Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Rheology and electro-acoustic characterization of laterite slurries Colebrook, Marjorie Helen 2008

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2008_spring_colebrook_marjorie_helen.pdf [ 21.96MB ]
Metadata
JSON: 24-1.0066670.json
JSON-LD: 24-1.0066670-ld.json
RDF/XML (Pretty): 24-1.0066670-rdf.xml
RDF/JSON: 24-1.0066670-rdf.json
Turtle: 24-1.0066670-turtle.txt
N-Triples: 24-1.0066670-rdf-ntriples.txt
Original Record: 24-1.0066670-source.json
Full Text
24-1.0066670-fulltext.txt
Citation
24-1.0066670.ris

Full Text

RHEOLOGY AND ELECTRO-ACOUSTIC CHARACTERIZATION OF LATERITE SLURRIES By Marjorie Helen Colebrook B.A.Sc., University of British Columbia, 2003 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate Studies (Mining Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2008 © Marjorie Helen Colebrook, 2008 ABSTRACT A systematic research study was carried out in order to characterize the rheology of concentrated slurries prepared from eight nickel laterites. The experiments were carried out using a rotational viscometer, and the behavior of the laterites was evaluated in terms of the apparent viscosity and yield stress obtained through flow curve modeling. An attempt was made to correlate the results obtained for the laterite samples with data obtained for model single mineral systems as well as for model mixed mineral systems. In combination with detailed mineralogical characterization of the laterite samples, all the rheological results allowed a rheology-based laterite classification system to be proposed. Accordingly, the laterite samples gave the following responses: the SAPSIL samples (high-quartz) generally produced low yield stress values, the SAPFE samples (high-iron) were characterized by intermediate to high yield stress values, while the SAP samples (saprolite) gave the highest yield stress values. Interestingly, these dominant rheological responses of laterites could actually be predicted based on rheological tests carried out on model mineral suspensions (particularly goethite and quartz). Since the rheology of fine mineral suspensions is largely determined by the surface properties (surface charge) of the particles, a series of electro-acoustic measurements were also performed on model minerals and laterite samples to analyze the surface charge characteristics of the tested samples. It was demonstrated that the current electro-acoustic theory developed for single mineral systems can readily be used for modeling the behavior of mixed mineral systems. The modeling and experimental data agreed exceptionally well when constituent minerals were of the same surface charge under given pH. Clear but rather small deviations between experiment and theory were observed under conditions when the minerals were oppositely charged. This observation strongly suggested that inter-particle aggregation was most likely responsible for the observed discrepancies. Overall, the results of this thesis show that laterite slurries exhibit a wide range of rheological responses due to highly variable mineralogy, differences in particle size distributions, and difference in the surface properties of the many constituent minerals. It also shows that the surface properties of the minerals relates to rheology. ii TABLE OF CONTENTS ABSTRACT^ ii TABLE OF CONTENTS^ iii LIST OF TABLES LIST OF FIGURES^ vi LIST OF SYMBOLS AND ABBREVIATIONS^ viii 1.0 INTRODUCTION^ 1 1.1. Background and Necessity 2 1.2. Objectives^ 3 2.0 LITERATURE REVIEW^ 4 2.1. Mineralogy of Laterite Deposits 4 2.2. Laterite Processing^ 6 2.3. Basic Rheology 7 2.4. Rheology of Nickel Laterites^ 8 2.5. Rheology of Mineral Systems 9 2.6. Electro-acoustics of Single Mineral^ 10 2.7. Electro-acoustic measurements of Mixed Mineral Systems^ 10 2.8. Summary of the Relevant Literature Findings^ 12 3.0 PROCEDURES^ 14 3.1. Samples 14 3.2. Characterization^ 14 3.3. Electro-acoustic (ESA) Measurements^ 15 3.4. Rheology Measurements^ 17 3.5. Test Programs^ 18 4.0 CHARACTERIZATION 19 4.1. Individual Minerals^ 19 4.2. Vermelho samples 19 5.0 ELECTROACOUSTIC MEASUREMENTS^ 22 5.1. ESA Measurements of Individual Minerals 22 5.2. ESA Measurements of Mixed Mineral Systems^ 23 5.2.1.^Fine Quartz: Magnetite Mixture^ 24 5.2.2.^Fine Quartz: Hematite Mixture 27 5.2.3.^Fine Quartz: Goethite Mixture^ 30 5.2.4.^Coarse Quartz: Magnetite Mixture 33 5.2.5.^Magnetite: Goethite Mixture^ 36 5.3. Vermelho samples^ 38 6.0 RHEOLOGY 41 6.1. Individual minerals^ 41 6.2. Vermelho samples 45 7.0 DISCUSSION 51 8.0 CONCLUSIONS AND RECOMMENDATIONS^ 59 8.1. Conclusions^ 59 8.2. Recommendations 61 9.0 BIBLIOGRAPHY 62 Appendix A: X-ray diffraction of individual samples^ 66 Appendix B: X-ray diffraction of Vermelho samples 77 Appendix C: Water analysis for Vermelho^ 89 Appendix D: Size analysis for individual samples 92 Appendix E: Size analysis for Vermelho samples^ 99 Appendix F: Electro-acoustic results for individual and mixed mineral samples^ 108 Appendix G: Electro-acoustic results for Vermelho samples^ 145 Appendix H: Rheology results for Vermelho samples 166 iv LIST OF TABLES Table 1: Mineralogy of Ni-Vermelho Deposit (data from Riberio et al., 2001)^3 Table 2: Laterite Deposits^ 5 Table 3: Single Mineral IEPs 10 Table 4: Pure Mineral Characteristics^ 19 Table 5: Characterization data for Vermelho samples^ 20 Table 6: Mineralogical data for Vermelho samples 20 Table 7: Summary of Water Analysis Results^ 21 Table 8: Overview of Bruinsma ESA values and input^ 23 Table 9: Fine Quartz and Magnetite - Comparison of K values^ 26 Table 10: Fine Quartz and Hematite - Comparison of K values 29 Table 11: Fine Quartz and Goethite - Comparison of K values^ 32 Table 12: Fine Quartz and Magnetite - Comparison of K values 35 Table 13: Magnetite and Goethite- Comparison of K values^ 37 Table 14: Vermelho apparent IEP results^ 38 Table 15: Rheological characteristics of individual minerals^ 44 Table 16: Vermelho Characterization^ 45 Table 17: Rheological properties for Vermelho samples^ 48 Table 18: Rheological properties (including thixotropic and Bingham and Casson results)^50 Table 19: Vermelho apparent IEP pH vs. test pH results^ 52 Table 20: Saprolite-silica results* ^ 57 Table 21: Saprolite-iron results* 58 Table 22: Saprolite results^ 58 v LIST OF FIGURES Figure 1: Rheology models^ 7 Figure 2: Individual Mineral Components^ 22 Figure 3: Fine Quartz and Magnetite (50:50) 25 Figure 4: Fine Quartz and Magnetite (25:75)^ 25 Figure 5: Fine Quartz and Magnetite (75:25) 26 Figure 6: Predicted v. Measured Fine Quartz and Magnetite^ 27 Figure 7: Fine Quartz and Hematite (50:50)^ 28 Figure 8: Fine Quartz and Hematite (25:75) 28 Figure 9: Fine Quartz and Hematite (75:25)^ 29 Figure 10: Predicted v. Measured Fine Quartz and Hematite^ 30 Figure 11: Fine quartz and goethite (50:50)^ 31 Figure 12: Fine Quartz and Goethite (25:75) 31 Figure 13: Fine Quartz and Goethite (75:25)^ 32 Figure 14: Predicted v. Measured Fine Quartz and Goethite^ 33 Figure 15: Coarse Quartz and Magnetite (50:50)^ 34 Figure 16: Coarse Quartz and Magnetite (25:75) 34 Figure 17: Coarse Quartz and Magnetite (75:25)^ 35 Figure 18: Predicted v. Measured Coarse Quartz and Magnetite^ 36 Figure 19: Magnetite and Goethite (50:50)^ 37 Figure 20: Predicted v. Measured Magnetite and Goethite^ 37 Figure 21: Overview of Vermelho Samples^ 38 Figure 22: Effect of total iron minerals on apparent iso-electric point for Vermelho samples ^39 Figure 23: Effect of total magnesium minerals on the apparent iso-electric point for Vermelho samples^ 40 Figure 24: Rheology of talc suspensions (33% solids)^ 41 Figure 25: Rheology of quartz suspensions (45% solids) 42 Figure 26: Rheology of magnetite suspensions (45% solids)^ 43 Figure 27: Rheology of goethite suspensions (25% solids) 43 Figure 28: Yield stress of pure minerals at three pH values^ 45 Figure 29: Effect of shear rate on shear stress for the saprolite-silica (SAPSIL) samples^46 vi Figure 30: Effect of shear rate on shear stress for the saprolite-iron (SAPFE) samples^47 Figure 31: Effect of shear rate on shear stress for the saprolite (SAP) samples^47 Figure 32: Effect of total iron minerals versus Bingham yield stress (natural pH) 48 Figure 33: Effect of total magnesium minerals versus Bingham yield stress (natural pH)^49 Figure 34: Bingham Yield Stress vs. D80^ 51 Figure 35: Bingham Yield Stress vs. Percentage under 10 microns^ 52 Figure 36: Bingham Yield Stress vs. pH of Apparent IEP^ 53 Figure 37: Bingham Yield Stress vs. Quartz content 54 Figure 38: Bingham Yield Stress vs. Iron-bearing Minerals^ 55 Figure 39: Bingham Yield Stress vs. Clay Minerals 56 vii LIST OF SYMBOLS AND ABBREVIATIONS SYMBOLS C,^solids concentration Cw,max maximum settled concentration d^particle size [gm] zeta potential of the mineral (i)^volume fraction p^material density [g/cm3] P^measure magnitude of the pressure wave [Pa] E^applied electric field strength [V/m]. D80 size where 80% of the material passes [microns] shear stress [Pa] by^yield stress [Pa] flapp^apparent viscosity [Pa-s] rIpl^Bingham (plastic) viscosity coefficient Tic^Casson viscosity coefficient y^shear rate [s -1 ] R2^correlation coefficient ABBREVIATIONS ESA electro-acoustic [mPa/(V/m)] IEP^iso-electric point or point-of-zero charge viii 1.0 INTRODUCTION Nickel laterites contain about 70% of all continental or terrestrial nickel resources (Dalvi et al., 2004, Elias, 2002); however they currently only account for approximately 40% of world nickel production (Dalvi et al., 2004, Elias, 2002). Although from 1988-2004 the percentage of nickel produced from laterites has remained constant, it is expected to rapidly increase, as easily processed nickel sulfides are depleted (Dalvi et al., 2004, Elias, 2003); therefore the recovery of nickel from lateritic ores has economic significance (Dalvi et al., 2004, Elias, 2003, Avramidis and Turian, 1991). The grade of nickel laterites is low in the range of 0.5-3.5% Ni. (Golightly, 1979). There are two main processing methods for nickel laterites — pyrometallurgy and hydrometallurgy. Due to the wide range of mineralogy present in nickel laterite deposits each process is only applicable to certain types of ores. These are discussed in the literature review. The main obstacles of laterite processing are high capital costs of the processing facility, high energy requirements for pyrometallurgical processes and many technical challenges for hydrometallurgical processes (Elias, 2002). The technical challenges range from low operating percent solids, increased reagent consumption, specifically acid, to material build up in pipes and tanks leading to the plugging of pipes and decreased throughput (Klein and Hallbom, 2002). To overcome these challenges a basic understanding of the flow behaviour must be developed to minimize these obstacles. This understanding will assist in the design of new plants and the operation of existing plants. To develop an understanding of laterites, three studies were conducted. 1. Surface charge of mixed mineral systems. Six pure mineral systems - quartz (coarse), quartz (fine), talc, magnetite, hematite, and goethite were chosen. Mixtures containing varying percentages of two minerals were also studied. 2. Rheology of pure mineral systems. The rheology of pure suspensions containing talc, quartz, magnetite and goethite was characterized as a function of pH. 3. A laboratory study was conducted on eight ore samples from Companhia Vale do Rio Doce's (CVRD) Vermelho nickel laterite deposit with the objective of developing a 1 rheologically based classification system related to the mineralogy of the material. Results were compared to the rheology of pure minerals to develop an understanding of the role of mineral composition on slurry rheology. 1.1. Background and Necessity Laterites were an early source of nickel. The processing of laterites ores from New Caledonia began over 100 years ago (Dalvi 2004); however once nickel sulfide minerals were discovered mining of laterites slowed. Laterites are found in tropical and sub-tropical regions of the world such as Australia, and South America. This leads to many challenges - severe weather situations (high rainfall), high seismic activity, political uncertainty (socio-economic demands in an under-developed area, safety concerns), social (finding trained work force for increase complexity of the ore) (Kemp 2004), high capital costs, high energy requirements and many technical challenges (Elias 2003). In addition to the location challenges laterites have complex rheological properties characterized by high yield stress, viscosity and time dependency (Blakey, 2002). The processing of lateritic ores involves the preparation and movement of concentrated aqueous suspensions (Cerpa et al., 2001). Suspension of lateritic ores can be extremely viscous at low volume fractions and the viscosity can depend on time. The complex characteristics are believed to be attributed to colloidal particles and clay-type minerals present in nickel laterite ore (Klein and Hallbom, 2002). High viscosity of the slurry adversely affects handling particularly for high pressure acid leach (HPAL) plants (Avotins et al., 1979, Chalkey and Toirca, 1997, Motteram et al., 1997, Kyle and Furfaro, 1997, Whittington and Muir, 2000, Klein and Hallbom, 2002). The nickel deposit studied in this research was the Vermelho Nickel Deposit. The Vermelho Nickel Deposit is a lateritic deposit in the Carajas Mineral Province of Brazil and contains two main ore bodies — Vermelho 1 and Vermelho 2. This deposit was formed by the weathering of ultra-mafic rocks. There are five main layers that have been defined in the deposit weathering profile. This layering produces high variability in the characteristics of the deposit. Due to the different properties present in the layers, one processing method may not be sufficient for the entire deposit (Riberio et al., 2001). 2 Table 1 shows the nickel distribution and mineralogy of the main layers of the Vermelho deposit weathering profile. Table 1: Mineralogy of Ni-Vermelho Deposit (data from Riberio et al., 2001) Mineral Siliceous saprolite % Nickel Distribution Ferruginous saprolite Saprolite Serpentine Goethites 31.5 56.0 0.0 23.0 Mn-oxides 15.4 0.0 0.0 3.9 Serpentines 0.0 22.8 74.4 19.9 Clorites/smecities 53.1 21.2 0.0 52.7 Reliquiar Melerite 0.0 0.0 25.6 0.4 1.2.^Objectives The main objectives of this study are • Characterization of individual mineral components and of mixed mineral systems. The characterization included mineralogy, surface chemistry, physical properties and rheology. In particular the relationship between the surface charge, characterized by electro acoustics, and rheological properties was investigated. Systems involving two minerals in various proportions were characterized and studied to construct a basic understanding of the interactions. • Development of a basic understanding of the interactions between minerals in lateritic ores. • Comparison of the results obtained for model minerals to the Vermelho deposit samples. 3 2.0 LITERATURE REVIEW This literature review investigates the following topics— the mineralogy of nickel laterites, the composition of nickel laterites around the world, the processing of laterites (including challenges) , the rheology and surface properties of laterites. The review also investigates the surface properties and rheology of the individual minerals, as well as mixed mineral systems. 2.1. Mineralogy of Laterite Deposits Over the years the term laterite has been used to generally describe both specific soil regions and the entire weathering profile (Gleeson, 2003). According to Eggleton (2001) the term laterite now refers to the "iron oxide-rich, silica-poor upper soil horizon of intensely weathered regoliths found in tropical climate". The definition of a "nickel laterite" is a regolith that contains economically exploitable concentrations of nickel (Glesson, 2003). Laterites are normally classified into two main groups. 1. High magnesia ores are known as saprolites 1 . These ores that are commonly processed using pyrometallurgy, specifically smelting. The main reason for the use of smelting is that nickel replaces magnesium in the magnesium-silicate structure. To be able to recover nickel the mineral structure has to be destroyed (Bergman, 2003). 2. High-iron, low magnesium deposits are known as limonite2 . These deposits are commonly processed using hydrometallurgy. In these deposits the nickel is loosely bound in the goethite and therefore can be processed using hydrometallurgical techniques such as the Caron process and pressure acid leaching (Bergman, 2003). These processes are described further in the literature review. Saprolite — a chemically weathered rock that retains the structure of the parent rock (www.earthscienceworld.org ) Limonite is a general field term to designate a rock made of a mixture of amorphous hydrous ferric oxides. (www.earthscienceworld.org) 4 Table 2: Laterite Deposits Article Deposit name or type Minerals (only crystalline) Blakey (2002) New Caledonia Goethite (65% wt) Gibbsite Spinel Talc Serpentine Golightly (1979) Limonite zone Goethite Hematite Spinel Magnetite or maghemite Talc Amphiboles Chlorite (rare) Golightly (1979) Smectite-Quartz zone Nontronite Quartz Bhattacharya (1998) Major: Goethite^Quartz Hematite Minor: Magnetite^Chromite Maghemite^Talc Serpentine Klein & Hallbom (2002) Goethite^Gibbsite Talc^Quartz Carlson & Simons (1961) Moa Bay Goethite 70-75 Gibbsite 10 Serpentine 2.5 Quartz 2.5 Moskalyk & Alfantazi (2002) Limonite zone Goethite^Gibbsite Chromite^Absolite Moskalyk & Alfantazi (2002) Saponite Talc^Quartz Serpentine^Fosterite Olivine^Garnierite Tartaj et al (2002) Sample 1 Goethite 50 Serpentine 43 Maghemite 4 Gibbsite 3 Tartaj et al (2002) Sample 2 Goethite 79 Serpentine 15 Maghemite 3 Gibbsite tr Quartz 3 Whittington & Muir (2002) Host minerals Goethite^Nontronite Gleeson et al. (2003) Serpentine^Talc Sepiolite^Chlorite 5 Laterite deposits can contain dozens of mineral species (Blakey, 2002). The main minerals found in laterites based on a brief literature search can be found in Table 2. The table shows that there is no definite composition for lateritic ores although the majority of the deposits contain anhydrous iron oxide, typically goethite. Other main minerals include gibbsite, serpentine and nontronite. The main gangue minerals present are quartz and magnesium silicates such as talc and chlorite. 2.2. Laterite Processing Based on the two main types of laterites, the processing of laterite ores generally falls into two categories — pyrometallurgy or hydrometallurgy. Due to wide range of mineralogy in an ore body each process is only applicable to certain types of ores. The main process for ores with high magnesium is pyrometallurgy, specifically smelting. It is the oldest and most widely used process. Smelting treats more nickel-rich silicate fraction producing ferro-nickel (which can be directly used for stainless steel production) and sulfide matte. The smelting process has a high recovery —90%; however no associated cobalt is recovered. A major disadvantage of smelting is the high power consumption and environmental concerns, mainly air and effluent emissions. A typical generalized pyrometallurgical process involves drying, calcining/reduction, smelting, refining or converting to produce the ferronickel matte. For ores with high iron and low magnesium, there are two main hydrometallurgical processes — reduction roast ammonia leach (Caron process) and high pressure acid leach (HPAL). The Caron process is mainly used for limonitic ores or a mixture of limonite and saprolite. The sample is dried and roasted in reducing environment. This is followed by low-pressure ammonia leach. Nickel and cobalt are then recovered by solvent extraction. The products are further refined by calcination and reduction. The Caron process has a Ni recovery of —80% and a Co recovery of 40-50%. As with smelting a major disadvantage of the Caron process is the high energy requirements. The second hydrometallurgical process is the high pressure acid leach (HPAL) process. The ores generally contain some saprolite and have a lower Mg and Al content. The process involves the 6 leaching of the ore with sulfuric acid at 250°C and extracting Ni and Co from the leach liquor by sulfide precipitation using H2S or solvent extraction and electro-winning. The HPAL process has a high recovery of both Co and Ni (above 92%) and unlike the previous processes the main cost is associated with disposing of sulfur. Due to high operating costs, the economics of processing laterite ores require the plants, especially HPAL plants, be run at as high a solids concentration as possible. An increase in the operating solids concentration will not only reduce the capital cost of a new plant but also will increase the capacity of an existing plant. In both cases there will be a decrease in operating costs. Increasing the solids concentration would decrease the size of the autoclaves, tanks, piping and pumps. Additionally, there would be a decrease in the amount of water and amount of reagents (specifically acid) used (Hallbom and Klein, 2004). Problems related to rheology can include - rat holing or bridging in tanks, build-up on the walls of pipes, plugging and pulsing in pipelines and difficulties starting up or shutting down systems (Hallbom and Klein, 2004). 2.3. Basic Rheology Rheology is defined as the science of the deformation of flow of matter, which is most commonly represented by the relationship between shear stress and shear rate. Figure 1 shows the most common flow-curves Bingham Plastic Dilatant Pseudoplastic with yield stress^ Newtonian Pseudoplastic Shear Rate Figure 1: Rheology models 7 Most mineral suspensions have a non-linear shear stress — shear rate relationship or "non- Newtonian." As a result, most suspensions do not have a single viscosity, but rather an "apparent" viscosity (Tlapp,f/) that changes with shear rate. The apparent viscosity is defined as the slope of a line passing through the origin that intersects the flow-curve at a specified shear rate. Suspensions can show shear thinning (pseudoplastic) or shear thickening (dilatant) properties. Shear-thinning is where the apparent viscosity decreases with increasing shear rate and shear- thickening is where the apparent viscosity increases with shear rate. Some suspensions (particularly concentrated mineral suspensions with fine aggregated particles) have a yield stress. The yield stress implies that the suspension has a structure that must be overcome to initiate flow. Suspensions may also exhibit time dependent properties. These properties are the result of the shearing on the physical orientation of particles or on the state of aggregated particles- dispersion. Time dependent responses are referred to as either thixotropic or rheopectic. For thixotropic suspensions, the apparent viscosity will decrease with time and for rheopectic suspensions, the apparent viscosity will increase with time. 2.4. Rheology of Nickel Laterites Although laterites have been processed for approximately 100 years, there has been surprisingly little literature published on the rheological behavior of these complex ores. Prior to 2000, most of the literature was about the hydrometallurgical processing of the ore with some mention of the complex rheological characteristics (Blakey, 2000). Non-Newtonian properties have been reported for laterites varying from yield shear-thinning to shear-thickening with time dependant properties ranging from thixotropic to rheopectic (Avotins et al., 1979; Blakey et al., 2000; Klein and Hallbom, 2003). The first report of the complexity of laterites was from Carlson and Simon (1961). Carlson and Simon reported that laterite slurries can be highly viscous even at low solid fractions and in 1977 Lussierz and Reid, in a patent by Amax Inc., reported that the behavior of laterites can also be highly time-dependent. Further investigations of the properties can be found in Avotins et al. (1979). They found that laterite slurries exhibit Bingham plastic (yield stress) viscosity properties. They also concluded that the yield stress and Bingham viscosity were affected by ore 8 composition, solids concentration and temperature. Further test work on the Amax ore was conducted by Avramidis and Turian in 1991. Avramidis and Turian investigated the yield stress of the laterite suspensions. They found the laterites to be strongly non-Newtonian with a yield stress that was a function of solids concentration and suspension pH or zeta potential. Several more recent studies have been conducted on laterites and the main mineral component of laterite — goethite. The most significant are: Bhattacharya et al. (1998), Blakey et al. (2000), Cerpa et al. (2001), Klein and Hallbom (2002) and Blakey and James (2003). The research of Bhattacharya et al. (1998) showed that lateritic suspensions exhibit Bingham plastic behaviour at 20% (w/w) and above. They also showed the rheological properties are functions of pH, temperature, solids concentration and size distribution. It was summarized that with known values of solids concentration C w, maximum settled concentration Cwmax, specific surface areas and average particle size, the yield stress of the suspension could be calculated. Cerpa (1999) investigated lateritic suspensions, specifically the effect of mineral composition and particle size. They found that the flow properties were strongly affected by these two properties. A relationship was created of to - -43/d" where To is yield stress, k is a ratio of serpentine to goethite, (1) is the volume fraction and d is particle size. Klein and Hallbom (2002) found that the rheology of nickel laterites suspensions is affected mostly by the surface properties of goethite. Specifically, increasing or decreasing the pH to increase the electrostatic repulsion improves dispersion and consequently the flow properties. Blakey and James (2003) found that the high viscosity present at high zeta potential could not be explained using classical theories. This led to the theory that there was another attractive force in addition to the van de Waals forces. They discovered that the faces of goethite particles have different charging characteristics than the edges, which creates an attractive force between the particles. 2.5. Rheology of Mineral Systems The behaviour of concentrated mineral suspensions has been well documented over the years (Nguyen, 1983; Johnson et al., 1999; and Megias-Alguacil et al., 2000). From these studies the surface charge of system can be used to predict the rheological behaviour of the system. The 9 maximum yield stress occurs close to the iso-electric point (Johnson et al., 1999). This however is only correct for isotropic minerals (minerals that have the same surface charge on all crystal faces). For anisotropic minerals (minerals with different surface charges on different faces), such as talc and kaolinite, the peak of maximum yield stress occurs at the point where the electrostatic attraction between opposite faces is at its maximum (Schofield and Samson, 1954; Burdukova et al, 2006). 2.6. Electro-acoustics of Single Mineral Electro-acoustic measurements have been used to determine the surface properties of single minerals systems directly in concentrated suspensions. The IEP of the minerals used in this study are listed in Table 3. Table 3: Single Mineral IEPs Mineral Formula pH Ref Quartz SiO2 <2.0 if any Kosmulski (2006) Hematite a-Fe203 5.6-10 Kosmulski (2006) Magnetite Fe2+Fe23+04 6-8 Kosmulski (2002, 2004) Goethite a-Fe3+0(OH) 7.7-9.3 Kosmulski (2006) Talc 3MgO 2.502 H2O 2.7 Durove (1998) 2.7. Electro-acoustic measurements of Mixed Mineral Systems Electro-acoustic measurements have widely been used to determine the surface properties of single minerals systems; however, the measurement of mixed mineral systems has not been well investigated. Recently, several studies have used zeta potential distributions to study particle systems by comparing single component zeta potential distributions with distributions for the mixture of components (Xu et al., 2003; Liu et al., 2002; Liu et al. 2004; Beauchamp et al., 2006). Bruinsma et al. (1997) investigated the theory of multi-component suspensions. The test work was conducted on a Brookhaven Instruments ZetaPlus to determine the electro-kinetic sonic amplitude (ESA) over a range of frequencies. The resulting dynamic mobility spectrum of the multi-component system was found to be the weighted sum of the individual components. The investigation was fairly restrictive at constant pH and ionic strength to "avoid changes in the shape of the dynamic mobility spectra of the components possibly due to agglomeration effects" 10 (Bruinsma et al., 1997). The suspensions investigated were two types of aluminum oxides and gibbsite. The predicted ESA values of mixed mineral systems were compared to the measured values. From Bruinsma (1997) the ESA of a two-phase system (ESA tot) was found to be the weighted sum of the of ESA1 (the ESA value of the first mineral) and ESA2 (the ESA value of the second mineral)values at a given pH. The equation was given as ESA°, = ( 4 1 (  01 AP1 / p 4-1 Omix A p ESA 1 + ^ ,42 ^A^4 , 2^W2 1-1/32 P \ ;2 )\ OmL APmix /3 ) ESA2 (1) Where, is the zeta potential of the mineral and^and 2 '/C,2 are the ratios of the zeta potentials of the mineral in the mixture and the pure mineral which allows for changes in zeta potentials due to heterocoagulation (the formation of groups of particles consisting of mineral 1 and mineral 2). p is the density of the testing medium [g/cm3] (water —1 g/cm3 ) ID' and p2 are the density of the two individual minerals [g/cm3 ] and Ap t = pl-p and Opt = p2-p 41 and 4'2 are the volume fractions of the individual minerals in the system Pmix was calculated using^=(01 I Omix)P1 4- (0; / OA Ihnix was calculated using^0.