Open Collections

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Rheology and electro-acoustic characterization of laterite slurries Colebrook, Marjorie Helen 2008

Your browser doesn't seem to have a PDF viewer, please download the PDF to view this item.

Item Metadata

Download

Media
24-ubc_2008_spring_colebrook_marjorie_helen.pdf [ 21.96MB ]
Metadata
JSON: 24-1.0066670.json
JSON-LD: 24-1.0066670-ld.json
RDF/XML (Pretty): 24-1.0066670-rdf.xml
RDF/JSON: 24-1.0066670-rdf.json
Turtle: 24-1.0066670-turtle.txt
N-Triples: 24-1.0066670-rdf-ntriples.txt
Original Record: 24-1.0066670-source.json
Full Text
24-1.0066670-fulltext.txt
Citation
24-1.0066670.ris

Full Text

RHEOLOGY AND ELECTRO-ACOUSTIC CHARACTERIZATION OF LATERITE SLURRIES  By Marjorie Helen Colebrook B.A.Sc., University of British Columbia, 2003  A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE  in  The Faculty of Graduate Studies (Mining Engineering)  THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver)  April 2008 © Marjorie Helen Colebrook, 2008  ABSTRACT A systematic research study was carried out in order to characterize the rheology of concentrated slurries prepared from eight nickel laterites. The experiments were carried out using a rotational viscometer, and the behavior of the laterites was evaluated in terms of the apparent viscosity and yield stress obtained through flow curve modeling. An attempt was made to correlate the results obtained for the laterite samples with data obtained for model single mineral systems as well as for model mixed mineral systems. In combination with detailed mineralogical characterization of the laterite samples, all the rheological results allowed a rheology-based laterite classification system to be proposed. Accordingly, the laterite samples gave the following responses: the SAPSIL samples (high-quartz) generally produced low yield stress values, the SAPFE samples (high-iron) were characterized by intermediate to high yield stress values, while the SAP samples (saprolite) gave the highest yield stress values. Interestingly, these dominant rheological responses of laterites could actually be predicted based on rheological tests carried out on model mineral suspensions (particularly goethite and quartz). Since the rheology of fine mineral suspensions is largely determined by the surface properties (surface charge) of the particles, a series of electro-acoustic measurements were also performed on model minerals and laterite samples to analyze the surface charge characteristics of the tested samples. It was demonstrated that the current electro-acoustic theory developed for single mineral systems can readily be used for modeling the behavior of mixed mineral systems. The modeling and experimental data agreed exceptionally well when constituent minerals were of the same surface charge under given pH. Clear but rather small deviations between experiment and theory were observed under conditions when the minerals were oppositely charged. This observation strongly suggested that inter-particle aggregation was most likely responsible for the observed discrepancies. Overall, the results of this thesis show that laterite slurries exhibit a wide range of rheological responses due to highly variable mineralogy, differences in particle size distributions, and difference in the surface properties of the many constituent minerals. It also shows that the surface properties of the minerals relates to rheology.  ii  TABLE OF CONTENTS ABSTRACT^ TABLE OF CONTENTS ^  ii iii  LIST OF TABLES ^ LIST OF FIGURES ^ LIST OF SYMBOLS AND ABBREVIATIONS ^  vi viii  1.0 INTRODUCTION ^  1  1.1. Background and Necessity ^  2  1.2. Objectives ^  3  2.0 LITERATURE REVIEW ^  4  2.1. Mineralogy of Laterite Deposits ^  4  2.2. Laterite Processing ^  6  2.3. Basic Rheology ^  7  2.4. Rheology of Nickel Laterites ^  8  2.5. Rheology of Mineral Systems ^  9  2.6. Electro-acoustics of Single Mineral ^  10  2.7. Electro-acoustic measurements of Mixed Mineral Systems ^  10  2.8. Summary of the Relevant Literature Findings ^  12  3.0 PROCEDURES ^  14  3.1. Samples ^  14  3.2. Characterization ^  14  3.3. Electro-acoustic (ESA) Measurements^  15  3.4. Rheology Measurements ^  17  3.5. Test Programs ^  18  4.0 CHARACTERIZATION ^  19  4.1. Individual Minerals ^  19  4.2. Vermelho samples^  19  5.0 ELECTROACOUSTIC MEASUREMENTS ^  22  5.1. ESA Measurements of Individual Minerals^  22  5.2. ESA Measurements of Mixed Mineral Systems ^  23  5.2.1.^Fine Quartz: Magnetite Mixture ^  24  5.2.2.^Fine Quartz: Hematite Mixture^  27  5.2.3.^Fine Quartz: Goethite Mixture^  30  5.2.4.^Coarse Quartz: Magnetite Mixture ^  33  5.2.5.^Magnetite: Goethite Mixture ^  36  5.3. Vermelho samples^  38  6.0 RHEOLOGY ^  41  6.1. Individual minerals ^  41  6.2. Vermelho samples^  45  7.0 DISCUSSION ^  51  8.0 CONCLUSIONS AND RECOMMENDATIONS ^  59  8.1. Conclusions ^  59  8.2. Recommendations ^  61  9.0 BIBLIOGRAPHY ^  62  Appendix A: X-ray diffraction of individual samples ^  66  Appendix B: X-ray diffraction of Vermelho samples ^  77  Appendix C: Water analysis for Vermelho ^  89  Appendix D: Size analysis for individual samples ^  92  Appendix E: Size analysis for Vermelho samples ^  99  Appendix F: Electro-acoustic results for individual and mixed mineral samples ^ 108 Appendix G: Electro-acoustic results for Vermelho samples ^  145  Appendix H: Rheology results for Vermelho samples ^  166  iv  LIST OF TABLES Table 1: Mineralogy of Ni-Vermelho Deposit (data from Riberio et al., 2001) ^3 Table 2: Laterite Deposits ^  5  Table 3: Single Mineral IEPs ^  10  Table 4: Pure Mineral Characteristics ^  19  Table 5: Characterization data for Vermelho samples ^  20  Table 6: Mineralogical data for Vermelho samples ^  20  Table 7: Summary of Water Analysis Results ^  21  Table 8: Overview of Bruinsma ESA values and input ^  23  Table 9: Fine Quartz and Magnetite - Comparison of K values ^  26  Table 10: Fine Quartz and Hematite - Comparison of K values ^  29  Table 11: Fine Quartz and Goethite - Comparison of K values ^  32  Table 12: Fine Quartz and Magnetite - Comparison of K values ^  35  Table 13: Magnetite and Goethite- Comparison of K values ^  37  Table 14: Vermelho apparent IEP results ^  38  Table 15: Rheological characteristics of individual minerals ^  44  Table 16: Vermelho Characterization ^  45  Table 17: Rheological properties for Vermelho samples ^  48  Table 18: Rheological properties (including thixotropic and Bingham and Casson results) ^ 50 Table 19: Vermelho apparent IEP pH vs. test pH results ^  52  Table 20: Saprolite-silica results* ^  57  Table 21: Saprolite-iron results* ^  58  Table 22: Saprolite results ^  58  v  LIST OF FIGURES Figure 1: Rheology models ^  7  Figure 2: Individual Mineral Components ^  22  Figure 3: Fine Quartz and Magnetite (50:50) ^  25  Figure 4: Fine Quartz and Magnetite (25:75) ^  25  Figure 5: Fine Quartz and Magnetite (75:25) ^  26  Figure 6: Predicted v. Measured Fine Quartz and Magnetite ^  27  Figure 7: Fine Quartz and Hematite (50:50) ^  28  Figure 8: Fine Quartz and Hematite (25:75) ^  28  Figure 9: Fine Quartz and Hematite (75:25) ^  29  Figure 10: Predicted v. Measured Fine Quartz and Hematite ^  30  Figure 11: Fine quartz and goethite (50:50) ^  31  Figure 12: Fine Quartz and Goethite (25:75) ^  31  Figure 13: Fine Quartz and Goethite (75:25) ^  32  Figure 14: Predicted v. Measured Fine Quartz and Goethite ^  33  Figure 15: Coarse Quartz and Magnetite (50:50) ^  34  Figure 16: Coarse Quartz and Magnetite (25:75) ^  34  Figure 17: Coarse Quartz and Magnetite (75:25) ^  35  Figure 18: Predicted v. Measured Coarse Quartz and Magnetite ^  36  Figure 19: Magnetite and Goethite (50:50) ^  37  Figure 20: Predicted v. Measured Magnetite and Goethite ^  37  Figure 21: Overview of Vermelho Samples ^  38  Figure 22: Effect of total iron minerals on apparent iso-electric point for Vermelho samples ^39 Figure 23: Effect of total magnesium minerals on the apparent iso-electric point for Vermelho samples ^  40  Figure 24: Rheology of talc suspensions (33% solids) ^  41  Figure 25: Rheology of quartz suspensions (45% solids) ^  42  Figure 26: Rheology of magnetite suspensions (45% solids) ^  43  Figure 27: Rheology of goethite suspensions (25% solids) ^  43  Figure 28: Yield stress of pure minerals at three pH values ^  45  Figure 29: Effect of shear rate on shear stress for the saprolite-silica (SAPSIL) samples ^46 vi  Figure 30: Effect of shear rate on shear stress for the saprolite-iron (SAPFE) samples ^47 Figure 31: Effect of shear rate on shear stress for the saprolite (SAP) samples ^47 Figure 32: Effect of total iron minerals versus Bingham yield stress (natural pH) ^48 Figure 33: Effect of total magnesium minerals versus Bingham yield stress (natural pH) ^49 Figure 34: Bingham Yield Stress vs. D80 ^  51  Figure 35: Bingham Yield Stress vs. Percentage under 10 microns ^  52  Figure 36: Bingham Yield Stress vs. pH of Apparent IEP ^  53  Figure 37: Bingham Yield Stress vs. Quartz content ^  54  Figure 38: Bingham Yield Stress vs. Iron-bearing Minerals ^  55  Figure 39: Bingham Yield Stress vs. Clay Minerals ^  56  vii  LIST OF SYMBOLS AND ABBREVIATIONS SYMBOLS C,^solids concentration Cw,max maximum settled concentration d^particle size [gm]  zeta potential of the mineral (i)^volume fraction p^material density [g/cm 3 ] P^measure magnitude of the pressure wave [Pa] E^applied electric field strength [V/m].  