Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The biogeography and age of salticid spider radiations with the introduction of a new African group (Araneae:… Bodner, Melissa R. 2009

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2009_fall_bodner_melissa.pdf [ 10.46MB ]
Metadata
JSON: 24-1.0067335.json
JSON-LD: 24-1.0067335-ld.json
RDF/XML (Pretty): 24-1.0067335-rdf.xml
RDF/JSON: 24-1.0067335-rdf.json
Turtle: 24-1.0067335-turtle.txt
N-Triples: 24-1.0067335-rdf-ntriples.txt
Original Record: 24-1.0067335-source.json
Full Text
24-1.0067335-fulltext.txt
Citation
24-1.0067335.ris

Full Text

The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae). by Melissa R. Bodner B.A. (Honours) Lewis and Clark College, 2004  A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF  MASTER OF SCIENCE in The Faculty of Graduate Studies (Zoology)  THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)  July 2009  © Melissa R. Bodner 2009  ABSTRACT  Globally dispersed, jumping spiders (Salticidae) are species-rich and morphologically diverse. I use both penalized likelihood (PL) and Bayesian methods to create the first dated phylogeny for Salticidae generated with a broad geographic sampling and including fauna from the Afrotropics. The most notable result of the phylogeny concerns the placement of many Central and West African forest species into a single clade, which I informally name the thiratoscirtines. I identify a large Afro-Eurasian clade that includes the Aelurilloida, Plexippoida, the Philaeus group, the Hasarieae/Heliophaninae clade and the Leptorchesteae (APPHHL clade). The APPHHL clade may also include the Euophryinae. The region specific nature of the thiratoscirtine clade supports past studies, which show major salticid groups are confined or mostly confined to Afro-Eurasia, Australasia or the New World. The regional isolation of major salticid clades is concordant with my dating analysis, which shows the family evolved in the Eocene, a time when these three regions were isolated from each other. I date the age of Salticidae to be between 55.2 Ma (PL) and 50.1 Ma (Bayesian). At this time the earth was warmer with expanded megathermal forests and diverse with insect herbivores. The two oldest region-specific clades are the South American Amycoida (41.1 Ma PL and 33.4 Ma Bayesian) and the Afro-Eurasian APPHHL clade (44.5 Ma PL and 33.8 Ma Bayesian), while the Australasian “core” astioids are younger (36.9 Ma PL and 27.3 Ma Bayesian). Mixing of fauna from isolated regions has been limited as large clades are geographically restricted, yet some more recent long-range dispersal events, such as the arrival of the genus Habronattus to the New World, have occurred.  ii  TABLE OF CONTENTS ABSTRACT ...................................................................................................................................ii TABLE OF CONTENTS ............................................................................................................ iii LIST OF TABLES.........................................................................................................................v LIST OF FIGURES......................................................................................................................vi ACKNOWLEDGEMENTS ........................................................................................................vii DEDICATION ........................................................................................................................... viii CO-AUTHORSHIP STATEMENT............................................................................................ix CHAPTER 1 An Introduction to Salticidae, Fossil Spiders and Molecular Dating Methods ..........................................................................................................................................1 1.1 Introduction ......................................................................................................................1 1.2 Literature Review.............................................................................................................2 1.2.1 The State of the Salticid Phylogeny.............................................................................2 1.2.2 Review of African Salticid Studies..............................................................................3 1.2.3 African Salticids from Arid Environments ..................................................................4 1.2.4 Salticids from the Afrotropics......................................................................................5 1.2.5 A Review of Fossil Spiders in Amber .........................................................................6 1.2.6 Fossils and Molecular Dating Analyses in Spiders......................................................6 1.3 R8s and BEAST Dating Methods ...................................................................................7 1.3.1 Penalized Likelihood Implemented in R8s ..................................................................7 1.3.2 BEAST: Bayesian Evolutionary Analysis Sampling Trees ........................................8 1.4 Objectives and Hypotheses..............................................................................................9 1.4.1 Phylogeny, Age and Global Distribution of Salticidae................................................9 1.4.2 The Age of Salticidae...................................................................................................9 1.5 References .......................................................................................................................11 CHAPTER 2 The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae) .................................................18 2.1 Introduction ....................................................................................................................18 2.2 Methods ...........................................................................................................................20 2.2.1 Taxon Sampling .........................................................................................................20 2.2.2 DNA Extraction .........................................................................................................21 2.2.3 PCR Amplification and Sequencing ..........................................................................21 2.2.4 Sequence Alignment ..................................................................................................23 2.2.5 Phylogenetic Reconstruction .....................................................................................26 2.2.6 Divergence Time Estimation .....................................................................................27 2.3 Results .............................................................................................................................36 2.3.1 Model choice..............................................................................................................36 2.3.2 Phylogeny from the All-Genes Analysis ...................................................................36 2.3.3 Phylogenies from Individual Gene Regions ..............................................................37 2.3.4 Estimating Divergence Times....................................................................................39 2.4 Discussion........................................................................................................................42 2.4.1 The Thiratoscirtines: an African Radiation................................................................42 2.4.2 Gabonese Salticid Fauna............................................................................................43 2.4.3 Other Aspects of the Salticid Phylogeny ...................................................................44 2.4.4 Calibration Points.......................................................................................................46 2.4.5 Age and Diversity of Salticidae in Comparison to Other Radiations ........................49 iii  2.4.6 The Family Evolved at a Time of Expanded Megathermal Forests ..........................50 2.4.7 Regional Isolation of Major Salticid Groups .............................................................51 2.4.8 Biogeographic History of Region Specific Clades ....................................................54 2.4.9 The Thiratoscirtines are an Afrotropical Forest Group..............................................59 2.4.10 Age Alone Does Not Explain the Size of Salticid Radiations .................................60 2.5 References .......................................................................................................................87 Chapter 3 Salticidae: A Framework for Evolutionary Studies..............................................95 3.1 The Salticid Radiation ...................................................................................................95 3.2 Reconstructing and Dating the Salticid Phylogeny .....................................................95 3.2.1 Strengths of the Thesis...............................................................................................95 3.2.2 Challenges of Reconstructing the Salticid Phylogeny ...............................................96 3.2.3 Dating and Gaps in the Jumping Spider Fossil Record .............................................96 3.3 Exploring Community Level Convergences Using the Salticids................................97 3.4 Working Hypotheses ......................................................................................................98 3.4.1 Number of Dispersals Between Isolated Regions......................................................98 3.4.2 Ecomorphology..........................................................................................................99 3.5 Continuing to Build the Salticid Tree of Life ..............................................................99 3.6 The Potential Use of Actin 5C .....................................................................................100 3.7 Future Research ...........................................................................................................100 3.7.1 The Thiratoscirtine Phylogeny.................................................................................100 3.7.2 The Age of Basal Salticids.......................................................................................101 3.8 References .....................................................................................................................102 Appendix A.............................................................................................................................104 ! !  iv  LIST OF TABLES Table 2.1 List of Species Used in Phylogenetic Analysis ............................................................62! Table 2.2 Age and Description of Amber Deposits .....................................................................69! Table 2.3 Summary of Calibration Points ....................................................................................70!  v  LIST OF FIGURES ! Figure 2.1 Phylogeny from All-Genes .........................................................................................71! Figure 2.2 Phylogeny from 28S Random Order Taxa Alignment................................................72! Figure 2.3 Phylogeny from 28S Original Alignment. ..................................................................73! Figure 2.4 Phylogeny from 16SND1............................................................................................74! Figure 2.5 Phylogeny from CO1 ..................................................................................................75! Figure 2.6 Phylogeny from Actin 5C ...........................................................................................76! Figure 2.7 Starting Tree for R8s Dating Analysis........................................................................77! Figure 2.8 BEAST Dating Tree Topology (Analysis 1)...............................................................78! Figure 2.9 BEAST Analysis 1 ......................................................................................................79! Figure 2.10 95% HPD Interval Bars of BEAST Analysis 1.........................................................80! Figure 2.11 BEAST Analysis 2 ....................................................................................................81! Figure 2.12 BEAST Analysis 3 ....................................................................................................82! Figure 2.13 BEAST Analysis 4 ....................................................................................................83! Figure 2.14 R8s Analysis 3 ..........................................................................................................84! Figure 2.15 Photos of Thiratoscirtine Genera ..............................................................................85! Figure 2.16 Map and Phylogeny (BEAST Analysis 1) ................................................................86! Appendix A Figure 1. R8s Analysis 2........................................................................................106! Appendix A Figure 2. R8s Analysis 1........................................................................................107! Appendix A Figure 3. R8s Analysis 4........................................................................................108!  vi  ACKNOWLEDGEMENTS I am grateful to the faculty, staff and graduate students of the Zoology Department at UBC. I would like to extend a special thanks to Dr. Wayne Maddison, without whose knowledge, expertise, intuition and insight this thesis would not be possible. I offer my gratitude to Karen Needham and members of the UBC Maddison lab, past and present: Dr. Ingi Agnarsson, Dr. Damian Elias, Dr. Peter Midford, Junxia Zhang and Gwylim Blackburn for their insight and support. I would like to thank the members of my committee: Dr. Chris Harley, Dr. Dolph Schluter, Dr. Arne Moores and Dr. Wayne Maddison for their time and critique of my work. I thank Dr. Luke Harmon for helping me construct a conceptual framework to direct my research. I would also like to acknowledge the work of those who collected specimens used in this study: Dr. Marshall Hedin, Dr. Gita Bodner, Dr. Ingi Agnarsson, Junxia Zhang and others. I extend a special thanks to Domir De Bakker of the Royal Museum for Central Africa in Tervuren, Belgium for help with Gabonese spider collection. I also thank him for his help obtaining literature on African salticid fauna. I would like to thank Dr. Ludovic Ngok Banak (IRET & CENAREST) for in-country support and permit assistance in Gabon and Jean Pierre Vande Weghe (WCS) for logistical expertise and transportation in Gabon. I also thank: Gustave Mayi (SEEG), Dr. Lee White (WCS), Ghislain Ella (IRET), as well as Gaspard Abitsi (WCS) and the support crew at Parc national de la Waka, Ngounié Province, Gabon. I am grateful to Jennifer Guevara for her friendship, laughter and support throughout my time at UBC. I would like to thank Dr. Greta Binford for her insight and help during my Undergraduate degree—much of which shaped this graduate work. I would like to thank my Grandmother, Sue McKinney, for her financial support during my B.A., without which my advanced degree would not be possible. Finally, I thank my mother, father, brother and sister for encouraging me in my educational endeavors. This work was funded by an NSERC grant to W.P. Maddison. ! !  vii  DEDICATION  To those who have gone before And those who will come after To learn about the natural world And to admire life’s treasure—its diversity  viii  CO-AUTHORSHIP STATEMENT The second chapter of this thesis is a collaboration between M.R. Bodner and W.P. Maddison. The research project was identified and designed by Bodner and Maddison. Both contributed to the research by collecting specimens. Maddison selected and identified specimens for the analysis. Bodner performed the data analysis and prepared the manuscript with input from Maddison.  ix  CHAPTER 1 An Introduction to Salticidae, Fossil Spiders and Molecular Dating Methods. 1.1  Introduction There are over 3,600 recognized genera of spiders (Araneae) in 108 families  (Platnick 2009). Jumping spiders (Salticidae) make up the most species-rich family with more than 5,000 of the 40,000 known species of spiders (Platnick 2009). This family is delimited by a pair of large anterior eyes found at the front of their carapace, which gives them excellent vision and allows them to find prey and mates using visual cues (Jackson & Pollard 1996). Jumping spiders, unlike many of their web hunting counterparts, are diurnal, roaming hunters (Foelix 1996; Jackson & Pollard 1996). Although most jumping spider species do not hunt using webs, they use silk to balloon, lay draglines and build egg cases and nests for protection (Foelix 1996).  Jumping spiders come in a range of diverse body forms and colorations (Prószy!ski 2009). Most range in size from 3-10 mm (Foelix 1996), but can vary greatly in shape. Some have thick, robust legs and a fat abdomen, while others are long with thin legs and abdomens (Prószy!ski 2009). Others mimic beetles or ants in form and behavior (Peckham & Peckham 1892; Galiano 1986; Cutler 1987; Cushing 1997; Ceccarelli & Crozier 2007; Ceccarelli 2008; Richman 2008). Globally distributed, salticids are most diverse in tropical forests, and are found in temperate forests, mangroves, estuaries, marshes, grasslands and savannas (Coddington & Levi 1991). Some species show a preference for microhabitat type (i.e. tree trunk vs. tree leaves), while other species are habitat generalists (Cumming & Wesolowska 2004).  1  1.2  Literature Review While work remains to document and describe species in an evolutionary  framework, progress is being made towards understanding the salticid family tree and the phylogenies of individual groups (Hedin & Maddison 2001; Maddison & Hedin 2003; Maddison & Needham 2006; Zhang et al. 2006; Maddison et al. 2008; Maddison 2009). An understanding of evolutionary relationships will open up the door for comparative studies in behavior, ecology and evolution (for examples see Ceccarelli & Crozier 2007; Su et al. 2007).  !  1.2.1 The State of the Salticid Phylogeny The phylogeny of salticids has been reconstructed using molecular and morphology data (Hedin & Maddison 2001; Maddison & Hedin 2003; Maddison & Needham 2006; Maddison et al. 2008). Initial morphological work focused on characters of both the genitalia and chelicerae (Simon 1901; Prószy!ski 1976). Numerous morphological shared, derived characters (synapomorphies)—including those of the eyes—have been used to separate the Salticoida (see Maddison 1988 for a detailed description; Maddison 1996), which contain 90% of salticid species, from the basal jumping spider lineages (Wanless 1980, 1982, 1984; Blest & Sigmund 1984). This division has been supported by various molecular studies (Maddison & Hedin 2003; Maddison & Needham 2006; Zhang et al. 2006; Maddison et al. 2007; Maddison 2009).  2  Within Salticidae synapomorphies of the male palp have been used to identify groups (for examples see Griswold 1987; Maddison 1988, 1996, 2009; Prószy!ski 2009). Molecular phylogenies of the family have typically incorporated data from four gene regions (Hedin & Maddison 2001). These include three mitochondrial regions: ~1050 bp from cytochrome oxidase 1 (CO1), ~560 bp of the large ribosomal subunit 16S (with adjacent tRNA) and ~400 bp of NADH1 dehydrogenase (ND1), and one region of nuclear DNA: ~750 bp of the large ribosomal subunit 28S (Hedin & Maddison 2001). The rates of evolution of these genes vary (ND1 >> COI >> 16S >> 28S) (Hedin & Maddison 2001). 28S tends to provide the most resolution and in combination these genes resolve the tree at various levels (Hedin & Maddison 2001).  In recent years published molecular phylogenies have sampled taxa from the Americas, Australasia and other localities in the Old World (Maddison & Hedin 2003; Maddison et al. 2008). Until this study, limited work had been done on the placement of fauna from the Afrotropics using molecular data (Maddison & Hedin 2003). Additionally, while Actin 5C sequences have been obtained for broader spider studies this is the first study using the gene Actin 5C for salticid systematics (Vink et al. 2008).  1.2.2 Review of African Salticid Studies In general, study of African salticids has focused on species from arid environments (Wesolowska & Russell-Smith 2000). Many of these surveys focus on quantifying overall diversity and abundance with less attention paid to faunal composition. In two detailed studies of African salticid fauna, Wesolowska & Russell-  3  Smith (2000) describe 69 species from the woodland, bush land and open grasslands of Tanzania and Wesolowska & Haddad (2009) describe 72 species from the Ndumo Game Reserve, South Africa. Knowledge of jumping spider diversity has been enhanced by general spider surveys in South Africa (van den Berg & Dippenaai-Schoeman 1991; van der Merwe 1996; Lotz et al. 1991; Dippenaar et al. 2008, Foord et al. 2002; DippenaarSchoeman & Leroy 2003, Dippenaar-Schoeman et al. 2005; Modiba et al. 2005), Namibia (Russell-Smith 2002; Wesolowsk 2006), Botswana (Russell-Smith 1981) and Kenya (Warui et al. 2004; Russell-Smith et al. 1987). Central and West African jumping spider knowledge comes from studies in high-altitude meadows and savannahs in the Nimba Mountains, Guinea (Rollard & Wesolowsk 2002) and spider surveys in the woodland savannahs of the Ivory Coast (Blandin & Célérier 1981) and Katanga, Democratic Republic of the Congo (formally Shaba Province, Zaire) (Malaisse & Benoit 1979).  1.2.3 African Salticids from Arid Environments Of the ground-dwelling savannah salticids, the aelurillines, an Old World group is the most prevalent—comprising a large portion of the ground diversity (43% and 33% of species in Botswana and Tanzania, respectively) (Russell-Smith 1981; Wesolowska & Russell-Smith 2000). Also present in arid environments are a number of plexippoid genera (including, but not limited to Evarcha, Hyllus, Bianor, Hasarius, Thyene and Pellenes), heliophainines (Wesolwska 2003), euophryines, myrmarachnines and a few dendryphantines (Marpissoida), as well as other groups (Wesolowska & Russell-Smith 2000; Warui et al. 2004; Foord et al. 2002; Dippenaar-Schoeman & Leroy 2003;  4  Dippenaar-Schoeman et al. 2005). Also part of the fauna is the basal salticid Portia (Modiba et al. 2005) and the beetle-mimicking genus Pachyballus (Foord et al. 2002).  1.2.4 Salticids from the Afrotropics What is known about African tropical forest salticids comes from studies looking at spiders from the Ivory Coast (Wanless & Clark 1975; Berland & Millot 1941; Szüts & Jocqué 2001), Senegal and Guinea (Berland & Millot 1941). Species in these studies include several aelurilline genera: Aelurillus, Stenaelurillus and Phlegra; a number of plexippoid genera: Hyllus, Thyene, Telamonia and Pellenes and members of the Philaeus group: Tusitala and Philaeus (Wanless and Clark 1975; Berland & Millot 1941). Other genera including “Viciria,” Portia (non-Salticoida), Rhene (Marpissoida), Pharacocerus, Schenkelia, Tecuna, Pochyta, Saraina and the ant-like Myrmarachne and Pachyballus (Wanless and Clark 1975; Berland & Millot 1941). More recently there have been descriptions of the genus Bacelarella from the Ivory Coast (Szüts & Jocqué 2001); Enoplomischus from the Democratic Republic of the Congo, the Ivory Coast, and Kenya (Wesolowska & Szeremeta 2001; Wesolowska 2005); and Alfenus, Pellolesserta, Saraina and Stenaelurillus in Central Africa (Szüts & Scharff 2005). Based on molecular work, Maddison et al. (2008) propose a Bacelarella group that includes Phlegra, Pochyta and Nimbarus genera from Ghana and suggest that the aelurillines, freyines and the Bacelarella group form a clade—the Aelurilloida.  5  1.2.5 A Review of Fossil Spiders in Amber The oldest spider fossil is of a spinneret found in rock from the Middle Devonian (Shear et al. 1989; Selden et al. 2008). Mesozoic spider fossils are rare compared to fossils in younger ambers (Penney et al. 2003), but there is a fossil Mesothele spider from 295 Ma (Selden 1996). Mesothele spiders are primitive in many respects compared to their sister group, the Opistholthelae, which contains all other spider groups (Selden 1996). The oldest Opistholthelae is from the Triassic (240 Ma) (Selden & Gall 1992). Many families show up as fossils in the Cretaceous or Cenozoic and most Cretacous suborders survived the KT extinction (Penney et al. 2003), although some families are as young as the Neogene (Penney 2008). Salticidae show up in the Eocene (Penney 2006; 2008) and Penney (2006) notes it is odd that salticids—a spider group with an active ecology—would not show up earlier in Cretaceous ambers if indeed they had already evolved.  1.2.6  Fossils and Molecular Dating Analyses in Spiders A study on Hawaiian Havaika and a separate study on Pholcus in Micronesia,  used the age of islands within an archipelago as a calibration to date a phylogeny (Arnedo & Gillespie 2006; Dimitrov et al. 2008). By using fossil calibration points the ages of older lineages can be dated. Recently, Binford et al. (2008) used fossil spiders preserved in amber to date the divergence times of the Loxosceles and Sicarius spider lineages and Hendrixson & Bond (2007) used a Cretaceous fossil to date the Antrodiaetus, an old  6  genus of Mygalomorph spiders. Andriamalala (2007) dated the age of some salticid lineages using a single basal salticid fossil.  1.3  R8s and BEAST Dating Methods  Divergence times can be estimated using either a global molecular clock, which assumes one rate for the whole tree, or a method permitting rate heterogeneity, which allows local rates to vary across a tree (Rutschmann 2006). Most often global molecular clocks models are not appropriate as rates vary substantially on a tree (Rutschmann 2006). R8s (Sanderson 2003) and BEAST (Drummond et al. 2007) are programs used to date molecular phylogenies and can incorporate calibration point information. Both programs can incorporate rate heterogeneity models.  1.3.1 Penalized Likelihood Implemented in R8s In r8s the age of nodes are estimated on a user supplied starting tree with either a Langley-Fitch global molecular clock (Langley & Fitch 1974) or relaxed molecular clock model using a penalized likelihood (PL) (Sanderson 2002) or nonparametric rate smoothing (NPRS) (Sanderson 1997) model. NPRS smoothes the rapidness of the rate of change along a lineage by penalizing rates that change too quickly in comparison to the rates of neighboring branches (Rutschmann 2006). PL (Sanderson 2002) uses the NPRS function (Sanderson 1997), but adds a roughness penalty that affects the smoothing parameter and prevents an over fit of the data which sometimes occurs with NPRS (Rutschmann 2006). The data are used to find the optimal level of smoothing— with a  7  large smoothing value the roughness penalty dominates the NPRS function and the methods acts like a global molecular clock and with a small value smoothing is effectively unrestrained and the method acts more like NPRS (Rutschmann 2006). PL and NPRS can be implemented in r8s using several algorithms (POWELL, TN and QNEWT) (Sanderson 2004). When using the program, nodes can be either fixed at a certain age or allowed to move unfixed around a set of minimum and maximum constraints, which often better reflects fossil data (Sanderson 2004). The TN algorithm is recommended for fossil constraint reconstructions, as it is faster than the POWELL algorithm and more stringent (Sanderson 2004).  