UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Space densities of AGN and the FR dichotomy Gendre, Melanie A. 2010

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2010_fall_gendre_melanie.pdf [ 27.22MB ]
Metadata
JSON: 24-1.0071233.json
JSON-LD: 24-1.0071233-ld.json
RDF/XML (Pretty): 24-1.0071233-rdf.xml
RDF/JSON: 24-1.0071233-rdf.json
Turtle: 24-1.0071233-turtle.txt
N-Triples: 24-1.0071233-rdf-ntriples.txt
Original Record: 24-1.0071233-source.json
Full Text
24-1.0071233-fulltext.txt
Citation
24-1.0071233.ris

Full Text

Space Densities of AGN and the FR Dichotomy by Melanie A. Gendre  B.Sc., The University of Victoria, 2004 M.Sc., The University of British Columbia, 2006  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in The Faculty of Graduate Studies (Astronomy)  The University of British Columbia August 2010 c Melanie A. Gendre 2010  Abstract Extended double-lobe radio sources can be morphologically classified into two groups: Fanaroff-Riley (FR) type I sources have the highest surface brightness along the jets near the core and FR type II sources show the highest surface brightness at the lobe extremities, as well as more collimated jets. This thesis work focuses on a comparison of the space densities of FRI and FRII sources at different epochs, with a particular focus on FRI sources. First, we present the construction of the Combined NVSSFIRST Galaxy catalogue (CoNFIG), a new sample of radio sources at 1.4 GHz. It includes VLA observations, FRI/FRII morphology classifications, optical identifications and redshift estimates. The final catalogue consists of 858 sources over 4 samples (CoNFIG-1, 2, 3 and 4 with flux density limits of S1.4GHz =1.3, 0.8, 0.2 and 0.05 Jy respectively). It is 95.7% complete in radio morphology classification and 74.3% of the sources have redshift data. Combining CoNFIG with complementary samples, the distribution and cosmic evolution of FRI and FRII sources are investigated. We find that FRI sources undergo mild evolution and that, at the same radio luminosity, FRI and FRII sources show similar space density enhancements in various redshift ranges, implying a common mechanism powering the luminositydependent evolution. This improved understanding of radio galaxy evolution will also give better insight into the the physics of AGN and their role in galaxy formation.  ii  Table of Contents Abstract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ii  Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iii  List of Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi  List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii  Abbreviations and Symbols  . . . . . . . . . . . . . . . . . . . . . . . . .  ix  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi  Dedication  xii  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 Introduction . . . . . . . . . . . . . 1.1 Role of AGNs in galaxy evolution 1.2 Empirical AGN classification . . 1.3 Unified models of AGN . . . . . 1.4 Structure of the thesis . . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  1 2 3 5 7  2 The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue 2.1 Surveys used in this work . . . . . . . . . . . . . . . . . . . . 2.1.1 NRAO-VLA Sky Survey . . . . . . . . . . . . . . . . . 2.1.2 Faint Images of the Radio Sky at Twenty-cm . . . . . 2.1.3 Sloan Digital Sky Survey . . . . . . . . . . . . . . . . 2.1.4 Two Micron All Sky Survey . . . . . . . . . . . . . . . 2.2 CoNFIG catalogue definition . . . . . . . . . . . . . . . . . . 2.3 Spectral indices . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Initial classification . . . . . . . . . . . . . . . . . . . . 2.4.2 VLA observations . . . . . . . . . . . . . . . . . . . . 2.4.3 Final classification . . . . . . . . . . . . . . . . . . . . 2.5 Optical identifications and redshifts . . . . . . . . . . . . . . . 2.5.1 Optical identifications . . . . . . . . . . . . . . . . . . 2.5.2 Spectroscopic and photometric redshifts . . . . . . . . 2.5.3 Sources with no redshift information . . . . . . . . . . 2.6 Complementary Samples . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  9 9 9 10 10 10 11 13 16 16 16 17 20 20 21 29 34  iii  Table of Contents 3 Source statistics . . . . . . 3.1 Source counts . . . . . . 3.2 Luminosity distributions 3.3 P-z plane . . . . . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  36 36 39 39  the 1/Vmax method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  46 46 49 50  function . . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  55 55 56 58 58  6 RLF modeling using a free-form technique: 6.1 Details of the method . . . . . . . . . . . . 6.1.1 Setting up the grids . . . . . . . . . 6.1.2 Computing the model statistics . . . 6.1.3 Optimizing the FR grids . . . . . . . 6.1.4 Uncertainties . . . . . . . . . . . . . 6.2 Best fit RLFs . . . . . . . . . . . . . . . . . 6.3 Summary . . . . . . . . . . . . . . . . . . .  a preliminary study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 66 67 67 68 69 71 72  7 Discussion . . . . . . . . . . . 7.1 Summary . . . . . . . . . 7.2 Achievements of this work 7.3 Conclusion . . . . . . . . 7.4 Future work . . . . . . . .  . . . . .  . . . . .  80 80 82 85 86  Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88  4 Estimating space-densities using 4.1 The local FRI/FRII RLFs . . . 4.2 FRI/FRII evolution . . . . . . 4.3 Summary . . . . . . . . . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  5 Parametric modeling of the radio luminosity 5.1 Likelihood method . . . . . . . . . . . . . . . 5.2 Luminosity function models . . . . . . . . . . 5.3 Results . . . . . . . . . . . . . . . . . . . . . . 5.4 Summary . . . . . . . . . . . . . . . . . . . .  . . . . .  . . . . .  . . . . .  A The CoNFIG catalogue . . . . . A.1 CoNFIG samples . . . . . . . . A.1.1 CoNFIG-1 . . . . . . . . A.1.2 CoNFIG-2 . . . . . . . . A.1.3 CoNFIG-3 . . . . . . . . A.1.4 CoNFIG-4 . . . . . . . . A.2 Complementary samples . . . . A.2.1 3CRR . . . . . . . . . . A.2.2 CENSORS . . . . . . . A.2.3 Lynx & Hercules sample  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . .  . . . . .  . . . . . . . . . .  . . . .  . . . . .  . . . . . . . . . .  . . . .  . . . . .  . . . . . . . . . .  . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . .  . . . . . . . . . .  . . . . . . . . . .  93 93 94 106 112 124 132 132 132 135  iv  Table of Contents B Contour plots . . . . . . . . . . . . . . . B.1 CoNFIG Samples - Extended sources B.1.1 CoNFIG-1 . . . . . . . . . . . B.1.2 CoNFIG-2 . . . . . . . . . . . B.1.3 CoNFIG-3 . . . . . . . . . . . B.1.4 CoNFIG-4 . . . . . . . . . . . B.2 Complementary samples: CENSORS  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  138 138 138 170 185 216 236  C RLF models for flat-spectrum and star-forming sources . . . . . . 243 C.1 Smolcilc et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 C.2 Dunlop & Peacock models . . . . . . . . . . . . . . . . . . . . . . . . 243 D Miscellaneous . . . . . . . . . . . . . . . . . . . D.1 Source counts in a static Euclidean universe D.2 Chi-square statistics . . . . . . . . . . . . . D.3 Downhill simplex minimization method . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . .  248 248 248 249  v  List of Tables 2.1 2.2 2.3 2.4 2.5 2.6 2.7  Sample region coordinates . . . . . . . . . . . . . Characteristics of the CoNFIG samples . . . . . Surveys used to retrieve flux-density information Morphologies . . . . . . . . . . . . . . . . . . . . Optical identifications . . . . . . . . . . . . . . . Redshift distributions . . . . . . . . . . . . . . . Redshift statistics . . . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  11 13 14 19 23 28 32  5.1  Best-fitting model parameters . . . . . . . . . . . . . . . . . . . . . .  59  6.1  Likelihood and chi-square values for the best fitting RLF models . .  71  C.1 Dunlop & Peacock (1990) RLF expansion coefficients for models 1-5 for steep spectrum sources . . . . . . . . . . . . . . . . . . . . . . . . 245 C.2 Dunlop & Peacock (1990) RLF expansion coefficients for models 1-5 for flat spectrum sources . . . . . . . . . . . . . . . . . . . . . . . . . 246 C.3 Dunlop & Peacock (1990) RLF parameters for pure luminosity evolution and luminosity-density evolution models . . . . . . . . . . . . 247  vi  List of Figures 1.1 1.2 1.3 1.4 1.5 1.6  AGN structure . . . . . . . . . . . . . . . A double-double radio source . . . . . . . AGN classifications . . . . . . . . . . . . . Typical FRI contour plot . . . . . . . . . Typical FRII contour plot . . . . . . . . . Unified schemes for FRI and FRII sources  . . . . . .  . . . . . .  . . . . . .  . . . . . .  1 3 4 5 5 7  2.1 2.2 2.3 2.4 2.5  12 12 14 15  2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15  Sample regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A Matti-component source in NVSS . . . . . . . . . . . . . . . . . . Flux-density vs. frequency diagram . . . . . . . . . . . . . . . . . . . Spectral index distributions . . . . . . . . . . . . . . . . . . . . . . . Example of improvements in morphological classification from higher resolution images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examples of wide angle tail, irregular FRI and uncertain sources . . Examples of optical host galaxy identification . . . . . . . . . . . . . Magnitude distributions . . . . . . . . . . . . . . . . . . . . . . . . . SDSS magnitude-redshift relations . . . . . . . . . . . . . . . . . . . SDSS magnitude-redshift relation offsets . . . . . . . . . . . . . . . . KS -z relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . KS -z relation offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examples of redshift probability distributions . . . . . . . . . . . . . Redshift assignment summary . . . . . . . . . . . . . . . . . . . . . . Redshift distributions . . . . . . . . . . . . . . . . . . . . . . . . . .  17 19 20 22 25 26 27 27 30 31 33  3.1 3.2 3.3 3.4 3.5 3.6  Forms of source counts . . . . . . . . . . . Sample completeness via source counts . . Relative differential source counts . . . . . FRI and FRII luminosity distributions . . P-z plane coverage by radio-morphological P-z plane coverage by redshift type . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  38 40 41 42 44 45  4.1 4.2 4.3 4.4 4.5  General radio luminosity functions . . . . . . . . . . . . . FRI/FRII local radio luminosity functions . . . . . . . . . Space-density enhancement for FRI sources . . . . . . . . Comparison of the FRI/FRII space-density enhancements Impact of approximate redshifts on the RLFs . . . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  . . . . .  47 48 51 52 54  5.1  RLFs for the best-fit PDE and LDE broken power-law models . . . .  60  . . . . . . . . . . . . type . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . .  vii  List of Figures 5.2 5.3 5.4 5.5  Error spread in the RLF models . . . . . . . . . . . . . . . . RLFs in the LDE model . . . . . . . . . . . . . . . . . . . . . Space-density enhancement vs. luminosity for the LDE model Space-density enhancement vs. redshift for the LDE model .  . . . .  . . . .  . . . .  . . . .  62 63 64 65  6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8  Summary of the free-form modeling technique . . LRLF model fits . . . . . . . . . . . . . . . . . . Source count model fits . . . . . . . . . . . . . . Redshift distribution model fits . . . . . . . . . . Steep-spectrum RLFs . . . . . . . . . . . . . . . Model RLFs for FRI sources . . . . . . . . . . . Model RLFs for FRII sources . . . . . . . . . . . RLFs comparison between FRI and FRII sources  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  70 73 74 75 76 77 78 79  7.1 7.2  Summary of estimated and modeled RLFs . . . . . . . . . . . . . . . Summary of estimated and modeled space-density enhancements . .  83 84  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  viii  Abbreviations and Symbols Abbreviations:  IGM Inter-Galactic Medium  2MASS Two Micron All Sky Survey  IF Intermediate Frequency  3CRR Third Cambridge Revised  IR Infra-Red  AGN Active Galactic Nuclei  ISM Inter-Stellar Medium  BAL Broad Absorption Line  LRLF Local Radio Luminosity Function  BLRG Broad Line Radio Galaxy  NVSS NRAO-VLA Sky Survey  CDM Cold Dark Matter  PDE Pure-Density Evolution  CENSORS Combined EIS-NVSS Sur- QSO/RQSO/quasar (Radio) Quasi-Stellar Object vey Of Radio Sources CoNFIG Survey Combined NVSS FIRST Galaxy Survey  RLF Radio Luminosity Function SC Source Count  CSS Compact Steep-Spectrum SDSS Sloan Digital Sky Survey DLE Density-Luminosity Evolution SF Star Forming d.o.f. Degrees of freedom SMBH Super-Massive Black Hole FIRST Faint Images of the Radio Sky SOS Single Object Survey at Twenty-cm FRI/II Fanaroff-Riley type I/II  SS Steep-Spectrum  FS Flat-Spectrum  SSRQ Steep-Spectrum Radio Quasar  FSRQ Flat-Spectrum Radio Quasar  UV Ultra-Violet  FWHM Full Width Half Maximum  VLA Very Large Array  ix  Abbreviations and Symbols VLBA Very Long Baseline Array  Symbols:  VLBI Very Long Baseline Interferometry ’ - arcminute WAT Wide Angle Tail  ” - arcsecond  WENSS Westerbork Northern Sky Sur- α - Spectral index vey δ - Declination λ - Wavelength ν - Frequency ρ - Space density ρ0 - Local space density P - Radio power or luminosity RA - Right Ascension S - Flux-density z - Redshift  x  Acknowledgements I would like to thank my supervisor, Jasper Wall, and my collaborator, Philip Best, for their support and direction. I would also like to thank my parents and my friends for being there for me through the hard times. I could not have done it without them.  This work was supported by the National Sciences and Engineering Research Council of Canada. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research has made use of the SIMBAD databases,operated at CDS, Strasbourg, France. This publication makes use of SDSS data products. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.  xi  Dedication  “Un temps pour chaque chose, et chaque chose en son temps”  xii  Chapter 1  Introduction Active galactic nuclei (AGN) comprise the majority of currently observed radio galaxies. Their structure (Fig. 1.1), described in more detail by Urry & Padovani (1995), includes a central supermassive black hole (SMBH) whose gravitational potential energy is the main source of luminosity, both at radio and X-ray wavelengths. The central engine is surrounded by a dust torus and accretion disk created by matter being pulled toward the SMBH. Outflows of energetic particles occur along the rotation axis of the disk, forming collimated radio-emitting jets. For the most powerful sources, in the potential of the black hole, rapidly-moving clouds of gas produce strong optical and UV emission lines (‘broad-line region’). Well outside the torus, slower moving gas produces narrower emission lines (‘narrow-line region’). However, beyond structural information, details of AGN physics are literally hidden from view. To this day, statistical studies of the various classes of AGN are the main probe of the mechanisms powering them.  Figure 1.1: Schematic of AGN structure (Urry & Padovani, 1995).  1  Chapter 1. Introduction  1.1  Role of AGNs in galaxy evolution  In addition to being laboratories for extreme physics, AGN feedback has been in the forefront as a candidate explanation for ‘downsizing’. The current paradigm for galaxy formation is hierarchical build-up in a Cold Dark Matter (CDM) universe. In this model, galaxy mergers engender the new generation of galaxies, while generating bursts of star formation. This implies that the most massive galaxies ought to be the bluest and have the highest star forming rate of all galaxies. Yet, observations show that they are red, old galaxies, and the bulk of star formation is observed at earlier epochs. This is known as downsizing, first described by Cowie et al. (1996). AGN negative feedback is a possible way to understand this phenomenon. In this process, the ignition of the nucleus in a star-forming galaxy heats-up and ejects the inter-stellar medium (ISM) gas, thus reducing or even stopping star formation (Silk & Rees, 1998; Granato et al., 2001; Quilis et al., 2001). In addition, heating of ISM gas will reduce the flow of matter in the central SMBH, lowering the accretion flow and eventually extinguishing the AGN. Once the gas cools down and starts to collapse into the nucleus again, a new AGN phase may begin and the cycle resumes. This episodic AGN activity scenario is supported by detection of double-double (or ‘relic’) radio galaxies, exhibiting two distinct regions of emission separated by a jump in spectral index (e.g. J0041+3224, Fig. 1.2), which are interpreted to be due to two different epochs of jet activity (Burns et al., 1983; Roettiger et al., 1994). It should be noted that AGN can also have a positive feedback effect, whereby pressure from the jets compresses the inter-stellar medium and induces star formation (van Breugel et al., 2004; Klamer et al., 2004). However, modeling of jet power and its relation to star formation have shown that the overall effect is a decrease in star formation rate (Antonuccio-Delogu & Silk, 2008). If AGN feedback suppresses star formation, it is reasonable to think that it should be related to the energy output from the jets. Best et al. (2006) studied the output energy from AGN and concluded that heat dissipated in the host galaxy is dominated by low-luminosity radio sources, which tend to be confined predominantly to the size of the galaxy and its halo. Such sources also stay ‘on’ for a longer period of time than high luminosity sources, allowing heat to be supplied continuously. Schawinski et al. (2009) investigated the relation between the amount of molecular gas and AGN activity in galaxies and concluded that a low luminosity AGN episode was sufficient to suppress residual star formation in early type galaxies. Establishing the space-density behaviour of radio AGN is thus important in studying the precise role of the feedback mechanisms.  2  Chapter 1. Introduction  Figure 1.2: Example of a double-double radio galaxy, here J0041+3224 (from Saikia et al., 2006), exhibiting two distinct regions of emission which are interpreted to be due to two different epochs of jet activity.  1.2  Empirical AGN classification  Radio AGN are classified in various ways such as via luminosity, spectral type or morphology. Figure 1.3 presents the empirical classifications of Urry & Padovani (1995), organized according to radio loudness (ratio of radio-to-optical flux-density) and optical spectra. AGN can be separated into three groups, based on their optical spectra. Type 1 have bright continua and broad emission lines from hot, high-velocity gas. This type includes Seyfert 1 galaxies, broad-line radio galaxies (BLRG), quasi-stellar objects (QSO) as well as steep- and flat-spectrum radio quasar (SSRQ and FSRQ). Type 2 have weak continua and narrow emission lines, and include Seyfert 2 galaxies, narrow emission-line galaxies (NELG) and narrow-line radio galaxies (NLRG). Finally, type 0 have different spectral characteristics, in particular a lack of strong 3  Chapter 1. Introduction emission or absorption features. This class includes BL Lacertae (BL Lac) objects, FSRQs and broad absorption line (BAL) QSOs.  Figure 1.3: AGN empirical classification, organized according to radio loudness and optical spectra (Urry & Padovani, 1995). The Fanaroff-Riley (FR) categorization (Fanaroff & Riley, 1974) provides a classification of extended radio sources. The FRI objects (Fig. 1.4) have the highest surface brightness along the jets near the core, reside in moderately rich cluster environments (Hill & Lilly, 1991) and include sources with irregular structures (Parma et al., 1992). In contrast, FRII sources (Fig. 1.5) show the highest surface brightness at the lobe extremities, as well as more collimated jets, are found in more isolated environments and generally display stronger emission lines (Rawlings et al., 1989; Baum & Heckman, 1989). It is important to note that the cut between FRI and FRII is also somewhat ambiguous: hybrid sources showing jets FRI-like on one side and FRII-like on the other have been observed (Capetti et al., 1995). Fanaroff & Riley (1974) found these two classes to be divided in radio power, with a break luminosity P178M Hz ∼ 1025 W/Hz/sr, with FRII sources lying above this limit. Subsequently Owen & Ledlow (1994) showed that the break was a function of both radio and optical luminosity. The FRI/FRII dichotomy is based purely on the appearance of the radio objects, and two main streams of models exist to explain these differences in morphology. Intrinsic models suggest that the dichotomy arises from differences in the properties of the central black hole. In these scenarios, jets produced by low accretion-flow rate sources are generally weak (Bicknell, 1995) with the majority having an FRI-type structure, whereas higher accretion flow rates give rise to stronger, mainly FRII-type jets (e.g. Baum & Heckman, 1989; Ghisellini & Celotti, 2001). Extrinsic models, on the other hand, are purely based on the source environment (e.g. Prestage & Peacock, 1988). The hypothesis is that inter-galactic medium (IGM) density is the differentiating factor, where jets of sources in higher/lower 4  Chapter 1. Introduction  Figure 1.4: FIRST contour plot of a characteristic example of an FRI source, 3C 272.1 (M84). The regions of highest surface brightness are located along the jets.  Figure 1.5: FIRST contour plot of a characteristic example of an FRII source, 3C 223. The hot spots are located at the ends of the aligned lobes.  density mediums experience a higher/lower degree of resistance, yielding sources with FRI/FRII structures respectively. In spite of these existing hypotheses, the mechanisms differentiating the two populations are still unknown. Studies of the radio luminosity function (RLF - density of sources with a given luminosity per unit of co-moving volume) of each population could shed some light on this issue: if sources with different FR classes undergo different evolution, this might imply that their fundamental characteristics, such as the black hole spin or jet composition, are different too.  1.3  Unified models of AGN  Since Longair (1966) determined that powerful radio sources undergo strong differential evolution, in the sense that lower-luminosity sources undergo lesser evolution, our understanding of the space-density of AGN as a function of cosmic epoch has steadily continued to advance. With the development of evolutionary models for radio sources came the idea of a dual-population model. With high-frequency surveys, and the large number of flat/inverted spectrum sources revealed in them, a classification based exclusively on the source spectra emerged: sources with a spectral index α ≤ −0.5 (where Sνα ∝ ν α ), corresponding to optically thin synchrotron radiation, were classified as steep-spectrum, whereas sources with lower spectral indices (α ≥ −0.5) inevitably showed features of synchrotron self-absorption and were classified as flat-spectrum. Initial indications suggested that these two populations underwent different evolution (Schmidt, 1976; Masson & Wall, 1977). However, 5  Chapter 1. Introduction Dunlop & Peacock (1990) studied the RLF of these two classes of radio sources, and came to the conclusion that the two populations were undergoing similar evolution, implying that they might not actually be distinct. An alternative dual-population model surfaced in the 1980s, based on the ’unification’ hypothesis describing how viewing aspect could relate RQSOs (Radio QuasiStellar Objects) of either flat or steep-spectrum to FRII radio galaxies (e.g. Peacock, 1987; Scheuer, 1987). However, the scheme did not include lower-luminosity AGNs such as FRI galaxies and BL Lac objects. The unifying connection between these was introduced by Marcha & Browne (1995). The unified model of AGN proposed by Wall & Jackson (1997) and Jackson & Wall (1999) assumes that the cosmic evolution of radio-loud AGN is based on a division of the radio sources into a low-luminosity (P178M Hz < 1025 W/Hz/sr) component corresponding to FRIs, and a high-luminosity component corresponding to FRIIs. In this scheme, the various forms of AGN observed (FRI and FRII extended double sources, flat- and steep-spectrum RQSOs and BL Lac objects) result from the orientation of the extended parent objects with respect to the observer’s line-ofsight (Fig. 1.6). Indeed, because the double-sided ejection of synchrotron blobs in AGN is at relativistic speed, the orientation of the ejection axis to the line-of-sight becomes crucial: sources viewed side-on appear as double radio galaxies (FRI or FRII) and sources viewed along the jets appear as RQSOs (beamed counterparts of FRII sources) or BL Lac objects (beamed counterparts of FRI sources). The relativistically-boosted jet emission in the beamed counterparts of the extended sources dominates the extended emission, making the overall radio emission appear compact down to VLBI scales. They will also display flatter spectra, implying that the flat- vs. steep-spectrum source dichotomy is also purely based on the orientation of the parent objects with respect to the observer’s line-of-sight, thus explaining the similar evolutions observed by Dunlop & Peacock (1990). There are however observational signs that this unified model is not as straightforward as beamed counterpart of FRII being QSOs and beamed counterparts of FRI being BL Lac objects. First, there are too few FRIs for them to be the only class of host galaxy for BL Lacs (Owen, Ledlow & Keel, 1996), and there is strong evidence that beamed counterparts of low-excitation FRIIs could also be seen as BL Lacs (Browne et al., 1982; Murphy, Browne & Perley, 1993). Secondly, a population of FRI QSOs exists (Blundell & Rawlings, 2001) and contradicts the idea that torus opening angles in FRIs are too small to observe a quasar nucleus (Falcke et al., 1995), the nature of the torus being a fundamental characteristic of the AGN central engine. In addition, with the advent of large-scale redshift surveys for nearby galaxies, many authors, including Snellen & Best (2001), Willott et al. (2001), Sadler et al. (2002) and Rigby, Best & Snellen (2008), found significant evolution for low-power sources – but mild evolution in comparison with that of the high-luminosity sources. Rigby, Best & Snellen (2008) argued that if FRIs and FRIIs have similar evolution, the 6  Chapter 1. Introduction  Figure 1.6: Unified schemes for FRI (left) and FRII (right) sources (Jackson & Wall, 1999), showing how various forms of AGN result from the orientation of the extended parent objects with respect to the observer’s line-of-sight. dual-population scheme could be reduced to a single-population model. Their sample was however confined to a small number of low flux-density sources. One major issue in most of these studies is the use of high- and low-power as a counterparts to FRI and FRII morphological classes. Even though FRI tend to have lower luminosities than FRII, high-luminosity (logP1.4GHz ≥ 25.5 W/Hz/sr) FRIs have been observed (e.g. Rigby, Best & Snellen, 2008). A dedicated study and comparison of FRI and FRII sources and their evolution, using large samples of sources of each type, is the key to understanding these populations. It would allow to determine if the FR classification is valid, if it is closely related to the high/low-luminosity classification, or if a different classification would be physically more relevant.  1.4  Structure of the thesis  The lack of a large comprehensive catalogue of morphologically-classified radio sources has been a limiting factor in all the studies presented in previous sections. This is the goal in constructing the Combined NVSS-FIRST Galaxy (CoNFIG) catalogue, the initial object of this work. Subsequently, these data were used in modeling the radio luminosity function of AGN to get a better insight into the evolution of their space-densities, and to determine whether Fanaroff-Riley sources of type I and II share common mechanisms or originate from separate parent populations. 7  Chapter 1. Introduction  The structure of this thesis is as follows. Chapter 2 focuses on the construction of the CoNFIG catalogue, including morphological classification (§2.4), optical identifications and redshifts (§2.5), as well as complementary samples used to improve the luminosity-redshift plane coverage of the catalogue (§2.6). Source statistics, such as luminosity distributions and source counts, are presented in §3. Chapter 4 describes the computation of the FRI/FRII radio luminosity functions with the 1/Vmax method. Chapter 5 describes the parametric forms of the RLF derived using a maximum-likelihood method, while Chapter 6 presents the details and preliminary results of a free-form modeling technique. Summary of the results and conclusions are given in Chapter 7. Throughout this work, we assume a standard ΛCDM cosmology with H0 =70 km s−1 Mpc−1 , ΩM =0.3 and ΩΛ =0.7.  8  Chapter 2  The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue In order to sort out the FR dichotomy and its details, accurate models of the spacedensity evolution of each population are needed. This implies compiling accurate statistics, such as luminosity distributions and source counts, for both populations separately. This is the goal of the CoNFIG catalogue presented here, the first sample of bright radio sources with quasi-complete and accurate morphological identification. The structure of this chapter is as follows. Surveys used in this work are described in §2.1. The construction of the catalogue is explained in §2.2. Section 2.3 and 2.4 describe respectively the computation of the spectral indices and how the morphologies were determined. Optical identifications and redshift information are discussed in §2.5. Complementary datasets that will be used in the modeling are introduced in §2.6. Finally, source statistics are computed and presented in §3. All information available on the CoNFIG sources is tabulated in Appendix A, including radio positions, 1.4 GHz flux densities, morphological classifications, spectral index values, optical identifications and redshifts.  2.1  Surveys used in this work  This section describes the various surveys (both radio and optical) from which radio flux-densities, radio contour maps, host galaxy identifications, magnitudes and redshifts of sources in the CoNFIG catalogue were retrieved.  2.1.1  NRAO-VLA Sky Survey  The NRAO-VLA Sky Survey (NVSS; Condon et al., 1998) is a 1.4 GHz continuum survey covering the entire sky north of δ = −40◦ (corresponding to an area of 10.3 sr). The completeness limit is ∼2.5 mJy/beam with an rms of ∼0.45 mJy/beam. The catalogue from the survey contains over 1.8 million entries, implying a surface density of ∼50 sources per square degree. It was carried out with the Very Large Array (VLA) in D and DnC configuration. The D configuration is the most compact VLA configuration with a maximum antenna separation of ∼1 km, while the C configuration has a maximum antenna separation of ∼3 km. The DnC configuration is an hybrid between these two, with 9  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue one of the three VLA arms is in C while the other two are in D configuration. These configurations provided an overall angular resolution of about 45 arcsec FWHM.  2.1.2  Faint Images of the Radio Sky at Twenty-cm  The Faint Images of the Radio Sky at Twenty-cm survey (FIRST; Becker et al., 1995) is another 1.4 GHz continuum survey with the VLA, covering an area of ∼9030 deg2 including the North Galactic Pole. The completeness limit is ∼1 mJy/beam with a typical rms of 0.15 mJy/beam. The survey yielded ∼811,000 sources, implying a surface density of ∼90 sources per square degree. It was carried out in B configuration (the B configuration having a maximum antenna separation of ∼10 km), which provides an angular resolution of about 5 arcsec FWHM.  2.1.3  Sloan Digital Sky Survey  The Sloan Digital Sky Survey (SDSS), with the 2.5 meter telescope at Apache Point Observatory, New Mexico, has imaged one quarter of the entire sky in ugriz magnitudes, with limiting magnitudes of 22.0, 22.2, 22.2, 21.3 and 20.5 respectively1 . It performed simultaneously a spectroscopic redshift survey. The catalogued magnitudes retrieved for this work are modeled magnitudes for which the optimal measure of the flux of a galaxy uses a matched galaxy model in r-band. The best-fit model is then fit to the other four bands2 . The seventh data release (DR7; Abazajian et al., 2009) imaging survey contains a total of 357 million objects over 11,663 deg2 while the spectroscopic survey contains 1.6 million objects over 9380 deg2 .  