D80 size where 80% of the material passes [microns] shear stress [Pa] by^yield  stress [Pa]  flapp^apparent  viscosity [Pa-s]  rIpl^Bingham (plastic) viscosity coefficient Tic^Casson  viscosity coefficient  y^shear rate [s -1 ]  R2^correlation coefficient ABBREVIATIONS ESA electro-acoustic [mPa/(V/m)] IEP^iso-electric point or point-of-zero charge viii  1.0 INTRODUCTION Nickel laterites contain about 70% of all continental or terrestrial nickel resources (Dalvi et al., 2004, Elias, 2002); however they currently only account for approximately 40% of world nickel production (Dalvi et al., 2004, Elias, 2002). Although from 1988-2004 the percentage of nickel produced from laterites has remained constant, it is expected to rapidly increase, as easily processed nickel sulfides are depleted (Dalvi et al., 2004, Elias, 2003); therefore the recovery of nickel from lateritic ores has economic significance (Dalvi et al., 2004, Elias, 2003, Avramidis and Turian, 1991). The grade of nickel laterites is low in the range of 0.5-3.5% Ni. (Golightly, 1979). There are two main processing methods for nickel laterites — pyrometallurgy and hydrometallurgy. Due to the wide range of mineralogy present in nickel laterite deposits each process is only applicable to certain types of ores. These are discussed in the literature review. The main obstacles of laterite processing are high capital costs of the processing facility, high energy requirements for pyrometallurgical processes and many technical challenges for hydrometallurgical processes (Elias, 2002). The technical challenges range from low operating percent solids, increased reagent consumption, specifically acid, to material build up in pipes and tanks leading to the plugging of pipes and decreased throughput (Klein and Hallbom, 2002). To overcome these challenges a basic understanding of the flow behaviour must be developed to minimize these obstacles. This understanding will assist in the design of new plants and the operation of existing plants. To develop an understanding of laterites, three studies were conducted. 1. Surface charge of mixed mineral systems. Six pure mineral systems - quartz (coarse), quartz (fine), talc, magnetite, hematite, and goethite were chosen. Mixtures containing varying percentages of two minerals were also studied. 2. Rheology of pure mineral systems. The rheology of pure suspensions containing talc, quartz, magnetite and goethite was characterized as a function of pH. 3. A laboratory study was conducted on eight ore samples from Companhia Vale do Rio Doce's (CVRD) Vermelho nickel laterite deposit with the objective of developing a 1  rheologically based classification system related to the mineralogy of the material. Results were compared to the rheology of pure minerals to develop an understanding of the role of mineral composition on slurry rheology. 1.1. Background and Necessity Laterites were an early source of nickel. The processing of laterites ores from New Caledonia began over 100 years ago (Dalvi 2004); however once nickel sulfide minerals were discovered mining of laterites slowed. Laterites are found in tropical and sub-tropical regions of the world such as Australia, and South America. This leads to many challenges - severe weather situations (high rainfall), high seismic activity, political uncertainty (socio-economic demands in an under-developed area, safety concerns), social (finding trained work force for increase complexity of the ore) (Kemp 2004), high capital costs, high energy requirements and many technical challenges (Elias 2003). In addition to the location challenges laterites have complex rheological properties characterized by high yield stress, viscosity and time dependency (Blakey, 2002). The processing of lateritic ores involves the preparation and movement of concentrated aqueous suspensions (Cerpa et al., 2001). Suspension of lateritic ores can be extremely viscous at low volume fractions and the viscosity can depend on time. The complex characteristics are believed to be attributed to colloidal particles and clay-type minerals present in nickel laterite ore (Klein and Hallbom, 2002). High viscosity of the slurry adversely affects handling particularly for high pressure acid leach (HPAL) plants (Avotins et al., 1979, Chalkey and Toirca, 1997, Motteram et al., 1997, Kyle and Furfaro, 1997, Whittington and Muir, 2000, Klein and Hallbom, 2002). The nickel deposit studied in this research was the Vermelho Nickel Deposit. The Vermelho Nickel Deposit is a lateritic deposit in the Carajas Mineral Province of Brazil and contains two main ore bodies — Vermelho 1 and Vermelho 2. This deposit was formed by the weathering of ultra-mafic rocks. There are five main layers that have been defined in the deposit weathering profile. This layering produces high variability in the characteristics of the deposit. Due to the different properties present in the layers, one processing method may not be sufficient for the entire deposit (Riberio et al., 2001).  2  Table 1 shows the nickel distribution and mineralogy of the main layers of the Vermelho deposit weathering profile. Table 1: Mineralogy of Ni-Vermelho Deposit (data from Riberio et al., 2001) Mineral Goethites Mn-oxides Serpentines Clorites/smecities Reliquiar Melerite  Siliceous saprolite 31.5 15.4 0.0 53.1 0.0  % Nickel Distribution Ferruginous saprolite Saprolite 0.0 56.0 0.0 0.0 22.8 74.4 21.2 0.0 0.0 25.6  Serpentine 23.0 3.9 19.9 52.7 0.4  1.2.^Objectives The main objectives of this study are •  Characterization of individual mineral components and of mixed mineral systems. The characterization included mineralogy, surface chemistry, physical properties and rheology. In particular the relationship between the surface charge, characterized by electro acoustics, and rheological properties was investigated. Systems involving two minerals in various proportions were characterized and studied to construct a basic understanding of the interactions.  •  Development of a basic understanding of the interactions between minerals in lateritic ores.  •  Comparison of the results obtained for model minerals to the Vermelho deposit samples.  3  2.0 LITERATURE REVIEW This literature review investigates the following topics— the mineralogy of nickel laterites, the composition of nickel laterites around the world, the processing of laterites (including challenges) , the rheology and surface properties of laterites. The review also investigates the surface properties and rheology of the individual minerals, as well as mixed mineral systems.  2.1. Mineralogy of Laterite Deposits Over the years the term laterite has been used to generally describe both specific soil regions and the entire weathering profile (Gleeson, 2003). According to Eggleton (2001) the term laterite now refers to the "iron oxide-rich, silica-poor upper soil horizon of intensely weathered regoliths found in tropical climate". The definition of a "nickel laterite" is a regolith that contains economically exploitable concentrations of nickel (Glesson, 2003). Laterites are normally classified into two main groups. 1. High magnesia ores are known as saprolites 1 . These ores that are commonly processed using pyrometallurgy, specifically smelting. The main reason for the use of smelting is that nickel replaces magnesium in the magnesium-silicate structure. To be able to recover nickel the mineral structure has to be destroyed (Bergman, 2003). 