1.3.2 BEAST: Bayesian Evolutionary Analysis Sampling Trees  BEAST is a phylogenetic program that uses a Bayesian MCMC chain to estimate a phylogeny, while simultaneously estimating divergence times (Drummond et al. 2007). It generates a starting tree with a topology that will change as the MCMC chain runs (Drummond et al. 2007). The tree can be generated using a global or relaxed clock model, which can be run with an exponential or lognormal distribution (Drummond et al. 2007). For species-level phylogenies a Yule model prior with a constant speciation rate is recommended (Drummond et al. 2007). BEAST also allows for the following calibration distributions: uniform, normal, lognormal, exponential or gamma (Drummond et al. 2007). The uniform prior can be used to set an upper and lower bound on a node (Drummond et al. 2007), much like the maximum and minimum bounds used in r8s. Nodes in BEAST can be assigned as monophyletic or unrestricted tMRCA (time to the  8  most recent common ancestor) (Drummond et al. 2007). A Maximum clade credibility tree can be used to summarize the age distribution generated by BEAST on the tree that has the maximum sum of posterior probabilities (Drummond et al. 2007). It generates a 95% HPD (highest posterior density) interval, which is the shortest interval that contains 95% of the sampled values (Drummond et al. 2007).  1.4  Objectives and Hypotheses  1.4.1 Phylogeny, Age and Global Distribution of Salticidae The objective of this thesis is to present an updated family-level phylogeny of Salticidae with the broadest geographic sampling to date including fauna from the little sampled tropical forests of Central Africa. Using this phylogeny I date the family and the major groups of Salticoida and look at their biogeographic history to explore why groups are mostly or entirely restricted to one geographic region: the New World, Australasia and Afro-Eurasia.  1.4.2 The Age of Salticidae Salticidae may be a relatively young spider lineage, as they are not present in the Cretaceous fossil record (Penney 2006, 2008) and there are no salticids in the fossil-rich Eocene amber from Le Quesnoy, France (Nel et al. 2004; Penney 2006, 2008). Our knowledge of salticid fauna is incomplete as there are limited amber inclusions with fossil spiders from 76.5-53 Ma (Penney 2008). Given our sparse understanding of fauna from this time the family may be older than the Eocene, but given the lack of fossils in  9  Cretaceous amber from before 76.5 Ma, I suspect they are not mid-Cretaceous. Based on Maddison & Hedin (2003), New and Old World distribution patterns reflect a postcontinental break-up scenario, also suggesting the family is late or post-Cretaceous. Furthermore, Andriamalala (2007) dated the age of some salticid lineages and found they were all younger than ~38 Ma and found some large lineages to be quite young (e.g. the plexippoids were dated to 3.76 Ma). While it would be surprising if highly diverse groups like the plexippoids were truly only a few million years old, based on the information given above, I hypothesize the family evolved in or after the late Cretaceous.  10  1.5  References  Andriamalala, D. (2007). Revision of the genus Padilla Peckham and Peckham, 1894 (Araneae: Salticidae) — Convergent evolution of secondary sexual characters due to sexual selection and rates of molecular evolution of jumping spiders. Proceedings of the California Academy of Sciences, 58(13), 243-330. Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495. Berland, I. & Millot, J. (1941). Les araignées de l'Afrique occidentale française. 1. Les Salticides. Mémoires du Muséum, 12, 297-424. Binford, G.J., Callahan, M.S., Bodner, M.R., Rynerson, M.R., Nuñez, P.B., Ellison, C.E. & Duncan, R.P. (2008). Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics & Evolution, 49(2), 538-53. Blandin P. & Célérier, M.L., (1981). Les araignées des savanes de Lamto (Côte d’Ivoire). Publications du Laboratoire de Zoologie. École Normale Supérieure, 21(2), 505586. Blest, A.D. & Sigmund, C. (1984). Retinal mosaics of the principal eyes of two primitive jumping spiders, Yaginumanis and Lyssomanes: clues to the evolution of Salticid vision. Proceedings of the Royal Society of London, Series B, 221, 111-125. Ceccarelli, F.S. & Crozier, R.H. (2007). Dynamics of the evolution of Batesian mimicry: molecular phylogenetic analysis of ant-mimicking Myrmarachne (Araneae: Salticidae) species and their ant models. Journal of evolutionary biology, 20(1), 286-295. Ceccarelli, F.S. (2008). Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North Queensland. Australia Journal of Arachnology, 36(2), 344-351. Coddington, J.A. & Levi, H.W. (1991). Systematics and evolution of spiders (Araneae). Annual Review Ecology & Systematics, 22, 565-592. Cumming, M.S. & Wesolowska, W. (2004). Habitat separation in a species-rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in Zimbabwe. Journal of Zoology, 262(1), 1-10. Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. The Florida Entomologist, 80(2), 165-193.  11  Cutler, B. (1987). A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae, Salticidae). Journal of Arachnology, 15(3), 321-348. Dimitrov, D., Arnedoa, M.A. & Ribera, C. (2008). Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: evidence for long-term occupancy yet rapid recent speciation. Molecular Phylogenetics and Evolution, 48(2), 596-614. Dippenaar-Schoeman A.S. & Leroy, A. (2003). A checklist of the spiders of the Kruger National Park, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 46(1), 91-100. Dippenaar-Schoeman, A.S., van der Walt, A.E., de Jager, M., le Roux, E. & van den Berg, A. (2005). The spiders of the Swartberg Nature Reserve in South Africa (Arachnida, Araneae). Koedoe: African Protected Area Conservation and Science, 48(1), 77-86. Dippenaar, S.M., Dippenaar-Schoeman, A.S., Mogadi, M.A. & Khoza, T.K. (2008). A checklist of the spiders (Arachnida, Araneae) of the Polokwane Nature Reserve, Limpopo Province, South Africa. Koedoe- African Protected Area Conservation and Science, 50(1), 10-17. Drummond, A.J., Ho, S.Y.W., Rawlence, N. & Rambaut, A. (2007). A Rough Guide to BEAST 1.4. Institute of Evolutionary Biology University of Edinburgh, Edinburgh, United Kingdom. Foelix, R.F. (1996). Biology of Spiders. 2nd edition. Oxford University Press, Oxford, England. Foord, S.H., Dippenaar-Schoeman, A.S. & van der Merwe, M. (2002). A checklist of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 45(2), 35-43. Galiano, M.E. (1986). Salticidae (Araneae) Formiciformes. 16. Especies nuevas o poco conocidas de Simprulla, Fluda, Descanso y Peckhamia, 44(107), 129-139. Griswold, C.E. (1987). A revision of the jumping spider genus Habronattus F. O. P. – Cambridge (Araneae: Salticidae), with phenetic and cladistic analyses. University of California Publications in Entomology, 107, 1-345. Hedin, M.C. & Maddison, W.P. (2001). A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18(3), 386-403.  12  Hendrixson, B.E. & Bond, E.J. (2007). Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Molecular Phylogenetics and Evolution, 42(3), 738-755. Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308. Langley, C.H. & Fitch, W.M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161-177. Lotz, L.N., Seaman, M.T. & Kok, D.J. (1991). Surface-active spiders (Araneae) of a site in semi-arid central South Africa. Navorsinge van die Nasionale Museum Bleomfontein, 7, 530-540. Maddison, W.P. (1988). A revision of jumping spider species groups formerly placed in the genus Metaphidippus, with a discussion of salticid phylogeny (Araneae). PhD Thesis. (Harvard University: Cambridge, MA.) Maddison, W.P. (1996). Pelegrina Franganillo and other jumping spiders formely placed in the genus Metaphidippus (Araneae: Salticidae). Bulletin of the Museum of Comparative Zoology, 154, 215-368. Maddison W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549. Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55. Maddison W.P., Zhang J.X. & Bodner, M.R. (2007). A basal Phylogenetic Placement for the Salticid Spider Eupoa, with Descriptions of Two New Species (Araneae: Salticidae). Zootaxa, 1432, 22-33. Maddison, W.P., Bodner, M.R. & Needham, K. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae) Zootaxa, 1893, 49–64. Maddison, W.P. (2009). New cocalodine jumping spiders from Papua New Guinea (Araneae: Salticidae: Cocalodinae). Zootaxa, 2021, 1-22. Malaisse F., & Benoit P.L.G. (1979). Contribution à l’étude de l’ecosystéme forêt Claire (Miombo) au Shaba (Zaïre). Revue de Zoologie Africaine, 93, 485-499. Modiba, M.A., Dippenaar, S.M., and Dippenaar-Schoeman (2005). A Checklist of spiders from Sovenga Hill, an inselberg in the Savanna Biome, Limpopo Province, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 48(2), 109-115.  13  Nel, A., de Ploëg, G., Millet, J., Menier, J. J. & Waller, A. (2004). The French ambers: a general conspectus and the lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8. Peckham, G. W. & E. G. Peckham. (1892). Ant-like spiders of the family Attidae. Occasional Papers of the Natural History Society of Wisconsin, 2(1), 1–84. Penney, D., Wheater, C.P. & Selden, P.A. (2003). Resistance of Spiders to CretaceousTertiary Extinction Events. Evolution, 57(11), 2599-2607. Penney D. (2006). A new fossil Oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. African Invertebrates, 48(1), 71-75. Penney D. (2008). Dominican Amber Spiders: A comparative palaeontologicalneontological approach to identification, faunistics, ecology and biogeography. Siri Scientific Press. Platnick, N.I. (2009). The World Spider Catalog, Version 8.5. The American Museum of Natural History. Prószy!ski, J. (1976). Studium systematyczno-zoogeograficzne nad rodzina Salticidae (Aranei) Regionow Palearktycznego I Nearktycznego. Wyzsza Szkola Pedagogiczna w Siedlcach Rozprawy, 6, 1-260. Prószy!ski, J. (2009). The Salticidae (Araneae) of the World. Prepared with the assistance of the Museum and Institute of Zoology, Polish Academy of Sciences Warsaw, POLAND. Available at http://www.miiz.waw.pl/salticid/main.htm. Richman, D.B. (2008). Revision of the jumping spider genus Sassacus (Araneae, Salticidae, Dendryphantinae) in North America. Journal of Arachnology, 36(1), 26-48. Rollard, C. & Wesolowska, W. (2002). Jumping spiders (Arachnida, Araneae, Salticidae) from the Nimba Mountains in Guinae. Zoosystema, 24(2), 283-307. Russell-Smith, A. (1981). Seasonal activity and diversity of ground-living spiders in two African savanna habitats. Bulletin of the British Arachnological Society, 5, 145154. Russell-Smith A., Ritchie J.M. & Collins N.M. (1987). The surface-active spider fauna of arid bushland in Kora reserve, Kenya. Bulletin of the British Arachnological Society, 7, 171-174.  14  Russell-Smith A. (2002). A Comparison of the Diversity and Composition of GroundActive Spiders in Mkomazi Game Reserve, Tanzania and Etosha National Park, Namibia. The Journal of Arachnology, 30, 383-388. Rutschmann, F. (2006). Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergences times. Diversity and Distributions, 12, 35-48. Sanderson, M.J. (1997). A nonparametric approach to estimating divergence times in the absense of rate constancy. Molecular Biology & Evolution, 14, 1218-1231. Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19, 1 01-109. Sanderson, M.J. (2003). R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19, 301302. Sanderson, M.J. (2004). r8s, version 1.70 User’s Manual. Section of Evolution and Ecology, University of California, Davis, USA. Selden P.A. & Gall, J.-C.(1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology, 35, 211-235. Selden, P.A. (1996). Fossil mesothele spiders. Nature, 379, 498-499. Selden, P.A., Shear, W.A. & Sutton, M.D. (2008). Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proceedings of the National Academy of Sciences, 105(52), 20781-20785. Shear, W. A., Palmer, J.M., Coddington, J.A. and Bonamo, P.M. (1989). A Devonian Spinneret: Early Evidence of Spiders and Silk Use. Science, 246(4929), 479-481. Simon, E. (1901). Histoire Naturelle des Araignées. Deuxième edition. Tome 2, fasc. 3, 381-68. Su, K.F., Meier, R., Jackson, R.R., Harland, D.P. & Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. European Society for Evolutionary Biology, 20, 1478-1489. Szüts, T. & Jocqué, R. (2001). New Species in the Genus Bacelarella (Araneae, Salticidae) from Côte d’Ivoire. Annales du Musee Royal de I'Afrique Centrale (Sciences Zoologiques), 285, 77-92.  15  Szüts, T. & Scharff, N. (2005). Redescriptions of Little Known Jumping Spider Genera (Araneae: Salticidae) From West Africa. Acta Zoologica Academiae Scientiarum Hungaricae, 51(4), 357-378. van den Berg A. & Dippenaar-Schoeman A.S. (1991). Ground-living spiders from an area where the harvester termite Hodotermes mossambicus occurs in South Africa. Phytophylactica, 23, 247-253. van der Merwe M., Dippenaar-Schoeman A.S. & Scholtz CH. (1996). Diversity of ground-living spiders at Ngome State Forest, Kwazulu/Natal: a comparative survey in indigenous forest and pin plantations. African Journal of Ecology, 34, 342-350. Vink, C.J., Hedin, M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2005). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382. Wanless, F.R. & Clark, D.J. (1975). On a collection of spiders of the family Salticidae from the Ivory Coast. Revue de Zoologie africaine, 89, 273-296. Wanless, F.R. (1980). A revision of the spider genera Asemonea and Pandisus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zoology), 39, 213257. Wanless, F.R. (1982). A revision of the spider genus Cocalodes with a description of a new related genus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zoology), 42, 263-298. Wanless, F.R. (1984). A revision of the spider subfamily Spartaeinae nom. n. (Araneae: Salticidae) with descriptions of six new genera. Bulletin of the British Museum of Natural History (Zoology), 46, 135-205. Warui, C.M., Villet, M.H. & Young, T.P. (2004). Spiders (Araneae) from black cotton soil habitats of a highland savanna in Laikipia, central Kenya. Journal of Afrotropical Zoology, 1, 9-20. Wesolowska, W. & Russell-Smith, A.R. (2000). Jumping spiders from Mkomazi Game Reserve in Tanzania (Araneae Salticidae). Tropical Zoology, 13, 11-127. Wesolowska, W. & Szeremeta, M. (2001). A revision of the ant-like salticids genera Enoplomischus Giltay, 1931, Kima Peckham and Peckham, 1902 and Leptorchestes Thorell, 1870 (Araneae: Salticidae). Insect Systematic Evolution, 32, 217-240. Wesolowska, W. (2003). New data on African Heliophanus species with descriptions of new species (Araneae: Salticidae). Genus, 14(2), 249-294.  16  Wesolowska, W. (2005). A new species of Enoplomischus from Kenya (Araneae: Salticidae: Leptorchestinae). Genus, 16(2), 307-311. Wesolowska, W. (2006). Jumping spiders from the Brandberg massif in Namibia (Araneae: Salticidae). African Entomology, 14(2), 225-256. Wesolowska, W. & Haddad, C.R. (2009). Jumping spiders (Araneae: Salticidae) of the Ndumo Game Reserve, Maputaland, South Africa. African Invertebrates, 50(1), 13-103. Zhang, J.X., Woon, Jeremy R. W. & Li, Daiqin. (2006). A New Genus and Species of Jumping Spiders (Araneae: Salticidae: Spartaeinae) from Malaysia. The Raffles Bulletin of Zoology, 54(2), 241-244.  17  CHAPTER 2 The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae). 1  2.1  Introduction Globally dispersed, jumping spiders (Salticidae) make up the most species-rich  family of spiders with more than 5,000 of the earth’s 40,000 known species of spiders (Prószy!ski 2009; Platnick 2009). The group has acute vision and is delimited by a pair of large anterior median eyes (Jackson & Pollard 1996). Jumping spiders are found in a variety of habitats and microhabitats and are distributed worldwide except in extreme polar regions (Cutler 1982). They have a wide array of body forms and colorations (Prószy!ski 2009). Despite this remarkable diversity we do not know how and when they diversified globally. Several authors have suggested the family is relatively young (Cretaceous or Eocene) (Penney 2006; Penney 2008; Andriamalala 2007) and that diversification of the family happened after the separation of the New and Old World continents (Maddison & Hedin 2003; Maddison et al. 2008).  Combined morphological and molecular studies have revealed a division between the Salticoida, which contain 90% of extant salticid species and the majority of the subfamilies, from the basal salticid groups (spartaeines, lyssomanines, lapsiines, hisponines, Holcolaetis, Sonoita, Cocalodes, Allococalodes and Eupoa) (Maddison & Hedin 2003; Maddison & Needham 2006; Zhang et al. 2006; Maddison 2009). The 1  A version of this chapter will be submitted for publication. Bodner, M.R., & Maddison, W.P. The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae).  18  majority of Salticoida groups are each mostly or entirely restricted to one of several continental regions (Maddison & Hedin 2003; Maddison et al. 2008). For example the Amycoida are almost entirely Neotropical, while the Plexippoida (plexippines and pellenines) are mostly Afro-Eurasian, with the exception of the genus Habronattus in North America and a few other groups (Maddison & Hedin 2003). American groups include the Marpissoida (dendryphantines and marpissines) and the freyines, AfroEurasian groups include the heliophanines, aelurillines, Leptorchesteae and the Philaeus group and the Astioida are dominant in Australasia (Hedin & Maddison 2003; Maddison et al. 2008). The Euophryinae are an exception to this pattern, being found in the New and Old World (Maddison & Hedin 2003; Maddison et al. 2008).  Perhaps the biggest gap in sampling for phylogenetic reconstruction has been the Afrotropics. In general, taxonomic sampling of African salticids has focused on species from arid environments (Wesolowska & Russell-Smith 2000). In this paper we explore the fauna of the tropical forests of Gabon by examining the placement of these salticids within the phylogeny of the family. With a more complete geographic sampling of salticids we can date a molecular tree. Knowing the time of diversification will allow us to address global distribution patterns in light of continental biogeographic history.  Maddison et al. (2003) suggest that the family may have evolved after the breakup of the continents in the late Mesozoic because major groups are each restricted to one continental region (Maddison & Hedin 2003). Similarly, Penney (2006, 2008) notes the family may be relatively young, because no salticids have been found in Cretaceous  19  amber, and members of the family are only known from Eocene Baltic amber. Based on the given information given we hypothesize the family evolved in or after the late Cretaceous (<65 Ma).  To test if the origin of the family is late or post-Cretaceous, we use multiple fossil spider calibration points to estimate the divergence times of major groups on a phylogenetic tree with a broad geographic sampling of salticids. We present the first dated molecular tree for Salticidae and consider the biogeographic distribution of major groups within the family in light of divergence time estimates. The only previous attempt to date the family was by Andriamalala (2007), who fixed the age of Salticidae to 65 Ma and used a single fossil minimum in a penalized likelihood analysis of the 28S gene to estimate ages for major salticid groups. All groups were found to be younger than 38.7 Ma and many large groups like the plexippoids were found to be very young (< 4 Ma) (Andriamalala 2007). We hope to build on this important first analysis by adding calibration points and increasing taxon sampling.  2.2  Methods  2.2.1 Taxon Sampling Sequences were obtained from a subset of Gabon species that represented the diversity we found and combined with new taxa from across the phylogeny and a number of sequences from previous studies (see Table 2.1 for names, collection locality, gene information and GenBank accession numbers) (Maddison & Hedin 2003; Maddison & Needham 2006; Maddison et al. 2007; Maddison et al. 2008). These taxa represent a  20  broad geographic sampling of the family. African samples were collected from tropical wet forests between 600 and 700 meters in elevation in the Parc national des Monts de Cristal, Estuaire Province and Parc national de la Waka, Ngounié Province, Gabon. Additional samples where collected from the Cape Esterias region of the Northwest coast, Estuaire Province. We did not sample for diversity within species because sampling was broadly dispersed across clades of thousands of species.  Samples were collected from foliage using a beat sheet method and from grasses using a sweep net and using visual searches of leaf litter, stream banks, tree trunks and fallen logs. Samples were preserved in 100% EtOH and stored long term at –80°C. All morphological specimens and DNA vouchers are stored in the Spencer Entomological Collection at the Beaty Biodiversity Museum, University of British Columbia.  2.2.2  DNA Extraction Depending on the size of the specimen, 1-4 legs were removed for DNA. In a few  instances the carapace was also used in addition to all available legs. Genomic DNA was extracted using the Puregene DNA Purification Kit (Gentra Systems). A few samples were processed using the DNAeasy Kit (Qiagen). Based on initial tissue volume some samples where diluted before being amplified. 2.2.3  PCR Amplification and Sequencing Four gene regions were amplified, sequenced and used in phylogenetic analysis.  They include the nuclear regions 28S (~1200 bp) and Actin 5C (~730 bp coding region  21  with a ~85-400 bp internal intron) and the mitochondrial regions CO1 (~1050 bp) and 16S (~650 bp), ND1 (~400 bp). For 16SND1 the following primers were used: forward N1-J-12261 (Hedin 1997) and reverse LR-N-13398 (Simon et al. 1994); for COI forward C1-J-1718 “SPID” (Simon et al. 1994) and reverse C1-N-2776 (Hedin & Maddison 2001); for 28S forward 28S“O” (Hedin & Maddison 2001) or ZX1 (van der Auwera et al. 1994 with the 11th bp changed from a Y to T) and for 28S reverse 28S“C” (Hedin & Maddison 2001). A new forward primer was designed for Actin 5C, ActMBF2 5'-GCT CCY TTR AAT CCH AAA G -3' and Actin-R1B (Vink et al. 2008) was used as the reverse primer. The protocols used to amplify 28S, Actin 5C and CO1 included a 2 m 95°C denaturation and 35 cycles of 45 s at 95°C, a 45 s annealing step at 48/49°C (28S), 48/55°C (Actin 5C) or 48/50°C (CO1), 1 m at 72°C and one 10 m extension step at 72°C. For 16SND1 there was a 2 m 94°C denaturation and 35 cycles of 45 s at 94°C, a 20 s, 35 s or 45 s annealing step at 48°C, 1 m at 65°C and one 10 m extension step at 65°C (see Hedin & Maddison 2001; Maddison & Needham 2006; Maddison et al. 2007; Maddison et al. 2008 for the protocols of previously published sequences). Most PCR experiments were run using Taq DNA Polymerase (Invitrogen), and a minimal number of samples were run using Paq5000 DNA Polymerase (Agilent Technologies), with their respective buffers. Invitrogen supplied the dNTPs and Oligo supplied the primers. All PCR products were stored at -20°C and those with a DNA concentration " 50 ng were sent to Macrogen Inc. (Korea) to be sequenced in both directions using the 3730xl DNA analyzer.  22  DNA sequences were imported as .ab1 chromatogram files into Mesquite 2.01+ (Maddison & Maddison 2008). The chromaseq package (D. Maddison & W. Maddison in prep.) for Mesquite (Maddison & Maddison 2008) was used to obtain sequences using Phred (Ewing & Green 1998; Ewing et al. 1998; Green & Ewing 2002) and Phrap (Green 1999). Chromatograms were viewed and hand-corrected using the “Color Cells by Quality from Phred/Phrap” module in Mesquite (Maddison & Maddison 2008). In most cases contigs consisted of both the forward and reverse sequences. In some instances one read was of good quality, while the other was poor. In these cases only the single reads of exceptional quality were also included in the final dataset.  2.2.4  Sequence Alignment Alignments included 230 taxa for 28S, 228 taxa for 16SND1, 181 taxa for COI,  93 taxa for Actin 5C and 230 taxa for the All-Genes matrix (individual gene data are missing from some taxa).  Protein Coding Genes  ND1, CO1 and Actin 5C nucleotide sequences were viewed using the “Color Nucleotide by Amino Acid” option in Mesquite (Maddison & Maddison 2008). These sequences were aligned via amino acid read, but left as nucleotide data. In the case of Actin 5C, the intron, which began at bp 226 of the coding region, was aligned using a gap opening cost of 24 and gap extension cost of 6 (24/6 ratio) (Hedin & Maddison 2001) in CLUSTALW (1.83.1) (Higgins & Sharp 1988; Thompson et al. 1994). Most Actin 5C  23  sequences had ~85 bp intron. A few intron sequences were +400 bp long. In these long cases, the long introns aligned closely with the other intron sequences, but had an extended region either before or after this well-aligned area.  There are believed to be at least four copies of the Actin gene in spiders (Vink et al. 2008). To ensure that the new primer set amplified a single copy of the gene, we translated the coding region of the alignment to amino acids and looked for variation among sequences. Since an exhaustive search of the whole genome was not possible, Vink et al. (2008) used amino acid variation in Drosophila melangogaster Actin as a comparison for determining copy number in spiders. There are six copies of Actin in D. melanogaster and the copies differ by 2-16 aa (Vink et al. 2008). Our data set contained 4 sequences that had one, unique amino acid change. This led us to conclude the Actin sample being amplified was indeed a single copy as the amino acid sequences had high identity with the exception of single amino acid changes in a few sequences. It should be noted that our data set had 27 amino acids that were inconclusive, meaning that one of the nucleotides of the codon was ambiguous and thus definitively identifying the amino acid was not possible. We used a NCBI Global nucleotide BLAST and a BLASTN search against the D. melanogaster genome to confirm that the copy was Actin 5C.  Ribosomal Genes  We used CLUSTALW (1.83.1) (Higgins & Sharp 1988; Thompson et al. 1994) to align the non-coding region of 16S (plus the adjacent tRNA) and the 28S gene using an  24  alignment with a 24/6 (cost of gap opening/cost of gap extension) penalty ratio following Maddison & Hedin (2001). We randomized the order of the addition of 28S taxa using Mesquite (Maddison & Maddison 2008) because we were concerned the order of the taxa biased the alignment (i.e. taxa added first aligned together more than taxa added later despite overall similarity). This produced two 28S alignments—one with the original taxa order (28S Original) and a second with a randomized order (28S Random Taxa Order). 28S has a stem-loop structure (Gillespie el al. 2006) and while 28S stems are conserved and align with little uncertainty, loop regions can be more variable. After the two 28S data sets had been globally aligned with CLUSTALW (Higgins & Sharp 1988; Thompson et al. 1994) we used the “Highlight Apparently Slightly Misaligned Regions” tool in Mesquite to identify misaligned regions, which we then selected and realigned locally using the 24/6 ratio. The 28S Original alignment was locally aligned between the following bp regions of the initial alignment: 989-1195 (realigned again 1007-1195), 984-1016 (realigned again 1005-1020), 953-973, 665-853 (realigned again 810-838), 730-751, 691-707, 388-486 (realigned again 441-488 and 474-494), 455-474, 423-442, 392-429, 400-439 (realigned again 425-442) and 0-197 bp. The 28S Random Taxa Order alignment was locally aligned between the following regions of the initial alignment: 1011-1192 (realigned again 1002-1021 and 993-1009), 956-1018, 668-836 (realigned again 771-840, 763-812, 713-752), 391-489 (realigned again 439-497, 461-487, 396-451, 423-444, 447-488), 391-433 (realigned again 409-431, 392-417, 397-424, 410-432) and 1-365 bp. Both data sets were then hand-corrected with minimal changes.  25  All-Genes Data Set  A concatenated data set was generated using the 28S Random Taxa Order (locally corrected), 16SND1, CO1 and Actin 5C (with the intron removed) alignments. The 28S Random Taxa Order alignment was chosen for the consensus tree to eliminate alignment bias due to the order of taxa in the alignment. In the All-Genes alignment 28S contributed the most sequences followed by 16SND1, CO1 and Actin 5C, respectively.  2.2.5  Phylogenetic Reconstruction  Estimating Model Parameters  For each individual gene region (28S, CO1, 16SND1 and Actin 5C) and the AllGenes set we used MrModeltest v2.3 (Nylander 2004) to find the best model of evolution using the Akaike Information Criterion (AIC).  