2.1.4  Two Micron All Sky Survey  The Two Micron All Sky Survey (2MASS; Skrutskie et al., 2006) is a near-infrared survey using 1.3 m telescopes at Mount Hopkins in Arizona and CTIO in Chile. It aimed at imaging the entire sky in J, H and KS magnitudes. The now-complete catalogue, divided into point-source and an extended-source (semi-major axis >10 arcsec in size) catalogues, contains 472 million sources over 99.998% of the sky. 1  The limiting magnitudes at the detection limit given in Abazajian et al. (2009) correspond to a 95% detection repeatability for point sources. However, for galaxies, these are typically between half a magnitude and a magnitude brighter at the same signal to noise ratio (from SDSS project book: http://www.astro.princeton.edu/PBOOK/camera/camera.htm) 2 http://cas.sdss.org/dr6/en/help/docs/glossary.asp?key=mag model  10  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  2.2  CoNFIG catalogue definition  The CoNFIG Catalogue consists of 4 samples, CoNFIG-1, 2, 3 and 4, which include all sources selected from the NVSS catalogue with S1.4GHz ≥1.3, 0.8, 0.2 and 0.05 Jy respectively, well above the NVSS survey limits, thus avoiding the effects of Eddington bias. The sample regions are located around the North Galactic Pole where both FIRST and SDSS data are available (see Fig. 2.1 and Table 2.1). The sample areas were chosen so that the number of sources in each sample is above 100 to be statistically relevant, and does not exceed 300. This ensures that the sample sizes are manageable for individual morphological classification. A summary of each sample is given in Table 2.2. Because the area of the CoNFIG-2, 3 and 4 samples overlap with CoNFIG-1, all statistics estimated from CoNFIG 2, 3 and 4 use only sources with Slim < S1.4GHz < 1.3 Jy. Since the median angular size of faint extra-galactic sources at the CoNFIG fluxdensity levels is 10 arcsec (Condon et al., 1998), most sources in NVSS are unresolved, and, as a result, the flux-density measurements are quite accurate. Very large sources resolved in NVSS within the initial samples, such as a few 3CRR sources (Laing, Riley & Longair, 1983), need to be considered. In some of these cases, two or more NVSS ‘sources’ with S1.4GHz > Slim are actually components of a much larger resolved source. Multi-component sources in which each component has S1.4GHz < Slim but with a total flux-density S1.4GHz ≥ Slim , also need to be considered (Fig. 2.2). For this purpose, NVSS sources with Slim /4 < S1.4GHz < Slim were selected and, if any other source in the catalogue was located within 4 arcmin of the listed source (corresponding approximately to the largest size for an extended radio source), the combination was set aside as a candidate extended source. The final decision on whether or not the sources were actually components of a resolved source was made by visual inspection of the NVSS and FIRST contour plots, to determine if the orientation of the major axis of each object was consistent with them being aligned.  Table 2.1: Region corners for the CoNFIG samples ({RA; δ} in {HRS; deg}) as shown in Fig. 2.1. C-1 {17.7; 64.0} { 7.0; 64.0} { 7.3; 30.0} {17.3; 24.8} {15.5; −8.0} { 9.1; −8.0}  C-2 { 9.30; 60.0} {13.35; 60.0} {13.35; −5.0} { 9.30; −5.0}  C-3 {14.7; 30.0} {16.0; 30.0} {16.0; 10.0} {14.7; 10.0}  C-4 {14.1; 3.0} {14.7; 3.0} {14.7; −3.5} {14.1; −3.5}  11  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.1: Map of the sample regions. Each sample is located in the North field of FIRST (grey area). CoNFIG-1 (red contour), CoNFIG-2 (green hatched), CoNFIG-3 (blue diagonally cross-hatched) and CoNFIG-4 (pink vertically cross-hatched) have flux-density limits of 1.3, 0.8, 0.2 and 0.05 Jy respectively. Definition of the regions and details of the samples can be found in Tables 2.1 and 2.2.  Figure 2.2: A multi-component source in NVSS in which each component has S1.4GHz < Slim but with a total flux-density S1.4GHz ≥ Slim (here, 3C 326). Each component is highlighted by a green box. 12  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Table 2.2: Characteristics of the CoNFIG samples, as described in section 2.2.  C-1 C-2 C-3 C-4  2.3  Slim (Jy) 1.30 0.80 0.20 0.05  Area (deg2 ) 4924 2915 370 52  Number of sources 273 243 285 185  Sources not in CoNFIG-1 132 54.3% 269 94.4% 184 99.4%  Spectral indices  In order to compute the radio luminosity, the spectral index α (defined as Sν ∝ ν α ) of each source needed to be determined. To achieve this, flux-densities at different frequencies for each source were compiled (see Table 2.3) and the spectral index computed following the relation: α=  ∆ log(S) ∆ log(ν)  (2.1)  The low frequency (ν < 1.4GHz) and high frequency (ν ≥ 1.4GHz) spectral indices were computed as the slope of the best fitting line through all available data in each specific frequency range. As shown in Figure 2.3, since νrest = νobs (z + 1), the observed flux at 1.4GHz, Sobs , was actually emitted at νrest > 1.4GHz. The luminosity from the flux Sem emitted at νrest = 1.4GHz, which corresponds to the observed flux at frequency νobs < 1.4GHz, was needed. Therefore, the low frequency spectral indices was used to compute the luminosities (available for sources with z ≤ νrest/νobs − 1 = 1400/408 − 1 = 2.43). In cases where the low frequency data were unavailable, the high frequency spectral index was used. We were able to compute the low-frequency spectral index (with 178 MHz ≤ ν ≤ 1.4 GHz) for 100%, 99.2%, 89.6% and 52.7% of the sources in CoNFIG-1, 2, 3 and 4 respectively. The distribution of spectral indices by morphological type is shown in Figure 2.4. The index distribution of FRI and FRII sources peaks at lower values of α than compact sources, pointing to the steep-spectrum nature of extended radio sources. FRI and FRII sources also show slightly different spectral index distributions, with FRI having a higher mean and median index than FRII, which ensues from the P-α effect: higher luminosity sources have lower values of the spectral index for extended radio source (Laing & Peacock, 1980), and FRI sources tend to have lower luminosity than FRII sources (see §3.2). This is due to extraneous synchrotron energy losses for more powerful sources.  13  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Table 2.3: Surveys used to retrieve flux-density information. Frequency 178 MHz  Survey 3C 4C  Reference Kellermann et al. (1969) Pilkington & Scott (1965)  365 MHz  Texas  Douglas et al. (1996)  408 MHz  Parkes B3  Wright & Otrupcek (1990) Ficarra et al. (1985)  2.7 GHz  3C Parkes  Kellermann et al. (1969) Wright & Otrupcek (1990)  5.0 GHz  3C Parkes MIT-Greenbank  Kellermann et al. (1969) Wright & Otrupcek (1990) Bennett et al. (1986)  Figure 2.3: Relation between the observed and emitted flux at 1.4 GHz. Since νrest = νobs (z + 1), the emitted flux Sem at 1.4 GHz corresponds to an observed flux Sobs at νobs < 1.4 GHz. We thus use the low frequency spectral indices to compute the luminosities.  14  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.4: Spectral index distribution by morphological type (see §2.4 for details). The extended radio sources (FRI and FRII) show a larger negative value of the spectral index (α ∼ −0.8), indication the steep nature of their spectra. In contrast, compact sources show lower negative values of the spectral index (α ∼ −0.5), indicating a flatter spectrum. Another noticeable feature is that FRI sources show a higher value of the spectral index than FRII sources, which could be attributed to the P-α effect. 15  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  2.4  Morphology  2.4.1  Initial classification  The initial morphologies were determined either from results of previous referenced work or by examining at the source radio contour plots. Because the large beam size used in NVSS (45 arcsec) does not reveal precise structure of sources or determine positions accurate enough to establish unambiguous optical counterparts, a complementary survey was used. The FIRST survey provides a beam size small enough (5 arcsec) to resolve the structure of most nearby extended radio sources and source positions to better than 1 arcsec to enable crosswaveband identification. If the FIRST/NVSS contour plot displayed distinct unresolved hot spots at the edge of the lobes (as in Fig. 1.5), and the lobes are aligned, the source was classified as FRII. Sources with collimated jets showing hot spots near the core and jets were classified as FRI (see Fig. 1.4). Wide angle tail sources (WAT, Fig. 2.6 - left; Leahy, 1993) as well as most irregular-looking sources (Fig. 2.6 - center; Parma et al., 1992) were also classified as FRI. Sources of size smaller than 5 arcsec or previously classified as QSOs were classified as ‘compact’ while extended sources for which the FRI/FRII classification was impossible to determine, mostly due to poor resolution, were classified as ‘uncertain’ (Fig. 2.6 - right).  2.4.2  VLA observations  Extended sources with uncertain morphological classification were the subject of two VLA programs, AW703 in July 2007 and AG800 in October 2008, aiming to obtain higher resolution images of the objects. AW703 31 CoNFIG-1 sources were observed in this program. The observations were taken at 8 GHz using the VLA in A configuration, with a bandwidth of 50 MHz and the standard two intermediate frequencies (IFs) of 8435.1 and 8485.1 MHz. The A configuration is the configuration with the largest spacing between antennas (∼36 km), providing a synthesized beam of 0.24 arcsec FWHM at 8 GHz. The 8 GHz flux density of each source was derived from the 1.4 GHz NVSS fluxdensity and spectral index, and the exposure time was computed for each source so as to provide a signal-to-noise ratio of at least 5. The sources were split into two or three separate integrations to improve uv coverage The primary calibrator 3C174 (0542+498) was observed at the beginning of the run while 3C286 (1331+305) was observed twice during the run, once in the middle and once at the end.  16  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue AG800 213 extended CoNFIG-2, 3 and 4 sources were observed in this program. The observations were taken at 1.4 GHz using the VLA in A configuration. The A-configuration provides a synthesized beam of 1.4 arcsec FWHM at 1.4 GHz. Three frequency bands were used: (1) two IFs of 1464.9 and 1385.1 MHz, with a bandwidth of 50 MHz (2) two IFs of 1372.5 and 1422.5 MHz, with a bandwidth of 25 MHz and (3) two IFs of 1425.5 and 1397.5 MHz, with a bandwidth of 25 MHz. The exposure time was computed for each source such as to provide a signal-tonoise ratio of at least 5, and the exposures were split into two or three separate integrations to improve uv coverage. The primary calibrator 3C286 (1331+305) was observed several times during the run.  Figure 2.5: Examples of improvements in morphological classification from higher resolution images (here, 1525+290). Left: NVSS (red) and FIRST (blue) contours. Based on these contours only, the source would be classified as Uncertain. Right: VLA contours from observing program AG800. At higher resolution, the source clearly show FRI features. Both contour plots are superimposed on the SDSS greyscale image, where the position of the identified optical counterpart is shown by a green star.  2.4.3  Final classification  To check the reliability of the classification, sample of sources in CoNFIG were also morphologically classified independently by AGN experts, Dr Jasper Wall and Dr Philip Best. The discrepancies were less than 5%. Final morphological classifications are detailed in Appendix A, with the following categories: 62.5% of sources in the CoNFIG sample were classified either as FRI (I in column 6 of Table A.1) or FRII (II). 28.1% of the FRI sources were WAT sources and 16.9% were irregular sources. Following the unified model of AGN (Urry & Padovani, 1995) core-jet sources were classified as FRII. Hybrid sources, showing 17  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue jets FRI-like on one side and FRII-like on the other (Capetti et al., 1995), were classified according to the characteristics of the most prominent jet. Extended sources for which FRI/FRII identification was ambiguous were classified as uncertain (U). Sources with size smaller than 5 arcsec were classified as compact (C). When the source was confirmed compact from the VLBA calibrator list (see Beasley et al., 2002; Fomalont et al., 2003; Petrov et al., 2006; Kovalev et al., 2007) or the PearsonReadhead survey (Pearson & Readhead, 1988), it was classified as confirmed compact (C*). Finally, sources of type (S*) correspond to confirmed compact sources which show a steep (α ≤ −0.6) spectral index. These are probably compact steepspectrum (CSS) sources (Fanti & Fanti, 1994). The distribution of morphological types is presented in Table 2.4. Contour plots of extended sources, including the VLA observation described in §2.4.2, are displayed in Appendix B.1. In order to study the evolution of the space-density of FRI and FRII sources accurately, each extended source was assigned a sub-classification confirmed (c) or possible (p) - depending on how clearly the source showed either FRI or FRII characteristics or if its morphology had been confirmed in other referenced works. The complete catalogue consists of 858 sources, with 71 (8.3%) FRIs (50 confirmed, 21 possible), 466 (54.2%) FRIIs (390 confirmed, 76 possible), 285 (33.2%) compact sources and 37 (4.3%) uncertain sources.  18  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.6: (left) Example of wide angle tail (WAT) source (here 1445+149), where the jets are bent; (center) Example of irregular FRI source (here 3C 264); (right) Example of uncertain source (here 4C 11.49), which is obviously extended, but the position of the hot-spots does not permit determination of FR type. In each image, the pink square points to the position of the core, and the blue and red contours correspond to FIRST and NVSS levels respectively.  Table 2.4: Morphology of the sources in the CoNFIG samples. The morphology of each source was determined by looking at FIRST and NVSS contour plots or from VLA observations as described in §2.4.1 and §2.4.2. Sources of size smaller than 5 arcsec were classified as ‘compact’ (C) while extended sources for which the FRI/FRII classification was impossible to determine were classified as ‘uncertain’ (U). The corresponding percentage of sample is given in italics. C-1  C-2  C-3 C-4 % of sample 7 22 17 5.3% 8.1% 9.2%  Tot.  FRI  25 9.2%  71 8.3%  FRII  149 54.6%  75 56.8%  152 56.3%  90 48.9%  466 54.2%  C  86 31.5%  47 35.6%  88 32.6%  64 34.8%  285 33.2%  U  13 4.8%  3 2.3%  8 3.0%  13 7.1%  37 4.3%  19  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  2.5 2.5.1  Optical identifications and redshifts Optical identifications  Optical counterpart identification is essential to our study of radio galaxies, providing important information such as optical magnitudes and redshifts. A preliminary search for counterparts was performed using the unified catalogue of radio objects of Kimball & Ivezi´c (2008)3 . This catalogue matches sources in NVSS with their counterparts in FIRST and the Westerbork Northern Sky Survey (WENSS). In the overlapping region between the three surveys, SDSS crossidentification of ∼ 1/3 of the radio sources is performed. For sources outside the unified catalogue region, optical identifications were obtained, principally from SDSS and 2MASS (a shallower survey covering the entire sky). For compact sources, a host galaxy was identified when the optical source position coincided with the radio position (within <1”). For extended sources, host galaxy candidates within a given radius from the center of the radio source (4”≤r≤30” depending on the extent of the source) were selected from the surveys. The position of these candidates was over-plotted on the FIRST and NVSS contour plots to determine the most probably host galaxy identification. The choice was often straightforward, with the host candidate being located at the exact position of the radio core (within <1” - Fig. 2.7 - left) or, for extended sources, obviously positioned centrally in alignment with the radio lobes (Fig. 2.7 - right).  Figure 2.7: The radio contours (NVSS - red; FIRST - blue) are superimposed on the SDSS grey-scale image. The position of the identified optical counterpart is shown by a green star. (left) Example of a radio source (here, 3C 223) for which the host candidate is positioned centrally in alignment with the radio lobes. (right) Example of a radio source (here, 3C 287.1) for which the host candidate is located at the exact position of the radio core. 3  http://www.astro.washington.edu/akimball/radiocat/  20  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue Optical counterparts were obtained from the SDSS and 2MASS catalogues for 74.6% and 28.0% of the sources respectively, with 26.9% of the sources having both SDSS and 2MASS counterparts identified. 21.0% have no optical identification, most probably due to the fact that the host is fainter than both catalogues magnitude limits. A summary of identified counterparts is given in Table 2.5. Magnitude distributions give some insights to the host galaxies evolution stage: galaxies in which star formation is prominent have a large proportion of young stars and tend to be bluer, while galaxies in which star formation has stopped have a large proportion of old stars and tend to be redder. The SDSS ugriz filter bands range from ultra-violet (u-filter: λu = 3551 ˚ A) to near infra-red (z-filter: λz = 8931 ˚ A), while 2MASS KS band probes a higher wavelength range of the near infra-red spectrum (λKS = 21600 ˚ A). Figure 2.8 shows the magnitude distributions for the CoNFIG sources. As the filter band gets redder, the mean and median magnitudes get lower, indicating that AGN host galaxies tend to be older, low-star-forming objects.  2.5.2  Spectroscopic and photometric redshifts  Spectroscopic redshifts were obtained for 45.5% of the catalogue using either the SIMBAD4 database or the SDSS DR7 catalogue. Because redshift information is essential to computing space-densities and examining their evolution, we estimated redshifts for sources with no spectroscopic data available. Note that for this work, estimates of redshift within ∆z ∼0.1 are reasonable, as binning in redshift will be used for the modeling (see §4 and §5). For a number of sources with an SDSS counterpart identified but with no spectroscopic information available, photometric redshifts were retrieved from the SDSS photoz2 catalogue (Oyaizu et al., 2008), which covers SDSS galaxies with r≤22.0. AGN host galaxies tend to be red, with emission coming primarily from old stellar populations. This emission does not change as rapidly with evolution of the stellar population as emission at shorter wavelengths, and since radio galaxy hosts form a fairly homogeneous sample of objects, tight relations exist between magnitudes and redshift for radio galaxies (Lilly & Longair, 1984; Best et al., 1998). For galaxies where no redshift information were retrieved (and excluding the 285 sources identified as ‘compact’), redshifts were estimated using a magnitude-redshift relationship computed from SDSS-identified CoNFIG non-compact (i.e. non-QSO) sources with spectroscopic redshifts: log(z) = −3.599 + 0.170i  log(z) = −3.609 + 0.175z  log(z) = −3.660 + 0.169r 4  (2.2) (2.3) (2.4)  http://simbad.u-strasbg.fr/simbad  21  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.8: SDSS ugriz and 2MASS KS magnitude distributions. The mean and median values were computed from sources with available magnitude information. The total median values, for which sources with no magnitude information were assigned a value of 100, were computed for the ugriz filters, but not for the KS filter, for which over 50% of sources have no measured magnitude. As the filter gets redder, from u, the bluest colour, to KS , the reddest colour, the mean and median magnitudes get lower, indicating that AGN host galaxies tend to be red, older, low star-forming rate objects. 22  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Table 2.5: Numbers of SDSS and 2MASS optical identifications for the CoNFIG samples. In each cases, the corresponding percentage of sample is given in italics. All  SDSS  C-1  233 85.3%  FRII C % of sample 25 125 73 100% 83.9% 84.9%  C-2  108 81.8%  6 85.7%  62 82.7%  37 78.7%  3 100%  C-3  190 70.4%  20 90.9%  111 73.0%  53 60.2%  6 75.0%  C-4  110 59.8%  17 100%  52 57.8%  37 57.8%  4 30.8%  Tot.  641 74.6% 117 42.9%  68 95.8% 22 88.0%  350 75.1% 55 36.9%  200 70.2% 39 45.3%  23 62.2% 1 7.7%  C-2  44 33.3%  5 71.4%  22 29.3%  17 36.2%  C-3  47 17.4%  17 77.3%  20 13.2%  9 10.2%  1 12.5%  C-4  22 12.0%  10 58.8%  7 7.8%  4 6.2%  1 7.7%  Tot.  230 28.0%  54 76.0%  104 22.3%  69 24.2%  3 8.1%  C-1  2MASS  FRI  U 10 76.9%  0 -  23  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue These relations are shown in Figure 2.9, and the offset between known spectroscopic redshift data and their photometric magnitude-z estimate counterparts is shown in Figure 2.10. The redshifts estimated from the SDSS magnitudes provide good estimates up to r, i, z ∼ 20.0, corresponding to a redshift of z∼0.8 in each case. The relations become unreliable around z∼1.0, and redshifts were not estimated photometrically beyond this point. Because AGN hosts tend to be old (red) galaxies, preference was given to redshift estimates from the i magnitude-z relation. When i-magnitudes were unavailable (i.e. above the SDSS i-magnitude limit), the z magnitude-z or r magnitude-z relations were used, again depending on the availability of z and r magnitudes. Photometric redshifts for 73 sources were estimated in this manner. KS -z relations were also obtained using data from CoNFIG non-compact sources having both spectroscopic redshifts and KS -band information from the 2MASS extended and point source catalogues. log(z) = −3.515 + 0.204KS  log(z) = −4.800 + 0.279KS  2MASS extended sources  (2.5)  2MASS point sources  (2.6)  The relations, shown in Figure 2.11, provide good estimates of redshifts up to KS = 15.5. This is emphasized in Figure 2.12, which present the offset between known spectroscopic redshifts data and their photometric magnitude-z estimate counterparts. They were used to estimate photometric redshifts for 6 sources which had no SDSS spectroscopic or photometric redshifts available but had 2MASS counterparts (KS ≤ 15.5). Overall, 74.3% of the sources in the CoNFIG catalogue have spectroscopic or photometric redshift information available, with distribution mean and median redshifts of zmean = 0.714 and zmed = 0.588. The difference between these two values arises from the long tails in the distributions toward low redshifts. The redshift distribution statistics, by samples and morphological types, are shown in Figure 2.15 and tabulated in Tables 2.6-2.7.  24  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.9: The SDSS magnitude-redshift relations were computed by finding the best fit (lines) to data from CoNFIG non-compact sources having both spectroscopic redshift and SDSS magnitude information (dots). The relation gives reasonable estimates up to z∼0.8. The relations (Equ.2.2-2.4) were used to estimate photometric redshifts for sources not in the photoz2 catalogue, but with an SDSS counterpart.  25  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.10: Offset between spectroscopic and SDSS magnitude estimated redshifts, binned by magnitudes. The redshifts estimated from the SDSS magnitudes provide good estimates up to r, i, z ∼ 20.0, corresponding to a redshift of z∼0.8 in each case.  26  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.11: The KS -z relation was computed by finding the best fit (solid pink and dot-dashed red lines respectively) to data from CoNFIG non-compact sources having both spectroscopic redshift and KS -band information from the 2MASS extended (blue triangles) and point source (orange dots) catalogues. The relations (Equ.2.5-2.6) were used to estimate photometric redshifts for sources with a magnitude KS ≤ 15.5, which corresponds to an upper estimated redshift limit of z=0.43 from the extended source relation. For comparison, the K-z relations from CENSORS (Brookes et al., 2006) and Willott et al. (2003) are shown as light and dark grey dashed lines respectively.  Figure 2.12: Offset between spectroscopic and KS -z estimated redshifts, binned by KS magnitudes. The redshifts estimated from the 2MASS KS magnitudes provide good estimates up to the catalogue magnitude limit of KS =15.5. The systematic offset does not have any significant effect on the redshift estimates. 27  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Table 2.6: Distribution for the CoNFIG samples. Spectroscopic redshifts were retrieved either from the SIMBAD database or from the SDSS catalogue. Photometric redshifts were either obtained from the SDSS photoz2 catalogue or estimated using either the SDSS mag-z relation defined by Equ. 2.2-2.4 or the KS -z relation defined by Equ. 2.5-2.6. The corresponding percentage of sample is given in italics. C-1 273 226 82.8% 29 10.6%  C-2 132 67 58.8% 33 25.0%  C-3 270 54 20.0% 71 26.3%  C-4 184 44 23.9% 35 19.0%  5 1.8%  13 5.3%  38 13.3%  17 9.2%  3 1.1% 263 96.3%  1 0.8% 114 86.4%  2 0.7% 165 61.1%  0 96 52.2%  FRI  25 100%  7 100%  21 95.4%  17 100%  FRII  145 97.3%  65 86.7%  112 73.7%  52 57.8%  C  80 93.0%  39 83.0%  26 29.5%  23 35.9%  U  13 100%  3 100%  6 75.0%  4 30.8%  Total Number of Sources Spectro. Photo.  photoz2  sdss mag-z  KS -z Total  All  28  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  2.5.3  Sources with no redshift information  A total of 221 sources in the CoNFIG catalogue, mostly in CoNFIG-3 and 4, have no redshift information available. 104 of these sources are of morphological type I, II or U (we ignore sources of type C, being only interested in the study of extended radio sources). In most cases, the lack of optical identification is presumably due to the fact that the source is located far away, placing its optical magnitude below the SDSS magnitude limit. The absence of these sources in the analysis could possibly create a strong bias against higher redshift galaxies, and they are thus considered here. Based on SDSS non-detection, a lower redshift limit can be determined for these sources. The i-band being effectively the deepest SDSS band for objects with the typical colours of high-redshift radio galaxies, Equ.2.2 was used to determine the lower limit, yielding a value of zlim ≃ 1.0. To account for the spread in the iz relation, the estimate of the limit for each source with no redshift was drawn randomly from a Gaussian of variance 0.1 (approximately corresponding to the spread seen in Figure 2.9), centered on zlim =1.0. Our next step was to use the (admittedly naive) assumption that the redshift of the radio source could be estimated from the distribution of measured or estimated redshifts for sources of similar flux density. For each of the 104 sources, we compiled the sample of sources with redshift information available and flux-densities within the range of a tenth to ten times the flux density of the source with no redshift. The redshift distribution of this sample was computed and fit with a polynomial; the region of this polynomial above the calculated redshift limit was then normalized to determine the redshift probability distribution for each source. These probability distributions can be used in different ways: - When considering redshift distribution, each source with no redshift can be considered to contribute a fraction to each redshift bin, following its assigned probability distribution (which is itself normalized to 1.0). - An approximate redshift can be assigned for each source by making several random realizations following the probability distribution and assigning to the source the median redshift of the consequent redshift sample. - An approximate redshift can be assigned for each source by making a random realization following the probability distribution. The statistics of interest are then computed and the values stores. The process is repeated several times in a Monte-Carlo manner and the average value of the statistics is computed. The method is depicted in Figure 2.14. A rough estimate of the incidence of these assigned redshifts on future analysis can be inferred. Because most of the approximate redshifts are greater than z=0.3, the redshift upper-limit used to define the local universe, statistics for local space densities are completely unaffected by redshift uncertainties. As the redshift lower-limits 29  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.13: Examples of redshift probability distributions used to assign redshift estimates to sources with no redshifts. The distributions shown are for sources with flux S1.4GHz =0.5 Jy (pink dashed line), S1.4GHz =0.05 Jy (green solid line) and S1.4GHz =0.005 Jy (orange dot-dashed line) and correspond to the best-fit polynomial to the distribution of redshifts for sources with redshift information available having fluxes Sno.z /10 ≤ Swith.z ≤ 10 · Sno.z . used in the computation of the approximate redshifts are mostly z≥1.0, results out to z∼1.0 are also not significantly affected. Over the range 1.0≤z≤2.0, the results are likely to be impacted. Nevertheless, the fact that the redshift distribution is well determined over that range implies that the impact is perhaps not severe. Beyond z=2.0, results would be unreliable as the redshift distribution is not well determined and the use of approximate redshifts may introduce significant biases. When such redshift ranges were considered, analysis of the impact of these uncertainties on space-density computation were undertaken (see §4.2).  