Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Phylogeny and systematics of the jumping spider subfamily Euophryinae (Araneae : Salticidae), with consideration… Zhang, Junxia 2012

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2012_fall_zhang_junxia.pdf [ 259.65MB ]
Metadata
JSON: 24-1.0072804.json
JSON-LD: 24-1.0072804-ld.json
RDF/XML (Pretty): 24-1.0072804-rdf.xml
RDF/JSON: 24-1.0072804-rdf.json
Turtle: 24-1.0072804-turtle.txt
N-Triples: 24-1.0072804-rdf-ntriples.txt
Original Record: 24-1.0072804-source.json
Full Text
24-1.0072804-fulltext.txt
Citation
24-1.0072804.ris

Full Text

!  PHYLOGENY AND SYSTEMATICS OF THE JUMPING SPIDER SUBFAMILY EUOPHRYINAE (ARANEAE: SALTICIDAE), WITH CONSIDERATION OF BIOGEOGRAPHY AND GENITALIC EVOLUTION! by Junxia Zhang  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  in The Faculty of Graduate Studies (Zoology)  THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)  May 2012 © Junxia Zhang, 2012  Abstract The Euophryinae is one of the largest subfamilies of jumping spiders (Salticidae) with worldwide distribution. As the only currently recognized salticid subfamily that has diversified almost evenly in both the Old and New World, its historical biogeography is particularly interesting. To clarify the phylogeny of Euophryinae, I amplified and sequenced four genes (nuclear: 28S rDNA, Actin 5C; mitochondrial: 16S-ND1, COI) from 261 jumping spider species, most euophryines, covering all major distribution areas of this subfamily. The molecular phylogeny strongly supports the monophyly of euophryines. Diolenius and its relatives are shown to be euophryines. The phylogeny also indicates euophryines from different continents tend to form their own clades with few cases of mixture. Temporal divergence of Euophryinae was investigated to understand its historical biogeography. The results suggest rapid radiations early during their evolutionary history, with most divergences after the Eocene. Given the age, several intercontinental dispersal events are required to explain the distribution of euophryines. The suggested tolerance to cold may have facilitated early dispersals between the Old and New World through the Antarctic land bridge. I also extensively studied morphological characteristics of a broad range of euophryine genera and species in order to extend our phylogenetic understanding beyond those taxa sampled for molecular data. Systematics of Euophryinae is discussed and a full list of euophryine genera is provided with 122 genera included (34 genera before this study). Euophryine generic groups and redefined delimitations for some genera are reviewed in detail, with 22 new synonyms of genera and 191 new combinations of species proposed. Photographs and illustrations of 173 euophryine species are provided. In addition, 14 new genera and 96 new species of euophryines are described. Correlated evolution between female copulatory duct and male embolus of euophryines was studied in a phylogenetic context. Intra-specific variation of these traits was also examined. The study reveals a positive correlation between the lengths of female copulatory duct and male embolus among euophryine species. However, the inter- and intra-specific variation patterns are not sufficient to tell whether this correlation results from sexual selection or species recognition mechanisms.  ii!  Preface The sequence of research chapters in this thesis is determined by their relevance to the core of this project (phylogeny and systematics of Euophryinae). However, the sequence of publishing these research chapters will be different, with the chapters describing new taxa (Chapters 5-8) being published first, because they provide names for terminals in the molecular phylogeny. The next one that will be published is Chapter 2, because the molecular phylogeny presented in this chapter forms a framework for Chapter 3 and Chapter 4. Chapter 3 will be published before Chapter 4 because taxonomic placements of the two species involved in Chapter 4 are corrected in this chapter. A version of Chapter 2 will be submitted for publication: Zhang, J. and Maddison, W. P., Molecular phylogeny and temporal scale divergence of the subfamily Euophryinae (Araneae: Salticidae), with implications on its historical biogeography. I participated in the field work during which some material for this study was collected, carried out laboratory work and data analyses, and wrote the manuscript. Wayne P. Maddison collected some specimens for this study, provided insights on taxon sampling and analyses, and contributed to writing the manuscript. A version of Chapter 3 will be submitted for publication: Zhang, J. and Maddison, W. P., Generic review of euophryine jumping spiders (Araneae: Salticidae), with a phylogeny from combined molecular and morphological data. I participated in the field work during which some material for this study was collected, conducted morphological studies including illustrating and photographing, carried out data analyses, and wrote the manuscript. Wayne P. Maddison collected some specimens for this study, provided insights on choosing morphological characters for phylogenetic analyses, and contributed to writing the manuscript. A version of Chapter 4 will be submitted for publication: Zhang, J. and Maddison, W. P., Intersexual correlated evolution of genitalia in euophryine jumping spiders (Araneae: Salticidae): sexual selection or “lock-and-key”? I participated in the field work during which some material for this study was collected, conducted laboratory work in collecting data, carried out data analyses, and wrote the manuscript. Wayne P. Maddison collected some specimens for this  iii!  study, provided insights on data collecting and analyses, and contributed to writing the manuscript. A version of Chapter 5 has been submitted for publication: Zhang, J. and Maddison, W. P., New euophryine jumping spiders from the Dominican Republic and Puerto Rico (Araneae: Salticidae: Euophryinae). I participated in the field work during which material for this study was collected, prepared species descriptions, diagnostic character illustrations and photographs of preserved specimens and some living specimens, and wrote the manuscript. Wayne P. Maddison collected some specimens for this study, provided most of living spider photos and contributed to writing the manuscript.  A version of Chapter 6 has been submitted for publication: Zhang, J. and Maddison, W. P., New euophryine jumping spiders from Papua New Guinea (Araneae: Salticidae: Euophryinae). I prepared species descriptions, diagnostic character illustrations and photographs of preserved specimens, and wrote the manuscript. Wayne P. Maddison collected most of the specimens for this study, provided most of living spider photos and contributed to writing the manuscript.  A version of Chapter 7 has been submitted for publication: Zhang, J. and Maddison, W. P., New euophryine jumping spiders from Central America and South America (Araneae: Salticidae: Euophryinae). I prepared species descriptions, diagnostic character illustrations and photographs of preserved specimens, and wrote the manuscript. Wayne P. Maddison collected most of the specimens for this study, provided living spider photos and contributed to writing the manuscript. A version of Chapter 8 has been submitted for publication: Zhang, J. and Maddison, W. P., New euophryine jumping spiders from Southeast Asia and Africa (Araneae: Salticidae: Euophryinae). I collected some specimens for this study, prepared species descriptions, diagnostic character illustrations and photographs of preserved specimens, and wrote the manuscript. Wayne P. Maddison collected some specimens for this study, provided living spider photos and contributed to writing the manuscript.  iv!  Table of Contents Abstract ....................................................................................................................................ii Preface .....................................................................................................................................iii Table of Contents ..................................................................................................................... v List of Tables .......................................................................................................................... xv List of Figures .......................................................................................................................xvi Acknowledgements .............................................................................................................xxiv 1 Introduction ........................................................................................................................ 1 1.1 Taxonomy and phylogeny of the family Salticidae....................................................... 1 1.2  Taxonomy and phylogeny of the subfamily Euophryinae ............................................ 2  1.3  Biogeography of the family Salticidae and subfamily Euophryinae ............................ 4  1.4  Correlated evolution of female and male genitalia........................................................ 5  1.5  Objectives of the thesis.................................................................................................. 7  2 Molecular phylogeny and temporal scale divergence of the subfamily Euophryinae (Araneae: Salticidae), with implications on its historical biogeography ........................... 12 2.1  Synopsis....................................................................................................................... 12  2.2  Introduction ................................................................................................................. 12  2.3  Material and methods .................................................................................................. 14 2.3.1  Taxon sampling ................................................................................................... 14  2.3.2  DNA extraction, amplification and sequencing................................................... 15  2.3.3  Sequence alignment ............................................................................................. 17  2.3.4  Phylogenetic analyses.......................................................................................... 18  2.3.4.1 Model selection............................................................................................ 