Bayesian Analysis  The 28S, CO1, 16SND1 and Actin 5C data sets were run in MrBayes (Huelsenbeck et al. 2001; Ronquist & Huelsenbeck 2003) using a GTR model (nst=6 rates=invgamma). GTR model parameters were allowed to vary across partitions. For the individual gene analyses the partitions were: 28S; 16S and ND1 first, second, third codon; CO1 first, second, third codon; Actin 5C first, second, third codon and the intron.  26  For the All-Genes analysis partitions were: 28S, 16S, ND1/CO1 (mitochondrial) first, second, third codon and Actin 5C first, second, third codon (the intron was eliminated to save computational time). All Bayesian analyses were run using the following parameters: mcmcp ngen= 200,000,000 samplefreq=1,000 nchains= 4 and a burn-in value of 0.25 (25%). Some analyses where stopped before reaching 200,000,000 generations. A majority rule consensus tree using the resulting MrBayes trees was generated in PAUP (Swofford 2002) and the posterior probabilities of the trees estimated (Huelsenbeck et al. 2001; Ronquist & Huelsenbeck 2003).  2.2.6  Divergence Time Estimation  Data File Preparation  The 28S Random Taxa Order and 16SND1 alignments were combined and run in a Bayesian analysis to generate a starting tree for r8s. Five 16SND1 Havaika sequences obtained from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) from Arnedo and Gillespie (2006) were added to 230 taxa from this study, so that Havaika could be used as a calibration point in our dating analysis (see Calibration Points). The 28S/16SND1 Bayesian analysis was run with the same GTR model as the other analyses and was allowed to vary across the following partitions: 28S/16S, ND1 first, second and third codon positions. The Bayesian analysis was run using the following parameters: mcmcp ngen= 200,000,000 samplefreq=1,000 nchains= 4 and a burn-in value of 0.25 (25%). The 28S/16SND1 alignment was also used as the input file to run the BEAST dating analysis.  27  To generate a starting tree in which to estimate the age of nodes in r8s the 28S/16SND1 Bayesian trees (including the Havaika sequences) were harvested after 91,098,000 generations (stdDev of clade frequencies = 0.009). The first 25% of the trees were discarded as post analysis burn-in and the tree with the second highest posterior probability (Tree 85,728,000 LnL -98434.000) was chosen as the starting tree for the r8s analysis. This tree was chosen, rather than the tree of highest probability, because the topology, especially that of the Salticoida, matched more closely the dating tree generated by BEAST. This allowed us to better compare the results of the two dating analyses.  Calibration Points  Three calibration points (Salticidae, Salticoida and Lyssomaninae/Spartaeinae) were chosen based on fossil spiders preserved in amber (see Table 2.2 for a summary of salticid fossils in amber) and one point was chosen based on the biogeography of the Havaika genus of Hawaii. These calibration points were used in the BEAST and r8s analyses.  For the Salticidae calibration we used a 44 Ma minimum and a 100 Ma maximum constraint. The oldest known amber salticids are from Baltic amber (Petrunkevitch 1950, 1958). The deposit is estimated to be 44-49 Ma old (Weitschat & Wichard 2002 as cited in Penney 2008), making salticids at least 44 Ma old. There are currently no known salticid fossils older than those from Baltic amber (Penney 2006, 2008). Salticidae have not been found in the 240+ spider inclusions (Penney 2006, 2008) from the Le Quesnoy,  28  French amber of the Late Eocene (53 Ma) (Nel et al. 2004). Additionally, no salticids have been found in amber from the Cretaceous period, including in deposits from France (Penney 2006; Perrichot et al. 2007), Myanmar (Grimaldi et al. 2002; Penney 2006), New Jersey, USA (Penney 2002, 2006), Spain (Alonso et al. 2000; Penney 2006, 2008), Alberta, Canada (McAlpine & Martin 1969; Penney 2008) and Siberia, Russia (Zherikhin & Eskvo 1999 as cited in Penney 2008) (all > 76.5 Ma) (Penney 2008). With these dates we hypothesize the family to be no older than 100 Ma and set the maximum age calibration of Salticidae to this value.  For the Salticoida calibration we used a 16 Ma minimum and a 49 Ma maximum constraint. The fauna of Baltic amber are comprised of members of the extant, but basal (non-salticoid) subfamily Hisponinae (referred to as Gorgopsininae in Petrunkevitch 1950, 1958; Wunderlich 2004) and other basal salticids that cannot be placed in any extant group (Wunderlich 2004). There are no Salticoida from this amber deposit (Wunderlich 2004). Salticoids could have existed elsewhere during the Eocene, a possibility we cover in the discussion. In the absence of other fossil information, we constrain Salticoida (the non-basal salticids) to be no older than the oldest age of the Baltic amber, which is 49 Ma (Weitschat & Wichard 2002 as cited in Penney 2008). We set the minimum age calibration to 16 Ma, since the salticoids show up abundantly in the Miocene Dominican Republic amber dating to this time (Iturralde-Vincent 2001; Penney 2008) indicating they are no younger than the deposit.  29  For the Lyssomaninae/Spartaeinae calibration we used a 22 Ma minimum and a 100 Ma maximum constraint. Garciá-Villafuerte and Penney (2003) identified one Lyssomanes (basal salticid) from Chiapas (Simojovel) Mexican amber dating to 22-26 Ma (Berggren & van Couvering 1974); however, no synapomorphy was listed that could be used to place the fossil within any extant genera in the Lyssomaninae and there are currently two genera from this subfamily known from the New World (Maddison & Needham 2006). The unclear placement of this fossil means that we placed the calibration point at the base of the Lyssomaninae/Spartaeinae node of the dating tree. As such, we estimated the Lyssomaninae/Spartaeinae node to be no younger than the youngest age of the Chiapas amber, which is a minimum of 22 Ma old (Berggren & van Couvering 1974). The maximum age calibration point was set to be 100 Ma or the maximum age of Salticidae.  Finally, we used the Havaika phylogeny of Arnedo and Gillespie (2006) as a reference to place a maximum age of 0.5 Ma to the common ancestor of Maui Nui morph D and the Hawaiian Big Island H. cruciata clade (see node 15 Figure 5 from Arnedo & Gillespie 2006). We chose this node rather than others that dated to roughly the same time because we were able to resolve this node in our 28S/16SND1 Bayesian analyses.  Our analyses differ from Andriamalala (2007) in several ways. First, Andriamalala (2007) fixed the age of Salticidae to be 65 Ma. In our analyses we constrained Salticidae to a minimum of 44 Ma and a maximum of 100 Ma, but allowed the node age of Salticidae to be estimated in the analyses. Similar to Andriamalala  30  (2007) we used the Lyssomanes fossil from Mexican amber as a minimum calibration point, although we used 22 Ma rather than 30 Ma as the youngest age of the amber based on the date given by Berggren & van Couvering (1974) (Penney 2008). We also added the Salticoida and Havaika minimum and maximum fossil constraints and ran a BEAST dating analysis in addition to r8s.  BEAST (Bayesian Evolutionary Analysis Sampling Trees)  BEAST v1.4.8 (Drummond & Rambaut 2007) was used to generate a phylogenetic tree and a posterior distribution of rates and times for the 28S/16SND1 data set using a Bayesian MCMC chain and a relaxed molecular clock model. BEAUti v1.4.8 (Drummond & Rambaut 2007) was used to make a XML input file for BEAST with the appropriate analysis parameters. A relaxed clock with an uncorrelated lognormal distribution was run using a GTR Gamma + invariant site base-frequency model and 6 gamma rate categories as estimated in MrModeltest v2.3 (Nylander 2004). The “Fixed Mean Substitution Rate” command was turned off, so that the calibration points could be used as priors to estimate the age of nodes on the tree in millions of years. The following tMRCA (time to most recent common ancestor) priors were established: Salticidae, Salticoida, Lyssomaninae/Spartaeinae and Havaika. These tMRCAs were not restricted to be monophyletic and the out-groups were pruned from the tree prior to analysis.  In BEAST, strong priors are required to generate an initial starting tree with a non-zero likelihood (Drummond & Rambaut 2007). We found that using the original  31  MCMC priors to generate a starting tree returned an initial tree with a log likelihood of – Inf (essentially a zero likelihood). This is a common problem with large taxonomic data sets (Drummond & Rambaut 2007). To generate a starting tree with an appropriate likelihood, we used a different set of tMRCA priors than the MCMC tMRCA priors used to run the analyses. A uniform distribution was used to set the minimum and maximum (refered to as “lower” and “upper” when using BEAST) age specifications for all tMRCA priors. The tMRCA priors of the starting tree were as follows for all analyses: Salticidae uniform minimum 44.0 Ma/maximum 50.0 Ma, Salticoida uniform minimum 16.0 Ma /maximum 49.0 Ma, Lyssomaninae/Spartaeinae uniform minimum 22.0 Ma /maximum 49.0 Ma and Havaika uniform minimum 0.0 Ma /maximum 0.5 Ma.  Using the above starting tree we ran four analyses using several combinations of MCMC chain tMRCA priors, the most constrained of which incorporates all calibration points and set the limits as Salticidae minimum 44.0 Ma/maximum 100.0 Ma, Salticoida minimum 16.0 Ma/maximum 49.0 Ma, Lyssomaninae/Spartaeinae minimum 22.0 Ma/maximum 100.0 Ma and Havaika minimum 0.0 Ma/maximum 0.5 Ma (Analysis 1). We then loosened these constraints in several ways to understand the influence of different calibration hypotheses on the outcome of the dating analysis (Table 2.3). Specifically, we were interested in understanding how the Havaika and Salticoida maximum calibration points affected the tree dates. In the first analysis, both the Havaika and the Salticoida maximum calibration points were left intact (i.e. 0.5 Ma for Havaika and 49 Ma for Salticoida). In the second analysis, the Havaika calibration point was left in place, while the Salticoida maximum calibration point was essentially  32  removed by setting the maximum age to 100 Ma (a very generous maximum, as the amber suggests the group is much younger). In the third analysis, the Salticoida 49 Ma maximum was left intact, but the Havaika calibration point was eliminated. In the forth analysis both the Havaika and Salticoida calibration maximums were removed (Salticoida was again set to 100 Ma and the Havaika point was not included). In all analyses the Lyssomaninae/Spartaeinae and Salticidae maximum bounds were set at 100 Ma (based off of the absence of these groups in older amber deposits). For all analyses a speciation “Birth-Death Process” (Gernhard 2008) was used to estimate the tree prior (Drummond & Rambaut 2007). The appropriate operators were edited as specified in the BEAST manual— these changes did not affect the outcome of the tree, only the speed of the analyses. Each analysis was run for 8 iterations of 20,000,000 generations (post analysis burn-in=0.25). The 8 iterations were then combined into one data set for summary using the LogCombiner v1.4.8 program (Drummond & Rambaut 2007). The trees were then summarized into a Maximum Clade Credibility Tree in TreeAnnotator v1.4.8 available in the BEAST v1.4.8 package (Drummond & Rambaut 2007) and displayed with age calibrations in millions of years using FigTree v1.2. (Rambaut 2008).  Penalized likelihood implemented in r8s  The Bayesian tree with the second highest posterior probability (Tree 85,728,000 LnL -98434.000) from the 28S/16SND1 data set was used as a starting tree in r8s. A cross-validation procedure was used to choose between the Langley-Fitch (LF) (Langley & Fitch 1974) and Penalized Likelihood (PL) (Sanderson 2002) molecular clock models  33  in r8s (Sanderson 2004). LF implements a strict clock-like model (Rutschmann 2006). PL is a relaxed clock method, where the effect of the smoothing penalty can cause the function to range from clock-like to effectively unrestrained (Rutschmann 2006). During cross-validation we had r8s estimate 8 smoothing parameters for the PL analysis (crossv=yes cvinc=0.5 cvnum=8) under the additive or log roughness parameters. LF and PL analyses were run using the TN algorithm as suggested in the r8s manual (Sanderson 2004). The analysis with the smallest Chi-squared value was chosen as the best clock model (Sanderson 2004).  The cross-validation procedure was used on all analyses. Based on the crossvalidation, a PL model with a TN algorithm and a smoothing parameter of 1.0 for analyses 1, 3 and 4 (3.2 e+0.2 for analysis 2) was used. An additive penalty was selected because the Chi-squared values of the cross-validation were the same between PLTN analyses run with either the additive or log penalty functions and the outcome of the analyses were identical. We pruned the outgroups using the prune taxon command and collapsed any zero branch lengths nodes. As with BEAST, we ran four analyses using the same combinations of minimum and maximum values for the Salticidae, Salticoida, Lyssomaninae/Spartaeinae and Havaika calibration points, to test various dating hypotheses (see the “BEAST” section in 2.2.6 Divergence Time Estimation and Table 2.3). We were interested in understanding how the Havaika and Salticoida maximum calibration points affected the tree dates.  34  The solution of the PLTN analyses using the additive penalty was checked in r8s using the checkGradient command. The checkGradient command allows the user to determine whether or not the algorithm has found the peak where the set of derivatives of the objective function (gradient) equals zero (Sanderson 2004). An objective function of or close to zero indicates a correct solution. Our analyses used multiple age constraints, which can prevent the derivatives of the objective function from reaching zero (Sanderson 2004). These ‘active’ constraints can create walls in parameter space, but if the algorithm is able to approach these walls without violating the wall (i.e. violating an age constraint) then it can be assumed that the algorithm has found the best solution for the analysis given the age constraint even if that solution is non-zero (Sanderson 2004). Therefore, we checked for ‘active’ constraints that resulted in the appropriate sign (+ for maximum and – for minimum) at the calibration point, rather than the zero gradient solution. We allowed r8s to determine if a constraint is active by using the activeEpsilon value command, which determines, based on the age of the root of the tree, how close a solution has to be to the constraint to be considered correct (even if it is non-zero)(set checkGradient=yes; activeEpsilon=real_numbervalue) (Sanderson 2004). Finally we used the set num_time_guesses command to run 8 initial starting conditions to make sure the full range of parameter space was examined.  35  2.3  Results  2.3.1 Model choice For each individual gene region (28S, CO1, 16SND1 and Actin 5C) and the AllGenes data set we used MrModeltest (Nylander 2004) to find the best model of evolution. For all analyses the model with the best score based on the Akaike Information Criterion (AIC) was the GTR+I+G model (nst=6 rates=invgamma).  2.3.2 Phylogeny from the All-Genes Analysis The All-Genes matrix contained 230 taxa and 3956 sites. The MrBayes consensus tree was sampled from 172,178,000 ngens (stdDev of clade frequencies = 0.029; post analysis burn-in=0.25) (Figure 2.1). The All-Genes data set supports many groups identified in previous work (Maddison & Hedin 2003), including the recently identified Australasian radiation of Astioida (Maddison et al. 2008).  Our data provide strong support (posterior probability = 1.0) for a radiation of African salticids in the forests of Central Africa. This clade was recovered in the AllGenes and all of the individual gene phylogenies with strong support (posterior probability = 1.0). We informally name this group the thiratoscirtines (unspecified rank) and we explain the group in the discussion (see 2.4.1 “The Thiratoscirtines: an African Radiation”).  36  In the All-Genes analysis there is high Bayesian posterior probability support for the Salticoida and within this group the Amycoida as sister to the rest of the salticoids (posterior probability=1.0). There is strong support for the monophyly of the Amycoida, Astioida, Marpissoida, Leptorchesteae, Hasarieae, Aelurilloida (including the thiratoscirtines), Heliophaninae and the Philaeus group excluding Salticus (posterior probability=1.0) (see Maddison & Hedin 2003; Maddison et al. 2008 for the definitions of these groups). There is also high support for several super clades including the Astioida/Marpissoida/ballines/Bavia clade and the Euophryinae/Plexippoida/Philaeus clade (posterior probability=1.0). Our data support the sister relationship between the Hasarieae and Heliophaninae (posterior probability=0.981), but differ from previous studies in that they place Leptorchesteae at the base of this clade (c.f. Maddison et al. 2008). The node uniting the Euophryinae/Plexippoida clade and Aelurilloida clade has weak support (posterior probability=0.622). The low probability support in the AllGenes analysis may be due to a polytomy between Euophryinae and two other clades in the 28S Random Taxa Order alignment, which was the 28S alignment used in the AllGenes analysis. 2.3.3 Phylogenies from Individual Gene Regions While the 28S alignments were able to recover most of the subfamilies identified in past work and relationships deep within the tree, the relationships mid-level in the tree were not as well resolved. As with other studies 16SND1, CO1 and Actin 5C genes gave some resolution at the subfamily level, but were messy in other places (Maddison & Hedin 2003; Maddison et al. 2007; Maddison et al. 2008).  37  The 28S Random Taxa Order (Figure 2.2) and 28S Original alignments (Figure 2.3) contained 230 taxa and had 1226 and 1250 bps respectively. The 28S Random Taxa Order MrBayes analysis was sampled for 121,164,000 ngens (stdDev of clade frequencies = 0.007; 25% post analysis burn-in). The 28S Original alignment MrBayes analysis was sampled for 162,402,000 ngens (stdDev of clade frequencies = 0.008; 25% post analysis burn-in).  The MrBayes Majority Rule consensus trees for each of the two  28S alignments gave different tree topologies, indicating order of taxa did affect the outcome of the phylogenetic tree. When compared to the All-Genes Majority Rule tree (Figure 2.1) the topology of the tree most closely resembled that of the 28S Original alignment, even though the 28S Random Taxa Order alignment was used to generate the All-Genes tree, indicating that the choice of 28S alignment did not greatly affect the topology of the All-Genes tree.  The 16SND1 alignment contained 226 taxa and was made up of 652 bps of 16S (and adjacent tRNA) and 398 bps of ND1. The MrBayes Majority rule consensus tree sampled from 200,000,000 ngens (stdDev of clade frequencies = 0.027; 25% post analysis burn-in) showed a large polytomy and split up some of the major subfamilies (Figure 2.4). The COI alignment was of 181 taxa and 1051 sites. The MrBayes COI Majority Rule consensus tree of 129,627,000 ngens (stdDev of clade frequencies = 0.020; 25% post analysis burn-in) did not resolve deep level relationships and only provided limited resolution at the tip of the tree (Figure 2.5). This level of resolution was consistent with that of previous studies (Hedin & Maddison 2001).  38  The Actin 5C alignment had 93 taxa and was 1091 bp long including a 466 bp long intron. The MrBayes consensus tree sampled from 193,812,000 ngens (stdDev of clade frequencies = 0.005; 25% post analysis burn-in) did not resolve among subfamily relationships, however some large clades including the Plexippoida and thiratoscirtines were recovered (Figure 2.6). Increasing the taxonomic sampling of this gene may increase the resolution of the tree.  2.3.4  Estimating Divergence Times  The BEAST and r8s Dating Trees  The 28S/16SND1 alignment was used to make the BEAST and r8s Dating trees. This alignment had 235 taxa (including 5 Havaika 16SND1 sequences from GenBank) and 2308 sites. The BEAST dating trees were obtained by running each individual analysis on the 28S/16SND1 data set for 160,000,000 generations (8 single runs of 20,000,000 ngens; burnin=0.25) in BEAST (Drummond & Rambaut 2007). Four analyses were run with the different calibration priors listed in Table 2.3. A Maximum Clade Credibility tree of 120,000 sampled trees with node dates was used to summarize each of the four analyses (Drummond & Rambaut 2007). The 95% Highest Probability Density (95% HPD) values were summarized on a Maximum Clade Credibility tree from BEAST Analysis 1.  39  The r8s starting tree was obtained from the MrBayes run of the 28S/16SND1 data set. The 28S/16SND1 alignment was run for 91,098,000 ngens (stdDev of clade frequencies = 0.009; 25% post analysis burn-in). The 28S/16SND1 MrBayes tree of second highest posterior probability (Tree 85,728,000; LnL -98434.000) was used as a starting tree for the r8s analysis because the topology of this tree, especially that of the Salticoida, matched more closely the BEAST dating trees, than did the tree of highest posterior probability. This allowed us to compare the dates of the Salticoida clades between the r8s and BEAST analyses directly. The r8s starting tree and the tree generated by BEAST were similar in topology to the All-Genes tree. The trees differed from the All-Genes tree in the placement of Euophryinae and the ballines and did not contain outgroups. The r8s and BEAST tree differed from one another in the placement of some members of the basal salticids (Figures 2.7 and 2.8).  BEAST Analyses Results  In BEAST Analysis 1 (with all maximum calibration points) the age of Salticidae was 50.1 Ma (Figure 2.9 and Figure 2.10 for the 95% HPD (highest posterior density) interval for BEAST Analysis 1). In BEAST Analysis 2 the age of Salticidae increased with the elimination of the 49 Ma bound, but only to 51.5 Ma and the age of Salticoida decreased from 41.2 Ma to 39.0 Ma (Figure 2.11). Eliminating the Havaika bound in Analysis 3 made the internal nodes of the BEAST analysis deeper than when all fossil bounds were used in Analysis 1 (Figure 2.12). Finally, when both the Havaika and Salticoida maximum bounds were eliminated in Analysis 4 the age of the Salticidae  40  greatly increased to 70.0 Ma according to BEAST (Figure 2.13). The results of the r8s analysis were similar to BEAST. In r8s Analysis 3, in which the Salticoida maximum fossil calibration point was used, the age of Salticidae was 55.2 Ma (Figure 2.14). The Havaika calibration point could not be implemented in the r8s analysis (see Appendix A for details).  BEAST and r8s ages  In general, BEAST estimated younger ages than r8s when all calibration points were used (Analysis 1), although both put the origin of Salticidae post-KT boundary. Despite the discrepancy in age among the r8s and BEAST analyses similar patterns emerged. Both analyses found the Amycoida (41.1 Ma r8s and 33.4 Ma BEAST) and the Astioida (including Neon and Myrmarachne) (43.9 Ma r8s and 30.5 Ma BEAST) to be similar in age. The Amycoida and Astioida are roughly the same age as the most recent common ancestor (MRCA) of a clade that contains the Aelurilloida/Plexippoida/Philaeus group, the Hasarieae/Heliophaninae/Leptorchesteae clade (referred to as the APPHHL clade) (44.5 Ma r8s and 33.8 Ma BEAST). The dating analysis found the Euophryinae to be slightly younger than these other large clades (35 Ma r8s and 26.9 Ma BEAST). Within the Aelurilloida, our analyses show the aelurillines (26.3 Ma r8s and 17.2 Ma BEAST) and the African thiratoscirtines (28.9 Ma r8s and 17.4 Ma BEAST) to be relatively young radiations. The freyines (Aelurilloida) are 34.6 Ma (r8s) and 22.5 Ma (BEAST). This is similar in age to the Marpissoida (35.4 Ma r8s and 22.5 Ma BEAST) and the Plexippoida (32.0 Ma r8s and 20.2 Ma BEAST). The genus Myrmarachne dates  41  to 18.0 Ma (r8s) and 16.2 (BEAST) (Platnick 2009). The MRCA of Myrmarachne and another ant mimic genus, Ligonipes, dates to 37.0 Ma (r8s) and 25.2 Ma BEAST.  2.4  Discussion  2.4.1 The Thiratoscirtines: an African Radiation The most notable new result in the phylogeny concerns the placement of many of the Central and West African forest species into a single clade, which we informally name the thiratoscirtines (unspecified rank). The thiratoscirtines correspond to the Bacelarella group of Maddison et al. (2008); however, this study shows the group is much larger than previously recognized. In addition to containing members of the genus Bacelarella, known from Ghana, the Ivory Coast (Szüts & Jocqué 2001) and Malawi (Platnick 2009), the thiratoscirtines also include the genera Pochyta, Longarenus, Malloneta, Tarne, Thiratoscirtus, Saraina, Alfenus and possibly other genera currently undescribed (Figure 2.15). Species of the genus Pochyta have been found in Equatorial Guinea, Madagascar, Príncipe, Guinea-Bissau, Cameroon, Zimbabwe and South Africa (Platnick 2009). Saraina is known from the Ivory Coast, Nigeria, Cameroon and the Democratic Republic of the Congo (Szüts & Scharff 2005). The other genera are known from West and Central Africa (Platnick 2009). Many of the jumping spiders found in the Central and West African forests belong to the thiratoscirtines and the group maybe primarily a forest radiation, as thiratoscirtine genera are not prevalent outside of the Afrotropics.  42  The phylogenetic relationships among the thiratoscirtine genera remain to be explored. The taxa collected in this study will be described in a later publication. As with the Bacelerella group, the genitalia of the thiratocirtines group are remarkably diverse, warranting, perhaps, subfamily rank or higher (Maddison et al. 2008). Maddison et al. (2008) propose the group Aelurilloida to include the freyines, aelurillines and the Bacelarella group. In agreement, we found the thiratoscirtines grouped with the aelurillines in the All-Genes analysis. This means that Aelurilloida is more diverse than previously recognized as the group contains the thiratoscirtines (including the Bacelarella group), in addition to the freyines and aelurillines.  2.4.2 Gabonese Salticid Fauna The majority of forest salticids in Gabon are thiratoscirtines. We also found members of the Plexippoida (Evarcha, Telamonia, Hermotimus, Mogrus, Plexippus), Heliophaninae and Astioida (Myrmarachne) and also basal members of the Spartaeinae (Portia), and hisponines (Tomocyrba)—all of which are entirely or primarily Old World groups (Maddison et al. 2003; Maddison & Needham 2006; Maddison et al. 2008). We also found members of the Lyssomaninae and Rhene (Marpissoida). The Marpissoida are primarily an American group (Maddison et al. 2008) and Lyssomaninae are found in both the New and Old World, but the monophyly of the subfamily is unclear (Maddison & Needham 2006). Though we did not gather quantitative habitat data, all but one thiratoscirtine species were found in forest habitat. Most of the non-thiratoscirtines collected in Gabon were found in more open habitats, including disturbed areas.  43  We found, as suggested by Wesolowska & Szeremeta (2001), the ant-mimicking genus Enoplomischus (Gabon) to group with Leptorchestes, another Old World antmimic. Our results suggest these genera are a part of Leptorchesteae, which includes Paramarpissa from the deserts of North America and Yllenus, an Old World grounddwelling genus (Maddison et al. 2008). Our analyses differ from previous studies in that they place Leptorchesteae at the base of the Hasarieae/Heliophaninae clade (Bayesian posterior probability=0.897) (Maddison et al. 2008). Another ant-mimicking group, Myrmarachne, is extremely diverse in Southeast Asia (Maddison et al. 2008). Unsurprisingly, we found Gabonese Myrmarachne are monophyletic with the rest of the genus. The genus as a whole is an incredibly diverse group of ant-mimics with more than 200 described species (Platnick 2009) and dates to 18.0 Ma (r8s) and 16.2 Ma (BEAST). The MRCA of Myrmarachne and Ligonipes (another ant-mimic) dates to 37.0 Ma (r8s) and 25.2 Ma (BEAST) suggesting ant-mimicry in jumping spiders did not recently evolve.  