„ = 01 +02 (2) (3) The Bruinsma values were calculated as follows — ESAm = K1 ESA 1 + K2 ESA2 (4) Where K = 4-; 01 API (5) K2 = ,\Omix.6,13mixl P , (^AP2 P (6) 4-2 AChmi,AP„,ix I p 11 Since there was no way to measure 4 1 74 1 and 42742, it was assumed to be equal to 1. The accuracy of this assumption is evaluated for each mixture. The accuracy of this assumption is evaluated for each set of testing conditions. Vergouw et al. (1998) studied the zeta potential and agglomeration of two systems galena/ pyrite and galena/sphalerite. The study also investigated the effects of added ions specifically Ca, Pb and Fe (II). It was shown that the added ions consistently increased the IEP of the suspension. For the mixtures of sphalerite with galena and pyrite, maximum agglomeration correlated with the zeta-potential of the two minerals. The zeta potential was determined using a Laser- Zetameter. For particles of equal size homo- and/or hetero-coagulation appeared to occur. Liu et al. (2002) investigated a two-component system of bitumen and clay. The addition of ions, specifically Ca was investigated. Liu et al. used a Zetaphoremeter III (Sephy/CAD) which traces the movement of 50-100 particles by alternating positive and negative electrode potentials. The traces are translated to a histograph of electophoretic mobility. The mixed systems (bitumen and clay) showed either one or two peaks indicating interactions between particles. Xu et al. (2003) studied the effect of clay mineral on coal and coal floatation. This study was similar to Lui et al (2002) and looked at particles of the two different sizes (clay-fine and coal- coarse). The study was focused on investigating the slime coating of coal particles by very fine clays. In addition to research on two separate mineral systems, test work has also been conducted on variable-charge anisotropic minerals. Variable charge minerals such as clays have different charges on different crystal faces. (Van Olphen, 1951; Schofield and Samson, 1954; Street and Buchanan, 1956; and Rand and Melton, 1976) 2.8. Summary of the Relevant Literature Findings In summary, the literature shows that 1. the mineralogy of laterite deposits varies significantly not only from deposit to deposit but also within a single deposit. This variation leads to varying rheology, 12 2. the rheological properties of nickel laterites are functions of mineralogy, concentration of solids, rate of shear, time and composition of solution, 3. the changes in rheology cause operation problems - from low operating percent solids and increased reagent consumption to plugging of pipelines, 4. the relationship between rheology and mineralogy has not been well investigated, 5. electro-acoustic measurements have been used to measure the surface properties of single mineral systems but little work has been done on mixed mineral systems. 13 3.0 PROCEDURES In this section the procedures for the test work used in this thesis are described. The experimental program involved the following procedures: 1. Characterization of individual mineral and the Vermelho samples 2. Electro-acoustic measurements of the individual minerals, selected mixed mineral systems and the Vermelho samples. 3. Rheological measurements of individual minerals and the Vermelho samples 3.1. Samples Eight samples of ore were obtained from Companhia Vale do Rio Doce's (CVRD) Vermelho nickel laterite deposit. In addition to the ore samples, six pure, fine-grained mineral samples were used in this study — quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. The coarse quartz sample used was SIL-CO-SIL 63 from the U.S. Silica Company. The SIL-CO- SIL is a high purity quartz. The fine quartz sample was MIN-U-SIL 5 from the U.S. Silica Company. The MIN-U-SIL is a high purity, high quality natural crystalline quartz that is ground to a uniform size fraction of 5 microns. The magnetite sample used was BK-5099 from Elementis Pigments. The hematite sample used was R4098-HP from Elementis Pigments. The goethite sample used was YP 1700 from Elementis Pigments. BK-5099, R4098-HP, and YP 1700 are described as high purity pigments. The talc sample was Talcron MP 10-52, a hydrated magnesium silicate, from Specialty Minerals Inc. MP 10-52 is ceramic grade platy talc from Montana. All of the minerals used had no applied surface coating. 3.2. Characterization All the samples, individual minerals and Vermelho ores, were characterized for mineralogy, specific gravity and particle size. The quantitative mineralogy was determined by X-ray powder diffraction using the Rietveld Method by the Department of Earth and Ocean Sciences at UBC. This mineralogy only reports the crystalline phases normalized to 100%. The specific gravity of the dry solids for each sample was determined using a wet pycnometer. The particle size distribution for each of the samples was determined using a Malvern laser particle size analyzer. 14 In addition to the above characterization, the Vermelho samples (received as pulps) were also characterized for percent solids and analysis of the samples supernatants. The percent solids of the samples as received were determined by oven drying. Three samples of supernatant representing the three ore types were sent for Inductively Coupled Plasma Mass Spectrometer (ICP-MS) analysis. The ICP-MS testing was conducted by Acme Analytical Laboratories Ltd to analyze for dissolved species. 3.3. Electro-acoustic (ESA) Measurements A Colloidal Science Zeta Probe was used to determine the surface charge of minerals and ore samples and to estimate the iso-electric points of the samples. The ESA effect occurs when an alternating electric field of known frequency and amplitude is applied to a suspension of fine, charged particles. As the particles oscillate in the applied electric field, small pressure fluctuations develop around the particles in the surrounding liquid. If there is a density difference between the liquid and particles, a macroscopic acoustic wave is generated. Its magnitude can be correlated with the dynamic mobility of the particles since these two quantities determine the magnitude of particle motion in an electric field. For very small particles oscillations easily keep up with the frequency of the field, but for large particles the oscillations lag significantly behind the applied field and the phases of the two sinusoidal signals do not match. While the magnitude of the ESA signal decreases with particle size, the phase lag increases. In zeta potential measurements with the use of electro-acoustic instruments, this mobility spectrum is obtained by measuring the ESA signal of a suspension over a range of applied frequencies. The Zeta Probe works at 7 frequencies in the range from 0.3 to 3 MHz. Particles at the upper size limit must therefore move with a sufficient velocity at the lowest frequency to produce a measurable electro-acoustic signal. The frequency must also be low enough so that the phase lag of the largest particle is smaller than the limit of 45 degrees. The raw ESA signal is given by ESA = P E (7) Where P is the measured magnitude of the pressure wave [Pa] and E is the applied electric field strength [Vim]. 15 As reported by the manufacturer, the operating frequency range of the Zeta Probe allows the instrument to determine particle sizes up to 10 microns although the particle size/frequency distribution data are not available to the user. For coarser materials the instrument must be "told" the size distribution by inputting d50 and d85 (assuming a log-normal size distribution) to obtain zeta potentials, provided that such coarse particles give a measurable signal. The electro-acoustic theory also states that the zeta potential is zero when the ESA signal is zero, which means that the magnitude and sign of the zeta potential is proportional to the magnitude and sign of the ESA signal. Since the tested suspensions contained very coarse particles, for which these inertia effects were certainly very significant, it was decided to report only the raw ESA signal rather than some "apparent" zeta potentials. Electro-acoustic measurement were conducted on — 1. Individual minerals - quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. 2. Mixed mineral systems. The mixtures were prepared on a mass basis (e.g., 25:75 is 25% mineral A and 75% mineral B by mass). • Individual minerals — coarse quartz, fine quartz, magnetite, hematite and goethite. • 25:75, 50:50 and 75:25 fine quartz and magnetite, respectively • 25:75, 50:50 and 75:25 fine quartz and hematite, respectively • 25:75, 50:50 and 75:25 fine quartz and goethite, respectively • 25:75, 50:50 and 75:25 coarse quartz and magnetite, respectively • 50:50 magnetite and goethite 3. Vermelho ore samples All tests (individual, mixed mineral systems and Vermelho ore samples) were conducted in aqueous solutions at five (5) percent solids by weight. The surface charge measurements were conducted over the pH range of 3.0 to 11.0 at pH increments of 0.5. The pH was lowered with hydrochloric acid (HC1) and then adjusted using potassium hydroxide (KOH). 16 3.4. Rheology Measurements Rheological tests were conducted using a controlled rate co-axial cylinder viscometer (Haake VT550). All the test work was conducted using a MV-1 P cup and bob fixture where P indicates a profiled or ribbed surface to reduce errors associated with wall slip. The shear stress (Pa) versus shear rate (s 1 ) data was recorded. The following procedure was run to find the flow curves for the Vermelho and the pure minerals samples. The procedure was conducted in duplicate or triplicate as needed. An average of the tests was used to determine all properties. 1. Pre-shear at 200s -1 for 1 minute 2. Held at 0 s -1 for 2 minutes 3. Ramp-up to 300s -1 in 4 minutes 4. Ramp-down to 0 s -1 in 4 minutes 5.^Repeat #1 to #4 For the talc sample both the shear rate and ramp time was increased to 1000s -1 and 7 minutes, respectively (Steps #3 and #4). The flow curve data were modeled using the Bingham equation and the Casson equation. Based on fits as indicated by the coefficient of determination (R 2), the Bingham equation was selected to represent the flow curve data. The Bingham equation has the following form: r "= r 13 + (1 1 111f')^ (8) Where,^t is shear stress TB is yield stress li p, is Bingham (plastic) viscosity coefficient )2 is shear rate. 17 The Casson equation can be given as: r1/2 = r12 + (rici,)1/2^ (9) Where,^is is yield stress Ilc is Casson viscosity coefficient Where possible the Vermelho samples were tested at the received pH (ranging from 6.1- 8.4) and at 45 % solids. The target solid concentration for the individual minerals was 45%; however, due to extremely high viscosities for the talc and goethite samples the solids concentration had to be reduced to 33 % and 25 %, respectively. At the tested percent solids values, there was no settling observed for all of the samples. The individual minerals target pH values were 5.0, 7.0 and 9.0 for talc and 3.0, 5.0, and 7.0 for goethite and quartz. The pH was adjusted using hydrochloric acid (HC1) and potassium hydroxide (KOH). 3.5. Test Programs Three test programs were conduced. 1. A laboratory study of the electro-acoustic measurements was conducted on six pure mineral systems - quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. Mixtures containing varying percentages of two minerals were also studied. 2. A study was conducted on eight samples from the Vermelho deposit. The samples represented three ore zones referred to as SAP, SAPSIL and SAPFE. The study results are classified by the three ore zones in three main areas — mineralogy, surface charge (specifically the sample's iso-electric point) and rheology. The three ore types are classified according to their mineral composition as a high magnesium silicate content (saprolite, SAP), a high silicate content, (saprolite-silica, SAPSIL) and a high iron oxide content (saprolite-iron, SAPFE). 3. A study was conducted comparing the rheological behaviour of the three main mineral components of the Vermelho ores. 18 4.0 CHARACTERIZATION Six pure, fine-grained mineral samples and eight Vermelho were used in this study. This section describes the properties of these samples and ores. 4.1. Individual Minerals Six pure, fine-grained mineral samples were used in various studies in the thesis — quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. Table 4 shows the mineral characteristics of each mineral. These samples were chosen to represent the main minerals present in lateritic ores. Complete X-ray diffraction, size analysis and electro-acoustic results for individual minerals can be found in Appendices A, D and F, respectively. Table 4: Pure Mineral Characteristics Sample Mineralogy SG Particle sizeD(50), urn Max particle Size, um IEP Quartz coarse Si02 2.65 17.1 109.5 <3.0 Quartz fine Si02 2.65 2.2 13.0 <3.0 Magnetite Fe2+Fe23+04 5.15 4.1 14.4 6.9 Hematite a-Fe203 5.2 3.3 35.9 8.5 Goethite a-Fe3+0(OH) 4.0 4.4 26.5 9.3 Talc 3MgO 2.50 2 H2O 2.8 3.8 20 —2.0 In the following section eight ore samples from the Vermelho deposit are characterized into three ore types according to their mineral composition as a high magnesium silicate content (saprolite, SAP), a high silicate content, (saprolite-silica, SAPSIL) and a high iron oxide content (saprolite- iron, SAPFE). Minerals were chosen to represent the main mineral constituents in rheology tests in the three classes. Talc was selected to represent a generalized magnesium clay-type mineral, quartz was chosen as the main silicate and finally goethite was chosen to represent the main iron oxide 4.2. Vermelho samples Table 1 shows the as received solids concentration (by weight), the test solids concentration, the pH and the specific gravity (SG) for each of the Vermelho samples. The target solids concentration was 45% which is the proposed solid content for the processing of this ore. The 19 exceptions were Sample #2 (SAP) which was tested at the maximum settled solids concentration of 27.7% and Sample #5 (SAPSIL) which was tested at 42.6% solids. Table 1 also shows the D80, percent fraction under 10 microns and iso-electric point (IEP) of the Vermelho samples. Complete particle size analysis and Zeta Probe results can be found in Appendices E and G, respectively. Table 5: Characterization data for Vermelho samples Id # Category As received % solids Test % solids As received pH SG P80^% <10 microns microns % Ni Apparent IEP pH 1 SAP 48.8 45.5 6.9 2.98 60.3 40.7 1.44 6.5 2 SAP 18.1 27.7 8.1 2.40 66.9 31.0 4.57 3.3 3 SAPSIL 56.4 46.0 7.0 3.06 56.1 37.4 1.02 5.6 4 SAPSIL 26.9 45.2 8.1 2.83 131.1 19.5 0.98 3.0 5 SAPSIL 11.9 42.6 8.1 2.67 108.7 12.3 2.45 3.1 6 SAPSIL 55.1 44.8 8.4 3.27 74.6 23.8 1.52 2.9 7 SAPFE 50.4 46.2 6.7 3.60 38.0 42.7 0.98 7.1 8 SAPFE 46.1 46.0 6.1 3.09 47.2 42.5 0.91 7.3 The complete mineralogy data can be found in Appendix B. Table 6 summarizes the results of the mineralogical analysis using XRD. Note: this mineralogy only reports the crystalline phases normalized to 100%. In general, the samples lithology zones reflected the mineralogical composition. SAP has relatively low contents of quartz (<12%) and goethite (<40%). One of the SAP samples had a notably high kaolinite content (Sample #1) while Sample #7 has only a small amount (1.5%) and all other samples had none. Table 6: Mineralogical data for Vermelho samples SAP^SAPSIL^SAPFE Sample ID -^1^2^3^4^5^6^7^8 Ideal Formula Quartz^Si02 Kaolinite^Al2Si205(01- )4 Chlorite^(Mg,Fe2+)5A1(Si3A1)010(OH)8 Talc^Mg3Si4O10(0E1)2 Lizardite^Mg3Si205(OH)4 Goethite^a-Fe3÷0(OH) Hematite^a-Fe2O3 Magnetite Fe3O4 Magnesite MgCO 3 9.3^12.1^12.2^35.0^31.3^31.0^5.0^1.5 11.4 1.5 43.6 14.0 6.5^10.3^4.2 38.9 32.1^74.9 29.8^39.0 27.5^72.3^87.6 13.1^1.2^8.6^21.8^1.2^14.1^11.8^4.2 13.3^4.5^4.3^13.4^18.2^18.0^9.4^6.7 5.2 20 SAPFE has a high goethite content (>70%). SAPSIL has a high quartz content (>30%). The exception is Sample #3 which is identified as SAPSIL but has a low quartz content (12.2%) and a high goethite content (74.9%). Based on the mineral composition, this sample would better fit with the SAPFE lithology. Additionally magnesium silicates (Mg-Si) were found only in the SAP samples and in two of the SAPSIL samples. It should also be noted that for Sample #5, XRD showed a clay phase that could not be identified. A summary of Vermelho sample supernatant analysis results can be found in Table 7. Complete results of the ICP Mass Spec testing can be found in Appendix C. Water hardness is defined as the concentrations of calcium and magnesium (most common) ions expressed in terms of calcium carbonate, which can be calculated by: Hardness ppm = 2.5 [conc. of Ca 2+ (ppm)] + 4.1 [conc. of Mg 2+ (ppm)]^(10) Water hardness can also be affected by iron, aluminum, and manganese; however, these elements are not present in significant proportions in the Vermelho water samples. From this calculation and based on Environment Canada3 (1979) guidelines the water is classified as medium hard. Table 7: Summary of Water Analysis Results SAP SAPSIL SAPFE Ca Calcium ppm 17.23 22.27 22.10 CI Chlorine ppm 11.00 13.00 10.00 Cr Chromium ppm 0.01 0.53 5.03 Fe Iron ppm 0.15 0.32 0.18 K Potassium ppm 2.64 2.78 3.72 Mg Magnesium ppm 17.28 9.03 3.19 Na Sodium ppm 20.87 27.94 26.10 Ni Nickel ppm 0.18 0.03 0.00 S Sulfur ppm 3.00 3.00 12.00 Si Silicon ppm 8.85 10.53 3.06 Hardness ppm 113.91 92.70 68.34 As Ca2+ 3 GUIDELINES FOR CANADIAN DRINKING WATER QUALITY - SUPPORTING DOCUMENTS - Hardness http://www.hc-sc.gc.caiewh-semt/pubs/water-eau/hardness-durete/index_e.html 21 3.0 2.5 2.0 1.5 1.0 (t) a. 0.5E < 0.0 w -0.5 -1.0 -1.5 -2.0 ____.^• _.,.......,,, ___v, Ai- - ., i--F ---1 H^.-- .0E0 4 lab,„.,_ i- --41-F-- --- I- -^i - 8 --.0 ..^.. i-i -H^i -^f,_ I i 1 - - .--^___.. -■........ --- .0 pH 5.0 ELECTROACOUSTIC MEASUREMENTS 5.1. ESA Measurements of Individual Minerals ESA measurements were first conducted on each of the individual minerals. Figure 2 shows the pH vs. ESA for the coarse quartz, fine quartz, magnetite, hematite, goethite and talc. —x— Coarse Quartz —4-- Fine Quartz ■̂ Goethite - - Magnetite —x-- Hematite • Talc Figure 2: Individual Mineral Components From Figure 2, it can be seen that the values of ESA decrease for all the samples with increasing pH. Figure 2 also shows that the iso-electric point (IEP) of the coarse and fine quartz and the talc is at pH of less than 3.0. The difference in the reported ESA values for the coarse and fine quartz is attributed to the difference in particle size, particularly the heavy (coarse) particle moved slower in response to the alternating current producing a lower ESA value. The IEP for the magnetite was at approximately pH 7.0. The IEP for the hematite was at approximately pH 8.5 and lastly, the IEP for the goethite was at approximately pH 9.4. The figure also shows that talc and quartz are negatively charged over the entire pH range and that the surface charge of 22 these minerals changes by a relatively small amount with increasing pH as compared to iron oxide minerals. 5.2.^ESA Measurements of Mixed Mineral Systems As discussed in section 2.6, the Bruinsma values were calculated as follows - ESA,„, = K, ESA, + K2 ESA2^(4) Where K1 = ( 4-1 0;AP1l P (5) 4-1^Ø„„x Ap^1 P K2 = (6) 4''22 P/0mC13:AAPP2in„,/ Table 8: Overview of Bruinsma ESA values and input Mixture Predicted by Bruinsma Fitted 4)1 11)2 (i)mix Pi [WC1113] P2 [g/CM3] P m [g/cm3] K1 K2 K2 50 Quartz:50 Magnetite 0.99 0.51 1.50 2.65 5.15 3.5 0.43 0.56 0.41 0.56 25 Quartz:75 Magnetite 0.50 0.77 1.27 2.65 5.15 4.17 0.20 0.79 0.19 0.84 75 Quartz:25 Magnetite 1.49 0.26 1.75 2.65 5.15 3.02 0.69  0.30 0.69 0.30 50 Quartz:50 Hematite 0.99 0.51 1.50 2.65 5.2 3.51 0.43 0.56 0.41 0.56 25 Quartz:75 Hematite 0.50 0.76 1.26 2.65 5.2 4.19 0.20 0.79 0.19 0.84 75 Quartz:25 Hematite 1.49 0.26 1.75 2.65 5.2 3.02 0.69 0.30 0.69 0.30 50 Quartz:50 Goethite 0.99 0.66 1.65 2.65 4.0 3.19 0.45 0.54 0.37 0.63 25 Quartz:75 Goethite 0.50 0.99 1.49 2.65 4.0 3.55 0.22 0.78 - 0.24 0.83 75 Quartz:25 Goethite 1.49 0.33 1.82 2.65 4.0 2.89 0.71 0.28 0.67 0.51 50 Coarse Quartz:50 Magnetite 0.99 0.51 1.50 2.65 5.15 3.5 0.43 0.56 0.41 0.56 25 Coarse Quartz:75 Magnetite 0.50 0.77 1.27 2.65 5.15 4.17 0.20 0.79 0.19 0.84 75 Coarse Quartz:25 Magnetite 1.49 0.33 1.82 2.65 5.15 3.02 0.69 0.30 0.69 0.30 50 Magnetite:50 Goethite 0.51 0.66 1.17 5.15 4.0 4.5 0.48 0.48 0.50 0.51 23 Table 8 shows the inputted values — volume fraction of mineral 1, 4 1 , volume fraction of mineral 2, 4)2, volume fraction of the mixture calculated by = 0, +0 2 , the density of mineral 1, p l , the density of mineral 2, p2 and the density of the mixture calculated by = (45; / 0m ))0, + (0'2 / 0.302. The final two columns show the fitted values, K 1 and K2, as calculated by the equation of ESA,0,,, = Ki ESA, + K 2 ESA 2 . K i and K2 were solved by fitting the mixed ESA data to two linear equations where the ESA of the individual minerals (ESA, and ESA2) and mixture ESAtotai are known. The mixtures were chosen not only to represent the main minerals in laterites that determine the surface properties and rheology of the slurries but also to investigate a wide range of mineral property (eg. varying density, particle shape, particle size) combinations. 5.2.1. Fine Quartz: Magnetite Mixture The first mineral system tested was a mixture fine quartz and magnetite. The results can be found in Figure 3 (50:50), Figure 4 (25:75) and Figure 5 (75:25). For the mixed mineral systems the symbols (x and •) indicate the predicted ESA values (fitted and predicted using the Bruinsma equation, respectively) and the lines indicate the measured ESA values. The dotted line is the measured ESA values of the mixed mineral system. It can be seen that both the fitted and the predicted Bruinsma ESA values fit the data for the three mixed systems. 24 • -^'150 - - -Ak - - 4.50... 5.50 6.50^7.50 - -41,— 8. 1 • .50 10.50 11 - —=-)K-- - - 50 1.0 0.5 (1) -1.0 11.1 -1.5 -2.0 pH • Quartz 100% ^ 50Quartz:50Magnetite --4—Magnetite100% X Fitted^• Bruinsma Figure 3: Fine Quartz and Magnetite (50:50) 1.0 50 0.5 ..."^ 0.0 ?..,^2.50 O.^-0.5 < (/)^-1.0 - ...... . .. — 3.50^4.50^5150^6-.50- -^7.50^8.^1 • .50^10.50^11  3R .------•--...______, LI -1.5 -2.0 • • --____„_____________....___________. pH — -.- —^ ----&---^x^•Quartz 100% ^ 25Quartz:75Magnetite^Magnetite 100%^Fitted^Bruinsma 1 Figure 4: Fine Quartz and Magnetite (25:75) 25 pH Quartz 100% - - - - 75Quartz:25Magnetite --•—• Magnetite 100%^x Fitted^• Bruinsma . 0^3.50^4.50^5.50^6.50^7.50^8.5^50^10.50^11 --x- - - - -it ----- i•- - - - - - it - - — - --aik - - - - -0_ - _ _ _ _ lcA_ --^ _ _ _ _^4. 1.0 0.5 •:( U) -1.0 ILI -1.5 -2.0 Figure 5: Fine Quartz and Magnetite (75:25) Table 9 and Figure 6 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that both values are relatively close. For this system the assumption that l '/4 1 and 4272 are equal to 1 appears to be reasonable. There is no significant deviation; therefore the results imply that the system is well dispersed as there is no significant difference in the ESA of the minerals in the mixture as compared to alone (indicating that no heterocoagulation is taking place) over the entire pH range. Table 9: Fine Quartz and Magnetite - Comparison of K values Mixture Fitted Predicted by Bruinsma Kquartz Kmagnetite Kquartz Kmagnetite 50 Quartz:50 Magnetite 0.41 0.56 0.43 0.56 25 Quartz:75 Magnetite 0.19 0.84 0.20 0.79 75 Quartz:25 Magnetite 0.69 0.30 0.69 0.30 50 26 0.6 ^ 0.4 02 ^ 0.0 ^ -0.2 ^ -0.4 ^ -0.6 ^ -0.8 ^ -1.0 ^ 12 -1.4 ^ , -1.4^-1.2 Measured ESA -1.0^-0.8^-0.6^-0.4^-0.2^0.0^0.2^0.4^0.6 ♦ 50Quartz:50Magnetite ♦ 25Quartz75Magnetite ■ 75Quartz:25Magnetite ^ "1:1"1^  J Figure 6: Predicted v. Measured Fine Quartz and Magnetite 5.2.2. Fine Quartz: Hematite Mixture The second mineral system tested was a mixture of fine quartz and hematite. The results can be found in Figure 7 (50:50), Figure 8 (25:75) and Figure 9 (75:25). It can be seen that as with the fine quartz and magnetite the expected values correspond well to the measured values for the 50:50 and 25:75 mixtures. However for the values predicted by the Bruinsma equation for the 75% fine quartz/25% hematite mixture (25:75), the calculated values are consistently higher than the measured values. 27 1.5 )st• 6.00^8.00^10.00^124.00 x 1.0 2.00 00 ^ 0.5 ^ ^0.0 ^ 0.^0.30 -0.5 CO W -1.0 -1.5 -2.0 1.5 ^ 1.0 ^ 0.5 ^ ^0.0 ^ a^o.Oo ^-0.5 ^ a) ^W -1.0 ^ -1.5 -2.0 pH --*—Quartz100% – – – – 50Quartz:50Hematite^A Hematite 100%^x Fitted^• Bruinsmaj Figure 7: Fine Quartz and Hematite (50:50) pH • Quartz 100% – – – – 25Quartz75Hematite —A— Hematite 100% x Fitted • Bruins m a Figure 8: Fine Quartz and Hematite (25:75) 28 1.0 ^ =1, 0.5 ^ ^0.0 ^ 0.)0 -0.5 ^ co ^W -1.0 ^ -1.5 2.00 1.5 -2.0 pH Quartz 100% – – – – 75Quartz25Hematite —A— Hematite 100%^x Fitted^♦ Bruins ma Figure 9: Fine Quartz and Hematite (75:25) Table 10 and Figure 10 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is a slight difference between the fitted values and values predicted by Bruinsma. For this system the assumption that^and 42'/42 are equal to 1 appears to be incorrect and that some coagulation appears to take place especially in the low pH range. This coagulation creates a third group of particles that is not taken account for in the calculations. Table 10: Fine Quartz and Hematite - Comparison of K values Mixture Fitted Predicted by Bruinsma Kquartz Khematite Kquartz Khematite 50 Quartz:50 Hematite 0.56 0.60 0.44 0.56 25 Quartz:75 Hematite 0.25 0.99 0.20 0.80 75 Quartz:25 Hematite 0.80 0.21 0.70 0.30 29 0.2 0.7-1.8^-1.3^-0.8^-0.3 Measured ESA ca E ci) 0.7 02 — 0 -0.3 o -0.8 11).a. -1.3 Co w -1.8 ♦ 50Quartz:50Hematite ♦ 25Quartz:75Hematite ■ 75Quartz:25Hematite^1:1 Figure 10: Predicted v. Measured Fine Quartz and Hematite 5.2.3. Fine Quartz: Goethite Mixture The third mineral system tested was a mixture fine quartz and goethite. The results can be found in Figure 11 (50:50), Figure 12 (25:75) and Figure 13 (75:25). It can be seen for the 50:50 mixtures and for the 75 quartz/25 goethite mixture that the values predicted by Bruinsma are significantly lower than the actual ESA values. The results appear to be more influenced by the goethite in the system than by the quartz. 30 ............ -x- . - - ----- x ..• • • x•.,, 4.50 5.50 -.--- • . ,. .0^3.50 6.50 7.50 8.56' ' -xA:-_, 9.50^10.50^lli. , . .. ,, pH ♦ Quartz 100% ^ 50Quartz:50Goethite^Goethite 100%^X Fitted^• Bruinsma 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.52 -1.0 -1.5 -2.0 50 .50 3.50 4.50 5.50 6.50 7.50 8.50 -.- '9,60 10.50 11 50 3.0 2.5 2.0 O. 0.5 0.0 CO -0.5w 5 -1.0 -1.5 -2.0 Figure 11: Fine quartz and goethite (50:50) pH  --•-- Quartz 100% - - - - 25Quartz:75Goethite --A-- Goethite 100%^x Fitted^• Bruinsma Figure 12: Fine Quartz and Goethite (25:75) 31 3.0 2.5 2.0 15 .5' 1.0 -- - — ----- x 5.50 •^6.50 •^ 7.60—^8.50^9.50^10.50^11 • -1.5 -2.0 pH ♦ Quartz 100% — — — — 75Quartz:25Goethite^A Goethite100%^x Fitted^• Bruins ma 50 Figure 13: Fine Quartz and Goethite (75:25) Table 11 and Figure 14 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is a difference between the fitted values and values predicted Bruinsma especially in the pH range where the goethite and quartz particles are oppositely charged. For this system the assumption that 1'41 and C2 '42 are equal to 1 appears to be incorrect and the heterocoagulation of quartz and goethite seems to be the dominant interfering factor. Table 11: Fine Quartz and Goethite - Comparison of K values Mixture Fitted Predicted by Bruinsma Kquartz Kgoethite Kquartz Kgoethite 50 Quartz:50 Goethite 0.37 0.63 0.45 0.54 25 Quartz:75 Goethite 0.24 0.83 0.22 0.78 75 Quartz:25 Goethite 0.67 0.51 0.71 0.28 32 co (s) C a) "0 D E < U) w 2.0 1.5 1.0 0.5 •• 0.0 -0.5 -1.0 • • a ■ -1.5 r̂ } -1.5 -1.0^-0.5^0.0^0.5^1.0^1.5^2.0 Measured ESA • 50Quartz:50Goethite ♦ 25Quartz:75Goethite w 75Quartz:25Goethite^"1:1" Figure 14: Predicted v. Measured Fine Quartz and Goethite 5.2.4. Coarse Quartz: Magnetite Mixture Although laterites do not contain a coarse fraction an investigation of the predictability using the Bruinsma equation of mixed systems was conducted to determine the effect of particle size, the fourth mineral system tested consisted of coarse quartz and fine magnetite. The results can be found in Figure 15, Figure 16 and Figure 17. From these three figures it can be seen that measured values are quite erratic and do not fit the predicted values well, although the agreement is much better under alkaline conditions where the electrostatic repulsion between similarly charged particles prevents significant aggregation (heterocoagulation). 33 \ **, \..... ... ... \ • r 4^. 3.50^4.50 **** -4._ _5,50_ _ -C5 6.50- ,-._- 7.^• 8.50^9.50^10.50^11-• . - 4 _ --. 50 0.6 0.4 • 0.2 0.0 0. 2 -0.2 ■ttco W -0.4 -0.6 -0.8 pH Quartz 100% - - - - 50Quartz50Magnetite^Magnetite100%^x Fitted^• Bruinsma Figure 15: Coarse Quartz and Magnetite (50:50) 0.8 50 0.6 . . 