18 2.3.4.2 Maximum likelihood (ML) analysis............................................................ 18 2.3.4.3 Bayesian (BI) analysis ................................................................................. 19 2.3.4.4 Maximum parsimony (MP) analysis ........................................................... 20 2.3.5  Divergence time analyses .................................................................................... 20  2.3.5.1 Calibrations.................................................................................................. 20 2.3.5.2 BEAST (Bayesian Evolutionary Analysis Sampling Trees) ....................... 22 2.3.5.3 Penalized likelihood implemented in r8s..................................................... 23 v!  2.4  Results ......................................................................................................................... 23  2.4.1  Phylogenetic analyses.......................................................................................... 23  2.4.1.1 All genes combined ..................................................................................... 23 2.4.1.2 28S ............................................................................................................... 24 2.4.1.3 Actin 5C....................................................................................................... 25 2.4.1.4 16S-ND1 ...................................................................................................... 25 2.4.1.5 COI .............................................................................................................. 26 2.4.2 2.5  Divergence time analyses .................................................................................... 26  Discussion.................................................................................................................... 27 2.5.1  Phylogeny of Euophryinae .................................................................................. 27  2.5.1.1 Monophyly and content of Euophryinae ..................................................... 28 2.5.1.2 Diolenius and its relatives are euophryines ................................................. 29 2.5.1.3 “Bathippus” pahang is not a euophryine .................................................... 29 2.5.1.4 Position of Euophryinae in jumping spider phylogeny ............................... 30 2.5.2  Implications on taxonomy of Euophryinae ......................................................... 30  2.5.3 Temporal divergence and implication on biogeography of Euophryinae ............ 31 2.5.3.1 Diversification in the southern hemisphere ................................................. 31 2.5.3.2 Dispersal is important in the diversification of euophryines ....................... 33 2.5.3.2.1 Dispersals across Wallace-line ........................................................ 33 2.5.3.2.2 Dispersals in north hemisphere........................................................ 33 2.5.3.2.3 Dispersals between Neotropic and Nearctic .................................... 34 2.5.3.2.4 Dispersals into Africa ...................................................................... 34 2.5.3.3 Two “hot-spots” of euophryine diversity .................................................... 34 2.5.3.3.1 Divergences in New Guinea ............................................................ 34 2.5.3.3.2 Divergences in Caribbean................................................................ 35 2.5.4 2.6  Other implications from the molecular phylogeny.............................................. 35  Conclusions ................................................................................................................. 36  3 Generic review of euophryine jumping spiders (Araneae: Salticidae), with a phylogeny from combined molecular and morphological data ........................................................... 50 3.1  Synopsis....................................................................................................................... 50  3.2  Introduction ................................................................................................................. 50  3.3  Material and methods .................................................................................................. 52 3.3.1  Techniques for morphological study ................................................................... 52 vi!  3.3.2  Phylogenetic study............................................................................................... 53  3.3.2.1  Taxon sampling .......................................................................................... 53  3.3.2.2  Morphological characters ........................................................................... 54  3.3.2.3  DNA sequences .......................................................................................... 54  3.3.2.4  Phylogenetic analyses................................................................................. 54  3.3.2.4.1 Morphological matrix ...................................................................... 54 3.3.2.4.2 DNA matrix ..................................................................................... 55 3.3.2.4.3 Combined DNA and morphology matrix ........................................ 55 3.3.2.5 3.4  Character optimization ............................................................................... 56  Results ......................................................................................................................... 56 Morphological study on a broad range of euophryine taxa ................................. 56  3.4.2  Phylogenetic study............................................................................................... 56  3.5  3.4.1  3.4.2.1  Morphological dataset ................................................................................ 56  3.4.2.2  Molecular dataset........................................................................................ 57  3.4.2.3  Combined DNA and morphology dataset .................................................. 58  3.4.2.4  Character optimization ............................................................................... 58  Discussion.................................................................................................................... 58 3.5.1  Phylogenetic analyses.......................................................................................... 58  3.5.1.1  DNA vs. morphology in phylogenetic reconstruction................................ 58  3.5.1.2  Role of morphology in phylogeny of Euophryinae .................................... 60  3.5.2  Taxonomic review of Euophryinae ..................................................................... 61  3.5.2.1  Content of Euophryinae.............................................................................. 61  3.5.2.2  Major euophryine clades from the New World .......................................... 62  3.5.2.2.1 Anasaitis-Corythalia Clade .............................................................. 62 3.5.2.2.2 Antillattus Clade: Antillattus, Petemathis, Truncattus, and possibly Allodecta, Caribattus......................................................................................... 64 3.5.2.2.3 Agobardus Clade: Agobardus, Bythocrotus, Compsodecta, Parasaitis ........................................................................................................................... 66 3.5.2.2.4 Naphrys-Corticattus Clade ............................................................... 68 3.5.2.2.5 Sidusa Clade ..................................................................................... 69 3.5.2.2.6 Mopiopia-Saphrys Clade .................................................................. 71 3.5.2.2.7 Chapoda-Maeota Clade: Chapoda, Maeota, Commoris .................. 73 3.5.2.2.8 Amphidraus-Marma Clade ............................................................... 75 vii!  3.5.2.2.9 Coryphasia Clade: Coryphasia and possibly Semnolius .................. 76 3.5.2.2.10 Pensacola-Mexigonus Clade .......................................................... 78 3.5.2.2.11 Neonella Clade: Neonella and Darwinneon ................................... 78 3.5.2.2.12 Belliena Clade: Belliena, Saitidops and possibly Stoidis................ 78 3.5.2.2.13 Soesilarishius Clade: Soesilarishius and possibly Rhyphelia ......... 79 3.5.2.2.14 Other genera from the New World: Ecuadattus, Ilargus, Popcornella, Tylogonus .......................................................................................................... 79 3.5.2.3 Major euophryine clades from the Old World ............................................. 80 3.5.2.3.1 Bathippus-Canama Clade: Bathippus, Canama and possibly Spilargis ........................................................................................................................... 80 3.5.2.3.2 Omoedus Clade ................................................................................. 81 3.5.2.3.3 Bulolia-Coccorchestes Clade: Bulolia, Coccorchestes, Leptathamas, Variratina and possibly Athamas...................................................................... 82 3.5.2.3.4 Diolenius Clade: Chalcolecta, Chalcolemia, Diolenius, Efate, Furculattus, Ohilimia, Paraharmochirus, Sobasina, Tarodes, Udvardya........ 83 3.5.2.3.5 Pristobaeus Clade: Pristobaeus, Opisthoncana, Ergane and Ascyltus ........................................................................................................................... 83 3.5.2.3.6 Phasmolia Clade: Bindax, Lakarobius, Phasmolia, Araneotanna.... 85 3.5.2.3.7 Parabathippus-Parvattus Clade........................................................ 85 3.5.2.3.8 Euophrys Clade: Chalcoscirtus, Euophrys, Pseudeuophrys, Talavera and Featheroides............................................................................................... 85 3.5.2.3.9 Saitis Clade: Saitis and possibly Margaromma ................................ 86 3.5.2.3.10 Laufeia Clade: Laufeia and possibly Magyarus ............................. 89 3.5.2.3.11 Colyttus Clade ................................................................................. 90 3.5.2.3.12 Cytaea-Euryattus Clade: Cytaea, Euryattus, possibly Aruattus and Charippus.......................................................................................................... 91 3.5.2.3.13 Thiania Clade.................................................................................. 