Open Collections will be undergoing maintenance Monday June 8th, 2020 11:00 – 13:00 PT. No downtime is expected, but site performance may be temporarily impacted.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Space densities of AGN and the FR dichotomy Gendre, Melanie A. 2010

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2010_fall_gendre_melanie.pdf [ 27.22MB ]
Metadata
JSON: 24-1.0071233.json
JSON-LD: 24-1.0071233-ld.json
RDF/XML (Pretty): 24-1.0071233-rdf.xml
RDF/JSON: 24-1.0071233-rdf.json
Turtle: 24-1.0071233-turtle.txt
N-Triples: 24-1.0071233-rdf-ntriples.txt
Original Record: 24-1.0071233-source.json
Full Text
24-1.0071233-fulltext.txt
Citation
24-1.0071233.ris

Full Text

Space Densities of AGN and the FR Dichotomy by Melanie A. Gendre B.Sc., The University of Victoria, 2004 M.Sc., The University of British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in The Faculty of Graduate Studies (Astronomy) The University of British Columbia August 2010 c© Melanie A. Gendre 2010 Abstract Extended double-lobe radio sources can be morphologically classified into two groups: Fanaroff-Riley (FR) type I sources have the highest surface brightness along the jets near the core and FR type II sources show the highest surface brightness at the lobe extremities, as well as more collimated jets. This thesis work focuses on a comparison of the space densities of FRI and FRII sources at different epochs, with a particular focus on FRI sources. First, we present the construction of the Combined NVSS- FIRST Galaxy catalogue (CoNFIG), a new sample of radio sources at 1.4 GHz. It includes VLA observations, FRI/FRII morphology classifications, optical identifi- cations and redshift estimates. The final catalogue consists of 858 sources over 4 samples (CoNFIG-1, 2, 3 and 4 with flux density limits of S1.4GHz=1.3, 0.8, 0.2 and 0.05 Jy respectively). It is 95.7% complete in radio morphology classification and 74.3% of the sources have redshift data. Combining CoNFIG with complementary samples, the distribution and cosmic evolution of FRI and FRII sources are inves- tigated. We find that FRI sources undergo mild evolution and that, at the same radio luminosity, FRI and FRII sources show similar space density enhancements in various redshift ranges, implying a common mechanism powering the luminosity- dependent evolution. This improved understanding of radio galaxy evolution will also give better insight into the the physics of AGN and their role in galaxy forma- tion. ii Table of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Abbreviations and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . ix Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Role of AGNs in galaxy evolution . . . . . . . . . . . . . . . . . . . . 2 1.2 Empirical AGN classification . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Unified models of AGN . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue . . . . 9 2.1 Surveys used in this work . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 NRAO-VLA Sky Survey . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Faint Images of the Radio Sky at Twenty-cm . . . . . . . . . 10 2.1.3 Sloan Digital Sky Survey . . . . . . . . . . . . . . . . . . . . 10 2.1.4 Two Micron All Sky Survey . . . . . . . . . . . . . . . . . . . 10 2.2 CoNFIG catalogue definition . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Spectral indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Initial classification . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 VLA observations . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3 Final classification . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Optical identifications and redshifts . . . . . . . . . . . . . . . . . . . 20 2.5.1 Optical identifications . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2 Spectroscopic and photometric redshifts . . . . . . . . . . . . 21 2.5.3 Sources with no redshift information . . . . . . . . . . . . . . 29 2.6 Complementary Samples . . . . . . . . . . . . . . . . . . . . . . . . . 34 iii Table of Contents 3 Source statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 Source counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Luminosity distributions . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 P-z plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Estimating space-densities using the 1/Vmax method . . . . . . . . 46 4.1 The local FRI/FRII RLFs . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 FRI/FRII evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Parametric modeling of the radio luminosity function . . . . . . . 55 5.1 Likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Luminosity function models . . . . . . . . . . . . . . . . . . . . . . . 56 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 RLF modeling using a free-form technique: a preliminary study 66 6.1 Details of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.1 Setting up the grids . . . . . . . . . . . . . . . . . . . . . . . 67 6.1.2 Computing the model statistics . . . . . . . . . . . . . . . . . 67 6.1.3 Optimizing the FR grids . . . . . . . . . . . . . . . . . . . . . 68 6.1.4 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Best fit RLFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.2 Achievements of this work . . . . . . . . . . . . . . . . . . . . . . . . 82 7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 A The CoNFIG catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.1 CoNFIG samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.1.1 CoNFIG-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.1.2 CoNFIG-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 A.1.3 CoNFIG-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.1.4 CoNFIG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.2 Complementary samples . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.2.1 3CRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.2.2 CENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.2.3 Lynx & Hercules sample . . . . . . . . . . . . . . . . . . . . . 135 iv Table of Contents B Contour plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 B.1 CoNFIG Samples - Extended sources . . . . . . . . . . . . . . . . . . 138 B.1.1 CoNFIG-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 B.1.2 CoNFIG-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 B.1.3 CoNFIG-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 B.1.4 CoNFIG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 B.2 Complementary samples: CENSORS . . . . . . . . . . . . . . . . . . 236 C RLF models for flat-spectrum and star-forming sources . . . . . . 243 C.1 Smolcilc et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 C.2 Dunlop & Peacock models . . . . . . . . . . . . . . . . . . . . . . . . 243 D Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 D.1 Source counts in a static Euclidean universe . . . . . . . . . . . . . . 248 D.2 Chi-square statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 D.3 Downhill simplex minimization method . . . . . . . . . . . . . . . . 249 v List of Tables 2.1 Sample region coordinates . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Characteristics of the CoNFIG samples . . . . . . . . . . . . . . . . 13 2.3 Surveys used to retrieve flux-density information . . . . . . . . . . . 14 2.4 Morphologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Optical identifications . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Redshift distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Redshift statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 Best-fitting model parameters . . . . . . . . . . . . . . . . . . . . . . 59 6.1 Likelihood and chi-square values for the best fitting RLF models . . 71 C.1 Dunlop & Peacock (1990) RLF expansion coefficients for models 1-5 for steep spectrum sources . . . . . . . . . . . . . . . . . . . . . . . . 245 C.2 Dunlop & Peacock (1990) RLF expansion coefficients for models 1-5 for flat spectrum sources . . . . . . . . . . . . . . . . . . . . . . . . . 246 C.3 Dunlop & Peacock (1990) RLF parameters for pure luminosity evo- lution and luminosity-density evolution models . . . . . . . . . . . . 247 vi List of Figures 1.1 AGN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 A double-double radio source . . . . . . . . . . . . . . . . . . . . . . 3 1.3 AGN classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Typical FRI contour plot . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Typical FRII contour plot . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Unified schemes for FRI and FRII sources . . . . . . . . . . . . . . . 7 2.1 Sample regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 A Matti-component source in NVSS . . . . . . . . . . . . . . . . . . 12 2.3 Flux-density vs. frequency diagram . . . . . . . . . . . . . . . . . . . 14 2.4 Spectral index distributions . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Example of improvements in morphological classification from higher resolution images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Examples of wide angle tail, irregular FRI and uncertain sources . . 19 2.7 Examples of optical host galaxy identification . . . . . . . . . . . . . 20 2.8 Magnitude distributions . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 SDSS magnitude-redshift relations . . . . . . . . . . . . . . . . . . . 25 2.10 SDSS magnitude-redshift relation offsets . . . . . . . . . . . . . . . . 26 2.11 KS-z relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.12 KS-z relation offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.13 Examples of redshift probability distributions . . . . . . . . . . . . . 30 2.14 Redshift assignment summary . . . . . . . . . . . . . . . . . . . . . . 31 2.15 Redshift distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 Forms of source counts . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Sample completeness via source counts . . . . . . . . . . . . . . . . . 40 3.3 Relative differential source counts . . . . . . . . . . . . . . . . . . . . 41 3.4 FRI and FRII luminosity distributions . . . . . . . . . . . . . . . . . 42 3.5 P-z plane coverage by radio-morphological type . . . . . . . . . . . . 44 3.6 P-z plane coverage by redshift type . . . . . . . . . . . . . . . . . . . 45 4.1 General radio luminosity functions . . . . . . . . . . . . . . . . . . . 47 4.2 FRI/FRII local radio luminosity functions . . . . . . . . . . . . . . . 48 4.3 Space-density enhancement for FRI sources . . . . . . . . . . . . . . 51 4.4 Comparison of the FRI/FRII space-density enhancements . . . . . . 52 4.5 Impact of approximate redshifts on the RLFs . . . . . . . . . . . . . 54 5.1 RLFs for the best-fit PDE and LDE broken power-law models . . . . 60 vii List of Figures 5.2 Error spread in the RLF models . . . . . . . . . . . . . . . . . . . . 62 5.3 RLFs in the LDE model . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Space-density enhancement vs. luminosity for the LDE model . . . . 64 5.5 Space-density enhancement vs. redshift for the LDE model . . . . . 65 6.1 Summary of the free-form modeling technique . . . . . . . . . . . . . 70 6.2 LRLF model fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Source count model fits . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.4 Redshift distribution model fits . . . . . . . . . . . . . . . . . . . . . 75 6.5 Steep-spectrum RLFs . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Model RLFs for FRI sources . . . . . . . . . . . . . . . . . . . . . . 77 6.7 Model RLFs for FRII sources . . . . . . . . . . . . . . . . . . . . . . 78 6.8 RLFs comparison between FRI and FRII sources . . . . . . . . . . . 79 7.1 Summary of estimated and modeled RLFs . . . . . . . . . . . . . . . 83 7.2 Summary of estimated and modeled space-density enhancements . . 84 viii Abbreviations and Symbols Abbreviations: 2MASS Two Micron All Sky Survey 3CRR Third Cambridge Revised AGN Active Galactic Nuclei BAL Broad Absorption Line BLRG Broad Line Radio Galaxy CDM Cold Dark Matter CENSORS Combined EIS-NVSS Sur- vey Of Radio Sources CoNFIG Survey Combined NVSS FIRST Galaxy Survey CSS Compact Steep-Spectrum DLE Density-Luminosity Evolution d.o.f. Degrees of freedom FIRST Faint Images of the Radio Sky at Twenty-cm FRI/II Fanaroff-Riley type I/II FS Flat-Spectrum FSRQ Flat-Spectrum Radio Quasar FWHM Full Width Half Maximum IGM Inter-Galactic Medium IF Intermediate Frequency IR Infra-Red ISM Inter-Stellar Medium LRLF Local Radio Luminosity Function NVSS NRAO-VLA Sky Survey PDE Pure-Density Evolution QSO/RQSO/quasar (Radio) Quasi-Stellar Object RLF Radio Luminosity Function SC Source Count SDSS Sloan Digital Sky Survey SF Star Forming SMBH Super-Massive Black Hole SOS Single Object Survey SS Steep-Spectrum SSRQ Steep-Spectrum Radio Quasar UV Ultra-Violet VLA Very Large Array ix Abbreviations and Symbols VLBA Very Long Baseline Array VLBI Very Long Baseline Interferome- try WAT Wide Angle Tail WENSSWesterbork Northern Sky Sur- vey Symbols: ’ - arcminute ” - arcsecond α - Spectral index δ - Declination λ - Wavelength ν - Frequency ρ - Space density ρ0 - Local space density P - Radio power or luminosity RA - Right Ascension S - Flux-density z - Redshift x Acknowledgements I would like to thank my supervisor, Jasper Wall, and my collaborator, Philip Best, for their support and direction. I would also like to thank my parents and my friends for being there for me through the hard times. I could not have done it without them. This work was supported by the National Sciences and Engineering Research Council of Canada. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universi- ties, Inc. This research has made use of the SIMBAD databases,operated at CDS, Strasbourg, France. This publication makes use of SDSS data products. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Mon- bukagakusho, the Max Planck Society, and the Higher Education Funding Coun- cil for England. The SDSS Web Site is http://www.sdss.org/. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. xi Dedication “Un temps pour chaque chose, et chaque chose en son temps” xii Chapter 1 Introduction Active galactic nuclei (AGN) comprise the majority of currently observed radio galaxies. Their structure (Fig. 1.1), described in more detail by Urry & Padovani (1995), includes a central supermassive black hole (SMBH) whose gravitational po- tential energy is the main source of luminosity, both at radio and X-ray wavelengths. The central engine is surrounded by a dust torus and accretion disk created by matter being pulled toward the SMBH. Outflows of energetic particles occur along the rotation axis of the disk, forming collimated radio-emitting jets. For the most powerful sources, in the potential of the black hole, rapidly-moving clouds of gas produce strong optical and UV emission lines (‘broad-line region’). Well outside the torus, slower moving gas produces narrower emission lines (‘narrow-line region’). However, beyond structural information, details of AGN physics are literally hidden from view. To this day, statistical studies of the various classes of AGN are the main probe of the mechanisms powering them. Figure 1.1: Schematic of AGN structure (Urry & Padovani, 1995). 1 Chapter 1. Introduction 1.1 Role of AGNs in galaxy evolution In addition to being laboratories for extreme physics, AGN feedback has been in the forefront as a candidate explanation for ‘downsizing’. The current paradigm for galaxy formation is hierarchical build-up in a Cold Dark Matter (CDM) universe. In this model, galaxy mergers engender the new generation of galaxies, while generating bursts of star formation. This implies that the most massive galaxies ought to be the bluest and have the highest star forming rate of all galaxies. Yet, observations show that they are red, old galaxies, and the bulk of star formation is observed at earlier epochs. This is known as downsizing, first described by Cowie et al. (1996). AGN negative feedback is a possible way to understand this phenomenon. In this process, the ignition of the nucleus in a star-forming galaxy heats-up and ejects the inter-stellar medium (ISM) gas, thus reducing or even stopping star formation (Silk & Rees, 1998; Granato et al., 2001; Quilis et al., 2001). In addition, heating of ISM gas will reduce the flow of matter in the central SMBH, lowering the accretion flow and eventually extinguishing the AGN. Once the gas cools down and starts to collapse into the nucleus again, a new AGN phase may begin and the cycle resumes. This episodic AGN activity scenario is supported by detection of double-double (or ‘relic’) radio galaxies, exhibiting two distinct regions of emission separated by a jump in spectral index (e.g. J0041+3224, Fig. 1.2), which are interpreted to be due to two different epochs of jet activity (Burns et al., 1983; Roettiger et al., 1994). It should be noted that AGN can also have a positive feedback effect, whereby pres- sure from the jets compresses the inter-stellar medium and induces star formation (van Breugel et al., 2004; Klamer et al., 2004). However, modeling of jet power and its relation to star formation have shown that the overall effect is a decrease in star formation rate (Antonuccio-Delogu & Silk, 2008). If AGN feedback suppresses star formation, it is reasonable to think that it should be related to the energy output from the jets. Best et al. (2006) studied the output energy from AGN and concluded that heat dissipated in the host galaxy is domi- nated by low-luminosity radio sources, which tend to be confined predominantly to the size of the galaxy and its halo. Such sources also stay ‘on’ for a longer period of time than high luminosity sources, allowing heat to be supplied continuously. Schawinski et al. (2009) investigated the relation between the amount of molecular gas and AGN activity in galaxies and concluded that a low luminosity AGN episode was sufficient to suppress residual star formation in early type galaxies. Establishing the space-density behaviour of radio AGN is thus important in studying the precise role of the feedback mechanisms. 2 Chapter 1. Introduction Figure 1.2: Example of a double-double radio galaxy, here J0041+3224 (from Saikia et al., 2006), exhibiting two distinct regions of emission which are interpreted to be due to two different epochs of jet activity. 1.2 Empirical AGN classification Radio AGN are classified in various ways such as via luminosity, spectral type or morphology. Figure 1.3 presents the empirical classifications of Urry & Padovani (1995), organized according to radio loudness (ratio of radio-to-optical flux-density) and optical spectra. AGN can be separated into three groups, based on their optical spectra. Type 1 have bright continua and broad emission lines from hot, high-velocity gas. This type includes Seyfert 1 galaxies, broad-line radio galaxies (BLRG), quasi-stellar objects (QSO) as well as steep- and flat-spectrum radio quasar (SSRQ and FSRQ). Type 2 have weak continua and narrow emission lines, and include Seyfert 2 galaxies, narrow emission-line galaxies (NELG) and narrow-line radio galaxies (NLRG). Finally, type 0 have different spectral characteristics, in particular a lack of strong 3 Chapter 1. Introduction emission or absorption features. This class includes BL Lacertae (BL Lac) objects, FSRQs and broad absorption line (BAL) QSOs. Figure 1.3: AGN empirical classification, organized according to radio loudness and optical spectra (Urry & Padovani, 1995). The Fanaroff-Riley (FR) categorization (Fanaroff & Riley, 1974) provides a classifi- cation of extended radio sources. The FRI objects (Fig. 1.4) have the highest surface brightness along the jets near the core, reside in moderately rich cluster environ- ments (Hill & Lilly, 1991) and include sources with irregular structures (Parma et al., 1992). In contrast, FRII sources (Fig. 1.5) show the highest surface brightness at the lobe extremities, as well as more collimated jets, are found in more isolated environments and generally display stronger emission lines (Rawlings et al., 1989; Baum & Heckman, 1989). It is important to note that the cut between FRI and FRII is also somewhat ambiguous: hybrid sources showing jets FRI-like on one side and FRII-like on the other have been observed (Capetti et al., 1995). Fanaroff & Riley (1974) found these two classes to be divided in radio power, with a break luminosity P178MHz ∼ 1025W/Hz/sr, with FRII sources lying above this limit. Subsequently Owen & Ledlow (1994) showed that the break was a function of both radio and optical luminosity. The FRI/FRII dichotomy is based purely on the appearance of the radio objects, and two main streams of models exist to explain these differences in morphology. Intrinsic models suggest that the dichotomy arises from differences in the properties of the central black hole. In these scenarios, jets produced by low accretion-flow rate sources are generally weak (Bicknell, 1995) with the majority having an FRI-type structure, whereas higher accretion flow rates give rise to stronger, mainly FRII-type jets (e.g. Baum & Heckman, 1989; Ghisellini & Celotti, 2001). Extrinsic models, on the other hand, are purely based on the source environment (e.g. Prestage & Peacock, 1988). The hypothesis is that inter-galactic medium (IGM) density is the differentiating factor, where jets of sources in higher/lower 4 Chapter 1. Introduction Figure 1.4: FIRST contour plot of a characteristic example of an FRI source, 3C 272.1 (M84). The regions of highest surface brightness are located along the jets. Figure 1.5: FIRST contour plot of a characteristic example of an FRII source, 3C 223. The hot spots are located at the ends of the aligned lobes. density mediums experience a higher/lower degree of resistance, yielding sources with FRI/FRII structures respectively. In spite of these existing hypotheses, the mechanisms differentiating the two popu- lations are still unknown. Studies of the radio luminosity function (RLF - density of sources with a given luminosity per unit of co-moving volume) of each population could shed some light on this issue: if sources with different FR classes undergo different evolution, this might imply that their fundamental characteristics, such as the black hole spin or jet composition, are different too. 1.3 Unified models of AGN Since Longair (1966) determined that powerful radio sources undergo strong differ- ential evolution, in the sense that lower-luminosity sources undergo lesser evolution, our understanding of the space-density of AGN as a function of cosmic epoch has steadily continued to advance. With the development of evolutionary models for radio sources came the idea of a dual-population model. With high-frequency sur- veys, and the large number of flat/inverted spectrum sources revealed in them, a classification based exclusively on the source spectra emerged: sources with a spec- tral index α ≤ −0.5 (where Sαν ∝ να), corresponding to optically thin synchrotron radiation, were classified as steep-spectrum, whereas sources with lower spectral in- dices (α ≥ −0.5) inevitably showed features of synchrotron self-absorption and were classified as flat-spectrum. Initial indications suggested that these two populations underwent different evolution (Schmidt, 1976; Masson & Wall, 1977). However, 5 Chapter 1. Introduction Dunlop & Peacock (1990) studied the RLF of these two classes of radio sources, and came to the conclusion that the two populations were undergoing similar evolution, implying that they might not actually be distinct. An alternative dual-population model surfaced in the 1980s, based on the ’unifica- tion’ hypothesis describing how viewing aspect could relate RQSOs (Radio Quasi- Stellar Objects) of either flat or steep-spectrum to FRII radio galaxies (e.g. Peacock, 1987; Scheuer, 1987). However, the scheme did not include lower-luminosity AGNs such as FRI galaxies and BL Lac objects. The unifying connection between these was introduced by Marcha & Browne (1995). The unified model of AGN proposed by Wall & Jackson (1997) and Jackson & Wall (1999) assumes that the cosmic evolution of radio-loud AGN is based on a division of the radio sources into a low-luminosity (P178MHz < 10 25W/Hz/sr) component corresponding to FRIs, and a high-luminosity component corresponding to FRIIs. In this scheme, the various forms of AGN observed (FRI and FRII extended dou- ble sources, flat- and steep-spectrum RQSOs and BL Lac objects) result from the orientation of the extended parent objects with respect to the observer’s line-of- sight (Fig. 1.6). Indeed, because the double-sided ejection of synchrotron blobs in AGN is at relativistic speed, the orientation of the ejection axis to the line-of-sight becomes crucial: sources viewed side-on appear as double radio galaxies (FRI or FRII) and sources viewed along the jets appear as RQSOs (beamed counterparts of FRII sources) or BL Lac objects (beamed counterparts of FRI sources). The relativistically-boosted jet emission in the beamed counterparts of the extended sources dominates the extended emission, making the overall radio emission appear compact down to VLBI scales. They will also display flatter spectra, implying that the flat- vs. steep-spectrum source dichotomy is also purely based on the orientation of the parent objects with respect to the observer’s line-of-sight, thus explaining the similar evolutions observed by Dunlop & Peacock (1990). There are however observational signs that this unified model is not as straight- forward as beamed counterpart of FRII being QSOs and beamed counterparts of FRI being BL Lac objects. First, there are too few FRIs for them to be the only class of host galaxy for BL Lacs (Owen, Ledlow & Keel, 1996), and there is strong evidence that beamed counterparts of low-excitation FRIIs could also be seen as BL Lacs (Browne et al., 1982; Murphy, Browne & Perley, 1993). Secondly, a popula- tion of FRI QSOs exists (Blundell & Rawlings, 2001) and contradicts the idea that torus opening angles in FRIs are too small to observe a quasar nucleus (Falcke et al., 1995), the nature of the torus being a fundamental characteristic of the AGN central engine. In addition, with the advent of large-scale redshift surveys for nearby galaxies, many authors, including Snellen & Best (2001), Willott et al. (2001), Sadler et al. (2002) and Rigby, Best & Snellen (2008), found significant evolution for low-power sources – but mild evolution in comparison with that of the high-luminosity sources. Rigby, Best & Snellen (2008) argued that if FRIs and FRIIs have similar evolution, the 6 Chapter 1. Introduction Figure 1.6: Unified schemes for FRI (left) and FRII (right) sources (Jackson & Wall, 1999), showing how various forms of AGN result from the orientation of the extended parent objects with respect to the observer’s line-of-sight. dual-population scheme could be reduced to a single-population model. Their sam- ple was however confined to a small number of low flux-density sources. One major issue in most of these studies is the use of high- and low-power as a counterparts to FRI and FRII morphological classes. Even though FRI tend to have lower luminosities than FRII, high-luminosity (logP1.4GHz ≥ 25.5W/Hz/sr) FRIs have been observed (e.g. Rigby, Best & Snellen, 2008). A dedicated study and comparison of FRI and FRII sources and their evolution, using large samples of sources of each type, is the key to understanding these populations. It would allow to determine if the FR classification is valid, if it is closely related to the high/low-luminosity classification, or if a different classification would be physically more relevant. 1.4 Structure of the thesis The lack of a large comprehensive catalogue of morphologically-classified radio sources has been a limiting factor in all the studies presented in previous sections. This is the goal in constructing the Combined NVSS-FIRST Galaxy (CoNFIG) cata- logue, the initial object of this work. Subsequently, these data were used in modeling the radio luminosity function of AGN to get a better insight into the evolution of their space-densities, and to determine whether Fanaroff-Riley sources of type I and II share common mechanisms or originate from separate parent populations. 7 Chapter 1. Introduction The structure of this thesis is as follows. Chapter 2 focuses on the construction of the CoNFIG catalogue, including morphological classification (§2.4), optical iden- tifications and redshifts (§2.5), as well as complementary samples used to improve the luminosity-redshift plane coverage of the catalogue (§2.6). Source statistics, such as luminosity distributions and source counts, are presented in §3. Chap- ter 4 describes the computation of the FRI/FRII radio luminosity functions with the 1/Vmax method. Chapter 5 describes the parametric forms of the RLF derived using a maximum-likelihood method, while Chapter 6 presents the details and pre- liminary results of a free-form modeling technique. Summary of the results and conclusions are given in Chapter 7. Throughout this work, we assume a standard ΛCDM cosmology with H0=70 km s−1 Mpc−1, ΩM=0.3 and ΩΛ=0.7. 8 Chapter 2 The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue In order to sort out the FR dichotomy and its details, accurate models of the space- density evolution of each population are needed. This implies compiling accurate statistics, such as luminosity distributions and source counts, for both populations separately. This is the goal of the CoNFIG catalogue presented here, the first sample of bright radio sources with quasi-complete and accurate morphological identifica- tion. The structure of this chapter is as follows. Surveys used in this work are described in §2.1. The construction of the catalogue is explained in §2.2. Section 2.3 and 2.4 describe respectively the computation of the spectral indices and how the morpholo- gies were determined. Optical identifications and redshift information are discussed in §2.5. Complementary datasets that will be used in the modeling are introduced in §2.6. Finally, source statistics are computed and presented in §3. All information available on the CoNFIG sources is tabulated in Appendix A, in- cluding radio positions, 1.4 GHz flux densities, morphological classifications, spectral index values, optical identifications and redshifts. 2.1 Surveys used in this work This section describes the various surveys (both radio and optical) from which ra- dio flux-densities, radio contour maps, host galaxy identifications, magnitudes and redshifts of sources in the CoNFIG catalogue were retrieved. 2.1.1 NRAO-VLA Sky Survey The NRAO-VLA Sky Survey (NVSS; Condon et al., 1998) is a 1.4 GHz continuum survey covering the entire sky north of δ = −40◦ (corresponding to an area of 10.3 sr). The completeness limit is ∼2.5 mJy/beam with an rms of∼0.45 mJy/beam. The catalogue from the survey contains over 1.8 million entries, implying a surface density of ∼50 sources per square degree. It was carried out with the Very Large Array (VLA) in D and DnC configuration. The D configuration is the most compact VLA configuration with a maximum an- tenna separation of ∼1 km, while the C configuration has a maximum antenna separation of ∼3 km. The DnC configuration is an hybrid between these two, with 9 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue one of the three VLA arms is in C while the other two are in D configuration. These configurations provided an overall angular resolution of about 45 arcsec FWHM. 2.1.2 Faint Images of the Radio Sky at Twenty-cm The Faint Images of the Radio Sky at Twenty-cm survey (FIRST; Becker et al., 1995) is another 1.4 GHz continuum survey with the VLA, covering an area of ∼9030 deg2 including the North Galactic Pole. The completeness limit is ∼1 mJy/beam with a typical rms of 0.15 mJy/beam. The survey yielded ∼811,000 sources, implying a surface density of ∼90 sources per square degree. It was carried out in B configuration (the B configuration having a maximum an- tenna separation of ∼10 km), which provides an angular resolution of about 5 arcsec FWHM. 2.1.3 Sloan Digital Sky Survey The Sloan Digital Sky Survey (SDSS), with the 2.5 meter telescope at Apache Point Observatory, New Mexico, has imaged one quarter of the entire sky in ugriz magnitudes, with limiting magnitudes of 22.0, 22.2, 22.2, 21.3 and 20.5 respectively1. It performed simultaneously a spectroscopic redshift survey. The catalogued magnitudes retrieved for this work are modeled magnitudes for which the optimal measure of the flux of a galaxy uses a matched galaxy model in r-band. The best-fit model is then fit to the other four bands2. The seventh data release (DR7; Abazajian et al., 2009) imaging survey contains a total of 357 million objects over 11,663 deg2 while the spectroscopic survey contains 1.6 million objects over 9380 deg2 . 