐products of a rapidly growing human population (e.g., pollution, habitat and species loss,  and overfishing) have affected coastal and marine ecosystems since at least the advent of   7  European colonisation (Province of British Columbia 1915, Fraser et al. 2006, Johannessen and  Macdonald 2009), with seabirds being among the wildlife species affected by these changes  (Norris et al. 2007, Blight in prep.). The goal of my dissertation research was to reconstruct  long‐term trends in population size, diet, and breeding biology of the glaucous‐winged gull  Larus glaucescens, a Salish Sea marine bird, and to use this information to infer aspects of past  ecological conditions in my study system. This species underwent population declines in the  region in the late twentieth century, and prior to my research this decline appeared to have  continued into the 2000s (Sullivan et al. 2002).   The glaucous‐winged gull is a widespread and abundant mesopredator of North Pacific marine  and nearshore ecosystems, and its presence near human habitations means it has been the  subject of a number of studies since Europeans settled in the region. Gulls are a tractable  species for studies of environmental change because their dietary plasticity means they are  highly adaptable to anthropogenic effects on their environment; as with other trophic  generalists, they may track such changes without being extirpated by them (Purvis et al. 2000,  Layman et al. 2007). The specific objectives of my research were to:  • Compile approximately 100 years of historical population data for glaucous‐winged gulls  in the Canadian portion of the Salish Sea (the Georgia Basin; see Study area, below), and  conduct the first comprehensive population inventory in the study region in 25 years;  • Use this updated dataset to provide the first quantitative estimates of long‐term  population trend within the region;   8  • Use stable isotope (δ13C and δ15N) analysis of feathers from modern birds and museum  specimens to track long‐term (150 y) dietary changes in glaucous‐winged gulls in the  study area;   • Assess historical trends in reproductive output of glaucous‐winged gulls in the region,  and test for relationships of these trends to changes in gull diet;   • Test competing hypotheses about the potential drivers of glaucous‐winged gull  population trends over the past century; and  • Conduct this work in a way that would facilitate the development of methods using gulls  for long‐term monitoring strategies in coastal marine ecosystems.   Despite the examples cited herein, marine birds in general are poorly represented in the  historical ecology literature (HMAP 2008), so this work represented a potential expansion of  existing approaches in this field. In the remainder of this chapter, I (i) describe the study system  (the biology of the study species and its known history of population change; the study area);  (ii) introduce a set of hypotheses to explain these changes, and their related predictions; (iii)  describe the data I used to test these predictions; and (iv) provide a general overview of each  subsequent chapter. Details of data collection methods and analyses are outlined in the specific  chapters to which they apply.   9  1.2 Study System 1.2.1 Study Species and Historical Population Trends The glaucous‐winged gull has a global breeding range that extends around the northern coastal  Pacific from northwest Oregon to the islands of the western Bering Sea and the Kamchatka  Peninsula (Hayward and Verbeek 2008). A conspicuous species with accessible nesting colonies,  it has been studied by ecologists and naturalists in North America for the last 100+ years, with  periodic surveys carried out at nesting colonies in the Salish Sea since at least 1900 (Anonymous  1908, Drent and Guiguet 1961, Hayward and Verbeek 2008; Appendix 2) and eggs and skins  collected from 1860 on (Carter and Sealy 2011; Chapters 2 and 4).   Early twentieth century trends had not been described in detail prior to my research, but  various partial reports from the Georgia Basin show that the glaucous‐winged gull underwent a  rapid and dramatic increase in population size in the early‐ to mid‐twentieth century. Prior to  the 1960s, counts of nesting gulls in the region were largely opportunistic (Anonymous 1908,  Drent and Guiguet 1961, Drent et al. 1964, Campbell et al. 1990). In 1961, pre‐existing count  data were compiled for all Georgia Basin glaucous‐winged gull colonies (Drent and Guiguet  1961), while in the 1970s and 1980s two censuses of the population (76 localities) were  conducted (Campbell 1976, Vermeer and Devito 1989). These more detailed studies showed  the population experiencing an overall annual growth rate of 2.9% from 1960 to 1986 (Drent  and Guiguet 1961, Vermeer and Devito 1989, Vermeer 1992, Hayward and Verbeek 2008). A  subset of 14 of these colonies was re‐censused in 1997 and 1999 (Sullivan et al. 2002), with  results indicating a decline of 31% in nesting pairs in comparison with the counts at the same   10  colonies in 1986. Whether similar declines had occurred at other Georgia Basin colonies, or if  they had continued to the present, was unknown prior to my study. Other recent research  suggested that glaucous‐winged gulls breeding in the US portion of the Salish Sea were also in  decline since about the 1980s (Galusha and Hayward 2002, Hayward and Verbeek 2008,  Hayward et al. 2010). Glaucous‐winged gulls breeding on the west coast of Vancouver Island  (Fig. 1.1) decreased sharply in number in the 1960s in response to declines in herring  populations, and have since stabilised at those reduced numbers (Parks Canada 2009). Trends  in Alaska are poorly documented except at half a dozen sites, where they have been variable  (Hayward and Verbeek 2008, Dragoo et al. 2010).  Glaucous‐winged gulls nest colonially on isolated rocky islets and, relatively recently, on flat‐ roofed buildings in urban areas (Hayward and Verbeek 2008). Colonies range‐wide are  comprised of a few to several thousand pairs, though in BC the four largest colonies currently  only range from about 1100 to 1900 pairs in size, down from historical highs of about 2500  pairs per colony in the 1970s and 1980s (Vermeer and Devito 1989; Appendix 2). On very small  islets and some rooftops and pilings, birds nest as single pairs. Egg‐laying begins in May;  clutches are typically comprised of three, but frequently of two, eggs, at least in recent years  (see Chapter 2). Partial incubation starts with the first egg, with full incubation commencing  when the clutch is complete (LKB pers. obs.). Incubation averages about 27 d (Hayward and  Verbeek 2008). A chick’s first flight occurs between 37 and 53 d (Hayward and Verbeek 2008),  but fledging is generally defined as survival beyond 28 d (Vermeer 1963) or 31 d (Reid 1988a),  as approximately 90% of mortality occurs prior to day 30. Individuals can be long‐lived, with the  oldest known banded bird surviving to more than 37 years of age (Campbell 2007).    11  Glaucous‐winged gull diet in the Salish Sea is mainly comprised of small fishes (primarily Pacific  herring Clupea pallasii and Pacific sandlance Ammodytes hexapterus; Ward 1973, Vermeer  1982, Davis in prep; LKB pers. obs.), as well as intertidal invertebrates (e.g., crabs, sea stars,  bivalves), carrion, spawning salmon, and trash (Hayward and Verbeek 2008, LKB unpubl. data).  Garbage found in pellets regurgitated by adult glaucous‐winged gulls included chicken, beef and  pork bones, as well as trash such as string, paper and bottle caps. Garbage regurgitated by  adults to their chicks have included French fries and raw chicken (Ward 1973, Davis in prep; LKB  pers. obs.). Euphausiids are not thought to be an important prey item for glaucous‐winged gulls  (Hayward and Verbeek 2008) but the euphausiid (krill) Thysanoessa spinifera made up a  substantial portion of the diet (est. 25%; LKB pers. obs.) at Mandarte Island (see Study area,  below) early in the 2008 breeding season, underscoring the ability of this species to switch prey  in concert with changing environmental conditions (cf. Pierotti and Annett 1990).1    Seabirds have evolved island nesting in part as a response to terrestrial predators (Warham  1990). Nonetheless, breeding glaucous‐winged gulls (and their eggs and chicks) are taken by  predatory birds and mammals in the Salish Sea, primarily bald eagles Haliaeetus leucocephalus,  and, less frequently, by Northwestern crows Corvus caurinus and river otters Lontra canadensis  (Kennedy 1968, Hayward et al. 1975, Foottit and Butler 1977, Verbeek and Morgan 1978,  Verbeek 1982, Vermeer and Devito 1989, Galusha et al. 2010). Bald eagles are important apex  predators in coastal marine ecosystems, and some researchers propose that eagles have driven  gull population trends over recent decades (Hayward et al. 2010; see Section 1.3, Hypotheses                                                         1 This dietary anomaly was likely attributable to the cold waters of a La Niña year as T. spinifera  inhabits colder waters and therefore tends to be confined to more offshore habitat in British      12  and predictions, below). Intraspecific predation of chicks by adults is also responsible for a  proportion of chick loss in glaucous‐winged gull colonies, but this factor is greatly increased by  human disturbance because chicks are killed when they flee into neighbouring territories; at  one colony, chick mortality was about 2.5 times higher in experimental vs. control plots, even  though plots were vegetated and chicks presumably able to hide (Gillett et al. 1975). Chicks are  more commonly killed by neighbouring adults at nest sites with few places for fleeing chicks to  conceal themselves (e.g., rooftops, rocky sites with no vegetation cover) so that disturbance at  such sites has a disproportionate effect on chick mortality (Vermeer et al. 1988, LKB pers. obs.).  1.2.2 Study Area Based on what is known about their migratory and dispersal patterns from several banding  studies (e.g., birds tend to move only 10s of kms from their colonies in winter, and birds  dispersing from natal to breeding sites remain within the Salish Sea; Sprot 1937, Woodbury and  Knight 1951, Pearce 1963, Butler et al. 1980, Reid 1988a, Hayward and Verbeek 2008), the  glaucous‐winged gulls of the Salish Sea likely represent one population. The Salish Sea is a  coastal region bounded by the Coast Range and the Vancouver Island Mountains to the east  and west, respectively, and includes the Strait of Georgia, Puget Sound, and the eastern Strait  of Juan de Fuca (Fig. 1.1). This region’s coastal marine systems have recently been ranked as  being heavily altered by human activities (Halpern et al. 2008). This was the study area for  Chapters 2 and 4, although for the purposes of my research I excluded Puget Sound south of  the San Juan Islands. For Chapter 3, on modelling of long‐term population trends, my study  took place in the Canadian portion of the Salish Sea only (the Georgia Basin; Fig. 1.1), as   13  historical population data were less accessible for US gull colonies. Three of BC’s four largest  glaucous‐winged gull colonies (Chain Islets, Mandarte Island, and Mitlenatch Island) are  situated in the Georgia Basin. This area is occupied by approximately 50% of the Canadian  population of this species (Campbell et al. 1990, Vermeer and Devito 1989, Hayward and  Verbeek 2008), so that changes here represent substantive changes to the Canadian population  in general. A number of smaller Georgia Basin colonies currently consisting of one to ~300 pairs  are found on islets, and occasionally on cliffs and pilings. A list of Georgia Basin glaucous‐ winged gull colonies is provided in Appendix 2.  My colony‐based fieldwork to collect reproductive data took place at Mandarte Island, BC  (48.633° N, 123.283° W; Fig. 1.1). Periodic censuses (total of 23 annual counts or estimates to  2009) of glaucous‐winged gulls have been conducted there since 1915, when a warden was  placed on the island to regulate waterbird hunting and egg collection (Province of British  Columbia 1915, 1916, Drent and Guiguet 1961). Mandarte Island has been the site of a UBC‐ affiliated summer research station since 1957, when studies on the behaviour, breeding biology  and diet of glaucous‐winged gulls were initiated (Vermeer 1963, Drent et al. 1964). Further  research on Mandarte Island gulls has been conducted periodically since that time (Henderson  1972, Ward 1973, Hunt and Hunt 1976, Verbeek 1979, Vermeer 1982, Verbeek 1986, Davis in  prep.), providing, in combination with data from other Salish Sea colonies (see Appendix 1), a  solid source of baseline data for comparison with contemporary estimates of reproductive  success (RS) and population size.    14  1.3 Hypotheses and Predictions The literature suggests two primary hypotheses to explain overall glaucous‐winged gull trends  within the study area, and I briefly review them here:   (1) Gull populations were originally food‐limited, so that survival increased in concert with  human population growth and increasing availability of garbage, and subsequently decreased  as waste management practices changed to burying garbage and/or shipping it out of the  region (Drent and Guiguet 1961, Vermeer and Devito 1989, Vermeer 1992). The availability of  garbage has been positively correlated with Larus gull productivity and population increases  elsewhere (Spaans 1971, Pons and Migot 1995, Auman et al. 2008, Weiser and Powell 2010).  However, conflicting results have been reported in other gull studies, where more successful  pairs avoided garbage and fed their young on fish or other natural foods (Ward 1973, PIerotti  and Annett 1990, Annett and Pierotti 1999). However, it is possible that increased garbage may  only have compensated for the overfishing that greatly reduced the number of dead post‐ spawning salmon available during fall and winter on the BC and Washington coast in the late  nineteenth century (Jewett et al. 1953, Pearse 1963, Hayward and Verbeek 2008), and for the  reduction in populations of other forage fish species (see Hypothesis 3, below).   A potentially complementary hypothesis to explain centennial trends suggests that: (2)  glaucous winged gull populations were originally limited by predation, i.e., gull survival  increased when bald eagle populations declined from hunting and environmental contaminants  such as DDT, and subsequently decreased as eagles responded to protection and reduced  environmental contaminant levels (Elliott and Harris 2002, Sullivan et al. 2002, Hayward et al.   15  2010). Supporting this hypothesis is a study that examined prey items at Salish Sea eagle nests  and found that glaucous‐winged gulls were the most common prey item, comprising 35% of  remains (Vermeer et al 1989). However, based on comparison with direct nest observations,  studies of prey remains at eagle nests are known to strongly bias results by underestimating the  contribution of fish and overestimating that of birds to eagle diet (Mersmann et al. 1992, Elliott  et al. 2005a); bird are less completely ingested and their remains persist longer. Such studies  also do not distinguish between depredated and scavenged items. More detailed observations  have shown that Georgia Basin eagles predominantly bring fish to the nest, with some  researchers suggesting birds are poor‐quality prey items that are only important in winter after  spawning salmon or other fish are no longer available (Elliott et al. 2005a, 2011). Eagle  disturbance can also lead to nest neglect by breeding gulls, leaving their eggs and small chicks  vulnerable to predation by conspecifics and other predators such as crows (Sullivan et al. 2002,  Hipfner et al. 2012). However, the species’ aggressive territoriality and relative tolerance to  disturbance may also limit eagle‐facilitated predation as nesting glaucous‐winged gulls rapidly  settle on their nest after disturbances, and drive away conspecifics and crows (Gillett et al.  1975; LKB pers. obs., J. Elliott pers. comm.).   Because fish‐eating gulls often appear to have higher reproductive success than their  conspecifics that eat garbage, and because prey fluctuations are thought to have affected other  piscivorous seabirds in the Salish Sea (e.g., Norris et al. 2007, Anderson et al. 2009a, Gutowsky  et al. 2009), I also hypothesized that: (3) long‐term declines in fish prey availability may have  contributed to glaucous‐winged gull population trends, at least in the decline phase.  Commercial fisheries have exerted a strong influence on Salish Sea ecosystem composition and   16  function over the last 100 or more years, with the level of commercial extraction of British  Columbia’s marine biomass similar in 1910 to that of the early 2000s (Pauly et al. 1998b). Pacific  herring, for example, an important prey item for marine birds in the region, was heavily fished  as early as 1910 and crashed in the 1960s due to overexploitation by a reduction fishery  (Wallace 1998, Stocker et al. 2001, Stick and Lindquist 2009). For some Salish Sea herring  populations the duration of spawning since the 1970s has decreased and become confined to a  geographically smaller area, potentially affecting availability to birds (Therriault et al. 2009),  while others exist at a fraction of their historical abundance (Stick et al. 2005, Stick and  Lindquist 2009). Herring size‐at‐age has also declined, potentially decreasing their food value  (Therriault et al. 2009). Other prey species once numerous enough to support a commercial  fishery, e.g., eulachon Thaleichthyes pacificus, have all but disappeared from the Salish Sea  (Moody and Pitcher 2010).   Given the long timelines involved in my study, it is also possible that these three factors had  acted sequentially, or in concert. The first two hypotheses imply that regional gull population  numbers climbed to artificially high levels in the mid‐twentieth century and that the population  baseline was closer to the low numbers observed at the start of the twentieth century, whereas  the third hypothesis suggests that early gull numbers were suppressed. These three hypotheses  are discussed in greater detail in Chapters 2 – 4.    For my research I used a common set of measurements to test several predictions derived from  these hypotheses, and applied the measurements to each hypothesis as appropriate. The  common measurements in my study were changes in: (a) population abundance (number of   17  breeding pairs); (b) δ15N (from isotopic analysis of gull feathers from living and museum‐ archived gulls); (c) δ13C (isotopic analysis of the same feathers); and (d) a suite of breeding  parameters. I also wished to address the null hypothesis of no recent change to glaucous‐ winged gull numbers in the study area: colony counts in the study area and vicinity have not  been comprehensive, and it was possible that the decline reported by Sullivan et al. (2002) was  not widespread or ongoing, or that observed trends were explained by a trend toward nesting  in urban areas.   My initial hypotheses and derived predictions are summarised in Table 1.1. However, my  understanding of the system evolved as research progressed. For example, I learned from  accounts of early naturalists and biologists that human egging likely played a greater role in  determining population trends than many modern reports have suggested. Early researchers  stated that systematic human egging had led to gull population declines (Province of British  Columbia 1915, 1916, Pearse 1923), while subsequent research suggested that US and  Canadian populations grew in the early 1900s in response to legislated protection that resulted  in cessation of egging and other persecution (Drent and Guiguet 1961, Reid 1988a), as did  colonial bird populations through much of North America and elsewhere (Reid 1988a, Duhem  et al. 2008, Grandgeorge et al. 2008). I therefore modified my initial hypotheses and  predictions, as described in the subsequent data chapters and the Conclusion to this thesis.       18  Table 1.1: Initial hypotheses and related predictions for changes in glaucous-winged gull populations in the Georgia Basin, British Columbia, over the study period. Prediction  (measure) –  chapter where  addressed  Reproductive  success (RS; various  measurements, 21st  vs. mid‐20th C) –  Chapter 2  Abundance (no.  breeding pairs  over time) –  Chapter 3  δ15N (tissue levels  of sub‐adult &  adult 15N over  time) – Chapter 4  δ13C (tissue levels  of sub‐adult &  adult 13C over  time) – Chapter 4  Hypothesis ‐  Description  (Mechanism)          H0. “No  population  change in Salish  Sea” (Observed  trend not real;  surveys  inadequate to  capture real trend)  ‐ No change in RS  parameters, 21st vs.  mid‐20th C  ‐ Christmas Bird  Count, Breeding  Bird Survey show  no decrease over  time    ‐ No correlation  between δ15N and  population trend  ‐ No correlation  between δ13C and  population trend  H1. “Garbage  (food limitation)”  – Human food  (garbage)  beneficial for gull  pop’ns, which  increased then  decreased with  changing human  waste  management  practices  (Increasing and  then decreasing  availability of  human food acting  on aspect(s) of  vital rates)   ‐ Observed increases  and then decreases  in one or more of  the following: clutch  size; egg size; hatch  success; chick mass  at fledging; fledging  success;  reproductive output  (fledglings/ female)  ‐ Population  increases with  access to garbage  dumps, then  levels off as  carrying capacity  is reached or  declines  following waste  management  improvement ca.  1980  ‐ δ15N trend not  predictable as  terrestrial systems  depleted in 15N  relative to marine,  but agriculturally‐ based systems  (i.e., often source  of garbage in gull  diet) can be  enriched    ‐ δ15N levels same  in adults, sub‐ adults, as both eat  easily‐accessed  garbage instead of  fish  ‐ Gulls from  periods where  population mainly  feeding on  garbage will show  lower tissue levels  of 13C (less marine  diet)   ‐ Tissue 13C will be  correlated with  population  increase and  decrease (%  garbage in diet),  i.e., will show  quadratic trend  H2. “Bald eagle  predation” –  Increasing  disturbance and  depredation by  eagles as their  pop’ns recover  (Mesopredator  ‐ Number of eagle  days at colony (=  index of predation,  disturbance)  correlated with gull  nest survival (hatch  success, fledge  success, or  ‐ Gull population  trends track  eagle population  numbers  X  X   19  Prediction  (measure) –  chapter where  addressed  Reproductive  success (RS; various  measurements, 21st  vs. mid‐20th C) –  Chapter 2  Abundance (no.  breeding pairs  over time) –  Chapter 3  δ15N (tissue levels  of sub‐adult &  adult 15N over  time) – Chapter 4  δ13C (tissue levels  of sub‐adult &  adult 13C over  time) – Chapter 4  release, followed  by decreased  reproductive  output due to  increased  predation and  disturbance)   reproductive  output) – Not  addressed in my  research, due to  inadequacy of  historical data  H3. “Fish prey  availability”  –  Availability and  quantity of forage  fish prey has  declined  (Declining food  quality/quantity  acting on aspect(s)  of vital rates)    ‐ Observed  decreases in one or  more of the  following: clutch  size; egg size; hatch  success; chick mass  at fledging; fledging  success;  reproductive output  (fledglings/ female);  lay date delayed  ‐ Overall declines  in population  numbers as  forage fish  disappear in  Salish Sea        ‐ In population  decline phase, 15N  shows decrease  over time as gulls  ‘forage down the  food chain’  ‐ Gulls prey‐switch  among different  forage fish spp.  over time: gull  tissues show  “marine” δ13C  values over time;  or  ‐ Gulls switch from  forage fish to  intertidal inverts  and/or garbage:  tissues less  enriched in 13C  over time    1.4 Data Collection: Methods and Rationale Here I provide an overview of the methodological approaches I used for each part of my study,  and why I selected them. Details of data collection methods and the rationales for choosing  them are provided in the relevant chapters.   20  1.4.1 Population Trends At the start of my study, available compilations of census data and trend estimates were  decades old (Drent and Guiguet 1961, Campbell 1976, Vermeer and Devito 1989, Campbell et  al. 1990) or only included a small proportion of the colonies in the study area (Sullivan et al.  2002). I compiled all historical count data available for glaucous‐winged gull colonies in the  Georgia Basin, and supplemented those with data from the census I conducted in 2009 – 2010.  Formally testing the null hypothesis of no decline by surveying urban colonies was beyond the  scope of my study (as was determining whether gulls had instead emigrated to other regions),  but I reviewed data from other studies to assess indirectly whether Salish Sea glaucous‐winged  gulls had simply moved to new nesting habitat within or outside the region. Christmas Bird  Counts (CBCs) and other regional surveys (National Audubon Society 2011, Bower 2009, Crewe  et al. 2010) provided a relevant supplemental source of population information here.  1.4.2 Diet (stable isotope analysis) Levels of stable nitrogen (14N/15N) and carbon (12C/13C) isotopes in animal tissues have often  been used to explore animal diet and the structure of marine food webs (e.g., Dawson and  Siegwolf 2007), with δ15N values indicating relative trophic level and δ13C distinguishing among  terrestrial, nearshore, and pelagic prey (Hobson et al. 1994). Stable isotope analysis is  considered a more powerful approach than conventional diet studies as it integrates diet over  the life of the analyzed tissue. Thus, bone provides an animal’s lifetime dietary values while  feathers or blood reflect diet over a period of months, weeks or days. Stable isotope techniques  have been widely embraced by seabird researchers and used in a wealth of studies to   21  investigate, among other things, diet, niche partitioning, and trophic relationships. For example,  isotopic analysis has been used to examine the role of seabirds in diets of native and non‐native  rodent predators, enhancing our understanding of the trophic pathways of certain remote  island systems (Hobson et al. 1999, Drever et al. 2000, Stapp 2002). Other studies have  characterised how sympatric seabird taxa segregate diets within and among seasons (Hobson  et al. 1994, Cherel et al. 2007, Davies et al. 2009) or shown how different populations of the  same species may differ in the types of foods consumed (Auman et al. 2011).  While stable isotope techniques are most commonly used to study contemporary food webs,  more recently researchers have turned to analysing archived specimens or ancient remains  preserved in situ to examine historical dietary changes and answer questions about how diets  of seabirds and other animals have changed over decades, centuries or even millennia (e.g.,  Thompson et al. 1995, Emslie and Patterson 2007, Norris et al. 2007, Hebert et al. 2008). The  availability of hard tissues such as bones, eggshells and feathers in museum collections and at  various archaeological deposits have proven to be valuable resources for researchers interested  in reconstructing past diets, with an early foray into this technique even applied to the remains  of an extinct marine bird, the great auk Pinguinus impennis (Hobson and Montevecchi 1991).   Apart from its well‐established tradition of being used for marine birds in general, I considered  a stable isotope approach to be tractable for my study system in particular as it had already  been used successfully, e.g., for the congeneric herring gull L. argentatus in the Great Lakes  (Hebert et al. 2008), and on another seabird species in coastal BC waters (marbled murrelet  Brachyramphus marmoratus; Norris et al. 2007, Gutowsky et al. 2009). As Salish Sea glaucous‐  22  winged gulls have been collected over approximately 150 years, I determined that museum  specimens would provide an adequate source of feathers for retrospective isotopic analysis.   Decreases in diet quality likely have stronger effects during a bird’s metabolically‐demanding  periods (e.g., breeding, winter; cf. Murphy et al. 1992). Thus, I sampled adult feather types to  reflect diet during and just after the breeding period (primaries, brown‐tipped winter head  feathers; Verbeek 1979, P. Pyle pers. comm., LKB pers. obs.), as well as the white summer head  feathers that are grown in late winter or early spring just prior to breeding (Howell and Dunn  2007, LKB pers. obs.). As sub‐adult Larus gulls may eat different foods than adult birds (Weiser  and Powell 2011), to characterise gull diet more fully I also analysed primary feathers from sub‐ adult birds. In general, terrestrial systems are depleted in 13C and 15N (though agricultural  systems may be relatively enriched in 15N; Hobson 2007), while marine foods are enriched, so I  expected any segregation of results to be strong for the dual isotope combination.   1.4.3 Reproductive Success Published information on breeding parameters provided comparisons with the data I collected,  and a way to test whether observed changes in food supply had affected glaucous‐winged gull  reproductive output and thus population trends over time. For example, experimental studies  show that egg size is an indicator of foods available to pre‐breeding adult gulls (Hiom et al.  1991, Bolton et al. 1992, 1993), with egg size positively related to traits such as hatch success,  chick survival, and chick growth in gulls (Parsons 1970, Bolton 1991) and in other seabirds  (Amundsen et al. 1996, Sorensen et al. 2009) as well as in avian taxa in general (Krist 2011;  meta‐analysis of 283 studies). Egg production is therefore one mechanism by which changing   23  prey availability may mediate changes in RS and hence population trends. Key reproductive  parameters I measured (at Mandarte Island) were: lay date; egg size (mass, length, width);  clutch size; hatch success; fledge success; and chick mass at fledging.   Historical demographic data were available via Salish Sea studies conducted from the 1950s –  1980s (Appendix 1) and allowed me to compare key reproductive parameters from the same  population in a growing phase vs. a phase of purported decline. I was unable to conduct a  comparative analysis for all my demographic datasets as historical data were inadequate for  comparisons with some parameters (e.g., chick mass at fledging). I also obtained measurements  (length, width) of eggs collected for museums from within the study area; these had been  collected in the region since at least 1902 (Carter and Sealy 2011; Chapter 2).  1.4.4 Bald Eagle Predation I collected opportunistic data on eagle presence/absence (number of “eagle days”), disturbance  frequency, age (immature or adult), and predatory events (on gull adults, eggs and chicks) for  bald eagles observed at Mandarte Island and other large colonies I surveyed in the Georgia  Basin. Such data are comparable with those collected for other years and localities in coastal  British Columbia (Verbeek 1982, Vermeer and Devito 1986, Sullivan et al. 2002, White et al.  2006).  1.5 Overview of the Data Chapters I organised my dissertation research into three main parts. In Chapter 2, I review the literature  on egg and clutch size in seabirds, particularly gulls, and test the general prediction that these   24  traits would have responded to ongoing, deleterious environmental change by declining over  time in my study species. To do this, I obtained historical measurements of glaucous‐winged  gull egg size, clutch size, and lay date from the published literature (all parameters; 1940s –  1980s), and from museum specimens (egg size; 1902 – 1946), and used meta‐analyses to  compare these estimates with field data I collected in 2008 – 2010. Egg and clutch size declined  over time, and lay date was delayed, suggesting that long‐term decreases in the availability of  forage fish may have caused the changes I recorded because gulls require high‐quality prey in  and around the period of egg production. Delayed lay date was largely unexpected as global  trends in breeding season phenology have shown advanced laying in the majority of bird  species studied worldwide, with a relationship found between lay date and climate.  In Chapter 3, I compile historical colony count data for glaucous‐winged gull colonies around  the Georgia Basin, using records from old publications, “grey literature” (e.g., published and  unpublished reports), old museum records, unpublished data provided by seabird biologists in  the region, and my census data. Together these data provide a 111‐year population trend for  Georgia Basin glaucous‐winged gulls. In this chapter I use a modelling approach to contrast  potential drivers of long‐term population change, testing the hypotheses outlined above. In the  model, I incorporate vital rates from the literature and data on declines in clutch size from  Chapter 2.   In Chapter 4, I examine whether glaucous‐winged gulls had undergone a long‐term change in  diet by conducting stable isotope analysis of a longitudinal sample of gull feathers, from 1860 to  the present, taken from birds held in museum collections in North America and the UK and   25  from field samples I collected. These isotope data provided evidence of a long‐term decline in  the trophic level and marine origins of glaucous‐winged gull diet, possibly providing support for  the suggestion that declining dietary quality was the mechanism driving the changes to  reproductive parameters I found in Chapter 2.   In Chapter 5, the conclusion, I summarise my research on using a marine bird as an ecological  sentinel or indicator species, and discuss what it may tell us about long‐term ecological changes  and shifting baselines in the Salish Sea. I also discuss the implications of this study for  understanding effects of long‐term environmental change on marine birds elsewhere: it is likely  that seabirds in general are tractable indicators over historical time scales, as well as the  shorter ones for which they are primarily used at present. I also address the limitations of my  research, and provide management recommendations based on the major outcomes of my  study.   26  Chapter 2:  Egg Production in a Coastal Seabird, the Glaucous- Winged Gull, Declines during the Last Century2 2.1 Introduction Life history theory predicts that long‐lived organisms such as seabirds will maximise fitness by  reducing reproductive output during periods of environmental stress, trading off between  current and future reproduction. One potential way for birds to reduce reproductive  investment when foraging conditions are poor early in the breeding season is by decreasing the  size or number of eggs produced. Female protein and energy requirements during egg  production are substantially higher than those during the non‐laying period, making egg  production costly (Robbins 1981, Monaghan and Nager 1997, Nager 2006; but see Williams  2005). Indeed, for many avian species there is strong evidence that under poor food conditions,  egg size, number or both are reduced, though lay date responds to food supply more  consistently than do egg or clutch size (Martin 1987, Meijer and Drent 1999, Christians 2002).  