2. High-iron, low magnesium deposits are known as limonite 2 . These deposits are commonly processed using hydrometallurgy. In these deposits the nickel is loosely bound in the goethite and therefore can be processed using hydrometallurgical techniques such as the Caron process and pressure acid leaching (Bergman, 2003). These processes are described further in the literature review.  Saprolite — a chemically weathered rock that retains the structure of the parent rock (www.earthscienceworld.org ) Limonite is a general field term to designate a rock made of a mixture of amorphous hydrous ferric oxides. (www.earthscienceworld.org)  4  Table 2: Laterite Deposits Article  Deposit name or type  Minerals (only crystalline)  Blakey (2002)  New Caledonia  Golightly (1979)  Limonite zone  Golightly (1979)  Smectite-Quartz zone  Goethite (65% wt) Gibbsite Spinel Talc Serpentine Goethite Hematite Spinel Magnetite or maghemite Talc Amphiboles Chlorite (rare) Nontronite Quartz Major: Goethite^Quartz Hematite Minor: Magnetite^Chromite Maghemite^Talc Serpentine Goethite^Gibbsite Talc^Quartz Goethite 70-75 Gibbsite 10 Serpentine 2.5 Quartz 2.5 Goethite^Gibbsite Chromite^Absolite Talc^Quartz Serpentine^Fosterite Olivine^Garnierite Goethite 50 Serpentine 43 Maghemite 4 Gibbsite 3 Goethite 79 Serpentine 15 Maghemite 3 Gibbsite tr Quartz 3 Goethite^Nontronite Serpentine^Talc Sepiolite^Chlorite  Bhattacharya (1998)  Klein & Hallbom (2002) Carlson & Simons (1961)  Moa Bay  Moskalyk & Alfantazi (2002)  Limonite zone  Moskalyk & Alfantazi (2002)  Saponite  Tartaj et al (2002)  Sample 1  Tartaj et al (2002)  Sample 2  Whittington & Muir (2002) Gleeson et al. (2003)  Host minerals  5  Laterite deposits can contain dozens of mineral species (Blakey, 2002). The main minerals found in laterites based on a brief literature search can be found in Table 2. The table shows that there is no definite composition for lateritic ores although the majority of the deposits contain anhydrous iron oxide, typically goethite. Other main minerals include gibbsite, serpentine and nontronite. The main gangue minerals present are quartz and magnesium silicates such as talc and chlorite.  2.2. Laterite Processing Based on the two main types of laterites, the processing of laterite ores generally falls into two categories — pyrometallurgy or hydrometallurgy. Due to wide range of mineralogy in an ore body each process is only applicable to certain types of ores. The main process for ores with high magnesium is pyrometallurgy, specifically smelting. It is the oldest and most widely used process. Smelting treats more nickel-rich silicate fraction producing ferro-nickel (which can be directly used for stainless steel production) and sulfide matte. The smelting process has a high recovery —90%; however no associated cobalt is recovered. A major disadvantage of smelting is the high power consumption and environmental concerns, mainly air and effluent emissions. A typical generalized pyrometallurgical process involves drying, calcining/reduction, smelting, refining or converting to produce the ferronickel matte. For ores with high iron and low magnesium, there are two main hydrometallurgical processes — reduction roast ammonia leach (Caron process) and high pressure acid leach (HPAL). The Caron process is mainly used for limonitic ores or a mixture of limonite and saprolite. The sample is dried and roasted in reducing environment. This is followed by low-pressure ammonia leach. Nickel and cobalt are then recovered by solvent extraction. The products are further refined by calcination and reduction. The Caron process has a Ni recovery of —80% and a Co recovery of 40-50%. As with smelting a major disadvantage of the Caron process is the high energy requirements. The second hydrometallurgical process is the high pressure acid leach (HPAL) process. The ores generally contain some saprolite and have a lower Mg and Al content. The process involves the 6  leaching of the ore with sulfuric acid at 250°C and extracting Ni and Co from the leach liquor by sulfide precipitation using H2S or solvent extraction and electro-winning. The HPAL process has a high recovery of both Co and Ni (above 92%) and unlike the previous processes the main cost is associated with disposing of sulfur. Due to high operating costs, the economics of processing laterite ores require the plants, especially HPAL plants, be run at as high a solids concentration as possible. An increase in the operating solids concentration will not only reduce the capital cost of a new plant but also will increase the capacity of an existing plant. In both cases there will be a decrease in operating costs. Increasing the solids concentration would decrease the size of the autoclaves, tanks, piping and pumps. Additionally, there would be a decrease in the amount of water and amount of reagents (specifically acid) used (Hallbom and Klein, 2004). Problems related to rheology can include - rat holing or bridging in tanks, build-up on the walls of pipes, plugging and pulsing in pipelines and difficulties starting up or shutting down systems (Hallbom and Klein, 2004). 2.3. Basic Rheology Rheology is defined as the science of the deformation of flow of matter, which is most commonly represented by the relationship between shear stress and shear rate. Figure 1 shows the most common flow-curves  Bingham Plastic Dilatant  Pseudoplastic with yield stress^  Newtonian  Pseudoplastic  Shear Rate Figure 1: Rheology models 7  Most mineral suspensions have a non-linear shear stress — shear rate relationship or "nonNewtonian." As a result, most suspensions do not have a single viscosity, but rather an "apparent" viscosity (Tlapp,f/) that changes with shear rate. The apparent viscosity is defined as the slope of a line passing through the origin that intersects the flow-curve at a specified shear rate. Suspensions can show shear thinning (pseudoplastic) or shear thickening (dilatant) properties. Shear-thinning is where the apparent viscosity decreases with increasing shear rate and shearthickening is where the apparent viscosity increases with shear rate. Some suspensions (particularly concentrated mineral suspensions with fine aggregated particles) have a yield stress. The yield stress implies that the suspension has a structure that must be overcome to initiate flow. Suspensions may also exhibit time dependent properties. These properties are the result of the shearing on the physical orientation of particles or on the state of aggregated particlesdispersion. Time dependent responses are referred to as either thixotropic or rheopectic. For thixotropic suspensions, the apparent viscosity will decrease with time and for rheopectic suspensions, the apparent viscosity will increase with time. 2.4. Rheology of Nickel Laterites Although laterites have been processed for approximately 100 years, there has been surprisingly little literature published on the rheological behavior of these complex ores. Prior to 2000, most of the literature was about the hydrometallurgical processing of the ore with some mention of the complex rheological characteristics (Blakey, 2000). Non-Newtonian properties have been reported for laterites varying from yield shear-thinning to shear-thickening with time dependant properties ranging from thixotropic to rheopectic (Avotins et al., 1979; Blakey et al., 2000; Klein and Hallbom, 2003). The first report of the complexity of laterites was from Carlson and Simon (1961). Carlson and Simon reported that laterite slurries can be highly viscous even at low solid fractions and in 1977 Lussierz and Reid, in a patent by Amax Inc., reported that the behavior of laterites can also be highly time-dependent. Further investigations of the properties can be found in Avotins et al. (1979). They found that laterite slurries exhibit Bingham plastic (yield stress) viscosity properties. They also concluded that the yield stress and Bingham viscosity were affected by ore 8  composition, solids concentration and temperature. Further test work on the Amax ore was conducted by Avramidis and Turian in 1991. Avramidis and Turian investigated the yield stress of the laterite suspensions. They found the laterites to be strongly non-Newtonian with a yield stress that was a function of solids concentration and suspension pH or zeta potential. Several more recent studies have been conducted on laterites and the main mineral component of laterite — goethite. The