92 3.5.2.3.14 Emathis-Lepidemathis Clade .......................................................... 92 3.5.2.3.15 Thyenula Clade: Thyenula, possibly Tanzania, Lophostica and Pseudemathis .................................................................................................... 93 3.5.2.3.16 Other genera from the Old World: Chalcotropis, Chinophrys, Foliabitus, Lagnus, Servaea, Sigytes, Thorelliola, Viribestus, Xenocytaea, Zabkattus........................................................................................................... 94 viii!  3.6 4  Conclusions ................................................................................................................. 95  Intersexual correlated evolution of genitalia in euophryine jumping spiders (Araneae:  Salticidae): sexual selection or “lock-and-key”? ............................................................... 160 4.1  Synopsis..................................................................................................................... 160  4.2  Introduction ............................................................................................................... 161  4.3  Material and methods ................................................................................................ 163 Intersexual correlated evolution ........................................................................ 163  4.3.2  Intra-specific variation....................................................................................... 164  4.4  4.3.1  Results ....................................................................................................................... 166 Intersexual correlation of embolus length and copulatory duct length.............. 166  4.4.2  Intra-specific variation....................................................................................... 167  4.5  4.4.1  Discussion.................................................................................................................. 168 Intersexual correlated evolution of embolus and copulatory duct..................... 168  4.5.2  “Lock-and-key” or sexual selection................................................................... 169  4.5.3  Sexual selection mechanisms ............................................................................ 171  4.6  4.5.1  5  Conclusions and future directions ............................................................................. 173  New euophryine jumping spiders from the Dominican Republic and Puerto Rico  (Araneae: Salticidae: Euophryinae) ................................................................................... 187 5.1  Synopsis..................................................................................................................... 187  5.2  Introduction ............................................................................................................... 187  5.3  Material and methods ................................................................................................ 188  5.4  Taxonomy .................................................................................................................. 189 5.4.1  Genus Agobardus Keyserling, 1885 .................................................................. 189  5.4.1.1  Agobardus bahoruco sp. nov. .................................................................. 190  5.4.1.2  Agobardus cordiformis sp. nov. .............................................................. 191  5.4.1.3  Agobardus gramineus sp. nov. ................................................................. 192  5.4.1.4  Agobardus oviedo sp. nov. ...................................................................... 193  5.4.1.5  Agobardus phylladiphilus sp. nov. .......................................................... 194  5.4.2  Genus Anasaitis Bryant, 1950 ........................................................................... 195  5.4.2.1  Anasaitis adorabilis sp. nov. ................................................................... 196  5.4.2.2  Anasaitis brunnea sp. nov. ...................................................................... 197  5.4.2.3  Anasaitis hebetata sp. nov. ...................................................................... 198  5.4.2.4  Anasaitis laxa sp. nov. ............................................................................. 199 ix!  5.4.3  Genus Antillattus Bryant, 1943 ......................................................................... 200  5.4.3.1 5.4.4  Genus Bythocrotus Simon, 1903 ....................................................................... 202  5.4.4.1 5.4.5  Bythocrotus crypticus sp. nov. ................................................................. 202  Genus Corticattus new genus ............................................................................ 203  5.4.5.1  Corticattus guajataca sp. nov. ................................................................. 204  5.4.5.2  Corticattus latus sp. nov. ......................................................................... 205  5.4.6  Genus Corythalia C. L. Koch, 1850 .................................................................. 206  5.4.6.1  Corythalia broccai sp. nov. ..................................................................... 206  5.4.6.2  Corythalia bromelicola sp. nov. .............................................................. 207  5.4.6.3  Corythalia coronai sp. nov. ..................................................................... 208  5.4.6.4  Corythalia peblique sp. nov. .................................................................... 209  5.4.7  Genus Popcornella new genus .......................................................................... 211  5.4.7.1  Popcornella furcata sp. nov. ................................................................... 211  5.4.7.2  Popcornella nigromaculata sp. nov. ....................................................... 212  5.4.7.3  Popcornella spiniformis sp. nov. ............................................................. 213  5.4.7.4  Popcornella yunque sp. nov. ................................................................... 214  5.4.8  6  Antillattus applanatus sp. nov. ................................................................ 201  Genus Truncattus new genus ............................................................................ 215  5.4.8.1  Truncattus cachotensis sp. nov. ............................................................... 216  5.4.8.2  Truncattus dominicanus sp. nov. ............................................................. 217  5.4.8.3  Truncattus flavus sp. nov. ........................................................................ 218  New euophryine jumping spiders from Papua New Guinea (Araneae: Salticidae:  Euophryinae)......................................................................................................................... 267 6.1  Synopsis..................................................................................................................... 267  6.2  Introduction ............................................................................................................... 267  6.3  Material and methods ................................................................................................ 268  6.4  Taxonomy .................................................................................................................. 269 6.4.1  Genus Bathippus Thorell, 1892 ......................................................................... 269  6.4.1.1  Bathippus directus sp. nov. ...................................................................... 269  6.4.1.2  Bathippus gahavisuka sp. nov. ................................................................ 271  6.4.1.3  Bathippus korei sp. nov. .......................................................................... 272  6.4.1.4  Bathippus madang sp. nov. ...................................................................... 273  6.4.2  Genus Canama Simon, 1903 ............................................................................. 273 x!  6.4.2.1  Canama extranea sp. nov. ....................................................................... 274  6.4.2.2  Canama fimoi sp. nov. ............................................................................. 275  6.4.2.3  Canama triramosa sp. nov. ..................................................................... 277  6.4.3  Genus Chalcolemia new genus.......................................................................... 278  6.4.3.1 6.4.4  Chalcolemia nakanai sp. nov. ................................................................. 278  Genus Omoedus Thorell, 1881 .......................................................................... 279  6.4.4.1  Omoedus brevis sp. nov. .......................................................................... 281  6.4.4.2  Omoedus darleyorum sp. nov. ................................................................. 282  6.4.4.3  Omoedus meyeri sp. nov. ......................................................................... 283  6.4.4.4  Omoedus omundseni sp. nov. .................................................................. 284  6.4.4.5  Omoedus papuanus sp. nov. .................................................................... 285  6.4.4.6  Omoedus swiftorum sp. nov. .................................................................... 287  6.4.4.7  Omoedus tortuosus sp. nov. ..................................................................... 288  6.4.5  Genus Paraharmochirus Szombathy, 1915....................................................... 289  6.4.5.1 6.4.6  Genus Phasmolia new genus ............................................................................. 291  6.4.6.1 6.4.7  Phasmolia elegans sp. nov. ..................................................................... 291  Genus Sobasina Simon, 1898 ............................................................................ 292  6.4.7.1 6.4.8  Paraharmochirus tualapaensis sp. nov. .................................................. 289  Sobasina wanlessi sp. nov. ...................................................................... 293  Genus Thorelliola Strand, 1942......................................................................... 294  6.4.8.1  Thorelliola aliena sp. nov. ....................................................................... 295  6.4.8.2  Thorelliola crebra sp. nov. ...................................................................... 