Trade‐offs reduce reproductive performance in a given year; therefore, repeated poor years,  for example due to environmental factors including climatic variation and/or competition with  humans for prey (Grémillet and Boulinier 2009), can mean that adult survival is traded off  against a better future that never materialises, with population numbers ultimately affected.  Thus, ongoing poor conditions will also have long‐term population consequences, and                                                         2 A version of this chapter was published as Blight, L.K. 2011. Egg Production in a Coastal  Seabird, the Glaucous‐Winged Gull (Larus glaucescens), Declines during the Last Century. PLoS  ONE 6(7):e22027.doi:10.1371/journal.pone.0022027.   27  understanding the mechanisms driving such changes can have important conservation  implications (e.g., Bertram et al. 2001).  The world’s oceans are now strongly affected by human activities, with most marine food webs  simplified and impoverished by drivers such as pollution, climate change, and overfishing  (Halpern et al. 2008). Like many other coastal areas over the last century or more, the inshore  waters of southern British Columbia (BC) and northern Washington (WA; hereafter, the Salish  Sea) have seen removal of upper trophic predators such as whales and sequential overfishing of  forage fishes such as Pacific herring (Wallace 1998). This, in combination with other factors  such as climate change and pollution, means that this area is now among those globally  estimated to be suffering very high levels of human impacts (Halpern et al. 2008); thus,  ecosystem productivity and function in the region is potentially very different than it was prior  to the start of industrial activity (Wallace 1998, Johannessen and Macdonald 2009, Therriault et  al. 2009). Marine systems worldwide have responded in varying ways to removal of predators  and prey (Ainley and Blight 2009, Baum and Worm 2009), and as common mesopredators,  marine birds are considered to be sensitive indicators of such changes in oceanic food webs,  particularly given the long‐term nature of some colonial seabird studies (e.g., Gill et al. 2002).  The glaucous‐winged gull is a conspicuous marine bird that breeds at accessible coastal nesting  colonies in the northern Pacific, and as such it represents a strong potential source of indicator  data: ecologists and naturalists have been researching its reproductive biology, conducting  colony counts, and collecting its eggs for museums for over 100 years.    28  During the nesting season glaucous‐winged gull diet in the study area consists of small forage  fishes such as herring Clupea pallasii and sandlance Ammodytes hexapterus, garbage, and  invertebrates, with diet currently (2008 – present) appearing to consist primarily of marine  foods (Vermeer 1982, Gebbink et al. 2011, LKB pers. obs.). Though garbage is frequently  available, it is not clear whether it is beneficial to gulls. In some parts of the world gull  populations have declined in apparent response to the covering of landfills and loss of  anthropogenic foods (Pons 1992); however, glaucous‐winged gulls eating only herring were  able to raise larger broods than were those whose diet included garbage (Ward 1973), and for  congeneric Western gulls L. occidentalis the most successful breeders avoided eating refuse and  instead fed themselves and their young mainly on fish prey (Annett and Pierotti 1999). Reduced  productivity and poorer body condition was also documented in breeding female herring gulls  that subsisted primarily on a terrestrial (garbage‐based) diet relative to those subsisting  primarily on fish foods (Hebert et al. 2002). The availability of Pacific herring, currently the  primary forage fish in the Salish Sea, has likely declined in recent years, with factors such as  pollution, climate change and historical overfishing believed responsible; herring were heavily  exploited as early as 1910 and a stock collapse occurred in the 1960s; (Wallace 1998). Although  some regional herring populations increased between about 1970 and 2002, others have  decreased by up to two orders of magnitude (Stick et al. 2005, Crawford and Irvine 2009, Stick  and Lindquist 2009, Therriault et al. 2009). Herring size‐at‐age has also declined since the 1970s  at various eastern Pacific sites including the Salish Sea (Therriault et al. 2009), indicating a  potential decrease in food value of individual forage fish (cf. Wanless et al. 2005). In addition,  the spatial and temporal extents of spawning events in at least some parts of the study area   29  have been decreasing, with a contraction of locations since the late 1980s, and a loss of early  (January – early February before about 1970) and late (April – May before the early 1980s)  spawners (Fig. 2 in Therriault et al. 2009). In the Salish Sea, glaucous‐winged gulls begin to  arrive at their colonies in February and commence egg laying in May.  The purpose of this study was to assess whether hypothesised long‐term food web changes in  this relatively under‐studied coastal ecosystem might be reflected in consumers’ life history  traits over time. Because large‐bodied single brooded birds obtain the resources necessary for  egg production in advance of the breeding season as well as during it (i.e., they are primarily  “capital” breeders; Meijer and Drent 1999, Drent 2006), and as the nutritional and energetic  costs of egg production seem to be relatively high in larids (Ricklefs 1974, Robbins 1981,  Houston et al. 1983), I predicted that glaucous‐winged gulls would be sensitive to long‐term  decreases in food availability prior to the breeding season as well as during egg formation, and  that they would respond to this by decreasing egg or clutch size over time. To test this  prediction I used a meta‐analytical approach and multiple data sources, including published  records and museum egg collections, to examine long‐term trends in egg (108 years) and clutch  (48 years) sizes. Because clutch size progressively decreases with lay date in most single‐ brooded species (Meijer and Drent 1999), I also tested whether clutch size was correlated with  timing of breeding in the study population. Researchers often record avian clutch size and lay  date, and a number of studies have used longitudinal data to report long‐term trends in these  traits. Egg size has been studied less often, however, with few studies reporting long‐term  patterns in egg size variation (Järvinen 1994, Tryjanowski et al. 2004, Potti 2008). Though avian  eggs have been collected by naturalists and biologists for about 200 years, no studies have yet   30  used museum collections to report on long‐term trends in egg size (but see Scharlemann 2001).  Lastly, because food availability is believed to influence lay date in bird species more  consistently than it affects egg production (Christians 2002), I also investigated changes in  timing of breeding (over 52 y), predicting that if overall food availability had decreased in the  Salish Sea this would result in delayed lay dates.   2.2 Study Area and Methods 2.2.1 Study Area Field data for these analyses came from studies carried out between 1902 and 2010 at  glaucous‐winged gull colonies in the Salish Sea, i.e., the inshore coastal waters of the Strait of  Georgia, BC, Canada, and adjacent waters, including northern Puget Sound, WA, USA and the  adjacent eastern Strait of Juan de Fuca (range: 47.91° – 50.02° N, 121.95° – 125.24° W). Earlier  banding studies, physical geography, and patterns of hybridization support the selection of this  entire region, as does the colonies’ shared history of nineteenth century exploitation and  subsequent recovery (Sprot 1937, Butler et al. 1980, Reid 1988a) and their modern existence on  the edge of some of the most rapidly‐growing areas in Canada (Stubbs 2001). These boundaries  ensured that I included all of the large colonies found in the region’s inshore sea, but excluded  the more westerly colonies that are strongly influenced by the open Pacific Ocean.   2.2.2 Data Sources and Inclusion Criteria I compiled published data on glaucous‐winged gull egg size, clutch size and first egg date  obtained from a literature search using ISI Web of Science and keywords “glaucous‐winged   31  gull” and “Larus glaucescens”, the sources provided in the Birds of North America species  account (Hayward and Verbeek 2008), and additional references cited in publications located  via these searches. “Grey literature” (e.g., government reports) was included in these citations,  and incorporated into the study accordingly. I applied no English‐language or publication year  restrictions. In the literature search, I included publications on glaucous‐winged gulls that were  not specifically about their reproduction because some authors (particularly in papers and  reports prior to 1960, presumably as a result of older stylistic conventions) included appendices  of miscellaneous biological data on the species. I supplemented published data with those I  collected from 2008 to 2010 at Mandarte Island, BC (48.63° N, 123.28° W) and Arbutus Island,  BC (48.70° N, 23.43° W), using methods comparable with those from earlier studies (i.e.,  monitoring a series of study nests through the breeding season). For egg size, I also searched  museum databases (ORNIS and institutions’ own records) for egg sets collected from the study  area, and obtained egg length and width measurements from five museum collections (specific  museums listed in Acknowledgements). To ensure that the published studies had taken place in  the study area, I screened them by geographical region and then reviewed them against  inclusion criteria related to research design and reporting of data (below).   In screening published studies of egg size, I only included those reporting measurements for  entire clutches, (i.e., those where every egg in a nest was measured). I excluded egg  measurements for 2‐egg clutches, reported separately in all studies, because eggs from these  clutches are smaller on average than those from the modal 3‐egg clutch (Hayward and Verbeek  2008) and the proportion of 2‐egg clutches reported varied by study. I only included annual egg  size means (from published studies and museum specimens) derived from more than a single   32  clutch, and assumed that eggs collected by museums represented a random subsample of  those available at a given colony because their volumes showed an approximately normal  distribution, i.e., data were non‐skewed. For clutch size, I required that studies had monitored  their nests throughout a colony every 1 – 2 d for the duration of the laying period (i.e., I  excluded studies reporting clutch sizes from opportunistic colony visits because clutch size is  variable over the season). Two early studies provided no data but stated that “normal” clutch  size was three (with 2‐egg clutches “occasionally” found; (Schultz 1951, James‐Veitch and Booth  1954); as I encountered only one actual measurement of clutch size prior to the 1980s, I  retained these additional studies for comparative purposes and considered that their estimates  represented a clutch size of 2.8, but did not include them in the analysis itself. Similarly, I  required that published data on first egg date were collected using systematic colony  monitoring protocols (study nests monitored on a regular basis throughout the breeding  season) rather than opportunistic visits. All author‐collected egg size, clutch size and lay date  data (i.e., those I collected from 2008 – 2010; see above) were collected so as to be consistent  with these literature‐screening criteria.   No studies needed to be discarded due to a lack of essential meta‐analytical data such as  sample size. After screening of published studies and museum specimens, and addition of  author‐collected data, I ended up with five separate studies from which I derived seven annual  means of egg size, as well as measurements from 329 eggs held in museum collections,  representing an additional 14 annual means of egg size (“egg‐years”; n=21); each egg‐year was  treated as a sample unit (Table 2.1). These egg size data spanned more than a century (1902 –  2010) and represented at least 14 glaucous‐winged gull colonies in the study area. (I did not   33  consider study area localities that had been recorded by museum collectors as “unnamed” to  be additional colonies). I retained six studies from four Salish Sea colonies reporting nine annual  mean clutch sizes, and 18 estimates of first egg date from six colonies (Table 2.1). As with egg  size, each clutch‐year was a sample unit. For a measure of timing of breeding, I chose first egg  date rather than median lay date because my nest search effort was consistent through to the  late laying season, but did not continue for long enough to record the latest nests; other  included studies appeared to have followed a similar protocol. While first egg date is probably  more subject to stochastic variation or sampling error than is median lay date, it is nonetheless  considered a reliable indicator of timing of breeding (Ainley 2002). All annual means were  independent (i.e., they were not collected as repeated measures series at study sites), and as  study sites were all located in or around the same inland body of water (the Salish Sea) I  assumed no effect of site on vital rates, based on published inter‐site comparisons of these  parameters (Vermeer 1963, Verbeek 1986, Hooper 1988, Vermeer et al. 1988). Standard meta‐ analyses address the possibility of publication bias (publication of studies showing an effect vs.  non‐publication of those showing no effect) but as my study simply assessed mean measures of  egg production, consideration of such bias was unnecessary.   34   Table 2.1: Summary of studies used in standard and meta-analyses. Num.  Data source   Nesting colony  Location  Year(s)  data  collected  Response  variable  N (effect size  estimates)  1  Museum collections1  Various2  Throughout study  area3  1902 –  1946   Egg size  14  2  Schultz 1951  San Juan Islands  Puget Sound/  Strait of Juan de  Fuca, WA4  1948  Egg size  1  3  James‐Veitch & Booth  1954  Williamson Rock  Puget Sound/  Strait of Juan de  Fuca, WA  1951  Egg size  1  4  Drent et al. 1964  Mandarte Island  Haro Strait, BC5  1959, 1960  Lay date  2  5  Vermeer 1963  Mandarte Island  Haro Strait, BC  1961, 1962  Lay date  2  6  Vermeer 1963  Mandarte Island  Haro Strait, BC  1962  Clutch  size  1  7  Hunt & Hunt 1976  Mandarte Island  Haro Strait, BC  1971, 1973  Lay date  2  8  Verbeek 1986  Mandarte Island  Haro Strait, BC  1976, 1977,  1979, 1980  Lay date  4  9  Verbeek 1986  Mandarte Island  Haro Strait, BC  1979, 1980  Clutch  size  2  10  Verbeek 1986  Mandarte Island  Haro Strait, BC  1980  Egg size  1  11  Reid 1987  Protection  Island  Strait of Juan de  Fuca, WA  1984  Lay date  1  12  Vermeer 1988  Vancouver  Harbour  Strait of Georgia,  BC  1986  Lay date  2  13  Vermeer 1988  Vancouver  Harbour  Strait of Georgia,  BC  1986  Clutch  size  2  14  Vermeer 1988  Vancouver  Harbour  Strait of Georgia,  BC  1986  Egg size  2   35  Num.  Data source   Nesting colony  Location  Year(s)  data  collected  Response  variable  N (effect size  estimates)  15  Hooper 1988  Victoria Harbour  Strait of Juan de  Fuca, BC  1986  Lay date  1  16  Hooper 1988  Victoria Harbour  Strait of Juan de  Fuca, BC  1986  Lay date  1  17  LK Blight, unpubl data  Mandarte Island  Haro Strait, BC  2008 –  2010   Lay date  3  18  LK Blight, unpubl data  Mandarte Island  Haro Strait, BC  2008, 2009  Clutch  size  2  19  LK Blight, unpubl data  Mandarte Island  Haro Strait, BC  2008, 2009  Egg size  2  20  LK Blight, unpubl data  Arbutus Island  Haro Strait, BC  2010  Lay date  1  1See Acknowledgements for list of contributing museums. 2See Table 2.2 for colony details. 3See text. 4 WA –  Washington, USA. 5BC – British Columbia, Canada   2.2.3 Statistical Analyses I used meta‐analysis rather than a standard statistical approach because disparate datasets  derived from a group of primary studies must be properly weighted to yield correct standard  errors and p‐values and meta‐analysis has been developed specifically to perform these  weightings correctly, increasing the power of significance tests while retaining robustness  (Gurevitch and Hedges 1999, Borenstein et al. 2009). I used meta‐regression, with fit assessed  using Q‐tests (Gurevitch and Hedges 1999, Borenstein et al. 2009), to analyse trends in  glaucous‐winged gull egg and clutch size over time and to examine the relationship between  clutch size and first egg date. I used random‐effects meta‐analytical models as these assume  that component studies differ not only by within‐study sampling error (as fixed‐effects models  do), but also by a genuine difference in effect sizes among studies (Gurevitch and Hedges 1999,   36  Borenstein et al. 2009). Random‐effects models thus incorporate among‐study (here,  equivalent to inter‐year) variance in their estimates, and thereby generate wider confidence  intervals and more conservative results than do fixed‐effect models. All meta‐analyses require  that the results of each study be distilled to a measure of the magnitude of the effect of the  measured variable – the “effect size”. As I wished to ask whether egg and clutch size had  decreased over time in response to declining availability of food, the effect sizes selected here  for meta‐analysis were mean annual egg volume and number of eggs per clutch. Variance is  required to compute meta‐analytical weightings and was provided in publications or calculated  from raw data for all but five annual means of egg sizes, and one study reporting clutch size; for  these, I imputed standard deviation (SD) from the pooled SD from all raw data for the study  (Furukawa et al. 2006), using the formula  )1( /)1( 2 −∑ −∑ = i ii pooled n SDnSD  and egg volume was calculated as   1000 )( 2 kwidthlengthccvol ××= where length and width are in mm and k is the constant 0.476, determined by Harris (1964) for  another Larus gull.  I used the statistical software package Comprehensive Meta‐Analysis v. 2.0 to perform all  weightings and meta‐analyses (Borenstein et al. 2005). Welch’s analysis of variance (robust to   37  unequal sample size and variance) was used to compare mean first egg date in historical vs.  current studies (1959 – 1986; 2008 – 2010).   2.3 Results 2.3.1 Egg Size From 1902 – 2009, mean glaucous‐winged gull egg volume decreased in the Salish Sea study  area, with the random‐effects model showing a significant negative relationship between year  and egg volume (Q=7.211; p=0.007; Fig. 2.1A) and volume decreasing at an average of 0.04 cc    y–1 (95% CI=–0.06 – –0.01; mean annual egg volume range 75.41 – 88.36 cc; See Table 2.2 for a  list of effect sizes) over the study period. This equates to an overall decrease of circa 5% (4.3 cc)  in mean egg volume since 1902 (108 years).   2.3.2 Clutch Size and First Egg Date As with egg size, average clutch size decreased during the study period (Q=27.30, p<0.001; Fig.  2.1B), declining from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009 (Table 2.2). Though  not included in the analysis, qualitative descriptions of clutch size from the 1950s are consistent  with these results (Fig. 2.1B). There was a negative relationship between first egg date and  mean clutch size in a given year (Q=12.91, p<0.001; Fig. 2.2), with smaller clutches occurring in  years where egg laying commenced later. Timing of clutch initiation also retreated over time.  For historical data collected between 1959 and 1986 the mean first egg date was 15 May (range  4 – 28 May). From 2008 – 2010 the average first egg date was 22 May, 7 d later than in earlier  decades (range 21 – 23 May; F=20.12, p<0.001; Fig. 2.3).    38    Figure 2.1: Meta-regression of glaucous-winged gull egg and clutch size vs. year, Salish Sea (SW Canada & NW USA). Symbol size represents meta-analytical weightings for each data point. Note different temporal scales on x-axes. (A) Egg volume decreased over the study period (1902 – 2009; Q=7.211, p<0.01), with eggs now 5% smaller on average than at the turn of the twentieth century. (B) Clutch size decreased between 1962 and 2009 (Q=27.30, p<0.001). Two data points from the 1940s – 1950s (represented by ) are not included in the meta-analysis due to inadequate reporting criteria (see text), but are plotted here to further illustrate robustness of trend.  39   Figure 2.2: Meta-regression of glaucous-winged gull clutch size vs. date of first egg. Clutch size decreased with delayed onset of breeding (first egg date; Q=12.91, p<0.001; 1962 – 2009 data). Symbol size represents meta-analytical weightings for each data point.  Figure 2.3: Date of first egg retreated significantly from 1959 – 2010 (p=0.03, ▲: n=2 observations), with mean commencement date 7 d later in 2008 – 2010 than in earlier decades (F=20.12, p<0.001).  40  Table 2.2: Summary of all effect sizes used in meta-analyses of changes in egg and clutch size over time. Data ID  Data source  Study location  Study  year  Variable  Effect size  (mean egg or  clutch size)  SD  N (samples  per study or  year)  Mus1902  Museum collections  Mandarte I, BC*  1902  Egg size  84.13  2.07  6  Mus1903  Museum collections  Mandarte I, BC  1903  Egg size  88.36  7.20  13  Mus1912  Museum collections  Island County, WA;*  Whidbey I, WA;  Williamson Rock, WA   1912  Egg size  85.44  6.41  39  Mus1919  Museum collections  Bird Rock, WA; Flattop  I, WA; White Rock,  WA  1919  Egg size  81.73  6.23  24  Mus1923  Museum collections  Orcas I, WA; Peapod I,  WA  1923  Egg size  86.89  6.6  6  Mus1927  Museum collections  Gull Rock, WA; Viti  Rocks, WA  1927  Egg size  83.54  7.27  50  Mus1928  Museum collections  San Juan Islands, USA;   1928  Egg size  82.62  8.28  23  Mus1930  Museum collections  Viti Rocks, WA;  Williamson Rock, WA  1930  Egg size  86.67  5.48  38  Mus1931  Museum collections  Viti Rocks, WA  1931  Egg size  85.42  6.32  42   41  Data ID  Data source  Study location  Study  year  Variable  Effect size  (mean egg or  clutch size)  SD  N (samples  per study or  year)  Mus1937  Museum collections  Colville Rock, WA;  Williamson Rock, WA  1937  Egg size  85.32  7.96  59  Mus1940  Museum collections  Gulf of Georgia, BC;  Howe Sound, BC  1940  Egg size  78.52  6.88  6    Mus1941  Museum collections  Howe Sound, BC  1941  Egg size  80.14  6.64  12  Mus1944  Museum collections  Howe Sound, BC  1944  Egg size  75.41  4.17  6  Mus1946  Museum collections  Howe Sound, BC  1946  Egg size  81.21  6.36  6  Schultz   Schultz 1951  San Juan Is, WA  1948  Egg size  80.03  7.64  43  J‐V&Booth  James‐Veitch &  Booth 1954  Williamson Rock, WA  1951  Egg size  83.23  7.64  30  Verbeek  Verbeek 1986  Mandarte I, BC  1980  Egg size  81.69  7.64  144  VermeerCol  Vermeer 1988  Vancouver Harbour,  BC  1986  Egg size  80.81  7.64  62  VermeerSol  Vermeer 1988  Vancouver Harbour,  BC  1986  Egg size  84.50  7.64  26  Mandarte08  LKB unpubl data  Mandarte I, BC  2008  Egg size  80.84  8.02  345   42  Data ID  Data source  Study location  Study  year  Variable  Effect size  (mean egg or  clutch size)  SD  N (samples  per study or  year)  Mandarte09  LKB unpubl data  Mandarte I, BC  2009  Egg size  81.73  7.98  267  VermeerCS  Vermeer 1963  Mandarte I, BC  1962  Clutch size  2.82  0.40  479  Verbeek1986a  Verbeek 1986  Mandarte I, BC  1979  Clutch size  2.69  0.59  297  Verbeek1986b  Verbeek 1986  Mandarte I, BC  1980  Clutch size  2.77  0.47  417  Reid  Reid 1987  Protection I, WA  1984  Clutch size  2.73  0.78  704  Vermeer1988a  Vermeer 1988  Vancouver Harbour,  BC  1986  Clutch size  2.70  0.60  80  Vermeer1988b  Vermeer 1988  Vancouver Harbour,  BC  1986  Clutch size  2.77  0.51  52  Hooper  Hooper 1988  Victoria Harbour, BC  1986  Clutch size  2.59  0.79  22  Mandarte2008  LKB unpubl data  Mandarte I, BC  2008  Clutch size  2.42  0.73  210  Mandarte2009  LKB unpubl data  Mandarte I, BC  2009  Clutch size  2.25  0.84  175  * BC – British Columbia, Canada ; WA – Washington, USA;    43  2.4 Discussion 2.4.1 Egg Size, Clutch Size and Lay Date These results reveal long‐term declines in egg and clutch sizes of glaucous‐winged gulls in the  Salish Sea, likely as a result of reductions in availability of food. Mean egg size decreased by  circa 5% from 1902 – 2009. Similarly, mean clutch size has declined to the lowest ever recorded  for the region. Five of nine studies reporting clutch size took place at a single site (Mandarte  Island), including twenty‐first century clutch sizes, so that the Mandarte data may have had a  large influence on the results. However, opportunistically‐collected data from other Salish Sea  colonies appear to support the hypothesis of a regional clutch size decline over time:  population counts at 17 colonies recorded a mean clutch size of 2.29 in 2010 (LKB unpubl.  data). Though these additional data represent only a snapshot of the number of eggs per nest  (and were thus not incorporated into the analysis), they provide a good proxy for mean annual  clutch size as they were collected immediately prior to peak hatch, when most gulls should be  incubating an entire clutch. These concurrent egg and clutch size declines are noteworthy  because although gulls lack an obligate clutch size, a mode of three is a well‐known feature of  most Larus gulls’ biology, and egg size reduction is a flexible mechanism that allows birds to  accommodate limited decreases in energy availability while maintaining offspring number  (Martin 1987). I suggest this study’s results are consistent with a decline in availability of high‐ quality fish prey pre‐ and during the breeding season. The actual cost of egg production to  breeding birds in general is controversial (Williams 2005) but for gulls at least there is good  evidence that food input, particularly in the form of protein, affects egg size and clutch number   44  (Houston et al. 1983, Bolton et al. 1992, Bolton et al. 1993, Meijer and Drent 1999, Hebert et al.  2002, Nager 2006). California gulls L. californicus breeding at Mono Lake, California have been  reduced to laying 2‐egg clutches since the early 1900s (with eggs also smaller than those from  other populations); this is apparently due to regional food shortages (Winkler 1985). In red‐ billed gulls L. novaehollandiae, egg and clutch size over 41 years were positively correlated with  the availability of their preferred prey, the euphausiid Nyctiphanes australis (Mills et al. 2008).   Decreasing egg and clutch sizes are predictable in growing populations of birds, a response  hypothesised as being due to increased competition for food (Coulson et al. 1982, Perrins and  McCleery 1994, Both 1998). However, though this study population of glaucous‐winged gulls  grew through approximately the 1930s – 1980s (Vermeer and Devito 1989) it has subsequently  been decreasing (Sullivan et al. 2002) but egg and clutch sizes have not increased in response.    Similarly, as predicted based on numerous other studies (Meijer and Drent 1999), I found a  negative relationship between clutch size and first egg date, with smaller clutches produced on  average in years when laying commenced later. The relationship between food supply and lay  date in birds is well established, including in some gull populations (Perrins 1970, Meijer and  Drent 1999, Christians 2002, Mills et al. 2008). Gulls are capital breeders that, like many  waterbirds, depend partly on endogenous reserves acquired prior to initiation of breeding  (Drent 2006, Sorensen et al. 2009). A primary source of late winter and early spring food for  gulls as well as other waterbirds in the study region has been the considerable influx of  nutrients provided by the sequential spawning of herring at sites along the north‐eastern Pacific  coast (Munro and Clemens 1931, Willson and Womble 2006). For example, surf Melanitta  perspicillata and white‐winged scoter M. fusca mass gains in March and April are related to  45  presence of spawning herring (Anderson et al. 2009a). However, stock declines and temporal  contraction of spawning herring in the Salish Sea (most herring there now spawn in March;  Stick and Lindquist 2009, Therriault et al. 2009) means that access to this prey resource has  declined for pre‐breeding gulls over at least the past 40 years; other forage fishes such as  pilchard Sardinops sagax were rendered commercially extinct in the study area as early as the  1940s (Wallace 1998). A decrease in Salish Sea herring size‐at‐age suggests a possible decline in  quality as well as availability of this favoured prey since the 1970s, and declines in forage fish  food value has been shown to negatively affect seabird productivity in other systems (Wanless  et al. 2005).   First egg dates of glaucous‐winged gulls have become later since 1959, from a mean date of 15  May in previously published literature (1959 – 1986) to one of 22 May in my 2008 – 2010 field  study. This response is largely unexpected in terms of global trends as breeding season  phenology has been advancing in the majority of bird species studied worldwide, with a  relationship found between lay date and climate (Crick 2004, Dunn 2004, Møller et al. 2010).  While most seabirds examined in other studies also demonstrate advancing laying dates, their  responses have been more variable, with some species or populations instead exhibiting  significant delays in initiation of breeding over recent decades, and warming sea surface  temperature (SST) invoked to explain both advancing and delaying trends (Gjerdrum et al.  2003, Møller et al. 2010). It is therefore possible that gulls’ delayed lay dates are a response to  changing climate. However, I found no relationship between glaucous‐winged gull first egg date  and local mean annual SST (from archived data recorded at Race Rocks Lighthouse Station,  48.30° W, 123.53° N; F=0.006, p=0.94) for the years over which phenological data were   46  available, despite a warming trend in regional SSTs since 1970 (Masson and Cummins 2007).  The observed delay in laying thus supports my hypothesis of gulls responding to an overall food  decline. Delayed laying has been associated with food availability in other larids, e.g., red‐billed  gulls also laid later when euphausiid availability was low (Mills et al. 2008).   This study shows that glaucous‐winged gull egg and clutch size have decreased over time in the  Salish Sea, but these changes are biologically unimportant if lifetime reproductive success is  unaffected. Though I lacked the data to analyse reproductive success per se over time, my  results are suggestive of biologically meaningful changes that may in part explain ongoing  population declines (Sullivan et al. 2002). The most important effects of increased egg size in  birds overall seem to be improved survival in the days post‐hatching, allowing young chicks to  weather temporary food shortages (Parsons 1970, Martin 1987, Williams 1994, Christians  2002). However, evidence from multiple studies also shows egg size to be positively related to  hatching success, growth rate and chick survival (Krist 2011). The relationship between egg size  and ongoing fitness seems best established in seabirds (Williams 1994) with a handful of studies  demonstrating that egg size is correlated with overall reproductive success and that chick size  at fledging affects future survival (Gaston 1997, Mills et al. 2008, Harris and Elliott 2011). Here I  hypothesise that recent marine food web changes may be affecting gull population dynamics in  the Salish Sea study area and contributing to recent population declines toward early 1900  levels, when gull numbers were locally depressed by egging and persecution (Dawson and  Bowles 1909). This hints at the potential for limits to the resilience of even generalist foragers.    47  2.4.2 Alternative Hypotheses While food‐related explanations are the most parsimonious for trends observed here, other  possible causes exist. For example, pollutants such as PCBs and PBDEs also affect avian  reproduction including egg and clutch size in birds (Harris and Elliott 2011). It is unlikely that  contaminants are a causative factor here, however, as DDE (the breakdown product of DDT)  and other chlorinated hydrocarbons levels have mostly decreased in eggs of avian indicator  species in the region since the late 1970s (Harris et al. 2003, Harris et al. 2005). Though other  contaminants such as PBDEs are increasing, their occurrence is more recent (since the 1980s;  Elliott et al. 2005b), and thus out of phase with observed egg and clutch declines. Two recent  studies have documented body size declines and morphological changes in North American  birds over the past 50 – 100 y, likely related to climate change (Desrochers 2010, Van Buskirk et  al. 2010); body size changes might also affect reproductive output. I was unable to rule out this  explanation and suggest it would be a fruitful direction for further study, but note that female  body size explains only a small proportion of egg size variability (Christians 2002).  2.5 Conclusions Birds should ultimately alter reproductive traits and phenology to respond to shifts in  underlying features of their food webs. There is experimental evidence for supplemental food  increasing gull egg and clutch size in years of poor food availability, but not in good years,  indicating the ultimate limits to reproductive output as well as the potential for proximate  adjustments based on diet (Hiom et al. 1991). Nutritional requirements prior to egg laying (and  possibly during certain phases of chick rearing; Annett and Pierotti 1999) are likely precise and   48  may require birds to consume high quality fish prey at this time. Thus, glaucous‐winged gulls  may be unable to use alternative food sources (e.g., garbage) to buffer against consistent  shortages of natural foods during certain periods of their breeding cycle, and could be  undergoing an ongoing trade‐off of their own survival against production of offspring. It is  possible that the study population may be shifting toward a modal 2‐egg clutch, as has occurred  in another food‐limited population of gulls in the twentieth century (Winkler 1985).  Experimentally testing whether gulls in the Salish Sea respond to increased high‐quality fish  prey by increasing egg or clutch size would provide more conclusive evidence for or against  natural food supply as a mechanism driving observed trends. Though glaucous‐winged gulls are  generalist feeders that are expected to buffer themselves against ecological change, the shifts  in reproductive traits identified here suggest a significant impoverishment of a coastal marine  ecosystem bordering one of the most rapidly growing areas in North America. Interestingly, in  2008 glaucous‐winged gull egg and clutch size (and reproductive success; LKB unpubl. data)  remained low despite north‐eastern Pacific waters being the coolest in 50 years of records and  productivity being the highest ever viewed via satellite in August (Crawford and Irvine 2009),  suggesting that the study area’s coastal sea may be more strongly affected by regional than by  basin‐wide factors (cf. Johannessen and Macdonald 2009). Future studies should investigate  details of long‐term trends in gull diet, possibly using a stable isotope approach. Finally, I  suggest that eggs in museum collections represent an underutilised resource for observing  effects of environmental change on avian demography over time.    49  2.6 Acknowledgements Thanks to Hannah Rothstein and Valerie LeMay for conversations on meta‐analytical  approaches. Comments from David Ainley, Peter Arcese, John Elliott, Tony Williams and two  anonymous reviewers improved the manuscript. I am grateful to the American Museum of  Natural History, the Charles R. Conner Museum, the Slater Museum of Natural History, the  Smithsonian Institute, and the Western Foundation of Vertebrate Zoology for providing egg size  measurements. Tella Osler, Amy Medve and Jane Shen provided valuable assistance in the field.   