30  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Source with no redshift Sno.z  ✛  ❄  repeat × 1000  ❄  Minimum redshift randomly drawn from Gaussian zmin  Compile sample of sources with redshift for which Sno.z /10 ≤ Swith.z ≤ 10 · Sno.z ❄  Fit redshift distribution of the sample with a polynomial and normalize the region above zmin to represent the redshift probability distribution  ❄  Redshift distribution The fractional contribution of the no.z source for each redshift bin follows the assigned probability distribution  ❄  Statistics calculation Random redshift values are ✲ drawn following the probability  distribution assigned to the corresponding no.z source  repeat × 1000 ❄  ❄  Compute the statistics  Assign median redshift to source  ❄  Average  Figure 2.14: Redshift assignment summary  31  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Table 2.7: Redshift statistics for the CoNFIG samples. For extended sources, both the distribution and true (including sources with redshift estimated as described in §2.5.3) mean and median redshift are quoted. C-1  C-2 All  C-3  C-4  min. max. mean inc. z est. median inc. z est.  0.003 0.011 3.530 2.707 0.711 0.760 0.727 0.860 0.555 0.599 0.561 0.680 FRI  0.018 2.408 0.623 1.045 0.564 0.947  0.006 2.677 0.828 1.524 0.695 1.367  min. max. mean inc. z est. median inc. z est.  0.003 0.011 0.269 0.309 0.071 0.128 0.071 0.128 0.049 0.099 0.049 0.099 FRII  0.032 1.847 0.264 0.412 0.116 0.141  0.006 1.531 0.261 0.261 0.150 0.150  min. max. mean inc. z est. median inc. z est.  0.036 0.098 2.183 1.711 0.637 0.660 0.661 0.785 0.523 0.566 0.535 0.613 Uncertain  0.062 2.408 0.674 0.918 0.604 0.782  0.138 2.677 0.938 1.497 0.800 1.264  min. max. mean inc. z est. median inc. z est.  0.227 0.406 2.474 0.975 0.842 0.631 0.829 0.767 0.438 0.406 0.473 0.628 Compact  0.219 1.548 0.766 1.467 0.555 1.356  0.167 1.193 0.674 1.797 0.301 1.625  min. max. mean median  0.034 3.530 1.024 0.880  0.018 1.764 0.665 0.580  0.133 2.235 1.026 0.725  0.160 2.707 1.050 0.795  32  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  Figure 2.15: Redshift distributions of the sources in the CoNFIG catalogue for each morphological type. Sources with spectroscopic, photometric, KS -z estimated and SDSS mag-z estimated redshifts are represented by the red solid, blue cross-hatched, green solid and purple diagonally hatched columns. The estimated contribution from sources with no redshift information available is shown in black vertically hatched columns. 33  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue  2.6  Complementary samples  To improve the flux-density coverage of the catalogue, three complementary samples were appended (Appendix A.2.1, A.2.2 and A.2.3). 3CRR The 3CRR (Third Cambridge Revised) catalogue (Laing, Riley & Longair, 1983) is complete to S178M Hz =10 Jy and contains 173 sources over an area of 4.2 sr. The conversion from S178M Hz to S1.4GHz with α = −0.75 (the median spectral index for CoNFIG extended sources) yields a flux density limit of S1.4GHz ≈ 2.1 Jy. In order to maximize the completeness of the sample at 1.4 GHz, the flux-density limit was increased to S1.4GHz = 3.5 Jy. The compiled spectral indices were used in the conversion for each 3CRR source. This is the only complementary sample overlapping with the CoNFIG-1 region, and after excluding sources already present in the CoNFIG samples5 , 38 sources were selected to complement the CoNFIG catalogue. All sources were morphologically classified, either using the classification of Laing, Riley & Longair (1983) or following the method described in §2.4, and the sample includes 8 FRI, 24 FRII and 6 compact sources. CENSORS The CENSORS (Combined EIS-NVSS Survey Of Radio Sources) sample (Best et al., 2003) is complete to S1.4GHz =7.2 mJy and contains 136 sources selected from NVSS over the 6 deg2 of the ESO Imaging Survey (EIS) Patch D. The region of the sample does not overlap with CoNFIG. The sample has spectroscopic redshifts for 68% of the sources, and optical or near-IR identifications (giving redshift estimates) for almost all of the remainder. Little radio morphological classification of the CENSORS sources has been done as the image resolution is often not high enough to identify the source morphology. For this reason, the VLA observation programs described in §2.4.2 also included 40 CENSORS sources, allowing morphological classification of 84.5% of the objects in the sample (see Appendix B.2). It includes 13 FRI, 64 FRII, 38 compact and 21 uncertain sources. Lynx & Hercules sample The Lynx & Hercules sample (Rigby, Snellen & Best, 2007) is complete to S1.4GHz = 0.5 mJy and contains 81 sources within an area of 0.6 deg2 , not overlapping with CoNFIG. It is complete in redshift estimation (49% spectroscopic and 51% photometric) and 95.6% of the sample members have morphological classification, including 57 FRI, 18 FRII and 6 uncertain sources. 5  in practise, when computing sources statistics, sources from the CoNFIG sample with S1.4GHz ≥3.5 Jy were ignored, to avoid double-counting. The effective area of the 3CR sample thus remained unchanged.  34  Chapter 2. The Combined NVSS-FIRST Galaxy (CoNFIG) catalogue The final list, including the complementary samples, will hereafter be referred as the CoNFIG catalogue. It contains 1114 sources and is 75.9% complete for redshift information and 94.2% complete for radio morphologies. It includes a total of 136 FRI (78 confirmed, 58 possible) and 571 FRII (478 confirmed, 93 possible) sources, making it one of the largest, most comprehensive databases of morphologicallyclassified radio sources and an important tool in the study of AGN space densities.  35  Chapter 3  Source statistics The main goal of the CoNFIG catalogue is to produce a comprehensive catalogue of morphologically-classified radio sources to be used in the modeling of the radio luminosity function (RLF) of AGN, in order to investigate their evolution and the role of the different types in feedback processes. Because the RLF describes the spacedensity of radio sources as a function of luminosity and epoch, a knowledge of the source distributions with respect to both aspects is necessary for the modeling. For this purpose, we computed the source counts (§3.1), luminosity distributions (§3.2), and luminosity-redshift distributions (§3.3) based on morphological classification.  3.1  Source counts  Source counts, corresponding to the surface density of sources as a function of fluxdensity, can be directly compiled from any complete sample, without any additional data. Because flux density is a function of both redshift and luminosity, source counts are the first probes into the behaviour of galaxy evolution. Source counts can come in different forms, the most basic being the cumulative (or integrated) source count, N (> S) (Fig. 3.1, top panel), describing the expected number of sources per unit area above a given flux density. Because of its cumulative nature, consecutive data points are not statistically independent of each other, which can be problematic, especially in the corresponding error analysis. The differential form of the source count (Fig. 3.1, central panel), which describes the number of sources per unit area in a given flux bin (∆N/∆S), avoids the problem of dependence of consecutive values. Because the differential source count is generally very steep, possibly hiding some important features, it is customary to represent it relative to the count of uniformly distributed sources in a flat, non-evolving Universe (Euclidean Universe - see Ap−3/2 pendix D.1), where ∆N0 (S) = Kν Sν , the arbitrary constant Kν usually taken as the number density of sources with flux-densities above 1 Jy. This is the relative differential source count ∆N/∆N0 (Fig. 3.1, bottom panel). This form will be used in the following source count computation for CoNFIG. Source counts give the first indication of the evolution of radio sources (Longair, 1966). In an expanding Universe with a constant space-density (no evolution) the relative differential count would decline monotonically to low flux densities. This is not the case here, as ∆N/∆N0 clearly peaks at S1.4GHz ∼0.5 Jy, which indicate that 36  Chapter 3. Source statistics radio sources must be evolving (i.e. there were many more sources at earlier epochs). The general form of the relative differential source count displays four major regions of flux densities where different radio source populations dominate: Region 1 At the highest flux-densities (S1.4GHz ≥ 10 Jy), only a few sources (typically ∼ 20) contribute to the count. These sources are either nearby galaxies or more distant, very powerful sources (at z=0.6, it takes a logP1.4GHz = 27.0 W/Hz/sr source to detect it with S1.4GHz =10 Jy). Because local, lower-power sources are more abundant than powerful, evolving sources, the count is near-Euclidean (flat). Region 2 At the Jansky level (1 Jy ≤ S1.4GHz < 10 Jy), the count is dominated by powerful sources at high redshifts, which indicates extreme evolution. The ‘bulge’ in the count hints at a sharp peak in their space densities at some epoch. Region 3 At the sub-Jansky level (1 mJy ≤ S1.4GHz < 1 Jy), the count drops in a continuous manner. Although it might be supposed that powerful radio sources at high redshift dominate this region of the count, identification data shows that it comprises lower-power sources at intermediate redshifts. Region 4 At the sub-milliJansky level (S1.4GHz < 1 mJy), identifications show populations of local star-forming galaxies and low-power FRI sources. The first step in the CoNFIG source count analysis is to verify the completeness of the samples used (i.e. are they representative of the population in their available range of flux-densities). For this purpose, a reference source count covering a wide range of flux densities (−4.0 ≤ logS1.4GHz ≤ 2.0), was compiled from various previously published data (Bridle et al., 1972; Machalski, 1978; Hopkins et al., 2003; Prandoni et al., 2001). Because the count is compiled from a total of several hundred thousand sources, it can be considered complete and defines a reference curve. The relative differential source count was computed independently for each of the samples in the CoNFIG catalogue and superimposed on the reference source count. As seen in Figure 3.2, each sample is consistent with the reference count, and thus appears to be complete within statistical uncertainties. The morphology-dependent source counts were computed by combining data from each sample (avoiding repeated sources between 3CR and CoNFIG-1, as well as between CoNFIG-1 and CoNFIG-2,3 and 4) and making separate source lists for the FRI and FRII sources. The resulting counts are shown in Figure 3.3. The FRII sources dominate the total count, except at low flux densities (logS1.4GHz −1.6), where the FRI sources suddenly take over, constituting a significant portion of the mJy and sub-mJy sources. Since most of the FRI count at low flux densities is composed of low-luminosity sources at low redshift, our results show that FRI objects must undergo some mild evolution. This is consistent with the results of Sadler et al. (2007), who studied low power sources (which tend to be associated with FRIs) in the 2SLAQ survey (Richards et al., 2005) and found evidence that FRIs undergo significant evolution over z < 0.7. Because the FRI source count 37  Chapter 3. Source statistics  Figure 3.1: 1.4 GHz source counts in cumulative N(>S) (top), differential ∆N/∆S (center) and relative ∆N/∆N0 differential (bottom) forms. The curves represent counts derived from sources in the NVSS (Condon et al., 1998) and Phoenix (Hopkins et al., 2003) surveys. 38  Chapter 3. Source statistics does not follow the no-evolution monotonic curve (see Figure 2 in Wall, Pearson & Longair, 1980), results also show that FRIs undergo less evolution than FRIIs, and they do not participate much in the source-count “evolution bump” around S1.4GHz ∼1 Jy. This is in agreement with previous investigations stretching back to Longair (1966).  3.2  Luminosity distributions  The luminosity distribution is defined as the distribution of luminosities in a sample complete to a given survey limit. It was computed for each morphological type for sources with available redshift information, using the 1.4 GHz flux-density and spectral index values of each source. When the latter was unavailable, a value of α = −0.75 was used. This value corresponds to the median spectral index value for extended sources in the CoNFIG sample and introduced a minimal bias in the results, since less than 6% of them have α ≥ −0.5. The luminosity is given by: logPν = logSν + 2logD + (1 − α)log(1 + z) + C  (3.1)  where D is the co-moving distance expressed as c D= H0  z′ 0  dz Ωm (1 + z)3 + ΩΛ  (3.2)  With the radio luminosity Pν in W/Hz/sr, the radio flux Sν in Jy and the distance D in Mpc, the constant is C=18.97879. The FRI and FRII distributions for sources in all the samples in the CoNFIG catalogue are shown in Figure 3.4. They illustrate well the fact that FRI sources tend to lie at lower luminosities than FRII sources. However, it would be misleading to systematically use luminosity as an indicator of FR types: the overlap in luminosity is quite large between the two morphological types, and both high-luminosity FRI (11 sources with logP1.4GHz ≥ 25.0 W/Hz/sr) and low-luminosity FRII (12 sources with logP1.4GHz ≤ 23.5 W/Hz/sr) are present here.  3.3  P-z plane  As previously stated, the RLF describes the space density of radio sources as a function of luminosity and epoch. A widely covered luminosity-redshift plane (hereafter P-z plane) is thus the framework over which any modeling of the radio luminosity function is built (Rawlings, 2002).  39  Chapter 3. Source statistics  Figure 3.2: Comparison of the relative differential source counts ∆N/∆N0 for the CoNFIG1-4 samples (red stars, blue open crosses, orange triangles and purple open squares respectively), as well as the 3CRR, CENSORS and Lynx & Hercules samples (turquoise circles, green open triangles and pink filled squares respectively), with a 1.4 GHz source count (black crosses and dotted line), compiled from the data of Bridle et al. (1972), Machalski (1978), Hopkins et al. (2003) and Prandoni et al. −1.5 ) (Jackson & Wall, 1999) (2001). The normalization is given √by ∆N0 = 3618∆(S and the error bars correspond to N where N is the number of objects in each bin. This illustrates the completeness of each sample. It is however important to note the systematic low estimates in the lowest flux-density bin of each sample, which should be considered with caution.  40  Chapter 3. Source statistics  Figure 3.3: Relative differential source counts ∆N/∆N0 for FRI (blue triangles) and FRII (red squares) sources. Here, the normalization is given √by ∆N0 = 3618∆(S −1.5 ) (Jackson & Wall, 1999) and the error bars correspond to N where N is the number of objects in each bin. The counts are fitted by a polynomial (dashed lines) to indicate the shapes of the counts. The fit to the total FR count (FRI + FRII + uncertain) is also fitted by a polynomial (dot-dashed line). A 1.4 GHz source count, compiled from the data of Bridle et al. (1972), Machalski (1978), Hopkins et al. (2003) and Prandoni et al. (2001), is represented with crosses for comparison.  41  Chapter 3. Source statistics  Figure 3.4: FRI (top) and FRII (bottom) luminosity distributions for sources in the CoNFIG catalogue. High-luminosity FRI (logP1.4GHz ≥ 25.0 W/Hz/sr) and low-luminosity FRII (logP1.4GHz ≤ 23.5 W/Hz/sr) are present in both samples. 42  Chapter 3. Source statistics The challenge in populating the P-z plane resides in finding a complete sample with the right balance between depth and coverage. Samples probing down to low fluxdensities allow the detection of both moderately luminous sources at high redshift and moderate-redshift low-luminosity sources. However, because of the large range of sources that can be detected, these samples tend to cover only small areas (less than a few deg2 ), because of aperture synthesis. Consequently, they do not provide a reasonable picture of the populations in the local Universe. Inversely, samples probing only to higher flux densities, although limited to probing powerful sources up to more moderate redshifts, cover much larger areas and are more adequate to illustrate the distribution of lower-luminosity sources at low redshifts. The combination of CoNFIG, 3CRR, CENSORS and the Lynx & Hercules samples makes it possible to get both the advantages of depth and coverage, spanning a large range of luminosity and redshift (Fig. 3.5 and 3.6). It provides us with a powerful basis from which to study FRI and FRII sources and their space distributions.  43  Chapter 3. Source statistics  Figure 3.5: P-z plane coverage for the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples, by radio-morphological type (limited to sources with estimated redshifts). The dot-dashed lines show the 1.4 GHz survey limits for each sample (from top down: 3CR - 3.5 Jy; CoNFIG-1 - 1.3 Jy; CoNFIG-2 - 0.8 Jy; CoNFIG-3 - 0.2 Jy; CoNFIG-4 - 50 mJy; CENSORS - 7.2 mJy; Lynx & Hercules - 0.5 mJy). Sources are identified by their radio morphological classification: FRIs, FRIIs, uncertain and compact sources are represented by blue stars, red circles, green dots and black crosses respectively.  44  Chapter 3. Source statistics  Figure 3.6: P-z plane coverage for the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples, by redshift type. The dot-dashed lines show the 1.4 GHz survey limits for each sample (from top down: 3CR - 3.5 Jy; CoNFIG-1 - 1.3 Jy; CoNFIG-2 - 0.8 Jy; CoNFIG-3 - 0.2 Jy; CoNFIG-4 - 50 mJy; CENSORS - 7.2 mJy; Lynx & Hercules - 0.5 mJy). Sources are identified by their redshift type: spectroscopic, SDSS photoz2 photometric, KS -z estimated and SDSS mag-z estimated redshift are represented by orange asterisks, blue squares, red triangles and pink circles respectively. Sources with approximated redshifts, as described in §2.5.3, are represented by purple crosses.  45  Chapter 4  Estimating space-densities using the 1/Vmax method Estimates of the radio luminosity functions (RLF) were computed with the commonly used 1/Vmax technique (Schmidt, 1968), in which the space-density ρ of N sources in some redshift bin ∆z is given by: N  ρ= i=1  1 Vi  (4.1)  where the volume Vi is computed for the maximum redshift within ∆z at which the source would still be included in the complete sample from which it belongs. This technique was applied to compute both the RLF of all sources in the CoNFIG catalogue, as well as the morphology-dependent RLFs.  4.1  The local FRI/FRII RLFs  The general local 1/Vmax radio luminosity function for all sources in the CoNFIG catalogue, defined here as the RLF for z≤0.3, is displayed in Figure 4.1. It is consistent with both the local RLF (LRLF) of the 2dF survey (Sadler et al., 2002) and the SDSS (Best et al., 2005), and extends to significantly larger luminosities, because of the larger area covered by our bright samples giving rise to larger sample sizes. In addition, to check the validity of our model, the luminosity functions of steepspectrum sources (FRI, FRII and Uncertain) at z=1.0 (in the interval z=[0.8;1.5]) and at z=2.0 (in the interval z=[1.2;2.5]) were computed and compared with accepted RLF models at z=1.0 and z=2.0. Dunlop & Peacock (1990) used both parametric and free-form models to study the evolution of RLFs for steep and flatspectrum sources, fitted from data from numerous samples. Willott et al. (2001) used a maximum likelihood parametric modeling method to determine the evolution of the RLF of steep-spectrum sources, fitted from the 3CRR, 6CE and 7C 151-178 MHz samples. In each case, the CoNFIG RLF agrees well with both models (Fig. 4.1). The FRI and FRII LRLFs (Fig. 4.2) show apparent differences, such as the flattening of the FRII LRLF at lower powers and the steeper slope of the FRI LRLF at higher 46  Chapter 4. Estimating space-densities using the 1/Vmax method  Figure 4.1: Radio luminosity function ρ(P ) computed via 1/Vmax from the combination of all data in the four CoNFIG samples, as well as the 3CRR, CENSORS and Lynx & Hercules samples. The radio local luminosity function (LRLF) for z<0.3 √ is represented by green open squares. Error bars correspond to N where N is the number of objects in each bin. The LRLF is consistent with both the LRLF of the 2dF survey (Sadler et al., 2002) and the SDSS (Best et al., 2005), shown by solid and dotted lines respectively. In addition, the luminosity functions at z=1.0 (in the interval z=[0.8;1.5]) and at z=2.0 (in the interval z=[1.2;2.5]) are displayed by pink diamonds and purple dots respectively. For comparison, the modeled RLFs from Dunlop & Peacock (1990) - Model 7 - and Willott et al. (2001) at z=1.0 are displayed as dot-dashed and triple-dot-dashed lines respectively.  47  Chapter 4. Estimating space-densities using the 1/Vmax method  Figure 4.2: Local luminosity function ρ(P ) for FRIs and FRIIs, represented by blue stars and red triangles respectively. The values for both confirmed and possible FRI/FRII are shown by filled symbols and thick error bars, whereas the values for confirmed FRI/FRII only √ are displayed with open symbols and thin error bars. Error bars correspond to N where N is the number of objects in each bin.  48  Chapter 4. Estimating space-densities using the 1/Vmax method powers. A chi-square test (described in Appendix D.2) was performed on the FRI and FRII LRLFs, giving a 1% probability that both samples come from the same population (χ2 =19.6 with 6 degrees of freedom). This implies that, locally, FRI and FRII sources constitute two distinct populations. However, these local space densities do not indicate any sharp luminosity divide between FRIs and FRIIs: at higher power (logP1.4GHz 25.0 W/Hz/sr) the FRII LRLF is only a factor of ∼3-4 higher than for FRIs and the two population show a large degree of overlap at intermediate powers. Because most of the approximate redshifts (§ 2.5.3) are greater than z=0.3, the results of the LRLF are completely unaffected by redshift uncertainties.  4.2  FRI/FRII evolution  The RLF for each population was computed via 1/Vmax for different redshift bins (z= [0.3;0.8], z=[0.8;1.5] and z=[1.2;2.5]). In order to account for data with no redshift information, the random redshift assignment technique described in §2.5.3 was used. This process was repeated 1000 times and the final RLF was computed by averaging the results. For each population, the space-density enhancement above the local value was computed for confirmed+possible sources. FRI sources (Fig. 4.3) show an enhancement of a factor of 7 to 10 in the interval z=[0.8;1.5] for high luminosity sources (logP1.4GHz ≥ 24.0 W/Hz/sr), in agreement with the results of Rigby, Best & Snellen (2008). This enhancement remains present at redshifts up to 2.5. A comparison of the space-density enhancement for FRI and FRII sources in the same redshift bins is shown in Figure 4.4. A chi-square test was performed to assess the differences in enhancement with luminosity. Overall the behaviour of FRI and FRII sources is very similar, with little or no enhancement in the interval z=[0.3;0.8] and up to a factor of 10 enhancement for higher luminosity sources in higher redshift bins. At z=[0.8;1.5] and z=[1.2;2.5], the chi-square tests give a 90% probability that both samples come from the same population. We conclude that the comparison of space-density enhancements between FRI and FRII sources does not show any significant differences, hinting at a common mechanism governing the luminositydependent evolution. In Figure 4.5, we investigated the impact of the approximate redshift selection method. We compared RLFs in the ranges z=[0.8;1.5] and z=[1.2;2.5] from the complete CoNFIG FRII sub-sample, where the approximate redshifts were drawn using the distributions in which all sources with no redshift were either distributed homogeneously within the given range (to estimate the maximum space densities), or ignored (equivalent to setting all of them outside this range, hence giving minimum space-densities). In the range z=[0.8;1.5], the RLFs computed using approximate redshifts distributed homogeneously, and ignored, differ by a factor of up to ∼ 2.5, which is comparable to the size of the error estimates in the LRLF and RLF com49  Chapter 4. Estimating space-densities using the 1/Vmax method puted here. The data and method therefore appear to give a reasonably reliable estimate of the RLF in this redshift range, across all radio powers. In the range z=[1.2;2.5] the approximate redshifts distribution method gives results close to the maximal density calculated, whilst the minimal density lies significantly below this at high radio powers. This is because most of the approximate redshifts lie in this redshift range (as expected since the sources have zlim ∼ 1) so the minimal density method provides a significant underestimate. The data allow an acceptable estimate of the RLF in this redshift range, but at higher powers (logP1.4GHz ≥ 26.0 W/Hz/sr) significant uncertainties remain.  4.3  Summary  The 1/Vmax estimates of the RLFs give some insight into the behaviour of FR spacedensities. The shape of the LRLFs imply that, in terms of space-densities, FRI and FRII constitutes distinct populations locally. FRI sources show an increase in their space-densities by a factor of ∼10 for logP1.4GHz ≥ 24.0 W/Hz/sr, indicating that these sources undergo positive evolution. Finally, a comparison of the FRI and FRII space-density enhancements indicates that both source type undergo similar evolution of their space-density.  50  Chapter 4. Estimating space-densities using the 1/Vmax method  Figure 4.3: Space-density enhancement for confirmed+possible FRI sources for different redshift bins: z=[0.3:0.8] in green triangles,√z=[0.8:1.5] in red stars and z=[1.2:2.5] in blue squares. Error bars correspond to N where N is the number of objects in each bin. An enhancement of a factor of 7 to 10 is seen at z=1.0 for high luminosity sources (logP1.4GHz ≥ 24.5 W/Hz/sr), in agreement with Rigby, Best & Snellen (2008). This enhancement appears to continue to higher redshifts.  51  Chapter 4. Estimating space-densities using the 1/Vmax method  Figure 4.4: Comparison of the space-density enhancement between confirmed+possible FRI (blue stars) and FRII (red triangles) sources, for different redshift √ bins (z=[0.3:0.8], z=[0.8:1.5] and z=[1.2:2.5]). Error bars correspond to N where N is the number of objects in each bin. For FRIs with logP1.4GHz ≥ 26.0 W/Hz/sr and FRIIs with logP1.4GHz ≤ 23.0 W/Hz/sr and logP1.4GHz ≥ 27.0 W/Hz/sr, the value of the LRLF was extrapolated from the power law fit described in §4.2.  52  Chapter 4. Estimating space-densities using the 1/Vmax method  Fig. 4.4 cont. 53  Chapter 4. Estimating space-densities using the 1/Vmax method  Figure 4.5: FRII RLFs in the ranges z=[0.8;1.5] and z=[1.2;2.5]where the approximate redshifts were drawn using various distributions, in which all sources with no redshift were either approximated as described in § 2.5.3 (orange stars), distributed homogeneously in the given range (light blue dots) or ignored (purple triangles).  54  Chapter 5  Parametric modeling of the radio luminosity function Although 1/Vmax modeling gives a reasonable first evaluation of the FRI and FRII space-densities, patchy coverages of the P-z plane, especially for FRI sources, limits the range over which the RLFs are evaluated. Better estimates need to be computed in order to accurately compare the FRI and FRII radio populations. This chapter describes the parametric models used in this work.  5.1  Likelihood method  Parametric RLF models provide a powerful tool in comparing the space density evolutions of the FRI and FRII populations. We adopted here a ‘single object survey’ (SOS) maximum likelihood method. It was first formulated by Marshall et al. (1983) and extensively used by Willott et al. (2001), while the SOS aspect was developed by Wall, Pope & Scott (2008). Details of the method, as well as the various evolution models used in this work, are presented in the following sections. Consider a complete sample of i objects, where each source has access to a sky fraction Ωi (P, z), depending on the flux-density limit line in the P-z plane and the area corresponding to the sample the source is drawn from. The Ω(P, z) function will then act both as a detection mask and as the area normalization factor in the modeling of the RLF. The likelihood function (L) for the i th object is the probability of observing one object in its (dP,dz) element times the probability of observing zero objects in all other (dP,dz) elements accessible to it. Using Poisson statistics for the probability of observing x objects f (x : µ) =  e−µ µx x!  (5.1)  and dN/dL = ρ(P, z) for the space-density, L is given by: N  N  L=  −λ(Pi ,zi )dzdP  e−λ(Pj ,zj )dzdP  λ(Pi , zi )dzdP e i  (5.2)  j=i  where λ(P, z) = ρ(P, z)Ω(P, z)(∂V /∂z), and i denotes the (P,z) bins in which sources are present and j denotes all others. The value to minimize in our algorithm, using 55  Chapter 5. Parametric modeling of the radio luminosity function a downhill simplex method (the amoeba algorithm, developed by Nelder & Mead, 1965, see Appendix D.3), is then given by S = −2lnL N  S = −2  lnρ(Pi , zi ) i=1 N  (5.3)  +2 i=1 P z  ρ(P, z)Ωi (P, z) ∂V ∂z dP dz + constant  Consider luminosity functions of the form ρ(P, z) = ρ0 · φ(z), where ρ0 = ρ(P, 0) is the LRLF. Substituting in Equ. 5.3 and setting the derivative with respect to ρ0 to zero, we get a maximum-likelihood estimate for ρ0 ρ0 =  N  (5.4)  N  ρ(P, z)Ωi (P, z)(∂V /∂z)dP dz i=1 P z  Putting this back into Equ. 5.3 gives N  S = −2  lnρ(Pi , zi ) i=1  N  + 2ln i=1 P z  ρ(P, z)Ωi (P, z) ∂V ∂z dP dz  (5.5)  + (2N − 2N lnN ) As one can notice, the model input data are the positions of each source in the P-z plane, as well as the individual plane masks Ω(P, z). To compute the RLF in a given luminosity or redshift range, the data need to be limited to that range, which changes the Ω(P, z) mask.  5.2  Luminosity function models  Best-fitting parametric forms of the FRI and FRII RLFs were determined for sources classified as confirmed + possible (c+p) (see §2.4.3) and errors in the model parameters were determined by using the bootstrap method, fitting the bootstrap parameter distributions with a Gaussian curve and taking the 68% (1σ) limits as the upper and lower-limit estimates. Because the likelihood modeling requires complete samples, approximated redshift estimates were assigned to sources with no redshift information, as described in §2.5.3. It can be seen from the results of the 1/Vmax estimates of the LRLFs (§4.1) that the local FRI and FRII space densities follow some variation of a power-law. Following this observation, a broken power law was used to describe the FR RLFs: ρ(P, 0) = ρn  P Pb  β  +  P Pb  γ −1  (5.6) 56  Chapter 5. Parametric modeling of the radio luminosity function where β and γ are the slopes of the power laws, Pb is the break luminosity between the two power-laws, and ρn is the normalization factor. To determine the best parametric description, two evolution models were tested. • Pure-density evolution As a starting point, luminosity functions following a pure-density evolution (PDE) as presented in Wall, Pope & Scott (2008) were considered. They initially assumed that all sources evolve at the same rate, independently of their luminosities. Here, an exponential form of the evolution was adopted: φ(z) = eM τ  (5.7)  where τ is the lookback time fraction (i.e. τ = t/t0 , where t is the epoch corresponding to z and t0 is the Hubble time defined as t0 = 1/H0 ), defined as: z  τ (z) = 0  dz ′ (1 + z ′ ) Ωm (1 + z ′ )3 + ΩΛ  (5.8)  In total, this model has 4 parameters: β, γ, Pb determining the shape of the RLF and M describing its evolution.  • Luminosity-density evolution It has been observed in several previous studies that low-power radio sources tend to show weak evolution while high-power sources evolve very strongly (e.g. Jackson & Wall, 1999; Donoso, Best & Kauffmann, 2009). This bimodal, luminosity-dependent behaviour of the evolution (Longair, 1966) can be represented with a luminositydependent density evolution model, hereafter termed ‘luminosity-density evolution’ (LDE) model, in which the evolution parameter varies with luminosity as:  0.0      logP −logP1 Mmax logP M (P ) = 2 −logP1      Mmax  P < P1 P1 ≤ P ≤ P2  (5.9)  P > P2  This model now includes 6 parameters: β, γ, Pb determining the shape of the RLF and Mmax , P1 , P2 describing the evolution.  