0.4 . X ', E^0.2 • ..5, • Clz^2.50 t^-0.2 3.50^4.50^5.50^6.50^X_ 7.50^:^I- 9.50 10.50 11 < U)^-0.4 - IL -0.6 . x -0.8 -1.0 x pH --*---^- -^ -A- x Fitted • BruinsmaQuartz 100% -^-^25Quartz:75Magnetite^Black 100% Figure 16: Coarse Quartz and Magnetite (25:75) 34 pH _ _ x 3.50 x 4.50^5.50^6.50 • – – H 8.50^9.50^10.50^11 50 X• asa. W -0.4 0.6 0.4 0.2 0.0 ^ 2.50 -0.2 - -0.6 -0.8 Quartz 100% – – – – 75Quartz:25Magnetite --A— Magnetite 100%^x Fitted^♦ Bruinsma Figure 17: Coarse Quartz and Magnetite (75:25) Table 12 and Figure 18 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is no significant difference between the fitted values and the values predicted by Bruinsma. However, since neither the fitted values or the values predicted by Bruinsma fit the data very well over the entire range, the assumption that and 2'/C2 are equal to 1 again appears to be incorrect and that there is the possibility of coagulation which in this case would be equivalent to coating of quartz by fine magnetite, this is referred to as blinding. The charge of the quartz is blinded by the magnetite on its surface. Table 12: Fine Quartz and Magnetite - Comparison of K values Mixture Fitted Predicted by Bruinsma Kquartz Kmagnetite Kquartz Kmagnetite 50 Coarse Quartz:50 Magnetite 0.41 0.56 0.43 0.56 25 Coarse Quartz:75 Magnetite 0.19 0.84 0.20 0.79 75 Coarse Quartz:25 Magnetite 0.69 0.30 0.69 0.30 35 0.8 0.6rn 0.4 C3) 0.2 •— 0.0 a)45 -02 1/45 E -0.4 a (04:t -0.6 ILI -0.8 —4v • --A--- -I • 1 A ♦ • i^r 1^I^I^I^1^I^I ).8 -0.6 -0.4 I^1^I^I^I^I^1^I^I^I^I -0.2 0.0 Measured ESA I^I^I^I^I^i^I^I^I^I^I^I 0.2 0.4 0.6 I^I 0. ♦ 50Quartz:50Magnetite ♦ 25Quartz75Magnetite^■ 75Quartz:25Magnetite —1:1" 8 Figure 18: Predicted v. Measured Coarse Quartz and Magnetite 5.2.5. Magnetite: Goethite Mixture To further investigate the results from the fine quartz and goethite samples where the system was dominated by the goethite, a mixture of 50% magnetite and 50% goethite was tested. The results can be found in Figure 19. From Figure 19, it can be seen that both the fitted values and values predicted by Bruinsma fit the data for the mixed systems fairly well. This indicates that the goethite is not as dominant with the magnetite as it was with the quartz. This could be a result of the closer ESA values between goethite and magnetite as compared to the goethite and quartz. 36 3.0 2.5 1.0 0.0 Cl)^2 W -0.5 -1.0 -1.5 -2.0 50 iC- • 7.50 --ilf-- - __. -..•------______. .0 3.50 4.50 5.50 6.50 8.50 • 10.50 11 ' A pH Magnetite 100% - - - - 50Magnetite:50Goethite ---A-Goethite100%^x Fitted^• Bruins ma Figure 19: Magnetite and Goethite (50:50) Table 13: Magnetite and Goethite- Comparison of K values Mixture Fitted Predicted by Bruinsma Kmagnetite Kgoethite Kmagnetite Kgoethite 50 Magnetite:50 Goethite 0.50 0.51 0.48 0.48 E C = CO 0) C .7) c '0 $3 0 "13CDs_ CL < CO LLI 1 '3  0.8 0.3 -0.3 -0.8 -1.3 -h .-i- , 'i-- i • 1^1 1^i1 H- -h1^1^,^-- + -p^,---1 -1.3 -0.8 -0.3 0.3 Measured ESA ' 0.8 1.3 50Magnetite:50Goethite♦ -- "1:1" Figure 20: Predicted v. Measured Magnetite and Goethite 37 2.0 I I^V^f^1^1 I^1^I^j^I^1^1^U 1̂^1 I^I^I^I .0• .114111,1.0•,,^7- • ^0.80 ^ ^ 0.60 ^ 0.40 - ^ 0.20 ^ E-7 0.00 -0.20 1^ asa. ^E -0.40 -̂ < co -0.60 ^w -0.80 - -1.00 -120 - -1.40 17 9.0^10.0^11.0^12.0^1 vow " -A4 5.3. Vermelho samples In addition to the individual samples and the mixed mineral systems, ESA measurements were conducted on the eight Vermelho samples. Figure 21 shows the pH vs. ESA for the eight samples. Table 14 shows the apparent IEP values of the eight samples. apparent pH Sample #1 - SAP^Sample #2 - SAP^Sample #3 - SAPSIL^- Sample #4 - SAPSIL Sample #4 - SAPSIL --a— Sample #6 - SAPSIL ^ Sample #7 - SAPFE — Sample #8 - SAPFE Figure 21: Overview of Vermelho Samples Table 14: Vermelho apparent IEP results Id # Category pH at apparent IEP 1 SAP 6.5 2 SAP 3.3 3 SAPSIL 5.6 4 SAPSIL 3.0 5 SAPSIL 3.1 6 SAPSIL 2.9 7 SAPFE 7.1 8 SAPFE 7.3 38 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 Although the mineralogy (high iron mineral content) and apparent IEP at pH 5.6 of Sample #3 (SAPSIL) indicates that it would be better fit with the SAPFE lithology, the rheology (low yield stress, this is discussed on the following chapter) classifies it as SAPSIL. To investigate the effects of individual minerals on the zeta potential, comparisons were made between the total percent content of iron minerals and total percent content of magnesium minerals, and the apparent IEP. IEP range of Fe minerals #8 - SAPFE #7 - SAPFE . ♦#1 SAP #3 - SAP #2 - SAP #5- SAPSI^#4 - SAPSIL .16 - SAPSIL 20^30^40^50^60^70^80^90 ^ 100 %Iron minerals Figure 22: Effect of total iron minerals on apparent iso-electric point for Vermelho samples Figure 22 shows the relationship between the apparent iso-electric point and % Fe minerals (goethite, hematite and magnetite). As the percentage of Fe minerals increased, the apparent iso- electric point of the sample increased. It can be seen in Figure 22 that all the SAPSIL samples have a low apparent IEP and all the SAPFE with Sample #3 have a higher apparent IEP. This correlation relates to the IEP of Si02 (pH <2.0 (Kosmulski, 2006)) and the IEP of Fe203 (pH 7.5- 9.5 (Kosmulski, 2006)). The two outliers on the graph were SAP samples with high Mg mineral content. Samples #1 and #2 did not follow the trend. This was probably due to the fact that Sample #1 had 11.4% kaolinite (IEP = pH 2.8-3.8 (Kosmulski, 2004))) and 14.0% talc (IEP = pH 2.7 (Durove, 1998)) and Sample #2 had 43.6% chlorite (IEP = pH 3 (Hussain, 1996)). When IL 39 aw—..... c co" a a< 11.. 0 I 0. 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 magnesium silicates and kaolin clays were present, the apparent IEP and therefore, the surface properties were dominated by the presence of these minerals. Figure 23 shows the relationship between the apparent iso-electric point and % magnesium minerals (chlorite, talc and lizardite). With the exception of Sample #1 which contains 11.4 % kaolinite the iso-electric point of the sample was not significantly affected by the % of magnesium minerals. #7 - SAPFE 8 - SAPFE^♦ #1 SAP #3 - SAPSIL - SAPSIL#5- SAPSIL .#2 - SAP • 6 - SAPSIL  ^---ii ^1^II! ̂ mi 1^11 1^f^ I-f----I r—E—H +.  I 0.0^10.0^20.0^30.0^40.0 ^ 50.0 ^ 60.0 %Mg minerals Figure 23: Effect of total magnesium minerals on the apparent iso-electric point for Vermelho samples It is expected that at a pH close to the apparent IEP, particle aggregation would cause the yield stress to increase. For SAPFE samples, the testing pH was close to the apparent IEP of the samples and for the SAPSIL samples the testing pH was relatively far from the apparent IEP of the samples. On the basis of mineralogy, it is expected the higher the iron mineral content, the higher the yield stress at natural pH values. Additionally, the higher the quartz or Mg silicate content, the lower the yield stress values at natural pH. This also implies that as the pH is lowered, the yield stress should decrease for samples with higher iron mineral content but would increase for samples with higher quartz or Mg silicate content. 40 180 160 140 Ts' 120 100 t 80 N 60 40 20   ^- ^ 0 ^ 0^100^200^300^400^500^600^700^800^900^1000 Shear rate [s-1] _pH 9.06  ^H 7.56 ^ pH 5.75 pH 5.75 — — — — pH 7.56 — - -- pH 9.06 6.0 RHEOLOGY 6.1.^Individual minerals Tests were conducted on the main mineral constituents in the ore classes in order to determine the importance of these minerals to the rheology of the ores. In addition to the three minerals representing the three ore types — magnetite was also tested to determine the effect of an additional iron mineral. For consistency, the yield stress is reported using the Bingham equation due to a better fit for the majority of the samples. Figure 24 shows the results from the talc rheology tests. It can be seen that the yield stress for all three pH values is high (greater than 40 Pa, when fitted using the Bingham equation) and have a shear-thinning properties. Figure 24: Rheology of talc suspensions (33% solids) 41 Figure 25 shows the results of the quartz rheology tests. It can be seen that the samples are Newtonian and although there is a decrease in stress with increasing pH, all the yield stress values are extremely low (below 0.2 Pa). It should be noted that the slope of the flow curves of quartz increased after 150 s -1 . This could be explained by turbulent behaviour above this point or dilatant flow properties. 2.5 2 iv" CI'^1.5.. ..b ti i i rrw ' ,..^ 1^,•t^Y 14 Wig '^ti.1 s 0.5 o 1 ' no 1 A 11  ^f 7^•^) 1'.1 I \.1 q-ti)',4,-4,1 ii„^lip „id„ ^r itisr\k/ ^I Ur(' i l)ri' 5.0 PH^..■^,,n,^_ rvlitAit ^t /14A.i /1"/^, ^0^1 'I ' '^itA /A PO J ,T v1:1 -„---\i int ^ ----/^,,-^,^-^k 'I fylpti\^ 1 v ,./.1,7\iv ^/  ^V\4'''h^1 CiA't Ii\I V \,-"/Ij kl /V^"/^pH 7.62 t^t^t^I 0 50 t^tr^t^'^r^t^t 100 150 200 Shear rate [s-1] 1114,141 250 300 3.06pH^- - - - pH 5.0 -^- - - pH 7.62 Figure 25: Rheology of quartz suspensions (45% solids) Figure 26 shows the results of the magnetite rheology tests. It can be seen that the yield stress increases with increasing pH. The yield stress (fitted using the Bingham equation) ranges from 15 to 25 Pa and is higher at higher pH. 42 40 r- 35 ^ 30 ^ _ 25 enN lz 20 N s-ea w 15 10 pH 5.39 pH 3.45 250^300 0 50 150100 200 Shear rate [s-1] pH 3.45 — — — — pH 5.39 — — - — pH 7.34 Figure 26: Rheology of magnetite suspensions (45% solids) 160 140 120 Ts ' 0-^100 (0v, i 80 as w^60.c pH 7.35 ---.,.„,...--- ___—_----- — . pH 5.34 cf) 40 20 0 pH 3.30 — I I^f I II^I^I^I 0 50 4^■^I 100 150 200 Shear rate [s-1] 250 300 3.30pH^— — — — pH 5.34 — - — - — pH 7.35j Figure 27: Rheology of goethite suspensions (25% solids) 43 Figure 27 shows the results of the goethite rheology tests. It can be seen that a significant increase in yield stress with increasing pH. The yield stress (fitted using the Bingham equation) ranges from 5 (pH 3.3) to 94 (pH 7.35). Table 15 shows the rheological characteristics (pH, % solids, apparent viscosity (fl app), Bingham plastic viscosity (go) and the Bingham yield stress (T B) of the three minerals. From the rheology tests on the talc sample, several potential problems were discovered working with high talc concentrations due to talc's natural hydrophobicity. The main concern was trying to mix the samples. The samples were extremely hard to disperse. This problem was also observed by Schader and Yariv (1990) - "talc, with lower surface energy, is difficult to disperse in water and considered to be hydrophobic" and Zbik and Smart (2002). - "trapping of air nano-bubbles between detached sheets of micronised talc contributes to poor dispersion." To try to eliminate this problem, the samples were mixed for approximately two hours and the test work was conducted in triplicate. Table 15: Rheological characteristics of individual minerals Mineral^pH^% solids^flapp *^fipi^TB [Pa-s]^[Pa-s] [Pa] Talc^5.75^33.0^0.135^0.186 50.9 ^ 7.56^33.0^0.165^0.246 41.9 9.06^33.0^0.170^0.286 46.4 Fine quartz^3.06^45.0^0.006^0.005 0.36 5.0^45.0^0.003^0.003 0 7.62^45.0^0.002^0.003 0 Magnetite^3.45^45.0^0.093^0.035 17.7 5.39^45.0^0.115^0.039 23.4 7.34^45.0^0.124^0.037 26.4 Goethite^3.30^25.1^0.023^0.070 4.7 5.34^25.3^0.320^0.129 61.0 7.35^24.9^0.448^0.148 94.3 * The apparent viscosity (ri app) was found at the point where the shear rate versus apparent viscosity curve approached a plateau. For the talc this was at 1000 s -1 , for the quartz it was at 150 s-1 and for the goethite it was 300 s -1 . 44  100.0 ^ 90.0 1^ 80.0 1 ^ 70.0 ^ 60.0 ^ 50.0 Î 40.0 ^ 30.0 ^ 20.0 =̂ 10.0 -_-_ 0.0 ^ 2.0 I^l^l + 8.0^10.04.0^6.0 pH ♦ Talc ■ Fine Quartz  x  Magnetite A Goethite Figure 28: Yield stress of pure minerals at three pH values From Figure 28, it can be seen that talc has a relatively high uniform yield stress (T B) over the entire pH range. The fine quartz has no significant yield stress at all pH values. The magnetite has a medium value yield stress that increase slightly with pH. Lastly, the goethite has an increasing yield stress with pH. 6.2. Vermelho samples Table 16 is a review o the test % solids and pH (as received) used for the rheological tests on the Vermelho ore samples. Table 16: Vermelho Characterization Id # Category Test % As received solids _pH 1 SAP 45.5 6.9 2 SAP 27.7 8.1 3 SAPSIL 46.0 7.0 4 SAPSIL 45.2 8.1 5 SAPSIL 42.6 8.1 6 SAPSIL 44.8 8.4 7 SAPFE 46.2 6.7 8 SAPFE 46.0 6.1 45 18 16 14 12 10 8 6 4 2 0 Figure 29 shows the flow curves for the saprolite (SAPSIL) samples and shows that all four samples have a relatively low yield stress. Figure 30 shows the flow curves for the saprolite-iron (SAPFE) samples and shows that the yield stresses are in the intermediate to high range. The rheological properties of Sample #7 can be characterized as yield shear thinning. Sample #8 has yield shear thickening properties at low shear rates, but shear thinning properties at high shear rates. Lastly, Figure 31 shows the flow curves of the saprolite (SAP) samples and shows the yield stress can be characterized in the high range. The rheological properties of Sample #2 can be characterized as yield shear thinning. As with Sample #8, Sample #1 has yield shear thickening properties at low shear rates, but shear thinning properties at high shear rates. - e .1 . • ' I-. ^40 ...g.^.... r ••r*-- • - - ` i^; 1^ ; 0 ^ 50^100^150^200 ^ 250 ^ 300 Shear rate N-11 Sample #3 — — Sample #4 - - - - Sample #5 - - - - - Sample #6 Figure 29: Effect of shear rate on shear stress for the saprolite-silica (SAPSIL) samples 46 120 100 ^ ic7 e' — N 80 _^\ \ w- a 60 -I i^ — -61 31= 40 u) 20 0 ■ or * . ' . . 0^50^100^150^200^250^300 Shear rate [s-1] Sample #7 — — Sample #8 Figure 30: Effect of shear rate on shear stress for the saprolite-iron (SAPFE) samples 140 120 1:1- 100 02 80 ta. 60 cu s0 40 0 20 0  0 ^ 50^100^150^200 ^ 250 ^ 300 Shear rate [s-1] Sample #1 — — Sample #2 Figure 31: Effect of shear rate on shear stress for the saprolite (SAP) samples The main results of rheological tests are summarized in Table 17 which shows the high shear rate apparent viscosity at a shear stress of 300 s -1 (riap,3oo), the Bingham yield stress (TB), and the plastic viscosity values (rim). As can be seen in Table 17 and in Figure 32 and Figure 33, the rheological property that changed most with mineralogical composition (characterized by iron 47 aa w F. 4 a,s a= g 4 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 20.0 * #1 - SAP #2 - SAP #8 - SAPFE (2Kozoscilids) #7 - SAPF #6 - SAPSIL #5 - SAPSIL •^#4 - SAPSI^♦ #3 -SA" IfIlIllifIllIfIfl f^Illillilihillfilill 30.0^40.0^50.0^60.0^70.0^80.0^90.0 % Iron minerals 100.0 SIL and magnesium mineral content) was the yield stress. The table and figures also show that each ore class has a characteristic yield stress range. The SAPSIL samples has a yield stress of >6.5Pa (low), the SAPFE samples had yield stresses of 21.1 and 57.9Pa (intermediate to high) and lastly the SAP samples had high yield stress at 51.2 and 85.2Pa. Table 17: Rheological properties for Vermelho samples Id ii Category ilapp5300 110 TB [Pa-s] [Pa-s] [Pa] 1 SAP 0.195 0.110 84.2 2 SAP - 0.123 51.2 3 SAPSIL 0.025 0.014 6.5 4 SAPSIL 0.018 0.022 2.8 5 SAPSIL 0.039 4.8 6 SAPSIL 0.025 0.013 2.3 7 SAPFE 0.092 0.041 21.1 8 SAPFE 0.193 0.174 57.9 Figure 32: Effect of total iron minerals versus Bingham yield stress (natural pH) 48 90.0 80.0 • #1 - SAP 0-4^70.0 E 60.0 #8 SAPFE #2 - SAP 50.0.0 40.0 _26%—solids)• ea^30.0 #7 - SAPFEle 20.0 di-- 43/4-SAPSIL #5 - SAPSIL 10.0 •/ 0.0 ^• 0.0^10.0^20.0^30.0^40.0^50.0 ^ 60.0 #6 - SAPSIL % Mg minerals Figure 33: Effect of total magnesium minerals versus Bingham yield stress (natural pH) The rheological properties of the suspensions can be characterized as yield shear thinning. In other words, all suspensions exhibited a yield stress and the apparent viscosity decreased with shear rate. The suspensions also exhibited varying time dependant properties. Charts for each of the individual rheological tests conducted can be found in Appendix H. The main results are summarized in Table 17 which shows the high shear rate (300 s -1 ) apparent viscosity for both the step up and down tests, the yield stress (calculated by both the Bingham and Casson equations), the Bingham viscosity values, the Casson viscosity values and the R2 for both equations. The fitted yield stresses were calculated for the first ramp-up of the instantaneous flow curve tests. As can be seen in Table 18, the rheological properties of the ores changed with mineralogical composition and that each ore zone demonstrates a yield stress range. • SAPSIL — characterized by low yield stress values • SAPFE — characterized by intermediate to high yield stress values • SAP — characterized by high yield stress values 49 Table 18: Rheological properties (including thixotropic and Bingham and Casson results) Lithology Thixotropic Or Rheopectic Test % solids ^ Thixotropic Viscosity^Bingham Or^(11app,300)^TIB^Tb Rheopectic up [Pa-s] [mPa-s] [Pa] R2 Casson lic^tc [mPa-s] [Pa] R2 Thixotropic/1^SAP rheopectic 45.5 Thixotropic/ rheopectic 0.195 110 84.2 75.9 10 78.2 58.4 2^SAP Rheopectic 27.7 Rheopectic 123 51.2 99.4 24 42.3 98.0 3 SAPSIL Thixotropic 46.0 Thixotropic 0.025 14 6.5 93.8 3 5.5 89.8 4 SAPSIL Thixotropic 45.2 Thixotropic 0.018 22 2.8 98.7 10 1.6 99.1 5 SAPSIL Thixotropic/rheopectic 42.6 Thixotropic/ rheopectic 39 4.8 98.8 18 2.7 99.7 6 SAPSIL Thixotropic 44.8 Thixotropic 0.025 13 2.3 92.9 4 1.5 96.0 7 SAPFE Thixotropic/neither 46.2 Thixotropic/ neither 0.092 41 21.1 95.1 6 18.3 87.5 8 SAPFE Rheopectic 46.0 Rheopectic 0.193 174 57.9 85.2 37 47.6 74.1 As discussed in the following section, the IEP relates to the yield stress of the sample, specifically for SAPFE and SAPSIL. For SAPFE samples the testing pH was close to the IEP of the samples and for the SAPSIL samples the testing pH was relatively far from the IEP of the samples. On the basis of mineralogy, the higher the iron mineral content the higher the yield stress at natural pH values. Also, the higher the silicate content is, the lower the yield stress values are at natural pH. Table 18 categorizes each sample as thixotropic, rheopectic, neither or a combination. A thixotropic sample indicates that shearing induces dispersions of particles. A rheopectic sample indicates that shearing induces aggregation of particles in the slurry; however some of the Vermelho samples did not exhibit solely thixotropic or rheopectic properties. For Sample #1, the sample was initially thixotropic but above 60 s -I exhibited rheopectic properties. For Sample #5, the sample was initially rheopectic but above 200 was thixotropic. Lastly for Sample #7, the sample exhibited thixotropic properties but above 100 s -1 no time dependent properties were seen. 50 90.0 80.0 70.0 ni a- 60.0 E 50.0 in 40.0 -a 15 30.0 20.0 10.0 0.0 7.0 DISCUSSION This section investigates possible correlations between the yield stress and several physical properties —D80, percentage under 10 microns, pH of apparent IEP, percentage quartz, percentage iron-bearing minerals, and percentage clay minerals. The yield stress used for all the figures in section 7.0 is the Bingham yield stress value. This was chosen for the eight samples as it had a higher average coefficient of determination, R2 , value (0.92 vs. 0.88 with Casson) based on Table 18 (in section 6.0). The number beside the points indicates the sample number and classification. The first relationships investigated were particle size, D80, and percentage passing 10 microns, as shown in Figure 34 and Figure 35, respectively. From these figures it can be seen that there is a relationship between D80 and yield stress, as well as between percent passing 10 microns and yield stress. As D80 of the samples decreased the yield stress increased; however since not all the points follow this pattern it cannot be the only factor contributing to the higher yield stress. For the percentage under 10 microns a similar relationship was found. With increasing percentage of the particles finer than 10 microns, the yield stress of the sample increases. This relationship is clearer than for the D80; however, there are still samples that do not fit the trend. . #1 - SAP #8 - SAPFE • #2 - SAP •(26 % s-c-lidS) #7 - SAPFE #3 - SAPSIL^#5- SAPSIL #6 - SAPSIL #4 SAPS!- 0^20^40^60^80^100^120 ^ 140 D80 [microns] Figure 34: Bingham Yield Stress vs. D80 51 #1 - SAP #8 - SAPFE ^ 90.0 ^ 80.0^I=̂ 70.0 ^ ^0- • 60.0^I^ 50.0^Î ^co 40.0 ^ -0 TD 30.0 ^ 20.0 •_.; 10.0  ̂ 0.0  ^ 0 • #5- SAPSIL^#4 - SAPSIL - SAPSIL I^I{^I 10^20^30^40 50 #2 - SAP (26 % solids) - SAPFE ^ • #3 APSIL Percentage under 10 microns Figure 35: Bingham Yield Stress vs. Percentage under 10 microns Table 19: Vermelho apparent IEP pH vs. test pH results Id # Category pH at apparent IEP As received (test) pH 1 SAP 6.5 6.9 2 SAP 3.3 8.1 3 SAPSIL 5.6 7.0 4 SAPSIL 3.0 8.1 5 SAPSIL 3.1 8.1 6 SAPSIL 2.9 8.4 7 SAPFE 7.1 6.7 8 SAPFE 7.3 6.1 The next relationship investigated was between the yield stress and the iso-electric point of the samples. Figure 36 shows the results from the tests. Table 19 shows a comparison of the apparent IEP pH vs. testing pH. Theoretically, close to the iso-electric point the particles in the sample coagulate and cause the yield stress of the sample to increase. For Samples #1, #7 and #8, the slurry pH was close to the respective IEP. As expected these slurries exhibited a high yield stress. With the exception of Sample #2 (high chlorite), all the other slurries exhibited a low yield stress. For these slurries the IEP was much lower than the slurry pH. For Sample #2, the yield stress was high despite that the solid content was only 27.7%. This sample differed from others by its high chlorite and lizardite content. 52 90.0 80.0 70.0 1 €71' a- 60.0 50.0 40.0 7) 30.0 20.0 #2 - SAP •^II ^10.0 ^ #6 - SAPSIL ^ 0.0^ttTht11^1112^a 1'il4tfftf^tiltli 0.0^1.0^2.0^3.0^4.0^5.0 pH of Apparent IEP Figure 36: Bingham Yield Stress vs. pH of Apparent IEP Lastly, the relationships between mineralogical content and yield stress were investigated. The mineralogical contents investigated were quartz content, iron-bearing minerals content and clay content, presented in Figure 37, Figure 38 and Figure 39, respectively. From Figure 37 it appears that with increasing quartz content there is a decrease in yield stress; however like with the relationship between particle size and yield stress there are points that do not fit that relationship and therefore there may be other factors influencing the yield stress. #5- SAPSII 6.0^7.0^8.0 53 90.0 80.0 70.0 0- 60.0 4,0  50.0 vi 40.0 -a To 30.0 20.0 10.0 0.0 0.0 - SAP -^#8 - SAPFE #2 - SAP♦^426% snlids)__ #7 - SAPFE #3 - SAPSIL^#5- SAPSIL .....__,..^ #6 - SAPSIL^•.m___.sges.u_ 5.0^10.0^15.0^20.0^25.0^30.0 35.0^40.0 Percentage Quartz Figure 37: Bingham Yield Stress vs. Quartz content Figure 38 shows the relationship between the goethite, hematite and magnetite contents and yield stress. Since the amounts of hematite and magnetite are low and relatively constant, it does not appear that they play a part in influencing the yield stress. There does appear to be relationship between yield stress and goethite content as the goethite contain in the samples increases the yield stress also increases. Samples #1 and #2 do not follow the trend due to their high magnesium content. 54 90.0 80.0 7 70.0 12-  60.0 co^ #2 - SAP ^ S 50.0 ^ Cl, 40.0 -a 30.0a) 20.0 10.0^#4 - SAPSIL#6 - SAPSIL^ 0.0 •• 0.0^20.0 (26-% solid§)- 40.0 .4—#1 - SAPy #5- SAPSIL 60.0 #7 - SAPF 80.0^100.0 #8 - APF • E %Mineral ♦ Goethite Total Iron Bearing Minerals Figure 38: Bingham Yield Stress vs. Iron-bearing Minerals Figure 39 shows the relationship between the clay minerals and yield stress. There appears to be no clear relationship between any of the minerals and the yield stress. A relationship between high total clay content and yield stress is seen for Samples #1 and #2; however the other samples do not seem to follow a clear trend. Additionally, kaolinite and talc have little effect on the yield stress; however, chlorite and lizardite appear to have a large effect. 55 #2^#2 • r #2 90.0 80.0 73. 70.0 F L. 60.0 SI 50.0 Cl)+  40.0 -7, 30.0 #7 ^#1 and #2 SAP (26% solids) 5• 20.0 _ #3, #4, #5 and #6 SAPSIL 10.0 ^ _ o-#3 #6^#5^ #7 and #8 SAPFEt4 0.0 l' 1^f^f illit^f f^Mil^i^ihif^i i.^111I8 0.0^10.0^20.0^30.0^40.0 % Clay j* Total E Chlorite Kaolinite Talc^Lizardite l^ 1 Figure 39: Bingham Yield Stress vs. Clay Minerals In conclusion, there is no one factor that has the defining effect on the yield stress of the samples. There appears to be a number of factors that influence the yield stress of laterite suspensions - the most significant ones identified in this study are particle size, percentage under 10 microns, IEP and quartz content. To a lesser extent, the clay minerals and goethite content appear to have a role in influencing the yield stress. Based on the results of this study it is evident that the rheology of the Vermelho ore slurries can be related to the surface properties and rheology of the main constituent minerals found in these ores. From the work conducted on the individual minerals, several properties of each were found. • Quartz — no significant yield stress over the range of tested pH values • Goethite (iron oxide) — increasing yield stress values from low to high pH • Talc (magnesium silicate) — a uniformly high yield stress over the pH values The saprolite-silica (SAPSIL) samples were rheologically simple. The results of the tests can be found in Table 20. All the samples had a high quartz content (above 12%) and a relatively low 50.0^60.0 56 yield stress (<6.5Pa). Two of the four samples (Samples #3 and #4) were composed of only quartz and iron oxides. The third sample (Sample #5) was composed of mainly quartz and iron oxides with approximately 10% magnesium silicate. The fourth (Sample #6) sample was mainly quartz and iron oxides with approximately 4% magnesium silicate and 5% magnesite. The IEP of the SAPSIL samples was approximately 2.9-3.1 with Sample #3 being an outlier at 5.6. Based on the results from the individual minerals, the results of the saprolite-silica samples can be interpreted. At this neutral pH, quartz has no significant yield stress and goethite has a relatively high yield stress. The yield stress of all of the samples was relatively low; however the lower the quartz content the higher the yield stress. Sample #3 had significantly lower quartz content and correspondingly had a higher yield stress. The influence of quartz was also present in the IEPs of the samples. Sample #3 with the lowest quartz had the highest IEP. Table 20: Saprolite-silica results* Id # Test Test Quartz Mg - Fe Other Apparent T-b % solids pH [%] silicates Oxides Minerals IEP pH [Pa] [Vo] [%] [%] 3^46.0 7.0 12.2 0.0 87.8 0.0 5.6 6.5 4^45.2 8.1 35.0 0.0 65.0 0.0 3.0 2.8 5^42.6 8.1 31.3 10.3 58.4 0.0 3.1 4.8 6*^44.8 8.4 31.0 4.2 59.6 5.2 2.9 2.3 *Other mineral for Sample #6 is magnesite The saprolite-iron (SAPFE) samples were rheologically more complex. The results of the tests can be found in Table 21. Both samples (#7 and #8) contained mainly iron oxides (>93.6%) and had a relatively low quartz content (<5.0%). Sample #7 also contained a small amount of kaolinite. The IEP of the samples was approximately 7.1-7.3. The yield stress of the two samples was significantly different from one another. Sample #7 (goethite 72.3%) had a yield stress of 21.1 Pa and Sample #8 (goethite 87.6%) a yield stress of 57.9 Pa. Based on the results from the individual minerals, the results of the saprolite-iron samples can be interpreted based on the surface properties of iron oxides. At neutral pH, goethite has a relatively high yield stress; therefore all the samples should have a relatively high yield stress. The yield stress of both the samples is significantly higher than those of the saprolite-silica; however, Sample #7 with the higher quartz content (5%) has significantly lower yield stress than Sample #8 (1.5% quartz). This suggests that with increasing quartz (or decreasing the goethite) content 57 the yield stress will be lower. The IEPs of the samples is mainly influenced by the iron oxides at neutral pH; however it appears that the quartz has lowered it slightly. Table 21: Saprolite-iron results* Id # Test % solids Test pH Quartz [%] Mg - silicates [%J Fe Oxides Other [%]^Minerals [Vo] Apparent tb IEP pH^[Pa] 7 8 46.2 46.0 6.7 6.1 5.0 1.5 0.0 0.0 93.6 98.5 1.5 0.0 ^ 7.1^21.1 7.3^57.9 *Other mineral for Sample #7 is kaolinite The saprolite (SAP) samples were the most rheologically complex. The results of the tests can be found in. Table 22. These samples contained all three main mineral classes - quartz, iron oxides and clay (mainly as magnesium silicates but Sample #1 also contains 11.4% kaolinite). Sample #2 has high magnesium-silicate content and the tested percent solids was significantly lower than the other seven samples. Based on the results for the individual minerals, the results of the saprolite samples can be interpreted. At neutral pH, quartz has no significant yield stress, goethite has a relatively high yield stress and talc has a moderate yield stress. Although the samples contain significant quartz content the presence of magnesium silicates seems to have a greater influence on the yield stress. The IEPs of the samples appears to be influenced by the quartz (IEP -2.0) and magnesium silicates (IEP <3.0). Sample #2 with 62.2% quartz and magnesium silicates has a significantly lower IEP. Table 22: Saprolite results Id # Test % solids Test pH Quartz [%] Mg - silicates [%] Fe Oxides Other [%]^Minerals [%] Apparent cb IEP pH^[Pa] 1 2 45.5 27.7 6.9 8.1 9.3 12.1 14.0 50.1 65.3 37.8 11.4 0.0 6.5 3.3 84.2 51.2 *Other mineral for Sample #1 is kaolinite 58 8.0 CONCLUSIONS AND RECOMMENDATIONS 8.1.