50  Chapter 3:  A Century of Change in Glaucous-Winged Gull Populations in a Dynamic Coastal Environment3 3.1 Introduction A key question in ecology is what constitutes a ‘normal’ change in animal population numbers  given the fluctuations that may be observed over the course of multi‐year studies (Krebs et al.  2001). Long‐term data are critical to addressing this question because they are more likely to  include multiple population or climate cycles and thus reveal critical underlying processes and  the occurrence of rare but influential events (Wiens 1977, 1984, Ludwig 1999, Grøtan et al.  2009, Sæther et al. 2009). As a result, determining whether ongoing population declines  represent a density‐dependent response, an effect of short‐term climate variability, or a  potentially reversible response to climate change or another anthropogenic stressor (or some  combination of these factors) often requires the perspective provided by several decades of  data, particularly in long‐lived organisms such as marine birds (cf. Ainley 2002, Blight et al.  2006, Norris et al. 2007). Applied to conservation, such long‐term studies help to define the  baseline or reference conditions that managers typically aim to maintain or restore, but which  are often poorly articulated, with a misunderstanding of trends potentially leading to ill‐advised  management decisions (Arcese and Sinclair 1997). Moreover, the lack of a long‐term  perspective can lead to gradual acceptance of incremental species loss (Pauly 1995).                                                         3 This chapter is in preparation as a manuscript by L.K. Blight, P. Arcese (UBC) and M.C. Drever  (Environment Canada). Proposed title: “Generalist foragers affected by multiple factors over  time: a century‐long population trend of glaucous‐winged gulls in the Georgia Basin, Canada”.   51  Marine birds are often identified as sensitive indicators of the status of ocean systems (Furness  and Greenwood 1993, Furness and Camphuysen 1997, Boyd et al. 2006, Piatt et al. 2007,  Parsons et al. 2008), with over 200 papers in the last two decades showing that seabird  populations are measurably affected by changes to marine environments (Grémillet and  Charmantier 2010). Here we present an analysis aimed at identifying the range of population  variation for a potential sentinel species (defined in Chapter 1; Hebert et al. 1999, Hebert et al.  2009, Gebbink et al. 2011), using 111 years of count data for glaucous‐winged gulls in the  Georgia Basin, British Columbia, Canada. The glaucous‐winged gull is a long‐lived marine bird  described as thriving in proximity to humans, but whose numbers currently appear to be in  decline over a substantial portion of its southern range (Sullivan et al. 2002, Bower 2009,  Hayward et al. 2010). This apparent decline has prompted concern about future trends (Sullivan  et al. 2002), but there is also evidence to suggest that glaucous‐winged gull numbers in this  region were much lower at the start of the twentieth century than at present (Dawson and  Bowles 1909, Drent and Guiguet 1961, Reid 1988a). Thus, it is plausible that the species  responded favourably to human‐induced environmental changes in the early 1900s, with these  changes facilitating population growth above a baseline supported by the availability of natural  foods (Vermeer 1992, Hayward et al. 2010). Under such a scenario, the recent decline would  simply represent a reversal of these influences and a return to historical conditions. However, a  detailed understanding of population trends to the present day has been lacking.   Larus gulls worldwide often nest colonially near human population centres (e.g., Ward 1973,  Pons 1992, Oro et al. 2004). As a consequence, they have long drawn the attention of field  biologists (e.g., Dutcher and Baily 1903, Anonymous 1908), who focused their initial study on   52  behaviour and demography (Tinbergen 1953, 1959, Vermeer 1963, Holloway and Gibbons  1996), but who incidentally recorded population numbers (e.g., Province of British Columbia  1916). To provide a definitive estimate of long‐term population trends in the study region, we  used colony count data for glaucous‐winged gulls nesting in the Georgia Basin from 1900 to  2010, and fitted a general linear mixed model to estimate long‐term changes in mean colony  size over time. We also conducted a number of secondary tests to examine whether temporal  trends differed by colony size or geographical location.   We next examined potential causes of population change based on hypotheses assembled from  the literature to account for temporal trends in gull populations generally (Grandgeorge et al.  2008, Hayward and Verbeek 2008, Farmer and Leonard 2011) and that were appropriate to  what is known about the history and ecology of glaucous‐winged gulls in our study region.  Specifically, we represented each of three general hypotheses as graphical scenarios in Fig. 3.1  (described in text below). We then used a simple demographic model to generate expected  population trajectories, based on estimates of reproductive success and survival appropriate to  each scenario, and compared these predicted trajectories to the observed population trends  based on colony counts.   3.1.1 Food Limitation Hypothesis Several lines of evidence have led to researchers hypothesising that food limitation may have  driven both increases and decreases in glaucous‐winged gull populations at different points  during the last century. First, expanding human populations in the Georgia Basin may have  increased the availability of food for gulls in the form of garbage, and by doing so facilitated   53  their population growth after 1920 (Vermeer and Devito 1989, Vermeer 1992, Hayward et al.  2010), as has occurred in other systems (Spaans 1971, Pons and Migot 1995), with improved  garbage management practices later in the century leading to gull population declines  (Hayward and Verbeek 2008).   Alternatively, decreasing food availability, in the form of forage fish population changes (Hay  1998, Wallace 1998, Stick and Lindquist 2009, Therriault et al. 2009), has also been invoked to  explain recent declines in Georgia Basin glaucous‐winged gull populations. This is because these  declines occurred in parallel with long‐term decreases in egg and clutch size (Blight 2011;  Chapter 2), a pattern consistent with the idea that access to high‐nutrient fish prey, as opposed  to lower‐quality anthropogenic garbage, appears to be critical for successful egg production in  gull species generally (Houston et al. 1983, Hiom et al. 1991, Bolton et al. 1992, Bolton et al.  1993, Annett and Pierotti 1999). Under this scenario, dietary garbage might contribute to  population declines rather than to increases. Forage fish depletion has also been suggested as  an explanation for long‐term population declines and related changes in other fish‐eating birds  in the Georgia Basin and elsewhere (Norris et al. 2007, Hebert et al. 2008, Ainley and Blight  2009, Hebert et al. 2009). Overall, therefore, two potential mechanisms have been proposed to  link food abundance or quality to population trends in glaucous‐winged gulls, and are hereafter  referred to collectively as a ‘food limitation’ hypothesis (Fig. 3.1A).    54    Figure 3.1: Simple graphical representation of three possible hypotheses to explain glaucous- winged gull population trends from 1900 to 2010. These mechanisms have likely acted in concert, though interactions are not depicted here. (A) Food limitation hypothesis – gull population decreases due to increased dietary garbage and/or declines in forage fish decreases productivity (solid line), or conversely, increases because increased dietary garbage increases productivity (dashed line); (B) Predation limitation hypothesis – gull population trend (upper line) shows an inverse relationship to that of eagles (lower line); (C) Egging hypothesis – egging ceases due to the ratification of the 1916 Migratory Bird Convention, and gull populations increase in response N Year A B C  55  3.1.2 Predation Limitation Hypothesis A second hypothesis, that of ‘predation limitation’, might also explain long‐term population  trends in glaucous‐winged gulls given that bald eagle populations in the region, and presumably  associated predation rates, have changed over time. In the first half of the twentieth century,  bald eagle numbers were suppressed by persecution and, later, exposure to chemical  contaminants (DDT and PCBs; Elliott and Harris 2002). Given this, one might expect that  predation by eagles on gull nests or young increased as eagles recovered in the mid to late  1900s (Sullivan et al. 2002, Environment Canada 2010, National Audubon Society 2011, Elliott  et al. 2011). Under this hypothesis gull numbers should have grown or remained stable in the  absence of eagles, but grown more slowly or declined as eagle populations recovered (Fig.  3.1B).   3.1.3 Egging Hypothesis Reid (1988b) suggested that increases in the productivity of glaucous‐winged gulls in the region  occurred after the adoption of the Canada‐US 1916 Migratory Bird Convention (Migratory Birds  Treaty in the US), which reduced or eliminated human egg collecting and the killing of adults  throughout our study area. Reid further suggested that the resulting increase in productivity  was sufficient to explain subsequent population growth of glaucous‐winged gulls on Protection  Island, Washington, through to the late 1980s (Reid 1988b). Thus, the ‘egging hypothesis’ (Fig.  3.1C) predicts that once protected, gull populations in the Georgia Basin increased until limited  by food or predators (see above). Although human egging is essentially a form of predation, it  often occurred at much higher intensities than has been documented when due to eagles. For   56  example, at the Farallon Islands, California, nineteenth century egg hunters regularly broke all  eggs found so that they could later return to collect freshly‐laid second clutches (with 108,000  common murre Uria aalge eggs reported taken in 1886 alone; Doughty 1971). In the Georgia  Basin seabird egging and shooting was common prior to legislated protection. In 1915, for  example, a warden was placed at Mandarte Island to protect nesting birds as “human beings –  whites, Indians, and Japanese – carry…away the birds’ eggs and young” (Province of British  Columbia 1916). At Mitlenatch Island, BC, Pearse (1923) noted there was poor reproductive  success because  “the nests are systematically robbed by Indians and fishermen” and that “the  place was cleaned of eggs”. On shooting, Anthony (1906) wrote that “[i]t is a common practice  of a certain class of Sunday sportsmen (?) to… slaughter wantonly large numbers [of gulls] for  the mere sport”. When egging and hunting commenced in this region is unknown.   While each hypothesis above can be described in isolation, it seems likely that more than one  mechanism influenced gull population trends over the last century (cf. Hilborn and Mangel  1997). Following methods developed by Walters (1986) and Walters and Martell (2004), we  used our gull count data, published vital rates, and declines in clutch size and annual eagle  numbers to test if declines in gull fecundity (as a proxy for food availability or quality – i.e., our  food limitation hypothesis), predation by eagles, increased reproductive output after the  banning of egging, or some combination of these factors accounted for observed population  trends within our study area. Overall, the objective of our study was to use our derived  glaucous‐winged gull population trend and modelled effects of hypothesised causes to address  five questions: 1) how has population size changed over time in the Georgia Basin; 2) is  population change dependent on colony size, 3) colony location, or 4) related to temporal   57  variation in reproductive output and; 5) what do population trends tell us about baseline  conditions in our study region?   3.2 Methods 3.2.1 Study Area and Count Data To reconstruct population trends to the present day, we compiled published and unpublished  counts of breeding gulls (number of nests or breeding pairs per colony) obtained from field  studies conducted between 1900 and 2010 at glaucous‐winged gull colonies in the inshore  coastal waters of the Georgia Basin, Canada (Fig. 1.1; see Vermeer and Devito (1989) for gull  colony locations), and supplemented those data by conducting colony censuses in 2009 and  2010. We identified historical counts via literature review and our own knowledge of local  unpublished data repositories (e.g., museum archives, government records; sources detailed in  Appendix 2). We also contacted seabird biologists working in the region to request their  unpublished count data. Because we expected most early counts to reside in ‘grey’ literature,  we searched all such reports cited in major reviews (e.g., Hayward and Verbeek 2008), and  supplemented these sources using those found via the ISI Web of Science using the search  terms “glaucous‐winged gull” and “Larus glaucescens”. We searched all publications related to  gulls breeding in our study area (i.e., not only publications reporting on colony counts) because  some authors, particularly those writing prior to ~1960, included incidental notes on gull colony  sizes while reporting their focal results. Though most pre‐1960 data were published in Drent  and Guiguet (1961), we also encountered new records for that period in old publications by  naturalists and researchers, and in museum archives. In a few cases, counts were provided as   58  ranges. For these we used median values as our site estimates. Most colonies sampled are  located outside urban areas, and are now legally protected and rarely accessed by humans. A  small portion of this population (est. <4 % of total Georgia Basin numbers in 1986; Vermeer et  al. 1988) nested on city roofs, but we did not re‐census these urban‐nesting gulls because  informal surveys (LKB pers. obs., T. Chatwin pers. comm.) suggests no marked change in urban  nesting by gulls since 1986, and the cost of aerial surveys was prohibitive.  Our 2009 – 2010 counts were carried out following Vermeer and Devito (1989) and Sullivan et  al. (2002; briefly, individual surveyors (smaller colonies) or survey teams of 2 – 6 people (larger  colonies) walked systematically through each colony, marking nests with jellybeans to avoid  recounting), who in 1986 censused all non‐urban glaucous‐winged gull colonies in the Georgia  Basin (Vermeer and Devito 1989). Our counts replicated about 60% (49 of 83) of sites counted  in 1986, but we selected these 49 sites to include most (~96%; 1986 data) of the breeding  population. Of the 34 colonies we did not visit, 76% historically consisted of only ≤10 pairs. We  conducted censuses from 13 – 20 June 2009 (Mandarte Island and Chain Island group) and 2010  (remaining colonies). Four colonies of 1 – 5 pairs were surveyed using binoculars on 1 July 2010.  The mid‐June census period was chosen to most closely replicate earlier censuses as well as to  coincide with the peak of egg laying (Vermeer and Devito 1989, Sullivan et al. 2002; LKB unpubl.  data). Conducting counts prior to hatching avoids disturbing gull chicks, which when frightened  may flee into adjacent territories where they may be killed by neighbouring birds (Gillett et al.  1975, Hunt and Hunt 1976). To avoid disturbing nesting cormorants, we counted any gulls  nesting in their vicinity using binoculars. As with previously‐published studies (Vermeer &  Devito 1989; also K. Vermeer pers. comm.), we counted only active nests (containing ≥1 egg, or   59  evidence of predation), because glaucous‐winged gulls, like other larids, often build multiple  nest cups prior to laying.   3.2.2 Statistical Analyses Temporal Trends Temporal trends in gull abundance were estimated by modelling colony counts in relation to  year, from 1900 to 2010, using a mixed effects approach (Zuur et al. 2009). Colony counts were  log‐transformed, such that Yi,t = loge(Counti,t + 1), where i = colony location and t = year, and  year 1900 was set to a value of 1. We included ‘Year’ as a fixed effect to estimate change in  colony count over time, and as a random effect to account for colony‐specific variation. Thus,  this model allowed trends in colony counts to vary by location, but the fixed term represented  an average trend over the whole study area. In addition, the model included a random effect  term for year as a categorical variable, which allowed for year‐specific region‐wide deviations  from the overall trend, as would occur during years when data were only available from a few  colonies or were driven by unusual weather events. Number of annual counts per site for the  study period ranged from 1 – 22.  A model was first fit with only Year as an explanatory variable, and this model showed no  significant trend in abundance over time (βyear = –0.077; 95% CI = [–0.006, 0.021]). However, a  visual examination of a plot of residuals against year indicated the possibility of a non‐linear  trend, and therefore the model was refit, adding a quadratic term for year (Year2) that allowed  for non‐linear changes over time, again as a fixed effect and as random effects that allowed  effects of Year and Year2 to vary with location. The quadratic effect was significant (see   60  Results), and we thus based our inference on this model. Residuals and random effects were  normally distributed, and variance of residuals appeared constant across the range of fitted  values.  Apart from providing a trend for the entire study area, this model also estimated trends at each  location, and thus allowed for a series of secondary tests to examine whether trends varied  with geographical location or with colony size category. For geographical location, a Pearson  correlation coefficient (ρ) was calculated between the location‐specific trend estimates (‘early’  and ‘late’ based on the parameter estimates for Year and Year2) and latitude and longitude of  the colony location. To look at relationships between trends and colony size, we divided  colonies into five size class categories based on the maximum counts recorded for a given site:  1 – 10 nests (‘isolates’), 11 – 50 nests (‘small’), 51 – 250 nests (‘medium’), 251 – 499 nests  (‘medium‐large’) and ≥500 nests (‘large’), with size classes determined based on functional  attributes of colony response to extrinsic variables such as predation, food supply, and weather  (Furness and Monaghan 1987, Vermeer and Devito 1989). We then used an ANOVA to test  whether early or late trend varied with colony size class. Because population persistence should  decline with population size (due to increased vulnerability to factors regulating populations  (e.g., predation) and/or to stochastic processes; (Hanski and Gilpin 1991, Courchamp et al.  1999), and because declining populations often contract in spatially non‐random ways  (Channell and Lomolino 2000), we predicted that smaller gull colonies would show more severe  declines on average over 111 years, and that population trends may have varied geographically  within the study area.   61  3.2.3 Testing Causes of Population Trends We tested whether declines in gull productivity were sufficient to explain observed population  changes, following the Walters (1986) and Walters and Martell (2004) method of stock  reconstruction for single species assessment using a time series of abundance estimates. We  created a simple, 5‐stage deterministic demographic model based on available data on  glaucous‐winged gull age‐related survival rates (Table 3.1 and text below), and a modelled  decline in clutch size (CS; number of eggs laid per female) based on data from Chapter 2 (Blight  2011).   Based on our own and published data, for the first age‐class (survival from egg to fledge,  hereafter called reproductive success, RS) we also included a modelled decline in this  parameter over time (below). For the sub‐adult and adult stages we assumed that survival rates  were constant, using values taken from the literature of studies in the region. Specifically, we  assumed that: 2nd‐year survival was 0.70 (Butler et al. 1980, Reid 1988b), 3rd‐year survival was  0.62 (Butler et al. 1980), and adult survival was 0.87 (Reid 1988b). Where more than one value  was available for a particular age‐class, we took the mean of those values, except for adult  survival, where we used the value of 0.87, which was the highest of the estimates provided by  Hayward & Verbeek (2008; range 0.83 – 0.87), but most similar to published estimates for other  adult temperate‐breeding Larus gulls based on larger sample sizes and longer‐term studies  (summarised in Gaston et al. 2009). We used a female‐only model, and assumed that only adult  females (i.e., those entering their 4th year and older) were able to breed (Hayward and Verbeek  2008). An initial exploratory model using modelled RS and CS clutch size declines alone was   62  inadequate to explain population trend. Therefore, because juvenile gulls are less efficient  foragers than adults (Verbeek 1977, Searcy 1978, Greig et al. 1983, Skórka and Wójcik 2008) we  further assumed declines in food availability might disproportionately affect the survival of 1st  year gulls (fledging to 12 mo). To do so, we assumed a maximum survival rate from fledging to  12 months of age of 0.5, based on the average of published values for the region (Butler et al.  1980, Reid 1988b), and then used maximum likelihood methods implemented in Microsoft  Excel (2011) to find the linear decline in 1st‐year survival that resulted in the best fit to our  modelled population trend (see Temporal trends, above).    Table 3.1: Survival estimates used in this study for five age classes of glaucous-winged gulls, based on published studies. Age class  Survival estimate  for this study  Published values  (Salish Sea)  Source  Egg to fledging (RS)  0.83*  0.63a, 0.50b, 0.43b  Vermeer 1963a, LKB this studyb   1st year  0.50*  0.40, 0.61  Butler et al. 1980, Reid 1988b  2nd year  0.70  0.60, 0.80  Butler et al. 1980, Reid 1988b  3rd year  0.62  0.62  Butler et al. 1980  4th year+ (Adult)  0.87  0.83 – 0.87  Hayward and Verbeek 2008  *Initial estimate, with decline to lower values modelled over time. See text for details.    We employed a quadratic equation to model annual clutch size over time, using 10 years of  field data collected in the region between 1962 and 2009 (Blight 2011; Chapter 2), and  assuming an initial clutch size (intercept) of 3 in year 1900, so that   63  yi = a+ b1xi + b2xi 2 ,  where y is the predicted clutch size in year i, a is initial clutch size, b is the slope of the decline  and x is year. As with our analysis of temporal trend (above), using a quadratic ‘year’‐term in  the model allowed for non‐linear change over time. In the absence of reliable empirical  observations of clutch size in 1900, we assumed an initial clutch size of 3 because this is the  modal size for the genus and early accounts describe this species as laying three eggs (Schultz  1951). We assumed that temporal declines in clutch size were similar with respect to colony  size (Blight 2011; Chapter 2).   We also used a quadratic equation to model temporal trends in annual reproductive success,  using values derived from three years of field data from our study area (Vermeer 1963, LKB  unpubl. data), wherein y equalled the predicted RS in year i. Because egg and chick production  are both positively related to food availability in gulls (e.g., Mills et al. 2008), we assumed a  relatively high initial reproductive success (intercept) of 0.83 for year 1900, slightly above that  reported from a relatively successful sub‐population of modern‐day herring gulls (~0.78;  Pierotti and Annett 1990.) These annual clutch size and reproductive success values were then  used in our model along with the other values above (Table 3.1).   We used the same modelling approach to explore the potential influence of predation by  eagles, with the added assumption that eagle mortality would be additive to the modelled  effects resulting from change in clutch size, reproductive success and 1st‐year survival as  described above. To keep this model simple we restricted our exploration of eagle predation to  its potential effects on reproductive success. Although eagles do kill older gulls, their greatest   64  impact appears to occur via the predation of eggs and chicks at nesting colonies (Hipfner et al.  2012). Thus, to model eagle mortality, all other vital rates outlined above were retained in our  demographic model, and we then added a term to account for predation mortality.  To do so, we assumed that the annual predation rate experienced by gulls from laying to  fledging was proportional to the regional population size of bald eagles. By this method, the  annual additive reduction in egg and chick production due to eagle predatrion ranged from        –0.001 to –0.156; mean: –0.030; Fig. 3.2), a reduction that appears credible given our field  observations (LKB pers. obs.).   For eagle population trends we used effort‐adjusted Christmas Bird Count (CBC) data for British  Columbia and Washington (National Audubon Society 2011). Although CBC data suffer from  weakly‐standardised approaches and coverage has changed over time (Dunn et al. 2005), this  dataset provides the most comprehensive regional time series available for bald eagles across  our study period. CBC counts started in the first decade of the twentieth century whereas  regular breeding season surveys did not commence in the region until the 1980s (Elliott et al.  2011). Though the CBC provides counts of wintering individuals rather than breeding season  birds, winter abundance of eagles provides a reasonable index of regional trends over time (cf.  Elliott et al. 2011), and indicates that eagles occurred at low initial densities prior to 1950 but  have increased rapidly over time since the 1970s. As above, we used maximium likelihood to  find the best fit to our modelled population trend given additional egg and chick mortality from  eagles.   To test the egging hypothesis we simply allowed the model to predict population trend based   65  on baseline estimates of survival and reproductive rate, and predicted that a population at  equilibrium would not grow, but that populations suppressed by egg‐collecting would increase.       Figure 3.2: Modelled annual bald eagle predation rate on glaucous-winged gull eggs and chicks over time, with rate proportional to eagle population size. We did not correct for any effect of colony size on predation rate as most eagles occur at large gull colonies. Line tracks 10-year moving average.   3.3 Results 3.3.1 Colony Counts We compiled 507 records of colony counts from 87 localities in the Georgia Basin over the  study period (Appendix 2), with 11 colony counts available prior to 1925. Two of the Georgia  Basin’s largest (historically and at present) colonies were represented in these early counts, so   66  that our early population size estimates are likely representative of regional totals for that  period. Colonies for which early count data were available were also among the most  frequently censused in the region over the entire study period, and a visual inspection of the  long‐term trends for these sites showed agreement with our estimated population trend (Fig.  3.3).    Based on our 2009 – 2010 census, we estimate the 2010 Georgia Basin population at  approximately 5600 nesting pairs, about 7400 fewer pairs (–57%) than were breeding during  the regional census conducted in 1986 (13,002 pairs) but similar to the 5654 – 6654 pairs  estimated in region‐wide surveys during the middle of the increase phase (1959–60; Drent and  Guiguet 1961, Vermeer & Devito 1989).   3.3.2 Temporal Trends Glaucous‐winged gull numbers in the Georgia Basin increased from years 1900 to 1973,  reaching a maximum from 1971 – 1973 and declining thereafter (Fig. 3.3). The parameters for  Year and Year2 can broadly be interpreted as trends in first (“early”) and second (“late”) halves  of the 111‐year time series, respectively. Both these parameters were statistically significant  predictors of colony count, indicating a non‐linear trend over time (Table 3.2). The standard  deviations (SDs) of random effects included in the model estimated how variance in log‐ transformed colony counts was partitioned among locations and years. These SDs indicate that  most (90%) of the variation in colony counts resulted from differences among locations (Table  3.2), which underlines the strong spatial variation in colony counts over the region. The next  most important source of variation was the residual SD (5%) that measured the within‐location   67  variability in colony count, and this value was approximately double the SD attributable to  region‐wide swings in mean colony counts (3%; Year as categorical variable), and in trends in  time among locations (2%; Year|Location).  Secondary tests indicated that the magnitude of trends did not vary with latitude or longitude,  as all Pearson’s correlation coefficients (ρ) had absolute values ≤0.13 and p‐values >0.25 (Fig.  3.4A‐D). In contrast, population trends did vary among colony size categories (Fig. 3.4E‐F).  Analysis of variance tests for comparisons of both Year and Year2 effects among colony size  categories were statistically significant (F‐values >6.4 in both cases; df = 5,76, p < 0.0001),  indicating that rates of increases and declines were unequal with respect to colony size.  Specifically, regional trends were led by the largest colonies, which experienced the highest  rates of increase during the early period and also the most rapid declines during the later  period (Fig. 3.4E‐F). Noteworthy among the declines of the larger colonies was the near‐ extirpation of three neighbouring colonies located near Nanaimo, BC (Five Finger Island, Snake  Island, Hudson Rocks (approx. 49.14º N, 123.95º W); from 1591 nests in 1986 to 32 in 2010;  Appendix 2) that together comprised a nesting aggregation of gulls comparable in size to the  largest individual colonies in our study area. Another noteworthy observation at individual  colonies included the extirpation or near‐extirpation of at least three historically medium to  large colonies (Ballenas, Chrome, and Passage Islands; Appendix 2) on islets where buildings  such as lighthouses or homes had been constructed. Other than these instances, colonies  tended to change in size rather than to disappear.        68    Table 3.2: Parameter estimates for model depicting temporal trends in colony counts of glaucous-winged gulls in the Georgia Basin, 1900-2010. Parameters with |t-value| > 1.96 are considered statistically significant (P < 0.05; bold font). Trends are based on nest or pair counts at 87 locations, and 77 years of data.  N = 507 colony counts. Variable  Parameter  SE  t‐value  Fixed Effects        Intercept  1.66  2.266  –0.73  Year  0.12  0.055    2.25  Year2  –0.00084  0.00032  –2.59          Variable  SD      Random Effects        Location  12.14      Year|Location  0.305      Year2|Location  0.002      Year as categorical variable  0.335      Residual  0.676         69  !  Figure 3.3: Trends in colony counts (loge) of glaucous-winged gulls in the Georgia Basin, 1900- 2010. Hollow points indicate counts of pairs or nests at 87 locations. Thick hollow points along trend line indicate predicted means with 95% confidence intervals (thin lines) from quadratic trend model. Solid points indicate predicted mean incorporating a year-specific effect.  70    Figure 3.4: Variation in colony-specific trend estimates of gull colony counts as a function of geographical location (panels A-D) and colony size class (panels E-F; size classes defined in Methods). The study period encompassed 1900 – 2010, and was split into halves (‘early’ and ‘late’). In the ‘early’ phase, larger colonies experienced the highest rate of increase and led regional trends, but experienced the most rapid declines in the ‘late’ phase. Pearson’s correlation coefficients (ρ) for relationships between trend estimates and geographical location had p > 0.25.  71  3.3.3 Causes of Population Trends Assuming constant adult and sub‐adult survival, and trends in clutch size and reproductive  success fitted to our field data and others’ published values (see Methods), along with  decreasing survival of 1st year birds over time, we produced a population trajectory that closely  fit the population trend modelled from colony counts (Fig. 3.5A). The modelled decline of clutch  size became more severe over time: overall slope for the entire study period was –0.006, while  the slope for the last 50 years (since 1962) was –0.011 (Blight 2011; Chapter 2). Assuming an  initial clutch size of 3 in 1900 and a subsequent decline fitted to data, our modelled clutch size  began to decline below 3 (<2.95) in the 1950s.  Model fit was modestly improved by assuming that egg and chick mortality increased in  proportion to bald eagle numbers, in addition to the above modelled changes. Specifically, the  modelled rate of gull population decline from ~year 1974 to 2010 showed a better visual fit to  our estimated gull population trend when we assumed that eagles increased egg and chick  mortality as their populations grew (3.5B). This implies that food‐related declines in clutch size,  reproductive success and survival in 1st‐year gulls, in conjunction with the addition of egg and  chick loss proportional to eagle numbers, were sufficient to closely track our estimates of long‐ term change in glaucous‐winged gull population size, without making additional assumptions  about temporal variation in the survival of older age classes.    72                             ! " #$ % &' ' ( )* + $, ' - . /' 0$ ! ! 1'.&$ 2$ 3$   Figure 3.5: Glaucous-winged gull population trend (small solid points) with (A) modelled fit of population trajectory based on declining CS, RS and 1st year survival (large hollow points); and (B) model shown in (A) plus inclusion of additive eagle mortality on eggs and chicks, based on scaled eagle abundance.  73  3.4 Discussion 3.4.1 Colony Counts and Temporal Trends During the last 111 years, the number of glaucous‐winged gulls breeding in the Georgia Basin  fluctuated considerably, increasing rapidly from 1900 to the mid‐1970s, then declining so that  2010 levels were approximately 50% of peak recorded abundance. The timing of the population  peak detected by our model is about a decade earlier than was implied in the discussion of  1986 census results, but the latter were based on fewer data (Vermeer and Devito 1989). Our  study incorporated glaucous‐winged gull colony count data from all available sources, and  represents one of the more comprehensive sets of long‐term census data available for a marine  bird in Canada. Compilations of marine animal count data for time periods exceeding 100 years  are generally rare, and thus are particularly valuable in studies of animal population dynamics  (Pauly 1995, Pinnegar and Engelhard 2008).    