57  Chapter 5. Parametric modeling of the radio luminosity function  5.3  Results  The parameters corresponding to the best-fitting PDE and LDE models for FRI and FRII are tabulated in Table 5.1, and the RLFs and corresponding error spread displayed in Figures 5.1 and Figure 5.2 respectively. Because of the simplicity of both models, and because of the much larger fraction of data at z ≤ 1, the curves for 0.0 ≤ z ≤ 0.3 and 0.3 ≤ z ≤ 0.8 give much better fits to the data than at higher redshifts. Both PDE and LDE models show positive evolution for FRI source (M > 0), which is in agreement with our previous results. Each model is compared to the 1/Vmax estimates in the corresponding redshift range using chi-square statistics (bottom rows in Table 5.1). For both FR types, the LDE model is the most satisfactory, with χred < 1.4, and will thus be the one used in the following analysis. FRI and FRII display obvious differences in the shape of the RLF, such as the steeper slope for FRI sources for logP1.4GHz > log(Pb ) and the slight flattening for FRIIs at lower luminosities. However, looking at the evolution parameters, both FR sources show striking resemblance in their evolution, with similar luminosity limits P1 and P 2, and similar values of the evolution constant M (within errors). As seen in Figure 5.3, FRI sources dominate for logP1.4GHz 24.0 − 24.5 W/Hz/sr (the luminosity limit increasing with redshift). At redshift zmean ∼0.7, at which the bulk of the CoNFIG radio sources are located, this corresponds to sources with flux densities S1.4GHz 14.0mJy. This is in agreement with the results of the FRI source count (§3.1), FRI dominating over FRII at the mJy level. Space-density enhancements with respect to luminosity and redshift are displayed in Figures 5.4 and 5.5. At similar luminosities, above logP1.4GHz ∼ 24.0 W/Hz/sr, FRII show only slightly stronger enhancement than FRI, by a factor of ∼1.3, increasing at higher luminosities to ∼1.5. At z=1.0, FRI and FRII sources with logP1.4GHz ≥ 25.0 W/Hz/sr show a maximum enhancement of factors of 3 and 3.6, increasing to factors of 4.9 and 6.4 at z=2.0, respectively. The evolution of FRII sources at higher powers is thus only marginally stronger than that of FRIs.  5.4  Summary  Both pure-density evolution and luminosity-density evolution models were used in the search for the best-fitting parametric form of the FR RLFs. Based on chi-square statistics, the LDE representation was chosen as the most appropriate. The models show differences in the shape of the FR RLFs, such as the steeper slope for FRI sources for logP1.4GHz > log(Pb ) and the slight flattening for FRIIs at lower luminosities, which could indicate that both populations are distinct. However, both FR type show striking resemblance in their evolution, with space-densities for FRI sources increasing with redshift at a rate only marginally lower than for FRII sources at similar luminosities. These similar behaviours in enhancement point toward the hypothesis that FRI and FRII sources have related origins. 58  Chapter 5. Parametric modeling of the radio luminosity function  Table 5.1: Best-fitting parameters for PDE and LDE models for FRI and FRII sources. The RLF slopes β and γ are given for ∆logP bins, luminosities are given in W/Hz/sr and ρ0 in M pc−3 . PDE FRI 0.86+0.03 −0.05 1.89+0.06 −0.07 24.89+0.06 −0.07 −24.49+0.17 −0.16  FRII 0.46+0.08 −0.05 1.36+0.02 −0.01 24.28+0.04 −0.02 −23.67+0.04 −0.10  M  0.54+0.14 −0.52  3.16+0.03 −0.01  χ2red  4.37  2.24  β γ log(Pb ) log(ρ0 )  (d.o.f=28)  β γ log(Pb ) log(ρ0 ) M log(P1 ) log(P2 ) χ2red  LDE FRI 0.61+0.08 −0.24 2.10+0.07 −0.19 24.14+0.13 −0.25 −22.73+0.63 −0.38  FRII 0.50+0.06 −0.11 1.37+0.01 −0.02 24.07+0.01 −0.01 −23.12+0.01 −0.02  2.65+0.43 −1.32 23.64+0.12 −0.25 25.14+0.12 −0.25  3.10+0.01 −0.01 23.81+0.02 −0.02 25.09+0.01 −0.01  1.38  1.18  (d.o.f=37)  59  Chapter 5. Parametric modeling of the radio luminosity function FRI  Figure 5.1: FRI (here) and FRII (following page) RLFs for the best-fit PDE (green solid lines) and LDE (purple dashed lines) broken power-law models in various redshift slices - 0.0<z<0.3 (top left), 0.3<z<0.8 (top right), 0.8<z<1.5 (bottom left) and 1.2<z<2.5 (bottom right). The respective CoNFIG 1/Vmax estimates are displayed as black crosses. The lowest luminosity bin in which the RLFs are 1/Vmax estimated correspond to the completeness limit of the samples at each epoch. 60  Chapter 5. Parametric modeling of the radio luminosity function  FRII  Fig. 5.1 cont.  61  Chapter 5. Parametric modeling of the radio luminosity function  Figure 5.2: FRI (top) and FRII (bottom) RLFs for the best-fit PDE (left) and LDE (right) broken power-law models in the range 0.0<z<0.3. The grey regions correspond to the error in the RLFs derived using the bootstrap method.  62  Chapter 5. Parametric modeling of the radio luminosity function  Figure 5.3: RLFs for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, for redshifts z=0.15 (solid line), z=0.5 (dash-dotted line), z=1.0 (dashed line) and z=2.0 (dotted line).  63  Chapter 5. Parametric modeling of the radio luminosity function  Figure 5.4: Space-density enhancement with respect to luminosity for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, for redshifts z=0.5 (dash-dotted line), z=1.0 (dashed line) and z=2.0 (dotted line).  64  Chapter 5. Parametric modeling of the radio luminosity function  Figure 5.5: Space-density enhancement with respect to redshift for FRI (thick blue lines) and FRII (thin red lines) sources in the LDE model, at logP1.4GHz = 23.9 (solid), 24.3 (dashed), 24.7 (dot-dashed) and 25.1 (triple-dot-dashed) W/Hz/sr.  65  Chapter 6  RLF modeling using a free-form technique: a preliminary study One of the main limitations of the parametric models presented in Chapter 5 is that they require implicit assumptions about the shape of the RLF. The free-form modeling technique of Rigby et al. (2010) allows determination of the space density of a given population without providing any parametric expression for the RLF. The method consists of dividing the P-z plane into bins and populating it with values for the space density, which are each considered as a parameter to optimize in order to fit existing data. The outputs of the model are P-z grids populated with sources space-densities. This model is an improved alternative to 1/Vmax models for deriving space-density measurements at different powers and redshifts. It has the further advantage to be versatile, allowing for the input of other data such as radio source count or AGN LRLF, better constraining the model. This section describes the details of the method and the preliminary results obtained when applied to data from the CoNFIG catalogue.  6.1  Details of the method  Radio sources were divided into three categories: star forming (SF), flat-spectrum (FS - which includes sources classified as C and C*) and steep-spectrum (SS - which includes sources classified as I, II, U and S*). The SS sources were in turn split into FRI and FRII classes. These four grids (SF, FS, FRI and FRII) were considered separately, since there is a strong possibility that they might evolve differently. Different populations can then be represented: the full radio population is the sum of all grids, the AGN only population is the sum of the FS, FRI and FRII grids, and the FRI and FRII populations are each represented by their respective grid. The inclusion of the SF grid was necessary since at the low flux densities covered by the CENSORS and Lynx & Hercules samples, radio emission from star-forming galaxies becomes significant. Similarly, assuming that radio sources follow the unification model (Jackson & Wall, 1999), steep- and flat-spectrum sources do not represent different populations (Dunlop & Peacock, 1990). A reliable modeling of the steep-spectrum sources, corresponding to morphologically extended FR sources in our sample, can thus not be done independently of the flat-spectrum sources, if all available data are to be used.  66  Chapter 6. RLF modeling using a free-form technique: a preliminary study The values of the space densities were optimized using a downhill simplex method. The algorithm requires the user to input initial modeling parameters (100 values per grid) as guidelines, and then varies these parameters to minimize a user-defined function, here −logL, where L is the likelihood function: χ2 =  (Xdata − Xmodel )2 σ2 −χ2 L = exp 2  (6.1) (6.2)  where Xdata and Xmodel are respectively the value of the data-set and model statis√ tics at a given point, and σ = N is the error associated with each data point.  6.1.1  Setting up the grids  A P-z grid was created for each category and space densities were evaluated for luminosities between 19.25 ≤ logP1.4GHz ≤ 29.25W/Hr, equally separated by ∆logP (W/Hr) = 0.5, and redshifts z=0.05, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0. These points were chosen so as to allow sensitive calculations to be made without having so many parameters involved that finding a best fit becomes a prohibitively long task. This P-z plane was constrained by the CoNFIG catalogue data. To populate the SF and FS grids, space densities were computed respectively from evolving the star forming LRLF of Sadler et al. (2002) using the evolution function of Smol˘cil´c et al. (2009), and from the median of Dunlop & Peacock (1990) flat-spectrum models (see Appendix C.1 and C.2). Since the goal of this work is to study the evolution of the FR classes, these grids were kept fixed during the entire process. The steep-spectrum sources, separated into FRI and FRII populations, each with a separate P-z grid, were populated with ‘first guess’ values of the space densities, computed from the mean of Dunlop & Peacock (1990) steep-spectrum models.  6.1.2  Computing the model statistics  A flux-density redshift (S-z hereafter) grid containing sources numbers is easier to use for data comparison than a P-z grid containing sources densities. For this reason, each P-z grid is associated with a corresponding S-z grid, which is divided into 120 flux-density bins between S1.4GHz =0.0001 Jy and S1.4GHz =50.0 Jy, and 300 redshift bins in the range z=0−6. The luminosity was computed for the midpoint of each S-z bin. For flat-spectrum sources, a spectral index of α=0.0 was assumed. For steep-spectrum sources, the choice of α is complicated by the spectral curvature seen in some radio-loud sources (Laing & Peacock, 1980), which can cause the spectral indices to increase at higher 67  Chapter 6. RLF modeling using a free-form technique: a preliminary study redshifts. To take this into account, the spectral indices for the steep-spectrum grid were computed using the α − z relation of Ubachukwu et al. (1996), α = 0.83 + 0.4 log(z). A Gaussian scatter in α of 0.2 was also incorporated at each redshift to account for variations in the value. In practise this was implemented by creating 21 versions of the S-z grid, extending to σ = ±2.5 (in steps of 0.25), which were each assigned a weight depending on how far they were away from the mean. However, grids where α < 0.5 were ignored and their weight evenly distributed over the remainder. The P-z grid densities, ρ(S, z), corresponding to each (P,z) pair were then interpolated onto the bins in these 21 new S-z grids, the final grid carried forward into the minimization being their weighted sum. The corresponding P-z grid density was interpolated onto the S-z bins. The total number of sources per steradian in each bin (enclosing a volume dV corresponding to redshift bin dz) was then estimated: N (S, z) = ρ(S, z)  dV d(logS)dz dz  (6.3)  Source counts and redshift distributions for all sources, as well as for the FRI and FRII populations, were computed from the S-z grids, while LRLFs (estimated at z=0.3 to match data) were obtained from the P-z grids.  6.1.3  Optimizing the FR grids  The model statistics were then compared to the following data: - 1.4 GHz reference source count (§3.1) - FRI and FRII CoNFIG source counts (§3.1) - AGN LRLF (Best et al., 2010) - CoNFIG FRI and FRII LRLFs (§4.1) - CoNFIG redshift distributions for all sources (§2.5) - CoNFIG redshift distributions for FRI and FRII sources (§2.5). Data such as the 1.4 GHz source count and the SDSS LRLF were included in the fitting to ensure the reliability of the results, beyond the CoNFIG limits. Because models can only be compared to data at the points where the latter are evaluated, each data-set and the associated errors were represented by polynomial fits which were then evaluated at the grids redshifts, luminosities and flux-densities. The value of the likelihood was computed in each case, and the total log-likelihood −logL tallied and returned to amoeba. Using the sum of the likelihood values for all statistics presents the risk of doublecounting as FRI and FRII data are sub-samples of radio sources. However, in this work, the effect is minimal, as the general statistics were computed from samples of several hundred thousands sources in size, whereas the FR samples contain at most 68  Chapter 6. RLF modeling using a free-form technique: a preliminary study ∼600 sources. This free form method is summarized in Figure 6.1.  6.1.4  Uncertainties  Once optimized values of the space densities were determined, uncertainties associated with each point of the P-z grid were calculated. These arise due to the degeneracy across grid values in the model. Considering a parameter p, the conditional error (holding all other parameters constant) is given by: 2 σcond =  −  ∂lnL |peak ∂p2  −1  (6.4)  When the variation of other parameters is taken into account, the marginalized error is used. It comes from the diagonal of the inverse Hessian matrix: ∂lnL ∂pi ∂pj  (6.5)  2 σmarg = [Hi,i ]−1  (6.6)  Hi,j =  2 . The marginalHere, the diagonal terms of the Hessian matrix are set to −1/σcond ized error was used to determine the uncertainties in the modeled RLFs. Because of the double-counting effect described previously, these uncertainties are effectively slightly underestimated.  69  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Radio Galaxies Star Forming (SF)  Flat Spectrum (FS)  Steep Spectrum ✟❍ ❍❍ ✟✟ ✟ ❍ ✙ ✟ ❥ ❍  Luminosity: 20 bins, 19.25≤logP≤29.25 Redshift: 9 bins, 0.05≤z≤6.0  FRI  FRII ✛  The value of the space density in each bin corresponds to a  space-densities in each P-z bins computed from previous models.  VARYING PARAMETER  FIXED THROUGH MODELING PROCESS  S-z grid converted to P-z grid corresponding to SF and FS grids  ❄  Compute the Modeled Statistics LRLF AGN only  Source Count  Redshift Distribution  All sources  All sources  (FS+FRI+FRII)  (SF+FS+FRI+FRII)  (SF+FS+FRI+FRII)  FRI FRII  FRI FRII  FRI FRII  ❄  Compare to data by computing the likelihood amoeba varies the FRI and FRII space-densities in each P-z bin to maximize the likelihood Figure 6.1: Summary of the free-form modeling technique.  70  Chapter 6. RLF modeling using a free-form technique: a preliminary study  6.2  Best fit RLFs  The best fitting models of the FRI and FRII RLFs yielded a total value of the likelihood of logL = −111.4, corresponding to a total chi-square value of χ2 = 513.01. With a total number of degrees of freedom of ν = 154, the reduced chisquare value is χ2red = 3.3. For each data set used in the fitting process, the values of −logL and χ2 , along with the corresponding numbers of degrees of freedom (d.o.f.), are tabulated in Table 6.1, while Figure 6.3, 6.4 and 6.2 illustrate how the best-fit model describes the data. Table 6.1: Likelihood and chi-square values for the best fitting RLFs models. Data SC All SC FRI SC FRII Zdist All Zdist FRI Zdist FRII LRLF AGN - SDSS LRLF FRI LRLF FRII  −logL -10.48 -11.21 -8.80 -16.42 -11.66 -40.85 -3.37 -1.12 -7.50  χ2 48.25 51.62 40.41 75.61 53.70 188.10 15.54 5.15 34.52  d.o.f. 25 15 15 25 24 24 7 4 7  χ2red 1.93 3.44 2.69 3.02 2.24 7.84 2.22 1.29 4.93  Total  -111.40  513.01  154  3.33  The high overall reduced chi-square indicates that, in its preliminary form, the model fails. Although it gives a reasonable fit of the AGN LRLF (Fig. 6.2, top), it underestimates the number densities of sources in the range 22.2 ≤ logP1.4GHz ≤ 24.6 W/Hz/sr. Since both the FRI and FRII LRLF models tend toward the upper limits of the data in this luminosity range, the loss in the general LRLF probably emerges from the model used to determine the flat-spectrum LRLF. One should also note that since FRI data are more sparse than FRII data, RLFs for FRI are not as well constrained as for FRII. RLFs at z=0.5 and z=1.0 for steep-spectrum (given as FRI+FRII in this work) sources are compared to that of Rigby et al. (2010) in Figure 6.5. In both cases, the models give similar results, verifying the consistency of this particular free-form modelling procedure. The FRI and FRII model RLFs at z=0.5, 1.0 and 2.0 (Fig. 6.6 and 6.7) are of the same order of magnitude as the RLFs computed using 1/Vmax in the redshift bins z= [0.3;0.8], z=[0.8;1.5] and z=[1.2;2.5] (as described in §4.2). As seen in the P-z plane coverage plot (Fig. 3.5), FRII sources are sparse in the range 23.0 ≤ logP1.4GHz ≤ 24.0 W/Hz/sr for z > 0.5, weakening the model constraints in that luminosity range. This could explain the anomalous drops in the modeled space 71  Chapter 6. RLF modeling using a free-form technique: a preliminary study densities in that luminosity range. Similarly, FRI sources with logP ≤ 23.5 W/Hz/sr are almost absent in the sample for z<0.3, and the model is unconstrained in this luminosity range.  6.3  Summary  Although giving reasonable estimates of the FR space-densities when compared to the 1/Vmax estimates, the free-form model in it preliminary form does not provide the best possible fit to the various statistics considered. This may be due to a number of factors, such as erroneous constraints imposed by the star-forming and flat-spectrum sources models, or the presence in the sample of CSS and uncertain sources which are not taken into account in the modeling of the SS space densities. Another possibility is loss of constraint from the combination of the CoNFIG and complementary-sample redshift distributions. Fitting the distribution separately for each sample would bring important supplementary constraints. In addition, in its current version, the free-form model algorithm consider the values of the space-densities in each P-z bins as independent parameters. This allows large anomalous drops in the RLFs when data are sparse in a given P-z bin, and could be avoided by implementing a dependence between adjacent bins. These issues require further investigation before further progress can result from this promising technique.  72  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.2: LRLF model fits (orange dashed line) for AGN, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the bottom left corner. 73  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.3: Source count model fits (orange dashed line) compared to data for all radio, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the top left corner. 74  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.4: Redshift distribution model fits (orange dashed line) compared to data for all radio, FRI and FRII sources. The solid line shows the best-fitting polynomial used for model-data comparison. The number of degrees of freedom (d.o.f.) and reduced chi-square value for each fit is displayed in the top left corner. 75  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.5: Comparison of steep-spectrum RLFs at z=0.5 (top) and z=1.0 (bottom) between the CoNFIG (black solid line) and Rigby et al. (2010) (purple dashed line) models. Errors in each models are represented by black dot-dashed and purple dotted lines respectively. The models give similar results, verifying the consistency of this particular free-form modelling procedure. 76  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.6: Model RLF for FRI sources at z=0.5, z=1.0 and z=2.0. The black crosses and dashed line represent the result of the model. The RLF estimated from the 1/Vmax technique are represented in green (z=[0.3;0.8]), red (z=[0.8;1.5])and blue (z=[1.2;1.5]) symbols for comparison. 77  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.7: Model RLF for FRII sources at z=0.5, z=1.0 and z=2.0. The black crosses and dashed line represent the result of the model. The RLF estimated from the 1/Vmax technique are represented in green (z=[0.3;0.8]), red (z=[0.8;1.5])and blue (z=[1.2;1.5]) symbols for comparison. 78  Chapter 6. RLF modeling using a free-form technique: a preliminary study  Figure 6.8: RLF for FRI (blue solid line) and FRII (red dashed-line) with respect to luminosity, for redshifts z=0.1, 0.5, 1.0 and 2.0.  79  Chapter 7  Discussion 7.1  Summary  The goal of the present work was to determine whether Fanaroff-Riley sources of type I and II originate from similar or distinct parent populations, by investigating their space-density behaviour. For this purpose, the Combined NVSS-FIRST Galaxy catalogue, a large comprehensive catalogue of morphologically-classified radio sources, was constructed. It consists of 4 samples, which include all sources selected from the NVSS catalogue with S1.4GHz ≥1.3, 0.8, 0.2 and 0.05 Jy respectively in different areas, totalling 858 sources. Sources were classified according to their radio morphology as FRI, FRII, Compact or Uncertain, and redshift information was retrieved for 74.3% of the catalogue. To improve the luminosity-redshift ranges covered by the catalogue, three complementary samples were appended: 3CRR (Laing, Riley & Longair, 1983), CENSORS (Best et al., 2003) and the Lynx & Hercules sample (Rigby, Snellen & Best, 2007). The final catalogue contains 1114 sources and is 75.9% complete for redshift information and 94.2% complete for radio morphologies. It includes a total of 136 FRI and 571 FRII sources, making it one of the largest, most comprehensive databases of morphologically-classified radio sources. In order to determine the space-density evolution of each FR population, source statistics were computed, to be used in the RLF modeling routines: Luminosity distributions Although FRI tend to have lower luminosities than FRIIs, there are no strong luminosity cut-offs between the two classes, with a large overlap for 23.0 ≤ logP1.4GHz ≤ 25.0 W/Hz/sr. In addition, and in contrast with assumptions in previous studies, the CoNFIG catalogue includes several high-luminosity FRI sources, with logP1.4GHz ≥ 25.0 W/Hz/sr, as well as low-luminosity FRII sources, with logP1.4GHz ≤ 23.5 W/Hz/sr. Redshift distributions The entire CoNFIG catalogue shows a mean redshift of z≃0.7, indicating where the highest contribution to other statistics typically originate. Looking at the FR distributions individually, FRII show higher mean and median redshifts (z ∼ 0.6) than FRI (z ∼ 0.1). Source counts The CoNFIG catalogue permitted computation of the first FR morphology-dependent 80  Chapter 7. Discussion source counts, showing that FRII sources dominate the total count above ∼10 mJy, where FRIs take over, dominating over both FRII and starburst populations at milli-Jansky levels. The FRI source count shows non-linear features at both low and high flux densities, hinting at some level of evolution for this population. Since virtually all sources can be detected in the local universe (z≤0.3), and detections stay at a reasonable level up to z∼1, estimates of the radio luminosity functions (RLFs) evaluated using the commonly used 1/Vmax technique give reasonably accurate representations of the FR space densities. The LRLFs (z≤0.3) for each FR class show apparent differences in shape, such as the flattening of the low-power FRII LRLF and the steeper FRI slope at higher luminosities, indicating that locally, FRI and FRII constitute distinct populations. However, when comparing the space-density enhancement ρ/ρ0 of each population, they seem to follow very similar evolution patterns, with a 90% probability at z≥0.8 of both distributions originating from the same parent population. These results are consistent with those of previous studies (Willott et al., 2001; Sadler et al., 2007; Rigby, Best & Snellen, 2008), in which clear density enhancement for FRI sources with logP1.4GHz ≥ 24.0 W/Hz/sr at z=1 was found. In addition, Rigby, Best & Snellen (2008) concluded that, at these radio powers, FRIs evolve like FRIIs. Because patchy coverages of the P-z plane limits the range over which the RLFs are evaluated, especially for FRI sources, parametric modeling via a maximum likelihood method was applied. Observation of the shape of the RLF from 1/Vmax estimates indicated the choice of a broken power-law luminosity function, ρ(P, 0), which changes following an evolution function φ such that ρ(P, z) = φ × ρ(P, 0). Two evolution models were tested: (1) pure density evolution (PDE) supposing that all sources evolve at the same rate independently of their luminosities, and (2) luminosity-density evolution (LDE) assuming bimodal luminosity-dependent evolution regimes with a transition region. Comparing each model with the 1/Vmax data using chi-square statistics, it was determined that the LDE model was most appropriate to fit both FR RLFs. The source types show striking similarities in their evolution (within errors), with spacedensities for FRI sources increasing with redshift at a rate only marginally lower than for FRII sources at similar luminosities. As noted from the results of 1/Vmax estimates, this points toward the hypothesis that FRI and FRII sources have related origins. As an introduction to future work, preliminary results from a free-form modeling approach were then presented. The technique was based on the work of Rigby et al. (2010), in which the entire radio population was divided into three categories: star-forming (SF), flat-spectrum (FS) and steep-spectrum (SS) sources. Here, the latter was sub-divided into FRI and FRII populations. A P-z grid was assigned 81  Chapter 7. Discussion to each category and populated with values of the space density, which were kept fixed for SF and FS sources and allowed to vary for SS sources. The best SS-grid estimate was determined using maximum likelihood statistics. This method is an improved alternative to 1/Vmax estimates of the space-densities at different powers and redshifts, having the advantage to be versatile, allowing for the input of other data such as radio source count or AGN LRLF, better constraining the model. In its current preliminary form, the model does not provide the best possible fit to the various statistics considered, and any further investigation of the FR space densities via free-form models would be too unreliable. Further investigations, such as implementing a smoothing function between adjacent P-z bins, will improve the fitting process. A summary of the 1/Vmax estimates, parametric models and preliminary free-form results for FRI and FRII RLFs and space-density enhancements are presented in Figure 7.1 and 7.2.  7.2  Achievements of this work  • CoNFIG catalogue - largest, most comprehensive databases of morphologicallyclassified radio sources, including new VLA observations. • First morphology-dependent source counts. • First morphology-dependent luminosity distribution - power overlap between FR distributions. • First morphology-dependent LRLFs - showing obvious differences. • First morphology-dependent models of the RLFs via: – 1/Vmax – SOS maximum likelihood parametric modeling technique – preliminary free-form modeling technique • Comparison of resulting model RLFs - models consistent with data • Comparison of space-density enhancements for FRI and FRII sources - similarities in enhancement behaviours.  82  Chapter 7. Discussion  Figure 7.1: Comparison of FRI (thick blue and squares) and FRII (thin red and triangles) RLFs in the 1/Vmax estimates (left), parametric LDE model (center) and free-form model (right) at z=0.5 (top), 1.0 (center) and 2.0 (bottom).  83  Chapter 7. Discussion  Figure 7.2: Comparison of FRI (thick blue and square) and FRII (thin red and triangles) space-density enhancements in the 1/Vmax estimates (left), parametric LDE model (center) and free-form model (right) at z=0.5 (top), 1.0 (center) and 2.0 (bottom).  84  Chapter 7. Discussion  7.3  Conclusion  Our results show that, at comparable powers, FRI and FRII sources show strong similarities in evolution, which indicate that they very probably share a common mechanism governing the luminosity-dependent evolution. In addition, the division in luminosity between both populations appears to be extremely broad, which is not consistent with pictures in which differences between FRIs and FRIIs of similar powers arises from different jet-production mechanisms. What then differentiates FR sources? Jet strengths scales broadly with accretion powers into the central SMBH, which are related to emission-line strengths (Hine & Longair, 1979; Hardcastle et al., 2006). Hence, strong, collimated jets are associated with radiatively-efficient accretion of cold gas and high-excitation galaxies (HEG), while weaker jets are associated with hot gas accretion and low-excitation galaxies (LEG). If the FR dichotomy was fully dependent on the jet properties, FRI/II sources would be systematically associated with LEG/HEG respectively. However, in several cases (e.g. Willott et al., 2001; Heywood et al., 2007; Hardcastle et al., 2007), small subsets of FRIs were found in HEG samples, as well as some FRIIs being associated with LEGs. These considerations, combined with the similarities in evolution for FR sources of comparable luminosities, suggests that the observed FRI/II differences probably arise from a combination of intrinsic mechanisms and environmental effects. In a recent study, Donoso, Best & Kauffmann (2009) found that low-luminosity sources (logP1.4GHz ≤ 24.0 W/Hz/sr) arising from weak accretion modes evolve weakly with redshift while high-luminosity sources arising from weak accretion modes undergo strong evolution. Space-density enhancements for both FR populations are fully consistent with this picture. We thus propose the following scenario. At a given luminosity, all radio AGN share a common accretion mechanism. High-luminosity sources featuring strong jets display FRII structures (Baum & Heckman, 1989; Ghisellini & Celotti, 2001), unless located in very dense environments, in which case jets are disrupted and the sources emerge as high-luminosity FRIs (Kaiser & Best, 2007). In contrast, low-luminosity sources presenting weak jets display FRI structures in most cases. However, when the environmental pressure of the inter-galactic medium is extremely low, sources appear as low-luminosities FRIIs. This scenario has the advantage of reconciling the unified model of AGN of Jackson & Wall (1999) with all observational data, by replacing the FRI/FRII parent populations by low/high-efficiency accretion galaxies. BL Lac objects, which are then beamed counterparts of LEGs, would include a sub-population with FRII structure. Similarly, beamed counterparts of HEG, QSOs, would be expected to include FRI QSOs. A high/low-luminosity or HEG/LEG classification thus seem more physically rele85  Chapter 7. Discussion vant than sorting AGN by FR morphologies. The question now is: How did these two accretion modes arise? By studying a sample of nearby 3CR radio galaxies and their optical properties, Baldi & Capetti (2008) found indication of recent star formation in HEGs, but not in the LEGs. In a different study, Emonts et al. (2008) found no evidence for large-scale HI in low-luminosity sources, but significant amounts in high-luminosity sources. This suggest that this dichotomy results from different star formation histories, influencing the mode of accretion on to the central supermassive black hole. Several recent studies (Hardcastle et al., 2007; Kauffmann et al., 2008; Baldi & Capetti, 2008) suggest that HEGs have undergone a recent major merger that triggered star formation, driving cold gas towards the central engine, powering the AGN (cold gas accretion). On the other hand, LEGs have had no such recent merger, and thus are fuelled by the hot ISM and show no evidence of recent star formation. Thus, although some other alternative explanations for the influx of cold gas in HEGs exists, such as recycled gas from dying stars (Ciotti & Ostriker, 2007), mergers seem to give the most likely explanation for cold gas accretion.  