2.4.3 Other Aspects of the Salticid Phylogeny Of interest is the placement of several species of “Viciria” in our phylogeny. “Viciria” are found in Southeast Asia and Africa (Prószy!ski 1984b; Platnick 2009). Prószy!ski (1984b) states that the genus as described by Simon (1897-1903) is not monophyletic and should be, based on genitalic structure, split into multiple genera with some species being transferred to currently described groups. In our analysis the “African Viciria” (one species from Ghana and two species that would be identified as “Viciria” from Gabon) fell within the plexippines (Plexippoida) forming a clade with  44  members of the genus Telamonia from Malaysia and the Philippines. In the past, species identified as “Viciria” have been transferred to the genera Telamonia, Epeus, Hyllus and Evarcha (all are plexippine genera), and into Malloneta (thiratoscirtines) by various taxonomists (for examples see Prószy!ski 1984a; Prószy!ski 1984b; Zabka 1985; Platnick 2009). Our study suggests that “Viciria” may not be in Africa at all and that socalled “African Viciria” may indeed belong to other Afro-Eurasian groups. The only Viciria species in our analysis that is close to the type species, and hence a true Viciria, was from Malaysia and fell within the Astioida. Greater attention to the monophyly of Viciria and a formal revision of the genus is needed to understand the delimitations and placement of its species within the phylogeny of the family.  As in other studies, we found strong support for the following taxonomic groupings: Marpissoida, Amycoida, Plexippoida, Aelurilloida, Heliophaninae, Euophryinae, Hasarieae, Leptorchesteae and the Philaeus group (Maddison & Hedin 2003; Maddison et al. 2008). We also found a large Afro-Eurasian clade that includes the Aelurilloida, Plexippoida, the Philaeus group, the Hasarieae/Heliophaninae clade and the Leptorchesteae. Throughout we refer to this clade as the APPHHL clade. Based on the results of the All-Genes Bayesian analysis, the APPHHL clade may also include the widespread Euophryinae. The placement of several genera has been confirmed by our data including the relationship between Salticus and the Philaeus group (Maddison et al. 2008). We also place the Mantisatta with the ballines as the sister group of the Marpissoida, indicating the genus may not belong to the Astioida (it never grouped with Neon in the present analyses), a possibility suggested by Maddison et al. (2008).  45  Maddison et al. (2008) found that Bavia was sometimes sister to the Marpissoida and in other cases was sister to the Astioida. In the All-Genes analysis we found that the Bavia group fell at the base of the balline/Marpissoida clade (Bayesian posterior probability=0.973). In body form the Bavia look like several Marpissoida genera (Maddison et al. 2008). We found the Bavia to be sister to the Astioida in the 28S Original alignment.  As in other studies (Maddison et al. 2008), the placement of Cheliceroides is unclear, as is did not group closely with any taxa with high support in the All-Genes tree. Likewise, Nannenus and Idastrandia grouped together, but did not have a high posterior probability with their neighboring clade (All-Genes Bayesian posterior probability=0.686). Additionally, we found Enoplomischus to be sister to Leptorchestes (All-Genes Bayesian posterior probability= 0.948). Both are ant-like genera.  2.4.4 Calibration Points BEAST analyses run with either the Salticoida or Havaika maximum calibration point yielded similar results to the analysis in which both maximum calibration points were used. In BEAST Analysis 2, the removal of the Salticoida maximum bound (and the inclusion of the Havaika maximum) increased the age of the Salticidae by only a few million years from 50.1 Ma to 51.5 Ma and decreased the age of Salticoida from 41.2 Ma to 39 Ma (relative to the analysis with both maximums). In BEAST Analysis 3, even though the age of the family was not greatly affected by the removal of the Havaika maximum calibration point when compared to the analysis with both maximums, the  46  internal node dates were affected. In general, the ages of the internal nodes were around 5-6 Ma deeper without the Havaika maximum, indicating the Havaika maximum calibration point pulled internal node dates shallower than the analysis with only the Salticoida maximum calibration point. The removal of the Havaika maximum point caused the BEAST analysis to act more like the r8s analyses (where only the Salticoida maximum was included). The younger ages generated by the BEAST analysis in comparison to r8s are probably a result of the inclusion of the Havaika maximum calibration point and its behavior in the analysis.  The fossil record shows there are no basal salticids or salticoids from the fossil rich Eocene Le Quesnoy amber of Paris from 53 Ma (Nel et al. 2004; Penney 2006). There are also no salticids from the many amber deposits of the Cretaceous, but there is a large gap in our knowledge of salticid fauna (or lack there of) in ambers between the French Eocene and the youngest Cretaceous amber (between 53 and 76.5 Ma) (Penney 2008). The discovery of fossil fauna from this time may alter the age of the root of Salticidae. In our analysis we used mostly Salticoida taxa. The topologies of the BEAST and r8s trees were not the same among the basal salticids. Despite this discrepancy in topology, the analyses indicate that the common ancestor of the Lyssomaninae and Spartaeinae is older than the Salticoida (50.4 Ma r8s and 44 Ma BEAST). Increasing our sampling of basal salticids will help us to resolve the basal part of the tree and may alter the age estimate of the family, if indeed older basal clades exist that have not been represented on the tree.  47  When the Havaika calibration is not used (r8s dating analysis and BEAST Analysis 3) the results are dependent on the Salticoida maximum calibration point and are therefore contingent on the hypothesis that the Salticoida had not yet evolved 49 Ma, as indicated by their absence in Baltic amber. It is however entirely possible that Salticoida had evolved in a geographically distinct area, and had yet to reach the Baltic amber deposits by the Eocene. The oldest region-specific clades of Salticoida are from South America and Afro-Eurasia, suggesting early Salticidae were already in geographically distinct areas. It is not clear how widespread or numerous they were within these regions. If the early Salticoida were not yet widespread their absence in Eocene amber from Paris and the Baltic may not be surprising. What is needed to place a more accurate date on the origins of the Salticoida is an exploration of Late Cretaceous/Early Eocene amber inclusions.  It is important to note the BEAST analysis using only the Havaika maximum found the Salticidae to be young, therefore the relatively young age we obtained for the family is not based only on the observed absence of Salticoida from the Baltic amber or other calibration points generated from the fossil record. Furthermore, we did not use the absence of salticids from the Eocene amber of Paris to calibrate our tree and yet our results are concordant with the observation that salticids are younger than this Paris amber deposit.  The ages obtained from our dating analysis are older than those obtained by Andriamalala (2007). We found the Salticoida to be 49 Ma (r8s) and 41.2 Ma (BEAST),  48  while Andriamalala (2007) found the group to be 31.67 Ma. The difference in ages between our analysis and Andriamalala (2007) are greater for groups such as the Marpissoida, Plexippoida, Euophryinae and freyines. For example we find the Marpissoida to be 35.4 Ma (r8s) and 22.5 Ma (BEAST), while Andriamalala (2007) found the group to be 3.99 Ma. In our paper we use multiple fossil spider calibration points to estimate the divergence times and two markers, 28S and 16SND1. Andriamalala (2007) used the 28S gene and a single fossil minimum in an analysis where the age of Salticidae was fixed to be 65 Ma. We allowed the age of Salticidae to be estimated and believe the differences in our analyses are likely due to the difference in calibration points used, primarily the use of the Salticoida and Havaika maximum calibration points.  2.4.5 Age and Diversity of Salticidae in Comparison to Other Radiations We date the age of Salticidae to be between 55.2 Ma r8s and 50.1 Ma BEAST. Since then, the group has radiated to contain over 5,000 known species (Platnick 2009)—although their numbers are probably much higher, as a great deal of salticid diversity is still unknown and tropical collecting typically reveals a large percentage of new species. In comparison to other radiations, jumping spiders have more species than mammals (>4,500 species), but are not as numerous as the ants (>11,800 species) (Moreau et al. 2006; Bininda-Emonds et al. 2007). The passeriforme radiation (wrens, crows, robins, birds of paradise, finches, warblers, manakins and flycatchers, etc.) is perhaps the best analog to the Salticidae in terms of age, size, biogeography and morphological, behavioral and ecological diversity (Barker et al. 2004). Although the  49  full number of species is not yet known, jumping spiders almost certainly have more species than the passerines (>5,700 species), which comprise >50% of extant bird species and make-up the largest avian order (Sibley & Monroe 1990; Barker et al. 2004). Passerines evolved 82 Ma ago, and while they are older than Salticidae, which are of Early Eocene origin, most of their diversity arose after the Late Cretaceous/Eocene (Barker et al. 2004). Both groups are globally dispersed and have a biogeographic pattern in which major groups are isolated to different continental regions (the New World, Afro-Eurasia, and Australasia) (Barker et al. 2004). Furthermore, both groups are remarkably rich in morphological, behavioral and ecological diversity. Using this comparison, dating the salticidae family tree is like trying to date and understand the phylogeny and biogeographic history of passerines. While a number of groups are working on passerines (cf. Ericson et al. 2002; Barker et al. 2004) much remains to be learned about their global biogeographic history. Even more remains to be discovered about salticid diversity.  2.4.6 The Family Evolved at a Time of Expanded Megathermal Forests Our analyses show the family evolved in the Eocene—a time of expanded megathermal forests and presumably abundant prey. Our analyses found Salticidae to be 55.2 Ma (r8s) and 50.1 Ma old (BEAST) and the Salticoida, to have evolved 6-8 Ma later between 49 Ma (r8s) and 41.2 Ma (BEAST). Starting in the Paleocene (around 66 Ma) there was an expansion of tropical forests due to the warming of the earth (Morley 2000). This persisted throughout the Eocene (the thermal maximum occurring at the Paleocene/Eocene boundary) (Morely 2000). This rise in global temperatures resulted in  50  three megathermal (frost limited tropical angiosperm) vegetation belts: the Boreotropical (North America, Europe and a more isolated region in Asia), the Palmae (South America, Africa, India and Southeast Asia) and the Southern Megathermal Province (southern South America, southern Africa, Madagascar and Australia) (Morley 2000). Today jumping spiders are more abundant in tropical rain forests than in other regions.  A rise in angiosperm diversity around 100 Ma was followed by a rise in herbivorous insects including coleopterans (beetles) and hemipterans (true bugs), so that by the beginning of the Paleocene/Eocene the world was already diverse with insect herbivores (Farrell 1998; Wilson & Hölldobler 2005; Moreau et al. 2006). All members of the family have greater spatial acuity than other spiders and the Salticoida and the basal genus Portia have independently evolved eye structures that give them a higher acuity (#0.04˚) than other basal salticids (Su et al. 2007). By comparison the highest spatial acuity in insects of similar size is #0.4˚ (Land & Nilsson 2002 as cited in Su et al. 2007). This vision—unparalleled among spiders— would have allowed jumping spiders, to exploit the rich diversity of prey in the Eocene. The expansion of Megathermal forest could have facilitated the immediate radiation of the family by providing a wide range of niches and increasing the habitat of spiders and their prey in nearly every region during the early evolutionary history of the family.  2.4.7  Regional Isolation of Major Salticid Groups The discovery of the thiratoscirtine African radiation supports past studies, which  show major salticid groups are confined, or mostly confined to one region (Maddison &  51  Hedin 2003; Maddison et al. 2008). Groups have distributions that can be described as American (North, Central and South America), Afro-Eurasian (Africa, Europe and Asia), and Australasian (Australia and Papua New Guinea) (Figure 2.16). Some groups are concentrated in smaller regions including Africa, Southeast Asia and South America. One exception to this pattern is the large subfamily the Euophryinae, which is speciesrich in the New and Old World; however, it remains to be seen whether the euophryines are phylogenetically divided by hemisphere or intermixed (Maddison & Hedin 2003; Maddison et al. 2008).  Our analyses date the family to the Eocene, a time when Afro-Eurasia, Australasia and the New World were isolated from each other. In the Americas, the Amycoida is dominant in the Neotropics (Maddison & Hedin 2003). The freyines are a smaller radiation also found in South America (Maddison & Hedin 2003). The Marpissoida (marpissines and dendryphantines) are found throughout the Americas, but are not as diverse in South America as the Amycoida (Maddison & Hedin 2003; Maddison et al. 2008).  In Afro-Eurasia, the Aelurilloida form a clade with the Plexippoida, the Philaeus group, Hasarieae/Heliophaninae and Leptorchesteae (referred to as the APPHHL clade). The APPHHL clade is predominantly Afro-Eurasian with the exception of the freyines, the genus Paramarpissa (Leptorchesteae), the species rich genus Habronattus (pellenines) and a few other plexippoids, a few genera of heliophanines (Helvetia, Theriella, Marchena, Yepoella) and one species of Phlegra (aelurilline), which are found  52  in the New World (Prószy!ski 2009) and some heliophanines and plexippoids in Australasia (Richardson et al. 2006). Otherwise, members of the APPHHL clade have an Afro-Eurasian distribution with the exception of the thiratoscirtines, which are currently known only from Africa.  In Australasia, the dominant group in the fauna is the Astioida (Maddison et al. 2008). In this paper we will exclude Myrmarachne and Neon when looking at regional biogeographic patterns in the Astioida, as it is not clear these two genera belong to the “core” Astioida (Maddison et al. 2008). Even if Myrmarachne and Neon belong to the Astioida they are widespread and fall outside of the Australasian region (Maddison et al. 2008).  Despite the geographic distance between Afro-Eurasia, Australasia and the New World during the Cenozoic, some long-range dispersal events between these three regions occurred throughout the history of the family. The freyines are the only New World Aelurilloida and appear to have dispersed from Afro-Eurasia to South America and subsequently diversified in that region. Movement between isolated regions separated by bodies of water could have occurred via ballooning or rafting on pieces of debris. Jumping spiders, like many other spiders, have the ability to “balloon” or fly aerially on a silk thread using drag-induced lift and the family is considered one that frequently balloons (Bell et al. 2005). In this manner they are able to travel over long distances and have been recorded to go 900 km (Bell et al. 2005). Other spiders have been recorded to travel up to 3200 km (Bell et al. 2005). While their ability to make  53  intercontinental crossings without “stepping-stone” landmasses has not been confirmed, longer dispersal events (i.e. the freyines or Habronattus to the New World) have occured. Additionally, the ability to balloon may have helped the family overcome smaller barriers that would have hindered the dispersal of other landlocked, terrestrial invertebrates (i.e. exchanges between Eurasia and Africa before the Late Oligocene see 2.4.8 “Biogeographic History of Region Specific Clades”)(Bell et al. 2005).  2.4.8 Biogeographic History of Region Specific Clades The Amycoida (41.1 Ma r8s and 33.4 Ma BEAST) and Afro-Eurasian Plexippoida, Philaeus group, Hasarieae/Heliophaninae and Leptorchesteae (APPHHL) clade (44.5 Ma r8s and 33.8 Ma BEAST) are the two oldest region-specific salticoid clades. The Australasian “core” astioids (excluding the widespread Myrmarachne and Neon) are younger than these two clades (36.9 Ma r8s and 27.3 Ma BEAST). The ages of the Amycoida and the Astioida are consistent with times when South America and Australasia were biogeographically isolated from other continents. Likewise, the APPHHL clade dates to a time when Africa and Eurasia were in close geographic proximity and later joined by a continuous land connection.  South America  Around 40 Ma South America was geographically isolated from Africa, Europe and Asia by oceanic barriers. Furthermore, there was no long-term continuous land connection between North and South America until 3-4 Ma when the Isthmus of Panama  54  formed (Webb 1997). Several discontinuous routes between the two continents may have existed at different times in the Cretaceous and Cenozoic. From Late Cretaceous to the Middle Eocene (~65-39 Ma) Columbia may have been linked to the Yucatan via a discontinuous Cuban Island Arc (Morley 2003). A route called GAARlandia (Greater Antilles and Aves Ridge) formed at the Eocene/Oligocene boundary, but only briefly (Iturralde-Vincent & MacPhee 1999; Morley 2003), and later in the Miocene (~15 Ma) the Panama Island Arc formed (Sanmartín & Ronquist 2004). Despite these intermittent routes, in the Eocene the only continuous land connection between South America and another continent was with the west end of Antarctica at Patagonia (Reguero et al. 2002). This connection was severed in the Late Eocene, 34-36 Ma, with the opening of the Drake Passage between the two continents (Reguero et al. 2002; DeConto & Pollard 2003; Sanmartín & Ronquist 2004; Gheerbrant & Rage 2006). When the Drake Passage opened, the Antarctic Circumpolar Current caused the first glaciations in Antarctica, but before this the region had temperate forests (Sanmartín & Ronquist 2004).  Therefore, before 36 Ma movement of jumping spiders between South America and other continents could have occurred via land migration from Antarctica (and consequently Australasia) and short-range dispersals from North America. Dispersals to and from Africa or Eurasia would have been less likely because of oceanic barriers. After 36 Ma the oceanic dispersal distance between South America and Antarctica would have increased, restricting direct movement between these landmasses—the glaciations of Antarctica presumably creating a physiological barrier to spider dispersal as well. Accordingly, after the Eocene/Oligocene boundary South America was relatively isolated  55  from other continents and movement to and from South America would have been limited to chance long-range dispersals in the case of Africa, Eurasia and Australasia and shorter overwater dispersals via North America.  According to our analyses, the Amycoida diversified in South America in the Eocene 41.1 Ma (r8s) or in the Oligocene 33.4 Ma (BEAST). Regardless of the exact date the isolation of the continent, especially after the Eocene/Oligocene boundary, would have limited the spread of the Amycoida to other regions, explaining the region specific nature of this group. This geographic isolation would have decreased the likelihood of other groups arriving, yet the topology of our phylogeny suggests that the freyines dispersed to the continent from the Afro-Eurasian APPHHL clade about 8-10 Ma after the Amycoida evolved (34.6 Ma r8s and 22.5 Ma BEAST) and the Marpissoida were present somewhere in the Americas after 35.4 Ma (r8s) or 22.5 Ma (BEAST). This indicates that some mixing of fauna from geographically isolated regions did occur.  Australasia  Similarly, the Astioida radiated in a region that became isolated from other continents. Around 55 Ma, Australasia (Australia and New Guinea) lay south of its current position (Hall 2002). During the Eocene Australia was separated from Southeast Asia, Africa, Europe, and North America, but southern Australia was geographically close to east Antarctica (the two lay in parallel) (Hall 2002). The narrow opening of the Tasman Sea separated the two continents (Hall 2002), although there is disagreement  56  about the time of last contact—with some suggesting the two continents were in contact until the Late Eocene (Sanmartín & Ronquist 2004). From the Late Eocene on, Australia, New Guinea and associated islands, gradually moved closer towards the islands of present-day Southeast Asia, until the Australasian plate collided with the East PhilippineHalmahera-South Caroline Arc at north New Guinea margin around the Oligocene/Miocene boundary (about 25 Ma) (Hall 2002; Morley 2003). Therefore between the Late Eocene and Early Miocene Australasia was separate from all other continents by oceanic barriers (Hall 2002). Like in South America, the close proximity of Australasia with Antarctica could have allowed dispersal between the two continents earlier in the Eocene. After the Late Eocene oceanic dispersal distance between Australia and Antarctica would have increased. The r8s date of Australasian “core” Astioida (36.9 Ma) suggests the Astioida branched off around the time Australia began to move away from Antarctica (Hall 2002). The BEAST date (27.3 Ma) also suggests the “core” Astioida evolved during a time when the continent was isolated, but that they branched off later, when Australasia was closer to Southeast Asia (Hall 2002).  As Australasia approached Southeast Asia the chance of successful oceanic or island stepping-stone dispersals would have increased (Metcalfe et al. 2001). Between 25 and 10 Ma faunal dispersals between these regions were limited due to the changing dynamics of submerged land areas (i.e. New Guinea and Sulawesi, etc.) and the movement of islands due to dynamic shifts in microplate tectonics (Metcalfe et al. 2001; Hall 2002). Around 10 Ma the water level in the Arafura Sea between New Guinea and Australia dropped decreasing distances between these regions (Metcalfe et al. 2001). It  57  has long been noted that there is a biogeographic transition zone (traditionally called the Wallace Line) where Australasian and Asian flora and fauna meet in the region (Metcalfe et al. 2001). In jumping spiders, while the Astioida are largely concentrated in Australasia, a few genera from the group, such as Holoplatys, Simaetha, Viciria and Orthrus, are known from mainland Asia (Maddison et al. 2008). This suggests dispersals between these regions have occurred, although broadly speaking, these two jumping spider faunal regions remain distinct in terms of species composition.  Afro-Eurasia  The MRCA of the APPHHL clade dates to 44.5 Ma (r8s) and 33.8 Ma (BEAST). Before Africa and Europe were connected in the Oligocene/Miocene, discontinuous connections between Africa and Europe existed that could have facilitated movement between the regions (Gheerbrant & Rage 2006). During the early Eocene the AfroArabian plate moved north towards Europe (Harzhausera et al. 2007). In the Middle to Late Eocene the Mediterranean Tethys Seaway closed, creating a stepping-stone route between Eurasia and Africa on sills across the seaway (Morley 2003; Gheerbrant & Rage 2006). This route was regulated by sea levels and several exchanges of mammalian groups and megathermal angiosperm taxa are recorded from this time (Morley 2003; Gheerbrant & Rage 2006). In the Late Oligocene (Aquitanian), brief continuous routes allowed the exchange of land mammals (Antoine et al. 2003; Harzhausera et al. 2007). Therefore, although Africa and Europe were separated before the Oligocene/Miocene, the close proximity of these two regions and the availability of stepping-stone routes could  58  have permitted short-range dispersals across water barriers. Africa and Eurasia were finally connected in the Early Miocene (19 Ma) with the formation of the Gomphotherium-landbridge (Rögl 1999; Harzhausera et al. 2007; Koufos & Bonis 2008). After the formation of this landbridge jumping spiders could migrate between Africa and Eurasia over land. Exchanges with Indian fauna was possible throughout the history of the APPHHL clade, as India crashed into the Asian continent, with Greater India making contact in the Paleocene and completely attaching 42-55 Ma in the Eocene (Briggs 2003).  2.4.9 The Thiratoscirtines are an Afrotropical Forest Group Unlike other more widespread groups in the APPHHL clade, the thiratoscirtines are restricted to Africa. At the end of the Eocene a cooling event occurred that contracted all megathermal forests (Morley 2000). The African forests shrunk into a smaller belt that extended across the continent at the equator (Morely 2000). The thiratoscirtines, a relatively young radiation (28.9 Ma r8s and 17.4 Ma BEAST) evolved after the isolation of the Afrotropical forests in the Eocene. Since they are a forest group the restriction of the West and Central African forests probably limited the ecological range of the group. Conversely, the aelurillines, a younger group (26.3 Ma r8s and 17.2 Ma BEAST), are more widespread across Africa and Eurasia. Aelurilloids are often found in more arid environments (Russell-Smith 2002), which may be why they have a wider Afro-Eurasian range and are not limited to the Afrotropical region like the thiratoscirtines.  59  2.4.10 Age Alone Does Not Explain the Size of Salticid Radiations Age alone does not explain the size of individual salticid radiations. The amycoid radiation is the largest and oldest South American radiation. The large size of this radiation in comparison to others in the region may be a result of the isolation of the Amycoida (due to the biogeographic isolation of South America) or it could be directly related to age (older lineages have had longer to diversify). It is interesting to note that although the Marpissoida and freyines radiated at the same time in the Americas, the Marpissoida dispersed widely across North, Central and South America, while the freyines remained a smaller radiation in South America (neither group is as diverse as the Amycoida in South America). The small size of the freyines may be a consequence of lack of open niches in South America because of the amycoid radiation.  A few other genera from the Old World show up in North America around the same time as the Marpissoida, but are not nearly as diverse, suggesting some groups simply are more successful than others. The North American Paramarpissa (barkdwelling) and sister group Yllenus (ground-dwelling) are most closely related to two sister ant-mimicking African genera, Enoplomischus and Leptorchestes. The two clades appear to have diverged around the same time (33.7 Ma r8s and 24.7 Ma BEAST) as the Marpissoida and the balline/Bavia group, but the New World Paramarpissa/Yllenus clade never diversified to the same extent as the Marpissoida. Conversely, the ground-dwelling genus Habronattus (with over 100 species), appear to have split from Old World taxa much later (11.6 Ma r8s and 8.6 Ma BEAST) than the Paramarpissa/Yllenus clade, yet  60  they are incredibly diverse across North America. Species in the genus Habronattus are known for their elaborate courtship behaviors and male ornamentation, which may explain why this genus is more diverse than older North American genera. These examples suggest age, behavior, ecology and the availability of open niches all impact the size of jumping spider radiations.  Finally, the Salticidae is younger than other diverse spider families (Penney 2008). For example the Linyphidae and Araneidae (4,350 and 3,000 known species, respectively) (Platnick 2009) show up in the fossil record in the Early Cretaceous period around 125 Ma (Penney 2008). Other families including the Tetragnathidae, Nephilidae and Oonopidae, also appear around this time (Penney 2008). However, some diverse families like the Lycosidae and the Gnaphosidae show up in the fossil record in the Paleocene (Penney 2008). Furthermore, some of the oldest families, like the Hexathelidae, which date back to the Triassic 240 Ma (Penney 2008), only have 84 known species today (Platnick 2009).  