Colony growth rate over time was not related to latitude or longitude, indicating that Georgia  Basin gull colonies are neither contracting toward a centrum (e.g., due to changes in  concentration of food availability; Therriault et al. 2009) nor shrinking toward the edge of the  species’ local range, as might have been expected if changing local conditions were the primary  factors affecting long‐term variation in colony counts. Our aggregated count data showed a  relatively consistent increase and then decline in numbers at individual Georgia Basin gull  colonies over the study period. In contrast, the rates of change at individual colonies varied  strongly with colony size, with the largest colonies showing the highest rates of change in both  the increase and the decline phases (Fig. 3.4 E‐F). This result was unexpected; though more   74  rapid population growth at large colonies is predictable, their relatively rapid decline, compared  to the relative stability and persistence of smaller colonies, ran counter to our predictions  based on the common observation that extinction probability increases as population size  declines (cf. Courchamp et al. 1999). This observation suggests that smaller glaucous‐winged  gull colonies should have been more inclined to vary widely in size, or to ‘wink out,’ than larger  ones.  In a study contrasting small and large glaucous‐winged gull colonies, Vermeer et al. (1988)  found that in urban settings, solitary nesters and small colonies had significantly higher  breeding success (1.10 and 1.73 vs. 0.35 chicks fledged per pair) than did a larger rooftop  colony. Vermeer et al. (1988) hypothesised that gulls nesting in isolation or with few  conspecifics were less likely to lose eggs or chicks to intraspecific predation. Rooftop nests were  also noted to be less vulnerable to heterospecific predation (Vermeer et al. 1988). This may  mean that when predators are scarce, nesting in smaller aggregations may represent a more  optimal strategy for gulls (with optimal colony size for seabirds in general varying in response to  adult survival and reproductive success; Brown et al. 1990). If true, the persistence and  relatively low rates of decline at the smallest Georgia Basin colonies we censused may imply a  recent relaxation in heterospecific predation at smaller gulls colonies. This pattern might also  be expected if eagles or other predators such as river otters (Foottit and Butler 1977, Vermeer  and Morgan 1978) currently focus their activities at glaucous‐winged gull colonies of larger size  (cf. Clode 1993). Interestingly, Ainley et al. (2005), also found that predation pressure was  lower at small penguin colonies owing to these sites being less attractive to predators.   75  Though we did not re‐visit 34 of 83 colonies censused in 1986, 76% of these historically  consisted of 10 or fewer pairs, and together they accounted for only 4% of the 1986 population.  We did not update census data for urban‐nesting gulls in the Georgia Basin, but we suggest that  this omission is unlikely to have markedly affected our results, given that no large colonies are  known to exist in urban settings in our study area; nor are they known from historical records  (prior to ~1950s; e.g., Bowles 1906, Eddy 1982, Hooper 1988, Vermeer et al. 1988; LKB pers.  obs., T. Chatwin pers. comm.). We therefore believe that we censused all important colonies,  and thus most of the glaucous‐winged gulls that nest within the region. Our conclusion that the  results from primarily non‐urban colonies accurately reflect a region‐wide trend, i.e., that  glaucous‐winged gulls have not simply moved to more urban habitat, is corroborated by data  from regional monitoring schemes counting gulls away from their colonies, and that also show  declines in recent decades (Bower 2009, Crewe et al. 2010, Environment Canada 2010, National  Audubon Society 2011). It is also unlikely that gulls have emigrated to other regions because  large colonies in conterminous US waters also experienced rapid declines from 1993 – 2008  (44%, Protection Island, WA; Hayward et al. 2010) or have all but disappeared (99% decline,  Colville Island, WA; from ~1800 pairs in 1970s to ~20 pairs by the end of the twentieth century;  Hayward and Verbeek 2008). Numbers at Canadian colonies in adjacent regions have remained  relatively stable after experiencing declines in the mid‐1900s (Parks Canada 2009; P. Clarkson  and Y. Zharikov pers. comm.).   3.4.2 Causes of Population Trends We used demographic models to project population trajectories over time and test alternative   76  hypotheses of population trend (Fig. 3.1), recognising that more than one driver would likely be  required to account for multi‐decadal trends. A close initial fit to estimated population trend,  assuming constant adult and sub‐adult survival rates estimated from the literature and  declining clutch size and reproductive success trends from data, provided support for the  declining productivity hypothesis (i.e., a scenario of decreasing CS, RS and survival of 1st year  birds; Fig. 3.1A).   We equated declining productivity with food limitation, an assumption that is consistent with  numerous findings that link limits in seabird food quality and abundance with CS and RS  declines. For example, productivity of glaucous‐winged gulls at colonies without access to  garbage exceeded that of birds breeding near urban areas (Ward 1973) and for herring gulls,  female body condition and productivity were both negatively related to blood plasma amino  acid index, an indicator of dietary garbage (Hebert et al. 2002). Contrasting studies have shown  that gulls respond to dietary garbage by increasing productivity, but these results may be  explained by regional differences in quality and availability of garbage (Pons 1992, Pons and  MIgot 1995, Weiser and Powell 2010). Our hypotheses do not discriminate between reductions  in productivity due to loss of fish prey vs. increases in low‐quality food (e.g., garbage), and it is  possible that these two factors act in concert. However, declines in egg and clutch size and  reproductive success have all been attributed to reductions in forage fish in other Larus gulls  with similar life histories (Houston et al. 1983, Pierotti and Annett 1990, Hiom et al. 1991,  Pierotti and Annett 1991, Bolton et al. 1992, Bolton et al. 1993), and each of these traits has  decreased over time in our study area (Blight 2011; Chapter 2). Declines in forage fish  availability and/or quality are also thought to have influenced reproduction and population   77  trends in other species of waterbird in our study area (Norris et al. 2007, Anderson et al. 2009a)  and numerous studies have shown this to be the case in other systems (e.g., Wanless et al.  2007, Ainley and Blight 2009, Hebert et al. 2009, Grémillet and Charmantier 2010).   The close overall fit of the increase phase of our demographic models to estimated population  trends (i.e., growth resulted despite constant sub‐adult and adult survival) also supports the  hypothesis that the observed population increase in glaucous‐winged gulls during the mid‐ 1900s was mainly the result of a cessation of egging and related human persecution. This  finding is consistent with the results of Reid (1988b), who suggested that population growth  rates to the early 1980s at Protection Island, Washington (~5.1% per annum), could primarily be  explained by cessation of human persecution. This conclusion is also in keeping with the more  generic observation that overexploitation (e.g., hunting, harvesting of propagules) is one of the  leading causes of species extinctions worldwide, including common species that have been  driven to extinction by human activities (Gaston 2010, Hoffmann et al. 2010).   Our modelled population increase from the early 1900s, as a result of holding sub‐adult and  adult survival constant, suggests a pattern typical of a rebounding animal population. Early data  and anecdotes suggest that at the turn of the twentieth century, egging, and perhaps hunting,  heavily affected gulls in the region, with biologists of the day consistently noting that gull  populations suffered from relentless persecution (Dawson and Bowles 1909, Province of British  Columbia 1915, Drent and Guiguet 1961, Pearse 1923, 1963, Drent et al. 1964). Harvest and  persecution of gulls and other seabirds (e.g., tufted puffins Fratercula cirrhata; Blight in prep.),  and resulting population effects, were not unique to the Georgia Basin but rather were globally   78  commonplace at the time (e.g., Falla 1937, Garthe and Flore 2007, Grandgeorge et al. 2008). A  hypothesis of population limitation due to egg harvesting in the early 1900s and earlier is also  consistent with the reduced reproductive success or total reproductive failure observed more  recently at colonies where glaucous‐winged gull eggs have been harvested, with the timing of  egging sometimes resulting in birds being unable to lay replacement eggs (Vermeer et al. 1991,  Zador et al. 2006). The growth of glaucous‐winged gull populations in the early to middle part  of the twentieth century was paralleled by rapid increases to other North American populations  of waterbird species not considered to be human commensals (e.g., other gulls, terns, alcids,  cormorants, cranes; Ludwig 1974, Reid 1988a, Bird Studies Canada 2010) that were also  protected by the 1916 US – Canada Migratory Bird Treaty.  Modest improvement to the fit between modelled and estimated population trend with the  addition of eagle predation was at least partially consistent with our predation hypothesis, i.e.,  that the recovery of eagle populations after the mid to late 1900s has curtailed glaucous‐ winged gull population growth within our study area (Fig. 3.1B) by renewing additive egg and  chick mortality decades after human egging ceased to be a factor. This suggestion contrasts  with the conclusions of Sullivan et al. (2002), who suggested that eagles were a primary cause  of regional declines. Eagles are capable of causing large‐scale disturbance at seabird colonies,  including those of glaucous‐winged gulls (Parrish et al. 2001, Hayward et al. 2010). However,  mobbing and aggression by gulls may reduce the susceptibility of colonies to eagle attack, and  also to disturbance‐related predation by corvids and other gulls (Hipfner et al. 2012). Gulls do  not appear frequently in the diet of nesting eagles in the Georgia Basin (Elliott et al. 2005a).  Nevertheless, it is plausible that eagle predation has acted synergistically with food shortages if,   79  for example, food shortage increases predation risk to eggs and chicks because adults spend  more time away from the nest to forage. Eagle predation is unlikely to have played a key role in  driving gull population trends in the early 1900s, because early CBC data, although sparse,  suggest that eagle numbers were low at that time. Human persecution of eagles and other  predatory birds was also commonplace in the early 1900s, as evidenced by bounties set on  eagles in Alaska from 1917 until 1952 (Zweifelhofer 2007). Thus, artificially low rates of  predation by eagles may have even facilitated early population increases once humans stopped  egging.    Overall, our models provide one possible set of explanations for the causes of population  trends observed in Georgia Basin glaucous‐winged gulls. It may be that factors not addressed by  our model, such as increases in the survival of older age classes related to the availability of  garbage, have also affected gull populations, but we lacked the data to test this hypothesis  explicitly. Fisheries discards do not appear to have featured in the diets of the Georgia Basin’s  glaucous‐winged gulls, at least since the 1960s (Ward 1973, Vermeer 1983), but they have been  important in the population dynamics of gull species elsewhere (Tasker et al. 2000, Farmer and  Leonard 2011) and could have gone undetected in our system. Detailed information on gull diet  over time is therefore required to more rigorously address these hypotheses.   3.5 Conclusions Our results indicate that glaucous‐winged gull populations in the Georgia Basin have fluctuated  considerably over the last 111 years. Local and other anecdotal accounts from the early  twentieth century suggest that glaucous‐winged gull numbers were not ‘at baseline’ but instead   80  were limited by human exploitation, something that was documented by early naturalists and  researchers but that had largely disappeared from the literature after about 1960. More  recently, declining availability of high‐quality fish prey appears to have decreased gull  productivity, perhaps making some populations more vulnerable to growing predation by  recovering bald eagles. The magnitude of our documented decline surpassed that described by  Sullivan et al. (2002). Our results highlight the value of long‐term, retrospective studies for  providing unique perspectives on causes of population change. In contrast, caution should be  exercised in assuming that historical data represent ‘pristine’ conditions by virtue of their age.  This caution is particularly relevant when baseline data are required to assess historical change  in the health of ecosystems.    3.6 Acknowledgements We thank the following people and organisations for providing census data: Rob Butler (BC  Breeding Bird Atlas; Environment Canada); Moira Lemon (Environment Canada); Pete Clarkson,  Todd Golumbia, Yuri Zharikov (Parks Canada); Chris Blondeau (Lester B. Pearson United World  College of the Pacific). Mike McNall, Royal British Columbia Museum (ret.) assisted with access  to archived museum records and other unpublished data. Tella Osler and Amy Medve ably  assisted with colony counts, field logistics, and data compilation. Trudy Chatwin, Merle  Crombie, Mikaela Davis, Dido Gosse, Marilyn Lambert, Dave Scott, Peggy Sowden, and Dave  Thomson all kindly volunteered on multi‐day censuses at Mandarte, Mitlenatch and the Chain  Islands, and Harry Carter donated boat, gas, and gull surveying expertise. Meredith Dickman,  Trial Island lightstation (Canadian Coast Guard), facilitated a trip to the gull colony there. Kari   81  Nelson, Don Lawseth, Janos and Noni Mate, and Susan and Richard Osler all provided field crew  accommodation and/or boat storage during colony censuses. Erica McClaren assisted with BC  Parks permits to access gull colonies at Ecological Reserves. Thanks to David Ainley, Keith  Hobson, Kathy Martin and John Elliott for comments on an earlier draft of the manuscript.   82  Chapter 4:  Changing Gull Diets in a Changing World: A 150-year Feather Isotope Record from a Northeast Pacific Coastal Zone4 4.1 Introduction Marine ecosystems worldwide are responding to human‐related stressors such as commercial  fisheries, climate change and pollution (Halpern et al. 2008). Effects include degradation or loss  of habitat, alteration of food webs, and declines in species richness and abundance, particularly  in coastal areas (Roberts and Hawkins 1999, Crain et al. 2009). The complex and synergistic  nature of such changes makes it important to understand how ecosystem function and  composition are affected by human activities, particularly in light of the potential ecological  consequences of cumulative change, and growing public concern over ocean health.   The inshore waters of southern British Columbia and northern Washington state, collectively  called the Salish Sea (Fig. 1.1; previously known as the Straits of Georgia and Juan de Fuca),  have been ranked among the more disturbed coastal marine systems on Earth (mean  cumulative impact score for region 19.3, highest possible 19.5; Halpern et al. 2008), and as such  are targets for concerted conservation and management (Fraser et al. 2006, Gaydos et al.  2008). Species recovery and ecosystem restoration require adequate baseline data to help set  conservation targets, but very few long‐term population trajectories exist for individual species  in this region because of poor and incomplete monitoring (Pauly et al. 1998b, Gaydos and                                                         4 This chapter is in preparation as a manuscript of the same title by L.K. Blight, K. Hobson  (Environment Canada), and P. Arcese (UBC).   83  Pearson 2011). Resident species for which historical population data exist stand as potential  sentinel species in such systems, particularly when fluctuations in their population size or other  aspects of their biology can be linked to key ecosystem states or processes. Sentinel or  indicator species are particularly appropriate “when direct measurement is impossible”  (Landres et al. 1988: 323), as is the case when attempting to assess past ecosystem states or  the historical status of species of conservation concern. For example, Emslie and Patterson  (2007) used stable isotope analysis of eggshell fragments (δ13C, eggshell carbonate; δ15N,  eggshell membrane) from archaeological and modern deposits to show that penguin diet had  abruptly shifted from fish to krill in the 1700s, likely due to food web shifts resulting from wide‐ spread removal of whales and fur seals by industrial whaling and sealing. Norris et al. (2007)  and Gutowsky et al. (2009) similarly used isotopic techniques to link population declines in  marbled murrelets to declines in fish prey in their diet over more than a century.  Researchers have long recognised that seabirds can be useful indicators of changes in marine  food webs (Ashmole and Ashmole 1968, Furness and Greenwood 1993, Hobson et al. 1994,  Furness and Camphuysen 1997, Furness 2003, Piatt et al. 2007, Woehler 2012). As long‐lived  animals, marine birds integrate ecosystem changes over time yet can be slow to show signs of  alterations in the environment that they are sampling (Montevecchi 1993). Conducting studies  spanning multiple decades overcomes this limitation, while simultaneously providing longer‐ term perspectives on ecological changes. Stable isotope analysis is increasingly used to measure  such long‐term change (Dawson and Siegwolf 2007a) because this approach is particularly  suited to specimens archived in museums or deposited at archaeological sites (Hobson and  Montevecchi 1991, Ainley et al. 2006, Becker and Beissinger 2006, Emslie and Patterson 2007).   84  Feathers are faithful indicators of diet during feather growth (Hobson 1999) and so archived  collections can be used to interpret birds’ past environments, particularly when combined with  population trends or dietary data (Thompson et al. 1995, Norris et al. 2007).   Holarctic Larus gulls occur close to human populations worldwide and have been studied in de‐ tail in many parts of their range, including the Salish Sea (Howell and Dunn 2007). Gulls in other  systems have shown strong responses to the availability of food and environmental change  (e.g., Mills et al. 2008), and we expected them to be a similarly tractable focal species for our  study region. The glaucous‐winged gull is a common, marine‐associated bird that has been  studied and collected by naturalists and ecologists for over 150 years (Anonymous 1908, Drent  and Guiguet 1961, Hayward and Verbeek 2008, Carter and Sealy 2011). We were thus able to  use archived specimens to develop and apply an approach using gulls as indicators of long‐term  food web change in the Salish Sea, with potential applications elsewhere (cf. Hobson 2007).   As a generalist consumer, glaucous‐winged gulls should be buffered against ecological  fluctuations. However, their populations in the Salish Sea are known to have undergone rapid  changes during the mid‐twentieth century, growing at an annual rate of 2.9% from 1960 to  1986, then declining steeply thereafter so that numbers are presently at less than 50% of their  peak counts from the 1970s and 80s (Galusha et al. 1987, Vermeer and Devito 1989, Sullivan et  al. 2002, Hayward and Verbeek 2008; Chapter 3). It has been hypothesised that evolving human  waste management practices and changing availability of garbage drove these fluctuations  (Vermeer and Devito 1989, Vermeer 1992, Hayward et al. 2010) but it is not clear that diets  including garbage benefit gulls at the population level. For example, glaucous‐winged gulls that   85  fed their chicks only natural foods (~90% fish) raised offspring that were heavier, grew faster  (e.g., for 2‐chick broods, mean asymptotic mass of 1014 vs. 883 g; 36 vs. 29 g d‐1), and fledged  at a higher rate (84% vs. 68%) than those feeding chicks a diet containing garbage (Ward 1973).  In the congeneric Western gull L. occidentalis, the most successful breeders also avoided  garbage and instead fed themselves and their young with fish prey (Pierotti and Annett 1990,  Annett and Pierotti 1999). Thus, empirical studies imply that if glaucous‐winged gulls now feed  more extensively on garbage than they did historically (i.e., if access to garbage was maintained  or increased), we might expect to observe declines in reproductive performance and population  size. Recent results indicate that glaucous‐winged gulls in the Salish Sea have experienced a  long‐term decline in egg volume and clutch size, with correlative evidence implicating dietary  decreases in high‐quality fish foods as the most likely cause (Blight 2011; Chapter 2).  Conversely, for the herring gull in Europe, Spaans (1971) found a positive relationship between  amount of garbage in diet and brood size, and Pons (1992) described a decrease in reproductive  output after a nearby garbage disposal site closed. Weiser and Powell (2010) similarly recorded  a positive relationship between dietary garbage and reproductive success for glaucous gulls L.  hyperboreas.   In light of these conflicting observations about how dietary change over time may affect gull  populations, the objective of our study was to examine and quantify long‐term dietary trends in  glaucous‐winged gulls to test alternative hypotheses about how population trend, diet, or  environmental change have been linked in this species. Specifically, we used stable isotope  analysis (δ13C and δ15N) of adult and sub‐adult glaucous‐winged gull feathers collected from  1860 to 2009 to ask whether and how gull diets changed during the rapid period of human   86  population increase following European colonization, and associated industrialisation of coastal  marine ecosystems in the Salish Sea.   If glaucous‐winged gull population trends have been driven primarily by the availability of  garbage, isotopic data should reflect an increasing dietary concentration of terrestrially‐based  foods as human populations grew, followed by a decline after the 1980s (i.e., δ13C values  declining until ~1980s, and subsequently increasing) as waste management practices improved  and gull numbers declined due to decreasing access to garbage (Pons 1992, Hayward and  Verbeek 2008). Alternatively, if gull populations have responded primarily to declining  availability of regional forage fish (Table 4.1; Wallace 1998, Therriault et al. 2009), we expected  to observe the fraction of fish prey in gull diets declining over the last 150 years, with feather  isotope values showing declines in both δ13C and δ15N over time as birds increasingly switched  to feeding on marine invertebrates and/or C3‐based garbage (see below).   We further hypothesised that availability of garbage (or reduction of fish foods in the diet)  might affect sub‐adult birds differently than adults, given that adult gulls are known to be more  proficient foragers in the marine environment (Verbeek 1977, Searcy 1978). Because of this,  and because landfills are often used more by sub‐adult gulls (Weiser and Powell 2011), we  predicted that δ13C values would indicate a more marine (i.e., more enriched in 13C) adult than  sub‐adult diet over time, with adult δ15N values likely correspondingly enriched if adults also  fed at a higher trophic level.   Interpretation of past diets via isotopic data derived over decades or centuries may be con‐ founded by changes to baseline environmental values (via the Suess effect, i.e., the dilution   87  over time of δ13C measurements as a result of fossil fuel‐derived carbon inputs (Gruber et al.  1999) or shifts in productivity) but such changes, if predictable, may be mathematically cor‐ rected for (e.g., Sonnerup et al. 1999). Interpretation of isotopic signatures from terrestrial food  webs can be further complicated by the different carbon isotope ratios of C3 vs. C4 plants, with  C4 plants (here, primarily corn) more enriched in 13C than the majority of plants from temperate  terrestrial systems (Dawson and Siegwolf 2007b). However, we judged that C4 isotopic signa‐ tures did not affect our results because the food industry in Canada tends to be C3 based (cf.  Hebert et al. 1999), unlike the C4, corn‐based industry in the USA (Jahren and Kraft 2008, but  see Chesson et al. 2009). About 98% of our feather samples were either from birds at Canadian  colonies, or from the US but collected prior to 1950. It was not until the 1950s and 1960s that  the economics of increased yields from new corn hybrids meant that cheap corn was available  for chicken and cattle feed in the US, facilitating the growth of corn‐based industrial agriculture  there (Pollan 2006).   4.2 Methods 4.2.1 Study Area Glaucous‐winged gull feather samples for stable isotope analyses came from bird skins or  moulted feathers collected between 1860 and 2009 at nesting colonies in the Salish Sea, i.e.,  the inshore waters of the Strait of Georgia, BC, Canada, and adjacent waters of northern Puget  Sound, WA, USA and the eastern Strait of Juan de Fuca (approximate range: 47.91° – 50.02° N,  121.95° – 125.24° W; Fig. 1.1). These boundaries included all large colonies from the region, but  excluded the more westerly colonies where diet was likely to be partially or wholly influenced   88    Table 4.1: Estimated years of commencement of forage fish fisheries and population declines in the Salish Sea, Canada and USA. Population trends for species other than Pacific herring are poorly documented. Forage fish  species  Common  name  Timing of  species’  availability  Approx. year  commercial/  recreational  fishery began  Year of  documented  or suspected  decline(s)  Source  Ammodytes  hexapterus  Pacific  sandlance  Winter,  breeding  season  ?  ?  Therriault et al. 2009  Clupea pallasii  Pacific herring  Winter/  spring  (spawning),  breeding  season (0+)  1890s  1960s, 2000s  Therriault et al. 2009, DFO 2008  Engraulis  mordax  N. anchovy  ?  1890  ?  Pauly et al. 1998b,  Therriault et al.  2009  Mallotus  villosus   Capelin  Fall  spawning   1930  1970s  Hay 1998  Osmeridae  “Smelts”  Fall, year‐ round?  1890  Decline  uncertain  Pauly et al. 1998b,  Therriault et al.  2009  Sardinops  sagax  Pilchard/  sardine  ?  1890s  1930s, 1960s  Pauly et al. 1998b,  Wallace 1998  Thaleichthyes  pacificus  Eulachon  March – May  1881  1930s, 1994   Hart & McHugh  1944, Hay 1998,  Hay & McCarter  2000, Therriault et  al. 2009, Moody &  Pitcher 2010   89  by the more marine regimes of the open Pacific Ocean. Banding and satellite telemetry studies  indicate that most Salish Sea glaucous‐winged gulls remain in or near the region year‐round and  that dispersal from natal to breeding sites is local (e.g., 74 – 84% of banded first year birds were  recovered or re‐sighted within 200 km of their natal site, 41 – 58% within 100 km, and 100%  (n=5) of satellite‐tagged adults remained in the Georgia Basin; Pearse 1963, Butler et al. 1980,  Reid 1988a; J. Elliott unpubl. data), and thus primarily represent a single oceanographic region.  This assumption is important for stable isotope analysis, because baseline isotope values often  vary among regions (Bond and Jones 2010, Graham et al. 2010).  4.2.2 Sample Collection And Stable Isotope Analysis – Feathers To assess long‐term changes in breeding season diet in glaucous‐winged gulls we examined  changes in stable carbon (δ13C) and nitrogen (δ15N) isotope ratios for a time series of feathers  grown in and around the nesting season, a physiologically demanding period when birds must  ingest foods that are energetically and nutritionally conducive to courtship, egg production and  other breeding activities (Robbins 1981, Meijer and Drent 1999, Williams 2005). Once grown,  feathers are metabolically inert, so their isotopic values reflect diet during the period of feather  generation (Mizutani et al. 1990, Hobson 1999, but see Fox et al. 2009). In situations where  consumers have access only to a C3‐based food web or to marine foods, δ13C values indicate the  relative proportion of marine vs. terrestrial (or intertidal) foods in the diet. Stable‐nitrogen  isotope values are also generally higher in marine food webs than in terrestrial ones, but δ15N  values also reflect the trophic level at which a bird had been feeding at the time of feather  growth. Enrichment in 15N is typically on the order of about 3‰ per trophic level for   90  vertebrates (Vanderklift and Ponsard 2003, Dawson and Siegwolf 2007b).  We sampled both wing and head feathers from birds that had resided in our study area, with  most specimens taken from museum collections (see below). To examine diet of breeding  adults, we selected a section (~1 x 2 cm) from the tip of the innermost primary feathers as the  first of these (P1) are generally moulted from mid‐April to early May (Verbeek 1979),  approximately 2 – 4 weeks before the lay date of first eggs (mid‐ to late May; Verbeek 1986,  Blight 2011). Thus, isotope ratios in P1 feathers reflected breeding birds’ diet choices  immediately prior to and during egg production in the previous year. Innermost primaries also  had the advantage of being hidden from view in standard museum specimens, so that sampling  did not alter external specimen appearance. We sampled feathers from glaucous‐winged gulls  at eight museums in Canada, the US and the United Kingdom (see Acknowledgements for  complete list of sources). We requested samples from each decade of our 1860 – 2009 study  period (except the 1870s; no specimens available), targeting P1, but accepting P2 if P1 was  absent. On rare occasions when P1 and P2 were missing, we sampled P3. We also collected  moulted primaries (P1, P2, and possibly P3 given appearance and timing; Verbeek 1979) from  the ground in the glaucous‐winged gull colony at Mandarte Island, British Columbia, Canada  (48.63°N, 123.28°W) in 2008 and 2009. Moulted feathers were collected from across the colony  of c. 1800 breeding pairs to minimise the chance that a single individual was sampled more  than once.   Adults’ brown‐tipped (winter) head feathers are grown during the post‐breeding moult while  white (summer) head feathers are grown in late winter to early spring, about the time that   91  birds return to nesting areas (Hayward and Verbeek 2008; LKB pers. obs.). Head feathers are  moulted at the extreme ends of the breeding season and will not entirely reflect diets from  critical periods such as pre‐breeding mass gain, egg production or chick rearing, but they do  have the advantage of causing minimal alteration to museum specimens due to the high  number of head feathers per bird. We therefore sampled a subset of winter and summer adult  head feathers from the same museum birds to ask if these could be used in future as a proxy  indicator of long‐term diet change, e.g., by showing the same trends and isotope values as  primary feathers grown during breeding. As we were also interested in long‐term differences in  the diet of adult and sub‐adult gulls we used the above protocol to sample primary feathers  from sub‐adult museum specimens, but did not collect contemporary field samples for these  age classes due to the absence of sub‐adults on Mandarte Island during the early nesting  period. Sub‐adult birds moult their first primaries at a similar time of year as adults, but sub‐ adult head feather moult patterns can be more variable (Howell and Dunn 2007, P. Pyle, pers  comm.), and thus may be a poor season‐specific indicator of dietary change. For this reason we  did not analyse sub‐adult head feathers from museum specimens.   Feather samples were prepared for analysis by soaking for 24 h in 2:1 chloroform:methanol  solution, and then rinsing in clean solution. Cleaned and rinsed feathers were air dried in a  fume hood for 48 h and then were weighed and from 0.25 to 0.55 mg were loaded into tin  capsules. Samples were processed at the Queen’s Facility for Isotope Research, Kingston,  Ontario, using a ThermoFinnigan Delta Plus XP mass spectrometer interfaced to a Costech  elemental analyser for C and N isotope measurements. We ran 10% (n=27) duplication on  feather samples, producing a repeatability of within <0.25‰ for δ13C and <0.25‰ for δ15N.   92  During analysis, we ran standards NBS‐21 graphite for δ13C and NIST 8548 and NIST 8550  for δ15N, along with an in‐house standard, chicken blood (CK‐1), for both δ13C and δ15N. Within‐ run error (SD) associated with in‐house standards was ±0.1‰ for both δ13C and δ15N. Stable‐ carbon isotope values are reported relative to Vienna Pee Dee Belemnite (VPDB) and δ15N  values relative to (atmospheric) Air.   4.2.3 Sample Collection and Stable Isotope Analysis – Fish To determine whether baseline environmental values had changed and thus affected feather  δ13C or δ15N values over time, we sampled and analysed lateral muscle tissues from forage  fishes collected in the Salish Sea from 1917 – 1960. Fish were collected by earlier researchers  using largely unknown methods, and deposited in the year of their collection at the Beaty  Biodiversity Museum of the University of British Columbia. All specimens were initially  preserved for one week in buffered formalin, then stored at the museum in isopropanol (E.  Taylor, pers. comm.). Preservation techniques may deplete 13C and 15N values in animal tissues  (Hobson et al. 1997, Arrington and Winemiller 2002, Edwards et al. 2002), but we were  interested in the relative rather than the absolute values of fish tissues and assumed that any  depletion that occurred would have taken place for all samples, not affecting comparability.   Collection locations were in the centre of the study area, in the vicinity of Vancouver and  Nanaimo, Canada (49.28º N, 123.12º W, and 49.14º N, 123.95º W, respectively). Forage fish  species (Pacific herring, Pacific sandlance and eulachon) were selected based on our own and  published observations of forage fishes in modern and historical glaucous‐winged gull diets  (Hart and McHugh 1944, Ward 1973, Verbeek 1979, Vermeer 1983, Davis in prep; LKB pers.   93  obs.). Fish were sampled from the full range of decades represented in the museum’s  collection, with our sample size per species limited by the number and size of specimens  available. We sampled only small fish (range: 43 to 97 mm in length) of the same approximate  size as those currently consumed by glaucous‐winged gulls (LKB pers. obs.). Fish tissue was  prepared for isotope analysis by freeze‐drying for 3d and then grinding each dried sample using  individual capsules inside an amalgamator. As lipid extraction may affect δ15N of processed  tissues, and as we were interested in fishes’ relative stable isotope values over time rather than  in their absolute values, we elected not to include lipid extraction as part of the sample  preparation process. Instead we used the C:N ratios of analysed samples to assess whether  their lipid content was high and/or variable, and thus whether to correct fish δ13C values for  lipid effects (Post et al. 2007). Pulverised tissues were weighed (0.40 – 0.55 mg) and loaded into  tin capsules and processed in the same way as feather samples, above, using tilapia (TIL‐06‐01)  as the in‐house standard. Repeatability and standards were otherwise the same as for feathers.   