2.1.4 Two Micron All Sky Survey The Two Micron All Sky Survey (2MASS; Skrutskie et al., 2006) is a near-infrared survey using 1.3 m telescopes at Mount Hopkins in Arizona and CTIO in Chile. It aimed at imaging the entire sky in J, H and KS magnitudes. The now-complete catalogue, divided into point-source and an extended-source (semi-major axis >10 arcsec in size) catalogues, contains 472 million sources over 99.998% of the sky. 1The limiting magnitudes at the detection limit given in Abazajian et al. (2009) correspond to a 95% detection repeatability for point sources. However, for galaxies, these are typically between half a magnitude and a magnitude brighter at the same signal to noise ratio (from SDSS project book: http://www.astro.princeton.edu/PBOOK/camera/camera.htm) 2http://cas.sdss.org/dr6/en/help/docs/glossary.asp?key=mag model 10 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.2 CoNFIG catalogue definition The CoNFIG Catalogue consists of 4 samples, CoNFIG-1, 2, 3 and 4, which in- clude all sources selected from the NVSS catalogue with S1.4GHz ≥1.3, 0.8, 0.2 and 0.05 Jy respectively, well above the NVSS survey limits, thus avoiding the effects of Eddington bias. The sample regions are located around the North Galactic Pole where both FIRST and SDSS data are available (see Fig. 2.1 and Table 2.1). The sample areas were chosen so that the number of sources in each sample is above 100 to be statistically relevant, and does not exceed 300. This ensures that the sample sizes are manageable for individual morphological classification. A summary of each sample is given in Table 2.2. Because the area of the CoNFIG-2, 3 and 4 samples overlap with CoNFIG-1, all statistics estimated from CoNFIG 2, 3 and 4 use only sources with Slim < S1.4GHz < 1.3 Jy. Since the median angular size of faint extra-galactic sources at the CoNFIG flux- density levels is .10 arcsec (Condon et al., 1998), most sources in NVSS are unre- solved, and, as a result, the flux-density measurements are quite accurate. Very large sources resolved in NVSS within the initial samples, such as a few 3CRR sources (Laing, Riley & Longair, 1983), need to be considered. In some of these cases, two or more NVSS ‘sources’ with S1.4GHz > Slim are actually components of a much larger resolved source. Multi-component sources in which each component has S1.4GHz < Slim but with a total flux-density S1.4GHz ≥ Slim, also need to be considered (Fig. 2.2). For this purpose, NVSS sources with Slim/4 < S1.4GHz < Slim were selected and, if any other source in the catalogue was located within 4 arcmin of the listed source (corresponding approximately to the largest size for an extended radio source), the combination was set aside as a candidate extended source. The final decision on whether or not the sources were actually components of a resolved source was made by visual inspection of the NVSS and FIRST contour plots, to determine if the orientation of the major axis of each object was consistent with them being aligned. Table 2.1: Region corners for the CoNFIG samples ({RA; δ} in {HRS; deg}) as shown in Fig. 2.1. C-1 C-2 C-3 C-4 {17.7; 64.0} { 9.30; 60.0} {14.7; 30.0} {14.1; 3.0} { 7.0; 64.0} {13.35; 60.0} {16.0; 30.0} {14.7; 3.0} { 7.3; 30.0} {13.35; −5.0} {16.0; 10.0} {14.7; −3.5} {17.3; 24.8} { 9.30; −5.0} {14.7; 10.0} {14.1; −3.5} {15.5; −8.0} { 9.1; −8.0} 11 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.1: Map of the sample regions. Each sample is located in the North field of FIRST (grey area). CoNFIG-1 (red contour), CoNFIG-2 (green hatched), CoNFIG-3 (blue diagonally cross-hatched) and CoNFIG-4 (pink vertically cross-hatched) have flux-density limits of 1.3, 0.8, 0.2 and 0.05 Jy respectively. Definition of the regions and details of the samples can be found in Tables 2.1 and 2.2. Figure 2.2: A multi-component source in NVSS in which each component has S1.4GHz < Slim but with a total flux-density S1.4GHz ≥ Slim (here, 3C 326). Each component is highlighted by a green box. 12 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Table 2.2: Characteristics of the CoNFIG samples, as described in section 2.2. Slim Area Number of Sources not (Jy) (deg2 ) sources in CoNFIG-1 C-1 1.30 4924 273 - - C-2 0.80 2915 243 132 54.3% C-3 0.20 370 285 269 94.4% C-4 0.05 52 185 184 99.4% 2.3 Spectral indices In order to compute the radio luminosity, the spectral index α (defined as Sν ∝ να) of each source needed to be determined. To achieve this, flux-densities at different frequencies for each source were compiled (see Table 2.3) and the spectral index computed following the relation: α = ∆ log(S) ∆ log(ν) (2.1) The low frequency (ν < 1.4GHz) and high frequency (ν ≥ 1.4GHz) spectral indices were computed as the slope of the best fitting line through all available data in each specific frequency range. As shown in Figure 2.3, since νrest = νobs(z +1), the observed flux at 1.4GHz, Sobs, was actually emitted at νrest > 1.4GHz. The luminosity from the flux Sem emitted at νrest = 1.4GHz, which corresponds to the observed flux at frequency νobs < 1.4GHz, was needed. Therefore, the low frequency spectral indices was used to compute the luminosities (available for sources with z ≤ νrest/νobs − 1 = 1400/408 − 1 = 2.43). In cases where the low frequency data were unavailable, the high frequency spectral index was used. We were able to compute the low-frequency spectral index (with 178 MHz ≤ ν ≤ 1.4 GHz) for 100%, 99.2%, 89.6% and 52.7% of the sources in CoNFIG-1, 2, 3 and 4 respectively. The distribution of spectral indices by morphological type is shown in Figure 2.4. The index distribution of FRI and FRII sources peaks at lower values of α than compact sources, pointing to the steep-spectrum nature of extended radio sources. FRI and FRII sources also show slightly different spectral index distribu- tions, with FRI having a higher mean and median index than FRII, which ensues from the P-α effect: higher luminosity sources have lower values of the spectral index for extended radio source (Laing & Peacock, 1980), and FRI sources tend to have lower luminosity than FRII sources (see §3.2). This is due to extraneous synchrotron energy losses for more powerful sources. 13 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Table 2.3: Surveys used to retrieve flux-density information. Frequency Survey Reference 178 MHz 3C Kellermann et al. (1969) 4C Pilkington & Scott (1965) 365 MHz Texas Douglas et al. (1996) 408 MHz Parkes Wright & Otrupcek (1990) B3 Ficarra et al. (1985) 2.7 GHz 3C Kellermann et al. (1969) Parkes Wright & Otrupcek (1990) 5.0 GHz 3C Kellermann et al. (1969) Parkes Wright & Otrupcek (1990) MIT-Greenbank Bennett et al. (1986) Figure 2.3: Relation between the observed and emitted flux at 1.4GHz. Since νrest = νobs(z+1), the emitted flux Sem at 1.4GHz corresponds to an observed flux Sobs at νobs < 1.4GHz. We thus use the low frequency spectral indices to compute the luminosities. 14 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.4: Spectral index distribution by morphological type (see §2.4 for details). The extended radio sources (FRI and FRII) show a larger negative value of the spectral index (α ∼ −0.8), indication the steep nature of their spectra. In contrast, compact sources show lower negative values of the spectral index (α ∼ −0.5), in- dicating a flatter spectrum. Another noticeable feature is that FRI sources show a higher value of the spectral index than FRII sources, which could be attributed to the P-α effect. 15 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.4 Morphology 2.4.1 Initial classification The initial morphologies were determined either from results of previous referenced work or by examining at the source radio contour plots. Because the large beam size used in NVSS (45 arcsec) does not reveal precise struc- ture of sources or determine positions accurate enough to establish unambiguous optical counterparts, a complementary survey was used. The FIRST survey pro- vides a beam size small enough (5 arcsec) to resolve the structure of most nearby extended radio sources and source positions to better than 1 arcsec to enable cross- waveband identification. If the FIRST/NVSS contour plot displayed distinct unresolved hot spots at the edge of the lobes (as in Fig. 1.5), and the lobes are aligned, the source was classified as FRII. Sources with collimated jets showing hot spots near the core and jets were classified as FRI (see Fig. 1.4). Wide angle tail sources (WAT, Fig. 2.6 - left; Leahy, 1993) as well as most irregular-looking sources (Fig. 2.6 - center; Parma et al., 1992) were also classified as FRI. Sources of size smaller than 5 arcsec or previously classified as QSOs were classified as ‘compact’ while extended sources for which the FRI/FRII classification was impossible to determine, mostly due to poor resolution, were classified as ‘uncertain’ (Fig. 2.6 - right). 2.4.2 VLA observations Extended sources with uncertain morphological classification were the subject of two VLA programs, AW703 in July 2007 and AG800 in October 2008, aiming to obtain higher resolution images of the objects. AW703 31 CoNFIG-1 sources were observed in this program. The observations were taken at 8 GHz using the VLA in A configuration, with a bandwidth of 50 MHz and the standard two intermediate frequencies (IFs) of 8435.1 and 8485.1 MHz. The A configuration is the configuration with the largest spacing between antennas (∼36 km), providing a synthesized beam of 0.24 arcsec FWHM at 8 GHz. The 8 GHz flux density of each source was derived from the 1.4 GHz NVSS flux- density and spectral index, and the exposure time was computed for each source so as to provide a signal-to-noise ratio of at least 5. The sources were split into two or three separate integrations to improve uv coverage The primary calibrator 3C174 (0542+498) was observed at the beginning of the run while 3C286 (1331+305) was observed twice during the run, once in the middle and once at the end. 16 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue AG800 213 extended CoNFIG-2, 3 and 4 sources were observed in this program. The observations were taken at 1.4 GHz using the VLA in A configuration. The A-configuration provides a synthesized beam of 1.4 arcsec FWHM at 1.4 GHz. Three frequency bands were used: (1) two IFs of 1464.9 and 1385.1 MHz, with a bandwidth of 50 MHz (2) two IFs of 1372.5 and 1422.5 MHz, with a bandwidth of 25 MHz and (3) two IFs of 1425.5 and 1397.5 MHz, with a bandwidth of 25 MHz. The exposure time was computed for each source such as to provide a signal-to- noise ratio of at least 5, and the exposures were split into two or three separate integrations to improve uv coverage. The primary calibrator 3C286 (1331+305) was observed several times during the run. Figure 2.5: Examples of improvements in morphological classification from higher resolution images (here, 1525+290). Left: NVSS (red) and FIRST (blue) contours. Based on these contours only, the source would be classified as Uncertain. Right: VLA contours from observing program AG800. At higher resolution, the source clearly show FRI features. Both contour plots are superimposed on the SDSS grey- scale image, where the position of the identified optical counterpart is shown by a green star. 2.4.3 Final classification To check the reliability of the classification, sample of sources in CoNFIG were also morphologically classified independently by AGN experts, Dr Jasper Wall and Dr Philip Best. The discrepancies were less than 5%. Final morphological classifications are detailed in Appendix A, with the following categories: 62.5% of sources in the CoNFIG sample were classified either as FRI (I in column 6 of Table A.1) or FRII (II). 28.1% of the FRI sources were WAT sources and 16.9% were irregular sources. Following the unified model of AGN (Urry & Padovani, 1995) core-jet sources were classified as FRII. Hybrid sources, showing 17 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue jets FRI-like on one side and FRII-like on the other (Capetti et al., 1995), were clas- sified according to the characteristics of the most prominent jet. Extended sources for which FRI/FRII identification was ambiguous were classified as uncertain (U). Sources with size smaller than 5 arcsec were classified as compact (C). When the source was confirmed compact from the VLBA calibrator list (see Beasley et al., 2002; Fomalont et al., 2003; Petrov et al., 2006; Kovalev et al., 2007) or the Pearson- Readhead survey (Pearson & Readhead, 1988), it was classified as confirmed com- pact (C*). Finally, sources of type (S*) correspond to confirmed compact sources which show a steep (α ≤ −0.6) spectral index. These are probably compact steep- spectrum (CSS) sources (Fanti & Fanti, 1994). The distribution of morphological types is presented in Table 2.4. Contour plots of extended sources, including the VLA observation described in §2.4.2, are displayed in Appendix B.1. In order to study the evolution of the space-density of FRI and FRII sources accurately, each extended source was assigned a sub-classification - confirmed (c) or possible (p) - depending on how clearly the source showed either FRI or FRII characteristics or if its morphology had been confirmed in other refer- enced works. The complete catalogue consists of 858 sources, with 71 (8.3%) FRIs (50 confirmed, 21 possible), 466 (54.2%) FRIIs (390 confirmed, 76 possible), 285 (33.2%) compact sources and 37 (4.3%) uncertain sources. 18 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.6: (left) Example of wide angle tail (WAT) source (here 1445+149), where the jets are bent; (center) Example of irregular FRI source (here 3C 264); (right) Example of uncertain source (here 4C 11.49), which is obviously extended, but the position of the hot-spots does not permit determination of FR type. In each image, the pink square points to the position of the core, and the blue and red contours correspond to FIRST and NVSS levels respectively. Table 2.4: Morphology of the sources in the CoNFIG samples. The morphology of each source was determined by looking at FIRST and NVSS contour plots or from VLA observations as described in §2.4.1 and §2.4.2. Sources of size smaller than 5 arcsec were classified as ‘compact’ (C) while extended sources for which the FRI/FRII classification was impossible to determine were classified as ‘uncertain’ (U). The corresponding percentage of sample is given in italics. C-1 C-2 C-3 C-4 Tot. % of sample FRI 25 7 22 17 71 9.2% 5.3% 8.1% 9.2% 8.3% FRII 149 75 152 90 466 54.6% 56.8% 56.3% 48.9% 54.2% C 86 47 88 64 285 31.5% 35.6% 32.6% 34.8% 33.2% U 13 3 8 13 37 4.8% 2.3% 3.0% 7.1% 4.3% 19 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.5 Optical identifications and redshifts 2.5.1 Optical identifications Optical counterpart identification is essential to our study of radio galaxies, provid- ing important information such as optical magnitudes and redshifts. A preliminary search for counterparts was performed using the unified catalogue of radio objects of Kimball & Ivezić (2008)3. This catalogue matches sources in NVSS with their counterparts in FIRST and the Westerbork Northern Sky Sur- vey (WENSS). In the overlapping region between the three surveys, SDSS cross- identification of ∼ 1/3 of the radio sources is performed. For sources outside the unified catalogue region, optical identifications were ob- tained, principally from SDSS and 2MASS (a shallower survey covering the entire sky). For compact sources, a host galaxy was identified when the optical source position coincided with the radio position (within <1”). For extended sources, host galaxy candidates within a given radius from the center of the radio source (4”≤r≤30” depending on the extent of the source) were selected from the surveys. The position of these candidates was over-plotted on the FIRST and NVSS contour plots to determine the most probably host galaxy identification. The choice was often straightforward, with the host candidate being located at the exact position of the radio core (within <1” - Fig. 2.7 - left) or, for extended sources, obviously positioned centrally in alignment with the radio lobes (Fig. 2.7 - right). Figure 2.7: The radio contours (NVSS - red; FIRST - blue) are superimposed on the SDSS grey-scale image. The position of the identified optical counterpart is shown by a green star. (left) Example of a radio source (here, 3C 223) for which the host candidate is positioned centrally in alignment with the radio lobes. (right) Example of a radio source (here, 3C 287.1) for which the host candidate is located at the exact position of the radio core. 3http://www.astro.washington.edu/akimball/radiocat/ 20 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Optical counterparts were obtained from the SDSS and 2MASS catalogues for 74.6% and 28.0% of the sources respectively, with 26.9% of the sources having both SDSS and 2MASS counterparts identified. 21.0% have no optical identification, most prob- ably due to the fact that the host is fainter than both catalogues magnitude limits. A summary of identified counterparts is given in Table 2.5. Magnitude distributions give some insights to the host galaxies evolution stage: galaxies in which star formation is prominent have a large proportion of young stars and tend to be bluer, while galaxies in which star formation has stopped have a large proportion of old stars and tend to be redder. The SDSS ugriz filter bands range from ultra-violet (u-filter: λu = 3551 Å) to near infra-red (z-filter: λz = 8931 Å), while 2MASS KS band probes a higher wavelength range of the near infra-red spectrum (λKS = 21600 Å). Figure 2.8 shows the magnitude distributions for the CoNFIG sources. As the filter band gets redder, the mean and median magnitudes get lower, indicating that AGN host galaxies tend to be older, low-star-forming objects. 2.5.2 Spectroscopic and photometric redshifts Spectroscopic redshifts were obtained for 45.5% of the catalogue using either the SIMBAD4 database or the SDSS DR7 catalogue. Because redshift information is essential to computing space-densities and examining their evolution, we estimated redshifts for sources with no spectroscopic data available. Note that for this work, estimates of redshift within ∆z ∼0.1 are reasonable, as binning in redshift will be used for the modeling (see §4 and §5). For a number of sources with an SDSS counterpart identified but with no spectro- scopic information available, photometric redshifts were retrieved from the SDSS photoz2 catalogue (Oyaizu et al., 2008), which covers SDSS galaxies with r≤22.0. AGN host galaxies tend to be red, with emission coming primarily from old stellar populations. This emission does not change as rapidly with evolution of the stellar population as emission at shorter wavelengths, and since radio galaxy hosts form a fairly homogeneous sample of objects, tight relations exist between magnitudes and redshift for radio galaxies (Lilly & Longair, 1984; Best et al., 1998). For galaxies where no redshift information were retrieved (and excluding the 285 sources identified as ‘compact’), redshifts were estimated using a magnitude-redshift relationship computed from SDSS-identified CoNFIG non-compact (i.e. non-QSO) sources with spectroscopic redshifts: log(z) = −3.599 + 0.170i (2.2) log(z) = −3.609 + 0.175z (2.3) log(z) = −3.660 + 0.169r (2.4) 4http://simbad.u-strasbg.fr/simbad 21 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.8: SDSS ugriz and 2MASS KS magnitude distributions. The mean and median values were computed from sources with available magnitude information. The total median values, for which sources with no magnitude information were assigned a value of 100, were computed for the ugriz filters, but not for the KS filter, for which over 50% of sources have no measured magnitude. As the filter gets redder, from u, the bluest colour, to KS , the reddest colour, the mean and median magnitudes get lower, indicating that AGN host galaxies tend to be red, older, low star-forming rate objects. 22 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Table 2.5: Numbers of SDSS and 2MASS optical identifications for the CoNFIG samples. In each cases, the corresponding percentage of sample is given in italics. All FRI FRII C U % of sample C-1 233 25 125 73 10 85.3% 100% 83.9% 84.9% 76.9% C-2 108 6 62 37 3 81.8% 85.7% 82.7% 78.7% 100% SDSS C-3 190 20 111 53 6 70.4% 90.9% 73.0% 60.2% 75.0% C-4 110 17 52 37 4 59.8% 100% 57.8% 57.8% 30.8% Tot. 641 68 350 200 23 74.6% 95.8% 75.1% 70.2% 62.2% C-1 117 22 55 39 1 42.9% 88.0% 36.9% 45.3% 7.7% C-2 44 5 22 17 0 33.3% 71.4% 29.3% 36.2% - 2MASS C-3 47 17 20 9 1 17.4% 77.3% 13.2% 10.2% 12.5% C-4 22 10 7 4 1 12.0% 58.8% 7.8% 6.2% 7.7% Tot. 230 54 104 69 3 28.0% 76.0% 22.3% 24.2% 8.1% 23 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue These relations are shown in Figure 2.9, and the offset between known spectroscopic redshift data and their photometric magnitude-z estimate counterparts is shown in Figure 2.10. The redshifts estimated from the SDSS magnitudes provide good esti- mates up to r, i, z ∼ 20.0, corresponding to a redshift of z∼0.8 in each case. The relations become unreliable around z∼1.0, and redshifts were not estimated photo- metrically beyond this point. Because AGN hosts tend to be old (red) galaxies, preference was given to redshift estimates from the i magnitude-z relation. When i-magnitudes were unavailable (i.e. above the SDSS i-magnitude limit), the z magnitude-z or r magnitude-z relations were used, again depending on the availability of z and r magnitudes. Photometric redshifts for 73 sources were estimated in this manner. KS-z relations were also obtained using data from CoNFIG non-compact sources having both spectroscopic redshifts and KS-band information from the 2MASS ex- tended and point source catalogues. log(z) = −3.515 + 0.204KS 2MASS extended sources (2.5) log(z) = −4.800 + 0.279KS 2MASS point sources (2.6) The relations, shown in Figure 2.11, provide good estimates of redshifts up to KS = 15.5. This is emphasized in Figure 2.12, which present the offset between known spectroscopic redshifts data and their photometric magnitude-z estimate counterparts. They were used to estimate photometric redshifts for 6 sources which had no SDSS spectroscopic or photometric redshifts available but had 2MASS coun- terparts (KS ≤ 15.5). Overall, 74.3% of the sources in the CoNFIG catalogue have spectroscopic or photo- metric redshift information available, with distribution mean and median redshifts of zmean = 0.714 and zmed = 0.588. The difference between these two values arises from the long tails in the distributions toward low redshifts. The redshift distribu- tion statistics, by samples and morphological types, are shown in Figure 2.15 and tabulated in Tables 2.6-2.7. 24 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.9: The SDSS magnitude-redshift relations were computed by finding the best fit (lines) to data from CoNFIG non-compact sources having both spectroscopic redshift and SDSS magnitude information (dots). The relation gives reasonable estimates up to z∼0.8. The relations (Equ.2.2-2.4) were used to estimate photomet- ric redshifts for sources not in the photoz2 catalogue, but with an SDSS counterpart. 25 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.10: Offset between spectroscopic and SDSS magnitude estimated redshifts, binned by magnitudes. The redshifts estimated from the SDSS magnitudes provide good estimates up to r, i, z ∼ 20.0, corresponding to a redshift of z∼0.8 in each case. 26 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.11: The KS-z relation was computed by finding the best fit (solid pink and dot-dashed red lines respectively) to data from CoNFIG non-compact sources having both spectroscopic redshift and KS-band information from the 2MASS extended (blue triangles) and point source (orange dots) catalogues. The relations (Equ.2.5-2.6) were used to estimate photometric redshifts for sources with a magnitude KS ≤ 15.5, which corresponds to an upper estimated redshift limit of z=0.43 from the extended source relation. For comparison, the K-z relations from CENSORS (Brookes et al., 2006) and Willott et al. (2003) are shown as light and dark grey dashed lines respectively. Figure 2.12: Offset between spectroscopic and KS-z estimated redshifts, binned by KS magnitudes. The redshifts estimated from the 2MASS KS magnitudes provide good estimates up to the catalogue magnitude limit of KS=15.5. The systematic offset does not have any significant effect on the redshift estimates. 27 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Table 2.6: Distribution for the CoNFIG samples. Spectroscopic redshifts were retrieved either from the SIMBAD database or from the SDSS catalogue. Photo- metric redshifts were either obtained from the SDSS photoz2 catalogue or estimated using either the SDSS mag-z relation defined by Equ. 2.2-2.4 or the KS-z relation defined by Equ. 2.5-2.6. The corresponding percentage of sample is given in italics. C-1 C-2 C-3 C-4 Total Number of Sources 273 132 270 184 Spectro. 226 67 54 44 82.8% 58.8% 20.0% 23.9% Photo. photoz2 29 33 71 35 10.6% 25.0% 26.3% 19.0% sdss mag-z 5 13 38 17 1.8% 5.3% 13.3% 9.2% KS-z 3 1 2 0 1.1% 0.8% 0.7% - Total All 263 114 165 96 96.3% 86.4% 61.1% 52.2% FRI 25 7 21 17 100% 100% 95.4% 100% FRII 145 65 112 52 97.3% 86.7% 73.7% 57.8% C 80 39 26 23 93.0% 83.0% 29.5% 35.9% U 13 3 6 4 100% 100% 75.0% 30.8% 28 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.5.3 Sources with no redshift information A total of 221 sources in the CoNFIG catalogue, mostly in CoNFIG-3 and 4, have no redshift information available. 104 of these sources are of morphological type I, II or U (we ignore sources of type C, being only interested in the study of extended radio sources). In most cases, the lack of optical identification is presumably due to the fact that the source is located far away, placing its optical magnitude below the SDSS magnitude limit. The absence of these sources in the analysis could possibly create a strong bias against higher redshift galaxies, and they are thus considered here. Based on SDSS non-detection, a lower redshift limit can be determined for these sources. The i-band being effectively the deepest SDSS band for objects with the typical colours of high-redshift radio galaxies, Equ.2.2 was used to determine the lower limit, yielding a value of zlim ≃ 1.0. To account for the spread in the i- z relation, the estimate of the limit for each source with no redshift was drawn randomly from a Gaussian of variance 0.1 (approximately corresponding to the spread seen in Figure 2.9), centered on zlim=1.0. Our next step was to use the (admittedly naive) assumption that the redshift of the radio source could be estimated from the distribution of measured or estimated redshifts for sources of similar flux density. For each of the 104 sources, we compiled the sample of sources with redshift information available and flux-densities within the range of a tenth to ten times the flux density of the source with no redshift. The redshift distribution of this sample was computed and fit with a polynomial; the region of this polynomial above the calculated redshift limit was then normalized to determine the redshift probability distribution for each source. These probability distributions can be used in different ways: - When considering redshift distribution, each source with no redshift can be considered to contribute a fraction to each redshift bin, following its assigned probability distribution (which is itself normalized to 1.0). - An approximate redshift can be assigned for each source by making several random realizations following the probability distribution and assigning to the source the median redshift of the consequent redshift sample. - An approximate redshift can be assigned for each source by making a random realization following the probability distribution. The statistics of interest are then computed and the values stores. The process is repeated several times in a Monte-Carlo manner and the average value of the statistics is computed. The method is depicted in Figure 2.14. A rough estimate of the incidence of these assigned redshifts on future analysis can be inferred. Because most of the approximate redshifts are greater than z=0.3, the redshift upper-limit used to define the local universe, statistics for local space densi- ties are completely unaffected by redshift uncertainties. As the redshift lower-limits 29 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.13: Examples of redshift probability distributions used to assign redshift estimates to sources with no redshifts. The distributions shown are for sources with flux S1.4GHz=0.5 Jy (pink dashed line), S1.4GHz=0.05 Jy (green solid line) and S1.4GHz=0.005 Jy (orange dot-dashed line) and correspond to the best-fit polynomial to the distribution of redshifts for sources with redshift information available having fluxes Sno.z/10 ≤ Swith.z ≤ 10 · Sno.z. used in the computation of the approximate redshifts are mostly z≥1.0, results out to z∼1.0 are also not significantly affected. Over the range 1.0≤z≤2.0, the results are likely to be impacted. Nevertheless, the fact that the redshift distribution is well determined over that range implies that the impact is perhaps not severe. Beyond z=2.0, results would be unreliable as the redshift distribution is not well determined and the use of approximate redshifts may introduce significant biases. When such redshift ranges were considered, analysis of the impact of these uncertainties on space-density computation were undertaken (see §4.2). 