^Conclusions From the test work conducted several conclusions can be drawn. • It was shown for the first time that the electro-acoustic signal of mixed mineral suspensions can quite successfully be modeled using the existing electro-acoustic theory. • The Bruinsma equation predicts the ESA curve (and iso-electric point) of mixed mineral systems reasonably well where the particles in the system are of equal size, density, and shape. However, for systems containing particles of significantly different sizes, the measured ESA values cannot be so accurately predicted due to possible blinding. • The factor 7 (the ratio of the zeta potential of the mineral in the mixture to the zea potential of the mineral alone) equal 1 suggests that the mixed system is dispersed, and deviation from unity suggests that hetero-coagulation (the formation of groups of particles that contain both particles in the mixture) takes place. The data therefore shows that the electro-acoustic behavior of dispersed mixed systems is easier to predict than that of aggregated suspensions. The agreement between experiment and model is very good when all the components of the mixture have the same sign of the surface charge and electrostatic repulsion keeps the particles dispersed. The most significant deviations were observed when the minerals in a mixture were oppositely charged, creating favorable conditions for inter-particle attraction and aggregation. • Quartz suspensions have no significant yield stress at all pH values, and the presence of even small amounts of quartz may have a beneficial effect on the rheology of mixed mineral systems by lowering the yield stress. 59 • The yield stress of goethite slurries increases with increasing pH in the tested pH range; therefore in nickel laterite processing decreasing the pH would cause the yield stress of the slurry to decrease. • Talc has a relatively high uniform yield stress over the tested pH range; therefore the presence of the mineral in laterites will contribute to an elevated yield stress value of the slurry. As such, the presence of talc can be expected to have a negative impact on the rheology of talc-rich laterite slurries. • No single factor was found to have the defining effect on the yield stress of the Vermelho samples. There appears to be a number of equally-important factors that influence the yield stress - the most significant ones identified it this study are particle size, percentage under 10 microns, IEP and quartz content. To a lesser extent the clay and goethite content appear to have a role in influencing the yield stress. • For the Vermelho samples, ■ SAPSIL — characterized by low yield stress values ■ SAPFE — characterized by intermediate to high yield stress values ■ SAP — characterized by high yield stress values • In the case of SAPSIL (saprolite-silica) the observed low yield stresses are most likely related to the presence of significant quantities of silica — as predicted from the tests on model quartz slurries. For the high-iron SAPFE laterites their rheological response again correlates well with the rheology of model iron oxide slurries. SAPFE slurries produce high yield stresses under the same conditions (pH) as model iron oxides. The origins of the behavior of SAP samples is not so clear but the presence of fines (sizes finer than 10 microns) and a significant content of magnesium silicates are probably the main contributing factors. • From the operations point of view - determining the iron, magnesium and quartz contents should provide a guide for classifying a given laterite ore using the above 60 classification, and for gaining a preliminary estimate of the ease or difficulty of handling the laterite as dense slurry. • When magnesium silicates and kaolin clays were present, the apparent IEP and therefore, the surface properties were dominated by the presence of these minerals. 8.2. Recommendations • Future work should be completed to further investigate the predictability of ESA values for mixed systems — specifically systems containing more than two mineral components of different densities, and of significantly different particle sizes. Presently, it is still impossible to determine the extent of aggregation, and no information can be extracted from the ESA data about the distribution of surface charges on individual mixture components. • Further studies should be carried out to determine the exact influence that individual minerals have over a wider range of physicochemical conditions (pH, presence of ions, and role of soluble organics) on the overall rheological behavior of laterite slurries. Such studies should also include theological investigations under high pressure and temperature conditions as often applied in the processing of nickel laterites. • Detailed Mineral Liberation Analysis (MLA) should be completed on the samples to determine the mineralogy by size fraction. This type of data would demonstrate the actual distribution of minerals within different size fractions, especially in the fraction finer than 10 microns. Such results would also show the potential presence of slime coatings on coarser fractions (e.g., fine quartz on coarser hematite) so that not only the bulk but also the surface compositions were taken into account when analyzing the electro-acoustic and rheological data for complex systems, such as laterite slurries. • Mixing lateritic ores of high quartz (SAPSIL) or pure quartz with high iron ores (SAPFE) to see the effect 61 9.0 BIBLIOGRAPHY Avranidis, K.S., and Turian, R.M. "Yield Stress of Laterite Suspensions" Journal of Colloid and Interface Science 143.1. 1991. 54-68. Avotins P.V., and Ahschlager, S.S. and. Wicker, G.R. "The Rheology and Handling of Laterite Slurries" International Laterite Symposium, New Orleans, SME, 1979, 610-635. Beauchamp, R., Choung, J. and Xu, Z. "Mineral Particle Interactions in Gypsum-supersaturated Process Water" Interface Phenomena in Fine Particle Technology — 6 th UBC-McGill-UA International Symposium on Fundamentals of Mineral Processing, Montreal, 2006, 101-116. Bergman, R.A. "Nickel Production for Low-Iron Laterite Ores: Process descriptions" CIM Bulletin, 96.1072.2003, 127-138. Bhattacharya, I. N., Panda, D. and. Bandopadhyay, P. "Rheological Behaviour of Nickel Laterite Suspensions" International Journal of Mineral Processing 53.4. 1998. 251-63. Blakey, B. "The Viscous Behaviour of Aqueous Goethite-containing Suspensions", PhD thesis, 2002. Blakey, B.C., James, D.F., Kawaji, M., and Krause, E. "Viscous Behavior of Aqueous Slurries of Goethite and Limonititic Laterite." EPD Congress 2000. Ed. P.R. Taylor: The Minerals, Metals and Materials Society, 2000. Blakey, B.C., and James, D.F. "Characterizing the rheology of laterite slurries" International Journal of Mineral Processing 70.1-4. 2003. 1-17. Blakey, B.C., and James, D.F. "Characterizing the Rheology of Laterite Slurries" International Journal of Mineral Processing 70.1-4. 2003, 23-39. Bruinsma, P.J., Smith, P.A. and Bunker, B.C. "Dynamic Mobility Spectra of Multicomponent Colloidal Suspensions" Journal of Physical Chemistry, 101. 1997, 8410-8417. Burdukova, E., and Laskowski, J.S. and Bradshaw, D.J. "Rheological Behaviour of Talc Suspensions as a Function of pH and Polymer Dosage" Conference paper at IMPC 2006. Istanbul, Turkey. Carlson, E.T., and Simon, C.S. "Pressure Leaching of Nickeliferous Laterites with Sulfuric Acid", in Extractive Metallurgy of Copper, Nickel and Cobalt, Queneau, P., ed., Interscience, New York, NY. 1961, 363-397. Cerpa, A., et al. "Relationship between the Colloidal and Rheological Properties of Mineral Suspensions" Canadian Journal of Chemical Engineering 79.4 2001, 608-611. Chalkey, M and Toirca, I. 'The Acid Pressure Leach Process for Nickel and Cobalt Laterite, Part I: Review of Operations at Moa" Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 341-354. 62 Dalvi, A.D. Bacon W.G and Osborne R.C. "Past and the Future of Nickel Laterites' PDAC International Convention, Toronto, Ontario, 2004, 1-27. burove, M, and Kme, S. "Ure'enie izoelektrickeho bodu magnezitu a mastenca s vyu2itim ELS techniky" Acta Montanistica Slovaca, 3.4. 1998, 482-484. Eggleton, R.A., ed. The Regolith Glossary CRC for Landscape Evolution and Mineral Exploration: Floreat Park, Western Australia, 2001, 144. Elias, M. "New Western Australian Nickel Sulphide Industry in World Perspective", Conference presentation at 6th Annual World Nickel Congress, Sydney, Australia, 2003. Elias, M. "Nickel Laterite Deposits — Geological Overview, Resources and Exploitation." CODES Special Publication 4 — Giant Ore Deposits: Characterization, genesis and exploration. 2002, 205-220. Gleeson, S.A., Butt, C.R.M. and Elias, M. 'Nickel laterites: A Review. SEG Newsletter" No. 54, 2003. Golightly, J.P. "Nickeliferous laterites: a general description" International laterite symposium, New Orleans Society of Mining Engineers American Institute of Mining and Metallurgical, and Petroleum Engineers, Incorporated. 1979, 24-37. Hallbom, D.J. and Klein, B. "Flow Array for Nickel Laterite Slurry" in International Nickel Laterite Symposium, 2004, 415-428. Hussain, S.A., Demirci, S., and Ozbayoglu, G. "Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation" Journal of Colloid and Interface Science, 184.2.1996, 535-541. Johnson, S.B., Franks, G.V., Scales, P.J., Boger, D.V. and Healy, T.W. "Surface Chemistry- Rheology Relationships in Concentrated Mineral Suspensions' International Journal of Mineral Processing 58.1. 2000, 267-304. Kemp, D.J and Wiseman, M. "The Implications of Sustainability in Developing a Nickel Laterite Project'. International Laterite Nickel Symposium 2004, 45-53. Klein, B. "Observations on the Rheopectic Properties of Nickel Laterite Suspensions" Conference paper at CIM Conference of Metallurgists. Toronto, Ont.. 2001. Klein, B., and D. J. Hallbom. "Modifying the Rheology of Nickel Laterite Suspensions" Minerals Engineering 15.10. 2002, 745-49. Kosmulski, M., Maczka, E., Jartych, E. and Rosenholm, J. B. "Synthesis and Characterization of Goethite and Goethite-Hematite Composite: Experimental Study and Literature Survey" Advances in Colloid and Interface Science 103.1. 2003, 57-76. 63 Kosmulski, M, Saneluta, C., and Maczka, E. "Electrokinetic Study of Specific Adsorption of Cations on Synthetic Goethite" Colloids and Surfaces A: Physicochemical and Engineering Aspects 222.1-3. 2003, 119-24. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge" Journal of Colloid and Interface Science, 253. 2002, 77-87. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge II - Update", Journal of Colloid and Interface Science, 275. 2004, 214-224. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge III — Update" Journal of Colloid and Interface Science, 298. 2006, 730-741. Kosmulski, M. "Literature Survey of the Differences between the Reported Isoelectric Points and their Discussion," Colloids and Surfaces A: Physicochem. Eng Aspects, 222. 2003, 113-118. Kyle J.H and Furfaro, D. "The Cawse Nickel/Cobalt Laterite Project Metallurgical Process Development", Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 379-390. Li, Chunzhong, Shiyin Cai, and Tunan Fang. "Rheological Behavior of Ultrafine &Alpha;-Feooh Particle Synthesis Process." Huagong Xuebao/Journal of Chemical Industry and Engineering (China) 49.2 1998, 148-54. Lui, J., Zhou, Z., Xu, Z., and Masliyah, J. "Bitumen-Clay Interactions in Aqueous Media Studies by Zeta Potential Distribution Measurement" Journal of Colloid and Interface Science, 252.2. 2002, 409-418. Liu, J., Xu, Z., and Masliyah, J. "Role of Fine Clays in Bitumen Extraction from Oil Sands" AIChE Journal, 50.8. 2004, 1917-1927. Megias-Alguacil, D., Duran, J.D.G., and Delgado, A.V. "Yield Stress of Concentrated Zironia Suspensions: Correlation with Particle Interactions" Journal of Colloid and Interface Science, 231, 2002, 74-83. Moskalyk, R.R. and Alfantazi, A.M. " Nickel Laterite Processing and Electrowinning Practice" Minerals Engineering, 15. 2002, 593-605. Motteram, G., Ryan, M., and Weizenbach, R. "Application of the Pressure Acid Leach Process to Western Australian Nickel/Cobalt Laterites" Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 391-408. Nguyen, D.Q. and Boger, D.V. "Yield stress measurements for concentrated suspensions". Journal of Rheology. 27.4. 1983, 321-349. Rand, B. and Melton, I.E. "Particle Interactions in Aqueous Kaolinite Suspensions" Journal of Colloid and Interface Science, 60.2. 1976, 308-320. Riberio, E., Albuquerque, M.A.C., Costa, R.S., Cordeiro, R.A.C. and Torres, V.M. "CVRD'S Nickel Laterite Project — PAL Process Investigation" Conference paper at ALTA 2001 Nickel/Cobalt, Scarborough, Ontario, 2001. 64 Roorda, H.J., and Hermans, J.M.A. "Energy Constraints in the Extraction of Nickel from Oxide Ores (I)" Erzmetall, 34. 1981, 82-88. Roorda, H.J., and Hermans, J.M.A. "Energy Constraints in the Extraction of Nickel from Oxide Ores (II)" Erzmetall, 34.1981, 186-190. Schrader, M., and Yariv, S. "Wettability of Clay Minerals" Journal of Colloid and Interface Science, 136.1. 1990, 85-94. Schofield, R.K. and Samson, H.R. "Flocculation of Kaolinite due to the Attraction of Oppositely Charged Crystal Faces" Discussions of Faraday Society. 18, 1954, 135-145. Street, N., and Buchanan, A.S. "The Zeta-Potential of Kaolinite Particles" Australian Journal of Chemistry 9, 1954, 450-466. Tartaj, P., Garcia-Gonzalez, M.T., and Serna C.J. "Influence of Silicate- and Magnesium- Specific Adsorption and Particle Shape on the Rheological Behavior of Mixed Serpentine- Goethite" Clays and Clay Minerals 50.3, 2002, 342-347. Turian, R.M., Ma, T.W., Hsu, F.L.G. and Sung, D.J. "Characterization, settling, and rheology of concentrated fine particle mineral slurries" Powder Technology, 93. 1997, 219-233. "Mineral-Content and Particle-Size Effects on the Colloidal Properties of Concentrated Lateritic Suspensions." Clays and Clay Minerals 47.4. 1999. 515-521. Van Olphen, H. "Rheological Phenomena of Clay Sols in Connection with the Charge Distribution of the Micelles' Discussion of the Faraday Society 11, 1951, 83-96. Vergouw, J.M., DiFeo, A., Xu, Z. and Finch, J.A. "An Agglomeration Study of Sulphide Minerals using Zeta Potential and Settling Rate. Part II: Sphalerite/Pyrite and Sphalerite/Galena" Minerals Engineering, 11. 7. 1998, 605-614. Whittington, B.I. and Muir, D. "Pressure Acid Leaching of Nickel Laterites: a Review" Mineral Processing and Extractive Metallurgy Review. 21. 2000, 527-600. Xu, Z., Liu, J., Choung, J. and Zhou, Z. "Electrokinetic Study of Clay Interactions with Coal in Flotation" International Journal of Mineral Processing, 68. 1-4. 2003, 83-196. Zbik M and Smart, R.St.C. "Dispersion of Kaolinite and Talc in Aqueous Solution — Nano- morphology and Nano-bubble Entrapment" Minerals Engineering, Vol. 15. 2002, 277-286. 65 Appendix A: X-ray diffraction of individual samples 66 X-RAY POWDER DIFFRACTION ANALYSIS OF FOUR SAMPLES Marjorie Colebrook Mining Engineering - UBC. Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. Earth and Ocean Sciences The University of British Columbia 6339 Stores Road Vancouver, BC V6T 1Z4 June 16, 2005 67 EXPERIMENTAL METHOD The samples "White", "Yellow", "Red" and "Black" were ground into fine powder and smeared on to a glass slide with ethanol. Step-scan X-ray powder-diffraction data were collected over a range 3-70°29 with CuKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with a diffracted-beam graphite monochromator crystal, 2 mm (1°) divergence and antiscatter slits, 0.6 mm receiving slit and incident-beam Soller slit. The long fine-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6°. RESULTS The X-ray diffractograms were analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). The diffractograms are shown in Figures 1-4. Sample "White" consists of quartz, SiO2. Sample "Yellow" consists of goethite, a — Fe 3+0(OH). Sample "Red" consists of hematite, a — Fe2O3. Sample "Black" is mainly magnetite, Fe 2+Fe23+04, with trace of hematite, a — Fe2O3 ; 68 040 00 0 30 00 0 — 10 00 — 4 10 20 30 40 50 60 70 2-Theta - Scale OcADIFFDATMRD User14Maijorie White.RAW - File: 4Marjorie White.RAW - Type: 2Th/Th locked - Start 3.137 ° - End: 70.112 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 25 003-065-0466 (C) - Quartz low, syn - SiO2 - Y: 75.34 % - d x by: 1. - WL: 1.54056 - Hexagonal - a 4.91410 - b 4.91410 - c 5.40600 - alpha 90.000 - beta 90.000 - gamma 120.0 Figure 1. X-ray diffractogram of sample "White". 30 00 U) C 0 2000 0 C :3 1000 0 4 ^ 10 ^ 20 ^ 30 ^ 40 ^ 50 ^ 60 ^ 70 2-Theta - Scale ga:\DIFFDAT11XRD Usen3Maijorie Yelbw.RAW - Fie: 3Maijorie Yelbw.RAW - Type: 2Th/Th locked - Start: 3.143 ° - End: 70,117 ° - Step: 0.040 ° - Step time: 1. s - Te 001-081-0464 (C) - Goethite, syn - FeO(OH) - Y: 65.33 % - d x by: 1.- WL: 1.54056 - Orthorhombic a 4.60480 - b 9.95950 - c 3.02300 - alpha 90.000 - beta 90.000 - g Figure 2. X-ray diffractogram of sample "Yellow" 40 00 — 30 00 4^10^ 20 ^ 30 ^ 40 ^ 50 ^ 60 ^ 70 2-Theta - Scale \DIFFDAT1VRD U seed Marjorie Red.RAW - File: 1M arjorie Red.RAW - Type: 2T h/Th locked- Start: 3.137 °- End: 70.112 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 001-089-0598 (C) - Hematite, syn - Fe2O3 - Y: 73.29 % - d x by: 1.- WL: 1.54056 - Rhombo.H.axes - a 5.03800 - b 5.03800 - c 13.77600 - alpha 90.000 - beta 90.000 - rn O 0 20 00 1-3 1 000  — 0 Figure 3. X-ray diffractogram of sample "Red". 5000 — 40 00 — 30 00 C/) C O 0 C :3 20 00 10 00 — • • '7" ^1 7 -t - 1 -t^?16r (I f "I^ir0 "r-1 - T r 3^ 10^ 20^ 30^ 40 50 ^ 60 70 2-Theta - Scale S&c: \DI FFDAT1V RD UseA2Maijorie Black. RAW - File: 2Marjorie Black. RAW - Type: 2Th/Th locked - Start: 3.000 ° - End: 70.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 25 ° E00-019-0629 (*) - Magnetite, syn - Fe+2Fe2+304 - Y: 77.79 % - d x by: 1.0021 - WL: 1.54056 - Cubic - a 8.39600 - b 8.39600 - c 8.39600 - alpha 90.000 - beta 90.000 - gam [C01-089-0598 (C) - Hematite, syn - Fe203 - Y: 1.25 % - d x by: 1.0042 - WL: 1.54056 - Rhombo.H.axes - a 5.03800 - b 5.03800 - c 13.77600 - alpha 90.000 - beta 90.000 - ga Figure 4. X-ray diffractogram of sample "Black". QUANTITATIVE PHASE ANALYSIS OF ONE POWDER SAMPLE USING THE RIETVELD METHOD AND X-RAY POWDER DIFFRACTION DATA. Marjorie Colebrook Mining Engineering Dept. UBC 5th Floor, 6350 Stores Road Vancouver, BC V6T 1Z4 Mat! Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. of Earth & Ocean Sciences 6339 Stores Road The University of British Columbia Vancouver, BC V6T 1Z4 March 30, 2007 73 EXPERIMENTAL METHOD The sample "M. Colebrook - Talc" was reduced into fine powder to the optimum grain-size range for X-ray analysis (<10p,m) grinding under ethanol in a vibratory McCrone Micronising Mill for 7 minutes. Step-scan X-ray powder-diffraction data were collected over a range 3-80°20 with CoKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with an Fe monochromator foil, 0.6 mm (0.3°) divergence slit, incident- and diffracted-beam Sollers slits and a Vantec-1 strip detector. The long fine-focus Co X-ray tube was operated at 35 kV and 40 mA, using a take-off angle of 6°. RESULTS AND DISCUSSION The X-ray diffractogram was analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). X-ray powder- diffraction data were refined with Rietveld software Topas 3 (Bruker AXS).The results of quantitative phase analysis by Rietveld refinement are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plot is shown in Figure 1. 74 Table 1. Results of quantitative phase analysis (wt. %) Mineral Ideal formula M. Colebrook - Talc Talc Mg3Si401o(OH)2 96.5 Quartz Si02 0.4 Clinochlore (Mg,Fe2+)5A1(Si3A1)010(OH)8 2.7 Dolomite CaMg(CO3)2 0.4 Total 100.0 Talc 'IA 91150 % Clinochlore II 2.53 % Quartz low 0.40 Corundum 6.22 % Dolomite 0.35 % Ili' I'll 'iii^i" viiliiii iit' iii lfii "i ii1:1 liI IiIi iii"^'1 lh ti^'II"^i ih i"'hrl i0 i ii" u illifiilli pli'lliifi!" ll"lidll'fil i'l'ililm i Niiii114 1 1101101'difiVi di '1 11i 1141 t i ^' t^.^1 ^-  ^..1^i^t 'I ,^I .^I^. ,1̂ .^II^1^1 1^1 1^1 1 1. 1 J^I^I^I^I^( 1 40 45 50 55 60 ^65^70 75 2Th Degrees Figure 1. Rietveld refinement plot of sample M. Colebrook - Talc (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Corundum is contamination from grinding. I^it^it 111 11^it^11^I I^1.^11 II1^ I^ I I^NH^ 1^I^11 11^1^N^11 o 11^III ' 20^25^3015 t 35 Appendix B: X-ray diffraction of Vermelho samples 77 Quantitative Phase Analysis of 8 powder samples using the Rietveld Method and X-ray Powder Diffraction Data. Attention: Bern Klein/Marjorie Colebrook Department of Mining Engineering The University of British Columbia Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. of Earth & Ocean Sciences 6339 Stores Road The University of British Columbia Vancouver, BC V6T 1Z4 May 14, 2004 78 EXPERIMENTAL METHODS The particle size of the samples was reduced to the optimum grain-size range for X- ray analysis (<10 i_tm) by grinding under ethanol in a vibratory McCrone Micronising Mill (McCrone Scientific Ltd., London, UK) for 6 minutes. Fine grain-size is an important factor in reducing micro-absorption contrast between phases. Samples were pressed from the bottom of an aluminum sample holder against a ground glass slide; the cavity in the holder measures 43 x 24 x 1.5 mm. The textured surface of the glass minimizes preferred orientation of anisotropic grains in the part of the powder that is pressed against the glass. The surface was also serrated with a razor blade to break up residual preferred orientation. Step-scan X-ray powder-diffraction data were collected over a range 3-70°20 with CuKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with a diffracted-beam graphite monochromator crystal, 2 mm (1°) divergence and antiscatter slits, 0.6 mm receiving slit and incident-beam Soller slit. The long sample holder used (43 mm) ensured that the area irradiated by the X-ray beam under these conditions was completely contained within the sample. The long fine-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6. RESULTS AND DISCUSSION The X-ray diffractograms were analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). X-ray powder- diffraction data were refined with Rietveld Topas 2.1 (Bruker AXS). The results of quantitative phase analysis by Rietveld refinement are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plots are given in Figures 1 - 8. Note the missing peaks for sample #5, possibly a clay phase that cannot be fitted. 79 Table 1. Results of quantitative phase analysis (wt.%) Ideal Formula 1 FM049- AM41 2 FM019- AM21 3 FM054- AM16 4 FM066- AM52 5 FM071- AM10 6 FM072- AM21 7 FM090- AM10 8 FM093- AMO3 Quartz Si02 9.3 12.1 12.2 35.0 31.4 31.1 5.0 1.5 Chlorite (Mg,Fe2+)5A1(Si3A1)010(01-1)8 43.6 Kaolinite Al2Si205(OH)4 11.4 1.5 Talc Mg3Si4010(01-1)2 14.0 Lizardite Mg3S i2 05 PM 6.5 10.3 4.2 Goethite a-Fe3+0(OH) 38.9 32.1 74.9 29.8 39.0 27.5 72.4 87.6 Hematite a-Fe203 13.1 1.2 8.6 21.8 1.2 14.1 11.8 4.2 Magnetite Fe304 13.3 4.5 4.3 13.4 18.2 18.0 9.4 6.7 Magnesite MgCO3 5.2 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 J 0 500 o- Quartz^9.33 % Goethite^38.91 % Hematite.^13.11 % Magnetite^13.28 % Talc 1A^14.02% Kaoiinite 1A 11.35 % 1,000 1 1  1I I^It l^II^,^I1 I III ^I^I ,I^II^I^I^I^H^I^1 1 f^I II ^II, ^I^I^I I^ it^I:1^I,^I I IM 11111 -=----,-r-----L ^ , -=---j------ ir--4----,,-----J---L-,-+-4 1[L1-11-----L---L-lik-'n-LL-1------J1---. ^" 1 4 6 6 1 .0 1 .2 14 1 .6 18 20 22 24 26 28  36  32  34  36  36 40 42  4 .4 45 48 80 5.2 84 55  58.  56  52  64  66  66  70 2Th Degrees Figure 1. Rietveld refinement plot for sample 1 (FM049 -AM41) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz^12.13 % Goethte^32.09 % Magnetite^4.45 % Clinochiore II 43.57 % Lizardite 1T 6.53 % Hematite 1.21 1,000- 500- 0 1^1 I I^1^1^y 1^I'll'^1'^1^i^'^11^l'II^1^1^1^1 1 1^11^II^1^II^I 1 1 1 1^I I^Iel II II 1^ y11111111111111111^1^1^ill^Ell in 111' 1 1111 1 1111111II 1111111 1 11111h^IN I 1 11 1 14 111 II 1^1111^91M111111i1111 IF II 1111 I III 111111111111111111 li ,pi p la il' I a 31m   .,,^. ,^, . ^. ,^!, . , . „!^! . , „^.,-. ,^: . . ^, . 4 6 8 10 12 14 16 18 20 22 24 ... 28 30 32 34 .36 38 '40 42 '44 46 48 50 52 54 56 58 60 62 64 66 68 70 2Th Degrees Figure 2. Rietveld refinement plot for sample 2 (FM019-AM21) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz^1221 % Goethite 74.85 Hematite 8.63% Magnetite 421 % 1,000- rn C O 500 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2Th Degrees Figure 3. Rietveld refinement plot for sample 3 (FM054-AM16) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz 35.02 % Goethite 29.84 % Heantite 21.79 % Magnetite 13.35 % 1,500- 1,000- cr) C 0 500- I^II^1,1 11 1 .1^1^1^1^1^11^.I I I^1 1^1^III ^11^1 1 1^11^If H 11 ) 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 '60 —6'2 64 66 68 70 2Th Degrees Figure 4. Rietveld refinement plot for sample 4 (FM066 -AM52) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz^31.36 % Goethite^39.00 % Herretite^1.17 % Magnetite^18.20 % Lizardite IT 10.26 % 1,500 1,000 500 it,1 A 4 4 6 I^I^I I I^1^II^III^111 1 1.^I I 8^ '1^,1 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2Th Degrees I I^II I^I I^I^I^1 1̂ I^I 0 Figure 5. Rietveld refinement plot for sample 5 (FM071-AM10) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz^31.05 % Goethite^27.52 % Hematite^14.06 % Magnetite^17.06 % Lizardite IT 4.24 % Magnesite 5.17 % 1,000 500 co C 0 1^i i^ 1^1.1^1 1 11 1^, 1^1^1^1^1^1^1^1 1 1^1^1^.1^ 111:^1 1 ^II^1^111^1 1^t 1 1^1 1 :.^11 PI 11 1t 1^:i 1^  1^1 1^1 1^I^'I^1^l i^i^11 I^i^I^1^1.1^i i^I^li^1^i^u 1 1^i1^, 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 ' 42 44 46 48 50 52 54 56 58 60  62 64 66 ' 68 70 2Th Degrees Figure 6. Rietveld refinement plot for sample 6 (FM072-AM21) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. 1,500 Quartz^4.99 % Goethite^72.39 % Hematite^11,76 helagnetite^9.39 % Kaofinite. 1A 1,47 % 1,000 co C 0 50 ^1 ^ I^ 1 ^I^1^1 ^I^1 1^ I I^1, I I I^1.1 If̂ I I 1^I^I 1 I,1^I^I^. i 1^1 1 II^HI^11^1„ I^1^I I I I 11 ) 11 ^ , ^il :^■ ,  I^.: I^ i I^l^)^L^!^I^If^.^,^,^I ! j^i .^1 :1i , 1 1 li , 11 , (1):1 I^1^I (! 1,, I^!, !1, il^ 1) .^, . 11411111 . 1 iIII i l!1 11 ;1 ) AO) ii tq 1,14 1  ti 19^: li^41 . 1!! t I i!ifi1111 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2Th Degrees Figure 7. Rietveld refinement plot for sample 7 (FM090-AM10) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Quartz^1.481 Goethite 87.63 % Hematite 4.21 Magnetite 6.68 % I^1 I^I(^I II^, III 10 12 14 16 1'8 20 22 .24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 66 58 60 62 64 66 68 70 2Th Degrees Figure 8. Rietveld refinement plot for sample 8 (FM093-AM03) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Appendix C: Water analysis for Vermelho .......... •^txso : • : •? 91)0.2 .^• '.....••••^. SAMPLE► Ag pPb Al PPb As PPb Au PPb B PPb Ba PPb Be^Bi^Br PPb^ppb^ppb Ca ppb Cd^Ce^Cl ppb ppb^ppm Co ppb Cr^Cs ppb^ppb Cu ppb Dy^Er^Eu^Fe^Ga^Gd PPb^ppb^ppb^ppb^ppb^PPb Ge PPb Hf PPb Hg PPb Ho PPb In PPb Ir PPb K Ppb La PPb Li PPb Lu PPb Mg PPb Mn ppb Mo ppb Na ppb Nb ppb FM093-AH03-8 <.05 6 <.5 <.05 29 14.87 .06 <.05 68 22096 .06 <.01 14 .25 5033.4 .58 1.6 <.01 <.01 <.01 179 <.05 <.01 <.05 <.02 .3 <.01 <.01 .69 3718 <.01 28.7 <.01 3164 2.87 .3 26402 .01 FM066-AM52-4 <.05 91 <.5 <.05 <20 10.70 <.05 <.05 57 22274 <.05 .02 13 1.01 526.4 .25 3.9 <.01 <.01 <.01 316 <.05 <.01 <.05 <.02 .2 <.01 <.01 .38 2782 .04 15.9 <.01 9027 5.24 .5 27936 Al FM019-AM21-2 <.05 5 <.5 <.05 28 13.18 <.05 <.05 62 17225 <.05 <.01 11 2.28 14.9 .33 .2 <.01 <.01 <.01 145 <.05 <.01 <.05 <.02 .1 <.01 <.01 .17 2642 <.01 16.1 <.01 17281 5.52 .4 20869 <.01 STANDARD WASTWATRB4 146.04 665 382.3 <.05 360 686.46 57.25 <.05 13 <50 51.94 <.01 1 671.42 367.7 <.01 342.8 <.01 <.01 <.01 485 <.05 <.01 1.94 <.02 19.6 <.01 <.01 <.05 143 <.01 <.1 <.01 <50 201.73 196.8 <50 .01 GROUP 2C - WATER SAMPLES ANALYZED BY ICP-MS, AS RECEIVED FOR EXPLORATION PURPOSES ONLY. SOLUTION SAMPLES DILUTED TO BELOW 0.1% TOTAL DISSOLVED SOLID BEFORE ANALYSIS. DETECTION LIMITS ELEVATED ACCORDINGLY. - SAMPLE TYPE: WATER Data -  FA  ^DATE RECEIVED: MAY 5 2004 DATE REPORT MAILED:: rn All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. #. A4018 .40 C0 L 60rbok (51).:4 5.; AtME'ANALYTIC4L LABOTORXES -- -LTD... (1S6 ' .