296  6.4.8.3  Thorelliola joannae sp. nov. .................................................................... 297  6.4.8.4  Thorelliola squamosa sp. nov. ................................................................. 298  6.4.8.5  Thorelliola tamasi sp. nov. ...................................................................... 299  6.4.8.6  Thorelliola tualapa sp. nov. .................................................................... 300  6.4.8.7  Thorelliola zabkai sp. nov. ...................................................................... 301  6.4.9  Genus Variratina new genus ............................................................................. 303  6.4.9.1 6.4.10  Genus Viribestus new genus............................................................................ 304  6.4.10.1 6.4.11  Variratina minuta sp. nov. ....................................................................... 303 Viribestus suyanensis sp. nov. ............................................................... 304  Genus Xenocytaea Berry, Beatty & Prószy!ski, 1998 .................................... 305  6.4.11.1  Xenocytaea agnarssoni sp. nov. ............................................................ 306 xi!  6.4.11.2  Xenocytaea albomaculata sp. nov. ........................................................ 307  6.4.11.3  Xenocytaea proszynskii sp. nov. ............................................................ 308  6.4.12  7  Genus Zabkattus new genus ............................................................................ 309  6.4.12.1  Zabkattus brevis sp. nov. ....................................................................... 309  6.4.12.2  Zabkattus furcatus sp. nov. .................................................................... 310  6.4.12.3  Zabkattus richardsi sp. nov. .................................................................. 311  6.4.12.4  Zabkattus trapeziformis sp. nov. ............................................................ 312  New euophryine jumping spiders from Central America and South America (Araneae:  Salticidae: Euophryinae)...................................................................................................... 370 7.1  Synopsis..................................................................................................................... 370  7.2  Introduction ............................................................................................................... 370  7.3  Material and methods ................................................................................................ 371  7.4  Taxonomy .................................................................................................................. 371 7.4.1  Genus Amphidraus Simon, 1900 ....................................................................... 371  7.4.1.1 7.4.2  Genus Belliena Simon, 1902 ............................................................................. 373  7.4.2.1 7.4.3  Amphidraus complexus sp. nov. .............................................................. 372 Belliena ecuadorica sp. nov. ................................................................... 373  Genus Chapoda Peckham & Peckham, 1896 .................................................... 374  7.4.3.1  Chapoda angusta sp. nov. ....................................................................... 375  7.4.3.2  Chapoda fortuna sp. nov. ........................................................................ 376  7.4.3.3  Chapoda gitae sp. nov. ............................................................................ 377  7.4.4  Genus Ecuadattus new genus ............................................................................ 378  7.4.4.1  Ecuadattus elongatus sp. nov. .................................................................. 379  7.4.4.2  Ecuadattus napoensis sp. nov. ................................................................. 379  7.4.4.3  Ecuadattus pichincha sp. nov. ................................................................. 380  7.4.4.4  Ecuadattus typicus sp. nov. ..................................................................... 381  7.4.5  Genus Ilargus Simon, 1901 ............................................................................... 382  7.4.5.1  Ilargus foliosus sp. nov. ........................................................................... 383  7.4.5.2  Ilargus galianoae sp. nov. ........................................................................ 384  7.4.5.3  Ilargus macrocornis sp. nov. .................................................................... 385  7.4.5.4  Ilargus moronatigus sp. nov. .................................................................... 386  7.4.5.5  Ilargus pilleolus sp. nov. .......................................................................... 387  7.4.5.6  Ilargus serratus sp. nov. ........................................................................... 388 xii!  7.4.6  7.4.6.1  Maeota dorsalis sp. nov. ........................................................................... 389  7.4.6.2  Maeota flava sp. nov. ............................................................................... 390  7.4.6.3  Maeota simoni sp. nov. ............................................................................. 391  7.4.7  Genus Soesilarishius Makhan, 2007 .................................................................. 392  7.4.7.1  Soesilarishius micaceus sp. nov. .............................................................. 392  7.4.7.2  Soesilarishius ruizi sp. nov. ...................................................................... 393  7.4.8  8  Genus Maeota Simon, 1901 ............................................................................... 389  Genus Tylogonus Simon, 1902 ........................................................................... 394  7.4.8.1  Tylogonus parvus sp. nov. ........................................................................ 395  7.4.8.2  Tylogonus yanayacu sp. nov. .................................................................... 395  New euophryine jumping spiders from Southeast Asia and Africa (Araneae: Salticidae:  Euophryinae)......................................................................................................................... 423 8.1  Synopsis..................................................................................................................... 423  8.2  Introduction ............................................................................................................... 423  8.3  Material and methods ................................................................................................ 424  8.4  Taxonomy .................................................................................................................. 424  8.4.1  Genus Chinophrys new genus ............................................................................ 424  8.4.1.1 8.4.2  Genus Colyttus Thorell, 1891 ............................................................................. 426  8.4.2.1 8.4.3  Foliabitus longzhou sp. nov. ..................................................................... 429  Genus Lagnus L. Koch, 1879 ............................................................................. 430  8.4.5.1 8.4.6  Emathis gombak sp. nov. .......................................................................... 428  Genus Foliabitus new genus............................................................................... 429  8.4.4.1 8.4.5  Colyttus robustus sp. nov. ......................................................................... 427  Genus Emathis Simon, 1899 .............................................................................. 427  8.4.3.1 8.4.4  Chinophrys pengi sp. nov. ........................................................................ 425  Lagnus edwardsi sp. nov. ......................................................................... 431  Genus Laufeia Simon, 1889 ............................................................................... 432  8.4.6.1  Laufeia concava sp. nov. .......................................................................... 432  8.4.6.2  Laufeia eximia sp. nov. ............................................................................. 434  8.4.7  Genus Parabathippus new genus ....................................................................... 435  8.4.7.1  Parabathippus cuspidatus sp. nov. ........................................................... 436  8.4.7.2  Parabathippus kiabau sp. nov. ................................................................. 437  8.4.7.3  Parabathippus magnus sp. nov. ............................................................... 438 xiii!  8.4.8  Genus Parvattus new genus ............................................................................... 439  8.4.8.1 8.4.9  Genus Thiania C. L. Koch, 1846........................................................................ 440  8.4.9.1  Thiania latibola sp. nov. ........................................................................... 441  8.4.9.2  Thiania tenuis sp. nov. .............................................................................. 441  8.4.10  9  Parvattus zhui sp. nov. ............................................................................. 439  Genus Thyenula Simon, 1902........................................................................... 442  8.4.10.1  Thyenula laxa sp. nov. ............................................................................ 442  8.4.10.2  Thyenula nelshoogte sp. nov. ................................................................. 443  8.4.10.3  Thyenula wesolowskae sp. nov. .............................................................. 444  Conclusions and future directions................................................................................. 464 9.1  Major conclusions...................................................................................................... 464  9.2  Future directions ........................................................................................................ 467  References.............................................................................................................................. 470 Appendices ............................................................................................................................ 