30 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Source with no redshift Sno.z ? ? Minimum redshift randomly drawn from Gaussian zmin Compile sample of sources with redshift for which Sno.z/10 ≤ Swith.z ≤ 10 · Sno.z ? Fit redshift distribution of the sample with a polynomial and normalize the region above zmin to represent the redshift probability distribution ? ? Redshift distribution The fractional contribution of the no.z source for each redshift bin follows the assigned probability distribution Statistics calculation Random redshift values are drawn following the probability distribution assigned to the corresponding no.z source ? Compute the statistics ? Average - ? repeat × 1000 Assign median redshift to source ff repeat × 1000 Figure 2.14: Redshift assignment summary 31 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Table 2.7: Redshift statistics for the CoNFIG samples. For extended sources, both the distribution and true (including sources with redshift estimated as described in §2.5.3) mean and median redshift are quoted. C-1 C-2 C-3 C-4 All min. 0.003 0.011 0.018 0.006 max. 3.530 2.707 2.408 2.677 mean 0.711 0.760 0.623 0.828 inc. z est. 0.727 0.860 1.045 1.524 median 0.555 0.599 0.564 0.695 inc. z est. 0.561 0.680 0.947 1.367 FRI min. 0.003 0.011 0.032 0.006 max. 0.269 0.309 1.847 1.531 mean 0.071 0.128 0.264 0.261 inc. z est. 0.071 0.128 0.412 0.261 median 0.049 0.099 0.116 0.150 inc. z est. 0.049 0.099 0.141 0.150 FRII min. 0.036 0.098 0.062 0.138 max. 2.183 1.711 2.408 2.677 mean 0.637 0.660 0.674 0.938 inc. z est. 0.661 0.785 0.918 1.497 median 0.523 0.566 0.604 0.800 inc. z est. 0.535 0.613 0.782 1.264 Uncertain min. 0.227 0.406 0.219 0.167 max. 2.474 0.975 1.548 1.193 mean 0.842 0.631 0.766 0.674 inc. z est. 0.829 0.767 1.467 1.797 median 0.438 0.406 0.555 0.301 inc. z est. 0.473 0.628 1.356 1.625 Compact min. 0.034 0.160 0.018 0.133 max. 3.530 2.707 1.764 2.235 mean 1.024 1.050 0.665 1.026 median 0.880 0.795 0.580 0.725 32 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Figure 2.15: Redshift distributions of the sources in the CoNFIG catalogue for each morphological type. Sources with spectroscopic, photometric, KS-z estimated and SDSS mag-z estimated redshifts are represented by the red solid, blue cross-hatched, green solid and purple diagonally hatched columns. The estimated contribution from sources with no redshift information available is shown in black vertically hatched columns. 33 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.6 Complementary samples To improve the flux-density coverage of the catalogue, three complementary samples were appended (Appendix A.2.1, A.2.2 and A.2.3). 3CRR The 3CRR (Third Cambridge Revised) catalogue (Laing, Riley & Longair, 1983) is complete to S178MHz=10 Jy and contains 173 sources over an area of 4.2 sr. The conversion from S178MHz to S1.4GHz with α = −0.75 (the median spectral index for CoNFIG extended sources) yields a flux density limit of S1.4GHz ≈ 2.1 Jy. In order to maximize the completeness of the sample at 1.4 GHz, the flux-density limit was increased to S1.4GHz =3.5 Jy. The compiled spectral indices were used in the conversion for each 3CRR source. This is the only complementary sample overlapping with the CoNFIG-1 region, and after excluding sources already present in the CoNFIG samples5, 38 sources were selected to complement the CoNFIG catalogue. All sources were morphologically classified, either using the classification of Laing, Riley & Longair (1983) or following the method described in §2.4, and the sample includes 8 FRI, 24 FRII and 6 compact sources. CENSORS The CENSORS (Combined EIS-NVSS Survey Of Radio Sources) sample (Best et al., 2003) is complete to S1.4GHz=7.2 mJy and contains 136 sources selected from NVSS over the 6 deg2 of the ESO Imaging Survey (EIS) Patch D. The region of the sample does not overlap with CoNFIG. The sample has spectroscopic redshifts for 68% of the sources, and optical or near-IR identifications (giving redshift estimates) for almost all of the remainder. Little radio morphological classification of the CENSORS sources has been done as the image resolution is often not high enough to identify the source morphology. For this reason, the VLA observation programs described in §2.4.2 also included 40 CENSORS sources, allowing morphological classification of 84.5% of the objects in the sample (see Appendix B.2). It includes 13 FRI, 64 FRII, 38 compact and 21 uncertain sources. Lynx & Hercules sample The Lynx & Hercules sample (Rigby, Snellen & Best, 2007) is complete to S1.4GHz= 0.5 mJy and contains 81 sources within an area of 0.6 deg2 , not overlapping with CoNFIG. It is complete in redshift estimation (49% spectroscopic and 51% photo- metric) and 95.6% of the sample members have morphological classification, includ- ing 57 FRI, 18 FRII and 6 uncertain sources. 5in practise, when computing sources statistics, sources from the CoNFIG sample with S1.4GHz ≥3.5 Jy were ignored, to avoid double-counting. The effective area of the 3CR sample thus remained unchanged. 34 Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue The final list, including the complementary samples, will hereafter be referred as the CoNFIG catalogue. It contains 1114 sources and is 75.9% complete for redshift information and 94.2% complete for radio morphologies. It includes a total of 136 FRI (78 confirmed, 58 possible) and 571 FRII (478 confirmed, 93 possible) sources, making it one of the largest, most comprehensive databases of morphologically- classified radio sources and an important tool in the study of AGN space densities. 35 Chapter 3 Source statistics The main goal of the CoNFIG catalogue is to produce a comprehensive catalogue of morphologically-classified radio sources to be used in the modeling of the radio lu- minosity function (RLF) of AGN, in order to investigate their evolution and the role of the different types in feedback processes. Because the RLF describes the space- density of radio sources as a function of luminosity and epoch, a knowledge of the source distributions with respect to both aspects is necessary for the modeling. For this purpose, we computed the source counts (§3.1), luminosity distributions (§3.2), and luminosity-redshift distributions (§3.3) based on morphological classification. 3.1 Source counts Source counts, corresponding to the surface density of sources as a function of flux- density, can be directly compiled from any complete sample, without any additional data. Because flux density is a function of both redshift and luminosity, source counts are the first probes into the behaviour of galaxy evolution. Source counts can come in different forms, the most basic being the cumulative (or integrated) source count, N(> S) (Fig. 3.1, top panel), describing the expected number of sources per unit area above a given flux density. Because of its cumulative nature, consecutive data points are not statistically independent of each other, which can be problematic, especially in the corresponding error analysis. The differential form of the source count (Fig. 3.1, central panel), which describes the number of sources per unit area in a given flux bin (∆N/∆S), avoids the problem of dependence of consecutive values. Because the differential source count is generally very steep, possibly hiding some important features, it is customary to represent it relative to the count of uniformly distributed sources in a flat, non-evolving Universe (Euclidean Universe - see Ap- pendix D.1), where ∆N0(S) = KνS −3/2 ν , the arbitrary constant Kν usually taken as the number density of sources with flux-densities above 1 Jy. This is the relative differential source count ∆N/∆N0 (Fig. 3.1, bottom panel). This form will be used in the following source count computation for CoNFIG. Source counts give the first indication of the evolution of radio sources (Longair, 1966). In an expanding Universe with a constant space-density (no evolution) the relative differential count would decline monotonically to low flux densities. This is not the case here, as ∆N/∆N0 clearly peaks at S1.4GHz ∼0.5 Jy, which indicate that 36 Chapter 3. Source statistics radio sources must be evolving (i.e. there were many more sources at earlier epochs). The general form of the relative differential source count displays four major regions of flux densities where different radio source populations dominate: Region 1 At the highest flux-densities (S1.4GHz ≥ 10 Jy), only a few sources (typ- ically ∼ 20) contribute to the count. These sources are either nearby galaxies or more distant, very powerful sources (at z=0.6, it takes a logP1.4GHz = 27.0W/Hz/sr source to detect it with S1.4GHz=10 Jy). Because local, lower-power sources are more abundant than powerful, evolving sources, the count is near-Euclidean (flat). Region 2 At the Jansky level (1 Jy ≤ S1.4GHz < 10 Jy), the count is dominated by powerful sources at high redshifts, which indicates extreme evolution. The ‘bulge’ in the count hints at a sharp peak in their space densities at some epoch. Region 3 At the sub-Jansky level (1 mJy ≤ S1.4GHz < 1 Jy), the count drops in a continuous manner. Although it might be supposed that powerful radio sources at high redshift dominate this region of the count, identification data shows that it comprises lower-power sources at intermediate redshifts. Region 4 At the sub-milliJansky level (S1.4GHz < 1 mJy), identifications show populations of local star-forming galaxies and low-power FRI sources. The first step in the CoNFIG source count analysis is to verify the completeness of the samples used (i.e. are they representative of the population in their available range of flux-densities). For this purpose, a reference source count covering a wide range of flux densities (−4.0 ≤ logS1.4GHz ≤ 2.0), was compiled from various pre- viously published data (Bridle et al., 1972; Machalski, 1978; Hopkins et al., 2003; Prandoni et al., 2001). Because the count is compiled from a total of several hundred thousand sources, it can be considered complete and defines a reference curve. The relative differential source count was computed independently for each of the samples in the CoNFIG catalogue and superimposed on the reference source count. As seen in Figure 3.2, each sample is consistent with the reference count, and thus appears to be complete within statistical uncertainties. The morphology-dependent source counts were computed by combining data from each sample (avoiding repeated sources between 3CR and CoNFIG-1, as well as between CoNFIG-1 and CoNFIG-2,3 and 4) and making separate source lists for the FRI and FRII sources. The resulting counts are shown in Figure 3.3. The FRII sources dominate the total count, except at low flux densities (logS1.4GHz . −1.6), where the FRI sources suddenly take over, constituting a significant portion of the mJy and sub-mJy sources. Since most of the FRI count at low flux densities is composed of low-luminosity sources at low redshift, our results show that FRI objects must undergo some mild evolution. This is consistent with the results of Sadler et al. (2007), who studied low power sources (which tend to be associated with FRIs) in the 2SLAQ survey (Richards et al., 2005) and found evidence that FRIs undergo significant evolution over z < 0.7. Because the FRI source count 37 Chapter 3. Source statistics Figure 3.1: 1.4 GHz source counts in cumulative N(>S) (top), differential ∆N/∆S (center) and relative ∆N/∆N0 differential (bottom) forms. The curves represent counts derived from sources in the NVSS (Condon et al., 1998) and Phoenix (Hop- kins et al., 2003) surveys. 38 Chapter 3. Source statistics does not follow the no-evolution monotonic curve (see Figure 2 in Wall, Pearson & Longair, 1980), results also show that FRIs undergo less evolution than FRIIs, and they do not participate much in the source-count “evolution bump” around S1.4GHz ∼1 Jy. This is in agreement with previous investigations stretching back to Longair (1966). 3.2 Luminosity distributions The luminosity distribution is defined as the distribution of luminosities in a sample complete to a given survey limit. It was computed for each morphological type for sources with available redshift in- formation, using the 1.4 GHz flux-density and spectral index values of each source. When the latter was unavailable, a value of α = −0.75 was used. This value cor- responds to the median spectral index value for extended sources in the CoNFIG sample and introduced a minimal bias in the results, since less than 6% of them have α ≥ −0.5. The luminosity is given by: logPν = logSν + 2logD + (1− α)log(1 + z) + C (3.1) where D is the co-moving distance expressed as D = c H0 ∫ z′ 0 dz√ Ωm(1 + z)3 +ΩΛ (3.2) With the radio luminosity Pν in W/Hz/sr, the radio flux Sν in Jy and the distance D in Mpc, the constant is C=18.97879. The FRI and FRII distributions for sources in all the samples in the CoNFIG cat- alogue are shown in Figure 3.4. They illustrate well the fact that FRI sources tend to lie at lower luminosities than FRII sources. However, it would be misleading to systematically use luminosity as an indicator of FR types: the overlap in luminosity is quite large between the two morphological types, and both high-luminosity FRI (11 sources with logP1.4GHz ≥ 25.0W/Hz/sr) and low-luminosity FRII (12 sources with logP1.4GHz ≤ 23.5W/Hz/sr) are present here. 3.3 P-z plane As previously stated, the RLF describes the space density of radio sources as a func- tion of luminosity and epoch. A widely covered luminosity-redshift plane (hereafter P-z plane) is thus the framework over which any modeling of the radio luminosity function is built (Rawlings, 2002). 39 Chapter 3. Source statistics Figure 3.2: Comparison of the relative differential source counts ∆N/∆N0 for the CoNFIG1-4 samples (red stars, blue open crosses, orange triangles and purple open squares respectively), as well as the 3CRR, CENSORS and Lynx & Hercules samples (turquoise circles, green open triangles and pink filled squares respectively), with a 1.4 GHz source count (black crosses and dotted line), compiled from the data of Bridle et al. (1972), Machalski (1978), Hopkins et al. (2003) and Prandoni et al. (2001). The normalization is given by ∆N0 = 3618∆(S −1.5) (Jackson & Wall, 1999) and the error bars correspond to √ N where N is the number of objects in each bin. This illustrates the completeness of each sample. It is however important to note the systematic low estimates in the lowest flux-density bin of each sample, which should be considered with caution. 40 Chapter 3. Source statistics Figure 3.3: Relative differential source counts ∆N/∆N0 for FRI (blue triangles) and FRII (red squares) sources. Here, the normalization is given by ∆N0 = 3618∆(S−1.5) (Jackson & Wall, 1999) and the error bars correspond to √ N where N is the number of objects in each bin. The counts are fitted by a polynomial (dashed lines) to indicate the shapes of the counts. The fit to the total FR count (FRI + FRII + uncertain) is also fitted by a polynomial (dot-dashed line). A 1.4 GHz source count, compiled from the data of Bridle et al. (1972), Machalski (1978), Hopkins et al. (2003) and Prandoni et al. (2001), is represented with crosses for comparison. 41 Chapter 3. Source statistics Figure 3.4: FRI (top) and FRII (bottom) luminosity distributions for sources in the CoNFIG catalogue. High-luminosity FRI (logP1.4GHz ≥ 25.0W/Hz/sr) and low-luminosity FRII (logP1.4GHz ≤ 23.5W/Hz/sr) are present in both samples. 42 Chapter 3. Source statistics The challenge in populating the P-z plane resides in finding a complete sample with the right balance between depth and coverage. Samples probing down to low flux- densities allow the detection of both moderately luminous sources at high redshift and moderate-redshift low-luminosity sources. However, because of the large range of sources that can be detected, these samples tend to cover only small areas (less than a few deg2 ), because of aperture synthesis. Consequently, they do not provide a reasonable picture of the populations in the local Universe. Inversely, samples probing only to higher flux densities, although limited to probing powerful sources up to more moderate redshifts, cover much larger areas and are more adequate to illustrate the distribution of lower-luminosity sources at low redshifts. The combination of CoNFIG, 3CRR, CENSORS and the Lynx & Hercules samples makes it possible to get both the advantages of depth and coverage, spanning a large range of luminosity and redshift (Fig. 3.5 and 3.6). It provides us with a powerful basis from which to study FRI and FRII sources and their space distributions. 43 Chapter 3. Source statistics Figure 3.5: P-z plane coverage for the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples, by radio-morphological type (limited to sources with estimated redshifts). The dot-dashed lines show the 1.4 GHz survey limits for each sample (from top down: 3CR - 3.5 Jy; CoNFIG-1 - 1.3 Jy; CoNFIG-2 - 0.8 Jy; CoNFIG-3 - 0.2 Jy; CoNFIG-4 - 50 mJy; CENSORS - 7.2 mJy; Lynx & Hercules - 0.5 mJy). Sources are identified by their radio morphological classifica- tion: FRIs, FRIIs, uncertain and compact sources are represented by blue stars, red circles, green dots and black crosses respectively. 44 Chapter 3. Source statistics Figure 3.6: P-z plane coverage for the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples, by redshift type. The dot-dashed lines show the 1.4 GHz survey limits for each sample (from top down: 3CR - 3.5 Jy; CoNFIG-1 - 1.3 Jy; CoNFIG-2 - 0.8 Jy; CoNFIG-3 - 0.2 Jy; CoNFIG-4 - 50 mJy; CENSORS - 7.2 mJy; Lynx & Hercules - 0.5 mJy). Sources are identified by their redshift type: spectroscopic, SDSS photoz2 photometric, KS-z estimated and SDSS mag-z estimated redshift are represented by orange asterisks, blue squares, red trian- gles and pink circles respectively. Sources with approximated redshifts, as described in §2.5.3, are represented by purple crosses. 45 Chapter 4 Estimating space-densities using the 1/Vmax method Estimates of the radio luminosity functions (RLF) were computed with the com- monly used 1/Vmax technique (Schmidt, 1968), in which the space-density ρ of N sources in some redshift bin ∆z is given by: ρ = N∑ i=1 1 Vi (4.1) where the volume Vi is computed for the maximum redshift within ∆z at which the source would still be included in the complete sample from which it belongs. This technique was applied to compute both the RLF of all sources in the CoNFIG catalogue, as well as the morphology-dependent RLFs. 4.1 The local FRI/FRII RLFs The general local 1/Vmax radio luminosity function for all sources in the CoNFIG catalogue, defined here as the RLF for z≤0.3, is displayed in Figure 4.1. It is consistent with both the local RLF (LRLF) of the 2dF survey (Sadler et al., 2002) and the SDSS (Best et al., 2005), and extends to significantly larger luminosities, because of the larger area covered by our bright samples giving rise to larger sample sizes. In addition, to check the validity of our model, the luminosity functions of steep- spectrum sources (FRI, FRII and Uncertain) at z=1.0 (in the interval z=[0.8;1.5]) and at z=2.0 (in the interval z=[1.2;2.5]) were computed and compared with ac- cepted RLF models at z=1.0 and z=2.0. Dunlop & Peacock (1990) used both parametric and free-form models to study the evolution of RLFs for steep and flat- spectrum sources, fitted from data from numerous samples. Willott et al. (2001) used a maximum likelihood parametric modeling method to determine the evolu- tion of the RLF of steep-spectrum sources, fitted from the 3CRR, 6CE and 7C 151-178 MHz samples. In each case, the CoNFIG RLF agrees well with both mod- els (Fig. 4.1). The FRI and FRII LRLFs (Fig. 4.2) show apparent differences, such as the flattening of the FRII LRLF at lower powers and the steeper slope of the FRI LRLF at higher 46 Chapter 4. Estimating space-densities using the 1/Vmax method Figure 4.1: Radio luminosity function ρ(P ) computed via 1/Vmax from the combi- nation of all data in the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples. The radio local luminosity function (LRLF) for z<0.3 is represented by green open squares. Error bars correspond to √ N where N is the number of objects in each bin. The LRLF is consistent with both the LRLF of the 2dF survey (Sadler et al., 2002) and the SDSS (Best et al., 2005), shown by solid and dotted lines respectively. In addition, the luminosity functions at z=1.0 (in the interval z=[0.8;1.5]) and at z=2.0 (in the interval z=[1.2;2.5]) are displayed by pink diamonds and purple dots respectively. For comparison, the modeled RLFs from Dunlop & Peacock (1990) - Model 7 - and Willott et al. (2001) at z=1.0 are displayed as dot-dashed and triple-dot-dashed lines respectively. 47 Chapter 4. Estimating space-densities using the 1/Vmax method Figure 4.2: Local luminosity function ρ(P ) for FRIs and FRIIs, represented by blue stars and red triangles respectively. The values for both confirmed and possible FRI/FRII are shown by filled symbols and thick error bars, whereas the values for confirmed FRI/FRII only are displayed with open symbols and thin error bars. Error bars correspond to √ N where N is the number of objects in each bin. 48 Chapter 4. Estimating space-densities using the 1/Vmax method powers. A chi-square test (described in Appendix D.2) was performed on the FRI and FRII LRLFs, giving a 1% probability that both samples come from the same population (χ2 =19.6 with 6 degrees of freedom). This implies that, locally, FRI and FRII sources constitute two distinct populations. However, these local space densities do not indicate any sharp luminosity divide between FRIs and FRIIs: at higher power (logP1.4GHz & 25.0W/Hz/sr) the FRII LRLF is only a factor of ∼3-4 higher than for FRIs and the two population show a large degree of overlap at intermediate powers. Because most of the approximate redshifts (§ 2.5.3) are greater than z=0.3, the results of the LRLF are completely unaffected by redshift uncertainties. 4.2 FRI/FRII evolution The RLF for each population was computed via 1/Vmax for different redshift bins (z= [0.3;0.8], z=[0.8;1.5] and z=[1.2;2.5]). In order to account for data with no redshift information, the random redshift assignment technique described in §2.5.3 was used. This process was repeated 1000 times and the final RLF was computed by averaging the results. For each population, the space-density enhancement above the local value was com- puted for confirmed+possible sources. FRI sources (Fig. 4.3) show an enhance- ment of a factor of 7 to 10 in the interval z=[0.8;1.5] for high luminosity sources (logP1.4GHz ≥ 24.0W/Hz/sr), in agreement with the results of Rigby, Best & Snellen (2008). This enhancement remains present at redshifts up to 2.5. A comparison of the space-density enhancement for FRI and FRII sources in the same redshift bins is shown in Figure 4.4. A chi-square test was performed to assess the differences in enhancement with luminosity. Overall the behaviour of FRI and FRII sources is very similar, with little or no enhancement in the interval z=[0.3;0.8] and up to a factor of 10 enhancement for higher luminosity sources in higher redshift bins. At z=[0.8;1.5] and z=[1.2;2.5], the chi-square tests give a 90% probability that both samples come from the same population. We conclude that the comparison of space-density enhancements between FRI and FRII sources does not show any significant differences, hinting at a common mechanism governing the luminosity- dependent evolution. In Figure 4.5, we investigated the impact of the approximate redshift selection method. We compared RLFs in the ranges z=[0.8;1.5] and z=[1.2;2.5] from the complete CoNFIG FRII sub-sample, where the approximate redshifts were drawn using the distributions in which all sources with no redshift were either distributed homogeneously within the given range (to estimate the maximum space densities), or ignored (equivalent to setting all of them outside this range, hence giving minimum space-densities). In the range z=[0.8;1.5], the RLFs computed using approximate redshifts distributed homogeneously, and ignored, differ by a factor of up to ∼ 2.5, which is comparable to the size of the error estimates in the LRLF and RLF com- 49 Chapter 4. Estimating space-densities using the 1/Vmax method puted here. The data and method therefore appear to give a reasonably reliable estimate of the RLF in this redshift range, across all radio powers. In the range z=[1.2;2.5] the approximate redshifts distribution method gives results close to the maximal density calculated, whilst the minimal density lies significantly below this at high radio powers. This is because most of the approximate redshifts lie in this redshift range (as expected since the sources have zlim ∼ 1) so the minimal density method provides a significant underestimate. The data allow an acceptable estimate of the RLF in this redshift range, but at higher powers (logP1.4GHz ≥ 26.0W/Hz/sr) significant uncertainties remain. 4.3 Summary The 1/Vmax estimates of the RLFs give some insight into the behaviour of FR space- densities. The shape of the LRLFs imply that, in terms of space-densities, FRI and FRII constitutes distinct populations locally. FRI sources show an increase in their space-densities by a factor of∼10 for logP1.4GHz ≥ 24.0 W/Hz/sr, indicating that these sources undergo positive evolution. Finally, a comparison of the FRI and FRII space-density enhancements indicates that both source type undergo similar evolution of their space-density. 50 Chapter 4. Estimating space-densities using the 1/Vmax method Figure 4.3: Space-density enhancement for confirmed+possible FRI sources for different redshift bins: z=[0.3:0.8] in green triangles, z=[0.8:1.5] in red stars and z=[1.2:2.5] in blue squares. Error bars correspond to √ N where N is the number of objects in each bin. An enhancement of a factor of 7 to 10 is seen at z=1.0 for high luminosity sources (logP1.4GHz ≥ 24.5W/Hz/sr), in agreement with Rigby, Best & Snellen (2008). This enhancement appears to continue to higher redshifts. 51 Chapter 4. Estimating space-densities using the 1/Vmax method Figure 4.4: Comparison of the space-density enhancement between con- firmed+possible FRI (blue stars) and FRII (red triangles) sources, for differ- ent redshift bins (z=[0.3:0.8], z=[0.8:1.5] and z=[1.2:2.5]). Error bars corre- spond to √ N where N is the number of objects in each bin. For FRIs with logP1.4GHz ≥ 26.0W/Hz/sr and FRIIs with logP1.4GHz ≤ 23.0W/Hz/sr and logP1.4GHz ≥ 27.0W/Hz/sr, the value of the LRLF was extrapolated from the power law fit described in §4.2. 52 Chapter 4. Estimating space-densities using the 1/Vmax method Fig. 4.4 cont. 53 Chapter 4. Estimating space-densities using the 1/Vmax method Figure 4.5: FRII RLFs in the ranges z=[0.8;1.5] and z=[1.2;2.5]where the approxi- mate redshifts were drawn using various distributions, in which all sources with no redshift were either approximated as described in § 2.5.3 (orange stars), distributed homogeneously in the given range (light blue dots) or ignored (purple triangles). 54 Chapter 5 Parametric modeling of the radio luminosity function Although 1/Vmax modeling gives a reasonable first evaluation of the FRI and FRII space-densities, patchy coverages of the P-z plane, especially for FRI sources, limits the range over which the RLFs are evaluated. Better estimates need to be computed in order to accurately compare the FRI and FRII radio populations. This chapter describes the parametric models used in this work. 5.1 Likelihood method Parametric RLF models provide a powerful tool in comparing the space density evolutions of the FRI and FRII populations. We adopted here a ‘single object sur- vey’ (SOS) maximum likelihood method. It was first formulated by Marshall et al. (1983) and extensively used by Willott et al. (2001), while the SOS aspect was de- veloped by Wall, Pope & Scott (2008). Details of the method, as well as the various evolution models used in this work, are presented in the following sections. Consider a complete sample of i objects, where each source has access to a sky fraction Ωi(P, z), depending on the flux-density limit line in the P-z plane and the area corresponding to the sample the source is drawn from. The Ω(P, z) function will then act both as a detection mask and as the area normalization factor in the modeling of the RLF. The likelihood function (L) for the i th object is the probability of observing one object in its (dP,dz) element times the probability of observing zero objects in all other (dP,dz) elements accessible to it. Using Poisson statistics for the probability of observing x objects f(x : µ) = e−µµx x! (5.1) and dN/dL = ρ(P, z) for the space-density, L is given by: L = N∏ i λ(Pi, zi)dzdPe −λ(Pi,zi)dzdP N∏ j 6=i e−λ(Pj ,zj)dzdP (5.2) where λ(P, z) = ρ(P, z)Ω(P, z)(∂V/∂z), and i denotes the (P,z) bins in which sources are present and j denotes all others. The value to minimize in our algorithm, using 55 Chapter 5. Parametric modeling of the radio luminosity function a downhill simplex method (the amoeba algorithm, developed by Nelder & Mead, 1965, see Appendix D.3), is then given by S = −2lnL S = −2 N∑ i=1 lnρ(Pi, zi) + 2 N∑ i=1 ∫ P ∫ z ρ(P, z)Ωi(P, z) ∂V ∂z dPdz + constant (5.3) Consider luminosity functions of the form ρ(P, z) = ρ0 · φ(z), where ρ0 = ρ(P, 0) is the LRLF. Substituting in Equ. 5.3 and setting the derivative with respect to ρ0 to zero, we get a maximum-likelihood estimate for ρ0 ρ0 = N N∑ i=1 ∫ P ∫ z ρ(P, z)Ωi(P, z)(∂V/∂z)dPdz (5.4) Putting this back into Equ. 5.3 gives S = −2 N∑ i=1 lnρ(Pi, zi) + 2ln N∑ i=1 ∫ P ∫ z ρ(P, z)Ωi(P, z) ∂V ∂z dPdz + (2N − 2N lnN) (5.5) As one can notice, the model input data are the positions of each source in the P-z plane, as well as the individual plane masks Ω(P, z). To compute the RLF in a given luminosity or redshift range, the data need to be limited to that range, which changes the Ω(P, z) mask. 5.2 Luminosity function models Best-fitting parametric forms of the FRI and FRII RLFs were determined for sources classified as confirmed + possible (c+p) (see §2.4.3) and errors in the model parame- ters were determined by using the bootstrap method, fitting the bootstrap parameter distributions with a Gaussian curve and taking the 68% (1σ) limits as the upper and lower-limit estimates. Because the likelihood modeling requires complete samples, approximated redshift estimates were assigned to sources with no redshift information, as described in §2.5.3. It can be seen from the results of the 1/Vmax estimates of the LRLFs (§4.1) that the local FRI and FRII space densities follow some variation of a power-law. Following this observation, a broken power law was used to describe the FR RLFs: ρ(P, 0) = ρn [( P Pb )β + ( P Pb )γ]−1 (5.6) 56 Chapter 5. Parametric modeling of the radio luminosity function where β and γ are the slopes of the power laws, Pb is the break luminosity between the two power-laws, and ρn is the normalization factor. To determine the best parametric description, two evolution models were tested. • Pure-density evolution As a starting point, luminosity functions following a pure-density evolution (PDE) as presented in Wall, Pope & Scott (2008) were considered. They initially assumed that all sources evolve at the same rate, independently of their luminosities. Here, an exponential form of the evolution was adopted: φ(z) = eMτ (5.7) where τ is the lookback time fraction (i.e. τ = t/t0, where t is the epoch corre- sponding to z and t0 is the Hubble time defined as t0 = 1/H0), defined as: τ(z) = z∫ 0 dz′ (1 + z′) √ Ωm(1 + z′)3 +ΩΛ (5.8) In total, this model has 4 parameters: β, γ, Pb determining the shape of the RLF and M describing its evolution. • Luminosity-density evolution It has been observed in several previous studies that low-power radio sources tend to show weak evolution while high-power sources evolve very strongly (e.g. Jackson & Wall, 1999; Donoso, Best & Kauffmann, 2009). This bimodal, luminosity-dependent behaviour of the evolution (Longair, 1966) can be represented with a luminosity- dependent density evolution model, hereafter termed ‘luminosity-density evolution’ (LDE) model, in which the evolution parameter varies with luminosity as: M(P ) =   0.0 P < P1 Mmax logP−logP1 logP2−logP1 P1 ≤ P ≤ P2 Mmax P > P2 (5.9) This model now includes 6 parameters: β, γ, Pb determining the shape of the RLF and Mmax, P1, P2 describing the evolution. 