We did not correct for the Suess effect as its presence and magnitude varies by geographic  location in marine systems (e.g., Gruber et al. 1999, Sonnerup et al. 1999, Tanaka et al. 2003),  and fish stable isotope values showed no evidence for it affecting local isotopic trends (see  Results).   4.2.4 Statistical Analyses To assess temporal trends in feather isotope ratios of sub‐adult and adult gulls, we conducted  linear regressions on the time series of δ13C and δ15N values of primary and head feathers.  Given our prediction that a gull population driven primarily by garbage would show a pattern of   94  increasing terrestrial foods in diet, followed by a decrease in the 1980s, we also tested for  quadratic trends in the stable‐carbon isotope data from sub‐adult and adult primary feathers.  In marine systems, δ13C vs. δ15N values are typically correlated, but this relationship can break  down when birds forage across biomes (Hobson and Welch 1992), or when carbon is derived  from lipids and carbohydrates in addition to protein. We therefore regressed feather values of  δ13C on δ15N to assess the relationship between these two isotopes. Given our prediction that  sub‐adults would be more dependent on garbage, we expected stronger coupling between the  two isotopes for adults than for sub‐adults, i.e., the relationship might break down with access  to garbage. We used analysis of variance to test for differences among mean δ13C and δ15N  values of each feather type (adult brown‐tipped head feathers, adult white‐tipped head  feathers, adult primary feathers, sub‐adult primary feathers). Post‐hoc pairwise comparisons  used Tukey‐Kramer HSD tests.   We pooled isotope values for forage fishes and used the same linear modelling approach as  above to assess temporal trends in δ13C (herring and sandlance only; eulachon excluded due to  high C:N ratios; see Results) and δ15N (herring, sandlance, eulachon) values of fish muscle  tissues. To assess isotopic trends in forage fish to the present day, we performed additional  tests using the same model and stable‐isotope data derived from non‐preserved muscle tissue  of forage fish collected at Mandarte Island in 2010 (regurgitated whole or near‐whole fish from  adult gulls; M. Davis, unpubl. data). As preservation techniques may or may not affect tissue  δ13C values in fish (Arrington and Winemiller 2002, Edwards et al. 2002) we did not assume  modern (2011) samples were directly comparable with preserved museum specimens, and so  did not pool them. We also used linear regression on C:N ratios to test for any temporal trends   95  in lipids in forage fish tissue (herring and sandlance only).  4.3 Results 4.3.1 Feather Samples We analysed 270 feather samples from 216 glaucous‐winged gulls collected over 150 y, from  1860 to 2009. Of these 216 birds, 194 (90%) were held in museum collections with the  remainder represented by feathers collected in the field. In total, 138 feathers were adult  primaries, 55 adult head feathers, and 77 sub‐adult primaries, with an average of 11 adult  primary feathers per decade (with the exception of the years from 1860 – 1899, when only 10  specimens were available). With one exception, analyses of δ13C and δ15N values showed  declines over time for all feather types sampled (Table 4.2). In adult primaries, δ13C values  declined ~2.25‰ since 1860, i.e., they became more negative over time, indicating that the  average diet of breeding birds has become less marine over the study period (Fig. 4.1A). Values  of δ15N in adult primary feathers also decreased, dropping ~3.75‰ from 1860 – 2009 (Fig.  4.1B). Feather δ13C and δ15N values for primaries of sub‐adult birds showed similar trends (Figs.  4.1C & D). For adult winter head feathers, δ13C values showed a non‐significant decline over  time, with the lack of significance probably due to sample size given that the estimated  magnitude of decline was similar to that of other datasets (Table 4.2). We tested for a quadratic  trend in δ13C values for both sub‐adult and adult primaries but were unable to fit a squared  term, indicating no evidence for a curvilinear trend with respect to year.   Comparing isotopic values by feather type and specimen age‐class revealed a slight but non‐ significant difference in mean δ13C values between sub‐adult and adult primaries, with sub‐  96  adult values nominally showing a tendency toward a less marine signal (–15.36 ±  –0.18‰ (sub‐ adult) vs.  –14.92 ±  –0.13‰ (adult); F=1.32, p=0.26) and the lowest mean value among all four  feather types. For δ15N, the only among‐group difference detected was between adult  primaries and adult white head feathers (i.e., those grown just prior to breeding; 16.01 ±  0.14‰ vs. 15.04 ± 0.31‰; F=2.58, p=0.04). Regressing δ13C on δ15N revealed statistically  significant relationships for all feather types. As predicted, however, δ13C and δ15N values were  less strongly related in the breeding season diet of sub‐adult birds (R2=0.24) than in adult birds  (R2=0.41; primary feathers only).   Table 4.2: Trends in glaucous-winged gull feather δ13C and δ15N, based on linear regression for all feather types. Feather type (δ13C)  n  p  Slope (SE)  Adult primary  138  <0.0001*  ‐0.015 (0.003)  Sub‐adult primary  77  0.05*  ‐0.013 (0.006)  Adult head summer  31  <0.0001*  ‐0.042 (0.009)  Adult head winter  24  0.12  ‐0.018 (0.011)  Feather type (δ15N)        Adult primary  138  <0.0001*  ‐0.025 (0.003)  Sub‐adult primary  77  0.0005*  ‐0.026 (0.007)  Adult head summer  31  0.001*  ‐0.033 (0.009)  Adult head winter  24  0.003*  ‐0.030 (0.009)    4.3.2 Fish Samples We obtained 37 tissue samples from forage fish collected from 1917 – 1960 (eulachon, n=7;  herring, n=16; sandlance, n=14). The C:N ratios for eulachon samples were high (mean 7.8 ± 2.4  SD), indicating an elevated tissue lipid content and resulting effects on δ13C values (Post et al.   97  2007), so we excluded these data from further analysis of δ13C trends. C:N ratios of herring and  sandlance were relatively low, and not variable (range 3.4 – 4.4); thus we assumed no effect of  lipid content on reported δ13C values for these two species, and did not mathematically correct  them (as per Post et al. 2007). Unlike gull feathers, the pooled δ13C and δ15N values of forage  fish muscle tissues showed no trend over the time period covered by preserved specimens (i.e.,  1917 – 1960; δ13C: F=0.01, p=0.94; δ15N: F=0.00, p=0.99; Figs. 4.2A & B), indicating similar levels  of ecosystem productivity over this portion of our study period. When analyses included stable  isotope data from forage fish collected at Mandarte Island in 2010 (M. Davis, unpubl. data;  n=14, sandlance and herring; C:N ratios 3.3 – 3.9), fish δ13C values became less negative over  time, increasing at a rate of 0.01‰ per annum (F=5.15, p=0.03). This trend is opposite to that  predicted were the Suess effect altering regional stable‐carbon isotope values. With the  addition of these modern data, forage fish δ15N values also showed a positive but non‐ significant trend over time (F=2.44, p=0.12). Thus, for the period 1917 – 2011, fish stable  isotopes showed a trend opposite to that of feathers (if values of unpreserved fish were  comparable with those of preserved ones). While all C:N ratios for herring and sandlance  indicated that tissue lipid levels were not high enough to affect δ13C values of preserved fish  (Post et al. 2007), these ratios nonetheless declined from 1917 to 1960 (F=10.33, p<0.01). The  same trend was apparent with the inclusion of 2011 data from non‐preserved fish (F=58.51,  p<0.0001).     98  A              B                 C              D                   Figure 4.1: δ13C and δ15N of feathers from glaucous-winged gulls, 1860 – 2009 (adults) and 1893 – 2008 (sub-adults), Salish Sea region (SW British Columbia, Canada and NW Washington, USA), with δ15N being the samples’ ratio of 15N/14N relative to atmospheric air (“air” in y-axis label) and δ13C being the samples’ ratio of 13C/12C relative to Vienna Pee Dee Belemnite (“VPDB” in y-axis label). (A) δ13C, adult primary feathers; (B) δ15N, adult primary feathers; (C) δ13C, sub-adult primary feathers; (D) δ15N, sub-adult primary feathers. Note different scales for x-axes.       δ1 3 C ‰  (V PD B)    δ 13 C‰  (V PD B)              δ 15 N ‰  (a ir)     δ1 5 N ‰  (a ir)      99             A  B      Figure 4.2: Trends in stable isotope values of preserved forage fish over time. Stable isotope analysis of preserved forage fish tissues indicate there was no change in baseline environmental values during the sampled time period (1917-1960). (A) δ13C (herring, sandlance); and (B) δ15N (herring, sandlance, eulachon) of muscle tissue from forage fishes collected 1917-1960, Salish Sea region (SW British Columbia, Canada and NW Washington, USA), with δ15N being the samples’ ratio of 15N/14N relative to atmospheric air (“air” in y-axis label) and δ13C being the samples’ ratio of 13C/12C relative to Vienna Pee Dee Belemnite (“VPDB” in y-axis label).   4.4 Discussion We found significant declines in both δ13C and δ15N values in gull primary and head feathers  over our 150‐year study period, indicating that the diets of glaucous‐winged gulls in the Salish  Sea have changed in both the degree of marine contribution and in trophic level over time.  Because declines occurred in all feather types – adult primaries, sub‐adult primaries, and adult  summer and winter head feathers – our results imply that similar dietary changes occurred in  all age classes, and that the shift occurred across seasons. Our interpretation of a dietary shift  was supported by the invariant isotopic data from a time series of museum‐archived forage fish  (1917 – 1960); together, these two datasets, fish and gull, provide powerful parallel evidence  δ1 3 C ‰  (V PD B)     δ1 5 N ‰  (a ir)      100  that gull diets actually changed over time, rather than that feather isotopes reflected a baseline  environmental change over time. With the inclusion of contemporary stable isotope values  from non‐preserved fish caught in 2011, forage fish δ13C and δ15N became more positive over  the study period, in contrast to the trend in feather values. This means that if preservation  techniques did not alter fish values, the relative change in gull feather values over time was  even greater than that described by our analyses.  The changes in gull feather δ13C and δ15N that we have documented here are similar to those  described for the marbled murrelet, another coastal fish‐eating seabird in the study region.  Adult murrelets sampled during the pre‐breeding period (~Mar – Apr) in the Georgia Basin also  showed declines in feather δ15N values over the 107 year period from 1889 – 1996, as did  juvenile marbled murrelets sampled between 1854 and 2008, with both declines being  attributed to long‐term declines in the fraction of forage fish included in diets (Norris et al.  2007, Gutowsky et al. 2009). Similar patterns have also been reported for marbled murrelets in  California (Becker and Beissinger 2006). Herring gulls in the Great Lakes region and greater  black‐backed gulls L. marinus in the Atlantic have also exhibited isotopic changes indicative of  declines in trophic position as they tracked decreasing abundance of forage fish over time  (Hebert et al. 2008, Farmer and Leonard 2011). Our results thus suggest that gulls are  representative of at least one other species in the coastal northeast Pacific, and may be  indicators of long‐term, broad scale changes in food web composition. Our forage fish δ13C  values did not show the incrementally declining baseline environmental δ13C values predicted  by the Suess effect (i.e., declining 13C values due to increases in fossil fuel burning and   101  deposition), indicating that during the period sampled at least, conditions in the Salish Sea  meant this effect was not detectable.  The observed decline in feather stable‐carbon isotopic values over time differed from the  dome‐shaped trend we predicted had glaucous‐winged gulls tracked an increase and then a  decrease in availability of garbage. Instead, the gradual declines in apparent trophic level and  marine origins of diets for both sub‐adult and adult gulls were more consistent with our  predicted trend had glaucous‐winged gulls eaten less forage fish prey over time. Whether this  suggests a gradual shift to a more garbage‐based diet (rather than a dietary increase in garbage,  followed by a decrease) is unclear because declines in feather δ15N and δ13C values might also  be expected with increases in intertidal invertebrates in the diet, alone or in addition to  garbage. Terrestrial food webs tend to be depleted in 15N relative to marine ones so that an  across‐biome switch could appear as a trophic decline, but agricultural systems (and hence  human food waste) are generally enriched due to fertiliser input (Hobson 2007), meaning that a  switch from a diet of fish to one of garbage could be less likely to show as declining δ15N values.  Interestingly, the mean δ13C value for primaries of adult birds collected in the 1860s (n=3,           –12.9 ± 0.3‰ [SD]) was similar to that of ancient bone collagen from glaucous‐winged gulls (~2  – 4 K yrs‐old) collected from local middens (n=3, –13.6 ± 1.0‰; t1=1.15, p=0.3; (Hobson 1987);  adult gulls’ δ13C only began to shift from these apparently “ancient” values as of the late 1800s  (see Fig. 4.2). Isotopic discrimination factors are different for collagen and feathers, making a  direct comparison problematic. Nonetheless, these values all indicate an overwhelmingly  marine diet and suggest that gulls maintained such a diet in the Salish Sea for millennia (with a   102  marine endpoint of –13‰ identified for bone collagen of marine consumers at these latitudes;  Hobson 1987), but began to transition to a less marine diet about the time that commercial  forage fish extraction commenced in the region (1880s – 1890s; Pauly et al. 1998b, Wallace  1998). Emslie and Patterson (2007) described a similar trend of sudden dietary change  following commercial harvesting of marine resources – their stable isotope analysis of eggshell  remains indicated that Adélie penguin diet had remained stable for thousands of years, but  then switched to a lower trophic level around the time that industrial whaling and sealing  commenced in Antarctica.   Little is known about long‐term population trends of forage fishes that are not commercially  exploited in the Salish Sea, or for those commercially fished prior to 1950 but now rare in or  absent from the system (Hay 1998, Wallace 1998, Moody and Pitcher 2010; Table 4.1).  However, it is quite possible that forage fishes that are now scarce or absent from the Salish  Sea (e.g., pilchard Sardinops sagax, capelin Mallotus villosus) were once ecologically important  in the region. Eulachon, for example, may have the highest lipid content of any marine fish  species (range 15 – >50%; Payne et al. 1999, Anthony et al. 2000, Iverson et al. 2002, COSEWIC  2011), with tissue lipid levels tending to be an order of magnitude higher than in other forage  fishes (Payne et al. 1999, Anthony et al. 2000, Iverson et al. 2002). Based on their C:N ratios,  mean lipid levels of the locally‐caught eulachon we analysed were in excess of 33% (Post et al.  2007). This species once provided gulls with high‐quality food early in the breeding season:  earlier researchers reported that glaucous‐winged gulls fed “extensively” on eulachon in the  pre‐laying period (Hart and McHugh 1944, Verbeek 1979) but they not do so any longer.  Commercial catches of Georgia Basin eulachon peaked in the 1950s and ‘60s (max. annual catch   103  ~350 t; Moody and Pitcher 2010) and the population reached a historic low in 2008, with the  10‐year decline rate estimated to be 98% by 2011 (COSEWIC 2011). Salish Sea and other Pacific  eulachon populations have recently been listed as Endangered (Canada; COSEWIC 2011) or  Threatened (US; NOAA 2010). Herring and sandlance are currently the primary fish prey of  breeding glaucous‐winged gulls (Ward 1973, Vermeer 1983, Davis in prep; LKB pers. obs), and  trends in the C:N ratios of herring and sandlance tissues we assayed suggest that lipid levels in  these two species may also have declined in the region over time. The near‐extirpation of  eulachon from the system, the decline and extirpation of herring and capelin, respectively, and  possible decline in lipid content in currently important forage fish are all consistent with our  suggestion that glaucous winged‐gulls in the study area may be eating a nutritionally inferior  diet compared to their ancestors. A decline in forage fish quality (i.e., reduction in size‐at‐age  and/or lipid content of a favoured prey species) has been documented in the Salish Sea and  elsewhere (Wanless et al. 2004, Therriault et al. 2009) and implicated in short‐term seabird  productivity fluctuations, with poor food availability for fish a likely cause (Wanless et al. 2005,  Frederiksen et al. 2007). However, isotopic techniques have not yet been used to describe this  phenomenon over historical time periods, and we suggest such long‐term declines in food  quality could be investigated further, in our study system and elsewhere.   Quantities of the forage fishes currently favoured by glaucous‐winged gulls also appear to have  declined over the study period. Pacific herring stocks crashed in the early 1960s and despite  evidence of recovery in the region in subsequent decades (DFO 2008), their spawning  aggregations have contracted substantially in time and space since approximately 1970, and  now are probably much less available to seabird predators than when they spawned in higher   104  numbers and at more sites (Stick and Lindquist 2009, Therriault et al. 2009). Other seasonal  sources of fish foods, such as roe and dead fish from spawning salmon runs in fall and winter,  have also declined in their availability to gulls (Jewett et al. 1953, Hayward and Verbeek 2008).  Fisheries discards have played an important role in Larus gull population dynamics elsewhere  (Oro et al. 2004) and although discards occurred rarely in the diets of glaucous‐winged gulls in  the Salish Sea in the latter half of the 1900s (Ward 1973, Vermeer 1982, Vermeer 1983), they  may have been more available historically. By 1930, BC fisheries were extracting more biomass  than at any time after 1970 (Wallace 1998), and Salish Sea gulls presumably availed themselves  of these resources at times when fisheries discards were high. Thus, our δ13C and δ15N data  likely reflect a general loss of fish (salmon, fish offal, forage fish) from diet over time, and across  seasons.  Mean stable isotope values provided only equivocal support for our prediction that the diet of  sub‐adult birds would be less marine than that of adults. Mean δ13C of sub‐adult primary  feathers was slightly but not significantly depleted compared to that of breeding adults. We  also found no difference in mean δ15N of sub‐adult vs. adult primaries, a difference that we  predicted if sub‐adults were feeding on a greater proportion of terrestrially‐based foods (as  seen in glaucous gulls; Weiser and Powell 2011). However, because modern agricultural food  webs are typically enriched in 15N (Hobson 2007) our ability to discriminate in detail between a  marine versus a terrestrial, garbage‐based diet may be limited when considering only δ13C and  δ15N analyses (with 34S potentially serving as an additional source indicator; Michener and  Kaufman 2007). In contrast, the correlation between δ13C and δ15N values was stronger in adult  than sub‐adult gulls, supporting our prediction that sub‐adults forage more frequently outside   105  the marine biome. Given the wider‐ranging nature and broader food preferences of sub‐adult  gulls in general (Butler et al. 1980, Weiser and Powell 2011), it is likely that our results did  reflect a real (albeit relatively slight) dietary difference between the two age classes. However,  more detailed analyses or additional isotopes would be needed to fully characterize any  differences in sub‐adult and adult diets over time.  Differences in mean δ15N values of adult summer head feather and adult primaries suggest that  adult birds experienced a small but discernible downward trophic shift in the pre‐breeding  season, possibly due to being constrained by their proximity to the colony when courting and  defending territories, or perhaps because egg‐laying females require specific nutrients  (Christians 2002) that may be provided by invertebrate prey. In contrast, similar mean isotopic  values between adult primaries and winter head feathers (i.e., those grown around the end of  the breeding season) suggest that adult glaucous‐winged gulls tended to feed at similar trophic  levels both during and immediately after breeding. Taken together, these comparisons suggest  a slight difference in adult feeding habits between the pre‐ and early breeding period, and a  potentially greater reliance on terrestrial or intertidal foods by sub‐adult birds. Given the  similarity between gulls’ winter head feathers and primaries, the former could be a reasonable  substitute for primaries in assessing historical gull diets as head feather sampling causes less  obvious alteration to museum specimens.  Considering several lines of evidence, it is likely that dietary change has contributed to recent  glaucous‐winged gull population declines. Feathers sampled in our study integrated foods that  were consumed early in the breeding season, a period when nesting gulls require high‐protein   106  food to enhance body condition and facilitate egg production (Houston et al. 1983, Bolton et al.  1992, Bolton et al. 1993). This, and the apparent sequential loss of forage fishes from the Salish  Sea during the twentieth and early twenty‐first century (Table 4.1), all suggest that glaucous‐ winged gulls have been affected by declining access to fish prey. Though decreasing levels of  high‐quality food prior to the 1970s or ‘80s presumably did not facilitate the study population’s  increase phase during that period, those increases may be explained by release from human  egging and persecution following the enactment of the 1916 Migratory Birds Convention, even  taking into account gradually declining productivity by breeding gulls (Chapters 2 and 3; Reid  1988b, Blight 2011). Overall, the decline in gull feather δ13C and δ15N across age classes and  time of year points to an ongoing change in the diet of glaucous‐winged gulls in the Salish Sea.  4.5 Conclusions Stable isotope analysis of feathers collected and archived over 150 years demonstrated  plausible links among anthropogenic environmental change (specifically, forage fish population  declines), diet, and population change in a generalist, mid‐trophic predator living in an inshore  sea heavily affected by human activity (Halpern et al. 2008, Johannessen and Macdonald 2009).  Though we did not quantitatively correlate diet change with population trends, these results  are suggestive of a species responding to ongoing environmental change or food web shifts.  This isotopic study of glaucous‐winged gulls in the Salish Sea highlighted long‐term dietary  trends similar to those documented for the marbled murrelet, another fish‐eating bird whose  population numbers have shown decreases region‐wide (Bower 2009). Gulls and other birds  collected for museums over long time periods thus have the potential to be useful sentinels for   107  the incremental or inter‐generational ecological changes that tend to go unnoticed (cf. Pauly  1995, Hobson 2007). Population declines since the 1970s have also recently been documented  for a number of other waterbird species in the Salish Sea, several of which are piscivores  (Chatwin et al. 2002, Anderson et al. 2009b, Bower 2009). Causes of species declines and loss  are complex, and while factors additional to the ones we identify here have presumably  contributed to observed trends, we suggest that changes in diet have been important. The  dietary trends identified here may assist in determining a subset of the factors that are  contributing to waterbird declines, and the long‐term approach we employed may also be  useful for shedding light on similar changes occurring in coastal marine systems elsewhere.   4.6 Acknowledgements The following museums and their curators provided us with feather samples: Royal British  Columbia Museum, Victoria (Mike McNall and Gavin Hanke); Cowan Museum (now Beaty  Biodiversity Museum, UBC; Rex Kenner); Conner Vertebrate Museum, Washington State  University (Kelly Cassidy); Santa Barbara Museum of Natural History (Krista Fahy); Royal Ontario  Museum, Toronto (Allan Baker, Mark Peck); Canadian Museum of Nature, Ottawa (Michel  Gosselin); Burke Museum, University of Washington (Rob Faucett); Slater Museum, University  of Puget Sound (Gary Shugart); University Museum of Zoology, Cambridge (Michael Brooke).  Eric (Rick) Taylor facilitated sampling of archived fish tissues from the Beaty Biodiversity  Museum, UBC.  Lab facilities and assistance: Kerry Klassen, April Vuletich and Kurt Kyser (Queen’s Facility for  Isotope Research) analysed feather samples and advised on sample prep. Alice Chang, Xanti   108  Larrañaga, and Gerald Singh provided advice on sample prep and mass spec use, and Tella Osler  assisted with the preparation itself. John Richardson and Rob Guy provided lab facilities for  feather and fish tissue sample preparation. Mikaela Davis (Simon Fraser University) generously  shared her fish stable isotope data, and Craig Hebert (Environment Canada) provided  unpublished data on stable isotope values of domestic animals. Comments by David Ainley and  Kathy Martin improved the manuscript.   109  Chapter 5:  Conclusion  [C]itizens…have reason to be proud of the gull homes in their State, and it is a civic  obligation to care for and preserve them. One of the first duties of the patriotic  citizen is to carefully conserve the natural objects in his locality; any one [sic] who  would destroy them, especially for commercial purposes, is lacking in that uplifting  sentiment that develops in man or woman a respect for the rights of others, and a  love of country and fireside. The writer who commands and wields the most facile  pen cannot fully describe the life or beauty of one of the great breeding homes of  these gulls, nor can the most accurate photograph convey to the reader more than  a faint picture of the bright blue sky, the sparkling sea, the graceful motion of the  birds circling overhead; nor can it add the roar of the surf on the rocky shore, nor  the weird and angry cries and screams of the anxious gulls. (Dutcher & Baily, 1903,  A Contribution to the Life History of the Herring Gull in the United States)    William Dutcher and William Baily wrote this call to protect the herring gull in eastern North  America at a time when waterbirds and shorebirds were being systematically hunted and  persecuted across the continent. The millinery industry took a tremendous toll on wild birds –  up to 200 million per year (Weidensaul 2007) – and egging was carried out for personal  consumption as well as commercial trade (Dawson and Bowles 1909, Pearse 1923, Pearse 1963,  Doughty 1971, US Fish & Wildlife Service 2012). On weekends, shooting parties travelled to  seabird colonies such as Three Arch Rocks, Oregon, where they used the birds for target  practice (US Fish & Wildlife Service 2012). Early Audubon societies formed largely in response  to the resulting decline in hunted species (Weidensaul 2007). Due to efforts of their members  and other conservationists, the Migratory Bird Convention (Migratory Bird Treaty in the USA)   110  was signed in 1916 by Canada and the US, and subsequently passed into legislation. It was in  this milieu that naturalists and biologists began to study and census glaucous‐winged gull  colonies in the vicinity of the growing cities of coastal British Columbia and Washington,  providing the early data that I used in my study.  For my dissertation research I used these and more recent data, as well as archived museum  specimens collected up to 150 years ago, to investigate long‐term trends in diet, population  numbers, and breeding biology of the glaucous‐winged gull, a generalist mesopredator  breeding in Pacific coastal waters. To go beyond simply extracting disparate pieces of  information, studies in historical ecology (i.e., those addressing questions spanning multiple  generations of researchers) must find analytical approaches that can produce robust and  relevant outcomes (Ferretti et al. in prep.). I used a combination of meta‐analysis, statistical  modeling, and stable isotope techniques to assess multiple sources of data and ask how  glaucous‐winged gull population size, egg production, and diet have changed over time. Each of  my chapters addressed one or more of these topics, with combined analytical methods allowing  me to disentangle how multiple factors might have affected long‐term population change. In  this chapter I summarise the results, then provide some general conclusions drawn from the  study as a whole. I also address the limitations of my research, suggest future approaches, and  provide some management recommendations based on the key outcomes of my study.   5.1 Chapter 2 In Chapter 2, I reviewed the literature on egg and clutch size in gulls and other seabirds and  asked whether these traits, along with lay date, had changed over time in my study species.   111  Birds should alter reproductive traits and phenology in response to food web shifts, with  populations or individuals tracking environmental change over time (Grémillet and Charmantier  2010, Cury et al. 2011, Lewis et al. 2012). To assess any changes in the reproductive parameters  I measured, I used meta‐analysis to compare historical and modern data and showed that egg  and clutch size had both declined, with eggs about 5% smaller than a century ago and mean  clutch size tending toward two eggs. This smaller clutch contrasts with the modal clutch size of  three demonstrated by large‐bodied Larus gulls worldwide. Glaucous‐winged gulls also showed  a delayed lay date over time. Many studies have found a relationship between avian lay date  and climate proxies such as sea surface temperature (Crick 2004, Møller et al. 2010) but I did  not find this relationship in my study.   Based on the nutritional requirements of gulls prior to and during egg formation, the most  plausible interpretation for the declines demonstrated here was that birds were increasingly  food‐limited around the period of egg formation. It is well demonstrated that nutritionally  substandard foods compromise egg production in Larus gulls (Hiom et al. 1991, Annett and  Pierotti 1999, and other references listed in Chapter 2). Thus, in Chapter 2 I inferred that the  long‐term changes I found in egg output for Salish Sea glaucous‐winged gulls indicated a decline  in forage fish availability over the study period. These changes in clutch size were incorporated  into the demographic modelling employed in Chapter 3, while the hypothesis of declining  forage fish in gull diet was further examined via stable isotope analysis in Chapter 4.     112  5.2 Chapter 3 The objectives of this chapter were to use 100+ y of compiled population count data to model  population trends, and then to use demographic modelling to test potentially competing  hypotheses explaining the causes of these trends. This element of my study was carried out in  the Canadian portion of the Salish Sea (the Georgia Basin). The modelled population trend  showed that glaucous‐winged gull numbers there have changed dramatically over the last 111  years, increasing rapidly until the 1970s and then decreasing again through to the present.   Given the limited demographic data available for sub‐adult and adult glaucous‐winged gulls  over the multi‐decadal study period, the demographic models were largely heuristic in nature.  They nonetheless provided useful insights into ways in which my study system may have  functioned over time: invoking initial population suppression by egging in combination with  long‐term declines in clutch size and productivity were sufficient to explain the modelled  population trends. It is likely that in the early part of the twentieth century, glaucous‐winged  gull numbers were not “at baseline” but were instead maintained at low numbers by human  persecution. Once egging ceased, they grew as a result of (assumed) constant rates of sub‐adult  and adult survival. The cumulative effects of decreasing productivity from 1900 on (declining  clutch size, modelled from data compiled for Chapter 2; declines in reproductive success, also  modelled from historical and contemporary data; and decreasing first year survival) resulted in  a population that eventually ceased to grow and began to decline in number. Results did not  rule out effects of garbage on population trends (e.g., on maintaining sub‐adult survival during  the increase phase), but rates of modelled clutch size and reproductive success declines were   113  more consistent with a factor that had acted consistently from 1900 onward (e.g., overfishing)  rather than one that fluctuated in intensity over time (garbage). Demographic models also  provided limited support for the conclusion that recovering populations of bald eagles may  have negatively affected gull numbers, as they have with other seabird species in the study  area, elsewhere in North American, and in Europe (Hipfner et al. 2012).   Formally testing whether the glaucous‐winged gull population decline has been caused by  emigration rather that by an actual loss of breeding birds (cf. Beissinger et al. 2006) was beyond  the scope of my study, but published and unpublished data from adjacent regions in Canada  and the US show declining or stable populations of glaucous‐winged gulls (Parks Canada 2009,  Hayward et al. 2010), meaning that emigration is an unlikely explanation for observed Georgia  Basin trends.   5.3 Chapter 4 Given competing hypotheses on how changing availability of garbage and/or forage fish might  have limited Salish Sea glaucous‐winged gull populations (Chapters 2 and 3), in Chapter 4 I used  stable isotope analysis to assess gull dietary changes over the last 150 years. Museum  specimens provided a time series of feathers from 1860 to 1999, and were complemented by  feathers I collected in the field in 2008 and 2009. Results of this isotopic study (overall declines  in feather δ13C and δ15N over time, for sub‐adults and adults, and across all seasons sampled)  showed that glaucous‐winged gulls have undergone long‐term dietary changes. These gull diet  trends are similar to those documented for the marbled murrelet, another fish‐eating bird that   114  has experienced population declines in the Salish Sea and further afield (Becker and Beissinger  2006, Norris et al. 2007, Bower 2009).   