7.4  Future work  In addition to the study of space densities in the FR dichotomy, the CoNFIG catalogue provides a powerful tool in other possible AGN studies. The spectral-index and radio-morphology completeness, especially for FRI and lowluminosity sources, could be greatly improved by the availability of data at MHz frequencies. The first obvious reason for this is to compute source spectral indices, preferably from low-resolution data, to ensure the accuracy of the flux-density and luminosity measurements. Following this, high-resolution imaging of the CoNFIG sources, to detect low surface-brightness lobes and their extended structures, would allow a more accurate classification of extended radio sources. The optical identification and redshift coverage of the catalogue could also be greatly improved from wide-field K-band imaging. Because optical counterparts of radio galaxies are mostly red ellipticals, K-band is optimal to identify the host galaxy. The availability of relatively accurate K-z relations (e.g. Brookes et al., 2006) would also allow an estimate of the source redshift. In addition, the availability of K-band optical data, in combination with SDSS data, would allow us to measure the object density to examine the environment of each object and analyze the relation between environment and FR class more accurately than possible to date. Just as a large comprehensive sample of radio-morphologically classified sources is necessary to examine the FR-dichotomy, collecting spectroscopic information for a select fraction of sources in CoNFIG (e.g. FRIs and FRIIs) is important to investigate the high/low-excitation classification and its relation to other classifications. For this purpose, the spectroscopy can either be retrieved from existing surveys, 86  Chapter 7. Discussion such as SDSS, or obtained by direct measurements. As for FRI/FRII sources, space-densities for low/high excitation radio galaxies could then be computed to determine the evolution of each population, and optical and radio characteristics of each set of objects could be compared directly. Finally, the advent of high-resolution high-sensitivity (sub)-millimetre instruments, such as ALMA and Hershel, will allow the examination of the accretion disk and kinematics around the central black hole in samples of AGNs. Including these data in the CoNFIG catalogue will provide an unprecedented means of correlating accretion mechanisms with optical and radio properties of AGNs. These possible future projects will significantly improve our understanding of the different classes of radio AGN, enabling us to examine the physical mechanisms behind each category. They will also give us a decidedly better view of low-luminosity sources, including FRIs. Ultimately, this will give us a key observational testing ground for theories of AGN formation and evolution (beyond radio-morphological classification) and may enable us to assess directly their role in galaxy-evolution feedback processes.  87  Bibliography Abazajian K. N., et al., 2009, Astroph. J.Sup. S., 182, 543 Antonuccio-Delogu V. & Silk J., 2008, Mon. Not. R. Astr. Soc., 389, 1750 Baldi R. D. & Capetti A., 2008, ˚ A, 489, 989 Baum S. A., Zirbel E. L. & O’Dea C. P., 1995, Astroph. J., 451, 88 Baum S. A. & Heckman T. M., 1989, Astroph. J., 336, 681 Beasley A. J., et al., 2002, Astroph. J. Sup., 141, 13 Becker R. H., White R. L. & Helfand D. J.,Astroph. J., 450, 559B Bennett C. L. et al., 1986, Astr. J. Sup., 61, 1 Best P. N., Longair M. S. $ R¨ ottgering H. J. A., 1998, Mon. Not. R. Astr. Soc., 295, 549 Best P. N., Arts J. N., R¨ ottgering H. J. A., et al. 2003, Mon. Not. R. Astr. Soc., 346, 627 Best P. N., Kauffmann G., Heckman T. M. & Ivezi´c Z., 2005, Mon. Not. R. Astr. Soc., 362, 9 Best P. N., Kaiser C. R., Heckman T. M., & Kauffmann G., 2006, Mon. Not. R. Astr. Soc., 368, 67 Best P. N. et al., 2010, in prep. Bicknell G. V., 1995, Astron. J.Sup. S., 101, 29 Blundell K. M. & Rawlings S., 2001, Astroph. J., 562, 5 Bridle A. H., Davis M. M., Fomalont E. B. & Lequeux J., 1972, Astron. J., 77, 1401 Brookes M. H., Best P. N., Rengelink R. & R¨ ottgering H. J. A., 2006, Mon. Not. R. Astr. Soc., 366, 1265 Browne I.W. A., Orr M. J. L., Davis R. J. & Foley A., 1982, Mon. Not. R. Astr. Soc., 198, 673 Burns J. O., Schwendeman E. & White R. A., 1983, Astroph. J., 271, 575 88  Bibliography Capetti A. et al., 1995, Astron. Astrophys., 300, 643 Ciotti L. & Ostriker J. P., 2007, ApJ, 665, 1038 Condon J. J., et al., 1998, Astroph. J., 115, 1693 Cowie L. L. et al., 1996, Astron. J., 112, 839 Donoso E., Best P. N. & Kauffmann G., 2009, Mon. Not. R. Astr. Soc., 392, 617 Douglas J. N., et al., 1996, Astron. J., 111, 1945 Dunlop J. S. & Peacock J. A., 1990, Mon. Not. R. Astr. Soc., 247, 19 Emonts B., Morganti R., Oosterloo T. & van Gorkom J., 2008, in Beswick R. J., Diamond P. J., Schilizzi R., eds, Proc. Sci., The Modern Radio Universe: From Planets to Dark Energy (arXiv:0801.4769) Falcke H., Gopal-Krishna, & Biermann P.L., 1995, ˚ A, 298, 395 Fanaroff B. L. & Riley J. M., 1974, Mon. Not. R. Astr. Soc., 167, 31P Fanti C. & Fanti R., 1994, Astr. Soc. Pac. Conf. Ser., 54, 341 Ficarra A., Grueff G., Tomassetti G., 1985, Astron. Astroph. Sup. Ser., 59, 255 Fomalont E., et al., 2003, Astron. J., 126, 2562 Ghisellini G. & Celotti A.,2001, Mon. Not. R. Astr. Soc., 327, 739 Granato G. L. et al., 2001, Mon. Not. R. Astr. Soc., 324, 757 Hardcastle M. J., Evans D.A. & Croston J.H., 2006, Mon. Not. R. Astr. Soc., 370, 1893 Hardcastle M. J., Evans D. A. & Croston J. H., 2007, Mon. Not. R. Astr. Soc., 376, 1849 Heywood I., Blundell K. M. & Rawlings S., 2007, Mon. Not. R. Astr. Soc., 381, 1093 Hill G. J. & Lilly S. J., 1991, Astroph. J., 367, 1 Hine R. G. & Longair M. S., 1979, Mon. Not. R. Astr. Soc., 188, 111 Hopkins A. M., et al., 2003, Astron. J., 125, 465 Jackson C. A. & Wall J. V., 1999, Mon. Not. R. Astr. Soc., 304, 160 Kaiser R. C. & Best P. N., 2007, Mon. Not. R. Astr. Soc., 381, 1548 Kauffmann G., Heckman T. M., Best P. N., 2008, MNRAS, 384, 953  89  Bibliography Kellermann K. I., Pauliny-Toth I. I. K. & Williams P. J. S., 1969, Astroph. J., 157, 1 Kimball A. E. & Ivezi´c Z., 2008, Astron. J., 136, 684 Klamer I. J., Ekers R. D., Sadler E. M. & Hunstead R. W., Astroph. J., 612, 97 Kovalev Y. Y., et al., 2007, Astron. J., 133, 1236 Laing R. A., Riley J. M. & Longair M. S., 1983, Mon. Not. R. Astr. Soc., 204, 151 Laing R. A. & Peacock J. A., 1980, Mon. Not. R. Astr. Soc., 190, 903 Leahy J. P., 1993, in Rser H.-J., Meisenheimer K., eds, Jets in Extragalactic Radio Sources. Springer-Verlag, Heidelberg, p.1 Lilly S. J. & Longair M. S., 1984, Mon. Not. R. Astr. Soc., 211, 833 Longair M. S., 1966, Mon. Not. R. Astr. Soc., 133, 421 Machalski J., 1978, Astron. Astrophys., 65, 157 Marcha M. J. M. & Browne I. W. A., 1995, Mon. Not. R. Astr. Soc., 275, 951 Marshall H. L., Avni Y., Tananbaum H. & Zamorani G., 1983, Astroph. J., 269, 35 Masson C. R.& Wall J. V., 1977, Mon. Not. R. Astr. Soc., 180, 193 Murphy D., Browne I. W. A. &Perley, R. A., 1993, Mon. Not. R. Astr. Soc., 264, 298 Nelder J. A. & Mead R., 1965, Computer Journal, 7, 308 Owen F. N. & Ledlow M. J., 1994, in The Physics of Active Galaxies, eds. G. V. Bicknell, M. A. Dopita, and P. J. Quinn, Astr. Soc. Pac. Conf. Ser., 54, 319 Owen F. N., Ledlow M. J. &Keel W. C., 1996, Astron. J., 111, 53 Oyaizu H., et al., 2008, Astroph. J., 674, 7680 Parma P., et al., 1992, in Astrophysical Jets, Poster Papers from the Space Telescope Science Institute Symposium, eds. D. Burgarella, M. Livio, and C. O’Dea (Baltimore, Space Telescope Science Institute), p. 30 Peacock J. A., 1987, in Astrophysical Jets and Their Engines, ed. W. Kundt (Dordrecht, Reidel), p. 185 Pearson K., 1900, Phil. Mag. Series 5, 50, 157 Pearson T. J. & Readhead A. C. S., 1988, Astroph. J., 328, 114 Petrov L., et al., 2006, Astron. J., 131, 1872 90  Bibliography Pilkington J. D. H. & Scott P. F., 1965, Mon. Not. R. Astr. Soc., 69, 183 Prandoni I., et al., 2001, Astron. Astrophys., 365, 392 Prestage R. M. & Peacock J. A., 1988, Mon. Not. R. Astr. Soc., 230, 131 Quilis V., Bower R. G. & Balogh M. L., 2001, Mon. Not. R. Astr. Soc., 328, 1091 Rawlings S. et al. , 1989, Mon. Not. R. Astr. Soc., 240, 701 Rawlings S., 2002, IAU Symp., 199, 34 Richards G. T. et al., 2005, Mon. Not. R. Astr. Soc., 360, 839 Rigby E. E., Snellen I. A. G. & Best P. N., 2007, Mon. Not. R. Astr. Soc., 380, 1449 Rigby E. E., Best P. N. & Snellen I. A. G., 2008, Mon. Not. R. Astr. Soc., 385, 310 Rigby E. E. et al, 2010, in prep. Roettiger K., Burns J. O., Clarke D. A. & Christiansen W. A., 1994, Astroph. J., 421, 23 Sadler E. M., et al., 2002, Mon. Not. R. Astr. Soc., 329, 227 Sadler E. M. et al., 2007, Mon. Not. R. Astr. Soc.381, 211 Saikia D. J., Konar C. & Kulkarni V. K., 2006, Mon. Not. R. Astr. Soc., 366, 1391 Schawinski K., et al., 2009, Astron. J., 690, 1672 Scheuer P. A. G., 1987, in Superluminal Radio Sources, eds. J. A. Zensus and T. J. Pearson (Cambridge, Cambridge University Press), p. 104 Schmidt M., 1968, Astroph. J., 151, 393 Schmidt M., 1976, Astroph. J., 209, 55 Seymour N., McHardy I. M. & Gunn K.F., 2004, Mon. Not. R. Astr. Soc., 352, 131 Silk J. & Rees M. J., Astron. Astrophys., 331, 1 Skrutskie M. F., et al., 2006, Astron. J., 131, 1163 Smol˘cil´c et al., 2009, Astroph. J., 690, 610 Snellen I. A. G. & Best P. N., 2001, Mon. Not. R. Astr. Soc., 328, 897 Ubachukwu A. A., Ugwoke A. C. & Ogwo J. N., 1996, AP&SS, 238, 151 Urry C. M. & Padovani P., 1995, Publi. Astr. Soc. Pac., 107, 803 91  Bibliography van Breugel W. et al., 2004, Int. Astr. Un. Symp. Proc., 222, 485 Wall J. V., Pope A. & Scott D., 2008, Mon. Not. R. Astr. Soc., 383, 435 Wall J. V. & Jackson C. A., 1997, Mon. Not. R. Astr. Soc., 290, 17 Wall J. V., Pearson T. J. & Longair M. S., Mon. Not. R. Astr. Soc., 193, 683 Willott C. J., Rawlings S., Blundell K. M. & Lacy M., 2001, Mon. Not. R. Astr. Soc., 322, 536 Willott C. J., Rawlings S., Jarvis M. J. & Blundell K. M., 2003, Mon. Not. R. Astr. Soc., 339, 173 Wright A. & Otrupcek R., 1990, Publi. Astr. Soc. Pac., 41, 47  92  Appendix A  The CoNFIG catalogue A.1  CoNFIG samples  Data for the four CoNFIG samples.The RA and DEC gives the NVSS position of the source. (1) CoNFIG number. (2) NVSS radio position RA and DEC. For sources with several NVSS component, the coordinates correspond to one of the component. (3) Name. Superscript v denotes sources with new VLA observation. (4) Flux density S1.4GHz in mJy. (5) Spectral index α. The spectral index α (where Sνα ∝ ν α ) corresponds to αlow as defined in §2.3. (6) Morphological type. Designations I and II are Fanaroff & Riley (1974) types. The sources of C* type are confirmed compact sources from the VLBA calibrator list (see Beasley et al., 2002; Fomalont et al., 2003; Petrov et al., 2006; Kovalev et al., 2007) or the PearsonReadhead survey (Pearson & Readhead, 1988). Sources of S* type are confirmed compact sources which show a steep (α ≤ −0.6) spectral index. These are probably CSS sources. Sources of U type have uncertain morphology. They look compact with a steep spectral index, but are most likely extended. In addition to the main morphological classification, extended sources of type I and II are assigned a sub-classification (confirmed - c - or possible - p) depending on how clearly the source showed either FRI or FRII characteristics. Superscripts w denotes Wide Angle Tail sources, i irregular FRI source and c possible core-jet sources. (7) Redshift. (8) Error in redshift. (9) Redshift type. S - spectroscopic redshift; P - SDSS photoz2 photometric redshift; K - 2MASS KS -z estimate; I - SDSS i-z estimate; Z - SDSS z-z estimate; R - SDSS r-z estimate; G SDSS g-z estimate. (10) SDSS u magnitude. (11) SDSS g magnitude. (12) SDSS r magnitude. (13) SDSS i magnitude. (14) SDSS z magnitude. (15) 2MASS KS magnitude. Superscript e denotes sources from the 2MASS extended catalogue. 93  Appendix A. The CoNFIG catalogue  A.1.1 (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  CoNFIG-1 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09  13 14 16 35 41 45 49 58 59 01 05 10 12 13 19 21 21 23 24 24 27 31 33 34 34 37 39 40 43 47 47 53 54 54 57 58 58 01 03 06 07 08 09 12 14 21 22 27 30 39  38.15 24.80 41.09 55.54 10.70 42.13 48.10 28.60 47.26 35.32 31.31 03.67 59.48 36.07 47.55 33.77 44.02 24.72 47.27 55.43 25.40 10.00 18.80 48.37 54.91 53.51 06.50 47.70 31.63 53.83 57.00 08.83 39.35 48.87 40.64 10.07 41.51 05.40 04.04 31.88 34.92 50.56 33.53 04.00 04.83 07.54 49.93 03.04 33.45 50.20  (2) +43 +35 +53 +33 +31 +31 +55 +37 +37 +50 +24 +42 +32 +48 +52 +47 +17 +22 +55 +39 +29 +37 +51 +17 +55 +44 +57 +13 +42 +53 +31 +13 +14 +20 +34 +27 +14 +29 +46 +16 +41 +37 +42 +16 +17 +45 +53 +39 +36 +35  49 34 23 07 12 42 54 47 38 09 10 28 43 13 32 02 48 23 52 16 18 42 03 00 34 50 54 12 15 52 48 52 05 06 04 50 09 01 51 46 34 48 53 18 15 38 02 02 01 55  17.20 39.90 10.30 09.60 00.40 52.60 21.00 13.80 50.20 43.00 21.30 04.00 05.60 01.90 29.50 35.70 20.50 03.70 42.60 41.80 44.80 09.90 07.80 46.10 21.00 54.60 13.40 23.90 29.70 36.80 40.50 55.30 52.10 30.70 06.40 50.80 43.80 45.70 04.70 13.00 53.80 20.20 47.40 29.70 52.40 45.70 21.20 20.70 23.60 53.10  (3) B0710+439 B0711+35 4C 53.16 4C 33.21 J0741+3111 4C 31.30 DA 240v NGC 2484 4C 37.21v TXS 0757+503v 3C 192* 3C 194v 4C 32.24 3C 196* 4C 52.18v 3C 197.1v 4C 17.44 4C 22.21 4C 56.16A 4C 39.23 3C 200* 4C 37.24 4C 51.25 3C 202v 4C 55.16 4C 45.17 3C 205* 3C 207* B3 0840+424A NGC 2656 4C 31.32 3C 208* 3C 208.1v PKS 0851+202 3C 211v 3C 210v 3C 212* 3C 213.1 4C 47.29 3C 215* 4C 41.19 3C 217* 3C 216* 4C 16.27v 4C 17.48 3C 219* 4C 53.18v 4C 39.25 3C 220.2v 3C 223*  (4) 2011.4 1467.1 1501.4 2473.1 2284.3 1357.8 1660.4 2717.9 1691.2 1471.7 5330.6 2056.6 1522.5 15010.0 2104.2 1787.1 1875.1 2272.4 1449.4 1480.8 2043.1 2259.6 1313.5 1882.8 8283.1 1528.9 2257.7 2613.0 1409.7 1542.3 1482.0 2364.3 2163.8 1511.8 1798.4 1807.8 2370.8 2003.4 1754.9 1586.2 1394.5 2086.4 4233.8 1374.6 1527.3 8101.6 1597.8 2884.6 1875.1 3719.0  (5) 0.82 0.41 −0.71 −0.56 0.38 −0.44 −0.77 −0.68 −0.84 −1.02 −0.79 −0.86 −0.77 −0.79 −0.78 −0.82 −0.57 −0.34 −0.25 −0.56 −0.84 −0.65 −0.87 −0.82 −0.01 −0.21 −0.88 −0.90 −0.41 −0.47 −1.28 −0.96 −0.79 0.21 −0.90 −0.98 −0.92 −0.58 −0.39 −1.06 −0.94 −0.77 −0.84 −0.91 −0.84 −0.81 −0.99 −0.29 −0.83 −0.74  (6) C* C* II-p C C* II-c II-c I-c II-c II-p II-c II-c II-c II-c II-c II-c C C* C* C* II-c C II-c II-c C II-c II-c II-c C* Ii -p II-c II-c IIc -p C* II-c II-c II-c II-p C* II-c II-c II-c S* II-c II-c II-c II-c C* II-c II-c  94  Appendix A. The CoNFIG catalogue  (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  (7) 0.5180 1.6260 0.0643 0.7010 0.6300 0.4608 0.0360 0.0408  (8) 0.0010  0.4855 0.0600 1.1840 0.4306 0.8710 0.1890 0.1280 0.2960 2.2103 1.4181 1.2160 0.4580 0.9188 0.5621 0.6237 0.2412 0.2072 1.5360 0.6804 0.8393 0.0453 0.0673 1.1115 1.0200 0.4190 0.4789 1.1690 1.0430 0.1940 1.4710 0.4115 0.4783 0.8980 0.6700 0.9182 0.5395 0.1744 0.5974 0.6967 1.1570 0.1368  0.0419  0.0001 0.0939 0.0014 0.0004 0.0001 0.0002  0.0047  0.0012 0.0002 0.0013 0.0016 0.0010 0.0014 0.0419 0.1740 0.0014 0.0009 0.0010 0.1758 0.0002 0.0003 0.0014 0.0016 0.0618  0.0002 0.0024 0.0003 0.0379 0.0014 0.4087 0.0291 0.0012 0.1361 0.0019 0.0013 0.0008  (9) S S S P S S S S P S S I S S S S S S S S S P P S S S S P S S S S S P S S S S S P S S P P S P S S S  CoNFIG-1 (10) (11)  (12)  (13)  (14)  (15)  10.2e 21.9 17.0 15.7  21.1 16.5 15.5  20.5 16.6 15.6  19.6 16.6 15.4  19.7 16.7 15.3  15.7  13.8  12.9  12.5  12.2  9.9e  22.2 18.1  21.6 16.2  20.6 15.4  20.0 14.9  19.3 14.6  12.4e  22.0 18.6 20.7 19.1 21.0 20.3 18.2 18.3 21.7 19.2 26.9 23.0 19.6 20.3 17.9 18.7 25.6 16.3 16.5 17.9 19.8 16.4 22.8 23.3 21.0 20.1 19.3 25.1 21.9 22.3 19.9 21.6 24.3 19.2 23.5 17.0 18.6 19.4  20.7 17.9 19.0 17.7 19.6 19.8 18.1 18.1 20.4 18.7 22.3 22.4 17.9 18.4 17.4 18.1 22.6 14.3 14.5 17.9 19.6 15.8 21.9 22.6 20.0 18.5 19.3 22.3 20.5 22.2 19.3 21.7 21.0 17.9 25.3 16.7 18.3 17.8  19.8 17.7 17.9 16.8 18.1 19.3 17.9 17.8 19.1 18.6 20.5 21.7 16.7 17.1 17.0 18.0 21.3 13.4 13.6 17.6 19.3 15.4 20.6 21.5 19.1 17.6 18.9 22.7 19.1 21.2 18.7 21.8 19.7 16.7 21.9 16.6 17.8 16.7  19.0 17.5 17.4 16.3 17.6 18.9 17.8 17.6 18.5 18.6 19.6 21.1 16.1 16.6 16.6 17.9 21.3 13.0 13.2 17.6 19.3 15.0 19.8 21.0 18.8 17.1 18.7 20.8 18.3 20.3 18.3 22.0 18.6 16.3 21.0 16.7 17.6 16.3  18.4 17.3 17.0 16.0 17.2 18.5 17.8 17.3 18.0 18.4 19.2 21.9 15.8 16.2 16.5 17.7 20.2 12.7 12.9 17.8 19.2 14.7 19.4 20.2 18.6 16.9 18.7 21.0 18.0 19.8 18.0 22.5 18.4 16.0 20.2 16.6 17.6 16.1  14.0 12.9  14.8 13.5e 14.9 15.4 14.2 15.3  14.0 14.5 15.0 10.4e 12.8 11.8e  15.3 15.2 15.5  14.6 13.1e 14.0 15.8 14.4  95  Appendix A. The CoNFIG catalogue  (1) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100  09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11  41 42 42 43 44 47 48 50 51 52 52 57 01 06 07 08 11 11 17 20 21 23 27 33 34 35 41 41 42 52 58 58 58 02 08 09 09 11 12 13 14 16 19 20 20 23 26 31 34 35  23.62 08.40 15.35 12.74 16.40 47.27 55.36 10.77 58.83 00.52 06.14 38.18 46.73 01.74 18.92 00.04 00.36 45.46 14.15 49.61 54.58 38.71 14.97 33.87 17.86 07.04 17.16 39.01 44.54 26.06 17.46 29.62 58.69 03.91 08.31 46.04 52.06 31.56 38.36 32.13 38.43 34.70 25.22 27.81 43.07 09.10 23.65 38.90 38.46 55.93  (2) +39 +13 +13 +02 +09 +07 +40 +14 −00 +24 +28 +55 +28 +34 +44 +07 +06 +46 +39 +48 +21 +59 +46 +58 +50 +56 +06 +02 +12 +20 +19 +01 +43 −01 +14 +10 +37 +35 +43 −02 +40 +29 −03 +14 +23 +05 +33 +45 +43 +42  44 51 45 43 46 25 39 19 01 22 28 22 46 54 25 30 24 28 01 32 59 04 03 14 13 28 10 42 03 29 52 33 01 16 35 43 38 40 26 12 37 15 02 20 27 30 45 14 28 58  CoNFIG-1 (3) 14.10 3C 223.1 52.20 3C 225A 49.60 3C 225v 27.50 4C 02.29v 19.20 3C 226* 13.80 3C 227 44.80 4C 40.24 57.30 3C 228* 26.80 3C 230v 29.70 3C 229 33.20 4C 28.24 57.40 4C 55.17 56.50 3C 234* 10.40 3C 236* 01.40 4C 44.19 16.20 3C 237 40.20 3C 238v 20.10 3C 239* 24.00 4C 39.29v 04.20 4C 48.29A 30.90 3C 241* 49.50 4C 59.13 21.90 4C 46.21 37.90 3C 244.1* 30.20 4C 50.30 47.30 B1031+567 16.50 4C 06.41 33.00 4C 03.18v 31.80 3C 245* 48.00 4C 20.23 09.50 4C 20.24v 58.20 4C 01.28v 23.70 3C 247* 18.30 3C 249v 35.80 4C 14.40 43.40 1107+10 43.90 4C 37.29 45.50 3C 252* 27.10 4C 43.21 55.20 3C 253 20.80 3C 254* 20.50 4C 29.41 51.60 3C 255 54.40 4C 14.41 55.30 3C 256 20.30 3C 257v 27.10 4C 33.26 51.50 TXS 1128+455 00.50 4C 43.22v 44.80 TXS 1133+432  (4) 1976.8 1338.5 3336.4 1331.5 2393.7 7617.0 1599.5 3711.6 3152.1 1788.6 1362.7 3079.2 5597.0 3236.6 1413.7 6522.1 2964.2 1557.2 1392.2 1700.1 1686.2 1609.3 1437.4 4187.9 1545.2 1801.9 1405.2 2710.1 3305.7 1727.5 2143.0 3220.2 2875.1 2799.6 1348.7 1481.3 2214.1 1336.3 1717.0 1595.6 3127.9 1927.9 1730.4 2446.9 1362.0 1721.1 1376.8 2048.8 1567.1 1448.8  (5) −0.61 −0.99 −0.82 −0.62 −0.88 −0.56 −0.25 −1.00 −1.06 −0.76 −0.47 −0.36 −0.86 −0.51 −0.87 −0.59 −0.96 −1.08 −0.70 −0.32 −0.97 −0.81 −0.71 −0.82 −0.91 0.01 −0.10 −0.69 −0.78 −0.17 −0.71 −0.14 −0.61 −0.91 −0.42 −0.38 −0.69 −1.03 −0.76 −0.84 −0.96 −0.37 −1.23 −0.16 −1.04 −0.90 −0.34 −0.65 −0.74 0.48  (6) II-c II-c II-p II-c II-c II-c C* II-c II-c II-c C C* II-c II-c II-c C II-c II-c II-c II-c II-c II-c II-c II-c U C* C* II-c S* C IIc -c C* II-c II-c C C II-c II-c II-c II-c II-c I-c U C U U C II-p II-c C  96  Appendix A. The CoNFIG catalogue  (1) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100  (7) 0.1075 1.5650 0.5800 0.5920 0.8178 0.0865 1.2489 0.5520 1.4870 0.2739 0.5554 3.3692 0.1849 0.0992 0.8800 1.4050 1.7900 0.2060 0.0532 1.6170 0.2398 0.5367 0.4300 0.4810 0.4597 1.2700 0.5350 1.0293 0.3465 1.1100 1.7847 0.7490 0.3110  0.3456 1.1050 1.6819 0.1251 0.7361 0.0487 1.3550 0.3620 1.8190 2.4740 1.2300 0.4040 0.5724  (8)  0.0002 0.0018 0.0013  0.0245 0.0475 0.0010 0.0014  0.0002 0.0862 0.0299 0.0242  0.0020 0.0026 0.0477 0.0027 0.0040  0.0019 0.0040 0.0016  0.0070  (9) S S S S S S S S S K P S S S S S S S S S P P S P S S S S P S S S S  S S S S S S S S S S S S S  CoNFIG-1 (10) (11) 18.7 17.1 20.4 19.3 21.9 21.3 23.3 22.4 21.6 22.0 17.3 16.6 17.7 17.8 21.8 21.2 16.9 15.5  (12) 16.1 18.8 20.0 20.9 21.1 16.1 17.6 20.5 15.0  (13) 15.7 18.5 19.3 19.8 20.5 15.4 17.5 19.8 14.8  (14) 15.3 18.5 19.3 19.7 19.3 15.4 17.5 19.8 14.7  22.2 18.2 18.5 18.1  22.0 17.9 18.0 16.3  20.1 17.5 16.8 15.3  19.2 17.4 16.6 14.8  18.7 17.2 16.8 14.5  21.8  21.5  21.1  20.1  19.8  22.1 26.0 18.0 23.4 21.2 25.9 20.6 23.1 23.5 16.9 23.2 17.5 22.7 17.1 18.7 23.0  22.5 22.2 16.0 23.3 20.6 21.3 20.0 21.7 22.2 16.9 22.0 17.4 20.9 17.1 18.2 22.0  21.7 21.3 15.1 23.1 19.9 20.0 18.9 19.9 20.3 16.8 20.1 17.2 19.4 16.8 17.8 20.5  21.5 19.7 14.6 22.6 19.5 19.0 18.0 19.1 19.6 16.9 19.1 17.3 18.8 16.8 17.4 19.6  21.2 18.1 14.3 21.8 19.5 18.7 17.8 18.6 18.9 17.0 18.6 17.4 18.3 17.0 17.1 18.8  24.2  25.4  22.7  23.1  23.4  22.2  20.2  18.7  18.1  17.7  17.5 17.3  17.1 15.4  17.0 14.5  17.2 14.1  17.0 13.7  23.6 21.6  21.7 22.1  20.2 21.9  19.7 21.5  19.1 21.8  21.9 22.8  20.9 22.3  19.6 21.0  19.0 19.9  18.6 19.8  (15) 12.7e  12.4 15.4 13.5 15.2 14.2 12.8 12.3e  13.2  15.0 15.3 14.6 14.1  14.8 11.6e  97  Appendix A. The CoNFIG catalogue  (1) 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12  37 40 40 41 43 44 45 45 45 49 50 53 54 55 56 56 59 59 00 04 06 09 12 13 14 15 15 17 19 20 24 24 25 27 29 29 30 32 35 36 42 43 44 51 52 53 53 54 56 56  16.95 27.69 49.54 08.23 25.04 34.45 05.23 31.03 43.41 55.54 43.88 24.51 13.01 26.63 03.67 18.74 13.79 31.80 59.77 02.13 19.93 13.52 56.06 32.13 04.08 29.80 55.60 29.83 15.33 33.88 30.20 54.62 03.78 58.78 06.41 51.84 49.46 00.13 22.97 29.13 19.68 57.63 49.18 44.47 26.33 03.55 32.70 11.68 11.15 57.38  (2) +61 +12 +59 +01 +22 +37 +19 +31 +49 +12 −00 +49 +29 +54 +58 +31 +53 +29 +31 −04 +04 +43 +20 +13 +33 +53 +34 +03 +05 +33 +42 +21 +12 +36 +02 +11 +12 −02 +21 +16 −04 +16 +40 +08 +56 +02 +15 +27 −05 +47  20 03 12 14 06 10 36 33 46 47 23 31 16 54 47 28 53 14 33 22 06 39 32 07 09 35 48 36 49 43 06 22 52 35 03 40 23 24 20 32 46 22 48 56 34 38 42 37 47 20  CoNFIG-1 (3) 38.40 4C 61.23 07.60 4C 12.42 26.00 4C 59.16 17.70 4C 01.32v 56.00 3C 263.1* 16.90 4C 37.32 37.80 3C 264* 37.00 3C 265* 08.40 3C 266* 15.90 3C 267* 54.30 4C -00.47 09.50 4C 49.22v 08.50 4C 29.44v 13.60 4C 55.22 05.40 4C 59.17 05.00 4C 31.38 07.40 4C 54.25 44.30 4C 29.45 57.90 3C 268.2 43.90 4C -04.40v 12.20 4C 04.40 18.70 3C 268.4* 37.90 4C 20.27 20.40 4C 13.46 45.50 TXS 1211+33 54.10 4C 53.24v 15.10 4C 35.28v 44.00 4C 04.41 40.40 3C 270 10.90 3C 270.1* 24.00 3C 272* 47.20 4C 21.35v 35.20 M84 11.60 B1225+368 05.10 3C 273 24.20 PKS 1227+119 21.60 M87 04.10 4C -02.55v 18.30 3C 274.1* 32.10 4C 16.33 19.70 3C 275 52.70 3C 275.1* 06.50 S4 1242+41 27.80 4C 09.44 19.70 3C 277.1 22.30 4C 02.34v 27.30 3C 277.2* 32.70 3C 277.3* 20.10 3C 279v 19.80 3C 280*  (4) 1314.0 1527.0 2179.4 2690.8 3128.7 2065.4 5689.0 2890.9 1424.5 2519.9 2773.9 1572.2 1620.3 2195.7 1591.7 2978.3 1740.6 2030.8 1301.6 2141.3 1501.2 1979.9 1417.9 1344.2 1403.6 2755.0 1506.8 2411.5 10445.0 2845.9 1352.3 2094.4 6012.8 2098.4 54991.2 1519.0 141949.3 1646.7 2918.5 1383.9 3672.1 2895.8 1341.8 1684.4 2288.3 1604.9 1952.2 2923.9 9711.2 5099.6  (5) −0.20 −0.62 −0.56 −0.65 −0.87 −0.56 −0.76 −0.96 −1.01 −0.93 −0.16 −0.62 −0.89 −0.39 −0.75 −0.47 −0.56 −0.18 −0.59 −0.56 −0.85 −0.80 −0.89 −0.41 −0.12 −0.79 −0.20 −0.76 −0.80 −0.75 −0.87 −0.53 −0.60 0.42 −0.07 −0.85 −0.79 −0.72 −0.87 −0.47 −0.81 −0.96 −0.32 −0.63 −0.69 −0.78 −1.02 −0.58 −0.37 −0.81  (6) II-c I-c C II-c II-c II-c Ii -c II-c II-c II-c C* S* II-p II-c U C C C* II-c II-p II-c II-c U C* C* II-c C* II-p I-c II-c II-c C* I-c C* C* Iw -c Ii -c C* II-c Iw -c II-c II-c C* II-c S* II-c II-c II-c C* II-c  98  Appendix A. The CoNFIG catalogue  (1) 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  (7) 0.1110 0.0812 0.8162 0.4430 0.3660 0.1148 0.0214 0.8105 1.2750 1.1440 1.9760 0.3340 0.3292 0.0516 0.2601 0.4180 0.7744 0.7245 0.3620 0.1612 0.5267 1.3971 0.3326 1.1391 1.5960 1.0650 0.8570 0.0772 0.0073 1.5328 0.9440 0.4350 0.0030 1.9730 0.1583 0.0830 0.0042 1.0433 0.4220 0.0684 0.4800 0.5570 0.8130 0.2364 0.3201 0.2126 0.7660 0.0858 0.5362 0.9960  (8) 0.0008 0.0002 0.1229 0.0020 0.0002  0.0005 0.0014 0.0002 0.0468 0.0011 0.1657 0.0011 0.0118 0.0392 0.0015 0.0031 0.0014 0.0017 0.0017 0.0010 0.0002 0.0022 0.0010 0.0020 0.0001 0.0002 0.0019 0.0002 0.0003 0.0020 0.0406 0.0011 0.0357 0.0001 0.0004  (9) S S P S S S S S S S S S S S P S P S S K P S I S S S S S S S S S S S S S S S S S S S S P S P S S S S  CoNFIG-1 (10) (11) 19.2 17.8 17.7 15.7 23.7 22.3 21.0 20.5 22.0 21.2 19.2 17.3 15.3 13.4 19.8 19.6 21.7 21.9 22.1 21.9 17.0 17.0 17.1 17.3 21.4 20.3 17.1 15.1 20.3 19.3 19.1 18.8 21.0 20.4 18.6 18.1 20.7 19.6  (12) 16.9 14.8 21.9 19.2 20.9 16.3 12.6 19.1 21.4 21.6 17.0 17.3 19.2 14.2 18.0 18.5 20.5 18.0 18.5  (13) 16.3 14.4 21.0 18.5 20.3 15.8 12.2 18.9 21.4 20.6 16.8 17.3 18.8 13.7 17.5 18.0 20.0 17.9 18.1  (14) 16.1 14.1 20.4 18.1 19.5 15.4 11.9 17.7 20.7 20.4 16.7 16.7 18.4 13.4 17.1 17.7 20.5 17.7 17.6  (15) 14.3 11.6e  13.8 9.5e  14.8 13.5e 12.6 15.4 11.5 13.4e  25.0 18.4 22.1 18.5 17.7 18.9 21.0 18.0 13.4 19.1  22.8 18.2 20.6 18.2 17.6 18.5 20.4 16.1 11.5 18.8  21.0 17.6 19.2 17.9 17.5 18.1 20.4 15.1 10.7 18.4  20.1 17.3 18.3 17.9 17.3 18.0 20.1 14.6 10.2 18.1  19.4 17.2 18.5 17.7 17.2 18.0 19.5 14.3 9.9 18.1  15.9 12.6 22.2 13.8 17.6 13.8 17.3 24.2 18.1 22.2 18.5 20.9 20.6 17.9 21.8 21.8 18.4  15.8 10.7 21.8 12.9 15.3 11.9 17.0 21.3 16.1 21.1 18.1 20.3 19.4 17.8 20.1 22.4 16.5  16.0 9.9 21.4 12.8 14.4 11.1 16.7 19.4 15.2 19.9 18.2 20.1 18.2 17.6 18.8 21.3 15.6  16.0 9.4 21.0 12.6 13.9 10.7 16.7 18.6 14.7 18.8 18.0 19.8 17.9 17.9 18.3 20.5 15.1  15.8 9.1 21.2 13.2 13.6 10.4 16.8 18.0 14.4 18.8 18.1 19.3 17.5 17.1 18.0 20.2 14.8  22.1  21.7  21.4  20.7  19.8  14.9 14.9 15.2 15.8 11.6e 9.9  13.1 9.8 9.9e 11.1e 14.6 13.2  15.0  10.9  99  Appendix A. The CoNFIG catalogue  (1) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200  13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  00 05 09 10 11 13 16 19 19 20 21 21 23 26 27 30 31 32 38 38 42 42 44 45 47 52 52 57 57 57 00 06 11 13 16 16 17 19 21 23 24 25 28 30 36 38 43 45 48 49  32.87 36.05 49.66 28.70 08.56 37.88 20.51 06.83 38.73 21.45 18.84 21.28 21.04 16.51 31.71 37.69 08.31 56.37 08.07 49.67 13.13 43.57 23.75 26.38 33.42 17.81 56.36 01.51 04.37 53.77 28.65 44.10 20.63 48.34 04.18 53.50 23.95 08.18 05.73 00.81 56.93 50.67 31.22 03.34 57.07 44.71 01.45 16.48 39.98 21.74  (2) +40 +08 −00 +32 +27 +54 +07 +29 −00 +17 +11 +42 +03 +31 +31 +25 +30 +02 −06 +38 +60 +05 +14 +49 +12 +31 +11 +01 +19 +00 +62 +34 +52 −05 +34 +10 −04 +06 +41 +19 +20 +24 −01 +07 +03 +62 +52 +09 +00 +63  09 55 12 20 27 58 02 38 49 43 06 35 08 54 51 09 30 00 27 51 21 04 09 46 17 26 07 04 19 46 10 11 12 59 44 48 00 28 44 35 00 04 24 15 24 11 01 58 18 16  CoNFIG-1 (3) 09.20 3C 280.1* 15.90 4C 09.45v 36.60 4C 00.46 44.30 B1308+326 56.50 3C 284* 24.30 CJ2 1311+552 54.30 4C 07.32 33.80 4C 29.47 40.90 4C -00.50 12.40 4C 17.56v 49.40 4C 11.45v 15.20 3C 285* 02.80 4C 03.27 09.70 4C 32.44 27.30 4C 32.44B 11.00 3C 287* 32.40 3C 286* 46.50 3C 287.1 11.20 4C -06.35v 11.10 3C 288* 42.30 3C 288.1v 31.50 4C 05.57 15.30 4C 14.49 32.70 3C 289* 24.10 4C 12.50 46.70 3C 293* 07.70 4C 11.46 39.70 4C 01.39 08.10 4C 19.44 32.80 PKS 1355+01 38.60 4C 62.22 26.20 3C 294* 09.00 3C 295* 54.20 4C-05.60 36.50 S4 1413+34 40.20 NGC 5532 46.60 3C 297v 36.30 3C 298 49.70 3C 299* 22.80 3C 300* 22.70 4C 20.33v 06.70 4C 24.31v 08.70 3C 300.1v 01.30 4C 07.36 12.30 4C 03.30v 54.50 B1437+6224 38.20 3C 303* 36.00 TXS 1442+101 17.90 4C 00.52v 13.90 3C 305*  (4) 1368.9 1461.8 1636.7 1686.6 2044.6 1304.6 1884.2 1372.5 1468.9 1573.2 2238.0 2085.0 1385.2 4861.9 1415.1 7052.2 14902.7 2648.5 2958.5 3358.9 1493.3 1600.9 1302.8 2398.3 5397.2 4844.2 1537.9 2400.4 2585.6 1921.6 4307.6 1316.1 22720.1 1520.8 1863.7 4445.4 1687.2 6100.3 3146.9 3738.8 1808.5 1558.7 3157.4 1719.6 2797.3 2410.4 2543.0 2417.6 1651.5 3006.0  (5) −0.93 −1.05 −0.82 0.28 −0.95 −0.17 −0.37 −0.72 −0.56 −0.71 −0.77 −0.95 −0.61 −0.12 −0.64 −0.42 −0.24 −0.49 −0.93 −0.85 −0.91 −0.66 −0.82 −0.81 0.80 −0.45 −0.42 −0.83 −0.60 −0.70 0.14 −1.07 −0.63 −1.05 −0.11 −0.52 −0.74 −1.02 −0.65 −0.78 −0.83 −0.78 −0.73 −0.39 −0.48 −0.14 −0.76 0.21 −0.71 −0.85  (6) II-c II-c II-p C* II-c C* Iw -c I-c C* II-c IIc -p II-c I-p C* U C* C* II-c II-p Iw -c II-c Ii -c C II-c C* I-c C II-c IIc -c U C* II-c II-c II-c C* I-c U S* II-c II-c II-c II-c II-c Iw -c C C* II-c C U I-c  100  Appendix A. The CoNFIG catalogue  (1) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200  (7) 1.6670 1.4090 0.4190 0.9974 0.2400 0.6130 0.0507 0.0729 0.8916 0.6110 2.1832 0.0794 0.2690 0.3700 0.2272 1.0550 0.8494 0.2157 0.6250 0.2460 0.9642 0.1362 0.9670 0.1212 0.0450 0.6500 0.8190 0.7200 0.6606 0.4310 1.7790 0.4614 1.0940 0.0240 1.4060 1.4374 0.3670 0.2720 0.8710 0.6532 1.1590 0.0551 1.4380 1.0935 0.1410 3.5295 0.4381 0.0416  (8) 0.0020 0.0020 0.0010 0.0018 0.0007 0.0010 0.0001 0.0002 0.0006 0.1035 0.0026 0.0001 0.0007 0.0266 0.0011 0.0010  0.0018 0.0010  0.0015 0.0001 0.0010 0.0010 0.2132  0.0003 0.0020 0.0001 0.0016  0.0015 0.0002 0.0010 0.0018 0.0010 0.0007 0.0003 0.0001  (9) S S S S S S S S S P S S S S P S S S S S S S  CoNFIG-1 (10) (11) 19.0 18.8 21.6 21.8 21.0 20.1 18.3 18.0 20.0 18.7 23.0 22.5 16.4 14.5 17.8 15.9 17.7 17.5 23.0 22.3 19.3 19.0 18.2 16.7 20.8 19.1 22.3 20.5 20.3 18.9 18.6 18.3 17.4 17.3 18.7 18.3  (12) 18.8 21.4 19.4 17.6 17.5 20.9 13.6 15.0 17.5 21.3 18.9 15.9 17.8 19.2 17.6 18.0 17.2 17.6  (13) 18.4 21.3 18.8 17.3 17.0 20.0 13.2 14.6 17.5 20.5 18.6 15.4 17.4 18.6 17.1 17.9 17.2 17.0  (14) 18.5 22.5 18.4 17.1 16.7 19.7 12.9 14.4 17.4 20.0 18.4 15.1 16.9 18.0 16.8 17.8 17.0 16.9  (15)  14.7 14.5 12.4 13.5 15.2  13.7 14.0e 14.6 14.0 15.5 15.7 15.5 12.6e  24.1 17.9 18.4  22.0 17.7 17.3  21.8 17.5 16.4  20.2 17.6 15.9  20.3 17.5 15.6  S S S S S S P S S S S  23.0 18.5 16.9 22.2 23.3 16.3 22.7 22.2  23.0 16.6 15.1 22.1 23.4 15.9 23.1 21.1  21.6 15.7 14.2 21.5 21.2 15.9 21.9 19.7  20.8 15.2 13.7 20.5 20.1 16.0 21.5 18.9  20.1 15.0 13.4 19.8 19.0 15.8 20.4 18.4  22.9  20.0  18.5  17.7  17.2  S S S S S S S S S S S S S S S  21.0  20.2  20.1  20.0  20.5  17.3 21.5 20.9  17.1 19.8 19.3  16.6 18.9 18.1  16.4 18.5 18.0  16.3 18.0 17.4  14.2  17.7 22.3 16.6 23.0 19.3 26.0 19.4 23.0 16.0  17.2 22.7 14.7 22.5 19.1 21.4 18.5 20.7 14.2  17.1 22.0 13.8 22.2 18.7 20.8 17.8 19.1 13.5  17.0 21.6 13.4 22.1 18.7 20.7 17.8 18.3 13.1  17.1 21.2 13.1 21.0 18.7 20.5 17.7 17.9 12.8  15.0  12.2e 10.8e  13.9  13.6e  12.3  15.8 10.6e  101  Appendix A. The CoNFIG catalogue  (1) 201 202 203 204 205 206 207 208 209 210 211 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250  14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16  55 04 04 04 04 10 10 12 13 13 16 16 20 21 24 25 31 31 34 35 37 40 41 46 47 49 49 50 52 56 56 02 02 08 09 10 12 13 16 17 17 17 20 24 25 28 28 28 29  01.43 09.27 19.50 25.03 58.98 53.55 57.03 25.35 39.90 40.20 40.21 56.61 05.50 14.51 05.64 48.92 25.36 50.71 52.45 01.27 32.39 49.51 45.64 09.50 44.23 