--91102 AOCraditad:CO, ) qgpcg! The ::^ti9i;neeititiO:4)40.; SAMPLE# Nd^Ni Os P ppb ppb ppb ppb Pb Pd Pr Pt ppb ppb ppb ppb Rb Re Rh Ru S ppb ppb ppb ppb ppm Sb Sc^Se ^ Si Sm Sn ^ Sr Ta Tb Te Th Ti ppb ppb^ppb^ppb ppb ppb^ppb ppb ppb ppb ppb ppb Ti Tm U ppb ppb ppb ^ V W Y Yb^Zn Zr ppb ppb ppb ppb^ppb ppb FM093-AM03-8^<.01^3.6<.05 <20 FM066-A1152-4 .02 25.4<.05 <20 FM019-AM21-2^<.01 181.8<.05 <20 STANDARD WASTWATRB4 <.01 208.7<.05 <20 <.1 <.2<.01<.01 .1 <.2 .01<.01 .1 <.2<.01<.01 281.6 <.2<.01<.01 10.67<.01 .05<.05 12^<.05^1^.8^3060<.02<.05 110.87<.02<.01<.05<.05 <10^<.01<.01<.02^<.2 4.83<.01 .03<.05^3^<.05 <1^.5 10525<.02 .16^94.30<.02<.01<.05<.05 <10^<.01<.01 .08^<.2 5.58<.01 .01<.05^3^<.05 <1^<.5^8845<.02<.05^83.55<.02<.01<.05<.05 <10^<.01<.01 .04^<.2 .06<.01<.01<.05 <1 338.97^1 502.6^151<.02<.05^49.65<.02<.01<.05<.05 <10 210.33<.01<.02 235.6 .10<.01<.01 2.8<.02 .80^.02<.01 2.0^.02 .15^.01<.01 .7<.02 .08<.01<.01 372.9 .04 GROUP 2C - WATER SAMPLES ANALYZED BY ICP-MS, AS RECEIVED FOR EXPLORATION PURPOSES ONLY. SOLUTION SAMPLES DILUTED TO BELOW 0.1% TOTAL DISSOLVED SOLID BEFORE ANALYSIS. DETECTION LIMITS ELEVATED ACCORDINGLY. - SAMPLE TYPE: WATER Data  4./ FA  ^DATE RECEIVED: MAY 5 2004 DATE REPORT MAILED- All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. Appendix D: Size analysis for individual samples  Particle Size Distribution ^ 110 100 90 - 80 - 70 - 60 - 50 40 - 30 - 20 - 10 1000^30080.1^1^10 ^ 100 Particle Size (pm) Silica -u/s - Average, Monday, February 07, 2005 12:40:22 PM Particle Name: silicasand Particle RI: 1.500 Dispersant Name: Water Accessory Name: Hydro 2000S (A) Absorption: 0 Dispersant RI: 1.330 Analysis model: General purpose Size range: 0.020^to 2000.000 um Weighted Residual: 0.294 Sensitivity: Enhanced Obscuration: 16.72^% Result Emulation: Off Concentration: ^0.0194^%Vol Specific Surface Area: ^0.83^rog d(0.1):^3.392^UM Span : 2.612 Surface Weighted Mean D[3,2]: 7.226^UM d(0.5):^17.095^UM Uniformity: 0.816 Vol. Weighted Mean D[4,3]: 22.007^urn Result units: Volume d(0.9):^48.037^UM MANIttiSILE11 Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: Silica -u/s - Average Silica ^ Monday, February 07, 2005 12:40:22 PM Sample Source & type: ^ Measured by: ^ Analysed: Factory = Minusil ^ contract Monday, February 07, 2005 12:40:23 PM Size (pm) Vol Under % 0.010 0.00 0.012 0.00 0.014 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.027 0.00 0.032 0.00 0.038 0.00 0.045 0.00 0.054 0.00 0.064 0.00 0.075 0.00 Size (pm) Vol Under % 0.089 0.00 0.105 0.00 0.125 0.00 0.147 0.00 0.174 0.00 0.206 0.00 0.244 0.01 0.289 0.09 0.342 0.24 0.404 0.44 0.478 0.66 0.566 0.88 0.669 1.09 Size (pm) Vol Under % 0.792 1.28 0.937 1.46 1.109 1.66 1.312 1.98 1.552 2.50 1.836 3.35 2.172 4.61 2.570 6.30 3.041 8.42 3.597 10.90 4.256 13.68 5.036 16.73 5.958 20.04 Size (pm) Vol Under % 7.049 23.64 8.339 27.59 9.866 31.96 11.673 36.83 13.811 42.27 16.340 48.29 19.332 54.83 22.872 61.78 27.060 68.88 32.015 75.84 37.878 82.31 44.814 87.96 53.020 92.56 Size (pm) Vol Under % 62.729 95.96 74.216 98.21 87.807 99.47 103.886 99.92 122.909 100.00 145.416 100.00 172.044 100.00 203.549 100.00 240.822 100.00 284.922 100.00 337.096 100.00 398.825 100.00 471.857 100.00 Size (pm) Vol Under % 558.262 100.00 660.491 100.00 781.439 100.00 924.535 100.00 1093.834 100.00 1294.136 100.00 1531.116 100.00 1811.492 100.00 2143.210 100.00 2535.671 100.00 3000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: Marjorie 2005 Malvern, UK ^ Serial Number 34403-197 Record Number 14 Tel := +144j (0) 1684-892456 Fax 41441(0) 1684-892789 ^ 27 Mar 2008 1:46:08 PM 93 Surface Weighted Mean D[3,2]: 0.631^urn Span : 2.522 Result units: Volume d(0.9):^5.839^urnd(0.5):^2.224^urn Uniformity: 0.793 Vol. Weighted Mean D[4,3]: 2.685^urn Concentration: 0.0052^%Vol Specific Surface Area: 9.52^reg d(0.1):^0.230^Urn 1000 30080.1^1^10 Particle Size (pm) 100 Particle Name: silicasand Particle RI: 1.500 Dispersant Name: Water Accessory Name: Hydro 2000S (A) Absorption: 0 Dispersant RI: 1.330 Analysis model: General purpose Size range: 0.020^to 2000.000 urn Weighted Residual: 0.489 Sensitivity: Enhanced Obscuration: 14.22^% Result Emulation: Off Particle Size Distribution 110 100 90 80 70 60 50 40 30 20 10 6 3 5 4a)Ez 0 -Silica small - Average, Thursday, March 31, 2005 10:38:42 AM IVIASIEFISILER Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: Silica small - Average Silica Thursday, March 31, 2005 10:38:42 AM Sample Source & type: ^ Measured by: ^ Analysed: Factory = Minusil 5 contract Thursday, March 31, 2005 10:38:43 AM Size (pm) Vol Under % 0.010 0.00 0.012 0.00 0.014 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.027 0.00 0.032 0.03 0.038 0.11 0.045 0.25 0.054 0.47 0.064 0.80 0.075 1.31 Size (pm) Vol Under % 0.089 2.01 0.105 2.94 0.125 4.08 0.147 5.44 0.174 7.01 0.206 8.77 0.244 10.70 0.289 12.76 0.342 14.90 0.404 17.08 0.478 19.26 0.566 21.40 0.669 23.51 Size (pm) Vol Under % 0.792 25.63 0.937 27.86 1.109 30.42 1.312 33.56 1.552 37.58 1.836 42.72 2.172 49.03 2.570 56.30 3.041 64.09 3.597 71.86 4.256 79.09 5.036 85.40 5.958 90.55 Size (pm) Vol Under % 7.049 94.46 8.339 97.16 9.866 98.82 11.673 99.69 13.811 100.00 16.340 100.00 19.332 100.00 22.872 100.00 27.060 100.00 32.015 100.00 37.878 100.00 44.814 100.00 53.020 100.00 Size (pm) Vol Under % 62.729 100.00 74.216 100.00 87.807 100.00 103.886 100.00 122.909 100.00 145.416 100.00 172.044 100.00 203.549 100.00 240.822 100.00 284.922 100.00 337.096 100.00 398.825 100.00 471.857 100.00 Size (pm) Vol Under % 558.262 100.00 660.491 100.00 781.439 100.00 924.535 100.00 1093.834 100.00 1294.136 100.00 1531.116 100.00 1811.492 100.00 2143.210 100.00 2535.671 100.00 3000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: Marjorie 2005 Malvem, UK ^ Serial Number : 34403-197 Record Number: 95 Tel := -11441 (0) 1684-892456 Fax +[44] (0) 1684-892789^ 94 27 Mar 2008 12:53:33 PM  Particle Size Distribution ^ 110 100 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 1000 3008 10 9 8 7 6 5 4 3 2 0.1^1^10 Particle Size (pm) 100 -Magnetite - Average, Friday, December 15, 2006 2:22:54 PM Particle Name: Iron Oxide 2.42 Particle RI: 2.420 Dispersant Name: Water Accessory Name: Hydro 2000S (A) Absorption: 1 Dispersant RI: 1.330 Analysis model: General purpose Size range: 0.020^to 2000.000 Weighted Residual: 1.968 Sensitivity: Enhanced Obscuration: um^13.60^% Result Emulation: Off Concentration: ^ Span : ^ Uniformity: ^ Result units: 0.0041^%Vol 1.740 0.531 Volume Specific Surface Area: ^ Surface Weighted Mean D[3,2]: ^Vol. Weighted Mean D[4,3]: 2.49^m2/g 2.410^um^ 4.581^urn d(0.1):^1.320^Urn^ d(0.5):^4.108^Urn^ d(0.9):^8.468 ^ UM MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: Magnetite - Average Magnetite Friday, December 15, 2006 2:22:54 PM Sample Source & type: ^ Measured by: ^ Analysed: Factory = Elementis Pigments^contract Friday, December 15, 2006 2:22:56 PM Size (pm) Vol Under % 0.010 0.00 0.012 0.00 0.014 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.027 0.00 0.032 0.00 0.038 0.00 0.045 0.00 0.054 0.00 0.064 0.00 0.075 0.00 Size (pm) Vol Under % 0.089 0.00 0.105 0.00 0.125 0.00 0.147 0.00 0.174 0.01 0.206 0.13 0.244 0.41 0.289 0.84 0.342 1.42 0.404 2.13 0.478 2.96 0.566 3.88 0.669 4.87 Size (pm) Vol Under % 0.792 5.92 0.937 7.05 1.109 8.34 1.312 9.93 1.552 12.08 1.836 15.12 2.172 19.42 2.570 25.28 3.041 32.84 3.597 41.97 4.256 52.21 5.036 62.86 5.958 73.10 Size (pm) Vol Under % 7.049 82.14 8.339 89.44 9.866 94.72 11.673 98.03 13.811 99.64 16.340 100.00 19.332 100.00 22.872 100.00 27.060 100.00 32.015 100.00 37.878 100.00 44.814 100.00 53.020 100.00 Size (pm) Vol Under % 62.729 100.00 74.216 100.00 87.807 100.00 103.886 100.00 122.909 100.00 145.416 100.00 172.044 100.00 203.549 100.00 240.822 100.00 284.922 100.00 337.096 100.00 398.825 100.00 471.857 100.00 Size (pm) Vol Under % 558.262 100.00 660.491 100.00 781.439 100.00 924.535 100.00 1093.834 100.00 1294.136 100.00 1531.116 100..00 1811.492 100.00 2143.210 100.00 2535.671 100.00 3000.000 100.00 Malvem Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: Marjorie 2005 Malvem, UK ^ Serial Number : 34403-197 Record Number: 119 Tel := +(441 (0) 1684-892456 Fax +144) (0) 1684-892789^ 95 ^ 27 Mar 2008 12:54:34 PM -Hematite, Friday, December 15, 2006 11:33:17 AM Particle Size Distribution (1) 100 0.5 B.01 0.1^1^10 Particle Size (pm) 6 5.5 5 4.5 40 3.5 3 2.5 2 1.5 110 100 90 80 70 60 50 40 30 20 10 1000 3008 Particle Name: Hematite Particle RI: 2.900 Dispersant Name: Water Accessory Name: Hydro 2000S (A) Absorption: 0.05 Dispersant RI: 1.330 Analysis model: General purpose Size range: 0.020^to 2000.000 um Weighted Residual: 2.162 Sensitivity: Enhanced Obscuration: 17.70^% Result Emulation: Off Concentration: ^ Span : ^ Uniformity: ^ Result units: 0.0024^%Vol 3.054 0.981 Volume Specific Surface Area: ^ Surface Weighted Mean D[3,2]: ^Vol. Weighted Mean D[4,3]: 4.87^Wig 1.232^um^ 3.027^um d(0.1):^0.507^um^ d(0.5):^2.093^um^ d(0.9):^6.900  MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: Hematite Hematite Friday, December 15, 2006 11:33:17 AM Sample Source & type: ^ Measured by: ^ Analysed: Factory = Elementis Pigments^contract Friday, December 15, 2006 11:33:18 AM Size (pm) Vol Under °% 0.010 0.00 0.012 0.00 0.014 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.027 0.00 0.032 0.00 0.038 0.00 0.045 0.00 0.054 0.00 0.064 0.00 0.075 0.00 Size (pm) Vol Under % 0.089 0.00 0.105 0.00 0.125 0.00 0.147 0.00 0.174 0.00 0.206 0.05 0.244 0.40 0.289 1.35 0.342 3.00 0.404 5.46 0.478 8.72 0.566 12.69 0.669 17.22 Size (pm) Vol Under % 0.792 22.11 0.937 27.13 1.109 32.12 1.312 36.97 1.552 41.67 1.836 46.32 2.172 51.07 2.570 56.10 3.041 61.55 3.597 67.45 4.256 73.66 5.036 79.86 5.958 85.63 Size (pm) Vol Under % 7.049 90.57 8.339 94.40 9.866 97.08 11.673 98.73 13.811 99.59 16.340 99.92 19.332 100.00 22.872 100.00 27.060 100.00 32.015 100.00 37.878 100.00 44.814 100.00 53.020 100.00 Size (pm) Vol Under % 62.729 100.00 74.216 100.00 87.807 100.00 103.886 100.00 122.909 100.00 145.416 100.00 172.044 100.00 203.549 100.00 240.822 100.00 284.922 100.00 337.096 100.00 398.825 100.00 471.857 100.00 Size (pm) Vol Under % 558.262 100.00 660.491 100.00 781.439 100.00 924.535 100.00 1093.834 100.00 1294.136 100.00 1531.116 100.00 1811.492 100.00 2143.210 100.00 2535.671 100.00 3000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: Marjorie 2005 Malvern, UK ^ Serial Number : 34403-197 Record Number 103 Tel := +[4it] (0) 1684-892456 Fax +[44] (0) 1684-892789^ 96 ^ 27 Mar 2008 1:44:54 PM  Particle Size Distribution 110 100 90 80 - 70 - 60 50 - 40 - 30 - 20 - 10 a) E 8.01 1000^30080.1^1^10 Particle Size (pm) 100 -Goethite, Friday, December 15, 2006 3:36:22 PM Particle Name: Iron hydroxide Particle RI: 2.400 Dispersant Name: Water Accessory Name: Hydro 2000S (A) Absorption: 0.1 Dispersant RI: 1.330 Analysis model: General purpose Size range: 0.020^to 2000.000 urn Weighted Residual: 1.782 Sensitivity: Enhanced Obscuration: 11.21^% Result Emulation: Off Concentration: 0.0027^%Vol Specific Surface Area: 0.689^m2/g d(0.1):^0.839^u m Span : 2.589 Surface Weighted Mean D[3,2]: 2.178^um d(0.5):^4.361^um Uniformity: 0.809 Vol. Weighted Mean D[4,3]: 5.543^um Result units: Volume d(0.9):^12.133^urn MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: Goethite ^ Iron hydroxide Friday, December 15, 2006 3:36:22 PM Sample Source & type: ^ Measured by: ^ Analysed: Factory = Elementis Pigments^contract Friday, December 15, 2006 3:58:03 PM Size (pm) Vol Under % 0.010 0.00 0.012 0.00 0.014 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.027 0.00 0.032 0.00 0.038 0.00 0.045 0.00 0.054 0.00 0.064 0.00 0.075 0.00 Size (pm) Vol Under % 0.089 0.00 0.105 0.00 0.125 0.00 0.147 0.00 0.174 0.00 0.206 0.00 0.244 0.00 0.289 0.09 0.342 0.54 0.404 1.37 0.478 2.64 0.566 4.37 0.669 6.53 Size (pm) Vol Under % 0.792 9.06 0.937 11.90 1.109 14.99 1.312 18.27 1.552 21.71 1.836 25.34 2.172 29.22 2.570 33.44 3.041 38.10 3.597 43.31 4.256 49.11 5.036 55.49 5.958 62.33 Size (pm) Vol Under % 7.049 69.42 8.339 76.45 9.866 83.03 11.673 88.82 13.811 93.49 16.340 96.88 19.332 98.97 22.872 99.89 27.060 100.00 32.015 100.00 37.878 100.00 44.814 100.00 53.020 100.00 Size (pm) Vol Under %o 62.729 100.00 74.216 100.00 87.807 100.00 103.886 100.00 122.909 100.00 145.416 100.00 172.044 100.00 203.549 100.00 240.822 100.00 284.922 100.00 337.096 100.00 398.825 100.00 471.857 100.00 Size (pm) Vol Under % 558.262 100.00 660.491 100.00 781.439 100.00 924.535 100.00 1093.834 100.00 1294.136 100.00 1531.116 100.00 1811.492 100.00 2143.210 100.00 2535.671 100.00 3000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: Marjorie 2005 Malvem, UK ^ Serial Number : 34403-197 Record Number 125 Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789^ 97 27 Mar 2008 1:44:21 PM Particle Size Distribution 0.1^1^10 Particle Size (pm) 100 90 80 70 60 50 40 30 20 10 100^1000 3008 10 9 8 7 6 5 4 3 2 E 0 1 ILIISILE11 Result Analysis Report Sample Name:^ SOP Name: ^ Measured: MP 10-52 Talc ^ Monday, July 14, 2003 9:55:55 AM Sample Source & type:^Measured by: ^ Analysed: Factory^ contract Monday, July 14, 2003 9:55:56 AM Particle Name:^ Accessory Name:^ Analysis model:^ Sensitivity: Talc^ General purpose Enhanced Particle RI: Absorption:^ Size range: Obscuration: 1.589 0.1^ 0.020^to 2000.000^urn^12.47^% Dispersant Name:^ Dispersant RI: Weighted Residual: Result Emulation: Water^ 1.330 1.418^%^ Off Concentration: ^ 0.0050^%Vol Specific Surface Area: 2.01^nfig d(0.1):^1.602^Urn Span : 1.778 Surface Weighted Mean D[3,2]: 2.980^um d(0.5):^3.888^urn Uniformity: Result units: 0.553^ Volume Vol. Weighted Mean D[4,3]: 4.576^urn d(0.9):^8.517^Urn -MP 10-52, Monday, July 14, 2003 9:55:55 AM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.012 0.00 0.014 0.00 0.015 • 0.00 0.017 0.00 0.019 0.00 0.021 0.00 0.024 0.00 0.026 0.00 0.030 0.00 0.033 0.00 0.037 0.00 0.041 0.00 0.045 0.00 0.051 0.00 0.056 0.00 Size (pm) Vol Under % 0.063 0.00 0.070 0.00 0.078 0.00 0.087 0.00 0.097 0.00 0.108 0.00 0.120 0.00 0.134 0.00 0.150 0.00 0.167 0.00 0.186 0.00 0.207 0.00 0.231 0.00 0.257 0.00 0.286 0.00 0.319 0.00 0.355 0.00 Size (pm) Vol Under % 0.396 0.00 0.441 0.04 0.492 0.16 0.548 0.40 0.610 0.72 0.680 1.13 0.758 1.62 0.844 2.21 0.941 2.92 1.048 3.79 1.168 4.87 1.302 6.23 1.451 7.98 1.616 10.20 1.801 12.97 2.007 16.38 2.236 20.44 Size (pm) Vol Under % 2.492 25.17 2.776 30.51 3.094 36.39 3.447 42.69 3.841 49.25 4.280 55.90 4..769 62.46 5.314 68.77 5.921 74.65 6.598 80.00 7.351 84.71 8.191 88.73 9.127 92.04 10.170 94.67 11.333 96.67 12.628 98.09 14.071 99.03 Size (pm) Vol Under % 15.678 99.59 17.470 99.89 19.466 99.98 21.690 100.00 24.169 100.00 26.931 100.00 30,008 100.00 33.437 100.00 37.258 100.00 41.515 100.00 46.259 100.00 51.545 100.00 57.435 100.00 63.998 100.00 71.311 100.00 79.459 100.00 88.539 100.00 Size (pm) Vol Under % 98.656 100.00 109.929 100.00 122.491 100.00 136.488 100.00 152.084 100.00 169.462 100.00 188.826 100.00 210.403 100.00 234.446 100.00 261.235 100.00 291.086 100.00 324.348 100.00 361.411 100.00 402.708 100.00 448.725 100.00 500.000 100.00 Malvem Instruments Ltd.^ lvtastersizer 2000 Ver. Version 4.00 ^ File name: Contract Malvern, UK ^ Serial Number : 34403-197 Record Number: 159 Tel^+f441 (0) 1684-892456 Fax -1-(441 (0) 1684-892789 ^ 14 Jul 2003 10:06:1C 98 Appendix E: Size analysis for Vermelho samples 99 Particle Name: Iron III Oxide 0.03 Accessory Name:^ Analysis model:^ Sensitivity: Hydro 2000S (A) General purpose Enhanced Particle RI:^ Absorption: 2.420 0.1 Dispersant Name:^ Dispersant RI: Water^ 1.330 Size range:^ Obscuration: 0.020^to 2000.000 urn^19.56^% Weighted Residual:^Result Emulation: 0.245 Off Suilace Weighted Mean D[3,2]: 4.815^1.1111 Span : 5.863 Result units: Volume d(0.9): 94.831^UMd(0.5):^15.858^UM Uniformity: 1.81 Vol. Weighted Mean 0[4,3]: 34.293^urn Concentration: 0.0117^%Vol Specific Sulface Area: 1.25^reg d(0.1):^1.854^UM 1000.1^1^10 Particle Size (pm) Particle Size Distribution 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 1000 3008 -CVRD-1, Wednesday, June 02, 2004 2:20:38 PM 00.01 3.5 3 2.5 2 1.5 1 0.5 MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name:^ Measured: CVRD-1 ^ CVRD Wednesday June 02 2004 2:20:38 PM Sample Source & type: ^ Measured by:^ Analysed: Vermelho^ contract Wednesday, June 02, 2004 2:20:39 PM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.060 0.00 0.069 0.00 0.079 0.00 0.091 0.00 Size (pm) Vol Under % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.01 0.316 0.10 0.363 0.27 0.417 0.53 0.479 0.87 0.550 1.30 0.631 1.81 0.724 2.41 0.832 3.11 0.955 3.92 Size (pm) Vol Under % 1.096 4.85 1259 5.94 1.445 7.20 1.660 8.67 1.905 10.35 2.188 12.26 2.512 14.39 2.884 16.72 3.311 19.23 3.802 21.85 4.365 24.55 5.012 27.28 5.754 30.00 6.607 32.69 7.586 35.37 8.710 38.04 10.000 40.73 Size (pm) Vol Under % 11.482 43.46 13.183 46.22 15.136 49.04 17.378 51.90 19.953 54.82 22.909 57.80 26.303 60.83 30.200 63.92 34.674 67.05 39.811 70.24 45.709 73.47 52.481 76.72 60.256 79.97 69.183 83.19 79.433 86.29 91.201 89.22 104.713 91.88 Size (pm) Vol Under % 120.226 94.20 138.038 96.12 158.489 97.62 181.970 98.71 208.930 99.42 239.883 99.83 275.423 99.99 316.228 100.00 363.078 100.00 416.869 100.00 478.630 100.00 549.541 100.00 630.957 100.00 724.436 100.00 831.764 100.00 954.993 100.00 1096.478 100.00 size (pm) Vol Under % 1258.925 100.00 1445.440 100.00 1659.587 100.00 1905.461 100.00 2187.762 100.00 2511.886 100.00 2884.032 100.00 3311.311 100.00 3801. 894 100.00 4365.158 100.00 5011.872 100.00 5754.399 100.00 6606.934 100.00 7585.776 100.00 8709.636 100.00 10000.000 100.00 VIalvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: CVRD ialvern,^ Serial Number : 34403-197 Record Number: r? ,. ret := +1441 (0) 1684-892456 Fax +04] (0) 1684-892789 ^ 100 02 Jun 2004 02:39:29 PM Particle RI:^ Absorption: 2.420 0.1 Dispersant Name:^ Dispersant RI: Water^ 1.330 Size range:^ Obscuration: 0.020^to 2000.000 urn^13.99^% Weighted Residual:^Result Emulation: 0.195 Off d(0.5):^23.170^WTI Concentration: 0.0142^%Vol Specific Surface Area: 0.76^rn2/g d(0.1):^3.208^UM Span : 4.167 Surface Weighted Mean D[3,2]: 7.899^urn Uniformity:^ Result units: 1.3^ Volume Vol. Weighted Mean D(4,3]: 39.377^urn d(0.9): 99.760^UM Ez0 4.5 4 3.5 3 2.5 2 1.5 1 0.5 Particle Name: Accessory Name:^ Analysis model: Sensitivity: Iron III Oxide 0.03 Hydro 2000S (A) General purpose Enhanced 9) . 01 Particle Size Distribution -CVRD-2, Monday, July 05, 2004 1:24:03 PM 100 1000 100 - 90 - 80 - 70 - 60 - 50 ▪ 40 30 - 20 - 10 3006)0.1^1^10 Particle Size (pm) X71.4011116,. MASTERSIZER Result Analysis Report Sample Name:^ SOP Name: ^ Measured: CVRD-2 CVRD Monday, July 05, 2004 1:24:03 PM Sample Source & type:^Measured by: ^ Analysed: Vermelho^ contract Monday, July 05, 2004 1:24:05 PM Size (pm) Vol Under % 0.020 0.00 0.022 0.00 0.025 0.00 0.028 0.00 0.031 0.00 0.034 0.00 0.038 0.00 0.043 0.00 0.048 0.00 0.053 0.00 0.059 0.00 0.066 0.00 0.073 0.00 0.082 0.00 0.091 0.00 0.101 0.00 0.113 0.00 Size (pm) Vol Under % 0.126 0.00 0.140 0.00 0.156 0.00 0.174 0.00 0.194 0.00 0.216 0.00 0.241 0.00 0.268 0.00 0.299 0.00 0.333 0.00 0.371 0.02 0.414 0.09 0.461 0.19 0.514 0.31 0.572 0.46 0.638 0.64 0.711 0.83 Size (pm) Vol Under % 0.792 1.06 0.882 1.31 0.983 1.60 1.096 1.94 1.221 2.33 1.360 2.78 1.516 3.32 1.689 3.94 1.882 4.67 2.097 5.51 2.337 6.47 2.604 7.56 2.901 8.77 3.233 10.10 3.602 11.54 4.014 13.10 4.472 14.75 Size (pm) Vol Under % 4.983 16.50 5.553 18.33 6.187 20.24 6.894 22.23 7.682 24.29 8.560 26.44 9.538 28.67 10.628 30.98 11.842 33.38 13.195 35.86 14.703 38.42 16.383 41.06 18.255 43.77 20.341 46.55 22.665 49.41 25.255 52.33 28.141 55.32 Size (pm) Vol Under % 31.357 58.36 34.940 61.44 38.932 64.56 43.381 67.70 48.338 70.84 53.861 73.96 60.016 77.05 66.874 80.07 74.516 82.98 83.030 85.75 92.518 88.33 103.090 90.69 114.870 92.80 127.996 94.63 142.622 96.16 158.919 97.40 177.078 98.36 Size (pm) Vol Under % 197.312 99.06 219.859 99.53 244.982 99.83 272.975 99.99 304.168 100.00 338.925 100.00 377.653 100.00 420.806 100.00 468.891 100.00 522.471 100.00 582.172 100.00 648.696 100.00 722.821 100.00 805.417 100.00 897.450 100.00 1000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: CVRD Malvern, UK ^ Serial Number : 34403-197 Record Number: 51 Tel := 1[44] (0) 1684-892458 Fax +[44] (0) 1684-892789 ^ 101 ^ 05 Jul 2004 01:28:39 PM Particle Size Distribution 4.5 4 3.5 30 a)^2.5 2 1.5 1 0.5 9).01 0.1^1^10 Particle Size (pm) 100 90 80 - 70 - 60 - 50 - 40 - 30 20 10 3008100 ^ 1000 -CVRD, Monday May 17, 2004 11:25:25 AM Particle Name:^ Accessory Name:^ Analysis model:^Sensitivity: Iron III Oxide 0.03 Hydro 2000S (A) General purpose Enhanced Particle RI: Absorption: Size range: Obscuration: 2.420^ 0.1 ^ 0.020^to 2000 000 urn^14.58^% Dispersant Name:^ Dispersant RI:^ Weighted Residual:^Result Emulation: Water 1.330 0.204 Off Concentration: ^ 0.0133^%Vol Specific Surface Area: 0.813^m2ig d(0.1):^3.481^Urn Span : 5.436 Surface Weighted Mean 0[3,2]: 7.378^urn d(0.5):^16.138^urn Uniformity:^ Result units: 1.65^ Volume Vol. Weighted Mean 13[4,3]: 33.846^urn d(0.9): 91.205^Urn AfarAINIIM, MASTERSIZER Result Analysis Report Sample Name:^ SOP Name: ^ Measured: CVRD^ CVRD Monday, May 17, 2004 11:25:25 AM Sample Source & type:^Measured by: ^ Analysed: Vermelho contract Monday, May 17, 2004 11:25:27 AM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.060 0.00 0.069 0.00 0.079 0.00 0.091 0.00 Size (pm) Vol Under % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.02 0.316 0.13 0.363 0.29 0.417 0.49 0.479 0.69 0.550 0.89 0.631 1.05 0.724 1.18 0.832 1.26 0.955 1.32 Size (pm) Vol Under % 1.096 1.38 1.259 1.48 1.445 1.69 1.660 2.07 1.905 2.70 2.188 3.85 2.512 5.01 2.884 6.80 3.311 9.07 3.802 11.79 4.365 14.91 5.012 18.36 5.754 22.05 6.607 25.87 . 7.586 29.74 8.710 33.60 10.000 37.40 Size (pm) Vol Under % 11.482 41.13 13.183 44.78 15.136 48.36 17.378 51.88 19.953 55.36 22.909 58.80 26.303 62.22 30.200 65.60 34.674 68.95 39.811 72.23 45.709 75.45 52.481 78.59 60.256 81.65 69.183 84.59 79.433 87.39 91.201 90.00 104.713 92.37 Size (pm) Vol Under % 120.226 94.45 138.038 96.20 158.489 97.60 181.970 98.64 208.930 99.35 239.883 99.78 275.423 99.99 316.228 100.00 363.078. 100.00 418.869 100.00 478.630 100.00 549.541 100.00 630.957 100.00 724.436 100.00 831.784 100.00 954.993 100.00 1096.478 100.00 Size (pm) Vol Under % 1258.925 100.00 1445.440 100.00 1859.587 100.00 1905.461 100.00 2187.762 100.00 2511.888 100.00 2884.032 100.00 3311.311 100.00 3801.894 100.00 4385.158 100.00 5011.872 100.00 5754.399 100.00 6806.934 100.00 7585.776 100.00 8709.636 100.00 10000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: CVRD 3 Malvern, UK ^ Serial Number : 34403-197 Record Number: 6 Tel := +[441(0) 1684-892456 Fax +(44) (0) 1684-892789 ^ 102 17 May 2004 11:36:41 AM 6<CR- 5 E 4 0 3 2 (6.01 Particle Size Distribution 100 1000 100 - 90 - 80 - 70 - 60 - 50 - 40 ▪ 30 20 - 10 3006.410.1^1^10 Particle Size (pm) -CVRD-4, Monday, July 05, 2004 1:55:02 PM MASTERSIZER Result Analysis Report Sample Name: CVRD-4 Sample Source & type: Vermelho SOP Name: CVRD Measured by: contract Measured: Monday, July 05, 2004 1:55:02 PM Analysed: Monday, July 05, 2004 1:55:03 PM Particle Name: Accessory Name: Analysis model: Sensitivity: Iron Ill Oxide 0.03 Hydro 20008 (A) General purpose Enhanced Particle RI: Absorption: Size range: Obscuration: 2.420 0.1 0.020^to^2000.000^urn 13.45^% Dispersant Name: Dispersant RI: Weighted Residual: Result Emulation: Water 1.330 0.381 Off Concentration: Span : Uniformity: Result units: 0.0193^%Vol 2.539 0.826 Volume Specific Surface Area: Surface Weighted Mean D(3,2]: Vol. Weighted Mean D[4,3]: 0.52^m2/g 11.533^urn 75.686^urn d(0.1):^4.787^urn ^ d(0.5):^64.528^urn ^ d(0.9): 168.617^UM Size (pm) Vol Under % 0.020 0.00 0.022 0.00 0.025 0.00 0.028 0.00 0.031 0.00 0.034 0.00 0.038 0.00 0.043 0.00 0.048 0.00 0.053 0.00 0.059 0.00 0.066 0.00 0.073 0.00 0.082 0.00 0.091 0.00 0.101 0.00 0.113 0.00 Size (pm) Vol Under % 0.126 0.00 0.140 0.00 0.156 0.00 0.174 0.00 0.194 0.00 0.216 0.00 0.241 0.00 0.268 0.00 0.299 0.00 0.333 0.03 0.371 0.09 0.414 0.16 0.461 0.25 0.514 0.35 0.572 0.47 0.638 0.59 0.711 0.73 Size (pm) Vol Under % 0.792 0.88 0.882 1.04 0.983 1.23 1.096 1.44 1.221 1.69 1.360 1.97 1.516 2.31 1.689 2.70 1.882 3.15 2.097 3.67 2.337 4.26 2.604 4.92 2.901 5.66 3.233 6.47 3.602 7.36 4.014 8.31 4.472 9.33 Size (pm) Vol Under % 4.983 10.41 5.553 11.54 6.187 12.73 6.894 13.98 7.682 15.28 8.560 16.64 9.538 18.06 10.628 19.52 11.842 21.04 13.195 22.58 14.703 24.15 16.383 25.73 18.255 27.30 20.341 28.85 22.665 30.39 25.255 31.90 28.141 33.41 Size (pm) Vol Under % 31.357 34.94 34.940 36.53 38.932 38.24 43.381 40.14 48.338 42.32 53.861 44.84 60.016 47.77 66.874 51.18 74.516 55.06 83.030 59.38 92.518 64.08 103.090 69.03 114.870 74.07 127.996 79.02 142.622 83.69 158.919 87.92 177.078 91.57 Size (pm) Vol Under % 197.312 94.54 219.859 96.82 244.982 98.41 272.975 99.40 304.168 99.90 338.925 100.00 377.653 100.00 420.806 100.00 468.891 100.00 522.471 100.00 582.172 100.00 648.696 100.00 722.821 100.00 805.417 100.00 897.450 100.00 1000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: CVRD Malvem, UK ^ Serial Number : 34403-197 Record Number 58 rel 11441 (0) 1684-892456 Fax +(44] (0) 1684-892789 ^ 103 05 Jul 2004 02:07:14 PM Concentration: 0.0320^%Vol Span : 2.656 Uniformity:^ Result units: 0.834 Volume d(0.5):^51.296^UM d(0.9): 145.077^urn Vol. Weighted Mean D[4,3]: 65.938^urn Specific Surface Area: 0.35^m2Ig d(0.1):^8.842^UM Surface Weighted Mean D[3,2]: 17.147^urn 1000.1^1^10 Particle Size (pm) Particle Name: Iron III Oxide 0.03 Particle RI:^ Absorption: 2.420 0.1 Dispersant Name:^ Dispersant RI: Water^ 1.330 Size range:^ Obscuration: 0.020^to 2000.000 urn^14.00^% Weighted Residual:^Result Emulation: 0.186 Off Accessory Name:^ Analysis model: Sensitivity: Hydro 2000S (A) General purpose Enhanced Particle Size Distribution 100 90 80 70 60 50 40 30 20 10 1000 300N%.01 a) E 0 -CVRD-5, Monday, July 05, 2004 1:35:29 PM MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name:^ Measured: CVRD-5 CVRD Monday, July 05, 2004 1:35:29 PM Sample Source & type:^Measured by:^ Analysed: Vermelho^ contract Monday, July 05, 2004 1:35:30 PM Size (pm) Vol Under % 0.020 0.00 0.022 0.00 0.025 0.00 0.028 0.00 0.031 0.00 0.034 0.00 0.038 0.00 0.043 0.00 0.048 0.00 0.053 0.00 0.059 0.00 0.066 0.00 0.073 0.00 0.082 0.00 0.091 0.00 0.101 0.00 0.113 0.00 Size (pm) Vol Under % 0.126 0.00 0.140 0.00 0.156 0.00 0.174 0.00 0.194 0.00 0.216 0.00 0.241 0.00 0.268 0.00 0.299 0.00 0.333 0.00 0.371 0.00 0.414 0.00 0.461 0.05 0.514 0.11 0.572 0.18 0.638 0.26 0.711 0.35 Size (pm) Vol Under % 0.792 0.44 0.882 0.54 0.983 0.65 1.096 0.76 1.221 0.89 1.360 1.02 1.516 1.18 1.689 1.35 1.882 1.55 2.097 1.77 2.337 2.02 2.604 2.32 2.901 2.65 3.233 3.03 3.602 3.46 4.014 3.94 4.472 4.50 Size (pm) Vol Under % 4.983 5.12 5.553 5.82 6.187 6.62 6.894 7.51 7.682 8.51 8.560 9.64 9.538 10.89 10.628 12.29 11.842 13.82 13.195 15.50 14.703 17.33 16.383 19.31 18.255 21.43 20.341 23.71 22.665 26.14 25.255 28.72 28.141 31.45 Size (pm) Vol Under % 31.357 34.36 34.940 37.44 38.932 40.72 43.381 44.19 48.338 47.88 53.861 51.79 60.016 55.90 66.874 60.20 74.516 64.63 83.030 69.14 92.518 73.64 103.090 78.03 114.870 82.20 127.996 86.06 142.622 89.50 158.919 92.45 177.078 94.89 Size (pm) Vol Under % 197.312 96.79 219.859 98.18 244.982 99.11 272.975 99.67 304.168 99.95 338.925 100.00 377.653 100.00 420.806 100.00 468.891 100.00 522.471 100.00 582.172 100.00 648.696 100.00 722.821 100.00 805.417 100.00 897.450 100.00 1000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ Pile name: CVRD Malvem, UK ^ Serial Number : 34403-197 Record Number: 54 Tel := +[44] (0) 1684-892456 Fax +[441(0) 1684-892789 ^ 104 05 Jul 2004 02:07:33 PM Particle Size Distribution 5 4.5 4 3.5 at^3 2.5 2 1.5 1 0.5 %.0 1 0.1^1^10 Particle Size (pm) 100 - 90 - 80 - 70 60 - 50 - 40 - 30 20 - 10 3000100^1000 -CVRD-6, Wednesday, June 02, 2004 2:11:03 PM Particle Name: ^ Accessory Name:^ Analysis model:^ Sensitivity: Iron III Oxide 0.03 Hydro 2000S (A) General purpose Enhanced Particle RI:^ Absorption: ^ Size range:^ Obscuration: 2.420 0.1 ^ 0.020^to 2000.000 urn^16.99^% Dispersant Name:^ Dispersant RI: Weighted Residual:^Result Emulation: Water^ 1.330 0.226 Off Concentration: ^ 0.0201^%Vol Specific Surface Area: 0.648^m2ig d(0.1):^4.215^UM Span : 3.551 Surface Weighted Mean D[3,2]; 9.255^urn d(0.5):^28.599^UM Uniformity: 1.11 Vol. Weighted Mean D[4,33: 43.653^urn Result units: Volume d(0.9):^105.766^urn MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name:^ Measured: CVRD-6 ^ CVRD Wednesday, June 02, 2004 2:11:03 PM Sample Source & type: ^ Measured by:^ Analysed: Vermelho contract^ Wednesday, June 02, 2004 2:11:04 PM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.060 0.00 0.069 0.00 0.079 0.00 0.091 0.00 Size (pm) Vol Under % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.00 0.316 0.01 0.363 0.09 0.417 0.19 0.479 0.34 0.550 0.51 0.631 0.71 0.724 0.93 0.832 1.17 0.955 1.46 Size (pm) Vol Under % 1.096 1.78 1.259 2.15 1.445 2.58 1.660 3.10 1.905 3.72 2.188 4.46 2.512 5.33 2.884 6.34 3.311 7.52 3.802 8.87 4.365 10.41 5.012 12.13 5.754 14.04 6.607 16.16 7.586 18.48 8.710 21.02 10.000 23.76 Size (pm) Vol Under % 11.482 26.70 13.183 29.82 15.136 33.10 17.378 36.53 19.953 40.09 22.909 43.79 26.303 47.61 30.200 51.58 34.674 55.68 39.811 59.92 45.709 64.28 52.481 68.74 60.256 73.25 69.183 77.72 79.433 82.04 91.201 86.10 104.713 89.76 Size (pm) Vol Under % 120.226 92.90 138.038 95.45 158.489 97.37 181.970 98.70 208.930 99.50 239.883 99.90 275.423 99.99 316.228 100.00 363.078 100.00 416.869 100.00 478.630 100.00 549.541 100.00 630.957 100.00 724.436 100.00 831.764 100.00 954.993 100.00 1096.478 100.00 Size (pm) Vol Under % 1258.925 100.00 1445.440 100.00 1659.587 100.00 1905.461 100.00 2187.762 1 00. 00 2511.886 100.00 2884.032 100.00 3311.311 100.00 3801.894 100.00 4365.158 100.00 5011.872 100.00 5754.399 100.00 6606.934 100.00 7585.776 100.00 8709.636 100.00 10000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver 5.1 ^ File name: CVRD Malvern, UK ^ Serial Number: 34403 - 197 Record Number: 29 Tel := +[44) (0) 1684-892456 Fax +[44) (0) 1684-892789 ^ 105 02 Jun 2004 02:15:04 PM Particle Size Distribution 100 90 80 70 60 50 40 30 20 10 E 0 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 7101 ^ 0.1 ^ 1 ^ 10 ^ 100 ^ 1000^3000 Particle Size (pm) -CVRD-7, Wednesday, June 02, 2004 1:40:14 PM Particle Name:^ Accessory Name:^ Analysis model:^Sensitivity: Iron Ill Oxide 0.03 Hydro 2000S (A) General purpose Enhanced Particle RI: Absorption: Size range: Obscuration: 2.420^ 0. 1 ^ 0.020^to 2000.000 urn^17.73^% Dispersant Name:^ Dispersant RI:^ Weighted Residual:^Result Emulation: Water 1.330 0.286 Off Concentration: ^ 0.0100^%Vol Specific Surface Area: 1.3^wig d(0.1):^1.859^GM Span : 4.053 Surface Weighted Mean D[3,2]: 4.611^urn d(0.5):^13.376^um Uniformity: 1.28 Vol. Weighted Mean D[4,3]: 22.381^urn Result units: Volume d(0.9): 56.075^um MASTERSIZER Result Analysis Report Sample Name: ^ SOP Name: ^ Measured: CVRD-7 ^ CVRD Wednesday, June 02, 2004 1:40:14 PM Sample Source & type: ^ Measured by: ^ Analysed: Vermelho^ contract Wednesday, June 02, 2004 1:40:16 PM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.060 0.00 0.069 0.00 0.079 0.00 0.091 0.00 Size (pm) Vol Under % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.02 0.316 0.12 0.363 0.32 0.417 0.61 0.479 0.99 0.550 1.46 0.631 2.01 0.724 2.63 0.832 3.34 0.955 4.15 Size (pm) Vol Under % 1.096 5.06 1.259 6.11 1.445 7.32 1.660 8.70 1.905 10.30 2.188 12.13 2.512 14.18 2.884 16.45 3.311 18.92 3.802 21.55 4.365 24.31 5.012 27.18 5.754 30.11 6.607 33.12 7.586 36.20 8.710 39.37 10.000 42.66 Size (pm) Vol Under % 11.482 46.07 13.183 49.62 15.136 53.30 17.378 57.11 19.953 61.05 22.909 65.10 26.303 69.22 30.200 73.36 34.674 77.46 39.811 81.41 45.709 85.13 52.481 88.52 60.256 91.50 69.183 94.02 79.433 96.04 91.201 97.59 104.713 98.68 Sire (pm) Vol Under % 120.226 99.39 138.038 99.79 158.489 99.96 181.970 100.00 208.930 100.00 239.883 100.00 275.423 100.00 316.228 100.00 363.078 100.00 416.869 100.00 478.630 100.00 549.541 100.00 630.957 100.00 724.436 100.00 831.764 100.00 954.993 100.00 1096.478 100.00 Size (pm) Vol Under % 1258.925 100.00 1445.440 100.00 1659.587 100.00 1905.461 100.00 2187.762 100.00 2511.886 100.00 2884.032 100.00 3311.311 100.00 3801.894 100.00 4365.158 100.00 5011.872 100.00 5754,399 100.00 6606.934 100.00 7585.776 100.00 8709.636 100.00 10000.000 100.00 Malvern Instruments Ltd.