most significant are: Bhattacharya et al. (1998), Blakey et al. (2000), Cerpa et al. (2001), Klein and Hallbom (2002) and Blakey and James (2003). The research of Bhattacharya et al. (1998) showed that lateritic suspensions exhibit Bingham plastic behaviour at 20% (w/w) and above. They also showed the rheological properties are functions of pH, temperature, solids concentration and size distribution. It was summarized that with known values of solids concentration C w, maximum settled concentration C wmax , specific surface areas and average particle size, the yield stress of the suspension could be calculated. Cerpa (1999) investigated lateritic suspensions, specifically the effect of mineral composition and particle size. They found that the flow properties were strongly affected by these two properties. A relationship was created of to ---43 /d" where T o is yield stress, k is a ratio of serpentine to goethite, (1) is the volume fraction and d is particle size. Klein and Hallbom (2002) found that the rheology of nickel laterites suspensions is affected mostly by the surface properties of goethite. Specifically, increasing or decreasing the pH to increase the electrostatic repulsion improves dispersion and consequently the flow properties. Blakey and James (2003) found that the high viscosity present at high zeta potential could not be explained using classical theories. This led to the theory that there was another attractive force in addition to the van de Waals forces. They discovered that the faces of goethite particles have different charging characteristics than the edges, which creates an attractive force between the particles.  2.5. Rheology of Mineral Systems The behaviour of concentrated mineral suspensions has been well documented over the years (Nguyen, 1983; Johnson et al., 1999; and Megias-Alguacil et al., 2000). From these studies the surface charge of system can be used to predict the rheological behaviour of the system. The 9  maximum yield stress occurs close to the iso-electric point (Johnson et al., 1999). This however is only correct for isotropic minerals (minerals that have the same surface charge on all crystal faces). For anisotropic minerals (minerals with different surface charges on different faces), such as talc and kaolinite, the peak of maximum yield stress occurs at the point where the electrostatic attraction between opposite faces is at its maximum (Schofield and Samson, 1954; Burdukova et al, 2006).  2.6. Electro-acoustics of Single Mineral Electro-acoustic measurements have been used to determine the surface properties of single minerals systems directly in concentrated suspensions. The IEP of the minerals used in this study are listed in Table 3. Table 3: Single Mineral IEPs Mineral Quartz Hematite Magnetite Goethite Talc  Formula SiO2 a-Fe203 Fe2+Fe23+04 a-Fe3+0(OH) 3MgO 2.502 H2O  pH <2.0 if any 5.6-10 6-8 7.7-9.3 2.7  Ref Kosmulski (2006) Kosmulski (2006) Kosmulski (2002, 2004) Kosmulski (2006) Durove (1998)  2.7. Electro-acoustic measurements of Mixed Mineral Systems Electro-acoustic measurements have widely been used to determine the surface properties of single minerals systems; however, the measurement of mixed mineral systems has not been well investigated. Recently, several studies have used zeta potential distributions to study particle systems by comparing single component zeta potential distributions with distributions for the mixture of components (Xu et al., 2003; Liu et al., 2002; Liu et al. 2004; Beauchamp et al., 2006). Bruinsma et al. (1997) investigated the theory of multi-component suspensions. The test work was conducted on a Brookhaven Instruments ZetaPlus to determine the electro-kinetic sonic amplitude (ESA) over a range of frequencies. The resulting dynamic mobility spectrum of the multi-component system was found to be the weighted sum of the individual components. The investigation was fairly restrictive at constant pH and ionic strength to "avoid changes in the shape of the dynamic mobility spectra of the components possibly due to agglomeration effects"  10  (Bruinsma et al., 1997). The suspensions investigated were two types of aluminum oxides and gibbsite. The predicted ESA values of mixed mineral systems were compared to the measured values. From Bruinsma (1997) the ESA of a two-phase system (ESA tot) was found to be the weighted sum of the of ESA1 (the ESA value of the first mineral) and ESA2 (the ESA value of the second  1  mineral)values at a given pH. The equation was given as  ^4  4  01 AP1 / p ESA ° , = Omix Ap 4-1 (  (  ESA 1 +  ,42  ^A , 2^W2 1 1 /32  \ ;2 )\  -  A  P ESA2  OmL Pmix  (1)  /3 )  Where, is the zeta potential of the mineral and ^and 2 '/C,2 are the ratios of the zeta potentials of the mineral in the mixture and the pure mineral which allows for changes in zeta potentials due to heterocoagulation (the formation of groups of particles consisting of mineral 1 and mineral 2). p is the density of the testing medium [g/cm 3 ] (water —1 g/cm 3 ) ID' and p2 are the density of the two individual minerals [g/cm 3 ] and Ap t = pl-p and Opt = p2-p 41 and 4'2 are the volume fractions of the individual minerals in the system Pmix was  calculated using^=(01 I Omix)P1  Ihnix was calculated using^0.„ = 01 +02  4-  (0; / OA  (2) (3)  The Bruinsma values were calculated as follows — ESAm = K1 ESA 1 + K 2 ESA 2  Where K = 4-;  01 API ,\Omix.6,13 mixl P  K2 =  (4)  (5) ,  P 4-2 AChmi,AP„,ix I p (^AP2  (6)  11  Since there was no way to measure 4 1 74 1 and 42742, it was assumed to be equal to 1. The accuracy of this assumption is evaluated for each mixture. The accuracy of this assumption is evaluated for each set of testing conditions. Vergouw et al. (1998) studied the zeta potential and agglomeration of two systems galena/ pyrite and galena/sphalerite. The study also investigated the effects of added ions specifically Ca, Pb and Fe (II). It was shown that the added ions consistently increased the IEP of the suspension. For the mixtures of sphalerite with galena and pyrite, maximum agglomeration correlated with the zeta-potential of the two minerals. The zeta potential was determined using a LaserZetameter. For particles of equal size homo- and/or hetero-coagulation appeared to occur. Liu et al. (2002) investigated a two-component system of bitumen and clay. The addition of ions, specifically Ca was investigated. Liu et al. used a Zetaphoremeter III (Sephy/CAD) which traces the movement of 50-100 particles by alternating positive and negative electrode potentials. The traces are translated to a histograph of electophoretic mobility. The mixed systems (bitumen and clay) showed either one or two peaks indicating interactions between particles. Xu et al. (2003) studied the effect of clay mineral on coal and coal floatation. This study was similar to Lui et al (2002) and looked at particles of the two different sizes (clay-fine and coalcoarse). The study was focused on investigating the slime coating of coal particles by very fine clays. In addition to research on two separate mineral systems, test work has also been conducted on variable-charge anisotropic minerals. Variable charge minerals such as clays have different charges on different crystal faces. (Van Olphen, 1951; Schofield and Samson, 1954; Street and Buchanan, 1956; and Rand and Melton, 1976) 2.8. Summary of the Relevant Literature Findings In summary, the literature shows that 1. the mineralogy of laterite deposits varies significantly not only from deposit to deposit but also within a single deposit. This variation leads to varying rheology,  12  2. the rheological properties of nickel laterites are functions of mineralogy, concentration of solids, rate of shear, time and composition of solution, 3. the changes in rheology cause operation problems - from low operating percent solids and increased reagent consumption to plugging of pipelines, 4. the relationship between rheology and mineralogy has not been well investigated, 5. electro-acoustic measurements have been used to measure the surface properties of single mineral systems but little work has been done on mixed mineral systems.  13  3.0 PROCEDURES In this section the procedures for the test work used in this thesis are described. The experimental program involved the following procedures: 1. Characterization of individual mineral and the Vermelho samples 2. Electro-acoustic measurements of the individual minerals, selected mixed mineral systems and the Vermelho samples. 