- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Costs and benefits of environmental data in investigations...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Costs and benefits of environmental data in investigations of gene-disease associations Luo, Hao
Abstract
The inclusion of environmental exposure data may be beneficial, in terms of statistical power, to investigation of gene-disease association when it exists. However, resources invested in obtaining exposure data could instead be applied to measure disease status and genotype on more subjects. In a cohort study setting, we consider the tradeoff between measuring only disease status and genotype for a larger study sample and measuring disease status, genotype, and environmental exposure for a smaller study sample, under the ‘Mendelian randomization’ assumption that the environmental exposure is independent of genotype in the study population. We focus on the power of tests for gene-disease association, applied in situations where a gene modifies risk of disease due to particular exposure without a main effect of gene on disease. Our results are equally applicable to exploratory genome-wide association studies and more hypothesis-driven candidate gene investigations. We further consider the impact of misclassification for environmental exposures. We find that under a wide range of circumstances research resources should be allocated to genotyping larger groups of individuals, to achieve a higher power for detecting presence of gene-environment interactions by studying genedisease association.
Item Metadata
Title |
Costs and benefits of environmental data in investigations of gene-disease associations
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2012
|
Description |
The inclusion of environmental exposure data may be beneficial, in terms of statistical power, to investigation of gene-disease association when it exists. However, resources invested in obtaining exposure data could instead be applied to measure disease status and genotype on more subjects. In a cohort study setting, we consider the tradeoff between measuring only disease status and genotype for a larger study sample and measuring disease status, genotype, and environmental exposure for a smaller study sample, under the ‘Mendelian randomization’ assumption that the environmental exposure is independent of genotype in the study population. We focus on the power of tests for gene-disease association, applied in situations where a gene modifies risk of disease due to particular exposure without a main effect of gene on disease. Our results are equally applicable to exploratory genome-wide association studies and more hypothesis-driven candidate gene investigations. We further consider the impact of misclassification for environmental exposures. We find that under a wide range of circumstances research resources should be allocated to genotyping larger groups of individuals, to achieve a higher power for detecting presence of gene-environment interactions by studying genedisease association.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2012-08-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0073077
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2012-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International