61  Table 2.1 List of Species Used in Phylogenetic Analysis. List of names, specimen ID numbers, collection localities, GPS and gene information. (X) Denotes gene sequence obtained. (*) Denotes Genbank accession numbers of previously published sequences. Specimen ID  d140 s251 MRB099 MRB097 MRB098 MRB261 d139 MRB094 MRB024 s177 s165 s169 s162 s213 s176 s184/s159 s175 s168 s220 s247 s217 s255/s277 d156 MRB131 MRB193 MRB009 MRB161 MRB038 MRB023 MRB132 MRB137 MRB134 d030 d130 JXZ174 MRB002 MRB004 MRB124 s326 MRB143 MRB147 MRB149 s223/s172 MRB029  Species Aelurillines Aelurillus cf. ater (Kroneberg) Phlegra fasciata (Hahn) Langona sp. Langelurillus nigritus (Berland & Millot) Phlegra cf. bresnieri (Lucas) Langelurillus sp. Stenaelurillus sp. [S. Afr.] Asianellus sp. Amycoids thiodinine indet. [Ecu.] 1 Zuniga cf. magna Peckham & Peckham Scopocira cf. tenella Simon cf. Agelista Jollas sp. Hurius vulpinus Sarinda sp. Thiodina sp. 1 cf. Arachnomura Encolpius sp. 1 Sitticus sp. Mago steindachneri (Taczanowski) Hypaeus mystacalis (Taczanowski) Noegus cf. rufus Simon Hurius cf. vulpinus Simon thiodinine indet.[Ecu.] 2 Sarinda cutleri (Richman) Zuniga cf. laeta (Peckham & Peckham) Noegus transversalis Simon amycoid indet. [Ecu.] Thiodina sp. 2 cf. Hypaeus [Ecu.] 1 cf. Acragus cf. Hypaeus [Ecu.] 2 Sitticus palustris Peckham & Peckham Acragus sp. [Ecu.] Sitticus dorsatus Fluda sp. Synemosyna cf. lucasi (Taczanowski) Encolpius sp. 2 Cylistella sp. Noegus sp. Zuniga sp. Amycus sp. cf. Cyllodania Cotinusa sp.  Locality  GPS  Kazakhstan: Almaty Region USA: Missouri South Africa: Mpumalanga Province Ghana: North of Cape Coast, Kakum Forest Ghana: Cape Coast, UCC Campus Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal South Africa: Limpopo, Soutpansberg China: Hebei, Yu County  N 43.643 E 75.805  Ecuador: Morona-Santiago Ecuador: Manabi Ecuador: Sucumbios Ecuador: Manabi Ecuador: Sucumbios Ecuador: Pichincha Ecuador: Sucumbios USA: Arizona Ecuador: Sucumbios Ecuador: Sucumbios Ecuador: Manabi Ecuador: Sucumbios Ecuador: Manabi Ecuador: Sucumbios Ecuador: East of Gualaceo Ecuador: Morona-Santiago USA: Arizona Ecuador: Pichincha French Guiana: Commune of Régina Ecuador: Morona-Santiago Ecuador: Napo Ecuador: Morona-Santiago Ecuador: Napo Ecuador: Morona-Santiago Canada: Nova Scotia Ecuador: Napo USA: California Ecuador: Pichincha Ecuador: Napo French Guiana: Commune of Régina Costa Rica Ecuador: Napo Ecuador: Napo Ecuador: Napo Ecuador: Manabi Ecuador: Pichincha  S 3.0108 W 78.6150  S 26.02.519 E 31.00.781 N 05.349 W 01.383 N 5.119 W 1.290 N 0.621 E 10.407 S 23.034 E 30.013  28S  Actin 5C  (753) EU815504* (748)AY297288* X X X X (752) EU815503*  X  (968) EU815615* (757) EU815564* (393)AY297351* (578)AY296706* (960)AY297451* X X X X X X (965) EU815614* X  X (748)AY297247* (742) AY297245* (745) AY297234* (734)AY297241* (743)AY297239* (750)AY297244* (745)AF327930* (744)AY297235* (748)AY297238* (755)AY297246* (393)AY297242* (745)AY297240* (752)AY297243*  X X X  X (476)AY296671* (393)AY297312* (582)AY296668* (393)AY297300* (580)AY296656* (393)AY297308* (580)AY296664* (393)AY297306* (578)AY296662* (393)AY297311* (578)AY296667* (390)AF328017* (581)AF327958* (393)AY297302* (577)AY296658* (393)AY297305* (578)AY296661* (393)AY297313* (577)AY296669* (393)AY297309* (576)AY296665* (393)AY297307* (562)AY296663* (393)AY297310* (572)AY296666*  S 2.906 W 78.737 S 3.0069 W 78.6425 S 0.0732 W 78.7542 N 4.0691 W 52.6689 S 3.0069 W 78.6425 S 0.8382 W 77.7781 S 2.9962 W 78.4558 S 1.0466 W 77.7430 S 3.0060 W 78.4997 N 44.4318 W 64.6075 S 1.067 W 77.617 N 35.0545 W 120.5007 N 0.1493 W 79.0317 S 0.8382 W 77.7781 N 4.0691 W 52.6689  16S  CO1  X (1047)AY297377* (1047)AY297374* (900)AY297364* (1047)AY297370* (1047)AY297368* (1047)AY297373* X (1047)AY297366* (1047)AY297367* (954)AY297375* (966)AY297371* (1047)AY297369*  X X X X X X  X X X X X X  (721) DQ665778* (754) EU815499*  X X X (770) DQ665729*  X X X X X X X X (971) DQ665760*  X X X X X (393)AY297303* (578)AY296659* X X X (393)AY297304 (574)AY296660  S 0.6049 W 77.8886 S 0.1781 W 77.6815 S 1.067 W 77.617 N 0.1493 W 79.0317  ND1  X (continued next page)  62  Specimen ID d027 d175 d046 d021 s197 s194/s195 s192 s310 s266 d048 d206 d202 d035 d018 d015 d122 d024 d183 MRB118 d045 d177 MRB113 s149 d162 MRB116 MRB254 MRB117 MRB119 MRB114 MRB249 MRB111 MRB115 MRB152 MRB166 MRB174 d023 d054 MRB262 d199 s325 d141 MRB045 d228 d229 MRB043 s209 s202 d079  Species Locality Astioids Simaetha sp. [Aus.] Australia: Queensland Ligurra latidens (Doleschall) Singapore: Labrador Park Arasia mollicoma (L. Koch) Australia: New South Wale "Breda" jovialis (L. Koch) Australia: South Australia Trite planiceps Simon New Zealand Helpis minitabunda (L. Koch) New Zealand Orthrus bicolor Simon Philippines: Luzon Neon nelli Peckham & Peckham USA: Massachusetts Heratemita alboplagiata (Simon) Philippines: Luzon Ligonipes sp. [Aus.] Australia: Ku-ring-gai Chase National Park Trite ignipilosa Berland New Caledonia: Aoupinie cf. Mopsus [N. Cal.] New Caledonia: Prony Trite pennata Simon New Caledonia: Mt. Koghis Mopsus mormon Karsch Australia: Queensland, Cow Bay Ophisthoncus kochi Zabka Australia: South Australia: Adelaide Penionomus sp. [N. Cal.] New Caledonia: Mt. Do summit Tauala lepidus Wanless Australia: Queensland, Cow Bay Viciria praemandibularis (Hasselt) Singapore: Upper Peirce Reservoir Belippo cf. ibadan Wanless Ghana: North of Cape Coast, Kakum Forest Holoplatys cf. planissima (L. Koch) Australia: New South Wales Simaetha sp. [Mal.] Malaysia: Pahang Myrmarachne sp. (tristis group) South Africa: Mpumalanga Province Myrmarachne assimilis Banks Philippines: Luzon Myrmarachne sp. 1 [Mal.] Malaysia: Pahang Myrmarachne sp. 2 [Mal.] Malaysia: Selangor Myrmarachne foenisex Simon GABON: Ngounié, Waka National Park Myrmarachne cf. gedongensis Badcock Malaysia: Pahang Myrmarachne sp. [Sing.] Singapore: Chek Jawa Myrmarachne plataleoides O. P.-Cambridge Singapore: Chek Jawa Myrmarachne evidens Rower GABON: Ngounié, Waka National Park Myrmarachne cf. malayana 1 Malaysia: Pahang Edmunds & Proszynski Myrmarachne cf. malayana 2 Malaysia: Pahang Edmunds & Proszynski Myrmarachne cf. mocamboensis Galiano Ecuador: Morona-Santiago cf. Simaetha [N. Cal.] New Caledonia antlike.MRB174 indet. [N.Cal.] New Caledonia Clynotis severus (L. Koch) Australia: New South Wales cf. Lystrocteissa sp. [N.Cal.] New Caledonia: Col d'Amieu Ballines Afromarengo sp. [Gab.] Gabon: Ngounié, Waka National Park Peplometus sp. [Gha.] Ghana: North of Cape Coast, Kakum Forest Pachyballus sp. [Zim.] Zimbabwe Pachyballus sp. [S.Afr.] South Africa: Kwazulu-Natal Province Leikung cf. porosa (Wanless) Malaysia: Pahang Padilla mitohy Andriamalala Madagascar: Forêt d'Analalava Goleta workmani (Peckham & Peckahm) Madagascar: Parc National Andasibe cf. Colaxes 1 [Mal.] Malaysia: Pahang Mantisatta longicauda Cutler & Wanless Philippines: Luzon Baviines Stagetilus sp. [Phil.] Philippines: Luzon Bavia cf. aericeps Simon Malaysia: Sabah  GPS S 16.2 E 145.4 N 1.27 E 103.80 S 34.9 E 138.6  S 21.17 E 165.32 S 22.32 E166.82 S 22.18 E 166.02 S 16.226 E 145.437 S 34.9 E 138.6 S 21.75 E 166.00 S 16.2 E 145.4 N 1.38 E 103.81 N 05.349 W 01.383 N 4.515 E 101.383  N 4.46 E 101.40 N 3.244 E 101.695 S 1.132 E 11.150 N 4.46 E 101.40 N 1.407 E 103.991 N 1.407 E 103.991 S 1.132 E 11.150 N 3.400 E 101.777  28S  Actin 5C  (683) EU815477* X (659) EU815483 (749) EU815473 (750)AY297290* (748)AY297282* (734)AY297286* (748)AF327931* (754)AF327934* (533) EU815484* (719) EU815520* (746) EU815518* (708) EU815478* (745) EU815470* (748) EU815468* (759) EU815498* (700)EU815474* X X (734) EU815482* X X (741)AY297284 (749) EU815507*  X X X X  ND1  16S  (899) EU815546* X (597) EU815550* (901) EU815544* (393)AY297353* (581)AY296708* (393)AY297345* (579)AY296700* (390)AY297349* (578)AY296704* (390)AF328018* (578)AF327959* (393)AF328021* (572)AF327962* (921) EU815551* (906) EU815576* (905) EU815574* (899) EU815547*  X X (838) EU815561* X  CO1 (981) EU815592* X (976) EU815598* X (960)AY297417* (954)AY297413* (1047)AF327988* (1047)AF327991* (965) EU815599* (930) EU815624* (970) EU815623* (902) EU815593* (979) EU815586* (968) EU815584* (978) EU815610* (971)EU815589*  X X (967) EU815597* X  X  X X X X X  X X (393)AY297347* (582)AY296702* (948)AY297412* (814) EU815565* (972) EU815616* X X X X X X X X X X X X  N 3.400 E 101.777  X X X (901) EU815544* (603) EU815552*  S 2.9962 W 78.4558 22.1 S 166.65 E 22.1833 S 166.0167 E S 21.55 E 165.85 S 1.204 E 11.107 N 05.349 W 01.383  X (758) EU815515*  X X  S 28.237 E 32.410 N 4.46 E 101.40 S 22.5917 E 45.1283 S 18.943 E 48.4176 N 4.515 E 101.383  (752) EU815505*  X X  X  (767)AY297270* (658)AY297291* (746) EU815490*  X X (942) EU815621* (745) EU815572* (393)AY297335* (578)AY296691* X X X X X X (390)AY297333* (583)AY296689* (1047)AY297399* (393)AY297354* (586)AY296709* (969)AY297418* (972) EU815603* (continued next page)  63  Specimen ID d107 MRB079  Species Stagetilus sp. [Mal.] Stagetilus sp. 2 [Mal.] Euophryines Chalcotropis luceroi Barrion & Litsinger s153 s262 Lepidemathis haemorroidalis (Simon) s157 Thiania viscaensis Barrion & Litsinger s222 Corythalia cf. tropica (Mello-Leitao) s118 Mexigonus sp. s119/s120 Naphrys pulex 2 (Hentz) JXZ081 Naphrys pulex 1 (Hentz) s190 Euophrys' parvula Bryant s147 cf. Thorelliola s152 Lagnus sp. JXZ135 Thiania bhamoensis Zenodorus orbiculatus (Keyserling) JXZ136 MRB179 Colyttus sp. JXZ020 Thiania bhamoensis Thorell JXZ088 Zenodorus orbiculatus (Keyserling) MRB140 Euophryine indet. [Ecu.] Neonella vinnula JXZ178 Freyines Freya regia (Peckham & Peckham) s148/s308 s210 Frigga crocuta (Taczanowski) s179 Nycerella neglecta Galiano s180 Pachomius cf. flavescens (Peckham & Peckham) Chira cf. spinipes Mello-Leitao s170 MRB129 Capidava cf. rufithorax Simon MRB133 Eustiromastix cf. major Simon MRB139 freyine indet. [Ecu.] Freya cf. prominens MRB154 F.O. Pickard-Cambridge Rishaschia sp. s274 d211 Freya decorata (C.L. Koch) MRB270 Trydarssus cf. nobilitatus (Nicolet) MRB155 indet. MRB155 [F. Gui.] Hasariines Habrocestum cf. albimanum Simon d132 s130/s131/s324 Hasarius adansoni (Audouin) d009 Chinattus parvulus (Banks) MRB090 Gedea cf. tibialis Zabka MRB089 Echeclus sp. d209 Diplocanthopoda marina Abraham Heliophanines Phintella piatensis Barrion & Litsinger s124/s270 s133 Phintella sp. s271 Helvetia cf. zonata Simon s13/s225 Menemerus bivittatus (Dufour) d006 Cosmophasis micarioides (L. Koch) d137 Pseudicius reiskindi Proszynski d037 Mexcala elegans Peckham & Peckham d044 Heliophanus cupreus Walckenaer d227 cf. Phintella  Locality Malaysia: Sabah Malaysia: Selangor Philippines: Luzon Philippines: Luzon Philippines: Luzon Ecuador: Manabi USA: Arizona USA: Massachusetts USA: Massachusetts New Zealand Philippines: Luzon Philippines: Luzon Singapore: Labrador Park Australia: Queensland, Stratbroke Island Malaysia: Selangor Singapore: Labrador Park Australia: Queensland, near Atherton Ecuador: Napo Florida: Duval County, Fort George Island  GPS N 05.832 E 117.225 N 3.325 E 101.753  N 1.27 E 103.80  ND1  16S  CO1 (952) EU815607*  X (755)AY297257* (693)AY297260* (758)AY297263* (760)AY297258* (750)AY297261* (755)AY297262* X (754)AY297259* (753)AY297264* (769)AY297283* X X  X  (393)AY297320* (594)AY296677* (393)AY297323* (580)AY296680* (393)AY297326* (580)AY296683* (390)AY297321* (582)AY296678* (393)AY297324* (579)AY296681* (393)AY297325* (577)AY296682* X (393)AY297322* (575)AY296679* (393)AY297327* (577)AY296684* (393)AY297346* (580)AY296701*  (969)AY297418* (1041)AY297389* (954)AY297392* (969)AY297387* (912)AY297390* (1047)AY297391* (1047)AY297388* (1047)AY297393* (1047)AY297411*  X X X X X X  S 0.6387 W 77.8069 X  Ecuador: Sucumbios Ecuador: Napo Ecuador: Napo Ecuador: Pichincha French Guiana: Commune of Régina  S 1.067 W 77.617 S 1.067 W 77.617 N 0.1493 W 79.0317 N 4.0691 W 52.6689  Ecuador: Sucumbios Ecuador: Napo Gabon: Moyen-Ogooué, Lambaréné French Guiana: Commune of Régina  S 1.067 W 77.617 S 0.698 E 10.230 N 4.0691 W 52.6689  Philippines: Luzon USA: Hawaii Ecuador: Sucumbios Peru: Loreto & Ecuador: Manabi Australia: Queensland, Cow Bay Indonesia: East Kalimantan South Africa: Kwazulu-Natal Province Poland: Mielik Madagascar  Actin 5C  N 3.325 E 101.753 N 1.27 E 103.80  Ecuador: Sucumbios Ecuador: Manabi Ecuador: Manabi Ecuador: Sucumbios  South Africa: Western Cape Province USA: Hawaii; Isreal USA: North Carolina Malaysia: Selangor Malaysia: Selangor Singapore: Labrador Park  28S (763) EU815495*  S 32.36.179 E 19.02.411 N 35.341 W 83.878 N 3.244 E 101.695 N 3.244 E 101.695 N 1.27 E 103.80  S 16.2 E 145.4 S 27.543 E 32.664 N 52.331 E 23.042  (752)AY297278* (748)AY297275* (755)AY297276* (749)AY297274*  (393)AY297341* (393)AY297338* (390)AY297339* (393)AY297337*  (749)AY297277*  (393)AY297340* (576)AY296695* (1047)AY297404* X X X X  (768)AY297279* (757) EU815521*  X X  (584)AY296696* (581)AY296693* (969)AY297402* (581)AY296694* (1047)AY297403* (578)AY296692* (951)AY297401*  (393)AY297343* (583)AY296698* X X  (755) EU815500* (749)AY297281* (755) EU815464*  (746)AY297276* (749)AY297268* (746)AY297265* (745)AY297266* (705) EU815463* (565) EU815502* (675) EU815479* (534) DQ665769* X  (829) EU815562* X X X X  (972) EU815611* (965) EU815581*  X (393)AY297330* (582)AY296687* (387)AY297331* (387)AY297328* (587)AY296684* (387)AY297329* (585)AY296686* (907) EU815540* (832) EU815563*  X X  (957)AY297397* (1047)AY297394* (974) EU815580* (956) EU815613* (959) EU815594* (975) DQ665756* X  (continued next page)  64  Specimen ID s313pa d086 d013 JXZ173 MRB241 s160 MRB085 d051 MRB083 MRB086 d129 s97 s181 s87 s313pe s307 s289 s240 s294/s299 s182/s183 s72 s227 s142 s158/s293 MRB082 d224 s298 d005 NA d108 MRB041 d105 d182 MRB040  Species Leptorchestines Paramarpissa sp. Leptorchestes berolinensis (C.L. Koch)  Locality  Yllenus arenarius 1 Menge Yllenus arenarius 2 Enoplomischus sp. Lyssomanines Lyssomanes viridis (Walckenaer) Onomastus sp. [China] Goleba lyra Maddison & Zhang Asemonea sp. [S.Afr.] Lyssomanes longipes (Taczanowski) Lyssomanes viridis (Walckenaer) Marpissoids Attidops youngi (Peckham & Peckham) Itata sp. Maevia intermedia Barnes Peckhamia sp. Phanias sp. Terralonus mylothrus (Chamberlin) Eris militaris (Hentz) Marpissa pikei (Peckham & Peckham) Pelegrina chalceola Maddison, Pelegrina verecunda (Chamberlin & Gertsch) Platycryptus undatus (De Geer) Psecas cf. viridipurpureus Simon Zygoballus rufipes Peckham & Peckham Phidippus sp. Dendryphantes sp. cf. Marpissine indet. Metacyrba taeniola (Hentz) Ghelna canadensis (Banks) Paraphidippus aurantius (Lucas) Nannenines Idastrandia orientalis (Szombathy) indet. MRB041 [Mal.] Nannenus lyriger Simon Langerra cf. longicymbium Song & Chai nannenine indet. [Sing.] Philaeines  Poland: Kozki Poland: Kozki Gabon: Ngounié, Waka National Park  GPS  USA: Arizona Poland: Lublin  USA: Florida China: Guangxi, Fangchenggang City Madagascar: Fianarantsoa South Africa: Kwazulu-Natal French Guiana: Commune of Régina USA: Mississippi  28S  Actin 5C  MRB070 d017  Philaeus chrysops (Poda) Tusitala lyrata (Simon) Carrhotus sp. Pignus sp. Carrhotus sp. (Mal.) Mogrus mathisi (Berland & Millot) Tusitala hirsuta Peckham & Peckham Plexippoids Evarcha sp. Bianor maculatus (Keyserling)  16S  CO1  (748)AY297287*  (390)AY297350* (591)AY296705* (831)AY297414*  (750) EU815467*  (903) EU815541*  (739) EU815583*  N 52.361 E 22.870 S 1.132 E 11.150  N 21.7041 E 107.6475 S 22.592 E 45.128 S 26.979 E 32.400 N 4.0691 W 52.6689  X X (754)AY297231* X (771) DQ665768* X X  X  X  X  X  (390)AY297297* (577)AY296652* (891)AY297360* X X (964) DQ665755* X X X X  USA: Missouri Ecuador: Manabi USA: Alabama USA: Arizona USA: Arizona USA: Colorado Canada: Ontario USA: Arizona USA: Arizona  (762)AF327933* (752)AF327932* (754)AY297269* (751)AF327938* (749)AF327946* (748)AF327943* (746)AF327942* (749)AF327936* (750)AF327939*  (393)AF328020* (393)AF328019* (393)AY297332* (393)AF328025* (393)AF328033* (393)AF328030* (393)AF328029* (388)AF328032* (393)AF328026*  USA: Florida Ecuador: Sucumbios USA: Massachusetts USA: Arizona China: Guangxi Malaysia USA: Arizona U.S.A.: North Carolina USA: Arizona  (748)AF327935* (750)AY297273* (749)AF327944* (745)AF327940*  (387)AF328022* (580)AF327963* (1047)AF327992* (393)AY297336* (963)AY297400* (393)AF328031* (573)AF327972* (1047)AF328002* (363)AF328027* (574)AF327968* X X X (393)AY297334* (573)AY296690*  X N 35.70446 W 82.37339  Malaysia: Sabah: Mt. Kinabalu Malaysia: Johor Malaysia: Pahang: Taman Negara Malaysia Singapore: Timah Nature Reserve  N 06.008 E 116.543 N 2.025 E 103.344 N 04.381 E 102.399  Italy: Calabria (Gozza) Gabon: Ngounié, Waka National Park Philippines: Luzon South Africa: Kwazulu-Natal Province Malaysia: Sabah: Mt. Kinabalu South Africa: Northern Province South Africa: Mpumalanga Province  N 38.413 E 16.335 S 1.124 E 11.13  Gabon: Ngounié, Waka National Park Australia: South Australia: Glenelg  S 1.204 E 11.107 S 34.973 138.511  (744) DQ665767*  X EU522686  (766)EU815535  X  (777) EU815493*  X  N 1.355 E 103.78 (720) EU815475*  d025 MRB226 s140 d041 d106 d192 d080  ND1  S 26.979 E 32.400 N 06.008 E 116.543 S 23.894 E 29.499  X (663)AY297280* (641) EU815481* (516) EU815494* (673) EU815508* X  (691) EU815469*  X X  X X X  (579)AF327961* (578)AF327960* (577)AY296688* (577)AF327966* (576)AF327974* (575)AF327971* (575)AF327970* (574)AF327964* (574)AF327967*  (838)EU815560 X (898) EU815558* X X (1449) EU815530*  (925) EU815545*  (1047)AF327990* (1047)AF327989* (960)AY297398* (1047)AF327995* (1047)AF327946* (1047)AF328001* (966)AF328000*  (975)EU815608  (958) EU815590*  X X (390)AY297344* (584)AY296699* (1047)AY297408* (970) EU815596* (911) EU815549* (874) EU815559* (968) EU815606* (908) EU815566* (906) EU815555*  (893) EU815542* (continued next page)  (971) EU815585*  65  Specimen ID d040 MRB016 s191 s269 s73 HA88A HA496A MRB183 MRB186 d103 MRB176 MRB178 MRB192 MRB127 d074 d197 MRB055 MRB058 d198 d200 d073 MRB073 MRB184 s127 MRB185 d004 MRB269 MRB235 MRB266 d096 MRB218 d057 MRB072 MRB239 d134 MRB238 d075 MRB247 MRB180 MRB181 MRB182 s238 MRB054 NA MRB057 MRB224 d077 MRB017 MRB075  Species Hyllus treleaveni Peckham & Peckham Plexippus paykulli 1 (Adouin) Epeus sp. Telamonia masinloc Barrion & Litsinger Plexippus paykulli 2 (Audouin) Habronattus cf. paratus (Peckham & Peckham) Habronattus mexicanus (Peckham & Peckham) Pancorius sp. 1 Burmattus sp. Anarrhotus fossulatus Simon Telamonia dimidiata (Simon) Telamonia cf. festiva Thorell "Viciria" cf. fuscimana Simon Plexippoides regius Wesolowska Schenkelia modesta Lessert Polemus cf. chrysochirus Simon Bianor sp. Harmochirus cf. brachiatus (Thorell) Schenkelia cf. modesta Lessert Hyllus tuberculatus Wanless & Clark Thyene sp. (S. Afr.) "Viciria" cf. besanconi Berland & Millot Pancorius sp. 2 Havaika sp. Evarcha cf. orientalis 2 (Song & Chai) Habronattus decorus (Blackwall) plexippine indet. [Gab.] 1 Hyllus sp. plexippine indet. [Gab.] 2 Evarcha proszynskii Marusik & Logunov Hermotimus sp. Pellenes peninsularis Emerton Brancus viciriaeformis Berland & Millot "Viciria" longiuscula (Thorell) Baryphas ahenus Simon Evarcha/Hyllus sp. Pellenes bulawayoensis Wesolowska "Viciria" thoracica Thorell Evarcha cf. orientalis 1 (Song & Chai) Epeus cf. guanxi Peng & Li Pancorius sp. 3 Sibianor aemulus (Gertsch) Harmochirus brachiatus (Thorell) Habronattus americanus (Keyserling) Bianor sp. plexippine indet. [Sing.] Pellenes nigrociliatus (L. Koch) Hyllus diardi (Walckenaer) Evarcha bakorensis Rollard & Wesolowska Havaika cf. pubens 1  Locality South Africa: Kwazulu-Natal Province Singapore: Nee Soon Swamp Forest Philippines: Luzon Philippines: Luzon USA: Florida Ecuador: Manabi  GPS S 26.866 E 32.274 N 1.39 E 103.81  USA: Texas Singapore: Upper Peirce Reservoir Singapore: Nee Soon Swamp Malaysia: Pahang: Taman Negara Singapore: Upper Peirce Reservoir Malaysia: Johor Ghana: Cape Coast, UCC Campus China: Hebei, Yu County South Africa: Kwazulu-Natal Province Ghana: Central Region China: Tianjin Malaysia: Selangor Ghana: Central Region Ghana: Central Region South Africa: Kwazulu-Natal Province Ghana: N. of Cape Coast, Kakum Forest Malaysia: Pahang USA: Hawaii Singapore: Chek Jawa Canada: Nova Scotia Gabon: Estuaire Gabon: Ngounié, Waka National Park Gabon: Ngounié, Waka National Park Canada: British Columbia: Richmond Gabon: Ngounié, Waka National Park Canada: Nova Scotia Ghana: N. of Cape Coast, Kakum Forest Gabon: Ngounié, Waka National Park South Africa: Kwazulu-Natal Province Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal South Africa: Kwazulu-Natal Province Gabon: Ngounié, Waka National Park Malaysia: Johor Malaysia: Pahang Singapore: Bukit Timah Nature Reserve Canada: Ontario China: Guangxi, Pingxiang City USA, Nevada, Malaysia: Selangor Singapore: Upper Peirce Reservoir Hungary: Szombathely Singapore: Lum Chu Kang Mangroves Ghana: North of Cape Coast, Kakum Forest USA, Hawaii: Maui, Haleakala, Waikamoi  28S (755) EU815480* X (750)AY297248* (750)AY297256* (748)AY297254* (753)AY297250*  Actin 5C X X  (749)AY297251* N 1.38 E 103.81 N 1.39 E 103.81 N 1.38 E 103.81 N 1.900 E 104.104  S 26.866 E 32.274 N 05.349 W 01.383 N 24.4833 E 106.35 N 3.325 E 101.753 N 05.349 W 01.383 N 05.349 W 01.383 S 26.866 E 32.274 N 05.349 W 01.383 N 4.46 E 101.40  X X (916) EU815557* X X X X (908) EU815554* (905) EU815570* X X (897) EU815571* (875) EU815573* (855) EU815553* X X (581)AF477249* X  X X (749) EU815492* X X X X (755) EU815487* (755) EU815513* X X (755) EU815514* (756) EU815516* (755) EU815486* X X (748)AY297252*  S 1.124 E 11.13 N 45.5862 W 62.2271 N 05.349 W 01.383 S 1.132 E 11.150 S 26.979 E 32.400 N 0.621 E 10.407 S 27.54 E 32.66 S 1.132 E 11.150 N 1.900 E 104.104 N 4.46 E 101.40 N 1.355 E 103.78  X X X X (781) DQ665765* X (702) DQ665774* X X (587) EU815501* X (755) EU815488* X  X X X X X  (1047)AY297382*  X  X X  (939) DQ665723*  (971) EU815612* X  X (971) EU815612* X X X X  (750)AY297255  N 1.44 E 103.70 N 05.349 W 01.38  X X (949) EU815605* X X X X (972) EU815601* (977) EU815619* X X (997) EU815620* (970) EU815622* (960) EU815600* X  X  (393)AY297318  (577)AY296675 X  N 22.1217 E 106.7331 N 3.325 E 101.753 N 1.38 E 103.81  CO1 (980) EU815595* X (969)AY297378* (960)AY297385* (957)AY297384* (753)AY297250*  (393)AF477353* (581)AF477353* (909)AY297381*  N 1.407 E 103.991 N 0.638 E 10.406 S 1.204 E 11.107 S 1.183 E 11.140  ND1 16S (907) EU815548* X (393)AY297315* (585)AY296672* (285)AY296676* (584)AY296676* (390)AY297317* (584)AY296674* (393)AF477276* (581)AF477276*  EU522685 X X X X  X  X DQ532068* (continued next page)  66  Specimen ID  d123 d124 s206 MRB200 s185/s186 MRB106 d116 d131 d036 MRB210 MRB212 MRB225 MRB215 MRB236 MRB216 MRB233 MRB245 MRB220 MRB221 JXZ171 d195 MRB074 MRB268 d217 d193 MRB251 MRB259 MRB260 MRB252 MRB219 MRB264 MRB229 MRB234 MRB214 MRB242 MRB211 MRB208 d194 MRB157 d218 MRB222 d196 MRB258 MRB265 MRB209 MRB257  Species Havaika cf. pubens 2 Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. verecunda Spartaeoids Thrandina parocula Maddison Galianora bryicola Maddison Portia labiata (Thorell) Sonoita cf. lightfooti Peckham & Peckham Spartaeus uplandicus Barrion & Litsinger Cyrba lineata Wanless Galianora sacha Maddison Portia cf. schultzi Karsch Holcolaetis sp. (H. zuluensis Lawrence?) Thiratoscirtines thiratoscirtine (spot, foliage) thiratoscirtine (elongate, foliage) Tarne dives Simon thiratoscirtine (white palps A, litter) Malloneta sp. 1 thiratoscirtine (dusted, roadside) Pochyta sp. 1 (brown) Malloneta sp. 2 Longarenus sp. 2 Pochyta cf. fastibilis Simon Thiratoscirtoides sp. Bacelarella cf. pavida Szuts & Jocqué Malloneta guineensis 2 Simon cf. Thiratoscirtus 1 (V small bulb) Pochyta cf. pannosa Simon indet. d193 [Gha.] cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) thiratoscirtine (white palps B, litter) Bacelarella cf. tentativa Szuts & Jocque cf. Alfenus 1 Pochyta pulchra 2 (Thorell) Pochyta cf. spinosa Simon (red band) thiratoscirtine (small black, litter) Pochyta pulchra 3 (Thorell) Bacelarella iactans Szuts & Jocqué indet. MRB157 [Gha.] cf. Nimbarus sp. cf. Alfenus 2 indet. d196 [Gha.] Longarenus brachycephalus Simon Pochyta sp. (orange, black spot) Pochyta pulchra 1 (Thorell) Pochyta cf. spinosa Simon (small)  Locality USA, Hawaii: USA, Hawaii: USA, Hawaii: USA, Hawaii:  GPS  28S  Actin 5C  (773) DQ665779 (756) DQ665771 (752)AY297232* X (722)AY297233* X (772) DQ665766 (642) DQ665776 (659) DQ665770  X X  Big Island Maui, Haleakala, Han Big Island Maui, Haleakala, Auwahi  Ecuador: Morona Santiago Ecuador: Napo Philippines: Luzon Ghana: North of Cape Coast, Kakum Forest Philippines: Luzon South Africa: Mpumalanga Province Ecuador: Napo Madagascar: Fianarantsoa: South Africa: Kwazulu-Natal  S 2.9227 W 78.4079 S 1.067 W 77.617 NA N 05.349 W 01.383 NA NA S 1.067 W 77.617 S 22.592 E 45.128 S 28.2369 E 32.4100  Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngyounié Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Estuaire Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngyounié Gabon: Ngyounié Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngounié, Waka National Park Ghana: Central Region Ghana: Central Region Gabon: Ngounié, Waka National Park Ghana: Kakum Forest Ghana: Kakum Forest Gabon: Estuaire, Mondah Forest Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngounié, Waka National Park Gabon: Ngounié, Waka National Park Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngounié, Waka National Park Gabon: Estuaire, Mondah Forest Gabon: Estuaire, Mondah Forest Gabon: Ngounié, Waka National Park Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Estuaire, Mondah Forest Ghana: N. of Cape Coast, Kakum Forest Ghana: N. of Cape Coast, Kakum Forest Ghana: N. of Cape Coast, Kakum Forest Gabon: Ngounié, Waka National Park Ghana: N. of Cape Coast, Kakum Forest Gabon: Estuaire, Mondah Forest Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Ngounié, Waka National Park  N 0.621 E 10.407 X N 0.621 E 10.407 X S 1.124 E 11.13 X N 0.621 E 10.407 X N 0.621 E 10.407 X N 0.620 to 0.63 E 10.400 X N 0.621 E 10.407 X S 1.124 E 11.13 X S 1.124 E 11.13 X N 0.621 E 10.407 X S 1.109 E 11.089 X N 05.349 W 01.383 (755) EU815511* X S 1.124 E 11.13 X N 05.349 W 01.383 (756) EU815522* N 05.349 W 01.383 (758) EU815509* N 0.579 E 9.336 X N 0.621 E 10.407 X N 0.621 E 10.407 X S 1.124 E 11.13 X S 1.124 E 11.13 X N 0.621 E 10.407 X S 1.204 E 11.107 X N 0.579 E 9.336 X N 0.579 E 9.336 X S 1.204 E 11.107 X N 0.621 E 10.407 X N 0.579 E 9.336 X N 05.349 W 01.383 (756) EU815510* N 05.349 W 01.383 X N 05.349 W 01.383 (762) EU815523* S 1.204 E 11.107 X N 05.349 W 01.383 (761) EU815512* N 0.579 E 9.336 X N 0.621 E 10.407 X N 0.621 E 10.407 X S 1.204 E 11.107 X  X X X  X X X X X X X X X X  X X X X X X X X X X X X  ND1 DQ532076* DQ532071* DQ532072* DQ532070*  16S  CO1  (793) DQ665726* (970) DQ665761* (692) DQ665727* (972) DQ665758* (387)AY297298* (594)AY296653* (960)AY297361* X X (591)AY296655* X (975) DQ665754* (971) DQ665757* X X X X X X X X X X X (899) EU815569* X X (890) EU815577* (722) EU815567*  X X X X X X X X X X X (876) EU815618* X X X (955) EU815617* X X X X X X  X X X (906) EU815568* X (844) EU815578* X X X X X (continued next page)  67  Specimen ID MRB246 MRB267 MRB223 MRB232 MRB248 MRB228 MRB227 MRB217 d003 d222 MRB078 d221 d213 d172LD d178 d220 MRB231 MRB243 d081 d082 d127 s319 s316 s320 s321 s318  Species Saraina rubrofasciata Wanless & Clark Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small cross, litter) cf. Alfenus 3 Pochyta sp. 2 (brown) Alfenus chrysophaeus Simon Malloneta guineensis 1 Simon Other: Salticus scenicus Clerck Cheliceroides sp. [China] cf. Bavia Nungia epigynalis Zabka Agorius constrictus 1 Simon Agorius constrictus 2 Simon cf. Nungia Eupoa nezha Maddison & Zhang Eburneana sp. Hisponines Tomocyrba sp. Massagris schisma Maddison & Zhang Massagris cf. honesta Wesolowska Tomocyrba andasibe Maddison & Zhang Outgroups Gnaphosidae: Cesonia sp. Thomisidae: Xysticus sp. Corinnidae: Castianeira sp. Miturgidae: Cheiracanthium sp. Anyphaenidae: Hibana sp.  