UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Cell surface iron-complex binding and transport by Staphylococcus aureus Grigg, Jason Christopher

Abstract

Iron uptake systems are paramount to the survival of many organisms. Pathogenic bacteria are faced with the especially daunting task of acquiring essential iron within their host environment. Staphylococcus aureus is a Gram-positive bacterial pathogen and one of the most common causes of bacterial infections in hospitals. In addition, multi-drug resistant S. aureus isolates are emerging and now constitute the majority of isolated strains from clinical settings. The prevalence of S. aureus is attributed, in part, to its ability to specifically use most host iron sources for growth. S. aureus uses high affinity uptake systems for many different forms of iron in the human body with the source preference varying through the time course of infection and the tissues infected. To gain insight into iron binding and import by S. aureus, surface receptors from the iron surface determinant (Isd) heme uptake system and the staphyloferrin A siderophore uptake systems (unfortunately named heme transfer system (Hts)) were studied. The systems use distinct methods for ligand import. In the Isd system, heme is received and relayed through cell wall anchored proteins (including IsdA) to the substrate binding protein (IsdE) for import through the permease. Crystal structures of IsdA and IsdE in complex with heme, in concert with in vitro heme transfer kinetics contributed to the development of a heme transfer model for NEAT domains. In contrast to heme uptake, staphyloferrin A is bound directly at the substrate binding protein (HtsA). HtsA and IsdE are homologous membrane anchored binding proteins and both receive and deliver the iron-complex to the permease. Crystal structures and ligand affinity measurements of IsdE and HtsA reveal distinct mechanisms for ligand reception and specificity. Furthermore, crystal structures of open and closed conformations of HtsA highlight unique structural changes proposed to enable discrimination by the permease of ligand-bound and -free receptor. These studies provide insight into iron import in S. aureus, which have contributed to the development of models for heme and siderophore transport from the cell surface to the permease.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International