^ Mastersizer 2000 Ver. 5.1 ^ File name: CVRD ma/ vem, UK ^ Serial Number 34403-197 Record Number 22 Tel 1+44] (0) 1684-892456 Fax +[44j (0) 1684-892789 ^ 106 02 Jun 2004 01:44:15 PM Particle Name: Iron III Oxide 0.03 Accessory Name:^ Analysis model:^Sensitivity: Hydro 20008 (A) General purpose Enhanced Particle RI:^ Absorption: 2.420 0.1 Dispersant Name:^ Dispersant RI: Water^ 1.330 Size range: Obscuration: 0.020^to 2000.000 urn^12.71^% Weighted Residual:^Result Emulation: 0.298 Off Span : 5.709 d(0.5):^13.489^urn Result units: Volume d(0.9): 79.245^UM Uniformity: 1.73 Vol. Weighted Mean 0[4,3]: 28.908^urn Concentration: 0.0082^%Vol Specific Surface Area: 1.13^m2/g d(0.1):^2.244^urn Surface Weighted Mean 0[3,2]: 5.302^UM Particle Size Distribution 4 3.5 3 2.5 2 0 1.5 1 0.5 9101 0.1^1^10 Particle Size (pm) 100 - 90 80 70 60 50 40 - 30 - 20 10 3008 -CVRD, Monday, May 17, 2004 12:13:15 PM 100 1000 A-777;z7,15,4,.. MASTERSIZER Result Analysis Report Sample Name:^ SOP Name: ^ Measured: CVRD^ CVRD Monday, May 17, 2004 12:13:15 PM Sample Source & type:^Measured by: ^ Analysed: Vermelho contract Monday, May 17, 2004 12:13:16 PM Size (pm) Vol Under % 0.010 0.00 0.011 0.00 0.013 0.00 0.015 0.00 0.017 0.00 0.020 0.00 0.023 0.00 0.026 0.00 0.030 0.00 0.035 0.00 0.040 0.00 0.046 0.00 0.052 0.00 0.060 0.00 0.069 0.00 0.079 0.00 0.091 0.00 Size (pm) Vol Under % 0.105 0.00 0.120 0.00 0.138 0.00 0.158 0.00 0.182 0.00 0.209 0.00 0.240 0.00 0.275 0.01 0.316 0.09 0.363 0.25 0.417 0.47 0.479 0.75 0.550 1.06 0.631 1.40 0.724 1.79 0.832 2.22 0.955 2.73 Size (pm) Vol Under % 1.096 3.35 1.259 4.13 1.445 5.10 1.660 6.32 1.905 7.82 2.188 9.63 2.512 11.76 2.884 14.19 3.311 16.88 3.802 19.80 4.365 22.86 5.012 26.03 5.754 29.26 6.607 32.51 7.586 35.80 8.710 39.12 10.000 42.50 Size (pm) Vol Under % 11.482 45.93 13.183 49.42 15.136 52.93 17.378 56.46 19.953 59.96 22.909 63.42 26.303 66.81 30.200 70.11 34.674 73.31 39.811 76.40 45.709 79.38 52.481 82.24 60.256 84.98 69.183 87.59 79.433 90.04 91.201 92.28 104.713 94.28 Size (pm) Vol Under % 120.226 95.99 138.038 97.39 158.489 98.46 181.970 99.21 208.930 99.69 239.883 99.93 275.423 100.00 316.228 100.00 363.078 100.00 416.869 100.00 478.830 100.00 549.541 100.00 630.957 100.00 724.436 100.00 831.764 100.00 954.993 100.00 1096.478 100.00 Size (pm) Vol Under % 1258.925 100.00 1445.440 100.00 1659.587 100.00 1905.461 100.00 2187.762 100.00 2511.886 100.00 2884.032 100.00 3311.311 100.00 3801.894 100.00 4365.158 100.00 5011.872 100.00 5754.399 100.00 6606.934 100.00 7585.778 100.00 8709.636 100.00 10000.000 100.00 Malvern Instruments Ltd.^ Maslersizer 2000 Ver. 5.1 ^ File name: CVRD Malvern, UK^ Serial Number : 34403-197 Record Number 15 Tel := +[44] (0) 1684-892456 Fax +(44j (0) 1684-892789 ^ 107 17 May 2004 12:17:13 PM Appendix F: Electro-acoustic results for individual and mixed mineral samples 108 ConcentratIon: Density: Tifrant VoluMe Added' Suspension Properties: Thu, 3 February 2005 1523:00 No background file used Thu, 3 February 2005 0938:00 no comment entered 0.863 10.98 0.866 File: Large Silica^ Date printed: 3/27/2008 Colloidal Dynamics '^m^L ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Measurement Date.^Thursday, 3 February 2005^Min Fred 0.30 MHz^[Speed: normal] Measurement Time, 15 22 01^ Version:^2.00 ,r; Analysis Date Standard Calibraticid , D. Sample Volume (initialy. : .Particle Concentrationfippat 225.963 Conductivity (initial):^ mS/cm 0.000 1.000 -r.......---^-,^ - - - ^-o.i ocP_00^2 00 _^4.00 ^ 690 _^8 DO^12,00 10 00^ ?u 0.800 - in ^-0200 5- 0.600 -1--- a.^ P^1 ^a-0.300^- i 0.400 -4 = I^wo -0.400 t^1::g 0.200 (..)-0.500 0.000 -,--- ----^..__. ^ -0.600^ 0.00^2.00^4.00^6.00^8.00^10.00^12.00 pH^ pH Page: 1 1 ^ 1434:54 ^ 0.00 ^ 23.5 ^ 3.09 0.389 ^ 130^-0.396 ^ Inf ^ B 0.00 ^ 225.10 ^ NaN ^ No background correction 2 ^ 1437:25 ^ 2.52 23.3 3.52 0.248 ^ 130 -0.404 ^ 7.19 B 0.12 225.22 ^ 0.000 No background correction 3 ^ 1439:37 ^ 4.72 ^ 23.3 ^ 4.00 0.218 ^ 130^-0.416 ^ 6.08 ^ B 0.14 ^ 225.24 ^ 0.000 ^ No background correction 4 ^ 1442:08 ^ 7.23 23.2 4.45 0.211 ^ 130 -0.425 ^ 5.76 B 0.15 225.26 ^ 0.000 No background correction 5 ^ 1444:19 ^ 9.42 ^ 23.2 ^ 4.96 0.211 ^ 130^-0.430 ^ 5.63 ^ B 0.16 ^ 225.26 ^ 0.000 ^ No background correction 6 ^ 1447:10 ^ 12.27 23.1 5.47 0.215 ^ 130 -0.439 ^ 5.52 B 0.17 225.27 ^ 0.000 No background correction 7 ^ 1450:21 ^ 15.45 ^ 23.1 ^ 5.95 0.220 ^ 130^-0.446 ^ 5.42 ^ B 0.18 ^ 225.28 ^ 0.000 ^ No background correction 8 ^ 1454:54 ^ 20.00 23.0 6.48 0.226 ^ 130 -0.452 ^ 5.33 B 0.19 225.29 ^ 0.000 No background correction 9 ^ 1457:25 ^ 22.52 ^ 23.0 ^ 6.94 0.229 ^ 130^-0.453 ^ 5.29 ^ B 0.20 ^ 225.30 ^ 0.000 ^ No background correction 10 ^ 1459:57 ^ 25.05 ^ 23.0 ^ 7.49 0.231 ^ 130 -0.457 ^ 5.24 B 0.21 225.31 ^ 0.000 No background correction 11 ^ 1502:49 ^ 27.92 23.0 ^ 8.02 0.234 ^ 130^-0.457 ^ 5.18 ^ B 0.21 ^ 225.31 ^ 0.000 ^ No background correction 12 ^ 1504:59 ^ 30.08 ^ 23.0 8.51 0.238 ^ 130 -0.457 ^ 5.12 ^ B 0.22 225.32 ^ 0.000 No background correction 13 ^ 1508:11 ^ 33.28 23.0 ^ 8.96 0.246 ^ 130^-0.459 ^ 5.03 B 0.24 ^ 225.34 ^ 0.000 ^ No background correction 14 ^ 1511:43 ^ 36.82 ^ 23.0 9.47 0.274 ^ 130 -0.467 ^ 4.91 ^ B 0.28 225.38 ^ 0.000 No background correction 15 ^ 1515:14 ^ 40.33 23.0 ^ 9.98 0.342 ^ 130^-0.484 ^ 4.84 B 0.36 ^ 225.46 ^ 0.000 ^ No background correction 16 ^ 1518:46 ^ 43.87 ^ 23.0 10.48 0.506 ^ 130 -0.507 ^ 4.88 ^ B 0.52 225.62 ^ 0.000 No background correction 17 ^ 1522:01 ^ 47.12 22.9 ^ 10.98 0.866 ^ 130^-0.516 ^ 4.96 B 0.86 ^ 225.96 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm:ss] [Mins] [C] [mSlcm] [rpm] [mPaN] [nm-1] Nut%][m l] [ml] File: Large Silica^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Titrant Data [Left]: Titrant Data [Right]: Coluctivity vs.HESA vs. pH ZetaProbe Potennometric Series Titration Report - Summary^ESA MEASUREMENTColloidal Dvna^cs^Measurement Date:^Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] ^M e r,t Measurement Time 12:09:30^ Version: 2.00 GeneraPeat Analysis Date. Standard Calibration Date. Tue. 29 March 2005 1210:30 Tue 29 March 2005 1033:31 Bacjcground File:, - Comment; No background file used no comment entered Concentration: Density: Titrant Volume Added: Suspension Properties: Titrant ID. Concentration: Density, Titrant Volume Added: 0 giml 7.295 m KOH (10%) Sample Volume (initial): Particle Concentration (initial): pH (initial): Conductivity (initial): Sample Volume (current): Particle Concentration (current): pH (current), Conductivity (current): 0.000 -; 0. 0^2 00^4.00^6.00^8.00^10.00^1") -0.500 E -1.000 ct -1.500 -2.000 0.800 E 0.700 in 0.600 - E 0.500 0.400 t 0.300 2 0.200 8 0.100 0.000 0.00^2.00 nn 4.00 ^ 6.00 ^ 8.00 ^ 10.00^12.00 File: Small Silica^ Date printed: 3/27/2008 pH ^ pH 1 ^ 1114:23 ^ 0.00 ^ 20.3 ^ 3.08 0.097 ^ 140^-0.877 ^ Inf ^ B 0.00 ^ 220.06 ^ NaN ^ No background correction 2 ^ 1117:39 ^ 3.27 20.4 ^ 3.63 0.069 ^ 140 -0.910 ^ 1.30 ^ B 0.97 221.03 ^ 0.000 No background correction 3 ^ 1120:35 ^ 6.20 ^ 20.4 3.98 0.067 ^ 140^-0.952 ^ 1.21 B 1.09 ^ 221.16 ^ 0.000 ^ No background correction 4 ^ 1123:46 ^ 9.38 20.5 ^ 4.41 0.068 ^ 140 -0.992 ^ 1.16 ^ B 1.20 221.26 ^ 0.000 No background correction 5 ^ 1126:58 ^ 12.58 ^ 20.6 ^ 4.91 0.071 ^ 140^-1.029 ^ 1.15 B 1.30 ^ 221.36 ^ 0.000 ^ No background correction 6 ^ 1130:30 ^ 16.12 20.7 ^ 5.47 0.075 ^ 140 -1.067 ^ 1.13 ^ B 1.40 221.46 ^ 0.000 No background correction 7 ^ 1133:21 ^ 18.97 ^ 20.8 ^ 5.98 0.079 ^ 140^-1.092 ^ 1.13 ^ B 1.48 ^ 221.54 ^ 0.000 ^ No background correction 8 ^ 1136:32 ^ 22.15 20.8 6.44 0.082 ^ 140 -1.115 ^ 1.13 ^ B 1.55 221.61 ^ 0.000 No background correction 9 ^ 1140:05 ^ 25.70 ^ 20.9 ^ 7.05 0.085 ^ 140^-1.140 ^ 1.12 B 1.62 ^ 221.68 ^ 0.000 ^ No background correction 10 ^ 1143:16 ^ 28.88 21.0 ^ 7.47 0.088 ^ 140 -1.164 ^ 1.12 ^ B 1.68 221.75 ^ 0.000 No background correction 11 ^ 1146:29 ^ 32.10 ^ 21.0 7.94 0.091 ^ 140^-1.199 ^ 1.11 B 1.77 ^ 221.83 ^ 0.000 ^ No background correction 12 ^ 1150:02 ^ 35.65 21.1 ^ 8.46 0.097 ^ 140 -1.253 ^ 1.10 ^ B 1.91 221.97 ^ 0.000 No background correction 13 ^ 1154:39 ^ 40.27 ^ 21.2 ^ 8.95 0.109 ^ 140^-1.322 ^ 1.10 ^ B 2.15 ^ 222.22 ^ 0.000 ^ No background correction 14 ^ 1158:30 ^ 44.12 21.2 9.45 0.135 ^ 140 -1.395 ^ 1.12 B 2.59 222.66 ^ 0.000 No background correction 15 ^ 1202:07 ^ 47.73 ^ 21.3 ^ 9.97 0.241 ^ 140^-1.476 ^ 1.32 ^ B 3.34 ^ 223.41 ^ 0.000 ^ No background correction 16 ^ 1205:45 ^ 51.37 21.4 10.47 0.381 ^ 140 -1.554 ^ 1.40 ^ B 4.68 224.74 ^ 0.000 No background correction 17 ^ 1209:30 ^ 55.12 ^ 21.4 ^ 10.98 0.689 ^ 140^-1.583 ^ 1.52 B 7.29 ^ 227.36 ^ 0.000 ^ No background correction ESA Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor No. Measurement Speed [hh:mm:ss] [Mins] [C] [mS/cm ] [rpm] [mPaN] [nm-1] [ml] [ml] [wt%] File: Small Silica^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Colloidal Dynamics ea h ers L'^EP t'^t- ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Measurement Date:^Thursday, 3 February 2005^Min Freq 0.30 MHz^[Speed: normal] Measurement Time:^10:52:17^ Version:^2.00 Titrant Concentration: . Density: Titrant Volume Added: CMol/L C  g/ml 0 ml Titrant ID. Concentration: Density: Titrant Volume Added: Suspension Properties: 10.96 255.6 ml 3.39 0.342 mS/cm 0.835 Sample Volume (initial). Particle Concentration (initial): pH (initial): Conductivity (initial): Sample Volume (current): Particle Concentration (current): pH (current): Conductivity (current): C2ncu cti*ty vs.ESA vs. pH- _ - KOH (10,0 1.519 rp 257.122 General Data: • Analysis Date: Standard Calibration Date Titrant Data [Left]: Background File Coniment Titrant Data [Right]: No background file used no comment entered 0.600 0.400 - 0.200 o_ 0.000 -0.20CP-P 0 Ili -0.400 -0.600 -0.800 - 1.000 ^ 0.800 0.600 4E1 0.400 -! - z g 0.200 0.000 0.00 2.00^4.00^6.00^8.00^10.00^12.00 pH _ 2 DO_ 10.00^1200 pH e Thu. 3 February 2005 1053:17 Thu. 3 February 2005 0938:00 File: Magnetite^ Date printed: 3/27/2008 Page: 1 1 ^ 1000:38 ^ 0.00 ^ 19.9 ^ 3.39 0.342 ^ 145 ^ 0.419 ^ Inf ^ A 0.00 ^ 255.60 ^ NaN ^ No background correction 2 ^ 1006:36 ^ 5.97 19.9 3.45 0.331 ^ 145 0.427 ^ 6.31 B 0.23 255.83 ^ 0.000 No background correction 3 ^ 1008:48 ^ 8.17 ^ 20.0 ^ 4.01 0.293 ^ 145 ^ 0.334 ^ 4.00 ^ B 0.51 ^ 256.11 ^ 0.000 ^ No background correction 4 ^ 1011:39 ^ 11.02 20.1 4.44 0.293 ^ 140 0.290 ^ 3.79 B 0.56 256.17 ^ 0.000 No background correction 5 ^ 1015:10 ^ 14.53 ^ 20.1 ^ 4.99 0.307 ^ 140 ^ 0.243 ^ 3.69 ^ B 0.63 ^ 256.23 ^ 0.000 ^ No background correction 6 ^ 1018:21 ^ 17.72 20.1 5.46 0.321 ^ 140 0.199 ^ 3.64 ^ B 0.67 256.27 ^ 0.000 No background correction 7 ^ 1021:13 ^ 20.58 ^ 20.2 ^ 5.96 0.336 ^ 140 ^ 0.138 ^ 3.61 B 0.72 ^ 256.32 ^ 0.000 ^ No background correction 8 ^ 1024:04 ^ 23.43 20.3 6.45 0.350 ^ 140 0.062 ^ 3.57 ^ B 0.77 256.37 ^ 0.000 No background correction 9 ^ 1026:34 ^ 25.93 ^ 20.3 ^ 7.05 0.362 ^ 140^-0.028 ^ 3.50 ^ B 0.82 ^ 256.42 ^ 0.000 ^ No background correction 10 ^ 1029:06 ^ 28.47 20.3 ^ 7.54 0.370 ^ 140 -0.065 ^ 3.46 B 0.86 256.46 ^ 0.000 No background correction 11 ^ 1031:38 ^ 31.00 ^ 20.4 7.96 0.378 ^ 140^-0.096 ^ 3.43 ^ B 0.89 ^ 256.49 ^ 0.000 ^ No background correction 12 ^ 1035:11 ^ 34.55 20.4 ^ 8.47 0.389 ^ 140 -0.136 ^ 3.40 ^ B 0.94 256.54 ^ 0.000 No background correction 13 ^ 1038:22 ^ 37.73 ^ 20.5 ^ 8.97 0.402 ^ 140^-0.183 ^ 3.38 ^ B 0.98 ^ 256.58 ^ 0.000 ^ No background correction 14 ^ 1041:39 ^ 41.02 20.5 9.45 0.422 ^ 140 -0.249 ^ 3.38 B 1.03 256.63 ^ 0.000 No background correction 15 ^ 1045:32 ^ 44.90 ^ 20.6 ^ 9.98 0.469 ^ 140^-0.348 ^ 3.45 ^ B 1.10 ^ 256.70 ^ 0.000 ^ No background correction 16 ^ 1049:05 ^ 48.45 20.6 10.48 0.573 ^ 140 -0.458 ^ 3.59 B 1.24 256.84 ^ 0.000 No background correction 17 ^ 1052:17 ^ 51.65 ^ 20.7 ^ 10.96 0.835 ^ 140^-0.593 ^ 3.91 ^ B 1.52 ^ 257.12 ^ 0.000 ^ No background correction Motor Speed ESA Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [Mins] [C] [m5/cm] [rpm][hh:mm:ss] [mPa/V]^[nm-1] [ml] [ml] [wt%] File: Magnetite^ Date printed: 3/27/2008 ZetaProbe Potenfometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Titrant ID: Concentration: Density. Titrant VOlume Added: 1.91Mol/L 0 girni 6.613  rn1 Titrant ID: Concentration Density Titrant Volume Added. Suspension Properties: 220.48Sample Volume (initial). Particle Concentration (initial) pH (initial) Conductivity (initial). ESA vs. pH mS/cm Sample Volume (current):^ . Particle Concentration (current): pH (current):^ 10.98 Conductivity (current)^l^0.792  mS/crn' . Conductivitvs. pH .^_ 1.500 - 1.000 0.500 a. E 0.000 -0 50& DIC) -1.000 - -1.500 2. ^4 00^6 00^8 DO^10.00^121 00 0.000 ^ —r-- 0.00^2.00^4.00^6.00^8.00^10.00^12.00 pH File: Hematite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Colloidal Dynamics^Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed: normal] ea fer^in^C. t. lit I(^rn^; •^_■ frt Measurement Time 10:58:31^ Version :^ 2.00 General Data: Analysis Date: Standard Calibration Date Titrant Data [Left]: Thu. 21 April 2005 1059'39 Thu, 21 April 2005 0945:56 Background File Comment Titrant Data [Right]: 0.128 No background  file used no comment entered Page: 1 File: Hematite^ Date printed: 3/27/2008 ZetaP robe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT  Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor ^ ESA^Kappa^Total Volume^Sample^Particle ^ Background No. Measurement Speed Added^Volume Concentration Filename [hh:mm:ss] ^ [Mins] ^ [C] ^ [mS/cm] ^ [rpm] ^ [mPa/V]^[nm-1] ^ [ml] [ml] ^ [wt%] 1 ^ 1004:44 ^ 0.00 ^ 22.5 ^ 3.07 0.128 ^ 135 ^ 1.173 ^ Inf ^ A 0.00 ^ 220.48 ^ NaN ^ No background correction 2 ^ 1007:41 ^ 2.95 22.5 3.46 0.101 ^ 135 1.065 ^ 1.73 B 0.81 221.29 ^ 0.000 No background correction 3 ^ 1010:37 ^ 5.88 ^ 22.5 ^ 3.97 0.096 ^ 135 ^ 0.892 ^ 1.51 ^ B 1.01 ^ 221.49 ^ 0.000 ^ No background correction 4 ^ 1013:48 ^ 9.07 22.6 ^ 4.46 0.101 ^ 135 0.769 ^ 1.44 ^ B 1.18 221.65 ^ 0.000 No background correction 5 ^ 1017:00 ^ 12.27 ^ 22.6 4.96 0.110 ^ 135 ^ 0.690 ^ 1.40 B 1.34 ^ 221.82 ^ 0.000 ^ No background correction 6 ^ 1020:33 ^ 15.82 22.7 ^ 5.49 0.120 ^ 135 0.628 ^ 1.38 ^ B 1.51 222.00 ^ 0.000 No background correction 7 ^ 1023:45 ^ 19.02 ^ 22.7 ^ 5.97 0.129 ^ 135 ^ 0.585 ^ 1.37 ^ B 1.65 ^ 222.13 ^ 0.000 ^ No background correction 8 ^ 1026:17 ^ 21.55 22.7 ^ 6.52 0.137 ^ 135 0.519 ^ 1.36 ^ B 1.79 222.27 ^ 0.000 No background correction 9 ^ 1029:30 ^ 24.77 ^ 22.8 ^ 6.99 0.144 ^ 135 ^ 0.464 ^ 1.36 ^ B 1.89 ^ 222.37 ^ 0.000 ^ No background correction 10 ^ 1032:46 ^ 28.03 22.8 ^ 7.48 0.150 ^ 135 0.372 ^ 1.34 ^ B 2.00 222.49 ^ 0.000 No background correction 11 ^ 1035:58 ^ 31.23 ^ 22.9 ^ 7.94 0.156 ^ 135 ^ 0.234 ^ 1.33 B 2.12 ^ 222.61 ^ 0.000 ^ No background correction 12 ^ 1039:10 ^ 34.43 22.9 8.45 0.205 ^ 135 0.024 ^ 1.48 ^ B 2.25 222.74 ^ 0.000 No background correction 13 ^ 1042:42 ^ 37.97 ^ 23.0 ^ 8.97 0.218 ^ 135^-0.282 ^ 1.48 ^ B 2.41 ^ 222.89 ^ 0.000 ^ No background correction 14 ^ 1047:14 ^ 42.50 23.0 9.49 0.248 ^ 135 -0.614 ^ 1.50 ^ B 2.67 223.15 ^ 0.000 No background correction 15 ^ 1051:12 ^ 46.47 ^ 23.1 ^ 9.99 0.315 ^ 135^-0.908 ^ 1.55 B 3.18 ^ 223.66 ^ 0.000 ^ No background correction 16 ^ 1054:48 ^ 50.07 23.1 10.49 0.458 ^ 135 -1.163 ^ 1.61 ^ B 4.28 224.76 ^ 0.000 No background correction 17 ^ 1058:31 ^ 53.78 ^ 23.2 ^ 10.98 0.792 ^ 135^-1.357 ^ 1.71 B 6.61 ^ 227.09 ^ 0.000 ^ No background correction Page: 2 e a ita I.- 1 1 tr. 1^m^men t Measurement Date: Measurement Time: ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Thursday, 3 February 2005 ^ Min Freq 0.30 MHz^[Speed: normal] 13:20:32^ Version:^2.00 0 Mol/L g/ml ml pH pH General Data Titrant ID: Concentration: Density. Titrant Volume Added: MoUL gimi ml Suspension Properties: Sample Volume (initial). Particle Concentration (initial): pH (initial) Conductivity (initial): ESA vs. pH Sample Volume (current): Particle Concentration (current) H (current) Conductivity (current' uctivity vs. pH 256.117_ 0 Ve 10.96 0.834 mS/cm F t000 a 0.000 0.00 -1.000 - -2.000 1.000 0 0.800 5-• 0.600 "I Pc. t 0.400 r cs 0.200 0.000^.- 0.00^2.00^4.00 6.00^8.00^10.00^12 00 12:006.00 ml 3.000 -- 2.000 Co oidai Dynamics Thu 3 February 2[105 1321 31 Thu. 3 February 2005 0938:00 Background File: Comment Titrant Data [Right]: Titrant ID: Concentration. Density: Titrant Volume Added. KOH (10%) 19 0 0 9'6 Analysis Date: Standard Calibration Date: Titrant Data [Left]: File: Goethite^ Date printed: 3/27/2008 Page: 1 1 ^ 1233:31 ^ 0.00 ^ 20.8 ^ 3.41 0.190 ^ 145 ^ 2.483 ^ Inf ^ B 0.00 ^ 255.14 ^ NaN ^ No background correction 2 ^ 1236:03 ^ 2.53 20.8 3.97 0.168 ^ 145 2.355 ^ 7.83 B 0.08 255.22 ^ 0.000 No background correction 3 ^ 1238:55 ^ 5.40 ^ 20.8 ^ 4.46 0.174 ^ 145 ^ 2.336 ^ 6.52 ^ B 0.11 ^ 255.25 ^ 0.000 ^ No background correction 4 ^ 1241:47 ^ 8.27 20.9 4.94 0.183 ^ 145 2.261 ^ 5.99 ^ B 0.14 255.28 ^ 0.000 No background correction 5 ^ 1245:18 ^ 11.78 ^ 20.9 ^ 5.46 0.193 ^ 145 ^ 2.056 ^ 5.66 B 0.17 ^ 255.31 ^ 0.000 ^ No background correction 6 ^ 1248:09 ^ 14.63 21.0 ^ 5.94 0.206 ^ 145 1.746 ^ 5.48 ^ B 0.19 255.33 ^ 0.000 No background correction 7 ^ 1251:20 ^ 17.82 ^ 21.0 6.45 0.279 ^ 145 ^ 1.480 ^ 5.88 B 0.22 ^ 255.36 ^ 0.000 ^ No background correction 8 ^ 1254:32 ^ 21.02 21.0 ^ 6.96 0.295 ^ 145 1.261 ^ 5.61 ^B 0.26 255.40^0.000 No background correction 9 ^ 1257:23 ^ 23.87 ^ 21.1 7.46 0.309 ^ 145 ^ 1.037 ^ 5.39 ^ B 0.30 ^ 255.44 ^ 0.000 ^ No background correction 10 ^ 1300:35 ^ 27.07 21.1 ^ 7.93 0.321 ^ 145 0.810 ^ 5.20 ^ B 0.33 255.47 ^ 0.000 No background correction 11 ^ 1304:07 ^ 30.60 ^ 21.1 8.47 0.334 ^ 145 ^ 0.520 ^ 5.02 ^ B 0.37 ^ 255.51 ^ 0.000 ^ No background correction 12 ^ 1307:21 ^ 33.83 21.2 ^ 8.96 0.348 ^ 145 0.234 ^ 4.87 B 0.41 255.55 ^ 0.000 No background correction 13 ^ 1310:32 ^ 37.02 ^ 21.2 9.45 0.371 ^ 145^-0.076 ^ 4.75 ^B 0.46^255.60^0.000^No background correction 14 ^ 1314:04 ^ 40.55 21.3 ^ 9.98 0.425 ^ 145 -0.448 ^ 4.69 B 0.53 255.68 ^ 0.000 No background correction 15 ^ 1317:20 ^ 43.82 ^ 21.3 10.47 0.546 ^ 145^-0.874 ^ 4.73 ^B 0.68^255.82^0.000^No background correction 16 ^ 1320:32 ^ 47.02 21.3 ^ 10.96 0.834 ^ 145 -1.318 ^ 4.87 ^ B 0.98 256.12 ^ 0.000 No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm:ss] [Mins] [C] [mS/cm] [rpm] [mPa/V]^[nm-1] [ml] [ml] [wtVo] File: Goethite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Date printed: 3/27/2008File: 25silica75magnetite ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Measurement Date:^Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] Measurement Time: 15:57:45^ Version:^2.00 Colloidal Dynamics e^e rs gar • cDif c id 111  aaa^s me nt. General Data: Analysis Date. Standard Calibration Date. Titrant Data [Left]: Titrant ID: Concentration. Density Titrant Volume Added: Suspension Properties: Tue. 29 March 2005 1550:45 Tue. 29 March 2005 1033:51 Background File . Comment: Titrant Data [Right]: Titrant ID: Concentration. Density: Titrant Volume Added: No background file used no comment entered Sample Volume (current): Particle Concentration (current): pH (current): Conductivity (current)' Sample Volume (initial) . Particle Concentration (initial) . pH (initial) Conductivity (initial): 0.800 ? 0.700 6-  0.600 0.500 f, 0.400 - t). 0.300 -eg 0.200 8 0.100 0.000 0.00 2.00 0.400 0.200 i F 0.000 0.. -0.20d) E < -0.400 LLI -0.600 -0.800 -1.000 - ESA vs. pH ConductLyity vs. pH 6.004.00 12.0010.008.00 pH pH Page: 1 1 ^ 1507:25 ^ 0.00 ^ 21.5 ^ 3.09 0.303 ^ 140 ^ 0.300 ^ Inf ^ B 0.00 ^ 220.20 ^ NaN ^ No background correction 2 ^ 1510:00 ^ 2.58 21.5 3.48 0.232 ^ 140 0.225 ^ 3.09 B 0.58 220.78 ^ 0.000 No background correction 3 ^ 1512:51 ^ 5.43 ^ 21.5 ^ 3.96 0.218 ^ 140 ^ 0.176 ^ 2.42 ^ B 0.90 ^ 221.09 ^ 0.000 ^ No background correction 4 ^ 1516:07 ^ 8.70 21.6 ^ 4.46 0.221 ^ 140 0.143 ^ 2.18 B 1.12 221.32 ^ 0.000 No background correction 5 ^ 1519:18 ^ 11.88 ^ 21.6 ^ 4.97 0.229 ^ 140^-0.113 ^ 2.05 ^ B 1.31 ^ 221.51 ^ 0.000 ^ No background correction 6 ^ 1522:52 ^ 15.45 21.6 5.47 0.240 ^ 140 -0.086 ^ 1.97 ^ B 1.49 221.69 ^ 0.000 No background correction 7 ^ 1526:03 ^ 18.63 ^ 21.7 ^ 5.97 0.248 ^ 140^-0.100 ^ 1.90 ^ B 1.65 ^ 221.85 ^ 0.000 ^ No background correction 8 ^ 1528:55 ^ 21.50 21.7 6.49 0.257 ^ 140 -0.175 ^ 1.83 B 1.83 222.04 ^ 0.000 No background correction 9 ^ 1532:06 ^ 24.68 ^ 21.8 ^ 7.03 0.264 ^ 140^-0.244 ^ 1.78 ^ B 2.02 ^ 222.22 ^ 0.000 ^ No background correction 10 ^ 1534:22 ^ 26.95 21.8 7.62 0.270 ^ 140 -0.295 ^ 1.72 B 2.20 222.40 ^ 0.000 No background correction 11 ^ 1536:53 ^ 29.47 ^ 21.8 ^ 7.95 0.275 ^ 140^-0.322 ^ 1.68 ^ B 2.33 ^ 222.54 ^ 0.000 ^ No background correction 12 ^ 1540:05 ^ 32.67 21.9 ^ 8.46 0.283 ^ 140 -0.368 ^ 1.63 ^ B 2.55 222.75 ^ 0.000 No background correction 13 ^ 1543:17 ^ 35.87 ^ 21.9 8.94 0.294 ^ 140^-0.424 ^ 1.60 B 2.78 ^ 222.98 ^ 0.000 ^ No background correction 14 ^ 1546:55 ^ 39.50 22.0 ^ 9.47 0.314 ^ 140 -0.502 ^ 1.57 ^ B 3.08 223.28 ^ 0.000 No background correction 15 ^ 1550:28 ^ 43.05 ^ 22.0 9.96 0.356 ^ 140^-0.585 ^ 1.56 B 3.54 ^ 223.74 ^ 0.000 ^ No background correction 16 ^ 1554:24 ^ 46.98 22.1 ^ 10.46 0.456 ^ 140 -0.680 ^ 1.58 ^ B 4.46 224.66 ^ 0.000 No background correction 17 ^ 1557:45 ^ 50.33 ^ 22.2 10.96 0.694 ^ 140^-0.781 ^ 1.64 ^ B 6.31 ^ 226.51 ^ 0.000 ^ No background correction Background Filename Motor^ESA Speed Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [Mins] [C] [mS/cm] [rpm][hh:mm ss] [mPa/V]^[nm-1] [ml] [ml] [wt%] File: 25silica75magnetite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data ESA MEASUREMENT Page: 2 Colloidal Dynamics l eader;^ t; I^vm^n t Measurement Date: Measurement Time : ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] 13:16:30^ Version:^2.00 Genera ata: Sample Volume (initial). Particle Concentration (initial) pH (initial). Conductivity (,initial): ESA vs. pH Background Fife: Comment. Titrant Data [Right]: Titrant 1D: Concentration: Density: Titrant Volume Added: Sample Volume (current): Particle ConcentratiOn (current): pH (current): Conductivity (current): Conctectivity vH No background file used no comment entered NaOH 1 Mol/L 0 /ml' -, 6.669 m^, wt% mS/cna 220 16(ml vitY, 3.11 0.251 mS/cm 0.000 0.800 -0.20d1 P C)^2.00 6. 00 8. 00 10.00 12 00 7 0.700 0.600 -0.400 - 0.500 - 0.400 E  -0.600 - 0.300 -0.800  - -1.000 -2 0.200 0.100 0.000 - -1 - -1.200 pH 0.00 2.00 4.00 6.00 pH 8.00 10.00 12.00 Analysis Date: Standard Calibration Date Titrant Data [Left]: Tue, 29 March 2005 1317.29 Tue. 29 March 2005 1033::31 Titrant ID: Concentration: Density : Titrant Volume Added: ^iMol/L ^ g/ml 0 rn Suspension Properties: File: 50silica50magnetite^ Date printed: 3/27/2008 Page: 1 1 ^ 1226:35 ^ 0.00 ^ 21.0 ^ 3.11 0.251 ^ 140^-0.141 ^ Inf ^ B 0.00 ^ 220.16 ^ NaN ^ No background correction 2 ^ 1229:11 ^ 2.60 21.1 3.47 0.199 ^ 140 -0.163 ^ 3.28 B 0.44 220.60 ^ 0.000 No background correction 3 ^ 1232:02 ^ 5.45 ^ 21.1 ^ 3.95 0.185 ^ 140^-0.197 ^ 2.47 ^ B 0.73 ^ 220.89 ^ 0.000 ^ No background correction 4 ^ 1235:13 ^ 8.63 21.2 ^ 4.45 0.187 ^ 140 -0.226 ^ 2.20 B 0.93 221.09 ^ 0.000 No background correction 5 ^ 1238:25 ^ 11.83 ^ 21.3 4.95 0.193 ^ 140^-0.254 ^ 2.06 ^ B 1.09 ^ 221.25 ^ 0.000 ^ No background correction 6 ^ 1241:17 ^ 14.70 21.3 ^ 5.84 0.205 ^ 140 -0.329 ^ 1.94 ^ B 1.30 221.47 ^ 0.000 No background correction 7 ^ 1245:13 ^ 18.63 ^ 21.4 ^ 5.94 0.209 ^ 140^-0.350 ^ 1.92 B 1.37 ^ 221.53 ^ 0.000 ^ No background correction 8 ^ 1248:24 ^ 21.82 21.4 6.45 0.216 ^ 140 -0.421 ^ 1.85 ^ B 1.51 221.67 ^ 0.000 No background correction 9 ^ 1251:16 ^ 24.68 ^ 21.5 ^ 7.02 0.222 ^ 140^-0.485 ^ 1.79 B 1.66 ^ 221.82 ^ 0.000 ^ No background correction 10 ^ 1253:47 ^ 27.20 21.5 ^ 7.51 0.227 ^ 140 -0.525 ^ 1.75 ^ B 1.79 221.95 ^ 0.000 No background correction 11 ^ 1255:58 ^ 29.38 ^ 21.6 ^ 8.29 0.235 ^ 140^-0.582 ^ 1.68 ^ B 2.01 ^ 222.17 ^ 0.000 ^ No background correction 12 ^ 1258:08 ^ 31.55 21.6 8.50 0.239 ^ 140 -0.609 ^ 1.65 ^ B 2.12 222.28 ^ 0.000 No background correction 13 ^ 1301:44 ^ 35.15 ^ 21.7 ^ 8.95 0.251 ^ 140^-0.672 ^ 1.60 B 2.35 ^ 222.51 ^ 0.000 ^ No background correction 14 ^ 1305:16 ^ 38.68 21.7 ^ 9.45 0.272 ^ 140 -0.752 ^ 1.57 ^ B 2.67 222.83 ^ 0.000 No background correction 15 ^ 1309:08 ^ 42.55 ^ 21.8 9.97 0.323 ^ 140^-0.841 ^ 1.55 B 3.24 ^ 223.40 ^ 0.000 ^ No background correction 16 ^ 1312:49 ^ 46.23 21.8 ^ 10.48 0.441 ^ 140 -0.933 ^ 1.57 ^ B 4.34 224.50 ^ 0.000 No background correction 17 ^ 1316:30 ^ 49.92 ^ 21.9 10.99 0.734 ^ 140^-1.024 ^ 1.64 B 6.67 ^ 226.83 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [Mins] [C] 0)S/cm]^[rpm]^[mPa/V]^Inm-11 [ml] [ml] [wt%][hh:mm ss] File: 50silica50magnetite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 2 00 _ 0.000 -0.20CP-b 0 -- - -0.400 - a. -0.600 E < -0.800 W -1.000 -1.200 -1.400 - pHpH Titrant ID: Concentration . Density: Titrant Volume Added; Titrant ID: Concentration . Density Titrant Volume Added; 1 0 g%r1- 1,'. },_ . 6.478 Suspension Pro es: 0 Mol/L g/mf ml Sample Volume (initial): Particle Concentration (initial): 10.97 Sample Volume {current): Particle Concentration (current): pH (current) .pH {initial): Conductivity (initial): ESA vs. pH Conductivity (current): Conductrvity vs. pH ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Min Freq 0.30 MHz^[Speed: normal] Version:^2.00 Tuesday, 29 March 2005 14:55:43 Measurement Date: Measurement Time: Colloidal Dynamics e^1^m e 5jr anent General Data. Analysis Date' Standard Calibration Date: Titrant Data [Left]: Background File: Comment; Titrant Data [Right): Tue. 29 March 2005 1456.42 Tue. 29 March 2005 1033:21 No background file used 10 comment entered 6 Da^3.00_^10.00^17H00 0.800 7 0.700 as 0.600 -r E. 0.500 -I 0.400 0.300  0.200 8 0.100 -f 0.000 . 0.00^2.00^4.00 6.00 8.00 10.00 12 00 :07,..V.Zriga=417417.X4WallfiNiaM, File: 75silica25magnetite^ Date printed: 3/27/2008 Page: 1 1 ^ 1402:24 ^ 0.00 ^ 21.4 ^ 3.08 0.238 ^ 140^-0.499 ^ Inf ^ B 0.00 ^ 225.12 ^ NaN ^ No background correction 2 ^ 1405:00 ^ 2.60 21.4 3.48 0.174 ^ 140 -0.528 ^ 2.89 B 0.51 225.63 ^ 0.000 No background correction 3 ^ 1407:50 ^ 5.43 ^ 21.5 ^ 3.97 0.160 ^ 140^-0.577 ^ 2.27 ^ B 0.76 ^ 225.88 ^ 0.000 ^ No background correction 4 ^ 1411:01 ^ 8.62 21.6 ^ 4.46 0.160 ^ 140 -0.614 ^ 2.06 ^ B 0.92 226.04 ^ 0.000 No background correction 5 ^ 1414:13 ^ 11.82 ^ 21.7 4.94 0.165 ^ 140^-0.644 ^ 1.97 B 1.05 ^ 226.16 ^ 0.000 ^ No background correction 6 ^ 1417:26 ^ 15.03 21.7 ^ 5.43 0.171 ^ 140 -0.674 ^ 1.91 ^ B 1.15 226.27 ^ 0.000 No background correction 7 ^ 1420:42 ^ 18.30 ^ 21.8 5.93 0.176 ^ 140^-0.709 ^ 1.86 ^ B 1.25 ^ 226.37 ^ 0.000 ^ No background correction 8 ^ 1423:53 ^ 21.48 21.8 ^ 6.45 0.181 ^ 140 -0.752 ^ 1.81 B 1.36 226.48 ^ 0.000 No background correction 9 ^ 1426:25 ^ 24.02 ^ 21.9 ^ 7.00 0.185 ^ 140^-0.791 ^ 1.77 ^ B 1.45 ^ 226.57 ^ 0.000 ^ No background correction 10 ^ 1429:37 ^ 27.22 21.9 7.45 0.190 ^ 140 -0.825 ^ 1.73 ^ B 1.56 226.67 ^ 0.000 No background correction 11 ^ 1432:49 ^ 30.42 ^ 21.9 ^ 7.93 0.195 ^ 140^-0.863 ^ 1.69 ^ B 1.68 ^ 226.80 ^ 0.000 ^ No background correction 12 ^ 1436:22 ^ 33.97 22.0 8.45 0.202 ^ 140 -0.920 ^ 1.64 ^ B 1.86 226.98 ^ 0.000 No background correction 13 ^ 1441:55 ^ 39.52 ^ 22.1 ^ 8.96 0.216 ^ 140^-0.997 ^ 1.58 B 2.12 ^ 227.24 ^ 0.000 ^ No background correction 14 ^ 1445:10 ^ 42.77 22.1 9.45 0.241 ^ 140 -1.078 ^ 1.55 ^ B 2.48 227.60 ^ 0.000 No background correction 15 ^ 1448:42 ^ 46.30 ^ 22.1 ^ 9.96 0.296 ^ 140^-1.161 ^ 1.53 B 3.12 ^ 228.24 ^ 0.000 ^ No background correction 16 ^ 1452:23 ^ 49.98 22.2 10.46 0.415 ^ 140 -1.245 ^ 1.55 ^ B 4.26 229.38 ^ 0.000 No background correction 17 ^ 1455:43 ^ 53.32 ^ 22.2 ^ 10.97 0.685 ^ 140^-1.314 ^ 1.62 ^ B 6.48 ^ 231.60 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [C] [rpm]^[mPa/V]^[nm-1] [ml] [ml][hh:mm.ss]^[Minn] [wt%][mS/cm] File: 75silica25magnetite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 File: 25silica75hematite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Colloidal Dynamics^Measurement Date:^Thursday, 21 April2005^Min Freq 0.30 MHz^[Speed: normal] leede^ ige.1^^, - tment Measurement Time 14-14:16^ Version^2.00 General Data: Analysis Date: Standard Calibration Date: Titrant Data [Left]: Thu.^ April2005 1415:15 Thu 21 April2005 0945:56 Background File: Comment: Titrant Data [Right]: No background file used no comment entered Titrant ID: Concentration: Density: Titrant Volume Added' Suspension Properties: Sample Volume (initial): Particle Concentration (initial): pH (initial). Conductivity (initial). ESA vs. pH 1.000 - 0.500 0.000 -o.5ocP• 02, • -1.000 -r -1.500 -2.000 Titrant ID:^ KOH Concentration 1.8 Mol/L..., Density.^ 0 giml ^ ,^._. Titrant Volume Added.