Locality Gabon: Estuaire, Mondah Forest Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal Gabon: Estuaire, Kinguélé Gabon: Ngounié, Waka National Park Gabon: Estuaire, Mondah Forest Gabon: Ngounié, Waka National Park Gabon Canada: British Columbia, Mission China: Guangxi: Tianlin County, Langping Village Malaysia: Pahang China: Guangxi, Pingxiang City Malaysia: Selangor Malaysia: Selangor Singapore: Lim Chu Kang Mangroves China: Guangzi Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal  GPS N 0.579 E 9.336 N 0.638 E 10.406 N 0.621 E 10.407 N 0.464 E 10.279 S 1.204 E 11.107 N 0.579 E 9.336 N 0.634 E 10.378  28S X X X X X  Actin 5C  X  N 4.46 E 101.40 N 22.2986 E 106.6997 N 3.325 E 101.753 N 3.325 E 101.753 N 1.44 E 103.70  16S  CO1 X X X  X  (699) DQ665777* (638) EU815524*  ND1  X X  X X X X NA (782) EU815579* X X  X  X X X X  N 0.621 E 10.407  Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.629 E 10.404 South Africa: Northern Cape South Africa: Kwazulu-Natal S 28.1021 E 32.4279 Madagascar: Toamasina Province S 18.944 E 48.418  X (778) DQ665762* (597) DQ665772* (513) DQ665780*  X  Mexico: Sonora USA: Colorado Mexico: Sonora Mexico: Sonora Mexico: Sonora  (745)AY297293* (744)AY297296* (739)AY297292* (753)AY297294* (743)AY297295*  X X  X X  X (898) DQ665728* (661) DQ665722* (630) DQ665725* (387)AY297356* (387)AY297359* (393)AY297355* (375)AY297357* (393)AY297358*  (600)AY296711* (582)AY296714* (596)AY296710* (611)AY296712* (743)AY297295*  X  (1047)AY297420* (1047)AY297296* (1047)AY297419* (1047)AY297421* (1047)AY297422*  68  Age  Name  Location/Description  Mesozoic (Cretaceous) Hauterivian amber from western slopes of Mount Lebanon (from Jezzine north to Baqq Kafra), Lebanon. One extinct spider genus of Oonopidae in this deposit, but rich in insect fauna.† No Salticidae described (Penney 2006; 2008). 112-125 Spain Upper Aptian-middle Albian* amber from the Sierra de Cantabria, Àlava, Spain 2 spiders fossils and no Salticidea identified.† 100-112 France Albian* amber from Archingeay-Les Nouillers, Charente-Maritime, France. Only fossil rich French Cretaceous deposit. 26 araneae (3 Zodariidae, 23 sp. indeterminate).† No Salticidae. One spider missidentified as salticid in Néraudeau et al. 2002 (Penney 2006). 90-100 Myanmar Turonian-Cenomania* Amber from Kachin, Myanmar. 128 aranea (11 families)†. (Burma) No Salticidae identified. 90-94* New Turonian amber from New Jersey, USA. No Salticidae described from this deposit.† Jersey 1 Salticidae missidentified in Grimaldi et al. 2002 (Penney 2006).† 93-100 France Cenomanian* amber from Charente-Maritime and Charente, France. No Saslticidae in this deposit, but the amber is poor in arachnids.† 83-87* Russia Santonian amber from Eastern Taimyr, Siberia.* No Salticidae have been described from this deposit.† 76.5-79.5 Canada Campanian* amber from Manitoba, Canada. 22 araneida; 18 sp. from unknown families. No Salticidae have been described from this deposit.† Cenozoic (Paleocene, Eocene, Oligocene, Miocene) 53* France Late Eocene Amber from Le Quesnoy, Oise, France. This is the most fossil rich of all French Amber deposits. >230 spiders and 0 Salticidae.† 44-49* Russia Middle Eocene amber from Samland, Russia (known as "East Prussia" in the literature). Baltic Contains basal members of Salticidae, including unknown basal salticids, but no Bitterfled Salticoida.† 22-26* Mexico Early Miocene-Late Oligocene amber from Simojovel, Chiapas. Contains one basal Chiapas salticid from the New World Lyssomaninae† ( the specimen has no synapomorphy to place it within an extant genus). 16* Dominican Mid Miocene amber from the Dominican Republic and Haiti. 170 species from Republic 45 families of spiders examined. 14 species of Salticidae from 9 genera including, but not limited to Lyssomanes, Corythalia & Thiodinda (the latter two are Salticoida genera).† Haiti 120-135* Lebanon  Literature Alonso et al. 2000;* Poinar & Milki 2001;†* Penney 2006; Penney 2008 Alonso et al. 2000*† Perrichot et al. 2007*† Penney 2006 Grimaldi et al. 2002*† Penney 2006 Penney 2002;*† Grimaldi et al. 2002 Penney 2006† Perrichot et al. 2007*† Zherikhin & Eskvo 1999* as cited in Penney 2008*† McAlpine & Martin 1969*† Penney 2008† Nel et al. 2004* Penney 2006† Wunderlich 2004† Weitschat & Wichard 2002 cited in Penney 2008* Berggren & van Couvering 1974 * García-Villafuerte & Penney 2003† Iturralde-Vinent 2001;* Penney 2008*† also see Penney & Pérez-Gelabert 2002  Table 2.2 Age and Description of Amber Deposits. (*) Source of age/era of amber given in the respective paper. (†) Source of spider fossil information.  69  Analysis lower tMRCA Uniform Prior (BEAST)/min_age (r8s) 1. All present Calibra- Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) tion Min age of Salticidae (presence in Baltic amber) Points Min age Salticoida (presence in Dominican amber) 2. Max present Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) Havaika Min age of Salticidae (presence in Baltic amber) Bound Min age Salticoida (presence in Dominican Amber) 3. Max present Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) Salticoida Min age of Salticidae (presence in Baltic amber) Bound Min age Salticoida (presence in Dominican amber) 4. No present Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) Max Min age of Salticidae (presence in Baltic amber) Bounds Min age Salticoida (presence in Dominican amber)  min 0 22 44 16 0 22 44 16 NA 22 44 16 NA 22 44 16  max 0.5 100 100 49 0.5 100 100 100 NA 100 100 49 NA 100 100 100  upper tMRCA Uniform Prior (BEAST)/Max_age (r8s) Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Max age of Salticidae (absence from Cretaceous amber deposits) Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Max age of Salticidae (absence from Cretaceous amber deposits) Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Max age of Salticidae (absence from Cretaceous amber deposits) Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Max age of Salticidae (absence from Cretaceous amber deposits) Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Max age of Salticoida (absence from Baltic/Paris/Cretaceous amber deposits)  Table 2.3 Summary of Calibration Points. Calibration points used in dating analyses run in BEAST and r8s.  70  0.995 0.756 0.994 0.997  0.651 1.0 0.874  1.0 1.0 0.817 0.9995  1.0  Amycoida  0.990 1.0 1.0  1.0 0.990  0.632  0.680  0.999  0.995  0.998 0.533 1.0 1.0 0.999 0.997 1.0 1.0 0.999 1.0  1.0  1.0 1.0  0.9998  1.0  1.0  1.0 0.999 0.989  Bavia group ballines 1.0  0.973  Salticoida  1.0  0.957  1.0  Marpissoida  1.0  1.0 0.819  0.997  1.0  0.664  0.8895 0.908  1.0  0.714  Astioida  1.0 1.0  0.835 1.0  1.0  1.0  1.0  0.527  0.612 0.994  0.707  0.770  0.9997  1.0  0.9798 1.0  0.654 1.0  1.0  0.653 1.0 1.0  0.895  1.0  1.0  0.984 0.959 1.0  1.0  0.997 0.997 0.999  0.569 1.0  0.626 0.851  0.556 1.0 1.0  Leptorchesteae  Hasarieae  0.908  0.686  1.0  0.948 1.0 1.0  0.981  Heliophaninae  All-Genes  1.0  Euophryinae  0.893 0.564  0.547 0.881  0.634  1.0  0.599  0.928  0.9995  0.957 0.807  0.787 0.946 1.0  0.994  1.0 0.976  0.690  1.0  1.0 0.993  0.741  1.0 1.0  Philaeus group  1.0  0.932 1.0  0.694  1.0  0.947 1.0 0.794  Plexippoida  1.0  0.992  1.0 0.933 1.0  0.999  0.997 1.0 0.998 0.927 0.993 0.628  1.0  0.622  0.704 0.520  0.848  0.558 0.666  0.589  freyines  Aelurilloida  aelurillines  1.0  1.0  1.0  1.0  0.678 0.850  1.0  0.817 0.984  0.893 0.997 0.883 0.659  1.0  1.0  1.0  1.0 1.0  1.0  1.0  0.774  1.0  1.0 0.953  0.925  thiratoscirtines  0.5598  0.841  0.783  1.0 1.0  1.0 0.826 0.877  0.8697 0.828  1.0 1.0  1.0 0.700 0.665  0.934  1.0 1.0  0.608  1.0 1.0 0.774 0.998  0.769 0.6097 1.0  0.654 0.585  0.996 1.0 0.812  1.0 0.999  Gnaphosidae: Cesonia sp. Anyphaenidae: Hibana sp. Thomisidae: Xysticus sp. Miturgidae: Cheiracanthium sp. Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] Corinnidae: Castianeira sp. Thrandina parocula Galianora sacha Galianora bryicola Lyssomanes viridis Cyrba lineata Portia labiata Portia cf. schultzi Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Jollas sp. Sitticus palustris Sitticus sp. cf. Arachnomura Scopocira cf. tenella Sarinda sp. Sarinda cutleri cf. Agelista* Zuniga cf. laeta Zuniga cf. Magna Hurius vulpinus amycoid indet. [Ecu.] Encolpius sp. Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Bavia cf. aericeps Stagetilus sp. [Phil.] Stagetilus sp. [Mal.] Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Attidops youngi Peckhamia sp. Psecas cf. viridipurpureus Maevia intermedia Platycryptus undatus Marpissa pikei cf. Marpissine indet. Itata sp. Phanias sp. Zygoballus rufipes Ghelna canadensis Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Eris militaris Phidippus sp. Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Belippo cf. ibadan Myrmarachne assimilis Myrmarachne sp. [Sing.] Myrmarachne foenisex Myrmarachne sp. (tristis group) Myrmarachne evidens Arasia mollicoma Helpis minitabunda Tauala lepidus Orthrus bicolor "Breda" jovialis Holoplatys cf. planissima Heratemita alboplagiata Ligurra latidens Simaetha sp. [Aus.] Simaetha sp. [Mal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa cf. Mopsus [N. Cal.] Viciria praemandibularis Trite pennata Trite planiceps Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Menemerus bivittatus Mexcala elegans Cosmophasis micarioides cf. Phintella* Pseudicius reiskindi Helvetia cf. zonata Heliophanus cupreus Phintella piatensis Phintella sp. Mexigonus sp. Zenodorus orbiculatus Corythalia cf. tropica cf. Thorelliola 'Euophrys' parvula Naphrys pulex 1/2 Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Salticus scenicus Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Habronattus cf. paratus Habronattus mexicanus Habronattus decorus Pellenes peninsularis Havaika sp. Pellenes bulawayoensis Anarrhotus fossulatus Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" cf. besanconi "Viciria" longiuscula Pancorius sp. 2 Evarcha proszynskii Pancorius sp. 1 Plexippoides regius Hyllus tuberculatus plexippine indet. [Gab.] 2 Hyllus treleaveni Burmattus sp. Evarcha/Hyllus sp. Epeus sp. Brancus viciriaeformis Thyene sp. [S. Afr.] plexippine indet. [Gab.] 1 Hyllus sp. Polemus cf. chrysochirus Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Freya regia Freya decorata Chira cf. spinipes Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Langelurillus nigritus Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata Pochyta cf. fastibilis thiratoscirtine (elongate, foliage) Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) Pochyta pulchra 2 Pochyta pulchra 1 Pochyta cf. pannosa Pochyta cf. spinosa (red band) Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) cf. Alfenus 2 cf. Alfenus 3 Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 cf. Alfenus 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) Bacelarella iactans Longarenus brachycephalus Longarenus sp. 2 Thiratoscirtus sp. cf. Thiratoscirtus (V round bulb) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)  Figure 2.1 Phylogeny from All-Genes. Majority Rule Consensus tree from 129,133 Bayesian trees sampled from 172,178,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with a posterior probability of < 0.5 are shown as a polytomy. 71  0.868 0.931 0.821  0.915  0.991 0.815  0.928  0.999 0.741  1.0 0.998 0.749  Salticoida  0.9997 0.762 0.9996  1.0  0.701  0.837  0.935 1.0  0.619 0.992  Amycoida  1.0  0.993 0.970 1.0 0.7795 0.997  0.988 0.761  0.976  0.986 1.0  0.849 0.635  1.0 0.999 0.976  Bavia group ballines 1.0  0.513  Marpissoida  1.0  0.990  0.795  0.863 1.0  0.993  0.731 0.594  1.0 0.939  0.949  1.0  0.936  0.703 0.577  0.933  0.985  0.998  0.567 0.970  1.0 0.718  0.970  Astioida  1.0  0.974 1.0  1.0 1.0  1.0  0.7595 1.0 0.9995  0.546 1.0  0.992  0.9997  0.998 1.0  1.0  1.0  0.614  0.999  0.930 1.0  0.999 0.694 0.677  1.0 1.0  Leptorchesteae 0.967  1.0  Hasarieae  0.988  0.996 0.9997 1.0  0.839  Heliophaninae  0.725  28S Random Taxa Order  1.0  0.536  Philaeus group  Euophryinae  0.871 0.897  1.0 0.971  0.957  0.998  0.998 0.601  0.881 0.849  0.852 0.841  0.606 0.982  1.0  Plexippoida  0.987  0.989 1.0  1.0  0.816 0.671  0.856 0.938  0.998  1.0  0.998 0.956  1.0 0.994 1.0  0.9996  0.707 1.0 0.938  1.0 0.976 0.513  1.0  0.947  0.552 0.809  0.982  0.915 0.723  freyines aelurillines  Aelurilloida  1.0  0.997  0.645 0.956 0.599 1.0  0.913  1.0  0.604 0.937  0.998  0.518  0.896  1.0  0.853 0.508  1.0  thiratoscirtines  1.0 0.998  1.0 0.9995 1.0 1.0  0.9998 0.996 0.576  0.910  0.986 0.975 0.632  0.9998 0.992  0.914  1.0 0.968  0.952  1.0  1.0  0.879 0.863  0.998  0.997  0.9998  Gnaphosidae: Cesonia sp. Miturgidae: Cheiracanthium sp. Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] Thomisidae: Xysticus sp. Corinnidae: Castianeira sp. Anyphaenidae: Hibana sp. Lyssomanes viridis Thrandina parocula Galianora sacha Galianora bryicola Cyrba lineata Portia labiata Portia cf. schultzi Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 cf. Arachnomura Jollas sp. Sitticus palustris Sitticus sp. cf. Agelista Scopocira cf. tenella Sarinda sp. Sarinda cutleri Zuniga cf. laeta Zuniga cf. Magna Hurius vulpinus Encolpius sp. amycoid indet. [Ecu.] Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Padilla mitohy Mantisatta longicauda Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Attidops youngi Peckhamia sp. Psecas cf. viridipurpureus Maevia intermedia cf. Marpissine indet. Platycryptus undatus Marpissa pikei Itata sp. Phanias sp. Zygoballus rufipes Ghelna canadensis Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Eris militaris Phidippus sp. Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Myrmarachne foenisex Myrmarachne sp. (tristis group) Myrmarachne assimilis Myrmarachne evidens Belippo cf. ibadan Myrmarachne sp. [Sing.] Neon nelli Arasia mollicoma Helpis minitabunda Tauala lepidus Orthrus bicolor "Breda" jovialis Holoplatys cf. planissima Heratemita alboplagiata Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Trite pennata Trite planiceps cf. Mopsus [N. Cal.] Viciria praemandibularis Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Menemerus bivittatus Cosmophasis micarioides Mexcala elegans Pseudicius reiskindi cf. Phintella* Helvetia cf. zonata Heliophanus cupreus Phintella piatensis Phintella sp. Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi Tusitala hirsuta Pignus sp. Tusitala lyrata Mexigonus sp. Zenodorus orbiculatus Naphrys pulex 1/2 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Havaika sp. Pellenes bulawayoensis Pellenes peninsularis Habronattus cf. paratus Habronattus mexicanus Habronattus decorus "Viciria" cf. fuscimana "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula Telamonia masinloc Telamonia cf. festiva Telamonia dimidiata Hyllus sp. Pancorius sp. 2 Evarcha proszynskii Plexippoides regius plexippine indet. [Gab.] 2 plexippine indet. [Gab.] 1 Hyllus treleaveni Epeus sp. Brancus viciriaeformis Thyene sp. [S. Afr.] Evarcha/Hyllus sp. Anarrhotus fossulatus Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Pancorius sp. 1 Burmattus sp. Hyllus tuberculatus Polemus cf. chrysochirus Freya regia Freya decorata Chira cf. spinipes Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata Thiratoscirtoides sp. Bacelarella iactans Tarne dives Saraina rubrofasciata thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 cf. Alfenus 1 cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) Pochyta cf. pannosa Pochyta cf. spinosa (red band) Pochyta pulchra 2 Pochyta pulchra 1 Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) thiratoscirtine (dusted, roadside) thiratoscirtine (elongate, foliage) Pochyta cf. fastibilis Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage)  Figure 2.2 Phylogeny from 28S Random Order Taxa Alignment. Majority Rule Consensus tree from 90,873 Bayesian trees sampled from 121,164,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 72  0.928 0.546 0.592  0.559 0.9997  1.0 0.946 0.686  0.9997 0.696  1.0 0.9897 1.0  1.0 0.973  0.817 0.837 0.575 0.653 0.934  1.0 1.0 0.926  ballines  1.0  0.997 1.0  0.963  0.999  0.869  Marpissoida  1.0 0.986 0.999 1.0 0.749 1.0  0.817 1.0 0.956 0.6299  1.0 0.9998  0.9898  0.627 0.552  0.9995  0.812  0.759  Bavia group  0.999 0.857  1.0  1.0  0.976 0.773 0.788  0.983  0.871  0.913  Astioida  0.998  0.997  0.837  Salticoida  1.0 0.684  0.587  Amycoida  0.915  1.0 1.0  0.9998  1.0  0.722  0.843 0.748  0.760  0.992 1.0  1.0  0.9096 0.999 0.736  1.0  0.541 0.999  0.828 0.669  1.0 0.724 0.998  0.715  Hasarieae  0.507 0.932  Heliophaninae  28S Original Taxa Order  Leptorchesteae 1.0  0.887  Philaeus group  0.675 0.768 0.635  1.0  1.0  0.900 0.601 0.967  0.710  0.991 1.0  Plexippoida  0.995  0.9996 1.0  0.579  1.0  0.896  0.941  0.685  0.966 0.992  1.0  0.995 0.885  Euophryinae  1.0  0.777 0.998  0.636 0.767 0.997  1.0 0.970 1.0 1.0  0.992 0.551  0.999  0.9997 0.687 0.941  0.853  0.957  0.988  0.959  0.731 0.788  0.527  0.8996  0.989 0.997  0.821 0.967  0.612 0.534  Aelurilloida  0.908  aelurillines  1.0  1.0  0.525  0.514 0.513  0.9997  0.990  1.0 0.578  0.999  1.0 1.0  1.0  1.0  thiratoscirtines  0.841 0.815  0.874  freyines  0.594  0.599  0.712  0.601 0.998 1.0 0.589 1.0  0.911 0.787 0.883  1.0 0.589  0.826  0.9998 0.997 0.543 0.902  0.962 0.972  0.952  0.990  0.997 1.0 1.0 0.842 0.939 1.0  0.888 0.882  0.9595  0.783  1.0  Miturgidae: Cheiracanthium sp. Gnaphosidae: Cesonia sp. Anyphaenidae: Hibana sp. Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] Thomisidae: Xysticus sp. Corinnidae: Castianeira sp. Lyssomanes viridis Thrandina parocula Galianora sacha Galianora bryicola Holcolaetis sp. Sonoita cf. lightfooti Spartaeus uplandicus Cyrba lineata Portia labiata Portia cf. schultzi thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Jollas sp. Sitticus palustris Sitticus sp. cf. Agelista Scopocira cf. tenella Sarinda sp. Sarinda cutleri Zuniga cf. laeta Zuniga cf. Magna Encolpius sp. Hurius vulpinus cf. Arachnomura amycoid indet. [Ecu.] Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Padilla mitohy Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Mantisatta longicauda Afromarengo sp. [Gab.] Attidops youngi Peckhamia sp. Itata sp. Marpissa pikei cf. Marpissine indet. Maevia intermedia Platycryptus undatus Psecas cf. viridipurpureus Phanias sp. Zygoballus rufipes Ghelna canadensis Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Eris militaris Phidippus sp. Stagetilus sp. [Mal.] Bavia cf. aericeps Stagetilus sp. [Phil.] Arasia mollicoma Tauala lepidus Helpis minitabunda Orthrus bicolor Neon nelli Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Myrmarachne assimilis Myrmarachne sp. [Sing.] Myrmarachne sp. (tristis group) Belippo cf. ibadan Myrmarachne foenisex Myrmarachne evidens "Breda" jovialis Holoplatys cf. planissima Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Trite pennata Trite planiceps Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa cf. Mopsus [N. Cal.] Viciria praemandibularis Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Pseudicius reiskindi Mexcala elegans Cosmophasis micarioides Menemerus bivittatus cf. Phintella Helvetia cf. zonata Heliophanus cupreus Phintella piatensis Phintella sp. Mexigonus sp. Zenodorus orbiculatus Naphrys pulex 1/2 Lagnus sp. Chalcotropis luceroi 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Salticus scenicus Mogrus mathisi Tusitala hirsuta Pignus sp. Tusitala lyrata Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Havaika sp. Pellenes bulawayoensis Pellenes peninsularis Habronattus cf. paratus Habronattus mexicanus Habronattus decorus "Viciria" cf. fuscimana "Viciria" longiuscula "Viciria" cf. besanconi "Viciria" thoracica Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva Polemus cf. chrysochirus Pancorius sp. 1 Hyllus tuberculatus Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Hyllus treleaveni Anarrhotus fossulatus Evarcha proszynskii Evarcha/Hyllus sp. plexippine indet. [Gab.] 2 Burmattus sp. Hyllus sp. Plexippoides regius Pancorius sp. 2 plexippine indet. [Gab.] 1 Epeus sp. Brancus viciriaeformis Thyene sp. [S. Afr.] Chira cf. spinipes Freya regia Freya decorata Nycerella neglecta Pachomius cf. flavescens Frigga crocuta Langona sp. Stenaelurillus sp. [S. Afr.] Phlegra cf. bresnieri Phlegra fasciata Aelurillus cf. ater Langelurillus sp. Langelurillus nigritus Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Saraina rubrofasciata Bacelarella iactans Tarne dives Thiratoscirtoides sp. cf. Alfenus 2 cf. Alfenus 3 Pochyta cf. fastibilis thiratoscirtine (elongate, foliage) thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) Pochyta cf. spinosa (red band) Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) thiratoscirtine (dusted, roadside) Pochyta cf. pannosa Pochyta pulchra 2 Pochyta pulchra 1 cf. Alfenus 1 cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Longarenus brachycephalus cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)  Figure 2.3 Phylogeny from 28S Original Alignment. Majority Rule Consensus tree from 121,801Bayesian trees sampled from 162,402,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 73  0.897  1.0  1.0  1.0 0.999 0.930  0.818 0.997  some Amycoida  1.0  0.683  0.984  1.0 0.638  0.588  0.846  0.592  1.0  1.0  1.0 1.0  0.729  1.0  0.980  0.915  0.853  some Amycoida  Salticoida  0.795  0.7495  0.721 1.0  0.987  0.9997 0.947  some Amycoida  1.0  0.9995 0.519 0.507 1.0 1.0 0.954 0.944 0.995 0.863  0.537  0.697  Heliophaninae  0.804  0.906  0.731  0.9995  1.0  0.699  0.521  0.999  0.523  1.0  0.659 0.904  0.746 0.994  0.844  0.545  0.757 0.556  Philaeus group aelurillines 1.0  ND116S  0.927  1.0  0.9895  0.998  0.938  1.0 0.555  0.999 0.549 1.0  1.0 0.998  1.0  1.0  0.944  ballines  0.965  Marpissoida  0.669  0.759  0.755 0.784 0.945  0.9998  1.0  0.603  0.689  1.0  0.9997  0.9197  1.0 0.989 0.609 0.666 0.555 0.889 0.997 0.954 1.0  0.963  1.0 0.582  1.0  1.0  1.0  1.0 0.951 0.763  0.571 0.992  1.0 1.0  0.961 1.0  Plexippoida  0.773 0.999  0.999 0.966  0.878  0.9996  0.518  1.0 0.522  0.892 1.0  1.0 1.0 1.0 1.0 0.504 1.0  0.717  0.637 0.564 0.625  freyines  0.988  1.0 1.0  0.717  0.517  0.626  0.932 1.0  0.601  0.528 0.822  0.984  1.0 1.0  0.646  1.0 1.0 0.9998  0.975 0.634  0.664  thiratoscirtines  0.991  0.535 1.0  0.576  1.0  0.612 0.989  0.523  1.0  0.849  1.0  1.0 0.570 1.0 1.0  0.927 1.0  0.692  Thomisidae: Xysticus sp. Phintella piatensis Miturgidae: Cheiracanthium sp. Thrandina parocula Lyssomanes longipes Lyssomanes viridis Eupoa nezha Corinnidae: Castianeira sp. Anyphaenidae: Hibana sp. Gnaphosidae: Cesonia sp. Diplocanthopoda marina Habrocestum cf. albimanum indet. MRB041 [Mal.] Thiodina sp. 1 thiodinine indet. [Ecu.] 1 thiodinine indet.[Ecu.] 2 cf. Arachnomura cf. Cyllodania Hurius vulpinus amycoid indet. [Ecu.] Fluda sp. Synemosyna cf. lucasi Cylistella sp. Mago steindachneri Encolpius sp. 2 Encolpius sp. 1 Noegus transversalis Noegus sp. Noegus cf. rufus Amycus sp. Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Paramarpissa sp. Jollas sp. Sitticus palustris Sitticus dorsatus Sitticus sp. "Breda" jovialis Ligonipes sp. [Aus.] cf. Lystrocteissa sp. [N. Cal.] Viciria praemandibularis Capidava cf. rufithorax Yllenus arenarius 1 Leptorchestes berolinensis Clynotis severus Cheliceroides sp. [China] Simaetha sp. [Aus.] antlike.MRB174 indet. [N.Cal.] Idastrandia orientalis nannenine indet. [Sing.] Penionomus sp. [N. Cal.] Trite ignipilosa Colyttus sp. Chalcotropis luceroi Mexigonus sp. Lepidemathis haemorroidalis cf. Thorelliola 'Euophrys' parvula Lagnus sp. Corythalia cf. tropica cf. Mopsus [N. Cal.] Trite pennata Trite planiceps Neon nelli Ligurra latidens Heratemita alboplagiata cf. Bavia cf. Nungia Nungia epigynalis Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Euophryine indet. [Ecu.] Naphrys pulex 1 Naphrys pulex 2 Pseudicius reiskindi cf. Phintella Menemerus bivittatus Helvetia cf. zonata Cosmophasis micarioides Phintella sp. Massagris schisma Massagris cf. honesta Stagetilus sp. 2 [Mal.] Stagetilus sp. [Phil.] Nannenus lyriger Langerra cf. longicymbium cf. Simaetha [N. Cal.] Scopocira cf. tenella Sarinda cutleri Sarinda sp. Orthrus bicolor Arasia mollicoma Helpis minitabunda Galianora bryicola Tomocyrba andasibe Onomastus sp. [China] Sonoita cf. lightfooti Spartaeus uplandicus Portia labiata Pignus sp. Tusitala hirsuta Tusitala lyrata Carrhotus sp. Philaeus chrysops Carrhotus sp. [Mal.] Mogrus mathisi Langona sp. Aelurillus cf. ater Phlegra fasciata Asianellus sp. Langelurillus nigritus cf. Agelista Zuniga sp. Zuniga cf. laeta Zuniga cf. magna Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne cf. mocamboensis Myrmarachne cf. malayana 1 Myrmarachne cf. malayana 2 Myrmarachne plataleoides Myrmarachne assimilis Myrmarachne sp. [Sing.] Myrmarachne sp. 2 [Mal.] Myrmarachne sp. (tristis group) Myrmarachne foenisex Mantisatta longicauda Padilla mitohy Goleta workmani Leikung cf. porosa Peplometus sp. [Gha.] Pachyballus sp. [Zim.] cf. Colaxes 1 [Mal.] Afromarengo sp. [Gab.] Itata sp. Attidops youngi Psecas cf. viridipurpureus cf. Marpissine indet. Peckhamia sp. Marpissa pikei Maevia intermedia Metacyrba taeniola Platycryptus undatus Phanias sp. Zygoballus rufipes Eris militaris Dendryphantes sp. Terralonus mylothrus Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Havaika sp. Habronattus mexicanus Habronattus cf. paratus Bianor sp. Sibianor aemulus Bianor maculatus Harmochirus brachiatus Harmochirus cf. brachiatus Epeus cf. guanxi Pancorius sp. 3 Anarrhotus fossulatus "Viciria" cf. fuscimana "Viciria" cf. besanconi "Viciria" longiuscula Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Evarcha bakorensis Burmattus sp. Hyllus treleaveni Hyllus tuberculatus Plexippoides regius Schenkelia modesta Schenkelia cf. modesta Plexippus paykulli 1 Plexippus paykulli 2 Epeus sp. Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 plexippine indet. [Sing.] Thyene sp. [S. Afr.] Brancus viciriaeformis Evarcha cf. orientalis 1 Evarcha cf. orientalis 2 Frigga crocuta indet. MRB155 [F. Gui.] Nycerella neglecta Pachomius cf. flavescens Chira cf. spinipes Rishaschia sp. Eustiromastix cf. major Freya decorata Freya regia freyine indet. [Ecu.] Freya cf. prominens Bacelarella iactans Longarenus sp. 2 cf. Thiratoscirtus 1 (V small bulb) cf. Nimbarus sp. indet. MRB157 [Gha.] cf. Alfenus 2 Alfenus chrysophaeus Tarne dives Thiratoscirtoides sp. Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Malloneta sp. 2 Malloneta guineensis 2 Malloneta guineensis 1 Malloneta sp. 1 thiratoscirtine (elongate, foliage) Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta cf. pannosa Pochyta cf. spinosa Pochyta sp. 2 (brown) Pochyta sp. 1 (brown)  Figure 2.4 Phylogeny from ND116S. Majority Rule Consensus tree from 150,000 Bayesian trees sampled from 200,000,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 74  0.859  0.524 0.783  0.688 0.992  0.862 0.585  0.651  0.693  0.573  0.999 1.0  0.998  0.962  0.9998  0.717 0.981 0.750 0.666 1.0 1.0 0.904 0.729 0.992 1.0 1.0 1.0 0.567 1.0 0.810 0.742 0.738  Salticoida  0.759 1.0 0.929  CO1  0.995 1.0 0.981  0.577 0.8695  0.789  1.0  0.998 0.640 0.990 0.963 1.0  1.0 0.907 0.868  0.595  0.621 0.713  0.991  0.613 0.694 0.834 1.0  0.660 0.831  0.754 0.719  0.890  0.992 0.799  0.859 0.514  1.0  0.997 0.954  0.795 0.994  0.702 0.9995  1.0 0.723  0.961 0.969  1.0  0.784 0.784  0.833  thiratoscirtines  0.789  1.0  0.970 0.879 0.663  0.738  1.0 0.6495  1.0 0.869 1.0  0.994 0.803  1.0  0.965  0.9997 1.0  0.9995 0.7297  0.975 1.0  Corinnidae: Castianeira sp. Miturgidae: Cheiracanthium sp. Gnaphosidae: Cesonia sp. Thomisidae: Xysticus sp. Anyphaenidae: Hibana sp. Onomastus sp. [China] Tomocyrba sp. Sonoita cf. lightfooti Holcolaetis sp. Lyssomanes viridis Portia labiata Cyrba lineata Goleba lyra Asemonea sp. [S.Afr.] Thrandina parocula Galianora sacha Galianora bryicola Naphrys pulex 1/2 Eris militaris cf. Thorelliola Idastrandia orientalis cf. Agelista Mexcala elegans Mexigonus sp. Mopsus mormon Lepidemathis haemorroidalis Pancorius sp. 2 Thiania viscaensis Peckhamia sp. Sarinda cutleri Pancorius sp. 1 Heliophanus cupreus Aelurillus cf. ater Salticus scenicus Tauala lepidus Hermotimus sp. Burmattus sp. Paramarpissa sp. 'Euophrys' parvula cf. Mopsus [N. Cal.] Thyene sp. [S. Afr.] Hyllus treleaveni Anarrhotus fossulatus Epeus sp. Noegus transversalis Chalcotropis luceroi Phintella sp. Leptorchestes berolinensis Plexippoides regius Telamonia masinloc Telamonia dimidiata Langona sp. Stenaelurillus sp. [S. Afr.] Phlegra cf. bresnieri Phlegra fasciata Habrocestum cf. albimanum Chinattus parvulus Plexippus paykulli 2 Plexippus paykulli 1 "Breda" jovialis Holoplatys cf. planissima Cosmophasis micarioides cf. Phintella cf. Arachnomura Jollas sp. Schenkelia cf. modesta Lessert Schenkelia modesta "Viciria" cf. fuscimana "Viciria" cf. besanconi Yllenus arenarius 2 Yllenus arenarius 1 Hyllus tuberculatus plexippine indet. [Gab.] 1 Zuniga cf. laeta Zuniga cf. Magna Helvetia cf. zonata Pseudicius reiskindi Zygoballus rufipes Terralonus mylothrus Phanias sp. Hyllus sp. Polemus cf. chrysochirus Baryphas ahenus Sitticus sp. Langelurillus sp. Sitticus palustris thiodinine indet.