57 Chapter 5. Parametric modeling of the radio luminosity function 5.3 Results The parameters corresponding to the best-fitting PDE and LDE models for FRI and FRII are tabulated in Table 5.1, and the RLFs and corresponding error spread displayed in Figures 5.1 and Figure 5.2 respectively. Because of the simplicity of both models, and because of the much larger fraction of data at z ≤ 1, the curves for 0.0 ≤ z ≤ 0.3 and 0.3 ≤ z ≤ 0.8 give much better fits to the data than at higher redshifts. Both PDE and LDE models show positive evolution for FRI source (M > 0), which is in agreement with our previous results. Each model is compared to the 1/Vmax estimates in the corresponding redshift range using chi-square statistics (bottom rows in Table 5.1). For both FR types, the LDE model is the most satisfactory, with χred < 1.4, and will thus be the one used in the following analysis. FRI and FRII display obvious differences in the shape of the RLF, such as the steeper slope for FRI sources for logP1.4GHz > log(Pb) and the slight flattening for FRIIs at lower luminosities. However, looking at the evolution parameters, both FR sources show striking resemblance in their evolution, with similar luminosity limits P1 and P2, and similar values of the evolution constant M (within errors). As seen in Figure 5.3, FRI sources dominate for logP1.4GHz . 24.0 − 24.5W/Hz/sr (the luminosity limit increasing with redshift). At redshift zmean ∼0.7, at which the bulk of the CoNFIG radio sources are located, this corresponds to sources with flux densities S1.4GHz . 14.0mJy. This is in agreement with the results of the FRI source count (§3.1), FRI dominating over FRII at the mJy level. Space-density enhancements with respect to luminosity and redshift are displayed in Figures 5.4 and 5.5. At similar luminosities, above logP1.4GHz ∼ 24.0W/Hz/sr, FRII show only slightly stronger enhancement than FRI, by a factor of ∼1.3, in- creasing at higher luminosities to ∼1.5. At z=1.0, FRI and FRII sources with logP1.4GHz ≥ 25.0W/Hz/sr show a maximum enhancement of factors of 3 and 3.6, increasing to factors of 4.9 and 6.4 at z=2.0, respectively. The evolution of FRII sources at higher powers is thus only marginally stronger than that of FRIs. 5.4 Summary Both pure-density evolution and luminosity-density evolution models were used in the search for the best-fitting parametric form of the FR RLFs. Based on chi-square statistics, the LDE representation was chosen as the most appropriate. The models show differences in the shape of the FR RLFs, such as the steeper slope for FRI sources for logP1.4GHz > log(Pb) and the slight flattening for FRIIs at lower luminosities, which could indicate that both populations are distinct. However, both FR type show striking resemblance in their evolution, with space-densities for FRI sources increasing with redshift at a rate only marginally lower than for FRII sources at similar luminosities. These similar behaviours in enhancement point toward the hypothesis that FRI and FRII sources have related origins. 58 Chapter 5. Parametric modeling of the radio luminosity function Table 5.1: Best-fitting parameters for PDE and LDE models for FRI and FRII sources. The RLF slopes β and γ are given for ∆logP bins, luminosities are given in W/Hz/sr and ρ0 in Mpc −3. PDE FRI FRII β 0.86+0.03−0.05 0.46 +0.08 −0.05 γ 1.89+0.06−0.07 1.36 +0.02 −0.01 log(Pb) 24.89 +0.06 −0.07 24.28 +0.04 −0.02 log(ρ0) −24.49+0.17−0.16 −23.67+0.04−0.10 M 0.54+0.14−0.52 3.16 +0.03 −0.01 χ2red 4.37 2.24 (d.o.f=28) LDE FRI FRII β 0.61+0.08−0.24 0.50 +0.06 −0.11 γ 2.10+0.07−0.19 1.37 +0.01 −0.02 log(Pb) 24.14 +0.13 −0.25 24.07 +0.01 −0.01 log(ρ0) −22.73+0.63−0.38 −23.12+0.01−0.02 M 2.65+0.43−1.32 3.10 +0.01 −0.01 log(P1) 23.64 +0.12 −0.25 23.81 +0.02 −0.02 log(P2) 25.14 +0.12 −0.25 25.09 +0.01 −0.01 χ2red 1.38 1.18 (d.o.f=37) 59 Chapter 5. Parametric modeling of the radio luminosity function FRI Figure 5.1: FRI (here) and FRII (following page) RLFs for the best-fit PDE (green solid lines) and LDE (purple dashed lines) broken power-law models in various redshift slices - 0.0<z<0.3 (top left), 0.3<z<0.8 (top right), 0.8<z<1.5 (bottom left) and 1.2<z<2.5 (bottom right). The respective CoNFIG 1/Vmax estimates are displayed as black crosses. The lowest luminosity bin in which the RLFs are 1/Vmax estimated correspond to the completeness limit of the samples at each epoch. 60 Chapter 5. Parametric modeling of the radio luminosity function FRII Fig. 5.1 cont. 61 Chapter 5. Parametric modeling of the radio luminosity function Figure 5.2: FRI (top) and FRII (bottom) RLFs for the best-fit PDE (left) and LDE (right) broken power-law models in the range 0.0<z<0.3. The grey regions correspond to the error in the RLFs derived using the bootstrap method. 62 Chapter 5. Parametric modeling of the radio luminosity function Figure 5.3: RLFs for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, for redshifts z=0.15 (solid line), z=0.5 (dash-dotted line), z=1.0 (dashed line) and z=2.0 (dotted line). 63 Chapter 5. Parametric modeling of the radio luminosity function Figure 5.4: Space-density enhancement with respect to luminosity for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, for redshifts z=0.5 (dash-dotted line), z=1.0 (dashed line) and z=2.0 (dotted line). 64 Chapter 5. Parametric modeling of the radio luminosity function Figure 5.5: Space-density enhancement with respect to redshift for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, at logP1.4GHz= 23.9 (solid), 24.3 (dashed), 24.7 (dot-dashed) and 25.1 (triple-dot-dashed) W/Hz/sr. 65 Chapter 6 RLF modeling using a free-form technique: a preliminary study One of the main limitations of the parametric models presented in Chapter 5 is that they require implicit assumptions about the shape of the RLF. The free-form modeling technique of Rigby et al. (2010) allows determination of the space density of a given population without providing any parametric expression for the RLF. The method consists of dividing the P-z plane into bins and populating it with val- ues for the space density, which are each considered as a parameter to optimize in order to fit existing data. The outputs of the model are P-z grids populated with sources space-densities. This model is an improved alternative to 1/Vmax models for deriving space-density measurements at different powers and redshifts. It has the further advantage to be versatile, allowing for the input of other data such as radio source count or AGN LRLF, better constraining the model. This section describes the details of the method and the preliminary results obtained when applied to data from the CoNFIG catalogue. 6.1 Details of the method Radio sources were divided into three categories: star forming (SF), flat-spectrum (FS - which includes sources classified as C and C*) and steep-spectrum (SS - which includes sources classified as I, II, U and S*). The SS sources were in turn split into FRI and FRII classes. These four grids (SF, FS, FRI and FRII) were considered separately, since there is a strong possibility that they might evolve differently. Different populations can then be represented: the full radio population is the sum of all grids, the AGN only population is the sum of the FS, FRI and FRII grids, and the FRI and FRII populations are each represented by their respective grid. The inclusion of the SF grid was necessary since at the low flux densities covered by the CENSORS and Lynx & Hercules samples, radio emission from star-forming galaxies becomes significant. Similarly, assuming that radio sources follow the uni- fication model (Jackson & Wall, 1999), steep- and flat-spectrum sources do not represent different populations (Dunlop & Peacock, 1990). A reliable modeling of the steep-spectrum sources, corresponding to morphologically extended FR sources in our sample, can thus not be done independently of the flat-spectrum sources, if all available data are to be used. 66 Chapter 6. RLF modeling using a free-form technique: a preliminary study The values of the space densities were optimized using a downhill simplex method. The algorithm requires the user to input initial modeling parameters (100 values per grid) as guidelines, and then varies these parameters to minimize a user-defined function, here −logL, where L is the likelihood function: χ2 = ∑ (Xdata −Xmodel)2 σ2 (6.1) L = exp (−χ2 2 ) (6.2) where Xdata and Xmodel are respectively the value of the data-set and model statis- tics at a given point, and σ = √ N is the error associated with each data point. 6.1.1 Setting up the grids A P-z grid was created for each category and space densities were evaluated for lumi- nosities between 19.25 ≤ logP1.4GHz ≤ 29.25W/Hr, equally separated by ∆logP (W/Hr) = 0.5, and redshifts z=0.05, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0. These points were chosen so as to allow sensitive calculations to be made without having so many parameters involved that finding a best fit becomes a prohibitively long task. This P-z plane was constrained by the CoNFIG catalogue data. To populate the SF and FS grids, space densities were computed respectively from evolving the star forming LRLF of Sadler et al. (2002) using the evolution func- tion of Smolc̆ilć et al. (2009), and from the median of Dunlop & Peacock (1990) flat-spectrum models (see Appendix C.1 and C.2). Since the goal of this work is to study the evolution of the FR classes, these grids were kept fixed during the entire process. The steep-spectrum sources, separated into FRI and FRII populations, each with a separate P-z grid, were populated with ‘first guess’ values of the space densities, computed from the mean of Dunlop & Peacock (1990) steep-spectrum models. 6.1.2 Computing the model statistics A flux-density redshift (S-z hereafter) grid containing sources numbers is easier to use for data comparison than a P-z grid containing sources densities. For this reason, each P-z grid is associated with a corresponding S-z grid, which is divided into 120 flux-density bins between S1.4GHz=0.0001 Jy and S1.4GHz=50.0 Jy, and 300 redshift bins in the range z=0−6. The luminosity was computed for the midpoint of each S-z bin. For flat-spectrum sources, a spectral index of α=0.0 was assumed. For steep-spectrum sources, the choice of α is complicated by the spectral curvature seen in some radio-loud sources (Laing & Peacock, 1980), which can cause the spectral indices to increase at higher 67 Chapter 6. RLF modeling using a free-form technique: a preliminary study redshifts. To take this into account, the spectral indices for the steep-spectrum grid were computed using the α − z relation of Ubachukwu et al. (1996), α = 0.83 + 0.4 log(z). A Gaussian scatter in α of 0.2 was also incorporated at each redshift to account for variations in the value. In practise this was implemented by creating 21 versions of the S-z grid, extending to σ = ±2.5 (in steps of 0.25), which were each assigned a weight depending on how far they were away from the mean. However, grids where α < 0.5 were ignored and their weight evenly distributed over the remainder. The P-z grid densities, ρ(S, z), corresponding to each (P,z) pair were then interpolated onto the bins in these 21 new S-z grids, the final grid carried forward into the minimization being their weighted sum. The corresponding P-z grid density was interpolated onto the S-z bins. The total number of sources per steradian in each bin (enclosing a volume dV corresponding to redshift bin dz) was then estimated: N(S, z) = ρ(S, z) dV dz d(logS)dz (6.3) Source counts and redshift distributions for all sources, as well as for the FRI and FRII populations, were computed from the S-z grids, while LRLFs (estimated at z=0.3 to match data) were obtained from the P-z grids. 6.1.3 Optimizing the FR grids The model statistics were then compared to the following data: - 1.4 GHz reference source count (§3.1) - FRI and FRII CoNFIG source counts (§3.1) - AGN LRLF (Best et al., 2010) - CoNFIG FRI and FRII LRLFs (§4.1) - CoNFIG redshift distributions for all sources (§2.5) - CoNFIG redshift distributions for FRI and FRII sources (§2.5). Data such as the 1.4 GHz source count and the SDSS LRLF were included in the fitting to ensure the reliability of the results, beyond the CoNFIG limits. Because models can only be compared to data at the points where the latter are evaluated, each data-set and the associated errors were represented by polynomial fits which were then evaluated at the grids redshifts, luminosities and flux-densities. The value of the likelihood was computed in each case, and the total log-likelihood −logL tallied and returned to amoeba. Using the sum of the likelihood values for all statistics presents the risk of double- counting as FRI and FRII data are sub-samples of radio sources. However, in this work, the effect is minimal, as the general statistics were computed from samples of several hundred thousands sources in size, whereas the FR samples contain at most 68 Chapter 6. RLF modeling using a free-form technique: a preliminary study ∼600 sources. This free form method is summarized in Figure 6.1. 6.1.4 Uncertainties Once optimized values of the space densities were determined, uncertainties asso- ciated with each point of the P-z grid were calculated. These arise due to the degeneracy across grid values in the model. Considering a parameter p, the conditional error (holding all other parameters con- stant) is given by: σ2cond = ( −∂lnL ∂p2 |peak )−1 (6.4) When the variation of other parameters is taken into account, the marginalized error is used. It comes from the diagonal of the inverse Hessian matrix: Hi,j = ∂lnL ∂pi∂pj (6.5) σ2marg = [Hi,i] −1 (6.6) Here, the diagonal terms of the Hessian matrix are set to −1/σ2cond. The marginal- ized error was used to determine the uncertainties in the modeled RLFs. Because of the double-counting effect described previously, these uncertainties are effectively slightly underestimated. 69 Chapter 6. RLF modeling using a free-form technique: a preliminary study Radio Galaxies Star Forming (SF) Flat Spectrum (FS) Luminosity: 20 bins, 19.25≤logP≤29.25 Redshift: 9 bins, 0.05≤z≤6.0 space-densities in each P-z bins computed from previous models. FIXED THROUGH MODELING PROCESS Steep Spectrum     H H H Hj FRI FRII The value of the space density in each bin corresponds to a VARYING PARAMETER S-z grid converted to P-z grid corresponding to SF and FS grids ? Compute the Modeled Statistics LRLF AGN only (FS+FRI+FRII) FRI FRII Source Count All sources (SF+FS+FRI+FRII) FRI FRII Redshift Distribution All sources (SF+FS+FRI+FRII) FRI FRII ? Compare to data by computing the likelihood amoeba varies the FRI and FRII space-densities in each P-z bin to maximize the likelihood ff Figure 6.1: Summary of the free-form modeling technique. 70 Chapter 6. RLF modeling using a free-form technique: a preliminary study 6.2 Best fit RLFs The best fitting models of the FRI and FRII RLFs yielded a total value of the likelihood of logL = −111.4, corresponding to a total chi-square value of χ2 = 513.01. With a total number of degrees of freedom of ν = 154, the reduced chi- square value is χ2red = 3.3. For each data set used in the fitting process, the values of −logL and χ2, along with the corresponding numbers of degrees of freedom (d.o.f.), are tabulated in Table 6.1, while Figure 6.3, 6.4 and 6.2 illustrate how the best-fit model describes the data. Table 6.1: Likelihood and chi-square values for the best fitting RLFs models. Data −logL χ2 d.o.f. χ2red SC All -10.48 48.25 25 1.93 SC FRI -11.21 51.62 15 3.44 SC FRII -8.80 40.41 15 2.69 Zdist All -16.42 75.61 25 3.02 Zdist FRI -11.66 53.70 24 2.24 Zdist FRII -40.85 188.10 24 7.84 LRLF AGN - SDSS -3.37 15.54 7 2.22 LRLF FRI -1.12 5.15 4 1.29 LRLF FRII -7.50 34.52 7 4.93 Total -111.40 513.01 154 3.33 The high overall reduced chi-square indicates that, in its preliminary form, the model fails. Although it gives a reasonable fit of the AGN LRLF (Fig. 6.2, top), it underestimates the number densities of sources in the range 22.2 ≤ logP1.4GHz ≤ 24.6W/Hz/sr. Since both the FRI and FRII LRLF models tend toward the upper limits of the data in this luminosity range, the loss in the general LRLF probably emerges from the model used to determine the flat-spectrum LRLF. One should also note that since FRI data are more sparse than FRII data, RLFs for FRI are not as well constrained as for FRII. RLFs at z=0.5 and z=1.0 for steep-spectrum (given as FRI+FRII in this work) sources are compared to that of Rigby et al. (2010) in Figure 6.5. In both cases, the models give similar results, verifying the consistency of this particular free-form modelling procedure. The FRI and FRII model RLFs at z=0.5, 1.0 and 2.0 (Fig. 6.6 and 6.7) are of the same order of magnitude as the RLFs computed using 1/Vmax in the redshift bins z= [0.3;0.8], z=[0.8;1.5] and z=[1.2;2.5] (as described in §4.2). As seen in the P-z plane coverage plot (Fig. 3.5), FRII sources are sparse in the range 23.0 ≤ logP1.4GHz ≤ 24.0W/Hz/sr for z > 0.5, weakening the model constraints in that luminosity range. This could explain the anomalous drops in the modeled space 71 Chapter 6. RLF modeling using a free-form technique: a preliminary study densities in that luminosity range. Similarly, FRI sources with logP ≤ 23.5W/Hz/sr are almost absent in the sample for z<0.3, and the model is unconstrained in this luminosity range. 6.3 Summary Although giving reasonable estimates of the FR space-densities when compared to the 1/Vmax estimates, the free-form model in it preliminary form does not provide the best possible fit to the various statistics considered. This may be due to a number of factors, such as erroneous constraints imposed by the star-forming and flat-spectrum sources models, or the presence in the sample of CSS and uncertain sources which are not taken into account in the modeling of the SS space densities. Another possibility is loss of constraint from the combination of the CoNFIG and complementary-sample redshift distributions. Fitting the distribution separately for each sample would bring important supplementary constraints. In addition, in its current version, the free-form model algorithm consider the values of the space-densities in each P-z bins as independent parameters. This allows large anomalous drops in the RLFs when data are sparse in a given P-z bin, and could be avoided by implementing a dependence between adjacent bins. These issues require further investigation before further progress can result from this promising technique. 72 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.2: LRLF model fits (orange dashed line) for AGN, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the bottom left corner. 73 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.3: Source count model fits (orange dashed line) compared to data for all radio, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the top left corner. 74 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.4: Redshift distribution model fits (orange dashed line) compared to data for all radio, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the top left corner. 75 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.5: Comparison of steep-spectrum RLFs at z=0.5 (top) and z=1.0 (bottom) between the CoNFIG (black solid line) and Rigby et al. (2010) (purple dashed line) models. Errors in each models are represented by black dot-dashed and purple dotted lines respectively. The models give similar results, verifying the consistency of this particular free-form modelling procedure. 76 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.6: Model RLF for FRI sources at z=0.5, z=1.0 and z=2.0. The black crosses and dashed line represent the result of the model. The RLF estimated from the 1/Vmax technique are represented in green (z=[0.3;0.8]), red (z=[0.8;1.5])and blue (z=[1.2;1.5]) symbols for comparison. 77 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.7: Model RLF for FRII sources at z=0.5, z=1.0 and z=2.0. The black crosses and dashed line represent the result of the model. The RLF estimated from the 1/Vmax technique are represented in green (z=[0.3;0.8]), red (z=[0.8;1.5])and blue (z=[1.2;1.5]) symbols for comparison. 78 Chapter 6. RLF modeling using a free-form technique: a preliminary study Figure 6.8: RLF for FRI (blue solid line) and FRII (red dashed-line) with respect to luminosity, for redshifts z=0.1, 0.5, 1.0 and 2.0. 79 Chapter 7 Discussion 7.1 Summary The goal of the present work was to determine whether Fanaroff-Riley sources of type I and II originate from similar or distinct parent populations, by investigating their space-density behaviour. For this purpose, the Combined NVSS-FIRST Galaxy catalogue, a large compre- hensive catalogue of morphologically-classified radio sources, was constructed. It consists of 4 samples, which include all sources selected from the NVSS catalogue with S1.4GHz ≥1.3, 0.8, 0.2 and 0.05 Jy respectively in different areas, totalling 858 sources. Sources were classified according to their radio morphology as FRI, FRII, Compact or Uncertain, and redshift information was retrieved for 74.3% of the cat- alogue. To improve the luminosity-redshift ranges covered by the catalogue, three complementary samples were appended: 3CRR (Laing, Riley & Longair, 1983), CENSORS (Best et al., 2003) and the Lynx & Hercules sample (Rigby, Snellen & Best, 2007). The final catalogue contains 1114 sources and is 75.9% complete for redshift information and 94.2% complete for radio morphologies. It includes a total of 136 FRI and 571 FRII sources, making it one of the largest, most comprehensive databases of morphologically-classified radio sources. In order to determine the space-density evolution of each FR population, source statistics were computed, to be used in the RLF modeling routines: Luminosity distributions Although FRI tend to have lower luminosities than FRIIs, there are no strong lumi- nosity cut-offs between the two classes, with a large overlap for 23.0 ≤ logP1.4GHz ≤ 25.0W/Hz/sr. In addition, and in contrast with assumptions in previous studies, the CoNFIG catalogue includes several high-luminosity FRI sources, with logP1.4GHz ≥ 25.0W/Hz/sr, as well as low-luminosity FRII sources, with logP1.4GHz ≤ 23.5 W/Hz/sr. Redshift distributions The entire CoNFIG catalogue shows a mean redshift of z≃0.7, indicating where the highest contribution to other statistics typically originate. Looking at the FR distributions individually, FRII show higher mean and median redshifts (z ∼ 0.6) than FRI (z ∼ 0.1). Source counts The CoNFIG catalogue permitted computation of the first FR morphology-dependent 80 Chapter 7. Discussion source counts, showing that FRII sources dominate the total count above ∼10 mJy, where FRIs take over, dominating over both FRII and starburst populations at milli-Jansky levels. The FRI source count shows non-linear features at both low and high flux densities, hinting at some level of evolution for this population. Since virtually all sources can be detected in the local universe (z≤0.3), and detec- tions stay at a reasonable level up to z∼1, estimates of the radio luminosity functions (RLFs) evaluated using the commonly used 1/Vmax technique give reasonably ac- curate representations of the FR space densities. The LRLFs (z≤0.3) for each FR class show apparent differences in shape, such as the flattening of the low-power FRII LRLF and the steeper FRI slope at higher luminosities, indicating that locally, FRI and FRII constitute distinct populations. However, when comparing the space-density enhancement ρ/ρ0 of each population, they seem to follow very similar evolution patterns, with a 90% probability at z≥0.8 of both distributions originating from the same parent population. These results are consistent with those of previous studies (Willott et al., 2001; Sadler et al., 2007; Rigby, Best & Snellen, 2008), in which clear density enhancement for FRI sources with logP1.4GHz ≥ 24.0W/Hz/sr at z=1 was found. In addition, Rigby, Best & Snellen (2008) concluded that, at these radio powers, FRIs evolve like FRIIs. Because patchy coverages of the P-z plane limits the range over which the RLFs are evaluated, especially for FRI sources, parametric modeling via a maximum likelihood method was applied. Observation of the shape of the RLF from 1/Vmax estimates indicated the choice of a broken power-law luminosity function, ρ(P, 0), which changes following an evolution function φ such that ρ(P, z) = φ × ρ(P, 0). Two evolution models were tested: (1) pure density evolution (PDE) supposing that all sources evolve at the same rate independently of their luminosities, and (2) luminosity-density evolution (LDE) assuming bimodal luminosity-dependent evolution regimes with a transition region. Comparing each model with the 1/Vmax data using chi-square statistics, it was de- termined that the LDE model was most appropriate to fit both FR RLFs. The source types show striking similarities in their evolution (within errors), with space- densities for FRI sources increasing with redshift at a rate only marginally lower than for FRII sources at similar luminosities. As noted from the results of 1/Vmax estimates, this points toward the hypothesis that FRI and FRII sources have related origins. As an introduction to future work, preliminary results from a free-form modeling approach were then presented. The technique was based on the work of Rigby et al. (2010), in which the entire radio population was divided into three categories: star-forming (SF), flat-spectrum (FS) and steep-spectrum (SS) sources. Here, the latter was sub-divided into FRI and FRII populations. A P-z grid was assigned 81 Chapter 7. Discussion to each category and populated with values of the space density, which were kept fixed for SF and FS sources and allowed to vary for SS sources. The best SS-grid estimate was determined using maximum likelihood statistics. This method is an improved alternative to 1/Vmax estimates of the space-densities at different powers and redshifts, having the advantage to be versatile, allowing for the input of other data such as radio source count or AGN LRLF, better constraining the model. In its current preliminary form, the model does not provide the best possible fit to the various statistics considered, and any further investigation of the FR space densities via free-form models would be too unreliable. Further investigations, such as implementing a smoothing function between adjacent P-z bins, will improve the fitting process. A summary of the 1/Vmax estimates, parametric models and preliminary free-form results for FRI and FRII RLFs and space-density enhancements are presented in Figure 7.1 and 7.2. 7.2 Achievements of this work • CoNFIG catalogue - largest, most comprehensive databases of morphologically- classified radio sources, including new VLA observations. • First morphology-dependent source counts. • First morphology-dependent luminosity distribution - power overlap between FR distributions. • First morphology-dependent LRLFs - showing obvious differences. • First morphology-dependent models of the RLFs via: – 1/Vmax – SOS maximum likelihood parametric modeling technique – preliminary free-form modeling technique • Comparison of resulting model RLFs - models consistent with data • Comparison of space-density enhancements for FRI and FRII sources - simi- larities in enhancement behaviours. 82 Chapter 7. Discussion Figure 7.1: Comparison of FRI (thick blue and squares) and FRII (thin red and triangles) RLFs in the 1/Vmax estimates (left), parametric LDE model (center) and free-form model (right) at z=0.5 (top), 1.0 (center) and 2.0 (bottom). 83 Chapter 7. Discussion Figure 7.2: Comparison of FRI (thick blue and square) and FRII (thin red and triangles) space-density enhancements in the 1/Vmax estimates (left), parametric LDE model (center) and free-form model (right) at z=0.5 (top), 1.0 (center) and 2.0 (bottom). 84 Chapter 7. Discussion 7.3 Conclusion Our results show that, at comparable powers, FRI and FRII sources show strong similarities in evolution, which indicate that they very probably share a common mechanism governing the luminosity-dependent evolution. In addition, the division in luminosity between both populations appears to be extremely broad, which is not consistent with pictures in which differences between FRIs and FRIIs of similar powers arises from different jet-production mechanisms. What then differentiates FR sources? Jet strengths scales broadly with accretion powers into the central SMBH, which are related to emission-line strengths (Hine & Longair, 1979; Hardcastle et al., 2006). Hence, strong, collimated jets are associated with radiatively-efficient accretion of cold gas and high-excitation galaxies (HEG), while weaker jets are associated with hot gas accretion and low-excitation galaxies (LEG). If the FR dichotomy was fully dependent on the jet properties, FRI/II sources would be systematically associated with LEG/HEG respectively. However, in several cases (e.g. Willott et al., 2001; Heywood et al., 2007; Hardcastle et al., 2007), small subsets of FRIs were found in HEG samples, as well as some FRIIs being associated with LEGs. These considerations, combined with the similarities in evolution for FR sources of comparable luminosities, suggests that the observed FRI/II differences probably arise from a combination of intrinsic mechanisms and environmental effects. In a recent study, Donoso, Best & Kauffmann (2009) found that low-luminosity sources (logP1.4GHz ≤ 24.0W/Hz/sr) arising from weak accretion modes evolve weakly with redshift while high-luminosity sources arising from weak accretion modes undergo strong evolution. Space-density enhancements for both FR populations are fully consistent with this picture. We thus propose the following scenario. At a given luminosity, all radio AGN share a common accretion mechanism. High-luminosity sources featuring strong jets display FRII structures (Baum & Heckman, 1989; Ghisellini & Celotti, 2001), unless located in very dense environments, in which case jets are disrupted and the sources emerge as high-luminosity FRIs (Kaiser & Best, 2007). In contrast, low-luminosity sources presenting weak jets display FRI structures in most cases. However, when the environmental pressure of the inter-galactic medium is extremely low, sources appear as low-luminosities FRIIs. This scenario has the advantage of reconciling the unified model of AGN of Jackson & Wall (1999) with all observational data, by replacing the FRI/FRII parent pop- ulations by low/high-efficiency accretion galaxies. BL Lac objects, which are then beamed counterparts of LEGs, would include a sub-population with FRII structure. Similarly, beamed counterparts of HEG, QSOs, would be expected to include FRI QSOs. A high/low-luminosity or HEG/LEG classification thus seem more physically rele- 85 Chapter 7. Discussion vant than sorting AGN by FR morphologies. The question now is: How did these two accretion modes arise? By studying a sample of nearby 3CR radio galaxies and their optical properties, Baldi & Capetti (2008) found indication of recent star formation in HEGs, but not in the LEGs. In a different study, Emonts et al. (2008) found no evidence for large-scale HI in low-luminosity sources, but significant amounts in high-luminosity sources. This suggest that this dichotomy results from different star formation histories, influencing the mode of accretion on to the central supermassive black hole. Several recent studies (Hardcastle et al., 2007; Kauffmann et al., 2008; Baldi & Capetti, 2008) suggest that HEGs have undergone a recent major merger that triggered star formation, driving cold gas towards the central engine, powering the AGN (cold gas accretion). On the other hand, LEGs have had no such recent merger, and thus are fuelled by the hot ISM and show no evidence of recent star formation. Thus, although some other alternative explanations for the influx of cold gas in HEGs exists, such as recycled gas from dying stars (Ciotti & Ostriker, 2007), mergers seem to give the most likely explanation for cold gas accretion. 