3. Rheological measurements of individual minerals and the Vermelho samples 3.1. Samples Eight samples of ore were obtained from Companhia Vale do Rio Doce's (CVRD) Vermelho nickel laterite deposit. In addition to the ore samples, six pure, fine-grained mineral samples were used in this study — quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. The coarse quartz sample used was SIL-CO-SIL 63 from the U.S. Silica Company. The SIL-COSIL is a high purity quartz. The fine quartz sample was MIN-U-SIL 5 from the U.S. Silica Company. The MIN-U-SIL is a high purity, high quality natural crystalline quartz that is ground to a uniform size fraction of 5 microns. The magnetite sample used was BK-5099 from Elementis Pigments. The hematite sample used was R4098-HP from Elementis Pigments. The goethite sample used was YP 1700 from Elementis Pigments. BK-5099, R4098-HP, and YP 1700 are described as high purity pigments. The talc sample was Talcron MP 10-52, a hydrated magnesium silicate, from Specialty Minerals Inc. MP 10-52 is ceramic grade platy talc from Montana. All of the minerals used had no applied surface coating. 3.2. Characterization All the samples, individual minerals and Vermelho ores, were characterized for mineralogy, specific gravity and particle size. The quantitative mineralogy was determined by X-ray powder diffraction using the Rietveld Method by the Department of Earth and Ocean Sciences at UBC. This mineralogy only reports the crystalline phases normalized to 100%. The specific gravity of the dry solids for each sample was determined using a wet pycnometer. The particle size distribution for each of the samples was determined using a Malvern laser particle size analyzer. 14  In addition to the above characterization, the Vermelho samples (received as pulps) were also characterized for percent solids and analysis of the samples supernatants. The percent solids of the samples as received were determined by oven drying. Three samples of supernatant representing the three ore types were sent for Inductively Coupled Plasma Mass Spectrometer (ICP-MS) analysis. The ICP-MS testing was conducted by Acme Analytical Laboratories Ltd to analyze for dissolved species. 3.3. Electro-acoustic (ESA) Measurements A Colloidal Science Zeta Probe was used to determine the surface charge of minerals and ore samples and to estimate the iso-electric points of the samples. The ESA effect occurs when an alternating electric field of known frequency and amplitude is applied to a suspension of fine, charged particles. As the particles oscillate in the applied electric field, small pressure fluctuations develop around the particles in the surrounding liquid. If there is a density difference between the liquid and particles, a macroscopic acoustic wave is generated. Its magnitude can be correlated with the dynamic mobility of the particles since these two quantities determine the magnitude of particle motion in an electric field. For very small particles oscillations easily keep up with the frequency of the field, but for large particles the oscillations lag significantly behind the applied field and the phases of the two sinusoidal signals do not match. While the magnitude of the ESA signal decreases with particle size, the phase lag increases. In zeta potential measurements with the use of electro-acoustic instruments, this mobility spectrum is obtained by measuring the ESA signal of a suspension over a range of applied frequencies. The Zeta Probe works at 7 frequencies in the range from 0.3 to 3 MHz. Particles at the upper size limit must therefore move with a sufficient velocity at the lowest frequency to produce a measurable electro-acoustic signal. The frequency must also be low enough so that the phase lag of the largest particle is smaller than the limit of 45 degrees. The raw ESA signal is given by ESA =  P E  (7)  Where P is the measured magnitude of the pressure wave [Pa] and E is the applied electric field strength [Vim]. 15  As reported by the manufacturer, the operating frequency range of the Zeta Probe allows the instrument to determine particle sizes up to 10 microns although the particle size/frequency distribution data are not available to the user. For coarser materials the instrument must be "told" the size distribution by inputting d50 and d85 (assuming a log-normal size distribution) to obtain zeta potentials, provided that such coarse particles give a measurable signal. The electro-acoustic theory also states that the zeta potential is zero when the ESA signal is zero, which means that the magnitude and sign of the zeta potential is proportional to the magnitude and sign of the ESA signal. Since the tested suspensions contained very coarse particles, for which these inertia effects were certainly very significant, it was decided to report only the raw ESA signal rather than some "apparent" zeta potentials. Electro-acoustic measurement were conducted on — 1. Individual minerals - quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. 2. Mixed mineral systems. The mixtures were prepared on a mass basis (e.g., 25:75 is 25% mineral A and 75% mineral B by mass). •  Individual minerals — coarse quartz, fine quartz, magnetite, hematite and goethite.  •  25:75, 50:50 and 75:25 fine quartz and magnetite, respectively  •  25:75, 50:50 and 75:25 fine quartz and hematite, respectively  •  25:75, 50:50 and 75:25 fine quartz and goethite, respectively  •  25:75, 50:50 and 75:25 coarse quartz and magnetite, respectively  •  50:50 magnetite and goethite  3. Vermelho ore samples All tests (individual, mixed mineral systems and Vermelho ore samples) were conducted in aqueous solutions at five (5) percent solids by weight. The surface charge measurements were conducted over the pH range of 3.0 to 11.0 at pH increments of 0.5. The pH was lowered with hydrochloric acid (HC1) and then adjusted using potassium hydroxide (KOH).  16  3.4. Rheology Measurements  Rheological tests were conducted using a controlled rate co-axial cylinder viscometer (Haake VT550). All the test work was conducted using a MV-1 P cup and bob fixture where P indicates a profiled or ribbed surface to reduce errors associated with wall slip. The shear stress (Pa) versus shear rate (s 1 ) data was recorded. The following procedure was run to find the flow curves for the Vermelho and the pure minerals samples. The procedure was conducted in duplicate or triplicate as needed. An average of the tests was used to determine all properties. 1.  Pre-shear at 200s -1 for 1 minute  2.  Held at 0 s -1 for 2 minutes  3.  Ramp-up to 300s -1 in 4 minutes  4.  Ramp-down to 0 s -1 in 4 minutes  5.^Repeat #1 to #4 For the talc sample both the shear rate and ramp time was increased to 1000s -1 and 7 minutes, respectively (Steps #3 and #4). The flow curve data were modeled using the Bingham equation and the Casson equation. Based on fits as indicated by the coefficient of determination (R 2 ), the Bingham equation was selected to represent the flow curve data. The Bingham equation has the following form: (8)  r "= r 13 + ( 1 1 111f')^  Where,^t is shear stress TB is yield stress li p , is Bingham (plastic) viscosity coefficient )2 is shear rate. 17  The Casson equation can be given as: r 1/2 = r12 + (rici,)1/2^  (9)  Where,^is is yield stress Ilc is Casson viscosity coefficient Where possible the Vermelho samples were tested at the received pH (ranging from 6.1- 8.4) and at 45 % solids. The target solid concentration for the individual minerals was 45%; however, due to extremely high viscosities for the talc and goethite samples the solids concentration had to be reduced to 33 % and 25 %, respectively. At the tested percent solids values, there was no settling observed for all of the samples. The individual minerals target pH values were 5.0, 7.0 and 9.0 for talc and 3.0, 5.0, and 7.0 for goethite and quartz. The pH was adjusted using hydrochloric acid (HC1) and potassium hydroxide (KOH). 3.5. Test Programs Three test programs were conduced. 1. A laboratory study of the electro-acoustic measurements was conducted on six pure mineral systems - quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. Mixtures containing varying percentages of two minerals were also studied. 