48.98 58.54 35.26 26.86 10.06 36.35 07.27 17.21 46.13 13.31 07.74 19.02 41.08 38.29 15.75 38.89 43.28 21.40 39.42 57.66 03.57 38.34 53.30 37.52  (2) −04 +60 +28 +10 +25 −05 +07 +01 +26 +23 +00 +18 +20 +04 +54 +03 +35 +24 +01 +55 +13 +14 +60 +00 +20 +21 +62 +05 +20 +20 +42 +33 +01 +10 +26 +32 +22 +34 +26 +21 +35 +32 +17 +23 +41 +27 +39 +44 +23  20 00 35 29 59 43 51 21 07 38 15 30 16 30 28 08 33 02 31 36 44 47 15 26 52 25 41 27 05 04 57 26 58 29 41 58 22 12 47 07 00 23 36 45 34 41 33 19 20  CoNFIG-1 (3) 22.50 4C -04.53 55.50 3C 311 34.30 B2 1502+28 38.50 TXS 1502+106 49.00 3C 310* 07.10 4C -05.64v 24.80 3C 313 08.70 4C 01.42v 33.70 3C 315* 35.30 4C 23.41 02.40 4C 00.56 21.60 3C 316 05.70 3C 318* 20.00 4C 04.51 18.40 3C 319* 26.50 4C 03.33 40.60 3C 320v 43.30 3C 321* 03.30 B1532+016 49.80 3C 322* 47.70 4C 13.56v 46.70 4C 14.60 36.20 3C 323v 24.60 TXS 1543+005 41.00 3C 323.1 39.10 3C 324* 20.90 3C 325* 10.60 4C 05.64 01.80 3C 326* 21.20 3C 326.1v 09.60 4C 43.35 53.10 4C 33.38 19.40 3C 327 08.20 4C 10.45 29.20 PKS 1607+26 35.10 3C 329 15.60 3C 331 47.70 B1611+3420 01.60 PKS 1614+26 29.40 3C 333v 48.00 NGC 6109* 02.40 3C 332 29.30 3C 334* 17.50 3C 336* 41.20 4C 41.32 36.10 3C 341* 04.70 3C 338* 05.20 3C 337* 13.40 3C 340*  (4) 2104.3 1553.1 1626.5 1774.2 7613.4 3569.3 3799.1 2262.7 4332.7 1767.5 2593.1 1335.2 2688.0 3927.2 2624.0 1960.0 1820.7 3577.3 1320.4 1846.9 1805.6 1386.8 1337.4 1830.3 2396.2 2522.0 3563.7 2303.3 3214.1 2313.7 1656.4 2990.6 8298.7 1392.0 4908.2 2027.1 1401.9 4024.1 1484.4 1748.5 1706.2 2598.5 1993.9 2612.7 1677.4 1998.6 3678.7 3155.8 2599.0  (5) −0.80 −0.78 −1.16 0.15 −0.92 −0.53 −0.98 −0.79 −0.72 −0.10 −0.50 −0.80 −0.78 0.29 −0.90 −0.45 −0.96 −0.60 0.11 −0.81 −0.72 −0.47 −1.04 −0.15 −0.55 −0.90 −0.70 −0.08 −0.88 −0.71 −0.79 0.11 −0.69 −0.32 0.49 −0.93 −1.00 0.24 −0.11 −0.83 −0.76 −0.63 −0.86 −0.73 −0.20 −0.85 −1.19 −0.63 −0.73  (6) II-c C Iw -c C* I-c C II-c II-c I-c C* IIc -p U S* C* II-c C II-c II-c C* II-c U C* II-p C* II-c II-c II-c C* II-c II-c II-c C II-c C* C II-c U C* C II-c I-c II-c II-c II-c C* II-c Iw -c II-c II-c  102  Appendix A. The CoNFIG catalogue  (1) 201 202 203 204 205 206 207 208 209 210 211 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250  (7) 0.4403 1.0220 0.0503 1.8385 0.0535 1.1910 0.4610 0.7920 0.1080 0.6355 0.0524 0.4200 1.5740 1.2960 0.1920 0.5229 0.3420 0.0962 1.4350 1.6810 0.6720 0.6050 0.6790 0.5500 0.2640 1.2061 1.1350 1.4220 0.0900 1.8250 1.1000 0.1041 1.2260 0.4730 1.7810 0.3962 1.3994 1.3240 0.0298 0.1517 0.5550 0.9270 2.5500 0.4480 0.0298 0.6300 0.7750  (8)  0.0014 0.0024 0.0003  0.0020 0.1557 0.0014 0.0025 0.0010  0.0959 0.0003  0.0796  0.0003  0.0005 0.0010  0.0780 0.0016 0.0772 0.0002 0.0002 0.0005 0.0017  (9) S S K S S S S S S P S I S S S P S S S S P S S S S S S S S S P S S S S P S R S S S S S S S S S  CoNFIG-1 (10) (11)  (12)  (13)  (14)  20.3 17.2 18.7 17.5  20.2 15.3 18.4 15.5  19.9 14.4 18.1 14.6  19.5 14.0 17.8 14.1  19.9 13.7 17.5 13.8  21.8 22.6 19.1 24.5 16.9 21.2 20.9 22.7 21.8 26.4 21.9 17.4 19.4  20.6 21.9 17.5 22.5 15.5 20.7 20.4 22.8 19.6 21.7 19.7 16.1 19.4  18.8 20.6 16.7 21.8 14.7 20.0 19.7 22.0 18.5 21.0 17.9 15.3 19.1  18.0 19.7 16.2 20.9 14.3 18.9 19.2 21.7 18.0 20.4 17.3 14.8 19.0  17.6 19.0 16.1 20.8 13.9 19.6 19.0 20.1 17.7 19.8 16.9 14.6 19.1  21.9 18.8 26.6 23.3 15.6 23.5 22.0 18.5 19.7  21.0 18.3 22.7 21.6 15.5 21.9 21.2 18.4 17.7  20.2 17.9 21.4 20.2 15.6 21.6 20.2 18.1 16.6  19.3 17.8 20.2 19.1 15.5 21.1 19.6 17.9 16.1  18.9 17.3 20.0 18.7 15.2 20.5 19.2 17.6 15.8  22.6 17.9 18.4 22.7 22.7 21.8 17.5 23.0 24.1 15.9 18.2 16.9 18.8 24.5 21.4 15.8 24.0 23.3  20.9 16.3 18.2 21.7 23.0 21.3 17.6 23.4 24.1 14.0 17.5 16.6 18.4 22.7 20.6 13.9 23.0 22.3  20.5 15.3 18.0 20.2 21.6 20.0 17.3 22.0 22.3 13.2 16.8 16.8 18.1 22.0 19.5 13.0 21.5 21.4  20.2 14.7 17.9 19.3 21.0 20.0 17.2 21.3 21.8 12.7 16.1 16.7 18.1 21.6 18.5 12.5 20.2 20.7  19.6 14.4 17.9 18.9 19.9 19.4 17.1 20.5 20.9 12.5 16.1 16.8 18.1 21.4 18.3 12.3 19.5 19.6  (15)  12.6 14.3 13.6 14.7 13.5e 11.5e  15.2 15.3 13.3  14.2 12.9e  14.7  13.6 14.7  14.7  12.3 13.7 14.1  9.2e  103  Appendix A. The CoNFIG catalogue  (1) 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274  16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 07 14 08 08 12 07  31 34 35 36 38 42 43 43 47 53 59 04 04 05 10 23 24 42 14 54 31 48 28 44  45.29 33.86 15.51 37.38 28.22 58.77 05.93 48.69 41.83 52.24 27.57 07.21 43.03 06.57 44.11 20.85 18.40 51.84 35.25 20.30 20.33 41.94 11.77 17.50  (2) +11 +62 +38 +26 +62 +39 +37 +17 +17 +39 +47 +29 +60 +38 +46 +34 +50 +61 +45 +16 +32 +05 +20 +37  56 45 08 48 34 48 29 15 20 45 03 46 44 40 01 17 57 45 40 20 18 55 23 53  CoNFIG-1 (3) 03.30 4C 12.59 35.70 3C 343* 04.80 4C 38.41 06.60 3C 342v 43.90 3C 343.1* 37.00 3C 345* 34.40 3C 344 48.80 3C 346* 11.50 4C 17.71 36.60 4C 39.49 13.10 3C 349* 59.50 4C 29.50 49.60 3C 351* 37.60 3C 350 30.30 3C 352* 57.30 4C 34.47 54.00 3C 356* 51.00 4C 61.34 00.10 4C 45.13 55.80 3C 306 37.00 4C 32.25A 35.00 4C 06.32 19.10 4C 20.29 16.90 4C 38.21  (4) 1733.7 5001.9 2726.0 1336.1 4610.8 7098.6 1418.1 3666.2 2130.2 1558.0 3358.4 1413.9 3259.0 1302.4 1865.5 1610.2 1509.1 1354.7 1386.4 1391.3 1773.5 1319.5 1333.9 1341.8  (5) −0.47 −0.37 0.11 −0.88 −0.32 −0.27 −0.91 −0.52 −0.23 −0.12 −0.74 −0.74 −0.73 −0.96 −0.88 −0.32 −1.02 −0.77 −0.61 −0.89 −0.68 −0.53 −0.62 −1.11  (6) C C* C* II-c C* C* II-p Ii -c C* C II-c C II-c II-c II-c II-c II-c II-c II-c II-c II-c II-c II-c C  104  Appendix A. The CoNFIG catalogue  (1) 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274  (7) 1.7920 0.9880 1.8131 0.5610 0.7500 0.5939 0.5200 0.1617 0.3140 0.0336 0.2050 1.9270 0.3715 0.3460 0.8060 0.2060 1.0790 0.5230 0.0456 0.0512 0.2206 0.6800 1.0665  (8)  0.0017  0.0019 0.0010 0.0001  0.0001 0.0028 0.0002 0.0050  0.0001 0.0002 0.0206 0.0018  (9) S S S S S S S S S S S S S I S S S S S S P S S  CoNFIG-1 (10) (11) 18.6 18.4  (12) 18.3  (13) 18.1  (14) 17.9  (15)  17.7 18.6  17.6 18.0  17.6 18.0  17.4 17.5  17.2 17.7  15.0  16.8 21.4 18.9  16.5 21.1 17.3  16.4 20.0 16.1  16.2 19.3 15.7  16.1 19.1 15.3  12.4  15.3 21.3 20.1 15.6 20.7  13.8 20.5 20.0 15.4 20.2  13.0 20.2 20.1 15.2 19.5  12.6 20.2 19.5 15.2 18.4  12.3 20.0 19.6 14.8 18.4  15.4  15.4  15.5  15.1  15.5  12.9  18.1  17.7  17.7  17.5  17.4  15.2  16.2 17.5 21.8 18.0 18.2  14.2 15.6 19.5 17.8 18.0  13.2 14.7 18.0 17.7 17.7  12.8 14.2 17.5 17.6 17.8  12.5 13.9 17.2 17.4 17.9  12.2 12.8 15.2 15.3  12.7e 15.0 9.6e  12.4  105  Appendix A. The CoNFIG catalogue  A.1.2  CoNFIG-2 (1) 1 2 4 8 9 10 11 12 14 19 21 23 29 30 31 32 34 35 36 37 38 39 41 42 45 46 47 49 52 53 54 55 57 59 60 62 63 64 65 67 68 69 70 71 77 79 80 81 82  09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10  20 20 21 30 34 35 35 36 41 43 45 47 53 54 54 56 58 58 00 00 00 01 02 04 07 07 07 09 14 14 14 15 17 22 23 24 25 25 26 27 28 30 31 33 42 46 46 48 49  11.16 58.48 46.55 54.27 15.80 04.06 06.62 32.02 22.70 19.16 13.81 44.60 38.99 56.81 07.03 49.88 20.92 28.78 17.51 21.95 28.11 23.65 57.12 32.94 26.10 41.51 42.54 55.50 16.03 47.05 48.92 58.26 49.77 30.31 11.60 29.63 20.72 29.87 31.96 32.89 20.08 09.91 43.55 28.31 36.53 18.04 34.99 34.23 26.18  (2) +17 +44 +37 +58 +49 +08 +39 +04 −01 −00 +16 +00 +25 +17 +21 +25 +32 −01 +00 +22 +14 −00 +19 +31 +12 +13 +59 +14 +10 +23 +08 +40 +27 +30 +39 −00 +20 +42 +06 +48 +15 +00 +52 +17 +29 +54 +15 +34 −02  53 41 54 55 08 41 42 22 43 04 55 04 16 43 22 15 24 39 05 33 01 26 51 51 48 56 08 01 51 01 52 46 32 41 48 52 10 57 27 17 11 37 25 42 49 59 43 57 54  25.00 53.70 10.10 16.60 21.00 37.30 07.60 10.80 01.00 22.30 21.70 37.20 24.60 31.50 35.90 15.90 01.60 59.30 23.00 18.20 34.10 08.80 53.50 51.50 56.21 29.30 09.90 54.10 06.30 12.70 58.80 47.11 07.70 05.80 17.20 55.20 21.30 43.10 32.70 06.40 29.50 40.20 37.90 44.70 45.60 37.50 47.20 25.50 52.70  (3) 4C 18.29 B0917+449 4C 38.29 4C 59.10 0930+493 4C 08.31v 3C 221 3C 222v 4C -01.19 4C 00.30v 4C 17.49 4C 00.31v 4C 25.29v B0952+1757 4C 21.26 B0953+254 3C 232 4C -01.20v 4C 00.34 4C 22.25 4C 14.35 4C -00.37 4C 20.20 4C 32.34v 4C 13.41 B1004+1411 4C 59.11v 4C 14.36v 4C 11.34 4C 23.24 1012+091 4C 41.22 3C 240 B1019+309 4C 40.25 B1021-0037 3C 242 4C 43.19v 3C 243 3C 244 4C 15.32v 4C 00.35v 4C 52.22 4C 17.50v 1039+30 B 4C 55.21 4C 15.34v 4C 35.23v 4C -02.43  (4) 1070.6 1017.2 826.4 1082.9 800.5 1037.6 1029.5 971.1 830.0 1188.9 1062.1 935.8 993.1 1158.5 948.8 1080.1 1247.1 1213.7 923.7 1116.3 1166.4 1221.0 1226.5 1263.8 1216.1 936.3 1082.8 994.6 902.2 1095.5 877.4 1078.5 1274.7 967.8 1122.6 986.2 1250.3 852.4 851.5 985.3 824.5 1077.1 921.6 929.0 841.2 1032.7 1071.9 1034.4 956.5  (5) −0.88 −0.15 −0.88 −0.91 0.37 −0.74 −0.93 −1.35 −0.60 −0.72 −0.90 −1.06 −0.99 −0.35 −0.76 0.53 −0.79 −0.59 −0.94 −0.76 −0.80 −0.99 −0.65 −0.98 −0.45 −0.25 −0.88 −0.70 −0.62 −0.45 −0.29 −0.29 −0.75 −0.45 0.26 −0.89 −0.96 −1.17 −0.57 −0.90 −0.71 −0.67 −0.69 −0.04 −0.96 −0.72 −0.64 −0.81  (6) C C* IIc -c U C* II-p II-p C II-c C II-c II-p II-c C* II-c C* S* C II-c II-c II-p II-c I-p II-c II-c C* II-c C II-c II-c C II-c II-c C* C* C* II-c II-c II-c II-c C II-p II-c II-c C II-c U C II-c  106  Appendix A. The CoNFIG catalogue  (1) 1 2 4 8 9 10 11 12 14 19 21 23 29 30 31 32 34 35 36 37 38 39 41 42 45 46 47 49 52 53 54 55 57 59 60 62 63 64 65 67 68 69 70 71 77 79 80 81 82  (7) 0.4155 2.1890 1.1080 0.5128 2.5820 0.3578 0.4957 1.3400 0.3820 0.4785 0.5077  (8) 0.3312 0.0017 0.0010 0.1626 0.0090 0.0312 0.1000  1.4758 0.2952 0.7076 0.5306  0.0024  0.9055 0.4190 1.0264 1.4956 0.1677 0.6793 0.2400 2.7070 0.5614 0.2150 0.3880 0.5662  0.0012  (9) P S S P S P R S S P P  CoNFIG-2 (10) (11) 22.9 23.3 18.6 18.0 20.7 19.7 22.5 21.8 19.9 19.3 24.5 21.4  (12) 22.3 17.9 18.8 21.0 19.1 19.5 19.8  (13) 21.4 17.7 18.4 20.6 19.1 19.0  (14) 21.0 17.4 18.3 20.5 19.0 18.4  (15) 15.4 15.4  22.3 22.9 23.1  20.5 20.9 22.8  18.8 19.4 21.8  18.1 18.6 21.6  17.7 18.1 20.5  0.0581 0.0022 0.0050 0.0064 0.0050 0.0002 0.0012  17.2 18.3 17.8 15.9 22.9 18.6 18.8 22.5 24.6 17.6 21.2 15.4 18.5 19.9 18.4 20.8 17.3  17.1 17.7 17.8 15.9 22.3 18.6 18.4 22.7 22.8 16.4 19.9 15.3 18.4 19.8 17.3 19.0 17.4  17.0 17.5 18.0 15.8 21.1 18.6 18.0 21.2 22.1 15.9 18.6 15.2 18.4 19.6 16.8 18.3 17.4  17.1 16.7 17.8 15.8 20.3 18.3 17.6 20.4 21.2 15.6 19.0 15.2 18.2 19.2 16.5 17.8 17.4  15.7 14.3 15.3 13.8  S S I I S P S S I S S S  17.4 18.9 18.2 16.3 22.7 19.0 19.2 22.3 24.3 19.8 22.0 15.4 19.6 20.4 19.9 22.9 17.6  0.1279 0.4678 1.3183 1.2540 2.5545 0.4542 0.8083 1.7106 0.2310  0.0002 0.0013 0.0016 0.0020 0.0010 0.0339 0.1507 0.0026 0.0009  S S S S S P P S S  19.3 18.9 17.3 18.4 18.7 22.3 22.1 18.8 20.8  17.4 18.3 17.3 18.3 18.1 21.5 21.8 18.5 19.1  16.4 18.3 17.1 18.0 18.1 19.9 21.5 18.2 17.8  15.9 17.9 17.1 18.1 18.1 19.1 20.6 17.8 17.3  15.6 17.6 17.1 18.2 17.9 18.7 20.7 17.5 16.9  13.3e 15.0 15.2 14.1  0.6108 0.1662 1.0523  0.0681 0.0012 0.0421  P S I  23.1 19.8 22.7  21.5 18.4 23.3  20.6 17.3 21.8  19.6 16.7 21.2  19.2 16.4 20.7  0.3694 0.9748 1.5940 0.7010  0.0394 0.0427  P I S P  22.9 22.1 22.1 22.7  21.5 22.9 21.3 23.3  19.9 22.6 20.8 21.8  19.3 21.0 20.1 20.5  18.9 20.7 20.1 20.1  0.0268 0.2036  0.0013 0.0019  0.0749 0.0951  0.0874  S S S S  15.5 13.5e 12.8 13.9e 14.3e  15.1 15.2 14.1e  107  Appendix A. The CoNFIG catalogue  (1) 83 85 89 91 92 93 94 95 97 98 99 102 103 105 110 111 112 117 118 119 120 122 123 124 126 127 128 130 131 133 134 138 139 141 142 144 148 149 152 153 155 157 161 162 165 166 168 169  10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12  51 57 00 02 02 05 06 07 08 08 09 11 11 11 17 18 18 24 24 25 26 26 29 29 32 33 33 34 35 37 40 42 42 43 44 44 47 48 53 53 53 55 57 58 59 00 01 02  48.80 15.77 02.02 24.97 26.19 26.17 31.77 15.02 37.60 51.79 28.86 20.09 22.71 43.62 33.85 12.23 57.28 37.45 43.90 53.70 08.53 27.13 35.97 47.93 59.49 09.56 13.18 54.61 13.04 29.68 17.03 57.23 58.78 39.63 21.23 54.01 14.71 47.51 03.11 12.54 54.65 13.61 34.91 25.80 48.83 31.19 25.01 04.19  (2) +21 +00 +30 −02 +55 +20 −00 +16 +38 +25 +37 +19 +03 +40 −02 +53 +12 +04 +19 +26 +30 +12 +00 +50 +10 +33 +50 +30 −00 +01 +17 +21 +48 +46 +29 −00 +25 +04 +11 +09 +40 +54 +16 +24 +58 +45 +25 +58  19 12 27 35 50 52 52 28 58 00 44 55 09 49 36 19 34 56 19 10 03 20 15 25 23 43 08 05 21 16 43 29 51 21 58 31 23 55 07 14 36 52 38 50 20 48 20 02  CoNFIG-2 (3) 52.80 4C 21.28 03.80 1054+004 42.00 3C 248 34.10 4C -02.44v 03.30 4C 56.18 17.40 1102+211v 51.50 4C -00.43v 01.50 4C 16.30 42.10 3C 251 52.10 3C 250* 31.40 B21106+37 36.10 1108+201 10.40 4C 03.21v 15.30 4C 41.23 00.60 4C -02.46 44.70 1115+536v 42.20 4C 12.39 18.80 4C 05.50 29.70 3C 258v 20.10 B1123+264 36.50 4C 30.21 34.70 4C 12.41 17.50 4C 00.40v 51.90 1126+507v 42.70 4C 10.33v 12.60 4C 33.27v 39.90 1130+504v 25.20 3C 261v 19.40 4C -00.45v 13.30 4C 01.31v 39.00 4C 17.52 12.50 1140+217 19.70 4C 49.21 20.70 4C 46.23v 25.30 4C 30.23 36.50 4C -00.46 20.20 4C 25.36 27.70 4C 05.53 20.40 4C 11.40 02.50 4C 09.39 52.90 B3 1151+408 50.40 1152+551 59.30 B1155+169 17.70 1155+251 20.80 WSTB 14W26 43.20 4C 46.25v 24.00 4C 25.38 01.90 4C 58.23  (4) 1253.1 898.1 991.4 838.4 1206.4 985.6 1065.6 868.6 919.7 1090.0 1221.6 1194.8 1017.7 819.2 996.1 919.2 1112.2 1145.4 874.7 921.2 933.6 1110.5 979.5 926.9 879.1 886.6 844.9 1145.5 1267.8 1059.7 1143.3 921.0 958.6 863.2 837.3 947.6 879.0 827.9 853.5 809.2 1135.6 1233.3 813.2 1021.2 1191.3 1156.5 862.9 843.2  (5) −0.29 −0.43 −1.05 −0.72 −0.93 −0.66 −0.67 −0.60 −0.89 −0.90 −0.04 0.42 −1.01 −0.86 −0.73 −0.85 −0.92 −0.92 −1.00 0.27 −1.01 −0.89 −0.76 −0.89 −0.88 −0.77 −0.76 −1.00 −0.61 −0.89 −0.57 −1.10 −0.93 −0.90 −0.91 −0.97 −0.81 −1.03 −1.01 −0.59 0.16 −0.82 1.21 0.16 −0.36 −0.71 −0.68 −0.69  (6) C* C* II-c C U C II-c IIc -p II-c II-c C* C* II-c Iw -c Ii -c II-c S* II-p C C* II-p II-p II-c C II-p II-c II-c II-c C C I-c II-c II-p II-c II-c II-c II-c II-c II-c C* C* II-c C* C* C C II-c Iw -c  108  Appendix A. The CoNFIG catalogue  (1) 83 85 86 89 91 92 93 94 95 97 98 99 102 103 105 110 111 112 117 118 119 120 122 123 124 126 127 128 130 131 133 134 138 139 141 142 144 148 149 152 153 155 157 161 162 165 166 168 169  CoNFIG-2 (10) (11) 18.6 18.8 24.9 24.3 17.1 17.1 21.7 21.5  (7) 1.3000  (8) 0.0050  (9) S  1.1100 0.8313  0.1300  S P  0.4059  0.0453  P  24.8  0.4260 0.6301 0.7810 1.4836 2.2900 0.2991  0.0003 0.0002 0.0040 0.1110  S S S I S S  0.0737 0.1325 1.2418 2.1293 0.2828 0.1650 2.3396  0.0001 0.0062 0.0013 0.0020 0.0009  0.6763 0.2110 1.0037 0.5398 0.2227 0.3064 0.6133 0.1600 0.4300 0.0111 1.3718 0.7338 0.1159  0.0109  1.1108 0.9812 0.4200 0.4924 0.6956 0.9283 0.7414 1.0608 0.2016 0.6285 0.7428 1.2467 0.1011  0.0683 0.1369  0.0010  0.0048  0.3746 0.0014 0.0002 0.0426 0.0002 0.0020  0.0015 0.0767 0.0001  0.1613 0.0011 0.0006 0.2175 0.0018 0.0004 0.2635 0.0769 0.0002  (12) 18.3 23.2 16.8 20.9  (13) 18.4 21.8 16.8 20.5  (14) 18.5 21.1 17.0 19.7  (15) 15.7  21.6  20.0  19.3  19.0  16.2 16.9  16.1 16.4  16.3 16.4  16.3 16.4  16.1 16.5  23.1  24.7  24.1  22.1  22.6  21.7  19.8  18.4  18.0  17.6  15.4  S K S S S S S  17.2  15.1  14.2  13.7  13.4  11.4e 14.1  19.0 18.7 20.0  18.8 18.4 19.0  18.3 18.4 17.4  18.1 18.3 17.0  18.1 18.2 16.5  18.6  18.1  18.2  18.2  18.0  I S P S S P S S S S S P S  20.5 21.4 22.0 17.2 20.6 20.7 19.0 23.7 19.9 24.5 18.0 20.6 18.6  20.7 20.0 21.8 16.9 19.0 19.4 18.4 24.4 18.9 20.2 18.1 20.1 16.4  20.3 18.7 21.5 17.0 17.6 18.1 18.4 23.1 18.0 18.3 17.7 19.5 15.4  20.1 18.3 21.7 16.9 17.1 17.5 18.1 21.3 17.4 18.0 17.7 18.6 14.9  20.0 18.1 20.1 17.0 16.8 17.0 18.2 21.1 17.2 19.6 17.7 19.0 14.5  G P S P S S P S S P S I S  24.5 23.7  22.9 22.3  23.3 21.8  22.8 21.2  22.7 19.8  22.7 18.1 19.7 21.7 17.7 20.1 21.5 22.6 23.8 19.8  21.7 17.7 19.5 22.8 17.3 18.8 21.4 22.1 24.6 17.7  21.1 17.8 19.2 21.8 17.0 17.6 21.0 21.4 22.7 16.8  21.1 17.8 19.2 21.2 16.9 17.1 20.7 20.7 21.7 16.4  20.5 17.7 19.0 21.2 17.0 16.8 20.2 20.5 21.4 16.1  14.6  13.9 14.0  15.1  14.5 14.7  14.5  12.1e  14.8  15.1 13.3e  14.5  109  Appendix A. The CoNFIG catalogue  (1) 170 171 173 174 180 181 185 186 188 190 191 193 196 198 200 204 207 208 209 210 214 215 216 218 219 220 226 228 229 230 232 233 238 239 243  12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13  02 03 04 04 14 15 17 18 20 21 22 24 26 28 29 32 36 39 39 41 47 49 51 52 52 52 58 02 04 04 07 09 15 15 19  32.27 21.95 18.46 52.31 47.73 14.69 56.90 59.22 28.08 52.92 22.59 52.44 25.60 11.77 32.62 05.31 49.96 07.16 09.05 49.84 07.40 48.76 35.43 08.60 16.81 22.78 01.96 28.56 28.87 43.69 54.01 33.94 01.28 09.94 46.40  CoNFIG-2 (2) (3) −02 40 03.20 4C -02.50v +04 14 17.70 AO 1200+04 +52 02 18.80 WSTB 14W50 +29 29 12.40 4C 29.46 −01 00 12.10 4C -00.48 +17 30 02.20 4C 17.54 +25 29 27.20 3C 269v +19 55 28.90 4C 20.28 +09 28 26.90 4C 09.41 +31 30 56.70 4C 31.40 +04 13 17.30 4C 04.42 +03 30 50.10 4C 03.23 +09 40 05.70 1223+099v +20 23 19.10 4C 20.29 +17 50 20.90 1227+181 −01 34 55.10 1229-013v +36 55 18.00 4C 37.34 + 5 19 24.50 4C 05.54 +32 30 27.30 4C 32.40v +57 30 36.90 1239+577 +49 00 18.20 4C 49.25 +33 23 15.80 4C 33.30 +50 34 01.40 3C 277 +52 45 30.80 1249+530v +47 15 39.00 3C 276 +03 15 50.40 1249+035 +44 35 20.60 4C 44.22 +58 18 46.90 1300+585 +53 50 02.50 4C 54.30 −03 46 02.30 B1302-034 +06 42 15.90 3C 281 +11 54 24.20 4C 12.46 +20 44 30.10 4C 20.31v + 8 41 44.60 4C 08.38 +51 48 06.70 4C 52.27  (4) 906.1 1146.1 962.3 1230.6 1092.5 1010.2 866.8 1047.0 1064.4 805.8 800.3 1280.3 1008.3 1269.5 931.0 807.4 920.2 938.2 827.8 1299.2 1204.6 1289.2 1155.8 958.5 982.9 935.3 929.8 898.0 908.9 826.0 1122.0 855.0 1098.7 932.8 1092.6  (5) −0.85 −0.21 −0.28 −0.77 −0.84 −0.68 −0.83 −0.75 −1.10 −1.06 −0.24 0.67 −0.63 −0.66 −0.54 −0.68 −0.91 −0.83 −0.81 −0.37 −0.54 −0.90 −0.99 −1.14 −1.08 −0.73 −0.93 −0.51 −0.95 −0.68 −0.87 0.27 −0.66 −0.03 −0.78  (6) C C* C II-c II-c S* II-c II-c II-c II-c C* C* I-p II-c C II-c II-p II-c II-p II-c C II-c II-c II-p II-c I-p II-p C II-c S* II-c C* II-p II-c II-c  110  Appendix A. The CoNFIG catalogue  (1) 170 171 173 174 180 181 185 186 188 190 191 193 196 198 200 204 207 208 209 210 214 215 216 218 219 220 226 228 229 230 232 233 238 239 243  CoNFIG-2 (10) (11)  (7)  (8)  (9)  1.2118 0.6510 0.8608 1.4449 0.5831 0.3056 0.5687 1.0822 0.8275 0.9650 0.9559 0.3093 0.6800 0.1935 0.5930  0.0014 0.2832 0.0622 0.1148 0.2324 0.0011 0.0459 0.0014 0.0009  0.0207 0.0651  S P P R P I P S S S S P S P P  18.9 26.4 20.7 24.2 22.1 18.5 22.0 18.6 20.9 17.2 19.0 22.3 18.0 20.8 24.5  0.4798 0.4486  0.0333 0.0796  P P  0.2067 0.4075 0.4140  0.0011 0.0284  0.0989 0.1953 0.7953 1.2500 0.5990 0.3852 1.2332 0.0981 1.0574  (12)  (13)  (14)  18.8 22.6 19.9 22.8 22.2 18.1 21.1 18.5 20.3 16.9 18.6 21.4 17.8 18.9 23.0  18.5 21.4 19.2 22.5 21.4 18.1 19.8 18.2 20.1 16.8 18.5 20.0 17.7 17.5 21.4  18.4 21.9 18.4 22.6 21.2 18.1 18.8 18.1 20.0 16.6 18.5 19.5 17.6 17.1 20.3  18.5 21.6 17.6 21.6 20.3 18.1 18.6 18.1 19.4 16.4 18.4 19.0 17.4 16.5 19.5  22.1 22.3  21.4 21.5  19.6 20.5  18.8 20.4  18.5 19.2  S P S  20.0 21.5 24.8  18.6 20.3 23.0  17.5 18.6 21.7  17.0 17.8 20.1  16.7 17.4 19.4  13.9e  0.0001 0.0223 0.1968  S P P  18.5 20.4 22.3  16.5 18.9 21.8  15.5 17.7 21.2  15.0 17.2 20.9  14.7 16.9 19.8  12.3e 14.1e  0.0027 0.0794 0.0129 0.0027  S S S I P S  24.4 19.3 23.5 19.3 17.0  24.1 18.7 24.3 17.5 16.9  22.1 18.3 23.9 16.5 16.7  20.9 18.0 21.6 16.1 16.7  20.3 17.6 21.6 15.8 16.8  0.0011 0.0799  (15)  14.2  15.9  15.0  15.3 14.0e  14.4 14.2 14.6  111  Appendix A. The CoNFIG catalogue  A.1.3  CoNFIG-3 (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 51  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  41 42 42 42 42 42 43 43 43 43 44 44 44 44 44 44 45 45 45 45 45 45 46 46 46 46 46 47 47 48 48 48 48 48 49 49 50 50 51 51 51 52 53 53 53 53 53 54 54  28.26 03.43 03.93 22.99 27.11 48.37 01.74 02.77 47.18 56.94 05.77 11.04 14.66 25.07 34.84 50.95 04.85 27.03 32.32 44.74 57.34 58.32 19.87 35.32 43.33 50.83 52.13 08.40 44.55 04.28 08.62 27.87 42.66 50.05 19.01 27.59 19.92 31.00 31.48 38.62 39.07 34.57 06.08 33.41 38.10 44.24 53.61 08.37 20.86  (2) +10 +25 +13 +14 +14 +11 +16 +18 +14 +25 +20 +26 +19 +13 +19 +11 +16 +24 +26 +23 +17 +12 +25 +17 +27 +21 +22 +17 +16 +14 +16 +27 +17 +20 +21 +22 +15 +16 +13 +14 +19 +29 +19 +18 +29 +10 +26 +11 +16  55 05 29 54 31 44 06 41 36 01 35 01 48 59 21 31 49 38 23 02 38 22 17 21 57 31 51 47 36 47 34 33 33 25 05 11 10 15 43 14 36 48 17 54 01 25 48 37 24  24.70 04.30 17.60 58.20 39.90 15.00 59.90 56.00 06.80 44.50 18.30 50.80 22.00 56.20 33.00 55.30 26.00 04.00 49.70 39.40 30.20 28.50 03.50 07.40 00.70 50.90 04.70 52.90 06.00 04.60 39.50 18.80 33.20 34.80 48.00 27.90 44.00 47.60 24.40 01.90 24.80 20.50 42.50 01.00 17.70 57.90 33.40 34.40 25.10  (3) J1441+1055v 1439+252 4C 13.53 1440+151v 1440+147 1440+119v 1440+163v 1440+189v B1441+148v 1441+25 1441+207 B1441+2614 1441+200v 4C 14.54 B1442+195 B1442+117v 4C 16.41 1443+2450 4C 26.44v 1443+232v 4C 17.60 1443+125 1444+254 1446+1735 4C 28.37v 4C 21.42 1444+230v 4C 17.61v 4C 16.42 1445+149 1444+175v 1446+277 1446+177 3C 304 1447+213 1447+224 1447+153v 1448+164v 1449+139 4C 14.55 1449+198v 1450+300 1450+194v 1451+191v 1451+292v B1451+1038 B1451+270 1451+118 1452+166  (4) 422.7 204.7 706.0 202.6 224.1 200.7 242.7 219.9 303.9 361.7 281.7 273.5 201.5 607.5 342.5 290.3 410.4 212.1 303.9 343.2 826.9 395.6 355.2 754.1 1113.9 529.6 337.7 995.5 371.0 440.0 265.0 242.1 362.2 989.1 432.9 276.1 247.0 301.5 691.8 359.9 407.4 247.0 219.5 486.4 265.3 374.8 518.6 451.6 228.4  (5) −0.78 −0.41 −0.97 −0.95 −0.64 −0.67 −0.72 −0.51 −0.86 −0.78 −0.67 −0.76 −0.93 −1.02 −0.82 −0.90 −0.64 −0.82 −0.66 −0.81 −0.77 −0.92 −0.66 −0.60 −1.11 −0.48 −0.99 −0.91 −0.30 −0.93 −0.74 −0.95 −0.14 −0.95 −0.86 −0.28 −0.64 −0.69 −0.76 0.34 −0.02 −0.77  (6) C II-c C II-c II-c II-c II-c II-p C C* C II-c C II-c Iw -c II-c II-c C II-c II-p II-c II-c II-c C* C II-p C C II-c Iw -c II-c C II-c II-p II-c II-c C II-c C II-c C C C II-p II-c C* C* II-c C*  112  Appendix A. The CoNFIG catalogue  (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 43 44 45 46 47 48 49 51  CoNFIG-3 (10) (11) 23.2 24.5 22.7 22.7 18.7 18.5  (12) 23.9 21.5 18.2  (13) 21.6 20.7 18.0  (14) 20.6 19.7 17.9  P P P  22.3 23.5 21.3  22.4 22.6 19.6  21.9 21.5 18.2  22.8 20.4 17.7  20.9 20.3 17.4  1.4300 0.0620  S S  18.3 20.0  18.3 19.6  18.1 19.3  17.9 19.1  17.9 18.9  0.0621  S  17.1 22.9 23.0 19.5 18.9 24.9 18.8 18.6 19.1 17.7 18.4  15.6 23.5 22.1 18.1 18.6 23.5 18.6 18.4 19.0 15.9 18.0  14.8 22.8 20.3 16.9 18.6 21.9 18.6 18.3 18.6 15.0 18.1  14.5 21.5 19.3 16.4 18.7 20.3 18.4 18.2 18.7 14.6 17.8  14.2 20.9 19.0 16.0 18.6 19.3 18.5 18.2 18.7 14.3 17.7  18.8 21.6 18.7 20.8 22.8 21.5 18.4 17.9 19.0 22.5 20.0 19.6 21.0  18.5 21.0 18.4 20.5 22.6 20.8 17.0 17.1 17.6 21.6 18.8 18.2 20.1  18.4 20.1 18.3 20.2 21.7 20.3 16.5 16.9 17.1 21.8 18.4 17.6 19.6  18.2 19.4 18.4 20.0 21.5 19.9 16.2 16.7 16.8 22.0 17.9 17.2 18.8  (7)  (8)  (9)  0.8241  0.1123  P  1.0425 0.6102 0.2481  0.3905 0.0882 0.0250  0.5656 0.1906 0.8502 0.7126  0.0515 0.0003 0.0015 0.0705  P S S P  0.3176 1.1486 0.0653 0.5134  0.0011 0.0029 0.0005 0.0002  I S S S  0.7839 1.4000  0.0725  P S  0.1868 0.2085 0.2521 0.2195 0.9988 0.2540 0.2450 0.4820  0.1169 0.0002 0.0227 0.0141 0.0306 0.0226 0.0710  P S K P R S P P  18.9 22.3 18.6 21.3 23.2 24.4 20.3 20.0 21.7 22.6 21.5 21.4 21.7  0.6941 0.3065  0.1619 0.0011  P I  22.2 20.6  21.7 18.9  21.3 18.3  20.5 18.1  20.1 18.0  23.3 22.1 22.5 22.6 21.6 20.7 24.0 19.3  24.1 21.5 23.1 23.0 20.1 20.1 22.2 18.9  22.7 20.1 21.8 22.4 19.4 19.6 20.4 18.4  21.5 19.5 20.6 21.2 19.0 19.2 19.4 18.2  20.6 19.1 19.7 20.5 18.7 18.8 18.9 18.0  0.8017 1.0360 1.7644  0.0911 0.0460 0.0051  P I S  0.5234  0.0338  P  (15)  15.4  13.6e  12.0e 15.5 15.3  13.2e 15.1  113  Appendix A. The CoNFIG catalogue  (1) 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 97 99 101 102 103  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  54 54 54 54 55 55 56 56 56 56 56 56 57 57 57 57 57 57 57 58 58 58 58 58 58 59 59 00 00 00 01 01 01 01 02 02 02 03 03 03 03 03 03 03 04 04 05 06 07  22.75 29.16 32.30 42.58 07.32 55.36 05.65 21.94 28.69 39.93 52.03 53.43 00.72 05.05 23.36 43.45 48.71 53.80 57.40 02.01 02.75 05.26 33.88 34.64 38.91 14.57 42.07 24.05 21.36 53.33 28.50 36.72 38.33 58.81 00.35 00.56 51.38 01.63 08.07 22.40 29.52 39.51 51.32 58.47 17.22 26.71 00.08 19.33 09.23  (2) +25 +20 +29 +27 +14 +11 +16 +26 +13 +18 +24 +27 +13 +26 +24 +24 +25 +28 +11 +29 +18 +14 +18 +14 +24 +23 +29 +20 +14 +17 +21 +27 +13 +19 +24 +13 +25 +18 +12 +19 +10 +10 +12 +12 +10 +28 +11 +20 +16  39 15 55 32 12 51 26 35 02 08 15 41 47 58 59 35 06 32 44 28 39 34 30 09 58 56 03 12 34 39 34 44 24 14 39 11 44 20 37 33 33 16 28 30 57 54 58 27 07  CoNFIG-3 (3) 55.50 1452+258 26.10 1452+204 58.50 1452+301 11.30 1452+277 22.20 1452+144 44.70 NGC 5782 52.80 4C 16.43 56.40 1454+268 41.10 1454+132v 17.50 4C 18.39v 19.30 1454+244v 39.20 7C1454+2753 06.50 1454+139v 10.60 1454+271v 17.30 1455+251 08.30 1455+24 35.10 1455+253 20.00 4C 28.38 22.10 4C 11.47 31.40 1455+296v 33.30 1455+188v 10.00 4C 14.56v 56.10 4C 18.40v 51.20 1456+143v 57.40 1456+251 33.60 1457+241v 34.10 B2 1457+29 37.80 1458+204 59.80 4C 14.57 07.60 1458+178v 20.70 4C 21.44 24.00 1459+279 49.60 1459+136v 05.30 1459+194v 17.80 1459+248 54.30 1459+133v 14.90 1500+259 32.40 1500+1832 02.20 1500+128v 04.10 1501+197 31.20 1501+107v 02.80 MRC1501+104 07.40 1501+126 25.60 1503+1251v 35.40 1501+111v 30.60 1502+291 43.90 1502+121v 41.50 1504+206 16.70 1504+1618v  (4) 232.4 237.5 730.7 211.1 246.9 385.3 1290.3 345.4 260.7 408.6 508.3 321.6 276.2 295.0 237.2 794.4 580.9 972.1 559.9 232.9 253.8 431.1 499.0 312.6 236.7 217.2 367.0 294.1 376.5 206.4 298.5 342.7 250.2 312.2 273.6 314.0 250.7 316.5 235.3 232.6 281.8 340.8 299.0 268.1 252.8 583.2 205.9 294.9 513.1  (5) −0.71 −1.03 −0.54 −0.80 −0.76 −0.34 −0.53 −0.78 −1.15 −1.09 −0.84 −0.80 −1.11 −0.72 −0.52 −0.77 −0.94 −0.88 −0.75 −0.95 −0.89 −0.74 −0.96 −0.90 −0.96 −1.05 −0.64 −0.89 −1.17 −0.88 −0.55 −0.73 −0.84 −0.81 −0.72 −0.86 −0.89 −0.74 −1.58 −0.64 −0.57 −0.91 −0.96 −0.93  (6) II-p II-c C* II-c II-c I-c II-c II-c II-p II-c II-c II-c II-c II-c II-c C* II-c II-c II-c C C II-p II-p II-c II-p II-c II-p I-c II-c II-c I-p II-c C II-c II-c II-c II-c II-p II-c II-c C I-p II-c II-c C C* C II-c II-c  114  Appendix A. The CoNFIG catalogue  (1) 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 97 99 101 102 103  CoNFIG-3 (10) (11) 22.4 20.9  (7) 0.2186  (8) 0.0865  (9) P  (12) 19.7  (13) 19.3  (14) 19.0  0.5800 0.5321 0.2538 0.0322 0.2897  0.0363 0.0729 0.0002 0.0148  S P P S P  20.5 26.3 24.5 15.9 21.3  20.3 22.3 22.1 14.0 19.4  20.3 20.2 21.0 13.1 17.9  19.6 19.3 20.2 12.7 17.3  19.5 19.1 19.7 12.5 16.9  0.5423 0.6678 0.9468 0.5671 0.8593 0.3887  0.0040 0.2089 0.0374 0.0946 0.0217 0.0021  I P I P I I  20.2 26.6 25.3 21.5 21.7 19.1  19.8 22.3 23.4 20.5 21.8 18.8  19.7 21.7 22.5 19.7 21.2 18.6  19.6 21.0 21.0 18.9 20.7 18.7  19.2 21.8 20.0 18.7 20.5 18.6  0.1409 1.4381  0.1241  S I  19.2 25.2 19.9  17.3 23.0 19.8  16.2 22.2 19.7  15.6 22.0 19.5  15.3 20.8 19.4  1.0463 1.0334 0.6044  0.0545 0.1942 0.0464  I P P  21.5 22.2 25.6  24.0 22.1 22.3  22.0 21.8 21.0  21.2 21.4 19.9  21.5 20.5 19.4  0.1460 0.0722 0.0659 1.2303 0.2700 1.2859 0.5425 0.4941  0.0196 0.0012 0.0564 0.0135 0.0823 0.2465 0.0386  S P K I P I P P  19.4 17.7 16.9 22.0 21.0 23.2 22.9 24.2  17.5 15.7 15.3 22.3 18.6 25.1 22.2 21.2  16.4 14.8 14.7 22.4 17.0 22.4 21.7 19.7  16.0 14.4 14.5 21.6 16.4 21.8 21.4 18.9  15.6 14.1 14.4 21.3 16.1 20.6 21.8 18.5  0.7816  0.1063  P  22.8  24.0  21.6  20.7  19.7  0.2958 0.6452 0.5586  0.0558 0.1105 0.0935  P P P  21.6 21.5 21.6  20.5 22.4 21.5  19.2 20.9 20.5  18.6 20.4 19.9  18.4 19.6 19.7  S  19.6  17.7  16.8  16.3  16.0  P I  24.9 18.9 20.8 26.5 24.8  22.9 18.5 20.5 21.9 21.3  22.2 18.5 20.3 20.3 20.2  21.5 18.4 20.0 19.3 19.8  20.8 18.2 20.0 18.9 19.5  0.0950  0.4960 0.6007  0.0402 0.0074  (15)  10.1e 13.8e  13.2e  13.4e 12.0e 13.0 13.9e  13.2e  115  Appendix A. The CoNFIG catalogue  (1) 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 137 138 139 140 141 142 143 144 145 146 148 149 150 151 152 153 154 155  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  07 07 07 07 08 08 08 09 09 09 09 09 09 09 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 13 13 13 14 14 14 14 14 15 15 15 16 16 17 17 17 17 17 17 18  21.88 39.40 41.89 47.06 05.12 39.31 48.64 00.22 04.80 15.60 16.35 42.80 42.80 50.53 02.49 39.49 43.15 49.12 50.01 56.69 05.59 09.08 15.58 29.43 31.60 45.70 07.48 12.07 32.56 27.61 29.57 45.74 03.55 14.64 15.61 31.84 49.50 03.43 23.74 54.17 02.98 56.81 04.56 23.58 24.70 49.52 51.37 53.32 05.11  (2) +10 +11 +12 +24 +18 +18 +28 +24 +28 +14 +16 +29 +15 +15 +23 +20 +12 +14 +10 +18 +22 +18 +18 +10 +28 +21 +22 +15 +14 +22 +10 +24 +22 +23 +15 +12 +10 +22 +10 +24 +14 +19 +21 +29 +17 +14 +10 +26 +19  18 04 08 34 52 58 50 19 39 06 58 39 56 57 22 19 40 37 42 02 08 01 08 01 22 08 47 40 56 30 11 11 23 27 41 34 17 31 18 58 18 32 22 55 29 27 00 48 42  CoNFIG-3 (3) 46.30 B1507+105 01.00 B1505+113 04.30 4C 12.54v 30.40 1505+247v 43.80 1505+190v 60.00 1506+191v 09.50 1506+290 50.50 1506+245v 26.70 1506+288v 14.80 4C 14.58v 57.20 1506+171 02.80 1507+298 59.10 1509+1595 25.70 J1509+1557v 03.10 1507+235v 07.00 1508+205v 52.30 1508+128 26.20 1508+148v 14.10 1508+108v 38.90 1410+1804 06.40 1508+223 53.80 1508+182 04.90 1508+183v 43.80 4C 10.40v 41.40 1509+285v 03.10 1509+213v 14.60 1509+229v 25.50 4C 15.45v 36.70 1510+151v 23.50 1511+226v 03.90 1511+103 02.80 1511+2422 31.50 1511+225v 11.20 1512+2338 59.60 1511+158v 17.80 1512+127v 00.90 1512+104 45.40 1512+227v 37.30 1512+104B 40.40 1513+251 22.90 1513+144 13.40 B1514+197 42.90 1514+215v 30.40 1515+301v 28.30 1515+176 59.30 1515+146v 26.90 4C 10.41 39.50 1515+269v 43.90 1515+198v  (4) 403.2 226.4 421.0 314.1 220.1 299.4 391.2 287.4 252.4 402.7 233.5 205.6 284.9 386.0 257.6 212.0 273.3 214.2 220.2 305.7 411.1 375.9 281.9 644.7 207.9 270.6 280.1 993.5 223.7 205.4 221.4 367.3 268.0 247.0 278.2 323.0 436.7 208.4 237.8 219.7 296.3 464.1 243.3 320.5 226.0 201.8 229.5 284.1 423.2  (5) −0.43 −0.65 −1.04 −1.02 −1.01 −1.12 −0.58 −0.81 −0.73 −1.08 −0.97 −0.92 −0.86 −0.96 −0.68 −0.76 −1.06 −0.96 −0.44 −0.95 −0.73 −0.85 −0.97 −0.94 −1.10 −0.75 −0.96 −0.81 −0.89 −0.84 −1.18 −0.76 −0.52 −0.78 −0.94 −0.27 0.10 −0.86 −0.99 −0.42 −0.71 −1.48 −0.67 −1.00  (6) C II-c II-c II-c II-p C C II-c C C II-c II-c C C II-c II-c II-c II-c II-c C C* I-c C II-c II-c II-c II-c II-c C C II-c II-c C II-p II-p C I-c Ii -c II-c C II-c C* II-c II-c II-c II-c II-c II-c II-p  116  Appendix A. The CoNFIG catalogue  (1) 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 137 138 139 140 141 142 143 144 145 146 148 149 150 151 152 153 154 155  CoNFIG-3 (10) (11) 18.5 16.2 18.3 17.9  (7) 0.0781 0.4755  (8) 0.0002 0.0001  (9) S S  (12) 15.2 17.9  (13) 14.8 17.6  (14) 14.5 17.4  2.4083 0.3190 0.5371  0.0018 0.0012 0.2103  S I P  19.8 18.6 23.2  1.0377  0.0567  I  0.9136  0.0470  0.1850  19.1 18.5 22.5  19.2 18.4 21.8  19.1 18.2 21.5  18.8 18.2 20.5  25.0 22.8  23.2 22.5  23.0 22.0  21.2 20.9  20.6 20.6  I  23.5  24.6  22.5  20.9  19.8  0.0104  P  20.3  18.2  17.0  16.5  16.1  1.1775 0.7248 1.1561  0.0421 0.0103 0.0651  I I I  23.7 20.9 22.3  23.1 20.7 23.9  22.3 20.3 22.9  21.5 20.3 21.5  21.2 20.1 21.6  0.1159  0.0003  S  23.9 18.8  22.9 16.5  22.3 15.4  22.0 15.0  21.0 14.5  2.1000 1.2259  0.0845  S R  21.9 22.8  22.0 23.4  21.5 22.1  21.2 21.9  20.8 22.0  S  18.1 19.5  17.9 19.3  17.9 19.2  18.0 18.9  17.9 18.9  15.5  15.5 13.2 14.7 12.3e  0.8280  1.5464 0.0700 0.1554 0.1046  0.0017 0.0002 0.0224 0.0165  S S P P  17.9 18.6 20.1 18.4  17.6 16.5 18.4 16.4  17.4 15.5 17.7 15.4  17.3 15.0 17.2 15.0  17.4 14.6 17.0 14.6  0.5756 0.0572 0.3295 1.1059  0.0592 0.0002 0.0013 0.0445  P S I I  22.4 17.3 18.5 24.3  22.0 15.2 18.2 22.9  20.7 14.3 18.3 22.6  19.7 13.9 18.3 21.4  19.3 13.6 18.4 20.6  0.2202 0.6500 0.2787 1.8420 0.2419  0.0289 0.0336 0.2172 0.0388  P S P R P  22.0 19.4 22.3 23.4 19.9  20.0 18.8 20.7 22.5 19.2  18.6 18.3 19.0 23.2 18.2  18.0 17.8 18.5 23.7 17.8  17.7 17.5 18.0 