7.4 Future work In addition to the study of space densities in the FR dichotomy, the CoNFIG cata- logue provides a powerful tool in other possible AGN studies. The spectral-index and radio-morphology completeness, especially for FRI and low- luminosity sources, could be greatly improved by the availability of data at MHz frequencies. The first obvious reason for this is to compute source spectral indices, preferably from low-resolution data, to ensure the accuracy of the flux-density and luminosity measurements. Following this, high-resolution imaging of the CoNFIG sources, to detect low surface-brightness lobes and their extended structures, would allow a more accurate classification of extended radio sources. The optical identification and redshift coverage of the catalogue could also be greatly improved from wide-field K-band imaging. Because optical counterparts of radio galaxies are mostly red ellipticals, K-band is optimal to identify the host galaxy. The availability of relatively accurate K-z relations (e.g. Brookes et al., 2006) would also allow an estimate of the source redshift. In addition, the availability of K-band optical data, in combination with SDSS data, would allow us to measure the object density to examine the environment of each object and analyze the relation between environment and FR class more accurately than possible to date. Just as a large comprehensive sample of radio-morphologically classified sources is necessary to examine the FR-dichotomy, collecting spectroscopic information for a select fraction of sources in CoNFIG (e.g. FRIs and FRIIs) is important to inves- tigate the high/low-excitation classification and its relation to other classifications. For this purpose, the spectroscopy can either be retrieved from existing surveys, 86 Chapter 7. Discussion such as SDSS, or obtained by direct measurements. As for FRI/FRII sources, space-densities for low/high excitation radio galaxies could then be computed to determine the evolution of each population, and optical and radio characteristics of each set of objects could be compared directly. Finally, the advent of high-resolution high-sensitivity (sub)-millimetre instruments, such as ALMA and Hershel, will allow the examination of the accretion disk and kinematics around the central black hole in samples of AGNs. Including these data in the CoNFIG catalogue will provide an unprecedented means of correlating accre- tion mechanisms with optical and radio properties of AGNs. These possible future projects will significantly improve our understanding of the different classes of radio AGN, enabling us to examine the physical mechanisms be- hind each category. They will also give us a decidedly better view of low-luminosity sources, including FRIs. Ultimately, this will give us a key observational testing ground for theories of AGN formation and evolution (beyond radio-morphological classification) and may enable us to assess directly their role in galaxy-evolution feedback processes. 87 Bibliography Abazajian K. N., et al., 2009, Astroph. J.Sup. S., 182, 543 Antonuccio-Delogu V. & Silk J., 2008, Mon. Not. R. Astr. Soc., 389, 1750 Baldi R. D. & Capetti A., 2008, Å, 489, 989 Baum S. A., Zirbel E. L. & O’Dea C. P., 1995, Astroph. J., 451, 88 Baum S. A. & Heckman T. M., 1989, Astroph. J., 336, 681 Beasley A. J., et al., 2002, Astroph. J. Sup., 141, 13 Becker R. H., White R. L. & Helfand D. J.,Astroph. J., 450, 559B Bennett C. L. et al., 1986, Astr. J. Sup., 61, 1 Best P. N., Longair M. S. $ Röttgering H. J. A., 1998, Mon. Not. R. Astr. Soc., 295, 549 Best P. N., Arts J. N., Röttgering H. J. A., et al. 2003, Mon. Not. R. Astr. Soc., 346, 627 Best P. N., Kauffmann G., Heckman T. M. & Ivezić Z., 2005, Mon. Not. R. Astr. Soc., 362, 9 Best P. N., Kaiser C. R., Heckman T. M., & Kauffmann G., 2006, Mon. Not. R. Astr. Soc., 368, 67 Best P. N. et al., 2010, in prep. Bicknell G. V., 1995, Astron. J.Sup. S., 101, 29 Blundell K. M. & Rawlings S., 2001, Astroph. J., 562, 5 Bridle A. H., Davis M. M., Fomalont E. B. & Lequeux J., 1972, Astron. J., 77, 1401 Brookes M. H., Best P. N., Rengelink R. & Röttgering H. J. A., 2006, Mon. Not. R. Astr. Soc., 366, 1265 Browne I.W. A., Orr M. J. L., Davis R. J. & Foley A., 1982, Mon. Not. R. Astr. Soc., 198, 673 Burns J. O., Schwendeman E. & White R. A., 1983, Astroph. J., 271, 575 88 Bibliography Capetti A. et al., 1995, Astron. Astrophys., 300, 643 Ciotti L. & Ostriker J. P., 2007, ApJ, 665, 1038 Condon J. J., et al., 1998, Astroph. J., 115, 1693 Cowie L. L. et al., 1996, Astron. J., 112, 839 Donoso E., Best P. N. & Kauffmann G., 2009, Mon. Not. R. Astr. Soc., 392, 617 Douglas J. N., et al., 1996, Astron. J., 111, 1945 Dunlop J. S. & Peacock J. A., 1990, Mon. Not. R. Astr. Soc., 247, 19 Emonts B., Morganti R., Oosterloo T. & van Gorkom J., 2008, in Beswick R. J., Diamond P. J., Schilizzi R., eds, Proc. Sci., The Modern Radio Universe: From Planets to Dark Energy (arXiv:0801.4769) Falcke H., Gopal-Krishna, & Biermann P.L., 1995, Å, 298, 395 Fanaroff B. L. & Riley J. M., 1974, Mon. Not. R. Astr. Soc., 167, 31P Fanti C. & Fanti R., 1994, Astr. Soc. Pac. Conf. Ser., 54, 341 Ficarra A., Grueff G., Tomassetti G., 1985, Astron. Astroph. Sup. Ser., 59, 255 Fomalont E., et al., 2003, Astron. J., 126, 2562 Ghisellini G. & Celotti A.,2001, Mon. Not. R. Astr. Soc., 327, 739 Granato G. L. et al., 2001, Mon. Not. R. Astr. Soc., 324, 757 Hardcastle M. J., Evans D.A. & Croston J.H., 2006, Mon. Not. R. Astr. Soc., 370, 1893 Hardcastle M. J., Evans D. A. & Croston J. H., 2007, Mon. Not. R. Astr. Soc., 376, 1849 Heywood I., Blundell K. M. & Rawlings S., 2007, Mon. Not. R. Astr. Soc., 381, 1093 Hill G. J. & Lilly S. J., 1991, Astroph. J., 367, 1 Hine R. G. & Longair M. S., 1979, Mon. Not. R. Astr. Soc., 188, 111 Hopkins A. M., et al., 2003, Astron. J., 125, 465 Jackson C. A. & Wall J. V., 1999, Mon. Not. R. Astr. Soc., 304, 160 Kaiser R. C. & Best P. N., 2007, Mon. Not. R. Astr. Soc., 381, 1548 Kauffmann G., Heckman T. M., Best P. N., 2008, MNRAS, 384, 953 89 Bibliography Kellermann K. I., Pauliny-Toth I. I. K. & Williams P. J. S., 1969, Astroph. J., 157, 1 Kimball A. E. & Ivezić Z., 2008, Astron. J., 136, 684 Klamer I. J., Ekers R. D., Sadler E. M. & Hunstead R. W., Astroph. J., 612, 97 Kovalev Y. Y., et al., 2007, Astron. J., 133, 1236 Laing R. A., Riley J. M. & Longair M. S., 1983, Mon. Not. R. Astr. Soc., 204, 151 Laing R. A. & Peacock J. A., 1980, Mon. Not. R. Astr. Soc., 190, 903 Leahy J. P., 1993, in Rser H.-J., Meisenheimer K., eds, Jets in Extragalactic Radio Sources. Springer-Verlag, Heidelberg, p.1 Lilly S. J. & Longair M. S., 1984, Mon. Not. R. Astr. Soc., 211, 833 Longair M. S., 1966, Mon. Not. R. Astr. Soc., 133, 421 Machalski J., 1978, Astron. Astrophys., 65, 157 Marcha M. J. M. & Browne I. W. A., 1995, Mon. Not. R. Astr. Soc., 275, 951 Marshall H. L., Avni Y., Tananbaum H. & Zamorani G., 1983, Astroph. J., 269, 35 Masson C. R.& Wall J. V., 1977, Mon. Not. R. Astr. Soc., 180, 193 Murphy D., Browne I. W. A. &Perley, R. A., 1993, Mon. Not. R. Astr. Soc., 264, 298 Nelder J. A. & Mead R., 1965, Computer Journal, 7, 308 Owen F. N. & Ledlow M. J., 1994, in The Physics of Active Galaxies, eds. G. V. Bicknell, M. A. Dopita, and P. J. Quinn, Astr. Soc. Pac. Conf. Ser., 54, 319 Owen F. N., Ledlow M. J. &Keel W. C., 1996, Astron. J., 111, 53 Oyaizu H., et al., 2008, Astroph. J., 674, 7680 Parma P., et al., 1992, in Astrophysical Jets, Poster Papers from the Space Tele- scope Science Institute Symposium, eds. D. Burgarella, M. Livio, and C. O’Dea (Baltimore, Space Telescope Science Institute), p. 30 Peacock J. A., 1987, in Astrophysical Jets and Their Engines, ed. W. Kundt (Dor- drecht, Reidel), p. 185 Pearson K., 1900, Phil. Mag. Series 5, 50, 157 Pearson T. J. & Readhead A. C. S., 1988, Astroph. J., 328, 114 Petrov L., et al., 2006, Astron. J., 131, 1872 90 Bibliography Pilkington J. D. H. & Scott P. F., 1965, Mon. Not. R. Astr. Soc., 69, 183 Prandoni I., et al., 2001, Astron. Astrophys., 365, 392 Prestage R. M. & Peacock J. A., 1988, Mon. Not. R. Astr. Soc., 230, 131 Quilis V., Bower R. G. & Balogh M. L., 2001, Mon. Not. R. Astr. Soc., 328, 1091 Rawlings S. et al. , 1989, Mon. Not. R. Astr. Soc., 240, 701 Rawlings S., 2002, IAU Symp., 199, 34 Richards G. T. et al., 2005, Mon. Not. R. Astr. Soc., 360, 839 Rigby E. E., Snellen I. A. G. & Best P. N., 2007, Mon. Not. R. Astr. Soc., 380, 1449 Rigby E. E., Best P. N. & Snellen I. A. G., 2008, Mon. Not. R. Astr. Soc., 385, 310 Rigby E. E. et al, 2010, in prep. Roettiger K., Burns J. O., Clarke D. A. & Christiansen W. A., 1994, Astroph. J., 421, 23 Sadler E. M., et al., 2002, Mon. Not. R. Astr. Soc., 329, 227 Sadler E. M. et al., 2007, Mon. Not. R. Astr. Soc.381, 211 Saikia D. J., Konar C. & Kulkarni V. K., 2006, Mon. Not. R. Astr. Soc., 366, 1391 Schawinski K., et al., 2009, Astron. J., 690, 1672 Scheuer P. A. G., 1987, in Superluminal Radio Sources, eds. J. A. Zensus and T. J. Pearson (Cambridge, Cambridge University Press), p. 104 Schmidt M., 1968, Astroph. J., 151, 393 Schmidt M., 1976, Astroph. J., 209, 55 Seymour N., McHardy I. M. & Gunn K.F., 2004, Mon. Not. R. Astr. Soc., 352, 131 Silk J. & Rees M. J., Astron. Astrophys., 331, 1 Skrutskie M. F., et al., 2006, Astron. J., 131, 1163 Smolc̆ilć et al., 2009, Astroph. J., 690, 610 Snellen I. A. G. & Best P. N., 2001, Mon. Not. R. Astr. Soc., 328, 897 Ubachukwu A. A., Ugwoke A. C. & Ogwo J. N., 1996, AP&SS, 238, 151 Urry C. M. & Padovani P., 1995, Publi. Astr. Soc. Pac., 107, 803 91 Bibliography van Breugel W. et al., 2004, Int. Astr. Un. Symp. Proc., 222, 485 Wall J. V., Pope A. & Scott D., 2008, Mon. Not. R. Astr. Soc., 383, 435 Wall J. V. & Jackson C. A., 1997, Mon. Not. R. Astr. Soc., 290, 17 Wall J. V., Pearson T. J. & Longair M. S., Mon. Not. R. Astr. Soc., 193, 683 Willott C. J., Rawlings S., Blundell K. M. & Lacy M., 2001, Mon. Not. R. Astr. Soc., 322, 536 Willott C. J., Rawlings S., Jarvis M. J. & Blundell K. M., 2003, Mon. Not. R. Astr. Soc., 339, 173 Wright A. & Otrupcek R., 1990, Publi. Astr. Soc. Pac., 41, 47 92 Appendix A The CoNFIG catalogue A.1 CoNFIG samples Data for the four CoNFIG samples.The RA and DEC gives the NVSS position of the source. (1) CoNFIG number. (2) NVSS radio position RA and DEC. For sources with several NVSS component, the coordinates correspond to one of the component. (3) Name. Superscript v denotes sources with new VLA observation. (4) Flux density S1.4GHz in mJy. (5) Spectral index α. The spectral index α (where Sαν ∝ να) corresponds to αlow as defined in §2.3. (6) Morphological type. Designations I and II are Fanaroff & Riley (1974) types. The sources of C* type are confirmed compact sources from the VLBA calibrator list (see Beasley et al., 2002; Fomalont et al., 2003; Petrov et al., 2006; Kovalev et al., 2007) or the Pearson- Readhead survey (Pearson & Readhead, 1988). Sources of S* type are confirmed compact sources which show a steep (α ≤ −0.6) spectral index. These are probably CSS sources. Sources of U type have uncertain morphology. They look compact with a steep spectral index, but are most likely extended. In addition to the main morphological classification, extended sources of type I and II are assigned a sub-classification (confirmed - c - or possible - p) depending on how clearly the source showed either FRI or FRII characteristics. Superscripts w denotes Wide Angle Tail sources, i irregular FRI source and c pos- sible core-jet sources. (7) Redshift. (8) Error in redshift. (9) Redshift type. S - spectroscopic redshift; P - SDSS photoz2 photometric redshift; K - 2MASS KS-z estimate; I - SDSS i-z estimate; Z - SDSS z-z estimate; R - SDSS r-z estimate; G - SDSS g-z estimate. (10) SDSS u magnitude. (11) SDSS g magnitude. (12) SDSS r magnitude. (13) SDSS i magnitude. (14) SDSS z magnitude. (15) 2MASS KS magnitude. Superscript e denotes sources from the 2MASS ex- tended catalogue. 93 Appendix A. The CoNFIG catalogue A.1.1 CoNFIG-1 (1) (2) (3) (4) (5) (6) 1 07 13 38.15 +43 49 17.20 B0710+439 2011.4 0.82 C* 2 07 14 24.80 +35 34 39.90 B0711+35 1467.1 0.41 C* 3 07 16 41.09 +53 23 10.30 4C 53.16 1501.4 −0.71 II-p 4 07 35 55.54 +33 07 09.60 4C 33.21 2473.1 −0.56 C 5 07 41 10.70 +31 12 00.40 J0741+3111 2284.3 0.38 C* 6 07 45 42.13 +31 42 52.60 4C 31.30 1357.8 −0.44 II-c 7 07 49 48.10 +55 54 21.00 DA 240v 1660.4 −0.77 II-c 8 07 58 28.60 +37 47 13.80 NGC 2484 2717.9 −0.68 I-c 9 07 59 47.26 +37 38 50.20 4C 37.21v 1691.2 −0.84 II-c 10 08 01 35.32 +50 09 43.00 TXS 0757+503v 1471.7 −1.02 II-p 11 08 05 31.31 +24 10 21.30 3C 192* 5330.6 −0.79 II-c 12 08 10 03.67 +42 28 04.00 3C 194v 2056.6 −0.86 II-c 13 08 12 59.48 +32 43 05.60 4C 32.24 1522.5 −0.77 II-c 14 08 13 36.07 +48 13 01.90 3C 196* 15010.0 −0.79 II-c 15 08 19 47.55 +52 32 29.50 4C 52.18v 2104.2 −0.78 II-c 16 08 21 33.77 +47 02 35.70 3C 197.1v 1787.1 −0.82 II-c 17 08 21 44.02 +17 48 20.50 4C 17.44 1875.1 −0.57 C 18 08 23 24.72 +22 23 03.70 4C 22.21 2272.4 −0.34 C* 19 08 24 47.27 +55 52 42.60 4C 56.16A 1449.4 −0.25 C* 20 08 24 55.43 +39 16 41.80 4C 39.23 1480.8 −0.56 C* 21 08 27 25.40 +29 18 44.80 3C 200* 2043.1 −0.84 II-c 22 08 31 10.00 +37 42 09.90 4C 37.24 2259.6 −0.65 C 23 08 33 18.80 +51 03 07.80 4C 51.25 1313.5 −0.87 II-c 24 08 34 48.37 +17 00 46.10 3C 202v 1882.8 −0.82 II-c 25 08 34 54.91 +55 34 21.00 4C 55.16 8283.1 −0.01 C 26 08 37 53.51 +44 50 54.60 4C 45.17 1528.9 −0.21 II-c 27 08 39 06.50 +57 54 13.40 3C 205* 2257.7 −0.88 II-c 28 08 40 47.70 +13 12 23.90 3C 207* 2613.0 −0.90 II-c 29 08 43 31.63 +42 15 29.70 B3 0840+424A 1409.7 −0.41 C* 30 08 47 53.83 +53 52 36.80 NGC 2656 1542.3 −0.47 Ii-p 31 08 47 57.00 +31 48 40.50 4C 31.32 1482.0 −1.28 II-c 32 08 53 08.83 +13 52 55.30 3C 208* 2364.3 −0.96 II-c 33 08 54 39.35 +14 05 52.10 3C 208.1v 2163.8 −0.79 IIc-p 34 08 54 48.87 +20 06 30.70 PKS 0851+202 1511.8 0.21 C* 35 08 57 40.64 +34 04 06.40 3C 211v 1798.4 −0.90 II-c 36 08 58 10.07 +27 50 50.80 3C 210v 1807.8 −0.98 II-c 37 08 58 41.51 +14 09 43.80 3C 212* 2370.8 −0.92 II-c 38 09 01 05.40 +29 01 45.70 3C 213.1 2003.4 −0.58 II-p 39 09 03 04.04 +46 51 04.70 4C 47.29 1754.9 −0.39 C* 40 09 06 31.88 +16 46 13.00 3C 215* 1586.2 −1.06 II-c 41 09 07 34.92 +41 34 53.80 4C 41.19 1394.5 −0.94 II-c 42 09 08 50.56 +37 48 20.20 3C 217* 2086.4 −0.77 II-c 43 09 09 33.53 +42 53 47.40 3C 216* 4233.8 −0.84 S* 44 09 12 04.00 +16 18 29.70 4C 16.27v 1374.6 −0.91 II-c 45 09 14 04.83 +17 15 52.40 4C 17.48 1527.3 −0.84 II-c 46 09 21 07.54 +45 38 45.70 3C 219* 8101.6 −0.81 II-c 47 09 22 49.93 +53 02 21.20 4C 53.18v 1597.8 −0.99 II-c 48 09 27 03.04 +39 02 20.70 4C 39.25 2884.6 −0.29 C* 49 09 30 33.45 +36 01 23.60 3C 220.2v 1875.1 −0.83 II-c 50 09 39 50.20 +35 55 53.10 3C 223* 3719.0 −0.74 II-c 94 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1 0.5180 0.0010 S 2 1.6260 S 3 0.0643 0.0001 S 10.2e 4 0.7010 0.0939 P 21.9 21.1 20.5 19.6 19.7 5 0.6300 0.0014 S 17.0 16.5 16.6 16.6 16.7 14.0 6 0.4608 0.0004 S 15.7 15.5 15.6 15.4 15.3 12.9 7 0.0360 0.0001 S 8 0.0408 0.0002 S 15.7 13.8 12.9 12.5 12.2 9.9e 9 10 0.4855 0.0419 P 22.2 21.6 20.6 20.0 19.3 11 0.0600 S 18.1 16.2 15.4 14.9 14.6 12.4e 12 1.1840 S 13 0.4306 0.0047 I 22.0 20.7 19.8 19.0 18.4 14 0.8710 S 18.6 17.9 17.7 17.5 17.3 14.8 15 0.1890 S 20.7 19.0 17.9 17.4 17.0 16 0.1280 0.0012 S 19.1 17.7 16.8 16.3 16.0 13.5e 17 0.2960 0.0002 S 21.0 19.6 18.1 17.6 17.2 14.9 18 2.2103 0.0013 S 20.3 19.8 19.3 18.9 18.5 15.4 19 1.4181 0.0016 S 18.2 18.1 17.9 17.8 17.8 20 1.2160 0.0010 S 18.3 18.1 17.8 17.6 17.3 14.2 21 0.4580 S 21.7 20.4 19.1 18.5 18.0 15.3 22 0.9188 0.0014 S 19.2 18.7 18.6 18.6 18.4 23 0.5621 0.0419 P 26.9 22.3 20.5 19.6 19.2 24 0.6237 0.1740 P 23.0 22.4 21.7 21.1 21.9 25 0.2412 0.0014 S 19.6 17.9 16.7 16.1 15.8 26 0.2072 0.0009 S 20.3 18.4 17.1 16.6 16.2 14.0 27 1.5360 S 17.9 17.4 17.0 16.6 16.5 14.5 28 0.6804 0.0010 S 18.7 18.1 18.0 17.9 17.7 15.0 29 0.8393 0.1758 P 25.6 22.6 21.3 21.3 20.2 30 0.0453 0.0002 S 16.3 14.3 13.4 13.0 12.7 10.4e 31 0.0673 0.0003 S 16.5 14.5 13.6 13.2 12.9 12.8 32 1.1115 0.0014 S 17.9 17.9 17.6 17.6 17.8 33 1.0200 S 19.8 19.6 19.3 19.3 19.2 34 0.4190 0.0016 S 16.4 15.8 15.4 15.0 14.7 11.8e 35 0.4789 0.0618 P 22.8 21.9 20.6 19.8 19.4 36 1.1690 S 23.3 22.6 21.5 21.0 20.2 37 1.0430 S 21.0 20.0 19.1 18.8 18.6 15.3 38 0.1940 0.0002 S 20.1 18.5 17.6 17.1 16.9 15.2 39 1.4710 0.0024 S 19.3 19.3 18.9 18.7 18.7 40 0.4115 0.0003 S 25.1 22.3 22.7 20.8 21.0 15.5 41 0.4783 0.0379 P 21.9 20.5 19.1 18.3 18.0 42 0.8980 S 22.3 22.2 21.2 20.3 19.8 43 0.6700 0.0014 S 19.9 19.3 18.7 18.3 18.0 14.6 44 0.9182 0.4087 P 21.6 21.7 21.8 22.0 22.5 45 0.5395 0.0291 P 24.3 21.0 19.7 18.6 18.4 46 0.1744 0.0012 S 19.2 17.9 16.7 16.3 16.0 13.1e 47 0.5974 0.1361 P 23.5 25.3 21.9 21.0 20.2 48 0.6967 0.0019 S 17.0 16.7 16.6 16.7 16.6 14.0 49 1.1570 0.0013 S 18.6 18.3 17.8 17.6 17.6 15.8 50 0.1368 0.0008 S 19.4 17.8 16.7 16.3 16.1 14.4 95 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (2) (3) (4) (5) (6) 51 09 41 23.62 +39 44 14.10 3C 223.1 1976.8 −0.61 II-c 52 09 42 08.40 +13 51 52.20 3C 225A 1338.5 −0.99 II-c 53 09 42 15.35 +13 45 49.60 3C 225v 3336.4 −0.82 II-p 54 09 43 12.74 +02 43 27.50 4C 02.29v 1331.5 −0.62 II-c 55 09 44 16.40 +09 46 19.20 3C 226* 2393.7 −0.88 II-c 56 09 47 47.27 +07 25 13.80 3C 227 7617.0 −0.56 II-c 57 09 48 55.36 +40 39 44.80 4C 40.24 1599.5 −0.25 C* 58 09 50 10.77 +14 19 57.30 3C 228* 3711.6 −1.00 II-c 59 09 51 58.83 −00 01 26.80 3C 230v 3152.1 −1.06 II-c 60 09 52 00.52 +24 22 29.70 3C 229 1788.6 −0.76 II-c 61 09 52 06.14 +28 28 33.20 4C 28.24 1362.7 −0.47 C 62 09 57 38.18 +55 22 57.40 4C 55.17 3079.2 −0.36 C* 63 10 01 46.73 +28 46 56.50 3C 234* 5597.0 −0.86 II-c 64 10 06 01.74 +34 54 10.40 3C 236* 3236.6 −0.51 II-c 65 10 07 18.92 +44 25 01.40 4C 44.19 1413.7 −0.87 II-c 66 10 08 00.04 +07 30 16.20 3C 237 6522.1 −0.59 C 67 10 11 00.36 +06 24 40.20 3C 238v 2964.2 −0.96 II-c 68 10 11 45.46 +46 28 20.10 3C 239* 1557.2 −1.08 II-c 69 10 17 14.15 +39 01 24.00 4C 39.29v 1392.2 −0.70 II-c 70 10 20 49.61 +48 32 04.20 4C 48.29A 1700.1 −0.32 II-c 71 10 21 54.58 +21 59 30.90 3C 241* 1686.2 −0.97 II-c 72 10 23 38.71 +59 04 49.50 4C 59.13 1609.3 −0.81 II-c 73 10 27 14.97 +46 03 21.90 4C 46.21 1437.4 −0.71 II-c 74 10 33 33.87 +58 14 37.90 3C 244.1* 4187.9 −0.82 II-c 75 10 34 17.86 +50 13 30.20 4C 50.30 1545.2 −0.91 U 76 10 35 07.04 +56 28 47.30 B1031+567 1801.9 0.01 C* 77 10 41 17.16 +06 10 16.50 4C 06.41 1405.2 −0.10 C* 78 10 41 39.01 +02 42 33.00 4C 03.18v 2710.1 −0.69 II-c 79 10 42 44.54 +12 03 31.80 3C 245* 3305.7 −0.78 S* 80 10 52 26.06 +20 29 48.00 4C 20.23 1727.5 −0.17 C 81 10 58 17.46 +19 52 09.50 4C 20.24v 2143.0 −0.71 IIc-c 82 10 58 29.62 +01 33 58.20 4C 01.28v 3220.2 −0.14 C* 83 10 58 58.69 +43 01 23.70 3C 247* 2875.1 −0.61 II-c 84 11 02 03.91 −01 16 18.30 3C 249v 2799.6 −0.91 II-c 85 11 08 08.31 +14 35 35.80 4C 14.40 1348.7 −0.42 C 86 11 09 46.04 +10 43 43.40 1107+10 1481.3 −0.38 C 87 11 09 52.06 +37 38 43.90 4C 37.29 2214.1 −0.69 II-c 88 11 11 31.56 +35 40 45.50 3C 252* 1336.3 −1.03 II-c 89 11 12 38.36 +43 26 27.10 4C 43.21 1717.0 −0.76 II-c 90 11 13 32.13 −02 12 55.20 3C 253 1595.6 −0.84 II-c 91 11 14 38.43 +40 37 20.80 3C 254* 3127.9 −0.96 II-c 92 11 16 34.70 +29 15 20.50 4C 29.41 1927.9 −0.37 I-c 93 11 19 25.22 −03 02 51.60 3C 255 1730.4 −1.23 U 94 11 20 27.81 +14 20 54.40 4C 14.41 2446.9 −0.16 C 95 11 20 43.07 +23 27 55.30 3C 256 1362.0 −1.04 U 96 11 23 09.10 +05 30 20.30 3C 257v 1721.1 −0.90 U 97 11 26 23.65 +33 45 27.10 4C 33.26 1376.8 −0.34 C 98 11 31 38.90 +45 14 51.50 TXS 1128+455 2048.8 −0.65 II-p 99 11 34 38.46 +43 28 00.50 4C 43.22v 1567.1 −0.74 II-c 100 11 35 55.93 +42 58 44.80 TXS 1133+432 1448.8 0.48 C 96 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 51 0.1075 S 18.7 17.1 16.1 15.7 15.3 12.7e 52 1.5650 S 20.4 19.3 18.8 18.5 18.5 53 0.5800 S 21.9 21.3 20.0 19.3 19.3 54 0.5920 0.0002 S 23.3 22.4 20.9 19.8 19.7 55 0.8178 S 21.6 22.0 21.1 20.5 19.3 56 0.0865 0.0018 S 17.3 16.6 16.1 15.4 15.4 12.4 57 1.2489 0.0013 S 17.7 17.8 17.6 17.5 17.5 15.4 58 0.5520 S 21.8 21.2 20.5 19.8 19.8 59 1.4870 S 16.9 15.5 15.0 14.8 14.7 13.5 60 0.2739 0.0245 K 15.2 61 0.5554 0.0475 P 22.2 22.0 20.1 19.2 18.7 62 3.3692 0.0010 S 18.2 17.9 17.5 17.4 17.2 14.2 63 0.1849 S 18.5 18.0 16.8 16.6 16.8 12.8 64 0.0992 0.0014 S 18.1 16.3 15.3 14.8 14.5 12.3e 65 66 0.8800 S 21.8 21.5 21.1 20.1 19.8 67 1.4050 S 68 1.7900 S 22.1 22.5 21.7 21.5 21.2 69 0.2060 S 26.0 22.2 21.3 19.7 18.1 70 0.0532 0.0002 S 18.0 16.0 15.1 14.6 14.3 13.2 71 1.6170 S 23.4 23.3 23.1 22.6 21.8 72 0.2398 0.0862 P 21.2 20.6 19.9 19.5 19.5 73 0.5367 0.0299 P 25.9 21.3 20.0 19.0 18.7 74 0.4300 S 20.6 20.0 18.9 18.0 17.8 75 0.4810 0.0242 P 23.1 21.7 19.9 19.1 18.6 76 0.4597 S 23.5 22.2 20.3 19.6 18.9 77 1.2700 S 16.9 16.9 16.8 16.9 17.0 15.0 78 0.5350 0.0020 S 23.2 22.0 20.1 19.1 18.6 79 1.0293 0.0026 S 17.5 17.4 17.2 17.3 17.4 15.3 80 0.3465 0.0477 P 22.7 20.9 19.4 18.8 18.3 81 1.1100 S 17.1 17.1 16.8 16.8 17.0 14.6 82 1.7847 0.0027 S 18.7 18.2 17.8 17.4 17.1 14.1 83 0.7490 S 23.0 22.0 20.5 19.6 18.8 84 0.3110 0.0040 S 85 24.2 25.4 22.7 23.1 23.4 86 87 0.3456 S 22.2 20.2 18.7 18.1 17.7 88 1.1050 S 89 1.6819 0.0019 S 90 0.1251 0.0040 S 91 0.7361 0.0016 S 17.5 17.1 17.0 17.2 17.0 14.8 92 0.0487 S 17.3 15.4 14.5 14.1 13.7 11.6e 93 1.3550 S 94 0.3620 S 23.6 21.7 20.2 19.7 19.1 95 1.8190 S 21.6 22.1 21.9 21.5 21.8 96 2.4740 S 97 1.2300 S 98 0.4040 0.0070 S 21.9 20.9 19.6 19.0 18.6 99 0.5724 S 22.8 22.3 21.0 19.9 19.8 100 97 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (2) (3) (4) (5) (6) 101 11 37 16.95 +61 20 38.40 4C 61.23 1314.0 −0.20 II-c 102 11 40 27.69 +12 03 07.60 4C 12.42 1527.0 −0.62 I-c 103 11 40 49.54 +59 12 26.00 4C 59.16 2179.4 −0.56 C 104 11 41 08.23 +01 14 17.70 4C 01.32v 2690.8 −0.65 II-c 105 11 43 25.04 +22 06 56.00 3C 263.1* 3128.7 −0.87 II-c 106 11 44 34.45 +37 10 16.90 4C 37.32 2065.4 −0.56 II-c 107 11 45 05.23 +19 36 37.80 3C 264* 5689.0 −0.76 Ii-c 108 11 45 31.03 +31 33 37.00 3C 265* 2890.9 −0.96 II-c 109 11 45 43.41 +49 46 08.40 3C 266* 1424.5 −1.01 II-c 110 11 49 55.54 +12 47 15.90 3C 267* 2519.9 −0.93 II-c 111 11 50 43.88 −00 23 54.30 4C -00.47 2773.9 −0.16 C* 112 11 53 24.51 +49 31 09.50 4C 49.22v 1572.2 −0.62 S* 113 11 54 13.01 +29 16 08.50 4C 29.44v 1620.3 −0.89 II-p 114 11 55 26.63 +54 54 13.60 4C 55.22 2195.7 −0.39 II-c 115 11 56 03.67 +58 47 05.40 4C 59.17 1591.7 −0.75 U 116 11 56 18.74 +31 28 05.00 4C 31.38 2978.3 −0.47 C 117 11 59 13.79 +53 53 07.40 4C 54.25 1740.6 −0.56 C 118 11 59 31.80 +29 14 44.30 4C 29.45 2030.8 −0.18 C* 119 12 00 59.77 +31 33 57.90 3C 268.2 1301.6 −0.59 II-c 120 12 04 02.13 −04 22 43.90 4C -04.40v 2141.3 −0.56 II-p 121 12 06 19.93 +04 06 12.20 4C 04.40 1501.2 −0.85 II-c 122 12 09 13.52 +43 39 18.70 3C 268.4* 1979.9 −0.80 II-c 123 12 12 56.06 +20 32 37.90 4C 20.27 1417.9 −0.89 U 124 12 13 32.13 +13 07 20.40 4C 13.46 1344.2 −0.41 C* 125 12 14 04.08 +33 09 45.50 TXS 1211+33 1403.6 −0.12 C* 126 12 15 29.80 +53 35 54.10 4C 53.24v 2755.0 −0.79 II-c 127 12 15 55.60 +34 48 15.10 4C 35.28v 1506.8 −0.20 C* 128 12 17 29.83 +03 36 44.00 4C 04.41 2411.5 −0.76 II-p 129 12 19 15.33 +05 49 40.40 3C 270 10445.0 −0.80 I-c 130 12 20 33.88 +33 43 10.90 3C 270.1* 2845.9 −0.75 II-c 131 12 24 30.20 +42 06 24.00 3C 272* 1352.3 −0.87 II-c 132 12 24 54.62 +21 22 47.20 4C 21.35v 2094.4 −0.53 C* 133 12 25 03.78 +12 52 35.20 M84 6012.8 −0.60 I-c 134 12 27 58.78 +36 35 11.60 B1225+368 2098.4 0.42 C* 135 12 29 06.41 +02 03 05.10 3C 273 54991.2 −0.07 C* 136 12 29 51.84 +11 40 24.20 PKS 1227+119 1519.0 −0.85 Iw-c 137 12 30 49.46 +12 23 21.60 M87 141949.3 −0.79 Ii-c 138 12 32 00.13 −02 24 04.10 4C -02.55v 1646.7 −0.72 C* 139 12 35 22.97 +21 20 18.30 3C 274.1* 2918.5 −0.87 II-c 140 12 36 29.13 +16 32 32.10 4C 16.33 1383.9 −0.47 Iw-c 141 12 42 19.68 −04 46 19.70 3C 275 3672.1 −0.81 II-c 142 12 43 57.63 +16 22 52.70 3C 275.1* 2895.8 −0.96 II-c 143 12 44 49.18 +40 48 06.50 S4 1242+41 1341.8 −0.32 C* 144 12 51 44.47 +08 56 27.80 4C 09.44 1684.4 −0.63 II-c 145 12 52 26.33 +56 34 19.70 3C 277.1 2288.3 −0.69 S* 146 12 53 03.55 +02 38 22.30 4C 02.34v 1604.9 −0.78 II-c 147 12 53 32.70 +15 42 27.30 3C 277.2* 1952.2 −1.02 II-c 148 12 54 11.68 +27 37 32.70 3C 277.3* 2923.9 −0.58 II-c 149 12 56 11.15 −05 47 20.10 3C 279v 9711.2 −0.37 C* 150 12 56 57.38 +47 20 19.80 3C 280* 5099.6 −0.81 II-c 98 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 101 0.1110 0.0008 S 19.2 17.8 16.9 16.3 16.1 14.3 102 0.0812 0.0002 S 17.7 15.7 14.8 14.4 14.1 11.6e 103 0.8162 0.1229 P 23.7 22.3 21.9 21.0 20.4 104 0.4430 0.0020 S 21.0 20.5 19.2 18.5 18.1 105 0.3660 S 22.0 21.2 20.9 20.3 19.5 106 0.1148 0.0002 S 19.2 17.3 16.3 15.8 15.4 13.8 107 0.0214 S 15.3 13.4 12.6 12.2 11.9 9.5e 108 0.8105 S 19.8 19.6 19.1 18.9 17.7 109 1.2750 S 21.7 21.9 21.4 21.4 20.7 110 1.1440 S 22.1 21.9 21.6 20.6 20.4 111 1.9760 0.0005 S 17.0 17.0 17.0 16.8 16.7 14.8 112 0.3340 0.0014 S 17.1 17.3 17.3 17.3 16.7 13.5e 113 0.3292 S 21.4 20.3 19.2 18.8 18.4 114 0.0516 0.0002 S 17.1 15.1 14.2 13.7 13.4 12.6 115 0.2601 0.0468 P 20.3 19.3 18.0 17.5 17.1 116 0.4180 0.0011 S 19.1 18.8 18.5 18.0 17.7 15.4 117 0.7744 0.1657 P 21.0 20.4 20.5 20.0 20.5 118 0.7245 0.0011 S 18.6 18.1 18.0 17.9 17.7 11.5 119 0.3620 S 20.7 19.6 18.5 18.1 17.6 120 0.1612 0.0118 K 13.4e 121 0.5267 0.0392 P 25.0 22.8 21.0 20.1 19.4 122 1.3971 0.0015 S 18.4 18.2 17.6 17.3 17.2 14.9 123 0.3326 0.0031 I 22.1 20.6 19.2 18.3 18.5 124 1.1391 0.0014 S 18.5 18.2 17.9 17.9 17.7 14.9 125 1.5960 0.0017 S 17.7 17.6 17.5 17.3 17.2 15.2 126 1.0650 0.0017 S 18.9 18.5 18.1 18.0 18.0 15.8 127 0.8570 0.0010 S 21.0 20.4 20.4 20.1 19.5 128 0.0772 0.0002 S 18.0 16.1 15.1 14.6 14.3 11.6e 129 0.0073 S 13.4 11.5 10.7 10.2 9.9 9.9 130 1.5328 0.0022 S 19.1 18.8 18.4 18.1 18.1 131 0.9440 S 132 0.4350 0.0010 S 15.9 15.8 16.0 16.0 15.8 13.1 133 0.0030 S 12.6 10.7 9.9 9.4 9.1 9.8 134 1.9730 0.0020 S 22.2 21.8 21.4 21.0 21.2 135 0.1583 0.0001 S 13.8 12.9 12.8 12.6 13.2 9.9e 136 0.0830 0.0002 S 17.6 15.3 14.4 13.9 13.6 11.1e 137 0.0042 S 13.8 11.9 11.1 10.7 10.4 138 1.0433 0.0019 S 17.3 17.0 16.7 16.7 16.8 14.6 139 0.4220 S 24.2 21.3 19.4 18.6 18.0 140 0.0684 0.0002 S 18.1 16.1 15.2 14.7 14.4 13.2 141 0.4800 S 22.2 21.1 19.9 18.8 18.8 142 0.5570 0.0003 S 18.5 18.1 18.2 18.0 18.1 143 0.8130 0.0020 S 20.9 20.3 20.1 19.8 19.3 144 0.2364 0.0406 P 20.6 19.4 18.2 17.9 17.5 145 0.3201 0.0011 S 17.9 17.8 17.6 17.9 17.1 15.0 146 0.2126 0.0357 P 21.8 20.1 18.8 18.3 18.0 147 0.7660 S 21.8 22.4 21.3 20.5 20.2 148 0.0858 0.0001 S 18.4 16.5 15.6 15.1 14.8 149 0.5362 0.0004 S 10.9 150 0.9960 S 22.1 21.7 21.4 20.7 19.8 99 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (2) (3) (4) (5) (6) 151 13 00 32.87 +40 09 09.20 3C 280.1* 1368.9 −0.93 II-c 152 13 05 36.05 +08 55 15.90 4C 09.45v 1461.8 −1.05 II-c 153 13 09 49.66 −00 12 36.60 4C 00.46 1636.7 −0.82 II-p 154 13 10 28.70 +32 20 44.30 B1308+326 1686.6 0.28 C* 155 13 11 08.56 +27 27 56.50 3C 284* 2044.6 −0.95 II-c 156 13 13 37.88 +54 58 24.30 CJ2 1311+552 1304.6 −0.17 C* 157 13 16 20.51 +07 02 54.30 4C 07.32 1884.2 −0.37 Iw-c 158 13 19 06.83 +29 38 33.80 4C 29.47 1372.5 −0.72 I-c 159 13 19 38.73 −00 49 40.90 4C -00.50 1468.9 −0.56 C* 160 13 20 21.45 +17 43 12.40 4C 17.56v 1573.2 −0.71 II-c 161 13 21 18.84 +11 06 49.40 4C 11.45v 2238.0 −0.77 IIc-p 162 13 21 21.28 +42 35 15.20 3C 285* 2085.0 −0.95 II-c 163 13 23 21.04 +03 08 02.80 4C 03.27 1385.2 −0.61 I-p 164 13 26 16.51 +31 54 09.70 4C 32.44 4861.9 −0.12 C* 165 13 27 31.71 +31 51 27.30 4C 32.44B 1415.1 −0.64 U 166 13 30 37.69 +25 09 11.00 3C 287* 7052.2 −0.42 C* 167 13 31 08.31 +30 30 32.40 3C 286* 14902.7 −0.24 C* 168 13 32 56.37 +02 00 46.50 3C 287.1 2648.5 −0.49 II-c 169 13 38 08.07 −06 27 11.20 4C -06.35v 2958.5 −0.93 II-p 170 13 38 49.67 +38 51 11.10 3C 288* 3358.9 −0.85 Iw-c 171 13 42 13.13 +60 21 42.30 3C 288.1v 1493.3 −0.91 II-c 172 13 42 43.57 +05 04 31.50 4C 05.57 1600.9 −0.66 Ii-c 173 13 44 23.75 +14 09 15.30 4C 14.49 1302.8 −0.82 C 174 13 45 26.38 +49 46 32.70 3C 289* 2398.3 −0.81 II-c 175 13 47 33.42 +12 17 24.10 4C 12.50 5397.2 0.80 C* 176 13 52 17.81 +31 26 46.70 3C 293* 4844.2 −0.45 I-c 177 13 52 56.36 +11 07 07.70 4C 11.46 1537.9 −0.42 C 178 13 57 01.51 +01 04 39.70 4C 01.39 2400.4 −0.83 II-c 179 13 57 04.37 +19 19 08.10 4C 19.44 2585.6 −0.60 IIc-c 180 13 57 53.77 +00 46 32.80 PKS 1355+01 1921.6 −0.70 U 181 14 00 28.65 +62 10 38.60 4C 62.22 4307.6 0.14 C* 182 14 06 44.10 +34 11 26.20 3C 294* 1316.1 −1.07 II-c 183 14 11 20.63 +52 12 09.00 3C 295* 22720.1 −0.63 II-c 184 14 13 48.34 −05 59 54.20 4C-05.60 1520.8 −1.05 II-c 185 14 16 04.18 +34 44 36.50 S4 1413+34 1863.7 −0.11 C* 186 14 16 53.50 +10 48 40.20 NGC 5532 4445.4 −0.52 I-c 187 14 17 23.95 −04 00 46.60 3C 297v 1687.2 −0.74 U 188 14 19 08.18 +06 28 36.30 3C 298 6100.3 −1.02 S* 189 14 21 05.73 +41 44 49.70 3C 299* 3146.9 −0.65 II-c 190 14 23 00.81 +19 35 22.80 3C 300* 3738.8 −0.78 II-c 191 14 24 56.93 +20 00 22.70 4C 20.33v 1808.5 −0.83 II-c 192 14 25 50.67 +24 04 06.70 4C 24.31v 1558.7 −0.78 II-c 193 14 28 31.22 −01 24 08.70 3C 300.1v 3157.4 −0.73 II-c 194 14 30 03.34 +07 15 01.30 4C 07.36 1719.6 −0.39 Iw-c 195 14 36 57.07 +03 24 12.30 4C 03.30v 2797.3 −0.48 C 196 14 38 44.71 +62 11 54.50 B1437+6224 2410.4 −0.14 C* 197 14 43 01.45 +52 01 38.20 3C 303* 2543.0 −0.76 II-c 198 14 45 16.48 +09 58 36.00 TXS 1442+101 2417.6 0.21 C 199 14 48 39.98 +00 18 17.90 4C 00.52v 1651.5 −0.71 U 200 14 49 21.74 +63 16 13.90 3C 305* 3006.0 −0.85 I-c 100 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 151 1.6670 0.0020 S 19.0 18.8 18.8 18.4 18.5 152 1.4090 0.0020 S 21.6 21.8 21.4 21.3 22.5 153 0.4190 0.0010 S 21.0 20.1 19.4 18.8 18.4 154 0.9974 0.0018 S 18.3 18.0 17.6 17.3 17.1 14.7 155 0.2400 0.0007 S 20.0 18.7 17.5 17.0 16.7 14.5 156 0.6130 0.0010 S 23.0 22.5 20.9 20.0 19.7 157 0.0507 0.0001 S 16.4 14.5 13.6 13.2 12.9 12.4 158 0.0729 0.0002 S 17.8 15.9 15.0 14.6 14.4 13.5 159 0.8916 0.0006 S 17.7 17.5 17.5 17.5 17.4 15.2 160 0.6110 0.1035 P 23.0 22.3 21.3 20.5 20.0 161 2.1832 0.0026 S 19.3 19.0 18.9 18.6 18.4 162 0.0794 0.0001 S 18.2 16.7 15.9 15.4 15.1 13.7 163 0.2690 0.0007 S 20.8 19.1 17.8 17.4 16.9 164 0.3700 S 22.3 20.5 19.2 18.6 18.0 165 0.2272 0.0266 P 20.3 18.9 17.6 17.1 16.8 14.0e 166 1.0550 S 18.6 18.3 18.0 17.9 17.8 167 0.8494 0.0011 S 17.4 17.3 17.2 17.2 17.0 14.6 168 0.2157 0.0010 S 18.7 18.3 17.6 17.0 16.9 14.0 169 0.6250 S 15.5 170 0.2460 S 24.1 22.0 21.8 20.2 20.3 15.7 171 0.9642 0.0018 S 17.9 17.7 17.5 17.6 17.5 15.5 172 0.1362 0.0010 S 18.4 17.3 16.4 15.9 15.6 12.6e 173 174 0.9670 S 23.0 23.0 21.6 20.8 20.1 175 0.1212 0.0015 S 18.5 16.6 15.7 15.2 15.0 12.2e 176 0.0450 0.0001 S 16.9 15.1 14.2 13.7 13.4 10.8e 177 0.6500 0.0010 S 22.2 22.1 21.5 20.5 19.8 178 0.8190 0.0010 S 23.3 23.4 21.2 20.1 19.0 179 0.7200 S 16.3 15.9 15.9 16.0 15.8 13.9 180 0.6606 0.2132 P 22.7 23.1 21.9 21.5 20.4 181 0.4310 S 22.2 21.1 19.7 18.9 18.4 182 1.7790 S 183 0.4614 0.0003 S 22.9 20.0 18.5 17.7 17.2 13.6e 184 1.0940 0.0020 S 185 186 0.0240 0.0001 S 21.0 20.2 20.1 20.0 20.5 187 1.4060 S 188 1.4374 0.0016 S 17.3 17.1 16.6 16.4 16.3 14.2 189 0.3670 S 21.5 19.8 18.9 18.5 18.0 190 0.2720 S 20.9 19.3 18.1 18.0 17.4 191 0.8710 S 192 0.6532 0.0015 S 17.7 17.2 17.1 17.0 17.1 15.0 193 1.1590 S 22.3 22.7 22.0 21.6 21.2 194 0.0551 0.0002 S 16.6 14.7 13.8 13.4 13.1 12.3 195 1.4380 0.0010 S 23.0 22.5 22.2 22.1 21.0 196 1.0935 0.0018 S 19.3 19.1 18.7 18.7 18.7 197 0.1410 0.0010 S 26.0 21.4 20.8 20.7 20.5 198 3.5295 0.0007 S 19.4 18.5 17.8 17.8 17.7 15.8 199 0.4381 0.0003 S 23.0 20.7 19.1 18.3 17.9 200 0.0416 0.0001 S 16.0 14.2 13.5 13.1 12.8 10.6e 101 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (2) (3) (4) (5) (6) 201 14 55 01.43 −04 20 22.50 4C -04.53 2104.3 −0.80 II-c 202 15 04 09.27 +60 00 55.50 3C 311 1553.1 −0.78 C 203 15 04 19.50 +28 35 34.30 B2 1502+28 1626.5 −1.16 Iw-c 204 15 04 25.03 +10 29 38.50 TXS 1502+106 1774.2 0.15 C* 205 15 04 58.98 +25 59 49.00 3C 310* 7613.4 −0.92 I-c 206 15 10 53.55 −05 43 07.10 4C -05.64v 3569.3 −0.53 C 207 15 10 57.03 +07 51 24.80 3C 313 3799.1 −0.98 II-c 208 15 12 25.35 +01 21 08.70 4C 01.42v 2262.7 −0.79 II-c 209 15 13 39.90 +26 07 33.70 3C 315* 4332.7 −0.72 I-c 210 15 13 40.20 +23 38 35.30 4C 23.41 1767.5 −0.10 C* 211 15 16 40.21 +00 15 02.40 4C 00.56 2593.1 −0.50 IIc-p 213 15 16 56.61 +18 30 21.60 3C 316 1335.2 −0.80 U 214 15 20 05.50 +20 16 05.70 3C 318* 2688.0 −0.78 S* 215 15 21 14.51 +04 30 20.00 4C 04.51 3927.2 0.29 C* 216 15 24 05.64 +54 28 18.40 3C 319* 2624.0 −0.90 II-c 217 15 25 48.92 +03 08 26.50 4C 03.33 1960.0 −0.45 C 218 15 31 25.36 +35 33 40.60 3C 320v 1820.7 −0.96 II-c 219 15 31 50.71 +24 02 43.30 3C 321* 3577.3 −0.60 II-c 220 15 34 52.45 +01 31 03.30 B1532+016 1320.4 0.11 C* 221 15 35 01.27 +55 36 49.80 3C 322* 1846.9 −0.81 II-c 222 15 37 32.39 +13 44 47.70 4C 13.56v 1805.6 −0.72 U 223 15 40 49.51 +14 47 46.70 4C 14.60 1386.8 −0.47 C* 224 15 41 45.64 +60 15 36.20 3C 323v 1337.4 −1.04 II-p 225 15 46 09.50 +00 26 24.60 TXS 1543+005 1830.3 −0.15 C* 226 15 47 44.23 +20 52 41.00 3C 323.1 2396.2 −0.55 II-c 227 15 49 48.98 +21 25 39.10 3C 324* 2522.0 −0.90 II-c 228 15 49 58.54 +62 41 20.90 3C 325* 3563.7 −0.70 II-c 229 15 50 35.26 +05 27 10.60 4C 05.64 2303.3 −0.08 C* 230 15 52 26.86 +20 05 01.80 3C 326* 3214.1 −0.88 II-c 231 15 56 10.06 +20 04 21.20 3C 326.1v 2313.7 −0.71 II-c 232 15 56 36.35 +42 57 09.60 4C 43.35 1656.4 −0.79 II-c 233 16 02 07.27 +33 26 53.10 4C 33.38 2990.6 0.11 C 234 16 02 17.21 +01 58 19.40 3C 327 8298.7 −0.69 II-c 235 16 08 46.13 +10 29 08.20 4C 10.45 1392.0 −0.32 C* 236 16 09 13.31 +26 41 29.20 PKS 1607+26 4908.2 0.49 C 237 16 10 07.74 +32 58 35.10 3C 329 2027.1 −0.93 II-c 238 16 12 19.02 +22 22 15.60 3C 331 1401.9 −1.00 U 239 16 13 41.08 +34 12 47.70 B1611+3420 4024.1 0.24 C* 240 16 16 38.29 +26 47 01.60 PKS 1614+26 1484.4 −0.11 C 241 16 17 15.75 +21 07 29.40 3C 333v 1748.5 −0.83 II-c 242 16 17 38.89 +35 00 48.00 NGC 6109* 1706.2 −0.76 I-c 243 16 17 43.28 +32 23 02.40 3C 332 2598.5 −0.63 II-c 244 16 20 21.40 +17 36 29.30 3C 334* 1993.9 −0.86 II-c 245 16 24 39.42 +23 45 17.50 3C 336* 2612.7 −0.73 II-c 246 16 25 57.66 +41 34 41.20 4C 41.32 1677.4 −0.20 C* 247 16 28 03.57 +27 41 36.10 3C 341* 1998.6 −0.85 II-c 248 16 28 38.34 +39 33 04.70 3C 338* 3678.7 −1.19 Iw-c 249 16 28 53.30 +44 19 05.20 3C 337* 3155.8 −0.63 II-c 250 16 29 37.52 +23 20 13.40 3C 340* 2599.0 −0.73 II-c 102 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 201 0.4403 S 202 1.0220 S 20.3 20.2 19.9 19.5 19.9 203 0.0503 0.0014 K 17.2 15.3 14.4 14.0 13.7 12.6 204 1.8385 0.0024 S 18.7 18.4 18.1 17.8 17.5 14.3 205 0.0535 0.0003 S 17.5 15.5 14.6 14.1 13.8 13.6 206 1.1910 S 14.7 207 0.4610 S 21.8 20.6 18.8 18.0 17.6 208 0.7920 0.0020 S 22.6 21.9 20.6 19.7 19.0 209 0.1080 S 19.1 17.5 16.7 16.2 16.1 13.5e 210 0.6355 0.1557 P 24.5 22.5 21.8 20.9 20.8 211 0.0524 0.0014 S 16.9 15.5 14.7 14.3 13.9 11.5e 213 0.4200 0.0025 I 21.2 20.7 20.0 18.9 19.6 214 1.5740 0.0010 S 20.9 20.4 19.7 19.2 19.0 215 1.2960 S 22.7 22.8 22.0 21.7 20.1 216 0.1920 S 21.8 19.6 18.5 18.0 17.7 15.2 217 0.5229 0.0959 P 26.4 21.7 21.0 20.4 19.8 218 0.3420 S 21.9 19.7 17.9 17.3 16.9 15.3 219 0.0962 0.0003 S 17.4 16.1 15.3 14.8 14.6 13.3 220 1.4350 S 19.4 19.4 19.1 19.0 19.1 221 1.6810 S 222 0.6720 0.0796 P 21.9 21.0 20.2 19.3 18.9 223 0.6050 S 18.8 18.3 17.9 17.8 17.3 14.2 224 0.6790 S 26.6 22.7 21.4 20.2 20.0 225 0.5500 S 23.3 21.6 20.2 19.1 18.7 226 0.2640 0.0003 S 15.6 15.5 15.6 15.5 15.2 12.9e 227 1.2061 S 23.5 21.9 21.6 21.1 20.5 228 1.1350 S 22.0 21.2 20.2 19.6 19.2 229 1.4220 S 18.5 18.4 18.1 17.9 17.6 14.7 230 0.0900 S 19.7 17.7 16.6 16.1 15.8 231 1.8250 S 232 233 1.1000 P 22.6 20.9 20.5 20.2 19.6 234 0.1041 0.0005 S 17.9 16.3 15.3 14.7 14.4 13.6 235 1.2260 0.0010 S 18.4 18.2 18.0 17.9 17.9 14.7 236 0.4730 S 22.7 21.7 20.2 19.3 18.9 237 1.7810 S 22.7 23.0 21.6 21.0 19.9 238 0.3962 0.0780 P 21.8 21.3 20.0 20.0 19.4 239 1.3994 0.0016 S 17.5 17.6 17.3 17.2 17.1 14.7 240 23.0 23.4 22.0 21.3 20.5 241 1.3240 0.0772 R 24.1 24.1 22.3 21.8 20.9 242 0.0298 0.0002 S 15.9 14.0 13.2 12.7 12.5 12.3 243 0.1517 0.0002 S 18.2 17.5 16.8 16.1 16.1 13.7 244 0.5550 0.0005 S 16.9 16.6 16.8 16.7 16.8 14.1 245 0.9270 0.0017 S 18.8 18.4 18.1 18.1 18.1 246 2.5500 S 24.5 22.7 22.0 21.6 21.4 247 0.4480 S 21.4 20.6 19.5 18.5 18.3 248 0.0298 S 15.8 13.9 13.0 12.5 12.3 9.2e 249 0.6300 S 24.0 23.0 21.5 20.2 19.5 250 0.7750 S 23.3 22.3 21.4 20.7 19.6 103 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (2) (3) (4) (5) (6) 251 16 31 45.29 +11 56 03.30 4C 12.59 1733.7 −0.47 C 252 16 34 33.86 +62 45 35.70 3C 343* 5001.9 −0.37 C* 253 16 35 15.51 +38 08 04.80 4C 38.41 2726.0 0.11 C* 254 16 36 37.38 +26 48 06.60 3C 342v 1336.1 −0.88 II-c 255 16 38 28.22 +62 34 43.90 3C 343.1* 4610.8 −0.32 C* 256 16 42 58.77 +39 48 37.00 3C 345* 7098.6 −0.27 C* 257 16 43 05.93 +37 29 34.40 3C 344 1418.1 −0.91 II-p 258 16 43 48.69 +17 15 48.80 3C 346* 3666.2 −0.52 Ii-c 259 16 47 41.83 +17 20 11.50 4C 17.71 2130.2 −0.23 C* 260 16 53 52.24 +39 45 36.60 4C 39.49 1558.0 −0.12 C 261 16 59 27.57 +47 03 13.10 3C 349* 3358.4 −0.74 II-c 262 17 04 07.21 +29 46 59.50 4C 29.50 1413.9 −0.74 C 263 17 04 43.03 +60 44 49.60 3C 351* 3259.0 −0.73 II-c 264 17 05 06.57 +38 40 37.60 3C 350 1302.4 −0.96 II-c 265 17 10 44.11 +46 01 30.30 3C 352* 1865.5 −0.88 II-c 266 17 23 20.85 +34 17 57.30 4C 34.47 1610.2 −0.32 II-c 267 17 24 18.40 +50 57 54.00 3C 356* 1509.1 −1.02 II-c 268 17 42 51.84 +61 45 51.00 4C 61.34 1354.7 −0.77 II-c 269 07 14 35.25 +45 40 00.10 4C 45.13 1386.4 −0.61 II-c 270 14 54 20.30 +16 20 55.80 3C 306 1391.3 −0.89 II-c 271 08 31 20.33 +32 18 37.00 4C 32.25A 1773.5 −0.68 II-c 272 08 48 41.94 +05 55 35.00 4C 06.32 1319.5 −0.53 II-c 273 12 28 11.77 +20 23 19.10 4C 20.29 1333.9 −0.62 II-c 274 07 44 17.50 +37 53 16.90 4C 38.21 1341.8 −1.11 C 104 Appendix A. The CoNFIG catalogue CoNFIG-1 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 251 1.7920 S 18.6 18.4 18.3 18.1 17.9 252 0.9880 S 253 1.8131 0.0017 S 17.7 17.6 17.6 17.4 17.2 15.0 254 0.5610 S 18.6 18.0 18.0 17.5 17.7 255 0.7500 S 256 0.5939 0.0019 S 16.8 16.5 16.4 16.2 16.1 12.4 257 0.5200 S 21.4 21.1 20.0 19.3 19.1 258 0.1617 0.0010 S 18.9 17.3 16.1 15.7 15.3 12.7e 259 0.3140 S 15.0 260 0.0336 0.0001 S 15.3 13.8 13.0 12.6 12.3 9.6e 261 0.2050 S 21.3 20.5 20.2 20.2 20.0 262 1.9270 S 20.1 20.0 20.1 19.5 19.6 263 0.3715 0.0001 S 15.6 15.4 15.2 15.2 14.8 12.4 264 0.3460 0.0028 I 20.7 20.2 19.5 18.4 18.4 265 0.8060 0.0002 S 266 0.2060 0.0050 S 15.4 15.4 15.5 15.1 15.5 12.9 267 1.0790 S 268 0.5230 S 18.1 17.7 17.7 17.5 17.4 15.2 269 270 0.0456 0.0001 S 16.2 14.2 13.2 12.8 12.5 12.2 271 0.0512 0.0002 S 17.5 15.6 14.7 14.2 13.9 12.8 272 0.2206 0.0206 P 21.8 19.5 18.0 17.5 17.2 15.2 273 0.6800 S 18.0 17.8 17.7 17.6 17.4 15.3 274 1.0665 0.0018 S 18.2 18.0 17.7 17.8 17.9 105 Appendix A. The CoNFIG catalogue A.1.2 CoNFIG-2 (1) (2) (3) (4) (5) (6) 1 09 20 11.16 +17 53 25.00 4C 18.29 1070.6 −0.88 C 2 09 20 58.48 +44 41 53.70 B0917+449 1017.2 −0.15 C* 4 09 21 46.55 +37 54 10.10 4C 38.29 826.4 −0.88 IIc-c 8 09 30 54.27 +58 55 16.60 4C 59.10 1082.9 −0.91 U 9 09 34 15.80 +49 08 21.00 0930+493 800.5 0.37 C* 10 09 35 04.06 +08 41 37.30 4C 08.31v 1037.6 −0.74 II-p 11 09 35 06.62 +39 42 07.60 3C 221 1029.5 −0.93 II-p 12 09 36 32.02 +04 22 10.80 3C 222v 971.1 −1.35 C 14 09 41 22.70 −01 43 01.00 4C -01.19 830.0 −0.60 II-c 19 09 43 19.16 −00 04 22.30 4C 00.30v 1188.9 −0.72 C 21 09 45 13.81 +16 55 21.70 4C 17.49 1062.1 −0.90 II-c 23 09 47 44.60 +00 04 37.20 4C 00.31v 935.8 −1.06 II-p 29 09 53 38.99 +25 16 24.60 4C 25.29v 993.1 −0.99 II-c 30 09 54 56.81 +17 43 31.50 B0952+1757 1158.5 −0.35 C* 31 09 54 07.03 +21 22 35.90 4C 21.26 948.8 −0.76 II-c 32 09 56 49.88 +25 15 15.90 B0953+254 1080.1 0.53 C* 34 09 58 20.92 +32 24 01.60 3C 232 1247.1 −0.79 S* 35 09 58 28.78 −01 39 59.30 4C -01.20v 1213.7 −0.59 C 36 10 00 17.51 +00 05 23.00 4C 00.34 923.7 −0.94 II-c 37 10 00 21.95 +22 33 18.20 4C 22.25 1116.3 −0.76 II-c 38 10 00 28.11 +14 01 34.10 4C 14.35 1166.4 −0.80 II-p 39 10 01 23.65 −00 26 08.80 4C -00.37 1221.0 −0.99 II-c 41 10 02 57.12 +19 51 53.50 4C 20.20 1226.5 −0.65 I-p 42 10 04 32.94 +31 51 51.50 4C 32.34v 1263.8 −0.98 II-c 45 10 07 26.10 +12 48 56.21 4C 13.41 1216.1 −0.45 II-c 46 10 07 41.51 +13 56 29.30 B1004+1411 936.3 −0.25 C* 47 10 07 42.54 +59 08 09.90 4C 59.11v 1082.8 −0.88 II-c 49 10 09 55.50 +14 01 54.10 4C 14.36v 994.6 −0.70 C 52 10 14 16.03 +10 51 06.30 4C 11.34 902.2 −0.62 II-c 53 10 14 47.05 +23 01 12.70 4C 23.24 1095.5 −0.45 II-c 54 10 14 48.92 +08 52 58.80 1012+091 877.4 −0.29 C 55 10 15 58.26 +40 46 47.11 4C 41.22 1078.5 −0.29 II-c 57 10 17 49.77 +27 32 07.70 3C 240 1274.7 −0.75 II-c 59 10 22 30.31 +30 41 05.80 B1019+309 967.8 C* 60 10 23 11.60 +39 48 17.20 4C 40.25 1122.6 −0.45 C* 62 10 24 29.63 −00 52 55.20 B1021-0037 986.2 0.26 C* 63 10 25 20.72 +20 10 21.30 3C 242 1250.3 −0.89 II-c 64 10 25 29.87 +42 57 43.10 4C 43.19v 852.4 −0.96 II-c 65 10 26 31.96 +06 27 32.70 3C 243 851.5 −1.17 II-c 67 10 27 32.89 +48 17 06.40 3C 244 985.3 −0.57 II-c 68 10 28 20.08 +15 11 29.50 4C 15.32v 824.5 −0.90 C 69 10 30 09.91 +00 37 40.20 4C 00.35v 1077.1 −0.71 II-p 70 10 31 43.55 +52 25 37.90 4C 52.22 921.6 −0.67 II-c 71 10 33 28.31 +17 42 44.70 4C 17.50v 929.0 −0.69 II-c 77 10 42 36.53 +29 49 45.60 1039+30 B 841.2 −0.04 C 79 10 46 18.04 +54 59 37.50 4C 55.21 1032.7 −0.96 II-c 80 10 46 34.99 +15 43 47.20 4C 15.34v 1071.9 −0.72 U 81 10 48 34.23 +34 57 25.50 4C 35.23v 1034.4 −0.64 C 82 10 49 26.18 −02 54 52.70 4C -02.43 956.5 −0.81 II-c 106 Appendix A. The CoNFIG catalogue CoNFIG-2 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1 0.4155 0.3312 P 22.9 23.3 22.3 21.4 21.0 2 2.1890 0.0017 S 18.6 18.0 17.9 17.7 17.4 15.4 4 1.1080 0.0010 S 20.7 19.7 18.8 18.4 18.3 15.4 8 0.5128 0.1626 P 22.5 21.8 21.0 20.6 20.5 9 2.5820 0.0090 S 19.9 19.3 19.1 19.1 19.0 10 0.3578 0.0312 P 24.5 21.4 19.5 19.0 18.4 11 0.4957 0.1000 R 19.8 12 1.3400 S 14 0.3820 S 22.3 20.5 18.8 18.1 17.7 19 0.4785 0.0268 P 22.9 20.9 19.4 18.6 18.1 21 0.5077 0.2036 P 23.1 22.8 21.8 21.6 20.5 23 29 30 1.4758 0.0024 S 17.4 17.2 17.1 17.0 17.1 15.7 31 0.2952 S 18.9 18.3 17.7 17.5 16.7 14.3 32 0.7076 0.0013 S 18.2 17.8 17.8 18.0 17.8 15.3 34 0.5306 0.0019 S 16.3 15.9 15.9 15.8 15.8 13.8 35 22.7 22.9 22.3 21.1 20.3 36 0.9055 0.0012 S 19.0 18.6 18.6 18.6 18.3 37 0.4190 S 19.2 18.8 18.4 18.0 17.6 15.5 38 1.0264 0.0749 I 22.3 22.5 22.7 21.2 20.4 39 1.4956 0.0951 I 24.3 24.6 22.8 22.1 21.2 41 0.1677 S 19.8 17.6 16.4 15.9 15.6 13.5e 42 0.6793 0.0581 P 22.0 21.2 19.9 18.6 19.0 45 0.2400 0.0022 S 15.4 15.4 15.3 15.2 15.2 12.8 46 2.7070 0.0050 S 19.6 18.5 18.4 18.4 18.2 47 0.5614 0.0064 I 20.4 19.9 19.8 19.6 19.2 49 0.2150 0.0050 S 19.9 18.4 17.3 16.8 16.5 13.9e 52 0.3880 0.0002 S 22.9 20.8 19.0 18.3 17.8 53 0.5662 0.0012 S 17.6 17.3 17.4 17.4 17.4 14.3e 54 55 0.1279 0.0002 S 19.3 17.4 16.4 15.9 15.6 13.3e 57 0.4678 0.0013 S 18.9 18.3 18.3 17.9 17.6 15.0 59 1.3183 0.0016 S 17.3 17.3 17.1 17.1 17.1 15.2 60 1.2540 0.0020 S 18.4 18.3 18.0 18.1 18.2 14.1 62 2.5545 0.0010 S 18.7 18.1 18.1 18.1 17.9 63 0.4542 0.0339 P 22.3 21.5 19.9 19.1 18.7 64 0.8083 0.1507 P 22.1 21.8 21.5 20.6 20.7 65 1.7106 0.0026 S 18.8 18.5 18.2 17.8 17.5 15.1 67 0.2310 0.0009 S 20.8 19.1 17.8 17.3 16.9 15.2 68 69 0.6108 0.0681 P 23.1 21.5 20.6 19.6 19.2 70 0.1662 0.0012 S 19.8 18.4 17.3 16.7 16.4 14.1e 71 1.0523 0.0421 I 22.7 23.3 21.8 21.2 20.7 77 79 0.3694 0.0394 P 22.9 21.5 19.9 19.3 18.9 80 0.9748 0.0427 I 22.1 22.9 22.6 21.0 20.7 81 1.5940 S 22.1 21.3 20.8 20.1 20.1 82 0.7010 0.0874 P 22.7 23.3 21.8 20.5 20.1 107 Appendix A. The CoNFIG catalogue CoNFIG-2 (1) (2) (3) (4) (5) (6) 83 10 51 48.80 +21 19 52.80 4C 21.28 1253.1 −0.29 C* 85 10 57 15.77 +00 12 03.80 1054+004 898.1 −0.43 C* 89 11 00 02.02 +30 27 42.00 3C 248 991.4 −1.05 II-c 91 11 02 24.97 −02 35 34.10 4C -02.44v 838.4 −0.72 C 92 11 02 26.19 +55 50 03.30 4C 56.18 1206.4 −0.93 U 93 11 05 26.17 +20 52 17.40 1102+211v 985.6 −0.66 C 94 11 06 31.77 −00 52 51.50 4C -00.43v 1065.6 −0.67 II-c 95 11 07 15.02 +16 28 01.50 4C 16.30 868.6 −0.60 IIc-p 97 11 08 37.60 +38 58 42.10 3C 251 919.7 −0.89 II-c 98 11 08 51.79 +25 00 52.10 3C 250* 1090.0 −0.90 II-c 99 11 09 28.86 +37 44 31.40 B21106+37 1221.6 −0.04 C* 102 11 11 20.09 +19 55 36.10 1108+201 1194.8 0.42 C* 103 11 11 22.71 +03 09 10.40 4C 03.21v 1017.7 −1.01 II-c 105 11 11 43.62 +40 49 15.30 4C 41.23 819.2 −0.86 Iw-c 110 11 17 33.85 −02 36 00.60 4C -02.46 996.1 −0.73 Ii-c 111 11 18 12.23 +53 19 44.70 1115+536v 919.2 −0.85 II-c 112 11 18 57.28 +12 34 42.20 4C 12.39 1112.2 −0.92 S* 117 11 24 37.45 +04 56 18.80 4C 05.50 1145.4 −0.92 II-p 118 11 24 43.90 +19 19 29.70 3C 258v 874.7 −1.00 C 119 11 25 53.70 +26 10 20.10 B1123+264 921.2 0.27 C* 120 11 26 08.53 +30 03 36.50 4C 30.21 933.6 −1.01 II-p 122 11 26 27.13 +12 20 34.70 4C 12.41 1110.5 −0.89 II-p 123 11 29 35.97 +00 15 17.50 4C 00.40v 979.5 −0.76 II-c 124 11 29 47.93 +50 25 51.90 1126+507v 926.9 −0.89 C 126 11 32 59.49 +10 23 42.70 4C 10.33v 879.1 −0.88 II-p 127 11 33 09.56 +33 43 12.60 4C 33.27v 886.6 −0.77 II-c 128 11 33 13.18 +50 08 39.90 1130+504v 844.9 −0.76 II-c 130 11 34 54.61 +30 05 25.20 3C 261v 1145.5 −1.00 II-c 131 11 35 13.04 −00 21 19.40 4C -00.45v 1267.8 −0.61 C 133 11 37 29.68 +01 16 13.30 4C 01.31v 1059.7 −0.89 C 134 11 40 17.03 +17 43 39.00 4C 17.52 1143.3 −0.57 I-c 138 11 42 57.23 +21 29 12.50 1140+217 921.0 −1.10 II-c 139 11 42 58.78 +48 51 19.70 4C 49.21 958.6 −0.93 II-p 141 11 43 39.63 +46 21 20.70 4C 46.23v 863.2 −0.90 II-c 142 11 44 21.23 +29 58 25.30 4C 30.23 837.3 −0.91 II-c 144 11 44 54.01 −00 31 36.50 4C -00.46 947.6 −0.97 II-c 148 11 47 14.71 +25 23 20.20 4C 25.36 879.0 −0.81 II-c 149 11 48 47.51 +04 55 27.70 4C 05.53 827.9 −1.03 II-c 152 11 53 03.11 +11 07 20.40 4C 11.40 853.5 −1.01 II-c 153 11 53 12.54 +09 14 02.50 4C 09.39 809.2 −0.59 C* 155 11 53 54.65 +40 36 52.90 B3 1151+408 1135.6 0.16 C* 157 11 55 13.61 +54 52 50.40 1152+551 1233.3 −0.82 II-c 161 11 57 34.91 +16 38 59.30 B1155+169 813.2 1.21 C* 162 11 58 25.80 +24 50 17.70 1155+251 1021.2 0.16 C* 165 11 59 48.83 +58 20 20.80 WSTB 14W26 1191.3 −0.36 C 166 12 00 31.19 +45 48 43.20 4C 46.25v 1156.5 −0.71 C 168 12 01 25.01 +25 20 24.00 4C 25.38 862.9 −0.68 II-c 169 12 02 04.19 +58 02 01.90 4C 58.23 843.2 −0.69 Iw-c 108 Appendix A. The CoNFIG catalogue CoNFIG-2 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 83 1.3000 0.0050 S 18.6 18.8 18.3 18.4 18.5 15.7 85 24.9 24.3 23.2 21.8 21.1 86 1.1100 S 17.1 17.1 16.8 16.8 17.0 14.6 89 0.8313 0.1300 P 21.7 21.5 20.9 20.5 19.7 91 92 0.4059 0.0453 P 24.8 21.6 20.0 19.3 19.0 93 94 0.4260 0.0003 S 16.2 16.1 16.3 16.3 16.1 13.9 95 0.6301 0.0002 S 16.9 16.4 16.4 16.4 16.5 14.0 97 0.7810 0.0040 S 98 1.4836 0.1110 I 23.1 24.7 24.1 22.1 22.6 99 2.2900 S 102 0.2991 0.0010 S 21.7 19.8 18.4 18.0 17.6 15.4 103 105 0.0737 0.0001 S 17.2 15.1 14.2 13.7 13.4 11.4e 110 0.1325 0.0062 K 14.1 111 1.2418 0.0013 S 19.0 18.8 18.3 18.1 18.1 112 2.1293 0.0020 S 18.7 18.4 18.4 18.3 18.2 117 0.2828 0.0009 S 20.0 19.0 17.4 17.0 16.5 15.1 118 0.1650 S 119 2.3396 0.0048 S 18.6 18.1 18.2 18.2 18.0 120 122 0.6763 0.0109 I 20.5 20.7 20.3 20.1 20.0 123 0.2110 S 21.4 20.0 18.7 18.3 18.1 124 1.0037 0.3746 P 22.0 21.8 21.5 21.7 20.1 126 0.5398 0.0014 S 17.2 16.9 17.0 16.9 17.0 14.5 127 0.2227 0.0002 S 20.6 19.0 17.6 17.1 16.8 14.7 128 0.3064 0.0426 P 20.7 19.4 18.1 17.5 17.0 130 0.6133 0.0002 S 19.0 18.4 18.4 18.1 18.2 131 0.1600 0.0020 S 23.7 24.4 23.1 21.3 21.1 133 0.4300 S 19.9 18.9 18.0 17.4 17.2 14.5 134 0.0111 S 24.5 20.2 18.3 18.0 19.6 138 1.3718 0.0015 S 18.0 18.1 17.7 17.7 17.7 139 0.7338 0.0767 P 20.6 20.1 19.5 18.6 19.0 141 0.1159 0.0001 S 18.6 16.4 15.4 14.9 14.5 12.1e 142 144 1.1108 0.0683 G 24.5 22.9 23.3 22.8 22.7 148 0.9812 0.1369 P 23.7 22.3 21.8 21.2 19.8 149 0.4200 S 152 0.4924 0.1613 P 22.7 21.7 21.1 21.1 20.5 153 0.6956 0.0011 S 18.1 17.7 17.8 17.8 17.7 14.8 155 0.9283 0.0006 S 19.7 19.5 19.2 19.2 19.0 157 0.7414 0.2175 P 21.7 22.8 21.8 21.2 21.2 161 1.0608 0.0018 S 17.7 17.3 17.0 16.9 17.0 15.1 162 0.2016 0.0004 S 20.1 18.8 17.6 17.1 16.8 13.3e 165 0.6285 0.2635 P 21.5 21.4 21.0 20.7 20.2 166 0.7428 S 22.6 22.1 21.4 20.7 20.5 168 1.2467 0.0769 I 23.8 24.6 22.7 21.7 21.4 169 0.1011 0.0002 S 19.8 17.7 16.8 16.4 16.1 14.5 109 Appendix A. The CoNFIG catalogue CoNFIG-2 (1) (2) (3) (4) (5) (6) 170 12 02 32.27 −02 40 03.20 4C -02.50v 906.1 −0.85 C 171 12 03 21.95 +04 14 17.70 AO 1200+04 1146.1 −0.21 C* 173 12 04 18.46 +52 02 18.80 WSTB 14W50 962.3 −0.28 C 174 12 04 52.31 +29 29 12.40 4C 29.46 1230.6 −0.77 II-c 180 12 14 47.73 −01 00 12.10 4C -00.48 1092.5 −0.84 II-c 181 12 15 14.69 +17 30 02.20 4C 17.54 1010.2 −0.68 S* 185 12 17 56.90 +25 29 27.20 3C 269v 866.8 −0.83 II-c 186 12 18 59.22 +19 55 28.90 4C 20.28 1047.0 −0.75 II-c 188 12 20 28.08 +09 28 26.90 4C 09.41 1064.4 −1.10 II-c 190 12 21 52.92 +31 30 56.70 4C 31.40 805.8 −1.06 II-c 191 12 22 22.59 +04 13 17.30 4C 04.42 800.3 −0.24 C* 193 12 24 52.44 +03 30 50.10 4C 03.23 1280.3 0.67 C* 196 12 26 25.60 +09 40 05.70 1223+099v 1008.3 −0.63 I-p 198 12 28 11.77 +20 23 19.10 4C 20.29 1269.5 −0.66 II-c 200 12 29 32.62 +17 50 20.90 1227+181 931.0 −0.54 C 204 12 32 05.31 −01 34 55.10 1229-013v 807.4 −0.68 II-c 207 12 36 49.96 +36 55 18.00 4C 37.34 920.2 −0.91 II-p 208 12 39 07.16 + 5 19 24.50 4C 05.54 938.2 −0.83 II-c 209 12 39 09.05 +32 30 27.30 4C 32.40v 827.8 −0.81 II-p 210 12 41 49.84 +57 30 36.90 1239+577 1299.2 −0.37 II-c 214 12 47 07.40 +49 00 18.20 4C 49.25 1204.6 −0.54 C 215 12 49 48.76 +33 23 15.80 4C 33.30 1289.2 −0.90 II-c 216 12 51 35.43 +50 34 01.40 3C 277 1155.8 −0.99 II-c 218 12 52 08.60 +52 45 30.80 1249+530v 958.5 −1.14 II-p 219 12 52 16.81 +47 15 39.00 3C 276 982.9 −1.08 II-c 220 12 52 22.78 +03 15 50.40 1249+035 935.3 −0.73 I-p 226 12 58 01.96 +44 35 20.60 4C 44.22 929.8 −0.93 II-p 228 13 02 28.56 +58 18 46.90 1300+585 898.0 −0.51 C 229 13 04 28.87 +53 50 02.50 4C 54.30 908.9 −0.95 II-c 230 13 04 43.69 −03 46 02.30 B1302-034 826.0 −0.68 S* 232 13 07 54.01 +06 42 15.90 3C 281 1122.0 −0.87 II-c 233 13 09 33.94 +11 54 24.20 4C 12.46 855.0 0.27 C* 238 13 15 01.28 +20 44 30.10 4C 20.31v 1098.7 −0.66 II-p 239 13 15 09.94 + 8 41 44.60 4C 08.38 932.8 −0.03 II-c 243 13 19 46.40 +51 48 06.70 4C 52.27 1092.6 −0.78 II-c 110 Appendix A. The CoNFIG catalogue CoNFIG-2 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 170 171 1.2118 0.0014 S 18.9 18.8 18.5 18.4 18.5 173 0.6510 0.2832 P 26.4 22.6 21.4 21.9 21.6 174 0.8608 0.0622 P 20.7 19.9 19.2 18.4 17.6 14.2 180 1.4449 0.1148 R 24.2 22.8 22.5 22.6 21.6 181 0.5831 0.2324 P 22.1 22.2 21.4 21.2 20.3 185 0.3056 0.0011 I 18.5 18.1 18.1 18.1 18.1 15.9 186 0.5687 0.0459 P 22.0 21.1 19.8 18.8 18.6 188 1.0822 0.0014 S 18.6 18.5 18.2 18.1 18.1 190 0.8275 0.0009 S 20.9 20.3 20.1 20.0 19.4 191 0.9650 S 17.2 16.9 16.8 16.6 16.4 15.0 193 0.9559 0.0011 S 19.0 18.6 18.5 18.5 18.4 196 0.3093 0.0799 P 22.3 21.4 20.0 19.5 19.0 198 0.6800 S 18.0 17.8 17.7 17.6 17.4 15.3 200 0.1935 0.0207 P 20.8 18.9 17.5 17.1 16.5 14.0e 204 0.5930 0.0651 P 24.5 23.0 21.4 20.3 19.5 207 208 0.4798 0.0333 P 22.1 21.4 19.6 18.8 18.5 209 0.4486 0.0796 P 22.3 21.5 20.5 20.4 19.2 210 214 0.2067 0.0011 S 20.0 18.6 17.5 17.0 16.7 13.9e 215 0.4075 0.0284 P 21.5 20.3 18.6 17.8 17.4 216 0.4140 S 24.8 23.0 21.7 20.1 19.4 218 219 220 0.0989 0.0001 S 18.5 16.5 15.5 15.0 14.7 12.3e 226 0.1953 0.0223 P 20.4 18.9 17.7 17.2 16.9 14.1e 228 0.7953 0.1968 P 22.3 21.8 21.2 20.9 19.8 229 230 1.2500 S 232 0.5990 S 24.4 24.1 22.1 20.9 20.3 233 0.3852 0.0027 S 19.3 18.7 18.3 18.0 17.6 14.4 238 1.2332 0.0794 I 23.5 24.3 23.9 21.6 21.6 239 0.0981 0.0129 P 19.3 17.5 16.5 16.1 15.8 14.2 243 1.0574 0.0027 S 17.0 16.9 16.7 16.7 16.8 14.6 111 Appendix A. The CoNFIG catalogue A.1.3 CoNFIG-3 (1) (2) (3) (4) (5) (6) 1 14 41 28.26 +10 55 24.70 J1441+1055v 422.7 −0.78 C 2 14 42 03.43 +25 05 04.30 1439+252 204.7 II-c 3 14 42 03.93 +13 29 17.60 4C 13.53 706.0 −0.41 C 4 14 42 22.99 +14 54 58.20 1440+151v 202.6 −0.97 II-c 5 14 42 27.11 +14 31 39.90 1440+147 224.1 −0.95 II-c 6 14 42 48.37 +11 44 15.00 1440+119v 200.7 II-c 7 14 43 01.74 +16 06 59.90 1440+163v 242.7 −0.64 II-c 8 14 43 02.77 +18 41 56.00 1440+189v 219.9 −0.67 II-p 9 14 43 47.18 +14 36 06.80 B1441+148v 303.9 −0.72 C 10 14 43 56.94 +25 01 44.50 1441+25 361.7 C* 11 14 44 05.77 +20 35 18.30 1441+207 281.7 −0.51 C 12 14 44 11.04 +26 01 50.80 B1441+2614 273.5 II-c 13 14 44 14.66 +19 48 22.00 1441+200v 201.5 −0.86 C 14 14 44 25.07 +13 59 56.20 4C 14.54 607.5 −0.78 II-c 15 14 44 34.84 +19 21 33.00 B1442+195 342.5 −0.67 Iw-c 16 14 44 50.95 +11 31 55.30 B1442+117v 290.3 −0.76 II-c 17 14 45 04.85 +16 49 26.00 4C 16.41 410.4 −0.93 II-c 18 14 45 27.03 +24 38 04.00 1443+2450 212.1 C 19 14 45 32.32 +26 23 49.70 4C 26.44v 303.9 −1.02 II-c 20 14 45 44.74 +23 02 39.40 1443+232v 343.2 −0.82 II-p 21 14 45 57.34 +17 38 30.20 4C 17.60 826.9 −0.90 II-c 22 14 45 58.32 +12 22 28.50 1443+125 395.6 −0.64 II-c 23 14 46 19.87 +25 17 03.50 1444+254 355.2 −0.82 II-c 24 14 46 35.32 +17 21 07.40 1446+1735 754.1 C* 25 14 46 43.33 +27 57 00.70 4C 28.37v 1113.9 −0.66 C 26 14 46 50.83 +21 31 50.90 4C 21.42 529.6 −0.81 II-p 27 14 46 52.13 +22 51 04.70 1444+230v 337.7 −0.77 C 28 14 47 08.40 +17 47 52.90 4C 17.61v 995.5 −0.92 C 29 14 47 44.55 +16 36 06.00 4C 16.42 371.0 −0.66 II-c 30 14 48 04.28 +14 47 04.60 1445+149 440.0 −0.60 Iw-c 31 14 48 08.62 +16 34 39.50 1444+175v 265.0 −1.11 II-c 32 14 48 27.87 +27 33 18.80 1446+277 242.1 −0.48 C 33 14 48 42.66 +17 33 33.20 1446+177 362.2 −0.99 II-c 34 14 48 50.05 +20 25 34.80 3C 304 989.1 −0.91 II-p 35 14 49 19.01 +21 05 48.00 1447+213 432.9 −0.30 II-c 36 14 49 27.59 +22 11 27.90 1447+224 276.1 −0.93 II-c 37 14 50 19.92 +15 10 44.00 1447+153v 247.0 −0.74 C 38 14 50 31.00 +16 15 47.60 1448+164v 301.5 −0.95 II-c 39 14 51 31.48 +13 43 24.40 1449+139 691.8 −0.14 C 40 14 51 38.62 +14 14 01.90 4C 14.55 359.9 −0.95 II-c 41 14 51 39.07 +19 36 24.80 1449+198v 407.4 −0.86 C 43 14 52 34.57 +29 48 20.50 1450+300 247.0 −0.28 C 44 14 53 06.08 +19 17 42.50 1450+194v 219.5 −0.64 C 45 14 53 33.41 +18 54 01.00 1451+191v 486.4 −0.69 II-p 46 14 53 38.10 +29 01 17.70 1451+292v 265.3 −0.76 II-c 47 14 53 44.24 +10 25 57.90 B1451+1038 374.8 0.34 C* 48 14 53 53.61 +26 48 33.40 B1451+270 518.6 −0.02 C* 49 14 54 08.37 +11 37 34.40 1451+118 451.6 −0.77 II-c 51 14 54 20.86 +16 24 25.10 1452+166 228.4 C* 112 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1 23.2 24.5 23.9 21.6 20.6 2 0.8241 0.1123 P 22.7 22.7 21.5 20.7 19.7 3 18.7 18.5 18.2 18.0 17.9 4 5 1.0425 0.3905 P 22.3 22.4 21.9 22.8 20.9 6 0.6102 0.0882 P 23.5 22.6 21.5 20.4 20.3 7 0.2481 0.0250 P 21.3 19.6 18.2 17.7 17.4 15.4 8 9 1.4300 S 18.3 18.3 18.1 17.9 17.9 10 0.0620 S 20.0 19.6 19.3 19.1 18.9 11 12 0.0621 S 17.1 15.6 14.8 14.5 14.2 13 22.9 23.5 22.8 21.5 20.9 14 0.5656 0.0515 P 23.0 22.1 20.3 19.3 19.0 15 0.1906 0.0003 S 19.5 18.1 16.9 16.4 16.0 13.6e 16 0.8502 0.0015 S 18.9 18.6 18.6 18.7 18.6 17 0.7126 0.0705 P 24.9 23.5 21.9 20.3 19.3 18 18.8 18.6 18.6 18.4 18.5 19 0.3176 0.0011 I 18.6 18.4 18.3 18.2 18.2 20 1.1486 0.0029 S 19.1 19.0 18.6 18.7 18.7 21 0.0653 0.0005 S 17.7 15.9 15.0 14.6 14.3 12.0e 22 0.5134 0.0002 S 18.4 18.0 18.1 17.8 17.7 15.5 23 24 18.9 18.8 18.5 18.4 18.2 15.3 25 0.7839 0.0725 P 22.3 21.6 21.0 20.1 19.4 26 1.4000 S 18.6 18.7 18.4 18.3 18.4 27 21.3 20.8 20.5 20.2 20.0 28 23.2 22.8 22.6 21.7 21.5 29 0.1868 0.1169 P 24.4 21.5 20.8 20.3 19.9 30 0.2085 0.0002 S 20.3 18.4 17.0 16.5 16.2 13.2e 31 0.2521 0.0227 K 20.0 17.9 17.1 16.9 16.7 15.1 32 0.2195 0.0141 P 21.7 19.0 17.6 17.1 16.8 33 0.9988 0.0306 R 22.6 22.5 21.6 21.8 22.0 34 0.2540 S 21.5 20.0 18.8 18.4 17.9 35 0.2450 0.0226 P 21.4 19.6 18.2 17.6 17.2 36 0.4820 0.0710 P 21.7 21.0 20.1 19.6 18.8 37 38 39 0.6941 0.1619 P 22.2 21.7 21.3 20.5 20.1 40 0.3065 0.0011 I 20.6 18.9 18.3 18.1 18.0 41 43 23.3 24.1 22.7 21.5 20.6 44 22.1 21.5 20.1 19.5 19.1 45 0.8017 0.0911 P 22.5 23.1 21.8 20.6 19.7 46 1.0360 0.0460 I 22.6 23.0 22.4 21.2 20.5 47 1.7644 0.0051 S 21.6 20.1 19.4 19.0 18.7 48 20.7 20.1 19.6 19.2 18.8 49 0.5234 0.0338 P 24.0 22.2 20.4 19.4 18.9 51 19.3 18.9 18.4 18.2 18.0 113 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (2) (3) (4) (5) (6) 52 14 54 22.75 +25 39 55.50 1452+258 232.4 −0.71 II-p 53 14 54 29.16 +20 15 26.10 1452+204 237.5 −1.03 II-c 54 14 54 32.30 +29 55 58.50 1452+301 730.7 −0.54 C* 55 14 54 42.58 +27 32 11.30 1452+277 211.1 −0.80 II-c 56 14 55 07.32 +14 12 22.20 1452+144 246.9 −0.76 II-c 57 14 55 55.36 +11 51 44.70 NGC 5782 385.3 −0.34 I-c 58 14 56 05.65 +16 26 52.80 4C 16.43 1290.3 −0.53 II-c 59 14 56 21.94 +26 35 56.40 1454+268 345.4 −0.78 II-c 60 14 56 28.69 +13 02 41.10 1454+132v 260.7 −1.15 II-p 61 14 56 39.93 +18 08 17.50 4C 18.39v 408.6 −1.09 II-c 62 14 56 52.03 +24 15 19.30 1454+244v 508.3 −0.84 II-c 63 14 56 53.43 +27 41 39.20 7C1454+2753 321.6 II-c 64 14 57 00.72 +13 47 06.50 1454+139v 276.2 −0.80 II-c 65 14 57 05.05 +26 58 10.60 1454+271v 295.0 −1.11 II-c 66 14 57 23.36 +24 59 17.30 1455+251 237.2 −0.72 II-c 67 14 57 43.45 +24 35 08.30 1455+24 794.4 −0.52 C* 68 14 57 48.71 +25 06 35.10 1455+253 580.9 −0.77 II-c 69 14 57 53.80 +28 32 20.00 4C 28.38 972.1 II-c 70 14 57 57.40 +11 44 22.10 4C 11.47 559.9 −0.94 II-c 71 14 58 02.01 +29 28 31.40 1455+296v 232.9 −0.88 C 72 14 58 02.75 +18 39 33.30 1455+188v 253.8 −0.75 C 73 14 58 05.26 +14 34 10.00 4C 14.56v 431.1 −0.95 II-p 74 14 58 33.88 +18 30 56.10 4C 18.40v 499.0 −0.89 II-p 75 14 58 34.64 +14 09 51.20 1456+143v 312.6 −0.74 II-c 76 14 58 38.91 +24 58 57.40 1456+251 236.7 −0.96 II-p 77 14 59 14.57 +23 56 33.60 1457+241v 217.2 −0.90 II-c 78 14 59 42.07 +29 03 34.10 B2 1457+29 367.0 II-p 79 15 00 24.05 +20 12 37.80 1458+204 294.1 I-c 80 15 00 21.36 +14 34 59.80 4C 14.57 376.5 −0.96 II-c 81 15 00 53.33 +17 39 07.60 1458+178v 206.4 −1.05 II-c 82 15 01 28.50 +21 34 20.70 4C 21.44 298.5 −0.64 I-p 83 15 01 36.72 +27 44 24.00 1459+279 342.7 −0.89 II-c 84 15 01 38.33 +13 24 49.60 1459+136v 250.2 −1.17 C 85 15 01 58.81 +19 14 05.30 1459+194v 312.2 −0.88 II-c 86 15 02 00.35 +24 39 17.80 1459+248 273.6 −0.55 II-c 87 15 02 00.56 +13 11 54.30 1459+133v 314.0 −0.73 II-c 88 15 02 51.38 +25 44 14.90 1500+259 250.7 −0.84 II-c 89 15 03 01.63 +18 20 32.40 1500+1832 316.5 −0.81 II-p 90 15 03 08.07 +12 37 02.20 1500+128v 235.3 −0.72 II-c 91 15 03 22.40 +19 33 04.10 1501+197 232.6 −0.86 II-c 92 15 03 29.52 +10 33 31.20 1501+107v 281.8 −0.89 C 93 15 03 39.51 +10 16 02.80 MRC1501+104 340.8 −0.74 I-p 94 15 03 51.32 +12 28 07.40 1501+126 299.0 II-c 95 15 03 58.47 +12 30 25.60 1503+1251v 268.1 −1.58 II-c 97 15 04 17.22 +10 57 35.40 1501+111v 252.8 −0.64 C 99 15 04 26.71 +28 54 30.60 1502+291 583.2 −0.57 C* 101 15 05 00.08 +11 58 43.90 1502+121v 205.9 −0.91 C 102 15 06 19.33 +20 27 41.50 1504+206 294.9 −0.96 II-c 103 15 07 09.23 +16 07 16.70 1504+1618v 513.1 −0.93 II-c 114 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 52 0.2186 0.0865 P 22.4 20.9 19.7 19.3 19.0 53 54 0.5800 S 20.5 20.3 20.3 19.6 19.5 55 0.5321 0.0363 P 26.3 22.3 20.2 19.3 19.1 56 0.2538 0.0729 P 24.5 22.1 21.0 20.2 19.7 57 0.0322 0.0002 S 15.9 14.0 13.1 12.7 12.5 10.1e 58 0.2897 0.0148 P 21.3 19.4 17.9 17.3 16.9 13.8e 59 60 61 0.5423 0.0040 I 20.2 19.8 19.7 19.6 19.2 62 0.6678 0.2089 P 26.6 22.3 21.7 21.0 21.8 63 0.9468 0.0374 I 25.3 23.4 22.5 21.0 20.0 64 0.5671 0.0946 P 21.5 20.5 19.7 18.9 18.7 65 0.8593 0.0217 I 21.7 21.8 21.2 20.7 20.5 66 0.3887 0.0021 I 19.1 18.8 18.6 18.7 18.6 67 68 69 0.1409 S 19.2 17.3 16.2 15.6 15.3 13.2e 70 1.4381 0.1241 I 25.2 23.0 22.2 22.0 20.8 71 19.9 19.8 19.7 19.5 19.4 72 73 1.0463 0.0545 I 21.5 24.0 22.0 21.2 21.5 74 1.0334 0.1942 P 22.2 22.1 21.8 21.4 20.5 75 0.6044 0.0464 P 25.6 22.3 21.0 19.9 19.4 76 77 78 0.1460 S 19.4 17.5 16.4 16.0 15.6 13.4e 79 0.0722 0.0196 P 17.7 15.7 14.8 14.4 14.1 12.0e 80 0.0659 0.0012 K 16.9 15.3 14.7 14.5 14.4 13.0 81 1.2303 0.0564 I 22.0 22.3 22.4 21.6 21.3 82 0.2700 0.0135 P 21.0 18.6 17.0 16.4 16.1 13.9e 83 1.2859 0.0823 I 23.2 25.1 22.4 21.8 20.6 84 0.5425 0.2465 P 22.9 22.2 21.7 21.4 21.8 85 0.4941 0.0386 P 24.2 21.2 19.7 18.9 18.5 86 87 0.7816 0.1063 P 22.8 24.0 21.6 20.7 19.7 88 89 0.2958 0.0558 P 21.6 20.5 19.2 18.6 18.4 90 0.6452 0.1105 P 21.5 22.4 20.9 20.4 19.6 91 0.5586 0.0935 P 21.6 21.5 20.5 19.9 19.7 92 93 0.0950 S 19.6 17.7 16.8 16.3 16.0 13.2e 94 95 97 24.9 22.9 22.2 21.5 20.8 99 18.9 18.5 18.5 18.4 18.2 101 20.8 20.5 20.3 20.0 20.0 102 0.4960 0.0402 P 26.5 21.9 20.3 19.3 18.9 103 0.6007 0.0074 I 24.8 21.3 20.2 19.8 19.5 115 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (2) (3) (4) (5) (6) 104 15 07 21.88 +10 18 46.30 B1507+105 403.2 −0.43 C 105 15 07 39.40 +11 04 01.00 B1505+113 226.4 −0.65 II-c 106 15 07 41.89 +12 08 04.30 4C 12.54v 421.0 −1.04 II-c 107 15 07 47.06 +24 34 30.40 1505+247v 314.1 −1.02 II-c 108 15 08 05.12 +18 52 43.80 1505+190v 220.1 −1.01 II-p 109 15 08 39.31 +18 58 60.00 1506+191v 299.4 −1.12 C 110 15 08 48.64 +28 50 09.50 1506+290 391.2 −0.58 C 111 15 09 00.22 +24 19 50.50 1506+245v 287.4 −0.81 II-c 112 15 09 04.80 +28 39 26.70 1506+288v 252.4 −0.73 C 113 15 09 15.60 +14 06 14.80 4C 14.58v 402.7 −1.08 C 114 15 09 16.35 +16 58 57.20 1506+171 233.5 −0.97 II-c 115 15 09 42.80 +29 39 02.80 1507+298 205.6 −0.92 II-c 116 15 09 42.80 +15 56 59.10 1509+1595 284.9 C 117 15 09 50.53 +15 57 25.70 J1509+1557v 386.0 −0.86 C 118 15 10 02.49 +23 22 03.10 1507+235v 257.6 −0.96 II-c 119 15 10 39.49 +20 19 07.00 1508+205v 212.0 −0.68 II-c 120 15 10 43.15 +12 40 52.30 1508+128 273.3 −0.76 II-c 121 15 10 49.12 +14 37 26.20 1508+148v 214.2 −1.06 II-c 122 15 10 50.01 +10 42 14.10 1508+108v 220.2 −0.96 II-c 123 15 10 56.69 +18 02 38.90 1410+1804 305.7 C 124 15 11 05.59 +22 08 06.40 1508+223 411.1 −0.44 C* 125 15 11 09.08 +18 01 53.80 1508+182 375.9 −0.95 I-c 126 15 11 15.58 +18 08 04.90 1508+183v 281.9 −0.73 C 127 15 11 29.43 +10 01 43.80 4C 10.40v 644.7 −0.85 II-c 128 15 11 31.60 +28 22 41.40 1509+285v 207.9 −0.97 II-c 129 15 11 45.70 +21 08 03.10 1509+213v 270.6 −0.94 II-c 130 15 12 07.48 +22 47 14.60 1509+229v 280.1 −1.10 II-c 131 15 12 12.07 +15 40 25.50 4C 15.45v 993.5 −0.75 II-c 132 15 12 32.56 +14 56 36.70 1510+151v 223.7 −0.96 C 133 15 13 27.61 +22 30 23.50 1511+226v 205.4 −0.81 C 134 15 13 29.57 +10 11 03.90 1511+103 221.4 −0.89 II-c 137 15 13 45.74 +24 11 02.80 1511+2422 367.3 II-c 138 15 14 03.55 +22 23 31.50 1511+225v 268.0 −0.84 C 139 15 14 14.64 +23 27 11.20 1512+2338 247.0 II-p 140 15 14 15.61 +15 41 59.60 1511+158v 278.2 −1.18 II-p 141 15 14 31.84 +12 34 17.80 1512+127v 323.0 −0.76 C 142 15 14 49.50 +10 17 00.90 1512+104 436.7 −0.52 I-c 143 15 15 03.43 +22 31 45.40 1512+227v 208.4 −0.78 Ii-c 144 15 15 23.74 +10 18 37.30 1512+104B 237.8 −0.94 II-c 145 15 15 54.17 +24 58 40.40 1513+251 219.7 −0.27 C 146 15 16 02.98 +14 18 22.90 1513+144 296.3 II-c 148 15 16 56.81 +19 32 13.40 B1514+197 464.1 0.10 C* 149 15 17 04.56 +21 22 42.90 1514+215v 243.3 −0.86 II-c 150 15 17 23.58 +29 55 30.40 1515+301v 320.5 −0.99 II-c 151 15 17 24.70 +17 29 28.30 1515+176 226.0 −0.42 II-c 152 15 17 49.52 +14 27 59.30 1515+146v 201.8 −0.71 II-c 153 15 17 51.37 +10 00 26.90 4C 10.41 229.5 −1.48 II-c 154 15 17 53.32 +26 48 39.50 1515+269v 284.1 −0.67 II-c 155 15 18 05.11 +19 42 43.90 1515+198v 423.2 −1.00 II-p 116 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 104 0.0781 0.0002 S 18.5 16.2 15.2 14.8 14.5 13.0 105 0.4755 0.0001 S 18.3 17.9 17.9 17.6 17.4 15.0 106 107 2.4083 0.0018 S 19.8 19.1 19.2 19.1 18.8 108 0.3190 0.0012 I 18.6 18.5 18.4 18.2 18.2 109 0.5371 0.2103 P 23.2 22.5 21.8 21.5 20.5 110 111 1.0377 0.0567 I 25.0 23.2 23.0 21.2 20.6 112 22.8 22.5 22.0 20.9 20.6 113 114 115 0.9136 0.0470 I 23.5 24.6 22.5 20.9 19.8 116 117 0.1850 0.0104 P 20.3 18.2 17.0 16.5 16.1 13.6e 118 119 120 1.1775 0.0421 I 23.7 23.1 22.3 21.5 21.2 121 0.7248 0.0103 I 20.9 20.7 20.3 20.3 20.1 122 1.1561 0.0651 I 22.3 23.9 22.9 21.5 21.6 123 124 23.9 22.9 22.3 22.0 21.0 125 0.1159 0.0003 S 18.8 16.5 15.4 15.0 14.5 12.2e 126 127 2.1000 S 21.9 22.0 21.5 21.2 20.8 128 1.2259 0.0845 R 22.8 23.4 22.1 21.9 22.0 129 130 131 0.8280 S 18.1 17.9 17.9 18.0 17.9 15.5 132 19.5 19.3 19.2 18.9 18.9 133 134 1.5464 0.0017 S 17.9 17.6 17.4 17.3 17.4 15.5 137 0.0700 0.0002 S 18.6 16.5 15.5 15.0 14.6 13.2 138 0.1554 0.0224 P 20.1 18.4 17.7 17.2 17.0 14.7 139 0.1046 0.0165 P 18.4 16.4 15.4 15.0 14.6 12.3e 140 141 0.5756 0.0592 P 22.4 22.0 20.7 19.7 19.3 142 0.0572 0.0002 S 17.3 15.2 14.3 13.9 13.6 11.6e 143 0.3295 0.0013 I 18.5 18.2 18.3 