2. A study was conducted on eight samples from the Vermelho deposit. The samples represented three ore zones referred to as SAP, SAPSIL and SAPFE. The study results are classified by the three ore zones in three main areas — mineralogy, surface charge (specifically the sample's iso-electric point) and rheology. The three ore types are classified according to their mineral composition as a high magnesium silicate content (saprolite, SAP), a high silicate content, (saprolite-silica, SAPSIL) and a high iron oxide content (saprolite-iron, SAPFE). 3. A study was conducted comparing the rheological behaviour of the three main mineral components of the Vermelho ores.  18  4.0 CHARACTERIZATION Six pure, fine-grained mineral samples and eight Vermelho were used in this study. This section describes the properties of these samples and ores. 4.1. Individual Minerals Six pure, fine-grained mineral samples were used in various studies in the thesis — quartz (coarse), quartz (fine), magnetite, hematite, goethite and talc. Table 4 shows the mineral characteristics of each mineral. These samples were chosen to represent the main minerals present in lateritic ores. Complete X-ray diffraction, size analysis and electro-acoustic results for individual minerals can be found in Appendices A, D and F, respectively. Table 4: Pure Mineral Characteristics Sample  Mineralogy  Quartz coarse Quartz fine Magnetite Hematite Goethite Talc  Si02 Si02 Fe2+Fe23+04 a-Fe203 a-Fe3+0(OH) 3MgO 2.50 2 H2O  Particle size D(50), urn 17.1 2.2 4.1 3.3 4.4 3.8  SG 2.65 2.65 5.15 5.2 4.0 2.8  Max particle Size, um 109.5 13.0 14.4 35.9 26.5 20  IEP <3.0 <3.0 6.9 8.5 9.3 —2.0  In the following section eight ore samples from the Vermelho deposit are characterized into three ore types according to their mineral composition as a high magnesium silicate content (saprolite, SAP), a high silicate content, (saprolite-silica, SAPSIL) and a high iron oxide content (saproliteiron, SAPFE). Minerals were chosen to represent the main mineral constituents in rheology tests in the three classes. Talc was selected to represent a generalized magnesium clay-type mineral, quartz was chosen as the main silicate and finally goethite was chosen to represent the main iron oxide 4.2. Vermelho samples Table 1 shows the as received solids concentration (by weight), the test solids concentration, the pH and the specific gravity (SG) for each of the Vermelho samples. The target solids concentration was 45% which is the proposed solid content for the processing of this ore. The 19  exceptions were Sample #2 (SAP) which was tested at the maximum settled solids concentration of 27.7% and Sample #5 (SAPSIL) which was tested at 42.6% solids. Table 1 also shows the D80, percent fraction under 10 microns and iso-electric point (IEP) of the Vermelho samples. Complete particle size analysis and Zeta Probe results can be found in Appendices E and G, respectively. Table 5: Characterization data for Vermelho samples Id # Category 1 2 3 4 5 6 7 8  SAP SAP SAPSIL SAPSIL SAPSIL SAPSIL SAPFE SAPFE  As received % solids 48.8 18.1 56.4 26.9 11.9 55.1 50.4 46.1  Test % solids 45.5 27.7 46.0 45.2 42.6 44.8 46.2 46.0  As received pH 6.9 8.1 7.0 8.1 8.1 8.4 6.7 6.1  SG 2.98 2.40 3.06 2.83 2.67 3.27 3.60 3.09  P80^% <10 microns microns 60.3 40.7 66.9 31.0 56.1 37.4 131.1 19.5 108.7 12.3 74.6 23.8 38.0 42.7 42.5 47.2  % Ni 1.44 4.57 1.02 0.98 2.45 1.52 0.98 0.91  Apparent IEP pH 6.5 3.3 5.6 3.0 3.1 2.9 7.1 7.3  The complete mineralogy data can be found in Appendix B. Table 6 summarizes the results of the mineralogical analysis using XRD. Note: this mineralogy only reports the crystalline phases normalized to 100%. In general, the samples lithology zones reflected the mineralogical composition. SAP has relatively low contents of quartz (<12%) and goethite (<40%). One of the SAP samples had a notably high kaolinite content (Sample #1) while Sample #7 has only a small amount (1.5%) and all other samples had none. Table 6: Mineralogical data for Vermelho samples SAP^SAPSIL^SAPFE  ^1^2^3^4^5^6^7^8  Sample ID Ideal Formula Quartz^Si02 Kaolinite^Al2Si205(01- )4 Chlorite^(Mg,Fe2+)5A1(Si3A1)010(OH)8 Talc^Mg3Si4O10(0E1)2 Lizardite^Mg3Si205(OH)4 Goethite^a-Fe 3÷0(OH) Hematite^a-Fe 2 O 3 Magnetite Fe 3 O 4 Magnesite MgCO 3  9.3^12.1^12.2^35.0^31.3^31.0^5.0^1.5 11.4^ 1.5 43.6 14.0 6.5^10.3^4.2 38.9 32.1^74.9 29.8^39.0 27.5^72.3^87.6 13.1^1.2^8.6^21.8^1.2^14.1^11.8^4.2 13.3^4.5^4.3^13.4^18.2^18.0^9.4^6.7 5.2  20  SAPFE has a high goethite content (>70%). SAPSIL has a high quartz content (>30%). The exception is Sample #3 which is identified as SAPSIL but has a low quartz content (12.2%) and a high goethite content (74.9%). Based on the mineral composition, this sample would better fit with the SAPFE lithology. Additionally magnesium silicates (Mg-Si) were found only in the SAP samples and in two of the SAPSIL samples. It should also be noted that for Sample #5, XRD showed a clay phase that could not be identified. A summary of Vermelho sample supernatant analysis results can be found in Table 7. Complete results of the ICP Mass Spec testing can be found in Appendix C. Water hardness is defined as the concentrations of calcium and magnesium (most common) ions expressed in terms of calcium carbonate, which can be calculated by: Hardness ppm = 2.5 [conc. of Ca 2+ (ppm)] + 4.1 [conc. of Mg 2+ (ppm)]^(10) Water hardness can also be affected by iron, aluminum, and manganese; however, these elements are not present in significant proportions in the Vermelho water samples. From this calculation and based on Environment Canada 3 (1979) guidelines the water is classified as medium hard. Table 7: Summary of Water Analysis Results Ca CI Cr Fe K Mg Na Ni S Si  Calcium Chlorine Chromium Iron Potassium Magnesium Sodium Nickel Sulfur Silicon Hardness As Ca2+  ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm  SAP 17.23 11.00 0.01 0.15 2.64 17.28 20.87 0.18 3.00 8.85 113.91  SAPSIL 22.27 13.00 0.53 0.32 2.78 9.03 27.94 0.03 3.00 10.53 92.70  SAPFE 22.10 10.00 5.03 0.18 3.72 3.19 26.10 0.00 12.00 3.06 68.34  3 GUIDELINES FOR CANADIAN DRINKING WATER QUALITY - SUPPORTING DOCUMENTS - Hardness http://www.hc-sc.gc.caiewh-semt/pubs/water-eau/hardness-durete/index_e.html  21  5.0 ELECTROACOUSTIC MEASUREMENTS 5.1. ESA Measurements of Individual Minerals ESA measurements were first conducted on each of the individual minerals. Figure 2 shows the pH vs. ESA for the coarse quartz, fine quartz, magnetite, hematite, goethite and talc. 3.0  ____.^• _.,.......,,,  2.5 2.0 1.5 1.0 (t) a. 0.5  E  < 0.0  w  -0.5 -1.0  ___v,  Ai- - ., i--F E0  -  ---  1  4 lab,„.,_ .--^___..  H^.--  i- --41 -F-- --- I-  .0  -  ^i  i-i  -  -  H^i  I  i  8^ .0 ..^.. _ -^f, --  1  .0  -■........  ---  -1.5 -2.0 pH —x— Coarse Quartz —4-- Fine Quartz ^ ■ Goethite - - Magnetite —x-- Hematite • Talc  Figure 2: Individual Mineral Components  From Figure 2, it can be seen that the values of ESA decrease for all the samples with increasing pH. Figure 2 also shows that the iso-electric point (IEP) of the coarse and fine quartz and the talc is at pH of less than 3.0. The difference in the reported ESA values for the coarse and fine quartz is attributed to the difference in particle size, particularly the heavy (coarse) particle moved slower in response to the alternating current producing a lower ESA value. The IEP for the magnetite was at approximately pH 7.0. The IEP for the hematite was at approximately pH 8.5 and lastly, the IEP for the goethite was at approximately pH 9.4. The figure also shows that talc and quartz are negatively charged over the entire pH range and that the surface charge of 22  these minerals changes by a relatively small amount with increasing pH as compared to iron oxide minerals.  5.2.