UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modelling and control of feed drives Ng, Kenneth

Abstract

Feed drives are used in positioning of machine tools. The drives are actuated either by linear or rotary servo motors. The ball screw drives are driven by rotary motors; hence they have flexibility and added friction due to nut interface. Direct drives are driven by linear motors which have more mechanical stiffness, but less disturbance rejection due to missing load reduction mechanism. This thesis presents the modelling and control of drives with rigid and flexible structures. A single degree of freedom flexible oscillator is mounted on a high speed, rigid feed drive table for experimental illustration of system identification and the active control method proposed in the thesis. The rigid feed drive dynamics include the mechanical component of the rigid body mass and viscous damping, and the electrical component of the power amplifier and motor. The flexible component is modelled by springs, mass and damping elements. Both rigid and flexible dynamics of the system are identified experimentally through unbiased least square, sine sweep and impact model tests. The vibration of the single degree of freedom system is actively damped by an acceleration feedback inserted in the velocity loop. A Kalman filter is used to minimize the drift and noise on the acceleration measurements. The position loop is closed with a proportional controller. It is experimentally demonstrated that the vibrations of the flexible structure can be well damped. However, the acceleration feedback used at the resonance frequency greatly minimizes the bandwidth close to the vibration frequency. Further methods need to be used to expand the bandwidth beyond the natural frequency of the flexible structure by coping with the anti-resonant effect of the acceleration feedback.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International