Stable isotope results show that glaucous‐winged gulls are now eating a less marine diet than  they were historically, but it is not clear whether they have switched to a more terrestrial  (garbage‐based) or to an intertidal (invertebrate‐based) diet. For bird species that forage in  both marine and non‐marine biomes (primarily gulls and terns, but also some migrating anatids  and shorebirds; Hobson 1999, Braune et al. 2005, Evans‐Ogden et al. 2007) the use of a third  stable isotope, 34S, can serve as a source indicator when a combination of stable‐carbon and  stable‐nitrogen isotopes provide ambiguous results (Michener and Kaufman 2007). Conducting  this analysis for the feathers I collected for my study would provide a more detailed picture of  the nature of glaucous‐winged gull diet change.   It is now commonplace to correct for the Suess effect in stable isotope studies of marine food  web change (something that proved unnecessary in my study). However, few isotopic studies  have incorporated an additional level of stable isotope analysis to measure potentially  significant changes to baseline environmental productivity (Bond and Jones 2009). I addressed  this by sampling a time series of forage fish muscle tissue from specimens collected in the study  area from 1917 – 1960, and subjecting these samples to their own stable isotope analysis. This  was a powerful metric that allowed me to rule out the possibility that declining feather values  were merely reflecting a long‐term change to primary productivity (discussed in Hobson 2007),  as was the case in an isotopic study of the rockhopper penguin Eudyptes chrysocome. There,  declining δ13C values from 1861 to the present were shown to reflect baseline changes to the   115  phytoplankton community rather than a shift in dietary items over time (Hilton et al. 2006).  Also novel was my use of C:N ratios from stable isotope analysis to examine changes in forage  fish quality (lipid levels) over time; this approach may prove useful in quantifying and assessing  causes of food web change elsewhere.   Stable isotope analysis of feathers from museum specimens has recently emerged as a useful  approach to quantifying dietary change in marine birds over centennial scales or longer  (Thompson et al. 1995, Norris et al. 2007, Farmer and Leonard 2011), and my study adds to this  growing body of literature. Gulls and other birds collected for museums over long time periods  have the potential to be useful sentinels for the type of incremental ecological changes that  tend to go unnoticed by biologists (cf. Pauly 1995). Using this isotopic approach on other  waterbird species in decline in the Salish Sea (Anderson et al. 2009b, Bower 2009, Crewe et al.  2010) could help to determine if their population trends are similarly related to long‐term  dietary change, as is currently hypothesised about forage fish loss (SeaDoc Society 2011).   5.4 General Conclusions Several general conclusions may be drawn from this study. Taken together, my results did not  rule out the influence of garbage or eagle predation on Salish Sea glaucous‐winged gulls over  the last century or more, but they did suggest that an additional factor has had a larger overall  influence on population growth during the population decline phase. This includes the declines  in availability, and perhaps the nutritional value, of the fish prey that are likely to be essential to  maximise successful reproduction in glaucous‐winged gulls. Long‐term declines in egg and  clutch size (Chapter 2; results spanning 108 and 48 years, respectively), delayed lay date   116  (Chapter 2), and stable isotope analysis showing a gradual decrease in the marine contribution,  trophic level and possibly lipid content of gull diet since 1860 (Chapter 4; 150 years’ of data)  together provide strong evidence that diets changed for these birds over the last century or  more, and hint at changes to regional food webs.   These results are perhaps not surprising; a relationship between loss of fish prey and decreased  productivity is well documented in marine birds (Cury et al. 2011) and other piscivorous top‐  and mesopredators (Ainley et al. 2007, Ainley and Blight 2009, Cury et al. 2011). Gulls, however,  are extreme generalists among seabirds and are often thought to be buffered against changes  in food abundance more than other marine birds (Pierotti and Annett 1990). Generalist  foragers are successful precisely because of their ability to exploit redundant resources: they  can prey‐switch among dietary items, providing a mechanism for buffering against periodic  food scarcity (Folke et al. 2004, Layman et al. 2007). Directly measuring ecological resilience  (i.e., “the extent to which ecosystems can absorb recurrent natural and human perturbations  and continue to regenerate without slowly degrading”; Hughes et al. 2005: 380) and its limits  may not currently be possible (cf. Thrush et al. 2009), and this was not one of the goals of my  research. However, my results point to reduced redundancy in Salish Sea food webs via forage  fish population changes, and suggest that a loss of resilience may have resulted.   Comparing egg size measurements over time may also provide a useful metric for examining  long‐term ecosystem change. Trends in clutch size and lay date are often reviewed, but  retrospective analyses of egg sizes in relation to environmental change are rare (Järvinen 1994,  Tryjanowski et al. 2004). Museum egg collections have been used to assess long‐term changes   117  in nesting phenology, breeding distribution, egg colour, eggshell composition and thickness,  contaminant levels, stable isotope values, and clutch size (summarised in Green and  Scharlemann 2003, and Kiff 2005) as well as interspecific variability in eggshell colour (Cassey et  al. 2010), but to my knowledge this study was the first to use measurements from egg  collections to determine long‐term egg size trends. As museums around the world have  extensive collections of eggs dating back to the Victorian era at least (Green and Scharlemann  2003), these specimens may provide a useful, and perhaps untapped, record of change. My  study also highlighted the general importance of museum specimens and written archival  material as a repository of detailed information on past ecosystem states and population  numbers.   My research also revealed certain gaps in our understanding of population‐level effects of top  predators in the Salish Sea, where bald eagles are the primary predator of several seabird  species. At some glaucous‐winged gull colonies, eagles are thought to have contributed  substantively to gull population declines (Vermeer and Devito 1989, Sullivan et al. 2002,  Hayward et al. 2010), primarily through depredating eggs and chicks and facilitating other  predators via disturbance (Verbeek 1982, Vermeer and Devito 1989, Sullivan et al. 2002, White  et al. 2006, Hayward et al. 2010, Hipfner et al. 2012). However, modelling this assumption  provided only limited support for eagle effects (Chapter 3). Published observations have been  colony‐specific and it may be that effects depend upon factors such as eagle territoriality and  age class composition (Hayward et al. 2010; J. Elliott pers. comm.). Due to their aggressive  behaviour, glaucous‐winged gulls may also be more resilient to eagle disturbance than are  other surface‐nesting seabirds such as murres (Uria spp.) and cormorants (Phalacrocorax spp.;   118  Hipfner et al. 2012). Thus, the ways in which eagles affect their seabird prey may differ among  both colonies and species. It would be fruitful to research such effects in greater detail for gulls  as well as other coastal seabirds, especially given the widespread recovery of bald eagles in  coastal North America and elsewhere (Hipfner et al. 2012).   Finally, my study provides an example of how shifting baselines, that is, interpretation of past  ecosystem conditions through the lens provided by our present understanding (Pauly 1995),  can lead to erroneous conclusions about past population states, particularly in heavily altered  systems. Although review papers on glaucous‐winged gull biology have generally incorporated  mention of past egging or hunting as having affected populations (e.g., Hayward and Verbeek  2008), specific studies have tended to take a short‐term view and focus more narrowly on  limiting factors apparent to the modern researcher (garbage, eagle predation; Vermeer 1992,  Sullivan et al. 2002, Hayward et al. 2010). The lack of appreciation of past literature has been  described as one of the impediments to strengthening ecology as a science (Belovsky et al.  2004). While these authors were referring to a general lack of awareness about the history of  ecological concepts, reliance on short‐term data may similarly prevent the development of a  deeper understanding of population patterns, and the complexities of how they may be  regulated over time (e.g., Wiens 1977, 1984, Blight and Ainley 2008, Ainley and Blight 2009).  Seabirds are underrepresented in the marine historical ecology literature (HMAP 2008) but my  research adds to evidence that they are tractable subjects of studies spanning decades or  centuries (Hobson 1987, Thompson et al. 1995, Bovy 2007, Emslie and Patterson 2007). By  combining unrelated sources of long‐term data and analytical approaches, this study provides a  template for using marine birds as indicators over historical time scales.    119  5.5 Limitations of the Study This study’s modelling results, together with historical accounts, provide credible evidence that  the low glaucous‐winged gull numbers recorded at Salish Sea colonies c. 1900 were due to  human impacts, and likely do not represent a population at baseline. I found only a limited  number of accounts describing Salish Sea gull colonies at the start of my study, but authors of  that period were unanimous in attributing the population status of glaucous‐winged gulls and  other seabirds to human predation (Anthony 1906, Dawson and Bowles 1909, Province of  British Columbia 1915, 1916, Pearse 1923, 1963). Despite this, my study provides more of a  qualitative baseline than a quantitative one, as I was unable to develop a detailed description of  gull distribution and abundance for the early decades of my study period. Nonetheless, even  qualitative baselines for the purposes of monitoring may be useful (Grémillet and Charmantier  2010), particularly in the context of setting general ecosystem restoration goals, where targets  may be based on ecosystem function rather than on precise numbers of a given species.   Similarly, while the combined results of this study are strongly suggestive of gull reproductive  success being affected by a long‐term decline in forage fish availability around the early  breeding period, I did not demonstrate a direct relationship between fish population change  and glaucous‐winged gull population trend. Historical data on forage fish are scarce to virtually  non‐existent for all species in the region except Pacific herring, so that a detailed examination  of the relationship between specific fish species (or of the entire community of Salish Sea  forage fishes over time) and gull trends was not possible within the scope of my study.  Assembling long‐term historical data or proxies to model detailed effects of changing Salish Sea   120  fish communities on their seabird predators would be a valuable exercise for purposes of future  ecosystem management, as well as for understanding past trends of forage fishes and their  consumers.  An important limitation of historical studies is that they necessarily provide a broad, long‐term  view at the expense of the fine‐scale detail provided by short‐term research. I was restricted in  this study to data that were available over multiple decades. Because of this, I primarily  focussed on data representing adult birds during the pre‐ and early breeding period, with egg  size, clutch size and lay date only providing information on adults from the time of gaining body  condition in late winter through to producing eggs in the laying period. Stable isotope data  were primarily derived from adults in this same period. Thus, apart from varying the modelled  survival of juvenile (1st year) birds (Chapter 3), I did not look at factors potentially affecting  survival of non‐adult age classes, and effects on population trends. It is likely that more  complex demographic variability was at play than was input into this study’s demographic  model (cf. Leslie 1966, Beissinger et al. 2006). Nonetheless, the model provided a plausible,  heuristic tool for conceptualising drivers of long‐term population change, and was generally  supported by existing data, e.g., on declining clutch size and reproductive success. Stable  isotope trends in the feathers of sub‐adult gulls showed the same general trends as those of  adults, suggesting that at inter‐decadal scales, similar dietary or food web changes were likely  affecting different age classes.    121  5.6 Management implications An objective of my research was to contribute to monitoring strategies for detection of future  changes to coastal marine ecosystems. My results provide baseline data on egg size, clutch size  and lay date and these may be useful in future monitoring efforts for the Salish Sea, because  colony‐based data for nesting seabirds can be collected with modest effort and budgets while  providing results robust to comparisons over time and space (Bertram et al. 2002). At least  some monitoring will be required to determine whether glaucous‐winged gulls continue to   decline in number. Monitoring should include urban gulls, because gulls breeding in proximity  to humans are periodically subject to public demands for management, but any management  decisions will be poorly informed in the absence of baseline data (Arcese and Sinclair 1997).   Despite currently being in decline, glaucous‐winged gulls remain common within the Salish Sea  and their range overall, and thus are not of conservation concern. However, as Gaston (2010)  notes, common species may contribute disproportionately to ecosystem function, and I have  shown that this particular species can be a rich source of long‐term data. Declines in many  common species reflect those in related taxa (Gaston 2010), with glaucous‐winged gulls here  providing information relevant to declining populations of other marine birds in the study  region, and perhaps elsewhere. It is in this sense that glaucous‐winged gulls may be sentinels  for the Salish Sea, as may their congeners in other ecosystems. Overall, my results indicate that  seabirds for which there are long‐term population records, reproductive data, and museum  specimens are outstanding candidates for elucidating long‐term trends in species’ response to  environmental change.    122   Literature Cited Ainley, D. G. 2002. The Adélie Penguin: bellwether of climate change. Columbia University  Press, New York.   Ainley, D. G., G. Ballard, S. Ackley, L. K. Blight, J. T. Eastman, S. D. Emslie, A. Lescroël, S.  Olmastroni, S. E. Townsend, C. T. Tynan, P. Wilson, and E. Woehler. 2007. Paradigm lost,  or is top‐down forcing no longer significant in the Antarctic Marine Ecosystem? Antarctic  Science 19:283‐290.  Ainley, D. G., G. Ballard, B. J. Karl, and K. M. Dugger. 2005. Leopard seal predation rates at  penguin colonies of different size. Antarctic Science 17:335‐340.  Ainley, D. G., and L. K. Blight. 2009. Ecological repercussions of historical fish extraction from  the Southern Ocean. Fish and Fisheries 10:13‐38.   Ainley, D., K. Hobson, X. Crosta, G. Rau, L. Wassenaar, and P. Augustinus. 2006. Holocene  variation in the Antarctic coastal food web: linking δD and δ13C in snow petrel diet and  marine sediments. Marine Ecology Progress Series 306:31‐40.  Amundsen, T., S. H. Lorentsen, and T. Tveraa. 1996. Effects of egg size and parental quality on  early nestling growth: an experiment with the Antarctic petrel. Journal of Animal  Ecology 65:545‐555.   Anderson, E. M., J. L. Bower, D. R. Nysewander, J. R. Evenson, and J. R. Lovvorn. 2009b. Changes  in avifaunal abundance in a heavily used wintering and migration site in Puget Sound,  Washington, during 1966–2007. Marine Ornithology 37:19‐27.  Anderson, E. M., J. R. Lovvorn, D. Esler, W. S. Boyd, and K. C. Stick. 2009a. Using predator  distributions, diet, and condition to evaluate seasonal foraging sites: sea ducks and  herring spawn. Marine Ecology Progress Series 386:287‐302.   Annett, C. A., and R. Pierotti. 1999. Long‐term reproductive output in Western Gulls:  consequences of alternate tactics in diet choice. Ecology 80:288‐297.    123  Anonymous. 1908. Elects Officers for the Ensuing Year: Natural History Society’s Annual  Meeting Took Place Last Night. 7 April. Victoria Daily Colonist, Victoria, BC.   Anthony, A. W. 1906. Random notes on Pacific Coast gulls. Auk 23:129‐137.  Anthony, J., D. Roby, and K. Turco. 2000. Lipid content and energy density of forage fishes from  the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 248:53‐ 78.  Arcese, P., and A. R. E. Sinclair. 1997. The role of protected areas as ecological baselines.  Journal of Wildlife Management 61:587‐602.   Arrington, D. A., and K. O. Winemiller. 2002. Preservation effects on stable isotope analysis of  fish muscle. Transactions of the American Fisheries Society 131: 337‐342.  Ashmole, M. J., and N. Ashmole. 1968. The use of food samples from sea birds in the study of  seasonal variation in the surface fauna of tropical oceanic areas. Pacific Science 22:1‐10.  Auman, H. J., A. L. Bond, C. E. Meathrel, and A. M. M. Richardson. 2011. Urbanization of the  Silver Gull: evidence of anthropogenic feeding regimes from stable isotope analyses.  Waterbirds 34:70‐76.   Auman, H.  J., C.  E. Meathrel, and A. Richardson. 2008. Supersize me: does anthropogenic food  change the body condition of Silver Gulls? A comparison between urbanized and  remote, non‐urbanized areas. Waterbirds 31:122‐126.   Barber, R. T., and F. P. Chavez. Biological consequences of El Niño. Science 222:1203‐1210.  Baum, J. K., and B. Worm. 2009. Cascading top‐down effects of changing oceanic predator  abundances. Journal of Animal Ecology 78:699‐714.   Becker, B. H., and S. R. Beissinger. 2006. Centennial decline in the trophic level of an  endangered seabird after fisheries decline. Conservation Biology 20:470‐479.  Beissinger, S. R., J. R. Walters, D. G. Catanzaro, K. G. Smith, J. B. Dunning, Jr., S. M. Haig, B. R.  Noon, and B. M. Smith. 2006. Modeling approaches in avian conservation and the role   124  of field biologists. Ornithological Monographs No. 59. American Ornithologists’ Union,  Washington, D.C.   Belovsky, G. E., D. B. Botkin, T. A. Crowl, K. W. Cummins, J. F. Franklin, M. L. Hunter Jr., A. Joern,  D. B. Lindenmayer, J. A. MacMahon, C. R. Margules, and J. M. Scott. 2004. Ten  suggestions to strengthen the science of ecology. BioScience 54:345‐351.  Bertram, D. F., T. Golumbia, G. K. Davoren, A. Harfenist, and J. Brown. 2002. Short visits reveal  consistent patterns of interyear and intercolony variation in seabird nestling diet and  performance. Canadian Journal of Zoology 80:2190‐2199.  Bertram D. F., A. Harfenist, and B. D. Smith. 2005. Ocean climate and El Niño impacts on  survival of Cassin’s auklets from upwelling and downwelling domains of British  Columbia. Canadian Journal of Fisheries and Aquatic Science 62:2841–2853,  Bertram, D. F., D. L. Mackas, and S. M. McKinnell. 2001. The seasonal cycle revisited:  interannual variation and ecosystem consequences. Progress in Oceanography 49:283‐ 307.   Bird Studies Canada. 2010. Sandhill Cranes found Nesting in New Brunswick. 4 June. Bird  Studies Canada Online. Available at http://www.bsc‐eoc.org/organization/newsarchive  /6‐04‐10.html#Sandhill.    Blight, L. K. 2011. Egg production in a coastal seabird, the Glaucous‐Winged Gull (Larus  glaucescens), declines during the last century. PLoS ONE 6: e22027.doi:10.1371/  journal.pone.0022027.  Blight, L. K. In prep. Tufted puffins Fratercula cirrhata in the Georgia Basin.   Blight, L. K., and D. G. Ainley. 2008. Southern Ocean not so pristine. Science 321:1443.  Blight, L. K., D. F. Bertram, T. D. Williams, and L. Cowen. 2010. Interannual variation in egg  neglect and incubation routine of Rhinoceros Auklets Cerorhinca monocerata during the  1998‐1999 El Niño / La Niña events. Marine Ornithology 38:11‐15.  Blight, L. K., J. L. Smith, and J. M. Cooper. 2006. COSEWIC Status report on Black‐footed  Albatross (Phoebastria nigripes). Report for the Committee on the Status of Endangered   125  Wildlife in Canada (Draft).  Ottawa, Ontario.   Bolton, M. 1991. Determinants of chick survival in the lesser black‐backed gull: relative  contributions of egg size and parental quality. Journal of Animal Ecology 60:949‐960.  Bolton, M., D. Houston, and P. Monaghan. 1992. Nutritional constraints on egg formation in the  lesser black‐backed gull: an experimental study. Journal of Animal Ecology 61:521‐532.   Bolton, M., P. Monaghan, and D. C. Houston. 1993. Proximate determination of clutch size in  lesser black‐backed gulls: the roles of food supply and body condition. Canadian Journal  of Zoology 71:273‐279.   Bond, A., and I. Jones. 2010. A practical introduction to stable isotope analysis for seabird  biologists: approaches, cautions and caveats. Marine Ornithology 37:183‐188.  Borenstein, M., L. V. Hedges, J. Higgins, and H. R. Rothstein. 2005. Comprehensive Meta‐ Analysis, Version 2. Biostat, Englewood.   Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to meta‐ analysis. John Wiley & Sons, Chichester.   Both, C. 1998. Experimental evidence for density dependence of reproduction in great tits.  Journal of Animal Ecology 67:667‐674.   Bovy, K. M. 2007. Global human impacts or climate change?: explaining the Sooty Shearwater  decline at the Minard site, Washington State, USA. Journal of Archaeological Science  34:1087‐1097.  Bower, J. 2009. Changes in marine bird abundance in the Salish Sea: 1975 to 2007. Marine  Ornithology 37:9‐17.  Bowles, J. 1906. A list of the birds of Tacoma, Washington, and vicinity. Auk 23:138‐148.  Boyd, I. L., S. Wanless, and C.J. Camphuysen. 2006. Top predators in marine ecosystems: their  role in monitoring and management. Cambridge University Press, Cambridge.   126  Braune, B. M., K. A. Hobson, and B. J. Malone. 2005. Regional differences in collagen stable  isotope and tissue trace element profiles in populations of long‐tailed duck breeding in  the Canadian Arctic. Science of the Total Environment 346:156‐168.  Brown, C. R., B. J. Stutchbury, and P. D. Walsh. 1990. Choice of colony size in birds. Trends in  Ecology and Evolution 5:398‐403.  Butler, R. W., N. A. M. Verbeek, and R. G. Foottit. 1980. Mortality and dispersal of the glaucous‐ winged gulls of southern British Columbia. Canadian Field‐Naturalist 94:315‐320.   Campbell, R. W. 1975. Marginal habitat used by Glaucous‐winged Gulls for nesting. Syesis  8:393.  Campbell, R. W. 1976. Seabird Colonies of Vancouver Island Area (map). BC Provincial Museum  Special Publication. Royal British Columbia Museum, Victoria.   Campbell, R. W. 2007. New longevity record of a Glaucous‐winged gull from British Columbia.  Wildlife Afield 4:78‐80.  Campbell, R. W., N. K. Dawe, I. McTaggart‐Cowan, J. M. Cooper, G. W. Kaiser, M. C. E. McNall,  and G. E. J. Smith. 1990. The Birds of British Columbia, Nonpasserines, Diurnal Birds of  Prey through Woodpeckers. Royal British Columbia Museum, Victoria.   Carter, H. R., and S. G. Sealy. 2011. Historical breeding records of four species of alcid in British  Columbia and southeastern Alaska, 1858 – 1910. Northwestern Naturalist 92:37‐49.  Cassey, P., S. J. Portugal, G. Maurer, J. G. Ewen, R. L. Boulton, M. E. Hauber, and T. E. Blackburn.  2010. Variability in avian eggshell colour: A comparative study of museum eggshells.  PLoS ONE 5(8): e12054. doi:10.1371/journal.pone.0012054.  Causey, D., D. G. Corbett, C. Lefèvre, D. L. West, A. B. Savinetsky, N. K. Kiseleva, and B. F.  Khassanov. 2005. The paleoenvironment of humans and marine birds of the Aleutian  Islands: three millennia of change. Fisheries Oceanography 14 (Suppl. 1): 259‐276.  Chamberlain, C. P., J. R. Waldbauer, K. Fox‐Dobbs, S. D. Newsome, P. L. Koch, D. R. Smith, M. E.  Church, S. D. Chamberlain, K. J. Sorenson, and R. Risebrough. 2005. Pleistocene to   127  recent dietary shifts in California condors. Proceedings of the National Academy of  Sciences 102:16707‐16711.   Channell, R., and M. V. Lomolino. 2000. Dynamic biogeography and conservation of endangered  species. Nature 403:84‐86.  Chatwin, T. A., M. A. Mather, and T. D. Giesbrecht. 2002. Changes in pelagic and double‐crested  cormorant nesting populations in the Strait of Georgia, British Columbia. Northwestern  Naturalist 83:109‐117.  Cherel, Y., K. A. Hobson, C. Guinet, and C. Vanpe. 2007. Stable isotopes document seasonal  changes in trophic niches and winter foraging individual specialization in diving  predators from the Southern Ocean. Journal of Animal Ecology 76:826‐836.  Chesson, L., J. Ehleringer, and T. Cerling. 2009. American fast food isn’t all corn‐based.  Proceedings of the National Academy of Sciences 106:E8.   Christians, J. K. 2002. Avian egg size: variation within species and inflexibility within individuals.  Biological Reviews 77:1‐26.   Clode, D. 1993. Colonially‐breeding seabirds: predators or prey? Trends in Ecology and  Evolution 8: 336‐338.  COSEWIC. 2011. COSEWIC assessment and status report on the Eulachon, Nass / Skeena Rivers  population, Central Pacific Coast population and the Fraser River population  Thaleichthyes pacificus in Canada. Committee on the Status of Endangered Wildlife in  Canada, Ottawa.   Coulson, J. C., N. Duncan, and C. Thomas. 1982. Changes in the breeding biology of the herring  gull (Larus argentatus) induced by reduction in the size and density of the colony.  Journal of Animal Ecology 51:739‐756.   Coulson J. C., and C. S. Thomas. 1985. Changes in the biology of the kittiwake Rissa tridactyla: a  31‐year study of a breeding colony. Journal of Animal Ecology 54:9‐26.  Courchamp, F., T. Clutton‐Brock, and B. Grenfell. 1999. Inverse density dependence and the  Allee effect. Trends in Ecology and Evolution 14:405‐410.   128  Claesson, S., A. A. Rosenber, K. Alexander, A. Cooper, J. Courname, E. Klein, W. Leavenworth,  and K. Magness. 2010. Stellwagen Bank marine historical ecology. Marine Sanctuaries  Conservation Series ONMS‐10‐02. U.S. Department of Commerce, National Oceanic and  Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring.  Crain, C. M., B. S. Halpern, M. W. Beck, and C. V. Kappel. 2009. Understanding and managing  human threats to the coastal marine environment. Annals of the New York Academy of  Sciences 1162: 39–62.   Crawford, R. J. M., L. G. Underhill, L. Upfold, and B. M. Dyer. 2007. An altered carrying capacity  of the Benguela upwelling ecosystem for African penguins (Spheniscus demersus). ICES  Journal of Marine Science 64: 570–576.  Crawford, W. R., and J. R. Irvine. 2009. State of physical, biological, and selected fishery  resources of Pacific Canadian marine ecosystems. Fisheries Oceanography Working  Group, Science Branch, Fisheries and Oceans Canada Pacific Region, Ottawa.   Crewe, T., K. Barry, D. Lepage, P. Davidson, and S. Badzinski. 2010. Coastal waterbird population  trends in the Georgia Basin 1999‐2009: results from the first decade of the Coastal  Waterbird Survey (Draft). A report to the Habitat Conservation Trust Foundation for  Project CAT09‐0‐357. Bird Studies Canada, Vancouver.  Crick, H. Q. P. 2004. The impact of climate change on birds. Ibis 146:48‐56.   Croxall, J. P., S. H. M. Butchart, B. Lascelles, A. J. Stattersfield, B. Sullivan, A. Symes, and P.  Taylor. 2012. Seabird conservation status, threats and priority actions: a global  assessment. Bird Conservation International 22:1–34.  Cury, P. M., I. L. Boyd, S. Bonhommeau, T. Anker‐Nilssen, R. J. M. Crawford, and nine others.  2011. Global seabird response to forage fish depletion – one‐third for the birds. Science  334:1703‐1706.  Davies, W. E., J. M. Hipfner, K. A. Hobson, and R. C. Ydenberg. 2009. Seabird seasonal  trophodynamics: isotopic patterns in a community of Pacific alcids. Marine Ecology  Progress Series 382:211‐219.   129  Davis, M. In prep. Conventional and stable isotope investigations of Glaucous‐winged Gull diet:  implications for ecotoxicology monitoring. MSc thesis. Simon Fraser University, Burnaby.  Dawson, W. L., and J. H. Bowles. 1909. The Birds of Washington. Vol. 2. Occidental Publishing  Company, Seattle.   Dawson, T. E., and R. T. W. Siegwolf (eds.) 2007a. Stable isotopes as indicators of ecological  change. Academic Press, Burlington and San Diego.   Dawson, T. E., and R. T. W. Siegwolf. 2007b. Using stable isotopes as indicators, tracers, and  recorders of ecological change: some context and background. Pp. 3‐18 in Stable  isotopes as indicators of ecological change (T. E. Dawson, and R. T. W. Siegwolf, eds.).   Academic Press, London.  Desrochers, A. 2010. Morphological response of songbirds to 100 years of landscape change in  North America. Ecology 91:1577‐1582.   DFO. 2008. Stock Assessment Report on Strait of Georgia Pacific Herring, DFO Canadian Science  Advisory Section Scientific Advisory Report 2008/014 ed. Fisheries and Oceans Canada,  Nanaimo.  Doughty, R. W. 1971. San Francisco's nineteenth‐century egg basket: the Farallons.  Geographical Review 61:554‐572.  Dragoo, D. E., G. V. Byrd, and D. B. Irons. 2010. Breeding status, population trends and diets of  seabirds in Alaska, 2007. Report AMNWR 2010/08, U.S. Fish & Wildlife Service, Homer.  Drent, R. H. 2006. The timing of birds’ breeding seasons: the Perrins hypothesis revisited  especially for migrants. Ardea 94:305‐322.   Drent, R. H., and C. Guiguet. 1961. A catalogue of British Columbia seabird colonies. Occasional  Paper of the British Columbia Provincial Museum, Victoria.   Drent, R., G. F. Van Tets, F. Tompa, and K. Vermeer. 1964. The breeding birds of Mandarte  Island, British Columbia. Canadian Field‐Naturalist 78:208‐263.    130  Drever, M. C., L. K. Blight, K. A. Hobson, and D. F. Bertram. 2000. Predation on seabird eggs by  Keen’s mouse (Peromyscus keeni): using stable isotopes to decipher the diet of a  terrestrial omnivore on a remote offshore island. Canadian Journal of Zoology 78: 2010‐ 2018.  Duhem, C., P. Roche, E. Vidal, and T. Tatoni. 2008. Effects of anthropogenic food resources on  yellow‐legged gull colony size on Mediterranean islands. Population Ecology 50:91‐100.   Dunn, E. H., C. M. Francis, P. J. Blancher, S. R. Drennan, M. A. Howe, D. Lepage, C. S. Robbins, K.  V. Rosenberg, J. R. Sauer, and K. G. Smith. 2005. Enhancing the scientific value of the  Christmas Bird Count. Auk 122:338‐346.  Dunn, P. 2004. Breeding dates and reproductive performance. Advances in Ecological Research  35:69‐87.   Dutcher, W., and W. L. Baily. 1903. A contribution to the life history of the Herring Gull (Larus  argentatus) in the United States. Auk 20:417‐431.  Eddy, G. 1982. Glaucous‐winged gulls nesting on buildings in Seattle, Washington. Murrelet  63:27‐29.  Edwards, M. S., F. T. Thomas, Z. D. Sharp, and W. L. Montgomery. 2002. Short‐ and long‐term  effects of fixation and preservation on stable isotope values (δC, δN, δS) of fluid‐ preserved museum specimens. Copeia 2002: 1106‐1112.  Elliott, J. E., and M. L. Harris. 2002. An ecotoxicological effect of chlorinated hydrocarbon  effects on bald eagle populations. Reviews in Toxicology 4:1‐60.  Elliott, J. E., L. K. Wilson, and B. Wakeford. 2005b. Polybrominated diphenyl ether trends in eggs  of marine and freshwater birds from British Columbia, Canada, 1979−2002.  Environmental Science and Technology 39:5584‐5591.   Elliott, K. H., J. E. Elliott, L. K. Wilson, I. Jones, and K. Stenerson. 2011. Density‐dependence in  the survival and reproduction of Bald Eagles: linkages to Chum Salmon. Journal of  Wildlife Management 75:1688‐1699.   131  Elliott, K. H., C. E. Gill, and J. E. Elliott. 2005a. The influence of tide and weather on provisioning  rates of chick‐rearing Bald Eagles in Vancouver Island, British Columbia. Journal of  Raptor Research 39:1‐10.  Emslie, S. D., and W. P. Patterson. 2007. Abrupt recent shift in δ13C and δ15N values in Adélie  penguin eggshell in Antarctica. Proceedings of the National Academy of Sciences  104:11666‐11669.  Environment Canada. 2010. North American Breeding Bird Survey ‐ Canadian Results and  Analysis Website Version 3.00. Available at http://www.ec.gc.ca/reom‐ mbs/default.asp?lang=En&n=416B57CA‐1. Environment Canada, Gatineau.  Evans‐Ogden, L. J., Bittman, S., and Lank, D. B. 2007. A review of agricultural land use by  shorebirds with special reference to habitat conservation in the Fraser River Delta,  British Columbia. Canadian Journal of Plant Science 87: 1‐13.  Falla, R. A. 1937. Birds. B.A.N.Z. Antarctic Research Expedition Reports, 1929 – 1931, Series B,  Volume II. B.A.N.Z.A.R. Expedition Committee, Adelaide.  Farmer, R. G., and M. Leonard. 2011. Long‐term feeding ecology of Great Black‐backed Gulls  (Larus marinus) in the northwest Atlantic: 110 years of feather isotope data. Canadian  Journal of Zoology 89:123‐133.  Ferretti, F., L. B. Crowder, and F. Micheli. In prep. Integrating different data types to reconstruct  baselines of animal populations – it’s not a case of apples and oranges. In Applying  marine historical ecology to conservation and management: using the past to manage  for the future (J. N. Kittinger, L. E. McClenachan, K. B. Gedan, and L. K. Blight, eds.).  Ferretti, F., R. A. Myers, F. Serena, and H. K. Lotze. 2008. Loss of large predatory sharks from the  Mediterranean Sea. Conservation Biology 22:952‐964.  Folke, C. S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, and C. S. Holling. 2004.  Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of  Ecology, Evolution, and Systematics 35:557‐581.    132  Foottit, R. G., and R. W. Butler. 1977. Predation on nesting Glaucous‐winged Gulls by river otter.  Canadian Field‐Naturalist 91: 189‐190.   Foottit, R. G., R. Butler, and W. J. Merilees. 1973. Additional nesting sites of sea birds in  northern Georgia Strait, British Columbia. Murrelet 54:39‐40.  Fox, A.D., K. A. Hobson, and J. Kahlert. 2009. Isotopic evidence for differential endogenous  protein contributions to Greylag Goose Anser anser flight feathers. 2009. Journal of  Avian Biology 40:108‐112.  Fraser, D. A., J. K. Gaydos, E. Karlsen, and M. S. Rylko. 2006. Collaborative science, policy  development and program implementation in the transboundary Georgia Basin/Puget  Sound ecosystem. Environmental Monitoring and Assessment 113:49‐69.  Frederiksen, M., R. W. Furness, and S. Wanless. 2007. Regional variation in the role of bottom‐ up and top‐down processes in controlling sandeel abundance in the North Sea. Marine  Ecology Progress Series 337:279‐286.  Furness, R. W. 2003. Impacts of fisheries on seabird communities. Scientia Marina 67  (Supplement 2):33‐45.  Furness, R. W., and K. C. J. Camphuysen. 1997. Seabirds as monitors of the marine  environment. ICES Journal of Marine Science 54:726‐737.  Furness, R. W., and J. J. D. Greenwood. 1993. Birds as monitors of environmental change.  Chapman & Hall, London.  Furness, R. W., and P. Monaghan. 1987. Seabird ecology. Chapman & Hall/Methuen, New York.  Furukawa, T. A., C. Barbui, A. Cipriani, P. Brambilla, and N. Watanabe. 2006. Imputing missing  standard deviations in meta‐analyses can provide accurate results. Journal of Clinical  Epidemiology 59:7‐10.   