487 Appendix 1: List of species used in phylogenetic analyses................................................ 487 Appendix 2: List of morphological characters scored for phylogenetic analyses .............. 501 Appendix 3: Scored morphological matrix ........................................................................ 511  xiv!  List of Tables Table 2.1. List of primers and primer sequences used in gene amplification and sequencing.... .................................................................................................................................................. 38 Table 2.2. Summary of annealing temperatures for gene amplification using different pairs of primers ...................................................................................................................................... 39 Table 2.3. Substitution models selected by ModelTest for each individual gene region and partition..................................................................................................................................... 40 Table 2.4. Summary of calibration points used in divergence time analyses.......................... 41 Table 2.5. Estimates of divergence times (in millions of years) for nodes in Fig. 2.7 ............. 42 Table 3.1. Substitution models selected by ModelTest for each molecular partition.............. 96 Table 3.2. Optimization of morphological chatacters for major clades of euophryines on different phylogenies ................................................................................................................ 97 Table 3.3. Full list of euophryine genera.................................................................................. 99 Table 4.1. Intra-specific variation of somatic and genitalic traits in Chapoda recondita and Antillattus cambridgei ............................................................................................................ 175  xv!  List of Figures Figure 1.1. Spider eyes .............................................................................................................. 9 Figure 1.2. Summary of phylogeny of jumping spiders (Salticidae)....................................... 10 Figure 1.3. Typical genitalic structures of euophryine, as in Parabathippus shelfordi .......... 11 Figure 2.1. Summary of phylogenetic analyses on combined matrix of all genes (28S, Actin 5C, 16S-ND1 and COI) ................................................................................................................... 43 Figure 2.2. The best tree from ML analysis on combined matrix of all genes (28S, Actin 5C, 16S-ND1 and COI) ................................................................................................................... 44 Figure 2.3. Summary of ML and MP analyses on 28S............................................................. 45 Figure 2.4. Summary of ML and MP analyses on Actin 5C .................................................... 46 Figure 2.5. Summary of ML and MP analyses on 16S-ND1 ................................................... 47 Figure 2.6. Summary of ML and MP analyses on COI ............................................................ 48 Figure 2.7. Chronogram of euophryine divergence................................................................. 49 Figure 3.1. Phylogeny of Euophryinae .................................................................................. 102 Figure 3.2. Strict consensus of four equally parsimonious trees (score=1141) from the morphological dataset that found in TNT, without constraining euophryine taxa as a monophyletic group ................................................................................................................ 103 Figure 3.3. Strict consensus of seven equally parsimonious trees (score=1145) from the morphological dataset that found in TNT, with euophryine taxa being enforced as a monophyletic group ................................................................................................................ 104 Figure 3.4. The best tree from ML analysis on the DNA dataset (28S, Actin 5C, 16S-ND1 and COI) ........................................................................................................................................ 105 Figure 3.5. The best tree from ML analysis on the combined morphology and DNA dataset (morphology, 28S, Actin 5C, 16S-ND1 and COI) ................................................................. 106 Figure 3.6. Anasaitis-Corythalia Clade .................................................................................. 107 Figure 3.7. Anasaitis-Corythalia Clade .................................................................................. 108 Figure 3.8. Antillattus Clade................................................................................................... 109 Figure 3.9. Antillattus Clade................................................................................................... 110 Figure 3.10. Antillattus Clade................................................................................................. 111 Figure 3.11. Antillattus Clade................................................................................................. 112 Figure 3.12. Agobardus Clade ................................................................................................ 113 xvi!  Figure 3.13. Agobardus Clade ................................................................................................ 114 Figure 3.14. Agobardus Clade ................................................................................................ 115 Figure 3.15. Naphrys-Corticattus Clade................................................................................. 116 Figure 3.16. Sidusa Clade....................................................................................................... 117 Figure 3.17. Mopiopia-Saphrys Clade.................................................................................... 118 Figure 3.18. Chapoda-Maeota Clade ..................................................................................... 119 Figure 3.19. Chapoda-Maeota Clade ..................................................................................... 120 Figure 3.20. Amphidraus-Marma Clade................................................................................. 121 Figure 3.21. Coryphasia Clade............................................................................................... 122 Figure 3.22. Pensacola-Mexigonus Clade .............................................................................. 123 Figure 3.23. Neonella Clade ................................................................................................... 124 Figure 3.24. Belliena Clade .................................................................................................... 125 Figure 3.25. Soesilarishius Clade ........................................................................................... 126 Figure 3.26. Ecuadattus.......................................................................................................... 127 Figure 3.27. Ilargus ................................................................................................................ 128 Figure 3.28. Popcornella ........................................................................................................ 129 Figure 3.29. Tylogonus ........................................................................................................... 130 Figure 3.30. Bathippus-Canama Clade .................................................................................. 131 Figure 3.31. Omoedus Clade .................................................................................................. 132 Figure 3.32. Bulolia-Coccorchestes Clade ............................................................................. 133 Figure 3.33. Bulolia-Coccorchestes Clade ............................................................................. 134 Figure 3.34. Diolenius Clade .................................................................................................. 135 Figure 3.35. Diolenius Clade .................................................................................................. 136 Figure 3.36. Diolenius Clade .................................................................................................. 137 Figure 3.37. Pristobaeus Clade .............................................................................................. 138 Figure 3.38. Phasmollia Clade ............................................................................................... 139 Figure 3.39. Parabathippus-Parvattus Clade......................................................................... 140 Figure 3.40. Euophrys Clade .................................................................................................. 141 Figure 3.41. Euophrys Clade .................................................................................................. 142 Figure 3.42. Saitis Clade......................................................................................................... 143 Figure 3.43. Saitis Clade......................................................................................................... 144 Figure 3.44. Laufeia Clade ..................................................................................................... 145 Figure 3.45. Colyttus Clade .................................................................................................... 146 xvii!  Figure 3.46. Cytaea-Euryattus Clade ..................................................................................... 147 Figure 3.47. Thiania Clade ..................................................................................................... 148 Figure 3.48. Emathis-Lepidemathis Clade ............................................................................. 149 Figure 3.49. Thyenula Clade................................................................................................... 150 Figure 3.50. Chalcotropis ....................................................................................................... 151 Figure 3.51. Chinophrys ......................................................................................................... 152 Figure 3.52. Foliabitus ........................................................................................................... 