18.3 18.4 144 1.1059 0.0445 I 24.3 22.9 22.6 21.4 20.6 145 146 0.2202 0.0289 P 22.0 20.0 18.6 18.0 17.7 14.8 148 0.6500 S 19.4 18.8 18.3 17.8 17.5 14.1 149 0.2787 0.0336 P 22.3 20.7 19.0 18.5 18.0 150 1.8420 0.2172 R 23.4 22.5 23.2 23.7 22.9 151 0.2419 0.0388 P 19.9 19.2 18.2 17.8 17.5 15.3 152 153 0.8129 0.0725 P 22.7 21.9 21.1 20.3 19.3 154 0.9560 0.0389 I 25.6 25.3 22.1 21.0 19.8 155 0.7581 0.1275 P 22.0 21.5 21.0 20.4 19.8 117 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (2) (3) (4) (5) (6) 156 15 18 14.06 +15 49 32.60 1515+160 219.3 −0.93 II-c 157 15 18 23.16 +22 58 35.20 1516+231v 244.1 −1.03 C 158 15 18 32.14 +11 18 45.40 1516+114v 405.5 −1.11 C 159 15 18 35.97 +10 32 12.60 1516+107v 409.1 −0.72 C 160 15 18 40.02 +24 27 05.20 4C 24.33 291.3 −1.20 I-p 161 15 19 03.03 +28 49 45.50 1516+290v 214.9 −0.97 C 163 15 20 29.84 +15 26 13.20 4C 15.47 556.9 −0.78 II-p 164 15 21 13.53 +22 42 46.20 1519+228v 261.8 −1.10 II-c 165 15 21 16.47 +15 12 09.90 1519+153v 347.0 −0.75 U 166 15 22 12.15 +10 41 31.00 1519+108v 499.4 −0.82 II-c 167 15 22 17.09 +10 13 00.50 1519+103 333.4 −0.71 II-c 168 15 22 19.66 +21 19 57.20 1520+215v 298.0 −1.04 C 169 15 22 24.16 +21 58 08.80 1520+221 333.6 −0.83 II-c 170 15 23 21.74 +13 32 29.40 4C 13.54v 351.2 −1.04 C 171 15 23 25.27 +27 04 57.70 4C 27.31v 347.5 −1.03 II-c 172 15 23 27.56 +11 30 23.90 1521+116 407.2 −0.57 I-p 173 15 23 28.40 +28 36 04.10 4C 28.39 835.6 Iw-c 174 15 23 56.93 +10 55 44.10 4C 11.49 1060.2 −0.78 U 175 15 23 58.49 +16 14 47.60 1523+1625 234.8 −0.59 C 176 15 24 05.26 +29 00 23.60 1524+2901 279.1 −0.54 C 177 15 24 12.71 +19 23 59.70 1521+195v 263.9 −0.89 II-c 178 15 24 41.60 +15 21 21.70 B1522+155v 445.0 −0.28 C 179 15 24 54.42 +27 57 07.70 1522+281 209.6 −0.89 II-c 180 15 25 02.88 +11 07 45.00 1522+113 407.7 −0.52 C* 181 15 25 08.80 +12 53 18.10 1522+130 219.7 II-c 182 15 25 32.87 +15 56 11.40 4C 16.45v 485.7 −0.95 C 183 15 26 09.24 +17 02 26.70 1526+1604 317.1 −0.47 C 184 15 26 31.81 +14 44 59.20 1524+149v 231.0 −0.75 II-c 185 15 26 33.87 +12 53 07.60 1526+1288v 234.4 −1.02 II-c 186 15 27 15.68 +20 53 23.00 1525+210 217.9 −0.82 II-c 187 15 27 32.48 +11 54 32.20 4C 12.55v 479.8 −1.04 II-c 188 15 27 40.01 +15 21 57.90 1525+155v 308.0 −0.64 C 189 15 27 44.61 +28 55 06.60 1525+290v 212.8 −0.49 I-c 190 15 27 57.80 +22 33 01.30 1525+227v 335.4 −0.75 II-p 191 15 28 06.39 +13 23 32.30 1525+135 225.0 −0.89 II-c 192 15 29 09.51 +17 13 26.80 1526+173 409.4 −0.94 II-c 193 15 29 46.19 +15 39 44.50 4C 15.48 536.8 −0.83 II-c 194 15 29 51.76 +19 04 34.60 1527+192v 604.8 −0.66 C 195 15 30 04.69 +29 00 09.30 1528+29 258.3 II-c 196 15 30 05.11 +23 16 22.20 1527+234 277.6 −0.40 II-c 197 15 30 49.02 +27 21 27.50 1528+275 209.6 −0.56 C 199 15 31 48.52 +10 55 39.90 1529+110 200.5 −0.77 II-c 200 15 31 49.73 +22 25 05.90 1529+225v 304.8 −0.68 C 201 15 32 28.50 +24 15 29.90 J153233.19 328.5 II-c 202 15 32 34.03 +20 06 38.80 4C 20.36v 577.7 −0.88 II-c 203 15 32 44.30 +28 03 46.40 B2 1530+28 381.0 −0.43 I-c 204 15 32 50.67 +22 41 35.20 1530+228v 222.9 −0.61 C 205 15 32 58.12 +15 56 05.80 1530+161 284.5 −0.88 II-c 206 15 33 14.49 +15 16 42.20 4C 15.49v 947.5 −0.69 C 118 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 156 1.1964 0.0567 I 23.0 23.8 22.8 21.6 20.5 157 158 159 160 1.8470 S 161 163 164 0.4837 0.0041 I 19.5 19.4 19.5 19.3 19.0 165 0.2193 0.0114 P 20.8 18.9 17.6 17.1 16.7 13.9e 166 0.2040 S 21.2 19.5 18.0 17.5 17.1 167 0.2510 0.0481 P 22.0 20.4 19.0 18.5 18.1 168 23.3 19.9 19.5 19.3 19.2 169 170 0.9617 0.1788 P 22.2 22.1 21.7 21.1 19.8 171 0.3758 0.0016 I 19.4 19.0 18.9 18.6 18.4 172 0.2030 S 20.1 18.7 17.9 17.5 17.0 15.0 173 0.0822 S 18.0 16.0 15.0 14.5 14.2 13.3 174 0.4110 S 22.2 20.3 19.7 19.4 19.3 175 0.7961 0.1255 P 23.1 26.0 21.4 20.4 19.4 176 177 1.2349 0.0720 I 23.5 23.7 22.8 21.7 20.6 178 0.6280 S 18.3 18.0 18.1 18.0 18.0 15.1 179 180 0.3326 0.0012 S 19.4 19.3 18.4 18.2 17.5 15.0 181 0.2570 0.0008 S 20.6 19.9 18.6 18.1 17.6 15.1 182 25.1 23.5 23.2 21.9 21.5 183 184 0.6677 0.1220 P 25.3 23.3 21.8 20.6 20.0 185 186 187 188 22.0 20.8 20.7 21.0 20.9 189 0.0652 S 17.4 15.4 14.5 14.0 13.7 11.1e 190 0.2530 S 16.9 16.7 16.6 16.6 16.5 191 0.6760 0.0011 S 19.6 19.0 18.7 18.8 18.5 192 0.7970 0.0159 I 21.0 20.9 20.7 20.5 20.6 193 0.3523 0.0341 P 23.9 20.8 19.3 18.6 18.1 15.3 194 20.6 19.9 19.8 19.7 19.4 195 0.0839 S 13.1 196 0.1049 0.0178 P 18.2 16.1 15.1 14.6 14.2 13.0 197 199 200 201 0.5640 S 20.6 20.2 19.7 18.6 18.3 202 203 0.0732 S 19.3 17.4 16.5 16.1 15.7 13.5e 204 205 206 119 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (2) (3) (4) (5) (6) 207 15 33 15.08 +13 32 24.30 4C 13.55v 1113.1 −0.85 II-c 208 15 34 17.83 +10 17 08.40 1531+104 336.5 −0.96 I-c 209 15 34 22.66 +13 49 17.10 1532+139v 809.0 −0.64 II-p 210 15 34 46.22 +19 18 10.20 4C 19.50v 674.7 −0.76 C 211 15 34 57.26 +23 30 11.10 ARP 220 326.3 −0.21 C 212 15 35 19.47 +27 52 56.80 1533+280 302.7 −0.92 II-p 213 15 35 49.55 +14 03 50.90 1533+142 299.1 −0.69 Ii-p 214 15 36 11.93 +13 12 35.50 1533+133v 210.3 −0.73 C 215 15 36 34.02 +17 16 07.40 4C 17.63v 368.7 −1.04 C 216 15 37 07.76 +26 48 28.50 1534+269 263.1 Iw-c 217 15 37 08.01 +14 24 47.10 1534+145 204.8 −0.98 II-c 219 15 37 45.72 +23 02 24.20 1537+2304 200.2 C 220 15 38 34.18 +23 18 36.80 1536+234 259.6 −0.29 C 221 15 39 16.46 +14 16 22.60 1536+144 203.7 −0.90 II-c 222 15 39 25.11 +16 04 00.30 1537+162 412.5 −0.31 C* 223 15 40 09.02 +14 21 14.00 1537+145v 569.3 −0.77 II-p 225 15 41 04.72 +18 05 50.90 1538+182 276.6 −0.89 U 226 15 41 10.39 +15 44 02.60 4C 15.50v 217.9 −1.42 C 227 15 42 19.54 +17 56 08.20 4C 18.43v 529.8 −0.81 II-c 228 15 42 20.49 +24 01 55.10 1540+241 273.4 −0.81 II-c 229 15 42 56.17 +10 54 34.70 B1540+11 303.0 −0.92 II-c 230 15 43 23.83 +21 45 34.80 1541+219 208.1 −0.83 II-c 231 15 43 28.53 +22 52 32.80 1541+230v 219.1 −0.57 II-c 232 15 43 41.41 +13 31 08.50 1541+136 303.0 −0.80 II-c 233 15 43 43.81 +18 47 20.40 1541+189 356.2 −0.49 C 234 15 44 17.49 +14 10 13.80 1541+143 217.8 −1.06 II-c 235 15 45 02.48 +13 45 47.30 1542+139v 231.7 −0.97 C 236 15 45 55.05 +19 06 29.30 4C 19.51v 927.7 −0.72 U 237 15 45 55.06 +23 11 57.90 1543+233 228.2 −0.49 C 238 15 46 02.56 +17 54 38.40 1543+180v 229.9 −0.93 II-c 239 15 46 05.99 +27 49 17.30 1544+279v 217.1 −0.88 II-p 240 15 46 31.47 +21 57 41.30 1544+221v 427.2 −0.69 II-c 241 15 47 07.52 +11 42 49.80 1544+1152 367.1 −0.65 II-c 242 15 47 12.96 +18 04 10.80 4C 18.44v 419.9 −0.94 II-c 243 15 47 21.00 +27 48 22.00 1545+279 274.0 −0.81 II-c 244 15 47 30.07 +14 56 55.70 1545+1505 203.7 I-c 246 15 49 04.81 +26 44 14.50 1546+268 260.8 −0.64 II-c 247 15 48 07.46 +14 51 17.60 4C 15.51 398.6 −1.00 II-p 248 15 49 36.64 +18 35 00.10 4C 18.45v 584.6 −0.88 II-c 250 15 50 12.00 +27 17 58.20 1548+274v 282.8 −0.61 II-p 251 15 50 38.88 +18 39 01.20 1548+188 214.5 −0.94 II-p 252 15 50 43.51 +11 20 58.50 4C 11.50 828.3 −0.74 I-p 253 15 51 11.66 +26 06 14.30 1549+262v 455.3 −0.88 II-c 255 15 51 36.81 +10 36 22.70 1549+107 530.7 −0.66 II-c 256 15 51 45.36 +12 43 25.10 1549+128v 250.1 −0.93 C 257 15 52 10.54 +18 42 07.80 1549+188v 274.7 −0.81 U 258 15 52 10.97 +22 45 08.00 1550+229 545.5 −0.68 C 259 15 52 24.01 +11 12 45.20 1550+113 211.9 −0.72 C 261 15 53 05.37 +14 01 16.60 J1553+1401 303.3 −0.94 II-c 120 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 207 0.7710 S 20.4 19.9 19.8 19.8 19.2 208 0.1411 0.0116 P 20.3 18.1 17.0 16.5 16.1 13.5e 209 0.2095 0.0631 P 21.1 19.3 18.0 17.4 17.0 210 211 0.0181 0.0001 S 15.5 13.8 13.0 12.6 12.3 212 0.5337 0.0465 P 22.1 21.2 19.9 19.0 18.6 213 214 23.0 23.8 22.9 22.1 21.3 215 216 0.2626 0.0168 P 21.6 19.6 18.2 17.6 17.2 217 219 220 221 0.7339 0.0761 P 21.6 20.9 20.3 19.4 19.2 222 20.0 19.4 19.2 19.2 18.9 223 0.7503 0.0104 I 21.0 20.7 20.2 20.4 19.9 225 0.6149 0.0062 I 20.2 20.0 19.8 19.9 19.9 226 227 1.6671 0.0020 S 19.5 19.3 19.3 19.0 19.1 228 0.5462 0.0297 P 23.3 21.8 20.1 19.1 18.4 229 0.9920 S 19.0 18.9 18.6 18.6 18.6 230 231 0.2201 0.0002 S 16.0 24.9 16.9 16.7 16.9 13.8e 232 0.6047 0.1362 P 22.9 22.5 21.5 21.0 20.1 233 1.3960 S 19.2 19.4 19.1 19.0 19.0 234 235 22.9 21.7 21.1 20.4 20.1 236 1.2473 0.0595 I 23.8 24.4 22.6 21.7 20.9 237 0.7433 0.1229 P 23.3 22.5 21.8 20.8 20.5 238 239 0.8172 0.1124 P 22.5 22.5 21.7 20.7 19.8 240 0.7343 0.2006 P 22.2 23.2 22.0 21.3 21.4 241 0.7764 0.0256 I 23.7 22.7 21.6 20.5 20.4 242 0.5368 0.0332 P 23.6 21.7 20.1 19.2 18.8 243 0.5741 0.0049 I 20.4 20.5 19.9 19.7 19.5 244 0.0947 0.0172 P 18.2 16.3 15.4 15.0 14.6 12.1e 246 0.5947 0.0460 P 24.3 22.8 21.2 20.2 19.4 247 248 1.4420 S 21.1 21.5 21.1 21.0 21.0 250 251 252 0.4360 S 18.6 18.5 18.6 18.0 17.9 15.1 253 0.6965 0.0941 P 25.1 22.8 21.6 20.4 20.0 255 0.3984 0.0204 P 22.5 19.6 18.0 17.3 16.8 256 257 0.5555 0.0510 P 25.0 23.2 21.1 20.1 19.6 258 23.6 23.6 22.6 21.8 21.0 259 23.8 24.1 22.5 22.3 22.1 261 0.6776 0.0087 I 20.9 20.2 20.1 20.1 19.7 121 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (2) (3) (4) (5) (6) 262 15 53 09.93 +21 00 43.70 1550+211 244.9 −0.84 II-c 263 15 53 19.50 +17 49 43.10 1551+179 383.7 −0.91 II-c 264 15 53 27.68 +27 30 55.80 1551+276v 228.5 −0.64 C 265 15 53 32.77 +12 56 50.80 B1551+1305 947.7 −0.33 C* 266 15 53 43.61 +23 48 04.70 4C 23.42 732.1 −0.65 I-c 267 15 53 50.45 +25 01 25.30 1551+251v 367.8 −0.70 U 268 15 53 54.37 +21 59 27.50 1551+221v 530.0 −0.72 II-c 269 15 54 34.04 +25 19 19.40 1552+254v 394.6 −0.79 C 270 15 54 39.26 +19 47 18.70 4C 19.52v 1094.5 −0.78 C 271 15 54 54.57 +14 59 40.80 1552+151 277.7 −0.87 II-c 272 15 55 0.57 +21 41 59.50 1552+218 233.6 −0.40 C 273 15 55 31.35 +27 45 40.70 1553+279v 218.6 −0.73 Ii-p 274 15 55 32.85 +20 09 39.70 1555+2016 212.6 C 275 15 55 43.09 +11 11 24.50 B1553+113 312.0 −0.28 C* 276 15 55 51.00 +24 06 15.00 4C 24.35 481.9 −0.98 II-c 277 15 55 52.29 +13 18 37.50 1553+134v 202.9 −0.69 U 279 15 56 30.55 +22 07 29.70 1554+222v 343.4 −0.87 U 280 15 56 37.78 +20 00 51.70 1556+2001 289.9 C 281 15 56 43.27 +14 18 32.80 1554+144v 271.0 II-c 282 15 56 47.07 +10 37 55.70 4C 10.44 415.5 −0.74 I-p 283 15 57 38.81 +10 12 28.10 1555+103v 267.7 −0.89 C 284 15 59 06.89 +12 10 26.90 4C 12.56 688.8 −0.76 II-c 285 15 59 16.81 +11 15 45.70 4C 11.51v 667.7 −0.76 II-c 286 15 59 24.98 +16 24 41.30 J1559+1624 321.3 C 287 15 59 54.25 +16 18 38.40 4C 16.46 987.1 −0.55 C 122 Appendix A. The CoNFIG catalogue CoNFIG-3 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 262 263 0.6901 0.0820 P 21.4 20.9 20.1 18.8 18.9 264 265 1.2900 S 17.3 17.2 17.1 17.1 17.1 266 0.1150 S 18.1 16.3 15.4 14.9 14.6 12.4e 267 268 0.7454 0.1361 P 22.5 23.3 22.0 21.2 20.6 269 270 1.3400 S 19.9 19.7 18.8 18.6 18.6 271 0.6063 0.0914 P 26.9 23.5 21.6 20.6 19.7 272 0.8645 0.0028 S 18.5 18.1 17.7 17.4 17.1 14.4 273 0.6732 0.0729 P 22.3 21.9 21.0 20.0 19.6 274 275 0.3600 S 14.8 14.5 15.3 14.0 13.9 11.2 276 0.5864 0.0054 I 21.0 20.5 20.2 19.8 19.6 277 1.5481 0.1100 R 24.3 23.6 22.7 22.6 22.0 279 280 0.3036 0.1879 P 281 282 0.1790 0.0192 P 20.4 17.4 16.3 15.8 15.4 12.9e 283 284 0.2853 0.0227 P 22.3 20.2 18.5 17.9 17.5 285 0.8753 0.0158 I 21.7 21.4 21.2 20.8 20.6 286 287 123 Appendix A. The CoNFIG catalogue A.1.4 CoNFIG-4 (1) (2) (3) (4) (5) (6) 1 14 08 18.51 +00 13 09.50 J140818+00 113.8 −0.93 C 2 14 08 28.14 +02 25 48.70 1405+026v 243.7 −0.64 Ii-p 3 14 08 32.29 +00 31 33.90 1408+005 61.2 II-c 4 14 08 32.70 −01 31 19.50 J140832+00 73.3 C 5 14 08 33.31 +01 16 22.10 1406+015 601.3 −0.60 U 6 14 08 37.71 +02 48 29.40 1408+0281v 77.0 II-c 7 14 08 46.83 +01 33 56.60 1406+018 173.6 −1.07 U 8 14 08 52.43 +02 42 48.60 1408+0271v 58.3 U 9 14 09 14.92 −03 17 03.70 1406-030 147.4 −0.77 C 10 14 09 23.53 −00 04 36.40 1409-0008 68.9 C 11 14 09 28.95 −01 57 20.30 J140929-01 90.3 II-p 12 14 09 31.43 −01 00 53.20 1406-007v 69.8 −1.11 II-c 13 14 09 48.25 −02 30 55.90 1407-022 87.5 −1.02 C 14 14 09 52.02 −03 03 10.30 1409-0307 163.6 II-c 15 14 09 56.27 −02 46 05.10 B1407-0231v 73.0 II-p 16 14 09 57.00 −01 21 04.70 1409-0135 71.4 Ii-p 17 14 09 58.48 −01 09 14.10 1407-009 150.2 −1.17 II-p 19 14 09 59.89 +01 14 50.00 1409+0125 53.6 C 20 14 10 04.66 +02 03 07.10 B1407+022 333.5 −0.63 C* 21 14 10 19.21 −01 08 03.10 1410-0113 54.0 C 22 14 10 25.85 −00 41 51.50 1410-0069 66.3 C 23 14 10 35.33 −00 41 53.30 1408-004 178.7 −1.21 U 24 14 11 04.35 −03 00 43.30 B1408-0246v 277.3 −0.65 I-p 25 14 11 07.85 +00 36 07.80 J141107+00 242.0 C* 26 14 11 08.29 +01 24 41.10 1408+016 187.5 −1.27 II-c 27 14 11 10.28 −00 35 59.10 1408-003 103.3 −1.09 II-c 28 14 11 14.61 +02 17 22.50 1411+0229 86.5 U 29 14 11 23.53 +00 42 40.10 1408+009 426.5 −0.34 II-c 30 14 11 35.32 −03 20 19.60 1408-030 348.2 −0.89 II-c 31 14 12 02.34 +02 54 39.60 1409+031v 644.3 −0.82 C 32 14 12 05.27 −03 19 29.10 1409-030v 360.2 −0.90 II-c 33 14 12 46.22 +02 29 26.20 1410+027 120.9 −1.00 II-c 34 14 12 51.56 −02 08 34.50 1410-019v 388.2 −0.85 C 35 14 12 51.98 −00 45 07.70 1412-0075 61.8 II-c 36 14 13 14.84 −03 12 27.00 NGC 5506v 338.8 −0.34 Ii-p 37 14 13 14.94 −00 22 56.60 4C -00.54 233.4 −1.06 II-c 38 14 13 26.43 −01 46 46.70 1410-015 84.3 −0.93 II-p 39 14 13 27.39 +02 37 28.80 1410+028 55.9 −1.32 II-c 40 14 13 29.35 −02 09 31.00 1413-0216 115.6 C 41 14 13 38.87 −02 33 15.10 1413-0255 59.1 II-p 42 14 13 41.97 +01 11 26.60 1411+014 195.4 −0.40 C 43 14 13 52.16 +01 42 41.00 1411+019 140.8 −0.71 II-c 44 14 14 09.37 +01 49 10.80 1414+0182 55.3 II-c 45 14 14 23.04 −00 01 38.00 1411+002 152.6 −0.75 II-c 46 14 14 35.80 +02 56 18.30 1412+031 135.9 −0.73 II-c 47 14 14 57.34 +00 12 17.90 LEDA 184576 110.4 Iw-c 48 14 15 10.01 +00 36 21.30 1415+0060 68.8 II-c 49 14 15 11.41 −01 37 02.80 N274Z243 113.7 I-p 50 14 15 28.72 +01 05 54.20 N342Z086 107.2 I-p 124 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 1 1.2377 0.0050 S 21.8 21.5 20.9 21.0 20.9 2 0.1782 0.0438 P 20.8 19.4 18.4 17.9 17.5 3 1.6734 0.0025 S 19.8 19.7 19.6 19.4 19.4 4 5 6 7 8 1.1929 0.0795 I 22.6 23.1 22.5 21.6 20.6 9 0.5862 0.1907 P 22.8 22.2 21.7 21.3 21.7 10 11 0.6377 0.0015 S 17.5 17.2 17.4 17.3 17.5 15.0 12 13 21.8 21.6 21.6 21.3 21.3 14 0.1380 0.0002 S 19.6 17.4 16.3 15.8 15.3 14.0 15 1.2640 0.0027 S 17.6 17.6 17.3 17.4 17.4 15.4 16 0.2498 0.0358 P 21.8 20.1 18.7 18.2 17.9 17 19 20 1.0586 0.0021 S 19.1 18.5 18.1 17.7 17.4 14.2 21 0.7824 0.4442 P 22.0 21.9 21.7 21.9 21.0 22 23 24 1.5305 0.0019 S 19.1 18.8 18.8 18.7 18.7 25 1.7246 0.0027 S 18.4 18.3 18.4 18.1 18.2 26 27 28 0.1667 0.0002 S 20.5 19.0 17.8 17.2 17.1 29 2.2663 0.0016 S 18.8 18.2 18.1 18.0 17.8 30 31 0.9250 0.2848 P 20.8 21.1 20.9 20.8 20.2 32 33 34 35 0.8161 0.1286 P 24.3 22.5 21.6 20.8 19.8 36 0.0061 0.0012 S 14.5 12.7 12.0 11.6 11.2 8.2e 37 2.3630 0.0010 S 25.2 22.5 22.0 22.6 22.4 38 39 1.3513 0.1190 I 23.7 23.7 22.2 21.9 20.8 40 41 0.4832 0.0747 P 21.4 21.1 20.2 19.6 19.2 42 0.7255 0.0585 P 23.6 23.0 21.5 20.2 19.7 43 0.4764 0.0035 I 19.3 19.0 19.1 19.2 19.1 44 0.2532 0.0002 S 20.8 18.6 17.1 16.6 16.3 14.6 45 46 47 0.1271 0.0001 S 21.3 19.8 18.8 18.4 18.0 48 49 0.1500 0.0002 S 19.1 17.1 15.9 15.4 15.0 13.9 50 0.1647 0.0002 S 20.3 17.8 16.6 16.1 15.8 13.6e 125 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (2) (3) (4) (5) (6) 51 14 15 30.47 +02 23 01.30 1412+026 153.9 −0.79 II-p 52 14 15 53.96 +02 10 31.90 1415+0217 86.5 C 53 14 16 04.11 +00 29 15.40 1413+007v 107.2 −1.11 II-c 54 14 16 09.42 −01 25 13.60 1413-011 114.2 −0.67 II-p 55 14 16 13.74 +02 19 22.50 1416+0219 256.2 Iw-c 56 14 16 43.04 −02 56 11.30 J141643-02 93.6 C 57 14 16 56.31 +02 22 33.30 1416+0237 60.9 C 58 14 16 59.89 −00 57 31.90 1414-007 69.9 −1.50 U 59 14 17 39.24 +00 40 04.00 1415+008 145.5 −0.53 II-c 60 14 18 24.53 −01 20 01.00 1415-011v 200.0 −0.96 U 61 14 18 24.69 +01 07 27.30 1415+013 131.2 −0.79 II-c 62 14 18 28.14 +01 27 54.30 1415+016v 240.7 −1.11 II-c 63 14 18 38.44 −02 31 05.90 1416-022v 105.9 −0.66 II-c 64 14 18 41.25 +00 23 59.20 1416+006 52.4 −1.23 II-c 65 14 18 59.20 −03 22 51.80 1416-031 290.3 −1.08 C 66 14 19 08.14 +01 08 55.50 1419+0115 57.1 C 67 14 19 08.97 −03 14 33.00 1419-0324v 145.5 II-c 68 14 19 13.33 −00 13 52.90 1416-000 436.1 −0.98 II-c 69 14 19 24.71 +00 16 59.90 1416+005 178.5 −1.14 C 70 14 19 24.82 −01 49 32.00 4C -01.33v 502.7 −0.79 II-p 71 14 19 32.35 +00 31 18.10 J141932+00 70.2 II-c 72 14 20 33.39 −00 32 34.80 J142033-00 77.0 II-c 73 14 20 34.17 −00 54 59.80 1417-006 203.4 −0.64 C 74 14 20 55.66 −00 09 38.90 J142055-00 53.6 C 75 14 21 11.07 +02 48 32.80 1418+030v 332.7 −0.79 II-c 76 14 21 13.56 −02 46 46.00 4C -02.60v 527.9 −0.87 II-c 77 14 21 42.64 +01 24 42.50 1419+016 64.9 −0.85 U 78 14 22 35.63 −01 52 12.40 J142235-01 113.1 II-c 79 14 23 03.43 +01 39 58.70 1420+018 210.4 −0.47 C 80 14 23 12.37 +02 20 35.40 1423+0220 170.8 II-c 81 14 23 26.70 −00 49 56.50 4C -00.55 492.9 −0.89 II-c 82 14 23 29.14 −02 45 21.80 1423-0276 58.0 II-p 83 14 23 44.68 +01 20 36.80 1421+015 53.2 −0.89 U 84 14 23 56.98 +00 31 15.00 1423+0052 51.4 II-p 85 14 24 03.40 +00 29 58.70 N344Z154 95.5 I-p 86 14 24 18.85 +00 55 12.20 1421+011 72.7 −0.53 C 87 14 24 19.81 +00 25 34.20 1421+006 157.4 −0.71 II-c 88 14 24 39.49 −01 44 33.40 1424-0174 67.0 II-c 89 14 24 40.65 −03 23 29.80 4C -03.51 550.7 −0.81 II-c 90 14 25 01.42 −02 38 36.70 1425-0264 178.1 −0.87 II-p 91 14 25 09.14 −02 27 15.80 J142509-02 52.7 C 92 14 25 09.19 −01 16 01.90 1422-010v 149.9 −0.79 II-c 93 14 25 45.72 +00 22 42.00 J142545+00 70.3 C 94 14 25 50.20 −00 23 15.70 1423-001v 157.4 −0.75 II-c 95 14 25 55.95 +02 46 56.80 1423+030v 290.9 −0.88 II-p 96 14 25 59.00 +01 38 24.00 1423+018 97.4 −1.35 II-c 97 14 26 12.96 +02 00 39.60 1426+0201 66.8 C 98 14 26 15.51 +00 50 21.70 N344Z014 96.7 Iw-c 99 14 26 23.75 −03 21 28.80 1423-031v 118.3 −0.72 C 126 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 51 52 0.5991 0.0753 P 22.2 22.7 20.4 19.7 19.6 53 0.9250 0.0702 Z 25.0 24.1 24.3 24.0 20.5 54 0.6789 0.0838 P 23.5 23.7 21.7 20.6 19.7 55 0.1583 0.0011 S 18.9 17.8 16.8 16.3 16.1 13.1e 56 0.1330 0.0002 S 20.4 18.3 17.3 16.8 16.4 13.9e 57 24.5 23.3 24.1 22.6 20.0 58 59 60 61 62 0.5745 0.0812 P 21.2 21.3 20.0 19.4 18.8 63 1.3311 0.0754 I 23.1 23.1 23.2 21.8 21.7 64 0.7936 0.0749 P 22.7 23.3 21.6 20.7 19.4 65 66 24.2 23.6 22.5 21.4 20.6 67 0.8488 0.3090 P 21.4 21.2 21.0 20.8 20.1 68 69 70 0.5877 0.0695 P 24.3 22.5 21.1 20.1 20.1 71 0.7300 0.0050 S 19.3 19.0 19.1 19.1 19.0 72 2.6770 0.0064 S 19.3 18.8 18.7 18.7 18.6 73 74 2.1934 0.0016 S 19.7 19.3 19.4 19.1 18.8 75 76 0.5692 0.0368 P 26.6 22.4 20.2 19.1 18.7 77 78 0.6662 0.0013 S 19.1 18.8 18.9 18.9 18.8 79 80 0.6415 0.0806 P 23.5 21.6 20.6 19.7 19.6 81 0.8198 0.0347 I 23.2 23.5 22.2 20.6 19.4 82 83 84 85 0.1250 0.0002 S 19.2 17.1 16.1 15.7 15.3 12.5e 86 0.6391 0.0829 P 23.1 23.2 21.3 20.4 19.8 87 1.2031 0.0627 I 24.7 22.9 22.2 21.6 21.1 88 0.9953 0.0541 I 24.9 23.8 22.5 21.1 20.5 89 90 0.6320 0.1537 P 22.6 22.2 21.6 21.2 20.6 91 1.6906 0.0019 S 19.1 19.0 19.0 18.7 18.8 92 0.4786 0.0033 I 19.9 19.6 19.6 19.2 19.0 93 0.3263 0.0012 S 18.7 18.7 18.5 18.4 17.9 94 0.6949 0.0432 P 25.2 22.8 20.7 19.5 19.0 95 96 0.8002 0.3590 P 21.5 21.1 21.5 21.0 24.5 97 98 0.1250 0.0002 S 18.6 16.8 15.8 15.3 14.9 12.9e 99 127 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (2) (3) (4) (5) (6) 100 14 26 30.42 +01 42 36.10 1423+019 90.8 −1.05 II-c 101 14 26 49.60 −00 47 18.30 J142649-00 87.7 C 102 14 26 49.84 +00 55 59.90 1426+0093 57.9 II-p 103 14 26 55.09 −02 49 20.90 J142655-02 60.3 C 104 14 26 55.47 −02 15 45.10 1426-0226 167.1 C 105 14 27 11.20 −01 52 12.70 1427-0187 52.0 −1.51 U 106 14 27 39.70 +00 21 44.60 1425+005 110.3 −1.28 II-c 107 14 27 46.92 +00 28 47.40 J142746+00 86.7 II-c 108 14 27 46.97 +00 42 33.10 4C 00.49 349.1 −0.98 C 109 14 27 52.85 −01 25 26.40 1427-0142v 317.3 −0.99 C 111 14 28 10.34 +02 57 41.30 1428+0296 58.0 C 113 14 28 41.93 −03 27 07.80 1428-0345 60.8 C 114 14 28 47.61 +01 35 12.30 1428+0159v 71.7 C 115 14 29 04.11 +02 51 39.90 1426+030v 608.9 −0.42 U 116 14 29 30.20 −01 55 44.30 1429-0193 101.3 C 117 14 29 46.17 −01 57 03.50 1427-017v 123.1 −1.19 C 118 14 29 48.66 −01 12 52.30 4C -01.35v 675.1 −0.85 C 119 14 30 00.95 +00 46 26.30 1427+009v 120.7 −0.73 II-c 120 14 30 23.24 −01 55 17.70 1430-0192 117.6 II-c 121 14 30 30.32 −00 40 22.70 1427-0026 146.1 −1.12 C 122 14 30 30.53 +01 01 04.90 1427+012 171.4 −0.96 II-c 123 14 30 31.45 −00 09 08.00 1430-0015 53.0 C 124 14 30 36.51 +00 33 41.40 1428+007 64.7 −1.01 U 125 14 31 10.48 −01 33 37.60 1428-013 120.8 −0.71 II-c 126 14 31 13.10 −00 52 40.30 J143413-00 76.0 C 127 14 31 34.19 −00 55 16.40 1431-0092 59.4 C 128 14 31 38.25 −00 55 34.60 1431-0093 93.1 II-c 129 14 31 46.86 −00 50 13.00 1429-006 82.4 −1.10 II-p 130 14 31 53.62 −01 21 59.10 1429-011v 72.2 −1.13 C 131 14 32 06.30 +02 37 09.40 1432+0262 55.8 II-c 132 14 32 37.84 −01 17 57.30 1432-0130 58.7 C 133 14 32 38.09 −03 03 18.30 1432-0305 58.4 II-c 134 14 32 44.31 −00 59 13.80 J143244-00 130.5 II-c 135 14 32 49.09 +00 47 04.30 1432+0078 76.4 II-c 136 14 32 54.19 −01 59 33.60 1430-017v 169.3 −0.92 C 137 14 32 59.25 +00 54 55.20 1430+011 199.5 −0.60 II-p 138 14 33 01.45 −00 28 50.80 1430-002 168.7 −0.92 II-c 139 14 33 08.83 +00 44 35.50 1433+0074 70.1 C 140 14 33 14.16 −00 18 06.70 1430-000 201.2 C 141 14 33 24.80 −02 20 45.10 1433-0234 256.0 C 142 14 33 46.59 +02 17 55.90 1431+025 170.8 II-c 143 14 33 46.69 −02 23 22.50 1433-0239 53.6 I-c 144 14 33 50.13 +02 28 24.90 1433+0247 53.6 C 145 14 33 52.09 +00 37 30.30 1431+008 275.2 −0.72 II-c 146 14 34 10.56 +01 36 46.90 1434+0158 475.4 Iw-c 147 14 34 03.22 +01 03 51.50 1431+012 64.9 −0.89 C 148 14 34 05.22 −00 23 04.30 1431-001 156.6 −0.87 II-c 149 14 34 10.14 −01 23 24.80 1431-011 122.2 −1.07 II-c 150 14 34 49.27 −02 15 09.20 1432-020 112.5 −0.90 II-c 128 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 100 101 1.8200 0.0050 S 19.3 19.2 19.3 19.1 19.2 102 103 2.2350 0.0050 S 20.2 19.6 19.4 19.2 18.9 104 22.3 22.1 21.3 20.9 20.1 105 106 107 1.2610 0.0014 S 19.5 19.4 19.0 18.9 18.9 108 109 111 26.0 22.1 20.7 18.8 17.7 15.3 113 114 23.3 23.0 21.8 21.9 22.0 115 0.3011 0.0225 P 23.0 20.1 18.5 18.0 17.6 15.2 116 117 24.4 23.6 22.2 21.6 20.6 118 1.4951 0.0027 S 20.3 19.8 19.2 18.7 18.5 119 120 0.4299 0.1651 P 21.7 21.4 20.8 20.7 20.1 121 0.5969 0.1698 P 23.0 22.5 21.8 21.3 20.7 122 123 21.7 20.7 20.6 20.7 20.2 124 125 1.3671 0.0893 I 25.6 24.4 22.6 21.9 21.3 126 1.6364 0.0017 S 20.2 19.9 19.7 19.4 19.4 127 128 1.4774 0.1390 I 24.9 22.4 22.4 22.1 23.3 129 0.4818 0.1757 P 23.3 21.9 21.5 21.2 21.4 130 131 0.7386 0.1229 P 21.9 24.8 20.8 19.7 18.8 132 133 1.1568 0.1153 I 23.2 23.4 22.3 21.5 20.8 134 1.0270 0.0022 S 17.5 17.4 17.1 17.1 17.2 15.3 135 136 22.9 23.5 22.5 20.6 20.0 137 0.4822 0.0239 P 25.3 21.5 19.8 18.9 18.4 138 139 140 141 0.3735 0.0408 P 23.4 21.9 20.0 19.5 19.1 142 0.3509 0.0246 P 22.0 20.4 18.7 18.1 17.8 15.4 143 0.1916 0.0250 P 20.9 19.2 18.0 17.5 17.1 144 145 0.5031 0.0003 S 23.5 21.7 19.8 18.9 18.5 146 0.1379 0.0002 S 19.0 16.8 15.7 15.2 14.8 12.2e 147 22.9 23.2 22.3 21.8 21.3 148 149 1.0202 0.0015 S 19.8 19.6 19.3 19.3 19.4 150 0.2905 0.0002 S 22.0 19.7 18.0 17.5 17.1 15.0 129 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (2) (3) (4) (5) (6) 151 14 34 52.84 +02 36 03.00 1432+028 322.1 −0.81 II-c 152 14 35 21.30 −02 40 51.70 1435-0268 62.9 Iw-c 153 14 35 23.20 +02 25 42.80 1435+0243 71.5 II-c 154 14 35 41.65 −01 47 25.90 1433-015 132.2 −0.95 II-c 155 14 36 09.04 +01 48 49.20 1436+0181 52.7 C 156 14 36 30.26 +00 35 19.80 1433+008 123.0 −0.43 C 157 14 36 37.02 −02 14 31.10 1436-0224 59.8 C 158 14 37 10.23 −03 04 57.80 1437-0308 50.0 C 159 14 37 21.09 −00 33 18.10 1434-003v 365.0 −0.63 C 160 14 37 22.79 −03 03 07.30 1434-028 120.0 −1.09 II-p 161 14 37 31.82 +01 18 58.40 1434+015 108.8 −1.06 C 162 14 37 27.06 +01 43 02.50 1434+019 370.3 −1.09 II-c 163 14 37 36.74 +01 45 03.20 1437+0175v 276.7 II-c 164 14 37 37.48 +02 56 10.00 1435+031 195.4 −1.15 II-c 166 14 37 42.80 −00 15 04.20 1437-0025 67.0 Iw-c 167 14 37 48.30 −01 47 09.40 J143748-01 52.1 C 168 14 37 56.68 −00 41 16.10 1437-0069 61.6 II-c 169 14 37 56.76 +01 56 38.30 J143757+01 86.7 II-p 170 14 38 00.61 +02 37 03.20 1435+028 56.9 −1.11 U 171 14 38 00.84 +00 23 23.80 1435+006 111.9 −1.10 C 172 14 38 06.05 +01 24 30.20 1438+0141 75.2 C 173 14 38 10.41 −01 42 05.30 1438-0170 58.1 C 174 14 38 14.19 +01 13 30.40 1438+0122 75.1 C 175 14 38 17.17 +01 50 31.70 1435+020v 115.8 −0.95 II-c 176 14 38 20.57 −01 20 06.60 1438-0133 57.3 I-p 177 14 38 20.96 −02 39 52.90 4C -02.61 322.6 −0.75 II-c 178 14 38 25.93 −01 00 01.50 1438-0100 100.0 I-c 179 14 38 33.63 −00 05 26.40 4C 00.50 506.3 −0.90 II-c 180 14 38 33.64 +00 13 29.80 1438+0022 82.1 II-c 181 14 38 41.86 −00 45 25.00 1438-0076 111.9 C 182 14 38 43.38 +00 57 57.50 1436+011 67.3 −1.36 II-p 183 14 38 43.41 −00 48 51.00 1438-0081 57.2 II-p 184 14 38 48.87 +00 40 59.20 1438+0068 164.8 Iw-c 185 14 38 49.11 −00 51 16.50 1438-0085 133.5 II-c 186 14 38 53.93 −02 42 08.20 1436-024 146.9 −1.01 C 187 14 39 39.50 +00 43 35.20 1437+009 122.3 −0.86 II-c 188 14 39 43.36 −00 18 59.50 1437-001 133.2 −0.80 II-c 130 Appendix A. The CoNFIG catalogue CoNFIG-4 (1) (7) (8) (9) (10) (11) (12) (13) (14) (15) 151 152 0.4999 0.0242 P 26.3 21.9 19.9 18.9 18.4 153 1.0272 0.0655 I 22.7 23.1 22.8 21.2 20.5 154 1.4496 0.1145 I 22.1 22.0 22.1 22.1 21.0 155 21.7 21.4 21.0 20.6 20.4 156 157 23.1 23.7 22.4 21.6 21.0 158 159 21.0 20.8 20.5 20.6 20.1 160 161 0.3419 0.0002 S 23.0 21.2 19.7 19.3 18.7 162 163 164 166 0.1375 0.0001 S 19.4 17.1 16.0 15.5 15.2 12.9e 167 1.3079 0.0022 S 15.6 15.6 15.3 15.3 15.4 13.5 168 169 1.1832 0.0020 S 19.7 20.0 19.7 19.6 19.9 170 1.0353 0.0672 I 23.3 24.0 22.7 21.2 20.3 171 172 0.4981 0.0002 S 22.0 21.4 19.6 18.8 18.2 173 26.2 23.4 21.8 20.8 20.3 174 0.6674 0.0373 P 23.9 21.4 20.2 19.1 18.3 175 176 0.2924 0.0193 P 22.0 19.7 18.2 17.6 17.2 15.0 177 1.5495 0.0020 S 19.3 19.2 19.0 18.7 18.6 178 0.2175 0.0001 S 23.7 22.0 20.8 20.4 20.0 179 0.7037 0.0990 P 22.7 22.2 21.3 20.3 19.6 180 0.8937 0.2755 P 21.8 21.3 21.3 20.6 20.1 181 182 0.7700 0.0130 I 24.4 22.3 20.9 20.4 20.0 183 1.3724 0.0865 I 22.7 22.4 22.6 21.9 21.1 184 0.1503 0.0001 S 20.1 18.4 17.4 16.9 16.6 14.9 185 186 187 188 0.8901 0.3379 P 23.1 22.6 21.9 22.4 22.1 131 Appendix A. The CoNFIG catalogue A.2 Complementary samples A.2.1 3CRR 3CRR Data Table Radio position (J2000) Name S178MHz α Type redsh. RA DEC (Jy) 00 38 13.76 +32 53 39.9 3C19 3.6 −0.63 II-c 0.4820 00 40 20.08 +51 47 10.2 3C20 11.0 −0.66 II-c 0.3500 01 04 39.10 +32 08 43.3 3C31 5.2 −0.57 I-c 0.0167 01 06 14.54 +13 04 14.8 3C33 11.3 −0.76 II-c 0.0595 01 06 06.48 +72 55 59.2 3C33.1 3.6 −0.62 II-c 0.1810 01 23 54.74 +32 57 38.3 3C41 3.7 −0.51 II-c 0.7800 01 33 40.42 +20 42 10.6 3C47 3.8 −0.98 II-c 0.4250 01 34 49.82 +32 54 20.4 3C48 17.8 −0.59 C 0.3670 02 10 37.10 +86 05 18.5 3C61.1 6.9 −0.77 II-c 0.1860 02 20 01.78 +42 45 54.6 3C66B 8.8 −0.50 I-c 0.0215 03 07 11.48 +16 54 36.9 3C79 5.0 −0.92 II-c 0.2559 03 14 56.92 +41 40 33.0 3C83.1B 7.4 −0.62 I-c 0.0255 03 16 29.55 +41 19 52.1 3C84 12.3 −0.78 I-c 0.0172 03 56 10.21 +10 17 31.7 3C98 9.4 −0.78 II-c 0.0306 04 10 54.85 +11 04 39.5 3C109 4.1 −0.85 II-c 0.3056 04 33 55.21 +29 34 12.6 3C123 44.6 −0.70 II-c 0.2177 04 59 54.27 +25 12 12.1 3C133 5.3 −0.70 II-c 0.2775 05 18 16.52 +16 35 26.6 3C138 8.6 −0.46 C 0.7590 05 38 43.53 +49 49 42.9 3C147 23.4 −0.46 C 0.5450 06 05 44.44 +48 04 48.8 3C153 3.9 −0.66 II-c 0.2769 06 51 11.05 +54 12 50.0 3C171 3.5 −0.87 II-c 0.2384 09 51 44.20 +69 55 03.0 3C231 8.2 −0.28 I-c 0.0009 A.2.2 CENSORS CENSORS Data Table Name Radio position (J2000) S1.4GHz Type redsh. RA DEC (mJy) CENSORS-001 09 51 29.07 -20 50 30.10 659.5 II-c 1.1550 CENSORS-002 09 46 50.21 -20 20 44.40 452.3 C 0.9130 CENSORS-003 09 50 31.39 -21 02 44.80 355.3 C 0.7900 CENSORS-004v 09 49 53.60 -21 56 18.40 283.0 II-c 1.0130 CENSORS-005v 09 53 44.42 -21 36 02.50 244.7 II-c 1.5880 CENSORS-006 09 51 43.63 -21 23 58.00 239.7 U 0.5470 CENSORS-007v 09 45 56.71 -21 16 54.40 148.2 II-c 1.4370 CENSORS-008 09 57 30.07 -21 30 59.80 126.3 II-p 0.2710 CENSORS-009 09 49 35.43 -21 56 23.50 118.2 C 0.2420 CENSORS-010 09 47 26.99 -21 26 22.60 79.4 II-c 1.0740 CENSORS-011 09 53 29.51 -20 02 12.50 78.1 C 1.5890 CENSORS-012 09 46 41.13 -20 29 27.30 70.4 U 0.8210 CENSORS-013 09 54 28.97 -21 56 55.00 66.3 II-c 2.9500 CENSORS-014v 09 54 47.66 -20 59 43.80 65.6 II-c 1.4450 CENSORS-015v 09 46 51.12 -20 53 17.80 63.0 II-c 1.4170 CENSORS-016v 09 57 51.42 -21 33 24.20 61.7 II-c 3.1260 CENSORS-017v 09 52 42.95 -19 58 20.40 61.5 II-c 0.8930 132 Appendix A. The CoNFIG catalogue CENSORS Data Table Name Radio position (J2000) S1.4GHz Type redsh. RA DEC (mJy) CENSORS-018 09 55 13.60 -21 23 03.10 58.3 C 0.1090 CENSORS-019 09 53 30.69 -21 35 50.00 55.1 II-c 1.2050 CENSORS-020v 09 46 04.75 -21 15 11.40 54.2 C 1.7330 CENSORS-021 09 47 58.94 -21 21 50.90 54.0 C 1.2190 CENSORS-022 09 57 30.92 -21 32 39.50 52.9 U 0.9070 CENSORS-023 09 56 30.01 -20 01 31.00 52.4 II-c 1.9290 CENSORS-024 09 54 38.33 -21 04 25.10 51.0 C 3.4310 CENSORS-025 09 48 04.05 -21 47 36.80 49.2 C 2.0220 CENSORS-026 09 52 17.69 -20 08 36.20 44.4 U 1.0450 CENSORS-027 09 51 49.78 -21 24 57.70 40.4 II-c 0.4230 CENSORS-028 09 46 31.32 -20 26 07.20 40.1 II-c 0.4720 CENSORS-029 09 48 15.71 -21 40 06.30 38.2 I-p 0.9650 CENSORS-030 09 45 55.86 -20 28 30.20 37.8 I-p 0.1080 CENSORS-031 09 45 19.60 -21 42 43.80 37.3 II-c 0.8770 CENSORS-032 09 51 41.02 -20 11 18.40 35.3 II-c 1.1510 CENSORS-033 09 53 04.71 -20 44 09.80 34.3 II-c 1.2030 CENSORS-034 09 47 53.55 -21 47 19.60 34.2 C 1.3190 CENSORS-035v 09 54 52.43 -21 19 29.00 34.1 II-c 0.4730 CENSORS-036 09 49 33.23 -21 27 08.30 32.3 C 1.4850 CENSORS-037 09 49 19.44 -21 51 35.40 31.8 II-c 0.5110 CENSORS-038v 09 51 16.77 -20 56 38.40 31.7 II-c 2.1160 CENSORS-039v 09 48 35.99 -21 06 22.60 31.5 II-c 1.5720 CENSORS-040v 09 50 58.63 -21 14 20.30 30.9 C 1.1580 CENSORS-041 09 49 18.18 -20 54 45.40 27.5 I-p 0.2950 CENSORS-042 09 52 01.86 -21 15 52.30 26.5 U 1.2540 CENSORS-043v 09 52 59.17 -21 48 42.40 26.4 II-c 0.7780 CENSORS-044 09 54 27.06 -20 29 46.50 26.1 U 0.7900 CENSORS-045v 09 57 42.91 -20 06 36.10 25.5 I-p 0.7960 CENSORS-046 09 54 03.02 -20 25 13.20 25.2 C 0.7180 CENSORS-047v 09 47 03.32 -20 50 02.20 25.2 II-c 0.5080 CENSORS-048 09 54 28.28 -20 39 26.60 24.2 C 1.6060 CENSORS-049 09 53 23.18 -20 13 43.50 23.8 C 0.4100 CENSORS-050v 09 52 12.71 -21 02 36.30 22.3 II-c 1.5290 CENSORS-051v 09 51 22.89 -21 51 55.10 21.7 C 2.9550 CENSORS-052 09 45 42.64 -21 15 44.90 21.7 U 1.6245 CENSORS-053v 09 51 32.40 -21 00 29.60 21.6 II-c 0.4260 CENSORS-054 09 53 20.56 -21 43 59.20 21.4 U 0.4100 CENSORS-055 09 49 30.56 -20 23 34.20 21.4 II-p 0.5570 CENSORS-056 09 50 43.20 -21 26 40.70 20.8 II-c 1.4830 CENSORS-057 09 51 21.02 -21 29 55.40 20.7 II-c 1.1960 CENSORS-059 09 48 42.44 -21 52 24.80 19.1 II-c 1.0700 CENSORS-060 09 51 48.66 -20 31 52.90 18.9 C 1.6220 CENSORS-061 09 48 01.87 -20 09 11.40 18.5 II-c 1.4520 CENSORS-062 09 49 45.67 -21 50 06.20 18.4 II-c 0.5740 CENSORS-063v 09 45 29.51 -21 18 50.50 18.4 II-c 0.3140 CENSORS-064v 09 48 59.78 -20 50 08.50 18.1 I-p 0.7500 CENSORS-065v 09 57 26.04 -20 13 05.70 17.9 II-c 0.5490 CENSORS-066v 09 50 46.38 -21 32 55.10 17.4 II-c 0.3550 133 Appendix A. The CoNFIG catalogue CENSORS Data Table Name Radio position (J2000) S1.4GHz Type redsh. RA DEC (mJy) CENSORS-067 09 57 31.87 -21 20 26.70 17.3 I-p 0.4280 CENSORS-068 09 54 51.96 -21 30 16.10 17.2 C 0.5140 CENSORS-069 09 56 02.36 -21 56 04.20 17.0 U 0.5910 CENSORS-070 09 48 10.91 -20 00 59.90 17.0 II-c 0.6450 CENSORS-071v 09 55 41.89 -20 39 39.20 16.7 U 2.8570 CENSORS-072 09 49 25.99 -20 37 24.20 16.5 C 2.4270 CENSORS-073 09 56 28.10 -20 48 45.30 16.2 II-c 1.3640 CENSORS-074 09 49 29.75 -21 29 38.60 16.0 U 0.6670 CENSORS-075v 09 45 26.97 -20 33 55.00 15.7 II-c 0.2650 CENSORS-076v 09 57 45.89 -21 23 23.60 15.3 C 0.2820 CENSORS-077 09 49 42.98 -20 37 45.50 15.0 U 1.5120 CENSORS-078v 09 55 59.23 -20 42 51.60 14.6 II-c 0.4130 CENSORS-079v 09 45 48.48 -21 59 06.10 14.6 C 1.2550 CENSORS-080 09 54 53.26 -21 15 12.90 14.5 U 0.3660 CENSORS-081 09 54 16.43 -21 29 01.60 14.5 II-c 0.4620 CENSORS-082 09 50 53.62 -21 33 07.50 13.6 I-p 0.5370 CENSORS-083 09 51 29.69 -20 16 42.80 13.5 C 0.5210 CENSORS-084 09 55 45.19 -21 25 23.00 13.5 II-c 1.9200 CENSORS-085 09 55 23.82 -21 29 57.20 13.4 I-p 1.2030 