Galusha, J. G., and J. L. Hayward. 2002. Bald eagle activity at a gull colony and seal rookery on  Protection Island, Washington. Northwestern Naturalist 83:23‐25.    133  Galusha, J. G., B. Vorvick, M. R. Opp, and P. T. Vorvick. 1987. Nesting season censuses of  seabirds on Protection Island, Washington. Murrelet 68:103‐107.  Garthe, S., and B.‐O. Flore. 2007. Population trend over 100 years and conservation needs of  breeding sandwich terns (Sterna sandvicensis) on the German North Sea coast. Journal  of Ornithology 148:215‐227.  Gaston, A. J. 1997. Mass and date at departure affect the survival of Ancient Murrelet  Synthliboramphus antiquus chicks after leaving the colony. Ibis 139:673‐678.  Gaston, A. J., S. Descamps, and H. G. Gilchrist. 2009. Reproduction and survival of Glaucous  Gulls breeding in an Arctic seabird colony. Journal of Field Ornithology 80:135‐145.  Gaston, K. J. 2010. Valuing common species. Science 327:154‐155.   Gaydos, J. K., L. Dierauf, G. Kirby, D. Brosnan, K. Gilardi, and G. E. Davis. 2008. Top 10 principles  for designing healthy coastal ecosystems like the Salish Sea. EcoHealth 5:460‐471.  Gaydos, J. K., and S. F. Pearson. 2011. Birds and mammals that depend on the Salish Sea: A  compilation. Northwestern Naturalist 92:79‐94.  Gebbink, W. A., R. J. Letcher, N. M. Burgess, L. Champoux, J. E. Elliott, C. E. Hebert, P. Martin, M.  Wayland, D. Weseloh, and L. Wilson. 2011. Perfluoroalkyl carboxylates and sulfonates  and precursors in relation to dietary source tracers in the eggs of four species of gulls  (Larids) from breeding sites spanning Atlantic to Pacific Canada. Environment  International 37:1175‐1182.  Gill, V. A., S. A. Hatch, and R. B. Lanctot. 2002. Sensitivity of breeding parameters to food supply  in Black‐legged Kittiwakes Rissa tridactyla. Ibis 144:268‐283.   Gillett, W. H., J. L. Hayward, Jr., and J. F. Stout. 1975. Effects of human activity on egg and chick  mortality in a Glaucous‐winged Gull colony. Condor. 77:492‐495.  Gjerdrum, C., A. M. J. Vallee, C. C. St Clair, D. F. Bertram, J. L. Ryder, and G. S. Blackburn. 2003.  Tufted puffin reproduction reveals ocean climate variability. Proceedings of the National  Academy of Sciences of the United States of America 100:9377‐9382.    134  Graham, B. S., P. L. Koch, S. D. Newsome, K. W. McMahon, and D. Aurioles. 2010. Using  isoscapes to trace the movement and foraging behaviour of top predators in oceanic  ecosystems. Pages 299‐318 in Isoscapes: Understanding movement, pattern, and  process on Earth through isotope mapping (J. B. West, G. J. Bowen, and T. E. Dawson,  eds.). Springer Verlag, Berlin.  Grandgeorge, M., S. Wanless, T. E. Dunn, M. Maumy, G. Beaugrand, and D. Grémillet. 2008.  Resilience of the British and Irish seabird community in the twentieth century. Aquatic  Biology 4:187‐199.  Green, R. E., and J. P. W. Scharlemann. 2003. Egg and skin collections as a resource for long‐ term ecological studies. Bulletin of the British Ornithological Club 123:165‐176.  Greig, S., J. Coulson, and P. Monaghan. 1983. Age‐related differences in foraging success in the  Herring Gull (Larus argentatus). Animal Behaviour 31:1237‐1243.  Grémillet, D., and T. Boulinier. 2009. Spatial ecology and conservation of seabirds facing global  climate change: a review. Marine Ecology Progress Series 391:121‐137.  Grémillet, D., and A. Charmantier. 2010. Shifts in phenotypic plasticity constrain the value of  seabirds as ecological indicators of marine ecosystems. Ecological Applications 20:1498‐ 1503.  Grøtan, V., B. E. Sæther, S. Engen, J. H. Van Balen, A. C. Perdeck, and M. E. Visser. 2009. Spatial  and temporal variation in the relative contribution of density dependence, climate  variation and migration to fluctuations in the size of great tit populations. Journal of  Animal Ecology 78:447‐459.  Gruber, N. C.D. Keeling, R.B. Bacastow, P.R. Guenther, T.J. Lucker, M. Wahlen, A.J. Meijer, W.G.  Mook, and T.F. Stocker. 1999. Spatiotemporal patterns of carbon‐13 in global surface  oceans and the oceanic Suess effect. Global Biogeochemical Cycles 13, 307–335.  Gurevitch, J., and L. V. Hedges. 1999. Statistical issues in ecological meta‐analyses. Ecology  80:1142‐1149.    135  Gutowsky, S., M. H. Janssen, P. Arcese, T. K. Kyser, D. Ethier, M. B. Wunder, D. F. Bertram, L. M.  F. Tranquilla, C. Lougheed, and D. R. Norris. 2009. Concurrent declines in nestling diet  quality and reproductive success of a threatened seabird over 150 years. Endangered  Species Research 9:247‐254.  Halpern, B. S., S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. Bruno, K. S.  Casey, C. Ebert, and H. E. Fox. 2008. A global map of human impact on marine  ecosystems. Science 319:948‐952.   Hanski, I., and M. Gilpin. 1991. Metapopulation dynamics: brief history and conceptual domain.  Biological Journal of the Linnean Society 42:3‐16.  Harris, M. L., and J. E. Elliott. 2011. Effects of polychlorinated biphenyls, dibenzo‐p‐dioxins, and  dibenzofurans polybrominated diphenyl ethers in birds. Pp. 471‐522 in Environmental  Contaminants in Wildlife — Interpreting Tissue Concentrations (W. N. Beyer, and J.  Meador, eds.). CRC Press, New York.   Harris, M. L., J. E. Elliott, L. K. Wilson, and R. W. Butler. 2003. Reproductive success and  chlorinated hydrocarbon contamination of resident great blue herons (Ardea herodias)  from coastal British Columbia, Canada, 1977 to 1998. Environmental Pollution 121:207‐ 227.   Harris, M. L., L. K. Wilson, and J. E. Elliott. 2005. An assessment of chlorinated hydrocarbon  contaminants in eggs of double‐crested (Phalacrocorax auritus) and pelagic (P.  pelagicus) cormorants from the west coast of Canada, 1970 to 2002. Ecotoxicology  14:607‐625.   Harris, M. P. 1964. Aspects of the breeding biology of the gulls Larus argentatus, L. fuscus and L.  marinus. Ibis 106:432‐456.   Hart, J. L., and J. L. McHugh. 1944. The Smelts (Osmeridae) of British Columbia. Fisheries  Research Board of Canada.  Hay, D. E. 1998. Historic changes in capelin and eulachon populations in the Strait of Georgia.  Pp. 56‐62 in Back to the future: reconstructing the Strait of Georgia ecosystem (D. Pauly,   136  T. J. Pitcher, D. Preikshot, and J. Hearne, eds.). Fisheries Centre Research Report 6.  Fisheries Centre, University of British Columbia.  Hay, D., and P.B. McCarter. 2000. Status of the eulachon Thaleichthys pacificus in Canada.  Research document 2000/145, Canadian Stock Assessment Secretariat. Fisheries and  Oceans Canada, Nanaimo.   Hayward, J. L., Jr., C. J. Amlaner, Jr., W. H. Gillet, and J. F. Stout. 1975. Predation on nesting gulls  by a river otter in Washington state. Murrelet 56:9‐10.   Hayward, J. L., J. G. Galusha, and S. M. Henson. 2010. Foraging‐related activity of Bald Eagles at  a Washington seabird colony and seal rookery. Journal of Raptor Research 44:19‐29.  Hayward, J. L., and N. A. M. Verbeek. 2008. Glaucous‐Winged Gull (Larus glaucescens), the Birds  of North America Online (A. Poole, ed.). Cornell Lab of Ornithology, Ithaca. Available at  http://bna.birds.cornell.edu/bna/species/059.  Hebert, C. E., J. L. Shutt, and R. O. Ball. 2002. Plasma amino acid concentrations as an indicator  of protein availability to breeding herring gulls (Larus argentatus). Auk 119:185‐200.   Hebert, C. E., J. L. Shutt, K. A. Hobson, and D. V. C. Weseloh. 1999. Spatial and temporal  differences in the diet of Great Lakes herring gulls (Larus argentatus): evidence from  stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 56:323‐338.  Hebert, C. E., D. V. C. Weseloh, A. Idrissi, M. T. Arts, R. O'Gorman, O. T. Gorman, B. Locke, C. P.  Madenjian, and E. F. Roseman. 2008. Restoring piscivorous fish populations in the  Laurentian Great Lakes causes seabird dietary change. Ecology 89:891‐897.   Hebert, C. E., D. V. C. Weseloh, A. Idrissi, M. T. Arts, and E. Roseman. 2009. Diets of aquatic  birds reflect changes in the Lake Huron ecosystem. Aquatic Ecosystem Health &  Management 12:37‐44.  Henderson, B. A. 1972. The control and organisation of parental feeding and its relationship to  the food supply for the glaucous‐winged gull, Larus glaucescens. MSc thesis, University  of British Columbia, Vancouver.    137  Hilborn, R., and M. Mangel. 1997. The ecological detective. Princeton University Press,  Princeton.  Hilton, G. M., D. R. Thompson, P. M. Sagar, R. J. Cuthbert, Y. Cherel, and S. J. Bury. 2006. A  stable isotopic investigation into the causes of decline in a sub‐Antarctic predator, the  rockhopper penguin Eudyptes chrysocome. Global Change Biology 12:611‐625.   Hiom, L., M. Bolton, P. Monaghan, and D. Worrall. 1991. Experimental evidence for food  limitation of egg production in gulls. Ornis Scandinavica 22:94‐97.   Hipfner, J. M., L. K. Blight, R. W. Lowe, S. I. Wilhelm, G. J. Robertson, R. T. Barrett, T. Anker‐ Nilssen, and T. P. Good. 2012. Unintended consequences: how the recovery of sea  eagles Haliaeetus spp. populations in the northern hemisphere is affecting seabirds.  Marine Ornithology 40:39‐52.  HMAP. 2008. History of Marine Animal Populations. Available at www.hmapcoml.org.  Hobson, K. A. 1987. Use of stable‐carbon isotope analysis to estimate marine and terrestrial  protein content in gull diets. Canadian Journal of Zoology 65:1210‐1213.  Hobson, K. A. 1999. Tracing origins and migration of wildlife using stable isotopes: a review.  Oecologia 120:314‐326.  Hobson, K. A. 2007. An isotopic exploration of the potential of avian tissues to track changes in  terrestrial and marine ecosystems. Pp. 129‐144 in Stable isotopes as indicators of  ecological change (T. E. Dawson, and R. T. W. Siegwolf, eds.). Academic Press, London.  Hobson, K. A., M. C. Drever, and G. W. Kaiser. 1999. Norway rats as predators of burrow‐nesting  seabirds: insights from stable isotope analysis. Journal of Wildlife Management 63:14‐ 25.  Hobson, K. A., H. L. Gibbs, and M. L. Gloutney. 1997. Preservation of blood and tissue samples  for stable‐carbon and stable‐nitrogen analysis. Canadian Journal of Zoology 75:1720‐ 1723.  Hobson, K. A., and W. A. Montevecchi. 1991. Stable isotope determinations of trophic  relationships of great auks. Oecologia 87:528‐531.   138  Hobson, K. A., J. F. Piatt, and J. Pitocchelli. 1994. Using stable isotopes to determine seabird  trophic relationships. Journal of Animal Ecology 63:786‐798.  Hobson, K. A., and H. E. Welch. 1992. Determination of trophic relationships within a high Arctic  marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84:9‐18.  Hoffmann, M., C. Hilton‐Taylor, A. Angulo, M. Böhm, T. M. Brooks, and 169 others. 2010. The  impact of conservation on the status of the world’s vertebrates. Science 330: 1503 –  1509.   Holloway, S., and D. W. Gibbons. 1996. The historical atlas of breeding birds in Britain and  Ireland: 1875‐1900. T. & A.D. Poyser, London.  Holmgren‐Urba, D., and T. R. Baumgartner. 1993. A 250‐year history of pelagic fish abundances  from the anaerobic sediments of the central Gulf of California. California Cooperative  Oceanic Fisheries Investigations Report 34:60‐68.   Hooper, T. D. 1988. Habitat, reproductive parameters, and nest‐site tenacity of urban‐nesting  Glaucous‐winged Gulls at Victoria, British Columbia. Murrelet 69:10‐14.   Houston, D. C., P. J. Jones, and R. M. Sibly. 1983. The effect of female body condition on egg  laying in lesser black‐backed gulls Larus fuscus. Journal of Zoology 200:509‐520.   Howell, S. N. G., and J. Dunn. 2007. A reference guide to gulls of the Americas. Houghton Mifflin  Harcourt, New York.  Hughes, T. P., D. R. Bellwood, C. Folke, R. S. Steneck, and J. Wilson. 2005. New paradigms for  supporting the resilience of marine ecosystems. Trends in Ecology and Evolution 20:380‐ 386.  Hunt, G. L. Jr., and M. W. Hunt. 1976. Gull chick survival: the significance of growth rates, timing  of breeding and territory size. Ecology 57:62‐75.  Iverson, S. J., K. J. Frost, and S. Lang. 2002. Fat content and fatty acid composition of forage fish  and invertebrates in Prince William Sound, Alaska: factors contributing to among and  within species variability. Marine Ecology Progress Series 241:161‐181.   139  Jackson, J. B. C., K. E. Alexander, and E. Sala. 2011. Shifting baselines: the past and the future of  ocean fisheries. Island Press, Washington, DC.  Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H.  Bradbury, R. Cooke, J. Erlandson, J. A. Estes, and nine others. 2001. Historical overfishing  and the recent collapse of coastal ecosystems. Science 293:629‐238.  James‐Veitch, E. and Ernest S. Booth. 1954. Behavior and life history of the Glaucous‐winged  Gull. Walla Walla College Department of Biological Sciences Publication 12:1‐39.  Jahren, A. H., and R. A. Kraft. 2008. Carbon and nitrogen stable isotopes in fast food: Signatures  of corn and confinement. Proceedings of the National Academy of Sciences 105:17855‐ 17860.  Järvinen, A. 1994. Global warming and egg size of birds. Ecography 17:108‐110.   Jewett, S. G., W.P. Taylor, W.T. Shaw, and J.W. Aldrich. 1953. Birds of Washington State.  University of Washington Press, Seattle.  Johannessen, S. C., and R. W. Macdonald. 2009. Effects of local and global change on an inland  sea: the Strait of Georgia, British Columbia, Canada. Climate Research 40:1‐21.   Kennedy, K. 1968. River otter feeding on Glaucous‐winged Gull. Blue Jay 26:109.  Kiff, L. F. 2005. History, present status and future prospects of avian eggshell collections in  North America. Auk 122:194‐199.  Kirk, D. A., and C. Hyslop. 1998. Population status and recent trends in Canadian raptors: a  review. Biological Conservation 83:91‐118.  Koch, A. M., M. C. Drever, and K. Martin. 2011. The efficacy of common species as indicators:  avian responses to disturbance in British Columbia, Canada. Biodiversity Conservation  20:3555‐3575.  Krebs, C. J., R. Boonstra, S. Boutin, and A. R. E. Sinclair. 2001. What drives the 10‐year cycle of  snowshoe hares? Bioscience 51:25‐35.   140  Krist, M. 2011. Egg size and offspring quality: a meta‐analysis in birds. Biological Reviews  86:692‐716.  Landres, P. B., J. Verner, and J. W. Thomas. 1988. Ecological uses of vertebrate indicator  species: a critique. Conservation Biology 2:316‐328.  Layman, C. A., J. P. Quattrochi, C. M. Peyer, and J. E. Allgeier. 2007. Niche width collapse in a  resilient top predator following ecosystem fragmentation. Ecology Letters 10:937‐944.  Leslie, P. 1966. The intrinsic rate of increase and the overlap of successive generations in a  population of guillemots (Uria aalge Pont.). Journal of Animal Ecology 35:291‐301.  Lewis, S., D. H. Nussey, A. G. Wood, J. P. Croxall, and R. A. Phillips. 2012. Intrinsic determinants  of a population trend in timing of breeding in the wandering albatross. Oikos, early  online. DOI: 10.1111/j.1600‐0706.2012.20293.x.  Lindenmayer, D. B., C. R. Margules, and D. B. Botkin. 2000. Indicators of biodiversity for  ecologically sustainable forest management. Convervation Biology 14:941‐950.  Lotze, H. K. 2005. Radical changes in the Wadden Sea fauna and flora over the last 2,000 years.  Helgoland Marine Research 59:71‐83.  Lotze, H. K., H. S. Lenihan, B. J. Bourque, R. H. Bradbury, R. G. Cooke, M. C. Kay, S. M. Kidwell,  M. X. Kirby, C. H. Peterson, and J. B. C. Jackson. 2006. Depletion, degradation, and  recovery potential of estuaries and coastal seas. Science 312:1806‐1809.   Lotze, H. K., and B. Worm. 2009. Historical baselines for large marine animals. Trends in Ecology  and Evolution 24:254‐262.  Ludwig, D. 1999. Is it meaningful to estimate a probability of extinction? Ecology 80:298‐310.  Ludwig, J. P. 1974. Recent changes in the Ring‐billed Gull population and biology in the  Laurentian Great Lakes. Auk 91:575‐594.  Martin, T. E. 1987. Food as a limit on breeding birds: a life‐history perspective. Annual Review  of Ecology and Systematics 18:453‐487.    141  Masson, D., and P. F. Cummins. 2007. Temperature trends and interannual variability in the  Strait of Georgia, British Columbia. Continental Shelf Research 27:634‐649.   McClenachan, L. 2009. Documenting loss of large trophy fish from the Florida Keys with  historical photographs. Conservation Biology 23:636‐643.  McClenachan, L., J. B. C. Jackson, and M. J. H. Newman. 2006. Conservation implications of  historic sea turtle nesting beach loss. Frontiers in Ecology and Environment 4:290‐296.  Meijer, T., and R. Drent. 1999. Re‐examination of the capital and income dichotomy in breeding  birds. Ibis 141:399‐414.   Mersmann, T.J., D. A. Buehler, J. D. Fraser, and J. K. D. Seegar. 1992. Assessing bias in studies of  bald eagle food habits. Journal of Wildlife Management 56:73‐78.  Michener, R. H., and L. Kaufman. 2007. Stable isotope ratios as tracers in marine food webs: an  update. Pp. 238‐282 in Stable isotopes in ecology and environmental science (R.  Michener and K. Lajtha, eds.). Blackwell Publishing, Oxford.  Mills, J. A., J. W. Yarrall, J. M. Bradford‐Grieve, M. J. Uddstrom, J. A. Renwick, and J. Merila.  2008. The impact of climate fluctuation on food availability and reproductive  performance of the planktivorous red‐billed gull Larus novaehollandiae Scopulinus.  Journal of Animal Ecology 77:1129‐1142.   Mizutani, H., M. Fukuda, Y. Kabaya, and E. Wada. 1990. Carbon isotope ratio of feathers reveals  feeding behavior of cormorants. Auk 107:400‐403.  Møller, A. P., E. Flensted‐Jensen, K. Klarborg, W. Mardal, and J. T. Nielsen. 2010. Climate change  affects the duration of the reproductive season in birds. Journal of Animal Ecology  79:777‐784.   Monaghan, P., and R. G. Nager. 1997. Why don't birds lay more eggs? Trends in Ecology &  Evolution 12:270‐274.   Montevecchi, W. A. 1993. Birds as indicators of change in marine prey stocks. Pp. 217‐266 in  Birds as Monitors of Environmental Change (R. W. Furness, and J. J. D. Greenwood,  eds.). Chapman & Hall, London.   142  Moody, M., and T. J. Pitcher. 2010. Eulachon (Thaleicthys pacificus): Past and Present. Fisheries  Centre Research Report 18. Fisheries Centre, University of British Columbia, Vancouver.  Munro, J. A. 1925. Further bird notes from southern Vancouver Island. Canadian Field‐ Naturalist 39:156‐158.  Munro, J. A., and W. A. Clemens. 1931. Water fowl in relation to the spawning of herring in  British Columbia. Biological Board of Canada, Toronto.   Munro, J. A., and I. M. Cowan. 1947. A review of the bird fauna of British Columbia. British  Columbia Provincial Museum Special Publication No. 2, Victoria.  Murphy, E. C., A. A. Hoover‐Miller, R. H. Day, and K. L. Oakley. 1992. Intra‐colony variability  during periods of poor reproductive performance at a Glaucous‐winged Gull colony.  Condor 94:598‐607.  Nager, R. G. 2006. The challenges of making eggs. Ardea 94:323–346.   National Audubon Society. 2011. The Christmas Bird Count Historical Results [Online]. Available  at http://www.christmasbirdcount.org.  NOAA. 2010. NOAA lists Pacific smelt as “Threatened”. National Oceanic and Atmospheric  Administration, United States Department of Commerce, Seattle. Available at  http://www.nwr.noaa.gov/Other‐Marine‐Species/Eulachon.cfm.  Norris, D. R., P. Arcese, D. Preikshot, D. F. Bertram, and T. K. Kyser. 2007. Diet reconstruction  and historic population dynamics in a threatened seabird. Journal of Applied Ecology  44:875‐884.   Oro, D., E. Cam, R. Pradel, and A. Martinez‐Abrain. 2004. Influence of food availability on  demography and local population dynamics in a long‐lived seabird. Proceedings of the  Royal Society of London Series B‐Biological Sciences 271:387‐396.   Parks Canada. 2009. Pacific Rim National Park Reserve of Canada. State of the Park Report.  Parks Canada, Ottawa.    143  Parrish, J. K., M. Marvier, and R. T. Paine. 2001. Direct and indirect effects: interactions  between Bald Eagles and Common Murres. Ecological Applications 11:1858‐1869.  Parsons, J. 1970. Relationship between egg size and post‐hatching chick mortality in the Herring  Gull (Larus argentatus). Nature 228:1221‐1222.   Parsons, M., I. Mitchell, A. Butler, N. Ratcliffe, M. Frederiksen, S. Foster, and J. B. Reid. 2008.  Seabirds as indicators of the marine environment. ICES Journal of Marine Science  65:1520‐1526.  Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology  and Evolution 10:430‐430.   Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F. Torres Jr. 1998a. Fishing down marine  food webs. Science 279:860‐863.  Pauly, D., T.J. Pitcher, D. Preikshot, and J. Hearne (eds.). 1998b. Back to the future:  reconstructing the Strait of Georgia ecosystem. Fisheries Centre Research Report 6.  Fisheries Centre, University of British Columbia, Vancouver.   Payne, S. A., B. A. Johnson, and R. S. Otto. 1999. Proximate composition of some northeastern  Pacific forage fish species. Fisheries Oceanography 8:159‐177.  Pearse, T. 1923. Banding glaucous‐winged gulls with other notes on a colony in southern British  Columbia. Canadian Field‐Naturalist 37:132‐135.  Pearse, T. 1963. Results from banding Glaucous‐Winged Gulls in the northern Gulf of Georgia,  BC, from 1922 to 1949. Bird‐Banding 34:30‐36.  Perrins, C. M. 1970. The timing of birds' breeding seasons. Ibis 112:242‐255.   Perrins, C. M., and R. H. McCleery. 1994. Competition and egg‐weight in the Great Tit Parus  major. Ibis 136:454‐456.   Piatt, J., W. Sydeman, and F. Wiese. 2007. Introduction: a modern role for seabirds as  indicators. Marine Ecology Progress Series 352:199‐204.   144  Pierotti, R., and C. A. Annett. 1990. Diet and reproductive output in seabirds ‐ food choices by  individual, free‐living animals can affect survival of offspring. Bioscience 40:568‐574.  Pierotti, R., and C. A. Annett. 1991. Diet choice in the Herring Gull ‐ constraints imposed by  reproductive and ecological factors. Ecology 72:319‐328.  Pinnegar, J. K., and G. H. Engelhard. 2008. The ‘shifting baseline’ phenomenon: a global  perspective. Reviews in Fish Biology and Fisheries 18:1‐16.   Pollan, M. 2006. The omnivore’s dilemma: a natural history of four meals. Penguin Press, New  York.   Pons, J. M. 1992. Effects of changes in the availability of human refuse on breeding parameters  in a herring gull Larus argentatus population in Brittany, France. Ardea 80:143‐150.   Pons, J. M., and P. Migot. 1995. Life‐history strategy of the herring gull: changes in survival and  fecundity in a population subjected to various feeding conditions. Journal of Animal  Ecology 64:592‐599.  Post, D.M., C.A. Layman, D.A. Arrington, G. Takimoto, J. Quattrochi, and C.G. Montaña. 2007.  Getting to the fat of the matter: models, methods and assumptions for dealing with  lipids in stable isotope analysis. Oecologia 152:179‐189.   Potti, J. 2008. Temperature during egg formation and the effect of climate warming on egg size  in a small songbird. Acta Oecologica 33:387‐393.   Province of British Columbia. 1915. Report of the Provincial Museum of Natural History for the  Year 1914. Province of British Columbia, Victoria, Canada.  Province of British Columbia. 1916. Report of the Provincial Museum of Natural History for the  Year 1915. Province of British Columbia, Victoria, Canada.  Purvis, A., J. L. Gittleman, G. Cowlishaw, and G. M. Mace. 2000. Predicting extinction risk in  declining species. Proceedings of the Royal Society of London B 267:1947‐1952.  Rauzon, M. J. 2001. Isles of refuge: wildlife and history of the northwestern Hawaiian Islands.  University of Hawai’i Press, Honolulu.   145  Reid, W. V. 1987. The cost of reproduction in the Glaucous‐Winged Gull. Oecologia 74:458‐467.   Reid, W. V. 1988a. Population dynamics of the Glaucous‐Winged Gull. Journal of Wildlife  Management 52:763‐770.   Reid, W. V. 1988b. Age‐specific patterns of reproduction in the Glaucous‐Winged Gull ‐  increased effort with age. Ecology 69:1454‐1465.   Ricklefs, R. E. 1974. Energetics of reproduction in birds. Pp. 152‐297 in Avian energetics (R. A.  Paynter Jr., ed.). Publication of the Nuttall Ornithological Club, Cambridge, Mass.   Robbins, C. T. 1981. Estimation of the relative protein cost of reproduction in birds. Condor  83:177‐179.   Roberts, C. M., and J. P. Hawkins. 1999. Extinction risk in the sea. Trends in Ecology and  Evolution 14:241‐246.  Rodway, M.S. 1991. Status and conservation of breeding seabirds in British Columbia. Pp. 43‐ 102 in Seabird status and conservation: a supplement (J. P. Croxall, ed.). ICBP Techinal  Publication No. 11, Cambridge.  Sáenz‐Arroyo, A., C. M. Roberts, J. Torre, M. Cariño‐Olvera, and J. P. Hawkins. 2006. The value  of evidence about past abundance: marine fauna of the Gulf of California through the  eyes of 16th to 19th century travellers. Fish and Fisheries 7:128‐146.  Sæther, B. E., V. Grøtan, S. Engen, D. G. Noble, and R. P. Freckleton. 2009. Critical parameters  for predicting population fluctuations of some British passerines. Journal of Animal  Ecology 78:1063‐1075.  Salzer, D. W., and G. J. Larkin. 1990. Impact of courtship feeding on clutch and 3rd‐egg size in  Glaucous‐winged Gulls. Animal Behaviour 39:1149‐1162.   Scharlemann, J. P. W. 2001. Museum egg collections as stores of long‐term phenological data.  International Journal of Biometeorology 45:208‐211.    146  Schindler, D. E., P. R. Leavitt, S. P. Johnson, and C. S. Brock. 2006. A 500‐year context for the  recent surge in sockeye salmon (Oncorhynchus nerka) abundance in the Alagnak River,  Alaska. Canadian Journal of Fisheries and Aquatic Sciences 63:1439‐1444.   Schreiber, R. W., and E. A. Schreiber. 1984. Central Pacific seabirds and the El Niño Southern  Oscillation: 1982 to 1983 perspectives. Science 225:713‐716.    Schrope, M. 2006. The real sea change. Nature 443:622‐624.   Schultz, Z. M. 1951. Growth in the Glaucous‐Winged Gull: Part I. Murrelet 32:35‐42.   SeaDoc Society. 2011. Summary meeting notes, Salish Sea Forage Fish Needs Assessment  Workshop, January 25, 2011. SeaDoc Society, Orcas Island.  Searcy, W. A. 1978. Foraging success in three age classes of Glaucous‐winged Gulls. Auk 95:586‐ 588.  Skórka, P., and J. D. Wójcik. 2008. Habitat utilisation, feeding tactics and age related feeding  efficiency in the Caspian Gull Larus cachinnans. Journal of Ornithology 149:31‐39.  Sonnerup, R. E., P. D. Quay, A. P. McNichol, J. L. Bullister, T. A. Westby, and H. L. Anderson.  1999. Reconstructing the oceanic 13C Suess effect. Global Biogeochemical Cycles 13:857‐ 872.  Sorensen, M. C., J. M. Hipfner, T. K. Kyser, and D. R. Norris. 2009. Carry‐over effects in a Pacific  seabird: stable isotope evidence that pre‐breeding diet quality influences reproductive  success. Journal of Animal Ecology 78:460‐467.   Spaans, A. 1971. On the feeding ecology of the Herring Gull Larus argentatus Pont. in the  northern part of the Netherlands. Ardea 59:73‐188.  Spear, L. B., T. M. Penniman, J. F. Penniman, H. R. Carter, and D. G. Ainley. 1987. Survivorship  and mortality factors in a population of Western Gulls. Studies in Avian Biology. 10: 26– 43.   147  Spear, L. B., and N. Nur. 1994. Brood size, hatching order and hatching date: effects on four life‐ history stages from hatching to recruitment in Western Gulls. Journal of Animal Ecology.  63: 283–298.  Sprot, G. D. 1937. Migratory behaviour of some Glaucous‐winged Gulls in the Strait of Georgia,  British Columbia. Condor 39:238‐242.  Stapp, P. 2002. Stable isotopes reveal evidence of predation by ship rats on seabirds on the  Shiant Islands, Scotland. Journal of Applied Ecology  39:831‐840.  Stick, K. C., K. Costello, C. Herring, A. Lindquist, J. Whitney, and D. Wildermuth. 2005.  Distribution and abundance of Pacific herring (Clupea pallasi) spawn deposition for  Cherry Point, Washington stock, 1973‐2004. Proceedings of the 2005 Puget Sound  Georgia Basin Research Conference 7.  Stick, K. C., and A. Lindquist. 2009. 2008 Washington State herring stock status report, FPA 09‐ 05. Washington Department of Fish and Wildlife, Fish Program, Fish Management  Division, Olympia.   Stocker, M., A. Mentzelopoulos, G. Bartosh, J. Hrynyshyn, J. Burns, and N. Fowler (eds.). 2001.  Fish stocks of the Pacific Coast. Fisheries and Oceans Canada, Vancouver.   Stubbs, M. 2001. Whalley and Guildford: a report on social issues and initiatives in Surrey, BC.  Human Resources Development Canada, Surrey.   Sullivan, T. M., S. L. Hazlitt, and M. J. F. Lemon. 2002. Population trends of nesting Glaucous‐ winged Gulls, Larus glaucescens, in the southern Strait of Georgia, British Columbia.  Canadian Field‐Naturalist 116:603‐606.   Swetnam, T. W., C. D. Allen, and J. L. Betancourt. 1999. Applied historical ecology: using the  past to manage for the future. Ecological Applications 9:1189‐1206.   Sydeman, W. J., J. F. Penniman, T. M. Penniman, P. Pyle, and D. G. Ainley. 1991. Breeding  performance in the Western Gull: effects of parental age, timing of breeding, and year in  relation to food availability. Journal of Animal Ecology. 60: 135–149.   148  Tanaka, T., Y. W. Watanabe, S. Watanabe, S. Noriki, N. Tsurushima, and Y. Nojiri. Oceanic Suess  effect of δ13C in subpolar region: the North Pacific. Geophysical Research Letters 30:  2159‐2162.  Tasker, M. L., C. J. Camphuysen, J. Cooper, S. Garthe, W. A. Montevecchi, and S. J. M. Blaber.  2000. The impacts of fishing on marine birds. ICES Journal of Marine Science 57:531‐ 547.  Therriault, T. W., D. E. Hay, and J. F. Schweigert. 2009. Biological overview and trends in pelagic  forage fish abundance in the Salish Sea (Strait of Georgia, British Columbia). Marine  Ornithology 37:3‐8.   Thompson, D., R. Furness, and S. Lewis. 1995. Diets and long‐term changes in δ15N and δ13C  values in northern fulmars Fulmarus glacialis from two northeast Atlantic colonies.  Marine Ecology Progress Series 125:3‐11.  Thoresen, A. C., and J. G. Galusha. 1971. A nesting population study of some islands in the  Puget Sound area. Murrelet 52:20‐23.  Thrush, S. F., J. E. Hewitt, P. K. Dayton, G. Coco, A. M. Lohrer, A. Norkko, J. Norkko, and M.  Chiantore. 2009. Forecasting the limits of resilience: integrating empirical research with  theory. Proceedings of the Royal Society B 276:3209‐3217.  Tinbergen, N. 1953. The herring gull's world: a study of the social behaviour of birds.  Tinbergen, N. 1959. Comparative studies of the behaviour of gulls (Laridae): A progress report.  Behaviour 15:1‐70.  Tingley, M. W., W. B. Monahan, S. R. Beissinger, and C. Moritz. 2009. Birds track their Grinellian  niche through a century of climate change. Proceedings of the National Academy of  Sciences 106:19637‐19643.   Trivelpiece, W.Z., J.T. Hinke, A.K. Miller, C.S. Reiss, S.G. Trivelpiece, and G.M. Watters. 2010.  Variability in krill biomass links harvesting and climate warming to penguin population  changes in Antarctica. Proceedings of the National Academy of Sciences 108:7625‐7628.   149  Tryjanowski, P., T. H. Sparks, L. Kuczyński, and S. Kuźniak. 2004. Should avian egg size increase  as a result of global warming? A case study using the red‐backed shrike (Lanius collurio).  Journal of Ornithology 145:264‐268.   US Fish & Wildlife Service. 2012. Three Arch Rocks National Wildlife Refuge. Available at  http://www.fws.gov/oregoncoast/3archrocks/.   Van Buskirk, J., R. S. Mulvihill, and R. C. Leberman. 2010. Declining body sizes in North American  birds associated with climate change. Oikos 119:1047‐1055.   Vanderklift, M.A., and S. Ponsard. 2003. Sources of variation in consumer‐diet δ15N enrichment:  a meta‐analysis. Oecologia 136:169‐182.  Verbeek, N. A. M. 1977. Comparative feeding behavior of immature and adult Herring Gulls.  Wilson Bulletin 89:415‐421.  Verbeek, N. A. M. 1979. Timing of primary molt and egg‐laying in Glaucous‐Winged Gulls.  Wilson Bulletin 91:420‐425.   Verbeek, N. A. M. 1982. Egg predation by Northwestern Crows – its association with human and  Bald Eagle activity. Auk 99:347‐352.   Verbeek, N. A. M. 1986. Aspects of the breeding biology of an expanded population of  Glaucous‐Winged Gulls in British‐Columbia. Journal of Field Ornithology 57:22‐33.   Verbeek, N. A. M., and J. L. Morgan. 1978. River otter predation on Glaucous‐winged Gulls on  Mandarte Island, British Columbia. Murrelet 59:92‐95.  Verbeek, N. A. M., and H. Richardson. 1982. Limits to egg size in gulls ‐ another point of view.  Journal of Field Ornithology 53:168‐170.   Vermeer, K. 1963. The breeding ecology of the glaucous‐winged gull (Larus glaucescens) on  Mandarte Island. Occasional Paper of the British Columbia Provincial Museum 13,  Victoria.  Vermeer, K. 1982. Comparison of the diet of the glaucous‐winged gull on the east and west  coasts of Vancouver Island. Murrelet 63:80‐85.    150  Vermeer, K. 1983. Marine Bird Populations in the Strait of Georgia: Comparison with the West  Coast of Vancouver Island. Canadian Technical Report of Hydrography and Ocean  Sciences 19. Institute of Ocean Sciences, Sidney.  Vermeer, K. 1992. Population growth of the glaucous‐winged gull Larus glaucescens in the Strait  of Georgia, British Columbia, Canada. Ardea 80:181‐186.   Vermeer, K., R. W. Butler, and K. H. Morgan. 1992. The ecology, status, and conservation of  marine and shoreline birds on the west coast of Vancouver Island. Canadian Wildlife  Service Occasional Paper 75, Ottawa.  Vermeer, K., and K. Devito. 1987. Habitat and nest‐site selection of Mew and Glaucous‐winged  Gulls in coastal British Columbia. Studies in Avian Biology No. 10:105‐118.  Vermeer, K., and K. Devito. 1989. Population trends of nesting Glaucous‐Winged Gulls in the  Strait of Georgia. Pp. 88‐93 in The ecology and status of marine and shoreline birds in  the Strait of Georgia, British Columbia (K. Vermeer and R.W. Butler, eds.). Canadian  Wildlife Service Special Publication, Ottawa.   Vermeer, K., K. H. Morgan, G. E. J. Smith, and B. A. York. 1991. Effects of egging on the  reproductive success of glaucous‐winged gulls. Colonial Waterbirds 14:158‐165.  Vermeer, K., D. Power, and G. E. J. Smith. 1988. Habitat selection and nesting biology of roof‐ nesting glaucous‐winged gulls. Colonial Waterbirds 11:189‐201.   Wallace, S. S. 1998. Changes in human exploitation of marine resources in British Columbia  (pre‐contact to present day). Pp. 56‐62 in Back to the future: reconstructing the Strait of  Georgia ecosystem (D. Pauly, T. J. Pitcher, D. Preikshot, and J. Hearne, eds.). Fisheries  Centre Research Reports 6. Fisheries Centre, University of British Columbia, Vancouver.   Walters, C. 1986. Adaptive management of renewable resources. Macmillan Publishing, New  York.  Walters, C. J., and S. J. D. Martell. 2004. Fisheries ecology and management. Princeton  University Press, Princeton.   151  Wanless, S., M. Frederiksen, F. Daunt, B. Scott, and M. Harris. 2007. Black‐legged kittiwakes as  indicators of environmental change in the North Sea: evidence from long‐term studies.  Progress in Oceanography 72:30‐38.  Wanless, S., M. P. Harris, P. Redman, and J. Speakman. 2005. Low energy values of fish as a  probable cause of a major seabird breeding failure in the North Sea. Marine Ecology  Progress Series 294:1‐8.  Wanless, S., P. J. Wright, M. P. Harris, and D. A. Elston. 2004. Evidence for decrease in size of  lesser sandeels Ammodytes marinus in a North Sea aggregation over a 30‐year period.  Marine Ecology Progress Series 279:237‐246.  Ward, J. G. 1973. Reproductive success, food supply and the evolution of clutch‐size in the  glaucous‐winged gull. PhD thesis, University of British Columbia, Vancouver.  Warham, J. 1990. The Petrels: their ecology and breeding systems. Academic Press, London and  San Diego.  Weber, D. S., B. S. Stewart, J. C. Garza, and N. Lehman. 2000. An empirical genetic assessment  of the severity of the northern elephant seal population bottleneck. Current Biology  10:1287‐1290.  