^ESA Measurements of Mixed Mineral Systems As discussed in section 2.6, the Bruinsma values were calculated as follows  ESA,„,  -  = K, ESA, + K ESA ^(4) 2  2  ( 1  0;AP1l P Where K 1 = 4 Ø„„ 4 1^ x Ap^1 P -  (5)  -  4'22 K2 = 4'  (6)  / 0mC13:AAPP2in„,/ P  Table 8: Overview of Bruinsma ESA values and input Mixture  Predicted by Bruinsma 4)1  11)2  (i)mix  Pi  P2  Pm  [WC111 3 ]  [g/CM 3 ]  [g/cm 3 ]  K1  K2  Fitted K2  50 Quartz:50 Magnetite  0.99  0.51  1.50  2.65  5.15  3.5  0.43  0.56  0.41  0.56  25 Quartz:75 Magnetite  0.50  0.77  1.27  2.65  5.15  4.17  0.20  0.79  0.19  0.84  75 Quartz:25 Magnetite  1.49  0.26  1.75  2.65  5.15  3.02  0.69  0.30  0.69  0.30  50 Quartz:50 Hematite  0.99  0.51  1.50  2.65  5.2  3.51  0.43  0.56  0.41  0.56  25 Quartz:75 Hematite  0.50  0.76  1.26  2.65  5.2  4.19  0.20  0.79  0.19  0.84  75 Quartz:25 Hematite  1.49  0.26  1.75  2.65  5.2  3.02  0.69  0.30  0.69  0.30  50 Quartz:50 Goethite  0.99  0.66  1.65  2.65  4.0  3.19  0.45  0.54  0.37  0.63  25 Quartz:75 Goethite  0.50  0.99  1.49  2.65  4.0  3.55  0.22  0.78 - 0.24  0.83  75 Quartz:25 Goethite  1.49  0.33  1.82  2.65  4.0  2.89  0.71  0.28  0.67  0.51  50 Coarse Quartz:50 Magnetite  0.99  0.51  1.50  2.65  5.15  3.5  0.43  0.56  0.41  0.56  25 Coarse Quartz:75 Magnetite  0.50  0.77  1.27  2.65  5.15  4.17  0.20  0.79  0.19  0.84  75 Coarse Quartz:25 Magnetite  1.49  0.33  1.82  2.65  5.15  3.02  0.69  0.30  0.69  0.30  50 Magnetite:50 Goethite  0.51  0.66  1.17  5.15  4.0  4.5  0.48  0.48  0.50  0.51  23  Table 8 shows the inputted values — volume fraction of mineral 1, 4 1 , volume fraction of mineral 2, 4)2, volume fraction of the mixture calculated by = 0, +0 2 , the density of mineral 1, p l , the density of mineral 2, p2 and the density of the mixture calculated by = (45; / 0m ))0, + (0'2 / 0.302. The final two columns show the fitted values, K 1 and K2, as calculated by the equation of ESA,0,,, = K i ESA, + K 2 ESA 2 . K i and K2 were solved by fitting the mixed ESA data to two linear equations where the ESA of the individual minerals (ESA, and ESA2) and mixture ESAtotai are known. The mixtures were chosen not only to represent the main minerals in laterites that determine the surface properties and rheology of the slurries but also to investigate a wide range of mineral property (eg. varying density, particle shape, particle size) combinations. 5.2.1. Fine Quartz: Magnetite Mixture The first mineral system tested was a mixture fine quartz and magnetite. The results can be found in Figure 3 (50:50), Figure 4 (25:75) and Figure 5 (75:25). For the mixed mineral systems the symbols (x and •) indicate the predicted ESA values (fitted and predicted using the Bruinsma equation, respectively) and the lines indicate the measured ESA values. The dotted line is the measured ESA values of the mixed mineral system. It can be seen that both the fitted and the predicted Bruinsma ESA values fit the data for the three mixed systems.  24  1.0 0.5  •  -^'150 - - -Ak - - 4.50...  5.50  6.50^7.50  8. 1  • .50  11 50  10.50  - -41,— - —=-)K--(1)  11.1  -1.0 -1.5 -2.0  pH •  Quartz 100% ^ 50Quartz:50Magnetite --4—Magnetite100% X Fitted ^• Bruinsma  Figure 3: Fine Quartz and Magnetite (50:50) 1.0 0.5 - ...... . ..."^  ..  0.0 ?..,^2.50  — 3.50^4.50^5150^6-.50- -^7.50^8.^1^• .50^10.50^11 50  O.^-0.5  < (/)^-1.0  .------•--...______,  LI  3R  •  • --____„_____________....___________.  -1.5 -2.0  pH Quartz 100% ^ 25Quartz:75Magnetite^Magnetite 100%^Fitted^Bruinsma 1 ----&---^x^•  — -.- —^  Figure 4: Fine Quartz and Magnetite (25:75)  25  1.0 0.5  . 0^3.50^4.50^5.50^6.50^7.50^8.5^50^10.50^11 50 --x- - - -it ----- i•- - - - - - it - - — - --aik - - - - -0_ - _ _ _ _  •:(  U) -1.0  A_  ILI  lc _ _ _ _^ 4.  --^  -1.5 -2.0  pH Quartz 100% - - - - 75Quartz:25Magnetite --•—• Magnetite 100% ^x Fitted^• Bruinsma  Figure 5: Fine Quartz and Magnetite (75:25)  Table 9 and Figure 6 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that both values are relatively close. For this system the assumption that l '/4 1 and 4 2 72 are equal to 1 appears to be reasonable. There is no significant deviation; therefore the results imply that the system is well dispersed as there is no significant difference in the ESA of the minerals in the mixture as compared to alone (indicating that no heterocoagulation is taking place) over the entire pH range. Table 9: Fine Quartz and Magnetite - Comparison of K values Fitted  Mixture  Predicted by Bruinsma Kmagnetite  0.56  Kquartz 0.43  0.19  0.84  0.20  0.69  0.30  0.69  0.79 0.30  Kquartz  Kmagnetite  50 Quartz:50 Magnetite  0.41  25 Quartz:75 Magnetite 75 Quartz:25 Magnetite  26  0.56  0.6 ^ 0.4 02 ^ 0.0 ^ -0.2 ^ -0.4 ^ -0.6 ^ -0.8 ^ -1.0 ^ 12 ,  -1.4 ^ -1.4^-1.2  -1.0^-0.8^-0.6^-0.4^-0.2^0.0^0.2^0.4^0.6  Measured ESA ♦ 50Quartz:50Magnetite ♦ 25Quartz75Magnetite ■ 75Quartz:25Magnetite ^ "1:1"1 ^ J  Figure 6: Predicted v. Measured Fine Quartz and Magnetite  5.2.2. Fine Quartz: Hematite Mixture The second mineral system tested was a mixture of fine quartz and hematite. The results can be found in Figure 7 (50:50), Figure 8 (25:75) and Figure 9 (75:25). It can be seen that as with the fine quartz and magnetite the expected values correspond well to the measured values for the 50:50 and 25:75 mixtures. However for the values predicted by the Bruinsma equation for the 75% fine quartz/25% hematite mixture (25:75), the calculated values are consistently higher than the measured values.  27  ^ ^  1.5 ^ 1.0 ^ 0.5 ^  ^0.0  ^  a^o.Oo  ^-0.5  ^W  ^  a)  -1.0  ^  -1.5 -2.0  pH --*—Quartz100% – – – – 50Quartz:50Hematite ^A Hematite 100%^x Fitted^• Bruinsmaj  Figure 7: Fine Quartz and Hematite (50:50) 1.5 1.0 0.5 ^  ^0.0  ^  0.^0.30  2.00  )st• 6.00^8.00^10.00^12 00  4.00  -0.5 CO W -1.0  x -1.5 -2.0  pH  • Quartz 100% – – – – 25Quartz75Hematite —A— Hematite 100% x Fitted • Bruins m a Figure 8: Fine Quartz and Hematite (25:75)  28  ^ ^  1.5 1.0 =1, 0.5 ^ ^0.0  ^ 0.)0  2.00  -0.5 ^  ^W  co  -1.0 ^ -1.5 -2.0  pH Quartz 100% – – – – 75Quartz25Hematite —A— Hematite 100%^x Fitted^♦ Bruins ma  Figure 9: Fine Quartz and Hematite (75:25)  Table 10 and Figure 10 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is a slight difference between the fitted values and values predicted by Bruinsma. For this system the assumption that^and and 42'/42 are equal to 1 appears to be incorrect and that some coagulation appears to take place especially in the low pH range. This coagulation creates a third group of particles that is not taken account for in the calculations. Table 10: Fine Quartz and Hematite - Comparison of K values Mixture Fitted  Predicted by Bruinsma Khematite  0.60  Kquartz 0.44  0.25  0.99  0.20  0.80  0.80  0.21  0.70  0.30  Kquartz  Khematite  50 Quartz:50 Hematite  0.56  25 Quartz:75 Hematite 75 Quartz:25 Hematite  29  0.56  ca  E  0.7  ci)  02  — 0  -0.3  o -0.8  11). a.  -1.3  Co  w -1.8 -1.8^-1.3^-0.8^-0.3  0.2  0.7  Measured ESA ♦ 50Quartz:50Hematite ♦ 25Quartz:75Hematite ■ 75Quartz:25Hematite ^1:1  Figure 10: Predicted v. Measured Fine Quartz and Hematite  5.2.3. Fine Quartz: Goethite Mixture The third mineral system tested was a mixture fine quartz and goethite. The results can be found in Figure 11 (50:50), Figure 12 (25:75) and Figure 13 (75:25). It can be seen for the 50:50 mixtures and for the 75 quartz/25 goethite mixture that the values predicted by Bruinsma are significantly lower than the actual ESA values. The results appear to be more influenced by the goethite in the system than by the quartz.  30  3.0 2.5 2.0 1.5  ............  1.0  -x-  •  . - -  ----- x  •  ..  x  •  •.,, -.---  0.5  •  0.0 -0.52  .0^3.50  4.50  5.50  6.50  . ,. 7.50  8.56' ' -x A:-_,  9.50^10.50^lli 50 . , . .. ,,  -1.0 -1.5 -2.0  pH ♦ Quartz 100% ^ 50Quartz:50Goethite^Goethite 100%^X Fitted^• Bruinsma  Figure 11: Fine quartz and goethite (50:50) 3.0 2.5 2.0  O. 0.5 0.0 CO -0.5 w 5  .50  3.50  4.50  5.50  6.50  7.50  8.50  -.- '9,60  10.50  -1.0 -1.5 -2.0  pH --•-- Quartz 100% - - - - 25Quartz:75Goethite --A-- Goethite 100%^x Fitted^• Bruinsma  Figure 12: Fine Quartz and Goethite (25:75)  31  11 50  3.0 2.5 2.0 15  5' .  1.0  -- - — ----- x 5.50 •^6.50  50 •^ 7.60—^8.50^9.50^10.50^11 •  -1.5 -2.0  pH ♦ Quartz 100% — — — — 75Quartz:25Goethite ^A Goethite100%^x Fitted^• Bruins ma  Figure 13: Fine Quartz and Goethite (75:25) Table 11 and Figure 14 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is a difference between the fitted values and values predicted Bruinsma especially in the pH range where the goethite and quartz particles are oppositely charged. For this system the assumption that 1'41 and  C2 42 '  are equal to 1 appears to  be incorrect and the heterocoagulation of quartz and goethite seems to be the dominant interfering factor. Table 11: Fine Quartz and Goethite - Comparison of K values Mixture Fitted 50 Quartz:50 Goethite 25 Quartz:75 Goethite 75 Quartz:25 Goethite  Predicted by Bruinsma  Kquartz  Kgoethite  Kquartz  Kgoethite  0.37 0.24 0.67  0.63 0.83 0.51  0.45 0.22 0.71  0.54 0.78 0.28  32  2.0  co (s)C  1.5 1.0  • •  a) 0.5 "0  D  -0.5  < U)  -1.0  E  •  0.0  ■  •  a  w -1.5 ^ r  }  -1.5^-1.0^-0.5^0.0^0.5^1.0^1.5^2.0  Measured ESA •  50Quartz:50Goethite ♦ 25Quartz:75Goethite w 75Quartz:25Goethite ^"1:1"  Figure 14: Predicted v. Measured Fine Quartz and Goethite  5.2.4. Coarse Quartz: Magnetite Mixture Although laterites do not contain a coarse fraction an investigation of the predictability using the Bruinsma equation of mixed systems was conducted to determine the effect of particle size, the fourth mineral system tested consisted of coarse quartz and fine magnetite. The results can be found in Figure 15, Figure 16 and Figure 17. From these three figures it can be seen that measured values are quite erratic and do not fit the predicted values well, although the agreement is much better under alkaline conditions where the electrostatic repulsion between similarly charged particles prevents significant aggregation (heterocoagulation).  