153 Figure 3.53. Lagnus ................................................................................................................ 154 Figure 3.54. Thorelliola.......................................................................................................... 155 Figure 3.55. Viribestus............................................................................................................ 156 Figure 3.56. Xenocytaea ......................................................................................................... 157 Figure 3.57. Zabkattus ............................................................................................................ 158 Figure 3.58. Expanded male left palp..................................................................................... 159 Figure 4.1. Variation in the lengths of embolus and copulatory duct among euophryines .... 178 Figure 4.2. Comparison of sexual dimorphism in Chapoda recondita and Antillattus cambridgei ................................................................................................................................................ 179 Figure 4.3. Non-genitalic traits measured for Antillattus cambridgei (same for Chapoda recondita)................................................................................................................................ 180 Figure 4.4. Genitalic traits measured...................................................................................... 181 Figure 4.5. Correlated evolution of the lengths of male embolus (left) and female copulatory duct (right) in euophryine jumping spiders, both standardized by carapace length ............... 182 Figure 4.6. Independent contrasts of male embolus length (x) vs. female copulatory duct length (y) are positively correlated in euophryine species ................................................................ 183 Figure 4.7. Linear regression of absolute lengths of male embolus (x) vs. female copulatory duct (y) in euophryine species, not corrected for phylogeny ......................................................... 184 Figure 4.8. Allometric relationships of genitalic and non-genitalic traits in Chapoda recondita, using carapace length as the indicator of body size................................................................ 185 Figure 4.9. Allometric relationships of genitalic and non-genitalic traits in Antillattus cambridgei, using carapace length as the indicator of body size ........................................... 186 Figure 5.1. Agobardus bahoruco sp. nov. ............................................................................. 220 Figure 5.2. Agobardus bahoruco sp. nov. ............................................................................. 221 Figure 5.3. Agobardus cordiformis sp. nov. .......................................................................... 222 Figure 5.4. Agobardus cordiformis sp. nov. .......................................................................... 223 xviii!  Figure 5.5. Agobardus gramineus sp. nov. ............................................................................ 224 Figure 5.6. Agobardus gramineus sp. nov. ............................................................................ 225 Figure 5.7. Agobardus oviedo sp. nov. .................................................................................. 226 Figure 5.8. Agobardus oviedo sp. nov. .................................................................................. 227 Figure 5.9. Agobardus phylladiphilus sp. nov. ...................................................................... 228 Figure 5.10. Agobardus phylladiphilus sp. nov. .................................................................... 229 Figure 5.11. Anasaitis adorabilis sp. nov. ............................................................................. 230 Figure 5.12. Anasaitis adorabilis sp. nov. ............................................................................. 231 Figure 5.13. Anasaitis brunnea sp. nov. ................................................................................ 232 Figure 5.14. Anasaitis brunnea sp. nov. ................................................................................ 233 Figure 5.15. Anasaitis hebetata sp. nov. ................................................................................ 234 Figure 5.16. Anasaitis laxa sp. nov. ...................................................................................... 235 Figure 5.17. Anasaitis laxa sp. nov. ...................................................................................... 236 Figure 5.18. Antillatus applanatus sp. nov. ........................................................................... 237 Figure 5.19. Antillatus applanatus sp. nov. ........................................................................... 238 Figure 5.20. Bythocrotus crypticus sp. nov. .......................................................................... 239 Figure 5.21. Bythocrotus crypticus sp. nov. .......................................................................... 240 Figure 5.22. Corticattus guajataca sp. nov. .......................................................................... 241 Figure 5.23. Corticattus guajataca sp. nov. .......................................................................... 242 Figure 5.24. Corticattus latus sp. nov. .................................................................................. 243 Figure 5.25. Corticattus latus sp. nov. .................................................................................. 244 Figure 5.26. Corythalia broccai sp. nov. ............................................................................... 245 Figure 5.27. Corythalia broccai sp. nov. ............................................................................... 246 Figure 5.28. Corythalia bromelicola sp. nov. ........................................................................ 247 Figure 5.29. Corythalia bromelicola sp. nov. ........................................................................ 248 Figure 5.30. Corythalia coronai sp. nov. .............................................................................. 249 Figure 5.31. Corythalia coronai sp. nov. .............................................................................. 250 Figure 5.32. Corythalia peblique sp. nov. ............................................................................. 251 Figure 5.33. Corythalia peblique sp. nov. ............................................................................. 252 Figure 5.34. Popcornella furcata sp. nov. ............................................................................. 253 Figure 5.35. Popcornella furcata sp. nov. ............................................................................. 254 Figure 5.36. Popcornella nigromaculata sp. nov. ................................................................. 255 Figure 5.37. Popcornella nigromaculata sp. nov. ................................................................. 256 xix!  Figure 5.38. Popcornella spiniformis sp. nov. ...................................................................... 257 Figure 5.39. Popcornella spiniformis sp. nov. ...................................................................... 258 Figure 5.40. Popcornella yunque sp. nov. ............................................................................. 259 Figure 5.41. Popcornella yunque sp. nov. ............................................................................. 260 Figure 5.42. Truncattus cachotensis sp. nov. ........................................................................ 261 Figure 5.43. Truncattus cachotensis sp. nov. ........................................................................ 262 Figure 5.44. Truncattus dominicanus sp. nov. ...................................................................... 263 Figure 5.45. Truncattus dominicanus sp. nov. ...................................................................... 264 Figure 5.46. Truncattus flavus sp. nov. ................................................................................. 265 Figure 5.47. Truncattus flavus sp. nov. ................................................................................. 266 Figure 6.1. Bathippus directus sp. nov. ................................................................................. 314 Figure 6.2. Bathippus directus sp. nov. ................................................................................. 315 Figure 6.3. Bathippus gahavisuka sp. nov. ............................................................................ 316 Figure 6.4. Bathippus gahavisuka sp. nov. ............................................................................ 317 Figure 6.5. Bathippus korei sp. nov. ...................................................................................... 318 Figure 6.6. Bathippus korei sp. nov. ...................................................................................... 319 Figure 6.7. Bathippus madang sp. nov. ................................................................................. 320 Figure 6.8. Canama extranea sp. nov. ................................................................................... 321 Figure 6.9. Canama extranea sp. nov. ................................................................................... 322 Figure 6.10. Canama fimoi sp. nov. ...................................................................................... 323 Figure 6.11. Canama fimoi sp. nov. ...................................................................................... 324 Figure 6.12. Canama triramosa sp. nov. ............................................................................... 325 Figure 6.13. Canama triramosa sp. nov. ............................................................................... 326 Figure 6.14. Chalcolemia nakanai sp. nov. ........................................................................... 327 Figure 6.15. Omoedus brevis sp. nov. ................................................................................... 328 Figure 6.16. Omoedus darleyorum sp. nov. .......................................................................... 329 Figure 6.17. Omoedus darleyorum sp. nov. .......................................................................... 330 Figure 6.18. Omoedus meyeri sp. nov. .................................................................................. 331 Figure 6.19. Omoedus meyeri sp. nov. .................................................................................. 