[Ecu.] 1 Orthrus bicolor Thiodina sp. 2 Bavia cf. aericeps Stagetilus sp. [Phil.] Stagetilus sp. [Mal.] cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Trite pennata Trite planiceps Penionomus sp. [N. Cal.] Trite ignipilosa Platycryptus undatus Psecas cf. viridipurpureus Maevia intermedia cf. Marpissine indet. Telamonia cf. festiva Havaika sp. Habronattus cf. paratus Habronattus mexicanus Scopocira cf. tenella Hypaeus mystacalis Encolpius sp. Hurius vulpinus amycoid indet. [Ecu.] Ophisthoncus kochi Simaetha sp. [Aus.] Ligurra latidens Mago steindachneri Heratemita alboplagiata Corythalia cf. tropica Arasia mollicoma Chira cf. spinipes Nycerella neglecta Pachomius cf. flavescens Frigga crocuta Philaeus chrysops Lagnus sp. Carrhotus sp. [Mal.] Carrhotus sp. Pignus sp. Tusitala lyrata Mantisatta longicauda Afromarengo sp. [Gab.] Peplometus sp. [Gha.] Padilla mitohy Evarcha/Hyllus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Ligonipes sp. [Aus.] Attidops youngi Sarinda sp. Belippo cf. ibadan Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Myrmarachne sp. [Sing.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne foenisex Myrmarachne evidens Neon nelli Itata sp. Thiratoscirtoides sp. thiratoscirtine (white palps A, litter) Longarenus brachycephalus Longarenus sp. 2 thiratoscirtine (small black, litter) Thiratoscirtus sp. thiratoscirtine (small cross, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (V round bulb) Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 Tarne dives Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) thiratoscirtine (elongate, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa indet. d193 [Gha.] thiratoscirtine (spot, foliage) Pochyta cf. spinosa Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta pulchra 2 Pochyta pulchra 1  Figure 2.5 Phylogeny from CO1. Majority Rule Consensus tree from 97,220 Bayesian trees sampled from 129,627,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 75  0.767 0.9998 0.652 0.590 0.983 0.832  1.0  astioida astioida astioida astioida 0.550  Salticoida  aelurilline freyine 0.658  Leptorchesteae  Marpissoida Hasarieae 1.0 0.870  1.0  0.688  some Astioida 0.997  0.541  0.914  Heliophaninae  0.820 0.604 1.0  0.848  Amycoida 0.986  1.0  0.537  ballines  0.966  1.0 0.979  1.0  0.953  euophryines 0.836 0.994  0.526 0.729  0.808  Actin 5C  0.996  Philaeus group  0.812  1.0  0.999 1.0 1.0  0.995  0.982  Plexippoida  0.972 1.0  1.0  0.632 0.743 0.546 0.573  freyine  0.997  0.520  thiratoscirtines  1.0  0.9899  1.0  0.594  0.892  0.6896  1.0  0.863  0.777  0.676  0.854 0.998 0.645 0.6698  0.662  0.517 0.992 0.776  1.0  Thomisidae: Xysticus sp. Gnaphosidae: Cesonia sp. Holcolaetis sp. Portia cf. schultzi Goleba lyra Lyssomanes viridis Thrandina parocula Galianora sacha Galianora bryicola Myrmarachne sp. 1 [Mal.] Tauala lepidus Arasia mollicoma Mopsus mormon Nannenus lyriger Idastrandia orientalis Aelurillus cf. ater Freya decorata Cheliceroides sp. [Chi.] Yllenus arenarius Paraphidippus aurantius Ghelna canadensis Chinattus parvulus Echeclus sp. Diplocanthopoda marina Gedea cf. tibialis "Breda" jovialis Ophisthoncus kochi Simaetha sp. [Aus.] Ligurra latidens Mexcala elegans Heliophanus cupreus Agorius constrictus 2 Agorius constrictus 1 Acragus sp. [Ecu.] Hurius cf. vulpinus thiodinine Cotinusa sp. Leikung cf. porosa Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Thiania bhamoensis Simaetha sp. [Mal.] Tomocyrba sp. Zenodorus orbiculatus Naphrys pulex 1 Neonella Vinnula Salticus scenicus Tusitala lyrata Philaeus chrysops Mogrus mathisi Eburneana sp. Bianor maculatus Bianor sp. Pellenes nigrociliatus Pellenes peninsularis Habronattus americanus Habronattus decorus Plexippus paykulli 1 Hyllus diardi Hermotimus sp. Evarcha proszynskii Hyllus sp. Evarcha sp. plexippine Hyllus treleaveni plexippine indet. [Gab.] 2 Trydarssus cf. nobilitatus cf. Alfenus 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (elongate, foliage) Thiratoscirtoides sp. Tarne dives cf. Thiratoscirtus (V round bulb) Longarenus sp. 2 cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 2 (V small bulb) thiratoscirtine (small black, litter) thiratoscirtine (small shiny, litter) Pochyta cf. fastibilis thiratoscirtine (spot, foliage) Bacelarella cf. tentativa Pochyta pulchra 2 thiratoscirtine (dusted, roadside) Pochyta cf. spinosa Pochyta sp. 2 (brown) Pochyta sp. 1 (brown)  Figure 2.6 Phylogeny from Actin 5C. Majority Rule Consensus tree from 145,359 Baysian trees sampled from 193,812,000 generations (25% post-analysis burn-in). Bayesian postierior probabilities > 0.5 are given. Clades with probabiltiy < 0.5 are showed as a polytomy. 76  Lyssomaninae/Spartaeinae  outgroups outgroups 0.854  0.985 0.973 0.975  0.970  1.0 1.0  1.0 0.999  hisponines  0.955 0.999  0.961  0.999 1.0  Amycoida  1.0  1.0 0.951  0.961  1.0 0.988  0.996  basal salticids  0.999  0.997  0.998  0.999  0.996 0.949 0.9995 1.0 0.706 1.0  1.0  1.0 0.785  0.9997  1.0  1.0  1.0 0.995 0.9995  1.0  Bavia group ballines  0.974  Salticoida  1.0  0.977 1.0  0.996  1.0  0.961  Marpissoida  1.0  1.0 0.804  1.0 0.951  1.0  0.999  0.956  0.977 0.944  0.9998  0.661  Astioida  1.0  1.0  1.0  0.989 0.713  0.534  0.691 1.0  0.9998 1.0  1.0  1.0  0.867  0.696  1.0  0.613  0.874 1.0  0.981  1.0 1.0  0.994  0.994  0.998 1.0  1.0  1.0 0.987  1.0 1.0 0.583 0.602  1.0 1.0  1.0  Euophryinae  0.897 0.989  0.947  1.0 0.997  Leptorchesteae1.0  0.5599  0.772  28S/16SND1 Starting Tree for r8s  Hasarieae  0.9997 1.0  0.547  0.889 0.974  1.0 1.0  1.0 0.998  0.814  Heliophaninae  0.752  Philaeus group  0.927  1.0  1.0 0.645  0.809  1.0 1.0 0.997  0.954 1.0  0.992  0.768  1.0  0.983 1.0  Plexippoida  0.611  0.985  0.922  1.0  0.923  0.937  1.0 0.918  0.613 0.575 0.936 0.966 0.996  0.9998 1.0 0.905  0.893  1.0  1.0 0.986 1.0  0.591  0.982 0.909  0.979  0.780  0.891  0.9998 0.948 0.604  0.756  Aelurilloida  1.0  0.945 0.999 0.784  0.760 0.978  1.0 1.0 0.582 1.0  0.767 1.0 0.955  0.984  0.645  1.0 0.955  0.658  0.8198 0.938  freyines aelurillines  1.0  0.995  0.978  0.975  0.995  1.0 0.982  1.0  thiratoscirtines  1.0 0.983 0.993  1.0  1.0 0.884  0.989 0.972 1.0 0.613  0.685 1.0  0.997  1.0  1.0 1.0 0.999  0.968 1.0  0.849 0.7396  0.662 0.996  0.806 0.992  0.974  0.996  0.999 0.999  0.806  1.0  Thomisidae: Xysticus sp. Miturgidae: Cheiracanthium sp. Gnaphosidae: Cesonia sp. Corinnidae: Castianeira sp. Anyphaenidae: Hibana sp. Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] Lyssomanes viridis Thrandina parocula Galianora sacha Galianora bryicola Cyrba lineata Portia labiata Portia cf. schultzi Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Jollas sp. Sitticus palustris Sitticus sp. cf. Arachnomura Scopocira cf. tenella Sarinda sp. Sarinda cutleri cf. Agelista Zuniga cf. laeta Zuniga cf. Magna Hurius vulpinus amycoid indet. [Ecu.] Encolpius sp. Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Attidops youngi Peckhamia sp. Psecas cf. viridipurpureus Maevia intermedia Platycryptus undatus Marpissa pikei cf. Marpissine indet. Itata sp. Phanias sp. Zygoballus rufipes Ghelna canadensis Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Eris militaris Phidippus sp. Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne foenisex Myrmarachne sp. (tristis group) Myrmarachne evidens Neon nelli Arasia mollicoma Helpis minitabunda Tauala lepidus Orthrus bicolor "Breda" jovialis Holoplatys cf. planissima Heratemita alboplagiata Simaetha sp. [Aus.] Simaetha sp. [Mal.] Ligurra latidens Trite pennata Trite planiceps Ophisthoncus kochi cf. Mopsus [N. Cal.] Viciria praemandibularis Penionomus sp. [N. Cal.] Trite ignipilosa Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Naphrys pulex 1/2 Corythalia cf. tropica cf. Thorelliola 'Euophrys' parvula Thiania viscaensis Thiania bhamoensis Lepidemathis haemorroidalis Lagnus sp. Chalcotropis luceroi Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Menemerus bivittatus Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Phintella piatensis Phintella sp. Cosmophasis micarioides Mexcala elegans cf. Phintella* Salticus scenicus Tusitala lyrata Pignus sp. Tusitala hirsuta Mogrus mathisi Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Pellenes peninsularis Habronattus cf. paratus Habronattus mexicanus Habronattus decorus Pellenes bulawayoensis Havaika sp. Havaika cf. pubens 2 Havaika cf. pubens 1 Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Epeus sp Brancus viciriaeformis Thyene sp. [S. Afr.] Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" cf. besanconi "Viciria" longiuscula* Pancorius sp. 1 Pancorius sp. 2 Evarcha proszynskii Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Hyllus sp. Plexippoides regius plexippine indet. [Gab.] 2 Burmattus sp. Hyllus treleaveni Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Chira cf. spinipes Freya regia Freya decorata Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata thiratoscirtine (elongate, foliage) Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta pulchra 2 Pochyta pulchra 1 Pochyta cf. pannosa Pochyta cf. spinosa (red band) Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] Bacelarella iactans cf. Alfenus 1 Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)  Figure 2.7 Starting Tree for R8s Dating Analysis. 28S/16SND1 tree of 2nd highest probability from 68,323 Bayesian trees sampled from 91,098,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 77  Lyssomaninae/Spartaeinae Lyssomaninae  hisponines  basal salticids  Amycoida Bavia group  ballines  Marpissoida  Salticoida  Astioida Euophryinae Leptorchesteae  BEAST Dating Tree  Hasarieae  Heliophaninae Philaeus group  Plexippoida  freyines  Aelurilloida  thiratoscirtines  aelurillines  Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Goleba lyra Asemonea sp. [S.Afr.] Onomastus sp. [China] Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Jollas sp. Sitticus palustris Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus amycoid indet. [Ecu.] cf. Arachnomura Scopocira cf. tenella cf. Agelista Zuniga cf. laeta Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Eris militaris Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Marpissa pikei Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus "Breda" jovialis Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Mexcala elegans Phintella piatensis Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 Pellenes bulawayoensis Havaika sp. Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus Pellenes peninsularis Habronattus cf. paratus Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Baryphas ahenus Plexippus paykulli 1 Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Freya decorata Freya regia Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata  Figure 2.8 BEAST Dating Tree Topology (Analysis 1). Maximum Clade Credibility Tree of 120,000,000 trees from 160,000,000 generations (25% post-analysis burn-in).  78  Lyssomaninae/ Spartaeinae  Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Goleba lyra Asemonea sp. [S.Afr.] Onomastus sp. [China] Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Jollas sp. Sitticus palustris Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus amycoid indet. [Ecu.] cf. Arachnomura Scopocira cf. tenella cf. Agelista Zuniga cf. laeta Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Eris militaris Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Marpissa pikei Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus "Breda" jovialis Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Mexcala elegans Phintella piatensis Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 Pellenes bulawayoensis Havaika sp. Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus Pellenes peninsularis Habronattus cf. paratus Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp.* Baryphas ahenus Plexippus paykulli 1 Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Freya decorata Freya regia Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata  44.05  Salticidae  some Lyssomaninae 31.72 hisponines 29.53  50.08  Amycoida 33.42  Bavia group  Marpissoida 22.49  Salticoida 41.19  “core” Astioida 27.28  26.89  Euophryinae  BEAST Analysis 1  Heliophaninae  19.45  Philaeus group 17.89  APPHHL clade  33.77  Plexippoida 20.23  freyines  22.51  aelurillines  Aelurilloida  17.21  27.07  thiratoscirtines 17.37  50  40  30  20  10  0  Figure 2.9 BEAST Analysis 1. Ages are given in millions of years (Ma). Calibration points used: Havaika (0 Ma min, 0.5 Ma max), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max).  79  Lyssomaninae/ Spartaeinae 44.05  Salticidae  some Lyssomaninae 31.72 hisponines 29.53  50.08 Amycoida 33.42 Bavia group  Marpissoida 22.49  Salticoida 41.19  “core” Astioida  27.28  Euophryinae  Heliophaninae19.45 Philaeus group 17.89  BEAST Analysis 1 95% HPD  Plexippoida  20.23  freyines  22.51  Aelurilloida  aelurillines 17.21  27.07  thiratoscirtines 17.37  Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Goleba lyra Asemonea sp. [S.Afr.] Onomastus sp. [China] Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Jollas sp. Sitticus palustris Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus amycoid indet. [Ecu.] cf. Arachnomura Scopocira cf. tenella cf. Agelista Zuniga cf. laeta Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Eris militaris Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Marpissa pikei Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus "Breda" jovialis Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Mexcala elegans Phintella piatensis Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 Pellenes bulawayoensis Havaika sp. Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus Pellenes peninsularis Habronattus cf. paratus Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Baryphas ahenus Plexippus paykulli 1 Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Freya decorata Freya regia Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata  Figure 2.10 95% HPD (Highest Posterior Density) Interval Bars of BEAST Analysis 1. Ages are given in millions of years (Ma). Bars are not displayed for all nodes.  80  Lyssomaninae/ 49.42 Spartaeinae  Onomastus sp. [China] Asemonea sp. [S.Afr.] Goleba lyra Lyssomanes viridis Thrandina parocula Galianora bryicola Galianora sacha Cyrba lineata Portia cf. schultzi Portia labiata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Massagris cf. honesta Massagris schisma Tomocyrba sp. Tomocyrba andasibe Thiodina sp. 1 Thiodina sp. 2 thiodinine indet.[Ecu.] 1 Jollas sp. Sitticus sp. Sitticus palustris cf. Arachnomura Hurius vulpinus amycoid indet. [Ecu.] Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Mago steindachneri Hypaeus mystacalis cf. Hypaeus [Ecu.] 2 cf. Hypaeus [Ecu.] 1 cf. Acragus Encolpius sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Sarinda cutleri Sarinda sp. Scopocira cf. tenella Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne sp. [Sing.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne plataleoides Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Holoplatys cf. planissima "Breda" jovialis Tauala lepidus Orthrus bicolor Helpis minitabunda Arasia mollicoma Neon nelli Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Peckhamia sp. Attidops youngi Psecas cf. viridipurpureus Marpissa pikei Platycryptus undatus cf. Marpissine indet. Maevia intermedia Itata sp. Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Idastrandia orientalis Nannenus lyriger 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Naphrys pulex 1/2 Zenodorus orbiculatus Mexigonus sp. Enoplomischus sp. Leptorchestes berolinensis Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Cheliceroides sp. [China] Mexcala elegans Menemerus bivittatus cf. Phintella Cosmophasis micarioides Helvetia cf. zonata Pseudicius reiskindi Heliophanus cupreus Phintella piatensis Phintella sp. Philaeus chrysops Carrhotus sp. Carrhotus sp. [Mal.] Mogrus mathisi Pignus sp. Tusitala lyrata Tusitala hirsuta Salticus scenicus Schenkelia cf. modesta Lessert Schenkelia modesta Hermotimus sp. Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 plexippine indet. [Gab.] 1 Polemus cf. chrysochirus Hyllus tuberculatus Hyllus sp. Plexippoides regius plexippine indet. [Gab.] 2 Hyllus treleaveni Burmattus sp. Pancorius sp. 1 Pancorius sp. 2 Evarcha proszynskii Brancus viciriaeformis Thyene sp. [S. Afr.] Epeus sp. Evarcha/Hyllus sp. Anarrhotus fossulatus "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Pellenes bulawayoensis Havaika cf. pubens 1 Havaika sp. Havaika cf. pubens 2 Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Habronattus mexicanus Habronattus decorus Pellenes peninsularis Habronattus cf. paratus Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Freya regia Freya decorata Chira cf. spinipes Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Stenaelurillus sp. [S. Afr.] Langona sp. Aelurillus cf. ater Langelurillus sp. Phlegra fasciata Phlegra cf. bresnieri Langelurillus nigritus Malloneta sp. 2 Malloneta sp. 1 Malloneta guineensis Tarne dives Saraina rubrofasciata Thiratoscirtoides sp. thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Alfenus 1 thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb)* cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 Bacelarella iactans cf. Alfenus 3 cf. Alfenus 2 Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta pulchra 1 Pochyta pulchra 2 Bacelarella cf. tentativa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] thiratoscirtine (elongate, foliage)  hisponines  Salticidae 51.5  Amycoida 32.02  Salticoida 39.01  “core” Astioida  25.15  Marpissoida  Euophryinae  21.26  28.25  Heliophaninae  18.23  Philaeus group  BEAST Analysis 2  Plexippoida  24.44  freyines aelurillines 15.44  Aelurilloida  thiratoscirtines  50  40  30  20  19.16  10  0  Figure 2.11 BEAST Analysis 2. Ages given in millions of years (Ma). Calibration Points used: Havaika (0 min, 0.5 max), Lyssomaninae/Spartaeinae (22 min, 100 max), Salticidae (44 min, 100 max) and Salticoida (16 min, 100 max).  81  Lyssomaninae/ Spartaeinae  Salticidae 50.21  Onomastus sp. [China] Asemonea sp. [S.Afr.] Goleba lyra Lyssomanes viridis Thrandina parocula Galianora bryicola Galianora sacha Sonoita cf. lightfooti Holcolaetis sp. Spartaeus uplandicus Portia cf. schultzi Portia labiata Cyrba lineata Massagris cf. honesta Massagris schisma Tomocyrba sp. Tomocyrba andasibe Thiodina sp. 1 Thiodina sp. 2 thiodinine indet.[Ecu.] 1 Scopocira cf. tenella Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista* cf. Arachnomura Encolpius sp. Hypaeus mystacalis cf. Hypaeus [Ecu.] 2 cf. Hypaeus [Ecu.] 1 cf. Acragus Mago steindachneri Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus amycoid indet. [Ecu.] Hurius vulpinus Sitticus palustris Jollas sp. Sitticus sp. Neon nelli Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Ligurra latidens Simaetha sp. [Aus.] Heratemita alboplagiata Simaetha sp. [Mal.] Trite pennata Trite planiceps cf. Mopsus [N. Cal.] Ophisthoncus kochi Trite ignipilosa Penionomus sp. [N. Cal.] Viciria praemandibularis Holoplatys cf. planissima "Breda" jovialis Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne plataleoides Myrmarachne sp. [Sing.] Belippo cf. ibadan Myrmarachne assimilis Myrmarachne evidens Myrmarachne sp. (tristis group) Myrmarachne foenisex * Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Stagetilus sp. [Mal.] Bavia cf. aericeps Stagetilus sp. [Phil.] Itata sp. Phanias sp. Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Maevia intermedia Platycryptus undatus Marpissa pikei cf. Marpissine indet. Psecas cf. viridipurpureus Attidops youngi Peckhamia sp. Padilla mitohy Afromarengo sp. [Gab.] Peplometus sp. [Gha.] Pachyballus sp. [S.Afr.] Mantisatta longicauda Idastrandia orientalis Nannenus lyriger Mexigonus sp. Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Zenodorus orbiculatus Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 1 Yllenus arenarius 2 Paramarpissa sp. Cheliceroides sp. [China] Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Mexcala elegans cf. Phintella Cosmophasis micarioides Menemerus bivittatus Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Phintella sp. Phintella piatensis Pignus sp. Tusitala lyrata Tusitala hirsuta Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Mogrus mathisi Salticus scenicus Anarrhotus fossulatus Evarcha/Hyllus sp. Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. fuscimana Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Plexippoides regius Hyllus treleaveni plexippine indet. [Gab.] 1 Hyllus sp. plexippine indet. [Gab.] 2 Polemus cf. chrysochirus Hyllus tuberculatus Burmattus sp. Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Schenkelia cf. modesta Lessert Schenkelia modesta Hermotimus sp. Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Havaika cf. verecunda Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus mexicanus Habronattus decorus Pellenes peninsularis Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Freya regia Freya decorata Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Langelurillus nigritus Langelurillus sp. Phlegra fasciata Phlegra cf. bresnieri cf. Alfenus 3 cf. Alfenus 2 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Alfenus 1 Bacelarella iactans indet. MRB157 [Gha.] cf. Nimbarus sp. indet. d196 [Gha.] Tarne dives Thiratoscirtoides sp. Saraina rubrofasciata thiratoscirtine (white palps B, litter) thiratoscirtine (white palps A, litter) Pochyta pulchra 3 Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. (orange, black spot) Pochyta sp. 1 (brown) Pochyta cf. spinosa Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta pulchra 2 Pochyta pulchra 1 indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)  45.24  hisponines  Amycoida  34.61  “core” Astioida 31.72  Salticoida 44.38 Marpissoida 26.2  Euophryinae  BEAST Analysis 3  35.35  Heliophaninae 27.33 Philaeus group 19.76  Plexippoida  Aelurilloida  24.9  freyines aelurillines  32.71  thiratoscirtines 23.8  50  40  30  20  10  0  Figure 2.12 BEAST Analysis 3. Ages are given in millions of years (Ma). Calibration points: Havaika (not used), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 82  Lyssomaninae/ Spartaeinae 57.8  Salticidae 69.99  Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] Lyssomanes viridis Thrandina parocula Galianora sacha Galianora bryicola Cyrba lineata Portia labiata Portia cf. schultzi Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Jollas sp. Sitticus palustris Sitticus sp. Scopocira cf. tenella Sarinda sp. Sarinda cutleri cf. Agelista Zuniga cf. laeta Zuniga cf. Magna cf. Arachnomura Hurius vulpinus amycoid indet. [Ecu.] Encolpius sp. Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Attidops youngi Peckhamia sp. Maevia intermedia Psecas cf. viridipurpureus cf. Marpissine indet. Platycryptus undatus Marpissa pikei Itata sp. Phanias sp. Pelegrina chalceola/Pelegrina verecunda Eris militaris Phidippus sp. Terralonus mylothrus Zygoballus rufipes Ghelna canadensis Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne assimilis Myrmarachne foenisex Myrmarachne sp. (tristis group) Myrmarachne evidens Neon nelli Arasia mollicoma Helpis minitabunda Tauala lepidus Orthrus bicolor "Breda" jovialis Holoplatys cf. planissima Simaetha sp. [Mal.] Heratemita alboplagiata Simaetha sp. [Aus.] Ligurra latidens cf. Mopsus [N. Cal.] Trite pennata Trite planiceps Ophisthoncus kochi Viciria praemandibularis Penionomus sp. [N. Cal.] Trite ignipilosa Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Corythalia cf. tropica cf. Thorelliola 'Euophrys' parvula Naphrys pulex 1/2 Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Cheliceroides sp. [China] Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Mexcala elegans cf. Phintella* Cosmophasis micarioides Menemerus bivittatus Phintella piatensis Phintella sp. Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Salticus scenicus Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Habronattus cf. paratus Pellenes peninsularis Habronattus mexicanus Habronattus decorus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika sp. Havaika cf. pubens 2 Havaika cf. pubens 1 Pellenes bulawayoensis Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva "Viciria" cf. fuscimana "Viciria" longiuscula "Viciria" cf. besanconi "Viciria" thoracica Epeus sp. Brancus viciriaeformis Thyene sp. [S. Afr.] Pancorius sp. 1 Pancorius sp. 2 Evarcha proszynskii Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Schenkelia cf. modesta Lessert Hermotimus sp. Schenkelia modesta Hyllus tuberculatus Burmattus sp. Plexippoides regius Hyllus treleaveni Hyllus sp. plexippine indet. [Gab.] 1 plexippine indet. [Gab.] 2 Polemus cf. chrysochirus Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Chira cf. spinipes Freya regia Freya decorata Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Phlegra fasciata thiratoscirtine (elongate, foliage) Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta pulchra 2 Pochyta pulchra 1 Pochyta cf. pannosa Pochyta cf. spinosa (red band) Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 Tarne dives Thiratoscirtoides sp. Saraina rubrofasciata thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] Bacelarella iactans cf. Alfenus 1 Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)  hisponines  Amycoida 44.78  Marpissoida 27.43  Salticoida 61.54  “core” Astioida  40.94  Euophryinae  BEAST Analysis 4  39.74  Heliophaninae 37.31  Philaeus group  Plexippoida  25.86  29.51  30.87  freyines 32.15  Aelurilloida  37.78  thiratoscirtines  70  60  50  40  30  28.72  20  10  0  Figure 2.13 BEAST Analysis 4. Ages given in millions of years (Ma). Calibration points used: Havaika (not used), lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max).  83  Lyssomaninae/ Spartaeinae 50.37  Salticidae 55.21  Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Itata sp. Peckhamia sp. Attidops youngi Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella* Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi Pignus sp. Tusitala hirsuta Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata Freya regia Chira cf. spinipes Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater Langelurillus nigritus Langona sp. Stenaelurillus sp. [S. Afr.] indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Bacelarella iactans Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)  hisponines  Amycoida 41.08  Salticoida 49.0  Marpissoida “core” Astioida  35.37  36.92  Euophryinae  34.98  r8s Analysis 3 Heliophaninae 28.07  APPHHL clade  Philaeus group  28.06  44.52  Plexippoida  32.0  freyines 34.56 aelurillines  Aelurilloida  26.31  38.73  thiratoscirtines  50  40  30  28.9  20  10  0  Figure 2.14 R8s Analysis 3. Ages are given in millions of years (Ma). Calibration points used: Havaika (not used), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 84  a. !  b.  c.  d.  !  e.  !  !  f.  Figure 2.15 Photos of Thiratoscirtine Genera. Representative species of genera that make up the Thiratoscirtines: a) Bacelarella, b) Saraina, c) Alfenus, d) Malloneta, e) Longarenus and f) Pochyta. A representative of the genus Thiratoscirtus not pictured. Photo copyright by W.P. Maddison.  85  Lyssomaninae/ Spartaeinae  44.05  Salticidae  some Lyssomaninae 31.72 hisponines 29.53  50.08  Amycoida  Amycoida  33.42 Bavia group  Marpissoida  Marpissoida 22.49  Salticoida 41.19  “core” Astioida  “core” Astioida  27.28  26.89  BEAST Analysis1  Euophryinae  Heliophaninae 19.45 Philaeus group 17.89  APPHHL clade  33.77  Plexippoida 20.23  Aelurilloida  APPHHL clade  freyines 22.51 aelurillines 17.21  27.07  thiratoscirtines 17.37  50  40  30  20  10  0  Figure 2.16 Map and Phylogeny (BEAST Analysis 1). Salticid groups are geographically restricted or mostly restricted to one of the three regions: the New World (green), Afro-Eurasia (blue) and Australasia (pink). Node values are ages given in millions of years (Ma). 