22.9 17.5  0.8129 0.9560 0.7581  0.0725 0.0389 0.1275  P I P  22.7 25.6 22.0  21.9 25.3 21.5  21.1 22.1 21.0  20.3 21.0 20.4  19.3 19.8 19.8  (15) 13.0 15.0  13.6e  12.2e  11.6e  14.8 14.1  15.3  117  Appendix A. The CoNFIG catalogue  (1) 156 157 158 159 160 161 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  18 18 18 18 18 19 20 21 21 22 22 22 22 23 23 23 23 23 23 24 24 24 24 25 25 25 26 26 26 27 27 27 27 27 28 29 29 29 30 30 30 31 31 32 32 32 32 32 33  14.06 23.16 32.14 35.97 40.02 03.03 29.84 13.53 16.47 12.15 17.09 19.66 24.16 21.74 25.27 27.56 28.40 56.93 58.49 05.26 12.71 41.60 54.42 02.88 08.80 32.87 09.24 31.81 33.87 15.68 32.48 40.01 44.61 57.80 06.39 09.51 46.19 51.76 04.69 05.11 49.02 48.52 49.73 28.50 34.03 44.30 50.67 58.12 14.49  (2) +15 +22 +11 +10 +24 +28 +15 +22 +15 +10 +10 +21 +21 +13 +27 +11 +28 +10 +16 +29 +19 +15 +27 +11 +12 +15 +17 +14 +12 +20 +11 +15 +28 +22 +13 +17 +15 +19 +29 +23 +27 +10 +22 +24 +20 +28 +22 +15 +15  49 58 18 32 27 49 26 42 12 41 13 19 58 32 04 30 36 55 14 00 23 21 57 07 53 56 02 44 53 53 54 21 55 33 23 13 39 04 00 16 21 55 25 15 06 03 41 56 16  CoNFIG-3 (3) 32.60 1515+160 35.20 1516+231v 45.40 1516+114v 12.60 1516+107v 05.20 4C 24.33 45.50 1516+290v 13.20 4C 15.47 46.20 1519+228v 09.90 1519+153v 31.00 1519+108v 00.50 1519+103 57.20 1520+215v 08.80 1520+221 29.40 4C 13.54v 57.70 4C 27.31v 23.90 1521+116 04.10 4C 28.39 44.10 4C 11.49 47.60 1523+1625 23.60 1524+2901 59.70 1521+195v 21.70 B1522+155v 07.70 1522+281 45.00 1522+113 18.10 1522+130 11.40 4C 16.45v 26.70 1526+1604 59.20 1524+149v 07.60 1526+1288v 23.00 1525+210 32.20 4C 12.55v 57.90 1525+155v 06.60 1525+290v 01.30 1525+227v 32.30 1525+135 26.80 1526+173 44.50 4C 15.48 34.60 1527+192v 09.30 1528+29 22.20 1527+234 27.50 1528+275 39.90 1529+110 05.90 1529+225v 29.90 J153233.19 38.80 4C 20.36v 46.40 B2 1530+28 35.20 1530+228v 05.80 1530+161 42.20 4C 15.49v  (4) 219.3 244.1 405.5 409.1 291.3 214.9 556.9 261.8 347.0 499.4 333.4 298.0 333.6 351.2 347.5 407.2 835.6 1060.2 234.8 279.1 263.9 445.0 209.6 407.7 219.7 485.7 317.1 231.0 234.4 217.9 479.8 308.0 212.8 335.4 225.0 409.4 536.8 604.8 258.3 277.6 209.6 200.5 304.8 328.5 577.7 381.0 222.9 284.5 947.5  (5) −0.93 −1.03 −1.11 −0.72 −1.20 −0.97 −0.78 −1.10 −0.75 −0.82 −0.71 −1.04 −0.83 −1.04 −1.03 −0.57 −0.78 −0.59 −0.54 −0.89 −0.28 −0.89 −0.52 −0.95 −0.47 −0.75 −1.02 −0.82 −1.04 −0.64 −0.49 −0.75 −0.89 −0.94 −0.83 −0.66 −0.40 −0.56 −0.77 −0.68 −0.88 −0.43 −0.61 −0.88 −0.69  (6) II-c C C C I-p C II-p II-c U II-c II-c C II-c C II-c I-p Iw -c U C C II-c C II-c C* II-c C C II-c II-c II-c II-c C I-c II-p II-c II-c II-c C II-c II-c C II-c C II-c II-c I-c C II-c C  118  Appendix A. The CoNFIG catalogue  (1) 156 157 158 159 160 161 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 199 200 201 202 203 204 205 206  (7) 1.1964  (8) 0.0567  1.8470  (9) I  CoNFIG-3 (10) (11) 23.0 23.8  (12) 22.8  (13) 21.6  (14) 20.5  (15)  S  0.4837 0.2193 0.2040 0.2510  0.0041 0.0114  I P S P  19.5 20.8 21.2 22.0 23.3  19.4 18.9 19.5 20.4 19.9  19.5 17.6 18.0 19.0 19.5  19.3 17.1 17.5 18.5 19.3  19.0 16.7 17.1 18.1 19.2  0.9617 0.3758 0.2030 0.0822 0.4110 0.7961  0.1788 0.0016  P I S S S P  22.2 19.4 20.1 18.0 22.2 23.1  22.1 19.0 18.7 16.0 20.3 26.0  21.7 18.9 17.9 15.0 19.7 21.4  21.1 18.6 17.5 14.5 19.4 20.4  19.8 18.4 17.0 14.2 19.3 19.4  1.2349 0.6280  0.0720  I S  23.5 18.3  23.7 18.0  22.8 18.1  21.7 18.0  20.6 18.0  0.3326 0.2570  0.0012 0.0008  S S  19.4 20.6 25.1  19.3 19.9 23.5  18.4 18.6 23.2  18.2 18.1 21.9  17.5 17.6 21.5  0.6677  0.1220  P  25.3  23.3  21.8  20.6  20.0  0.0652 0.2530 0.6760 0.7970 0.3523  0.0011 0.0159 0.0341  S S S I P  22.0 17.4 16.9 19.6 21.0 23.9 20.6  20.8 15.4 16.7 19.0 20.9 20.8 19.9  20.7 14.5 16.6 18.7 20.7 19.3 19.8  21.0 14.0 16.6 18.8 20.5 18.6 19.7  20.9 13.7 16.5 18.5 20.6 18.1 19.4  0.0839 0.1049  0.0178  S P  18.2  16.1  15.1  14.6  14.2  0.5640  S  20.6  20.2  19.7  18.6  18.3  0.0732  S  19.3  17.4  16.5  16.1  15.7  0.0481  0.1255  13.9e  15.0 13.3  15.1 15.0 15.1  11.1e  15.3 13.1 13.0  13.5e  119  Appendix A. The CoNFIG catalogue  (1) 207 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 246 247 248 250 251 252 253 255 256 257 258 259 261  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  33 34 34 34 34 35 35 36 36 37 37 37 38 39 39 40 41 41 42 42 42 43 43 43 43 44 45 45 45 46 46 46 47 47 47 47 49 48 49 50 50 50 51 51 51 52 52 52 53  15.08 17.83 22.66 46.22 57.26 19.47 49.55 11.93 34.02 07.76 08.01 45.72 34.18 16.46 25.11 09.02 04.72 10.39 19.54 20.49 56.17 23.83 28.53 41.41 43.81 17.49 02.48 55.05 55.06 02.56 05.99 31.47 07.52 12.96 21.00 30.07 04.81 07.46 36.64 12.00 38.88 43.51 11.66 36.81 45.36 10.54 10.97 24.01 05.37  (2) +13 +10 +13 +19 +23 +27 +14 +13 +17 +26 +14 +23 +23 +14 +16 +14 +18 +15 +17 +24 +10 +21 +22 +13 +18 +14 +13 +19 +23 +17 +27 +21 +11 +18 +27 +14 +26 +14 +18 +27 +18 +11 +26 +10 +12 +18 +22 +11 +14  32 17 49 18 30 52 03 12 16 48 24 02 18 16 04 21 05 44 56 01 54 45 52 31 47 10 45 06 11 54 49 57 42 04 48 56 44 51 35 17 39 20 06 36 43 42 45 12 01  CoNFIG-3 (3) 24.30 4C 13.55v 08.40 1531+104 17.10 1532+139v 10.20 4C 19.50v 11.10 ARP 220 56.80 1533+280 50.90 1533+142 35.50 1533+133v 07.40 4C 17.63v 28.50 1534+269 47.10 1534+145 24.20 1537+2304 36.80 1536+234 22.60 1536+144 00.30 1537+162 14.00 1537+145v 50.90 1538+182 02.60 4C 15.50v 08.20 4C 18.43v 55.10 1540+241 34.70 B1540+11 34.80 1541+219 32.80 1541+230v 08.50 1541+136 20.40 1541+189 13.80 1541+143 47.30 1542+139v 29.30 4C 19.51v 57.90 1543+233 38.40 1543+180v 17.30 1544+279v 41.30 1544+221v 49.80 1544+1152 10.80 4C 18.44v 22.00 1545+279 55.70 1545+1505 14.50 1546+268 17.60 4C 15.51 00.10 4C 18.45v 58.20 1548+274v 01.20 1548+188 58.50 4C 11.50 14.30 1549+262v 22.70 1549+107 25.10 1549+128v 07.80 1549+188v 08.00 1550+229 45.20 1550+113 16.60 J1553+1401  (4) 1113.1 336.5 809.0 674.7 326.3 302.7 299.1 210.3 368.7 263.1 204.8 200.2 259.6 203.7 412.5 569.3 276.6 217.9 529.8 273.4 303.0 208.1 219.1 303.0 356.2 217.8 231.7 927.7 228.2 229.9 217.1 427.2 367.1 419.9 274.0 203.7 260.8 398.6 584.6 282.8 214.5 828.3 455.3 530.7 250.1 274.7 545.5 211.9 303.3  (5) −0.85 −0.96 −0.64 −0.76 −0.21 −0.92 −0.69 −0.73 −1.04 −0.98 −0.29 −0.90 −0.31 −0.77 −0.89 −1.42 −0.81 −0.81 −0.92 −0.83 −0.57 −0.80 −0.49 −1.06 −0.97 −0.72 −0.49 −0.93 −0.88 −0.69 −0.65 −0.94 −0.81 −0.64 −1.00 −0.88 −0.61 −0.94 −0.74 −0.88 −0.66 −0.93 −0.81 −0.68 −0.72 −0.94  (6) II-c I-c II-p C C II-p Ii -p C C Iw -c II-c C C II-c C* II-p U C II-c II-c II-c II-c II-c II-c C II-c C U C II-c II-p II-c II-c II-c II-c I-c II-c II-p II-c II-p II-p I-p II-c II-c C U C C II-c  120  Appendix A. The CoNFIG catalogue  (1) 207 208 209 210 211 212 213 214 215 216 217 219 220 221 222 223 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 246 247 248 250 251 252 253 255 256 257 258 259 261  (7) 0.7710 0.1411 0.2095  (8) 0.0116 0.0631  (9) S P P  0.0181 0.5337  0.0001 0.0465  S P  CoNFIG-3 (10) (11) 20.4 19.9 20.3 18.1 21.1 19.3  (12) 19.8 17.0 18.0  (13) 19.8 16.5 17.4  (14) 19.2 16.1 17.0  15.5 22.1  13.8 21.2  13.0 19.9  12.6 19.0  12.3 18.6  23.0  23.8  22.9  22.1  21.3  0.2626  0.0168  P  21.6  19.6  18.2  17.6  17.2  0.7339  0.0761  P  0.7503 0.6149  0.0104 0.0062  I I  21.6 20.0 21.0 20.2  20.9 19.4 20.7 20.0  20.3 19.2 20.2 19.8  19.4 19.2 20.4 19.9  19.2 18.9 19.9 19.9  1.6671 0.5462 0.9920  0.0020 0.0297  S P S  19.5 23.3 19.0  19.3 21.8 18.9  19.3 20.1 18.6  19.0 19.1 18.6  19.1 18.4 18.6  0.2201 0.6047 1.3960  0.0002 0.1362  S P S  16.0 22.9 19.2  24.9 22.5 19.4  16.9 21.5 19.1  16.7 21.0 19.0  16.9 20.1 19.0  1.2473 0.7433  0.0595 0.1229  I P  22.9 23.8 23.3  21.7 24.4 22.5  21.1 22.6 21.8  20.4 21.7 20.8  20.1 20.9 20.5  0.8172 0.7343 0.7764 0.5368 0.5741 0.0947 0.5947  0.1124 0.2006 0.0256 0.0332 0.0049 0.0172 0.0460  P P I P I P P  22.5 22.2 23.7 23.6 20.4 18.2 24.3  22.5 23.2 22.7 21.7 20.5 16.3 22.8  21.7 22.0 21.6 20.1 19.9 15.4 21.2  20.7 21.3 20.5 19.2 19.7 15.0 20.2  19.8 21.4 20.4 18.8 19.5 14.6 19.4  S  21.1  21.5  21.1  21.0  21.0  1.4420  0.4360 0.6965 0.3984  0.0941 0.0204  S P P  18.6 25.1 22.5  18.5 22.8 19.6  18.6 21.6 18.0  18.0 20.4 17.3  17.9 20.0 16.8  0.5555  0.0510  P  0.6776  0.0087  I  25.0 23.6 23.8 20.9  23.2 23.6 24.1 20.2  21.1 22.6 22.5 20.1  20.1 21.8 22.3 20.1  19.6 21.0 22.1 19.7  (15) 13.5e  13.8e  12.1e  15.1  121  Appendix A. The CoNFIG catalogue  (1) 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 279 280 281 282 283 284 285 286 287  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15  53 53 53 53 53 53 53 54 54 54 55 55 55 55 55 55 56 56 56 56 57 59 59 59 59  09.93 19.50 27.68 32.77 43.61 50.45 54.37 34.04 39.26 54.57 0.57 31.35 32.85 43.09 51.00 52.29 30.55 37.78 43.27 47.07 38.81 06.89 16.81 24.98 54.25  (2) +21 +17 +27 +12 +23 +25 +21 +25 +19 +14 +21 +27 +20 +11 +24 +13 +22 +20 +14 +10 +10 +12 +11 +16 +16  00 49 30 56 48 01 59 19 47 59 41 45 09 11 06 18 07 00 18 37 12 10 15 24 18  CoNFIG-3 (3) 43.70 1550+211 43.10 1551+179 55.80 1551+276v 50.80 B1551+1305 04.70 4C 23.42 25.30 1551+251v 27.50 1551+221v 19.40 1552+254v 18.70 4C 19.52v 40.80 1552+151 59.50 1552+218 40.70 1553+279v 39.70 1555+2016 24.50 B1553+113 15.00 4C 24.35 37.50 1553+134v 29.70 1554+222v 51.70 1556+2001 32.80 1554+144v 55.70 4C 10.44 28.10 1555+103v 26.90 4C 12.56 45.70 4C 11.51v 41.30 J1559+1624 38.40 4C 16.46  (4) 244.9 383.7 228.5 947.7 732.1 367.8 530.0 394.6 1094.5 277.7 233.6 218.6 212.6 312.0 481.9 202.9 343.4 289.9 271.0 415.5 267.7 688.8 667.7 321.3 987.1  (5) −0.84 −0.91 −0.64 −0.33 −0.65 −0.70 −0.72 −0.79 −0.78 −0.87 −0.40 −0.73 −0.28 −0.98 −0.69 −0.87 −0.74 −0.89 −0.76 −0.76 −0.55  (6) II-c II-c C C* I-c U II-c C C II-c C Ii -p C C* II-c U U C II-c I-p C II-c II-c C C  122  Appendix A. The CoNFIG catalogue  (1) 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 279 280 281 282 283 284 285 286 287  CoNFIG-3 (10) (11)  (7)  (8)  (9)  0.6901  0.0820  P  21.4  S S  1.2900 0.1150  (12)  (13)  (14)  20.9  20.1  18.8  18.9  17.3 18.1  17.2 16.3  17.1 15.4  17.1 14.9  17.1 14.6  (15)  12.4e  0.7454  0.1361  P  22.5  23.3  22.0  21.2  20.6  1.3400 0.6063 0.8645 0.6732  0.0914 0.0028 0.0729  S P S P  19.9 26.9 18.5 22.3  19.7 23.5 18.1 21.9  18.8 21.6 17.7 21.0  18.6 20.6 17.4 20.0  18.6 19.7 17.1 19.6  0.3600 0.5864 1.5481  S I R  14.8 21.0 24.3  14.5 20.5 23.6  15.3 20.2 22.7  14.0 19.8 22.6  13.9 19.6 22.0  11.2  0.0054 0.1100  0.3036  0.1879  P  0.1790  0.0192  P  20.4  17.4  16.3  15.8  15.4  12.9e  0.2853 0.8753  0.0227 0.0158  P I  22.3 21.7  20.2 21.4  18.5 21.2  17.9 20.8  17.5 20.6  14.4  123  Appendix A. The CoNFIG catalogue  A.1.4  CoNFIG-4 (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  08 08 08 08 08 08 08 08 09 09 09 09 09 09 09 09 09 09 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 15 15 15  18.51 28.14 32.29 32.70 33.31 37.71 46.83 52.43 14.92 23.53 28.95 31.43 48.25 52.02 56.27 57.00 58.48 59.89 04.66 19.21 25.85 35.33 04.35 07.85 08.29 10.28 14.61 23.53 35.32 02.34 05.27 46.22 51.56 51.98 14.84 14.94 26.43 27.39 29.35 38.87 41.97 52.16 09.37 23.04 35.80 57.34 10.01 11.41 28.72  (2) +00 +02 +00 −01 +01 +02 +01 +02 −03 −00 −01 −01 −02 −03 −02 −01 −01 +01 +02 −01 −00 −00 −03 +00 +01 −00 +02 +00 −03 +02 −03 +02 −02 −00 −03 −00 −01 +02 −02 −02 +01 +01 +01 −00 +02 +00 +00 −01 +01  13 25 31 31 16 48 33 42 17 04 57 00 30 03 46 21 09 14 03 08 41 41 00 36 24 35 17 42 20 54 19 29 08 45 12 22 46 37 09 33 11 42 49 01 56 12 36 37 05  09.50 48.70 33.90 19.50 22.10 29.40 56.60 48.60 03.70 36.40 20.30 53.20 55.90 10.30 05.10 04.70 14.10 50.00 07.10 03.10 51.50 53.30 43.30 07.80 41.10 59.10 22.50 40.10 19.60 39.60 29.10 26.20 34.50 07.70 27.00 56.60 46.70 28.80 31.00 15.10 26.60 41.00 10.80 38.00 18.30 17.90 21.30 02.80 54.20  (3) J140818+00 1405+026v 1408+005 J140832+00 1406+015 1408+0281v 1406+018 1408+0271v 1406-030 1409-0008 J140929-01 1406-007v 1407-022 1409-0307 B1407-0231v 1409-0135 1407-009 1409+0125 B1407+022 1410-0113 1410-0069 1408-004 B1408-0246v J141107+00 1408+016 1408-003 1411+0229 1408+009 1408-030 1409+031v 1409-030v 1410+027 1410-019v 1412-0075 NGC 5506v 4C -00.54 1410-015 1410+028 1413-0216 1413-0255 1411+014 1411+019 1414+0182 1411+002 1412+031 LEDA 184576 1415+0060 N274Z243 N342Z086  (4) 113.8 243.7 61.2 73.3 601.3 77.0 173.6 58.3 147.4 68.9 90.3 69.8 87.5 163.6 73.0 71.4 150.2 53.6 333.5 54.0 66.3 178.7 277.3 242.0 187.5 103.3 86.5 426.5 348.2 644.3 360.2 120.9 388.2 61.8 338.8 233.4 84.3 55.9 115.6 59.1 195.4 140.8 55.3 152.6 135.9 110.4 68.8 113.7 107.2  (5) −0.93 −0.64 −0.60 −1.07 −0.77 −1.11 −1.02  −1.17 −0.63 −1.21 −0.65 −1.27 −1.09 −0.34 −0.89 −0.82 −0.90 −1.00 −0.85 −0.34 −1.06 −0.93 −1.32 −0.40 −0.71 −0.75 −0.73  (6) C Ii -p II-c C U II-c U U C C II-p II-c C II-c II-p Ii -p II-p C C* C C U I-p C* II-c II-c U II-c II-c C II-c II-c C II-c Ii -p II-c II-p II-c C II-p C II-c II-c II-c II-c Iw -c II-c I-p I-p  124  Appendix A. The CoNFIG catalogue  (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  CoNFIG-4 (10) (11) 21.8 21.5 20.8 19.4 19.8 19.7  (12) 20.9 18.4 19.6  (13) 21.0 17.9 19.4  (14) 20.9 17.5 19.4  I P  22.6 22.8  23.1 22.2  22.5 21.7  21.6 21.3  20.6 21.7  0.0015  S  17.5  17.2  17.4  17.3  17.5  15.0  0.1380 1.2640 0.2498  0.0002 0.0027 0.0358  S S P  21.8 19.6 17.6 21.8  21.6 17.4 17.6 20.1  21.6 16.3 17.3 18.7  21.3 15.8 17.4 18.2  21.3 15.3 17.4 17.9  14.0 15.4  1.0586 0.7824  0.0021 0.4442  S P  19.1 22.0  18.5 21.9  18.1 21.7  17.7 21.9  17.4 21.0  1.5305 1.7246  0.0019 0.0027  S S  19.1 18.4  18.8 18.3  18.8 18.4  18.7 18.1  18.7 18.2  0.1667 2.2663  0.0002 0.0016  S S  20.5 18.8  19.0 18.2  17.8 18.1  17.2 18.0  17.1 17.8  0.9250  0.2848  P  20.8  21.1  20.9  20.8  20.2  0.8161 0.0061 2.3630  0.1286 0.0012 0.0010  P S S  24.3 14.5 25.2  22.5 12.7 22.5  21.6 12.0 22.0  20.8 11.6 22.6  19.8 11.2 22.4  1.3513  0.1190  I  23.7  23.7  22.2  21.9  20.8  0.4832 0.7255 0.4764 0.2532  0.0747 0.0585 0.0035 0.0002  P P I S  21.4 23.6 19.3 20.8  21.1 23.0 19.0 18.6  20.2 21.5 19.1 17.1  19.6 20.2 19.2 16.6  19.2 19.7 19.1 16.3  0.1271  0.0001  S  21.3  19.8  18.8  18.4  18.0  0.1500 0.1647  0.0002 0.0002  S S  19.1 20.3  17.1 17.8  15.9 16.6  15.4 16.1  15.0 15.8  (7) 1.2377 0.1782 1.6734  (8) 0.0050 0.0438 0.0025  (9) S P S  1.1929 0.5862  0.0795 0.1907  0.6377  (15)  14.2  8.2e  14.6  13.9 13.6e  125  Appendix A. The CoNFIG catalogue  (1) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  15 15 16 16 16 16 16 16 17 18 18 18 18 18 18 19 19 19 19 19 19 20 20 20 21 21 21 22 23 23 23 23 23 23 24 24 24 24 24 25 25 25 25 25 25 25 26 26 26  30.47 53.96 04.11 09.42 13.74 43.04 56.31 59.89 39.24 24.53 24.69 28.14 38.44 41.25 59.20 08.14 08.97 13.33 24.71 24.82 32.35 33.39 34.17 55.66 11.07 13.56 42.64 35.63 03.43 12.37 26.70 29.14 44.68 56.98 03.40 18.85 19.81 39.49 40.65 01.42 09.14 09.19 45.72 50.20 55.95 59.00 12.96 15.51 23.75  (2) +02 +02 +00 −01 +02 −02 +02 −00 +00 −01 +01 +01 −02 +00 −03 +01 −03 −00 +00 −01 +00 −00 −00 −00 +02 −02 +01 −01 +01 +02 −00 −02 +01 +00 +00 +00 +00 −01 −03 −02 −02 −01 +00 −00 +02 +01 +02 +00 −03  23 10 29 25 19 56 22 57 40 20 07 27 31 23 22 08 14 13 16 49 31 32 54 09 48 46 24 52 39 20 49 45 20 31 29 55 25 44 23 38 27 16 22 23 46 38 00 50 21  CoNFIG-4 (3) 01.30 1412+026 31.90 1415+0217 15.40 1413+007v 13.60 1413-011 22.50 1416+0219 11.30 J141643-02 33.30 1416+0237 31.90 1414-007 04.00 1415+008 01.00 1415-011v 27.30 1415+013 54.30 1415+016v 05.90 1416-022v 59.20 1416+006 51.80 1416-031 55.50 1419+0115 33.00 1419-0324v 52.90 1416-000 59.90 1416+005 32.00 4C -01.33v 18.10 J141932+00 34.80 J142033-00 59.80 1417-006 38.90 J142055-00 32.80 1418+030v 46.00 4C -02.60v 42.50 1419+016 12.40 J142235-01 58.70 1420+018 35.40 1423+0220 56.50 4C -00.55 21.80 1423-0276 36.80 1421+015 15.00 1423+0052 58.70 N344Z154 12.20 1421+011 34.20 1421+006 33.40 1424-0174 29.80 4C -03.51 36.70 1425-0264 15.80 J142509-02 01.90 1422-010v 42.00 J142545+00 15.70 1423-001v 56.80 1423+030v 24.00 1423+018 39.60 1426+0201 21.70 N344Z014 28.80 1423-031v  (4) 153.9 86.5 107.2 114.2 256.2 93.6 60.9 69.9 145.5 200.0 131.2 240.7 105.9 52.4 290.3 57.1 145.5 436.1 178.5 502.7 70.2 77.0 203.4 53.6 332.7 527.9 64.9 113.1 210.4 170.8 492.9 58.0 53.2 51.4 95.5 72.7 157.4 67.0 550.7 178.1 52.7 149.9 70.3 157.4 290.9 97.4 66.8 96.7 118.3  (5) −0.79 −1.11 −0.67  −1.50 −0.53 −0.96 −0.79 −1.11 −0.66 −1.23 −1.08 −0.98 −1.14 −0.79 −0.64 −0.79 −0.87 −0.85 −0.47 −0.89 −0.89 −0.53 −0.71 −0.81 −0.87 −0.79 −0.75 −0.88 −1.35 −0.72  (6) II-p C II-c II-p Iw -c C C U II-c U II-c II-c II-c II-c C C II-c II-c C II-p II-c II-c C C II-c II-c U II-c C II-c II-c II-p U II-p I-p C II-c II-c II-c II-p C II-c C II-c II-p II-c C Iw -c C  126  Appendix A. The CoNFIG catalogue  (1) 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99  CoNFIG-4 (10) (11)  (12)  (13)  (14)  P Z P S S  22.2 25.0 23.5 18.9 20.4 24.5  22.7 24.1 23.7 17.8 18.3 23.3  20.4 24.3 21.7 16.8 17.3 24.1  19.7 24.0 20.6 16.3 16.8 22.6  19.6 20.5 19.7 16.1 16.4 20.0  0.0812 0.0754 0.0749  P I P  21.2 23.1 22.7  21.3 23.1 23.3  20.0 23.2 21.6  19.4 21.8 20.7  18.8 21.7 19.4  0.8488  0.3090  P  24.2 21.4  23.6 21.2  22.5 21.0  21.4 20.8  20.6 20.1  0.5877 0.7300 2.6770  0.0695 0.0050 0.0064  P S S  24.3 19.3 19.3  22.5 19.0 18.8  21.1 19.1 18.7  20.1 19.1 18.7  20.1 19.0 18.6  2.1934  0.0016  S  19.7  19.3  19.4  19.1  18.8  0.5692  0.0368  P  26.6  22.4  20.2  19.1  18.7  0.6662  0.0013  S  19.1  18.8  18.9  18.9  18.8  0.6415 0.8198  0.0806 0.0347  P I  23.5 23.2  21.6 23.5  20.6 22.2  19.7 20.6  19.6 19.4  0.1250 0.6391 1.2031 0.9953  0.0002 0.0829 0.0627 0.0541  S P I I  19.2 23.1 24.7 24.9  17.1 23.2 22.9 23.8  16.1 21.3 22.2 22.5  15.7 20.4 21.6 21.1  15.3 19.8 21.1 20.5  0.6320 1.6906 0.4786 0.3263 0.6949  0.1537 0.0019 0.0033 0.0012 0.0432  P S I S P  22.6 19.1 19.9 18.7 25.2  22.2 19.0 19.6 18.7 22.8  21.6 19.0 19.6 18.5 20.7  21.2 18.7 19.2 18.4 19.5  20.6 18.8 19.0 17.9 19.0  0.8002  0.3590  P  21.5  21.1  21.5  21.0  24.5  0.1250  0.0002  S  18.6  16.8  15.8  15.3  14.9  (7)  (8)  (9)  0.5991 0.9250 0.6789 0.1583 0.1330  0.0753 0.0702 0.0838 0.0011 0.0002  0.5745 1.3311 0.7936  (15)  13.1e 13.9e  12.5e  12.9e  127  Appendix A. The CoNFIG catalogue  (1) 100 101 102 103 104 105 106 107 108 109 111 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 29 30 30 30 30 30 30 31 31 31 31 31 31 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 34 34 34 34 34  30.42 49.60 49.84 55.09 55.47 11.20 39.70 46.92 46.97 52.85 10.34 41.93 47.61 04.11 30.20 46.17 48.66 00.95 23.24 30.32 30.53 31.45 36.51 10.48 13.10 34.19 38.25 46.86 53.62 06.30 37.84 38.09 44.31 49.09 54.19 59.25 01.45 08.83 14.16 24.80 46.59 46.69 50.13 52.09 10.56 03.22 05.22 10.14 49.27  (2) +01 −00 +00 −02 −02 −01 +00 +00 +00 −01 +02 −03 +01 +02 −01 −01 −01 +00 −01 −00 +01 −00 +00 −01 −00 −00 −00 −00 −01 +02 −01 −03 −00 +00 −01 +00 −00 +00 −00 −02 +02 −02 +02 +00 +01 +01 −00 −01 −02  42 47 55 49 15 52 21 28 42 25 57 27 35 51 55 57 12 46 55 40 01 09 33 33 52 55 55 50 21 37 17 03 59 47 59 54 28 44 18 20 17 23 28 37 36 03 23 23 15  CoNFIG-4 (3) 36.10 1423+019 18.30 J142649-00 59.90 1426+0093 20.90 J142655-02 45.10 1426-0226 12.70 1427-0187 44.60 1425+005 47.40 J142746+00 33.10 4C 00.49 26.40 1427-0142v 41.30 1428+0296 07.80 1428-0345 12.30 1428+0159v 39.90 1426+030v 44.30 1429-0193 03.50 1427-017v 52.30 4C -01.35v 26.30 1427+009v 17.70 1430-0192 22.70 1427-0026 04.90 1427+012 08.00 1430-0015 41.40 1428+007 37.60 1428-013 40.30 J143413-00 16.40 1431-0092 34.60 1431-0093 13.00 1429-006 59.10 1429-011v 09.40 1432+0262 57.30 1432-0130 18.30 1432-0305 13.80 J143244-00 04.30 1432+0078 33.60 1430-017v 55.20 1430+011 50.80 1430-002 35.50 1433+0074 06.70 1430-000 45.10 1433-0234 55.90 1431+025 22.50 1433-0239 24.90 1433+0247 30.30 1431+008 46.90 1434+0158 51.50 1431+012 04.30 1431-001 24.80 1431-011 09.20 1432-020  (4) 90.8 87.7 57.9 60.3 167.1 52.0 110.3 86.7 349.1 317.3 58.0 60.8 71.7 608.9 101.3 123.1 675.1 120.7 117.6 146.1 171.4 53.0 64.7 120.8 76.0 59.4 93.1 82.4 72.2 55.8 58.7 58.4 130.5 76.4 169.3 199.5 168.7 70.1 201.2 256.0 170.8 53.6 53.6 275.2 475.4 64.9 156.6 122.2 112.5  (5) −1.05  −1.51 −1.28 −0.98 −0.99  −0.42 −1.19 −0.85 −0.73 −1.12 −0.96 −1.01 −0.71  −1.10 −1.13  −0.92 −0.60 −0.92  −0.72 −0.89 −0.87 −1.07 −0.90  (6) II-c C II-p C C U II-c II-c C C C C C U C C C II-c II-c C II-c C U II-c C C II-c II-p C II-c C II-c II-c II-c C II-p II-c C C C II-c I-c C II-c Iw -c C II-c II-c II-c  128  Appendix A. The CoNFIG catalogue  (1) 100 101 102 103 104 105 106 107 108 109 111 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150  (9)  CoNFIG-4 (10) (11)  (7)  (8)  (12)  (13)  (14)  1.8200  0.0050  S  19.3  2.2350  0.0050  S  1.2610  0.0014  S  19.2  19.3  19.1  19.2  20.2 22.3  19.6 22.1  19.4 21.3  19.2 20.9  18.9 20.1  19.5  19.4  19.0  18.9  18.9  26.0  22.1  20.7  18.8  17.7  15.3  15.2  0.3011  0.0225  P  23.3 23.0  23.0 20.1  21.8 18.5  21.9 18.0  22.0 17.6  1.4951  0.0027  S  24.4 20.3  23.6 19.8  22.2 19.2  21.6 18.7  20.6 18.5  0.4299 0.5969  0.1651 0.1698  P P  21.7 23.0  21.4 22.5  20.8 21.8  20.7 21.3  20.1 20.7  21.7  20.7  20.6  20.7  20.2  (15)  1.3671 1.6364  0.0893 0.0017  I S  25.6 20.2  24.4 19.9  22.6 19.7  21.9 19.4  21.3 19.4  1.4774 0.4818  0.1390 0.1757  I P  24.9 23.3  22.4 21.9  22.4 21.5  22.1 21.2  23.3 21.4  0.7386  0.1229  P  21.9  24.8  20.8  19.7  18.8  1.1568 1.0270  0.1153 0.0022  I S  23.2 17.5  23.4 17.4  22.3 17.1  21.5 17.1  20.8 17.2  0.4822  0.0239  P  22.9 25.3  23.5 21.5  22.5 19.8  20.6 18.9  20.0 18.4  0.3735 0.3509 0.1916  0.0408 0.0246 0.0250  P P P  23.4 22.0 20.9  21.9 20.4 19.2  20.0 18.7 18.0  19.5 18.1 17.5  19.1 17.8 17.1  15.4  0.5031 0.1379  0.0003 0.0002  S S  23.5 19.0 22.9  21.7 16.8 23.2  19.8 15.7 22.3  18.9 15.2 21.8  18.5 14.8 21.3  12.2e  1.0202 0.2905  0.0015 0.0002  S S  19.8 22.0  19.6 19.7  19.3 18.0  19.3 17.5  19.4 17.1  15.3  15.0  129  Appendix A. The CoNFIG catalogue  (1) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188  14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14  34 35 35 35 36 36 36 37 37 37 37 37 37 37 37 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 39 39  52.84 21.30 23.20 41.65 09.04 30.26 37.02 10.23 21.09 22.79 31.82 27.06 36.74 37.48 42.80 48.30 56.68 56.76 00.61 00.84 06.05 10.41 14.19 17.17 20.57 20.96 25.93 33.63 33.64 41.86 43.38 43.41 48.87 49.11 53.93 39.50 43.36  (2) +02 −02 +02 −01 +01 +00 −02 −03 −00 −03 +01 +01 +01 +02 −00 −01 −00 +01 +02 +00 +01 −01 +01 +01 −01 −02 −01 −00 +00 −00 +00 −00 +00 −00 −02 +00 −00  36 40 25 47 48 35 14 04 33 03 18 43 45 56 15 47 41 56 37 23 24 42 13 50 20 39 00 05 13 45 57 48 40 51 42 43 18  CoNFIG-4 (3) 03.00 1432+028 51.70 1435-0268 42.80 1435+0243 25.90 1433-015 49.20 1436+0181 19.80 1433+008 31.10 1436-0224 57.80 1437-0308 18.10 1434-003v 07.30 1434-028 58.40 1434+015 02.50 1434+019 03.20 1437+0175v 10.00 1435+031 04.20 1437-0025 09.40 J143748-01 16.10 1437-0069 38.30 J143757+01 03.20 1435+028 23.80 1435+006 30.20 1438+0141 05.30 1438-0170 30.40 1438+0122 31.70 1435+020v 06.60 1438-0133 52.90 4C -02.61 01.50 1438-0100 26.40 4C 00.50 29.80 1438+0022 25.00 1438-0076 57.50 1436+011 51.00 1438-0081 59.20 1438+0068 16.50 1438-0085 08.20 1436-024 35.20 1437+009 59.50 1437-001  (4) 322.1 62.9 71.5 132.2 52.7 123.0 59.8 50.0 365.0 120.0 108.8 370.3 276.7 195.4 67.0 52.1 61.6 86.7 56.9 111.9 75.2 58.1 75.1 115.8 57.3 322.6 100.0 506.3 82.1 111.9 67.3 57.2 164.8 133.5 146.9 122.3 133.2  (5) −0.81 −0.95 −0.43 −0.63 −1.09 −1.06 −1.09 −1.15  −1.11 −1.10  −0.95 −0.75 −0.90 −1.36  −1.01 −0.86 −0.80  (6) II-c Iw -c II-c II-c C C C C C II-p C II-c II-c II-c Iw -c C II-c II-p U C C C C II-c I-p II-c I-c II-c II-c C II-p II-p Iw -c II-c C II-c II-c  130  Appendix A. The CoNFIG catalogue  (1) 151 152 153 154 155 156 157 158 159 160 161 162 163 164 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188  (7)  (8)  (9)  0.4999 1.0272 1.4496  0.0242 0.0655 0.1145  P I I  CoNFIG-4 (10) (11)  (12)  (13)  (14)  26.3 22.7 22.1 21.7  21.9 23.1 22.0 21.4  19.9 22.8 22.1 21.0  18.9 21.2 22.1 20.6  18.4 20.5 21.0 20.4  23.1  23.7  22.4  21.6  21.0  21.0  20.8  20.5  20.6  20.1  0.3419  0.0002  S  23.0  21.2  19.7  19.3  18.7  0.1375 1.3079  0.0001 0.0022  S S  19.4 15.6  17.1 15.6  16.0 15.3  15.5 15.3  15.2 15.4  1.1832 1.0353  0.0020 0.0672  S I  19.7 23.3  20.0 24.0  19.7 22.7  19.6 21.2  19.9 20.3  0.4981  0.0002  S  0.6674  0.0373  P  22.0 26.2 23.9  21.4 23.4 21.4  19.6 21.8 20.2  18.8 20.8 19.1  18.2 20.3 18.3  0.2924 1.5495 0.2175 0.7037 0.8937  0.0193 0.0020 0.0001 0.0990 0.2755  P S S P P  22.0 19.3 23.7 22.7 21.8  19.7 19.2 22.0 22.2 21.3  18.2 19.0 20.8 21.3 21.3  17.6 18.7 20.4 20.3 20.6  17.2 18.6 20.0 19.6 20.1  0.7700 1.3724 0.1503  0.0130 0.0865 0.0001  I I S  24.4 22.7 20.1  22.3 22.4 18.4  20.9 22.6 17.4  20.4 21.9 16.9  20.0 21.1 16.6  0.8901  0.3379  P  23.1  22.6  21.9  22.4  22.1  (15)  12.9e 13.5  15.0  14.9  131  Appendix A. The CoNFIG catalogue  A.2 A.2.1  Complementary samples 3CRR Radio position (J2000) RA DEC 00 38 13.76 +32 53 39.9 00 40 20.08 +51 47 10.2 01 04 39.10 +32 08 43.3 01 06 14.54 +13 04 14.8 01 06 06.48 +72 55 59.2 01 23 54.74 +32 57 38.3 01 33 40.42 +20 42 10.6 01 34 49.82 +32 54 20.4 02 10 37.10 +86 05 18.5 02 20 01.78 +42 45 54.6 03 07 11.48 +16 54 36.9 03 14 56.92 +41 40 33.0 03 16 29.55 +41 19 52.1 03 56 10.21 +10 17 31.7 04 10 54.85 +11 04 39.5 04 33 55.21 +29 34 12.6 04 59 54.27 +25 12 12.1 05 18 16.52 +16 35 26.6 05 38 43.53 +49 49 42.9 06 05 44.44 +48 04 48.8 06 51 11.05 +54 12 50.0 09 51 44.20 +69 55 03.0  A.2.2  3CRR Data Table Name S178MHz (Jy) 3C19 3.6 3C20 11.0 3C31 5.2 3C33 11.3 3C33.1 3.6 3C41 3.7 3C47 3.8 3C48 17.8 3C61.1 6.9 3C66B 8.8 3C79 5.0 3C83.1B 7.4 3C84 12.3 3C98 9.4 3C109 4.1 3C123 44.6 3C133 5.3 3C138 8.6 3C147 23.4 3C153 3.9 3C171 3.5 3C231 8.2  α −0.63 −0.66 −0.57 −0.76 −0.62 −0.51 −0.98 −0.59 −0.77 −0.50 −0.92 −0.62 −0.78 −0.78 −0.85 −0.70 −0.70 −0.46 −0.46 −0.66 −0.87 −0.28  Type  redsh.  II-c II-c I-c II-c II-c II-c II-c C II-c I-c II-c I-c I-c II-c II-c II-c II-c C C II-c II-c I-c  0.4820 0.3500 0.0167 0.0595 0.1810 0.7800 0.4250 0.3670 0.1860 0.0215 0.2559 0.0255 0.0172 0.0306 0.3056 0.2177 0.2775 0.7590 0.5450 0.2769 0.2384 0.0009  Type (mJy) II-c C C II-c II-c U II-c II-p C II-c C U II-c II-c II-c II-c II-c  redsh.  CENSORS Name CENSORS-001 CENSORS-002 CENSORS-003 CENSORS-004v CENSORS-005v CENSORS-006 CENSORS-007v CENSORS-008 CENSORS-009 CENSORS-010 CENSORS-011 CENSORS-012 CENSORS-013 CENSORS-014v CENSORS-015v CENSORS-016v CENSORS-017v  CENSORS Data Table Radio position (J2000) S1.4GHz RA DEC 09 51 29.07 -20 50 30.10 659.5 09 46 50.21 -20 20 44.40 452.3 09 50 31.39 -21 02 44.80 355.3 09 49 53.60 -21 56 18.40 283.0 09 53 44.42 -21 36 02.50 244.7 09 51 43.63 -21 23 58.00 239.7 09 45 56.71 -21 16 54.40 148.2 09 57 30.07 -21 30 59.80 126.3 09 49 35.43 -21 56 23.50 118.2 09 47 26.99 -21 26 22.60 79.4 09 53 29.51 -20 02 12.50 78.1 09 46 41.13 -20 29 27.30 70.4 09 54 28.97 -21 56 55.00 66.3 09 54 47.66 -20 59 43.80 65.6 09 46 51.12 -20 53 17.80 63.0 09 57 51.42 -21 33 24.20 61.7 09 52 42.95 -19 58 20.40 61.5  1.1550 0.9130 0.7900 1.0130 1.5880 0.5470 1.4370 0.2710 0.2420 1.0740 1.5890 0.8210 2.9500 1.4450 1.4170 3.1260 0.8930  132  Appendix A. The CoNFIG catalogue  Name CENSORS-018 CENSORS-019 CENSORS-020v CENSORS-021 CENSORS-022 CENSORS-023 CENSORS-024 CENSORS-025 CENSORS-026 CENSORS-027 CENSORS-028 CENSORS-029 CENSORS-030 CENSORS-031 CENSORS-032 CENSORS-033 CENSORS-034 CENSORS-035v CENSORS-036 CENSORS-037 CENSORS-038v CENSORS-039v CENSORS-040v CENSORS-041 CENSORS-042 CENSORS-043v CENSORS-044 CENSORS-045v CENSORS-046 CENSORS-047v CENSORS-048 CENSORS-049 CENSORS-050v CENSORS-051v CENSORS-052 CENSORS-053v CENSORS-054 CENSORS-055 CENSORS-056 CENSORS-057 CENSORS-059 CENSORS-060 CENSORS-061 CENSORS-062 CENSORS-063v CENSORS-064v CENSORS-065v CENSORS-066v  CENSORS Data Table Radio position (J2000) S1.4GHz RA DEC 09 55 13.60 -21 23 03.10 58.3 09 53 30.69 -21 35 50.00 55.1 09 46 04.75 -21 15 11.40 54.2 09 47 58.94 -21 21 50.90 54.0 09 57 30.92 -21 32 39.50 52.9 09 56 30.01 -20 01 31.00 52.4 09 54 38.33 -21 04 25.10 51.0 09 48 04.05 -21 47 36.80 49.2 09 52 17.69 -20 08 36.20 44.4 09 51 49.78 -21 24 57.70 40.4 09 46 31.32 -20 26 07.20 40.1 09 48 15.71 -21 40 06.30 38.2 09 45 55.86 -20 28 30.20 37.8 09 45 19.60 -21 42 43.80 37.3 09 51 41.02 -20 11 18.40 35.3 09 53 04.71 -20 44 09.80 34.3 09 47 53.55 -21 47 19.60 34.2 09 54 52.43 -21 19 29.00 34.1 09 49 33.23 -21 27 08.30 32.3 09 49 19.44 -21 51 35.40 31.8 09 51 16.77 -20 56 38.40 31.7 09 48 35.99 -21 06 22.60 31.5 09 50 58.63 -21 14 20.30 30.9 09 49 18.18 -20 54 45.40 27.5 09 52 01.86 -21 15 52.30 26.5 09 52 59.17 -21 48 42.40 26.4 09 54 27.06 -20 29 46.50 26.1 09 57 42.91 -20 06 36.10 25.5 09 54 03.02 -20 25 13.20 25.2 09 47 03.32 -20 50 02.20 25.2 09 54 28.28 -20 39 26.60 24.2 09 53 23.18 -20 13 43.50 23.8 09 52 12.71 -21 02 36.30 22.3 09 51 22.89 -21 51 55.10 21.7 09 45 42.64 -21 15 44.90 21.7 09 51 32.40 -21 00 29.60 21.6 09 53 20.56 -21 43 59.20 21.4 09 49 30.56 -20 23 34.20 21.4 09 50 43.20 -21 26 40.70 20.8 09 51 21.02 -21 29 55.40 20.7 09 48 42.44 -21 52 24.80 19.1 09 51 48.66 -20 31 52.90 18.9 09 48 01.87 -20 09 11.40 18.5 09 49 45.67 -21 50 06.20 18.4 09 45 29.51 -21 18 50.50 18.4 09 48 59.78 -20 50 08.50 18.1 09 57 26.04 -20 13 05.70 17.9 09 50 46.38 -21 32 55.10 17.4  Type (mJy) C II-c C C U II-c C C U II-c II-c I-p I-p II-c II-c II-c C II-c C II-c II-c II-c C I-p U II-c U I-p C II-c C C II-c C U II-c U II-p II-c II-c II-c C II-c II-c II-c I-p II-c II-c  redsh. 0.1090 1.2050 1.7330 1.2190 0.9070 1.9290 3.4310 2.0220 1.0450 0.4230 0.4720 0.9650 0.1080 0.8770 1.1510 1.2030 1.3190 0.4730 1.4850 0.5110 2.1160 1.5720 1.1580 0.2950 1.2540 0.7780 0.7900 0.7960 0.7180 0.5080 1.6060 0.4100 1.5290 2.9550 1.6245 0.4260 0.4100 0.5570 1.4830 1.1960 1.0700 1.6220 1.4520 0.5740 0.3140 0.7500 0.5490 0.3550  133  Appendix A. The CoNFIG catalogue  Name CENSORS-067 CENSORS-068 CENSORS-069 CENSORS-070 CENSORS-071v CENSORS-072 CENSORS-073 CENSORS-074 CENSORS-075v CENSORS-076v CENSORS-077 CENSORS-078v CENSORS-079v CENSORS-080 CENSORS-081 CENSORS-082 CENSORS-083 CENSORS-084 CENSORS-085 CENSORS-086 CENSORS-087v CENSORS-088 CENSORS-089 CENSORS-090 CENSORS-091 CENSORS-092 CENSORS-093 CENSORS-094v CENSORS-095 CENSORS-096 CENSORS-097 CENSORS-098 CENSORS-099v CENSORS-100v CENSORS-101 CENSORS-102 CENSORS-103 CENSORS-104 CENSORS-105v CENSORS-106v CENSORS-107v CENSORS-108 CENSORS-109v CENSORS-110 CENSORS-111 CENSORS-112 CENSORS-113 CENSORS-114  CENSORS Data Table Radio position (J2000) S1.4GHz RA DEC 09 57 31.87 -21 20 26.70 17.3 09 54 51.96 -21 30 16.10 17.2 09 56 02.36 -21 56 04.20 17.0 09 48 10.91 -20 00 59.90 17.0 09 55 41.89 -20 39 39.20 16.7 09 49 25.99 -20 37 24.20 16.5 09 56 28.10 -20 48 45.30 16.2 09 49 29.75 -21 29 38.60 16.0 09 45 26.97 -20 33 55.00 15.7 09 57 45.89 -21 23 23.60 15.3 09 49 42.98 -20 37 45.50 15.0 09 55 59.23 -20 42 51.60 14.6 09 45 48.48 -21 59 06.10 14.6 09 54 53.26 -21 15 12.90 14.5 09 54 16.43 -21 29 01.60 14.5 09 50 53.62 -21 33 07.50 13.6 09 51 29.69 -20 16 42.80 13.5 09 55 45.19 -21 25 23.00 13.5 09 55 23.82 -21 29 57.20 13.4 09 48 04.20 -20 34 34.80 13.2 09 45 56.03 -21 20 51.00 13.2 09 45 20.95 -22 01 22.20 13.1 09 53 09.24 -20 01 21.30 13.0 09 47 34.47 -21 26 58.00 12.8 09 48 22.16 -21 05 08.90 12.7 09 52 55.92 -20 51 45.40 12.6 09 46 18.86 -20 37 57.40 12.2 09 45 21.12 -20 43 21.40 12.2 09 54 21.48 -21 48 07.20 12.2 09 49 25.99 -20 05 20.20 12.0 09 54 36.32 -21 44 26.60 12.0 09 49 35.13 -21 58 10.50 11.8 09 57 2.25 -21 56 51.80 11.6 09 50 48.57 -21 54 57.10 11.5 09 52 50.38 -21 31 48.00 11.4 09 46 49.27 -21 16 48.70 11.1 09 47 28.14 -21 28 57.90 10.7 09 57 39.51 -20 03 22.60 10.7 09 47 24.38 -21 05 02.30 10.6 09 56 06.94 -20 05 43.80 10.5 09 45 37.77 -21 11 14.20 10.3 09 56 49.76 -20 35 25.90 10.2 09 52 10.91 -20 50 11.20 10.1 09 55 11.49 -20 30 18.70 10.1 09 47 44.76 -21 12 23.60 10.0 09 56 42.31 -21 19 44.60 9.8 09 47 10.01 -20 35 52.80 9.7 09 56 04.45 -21 44 36.70 9.6  Type (mJy) I-p C U II-c U C II-c U II-c C U II-c C U II-c I-p C II-c I-p C II-p C II-c U C II-c I-p II-c U U II-c U C II-c U I-p II-c II-c II-c I-p II-c C C I-p U C II-p C  redsh. 