332 Figure 6.20. Omoedus omundseni sp. nov. ............................................................................ 333 Figure 6.21. Omoedus omundseni sp. nov. ............................................................................ 334 Figure 6.22. Omoedus papuanus sp. nov. .............................................................................. 335 Figure 6.23. Omoedus papuanus sp. nov. .............................................................................. 336 xx!  Figure 6.24. Omoedus swiftorum sp. nov. ............................................................................. 337 Figure 6.25. Omoedus swiftorum sp. nov. ............................................................................. 338 Figure 6.26. Omoedus tortuosus sp. nov. .............................................................................. 339 Figure 6.27. Omoedus tortuosus sp. nov. .............................................................................. 340 Figure 6.28. Paraharmochirus tualapaensis sp. nov. ............................................................ 341 Figure 6.29. Paraharmochirus tualapaensis sp. nov. ............................................................ 342 Figure 6.30. Phasmolia elegans sp. nov. ............................................................................... 343 Figure 6.31. Phasmolia elegans sp. nov. ............................................................................... 344 Figure 6.32. Sobasina wanlessi sp. nov. ................................................................................ 345 Figure 6.33. Thorelliola aliena sp. nov. ................................................................................ 346 Figure 6.34. Thorelliola aliena sp. nov. ................................................................................ 347 Figure 6.35. Thorelliola crebra sp. nov. ................................................................................ 348 Figure 6.36. Thorelliola crebra sp. nov. ................................................................................ 349 Figure 6.37. Thorelliola joannae sp. nov. ............................................................................. 350 Figure 6.38. Thorelliola squamosa sp. nov. .......................................................................... 351 Figure 6.39. Thorelliola tamasi sp. nov. ................................................................................ 352 Figure 6.40. Thorelliola tamasi sp. nov. ................................................................................ 353 Figure 6.41. Thorelliola tualapa sp. nov. .............................................................................. 354 Figure 6.42. Thorelliola tualapa sp. nov. .............................................................................. 355 Figure 6.43. Thorelliola zabkai sp. nov. ................................................................................ 356 Figure 6.44. Thorelliola zabkai sp. nov. ................................................................................ 357 Figure 6.45. Variratina minuta sp. nov. ................................................................................ 358 Figure 6.46. Variratina minuta sp. nov. ................................................................................ 359 Figure 6.47. Viribestus suyanensis sp. nov. ........................................................................... 360 Figure 6.48. Viribestus suyanensis sp. nov. ........................................................................... 361 Figure 6.49. Xenocytaea agnarssoni sp. nov. ........................................................................ 362 Figure 6.50. Xenocytaea albomaculata sp. nov. .................................................................... 363 Figure 6.51. Xenocytaea proszynskii sp. nov. ........................................................................ 364 Figure 6.52. Zabkattus brevis sp. nov. ................................................................................... 365 Figure 6.53. Zabkattus brevis sp. nov. ................................................................................... 366 Figure 6.54. Zabkattus furcatus sp. nov. ............................................................................... 367 Figure 6.55. Zabkattus richardsi sp. nov. .............................................................................. 368 Figure 6.56. Zabkattus trapeziformis sp. nov. ....................................................................... 369 xxi!  Figure 7.1. Amphidraus complexus sp. nov. .......................................................................... 397 Figure 7.2. Belliena ecuadorica sp. nov. ............................................................................... 398 Figure 7.3. Chapoda angusta sp. nov. ................................................................................... 399 Figure 7.4. Chapoda fortuna sp. nov. .................................................................................... 400 Figure 7.5. Chapoda gitae sp. nov. ........................................................................................ 401 Figure 7.6. Ecuadattus elongatus sp. nov. ............................................................................. 402 Figure 7.7. Ecuadattus napoensis sp. nov. ............................................................................ 403 Figure 7.8. Ecuadattus pichincha sp. nov. ............................................................................ 404 Figure 7.9. Ecuadattus typicus sp. nov. ................................................................................. 405 Figure 7.10. Ilargus foliosus sp. nov. .................................................................................... 406 Figure 7.11. Ilargus galianoae sp. nov. ................................................................................. 407 Figure 7.12. Ilargus macrocornis sp. nov. ............................................................................ 408 Figure 7.13. Ilargus moronatigus sp. nov. ............................................................................ 409 Figure 7.14. Ilargus pilleolus sp. nov. ................................................................................... 410 Figure 7.15. Ilargus serratus sp. nov. .................................................................................... 411 Figure 7.16. Maeota dorsalis sp. nov. ................................................................................... 412 Figure 7.17. Maeota flava sp. nov. ........................................................................................ 413 Figure 7.18. Maeota simoni sp. nov. ..................................................................................... 414 Figure 7.19. Soesilarishius micaceus sp. nov. ....................................................................... 415 Figure 7.20. Soesilarishius ruizi sp. nov. .............................................................................. 416 Figure 7.21. Tylogonus parvus sp. nov. ................................................................................. 417 Figure 7.22. Tylogonus yanayacu sp. nov. ............................................................................ 418 Figure 7.23. Living spider photos of Chapoda gitae sp. nov. ............................................... 419 Figure 7.24. Living spider photos of Ecuadattus pichincha sp. nov. .................................... 420 Figure 7.25. Living spider photos of Ecuadattus typicus sp. nov. ........................................ 421 Figure 7.26. Living spider photos .......................................................................................... 422 Figure 8.1. Chinophrys pengi sp. nov. ................................................................................... 446 Figure 8.2. Colyttus robustus sp. nov. ................................................................................... 447 Figure 8.3. Emathis gombak sp. nov. .................................................................................... 448 Figure 8.4. Foliabitus longzhou sp. nov. ............................................................................... 449 Figure 8.5. Lagnus edwardsi sp. nov. .................................................................................... 450 Figure 8.6. Laufeia concava sp. nov. ..................................................................................... 451 Figure 8.7. Laufeia eximia sp. nov. ....................................................................................... 452 xxii!  Figure 8.8. Parabathippus cuspidatus sp. nov. ..................................................................... 453 Figure 8.9. Parabathippus kiabau sp. nov. ............................................................................ 454 Figure 8.10. Parabathippus magnus sp. nov. ........................................................................ 455 Figure 8.11. Parvattus zhui sp. nov. ...................................................................................... 456 Figure 8.12. Thiania latibola sp. nov. ................................................................................... 457 Figure 8.13. Thiania tenuis sp. nov. ...................................................................................... 458 Figure 8.14. Thyenula laxa sp. nov. ...................................................................................... 459 Figure 8.15. Thyenula nelshoogte sp. nov. ............................................................................ 460 Figure 8.16. Thyenula wesolowskae sp. nov. ........................................................................ 461 Figure 8.17. Living spider photos .......................................................................................... 462 Figure 8.18. Living spider photos .......................................................................................... 463  xxiii!  