^ 5.864 rr4. Mon_ giml ml mS/cm Sample Volume (current): Particle Concentration (current): pH (current): Conductivity (current): Conductiyity vs. pH 0.800 • 0.700 ro 0.600 - ▪ 0.500 0.400 tl) 0.300 - -= 2 0.200 8 0.100 0.000 0.00 6.00 pH 8.00^10.00^12.002.00^4.00 Page: 1 0.210 0.151 0.110 0.113 0.120 0.129 0.137 0.145 0.152 0.157 0.204 0.211 0.223 0.247 0.307 0.438 0.727 [mS/cm] [rpm]^[mPa/V]^[nm-1] 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 [Mins] ^ [CI ^0.00 ^ 22.7 ^ 3.09 ^ 2.58 22.8 3.52 5.43 ^ 22.9 ^ 3.98 8.62 22.9 4.44 11.82 ^ 23.0 ^ 4.93 15.02 23.0 ^ 5.45 18.22 ^ 23.1 5.98 21.50 23.1 ^ 6.47 24.68 ^ 23.1 7.00 26.88 23.1 ^ 7.56 30.07 ^ 23.1 7.93 33.25 23.1 ^ 8.45 36.78 ^ 23.2 8.98 40.32 23.1 ^ 9.45 44.25 ^ 23.2 9.99 47.85 23.2 ^ 10.49 51.55 ^ 23.2 10.98 0.750 ^ Inf 0.706 ^ 2.83 0.617 ^ 2.04 0.516 ^ 1.87 0.432 ^ 1.77 0.365 ^ 1.70 0.309 ^ 1.65 0.253 ^ 1.62 0.181 ^ 1.59 0.076 ^ 1.56 -0.038 ^ 1.72 -0.239 ^ 1.68 -0.512 ^ 1.64 -0.774 ^ 1.63 -1.049 ^ 1.64 -1.284 ^ 1.67 -1.449 ^ 1.74 No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction [hh:mm:ss] 1 ^ 1322:43 2 ^ 1325:18 3 ^ 1328:09 4 ^ 1331:20 5 ^ 1334:32 6 ^ 1337:44 7 ^ 1340:56 8 ^ 1344:13 9 ^ 1347:24 10 ^ 1349:36 11 ^ 1352:47 12 ^ 1355:58 13 ^ 1359:30 14 ^ 1403:02 15 ^ 1406:58 16 ^ 1410:34 17 ^ 1414:16 [wt%][ml] B B B B B B B B B B B B B B B B B 0.00 0.45 0.63 0.78 0.92 1.07 1.21 1.32 1.43 1.54 1.65 1.80 1.98 2.23 2.74 3.79 5.86 220.12 220.57 220.75 220.90 221.04 221.19 221.33 221.45 221.56 221.67 221.78 221.92 222.11 222.35 222.87 223.91 225.99 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 [ml] ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement Motor Speed ESA^Kappa^Total Volume^Sample^Particle Added^Volume Concentration Background Filename  File: 25silica75hematite^ Date printed: 3/27/2008 Page: 2 Titrant Data [Right]:Titrant Data [Left]: Titrant ID: Concentration. Density: Titrant Volume Added; Suspension Properties: 226.208220.12 Sample Volume (current): Particle . Concentration (current), pH (current): Conductivity (durrent)' Conductivity vs. pH Sample Volume (initial); Particle Concentration (initial): pH (initial) Conductivity (initial): ESA vs. pH 0  ml Titrant ID: Concentration. Density. Titrant Volume Added: ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENTCo °Ida! Dyna^cs^Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed normal] UHL^ s ri Measurement Time 12:07:15^ Version:^2.00 General Data: Analysis Date: Standard Calibration Date; Thu 21 April 2005 1208.15 Thu 21 April 2005 0945 56 Background File' Comment:. 6.177 10.98 0.738 0.500 - 0.000 7 -0.500 0  0 :P C) E a -1.000 -en w -1.500 - -2.000 0.800 • 0.700 0.600 - E. 0.500 P 0.400 0.300 , - 1010 0.200 -L 3 0.100 0.000 -r - ^0.00 ^2.00 4.00^6.00^8.00^10.00^12 00 pHPH No background file used no comment entered File: 50silica50hematite^ Date printed: 3/27/2008 Page: 1 No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction 3.09 3.51 3.97 4.44 4.93 5.46 5.93 6.47 6.96 7.49 7.94 8.43 8.96 9.47 9.97 10.48 10.98 0.140 0.100 0.093 0.096 0.101 0.108 0.114 0.119 0.124 0.129 0.133 0.138 0.149 0.219 0.286 0.423 0.738 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 0.127 0.090 0.025 -0.046 -0.090 -0.126 -0.157 -0.200 -0.255 -0.343 -0.457 -0.612 -0.810 -1.008 -1.176 -1.334 -1.447 I of 2.52 2.03 1.86 1.75 1.68 1.65 1.61 1.59 1.56 1.52 1.48 1.44 1.59 1.60 1.64 1.71 0.00 0.38 0.54 0.67 0.79 0.92 1.01 1.10 1.19 1.28 1.39 1.52 1.73 2.09 2.68 3.83 6.18 220.12 220.50 220.66 220.79 220.91 221.03 221.13 221.22 221.30 221.40 221.50 221.64 221.85 222.21 222.80 223.95 226.30 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 B B B B B B B B B B B B B B B B B File: 50silica50hematite^ Date printed: 3/27/2008 ZetaProbe Potenlometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Meas,^Time of^Elapsed Time Temperature pH Conductivity^Motor ^ ESA^Kappa^Total Volume^Sample^Particle ^ Background No. Measurement Speed Added^Volume Concentration Filename  [hh:mm.ss] ^ [Mins] ^ [C] ^ [mSlcm] ^ [rpm]^[mPa/V]^[nm-1] ^ [ml] [ml] ^ [wt%] 1 ^ 1113:17 ^ 0.00 ^ 22.5 2 ^ 1115:52 ^ 2.58 22.6 3 ^ 1118:43 ^ 5.43 ^ 22.6 4 ^ 1121:54 ^ 8.62 22.6 5 ^ 1125:06 ^ 11.82 ^ 22.6 6 ^ 1128:38 ^ 15.35 22.7 7 ^ 1131:49 ^ 18.53 ^ 22.7 8 ^ 1134:41 ^ 21.40 22.7 9 ^ 1137:52 ^ 24.58 ^ 22.7 10 ^ 1140:44 ^ 27.45 ^ 22.7 11 ^ 1144:00 ^ 30.72 22.7 12 ^ 1147:11 ^ 33.90 ^ 22.7 13 ^ 1150:43 ^ 37.43 22.8 14 ^ 1156:17 ^ 43.00 ^ 22.8 15 ^ 1159:53 ^ 46.60 22.8 16 ^ 1203:32 ^ 50.25 ^ 22.8 17 ^ 1207:15 ^ 53.97 22.9 Page: 2 General Data: Background File: Comment: Analysis Date: Standard Calibration Date. Titrant Data [Left] . Titrant Data [Right]: KOHTitrant ID: Concentration: Density: 1.9 Mof/L g/mf mi '6.032 Titrant ID: Concentration: Density - Titrant Volume Added:,- Suspension Properties: pH (initial): Conductivity (initial): ESA vs. pH pH (current) Conductivity (ctirrent) ConductivityNs. pH File: 75silica25hematite Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENTColloidal Dyna^ics^Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed: normal] ieduur:^i^L n 1 1^3^III Measurement Time 13:12:16^ Version:^2.00 Sample Volume (initial): -- Particle . Concentration (initial): Sample Volume(current) Particle Concentration (current): 226.162220.08 10.96 0.000 0.00^2 OD^4.00^6.00 -0.500 j E -1.000 uJ cn pH 0.800 00 7 0.700 - 1 c7)- 0.600 g, 0.500 f: 0.400 -[ 0.300= 0.200; 0.100^- 0.000 7 ^0.00 ^2.00 4.00^6.00^8.00^10.00^12 00 pH 0.122 mS/cm Page: 1 1 ^ 1220:50 ^ 0.00 ^ 22.5 ^ 3.11 0.122 ^ 135^-0.492 ^ Inf ^ B 0.00 ^ 220.08 ^ NaN ^ No background correction 2 ^ 1223:27 ^ 2.62 22.6 3.49 0.089 ^ 135 -0.526 ^ 2.72 B 0.29 220.37 ^ 0.000 No background correction 3 ^ 1225:57 ^ 5.12 ^ 22.6 ^ 3.93 0.082 ^ 135^-0.580 ^ 2.11 ^ B 0.44 ^ 220.52 ^ 0.000 ^ No background correction 4 ^ 1229:10 ^ 8.33 22.7 ^ 4.42 0.083 ^ 135 -0.613 ^ 1.87 ^ B 0.57 220.65 ^ 0.000 No background correction 5 ^ 1232:43 ^ 11.88 ^ 22.7 ^ 4.95 0.088 ^ 135^-0.641 ^ 1.76 ^ B 0.69 ^ 220.76 ^ 0.000 ^ No background correction 6 ^ 1235:55 ^ 15.08 22.7 ^ 5.57 0.094 ^ 135 -0.669 ^ 1.68 B 0.80 220.87 ^ 0.000 No background correction 7 ^ 1239:08 ^ 18.30 ^ 22.7 ^ 5.94 0.098 ^ 135^-0.684 ^ 1.65 ^ B 0.87 ^ 220.95 ^ 0.000 ^ No background correction 8 ^ 1242:20 ^ 21.50 22.8 ^ 6.45 0.102 ^ 135 -0.708 ^ 1.61 B 0.94 221.02 ^ 0.000 No background correction 9 ^ 1245:33 ^ 24.72 ^ 22.8 ^ 6.94 0.105 ^ 135^-0.740 ^ 1.58 ^ B 1.01 ^ 221.09 ^ 0.000 ^ No background correction 10 ^ 1248:45 ^ 27.92 22.8 ^ 7.44 0.109 ^ 135 -0.795 ^ 1.55 ^ B 1.09 221.17 ^ 0.000 No background correction 11 ^ 1251:57 ^ 31.12 ^ 22.8 ^ 7.91 0.113 ^ 135^-0.870 ^ 1.51 B 1.20 ^ 221.27 ^ 0.000 ^ No background correction 12 ^ 1255:35 ^ 34.75 22.9 8.45 0.119 ^ 135 -0.990 ^ 1.45 ^ B 1.35 221.43 ^ 0.000 No background correction 13 ^ 1259:06 ^ 38.27 ^ 22.9 ^ 8.97 0.132 ^ 135^-1.118 ^ 1.41 B 1.59 ^ 221.67 ^ 0.000 ^ No background correction 14 ^ 1302:58 ^ 42.13 22.9 9.48 0.200 ^ 135 -1.245 ^ 1.55 ^ B 1.99 222.07 ^ 0.000 No background correction 15 ^ 1305:13 ^ 44.38 ^ 22.9 ^ 9.98 0.269 ^ 135^-1.364 ^ 1.57 B 2.63 ^ 222.71 ^ 0.000 ^ No background correction 16 ^ 1308:53 ^ 48.05 22.9 10.48 0.408 ^ 135 -1.480 ^ 1.60 ^ B 3.87 223.95 ^ 0.000 No background correction 17 ^ 1312:16 ^ 51.43 ^ 23.0 ^ 10.96 0.689 ^ 135^-1.554 ^ 1.66 B 6.08 ^ 226.16 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [rpm]^[rnPa/V]^[nm-1][C] [ml] [ml][Mins] [wt%][mS/cm][hh:mm ss] File: 75silica25hematite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 ^0.800 ^ 7 0.700 — 0.600 E. 0.500 0.400 -' 0.300 - 2 0.200 t 0.100 ^0.000 ^ 0.00 Colloidal Dynamics r-1^ tri^l3 t ZetaProbe Potentiometric Series Titration Report - Summary Measurement Date:^Wednesday, 30 March 2005 ^ Min Freq 0.30 MHz Measurement Time: 14:16:32 ^ Version: ESA MEASUREMENT [Speed: normal] 2.00 Wed, 30 March 2005 1417:31 Wed, 30 March 2005 1048:03 rrerit): P8rticle:Concentration, (ourent pFl-Kourrent)J• bond^(cur:rnt) No background file used no comment entered 226.693 10.98 0.739 2.00^4.00^6.00^8.00^10.00^12.00 PH Moi/L g/mI nil pH 2.500 2.000 -F 1.500 i- - 1.000 + E0- 0.500 -I - 0.000 4 -0.50Q1-00 -1.000 -1.500 -I -2.000 L ^ ',-AnalysisDate; .r,Stanctar i Calibration' Titrant .^. Titrant JD: Cobcehtration.:. Titrant VolurrieAdde Suspension Properties*.':` Sample Volume (i.nitia);,,' Particle Concentratioil pH Conductivity (initial): - File: 25silica75goethite^ Date printed: 3/27/2008 Page: 1 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 220.15 220.73 221.02 221.19 221.34 221.45 221.58 221.74 221.88 222.02 222.19 222.39 222.61 222.94 223.45 224.44 226.69 Inf 2.79 2.23 2.06 1.97 1.92 1.87 1.82 1.77 1.74 1.69 1.64 1.60 1.57 1.56 1.58 1.66 [hh:mm ss] [Mins] [CI [mS/cm ] [rpm] [mPa/V] 1nm-11 [ml] [ml] [uvt%] No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction B B B B B B B B B B B B B B B B B 0.00 0.58 0.87 1.04 1.19 1.30 1.43 1.59 1.73 1.87 2.04 2.24 2.46 2.79 3.31 4.29 6.54 1325:13 1327:49 1330:40 1333:32 1336:43 1339:40 1342:52 1346:04 1349:16 1351:48 1355:00 1358:37 1402:08 1406:00 1409:38 1412:53 1416:32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.00 2.60 5.45 8.32 11.50 14.45 17.65 20.85 24.05 26.58 29.78 33.40 36.92 40.78 44.42 47.67 51.32 21.3 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 21.7 21.7 21.7 21.8 21.8 21.8 21.9 21.9 3.08 3.49 3.98 4.46 4.98 5.46 5.97 6.49 6.95 7.42 7.94 8.46 8.96 9.49 9.95 10.46 10.98 0.256 0.190 0.181 0.185 0.192 0.199 0.207 0.218 0.226 0.234 0.242 0.250 0.261 0.284 0.332 0.443 0.739 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 1.883 1.664 1.618 1.598 1.526 1.381 1.185 0.972 0.811 0.636 0.423 0.183 -0.081 -0.407 -0.744 -1.074 -1.367 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement Motor Speed ESA Kappa^Total Volume^Sample^Particle Added^Volume Concentration Background Filename  File: 25silica75goethite^ Date printed: 3/27/2008 Page: 2 Measurement Date: Measurement Time : Wednesday, 30 March 2005 12:10:39 ESA MEASUREMENT Min Freq 0.30 MHz^[Speed: normal] Version:^2.00 ZetaProbe Potentiometric Series Titration Report - Summary Sample Volume (initial): Particle Concentration (initial) . pH (initial): Conductivity (initial): 220 Sample Volume (current): Particle Concentration (current): pH (current) Conductivity (current): ^0.800 ^ F 0.700 (7) 0.600 1 E 0.500 0.400 `g 0.300 ^1 2 0.200^_ 0.100 0.000 ^0.00 ^2.00 4.00^6.00^8.00^10.00^12.00 pH 2.00^- 6 00^8.00 -^-- 2 l,00 pH File: 50silica5Ogoethite^ Date printed: 3/27/2008 Colloidal Dynamics 1e .a i^r 1^I^ill^uF,zinen k General Data: Analysis Date. Standard Calibration Date: Titrant Data [Left]: Wed, 30 March 2005 1211:38 Wed 30 March 2005 1048 03 Background File: Comment Titrant Data [Right]: No background file used no comment entered Titrant fD: Concentration: Density: Titrant Volume Added: KOH  1 0 7.255 Titrant ID. Concentration: ^ 0 ol/L Density .^0 g/m1 Titrant Volume Added: ^ 0 ml Suspension Properties: ESA vs. pH_ 2.000 -1 1.500 1 1.000 - I F. 0.500 E 0.000 co< -0.5001 100 w^i -1.000 -1.500 -2.000 -I Amaamms■■■■■■• Page: 1 NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 [hh:mm:ss] [Mins] [mS/cm] [rprnj [mPa/V]^[nm-1] [wt%.1[Cl No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction [ml][ml] 220.00 221.23 221.50 221.66 221.79 221.90 222.02 222.15 222.26 222.38 222.52 222.69 222.93 223.29 223.87 224.94 227.25 0.00 1.23 1.50 1.66 1.79 1.90 2.02 2.16 2.27 2.38 2.52 2.70 2.93 3.29 3.87 4.94 7.25 A B B B B B B B B B B B B B B B B 1116:28 1118:53 1121:50 1124:46 1128:03 1131:23 1134:40 1137:58 1141:36 1144:52 1148:10 1152:07 1155:29 1159:26 1203:09 1206:50 1210:39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0.00 2.42 5.37 8.30 11.58 14.92 18.20 21.50 25.13 28.40 31.70 35.65 39.02 42.97 46.68 50.37 54.18 20.4 20.5 20.6 20.7 20.8 20.8 20.8 20.9 20.9 20.9 21.0 21.0 21.0 21.1 21.1 21.1 21.2 2.83 3.47 3.98 4.45 4.96 5.44 5.96 6.51 6.97 7.44 7.94 8.44 8.95 9.47 9.96 10.47 10.98 0.365 0.226 0.218 0.221 0.226 0.232 0.239 0.247 0.254 0.259 0.265 0.271 0.281 0.304 0.354 0.464 0.755 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 1.464 1.196 1.154 1.124 1.056 0.928 0.768 0.595 0.450 0.290 0.107 -0.131 -0.365 -0.655 -0.945 -1.206 -1.421 Inf 2.10 1.87 1.79 1.74 1.71 1.69 1.66 1.64 1.62 1.59 1.56 1.52 1.49 1.49 1.51 1.59 Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement Motor Speed ESA Kappa^Total Volume^Sample^Particle Added^Volume Concentration Background Filename  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT File: 50silica50goethite^ Date printed: 3/27/2008 Page: 2 Titrant Data [Left]: Titrant Data [Right]: Titrant ID. Concentration: Density: Titrant Volume Added' 6.624 m 226.727 Titrant 1D: Concentration: Density: Titrant Volume Added: Suspension Properties: Sample Volume (iniiial): Particle Concentration (initial) - mS/cm SaMple Volume (currenti• Particle Concentration (current). - pl3(current): Gond uCtivity (current): C9Rductixity vs. pH pH (initial). Conductivity (initial): ESA vs. pH 0.800 "E" 0.700 cr)— 0.600 - E 0.500 0.400 .0.300!,3 72 0.200 3 0.100 0.000 -1 - 0.00 10.00^12 004.002.00 8.006.00 1.000 0.500 - 0.000 -1 °E. -0.50CP P ° cs) -1.000 - -iu -1.500 -2.000 File: 75silica25goethite Date printed: 3/27/2008 ZetaProbe Potentiomeiiic Series Titration Report - Summary^ESA MEASUREMENT ICS^Measurement Date:^Wednesday, 30 March 2005^Min Freq 0.30 MHz^[Speed: normal] me n P Measurement Time:^13:13:23^ Version:^2.00 Colloidal Dvna e^s t rn^f c„,^meo w; General Data: Analysis Date Standard CalibrationiData, VVed. 30 March 2005 1314:22 Wed, 30 March 2005 1043:03 Background File: Comment' No background file used no comment entered 10.98 0.718 pH pH 220.1_ ml Page: 1 1 ^ 1219:50 ^ 0.00 ^ 20.8 ^ 3.01 0.220 ^ 140 ^ 0.475 ^ I of ^ B 0.00 ^ 220.10 ^ NaN ^ No background correction 2 ^ 1222:30 ^ 2.67 20.9 ^ 3.50 0.151 ^ 140 0.347 ^ 2.56 B 0.55 220.65 ^ 0.000 No background correction 3 ^ 1225:26 ^ 5.60 ^ 21.0 3.96 0.109 ^ 140 ^ 0.303 ^ 1.88 ^ B 0.74 ^ 220.84 ^ 0.000 ^ No background correction 4 ^ 1228:22 ^ 8.53 21.1 ^ 4.43 0.110 ^ 140 0.267 ^ 1.76 ^ B 0.85 220.95 ^ 0.000 No background correction 5 ^ 1231:39 ^ 11.82 ^ 21.1 4.97 0.112 ^ 140 ^ 0.205 ^ 1.68 ^ B 0.95 ^ 221.05 ^ 0.000 ^ No background correction 6 ^ 1235:15 ^ 15.42 21.2 ^ 5.46 0.116 ^ 140 0.130 ^ 1.64 ^ B 1.03 221.14 ^ 0.000 No background correction 7 ^ 1238:52 ^ 19.03 ^ 21.2 ^ 5.96 0.120 ^ 140 ^ 0.081 ^ 1.60 B 1.12 ^ 221.22 ^ 0.000 ^ No background correction 8 ^ 1241:47 ^ 21.95 21.3 ^ 6.48 0.125 ^ 140 -0.091 ^ 1.57 ^ B 1.21 221.31 ^ 0.000 No background correction 9 ^ 1244:28 ^ 24.63 ^ 21.3 7.02 0.128 ^ 140^-0.164 ^ 1.54 ^ B 1.29 ^ 221.39 ^ 0.000 ^ No background correction 10 ^ 1247:44 ^ 27.90 21.3 ^ 7.45 0.132 ^ 140 -0.252 ^ 1.52 B 1.37 221.47 ^ 0.000 No background correction 11 ^ 1251:00 ^ 31.17 ^ 21.3 ^ 7.93 0.135 ^ 140^-0.380 ^ 1.48 ^ B 1.48 ^ 221.58 ^ 0.000 ^ No background correction 12 ^ 1254:36 ^ 34.77 21.4 8.44 0.140 ^ 140 -0.551 ^ 1.43 ^ B 1.64 221.74 ^ 0.000 No background correction 13 ^ 1259:34 ^ 39.73 ^ 21.4 ^ 8.96 0.152 ^ 140^-0.766 ^ 1.39 B 1.89 ^ 222.00 ^ 0.000 ^ No background correction 14 ^ 1302:55 ^ 43.08 21.4 9.45 0.219 ^ 140 -0.961 ^ 1.52 ^ B 2.27 222.38 ^ 0.000 No background correction 15 ^ 1306:11 ^ 46.35 ^ 21.5 ^ 9.96 0.283 ^ 140^-1.151 ^ 1.52 B 2.95 ^ 223.05 ^ 0.000 ^ No background correction 16 ^ 1309:33 ^ 49.72 21.5 10.45 0.404 ^ 140 -1.315 ^ 1.55 ^ B 4.08 224.19 ^ 0.000 No background correction 17 ^ 1313:23 ^ 53.55 ^ 21.6 ^ 10.98 0.718 ^ 140^-1.449 ^ 1.63 B 6.62 ^ 226.73 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [mSlcm] mPafV]^[nm-1][hh:mm:ss] [Mins] [C] [rpm] [ml] [ml] [wt%] File: 75silica25goethite^ Date printed: 3/27/2008 ZetaProbe Potenbometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Friday, 4 February 2005 13:51:40 Measurement Date: Measurement Time: Min Freq 0.30 MHz^[Speed: normal] Version:^2.00 ESA vs. pH ConoWtilvity vs pH Colloidal Dynamics Hi d^r^;sr cco1I0id m E.,^s^- General Data: ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT ,11 111. Titrant Data [Left]: BaOl.cgroun:f File Comment Titrant Data [Iiightj: No background file used no comment entered Analysis Date: Standard Caltration Date: Fri, 4 February 2005 1352:39 Fri 4 February 2005 0904:33 ^rMoVL mi 0 ml Titrant ID: Concentration: Density. Titrant Volume Added:. Suspension Properties: Titrant ID. Concentration: Density:- --- TItrant Volume Added:. i KOH (10%) 1 9 MoU 0 im 1.15, Sample yolune.(current): Particle Concentratien (cuirent); pH'(curr'ent): (current)' 226.455 10.98 0.989 m S lc Sample Volume (initial): Particle Concentration (initial): pH (initial): Conductivity (initial). pH ^ pH .10 ffi.tfi=== 4.00 10.00^12.008.006.00 1.200 r 1.000 fi - - "E' 0.800 h- i 0.600 - 00^g 0.400 - 1 — ---a ^ 0.200^- 0.000 4214— 0.00^2.00 0.800 ^ 0.600 0.400 0.200 a. E 0.000 - -0.2000700 -0.400 -0.600 -0.800 File: 25lgsilica75magnetite^ Date printed: 3/27/2008 Page: 1 1 ^ 1302:28 ^ 0.00 ^ 21.6 ^ 2.92 0.716 ^ 140 ^ 0.701 ^ Inf ^ B 0.00 ^ 225.30 ^ NaN ^ No background correction 2 ^ 1304:19 ^ 1.85 21.6 3.51 0.463 ^ 140 0.450 ^ 6.45 B 0.27 225.57 ^ 0.000 No background correction 3 ^ 1306:51 ^ 4.38 ^ 21.7 ^ 3.96 0.434 ^ 140 ^ 0.377 ^ 5.69 ^ B 0.33 ^ 225.63 ^ 0.000 ^ No background correction 4 ^ 1309:43 ^ 7.25 21.8 ^ 4.45 0.432 ^ 140 0.322 ^ 5.37 ^ B 0.37 225.67 ^ 0.000 No background correction 5 ^ 1312:54 ^ 10.43 ^ 21.8 ^ 4.97 0.441 ^ 140 ^ 0.262 ^ 5.20 B 0.40 ^ 225.70 ^ 0.000 ^ No background correction 6 ^ 1316:07 ^ 13.65 21.8 5.47 0.451 ^ 140 0.191 ^ 5.07 ^ B 0.43 225.73 ^ 0.000 No background correction 7 ^ 1319:19 ^ 16.85 ^ 21.9 ^ 5.94 0.460 ^ 140 ^ 0.103 ^ 4.96 B 0.46 ^ 225.76 ^ 0.000 ^ No background correction 8 ^ 1322:31 ^ 20.05 21.9 ^ 6.46 0.471 ^ 140 -0.039 ^ 4.86 ^ B 0.49 225.79 ^ 0.000 No background correction 9 ^ 1325:22 ^ 22.90 ^ 22.0 ^ 6.98 0.479 ^ 140^-0.116 ^ 4.77 ^ B 0.52 ^ 225.82 ^ 0.000 ^ No background correction 10 ^ 1328:54 ^ 26.43 22.0 ^ 7.51 0.486 ^ 140 -0.182 ^ 4.66 B 0.55 225.85 ^ 0.000 No background correction 11 ^ 1331:24 ^ 28.93 ^ 22.0 ^ 8.00 0.493 ^ 140^-0.225 ^ 4.58 ^ B 0.58 ^ 225.88 ^ 0.000 ^ No background correction 12 ^ 1334:37 ^ 32.15 22.1 8.45 0.500 ^ 140 -0.262 ^ 4.49 B 0.61 225.91 ^ 0.000 No background correction 13 ^ 1337:49 ^ 35.35 ^ 22.1 ^ 8.98 0.512 ^ 140^-0.307 ^ 4.41 ^ B 0.64 ^ 225.95 ^ 0.000 ^ No background correction 14 ^ 1341:21 ^ 38.88 22.2 ^ 9.49 0.533 ^ 140 -0.369 ^ 4.35 B 0.69 225.99 ^ 0.000 No background correction 15 ^ 1344:53 ^ 42.42 ^ 22.2 9.97 0.576 ^ 140^-0.455 ^ 4.33 ^ B 0.75 ^ 226.05 ^ 0.000 ^ No background correction 16 ^ 1348:09 ^ 45.68 22.2 ^ 10.46 0.683 ^ 140 -0.562 ^ 4.39 B 0.87 226.17 ^ 0.000 No background correction 17 ^ 1351:40 ^ 49.20 ^ 22.3 10.98 0.989 ^ 140^-0.701 ^ 4.58 ^ B 1.16 ^ 226.46 ^ 0.000 ^ No background correction Motor Speed ESA Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [mS/cm] [rpm]^[mPa/V][hh:mm:ss] [Mins] [C] [nm-1] [ml] [ml] [wt%] File: 25lgsilica75magnetite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Sample Volume (initial). Particle Concentration (initial) pH (initial) : Conductivity (initial): Colloidal Dyna lei^ r^ccllid m e. a s^m e n ZetaProbe Potentiometric Series Titration Report - Summary Measurement Date: Measurement Time: ESA MEASUREMENT [Speed normal] 2.00 Min Freq 0.30 MHz Version : Genera Data: Analysis Date. Standard Calibration Date: Titrant Data [Left]: Titrant ID. Concentration. Density: Titrant Volume Added: Suspension Properties: IFfi, 4 February 2005 1140:20 Fri, 4 February 2005 0904.03 Comment: Titrar)t Data [Right]: Titrant ID.' Concentration Density. Titrant Volume Added: . no comment entered No background file used KOH (10%) Friday, 4 February 2005 11:39:21 HCI SampleVolume (Ourrent) - Particle Concentration (currdnt) pH (current): Conductivity'(current): 2.00 ̂4.00 8.00 10.00^12.006.00 1.000 0.800 0.600 - T, 0.400 r 0.200)- - 0.000 0.00 File: 50Igsilica50magnetite ^ Date printed: 3/27/2008 ESA vs. pH 0.600 0.400 1 0.200 - - E a 0.000 — < -0.204-0 0 U) W -0.400 -0.600 -0.800 - pH  pH mormigmam, Atifdra. Page: 1 1 ^ 1048:45 ^ 0.00 ^ 20.2 ^ 3.01 0.611 ^ 140 ^ 0.356 ^ Inf ^ A 0.00 ^ 225.40 ^ NaN ^ No background correction 2 ^ 1051:01 ^ 2.27 20.2 3.49 0.378 ^ 140 0.201 ^ 6.67 B 0.21 225.61 ^ 0.000 No background correction 3 ^ 1053:32 ^ 4.78 ^ 20.3 ^ 3.96 0.340 ^ 140 ^ 0.150 ^ 5.70 ^ B 0.26 ^ 225.66 ^ 0.000 ^ No background correction 4 ^ 1056:24 ^ 7.65 20.3 ^ 4.46 0.334 ^ 140 0.121 ^ 5.35 ^ B 0.28 225.69 ^ 0.000 No background correction 5 ^ 1059:35 ^ 10.83 ^ 20.3 ^ 4.95 0.338 ^ 140^-0.098 ^ 5.18 ^ B 0.31 ^ 225.71 ^ 0.000 ^ No background correction 6 ^ 1102:47 ^ 14.03 20.4 ^ 5.46 0.344 ^ 140 -0.086 ^ 5.07 B 0.33 225.73 ^ 0.000 No background correction 7 ^ 1105:59 ^ 17.23 ^ 20.4 ^ 5.98 0.351 ^ 140^-0.128 ^ 4.97 ^ B 0.35 ^ 225.75 ^ 0.000 ^ No background correction 8 ^ 1109:11 ^ 20.43 20.5 6.48 0.357 ^ 140 -0.204 ^ 4.86 B 0.37 225.77 ^ 0.000 No background correction 9 ^ 1112:03 ^ 23.30 ^ 20.5 ^ 6.97 0.361 ^ 140^-0.263 ^ 4.76 ^ B 0.39 ^ 225.79 ^ 0.000 ^ No background correction 10 ^ 1115:14 ^ 26.48 20.6 ^ 7.49 0.365 ^ 140 -0.301 ^ 4.66 ^ B 0.41 225.81 ^ 0.000 No background correction 11 ^ 1118:47 ^ 30.03 ^ 20.7 ^ 7.95 0.369 ^ 140^-0.328 ^ 4.58 B 0.43 ^ 225.83 ^ 0.000 ^ No background correction 12 ^ 1121:37 ^ 32.87 20.7 8.43 0.373 ^ 140 -0.350 ^ 4.49 ^ B 0.45 225.85 ^ 0.000 No background correction 13 ^ 1125:09 ^ 36.40 ^ 20.8 ^ 8.96 0.382 ^ 140^-0.375 ^ 4.39 B 0.48 ^ 225.89 ^ 0.000 ^ No background correction 14 ^ 1129:01 ^ 40.27 20.8 9.45 0.398 ^ 140 -0.408 ^ 4.32 ^ B 0.52 225.92 ^ 0.000 No background correction 15 ^ 1132:33 ^ 43.80 ^ 20.9 ^ 9.97 0.444 ^ 140^-0.463 ^ 4.30 B 0.58 ^ 225.99 ^ 0.000 ^ No background correction 16 ^ 1135:44 ^ 46.98 21.0 10.47 0.558 ^ 140 -0.547 ^ 4.37 ^ B 0.71 226.12 ^ 0.000 No background correction 17 ^ 1139:21 ^ 50.60 ^ 21.0 ^ 11.00 0.890 ^ 140^-0.645 ^ 4.57 B 1.04 ^ 226.45 ^ 0.000 ^ No background correction ESAMotor Speed Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [rpm][hh.mm ss] [Mins] [C] [mS/cm ] [mPaN]^[nm-1] [ml] [ml] [wt%] File: 50Igsilica50magnetite ^ Date printed: 3/27/2008 ZetaProbe Potenlometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Backijround File Comment Titrant Data [Right]: Date printed: 3/27/2008File: 75lgsilica25magnetite 8.00 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENTColloidal^'Hanks^Measurement Date:^Friday, 4 February 2005^Min Freq 0 30 MHz^[Speed normal] le<ILitr5 Measurement Time .^12:35:07^ Version:^2.00 General Data: Titrant ID: Concentration: Density: Titrant Volume Added; Suspension Properties: Titra6t ID, Concentration: Density: Titrant Volume Added Sample Voldrre'{current): Particle.Concentiation (current): pH (current): Conductivity (current): Conductivity vs. pH Mol/L g/ml ml 225.3 ml wrk 2.87 0.816} mS/cm Sample Volume (initial): Particle Concentration (initial) . pH (initial). Conductivity (initial): ESA +. pH _ _ _ 10.97 0.908 0.000 - -0.10CP- 00 -0.200 a -0.300 - E -0.400 U) w -0.500 -0.600 -0.700 1.000 -- 2.00^4.00^6 00^_ &DO^_ _10.00^12 cio -6 0.800 0.600 :6 0.400 -0 g 0.200 0.000 0.00 2.00 4.00 6.00 10.00 12 00 pH pH 226.357 En 4 February 2005 1236:06 Fri 4 February 2005 0904:33 Analysis Date: Standard Calibre Titrant Data [Left]: Page: 1 1 ^ 1149:57 ^ 0.00 ^ 20.6 ^ 2.87 0.816 ^ 140^-0.108 ^ Inf ^ B 0.00 ^ 225.30 ^ NaN ^ No background correction 2 ^ 1151:47 ^ 1.83 20.6 3.60 0.425 ^ 140 -0.129 ^ 5.36 B 0.36 225.66 ^ 0.000 No background correction 3 ^ 1154:19 ^ 4.37 ^ 20.6 ^ 3.95 0.407 ^ 140^-0.152 ^ 5.04 ^ B 0.39 ^ 225.69 ^ 0.000 ^ No background correction 4 ^ 1157:11 ^ 7.23 20.6 4.52 0.400 ^ 140 -0.183 ^ 4.85 B 0.42 225.72 ^ 0.000 No background correction 5 ^ 1200:02 ^ 10.08 ^ 20.7 ^ 4.95 0.403 ^ 140^-0.214 ^ 4.79 ^ B 0.43 ^ 225.73 ^ 0.000 ^ No background correction 6 ^ 1203:13 ^ 13.27 20.7 ^ 5.48 0.408 ^ 140 -0.265 ^ 4.73 B 0.45 225.75 ^ 0.000 No background correction 7 ^ 1205:45 ^ 15.80 ^ 20.8 ^ 5.98 0.415 ^ 140^-0.314 ^ 4.69 ^ B 0.46 ^ 225.76 ^ 0.000 ^ No background correction 8 ^ 1208:57 ^ 19.00 20.8 6.47 0.421 ^ 140 -0.370 ^ 4.64 ^ B 0.48 225.78 ^ 0.000 No background correction 9 ^ 1211:28 ^ 21.52 ^ 20.9 ^ 6.95 0.426 ^ 140^-0.406 ^ 4.60 B 0.49 ^ 225.79 ^ 0.000 ^ No background correction 10 ^ 1214:41 ^ 24.73 20.9 ^ 7.47 0.431 ^ 140 -0.432 ^ 4.57 ^ B 0.51 225.81 ^ 0.000 No background correction 11 ^ 1216:31 ^ 26.57 ^ 21.0 ^ 7.95 0.434 ^ 140^-0.450 ^ 4.53 B 0.52 ^ 225.82 ^ 0.000 ^ No background correction 12 ^ 1219:04 ^ 29.12 21.0 8.54 0.439 ^ 140 -0.465 ^ 4.47 ^ B 0.54 225.84 ^ 0.000 No background correction 13 ^ 1221:56 ^ 31.98 ^ 21.1 ^ 9.00 0.447 ^ 140^-0.478 ^ 4.43 B 0.56 ^ 225.86 ^ 0.000 ^ No background correction 14 ^ 1225:07 ^ 35.17 21.1 9.45 0.463 ^ 140 -0.491 ^ 4.38 ^ B 0.59 225.89 ^ 0.000 No background correction 15 ^ 1228:39 ^ 38.70 ^ 21.2 ^ 9.98 0.508 ^ 140^-0.518 ^ 4.36 B 0.66 ^ 225.96 ^ 0.000 ^ No background correction 16 ^ 1231:50 ^ 41.88 21.2 10.45 0.610 ^ 140 -0.559 ^ 4.41 ^ B 0.77 226.07 ^ 0.000 No background correction 17 ^ 1235:07 ^ 45.17 ^ 21.3 ^ 10.97 0.908 ^ 140^-0.614 ^ 4.59 ^ B 1.06 ^ 226.36 ^ 0.000 ^ No background correction Motor Speed ESA Background Filename Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [Mins] [C3 [mS/cmj[hh:mm:ss1 [mPa/Vj^[pm-1] [m 11 [wt%) File: 75lgsilica25magnetite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Page: 2 Titrant Data [Right]:Titrant Data [Left]. Mol/L /ml ml 1  Motif.-, 0  9/M1 ,, 6.633 ml Titrant 1D: Concentration. Density: Titrant Volume Added Suspension Properties: Titrant Concentration: Denstty. Titrant Volume Added. 226.824Sample Volume (current)) Particle Concentration (current): pH (current):- Conductivity (current) - ConActivity v. pH 0.318 mS/cm Sample Volume (initial): Particle Concentration (initial): pH (initial}: Conductivity (initial): ESA vs. pH ^ 0.800 -^ • 0.700 ill 0.600 E 0.500 0.400 0.300 - 2 0.200 - 0.100 -^_ 0.000 --- 0.00 10.00 12.008.00 2.000 7 1.500 1.000 a. 0.500 E • 0.000 r cn ILI —0.50CP • DC) —1.000 "( -1.500 - 2.00 6.004.00 File: 50magnetite5Ogoethite Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Reboil:SimM16 ^ESA MEASUREMENTloidal Dynamics^Measurement Date:^Wednesday, 30 March 2005^Min Freq 0.30 MHz^[Speed: normal] f^i^i^c L^f11^-^;' (1 Measurement Time 15:26:13^ Version: 2.00 Analysis Date) Standard Calibration Date: Wed 30 March 2005 1527:12 Wed 30 March 2005 1048:03 , Backgrounci Pile: Comment, - No background file used no comment entered KOH 220.19 10.98 0.742 pH pH General a: Page: 1 File: 50magnetite5Ogoethite^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data^ ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity ^ Motor ^ ESA^Kappa^Total Volume^Sample^Particle^Background No. Measurement Speed Added^Volume Concentration Filename  [hh:mm ss] ^ [Mins] ^ [C] ^ [mS/cm] [mPa/V]^[nm-1] ^ [mIJ [ml] ^ [wt°70] 1 ^ 1432:29 ^ 0.00 ^ 20.9 ^ 3.04 0.318 ^ 140 ^ 1.622 ^ Inf ^ B 0.00 ^ 220.19 ^ NaN ^ No background correction 2 ^ 1435:09 ^ 2.67 21.0 3.51 0.242 ^ 140 1.427 ^ 2.93 ^ B 0.68 220.87 ^ 0.000 No background correction 3 ^ 1438:05 ^ 5.60 ^ 21.0 ^ 3.98 0.231 ^ 140 ^ 1.327 ^ 2.45 B 0.92 ^ 221.11 ^ 0.000 ^ No background correction 4 ^ 1441:25 ^ 8.93 21.1 4.47 0.234 ^ 140 1.200 ^ 2.27 ^ B 1.09 221.28 ^ 0.000 No background correction 5 ^ 1444:43 ^ 12.23 ^ 21.2 ^ 4.94 0.242 ^ 140 ^ 1.061 ^ 2.14 B 1.26 ^ 221.45 ^ 0.000 ^ No background correction 6 ^ 1448:23 ^ 15.90 21.2 5.46 0.254 ^ 140 0.929 ^ 2.02 ^ B 1.50 221.69 ^ 0.000 No background correction 7 ^ 1451:39 ^ 19.17 ^ 21.3 ^ 5.96 0.265 ^ 140 ^ 0.825 ^ 1.92 B 1.73 ^ 221.92 ^ 0.000 ^ No background correction 8 ^ 1454:56 ^ 22.45 21.3 6.46 0.278 ^ 140 0.717 ^ 1.84 ^ B 1.97 222.16 ^ 0.000 No background correction 9 ^ 1457:38 ^ 25.15 ^ 21.4 ^ 6.97 0.287 ^ 140 ^ 0.613 ^ 1.78 ^ B 2.18 ^ 222.37 ^ 0.000 ^ No background correction 10 ^ 1501:15 ^ 28.77 21.4 ^ 7.49 0.297 ^ 140 0.494 ^ 1.73 B 2.40 222.59 ^ 0.000 No background correction 11 ^ 1504:32 ^ 32.05 ^ 21.4 ^ 7.97 0.304 ^ 140 ^ 0.364 ^ 1.68 ^ B 2.61 ^ 222.80 ^ 0.000 ^ No background correction 12 ^ 1508:10 ^ 35.68 21.5 ^ 8.44 0.313 ^ 140 0.214 ^ 1.63 ^ B 2.82 223.02 ^ 0.000 No background correction 13 ^ 1511:31 ^ 39.03 ^ 21.5 ^ 8.94 0.321 ^ 140 ^ 0.041 ^ 1.59 B 3.06 ^ 223.25 ^ 0.000 ^ No background correction 14 ^ 1515:08 ^ 42.65 21.6 9.48 0.342 ^ 140 -0.213 ^ 1.57 ^ B 3.37 223.56 ^ 0.000 No background correction 15 ^ 1518:45 ^ 46.27 ^ 21.6 ^ 9.97 0.384 ^ 140^-0.475 ^ 1.56 B 3.81 ^ 224.00 ^ 0.000 ^ No background correction 16 ^ 1522:24 ^ 49.92 21.7 10.45 0.476 ^ 140 -0.747 ^ 1.58 ^ B 4.63 224.82 ^ 0.000 No background correction 17 ^ 1526:13 ^ 53.73 ^ 21.7 ^ 10.98 0.742 ^ 140^-1.016 ^ 1.65 B 6.63 ^ 226.82 ^ 0.000 ^ No background correction Page: 2 Appendix G: Electro-acoustic results for Vermelho samples 145 Titrant Data [Left]: Titrant Data [Right]: File: CVRDl_ESA Date printed: 3/27/2008 4.916 259.518 ml wt% ZetaProbe^ etSumma ry^ESA MEASUREMENT Measurement Date:^Monday, 19 July 2004^Min Freq 0.30 MHz^[Speed: normal] Measurement Time: 7:50:50^ Version.^2.14b Polar General Data: Colloidal Dynamics le^e ss^ro^f.•_ e n Tue. 25 March 2008 1052:37 Standard Calibration Date:^Mon, 19 July 2004 0744 21 Background File: Comment: =s ee "Titration Leg" sheets no comment entered Analysis Date Titrant ID: Concentration: Density Titrant Volume Added. Suspension Properties: 0 ol/L 0 g/ml 0 ml Titrant ID. Concentration Density. Titrant Volume Added: Sample Volume (initial). Particle Concentration (initial): pH (initial): Conductivity (initial): ESA vs. pH ml Sample Volume (current): Particle Concentration (current): pH (current). Conductivity (current): 11.97 5.36 mStcrn0.061 1.500 - 1.000 0.500 a 0.000 _0 00^2 00^4 00^6.00 W -0.50u -1.000 -1.500^- 6.000 - 75 5.000 E 4.000 3.000 2.000 - -0 (..) 