Weidensaul, S. 2007. Of a feather: a brief history of American birding. Houghton Mifflin  Harcourt, Orlando.  Weiser, E. L., and A. N. Powell. 2010. Does garbage in the diet improve reproductive output of  Glaucous Gulls? Condor 112:530‐538.  Weiser, E. L., and A. N. Powell. 2011. Reduction of garbage in the diet of nonbreeding glaucous  gulls corresponding to a change in waste management. Arctic 64.  White, A. F., J. P. Heath, and B. Gisborne. 2006. Seasonal timing of Bald Eagle attendance and  influence on activity budgets of Glaucous‐winged Gulls in Barkley Sound, British  Columbia. Waterbirds 29:497‐500.   Wiens, J. A. 1977. On Competition and Variable Environments: populations may experience  "ecological crunches" in variable climates, nullifying the assumptions of competition   152  theory and limiting the usefulness of short‐term studies of population patterns.  American Scientist 65:590‐597.  Wiens, J. A. 1984. The place of long‐term studies in ornithology. Auk 101:202‐203.  Williams, T. D. 1994. Intraspecific variation in egg size and egg composition in birds: effects on  offspring fitness. Biological Reviews 69:35‐59.   Williams, T. D. 2005. Mechanisms underlying the costs of egg production. Bioscience 55:39‐48.   Willson, M. F., and J. N. Womble. 2006. Vertebrate exploitation of pulsed marine prey: a review  and the example of spawning herring. Reviews in Fish Biology and Fisheries 16:183‐200.   Winkler, D. W. 1985. Factors determining a clutch size reduction in California gulls (Larus  californicus): a multi‐hypothesis approach. Evolution 39:667‐677.   Woehler, E. J. 2012. What do signals from seabirds tell us about the marine environments? Pp.  218‐225 in Protection of the Three Poles (F. Huettmann, ed), Springer, Tokyo.  Woodbury, A. M., and H. Knight. 1951. Results of the Pacific gull color‐banding project. Condor  53:57‐77.  Zador, S. G., J. F. Piatt, and A. E. Punt. 2006. Balancing predation and egg harvest in a colonial  seabird: a simulation model. Ecological Modelling 195:318‐326.  Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models  and extensions in ecology with R. Springer Verlag, New York.  Zwiefelhofer, D. 2007. Comparison of bald eagle (Haliaeetus leucocephalus) nesting and  productivity at Kodiak National Wildlife Refuge, Alaska, 1963‐2002. Journal of Raptor  Research 41:1‐9.    153     Appendix 1 Summary of available vital rates data for glaucous‐winged gulls in the Georgia Basin. Data  include those for congeneric Western gulls L. occidentalis from California colonies where  information is lacking on glaucous‐winged gulls. Data for Alaska (AK) populations are not  included.  Data type  Source  Notes  Juvenile survival    Butler et al. 1980, Reid 1988a  More recent survival estimates available for  Western gull (Spear and Nur 1994)  Sub‐adult survival     Butler et al. 1980, Reid 1988a  More recent survival estimates available for  Western gull (Spear and Nur 1994)  Adult survival     Vermeer 1963, Butler et al. 1980, Reid  1988a  More recent survival estimates available for  Western gull (Spear et al. 1987, Sydeman et  al. 1991)  Age at first  breeding  Reid 1988a  Protection I, WA  Adult mass at  breeding  Hayward and Verbeek 2008  Body mass as indication of condition of  breeding adults  Clutch size    Vermeer 1963, Thoresen and Galusha  1971, Verbeek 1986, Hooper 1988,  Reid 1988b, LKB unpubl. data 2008  Mandarte I, Protection I, urban roof‐nesters  (BC); AK data also available  Egg size    James‐Veitch and Booth 1954, Verbeek  and Richardson 1982, Verbeek 1986,  Reid 1988b, Vermeer et al. 1988, Salzer  and Larkin 1990, LKB unpubl. data 2008  May be a proxy for adult breeding  condition, pre‐breeding diet.   Hatch success    Vermeer 1963, Verbeek 1986, Hooper  1988, Vermeer et al. 1988, Reid 1988b,  LKB unpubl. data 2008  Defined as % eggs hatched of number laid;  data for Mandarte I, urban roofs, Protection  I; AK data also available. May be related to  egg size.   154  Data type  Source  Notes  Fledge success  Vermeer 1963, Reid 1988b, Vermeer  and Devito 1989, Vermeer et al. 1988,  Vermeer et al. 1992, LKB unpubl. data  2008  Defined as % of chicks hatched surviving to  d. 28; data from Mandarte I, Protection I,  urban roofs; AK data also available  Chick mass at  fledge  LKB unpubl. data 2008.     Annual  reproductive  success    Vermeer 1963, Vermeer et al. 1988,  LKB unpubl. data 2008, Hayward and  Verbeek 2008  Defined as number of young fledged  divided by number of females in sample; AK  data also available  Lay date  Vermeer 1963, Drent et al. 1964,  Verbeek 1986, Hooper 1988, Reid  1988b, Vermeer et al. 1988, LKB  unpubl. data 2008  Incl. data for urban‐nesting gulls; AK data  also available   155   Appendix 2 Colony counts of breeding glaucous‐winged gulls, Georgia Basin, British Columbia, Canada, 1900 – 2010.   Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Ada Island2    49.29  ‐124.08  1974  171    Campbell 1976  Ada Island    49.29  ‐124.08  1975  100  K Kennedy  BC Nest Record Scheme  (BCNRS)3  Ada Island    49.29  ‐124.08  1978  154    BC Nest Record Scheme  Ada Island    49.29  ‐124.08  1980  86    Campbell et al 1990  Ada Island    49.29  ‐124.08  1981  155  L Giliberte, M  McNall  BC Nest Record Scheme                                                         1 If original source reported a range of numbers, the median value is provided here  2 Named Jelina I. until 1930  3 Records cards filed at the Royal British Columbia Museum, Victoria, Canada  156    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Ada Island    49.29  ‐124.08  1986  124    Vermeer and Devito 1989  Ada Island    49.29  ‐124.08  2010  69  LK Blight, M  Crombie, T Osler  LK Blight unpubl. data  Anniversary Islet    48.82  ‐123.18  1977  4  MS Rodway, RW  Campbell  BC Nest Record Scheme  Anniversary Islet    48.82  ‐123.18  1978  50  HR Carter, MS  Rodway  BC Nest Record Scheme  Anniversary Islet    48.82  ‐123.18  2005  0  P Arcese  P Arcese unpubl. data  Arbutus Island    48.71  ‐123.44  1976  39    Campbell et al 1990  Arbutus Island    48.71  ‐123.44  1985  115    Vermeer and Devito 1989  Arbutus Island    48.71  ‐123.44  1986  150    Vermeer and Devito 1989  Arbutus Island    48.71  ‐123.44  1997  97    Sullivan et al 2002,   157    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Arbutus Island    48.71  ‐123.44  1999  55  M Lemon  M Lemon unpubl. data  Arbutus Island    48.71  ‐123.44  2005  40    Environment Canada  unpubl. data  Arbutus Island    48.71  ‐123.44  2007  35    Environment Canada  unpubl. data  Arbutus Island    48.71  ‐123.44  2010  53  LK Blight, T Osler  LK Blight unpubl. data  Argyle Rocks    48.32  ‐123.60  1974  0  P Nott, G  Seedhouse  BC Nest Record Scheme  Argyle Rocks    48.32  ‐123.60  1978  1  HR Carter, CD  Shepard, GE  Corley‐Smith  BC Nest Record Scheme  Augustus Point4    48.95  ‐123.65  1974  3    Campbell 1976                                                         4 Kuper I   158    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Augustus Point    48.95  ‐123.65  1978  3  HR Carter, MS  Rodway  BC Nest Record Scheme  Augustus Point    48.95  ‐123.65  1980  3  E Perkins, R  Gibbs, J Goodall  BC Nest Record Scheme  Augustus Point    48.95  ‐123.65  1984  6  L Giliberte, M  McNall  BC Nest Record Scheme  Ballenas Island5  49.35  ‐124.16  1952  50  Mrs. AG Waldon  Drent and Guiguet 1961  Ballenas Island    49.35  ‐124.16  1953  50  Mrs. AG Waldon  Drent and Guiguet 1961  Ballenas Island    49.35  ‐124.16  1954  50  Mrs. AG Waldon  Drent and Guiguet 1961  Ballenas Island    49.35  ‐124.16  1955  50  Mrs. AG Waldon  Drent and Guiguet 1961                                                         5 North cliffs of North islet  159    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Ballenas Island    49.35  ‐124.16  1956  50  Mrs. AG Waldon  Drent and Guiguet 1961  Ballenas Island    49.35  ‐124.16  1968  55  R Drent  BC Nest Record Scheme  Ballenas Island    49.35  ‐124.16  1969  120  W Campbell, RG  Foottit  BC Nest Record Scheme  Ballenas Island6    49.35  ‐124.16  1986  0    Vermeer and Devito 1989  Ballenas Island    49.35  ‐124.16  2006  0    P Arcese unpubl. data  Ballingall Islets7    48.91  ‐123.46  1936  85  GD Sprot  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1954  1    Campbell et al 1990                                                         6 In text of paper, not in data tables  7 All counts for Ballingal Islets are for East and West islets combined   160    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Ballingall Islets    48.91  ‐123.46  1959  57  MS Rodway, RW  Campbell  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1964  50  AJ Brooks, RY  Edwardds  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1966  100  MS Rodway, RW  Campbell  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1968  155  R Best  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1974  96    Campbell 1976  Ballingall Islets    48.91  ‐123.46  1976  118  MS Rodway, RW  Campbell  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1977  118  MS Rodway, RW  Campbell  BC Nest Record Scheme  Ballingall Islets    48.91  ‐123.46  1986  145    Vermeer and Devito 1989   161    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Ballingall Islets    48.91  ‐123.46  2010  6  LK Blight, T Osler  LK Blight unpubl. data  Bare Point    48.93  ‐123.70  1968  1  R Drent  BC Nest Record Scheme  Bare Point    48.93  ‐123.70  1974  11  MS Rodway, RW  Campbell  Campbell 1976  Bare Point    48.93  ‐123.70  1977  8  MS Rodway, RW  Campbell  BC Nest Record Scheme  Bare Point    48.93  ‐123.70  1978  4  HR Carter, MS  Rodway  BC Nest Record Scheme  Bare Point    48.93  ‐123.70  1980  0  E Perkins, R  Gibbs, J Goodall  BC Nest Record Scheme  Bare Point    48.93  ‐123.70  1986  5    Vermeer and Devito 1989  Belle Chain  Islets    48.83  ‐123.20  1966  14  RC Best  BC Nest Record Scheme   162    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Belle Chain  Islets    48.83  ‐123.20  1969  43  R Drent, J Anvik, J  & J Ward  BC Nest Record Scheme  Belle Chain  Islets    48.83  ‐123.20  1974  6    Campbell 1976  Belle Chain  Islets    48.83  ‐123.20  1976  6    BC Nest Record Scheme  Belle Chain  Islets    48.83  ‐123.20  1977  25  MS Rodway, RW  Campbell  BC Nest Record Scheme  Belle Chain  Islets    48.83  ‐123.20  1980  37  E Perkins, R  Gibbs, J Goodall  BC Nest Record Scheme  Belle Chain  Islets    48.83  ‐123.20  1981  78  M McNall, S  Webb, L Giliberti  BC Nest Record Scheme  Belle Chain  Islets    48.83  ‐123.20  1986  56    Vermeer and Devito 1989  Belle Chain    48.83  ‐123.20  2009  18  T Golumbia  T Golumbia unpubl. data   163    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Islets  Bird Islet    49.36  ‐123.29  1974  3  M Lemon  M Lemon unpubl. data  Bird Islet    49.36  ‐123.29  1981  2  M Lemon  M Lemon unpubl. data  Bird Islet    49.36  ‐123.29  1986  38    Vermeer and Devito 1989  Bird Islet    49.36  ‐123.29  1999  31  M Lemon and  others  Sullivan et al. 2002  Bird Islet    49.36  ‐123.29  2010  15  LK Blight, T Osler  LK Blight unpubl. data  Canoe Islet    49.03  ‐123.59  1974  67    Campbell 1976  Canoe Islet    49.03  ‐123.59  1976  37  MS Rodway, RW  Campbell  BC Nest Record Scheme  Canoe Islet    49.03  ‐123.59  1977  57  MS Rodway, RW  Campbell  BC Nest Record Scheme   164    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Canoe Islet    49.03  ‐123.59  1978  50  HR Carter, MS &  JA Rodway, MJ  Sowden  BC Nest Record Scheme  Canoe Islet    49.03  ‐123.59  1986  56    Vermeer and Devito 1989  Chain Islets and Great Chain Island  48.42  ‐123.27  1943  80  T White  BC Nest Record Scheme  Chain Islets and Great Chain Island  48.42  ‐123.27  1955  1000  D Stirling  Drent and Guiguet 1961  Chain Islets and Great Chain Island  48.42  ‐123.27  1960  850  FA Gornall  Drent and Guiguet 1961  Chain Islets and Great Chain Island   48.42  ‐123.27  1968  1754  R Drent  BC Nest Record Scheme  Chain Islets and Great Chain Island  48.42  ‐123.27  1973  1550    BC Nest Record Scheme  Chain Islets and Great Chain Island  48.42  ‐123.27  1974  1764    Campbell 1976  Chain Islets and Great Chain Island  48.42  ‐123.27  1976  1825    BC Nest Record Scheme   165    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Chain Islets and Great Chain Island  48.42  ‐123.27  1977  1838    BC Nest Record Scheme  Chain Islets and Great Chain Island  48.42  ‐123.27  1986  2432    Rodway 1991, Vermeer  and Devito 1989  Chain Islets and Great Chain Island  48.42  ‐123.27  2009  1410  LK Blight, H  Carter, T Osler, A  Medve, M  Lambert  LK Blight unpubl. data  Channel Islands8    48.80  ‐123.38  1977  1  MS Rodway, RW  Campbell  BC Nest Record Scheme  Channel Islands    48.80  ‐123.38  2004  0    P Arcese unupubl. data  Christie Island    49.50  ‐123.30  1941  1  WSM collection  Drent and Guiguet 1961  Christie Island    49.50  ‐123.30  1949  2  WSM collection  Drent and Guiguet 1961                                                         8 NE islet   166    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Christie Island    49.50  ‐123.30  1955  247  Wm Hughes,  BCNRS  Drent and Guiguet 1961  Christie Island    49.50  ‐123.30  1956  419  Wm Hughes,  BCNRS  Drent and Guiguet 1961  Christie Island    49.50  ‐123.30  1958  219  Wm Merilees  and GM McKay,  BCNRS  Drent and Guiguet 1961  Christie Island    49.50  ‐123.30  1959  299  Wm Merilees,  GM McKay,  BCNRS  Drent and Guiguet 1961  Christie Island    49.50  ‐123.30  1963  300    BC Nest Record Scheme  Christie Island    49.50  ‐123.30  1968  293  R & N Drent  BC Nest Record Scheme  Christie Island    49.50  ‐123.30  1971  300    BC Nest Record Scheme  Christie Island    49.50  ‐123.30  1974  477    Campbell 1975   167    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Christie Island    49.50  ‐123.30  1978  718  M Lemon  M Lemon unpubl. data  Christie Island    49.50  ‐123.30  1980  499  P Nott, M McNall  BC Nest Record Scheme  Christie Island    49.50  ‐123.30  1981  558  RW Campbell  BC Nest Record Scheme  Christie Island    49.50  ‐123.30  1986  454    Vermeer and Devito 1989  Christie Island    49.50  ‐123.30  1999  232    Sullivan et al 2002  Christie Island    49.50  ‐123.30  2010  198  LK Blight, T Osler  LK Blight unpubl. data  Chrome Island9    49.47  ‐124.68  1935  150    Munro and Cowan 1947  Chrome Island    49.47  ‐124.68  1974  1    Campbell 1976                                                         9 Previously known as Yellow Island, referred to as such in Munro and Cowan 1947   168    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Chrome Island    49.47  ‐124.68  1986  3    Vermeer and Devito 1989  Chrome Island    49.47  ‐124.68  2010  1  LK Blight, T Osler  LK Blight unpubl. data  Church Island    48.31  ‐123.59  1974  3    Campbell 1976  Church Island    48.31  ‐123.59  1977  0    BC Nest Record Scheme  De Courcy Island    49.11  ‐123.76  1977  3  MS Rodway, RW  Campbell  BC Nest Record Scheme  De Courcy  Island10    49.11  ‐123.76  1986  2    Vermeer and Devito 1989  De Courcy Island    49.11  ‐123.76  2010  0  LK Blight, T Osler  LK Blight unpubl. data  Denman Island11    49.49  ‐124.71  1986  1    Vermeer and Devito 1989                                                         10 De Courcy Island counts from 1986 and 2010 are for NW cliffs; area not specified for 1977   169    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Denman Island    49.49  ‐124.71  2010  1  LK Blight, T Osler  LK Blight unpubl. data                Dinner Islet    49.95  ‐124.72  1978  0  MG & TE  Shepard, GE  Colby  BC Nest Record Scheme  Dinner Islet    49.95  ‐124.72  1981  0  W Campbell  BC Nest Record Scheme  Dinner Islet    49.95  ‐124.72  2006  0  R Butler  R Butler unpubl. data  Dock Island    48.67  ‐123.36  1977  48    BC Nest Record Scheme  Dock Island    48.67  ‐123.36  2010  0  T Golumbia  T Golumbia unpubl. data                                                                                                                                                                                                                                                   11 Gravelly Bay Ferry Dock   170    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Eagle Harbour    49.35  ‐123.27  1974  2    Campbell 1976  Fegan Islets    49.53  ‐124.38  1974  2    Campbell 1976  Fegan Islets    49.53  ‐124.38  1986  1    Vermeer and Devito 1989  Finnerty Islands    49.50  ‐124.39  1974  10    Campbell 1976  Finnerty Islands    49.50  ‐124.39  1981  6  R W Campbell  BC Nest Record Scheme  Finnerty Islands    49.50  ‐124.39  1986  4    Vermeer and Devito 1989  Five Finger  Island    49.23  ‐123.92  1959  5  Wm Merilees  Drent and Guiguet 1961  Five Finger  Island    49.23  ‐123.92  1968  110  R & J Drent  Campbell et al 1990  Five Finger  Island    49.23  ‐123.92  1974  559    Campbell 1976   171    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Five Finger  Island    49.23  ‐123.92  1977  459  M Lemon  M Lemon unpubl. data  Five Finger  Island    49.23  ‐123.92  1978  473  M Lemon  M Lemon unpubl. data  Five Finger  Island    49.23  ‐123.92  1980  364  M Lemon  M Lemon unpubl. data  Five Finger  Island    49.23  ‐123.92  1981  599  M Lemon  M Lemon unpubl. data  Five Finger  Island    49.23  ‐123.92  1986  671    Vermeer and Devito 1989  Five Finger  Island    49.23  ‐123.92  1999  288    Sullivan et al. 2002  Five Finger  Island    49.23  ‐123.92  2010  2  LK Blight, M  Crombie, T Osler  LK Blight unpubl. data  Gabriola Island    49.15  ‐123.79  1974  4  MS Rodway, RW  Campbell 1976   172    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  cliffs  Campbell  Gabriola Island  cliffs    49.15  ‐123.79  1977  5  MS Rodway, RW  Campbell  BC Nest Record Scheme  Gabriola Island  cliffs    49.15  ‐123.79  2010  4  R Butler  R Butler unpubl. data  Galiano Island  cliffs12    48.91  ‐123.42  1976  4  MS Rodway, RW  Campbell  BC Nest Record Scheme  Galiano Island  cliffs    48.98  ‐123.57  1977  2  MS Rodway, RW  Campbell  BC Nest Record Scheme  Galiano Island  cliffs    48.91  ‐123.42  1977  1  MS Rodway, RW  Campbell  BC Nest Record Scheme  Galiano Island    48.98  ‐123.57  1985  6    Vermeer and Devito 1989                                                         12 NW of Gray Peninsula   173    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  cliffs  Galiano Island  cliffs    48.98  ‐123.57  1986  6    Vermeer and Devito 1989  Grebe Islets13    49.34  ‐123.28  1974  7  RW Campbell  Campbell 1976  Grebe Islets    49.34  ‐123.28  1978  12  M Lemon  M Lemon unpubl. data  Grebe Islets    49.34  ‐123.28  1980  24  P Nott, M McNall  BC Nest Record Scheme  Grebe Islets    49.34  ‐123.28  1981  22  M Lemon  M Lemon unpubl. data  Grebe Islets    49.34  ‐123.28  1986  108    Vermeer and Devito  1989, Rodway 1991  Grebe Islets    49.34  ‐123.28  1999  257    Sullivan et al. 2002                                                         13 All counts for Grebe Islets are for East and West islets combined.  174    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Grebe Islets    49.34  ‐123.28  2010  33  LK Blight, T Osler  LK Blight unpubl. data  Greig Island    48.68  ‐123.34  1963  33  G McKay  BC Nest Record Scheme  Greig Island    48.68  ‐123.34  1973  35    BC Nest Record Scheme  Greig Island    48.68  ‐123.34  1974  40    Campbell 1976  Greig Island    48.68  ‐123.34  1981  53  M McNall, R Kool  BC Nest Record Scheme  Greig Island    48.68  ‐123.34  1985  45    Vermeer and Devito 1989  Greig Island    48.68  ‐123.34  1986  52    Vermeer and Devito 1989  Greig Island    48.68  ‐123.34  1997  5    Sullivan et al. 2002  Greig Island    48.68  ‐123.34  1999  14  M Lemon and  others  Sullivan et al. 2002   175    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Greig Island    48.68  ‐123.34  2009  17  T Golumbia  T Golumbia unpubl. data  Harris Island  48.42  ‐123.29  1971  41    BC Nest Record Scheme  Harris Island    48.42  ‐123.29  1977  28  M G Shepard  BC Nest Record Scheme  Harris Island    48.42  ‐123.29  1981  19  E Taylor, L  Giliberti, M  McNall  BC Nest Record Scheme  Harris Island    48.42  ‐123.29  1986  22    Vermeer and Devito 1989  Hodgson Islands    49.63  ‐124.08  1986  1    Vermeer and Devito 1989  Hodgson Islands    49.63  ‐124.08  2006  0  R Butler  R Butler unpubl. data  Hornby Island  bluffs    49.52  ‐124.59  1938  30    Drent and Guiguet 1961  Hornby Island    49.52  ‐124.59  1960  0  GE Seon  Drent and Guiguet 1961   176    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  bluffs  Hornby Island  bluffs    49.52  ‐124.59  1977  1  D Thompson  BC Nest Record Scheme  Hornby Island,  St. John Point    49.52  ‐124.59  1968  0  GE Seon  BC Nest Record Scheme  Hornby Island,  St. John Point    49.52  ‐124.59  1974  5    Campbell 1976  Hornby Island,  St. John Point    49.52  ‐124.59  1986  6    Vermeer and Devito 1989  Horseshoe Bay14    49.40  ‐123.25  1956  1  A Muir  Drent and Guiguet 1961  Horseshoe Bay    49.40  ‐123.25  1957  1  A Muir  Drent and Guiguet 1961                                                         14 Actual nesting locality is cliff 2 miles N of Horseshoe Bay proper   177    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Horseshoe Bay    49.40  ‐123.25  1974  1    Campbell 1976  Hudson Rocks    49.23  ‐123.93  1959  80  Wm Merilees  Drent and Guiguet 1961  Hudson Rocks    49.23  ‐123.93  1960  38  K Vermeer  BC Nest Record Scheme  Hudson Rocks    49.23  ‐123.93  1968  79  R & J Drent  BC Nest Record Scheme  Hudson Rocks    49.23  ‐123.93  1974  248  M Lemon  M Lemon unpubl. data  Hudson Rocks    49.23  ‐123.93  1977  259  M Lemon  M Lemon unpubl. data  Hudson Rocks    49.23  ‐123.93  1978  236  M Lemon  M Lemon unpubl. data  Hudson Rocks    49.23  ‐123.93  1980  226  M Lemon  M Lemon unpubl. data  Hudson Rocks    49.23  ‐123.93  1981  308  M Lemon  M Lemon unpubl. data  Hudson Rocks    49.23  ‐123.93  1986  247    Vermeer and Devito 1989   178    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Hudson Rocks    49.23  ‐123.93  1999  122  M Lemon and  others  Sullivan et al. 2002  Hudson Rocks    49.23  ‐123.93  2010  10  L Blight, T Osler  LK Blight unpubl. data  Imrie Island    48.69  ‐123.33  1905  0  Dawson and  Edson  Drent and Guiguet 1961  Imrie Island    48.69  ‐123.33  1935  150  JA Munro  BC Nest Record Scheme  Imrie Island15    48.69  ‐123.33  1945  150  Meugens  Drent and Guiguet 1961  Imrie Island    48.69  ‐123.33  1959  200  R, JJ, & J Drent  Drent and Guiguet 1961  Imrie Island    48.69  ‐123.33  1960  295  MS Rodway, RW  Campbell  BC Nest Record Scheme                                                         15 This record specified count was for “North half of island”   179    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Imrie Island    48.69  ‐123.33  1968  250  R & N Drent  BC Nest Record Scheme  Imrie Island    48.69  ‐123.33  1974  298    Campbell 1976  Imrie Island    48.69  ‐123.33  1977  315  R Hunter  BC Nest Record Scheme  Imrie Island    48.69  ‐123.33  1978  355    Campbell et al 1990  Imrie Island    48.69  ‐123.33  1985  120    Vermeer and Devito 1989  Imrie Island    48.69  ‐123.33  1986  216    Vermeer and Devito 1989  Imrie Island    48.69  ‐123.33  1997  33    Sullivan et al 2002  Imrie Island    48.69  ‐123.33  1999  41  M Lemon and  others  Sullivan et al. 2002  Imrie Island    48.69  ‐123.33  2005  1    P Arcese unpubl. data   180    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Imrie Island    48.69  ‐123.33  2007  0    P Arcese unpubl. data  Inskip Rock    49.21  ‐123.95  1999  0  M Lemon   M Lemon unpubl. data  Java Islets16,17    48.76  ‐123.11  1900  35  H Spalding  Drent and Guiguet 1961  Java Islets    48.76  ‐123.11  1959  372  MS Rodway, RW  Campbell  BC Nest Record Scheme  Java Islets    48.76  ‐123.11  1968  464  R & J Drent  BC Nest Record Scheme  Java Islets    48.76  ‐123.11  1969  531  R Drent, J Anvik, J  & J Ward  BC Nest Record Scheme  Java Islets    48.76  ‐123.11  1974  372    Campbell 1976                                                         16 Year given as “about 1900” in original record   17 All counts for Java Islets are for East and West islets combined  181    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Java Islets    48.76  ‐123.11  1977  374  MS Rodway, RW  Campbell  BC Nest Record Scheme  Java Islets    48.76  ‐123.11  1980  181    Campbell et al 1990  Java Islets    48.76  ‐123.11  1981  384  R & C Gibb, M  Hodgson  BC Nest Record Scheme  Java Islets    48.76  ‐123.11  1986  298    Vermeer and Devito 1989  Java Islets    48.76  ‐123.11  2005  52  T Golumbia  T Golumbia unpubl. data  Java Islets    48.76  ‐123.11  2007  20  T Golumbia  T Golumbia unpubl. data  Java Islets    48.76  ‐123.11  2008  17  T Golumbia  T Golumbia unpubl. data  Java Islets    48.76  ‐123.11  2009  25  T Golumbia  T Golumbia unpubl. data  Keefer Rock    49.97  ‐124.88  1970  7  R Foottit, R  Butler, W  Foottit et al. 1973, BC  Nest Record Scheme   182    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Merilees  Keefer Rock    49.97  ‐124.88  1973  7  R & S Butler  BC Nest Record Scheme  Keefer Rock    49.97  ‐124.88  1974  7    Campbell 1976  Keefer Rock    49.97  ‐124.88  1977  20    BC Nest Record Scheme  Keefer Rock    49.97  ‐124.88  1986  28    Vermeer and Devito 1989  Keefer Rock    49.97  ‐124.88  2006  0  R Butler  R Butler unpubl. data  Kuper Island    48.94  ‐123.63  1972  4  J Cooper  BC Nest Record Scheme  Kuper Island    48.94  ‐123.63  1974  10  MS Rodway, RW  Campbell  BC Nest Record Scheme  Kuper Island    48.94  ‐123.63  1976  11  MS Rodway, RW  Campbell  BC Nest Record Scheme   183    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Kuper Island    48.94  ‐123.63  1977  6  MS Rodway, RW  Campbell  BC Nest Record Scheme  Kuper Island    48.94  ‐123.63  1986  8    Vermeer and Devito 1989  Lion Islets    48.90  ‐123.34  1977  2  MS Rodway, RW  Campbell  BC Nest Record Scheme  Lion Islets    48.90  ‐123.34  1986  1    Vermeer and Devito 1989  Little Group Islets  48.67  ‐123.36  1986  6    Vermeer and Devito 1989  Little Group Islets  48.67  ‐123.36  1997  3    Sullivan et al 2002  Little Group Islets  48.67  ‐123.36  1999  1  M Lemon  M Lemon unpubl. data  Little Group Islets  48.67  ‐123.36  2010  0  LK Blight, T Osler  LK Blight unpubl. data  Little Rock  Caution ‐ see notes  50.05  ‐124.91  1974  1    Campbell 1976   184    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Little Rock  Caution ‐ see notes  50.05  ‐124.91  2006  0  R Butler  R Butler unpubl. data  Little Rock18  Caution ‐ see notes  50.16  ‐125.09  1986  1    Vermeer and Devito 1989  Major Islet    49.99  ‐124.82  1970  1  R Foottit, R  Butler, W  Merilees  Foottit et al. 1973, BC  Nest Record Scheme  Major Islet    49.99  ‐124.82  1974  3    Campbell 1976  Major Islet    49.99  ‐124.82  1978  1  MG & TE  Shepard  BC Nest Record Scheme  Major Islet    49.99  ‐124.82  2006  0  R Butler  R Butler unpubl. data  Mandarte Island    48.63  ‐123.29  1915  45019    BC Nest Record Scheme                                                         18 Little Rock off Read Island; different locality from above locality also named Little Rock  19 Recorded incorrectly in Drent and Guiguet (1961) as 225 pair   185    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mandarte Island    48.63  ‐123.29  1921  350    BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1923  600  JA Munro  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1927  1000  Munro 1929  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1936  53420    BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1955  1500    BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1957  1900  GF van Tets, and  other UBC  affiliates  Drent and Guiguet 1961  Mandarte Island    48.63  ‐123.29  1958  1900  GF van Tets, and  other UBC  affiliates  Drent and Guiguet 1961                                                         20 But 500 nests recorded in BCNRS by JA Munro for Mandarte Island, 1936  186    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mandarte Island    48.63  ‐123.29  1959  1900  GF van Tets, and  other UBC  affiliates  Drent and Guiguet 1961  Mandarte Island    48.63  ‐123.29  1960  1900  GF van Tets, and  other UBC  affiliates  Drent and Guiguet 1961  Mandarte Island    48.63  ‐123.29  1961  1500  GC Carl  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1962  2100  R Drent and  others  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1969  2000    BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1970  2500  I Robertson  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1971  2000  J Ward  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1974  1047    Campbell 1976   187    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mandarte Island    48.63  ‐123.29  1977  1666  MS Rodway, RW  Campbell  BC Nest Record Scheme  Mandarte Island    48.63  ‐123.29  1985  2157    Vermeer and Devito 1987  Mandarte Island    48.63  ‐123.29  1986  2259    Vermeer and Devito 1989  Mandarte Island    48.63  ‐123.29  1997  2124    Sullivan et al 2002  Mandarte Island    48.63  ‐123.29  2005  1700    P Arcese unpubl. data  Mandarte Island    48.63  ‐123.29  2007  1100    P Arcese unpubl. data  Mandarte Island    48.63  ‐123.29  2009  1892  LK Blight, H  Carter, T Osler, A  Medve  LK Blight unpubl. data  Mandarte South Islet  48.63  ‐123.28  1962  100    Drent et al. 1964   188    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mandarte South Islet  48.63  ‐123.28  1974  71  BC Provincial   Museum  BC Nest Record Scheme  Mandarte South Islet  48.63  ‐123.28  1977  71    BC Nest Record Scheme  Mandarte South Islet  48.63  ‐123.28  1980  106    BC Nest Record Scheme  Mandarte South Islet  48.63  ‐123.28  1985  100    Vermeer and Devito 1989  Mandarte South Islet    48.63  ‐123.28  1986  104    Vermeer and Devito 1989  Mandarte South Islet  48.63  ‐123.28  1997  97    Sullivan et al. 2002  Mandarte South Islet  48.63  ‐123.28  2007  0    P. Arcese unpubl. data  Mandarte South Islet  48.63  ‐123.28  2010  28  M Crombie, D  Gosse  LK Blight unpubl. data  Mary Tod Island    48.43  ‐123.30  1986  1    Vermeer and Devito 1989   189    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mary Tod Island    48.43  ‐123.30  2009  2  LK Blight   LK Blight unpubl. data  Maude Island    49.27  ‐124.08  1986  2    Vermeer and Devito 1989  Maude Island    49.27  ‐124.08  2010  0  LK Blight, T Osler  LK Blight unpubl. data  McRae Islet    49.74  ‐124.29  1969  97    Campbell et al. 1990  McRae Islet    49.74  ‐124.29  1974  97    Campbell 1976  McRae Islet    49.74  ‐124.29  1986  262    Vermeer and Devito 1989  Merry Island and Franklin Rock  49.47  ‐123.92  1950  800  JA Brooks,  Fisheries  Guardian  Drent and Guiguet 1961  Merry Island and Franklin Rock  49.47  ‐123.92  1960  600    BC Nest Record Scheme  Merry Island and Franklin Rock  49.47  ‐123.92  1968  395    BC Nest Record Scheme   190    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Merry Island and Franklin Rock  49.47  ‐123.92  1974  1005    BC Nest Record Scheme  Merry Island and Franklin Rock  49.47  ‐123.92  1975  622    BC Nest Record Scheme  Merry Island and Franklin Rock  49.47  ‐123.92  1976  779    BC Nest Record Scheme  Merry Island and Franklin Rock  49.47  ‐123.92  1986  228    Vermeer and Devito 1989  Merry Island and Franklin Rock  49.47  ‐123.92  2006  100  R Butler  R Butler unpubl. data  Merry Island and Franklin Rock  49.47  ‐123.92  2010  46  LK Blight, T Osler  LK Blight unpubl. data  Miami Islet    49.04  ‐123.71  1968  25  R & J Drent  BC Nest Record Scheme  Miami Islet    49.04  ‐123.71  1974  52    Campbell 1976  Miami Islet    49.04  ‐123.71  1977  43  L Milnes, M  Rodway  BC Nest Record Scheme   191    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Miami Islet    49.04  ‐123.71  1980  17  E Perkins, R  Gibbs, J Goodall  BC Nest Record Scheme  Miami Islet    49.04  ‐123.71  1981  19  G Kaiser, S Webb,  L Giliberti, M  McNall  BC Nest Record Scheme  Miami Islet    49.04  ‐123.71  1986  38    Vermeer and Devito 1989  Miami Islet    49.04  ‐123.71  2010  5  LK Blight, T Osler  LK Blight unpubl. data  Mitlenatch  Island    49.95  ‐125.01  1922  50021  T Pearse,  Taverner, HM  Laing, E Jackson  BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1923  600  Mr. RM Stewart  Pearse 1923                                                         21 Original record reports a count of 500 pairs, differing from the number recorded in Drent and Guiguet (1961)   192    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mitlenatch  Island    49.95  ‐125.01  1927  150  T Pearse  Pearse 1929, Drent and  Guiguet 1961  Mitlenatch  Island    49.95  ‐125.01  1928  400  T Pearse  Pearse 1929, Drent and  Guiguet 1961  Mitlenatch  Island    49.95  ‐125.01  1959  600  D Stirling BCNRS  Drent and Guiguet 1961  Mitlenatch  Island    49.95  ‐125.01  1960  1200  D Stirling  BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1960  900  R Barnes, WJ  Merilees  BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1963  3000    BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1965  3000    BC Nest Record Scheme   193    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mitlenatch  Island    49.95  ‐125.01  1967  3500  R Butler  BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1969  3000    BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1970  100  DR Drent, R  Foottit  BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1973  286    BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1974  1632    Campbell 1976  Mitlenatch  Island    49.95  ‐125.01  1977  987    BC Nest Record Scheme  Mitlenatch  Island    49.95  ‐125.01  1986  2100    Vermeer and Devito 1989   194    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Mitlenatch  Island    49.95  ‐125.01  2010  1152  LK Blight, T  Chatwin, M  Davis, D Scott, P  Sowden, D  Thomson  LK Blight unpubl. data  Mouat Islands    49.64  ‐124.47  1986  35    Vermeer and Devito 1989  Mouat Islands    49.64  ‐124.47  2006  45  R Butler  R Butler unpubl. data  Nanoose Bay Island22  49.26  ‐124.1823  1961  75    Environment Canada  unpubl. data  Nanoose Bay Island  49.26  ‐124.18  1963  100    Environment Canada  unpubl. data  Norris Rocks    49.48  ‐124.65  1960  20  R & J Drent  BC Nest Record Scheme                                                         22 No island of this name found, presently or historically; may be Ada Island as no other likely sites exist in Nanoose Bay.   23 Lat and long are for Nanoose Bay  195    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Norris Rocks    49.48  ‐124.65  1968  17    Campbell et al 1990  Norris Rocks    49.48  ‐124.65  1974  85    BC Nest Record Scheme  Norris Rocks    49.48  ‐124.65  1975  170  K Kennedy  BC Nest Record Scheme  Norris Rocks    49.48  ‐124.65  1977  104  MG Shepard  BC Nest Record Scheme  Norris Rocks    49.48  ‐124.65  1978  58  MG & TE  Shepard  BC Nest Record Scheme  Norris Rocks    49.48  ‐124.65  1981  111  M McNall, A  Burger  BC Nest Record Scheme  Norris Rocks    49.48  ‐124.65  1986  287    Vermeer and Devito 1989  Norris Rocks    49.48  ‐124.65  2010  111  LK Blight, T Osler  LK Blight unpubl. data   196    Location  Location  Description  Lat  Long  Year  No.  Nests/  Pairs1  Collector (if  known)  Source  Pam Rocks24    49.49  ‐123.30  1956  10  JK Cooper  Drent and Guiguet 1961  Pam Rocks    49.49  ‐123.30  1963  7    BC Nest Record Scheme  Pam Rocks    49.49  ‐123.30  1968  109    BC Nest Record Scheme  Pa