Acknowledgements First and foremost, I want to thank my PhD supervisor, Dr. Wayne P. Maddison. Without his patient guidance, generous input of insight, time and funding throughout my PhD period, I would not have been able to finish this project smoothly and successfully. I also would like to thank the other members of my supervisory committee: Dr. Mary Berbee, Dr. Leticia Avilés, and Dr. Brian Leander for their time, critiques and advice on my work. Sincere gratitude is to Karen Needham, former or current members of spider lab (Dr. Ingi Agnarsson, Dr. Peter Midford, Dr. Damian O. Elias, Dr. Gustavo R. S. Ruiz, Melissa R. Bodner, Gwylim Blackburn, Edyta Piascik, Mauricio Vega, Dr. Maxence Salomon and Jennifer Guevara) for constructive discussions on my work, their friendship, encouragement and support during my PhD period. I am very grateful to people who generously loaned me specimens in museums or private collections for molecular and/or morphological studies, without which this study would have been impossible: Dr. Charles Griswold (California Academy of Sciences, USA), Dr. G. B. Edwards (Florida State Collection of Arthropods, USA), Dr. Martín J. Ramírez and Mr. Cristian J. Grismado (Museo Argentino de Ciencias Naturales, Argentina), Ms. Laura Leibensperger (Museum of Comparative Zoology, USA), Mr. Louis N. Sorkin and Dr. Norman I. Platnick (American Museum of Natural History, USA), Dr. Christine Rollard and Ms. Elise-Anne Leguin (Muséum National d’Histoire Naturelle, France), Dr. Rudy Jocqué (Koninklijk Museum, Belgium), Dr. Domir De Bakker (Royal Museum for Central Africa, Tervuren, Belgium), Dr. Gustzvo R. S. Ruiz (Instituto Butantan, São Paulo, Brazil), Dr. Alexander Riedel (Staatliches Museum für Naturkunde, Germany), Dr. Marek Zakba, Dr. Rosemary G. Gillespie, Dr. Damian O. Elias, Mr. Ken Schneider. Acknowledgements are due to Dr. Stephen Richards, Mr. J. Brocca, Dr. Ingi Agnarsson, Dr. D. Li, Prof. Mingsheng Zhu, Dr. Michael L. Draney and Dr. Petra Sierwald for their effort in organizing field trips during which some specimens used in this study were collected. Additional assistance in the field was also provided by N. Corona, J. Brocca, G. B. Edwards, Gustavo R. S. Ruiz, Bruce Beehler, Modi Pontio, Victoria Niesi, William H. Thomas, Max Kuduk, Muse Opiang, Banak Gamui, Jim Robins, Ingi Agnarsson, Jeremy Woon, W. G. Lian and H. Q. Ma.  xxiv!  I also would like to express my gratitude to Dr. Gitanjali S. S. Bodner for her kindness in sharing her knowledge and expertise in euophryine jumping spiders; to Dr. Tamas Szüts for extensive discussions on morphological characters and classification of jumping spiders, and help in obtaining some early literature; to Dr. G. B. Edwards and Dr. Charles Griswold for constructive feedback on this work; and to Dr. William G. Eberhard and Bernhard A. Huber for their help in the study of genitalic evolution in euophryine jumping spiders. Thanks are also due to my Chinese colleagues (Dr. Feng Zhang, Dr. Baoshi Zhang and Dr. Zizhong Yang) for their help in obtaining literature on Chinese salticid fauna. Finally, I would like to thank my parents and sisters for their love, support and encouragement in my educational endeavors. Special gratitude is to my sisters who have always taken good care of my parents when I am away from home.!  xxv!  1  Introduction  Spiders (Arthropoda: Chelicerata: Arachnida: Araneae) currently include more than 40,000 species (Platnick 2011). They are distributed all over the world and have conquered all ecological environments with the only exceptions of the air and open sea (Foelix 1996). Being extraordinary because of their use of silk, their carnivory without exception, and the male palp modified into an indirect copulatory organ, these organisms have long drawn the attention of biologists.  1.1  Taxonomy and phylogeny of the family Salticidae  The Salticidae (jumping spiders) is the most diverse spider family, containing 5368 described species in 574 genera (Platnick 2011), almost 1/8 of all spiders. Jumping spiders are most diverse in tropical regions, but can be found in almost all habitats from rainforest to desert. They are easily distinguishable by their two large anterior median eyes (Fig. 1.1), which give them acute vision, enabling them to evolve complex mating behaviors and predatory strategies (Foelix 1996). Although they are easy to tell apart from other spider groups, the classification within the jumping spider family has long been considered problematical, mainly due to its enormous species diversity, varied body forms and the generally simple male palp, which usually provides insufficient information for a detailed classification. The first comprehensive classification of this family was proposed by Eugène Simon (1901a; 1903), in which he placed salticid genera into three groups (Pluridentati, Unidentati, Fissidentati) based on the teeth of the cheliceral retromargin, and then further divided them into 69 subgroups. This classification certainly is inadequate and somewhat artificial, but it shows great insights into the family nonetheless. Jerzy Prószy!ski (1976) made another major advance in salticid systematics and redelimited 11 subfamilies (Aelurillinae, Dendryphantinae, Euophryinae, Heliophaninae, Hyllinae, Marpissinae, Pelleninae, Plexippinae, Salticinae, Sitticinae, Synemosyninae) in a partial classification. Unlike Eugène Simon, he concentrated mainly on the male palp and internal structures of the epigynum, which have been shown to be informative for resolving phylogenetic relationships of various spider groups (e.g. Wang 2002; Agnarsson 2004; Kuntner 2006).  1!  During the last ten years, we have made great progress in understanding the phylogeny of Salticidae. Maddison and Hedin (2003a) proposed the first molecular phylogeny of salticids using 5 genes (nuclear 28S, EF1-a; mitochondrial 16S, COI, ND1) from 81 salticid genera and 5 outgroups. Even though the taxon sampling in that study was relatively sparse compared to jumping spiders’ enormous biodiversity, it shed light on the basic phylogenetic structure of this family and provided insights on the traditional classifications based on morphological traits. For instance, their results refined the concepts of the subfamilies Pelleninae and Plexippinae, and discovered several major clades such as the Marpissoida, Plexippoida and Amycoida. After gathering more molecular data from additional salticid taxa, the phylogeny of this family was subsequently improved and more major clades were recognized (Maddison et al. 2008). Other studies have also contributed to the phylogenetic relationships of various salticid groups using either molecular data or morphological characters (Hedin & Maddison 2001a, b; Maddison & Hedin 2003b; Benjamin 2004; Maddison & Needham 2006; Maddison et al. 2007; Bodner 2009; Edwards & Benjamin 2009). In addition to helping us form an adequate classification of this family, those phylogenetic studies have also gradually built up a foundation for conducting studies of evolutionary processes, for instance character evolution and biogeography. A diagram summarizing the current understanding about the phylogeny of salticids from previous studies is shown in Fig. 1.2. In sum, several groups of Salticidae are usually called “basal salticids”, including the subfamilies Lyssomaninae, Spartaeinae, Lapsiinae, Hisponinae and Eupoa Zabka. The remaining of salticids (almost 90% of biodiversity) fall into a clade called the Salticoida (“typical salticids”). Within the Salticoida, amycoids (including Amycinae, Thiodinae, Sitticinae etc.) are the sister group to the rest; the remaining salticoids include several major clades (Astioida, Marpissoida, Aelurilloida, Plexippoida, Euophryinae, Heliophaninae etc.), among and within which most relationships are not yet well resolved. Thus, in spite of the progress that has been made so far, much more work remains on the taxonomy and phylogeny of this large family.  1.2  Taxonomy and phylogeny of the subfamily Euophryinae  Initially erected by Eugène Simon in 1901, the Euophryinae was considered as a group in Unidentati in Simon’s classification (Simon 1901a; 1903), and was comprised three genera: Akela, Euophrys and Rhyphelia. However, among them only Euophrys is now widely accepted 2!  as euophryine, and most of the genera currently considered as euophryines were scattered among more than 20 groups of Pluridentati, Unidentati and Fissidentati (Simon 1901a; 1903). Jerzy Prószy!ski (1976) clarified the delimitation of the Euophryinae for the first time: the presence of a coiled embolus at the distal end of the palpal tegulum. Thirteen genera were included as euophryines in his partial classification of salticids, although two of them are now placed elsewhere: Admestina is now considered a marpissoid (Maddison & Hedin 2003a) and Marchena a heliophanine (Maddison 1987). The content of Euophryinae was considerably extended by Maddison and Hedin (2003a), who listed 34 genera in this subfamily. In addition, the delimitation was further revised to specify the particular form of the genitalia in euophryines (Fig. 1.3): the plane of the spiral of the embolus is more or less parallel to the longitudinal axis of the palp and a loop in the sperm duct projects towards the centre of the tegulum, and the female epigynum commonly shows two spiral grooves that frame circular areas of relatively transparent and flat integument (Maddison & Hedin 2003a). Based on the work presented here, the Euophryinae has about 1000 described species, and is one of the largest subfamilies in jumping spiders. The majority of euophryine species are found in the tropics of both the Old World and the New World. Spiders of this group show a great variety of body forms: some are large and slender (e.g. Bathippus spp.), some are relatively compact (e.g. Omoedus piceus Simon), some are flattened and pseudoscorpion-lke (e.g. Thiania spectrum Simon), some are weevil-like (Coccorchestes spp.), and some are ant-like (Sobasina spp. and Paraharmochirus spp.). In contrast, the genitalic organs within this subfamily are relatively conservative and show little variation. Similar body forms in different euophryine lineages may have arisen by convergence, and thus contain little phylogenetic signal to resolve relationships among euophryine groups. Consequently, the classification within Euophryinae has been very difficult. Most work on this subfamily has concentrated on describing species or genera (e.g. Bryant 1943; Balogh 1980b; Berry et al. 1996, 1997, 1998; Edwards 2002; Logunov & Azarkina 2008, etc.), and there is little systematic study on the group as a whole. Although a few genera have been reviewed in the past (Prószy!ski 1971; Galiano 1985; Zabka 1987; Jendrzejewska 1995; Gardzinska & Patoleta 1997; Logunov 1998; Bodner 2002; Zabka & Pollard 2002; Logunov & Kronestedt 2003; Richardson & Zabka 2007), the delimitations of most genera are still not clear, e.g. Corythalia and Bathippus. Therefore, the taxonomy within 3!  this subfamily is still confused, and it