86  2.5  References  Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495. Alonso, J., Arillo, A., Barrón, E., Corral, J.C., Grimalt, J., López, J.F., López, R., Martínez-Delclos, X., Ortuño, V., Peñalver, E. & Trincão, P.R. (2000). A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrain Basin). Journal of Paleontological Society, 74(1), 158-178. Andriamalala, D. (2007). Revision of the genus Padilla Peckham and Peckham, 1894 (Araneae: Salticidae) — Convergent evolution of secondary sexual characters due to sexual selection and rates of molecular evolution of jumping spiders. Proceedings of the California Academy of Sciences, 58(13), 243-330. Antoine, P.O., Welcomme, J.L., Marivaux, L., Baloch, I., Benammi, M. & Tassy, P. (2003). First record of Paleogene Elephantoidea (Mammalia, Proboscidea) from the Bughti Hills of Pakistan. Journal of Vertebrate Paleontology, 23, 977–980. Barker, K.F., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences, 101, 11040-11045. Bell, J.R., Bohan, D.A., Shaw, E.M. & Wayman, G.S. (2005). Ballooning dispersal using silk, world fauna, phylogenies, genetics and models. Bulletin of Entomology, 95, 69-114. Berggren, W.A. & van Couvering, J.A. (1974). The late Neogene: biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 16, 1–216. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., Ross, D.E.M., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446, 507-512. Briggs, J.C. (2003). The biogeographic and tectonic history of India. Journal of Biogeography, 30, 381-388. Cutler, B. (1982). Extreme north and southern distribution records for jumping spiders (Araneae, Salticidae) in the Western Hemisphere. Arctic, 35(3), 426-428. DeConto, R.M. & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421, 245-249.  87  Drummond, A.J. & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. Ericson, Per G.P., Irestedt, M. & Johansson, U.S. (2002). Evolution, biogeography, and patterns of diversification in passerine birds. Jouranal of Avian Biology, 34, 3-15. Ewing, B. & Green, P. (1998). Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186-194. Ewing, B., Hillier, L., Wendl, M. & Green, P. (1998). Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8, 175-185. Farrell, B. D. (1998). “Inordinate fondness” explained: Why are there so many beetles? Science, 281, 555-559. Garciá-Villafuerte, M.A. & Penney, D. (2003). Lyssomanes (Araneae, Salticidae) in Oligocene-Miocene Chiapas amber. The Journal of Arachnology, 31, 400-404. Gernhard, T. (2008). New analytic results for speciation times in neutral models. Bulletin of Mathematical Biology, 70, 1082-1097. Gheerbrant, E. & Rage, J.-C. (2006). Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 224-246. Gillespie, J.J., Johnston, J.S., Cannone, J.J., Gutell, R.R. (2006). Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology, 15(5), 657-686. Green, P. & Ewing, B. (2002). Phred, version 0.020425 c. Distributed by the authors. Available via: http://phrap.org. Green, P. (1999). Phrap, version 0.990329. Distributed by the author. Available from http://www.phrap.org. Grimaldi, D.A., Engel, M.S. & Nascimbene, P.C. (2002). Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. American Museum of Natural History, 3361. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353-431.  88  Harzhausera, M., Kroha, A., Mandica, O., Werner, P.E., Göhlicha, U., Reuterb, M. & Berningb, B. (2007). Biogeographic responses to geodynamics: a key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger, 246(4), 241256. Hedin, M.C. (1997). Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution, 14, 309-324. Hedin, M.C. & Maddison, W.P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18(3), 386-403. Higgins, D.G. & Sharp, P.M. (1988). CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73, 237-244. Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310-2314. Iturralde-Vincent, M.A. & MacPhee, R.D.E. (1999). Paleogeography of the Caribbean region: implications for the Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1-95. Iturralde-Vincent, M.A. (2001). Geology of the amber-bearing deposits of the Greater Antilles. Caribbean Journal of Science, 37, 141-167. Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308. Koufos, G.D. & de Bonis, L. (2008). Comparisons and relationships of the African and European Miocene carnivoran assemblages. Systematic palaeontology (vertebrate palaeontology), 7(8), 541-556. Land, M.F. & Nilsson, D.E. (2002). Animal Eyes. Oxford University Press, Oxford, England. Langley, C.H. & Fitch, W.M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161-177. Maddison, W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549. Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55. Maddison, W.P., Zhang, J.X. & Bodner, M.R. (2007). A basal phylogenetic placement  89  for the salticid spider Eupoa, with descriptions of two new species (Araneae: Salticidae). Zootaxa, 1432, 22-33. Maddison, W.P., Bodner, M.R. & Needham, K. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa, 1893, 49–64. Maddison, W.P. & Maddison, D.R. (2008). Mesquite: a modular system for evolutionary analysis. Version 2.5. Available from http://mesquiteproject.org. Maddison, W.P. (2009). New cocalodine jumping spiders from Papua New Guinea (Araneae: Salticidae: Cocalodinae). Zootaxa, 2021, 1-22. McAlpine, J.F. & Martin, J.E.H. (1969). Canadian amber—a paleontological treasure chest. Canadian Entomologist, 101, 819-838. Metcalfe, I., Smith, J.M.B., Morwood, M. & Davidson, I. (2001). Faunal and floral migration and evolution in SE Asia-Australasia. CRC Press. Moreau, C.S., Bell, C.D., Vila, R., Archibald, S.B. & Pierce, N.E. (2006). Phylogeny of the ants: diversification in the age of the angiosperms. Science, 312, 101-104. Morley, R.J. (2000). Origin and evolution of tropical rain forests. John Wiley & Sons Ltd., West Sussex, England. Morley, R.J. (2003). Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics, 6(1,2), 5-20. Nel, A., de Ploëg, G., Millet, J., Menier, J.J. & Waller, A. (2004). The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8. Nylander, J.A.A. (2004). MrModeltest v2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Penney, D. (2002). Spiders in upper Cretaceous amber from New Jersey (Arthropoda: Araneae). Penney, D. & Pérez-Gelabert, D.E. (2002). Comparison of the recent and Miocene Hispaniolan spider faunas. Révista Iberica de Aracnología, 6, 203-223. Penney, D. (2006). A new fossil Oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. African Invertebrates, 48(1), 71-75.  90  Penney, D. (2008). Dominican Amber Spiders: A comparative palaeontologicalneontological approach to identification, faunistics, ecology and biogeography. Siri Scientific Press. Perrichot, V., Néraudeau, D., Nel, A. & de Ploëg, G. (2007). A reassessment of the Cretaceous amber deposits from France and their palaeontological significance. African Invertebrates, 48(1), 213-227. Petrunkevitch, A. (1950). Baltic amber spiders in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology at Harvard College. Cambridge, Massachusetts, USA. 326-263. Petrunkevitch, A. (1958). Amber spiders in European collections. Transactions of the Connecticut Academy of Arts and Sciences. Yale University Press. New Haven Connecticut, USA, (41), 97-400. Platnick, N.I. (2009). The World Spider Catalog, Version 8.5. The American Museum of Natural History. Poinar, G.O. Jr. & Milki, R. (2001). Lebanese amber: the oldest insect ecosystem in fossilized resin. Oregon State University Press. Prószy!ski, J. (1984a). Remarks on Anarrhotus, Epeus and Plexippoides (Araneae, Salticidae). Annales Zoologici, Warszawa, 37, 399-410. Prószy!ski, J. (1984b). Remarks on Viciria and Telamonia (Araneae, Salticidae). Annales Zoologici, Warszawa, 37, 417-436. Prószy!ski, J. (2009). The Salticidae (Araneae) of the World. Prepared with the assistance of the Museum and Institute of Zoology, Polish Academy of Sciences Warsaw, POLAND. Available at http://www.miiz.waw.pl/salticid/main.htm. Rambaut, A. (2008). Tree Figure Drawing Tool. Version 1.1.1. Institute of Evolutionary Biology, University of Edinburgh. Available at http://tree.bio.ed.ac.uk/. Reguero, M.A., Marenssi, S.A. & Santillana, S.A. (2002). Antarctica Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 189-210. Richardson, B.J., Zabka, M., Gray, M.R. & Milledge, G. (2006). Distributional patterns of jumping spiders (Araneae: Salticidae) in Australia. Journal of Biogeography, 33, 707-719.  91  Rögl, F. (1999). Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (Short Overview). Geologica Carpathica, 50(4), 339349. Ronquist, F. & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. Russell-Smith A. (2002). A Comparison of the diversity and composition of groundactive spiders in Mkomazi Game Reserve, Tanzania and Etosha National Park, Namibia. The Journal of Arachnology, 30, 383-388. Rutschmann, F. (2006). Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergences times. Diversity and Distributions, 12, 35-48. Sanderson, M.J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19, 101-109. Sanderson, M.J. (2004). r8s, version 1.70 User’s Manual. Section of Evolution and Ecology, University of California, Davis, USA. Sanmartín, I. & Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology, 53(2), 216-243. Sibley, C.G. & Monroe, B.L. Jr. (1990). Distribution and taxonomy of the birds of the world. Yale University Press, New Haven, Conneticut, USA. Simon, C., Franti, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651-701. Simon, E. (1897-1903). Histoire naturelle des araignées. 2, 1080, Paris. Su, K.F., Meier, R., Jackson, R.R., Harland, D.P. & Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. European Society for Evolutionary Biology, 20, 1478-1489. Swofford, D.L. (2002). PAUP.* Phylogenetic Analysis Using Parisomny (*and Other Methods). Version 4.0b10. Sinauer Associates: Sunderland, Massachusetts, USA. Szüts, T. & Jocqué, R. (2001). New species in the genus Bacelarella (Araneae, Salticidae) from Côte d’Ivoire. Annales du Musee Royal de I'Afrique Centrale (Sciences Zoologiques), 285, 77-92.  92  Szüts, T. & Scharff, N. (2005). Redescriptions of little known jumping spider genera (Araneae: Salticidae) from West Africa. Acta Zoologica Academiae Scientiarum Hungaricae, 51(4), 357-378. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. van der Auwera, G., Chapelle, S. & de Wachter, R. (1994). Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. Federation of European Biochemical Societies Letters, 338, 133– 136. Vink, C.J., Hedin, M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382. Webb, S.D. (1997). The great American faunal interchange. In: Coates, A.G., Editor, Central America: A natural and cultural history, Yale University Press, pp. 97– 122. Weitschat, W. & Wichard, W. (2002). Atlas of plants and animals in Baltic amber. Geological Magazine, 139(5), 597. Wesolowska, W. & Russell-Smith, A.R. (2000). Jumping spiders from Mkomazi Game Reserve in Tanzania (Araneae Salticidae). Tropical Zoology, 13, 11-127. Wesolowska, W. & Szeremeta, M. (2001). A revision of the ant-like salticids genera Enoplomischus Giltay, 1931, Kima Peckham and Peckham, 1902 and Leptorchestes Thorell, 1870 (Araneae: Salticidae). Insect Systematic Evolution, 32, 217-240. Wilson, E.O. & Hölldobler, B. (2005). The rise of the ants: a phylogentic and ecological explanation. Proceedings of the National Academy of Sciences, 102(21), 74117414. Wunderlich, J. (2004). Fossil spiders in amber and copal. Beiträge zur Araneologie, 3ab, 1-1908. Zabka, M. (1985). Systematic and zoogeographic study on the family Salticidae (Araneae)Vietnam, Annales Zoologici, Warszawa, 39, 197-485.  93  Zhang, J.X., Woon, J.R.W. & Li, D. (2006). A new genus and species of jumping spiders (Araneae: Salticidae: Spartaeinae) from Malaysia. The Raffles Bulletin of Zoology, 54(2), 241-244. Zherikhin, V.V. & Eskov, K.Y. (1999). Mesozoic and lower Tertiary resins in former USSR. Estudios del Museo de Ciencias Naturales de Álava, 14(2), 119-131.  94  Chapter 3 Salticidae: A Framework for Evolutionary Studies 3.1  The Salticid Radiation The discovery of a large, mostly endemic, African radiation of jumping spiders  from Gabon fits with patterns seen in other salticids, in which a group is largely restricted to one continental region (Maddison & Hedin 2003). The distribution of the family reflects changing biogeography and chance long range dispersal events throughout the Cenazoic. Dating the age of the major subfamilies allows us to compare similarly aged radiations and provides a comparative framework for future morphological, ecological and behavioral investigations. The salticid radiation is a continent-scale diversification with geographically and phylogenetically independent radiations. As such, this system may be useful for exploring community convergences in ecology and morphology (see section 3.3).  3.2  Reconstructing and Dating the Salticid Phylogeny  3.2.1 Strengths of the Thesis Our understanding of the current family tree is a synthesis of a number of studies each with a particular focus (i.e. the fauna of a region, or group). This thesis builds on past phylogenetic work and is in effect the next stepping-stone in understanding the phylogeny of the family. It has the broadest geographic sampling of any salticid phylogeny and has validated many conclusions from past papers, while shedding light on new areas of the tree.  95  3.2.2 Challenges of Reconstructing the Salticid Phylogeny One of the challenges in reconstructing the salticid family tree is the lack of molecular markers variable at the subfamily level (Vink et al. 2008). In spiders stystematics there is a lack of nuclear genes developed for resolving phylogenies (Vink et al. 2008). Nuclear genes, in general, evolve more slowly and are better at resolving deeper relationships (Vink et al. 2008). In our phylogeny and past studies (Maddison & Hedin 2003), the mitochondrial markers (16SND1 and COI) are quite variable, while the nuclear 28S gene does a better job resolving the tree except for the among subfamily relationships. In combination, all four genes are able to resolve the salticoid division and sub-genus relationships, but the mid-level, among subfamily relationships are not well resolved and have low Bayesian posterior probabilities. The lack of resolution affected the dating analysis, as the euophryine subfamily was not in the same location in the dating trees as it was in the All-Genes Bayesian tree. Additionally, though Actin 5C was used in the All-genes analysis it is still unclear what resolution the gene contributes to the tree because of the small sample size for this gene.  3.2.3 Dating and Gaps in the Jumping Spider Fossil Record Our dating analyses are dependent on the fossil record and as a result our choice of calibration points are dependent on how well the fossil record reflects the faunal history of the family. Of particular importance to this study is the use of the 49 Ma maximum for Salticoida. While no salticids have been found in French amber from 53  96  Ma (Nel et al. 2004), there is a gap from 53-76.5 Ma, where the fossil record is sparse. Further exploration of Eocene deposits from 52 Ma from India (Alimohammadian et al. 2005) and from China from 48-55 Ma (Youchong 1982) may clarify our understanding. Any new discovery or exploration of fossil inclusions may alter or validate calibration point assumptions.  3.3  Exploring Community Level Convergences Using the Salticids Salticidae is a remarkably diverse group. A large amount of work still needs to be  done to collect, describe, and study species throughout the family. As with other biodiversity surveys, collection especially in tropical forests often reveals a large number of new species. While the total diversity has yet to be explored, the current phylogeny is made up of a geographically broad sampling of the family.  Endemic radiations, like the Amycoida, “core” Astioida, and thiratoscirtines in essence provide large-scale evolutionary replicates in which to test hypotheses regarding the evolution of jumping spider communities. Jumping spiders come in a range of diverse body forms and colorations. Similar body forms can be found in jumping spiders occupying comparable microhabitats on different continents (Maddison W.P., personal communication; personal observation). These body forms may actually represent ecomorphs or species that have distinctive morphology allowing them to utilize a particular microhabitat (Gillespie 2004). Microhabitat preference in jumping spiders has been noted by Cumming & Wesolowska (2004) who found 25 of 40 species were primarily found in one of six microhabitats: tree trunk, tree leaves, shrubs, walls (of  97  buildings and free standing structures), low herbaceous plants/grasses and ground/leaf litter.  If ecomorphology was prevalent in jumping spiders it would be interesting to see if multiple members of independent radiations have converged in ecologically-functional morphology indicating convergence in community structure. Most work that has documented convergence has focused on island radiations of ecomorphs (Gillespie 2004; Glor et al. 2003; Melville et al. 2006). Examples include the Anolis lizards of the Greater Antilles Islands (Glor et al. 2003) and Tetragnatha spiders from the Hawaiian archipelago (Gillespie 2004). While finding convergence in radiations that have shared a more recent common history, community convergence at the continental level has not been as readily documented (Melville et al. 2006).  3.4  Working Hypotheses  3.4.1 Number of Dispersals Between Isolated Regions Broadly speaking groups in the family are entirely or mostly restricted to one continental region. The exception to this pattern are the euophryines, which are found primarily in the tropics of South and Central America, the Caribbean islands, Southeast Asia and Australasia. Work is being done to understand the phylogeny of the group in order to clarify the number of exchanges between the Old and New World. It may be the case that though Euophryinae is a large and widespread group their global distribution  98  may be explained by a few dispersal events between the hemispheres (Zhang, J.X. personal communications).  3.4.2 Ecomorphology It seems plausible that distinct evolutionary radiations of jumping spider from different geographic regions would share a number of similar ecomorphs. Mapping the presence of ecomorphs onto local phylogenies from two radiations could allow for examination of convergence in community make-up at the continental scale. Testing whether jumping spider body form is related to habitat could be done using a combination of phylogeny and morphospace analysis. To look for morphologically distinct forms measurements of spider characters could be mapped in morphospace along different axis (Jackson 1996; Harmon et al. 2003). These characters could be used in PCA analysis to identify isolated clusters in morphospace, indicating the presence of distinct body forms. A correlation between body form and habitat use could be examined and identified ecomorphs mapped onto the phylogenies.  3.5  Continuing to Build the Salticid Tree of Life  Prior to this study there had been little sampling for phylogenetic analysis from the Afrotropical region. By identifying the thiratoscirtine group, future researchers will be able to work towards an understanding of the diversity found in this region. The dating analysis in this thesis, upon publication, will be the most complete dating analysis of Salticidae and uses multiple dating methods on the most up-to-date phylogenetic tree.  99  It is part of a larger trend in arachnology aimed at dating the ages of spider lineages (Arnedo & Gillespie 2006; Hendrixson & Bond 2007; Binford et al. 2008; Dimitrov et al. 2008).  3.6  The Potential Use of Actin 5C More sequences of the Actin 5C gene will be needed from a wider range of  species from across the family before the utility of this gene in resolving the salticid phylogeny can be determined. The new forward primer proposed in this thesis may help with amplification of salticid genes. Because there is a lack of useful nuclear proteincoding genes in spiders, this primer may help to advance spider phylogenetics by providing resolution at the subfamily level, which is not possible using the nuclear marker 28S (Vink et al. 2008).  3.7  Future Research  3.7.1 The Thiratoscirtine Phylogeny Work is needed to describe the species and genera of the thiratoscirtine radiation. As noted, this group appears to have remarkably diverse genitalia as compared to other groups, such as the Euophryinae. Also, a molecular phylogenetic study is needed to determine the internal relationships of the thiratoscirtines.  100  3.7.2 The Age of Basal Salticids Work is in progress to better understand the relationships among basal salticids. Understanding these relationships will clarify the monophyly of the New and Old World Lyssomaninae (Maddison & Needham 2006) and determine if the hisponines are sister to the Salticoida. Greater sampling of basal saticids and their inclusion in dating analyses may help to better date the origins of the family.  101  3.8  References  Alimohammadian, H., Sahni, A., Patnaik, R., Rana, R.S. & Singh, H. (2005). First record of an exceptionally diverse and well preserved amber-embedded biota from Lower Eocene (~52 Ma) lignites, Vastan, Gujarat, Current Science, 89, 1328-1330. Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495. Binford, G.J., Callahan, M.S., Bodner, M.R., Rynerson, M.R., Nuñez, P.B., Ellison, C.E., & Duncan, R.P. (2008). Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics & Evolution, 49(2), 538-53. Cumming, M.S. & Wesolowska W. (2004). Habitat separation in a species-rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in Zimbabwe. Journal of Zoology, 262(1), 1-10. Dimitrov, D., Arnedoa, M.A. & Ribera, C. (2008). Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: Evidence for long-term occupancy yet rapid recent speciation. Molecular Phylogenetics and Evolution, 48(2), 596-614. Gillespie, R. (2004). Community Assembly Through Adaptive Radiation in Hawaiian Spiders. Science, 303, 356-359. Glor, R.E., Kolbe, J.J., Powell, R., Larson, A. & Losos, J. (2003). Phylogenetic analysis of ecomlogical and morphological diversification in Hispaniolan trunk-ground Anoles (Anolis Cybotes group). Evolution, 57(10), 2383-2397. Harmon, L.J., Schlte II, J.A., Larson, A. & Losos, J.B. (2003). Tempo and mode of Evolutionary Radiation in Iguanian Lizards. Science, 301(5635), 961-964. Hendrixson, B.E. & Bond, E.J. (2007). Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Molecular Phylogenetics and Evolution, 42(3), 738-755. Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308. Maddison W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549.  102  Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55. Melville, J., Harmon, L.J. & Losos, J.B. (2006). Intercontinental community convergence of ecology and morphology in desert lizards. Proceedings of The Royal Society B, 273(1586), 557–563. Nel, A., de Ploëg, G., Millet, J., Menier, J. J. & Waller, A. (2004). The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8. Vink, C.J., Hedin M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382. Youchong, H. (1982). Discovery of new fossil spiders in amber of Fushun Coalfield. Scientia Sinica (English Edition), 25(4).  103  Appendix A R8s Analyses Results  In r8s Analysis 3, in which the Salticoida maximum calibration point was used, the age of Salticidae was 55.2 Ma (Figure 2.14). The age of Salticidae increased greatly to 100 Ma for r8s, in Analysis 2, when the maximum Salticoida age bound of 49 Ma was eliminated (Appendix A Figure 1). In r8s Analysis 1 (Figure 2), in which all fossil calibration points were used, the age of Salticidae was the nearly the same as in Analysis 3. Finally, when both the Havaika and Salticoida maximum bounds where eliminated in Analysis 4 the age of the Salticidae greatly increased to 100 Ma r8s (Figure 3).  R8s Analysis Discussion  The Havaika maximum calibration point was unable to be used to estimate the ages of major salticid groups using the program r8s. When the Salticoida maximum bound was removed in r8s Analysis 2 (and the Havaika and Salticidae maximum bounds were left in place) the age of the family went to 100 Ma (the maximum bound set for Salticidae). This indicated the Havaika calibration point of 0.5 Ma did not constrain the age of Salticidae and could not provide a cap on the root date of the family when alone in the analysis (the Salticoida maximum bound could). When the analysis was rerun with just the minimums and the Havaika calibration point as the only maximum, the Salticidae node was pushed back >450 Ma (a very unlikely result given the fossil record) (analysis not shown). Furthermore, there was only a small difference in ages when the Havaika  104  calibration point was added to the analysis with the Salticoida maximum calibration point. When the Salticoida maximum was used in the r8s analysis, the age of Salticoida was pushed all the way to the maximum of 49 Ma. Therefore the r8s analysis is dependent only on the Salticoida maximum fossil calibration point, as the Havaika point had little to no effect on the tree.  105  Lyssomaninae/ Spartaeinae 91.22  Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Itata sp. Peckhamia sp. Attidops youngi Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi Pignus sp. Tusitala hirsuta Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula* "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata Freya regia Chira cf. spinipes Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater Langelurillus nigritus Langona sp. Stenaelurillus sp. [S. Afr.] indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Bacelarella iactans Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)  hisponines  89.92  Salticidae  100.0  Amycoida 83.38  Salticoida  Marpissoida  97.86  73.48  “core” Astioida  74.14  78.37  Euophryinae  Heliophaninae 58.37  Philaeus group  58.21  Plexippoida 67.71 r8s Analysis 2  freyines 71.57  aelurillines  Aelurilloida  55.8  79.62  thiratoscirtines  100  90  80  77.66  70  60  50  40  30  20  10  0  Appendix A Figure 1. R8s Analysis 2. Ages are given in millions of years (Ma). Calibration points used: Havaika (0 Ma max, 0.5 Ma min), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max). 106  Lyssomaninae/ Spartaeinae 50.37  Salticidae 55.21  Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Itata sp. Peckhamia sp. Attidops youngi Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Mexigonus sp. Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella* Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi Pignus sp. Tusitala hirsuta Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata Freya regia Chira cf. spinipes Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater Langelurillus nigritus Langona sp. Stenaelurillus sp. [S. Afr.] indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Bacelarella iactans Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)  hisponines  Amycoida 41.08  Salticoida 49.0  Marpissoida 35.37  “core” Astioida  36.92  Euophryinae 39.19  r8s Analysis 1  Heliophaninae 28.07 28.06  Philaeus group  Plexippoida  32.0  freyines 34.56  aelurillines  Aelurilloida 38.73  26.31  thiratoscirtines  50  40  30  28.9  20  10  0  Appendix A Figure 2. R8s Analysis 1. Ages are given in millions of years (Ma). Calibration points used: Havaika (0, Ma min, 0.5 Ma max), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 107  Lyssomaninae/ Spartaeinae 91.22  Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Itata sp. Peckhamia sp. Attidops youngi Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi Pignus sp. Tusitala hirsuta Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata Freya regia Chira cf. spinipes Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater Langelurillus nigritus Langona sp. Stenaelurillus sp. [S. Afr.] indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Bacelarella iactans Thiratoscirtus sp. thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)  hisponines  Salticidae 100.0  89.93  Amycoida 83.4  Salticoida 97.88  Marpissoida  “core” Astioida  73.53  74.18  78.45  Euophryinae  r8s Analysis 4  Heliophaninae 58.46  Philaeus group 58.38  Plexippoida  68.49  freyines 71.71  aelurillines  Aelurilloida  55.91  79.78  thiratoscirtines  100  90  80  77.81  70  60  50  40  30  20  10  0  Appendix A Figure 3. R8s Analysis 4. Ages are given in millions of years (Ma). Calibration points used: Haviaka (0 Ma max, 0.5 Ma min), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max). 108  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0067335/manifest

Comment

Related Items