CENSORS-086 09 48 04.20 -20 34 34.80 13.2 C 0.8170 CENSORS-087v 09 45 56.03 -21 20 51.00 13.2 II-p 1.2610 CENSORS-088 09 45 20.95 -22 01 22.20 13.1 C 1.0640 CENSORS-089 09 53 09.24 -20 01 21.30 13.0 II-c 0.9090 CENSORS-090 09 47 34.47 -21 26 58.00 12.8 U 1.2610 CENSORS-091 09 48 22.16 -21 05 08.90 12.7 C 1.2420 CENSORS-092 09 52 55.92 -20 51 45.40 12.6 II-c 0.7430 CENSORS-093 09 46 18.86 -20 37 57.40 12.2 I-p 0.1830 CENSORS-094v 09 45 21.12 -20 43 21.40 12.2 II-c 1.6480 CENSORS-095 09 54 21.48 -21 48 07.20 12.2 U 0.0450 CENSORS-096 09 49 25.99 -20 05 20.20 12.0 U 2.7060 CENSORS-097 09 54 36.32 -21 44 26.60 12.0 II-c 1.6350 CENSORS-098 09 49 35.13 -21 58 10.50 11.8 U 1.6350 CENSORS-099v 09 57 2.25 -21 56 51.80 11.6 C 0.7380 CENSORS-100v 09 50 48.57 -21 54 57.10 11.5 II-c 1.2880 CENSORS-101 09 52 50.38 -21 31 48.00 11.4 U 1.0430 CENSORS-102 09 46 49.27 -21 16 48.70 11.1 I-p 0.4680 CENSORS-103 09 47 28.14 -21 28 57.90 10.7 II-c 1.2610 CENSORS-104 09 57 39.51 -20 03 22.60 10.7 II-c 0.8840 CENSORS-105v 09 47 24.38 -21 05 02.30 10.6 II-c 3.3770 CENSORS-106v 09 56 06.94 -20 05 43.80 10.5 I-p 1.2850 CENSORS-107v 09 45 37.77 -21 11 14.20 10.3 II-c 0.5120 CENSORS-108 09 56 49.76 -20 35 25.90 10.2 C 0.2300 CENSORS-109v 09 52 10.91 -20 50 11.20 10.1 C 0.7190 CENSORS-110 09 55 11.49 -20 30 18.70 10.1 I-p 0.2820 CENSORS-111 09 47 44.76 -21 12 23.60 10.0 U 0.4110 CENSORS-112 09 56 42.31 -21 19 44.60 9.8 C 1.7500 CENSORS-113 09 47 10.01 -20 35 52.80 9.7 II-p 0.9420 CENSORS-114 09 56 04.45 -21 44 36.70 9.6 C 1.4260 134 Appendix A. The CoNFIG catalogue CENSORS Data Table Name Radio position (J2000) S1.4GHz Type redsh. RA DEC (mJy) CENSORS-115 09 57 24.93 -20 22 48.00 9.6 II-p 0.5450 CENSORS-116 09 57 35.35 -20 29 35.40 9.6 C 2.6370 CENSORS-117v 09 54 10.54 -21 58 00.90 9.5 II-c 1.2040 CENSORS-118v 09 47 48.55 -20 48 34.00 9.4 U 2.2940 CENSORS-119v 09 49 02.22 -21 15 05.50 9.4 II-c 1.4840 CENSORS-120 09 53 57.38 -20 36 51.30 9.1 C 2.8290 CENSORS-121 09 52 01.20 -20 24 56.50 9.0 C 0.2460 CENSORS-122 09 56 37.11 -20 19 05.50 9.0 II-p 0.2500 CENSORS-123 09 54 31.06 -20 35 38.00 8.7 C 0.8250 CENSORS-124 09 49 10.88 -20 21 53.00 8.7 I-c 0.0126 CENSORS-125 09 49 22.31 -21 18 19.40 8.4 II-p 0.7010 CENSORS-126 09 47 50.58 -21 42 08.20 8.4 II-c 0.3820 CENSORS-127 09 49 24.64 -21 11 12.00 8.3 U 0.9220 CENSORS-128 09 49 02.78 -20 16 11.50 8.3 C 1.1160 CENSORS-129 09 52 26.51 -20 01 07.10 8.3 II-p 2.4210 CENSORS-130 09 57 22.18 -21 01 06.00 8.2 C 2.8780 CENSORS-131 09 51 48.94 -21 33 41.60 8.2 I-p 0.4700 CENSORS-132v 09 46 02.36 -21 51 44.20 7.9 C 2.5450 CENSORS-133 09 51 29.36 -20 25 34.60 7.8 II-p 1.3350 CENSORS-134 09 49 49.00 -21 34 33.70 7.8 II-c 2.3540 CENSORS-135 09 47 48.33 -21 00 40.40 7.8 II-c 1.3160 CENSORS-136v 09 54 41.85 -20 49 43.00 7.5 C 0.6290 CENSORS-137 09 50 38.80 -21 41 08.40 7.4 II-p 0.5260 A.2.3 Lynx & Hercules sample Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz Type redsh. RA DEC (mJy) 08 43 40.72 +44 39 24.7 60w067 1.4 I-p 1.800 08 43 46.86 +44 35 49.7 60w071 0.9 II-c 1.250 08 43 52.89 +44 24 29.0 60w084 1.8 I-c 0.127 08 44 03.58 +44 38 10.2 55w165a 0.6 I-p 0.680 08 44 04.06 +44 31 19.4 55w116 1.2 I-p 0.851 08 44 12.33 +44 31 14.9 55w118 0.6 I-p 0.660 08 44 14.54 +44 35 00.2 55w120 2.0 C 1.350 08 44 14.93 +44 38 52.2 55w121 4.7 C 2.570 08 44 17.83 +44 35 36.9 55w165b 0.5 II-p 0.750 08 44 27.55 +44 43 07.4 55w122 1.8 II-p 0.550 08 44 33.05 +44 50 15.3 55w123 3.3 I-c 0.870 08 44 33.69 +44 46 13.0 55w166 0.5 C 0.990 08 44 35.51 +44 46 04.1 55w124 1.0 I-c 1.335 08 44 37.12 +44 50 34.7 55w127 1.1 I-p 0.060 08 44 37.24 +44 26 00.4 55w128 2.2 I-c 1.189 08 44 41.10 +44 21 37.7 55w131 2.6 II-c 1.124 08 44 42.50 +44 45 32.5 60w016 0.6 C 0.840 08 44 45.14 +44 32 23.9 55w132 1.0 II-c 4.400 08 44 46.90 +44 44 37.9 55w133 1.6 I-p 2.240 135 Appendix A. The CoNFIG catalogue Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz Type redsh. RA DEC (mJy) 08 44 54.51 +44 46 22.0 55w135 1.8 I-p 0.090 08 45 03.29 +44 28 15.1 55w137 0.9 I-p 0.151 08 45 04.25 +44 25 53.3 55w140 0.6 I-p 1.685 08 45 05.49 +44 25 45.0 55w138 2.4 I-p 2.810 08 45 06.06 +44 40 41.2 55w136 0.8 II-p 2.120 08 45 14.00 +44 53 08.7 60w024 0.5 C 0.773 08 45 23.83 +44 50 24.6 55w141 1.7 C 1.800 08 45 27.17 +44 55 25.9 55w143a 7.1 I-c 2.150 08 45 29.47 +44 50 37.4 55w143b 0.9 II-p 2.210 08 45 40.47 +44 23 20.1 60w032 0.6 C 1.800 08 45 41.30 +44 40 11.9 55w147 12.1 I-c 1.070 08 45 46.89 +44 25 11.6 55w149 1.8 II-p 0.151 08 45 50.92 +44 39 51.5 55w150 4.1 I-c 0.470 08 46 00.34 +44 43 22.1 60w039 0.5 II-p 0.151 08 46 04.44 +44 45 52.7 55w154 1.4 II-c 0.330 08 46 06.67 +44 51 27.5 55w155 6.7 I-c 3.700 08 46 06.82 +44 50 54.1 55w156 0.8 I-p 0.860 08 46 08.50 +44 36 47.1 55w157 0.9 C 0.557 08 46 27.32 +44 29 56.9 55w159a 1.3 I-p 1.290 08 46 34.76 +44 41 39.2 55w159b 18.1 I-c 0.311 08 46 33.37 +44 41 24.4 55w160 0.8 C 0.600 08 46 36.02 +44 30 53.5 55w161 2.5 C 0.440 08 46 39.86 +44 33 44.5 60w055 0.9 I-p 0.718 17 18 32.76 +49 55 53.4 66w009a 1.1 II-c 0.650 17 18 33.73 +49 56 03.2 66w009b 0.7 II-c 0.156 17 18 34.14 +49 58 53.0 53w052 8.0 I-p 0.460 17 18 47.30 +49 45 49.0 53w054a 2.1 C 1.510 17 18 49.97 +49 46 12.2 53w054b 2.1 C 3.500 17 18 53.51 +49 52 39.1 66w014 3.3 II-c 0. 17 19 07.29 +49 45 44.8 53w057 2.0 C 1.850 17 19 20.18 +50 00 21.2 53w059 19.4 I-c 1.650 17 19 27.34 +49 44 01.9 53w061 4.8 I-p 2.880 17 19 31.93 +49 59 06.2 53w062 0.7 U 0.610 17 19 40.05 +49 57 39.2 53w065 5.5 I-c 1.185 17 19 42.96 +50 01 03.9 53w066 4.3 I-p 1.820 17 19 51.27 +50 10 58.7 53w067 21.9 I-c 0.759 17 19 52.11 +50 02 12.7 66w027 0.6 II-p 0.086 17 20 02.52 +49 44 51.0 53w069 3.8 I-c 1.432 17 20 06.07 +50 06 01.7 53w070 2.6 C 1.315 17 20 06.87 +49 43 57.0 66w031 0.8 I-p 0.812 17 20 12.32 +49 57 09.7 66w035 0.6 I-p 2.260 17 20 21.46 +49 46 58.3 66w036 0.8 I-c 0.924 17 20 42.37 +49 43 49.1 53w075 96.8 C 2.150 17 20 52.59 +49 42 52.4 66w042 0.8 I-c 0.650 17 20 55.82 +49 41 02.2 53w076 1.9 I-c 0.390 17 21 01.32 +49 48 34.0 53w077 6.5 II-c 0.800 17 21 05.43 +49 56 56.0 66w047 0.6 I-p 0.370 17 21 11.25 +49 58 32.4 66w049 1.4 II-c 0.950 17 21 18.17 +50 03 35.2 53w078 0.7 I-p 0.270 136 Appendix A. The CoNFIG catalogue Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz Type redsh. RA DEC (mJy) 17 21 22.75 +50 10 31.0 53w079 11.7 U 0.548 17 21 37.48 +49 55 36.8 53w080 25.9 II-c 0.546 17 21 37.86 +49 57 57.6 53w081 12.1 U 2.060 17 21 37.64 +50 08 27.4 53w082 2.5 II-c 2.040 17 21 48.23 +49 47 07.3 66w058 1.9 U 2.300 17 21 48.95 +50 02 39.7 53w083 5.0 U 0.628 17 21 50.43 +49 48 30.5 53w084 0.7 U 2.730 17 21 52.48 +49 54 34.1 53w085 4.5 I-p 1.350 17 21 56.42 +49 53 39.8 53w086a 1.6 I-c 0.460 17 21 57.65 +49 53 33.8 53w086b 2.4 I-p 0.730 17 21 59.10 +50 08 42.9 53w087 5.6 I-c 3.700 17 21 58.90 +50 11 52.7 53w088 14.1 I-p 1.773 17 22 01.05 +50 06 54.7 53w089 3.0 I-p 0.635 137 Appendix B Contour plots B.1 CoNFIG Samples - Extended sources CoNFIG-1: NVSS (red) and FIRST (blue) or VLA observation (green) contours of extended sources, against Supercosmos Sky Survey background. The pink square, purple stars and orange triangle point to the NVSS, FIRST and optical identification coordinates. CoNFIG-2, 3 and 4: NVSS (red) and FIRST (blue) or VLA 1.4 GHz A-configuration observation (purple) contours of extended sources in the CoNFIG catalogue, against Supercosmos Sky Survey background. The pink square and green star point to the NVSS and optical identification coordinates. CENSORS:VLA 1.4 GHz A-configuration observation (purple) contours of sources in the CENSORS sample, against Supercosmos Sky Survey background. The pink square points to the radio centroid (or the catalogued radio source coordinates). B.1.1 CoNFIG-1 C1-003: 4C 53.16 C1-006: 4C 31.30 138 Appendix B. Contour plots CoNFIG-1 C1-007: DA 240 C1-008: NGC 2484 C1-008: NGC 2484 C1-009: 4C 37.21 C1-010: TXS 0757+503 C1-011: 3C 192 139 Appendix B. Contour plots CoNFIG-1 C1-012: 3C 194 C1-013: 4C 32.24 C1-014: 3C 196 C1-015: 4C 52.18 C1-016: 3C 197.1 C1-021: 3C 200 140 Appendix B. Contour plots CoNFIG-1 C1-023: 4C 51.25 C1-024: 3C 202 C1-026: 4C 45.17 C1-027: 3C 205 C1-028: 3C 207 C1-030: NGC 2656 141 Appendix B. Contour plots CoNFIG-1 C1-031: 4C 31.32 C1-032: 3C 208 C1-033: 3C 208.1 C1-035: 3C 211 C1-036: 3C 210 C1-037: 3C 212 142 Appendix B. Contour plots CoNFIG-1 C1-038: 3C 213.1 C1-040: 3C 215 C1-041: 4C 41.19 C1-042: 3C 217 C1-044: 4C 16.27 C1-045: 4C 17.48 143 Appendix B. Contour plots CoNFIG-1 C1-046: 3C 219 C1-047: 4C 53.18 C1-049: 3C 220.2 C1-050: 3C 223 C1-051: 3C 223.1 C1-052: 3C 225A 144 Appendix B. Contour plots CoNFIG-1 C1-053: 3C 225 C1-054: 4C 02.29 C1-055: 3C 226 C1-056: 3C 227 C1-058: 3C 228 C1-059: 3C 230 145 Appendix B. Contour plots CoNFIG-1 C1-060: 3C 229 C1-063: 3C 234 C1-064: 3C 236 C1-065: 4C 44.19 C1-067: 3C 238 C1-068: 3C 239 146 Appendix B. Contour plots CoNFIG-1 C1-069: 4C 39.29 C1-070: 4C 48.29A C1-071: 3C 241 C1-072: 4C 59.13 C1-073: 4C 46.21 C1-074: 3C 244.1 147 Appendix B. Contour plots CoNFIG-1 C1-075: 4C 50.30 C1-078: 4C 03.18 C1-081: 4C 20.24 C1-083: 3C 247 C1-084: 3C 249 C1-087: 4C 37.29 148 Appendix B. Contour plots CoNFIG-1 C1-088: 3C 252 C1-089: 4C 43.21 C1-090: 3C 253 C1-091: 3C 254 C1-092: 4C 29.41 C1-093: 3C 255 149 Appendix B. Contour plots CoNFIG-1 C1-095: 3C 256 C1-096: 3C 257 C1-098: TXS 1128+455 C1-099: 4C 43.22 C1-101: 4C 61.23 C1-102: 4C 12.42 150 Appendix B. Contour plots CoNFIG-1 C1-104: 4C 01.32 C1-105: 3C 263.1 C1-106: 4C 37.32 C1-107: 3C 264 C1-108: 3C 265 C1-109: 3C 266 151 Appendix B. Contour plots CoNFIG-1 C1-110: 3C 267 C1-113: 4C 29.44 C1-114: 4C 55.22 C1-115: 4C 59.17 C1-119: 3C 268.2 C1-120: 4C -04.40 152 Appendix B. Contour plots CoNFIG-1 C1-121: 4C 04.40 C1-122: 3C 268.4 C1-123: 4C 20.27 C1-126: 4C 53.24 C1-128: 4C 04.41 C1-129: 3C 270 153 Appendix B. Contour plots CoNFIG-1 C1-130: 3C 270.1 C1-131: 3C 272 C1-133: M84 C1-136: PKS 1227+119 C1-137: M87 C1-139: 3C 274.1 154 Appendix B. Contour plots CoNFIG-1 C1-140: 4C 16.33 C1-141: 3C 275 C1-142: 3C 275.1 C1-144: 4C 09.44 C1-146: 4C 02.34 C1-147: 3C 277.2 155 Appendix B. Contour plots CoNFIG-1 C1-148: 3C 277.3 C1-150: 3C 280 C1-151: 3C 280.1 C1-152: 4C 09.45 C1-153: 4C 00.46 C1-155: 3C 284 156 Appendix B. Contour plots CoNFIG-1 C1-157: 4C 07.32 C1-158: 4C 29.47 C1-160: 4C 17.56 C1-161: 4C 11.45 C1-162: 3C 285 C1-163: 4C 03.27 157 Appendix B. Contour plots CoNFIG-1 C1-165: 4C 32.44B C1-168: 3C 287.1 C1-169: 4C -06.35 C1-170: 3C 288 C1-171: 3C 288.1 C1-172: 4C 05.57 158 Appendix B. Contour plots CoNFIG-1 C1-174: 3C 289 C1-176: 3C 293 C1-178: 4C 01.39 C1-179: 4C 19.44 C1-180: PKS 1355+01 C1-182: 3C 294 159 Appendix B. Contour plots CoNFIG-1 C1-183: 3C 295 C1-184: 4C -05.60 C1-186: NGC 5532 C1-187: 3C 297 C1-189: 3C 299 C1-190: 3C 300 160 Appendix B. Contour plots CoNFIG-1 C1-191: 4C 20.33 C1-192: 4C 24.31 C1-193: 3C 300.1 C1-194: 4C 07.36 C1-197: 3C 303 C1-199: 4C 00.52 161 Appendix B. Contour plots CoNFIG-1 C1-200: 3C 305 C1-201: 4C -04.53 C1-203: B2 1502+28 C1-205: 3C 310 C1-207: 3C 313 C1-208: 4C 01.42 162 Appendix B. Contour plots CoNFIG-1 C1-209: 3C 315 C1-211: 4C 00.56 C1-213: 3C 316 C1-216: 3C 319 C1-218: 3C 320 C1-219: 3C 321 163 Appendix B. Contour plots CoNFIG-1 C1-221: 3C 322 C1-222: 4C 13.56 C1-224: 3C 323 C1-226: 3C 323.1 C1-227: 3C 324 C1-228: 3C 325 164 Appendix B. Contour plots CoNFIG-1 C1-230: 3C 326 C1-231: 3C 326.1 C1-232: 4C 43.35 C1-234: 3C 327 C1-237: 3C 329 C1-238: 3C 331 165 Appendix B. Contour plots CoNFIG-1 C1-241: 3C 333 C1-242: NGC 6109 C1-243: 3C 332 C1-244: 3C 334 C1-245:3C 336 C1-247: 3C 341 166 Appendix B. Contour plots CoNFIG-1 C1-248: 3C 338 C1-249: 3C 337 C1-250: 3C 340 C1-254: 3C 342 C1-257: 3C 344 C1-258: 3C 346 167 Appendix B. Contour plots CoNFIG-1 C1-261: 3C 349 C1-263: 3C 351 C1-264: 3C 350 C1-265: 3C 352 C1-266: 4C 34.47 C1-267: 3C 356 168 Appendix B. Contour plots CoNFIG-1 C1-268: 4C 61.34 C1-269: 4C 45.13 C1-270: 3C 306 C1-271: 4C 32.25A C1-272: 4C 06.32 C1-273: 4C 20.29 169 Appendix B. Contour plots B.1.2 CoNFIG-2 C2-004: 4C 38.29 C2-008: 4C 59.10 C2-010: 4C 08.31 C2-011: 3C 221 C2-014: 4C -01.19 C2-021: 4C 17.49 170 Appendix B. Contour plots CoNFIG-2 C2-023: 4C 00.31 C2-029: 4C 25.29 C2-031: 4C 21.26 C2-036: 4C 00.34 C2-037: 4C 22.25 C2-038: 4C 14.35 171 Appendix B. Contour plots CoNFIG-2 C2-039: 4C -00.37 C2-041: 4C 20.20 C2-042: 4C 32.34 C2-045: 4C 13.41 C2-047: 4C 59.11 C2-052: 4C 11.34 172 Appendix B. Contour plots CoNFIG-2 C2-053: 4C 23.24 C2-055: 4C 41.22 C2-057: 3C 240 C2-063: 3C 242 C2-064: 4C 43.19 C2-065: 3C 243 173 Appendix B. Contour plots CoNFIG-2 C2-067: 3C 244 C2-069: 4C 00.35 C2-070: 4C 52.22 C2-071: 4C 17.50 C2-079: 4C 55.21 C2-080: 4C 15.34 174 Appendix B. Contour plots CoNFIG-2 C2-082: 4C -02.43 C2-089: 3C 248 C2-092: 4C 56.18 C2-094: 4C -00.43 C2-095: 4C 16.30 C2-097: 3C 251 175 Appendix B. Contour plots CoNFIG-2 C2-098: 3C 250 C2-103: 4C 03.21 C2-105: 4C 41.23 C2-110: 4C -02.46 C2-111: TXS 1115+536 C2-117: 4C 05.50 176 Appendix B. Contour plots CoNFIG-2 C2-120: 4C 30.21 C2-122: 4C 12.41 C2-123: 4C 00.40 C2-126: 4C 10.33 C2-127: 4C 33.27 C2-128: TXS 1130+504 177 Appendix B. Contour plots CoNFIG-2 C2-130: 3C 261 C2-134: 4C 17.52 C2-138: TXS 1140+217 C2-139: 4C 49.21 C2-141: 4C 46.23 C2-142: 4C 30.23 178 Appendix B. Contour plots CoNFIG-2 C2-144: 4C -00.46 C2-148: 4C 25.36 C2-149: 4C 05.53 C2-152: 4C 11.40 C2-157: TXS 1152+551 C2-168: 4C 25.38 179 Appendix B. Contour plots CoNFIG-2 C2-169: 4C 58.23 C2-174: 4C 29.46 C2-180: 4C -00.48 C2-185: 3C 269 C2-186: 4C 20.28 C2-188: 4C 09.41 180 Appendix B. Contour plots CoNFIG-2 C2-190: 4C 31.40 C2-196: TXS 1223+099 C2-198: 4C 20.29 C2-204: TXS 1229-013 C2-207: 4C 37.34 C2-208: 4C 05.54 181 Appendix B. Contour plots CoNFIG-2 C2-209: 4C 32.40 C2-210: TXS 1239+577 C2-215: 4C 33.30 C2-216: 3C 277 C2-218: TXS 1249+530 C2-219: 3C 276 182 Appendix B. Contour plots CoNFIG-2 C2-220: TXS 1249+035 C2-226: 4C 44.22 C2-229: 4C 54.30 C2-232: 3C 281 C2-238: 4C 20.31 C2-239: 4C 08.38 183 Appendix B. Contour plots CoNFIG-2 C2-243: 4C 52.27 184 Appendix B. Contour plots B.1.3 CoNFIG-3 C3-002: TXS 1439+252 C3-004: TXS 1440+151 C3-005: TXS 1440+147 C3-006: TXS 1440+119 C3-007: TXS 1440+163 C3-008: TXS 1440+189 185 Appendix B. Contour plots CoNFIG-3 C3-012: GB6 1441+2614 C3-014: 4C 14.54 C3-015: GB6 1442+195 C3-016: GB6 1442+117 C3-017: 4C 16.41 C3-019: 4C 26.44 186 Appendix B. Contour plots CoNFIG-3 C3-020: TXS 1443+232 C3-021: 4C 17.60 C3-022: TXS 1443+125 C3-023: TXS 1444+254 C3-026: 4C 21.42 C3-029: 4C 16.42 187 Appendix B. Contour plots CoNFIG-3 C3-030: WB 1445+1459 C3-031: TXS 1445+167 C3-033: TXS 1446+177 C3-034: 3C 304 C3-035: TXS 1447+213 C3-036: TXS 1447+224 188 Appendix B. Contour plots CoNFIG-3 C3-038: TXS 1448+164 C3-040: 4C 14.55 C3-045: TXS 1451+191 C3-046: TXS 1451+292 C3-049: TXS 1451+118 C3-052: TXS 1452+258 189 Appendix B. Contour plots CoNFIG-3 C3-053: TXS 1452+204 C3-055: TXS 1452+277 C3-056: TXS 1452+144 C3-057: NGC 5782 C3-058: 4C 16.43 C3-059: TXS 1454+268 190 Appendix B. Contour plots CoNFIG-3 C3-060: TXS 1454+132 C3-061: 4C 18.39 C3-062: TXS 1454+244 C3-063: 7C 1454+2753 C3-064: TXS 1454+139 C3-065: TXS 1454+271 191 Appendix B. Contour plots CoNFIG-3 C3-066: TXS 1455+251 C3-068: TXS 1455+253 C3-069: 4C 28.38 C3-070: 4C 11.47 C3-073: 4C 14.56 C3-074: 4C 18.40 192 Appendix B. Contour plots CoNFIG-3 C3-075: TXS 1456+143 C3-076: TXS 1456+251 C3-077: TXS 1457+241 C3-078: B2 1457+29 C3-079: TXS 1458+204 C3-080: 4C 14.57 193 Appendix B. Contour plots CoNFIG-3 C3-081: TXS 1458+178 C3-082: 4C 21.44 C3-083: TXS 1459+279 C3-085: TXS 1459+194 C3-086: BWE 1459+2451 C3-087: TXS 1459+133 194 Appendix B. Contour plots CoNFIG-3 C3-088: TXS 1500+259 C3-089: TXS 1500+185 C3-090: TXS 1500+128 C3-091: TXS 1501+197 C3-093: MRC 1501+104 C3-094: TXS 1501+126 195 Appendix B. Contour plots CoNFIG-3 C3-095: 1503+1251 C3-102: TXS 1504+206 C3-103: WB 1504+1618 C3-105: GB6 B1505+113 C3-106: 4C 12.54 C3-107: TXS 1505+247 196 Appendix B. Contour plots CoNFIG-3 C3-108: TXS 1505+190 C3-111: TXS 1506+245 C3-114: TXS 1506+171 C3-115: TXS 1507+298 C3-118:TXS 1507+235 C3-119: TXS 1508+205 197 Appendix B. Contour plots CoNFIG-3 C3-120: TXS 1508+128 C3-121:TXS 1508+148 C3-122: TXS 1508+108 C3-125: Cul 1508+182 C3-127: 4C 10.40 C3-128: TXS 1509+28 198 Appendix B. Contour plots CoNFIG-3 C3-129: TXS 1509+213 C3-130: TXS 1509+229 C3-131: 4C 15.45 C3-134: TXS 1511+103 C3-137: 7C 1511+2422 C3-139: 7C 1512+2337 199 Appendix B. Contour plots CoNFIG-3 C3-140: TXS 1511+158 C3-142: TXS 1512+104 C3-143: TXS 1512+227 C3-144: TXS 1512+104B C3-146: TXS 1513+144 C3-149: TXS 1514+215 200 Appendix B. Contour plots CoNFIG-3 C3-150: TXS 1515+301 C3-151: TXS 1515+176 C3-152:TXS 1515+146 C3-153: 4C 10.41 C3-154: TXS 1515+269 C3-155: TXS 1515+198 201 Appendix B. Contour plots CoNFIG-3 C3-156: TXS 1515+160 C3-160: 4C 24.33 C3-163: 4C 15.47 C3-164: TXS 1519+228 C3-165: TXS 1519+153 C3-166: TXS 1519+108 202 Appendix B. Contour plots CoNFIG-3 C3-167: TXS 1519+103 C3-169: TXS 1520+221 C3-171: 4C 27.31 C3-172: TXS 1521+116 C3-173: 4C 28.39 C3-174: 4C 11.49 203 Appendix B. Contour plots CoNFIG-3 C3-177: TXS 1521+195 C3-179: TXS 1522+281 C3-181: BWE 1522+1303 C3-184: TXS 1524+149 C3-185: BWE 1524+1302 C3-186: TXS 1525+210 204 Appendix B. Contour plots CoNFIG-3 C3-187: 4C 12.55 C3-189: TXS 1525+290 C3-190: TXS 1525+227 C3-191: TXS 1525+135 C3-192: TXS 1526+173 C3-193: 4C 15.48 205 Appendix B. Contour plots CoNFIG-3 C3-195: 7C 1528+2910 C3-196: TXS 1527+234 C3-199: TXS 1529+110 C3-201: J153233.19 C3-202: 4C 20.36 C3-203: B2 1530+28 206 Appendix B. Contour plots CoNFIG-3 C3-205: TXS 1530+161 C3-207: 4C 13.55 C3-208: Cul 1531+104 C3-209: TXS 1532+139 C3-212: TXS 1533+280 C3-213: TXS 1533+142 207 Appendix B. Contour plots CoNFIG-3 C3-216: TXS 1534+269 C3-217: TXS 1534+145 C3-221: TXS 1536+144 C3-223: TXS 1537+145 C3-225: TXS 1538+182 C3-227: 4C 18.43 208 Appendix B. Contour plots CoNFIG-3 C3-228: TXS 1540+241 C3-229: GB6 B1540+11 C3-230: TXS 1541+219 C3-231: TXS 1541+230 C3-232: TXS 1541+136 C3-234: TXS 1541+143 209 Appendix B. Contour plots CoNFIG-3 C3-236: 4C 19.51 C3-238: TXS 1543+180 C3-239: TXS 1544+279 C3-240: TXS 1544+221 C3-241: GB6 1544+1152 C3-242: 4C 18.44 210 Appendix B. Contour plots CoNFIG-3 C3-243: TXS 1545+279 C3-244: BWE 1545+1505 C3-246: TXS 1546+268 C3-247: 4C 15.51 C3-248: 4C 18.45 C3-250: TXS 1548+274 211 Appendix B. Contour plots CoNFIG-3 C3-251: TXS 1548+188 C3-252: 4C 11.50 C3-253: TXS 1549+262 C3-255: TXS 1549+107 C3-257: TXS 1549+188 C3-261: J1553+1401 212 Appendix B. Contour plots CoNFIG-3 C3-262: TXS 1550+211 C3-263: TXS 1551+179 C3-266: 4C 23.42 C3-267: TXS 1551+251 C3-268: TXS 1551+221 C3-271: TXS 1552+151 213 Appendix B. Contour plots CoNFIG-3 C3-273: TXS 1553+279 C3-276: 4C 24.35 C3-277: TXS 1553+134 C3-279: TXS 1554+222 C3-281: TXS 1554+144 C3-282: 4C 10.44 214 Appendix B. Contour plots CoNFIG-3 C3-284: 4C 12.56 C3-285: 4C 11.51 215 Appendix B. Contour plots B.1.4 CoNFIG-4 C4-002: TXS 1405+026 C4-003: 1408+0050 C4-005: TXS 1406+015 C4-006: 1408+0281 C4-007: TXS 1406+018 C4-008: 1408+0271 216 Appendix B. Contour plots CoNFIG-4 C4-011: J140929-01 C4-012: TXS 1406-007 C4-014: 1409-0307 C4-015: B1407-0231 C4-016: 1409-0135 C4-017: TXS 1407-009 217 Appendix B. Contour plots CoNFIG-4 C4-023: TXS 1408-004 C4-024: B1408-0246 C4-026: TXS 1408+016 C4-027: TXS 1408-003 C4-028: 1411+0229 C4-029: TXS 1408+009 218 Appendix B. Contour plots CoNFIG-4 C4-030: MRC 1408-030 C4-032: TXS 1409-030 C4-033: TXS 1410+027 C4-035: 1412-0075 C4-036: NGC 5506 C4-037: 4C -00.54 219 Appendix B. Contour plots CoNFIG-4 C4-038: TXS 1410-015 C4-039: TXS 1410+028 C4-041: 1413-0255 C4-043: TXS 1411+019 C4-044: 1414+0182 C4-045: TXS 1411+002 220 Appendix B. Contour plots CoNFIG-4 C4-046: TXS 1412+031 C4-047: LEDA 184576 C4-048: 1415+0060 C4-049: N274Z243 C4-050: N342Z086 C4-051: TXS 1412+026 221 Appendix B. Contour plots CoNFIG-4 C4-053: TXS 1413+007 C4-054: TXS 1413-011 C4-055: 1416+0219 C4-058: TXS 1414-007 C4-059: TXS 1415+008 C4-060: TXS 1415-011 222 Appendix B. Contour plots CoNFIG-4 C4-061: TXS 1415+013 C4-062: TXS 1415+016 C4-063: TXS 1416-022 C4-064: TXS 1416+006 C4-067: 1419-0324 C4-068: TXS 1416-000 223 Appendix B. Contour plots CoNFIG-4 C4-070: 4C -01.33 C4-071: J141932+00 C4-072: J142033-00 C4-075: TXS 1418+030 C4-076: 4C -02.60 C4-077: TXS 1419+016 224 Appendix B. Contour plots CoNFIG-4 C4-078: J142235-01 C4-080: 1423+0220 C4-081: 4C -00.55 C4-082: 1423-0276 C4-083: TXS 1421+015 C4-084: 1423+0052 225 Appendix B. Contour plots CoNFIG-4 C4-085: N344Z154 C4-087: TXS 1421+006 C4-088: 1424-0174 C4-089: 4C -03.51 C4-090: 1425-0264 C4-092: TXS 1422-010 226 Appendix B. Contour plots CoNFIG-4 C4-094: 1423-0005 C4-095: TXS 1423+030 C4-096: TXS 1423+018 C4-098: N344Z014 C4-100: TXS 1423+019 C4-102: 1426+0093 227 Appendix B. Contour plots CoNFIG-4 C4-105: 1427-0187 C4-106: TXS 1425+005 C4-107: J142746+00 C4-115: TXS 1426+030 C4-119: TXS 1427+009 C4-120:1430-0192 228 Appendix B. Contour plots CoNFIG-4 C4-122: TXS 1427+012 C4-124: TXS 1428+007 C4-125: TXS 1428-013 C4-128: 1431-0093 C4-129: TXS 1429-006 C4-131: 1432+0262 229 Appendix B. Contour plots CoNFIG-4 C4-133: 1432-0305 C4-134: J143244-00 C4-135: 1432+0078 C4-137: TXS 1430+011 C4-138: TXS 1430-002 C4-142: GB6 B1431+0230 230 Appendix B. Contour plots CoNFIG-4 C4-143: 1433-0239 C4-145: TXS 1431+008 C4-146: 1434+0158 C4-148: TXS 1431-001 C4-149: TXS 1431-011 C4-150: TXS 1432-020 231 Appendix B. Contour plots CoNFIG-4 C4-151: TXS 1432+028 C4-152: 1435-0268 C4-153: 1435+0243 C4-154: TXS 1433-015 C4-160: TXS 1434-028 C4-162: TXS 1434+019 232 Appendix B. Contour plots CoNFIG-4 C4-163: 1437+0175 C4-164: TXS 1435+031 C4-166: 1437-0025 C4-168: 1437-0069 C4-169: J143757+01 C4-170: TXS 1435+028 233 Appendix B. Contour plots CoNFIG-4 C4-175: TXS 1435+020 C4-176: 1438-0133 C4-177: 4C -02.61 C4-178: 1438-0100 C4-179: 4C 00.50 C4-180: 1438+0022 234 Appendix B. Contour plots CoNFIG-4 C4-182: TXS 1436+011 C4-183: 1438-0081 C4-184: 1438+0068 C4-185: 1438-0085 C4-187: TXS 1437+009 C4-188: TXS 1437-001 235 Appendix B. Contour plots B.2 Complementary samples: CENSORS CENSORS-004 CENSORS-005 CENSORS-007 CENSORS-014 CENSORS-015 CENSORS-016 236 Appendix B. Contour plots CENSORS CENSORS-017 CENSORS-020 CENSORS-035 CENSORS-038 CENSORS-039 CENSORS-040 237 Appendix B. Contour plots CENSORS CENSORS-043 CENSORS-045 CENSORS-047 CENSORS-050 CENSORS-051 CENSORS-053 238 Appendix B. Contour plots CENSORS CENSORS-063 CENSORS-064 CENSORS-065 CENSORS-066 CENSORS-071 CENSORS-075 239 Appendix B. Contour plots CENSORS CENSORS-076 CENSORS-078 CENSORS-079 CENSORS-087 CENSORS-094 CENSORS-099 240 Appendix B. Contour plots CENSORS CENSORS-100 CENSORS-105 CENSORS-106 CENSORS-107 CENSORS-109 CENSORS-117 241 Appendix B. Contour plots CENSORS CENSORS-118 CENSORS-119 CENSORS-132 CENSORS-136 242 Appendix C RLF models for flat-spectrum and star-forming sources C.1 Smolcilc et al. model The evolution function for the star-forming RLF is assume to be a pure luminosity evolution, so that: ρ(P, z) = [ P (1 + z)αP ] ρ0(P ) (C.1) where αP is the characteristic luminosity evolution parameter, taken in this work to be αP=2.1 (Seymour, McHardy & Gunn, 2004). C.2 Dunlop & Peacock models The Dunlop & Peacock (1990) models 1-5 were constructed using a series expansion: log10(ρ) = n∑ i=0 n−j∑ j=0 Aijx i(P )yi(z) (C.2) where x and y are transformed axes of the P-z plane. Model 1 can be regarded as the fundamental model, and models 2-5 vary succes- sively one aspect of model 1. The characteristics of each model are as follow: Model 1: The (P,z) coordinates are [0.1(log10P −20), 0.1z], with P2.7 = [1018; 1030] W/Hz/sr and z=[0;10]. The expansion orders are 5th order for the steep-spectrum RLF and 4th order for the flat-spectrum RLF Model 2: An exponential cut-off is enforced at high-luminosity, ρ→ ρ·exp(−P/Pc), where Pc = 10 28 W/Hz/sr. Model 3: The redshift coordinate used is log10(1 + z) instead of 0.1z. Model 4: Integration of the RLF is terminated at z=5 instead of z=10. 243 Appendix C. RLF models for flat-spectrum and star-forming sources Model 5: A cut-off at high redshift is enforced such that the RLF decays sinu- soidally from z=2 to a value of zero at z=5, i.e. for 2 < z < 5, ρ→ ρ(1 + cosφ)/2, where φ = (z − 2)pi/3, and for z ≥ 5, ρ = 0 Two additional parametric models were used: Model 6: Pure luminosity evolution (PLE). The RLF is considered to be the sum of two components, a high-power evolving component ρh, and a low-power non- evolving component ρl. The high-power component is given by: ρh(P, z) = ρ0 [( P Pc(z) )α + ( P Pc(z) )β]−1 (C.3) where α and β are the two power-law slopes, ρ0 is determined by normalization at z=0 and Pc(z) is the evolving break luminosity: log10[Pc(z)] = a0 + a1z + a2z 2 (C.4) The low-luminosity component is given by: log10(ρl) = 6∑ i=0 bix i P (C.5) where xiP = 0.1(log10P − 20) (C.6) Model 7: Luminosity/density evolution (LDE). It has the same characteristics as the pure evolution model (model 6) but the normalization space density ρ0 is allowed to vary with z: log10[ρ0(z)] = 5∑ i=0 ciy i z (C.7) The model was also computed using an evolving break luminosity of the form: log10[Pc(z)] = a0 + a1[1− (1 + z)−η]/η (C.8) For flat-spectrum sources, the RLF in models 6 and 7 is limited to the high-power component so that ρ = ρh . The expansion coefficients for each models used in this thesis can be found in Tables C.1-C.3. In this thesis, all models were converted from the Ω0 = 1 cosmology used by (Dunlop & Peacock, 1990) to the used cosmology following: ρ1(P1, z) dV1 dz = ρ2(P2, z) dV2 dz (C.9) where P1 and P2 are the luminosities derived from (S,z) using the corresponding effective distances in the two cosmologies. 244 Appendix C. RLF models for flat-spectrum and star-forming sources Table C.1: RLF expansion coefficients for Dunlop & Peacock (1990) models 1-5 for steep spectrum sources. Order Steep-spectrum x y RLF1 RLF2 RLF3 RLF4 RLF5 0 0 −2.50 −2.54 −2.46 −2.46 −2.49 1 0 −6.87 −6.58 −6.69 −6.31 −6.36 0 1 9.58 10.83 −3.76 3.73 3.78 2 0 −19.19 −12.76 −21.80 −24.00 −23.05 1 1 92.02 114.64 −10.67 57.48 45.88 0 2 73.77 −52.05 163.29 300.43 342.11 3 0 17.34 −50.25 39.72 27.44 23.13 2 1 −825.22 −1260.32 −117.55 −363.60 −370.21 1 2 607.98 1765.47 28.13 −425.41 −424.52 0 3 −1394.94 −1259.21 −686.19 −2754.74 −2837.02 4 0 161.87 417.02 89.94 148.81 162.15 3 1 2017.14 3486.80 559.09 621.32 732.23 2 2 −2817.94 −7066.62 −1715.58 887.24 646.76 1 3 3826.04 6715.16 3486.97 4180.83 3980.83 0 4 417.47 −1363.82 −1048.00 1290.92 1991.58 5 0 −427.37 −851.72 −313.07 −383.71 −406.20 4 1 −1477.14 −2687.25 −456.48 −85.26 −211.06 3 2 2423.76 6495.46 2004.55 −2439.16 −2097.36 2 3 −2778.27 −7112.88 −4095.20 2376.92 2413.01 1 4 −250.68 2240.36 2240.40 −4200.29 −4625.92 0 5 −198.64 −133.62 −354.41 −91.32 −267.79 6 0 276.73 532.10 193.89 219.42 234.36 245 Appendix C. RLF models for flat-spectrum and star-forming sources Table C.2: RLF expansion coefficients for Dunlop & Peacock (1990) models 1-5 for flat spectrum sources. Order Flat-spectrum x y RLF1 RLF2 RLF3 RLF4 RLF5 0 0 −3.68 −3.65 −3.74 −3.68 −3.87 1 0 −9.19 −9.85 −8.65 −9.46 −7.42 0 1 −1.84 −2.68 0.25 −1.77 21.39 2 0 6.77 7.87 6.66 7.93 −2.57 1 1 60.41 113.69 −3.85 67.82 −51.09 0 2 −222.49 −327.29 −4.93 −257.06 −129.69 3 0 −17.47 −15.87 −20.83 −20.25 2.47 2 1 49.99 −102.75 76.34 80.36 229.88 1 2 51.87 273.76 −28.32 −150.46 −293.03 0 3 451.96 644.35 −2.33 915.03 609.15 4 0 3.48 0.99 8.10 5.68 −9.94 3 1 −87.58 25.99 −87.30 −136.31 −182.70 2 2 51.88 −74.47 85.66 316.68 304.14 1 3 −215.62 −405.87 −67.13 −576.82 −249.17 0 4 −198.28 −293.40 28.07 −506.21 −389.71 246 Appendix C. RLF models for flat-spectrum and star-forming sources Table C.3: RLF parameters for Dunlop & Peacock (1990) pure luminosity evolution and luminosity-density models (models 6 and 7). PLE LDE para. Steep-Spec. Flat-Spec. para. Steep-Spec. Flat-Spec. ρo −6.91 −8.15 η 1.37 1.37 α 0.69 0.83 α 0.73 0.85 β 2.17 1.96 β 2.22 2.00 a0 24.89 25.26 a0 24.55 24.73 a1 1.26 1.18 a1 3.17 3.22 a2 −0.26 −0.28 c0 −6.62 −7.87 b0 −2.86 c1 −10.97 −5.74 b1 6.93 c2 97.91 93.06 b2 −10.21 c3 −338.51 −738.92 b3 −728.28 c4 434.38 2248.76 b4 1164.50 c5 −186.92 −2399.45 b5 750.97 b0 −3.04 b6 −1385.71 b1 12.03 b2 −30.72 b3 −861.88 b4 1607.06 b5 416.71 b6 −1365.84 247 Appendix D Miscellaneous D.1 Source counts in a static Euclidean universe Consider a static Euclidean Universe in which the volume density of objects as a function of luminosity P is ρ(P ). The radius out to which an object of luminosity P has a flux greater then S is R(S) = (P/S)1/2 (D.1) The number of objects of power P in the shell R to R+dR is N(P ) = ρ(P )dV (R) = ρ(P )× 4piR2dR (D.2) Thus, the number of objects with luminosity P and flux greater than S is N(P,> S) = ρ(P ) R(S)∫ 0 4piR2dR = 4pi3 ρ(P )P 3/2S−3/2 (D.3) Considering the contribution of all objects: N(> S) = 4pi3 ∞∫ 0 ρ(P )P 3/2dP S−3/2 ∝ S−3/2 (D.4) the well known −3/2 power law. D.2 Chi-square statistics Chi-square statistics Pearson (1900) describe the goodness-of fit between binned observational data and a model predicting the population of each bin. χ2 = k∑ i=1 (Di −Mi)2 σ2i (D.5) where k is the number of bins, Di and Mi are the values of the data and model in the corresponding bin, and σi is the standard deviation of the data, usually taken as σi = 1/ √ Ni. The procedure tests whether the Di are sufficiently close to Mi to be likely to have occurred under the hypothesis that the number of objects falling 248 Appendix D. Miscellaneous in each bin is Mi. The chi-square distribution is given by (for x ≥ 0): f(x) = 2−ν/2 Γ[ν/2] xν/2−1e−x/2 (D.6) where ν is the number of degrees of freedom, defined as ν = k− 1. The mean of the chi-square distribution ≈ ν, while the variance ≈ 2ν. The reduced chi-square value is defined as χ2red = χ 2/ν. As a rule of thumb, χ2red >> 1 indicates a poor model fit, χ 2 red < 1 indicates that the model is ‘over- fitting’ the data and χ2red ∼ 1 indicates a reasonable model fit. The chi-square test can be modified to test whether two samples are from the same population. In this case, considering k samples binned into the same r bins, the chi-square value is computed as: χ2 = r∑ i=1 k∑ j=1 (Oij −Eij)2 E2ij (D.7) where the expectation values Eij are given by: Eij = k∑ j=1 Oij r∑ i=1 Oij k∑ j=1 r∑ i=1 Oij (D.8) D.3 Downhill simplex minimization method The amoeba algorithm for downhill simplex minimization (Nelder & Mead, 1965) is used in this thesis to obtain the best fitting FRI and FRII luminosity functions. A simplex is a geometrical figure of N+1 points in N dimensions. This algorithm creates a simplex from the input, starting parameters and a scaling vector. Each parameter is a dimension and the points of the simplex are produced via the following equation: P = P0 + S (D.9) where P0 is the vector of starting parameters and S contains the scale appropriate to each dimension. The likelihood is calculated for each vertex of the simplex and the algorithm then proceeds through a series of steps to improve this (it minimizes −log L). These steps are: 249 Appendix D. Miscellaneous 1. Reflection: the vertex corresponding to the worst fit is moved through the opposite face of the simplex. 2. If reflection has improved the fits (i.e. if the new vertex is no longer the worst) then that vertex is extrapolated further in that direction. This extrapolation becomes the new point without reference to its likelihood. 3. If reflection made the likelihood for that vertex worse an intermediate point is looked for by moving it to half way between its original position and the opposite face. Once the new point has been set by either step 2 or 3, this is repeated until the step taken by a vertex upon reflection, expansion or contraction produces a change in likelihood that is less than some preset tolerance. The majority of the steps are reflections and expansions. 250

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            data-media="{[{embed.selectedMedia}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.24.1-0071233/manifest

Comment

Related Items