0.4280 0.5140 0.5910 0.6450 2.8570 2.4270 1.3640 0.6670 0.2650 0.2820 1.5120 0.4130 1.2550 0.3660 0.4620 0.5370 0.5210 1.9200 1.2030 0.8170 1.2610 1.0640 0.9090 1.2610 1.2420 0.7430 0.1830 1.6480 0.0450 2.7060 1.6350 1.6350 0.7380 1.2880 1.0430 0.4680 1.2610 0.8840 3.3770 1.2850 0.5120 0.2300 0.7190 0.2820 0.4110 1.7500 0.9420 1.4260  134  Appendix A. The CoNFIG catalogue  Name CENSORS-115 CENSORS-116 CENSORS-117v CENSORS-118v CENSORS-119v CENSORS-120 CENSORS-121 CENSORS-122 CENSORS-123 CENSORS-124 CENSORS-125 CENSORS-126 CENSORS-127 CENSORS-128 CENSORS-129 CENSORS-130 CENSORS-131 CENSORS-132v CENSORS-133 CENSORS-134 CENSORS-135 CENSORS-136v CENSORS-137  A.2.3  CENSORS Data Table Radio position (J2000) S1.4GHz RA DEC 09 57 24.93 -20 22 48.00 9.6 09 57 35.35 -20 29 35.40 9.6 09 54 10.54 -21 58 00.90 9.5 09 47 48.55 -20 48 34.00 9.4 09 49 02.22 -21 15 05.50 9.4 09 53 57.38 -20 36 51.30 9.1 09 52 01.20 -20 24 56.50 9.0 09 56 37.11 -20 19 05.50 9.0 09 54 31.06 -20 35 38.00 8.7 09 49 10.88 -20 21 53.00 8.7 09 49 22.31 -21 18 19.40 8.4 09 47 50.58 -21 42 08.20 8.4 09 49 24.64 -21 11 12.00 8.3 09 49 02.78 -20 16 11.50 8.3 09 52 26.51 -20 01 07.10 8.3 09 57 22.18 -21 01 06.00 8.2 09 51 48.94 -21 33 41.60 8.2 09 46 02.36 -21 51 44.20 7.9 09 51 29.36 -20 25 34.60 7.8 09 49 49.00 -21 34 33.70 7.8 09 47 48.33 -21 00 40.40 7.8 09 54 41.85 -20 49 43.00 7.5 09 50 38.80 -21 41 08.40 7.4  Type (mJy) II-p C II-c U II-c C C II-p C I-c II-p II-c U C II-p C I-p C II-p II-c II-c C II-p  redsh. 0.5450 2.6370 1.2040 2.2940 1.4840 2.8290 0.2460 0.2500 0.8250 0.0126 0.7010 0.3820 0.9220 1.1160 2.4210 2.8780 0.4700 2.5450 1.3350 2.3540 1.3160 0.6290 0.5260  Lynx & Hercules sample Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz RA DEC (mJy) 08 43 40.72 +44 39 24.7 60w067 1.4 08 43 46.86 +44 35 49.7 60w071 0.9 08 43 52.89 +44 24 29.0 60w084 1.8 08 44 03.58 +44 38 10.2 55w165a 0.6 08 44 04.06 +44 31 19.4 55w116 1.2 08 44 12.33 +44 31 14.9 55w118 0.6 08 44 14.54 +44 35 00.2 55w120 2.0 08 44 14.93 +44 38 52.2 55w121 4.7 08 44 17.83 +44 35 36.9 55w165b 0.5 08 44 27.55 +44 43 07.4 55w122 1.8 08 44 33.05 +44 50 15.3 55w123 3.3 08 44 33.69 +44 46 13.0 55w166 0.5 08 44 35.51 +44 46 04.1 55w124 1.0 08 44 37.12 +44 50 34.7 55w127 1.1 08 44 37.24 +44 26 00.4 55w128 2.2 08 44 41.10 +44 21 37.7 55w131 2.6 08 44 42.50 +44 45 32.5 60w016 0.6 08 44 45.14 +44 32 23.9 55w132 1.0 08 44 46.90 +44 44 37.9 55w133 1.6  Type  redsh.  I-p II-c I-c I-p I-p I-p C C II-p II-p I-c C I-c I-p I-c II-c C II-c I-p  1.800 1.250 0.127 0.680 0.851 0.660 1.350 2.570 0.750 0.550 0.870 0.990 1.335 0.060 1.189 1.124 0.840 4.400 2.240  135  Appendix A. The CoNFIG catalogue Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz RA DEC (mJy) 08 44 54.51 +44 46 22.0 55w135 1.8 08 45 03.29 +44 28 15.1 55w137 0.9 08 45 04.25 +44 25 53.3 55w140 0.6 08 45 05.49 +44 25 45.0 55w138 2.4 08 45 06.06 +44 40 41.2 55w136 0.8 08 45 14.00 +44 53 08.7 60w024 0.5 08 45 23.83 +44 50 24.6 55w141 1.7 08 45 27.17 +44 55 25.9 55w143a 7.1 08 45 29.47 +44 50 37.4 55w143b 0.9 08 45 40.47 +44 23 20.1 60w032 0.6 08 45 41.30 +44 40 11.9 55w147 12.1 08 45 46.89 +44 25 11.6 55w149 1.8 08 45 50.92 +44 39 51.5 55w150 4.1 08 46 00.34 +44 43 22.1 60w039 0.5 08 46 04.44 +44 45 52.7 55w154 1.4 08 46 06.67 +44 51 27.5 55w155 6.7 08 46 06.82 +44 50 54.1 55w156 0.8 08 46 08.50 +44 36 47.1 55w157 0.9 08 46 27.32 +44 29 56.9 55w159a 1.3 08 46 34.76 +44 41 39.2 55w159b 18.1 08 46 33.37 +44 41 24.4 55w160 0.8 08 46 36.02 +44 30 53.5 55w161 2.5 08 46 39.86 +44 33 44.5 60w055 0.9 17 18 32.76 +49 55 53.4 66w009a 1.1 17 18 33.73 +49 56 03.2 66w009b 0.7 17 18 34.14 +49 58 53.0 53w052 8.0 17 18 47.30 +49 45 49.0 53w054a 2.1 17 18 49.97 +49 46 12.2 53w054b 2.1 17 18 53.51 +49 52 39.1 66w014 3.3 17 19 07.29 +49 45 44.8 53w057 2.0 17 19 20.18 +50 00 21.2 53w059 19.4 17 19 27.34 +49 44 01.9 53w061 4.8 17 19 31.93 +49 59 06.2 53w062 0.7 17 19 40.05 +49 57 39.2 53w065 5.5 17 19 42.96 +50 01 03.9 53w066 4.3 17 19 51.27 +50 10 58.7 53w067 21.9 17 19 52.11 +50 02 12.7 66w027 0.6 17 20 02.52 +49 44 51.0 53w069 3.8 17 20 06.07 +50 06 01.7 53w070 2.6 17 20 06.87 +49 43 57.0 66w031 0.8 17 20 12.32 +49 57 09.7 66w035 0.6 17 20 21.46 +49 46 58.3 66w036 0.8 17 20 42.37 +49 43 49.1 53w075 96.8 17 20 52.59 +49 42 52.4 66w042 0.8 17 20 55.82 +49 41 02.2 53w076 1.9 17 21 01.32 +49 48 34.0 53w077 6.5 17 21 05.43 +49 56 56.0 66w047 0.6 17 21 11.25 +49 58 32.4 66w049 1.4 17 21 18.17 +50 03 35.2 53w078 0.7  Type  redsh.  I-p I-p I-p I-p II-p C C I-c II-p C I-c II-p I-c II-p II-c I-c I-p C I-p I-c C C I-p II-c II-c I-p C C II-c C I-c I-p U I-c I-p I-c II-p I-c C I-p I-p I-c C I-c I-c II-c I-p II-c I-p  0.090 0.151 1.685 2.810 2.120 0.773 1.800 2.150 2.210 1.800 1.070 0.151 0.470 0.151 0.330 3.700 0.860 0.557 1.290 0.311 0.600 0.440 0.718 0.650 0.156 0.460 1.510 3.500 0. 1.850 1.650 2.880 0.610 1.185 1.820 0.759 0.086 1.432 1.315 0.812 2.260 0.924 2.150 0.650 0.390 0.800 0.370 0.950 0.270  136  Appendix A. The CoNFIG catalogue  Lynx & Hercules Data Table Radio position (J2000) Name S1.4GHz RA DEC (mJy) 17 21 22.75 +50 10 31.0 53w079 11.7 17 21 37.48 +49 55 36.8 53w080 25.9 17 21 37.86 +49 57 57.6 53w081 12.1 17 21 37.64 +50 08 27.4 53w082 2.5 17 21 48.23 +49 47 07.3 66w058 1.9 17 21 48.95 +50 02 39.7 53w083 5.0 17 21 50.43 +49 48 30.5 53w084 0.7 17 21 52.48 +49 54 34.1 53w085 4.5 17 21 56.42 +49 53 39.8 53w086a 1.6 17 21 57.65 +49 53 33.8 53w086b 2.4 17 21 59.10 +50 08 42.9 53w087 5.6 17 21 58.90 +50 11 52.7 53w088 14.1 17 22 01.05 +50 06 54.7 53w089 3.0  Type  redsh.  U II-c U II-c U U U I-p I-c I-p I-c I-p I-p  0.548 0.546 2.060 2.040 2.300 0.628 2.730 1.350 0.460 0.730 3.700 1.773 0.635  137  Appendix B  Contour plots B.1  CoNFIG Samples - Extended sources  CoNFIG-1: NVSS (red) and FIRST (blue) or VLA observation (green) contours of extended sources, against Supercosmos Sky Survey background. The pink square, purple stars and orange triangle point to the NVSS, FIRST and optical identification coordinates. CoNFIG-2, 3 and 4: NVSS (red) and FIRST (blue) or VLA 1.4 GHz A-configuration observation (purple) contours of extended sources in the CoNFIG catalogue, against Supercosmos Sky Survey background. The pink square and green star point to the NVSS and optical identification coordinates. CENSORS:VLA 1.4 GHz A-configuration observation (purple) contours of sources in the CENSORS sample, against Supercosmos Sky Survey background. The pink square points to the radio centroid (or the catalogued radio source coordinates).  B.1.1  CoNFIG-1  C1-003: 4C 53.16  C1-006: 4C 31.30  138  Appendix B. Contour plots CoNFIG-1  C1-007: DA 240  C1-008: NGC 2484  C1-010: TXS 0757+503  C1-008: NGC 2484  C1-009: 4C 37.21  C1-011: 3C 192 139  Appendix B. Contour plots CoNFIG-1  C1-012: 3C 194  C1-014: 3C 196  C1-016: 3C 197.1  C1-013: 4C 32.24  C1-015: 4C 52.18  C1-021: 3C 200 140  Appendix B. Contour plots CoNFIG-1  C1-023: 4C 51.25  C1-024: 3C 202  C1-026: 4C 45.17  C1-027: 3C 205  C1-028: 3C 207  C1-030: NGC 2656 141  Appendix B. Contour plots CoNFIG-1  C1-031: 4C 31.32  C1-032: 3C 208  C1-033: 3C 208.1  C1-035: 3C 211  C1-036: 3C 210  C1-037: 3C 212 142  Appendix B. Contour plots CoNFIG-1  C1-038: 3C 213.1  C1-040: 3C 215  C1-041: 4C 41.19  C1-042: 3C 217  C1-044: 4C 16.27  C1-045: 4C 17.48 143  Appendix B. Contour plots CoNFIG-1  C1-046: 3C 219  C1-049: 3C 220.2  C1-051: 3C 223.1  C1-047: 4C 53.18  C1-050: 3C 223  C1-052: 3C 225A 144  Appendix B. Contour plots CoNFIG-1  C1-053: 3C 225  C1-054: 4C 02.29  C1-055: 3C 226  C1-056: 3C 227  C1-058: 3C 228  C1-059: 3C 230  145  Appendix B. Contour plots CoNFIG-1  C1-060: 3C 229  C1-063: 3C 234  C1-064: 3C 236  C1-065: 4C 44.19  C1-067: 3C 238  C1-068: 3C 239 146  Appendix B. Contour plots CoNFIG-1  C1-069: 4C 39.29  C1-070: 4C 48.29A  C1-071: 3C 241  C1-072: 4C 59.13  C1-073: 4C 46.21  C1-074: 3C 244.1 147  Appendix B. Contour plots CoNFIG-1  C1-075: 4C 50.30  C1-081: 4C 20.24  C1-084: 3C 249  C1-078: 4C 03.18  C1-083: 3C 247  C1-087: 4C 37.29 148  Appendix B. Contour plots CoNFIG-1  C1-088: 3C 252  C1-089: 4C 43.21  C1-090: 3C 253  C1-091: 3C 254  C1-092: 4C 29.41  C1-093: 3C 255 149  Appendix B. Contour plots CoNFIG-1  C1-095: 3C 256  C1-098: TXS 1128+455  C1-101: 4C 61.23  C1-096: 3C 257  C1-099: 4C 43.22  C1-102: 4C 12.42 150  Appendix B. Contour plots CoNFIG-1  C1-104: 4C 01.32  C1-105: 3C 263.1  C1-106: 4C 37.32  C1-107: 3C 264  C1-108: 3C 265  C1-109: 3C 266 151  Appendix B. Contour plots CoNFIG-1  C1-110: 3C 267  C1-113: 4C 29.44  C1-114: 4C 55.22  C1-115: 4C 59.17  C1-119: 3C 268.2  C1-120: 4C -04.40  152  Appendix B. Contour plots CoNFIG-1  C1-121: 4C 04.40  C1-122: 3C 268.4  C1-123: 4C 20.27  C1-126: 4C 53.24  C1-128: 4C 04.41  C1-129: 3C 270 153  Appendix B. Contour plots CoNFIG-1  C1-130: 3C 270.1  C1-131: 3C 272  C1-133: M84  C1-136: PKS 1227+119  C1-137: M87  C1-139: 3C 274.1 154  Appendix B. Contour plots CoNFIG-1  C1-140: 4C 16.33  C1-141: 3C 275  C1-142: 3C 275.1  C1-144: 4C 09.44  C1-146: 4C 02.34  C1-147: 3C 277.2 155  Appendix B. Contour plots CoNFIG-1  C1-148: 3C 277.3  C1-151: 3C 280.1  C1-153: 4C 00.46  C1-150: 3C 280  C1-152: 4C 09.45  C1-155: 3C 284 156  Appendix B. Contour plots CoNFIG-1  C1-157: 4C 07.32  C1-158: 4C 29.47  C1-160: 4C 17.56  C1-161: 4C 11.45  C1-162: 3C 285  C1-163: 4C 03.27  157  Appendix B. Contour plots CoNFIG-1  C1-165: 4C 32.44B  C1-169: 4C -06.35  C1-171: 3C 288.1  C1-168: 3C 287.1  C1-170: 3C 288  C1-172: 4C 05.57 158  Appendix B. Contour plots CoNFIG-1  C1-174: 3C 289  C1-176: 3C 293  C1-178: 4C 01.39  C1-179: 4C 19.44  C1-180: PKS 1355+01  C1-182: 3C 294 159  Appendix B. Contour plots CoNFIG-1  C1-183: 3C 295  C1-184: 4C -05.60  C1-186: NGC 5532  C1-187: 3C 297  C1-189: 3C 299  C1-190: 3C 300 160  Appendix B. Contour plots CoNFIG-1  C1-191: 4C 20.33  C1-193: 3C 300.1  C1-197: 3C 303  C1-192: 4C 24.31  C1-194: 4C 07.36  C1-199: 4C 00.52 161  Appendix B. Contour plots CoNFIG-1  C1-200: 3C 305  C1-201: 4C -04.53  C1-203: B2 1502+28  C1-205: 3C 310  C1-207: 3C 313  C1-208: 4C 01.42 162  Appendix B. Contour plots CoNFIG-1  C1-209: 3C 315  C1-211: 4C 00.56  C1-213: 3C 316  C1-216: 3C 319  C1-218: 3C 320  C1-219: 3C 321 163  Appendix B. Contour plots CoNFIG-1  C1-221: 3C 322  C1-222: 4C 13.56  C1-224: 3C 323  C1-226: 3C 323.1  C1-227: 3C 324  C1-228: 3C 325 164  Appendix B. Contour plots CoNFIG-1  C1-230: 3C 326  C1-231: 3C 326.1  C1-232: 4C 43.35  C1-234: 3C 327  C1-237: 3C 329  C1-238: 3C 331 165  Appendix B. Contour plots CoNFIG-1  C1-241: 3C 333  C1-242: NGC 6109  C1-243: 3C 332  C1-244: 3C 334  C1-245:3C 336  C1-247: 3C 341 166  Appendix B. Contour plots CoNFIG-1  C1-248: 3C 338  C1-249: 3C 337  C1-250: 3C 340  C1-254: 3C 342  C1-257: 3C 344  C1-258: 3C 346 167  Appendix B. Contour plots CoNFIG-1  C1-261: 3C 349  C1-263: 3C 351  C1-264: 3C 350  C1-265: 3C 352  C1-266: 4C 34.47  C1-267: 3C 356 168  Appendix B. Contour plots CoNFIG-1  C1-268: 4C 61.34  C1-269: 4C 45.13  C1-270: 3C 306  C1-271: 4C 32.25A  C1-272: 4C 06.32  C1-273: 4C 20.29 169  Appendix B. Contour plots  B.1.2  CoNFIG-2  C2-004: 4C 38.29  C2-010: 4C 08.31  C2-014: 4C -01.19  C2-008: 4C 59.10  C2-011: 3C 221  C2-021: 4C 17.49 170  Appendix B. Contour plots CoNFIG-2  C2-023: 4C 00.31  C2-029: 4C 25.29  C2-031: 4C 21.26  C2-036: 4C 00.34  C2-037: 4C 22.25  C2-038: 4C 14.35  171  Appendix B. Contour plots CoNFIG-2  C2-039: 4C -00.37  C2-042: 4C 32.34  C2-047: 4C 59.11  C2-041: 4C 20.20  C2-045: 4C 13.41  C2-052: 4C 11.34 172  Appendix B. Contour plots CoNFIG-2  C2-053: 4C 23.24  C2-055: 4C 41.22  C2-057: 3C 240  C2-063: 3C 242  C2-064: 4C 43.19  C2-065: 3C 243 173  Appendix B. Contour plots CoNFIG-2  C2-067: 3C 244  C2-070: 4C 52.22  C2-079: 4C 55.21  C2-069: 4C 00.35  C2-071: 4C 17.50  C2-080: 4C 15.34 174  Appendix B. Contour plots CoNFIG-2  C2-082: 4C -02.43  C2-092: 4C 56.18  C2-095: 4C 16.30  C2-089: 3C 248  C2-094: 4C -00.43  C2-097: 3C 251 175  Appendix B. Contour plots CoNFIG-2  C2-098: 3C 250  C2-105: 4C 41.23  C2-111: TXS 1115+536  C2-103: 4C 03.21  C2-110: 4C -02.46  C2-117: 4C 05.50 176  Appendix B. Contour plots  CoNFIG-2  C2-120: 4C 30.21  C2-122: 4C 12.41  C2-123: 4C 00.40  C2-126: 4C 10.33  C2-127: 4C 33.27  C2-128: TXS 1130+504  177  Appendix B. Contour plots CoNFIG-2  C2-130: 3C 261  C2-138: TXS 1140+217  C2-141: 4C 46.23  C2-134: 4C 17.52  C2-139: 4C 49.21  C2-142: 4C 30.23 178  Appendix B. Contour plots CoNFIG-2  C2-144: 4C -00.46  C2-148: 4C 25.36  C2-149: 4C 05.53  C2-152: 4C 11.40  C2-157: TXS 1152+551  C2-168: 4C 25.38 179  Appendix B. Contour plots CoNFIG-2  C2-169: 4C 58.23  C2-180: 4C -00.48  C2-186: 4C 20.28  C2-174: 4C 29.46  C2-185: 3C 269  C2-188: 4C 09.41 180  Appendix B. Contour plots CoNFIG-2  C2-190: 4C 31.40  C2-198: 4C 20.29  C2-207: 4C 37.34  C2-196: TXS 1223+099  C2-204: TXS 1229-013  C2-208: 4C 05.54 181  Appendix B. Contour plots CoNFIG-2  C2-209: 4C 32.40  C2-215: 4C 33.30  C2-218: TXS 1249+530  C2-210: TXS 1239+577  C2-216: 3C 277  C2-219: 3C 276 182  Appendix B. Contour plots CoNFIG-2  C2-220: TXS 1249+035  C2-226: 4C 44.22  C2-229: 4C 54.30  C2-232: 3C 281  C2-238: 4C 20.31  C2-239: 4C 08.38 183  Appendix B. Contour plots  CoNFIG-2  C2-243: 4C 52.27  184  Appendix B. Contour plots  B.1.3  CoNFIG-3  C3-002: TXS 1439+252  C3-005: TXS 1440+147  C3-007: TXS 1440+163  C3-004: TXS 1440+151  C3-006: TXS 1440+119  C3-008: TXS 1440+189  185  Appendix B. Contour plots CoNFIG-3  C3-012: GB6 1441+2614  C3-015: GB6 1442+195  C3-017: 4C 16.41  C3-014: 4C 14.54  C3-016: GB6 1442+117  C3-019: 4C 26.44 186  Appendix B. Contour plots CoNFIG-3  C3-020: TXS 1443+232  C3-021: 4C 17.60  C3-022: TXS 1443+125  C3-023: TXS 1444+254  C3-026: 4C 21.42  C3-029: 4C 16.42 187  Appendix B. Contour plots CoNFIG-3  C3-030: WB 1445+1459  C3-031: TXS 1445+167  C3-033: TXS 1446+177  C3-034: 3C 304  C3-035: TXS 1447+213  C3-036: TXS 1447+224 188  Appendix B. Contour plots CoNFIG-3  C3-038: TXS 1448+164  C3-040: 4C 14.55  C3-045: TXS 1451+191  C3-046: TXS 1451+292  C3-049: TXS 1451+118  C3-052: TXS 1452+258  189  Appendix B. Contour plots CoNFIG-3  C3-053: TXS 1452+204  C3-055: TXS 1452+277  C3-056: TXS 1452+144  C3-057: NGC 5782  C3-058: 4C 16.43  C3-059: TXS 1454+268 190  Appendix B. Contour plots  CoNFIG-3  C3-060: TXS 1454+132  C3-062: TXS 1454+244  C3-064: TXS 1454+139  C3-061: 4C 18.39  C3-063: 7C 1454+2753  C3-065: TXS 1454+271  191  Appendix B. Contour plots CoNFIG-3  C3-066: TXS 1455+251  C3-068: TXS 1455+253  C3-069: 4C 28.38  C3-070: 4C 11.47  C3-073: 4C 14.56  C3-074: 4C 18.40  192  Appendix B. Contour plots CoNFIG-3  C3-075: TXS 1456+143  C3-077: TXS 1457+241  C3-079: TXS 1458+204  C3-076: TXS 1456+251  C3-078: B2 1457+29  C3-080: 4C 14.57 193  Appendix B. Contour plots CoNFIG-3  C3-081: TXS 1458+178  C3-083: TXS 1459+279  C3-086: BWE 1459+2451  C3-082: 4C 21.44  C3-085: TXS 1459+194  C3-087: TXS 1459+133 194  Appendix B. Contour plots CoNFIG-3  C3-088: TXS 1500+259  C3-090: TXS 1500+128  C3-093: MRC 1501+104  C3-089: TXS 1500+185  C3-091: TXS 1501+197  C3-094: TXS 1501+126 195  Appendix B. Contour plots CoNFIG-3  C3-095: 1503+1251  C3-103: WB 1504+1618  C3-106: 4C 12.54  C3-102: TXS 1504+206  C3-105: GB6 B1505+113  C3-107: TXS 1505+247  196  Appendix B. Contour plots CoNFIG-3  C3-108: TXS 1505+190  C3-111: TXS 1506+245  C3-114: TXS 1506+171  C3-115: TXS 1507+298  C3-118:TXS 1507+235  C3-119: TXS 1508+205  197  Appendix B. Contour plots CoNFIG-3  C3-120: TXS 1508+128  C3-122: TXS 1508+108  C3-127: 4C 10.40  C3-121:TXS 1508+148  C3-125: Cul 1508+182  C3-128: TXS 1509+28  198  Appendix B. Contour plots CoNFIG-3  C3-129: TXS 1509+213  C3-131: 4C 15.45  C3-137: 7C 1511+2422  C3-130: TXS 1509+229  C3-134: TXS 1511+103  C3-139: 7C 1512+2337  199  Appendix B. Contour plots CoNFIG-3  C3-140: TXS 1511+158  C3-143: TXS 1512+227  C3-146: TXS 1513+144  C3-142: TXS 1512+104  C3-144: TXS 1512+104B  C3-149: TXS 1514+215 200  Appendix B. Contour plots CoNFIG-3  C3-150: TXS 1515+301  C3-152:TXS 1515+146  C3-154: TXS 1515+269  C3-151: TXS 1515+176  C3-153: 4C 10.41  C3-155: TXS 1515+198  201  Appendix B. Contour plots CoNFIG-3  C3-156: TXS 1515+160  C3-163: 4C 15.47  C3-165: TXS 1519+153  C3-160: 4C 24.33  C3-164: TXS 1519+228  C3-166: TXS 1519+108  202  Appendix B. Contour plots CoNFIG-3  C3-167: TXS 1519+103  C3-171: 4C 27.31  C3-173: 4C 28.39  C3-169: TXS 1520+221  C3-172: TXS 1521+116  C3-174: 4C 11.49 203  Appendix B. Contour plots CoNFIG-3  C3-177: TXS 1521+195  C3-181: BWE 1522+1303  C3-185: BWE 1524+1302  C3-179: TXS 1522+281  C3-184: TXS 1524+149  C3-186: TXS 1525+210 204  Appendix B. Contour plots CoNFIG-3  C3-187: 4C 12.55  C3-190: TXS 1525+227  C3-192: TXS 1526+173  C3-189: TXS 1525+290  C3-191: TXS 1525+135  C3-193: 4C 15.48  205  Appendix B. Contour plots CoNFIG-3  C3-195: 7C 1528+2910  C3-196: TXS 1527+234  C3-199: TXS 1529+110  C3-201: J153233.19  C3-202: 4C 20.36  C3-203: B2 1530+28 206  Appendix B. Contour plots CoNFIG-3  C3-205: TXS 1530+161  C3-208: Cul 1531+104  C3-212: TXS 1533+280  C3-207: 4C 13.55  C3-209: TXS 1532+139  C3-213: TXS 1533+142 207  Appendix B. Contour plots CoNFIG-3  C3-216: TXS 1534+269  C3-221: TXS 1536+144  C3-225: TXS 1538+182  C3-217: TXS 1534+145  C3-223: TXS 1537+145  C3-227: 4C 18.43 208  Appendix B. Contour plots CoNFIG-3  C3-228: TXS 1540+241  C3-230: TXS 1541+219  C3-232: TXS 1541+136  C3-229: GB6 B1540+11  C3-231: TXS 1541+230  C3-234: TXS 1541+143 209  Appendix B. Contour plots  CoNFIG-3  C3-236: 4C 19.51  C3-238: TXS 1543+180  C3-239: TXS 1544+279  C3-240: TXS 1544+221  C3-241: GB6 1544+1152  C3-242: 4C 18.44  210  Appendix B. Contour plots CoNFIG-3  C3-243: TXS 1545+279  C3-244: BWE 1545+1505  C3-246: TXS 1546+268  C3-247: 4C 15.51  C3-248: 4C 18.45  C3-250: TXS 1548+274  211  Appendix B. Contour plots CoNFIG-3  C3-251: TXS 1548+188  C3-253: TXS 1549+262  C3-257: TXS 1549+188  C3-252: 4C 11.50  C3-255: TXS 1549+107  C3-261: J1553+1401 212  Appendix B. Contour plots CoNFIG-3  C3-262: TXS 1550+211  C3-266: 4C 23.42  C3-268: TXS 1551+221  C3-263: TXS 1551+179  C3-267: TXS 1551+251  C3-271: TXS 1552+151 213  Appendix B. Contour plots CoNFIG-3  C3-273: TXS 1553+279  C3-277: TXS 1553+134  C3-281: TXS 1554+144  C3-276: 4C 24.35  C3-279: TXS 1554+222  C3-282: 4C 10.44 214  Appendix B. Contour plots  CoNFIG-3  C3-284: 4C 12.56  C3-285: 4C 11.51  215  Appendix B. Contour plots  B.1.4  CoNFIG-4  C4-002: TXS 1405+026  C4-005: TXS 1406+015  C4-007: TXS 1406+018  C4-003: 1408+0050  C4-006: 1408+0281  C4-008: 1408+0271 216  Appendix B. Contour plots CoNFIG-4  C4-011: J140929-01  C4-014: 1409-0307  C4-016: 1409-0135  C4-012: TXS 1406-007  C4-015: B1407-0231  C4-017: TXS 1407-009 217  Appendix B. Contour plots CoNFIG-4  C4-023: TXS 1408-004  C4-024: B1408-0246  C4-026: TXS 1408+016  C4-027: TXS 1408-003  C4-028: 1411+0229  C4-029: TXS 1408+009 218  Appendix B. Contour plots CoNFIG-4  C4-030: MRC 1408-030  C4-032: TXS 1409-030  C4-033: TXS 1410+027  C4-035: 1412-0075  C4-036: NGC 5506  C4-037: 4C -00.54 219  Appendix B. Contour plots CoNFIG-4  C4-038: TXS 1410-015  C4-039: TXS 1410+028  C4-041: 1413-0255  C4-043: TXS 1411+019  C4-044: 1414+0182  C4-045: TXS 1411+002 220  Appendix B. Contour plots CoNFIG-4  C4-046: TXS 1412+031  C4-047: LEDA 184576  C4-048: 1415+0060  C4-049: N274Z243  C4-050: N342Z086  C4-051: TXS 1412+026 221  Appendix B. Contour plots CoNFIG-4  C4-053: TXS 1413+007  C4-054: TXS 1413-011  C4-055: 1416+0219  C4-058: TXS 1414-007  C4-059: TXS 1415+008  C4-060: TXS 1415-011 222  Appendix B. Contour plots CoNFIG-4  C4-061: TXS 1415+013  C4-063: TXS 1416-022  C4-067: 1419-0324  C4-062: TXS 1415+016  C4-064: TXS 1416+006  C4-068: TXS 1416-000 223  Appendix B. Contour plots CoNFIG-4  C4-070: 4C -01.33  C4-072: J142033-00  C4-076: 4C -02.60  C4-071: J141932+00  C4-075: TXS 1418+030  C4-077: TXS 1419+016 224  Appendix B. Contour plots CoNFIG-4  C4-078: J142235-01  C4-080: 1423+0220  C4-081: 4C -00.55  C4-082: 1423-0276  C4-083: TXS 1421+015  C4-084: 1423+0052 225  Appendix B. Contour plots CoNFIG-4  C4-085: N344Z154  C4-087: TXS 1421+006  C4-088: 1424-0174  C4-089: 4C -03.51  C4-090: 1425-0264  C4-092: TXS 1422-010 226  Appendix B. Contour plots CoNFIG-4  C4-094: 1423-0005  C4-095: TXS 1423+030  C4-096: TXS 1423+018  C4-098: N344Z014  C4-100: TXS 1423+019  C4-102: 1426+0093  227  Appendix B. Contour plots CoNFIG-4  C4-105: 1427-0187  C4-107: J142746+00  C4-119: TXS 1427+009  C4-106: TXS 1425+005  C4-115: TXS 1426+030  C4-120:1430-0192 228  Appendix B. Contour plots CoNFIG-4  C4-122: TXS 1427+012  C4-124: TXS 1428+007  C4-125: TXS 1428-013  C4-128: 1431-0093  C4-129: TXS 1429-006  C4-131: 1432+0262 229  Appendix B. Contour plots CoNFIG-4  C4-133: 1432-0305  C4-134: J143244-00  C4-135: 1432+0078  C4-137: TXS 1430+011  C4-138: TXS 1430-002  C4-142: GB6 B1431+0230 230  Appendix B. Contour plots CoNFIG-4  C4-143: 1433-0239  C4-145: TXS 1431+008  C4-146: 1434+0158  C4-148: TXS 1431-001  C4-149: TXS 1431-011  C4-150: TXS 1432-020 231  Appendix B. Contour plots CoNFIG-4  C4-151: TXS 1432+028  C4-152: 1435-0268  C4-153: 1435+0243  C4-154: TXS 1433-015  C4-160: TXS 1434-028  C4-162: TXS 1434+019 232  Appendix B. Contour plots CoNFIG-4  C4-163: 1437+0175  C4-164: TXS 1435+031  C4-166: 1437-0025  C4-168: 1437-0069  C4-169: J143757+01  C4-170: TXS 1435+028 233  Appendix B. Contour plots CoNFIG-4  C4-175: TXS 1435+020  C4-176: 1438-0133  C4-177: 4C -02.61  C4-178: 1438-0100  C4-179: 4C 00.50  C4-180: 1438+0022 234  Appendix B. Contour plots CoNFIG-4  C4-182: TXS 1436+011  C4-183: 1438-0081  C4-184: 1438+0068  C4-185: 1438-0085  C4-187: TXS 1437+009  C4-188: TXS 1437-001 235  Appendix B. Contour plots  B.2  Complementary samples: CENSORS  CENSORS-004  CENSORS-005  CENSORS-007  CENSORS-014  CENSORS-015  CENSORS-016  236  Appendix B. Contour plots  CENSORS  CENSORS-017  CENSORS-020  CENSORS-035  CENSORS-038  CENSORS-039  CENSORS-040  237  Appendix B. Contour plots  CENSORS  CENSORS-043  CENSORS-045  CENSORS-047  CENSORS-050  CENSORS-051  CENSORS-053  238  Appendix B. Contour plots  CENSORS  CENSORS-063  CENSORS-064  CENSORS-066  CENSORS-065  CENSORS-071  CENSORS-075  239  Appendix B. Contour plots  CENSORS  CENSORS-076  CENSORS-078  CENSORS-079  CENSORS-087  CENSORS-094  CENSORS-099  240  Appendix B. Contour plots  CENSORS  CENSORS-100  CENSORS-105  CENSORS-106  CENSORS-107  CENSORS-109  CENSORS-117  241  Appendix B. Contour plots  CENSORS  CENSORS-118  CENSORS-119  CENSORS-132  CENSORS-136  242  Appendix C  RLF models for flat-spectrum and star-forming sources C.1  Smolcilc et al. model  The evolution function for the star-forming RLF is assume to be a pure luminosity evolution, so that: ρ(P, z) =  P ρ0 (P ) (1 + z)αP  (C.1)  where αP is the characteristic luminosity evolution parameter, taken in this work to be αP =2.1 (Seymour, McHardy & Gunn, 2004).  C.2  Dunlop & Peacock models  The Dunlop & Peacock (1990) models 1-5 were constructed using a series expansion: n n−j  Aij xi (P )y i (z)  log10 (ρ) =  (C.2)  i=0 j=0  where x and y are transformed axes of the P-z plane. Model 1 can be regarded as the fundamental model, and models 2-5 vary successively one aspect of model 1. The characteristics of each model are as follow: Model 1: The (P,z) coordinates are [0.1(log10 P − 20), 0.1z], with P2.7 = [1018 ; 1030 ] W/Hz/sr and z=[0;10]. The expansion orders are 5th order for the steep-spectrum RLF and 4th order for the flat-spectrum RLF Model 2: An exponential cut-off is enforced at high-luminosity, ρ → ρ·exp(−P/Pc ), where Pc = 1028 W/Hz/sr. Model 3: The redshift coordinate used is log10 (1 + z) instead of 0.1z. Model 4: Integration of the RLF is terminated at z=5 instead of z=10.  243  Appendix C. RLF models for flat-spectrum and star-forming sources Model 5: A cut-off at high redshift is enforced such that the RLF decays sinusoidally from z=2 to a value of zero at z=5, i.e. for 2 < z < 5, ρ → ρ(1 + cos φ)/2, where φ = (z − 2)π/3, and for z ≥ 5, ρ = 0 Two additional parametric models were used: Model 6: Pure luminosity evolution (PLE). The RLF is considered to be the sum of two components, a high-power evolving component ρh , and a low-power nonevolving component ρl . The high-power component is given by: ρh (P, z) = ρ0  P Pc (z)  α  P Pc (z)  +  β −1  (C.3)  where α and β are the two power-law slopes, ρ0 is determined by normalization at z=0 and Pc (z) is the evolving break luminosity: log10 [Pc (z)] = a0 + a1 z + a2 z 2  (C.4)  The low-luminosity component is given by: 6  bi xiP  (C.5)  where xiP = 0.1(log10 P − 20)  (C.6)  log10 (ρl ) = i=0  Model 7: Luminosity/density evolution (LDE). It has the same characteristics as the pure evolution model (model 6) but the normalization space density ρ0 is allowed to vary with z: 5  ci yzi  log10 [ρ0 (z)] =  (C.7)  i=0  The model was also computed using an evolving break luminosity of the form: log10 [Pc (z)] = a0 + a1 [1 − (1 + z)−η ]/η  (C.8)  For flat-spectrum sources, the RLF in models 6 and 7 is limited to the high-power component so that ρ = ρh . The expansion coefficients for each models used in this thesis can be found in Tables C.1-C.3. In this thesis, all models were converted from the Ω0 = 1 cosmology used by (Dunlop & Peacock, 1990) to the used cosmology following: dV2 dV1 = ρ2 (P2 , z) (C.9) dz dz where P1 and P2 are the luminosities derived from (S,z) using the corresponding effective distances in the two cosmologies. ρ1 (P1 , z)  244  Appendix C. RLF models for flat-spectrum and star-forming sources  Table C.1: RLF expansion coefficients for Dunlop & Peacock (1990) models 1-5 for steep spectrum sources. Order x y 0 0 1 0 0 1 2 0 1 1 0 2 3 0 2 1 1 2 0 3 4 0 3 1 2 2 1 3 0 4 5 0 4 1 3 2 2 3 1 4 0 5 6 0  RLF1 −2.50 −6.87 9.58 −19.19 92.02 73.77 17.34 −825.22 607.98 −1394.94 161.87 2017.14 −2817.94 3826.04 417.47 −427.37 −1477.14 2423.76 −2778.27 −250.68 −198.64 276.73  Steep-spectrum RLF2 RLF3 RLF4 −2.54 −2.46 −2.46 −6.58 −6.69 −6.31 10.83 −3.76 3.73 −12.76 −21.80 −24.00 114.64 −10.67 57.48 −52.05 163.29 300.43 −50.25 39.72 27.44 −1260.32 −117.55 −363.60 1765.47 28.13 −425.41 −1259.21 −686.19 −2754.74 417.02 89.94 148.81 3486.80 559.09 621.32 −7066.62 −1715.58 887.24 6715.16 3486.97 4180.83 −1363.82 −1048.00 1290.92 −851.72 −313.07 −383.71 −2687.25 −456.48 −85.26 6495.46 2004.55 −2439.16 −7112.88 −4095.20 2376.92 2240.36 2240.40 −4200.29 −133.62 −354.41 −91.32 532.10 193.89 219.42  RLF5 −2.49 −6.36 3.78 −23.05 45.88 342.11 23.13 −370.21 −424.52 −2837.02 162.15 732.23 646.76 3980.83 1991.58 −406.20 −211.06 −2097.36 2413.01 −4625.92 −267.79 234.36  245  Appendix C. RLF models for flat-spectrum and star-forming sources  Table C.2: RLF expansion coefficients for Dunlop & Peacock (1990) models 1-5 for flat spectrum sources. Order x y 0 0 1 0 0 1 2 0 1 1 0 2 3 0 2 1 1 2 0 3 4 0 3 1 2 2 1 3 0 4  RLF1 −3.68 −9.19 −1.84 6.77 60.41 −222.49 −17.47 49.99 51.87 451.96 3.48 −87.58 51.88 −215.62 −198.28  Flat-spectrum RLF2 RLF3 RLF4 −3.65 −3.74 −3.68 −9.85 −8.65 −9.46 −2.68 0.25 −1.77 7.87 6.66 7.93 113.69 −3.85 67.82 −327.29 −4.93 −257.06 −15.87 −20.83 −20.25 −102.75 76.34 80.36 273.76 −28.32 −150.46 644.35 −2.33 915.03 0.99 8.10 5.68 25.99 −87.30 −136.31 −74.47 85.66 316.68 −405.87 −67.13 −576.82 −293.40 28.07 −506.21  RLF5 −3.87 −7.42 21.39 −2.57 −51.09 −129.69 2.47 229.88 −293.03 609.15 −9.94 −182.70 304.14 −249.17 −389.71  246  Appendix C. RLF models for flat-spectrum and star-forming sources  Table C.3: RLF parameters for Dunlop & Peacock (1990) pure luminosity evolution and luminosity-density models (models 6 and 7).  para. ρo α β a0 a1 a2 b0 b1 b2 b3 b4 b5 b6  PLE Steep-Spec. −6.91 0.69 2.17 24.89 1.26 −0.26 −2.86 6.93 −10.21 −728.28 1164.50 750.97 −1385.71  Flat-Spec. −8.15 0.83 1.96 25.26 1.18 −0.28  para. η α β a0 a1 c0 c1 c2 c3 c4 c5 b0 b1 b2 b3 b4 b5 b6  LDE Steep-Spec. 1.37 0.73 2.22 24.55 3.17 −6.62 −10.97 97.91 −338.51 434.38 −186.92 −3.04 12.03 −30.72 −861.88 1607.06 416.71 −1365.84  Flat-Spec. 1.37 0.85 2.00 24.73 3.22 −7.87 −5.74 93.06 −738.92 2248.76 −2399.45  247  Appendix D  Miscellaneous D.1  Source counts in a static Euclidean universe  Consider a static Euclidean Universe in which the volume density of objects as a function of luminosity P is ρ(P ). The radius out to which an object of luminosity P has a flux greater then S is R(S) = (P/S)1/2  (D.1)  The number of objects of power P in the shell R to R+dR is N (P ) = ρ(P )dV (R) = ρ(P ) × 4πR2 dR  (D.2)  Thus, the number of objects with luminosity P and flux greater than S is R(S)  N (P, > S) = ρ(P ) =  4πR2 dR  0 4π 3/2 S −3/2 3 ρ(P )P  (D.3)  Considering the contribution of all objects: N (> S) = ∝  4π 3  ∞  ρ(P )P 3/2 dP S −3/2  0 S −3/2  (D.4)  the well known −3/2 power law.  D.2  Chi-square statistics  Chi-square statistics Pearson (1900) describe the goodness-of fit between binned observational data and a model predicting the population of each bin. k 2  χ = i=1  (Di − Mi )2 σi2  (D.5)  where k is the number of bins, Di and Mi are the values of the data and model in the corresponding bin, and σi is the standard deviation of the data, usually taken √ as σi = 1/ Ni . The procedure tests whether the Di are sufficiently close to Mi to be likely to have occurred under the hypothesis that the number of objects falling 248  Appendix D. Miscellaneous in each bin is Mi . The chi-square distribution is given by (for x ≥ 0): f (x) =  2−ν/2 ν/2−1 −x/2 x e Γ[ν/2]  (D.6)  where ν is the number of degrees of freedom, defined as ν = k − 1. The mean of the chi-square distribution ≈ ν, while the variance ≈ 2ν. The reduced chi-square value is defined as χ2red = χ2 /ν. As a rule of thumb, χ2red >> 1 indicates a poor model fit, χ2red < 1 indicates that the model is ‘overfitting’ the data and χ2red ∼ 1 indicates a reasonable model fit. The chi-square test can be modified to test whether two samples are from the same population. In this case, considering k samples binned into the same r bins, the chi-square value is computed as: r  k  (Oij − Eij )2 2 Eij  χ2 = i=1 j=1  (D.7)  where the expectation values Eij are given by: k  r  Oij Eij =  j=1 k  Oij i=1  r  (D.8)  Oij j=1 i=1  D.3  Downhill simplex minimization method  The amoeba algorithm for downhill simplex minimization (Nelder & Mead, 1965) is used in this thesis to obtain the best fitting FRI and FRII luminosity functions. A simplex is a geometrical figure of N+1 points in N dimensions. This algorithm creates a simplex from the input, starting parameters and a scaling vector. Each parameter is a dimension and the points of the simplex are produced via the following equation: P = P0 + S  (D.9)  where P0 is the vector of starting parameters and S contains the scale appropriate to each dimension. The likelihood is calculated for each vertex of the simplex and the algorithm then proceeds through a series of steps to improve this (it minimizes −log L). These steps are: 249  Appendix D. Miscellaneous 1. Reflection: the vertex corresponding to the worst fit is moved through the opposite face of the simplex. 2. If reflection has improved the fits (i.e. if the new vertex is no longer the worst) then that vertex is extrapolated further in that direction. This extrapolation becomes the new point without reference to its likelihood. 3. If reflection made the likelihood for that vertex worse an intermediate point is looked for by moving it to half way between its original position and the opposite face. Once the new point has been set by either step 2 or 3, this is repeated until the step taken by a vertex upon reflection, expansion or contraction produces a change in likelihood that is less than some preset tolerance. The majority of the steps are reflections and expansions.  250  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0071233/manifest

Comment

Related Items