0 1.000 0.000 0.00^5.00 —+—Run 1 —111— Run 2 NaOH 10' 10.00^15 00 0 00^12,00^14;00 Page: 1 1 ^ 0750:50 ^ 0.00 ^ 25.8 ^ 6.86 0.061 ^ 115^-0.092 ^ 0.07 ^ 0.00 ^ 255.00 ^ 5.000 ^ No background correction 2 ^ 0757:30 ^ 6.67 25.8 ^ 6.98 0.064 ^ 115 -0.092 ^ 0.07 B 0.18 255.18 ^ 4.997 No background correction 3 ^ 0800:22 ^ 9.53 ^ 25.9 7.90 0.104 ^ 115^-0.234 ^ 0.09 ^ B 0.64 ^ 255.63 ^ 4.988 ^ No background correction 4 ^ 0807:57 ^ 17.12 26.0 ^ 7.97 0.115 ^ 115 -0.253 ^ 0.09 B 0.67 255.67 ^ 4.987 No background correction 5 ^ 0811:28 ^ 20.63 ^ 26.0 ^ 8.46 0.136 ^ 115^-0.336 ^ 0.10 ^ B 0.72 ^ 255.72 ^ 4.986 ^ No background correction 6 ^ 0815:00 ^ 24.17 26.0 8.96 0.155 ^ 115 -0.407 ^ 0.11 B 0.78 255.78 ^ 4.985 No background correction 7 ^ 0818:31 ^ 27.68 ^ 26.0 ^ 9.47 0.180 ^ 115^-0.473 ^ 0.12 ^ B 0.85 ^ 255.85 ^ 4.984 ^ No background correction 8 ^ 0822:02 ^ 31.20 26.0 ^ 9.97 0.291 ^ 115 -0.534 ^ 0.15 ^ B 0.96 255.96 ^ 4.982 No background correction 9 ^ 0825:38 ^ 34.80 ^ 26.1 10.48 0.442 ^ 115^-0.616 ^ 0.18 ^ B 1.14 ^ 256.14 ^ 4.979 ^ No background correction 10 ^ 0828:49 ^ 37.98 26.1 ^ 10.96 0.787 ^ 115 -0.719 ^ 0.24 ^ B 1.45 256.45 ^ 4.973 No background correction 11 ^ 0832:06 ^ 41.27 ^ 26.1 11.46 1.870 ^ 115^-0.852 ^ 0.37 ^ B 2.20 ^ 257.20 ^ 4.959 ^ No background correction 12 ^ 0835:26 ^ 44.60 26.2 ^ 11.97 5.360 ^ 115 -1.048 ^ 0.63 ^ B 4.52 259.52 ^ 4.916 No background correction ESAMotor Speed Kappa Background Filename Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [C] [ml][rpm]^[mPa/(V/m)]^[nm-1][Mins] [ml] [wt%][mS/cm][hh:mm:ss] File: CVRD1ESA^ Date printed: 3/27/2008 ZetaP obe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off ESA MEASUREMENT Page: 2 [rpm]^[mPa/(V/m)]^[nm-1][Mins] [C] [wt%][mS/cm][hh:mm:ss] [ml]^[ml] ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) ESA MEASUREMENT Motor Speed ESA Kappa Background Filename Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature ph Conductivity No. Measurement 0907:14 0910:35 0914:52 0918:28 0922:25 0926:23 0929:41 ^ 25.9^9.31 0.446^125 26.0 8.53 0.485^125 26.0^7.49 0.534^125 26.0 6.57 0.567^125 26.1^5.55 0.597^125 26.1 4.55 0.633^125 26.1^3.18 0.964^125 -0.387^0.18 -0.292^0.19 -0.169^0.20 -0.051^0.21 0.165^0.21 0.304^0.22 0.396^0.27 0.00 A 0.05 A 0.12 A 0.17 A 0.22 A 0.27 A 0.43 No background correction No background correction No background correction No background correction No background correction No background correction No background correction 0.00 3.35 7.63 11.23 15.18 19.15 22.45 IEPS:^6.33 1 2 3 4 5 6 7 255.00 255.05 255.12 255.17 255.22 255.27 255.43 5.000 4.999 4.998 4.997 4.996 4.995 4.992 File: CVRD1_ESA ^ Date printed: 3/27/2008 Page: 3 Min Freq 0.30 MHz Version: Monday, 19 July 2004 13:45:23 Colloidal Dynamics tt^ MrdS l̂ine riffs General. ata' ZetaProbe Potentiometric Series Titration Report - Summary Measurement Date : Measurement Time: SIN ESA MEASUREMENT [Speed: normal] 2.14b Polar Mon. 19 July 2004 0744:21 Background File: Comment; Analysis Date Standard Calibration Date. Tue. 25 March 2008 105339 E 10.000 8.000 6.000Run 1 14 00 C3 4.000Run 2 7 0 2.000 0.000 - - 0.00 Titrant Data [Left]: Titrant Data [Right]: ESA vs. pH Conductivity vs (pH pHpH Sample Volume (initial): Particle Concentration (initial): pH (initial); Conductivity (initial): ml^ Sample Volume (current) .^-^ 260.332 ml Particle Concentration (current). pH (current)' Conductivity (current) . 5.00 15 0010.00 Titrant ID: Concentration. Density: Titrant Volume Added: Suspension Properties: HCI Titrant ID: Concentration: Density: Titrant Volume Added: NaOH 10% 19 0 4.982 1.000 0.000 , 0.500 -, 0.00^2.00^4.00 E. -0.500 1 -1.000 -1.500 see "Titration Leg" sheets no comment entered File: CVRD2ESA ^ Date printed: 3/27/2008 Page: 1 1 ^ 1345:23 ^ 0.00 ^ 26.2 ^ 4.40 0.540 ^ 125^-0.148 ^ 0.20 ^ 0.00 ^ 255.35 ^ 5.000 ^ No background correction 2 ^ 1346:39 ^ 1.27 26.2 4.54 0.538 ^ 125 -0.151 ^ 0.20 B 0.00 255.35 ^ 5.000 No background correction 3 ^ 1349:55 ^ 4.53 ^ 26.2 ^ 4.98 0.546 ^ 125^-0.169 ^ 0.20 ^ B 0.04 ^ 255.39 ^ 4.999 ^ No background correction 4 ^ 1353:11 ^ 7.80 26.2 5.46 0.557 ^ 125 -0.195 ^ 0.20 B 0.10 255.45 ^ 4.998 No background correction 5 ^ 1356:27 ^ 11.07 ^ 26.3 ^ 5.95 0.572 ^ 125^-0.218 ^ 0.21 ^ B 0.17 ^ 255.52 ^ 4.997 ^ No background correction 6 ^ 1359:45 ^ 14.37 26.4 6.45 0.588 ^ 125 -0.243 ^ 0.21 B 0.24 255.59 ^ 4.995 No background correction 7 ^ 1403:08 ^ 17.75 ^ 26.4 ^ 6.95 0.603 ^ 125^-0.265 ^ 0.21 ^ B 0.31 ^ 255.66 ^ 4.994 ^ No background correction 8 ^ 1406:25 ^ 21.03 26.4 ^ 7.42 0.615 ^ 125 -0.290 ^ 0.21 B 0.37 255.72 ^ 4.993 No background correction 9 ^ 1410:04 ^ 24.68 ^ 26.5 7.93 0.627 ^ 125^-0.315 ^ 0.22 ^ B 0.44 ^ 255.79 ^ 4.992 ^ No background correction 10 ^ 1413:20 ^ 27.95 26.6 ^ 8.46 0.642 ^ 125 -0.350 ^ 0.22 ^ B 0.53 255.88 ^ 4.990 No background correction 11 ^ 1416:58 ^ 31.58 ^ 26.6 ^ 8.95 0.660 ^ 125^-0.395 ^ 0.22 B 0.64 ^ 255.99 ^ 4.988 ^ No background correction 12 ^ 1420:54 ^ 35.52 26.7 9.48 0.692 ^ 125 -0.455 ^ 0.23 ^ B 0.81 256.16 ^ 4.985 No background correction 13 ^ 1424:31 ^ 39.13 ^ 26.7 ^ 9.98 0.749 ^ 125^-0.510 ^ 0.24 ^ B 1.02 ^ 256.37 ^ 4.981 ^ No background correction 14 ^ 1427:51 ^ 42.47 26.8 10.46 0.870 ^ 125 -0.565 ^ 0.25 B 1.32 256.67 ^ 4.975 No background correction 15 ^ 1431:07 ^ 45.73 ^ 26.8 ^ 10.98 1.190 ^ 125^-0.639 ^ 0.30 ^ B 1.77 ^ 257.12 ^ 4.967 ^ No background correction 16 ^ 1434:28 ^ 49.08 26.9 11.47 2.170 ^ 125 -0.778 ^ 0.40 B 2.61 257.96 ^ 4.951 No background correction 17 ^ 1437:56 ^ 52.55 ^ 27.0 ^ 11.97 5.460 ^ 125^-0.989 ^ 0.64 ^ B 4.98 ^ 260.33 ^ 4.908 ^ No background correction [Mind [C) imS/cm1^[rpm]^[mPa/(V/m)]^inm-11 [ml) [ml) twt%)[hh:mm.ss1 ZetaProbe Potent' °metric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor^ESA ^ Kappa^Total Volume^Sample^Particle^Background No. Measurement Speed Added^Volume Concentration Filename File: CVRD2_ESA ^ Date printed: 3/27/2008 Page: 2 [rpm]^[mPa/(V/m)]^[nm-1][Mins] [C] [wtrYo][mS/cm] [ml]^[ml][hh:mm ss] ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) ESA MEASUREMENT ESA KappaMotor Speed Background Filename Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement 1447:09 1450:45 1453:41 1456:57 1500:20 1503:44 ^ 26.3^4.61 0.559^125 26.2 4.08 0.679^125 26.3^3.59 0.831^125 26.3 3.05 1.270^125 26.4^2.52 2.900^125 26.4^2.01 8.720^125 -0.160^0.20 -0.132^0.22 -0.119^0.25 -0.132^0.31 0.225^0.46 0.527^0.80 0.00 A 0.11 A 0.21 A 0.41 A 0.95 A 2.86 No background correction No background correction No background correction No background correction No background correction No background correction 0.00 3.60 6.53 9.80 13.18 16.58 1 2 3 4 5 6 IEPS:^2.85 255.45 255.56 255.66 255.85 256.39 258.31 5.000 4.998 4.996 4.992 4.982 4.947 File: CVRD2_ESA ^ Date printed: 3/27/2008 Page: 3 pH pH NaOH (10%)Titrant ID. Concentration: Density. Titrant Volume Added. Titrant ID: Concentration: Density: Titrant Volume Added. Suspension Properties: 11.97 Sample Volume (initial): Particle Concentration (initial): pi-I (initial): Conductivity (initial): mS/cm0.259 Sample Volume (current) Particle Concentration (current). pH (current): Conductivity (current) Conductivity vs. pHESA vs. pH 0.400 0.200 - 1 0.000 "5". -0.2000.p0 sie a -0.400 1E < -0.600 ILI -0.800 - 1 -1.000 -1.200 10.00^12.00 - 1400 6.000 5.000 E 4.000 3.000 `g 2.000 c§ 1.000 0.000 . 0.00 2.00^4.00^6.00^8.00^10.00^12.00^14 00 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT Min Freq 0.30 MHz^[Speed normal] Version:^2.14b Polar Measurement Date: Measurement Time : Wednesday, 19 May 2004 12:18:21 Co °RIM Dynamics e ats General. Dpta: Analysis Date: Standard Calibration Date: Titrant Data [Left]: Beakground Fite: Comment:. Titrant Data [Right]: HCI ^ Mol/L g/ml 0 ml Wed. 19 May 2004 1155 52 File: CVRD3ESA ^ Date printed: 3/27/2008 Page: 1 File: CVRD3_ESA ^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity ^Motor^ESA ^ Kappa^Total Volume^Sample^Particle^Background No. Measurement Speed Added^Volume Concentration Filename  [hh:mm:ss] ^ [Mins] ^ [C] ^ [mSlcm] ^ [rpm]^[mPa/(V/m)]^[nm-1] ^ [ml] [ml] ^ [wtY0] 1 ^ 1218:21 ^ 0.00 ^ 23.9 ^ 3.79 0.259 ^ 115 ^ 0.279 ^ 0.14 ^ 0.00 ^ 255.00 ^ 5.000 ^ No background correction 2 ^ 1220:56 ^ 2.58 23.9 ^ 4.51 0.254 ^ 115 0.194 ^ 0.14 ^ B 0.37 255.37 ^ 4.993 No background correction 3 ^ 1224:07 ^ 5.77 ^ 24.0 4.96 0.266 ^ 115 ^ 0.133 ^ 0.14 B 0.39 ^ 255.39 ^ 4.993 ^ No background correction 4 ^ 1228:00 ^ 9.65 24.0 ^ 5.47 0.280 ^ 115 0.042 ^ 0.14 ^ B 0.45 255.45 ^ 4.991 No background correction 5 ^ 1231:12 ^ 12.85 ^ 24.0 ^ 6.00 0.298 ^ 115^-0.070 ^ 0.15 ^ B 0.48 ^ 255.48 ^ 4.991 ^ No background correction 6 ^ 1234:04 ^ 15.72 24.1 6.46 0.315 ^ 115 -0.139 ^ 0.15 ^ B 0.51 255.51 ^ 4.990 No background correction 7 ^ 1237:15 ^ 18.90 ^ 24.1 ^ 6.96 0.334 ^ 115^-0.204 ^ 0.16 ^ B 0.54 ^ 255.54 ^ 4.990 ^ No background correction 8 ^ 1240:27 ^ 22.10 24.2 7.48 0.355 ^ 115 -0.266 ^ 0.16 ^ B 0.58 255.58 ^ 4.989 No background correction 9 ^ 1243:39 ^ 25.30 ^ 24.2 ^ 7.95 0.373 ^ 115^-0.321 ^ 0.17 ^ B 0.61 ^ 255.61 ^ 4.988 ^ No background correction 10 ^ 1246:51 ^ 28.50 24.2 ^ 8.43 0.390 ^ 115 -0.387 ^ 0.17 ^ B 0.66 255.66 ^ 4.988 No background correction 11 ^ 1250:03 ^ 31.70 ^ 24.3 ^ 8.97 0.414 ^ 115^-0.452 ^ 0.18 B 0.71 ^ 255.71 ^ 4.987 ^ No background correction 12 ^ 1253:36 ^ 35.25 24.3 9.47 0.456 ^ 115 -0.501 ^ 0.18 ^ B 0.77 255.77 ^ 4.985 No background correction 13 ^ 1256:47 ^ 38.43 ^ 24.3 ^ 9.95 0.552 ^ 115^-0.555 ^ 0.20 B 0.88 ^ 255.88 ^ 4.983 ^ No background correction 14 ^ 1300:24 ^ 42.05 24.4 10.48 0.824 ^ 115 -0.630 ^ 0.25 ^ B 1.08 256.09 ^ 4.980 No background correction 15 ^ 1303:35 ^ 45.23 ^ 24.4 ^ 10.97 1.460 ^ 115^-0.724 ^ 0.33 ^ B 1.46 ^ 256.46 ^ 4.972 ^ No background correction 16 ^ 1306:51 ^ 48.50 24.5 11.49 2.900 ^ 115 -0.837 ^ 0.46 B 2.25 257.25 ^ 4.958 No background correction 17 ^ 1309:50 ^ 51.48 ^ 24.5 ^ 11.97 5.590 ^ 115^-0.940 ^ 0.64 ^ B 3.76 ^ 258.77 ^ 4.930 ^ No background correction IEPS:^5.67 Page: 2 Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Measurement Date:^Monday, 19 July 2004^Min Freq 0.30 MHz^[Speed: normal] Measurement Time 9:57:08^ Version:^2.14b Polar File: CVRD4_ESA Colloidal Dynamics I e^e r rrr^G^in^e rn^n General Data: Analysis Date: Standard Calibration Date, Titrant Data [Left]: Titrant ID: Concentration: Density . Titrant Volume Added Suspension Properties: Tue. 25 March 2008 1054:38 Mon, 19 July 2004 0744:21 2  Mol/L background-File Comment: Titrant Data [Right]; Titrant ID: Concentration: Density: Titrant Volume Added: see "Titration Leg" sheets no comment entered NaOH 10% 4.164 ml Sample Volume (initial): Particle Concentration (initial): pH (initial) : Conductivity (initial): ESA vs. pH wt 33 mS/cm Sample Volume . (current): Particle Concentration (current): pH (current) - Conductivity (current): mS/cm 255 16 4.923 0.312 11.99 ConduVity vs. pH 0.600 0.400 7-7 0.200 0.000 - - ;2 -0.2003-60 E -0.400 ifu) -0.600 -0.800 -I -1.000 10.000 - 'Ecl: 8.000 U) !. 6.000 E, 4.000 = 0 c 2.000 0.000 - 0.00 Run 1 —111-- Run 2 5.00 10.00 15 00 pH pH Page: 1 1 ^ 0957:08 ^ 0.00 ^ 26.3 ^ 4.84 0.313 ^ 125^-0.148 ^ 0.15 ^ 0.00 ^ 255.16 ^ 5.000 ^ No background correction 2 ^ 1000:30 ^ 3.37 26.4 ^ 5.45 0.319 ^ 125 -0.171 ^ 0.15 B 0.03 255.19 ^ 4.999 No background correction 3 ^ 1003:46 ^ 6.63 ^ 26.4 5.95 0.327 ^ 125^-0.188 ^ 0.16 ^ B 0.06 ^ 255.22 ^ 4.999 ^ No background correction 4 ^ 1007:04 ^ 9.93 26.4 ^ 6.47 0.338 ^ 125 -0.206 ^ 0.16 ^ B 0.10 255.26 ^ 4.998 No background correction 5 ^ 1010:21 ^ 13.22 ^ 26.4 ^ 6.97 0.348 ^ 125^-0.221 ^ 0.16 ^ B 0.14 ^ 255.30 ^ 4.997 ^ No background correction 6 ^ 1013:19 ^ 16.18 26.5 ^ 7.45 0.354 ^ 125 -0.236 ^ 0.16 ^ B 0.17 255.33 ^ 4.997 No background correction 7 ^ 1016:55 ^ 19.78 ^ 26.5 ^ 7.98 0.362 ^ 125^-0.255 ^ 0.16 ^ B 0.22 ^ 255.38 ^ 4.996 ^ No background correction 8 ^ 1020:11 ^ 23.05 26.5 8.45 0.369 ^ 125 -0.281 ^ 0.17 B 0.27 255.43 ^ 4.995 No background correction 9 ^ 1023:48 ^ 26.67 ^ 26.6 ^ 8.97 0.380 ^ 125^-0.314 ^ 0.17 ^ B 0.34 ^ 255.50 ^ 4.994 ^ No background correction 10 ^ 1027:04 ^ 29.93 26.6 ^ 9.45 0.401 ^ 125 -0.349 ^ 0.17 B 0.42 255.58 ^ 4.992 No background correction 11 ^ 1030:20 ^ 33.20 ^ 26.6 ^ 9.95 0.451 ^ 125^-0.392 ^ 0.18 ^ B 0.53 ^ 255.70 ^ 4.990 ^ No background correction 12 ^ 1033:36 ^ 36.47 26.6 10.45 0.567 ^ 125 -0.448 ^ 0.21 B 0.71 255.87 ^ 4.987 No background correction 13 ^ 1036:57 ^ 39.82 ^ 26.6 ^ 10.98 0.917 ^ 125^-0.535 ^ 0.26 ^ B 1.05 ^ 256.21 ^ 4.980 ^ No background correction 14 ^ 1040:13 ^ 43.08 26.7 11.48 1.980 ^ 125 -0.663 ^ 0.38 B 1.82 256.98 ^ 4.966 No background correction 15 ^ 1043:40 ^ 46.53 ^ 26.7 ^ 11.99 5.460 ^ 125^-0.842 ^ 0.64 ^ B 4.16 ^ 259.33 ^ 4.923 ^ No background correction (rpm]^[mPa/(V/m)]^(nm-1][hh:mm:ss]^[Mins] [mS/cm] [ml] [ml] [wt%] ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) npswtch off^ESA MEASUREMENT Motor Speed ESA Background Filename Sample^Particle Volume Concentration Kappa^Total Volume Added Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement File: CVRD4_ESA ^ Date printed: 3/27/2008 Page: 2 ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) ESA MEASUREMENT ESA Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement Motor Speed Background Filename [C] [rpm]^[mPa/(V/m)]^[nm-1][hh:mm ss]^[Mins] [w°%0][mS/cm] [m l] [m l] 1058:40 1100:35 1103:31 1106:31 1109:27 1112:51 ^ 28.8^4.50 0.372^120 28.6 4.03 0.429^120 28.3^3.54 0.558^120 28.1 3.05 0.955^120 28.0^2.54 2.340^120 27.9 2.01 8.460^120 -0.161^0.17 -0.137^0.18 -0.110^0.20 -0.112^0.27 0.201^0.42 0.522^0.79 0.00 A 0.04 A 0.10 A 0.23 A 0.63 A 2.45 No background correction No background correction No background correction No background correction No background correction No background correction 0.00 1.92 4.85 7.85 10.78 14.18 IEPS:^2.87 1 2 3 4 5 6 255.20 255.23 255.30 255.43 255.83 257.65 5.000 4.999 4.998 4.996 4.988 4.954 File: CVRD4_ESA^ Date printed: 3/27/2008 Page: 3 Sample Volume (initial): Particle Concentration (initial): pH (initial) Conductivity (initial): Measurement Date: Measurement Time: File: CVRD5_ESA Co °Ida! Dynamics c^rueJ^k: 111 t: fi t General Data: Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Monday, 19 July 2004^Min Freq 0.30 MHz^[Speed: normal] 11:24:08^ Version:^2.14b Polar S/N lead Analysis Date: Standard Calibration Date. Titrant Data [Left]: Titrant ID: Concentration Density' Titrant Volume Added Suspension Properties: Tue, 25 March 2008 1056 04 Mon, 19 July 2004 0744:21 Background File. Comment. Titranf Data [Right]: " Titrant ID: Concentration: Density. Titrant Volume Added: NaOH 10% Sample Volume (current): Particle Concentration (current). pH (current): Conductivity (current): Conductivity /s. pH 6.000  - - F, 5.000 4- - 11 4.000 3.000 4 g 2.000 -; -0 o 1.000 41— -T1 0.000 0.00 —4—Leg 1 —AS-- Leg 2 Leg 3 5.00 ^ 10.00 ^ 15.00 ESA vs. pH 0.000 ^ -0.1000.00^2 tiCi^4 00 -^6 00 --^8 00- -^10 00^.12.00.^141 00 -0.200 .5' -0.300 o_ -0.400 - E < -0.500 - - 11u) -0.600 -0.700 -^- -0.800 pH  pH Page: 1 Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor No. Measurement Speed [hh:mm:ss]^[Mins]^[C] ^ [mS/cm]^[rpm] ESA ^ Kappa [mPa/(V/m)]^[nm-1] Total Volume Added [ml] Particle Concentration [wtVo] Background Filename Sample Volume [ml] 1 ^ 1124:08 ^ 0.00 ^ 26.3 ^ 3.93 0.445 ^ 125^-0.141 ^ 0.18 ^ 0.00 ^ 255.24 ^ 5.000 ^ No background correction 2 ^ 1127:06 ^ 2.97 26.3 4.46 0.425 ^ 125 -0.150 ^ 0.18 B 0.04 255.27 ^ 4.999 No background correction 3 ^ 1130:22 ^ 6.23 ^ 26.3 ^ 4.97 0.425 ^ 125^-0.162 ^ 0.18 ^ B 0.07 ^ 255.31 ^ 4.999 ^ No background correction 4 ^ 1133:38 ^ 9.50 26.2 5.49 0.432 ^ 125 -0.174 ^ 0.18 B 0.11 255.35 ^ 4.998 No background correction 5 ^ 1136:59 ^ 12.85 ^ 26.2 ^ 5.99 0.443 ^ 125^-0.186 ^ 0.18 ^ B 0.15 ^ 255.39 ^ 4.997 ^ No background correction 6 ^ 1140:15 ^ 16.12 26.3 ^ 6.45 0.455 ^ 125 -0.197 ^ 0.18 B 0.19 255.42 ^ 4.996 No background correction 7 ^ 1143:31 ^ 19.38 ^ 26.3 6.97 0.467 ^ 125^-0.209 ^ 0.19 ^ B 0.22 ^ 255.46 ^ 4.996 ^ No background correction 8 ^ 1146:47 ^ 22.65 26.3 ^ 7.42 0.474 ^ 125 -0.217 ^ 0.19 B 0.26 255.49 ^ 4.995 No background correction 9 ^ 1150:24 ^ 26.27 ^ 26.3 ^ 7.94 0.480 ^ 125^-0.223 ^ 0.19 ^ B 0.29 ^ 255.53 ^ 4.994 ^ No background correction 10 ^ 1154:00 ^ 29.87 26.4 ^ 8.44 0.488 ^ 125 -0.237 ^ 0.19 ^ B 0.34 255.57 ^ 4.994 No background correction 11 ^ 1157:37 ^ 33.48 ^ 26.5 ^ 8.95 0.499 ^ 125^-0.255 ^ 0.19 ^ B 0.40 ^ 255.63 ^ 4.992 ^ No background correction 12 ^ 1201:13 ^ 37.08 26.5 9.47 0.521 ^ 125 -0.282 ^ 0.20 B 0.48 255.71 ^ 4.991 No background correction 13 ^ 1204:29 ^ 40.35 ^ 26.5 ^ 9.95 0.563 ^ 125^-0.313 ^ 0.20 ^ B 0.58 ^ 255.82 ^ 4.989 ^ No background correction 14 ^ 1207:45 ^ 43.62 26.5 10.46 0.671 ^ 125 -0.357 ^ 0.22 B 0.75 255.99 ^ 4.986 No background correction 15 ^ 1211:01 ^ 46.88 ^ 26.6 ^ 10.97 0.984 ^ 125^-0.421 ^ 0.27 ^ B 1.06 ^ 256.30 ^ 4.980 ^ No background correction 16 ^ 1214:22 ^ 50.23 26.7 11.47 1.960 ^ 125 -0.529 ^ 0.38 B 1.76 257.00 ^ 4.967 No background correction 17 ^ 1217:49 ^ 53.68 ^ 26.7 ^ 11.98 5.290 ^ 125^-0.697 ^ 0.63 ^ B 3.98 ^ 259.22 ^ 4.926 ^ No background correction ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT File: CVRD5_ESA^ Date printed: 3/27/2008 Page: 2 Sample Volume (initial); Particle Concentration (initial) . pH (initial): Conductivity (initial): Sample Volume (current): Particle Concentration (current): pH (current): Conductivity (current): File: CVRD6_ESA Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report :Siiiimary Measurement Date:^Tuesday, 13 July 2004^Min Freq 0.30 MHz Measurement Time:^10:42:05^ Version : Colloidal Dynamics I e^c-c lkcis^111 F.•^L.: 7^Fll^n t General Data: Analysis Date; Standard Calibration Date: Titrant Data [Left]: Titrant ID. Concentration: Density; Titrant Volume Added: Suspension Properties: Tue. 25 March 2008 1056:27 Tue. 13 July 2004 1025:01 Background File Comment Titrant Data [Right]: Titrant Concentration:- Density; Titrant Volume Added: NaOH 10 % ESA vs. pH Conductivity vs. pH pH ^ pH 5.00 10.00 15.00 10.000 8.000 - 6.000 4.000 2.000 0.000 - — 0.00 E co E U -00 0 —4-- Run 1 - Run  2 0.600 0.400 r-z1 0.200 "5 0.000 c-13 a. -0.20001)0 -0.400 co u.a -0.600 1 -0.800 -1.000^- Page: 1 File: CVRD6_ESA ^ Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT  Meas.^Time of^Elapsed Time Temperature pH Conductivity ^Motor^ESA ^ Kappa^Total Volume^Sample^Particle^Background No. Measurement Speed Added^Volume Concentration Filename [hh:mm:ss] ^ [Mins] ^ [C] ^ [mSlcm] ^ [rpm]^[mPai(V/m)]^[nm-1] ^ [ml] [ml] ^ [wt%] 1 ^ 1042:05 ^ 0.00 ^ 24.6 ^ 3.24 0.697 ^ 140^-0.098 ^ 0.23 ^ 0.00 ^ 255.00 ^ 5.000 ^ No background correction 2 ^ 1044:20 ^ 2.25 24.6 3.84 0.610 ^ 130 -0.121 ^ 0.21 B 0.48 255.48 ^ 4.991 No background correction 3 ^ 1046:30 ^ 4.42 ^ 24.7 ^ 3.97 0.608 ^ 130^-0.127 ^ 0.21 ^ B 0.50 ^ 255.50 ^ 4.991 ^ No background correction 4 ^ 1049:42 ^ 7.62 24.7 4.46 0.605 ^ 130 -0.151 ^ 0.21 B 0.58 255.58 ^ 4.989 No background correction 5 ^ 1052:53 ^ 10.80 ^ 24.8 ^ 4.97 0.613 ^ 130^-0.174 ^ 0.21 ^ B 0.65 ^ 255.65 ^ 4.988 ^ No background correction 6 ^ 1056:06 ^ 14.02 24.8 ^ 5.45 0.625 ^ 130 -0.191 ^ 0.22 ^ B 0.71 255.71 ^ 4.987 No background correction 7 ^ 1059:18 ^ 17.22 ^ 24.9 ^ 5.98 0.642 ^ 130^-0.211 ^ 0.22 B 0.78 ^ 255.78 ^ 4.985 ^ No background correction 8 ^ 1102:30 ^ 20.42 24.9 6.49 0.660 ^ 130 -0.230 ^ 0.22 ^ B 0.84 255.84 ^ 4.984 No background correction 9 ^ 1105:22 ^ 23.28 ^ 24.9 ^ 7.01 0.674 ^ 130^-0.244 ^ 0.22 ^ B 0.90 ^ 255.91 ^ 4.983 ^ No background correction 10 ^ 1108:13 ^ 26.13 25.0 ^ 7.48 0.683 ^ 130 -0.253 ^ 0.23 ^ B 0.95 255.95 ^ 4.982 No background correction 11 ^ 1111:28 ^ 29.38 ^ 25.0 7.95 0.692 ^ 130^-0.264 ^ 0.23 ^ B 1.00 ^ 256.00 ^ 4.981 ^ No background correction 12 ^ 1114:40 ^ 32.58 25.1 ^ 8.47 0.704 ^ 130 -0.282 ^ 0.23 ^ B 1.07 256.07 ^ 4.980 No background correction 13 ^ 1118:12 ^ 36.12 ^ 25.1 8.98 0.720 ^ 130^-0.300 ^ 0.23 B 1.16 ^ 256.16 ^ 4.978 ^ No background correction 14 ^ 1121:44 ^ 39.65 25.2 ^ 9.45 0.743 ^ 130 -0.327 ^ 0.23 ^ B 1.26 256.26 ^ 4.976 No background correction 15 ^ 1124:55 ^ 42.83 ^ 25.2 9.96 0.794 ^ 130^-0.364 ^ 0.24 ^ B 1.39 ^ 256.39 ^ 4.974 ^ No background correction 16 ^ 1128:07 ^ 46.03 25.2 ^ 10.46 0.904 ^ 130 -0.407 ^ 0.26 B 1.57 256.57 ^ 4.970 No background correction 17 ^ 1131:19 ^ 49.23 ^ 25.3 10.97 1.200 ^ 130^-0.467 ^ 0.30 ^ B 1.87 ^ 256.87 ^ 4.965 ^ No background correction 18 ^ 1134:36 ^ 52.52 25.4 ^ 11.47 2.100 ^ 130 -0.568 ^ 0.39 B 2.54 257.54 ^ 4.952 No background correction 19 ^ 1137:55 ^ 55.83 ^ 25.4 11.98 5.110 ^ 130^-0.768 ^ 0.62 ^ B 4.55 ^ 259.55 ^ 4.916 ^ No background correction Page: 2 ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) ESA MEASUREMENT Kappa^Total Volume^Sample^Particle Added^Volume Concentration Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement Motor Speed ESA Background Filename [mS/cm]^[rpm]^[mPa/(V/m)]^[nm-1] [wt%][Mins] tel [ml] [m1] 1327:05 1330:16 1333:33 1336:52 3.56 0.630 3.00 1.050 2.52 2.430 2.01 8.570 ^ -0.100^0.22 -0.111^0.28 0.193^0.42 0.529^0.80 A 0.40 A 0.56 A 0.98 A 2.87 No background correction No background correction No background correction No background correction 125 125 125 125 1 2 3 4 255.40 255.56 255.98 257.88 4.992 4.989 4.982 4.946 28.55 31.73 35.02 38.33 25.2 25.3 25.4 25.4 File: CVRDS_ESA ^ Date printed: 3/27/2008 Page: 3 HCI  Mol/L glml ml 1.9 0 ci Sample Volume (current)' Particle ConcOntration (current): pH (current): Conductivity (current): Sample Volume (initial): Particle Concentration (initial) . pH (initial) Conductivity (initial): 7.000 — ? 6.000 u) 5.000 - E 4.000 5z 3.000 2.000 - 8 1.000 0.000 0.00^2.00 4.00^6.00^8.00^10.00^12.00^14.00 -- 6,00^8. 0^10.002.00 - 1 4 100 File: CVRD7_ESA ^ Date printed: 3/27/2008 Colloidal Dynamics 1e atie rr^r^t L' rn^ri t ZetaProbe Potentiometric Series Titration Reporl- Summary^ESA MEASUREMENT Measurement Date:^Thursday, 15 July 2004^Min Freq 0.30 MHz^[Speed normal] Measurement Time:^19:49:00^ Version:^2.14b Polar General Data: -S/N: Analysis Date: Standard Calibration Date, Titrant Data [Left]: Tue. 25 March 2003 1056:46 Tue. 13 July 2004 1025:01 Babkgrodnd rile: Comment. Titrant Data [Right]: Titrant ID: Concentration: Density: Titrant Volume Added. TitrantID: Conbentration: DenSity: ' Titrant Volume Added: NaOH 10% Mol/L g/m1 ml Suspension Properties: ESA vs. pH Conductiyy vs. pH 0.200 0.000 7-7 -0.20W 50 115 -0.400 11a a_ -0.600 -0.800 - 1 - w -1.000 - -1.200 - 1 -1.400 .1 pH pH Page: 1 1 ^ 1949:00 ^ 0.00 ^ 26.8 ^ 6.83 0.086 ^ 125 ^ 0.051 ^ 0.08 ^ 0.00 ^ 255.00 ^ 5.000 ^ No background correction 2 ^ 1959:03 ^ 10.05 26.8 7.14 0.103 ^ 125 0.012 ^ 0.09 B 0.45 255.45 ^ 4.992 No background correction 3 ^ 2009:40 ^ 20.67 ^ 26.9 ^ 7.48 0.127 ^ 125^-0.062 ^ 0.10 ^ B 0.58 ^ 255.57 ^ 4.989 ^ No background correction 4 ^ 2013:32 ^ 24.53 26.9 8.01 0.156 ^ 125 -0.196 ^ 0.11 B 0.67 255.67 ^ 4.987 No background correction 5 ^ 2016:44 ^ 27.73 ^ 27.0 ^ 8.46 0.184 ^ 125^-0.328 ^ 0.12 ^ B 0.73 ^ 255.72 ^ 4.986 ^ No background correction 6 ^ 2020:17 ^ 31.28 27.0 8.96 0.210 ^ 125 -0.454 ^ 0.12 B 0.79 255.79 ^ 4.985 No background correction 7 ^ 2023:48 ^ 34.80 ^ 27.1 ^ 9.47 0.310 ^ 125^-0.558 ^ 0.15 ^ B 0.87 ^ 255.87 ^ 4.984 ^ No background correction 8 ^ 2026:59 ^ 37.98 27.1 9.95 0.387 ^ 125 -0.638 ^ 0.17 ^ B 0.99 255.99 ^ 4.981 No background correction 9 ^ 2030:16 ^ 41.27 ^ 27.1 ^ 10.47 0.552 ^ 125^-0.730 ^ 0.20 ^ B 1.20 ^ 256.19 ^ 4.977 ^ No background correction 10 ^ 2033:27 ^ 44.45 27.2 10.96 0.932 ^ 125 -0.831 ^ 0.26 B 1.54 256.54 ^ 4.971 No background correction 11 ^ 2037:04 ^ 48.07 ^ 27.2 ^ 11.49 2.210 ^ 125^-0.967 ^ 0.41 ^ B 2.45 ^ 257.45 ^ 4.954 ^ No background correction 12 ^ 2040:28 ^ 51.47 27.3 11.99 5.810 ^ 125 -1.148 ^ 0.66 B 4.88 259.88 ^ 4.910 No background correction IEPS:^7.20 [hh:mm:ss]^[Mins]^[C] [mS/cm] [rpm]^(mPa/(V/m)]^[nm-1] [ml] [ml] [wt%) ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor ^ ESA ^ Kappa^Total Volume^Sample^Particle^Background No. Measurement Speed Added^Volume Concentration Filename File: CVRD7ESA ^ Date printed: 3/27/2008 Page: 2 Sample Volume (initial).* Particle Concentration (initial): pH (initial) : Conductivity (initial). 258.023 4.944 11.97 Sample Volume (current): Particle Concentration (current): pH (current): Conductivity (current) Conductivity vs. pH mS lc rn0.174 mSicm ZetaProbe Potentiometric Series Titration Report7Surrimary ,SA11/1MEASUREMENT^Colloidal Dvn trims^Measurement Date:^Wednesday, 19 May 2004^Min Freq 0.30 MHz^[Speed: normal] LLIi(^.rnerir Measurement Time 13:26:32^ Version:^2.14b Polar Genera l ata: S/N: Analysis Date: Standard Calibration Date. 'Titrant Data [Left]: Titrant ID: Conce ntration: Density - Titrant Volume Added: Suspension Properties: Tue, 25 March 2008 1057:07 Wed. 19 May 2004 1155:52 Background-File: Comment: - Titrant Data [Right]: Titrant ID. Concentration: Density._ Titrant Volume Added: see "Titration Leg" sheets no comment entered NaOH (10%) 1.9 Mol/L /rnl 3.02 ml 0.500 :"?:- 0.000 E ^0.00^2.00 -0.500 co -1.000 -1.500 - 6.000 - F, 5.000 - u.d 4.000 - . 3.000 i 2.000 g 1.000 0.000 0.00 2.00^4.00^6.00^8.00^10.00^12.00^14.00 pHpH 10.00^12.00^14i00 rGy ESA vs. pH 1.000 File: CVRD8_ESA ^ Date printed: 3/27/2008 Page: 1 1 ^ 1326:32 ^ 0.00 ^ 24.0 ^ 3.82 0.154 ^ 155 ^ 0.467 ^ 0.11 ^ 0.00 ^ 255.00 ^ 5.000 ^ No background correction 2 ^ 1329:23 ^ 2.85 24.1 4.47 0.177 ^ 155 0.477 ^ 0.11 B 0.03 255.03 ^ 4.999 No background correction 3 ^ 1332:34 ^ 6.03 ^ 24.1 ^ 4.99 0.194 ^ 155 ^ 0.450 ^ 0.12 ^ B 0.06 ^ 255.06 ^ 4.999 ^ No background correction 4 ^ 1335:46 ^ 9.23 24.1 5.47 0.263 ^ 155 0.389 ^ 0.14 B 0.08 255.08 ^ 4.999 No background correction 5 ^ 1338:57 ^ 12.42 ^ 24.2 ^ 6.13 0.292 ^ 155 ^ 0.244 ^ 0.15 ^ B 0.12 ^ 255.12 ^ 4.998 ^ No background correction 6 ^ 1341:49 ^ 15.28 24.2 6.45 0.310 ^ 155 0.175 ^ 0.15 B 0.14 255.14 ^ 4.997 No background correction 7 ^ 1345:00 ^ 18.47 ^ 24.3 ^ 6.95 0.339 ^ 155 ^ 0.067 ^ 0.16 ^ B 0.18 ^ 255.18 ^ 4.997 ^ No background correction 8 ^ 1348:12 ^ 21.67 24.3 7.46 0.374 ^ 155 -0.057 ^ 0.17 B 0.23 255.22 ^ 4.996 No background correction 9 ^ 1351:24 ^ 24.87 ^ 24.3 ^ 7.98 0.412 ^ 155^-0.179 ^ 0.17 ^ B 0.28 ^ 255.28 ^ 4.995 ^ No background correction 10 ^ 1354:36 ^ 28.07 24.4 ^ 8.44 0.446 ^ 155 -0.304 ^ 0.18 B 0.33 255.33 ^ 4.994 No background correction 11 ^ 1357:48 ^ 31.27 ^ 24.4 ^ 8.95 0.485 ^ 155^-0.435 ^ 0.19 ^ B 0.38 ^ 255.38 ^ 4.993 ^ No background correction 12 ^ 1401:21 ^ 34.82 24.5 ^ 9.48 0.546 ^ 155 -0.548 ^ 0.20 ^ B 0.45 255.45 ^ 4.991 No background correction 13 ^ 1404:52 ^ 38.33 ^ 24.5 ^ 9.97 0.664 ^ 155^-0.639 ^ 0.22 B 0.56 ^ 255.56 ^ 4.989 ^ No background correction 14 ^ 1408:03 ^ 41.52 24.6 10.48 0.926 ^ 155 -0.724 ^ 0.26 ^ B 0.74 255.75 ^ 4.986 No background correction 15 ^ 1411:40 ^ 45.13 ^ 24.6 ^ 10.98 1.510 ^ 155^-0.823 ^ 0.33 B 1.08 ^ 256.08 ^ 4.980 ^ No background correction 16 ^ 1414:51 ^ 48.32 24.7 11.48 2.720 ^ 155 -0.933 ^ 0.45 ^ B 1.73 256.73 ^ 4.968 No background correction 17 ^ 1417:51 ^ 51.32 ^ 24.7 ^ 11.97 5.070 ^ 155^-1.063 ^ 0.61 B 3.02 ^ 258.02 ^ 4.944 ^ No background correction IEPS:^7.23 [Mins] [C] [rpm]^[mPa/(V/m)]^[nm-1] [ml] [ml] [wt%][hh:mm:ss] [mS/cm] ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)^npswtch off^ESA MEASUREMENT Meas^Time of^Elapsed Time Temperature pH Conductivity ^ Motor ^ ESA ^ Kappa^Total Volume^Sample^Particle ^ Background No. Measurement Speed Added^Volume Concentration Filename File: CVRD8_ESA ^ Date printed: 3/27/2008 Page: 2 Appendix H: Rheology results for individual samples 166 Ramp Tests Sample #1 ^ 140 ^ 130 ^ Tcs ' '120 ^ ciL 110 in) 100 90^--._^ 80 ^ w 70 co 60 50 40 ^ 0 ^#1 Run1 #1 Run2 #2 Run1 #2 Run2 50^100^150^200^250^300 Shear rate [s-1] 140 120 100 80 60 40 20 0 y= 0.11x + 84.208Sample #1 Bingham R20.7585 300 . --.A0 1 0^50 1 100 1^1 150^200 250 • Series1 Linear (Series1) Sample #1 - Casson^y = 0.102x + 8.8432 R20.5837 = 12.000 10.000 8.000 6.000 4.000 2.000 5.000 ^ 10.000 ^ 15.000 ^ 20.000 0.000 0.000 • Series1^Linear (Series1) ^#1 Run1 -#1 Run2 #2 Run1 #2 Run2 Ramp Test Sample #2 140 120 ca LI 100 80a) 60 w 40 20 0 0^50^100^150^200 Shear rate [s-1] 250^300 100 90 80 70 60 50 40 30 20 10 0 Sam le #2-^y = 0.1227x + 51.158Bingham R20.9934 = 300 I^,I 0^50 I 100 150^200 I 250 • Series1 Linear (Series1) 10.000 9.000 8.000 Sample #2- Casson y = 0.1572x + 6.5 R20.9801 = 7.000 ^ 6.000 ^ 5.000 ^ 4.000 ^ 3.000 ^ 2.000 ^ 1.000  - 0.000 ^ 0.000 1 ^ 1 ^ 1 5.000 10.000 ^ 15.000^20.000 • Series1^Linear (Series1) Ramp Tests Sample #314 12 7311 0- 10 0^50^100^150^200 Shear rate [s-1] 0 ^#1 Run1 #1 Run2 #2 Run1 - #2 Run2 300 14 12 10 8 6 4 2 0 Sample #3- Bingham y = 0.0137x + 6.4503 R20.9383 • • • 300 - 0•164. : •• • 0 50 i^1 100^150^200 250 • Series1 — Linear (Series1) 4.000 Sample #3- Casson^y^0.0495x + 2.3376 R20.8977 = 3.500 3.000 • • 2.500 . ••••• .. • 2.000 . 1.500 1.000 0.500 0.000 , 0.000 5.000 10.000^15.000 1 20.000 • Series1 — Linear (Series1) Ramp Tests Sample #4 ^#1 Run1 —#1 Run2 —#2 Run1 —#2 Run2 o ff 10 9 8 7 Cl) 6 a) 5 Cl) 4 3 (i) 2 0 0^50^100^150^200^250^300 Shear rate [s-1] 10 9 8 7 6 5 4 ° 3 2 1 0 y ^0.0222x + 2.7828Sample #4- Bingham^R20.9874 = 300 ...^, .. ,,,_ .• •••• . •, 8... # , 0 I 50 I 100 i^I 150^200 250 • Series1 Linear (Series1) 3.500 Sample #4- Casson^y = 0.1009x + 1.2719 R20.9911 = 20.000 3.000 2.500 2.000 1.500 •• • • • •••• 4, 1.000 0.500 i I0.000 0.000 1 5.000 10.000^15.000 • Series1 Linear (Series1) ^ #1 Run1 –#1 Run2 #2 Run1 — —#2 Run2 100^150^200^250 Shear rate [s-1] 18 16 14 12 10 8 6 4 2 0 Sam le #5-^y = 0.0389x + 4.7614Bingham R20.9877 = . • • 4. 0.* • 4A0*. 0 I 50 Y 100 I^ I 150^200 I 250 300 • Series1 Linear (Series1) Sample #5-Casson^y = 0.1356x + 1.6427 R20.9966 = 4.500 20.000 4.000 3.500 • 3.000 2.500 2.000 1.500 1.000 0.500 I I ,0.000 0.000 5.000 10.000^15.000 • Series1 Linear (Series1) 50^100^150^200^250 Shear rate [s-1] 87 6 5 4 3 2 1 0 Sample #6-Bingham y = 0.0125x + 2.3107 R20.9291 = • • -^• ....-^• •••••••••4 ....---- • •••••^.^• _I - • ^•:•40 • •. , , , 0 50 100 150^200 250 300 • Series1 Linear (Series1) 3.000 Sample #6-Casson y = 0.0695x + 1.2228 R20.9602 = 20.000 2.500 • 2.000 1.500 • • • •, 1.000 • • 0.500 10.000 0.000 1 5.000 10.000^15.000 • Series 1 Linear^1)(Series Ramp Tests Sample #7 ^ 40 ^ 35 ^ 761a. 30 ^ ^(no 25 ^ 12 20(/) soi 15 s 10cn 5 0 ^ 0 ^#1 Run1 #1 Run2 #2 Run1 #2 Run2 50^100^150^200^250^300 Shear rate [s-1] 40 35 30 20 15 10 5 0 Y = 0.041 Ix + 21.087Sample #7-Bingham^R20.9513 = 300 • 25 • • I 0 f 50 100 I^I 150^200 i 250 Series1 Linear• (Series1) 7.000 Sample #7-Casson^y = 0.0808x + 4.2759 R20.8754 = 20.000 6.000 5.000 • 4.000 • •• ....• 3.000 2.000 1.000 I0.000 0.000 1 5.000 10.000^15.000 ' • Series1 Linear (Series1) ►^,..., .,..,........---- • #1 Run1 #1 Run2 I I^1^1^I^1^I^I^I^I^i^i^I^I^I^1^!^I^I^I^I^I^i^I^I^I 120 100 80 60 40 20 Ramp Tests Sample #8 0^50^100^150^200^250^300 Shear rate [s-1] 120 100 80 60 40 20 o Y = 0.1743x + 5T869Sample #8-Bingham^820.852 = 300 -; . • , , ,^, , 0 50 100 150^200 250 • Series1 Linear (Series1) Sample #8-Casson y = 0.1924x + 6.8996 R20.741 = 12.000 10.000 8.000 6.000 4.000 2.000 5.000 ^ 10.000 ^ 15.000 ^ 20.000 0.000 0.000 • Series1^Linear (Series1)

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
https://iiif.library.ubc.ca/presentation/dsp.24.1-0066670/manifest

Comment

Related Items