33  0.6 0.4 •  \  **,  \..... ...  0.2  ...  \  0.0 0.  •  2  r  4^  .  3.50^4.50 ****  -4._ _5,50_ _  -0.2  -  6.50  5C - -._ , • .-  W  8.50^9.50^10.50^11 50 -  -4_  ■tt  co  7.^•  -0.4 -0.6  --.  -0.8  pH Quartz 100% - - - - 50Quartz50Magnetite^Magnetite100%^x Fitted^• Bruinsma  Figure 15: Coarse Quartz and Magnetite (50:50) 0.8 0.6  .  .  .  X  ',  0.4  E^0.2  • •  ..5, Clz^2.50 t^-0.2 < U)^-0.4  3.50^4.50^5.50^6.50^  :^I X_ 7.50^ -  9.50  10.50  11 50  -  IL  x  -0.6 -0.8  .  x  -1.0  pH --*---^Quartz 100% -^-^25Quartz:75Magnetite^Black -^ -A100%  Figure 16: Coarse Quartz and Magnetite (25:75)  34  x  Fitted  •  Bruinsma  0.6 0.4  H  0.2  as  a.  0.0 ^ 2.50  __  x  3.50 x 4.50^5.50^6.50 •  -0.2  ––  8.50^9.50^10.50^11 50  •  X  W -0.4 -  -0.6 -0.8  pH Quartz 100% – – – – 75Quartz:25Magnetite --A— Magnetite 100% ^x Fitted^♦ Bruinsma  Figure 17: Coarse Quartz and Magnetite (75:25)  Table 12 and Figure 18 show a comparison of the K values (fitted and predicted by Bruinsma) for the three mixtures. It can be seen that there is no significant difference between the fitted values and the values predicted by Bruinsma. However, since neither the fitted values or the values predicted by Bruinsma fit the data very well over the entire range, the assumption that and 2'/C2 are equal to 1 again appears to be incorrect and that there is the possibility of coagulation which in this case would be equivalent to coating of quartz by fine magnetite, this is referred to as blinding. The charge of the quartz is blinded by the magnetite on its surface. Table 12: Fine Quartz and Magnetite - Comparison of K values Mixture  Fitted  Predicted by Bruinsma  Kquartz  Kmagnetite  Kquartz  Kmagnetite  50 Coarse Quartz:50 Magnetite  0.41  0.56  0.43  0.56  25 Coarse Quartz:75 Magnetite 75 Coarse Quartz:25 Magnetite  0.19  0.84  0.20  0.79  0.69  0.30  0.69  0.30  35  0.8  rn  0.6 0.4  -  C3) 0.2 •—  •  0.0  1  •  ♦  (0 4:t -0.6  I  --A---  A  a) 45 -02 1/45 E -0.4 a  —4v  •  ILI -0.8  i^r ).8  1^I^I^I^1^I^I  I^1^I^I^I^I^1^I^I^I^I  -0.6^-0.4  -0.2^0.0  I^I^I^I^I^i^I^I^I^I^I^I  0.2^0.4^0.6  I^I  0. 8  Measured ESA ♦  50Quartz:50Magnetite  ♦  25Quartz75Magnetite^■  75Quartz:25Magnetite —1:1"  Figure 18: Predicted v. Measured Coarse Quartz and Magnetite  5.2.5. Magnetite: Goethite Mixture To further investigate the results from the fine quartz and goethite samples where the system was dominated by the goethite, a mixture of 50% magnetite and 50% goethite was tested. The results can be found in Figure 19. From Figure 19, it can be seen that both the fitted values and values predicted by Bruinsma fit the data for the mixed systems fairly well. This indicates that the goethite is not as dominant with the magnetite as it was with the quartz. This could be a result of the closer ESA values between goethite and magnetite as compared to the goethite and quartz.  36  3.0 2.5  iC1.0  •  --ilf--  •------______.  - __.  0.0  Cl)^2 .0 W -0.5  3.50  4.50  5.50  6.50  -..  8.50  7.50  •  -1.0  10.50 '  11 50 A  -1.5 -2.0  pH Magnetite 100% - - - - 50Magnetite:50Goethite ---A-Goethite100% ^x Fitted^• Bruins ma  Figure 19: Magnetite and Goethite (50:50) Table 13: Magnetite and Goethite- Comparison of K values Mixture Fitted 50 Magnetite:50 Goethite  E  Predicted by Bruinsma  Kmagnetite  Kgoethite  Kmagnetite  Kgoethite  0.50  0.51  0.48  0.48  1 '3  C = 0.8 CO 0) C .7) 0.3 c '0 $3 0 -0.3 "  13CDs_  CL < CO LLI  -0.8  • 1 ^1  -1.3 -1.3  1^ 1 i  1^ H- -h 1^,^-- + -p^,---1  -0.8  -h  -0.3^0.3  Measured ESA ♦  50Magnetite:50Goethite -- "1:1" '  Figure 20: Predicted v. Measured Magnetite and Goethite 37  .-i-  , 0.8  i-- '  i 1.3  ^  5.3. Vermelho samples In addition to the individual samples and the mixed mineral systems, ESA measurements were conducted on the eight Vermelho samples. Figure 21 shows the pH vs. ESA for the eight samples. Table 14 shows the apparent IEP values of the eight samples.  ^0.80  ^  0.60 ^ 0.40 -^ 0.20 ^ -7 E  ^E  a.as  0.00 -0.20 .  I 1^  I^V^f^1^1^I^1^I^j^I^1^1^U^ 1^1  •  • .11 4111,1.0 ,,^7- •  2.0  -0.40 -^ < co -0.60 ^ w -0.80 -  I^ I ^ I ^I  9.0^10.0^11.0^12.0^1 .0 vow  " -A4  -1.00 -120 -1.40  17  apparent pH Sample #1 - SAP^Sample #2 - SAP^Sample #3 - SAPSIL^- Sample #4 - SAPSIL Sample #4 - SAPSIL --a— Sample #6 - SAPSIL ^ Sample #7 - SAPFE — Sample #8 - SAPFE  Figure 21: Overview of Vermelho Samples Table 14: Vermelho apparent IEP results Id #  Category  1 2 3 4 5 6 7 8  SAP SAP SAPSIL SAPSIL SAPSIL SAPSIL SAPFE SAPFE  pH at apparent IEP 6.5 3.3 5.6 3.0 3.1 2.9 7.1 7.3  38  Although the mineralogy (high iron mineral content) and apparent IEP at pH 5.6 of Sample #3 (SAPSIL) indicates that it would be better fit with the SAPFE lithology, the rheology (low yield stress, this is discussed on the following chapter) classifies it as SAPSIL. To investigate the effects of individual minerals on the zeta potential, comparisons were made between the total percent content of iron minerals and total percent content of magnesium minerals, and the apparent IEP. IEP range of Fe minerals  10.0 9.0  #8 - SAPFE  8.0  #7 - SAPFE .  7.0 ♦#1 SAP  6.0  #3 - SAP IL  5.0 4.0  #2 - SAP  #5- SAPSI^#4 - SAPSIL  3.0  16 - SAPSIL  .  2.0 20^30^40^50^60^70^80^90 %Iron minerals  ^  100  Figure 22: Effect of total iron minerals on apparent iso-electric point for Vermelho samples  Figure 22 shows the relationship between the apparent iso-electric point and % Fe minerals (goethite, hematite and magnetite). As the percentage of Fe minerals increased, the apparent isoelectric point of the sample increased. It can be seen in Figure 22 that all the SAPSIL samples have a low apparent IEP and all the SAPFE with Sample #3 have a higher apparent IEP. This correlation relates to the IEP of Si02 (pH <2.0 (Kosmulski, 2006)) and the IEP of Fe203 (pH 7.59.5 (Kosmulski, 2006)). The two outliers on the graph were SAP samples with high Mg mineral content. Samples #1 and #2 did not follow the trend. This was probably due to the fact that Sample #1 had 11.4% kaolinite (IEP = pH 2.8-3.8 (Kosmulski, 2004))) and 14.0% talc (IEP = pH 2.7 (Durove, 1998)) and Sample #2 had 43.6% chlorite (IEP = pH 3 (Hussain, 1996)). When  39  magnesium silicates and kaolin clays were present, the apparent IEP and therefore, the surface properties were dominated by the presence of these minerals. Figure 23 shows the relationship between the apparent iso-electric point and % magnesium minerals (chlorite, talc and lizardite). With the exception of Sample #1 which contains 11.4 % kaolinite the iso-electric point of the sample was not significantly affected by the % of magnesium minerals.  10.0 9.0  a  8.0  ..... c  7.0  w — co " a a  < 11..  0  I 0.  6.0  #7 - SAPFE 8 - SAPFE^♦ #1 SAP #3 - SAPSIL  5.0 4.0 - SAPSIL#5- SAPSIL 3.0 2.0  .#2 - SAP  • 6 - SAPSIL ^---ii ^1^II! ^mi  1^11  1^f^ I-f-- -I r—E—H +. I ^ ^ 0.0^10.0^20.0^30.0^40.0 50.0 60.0 %Mg minerals -  Figure 23: Effect of total magnesium minerals on the apparent iso-electric point for Vermelho samples  It is expected that at a pH close to the apparent IEP, particle aggregation would cause the yield stress to increase. For SAPFE samples, the testing pH was close to the apparent IEP of the samples and for the SAPSIL samples the testing pH was relatively far from the apparent IEP of the samples. On the basis of mineralogy, it is expected the higher the iron mineral content, the higher the yield stress at natural pH values. Additionally, the higher the quartz or Mg silicate content, the lower the yield stress values at natural pH. This also implies that as the pH is lowered, the yield stress should decrease for samples with higher iron mineral content but would increase for samples with higher quartz or Mg silicate content.  40  6.0 RHEOLOGY 6.1.^Individual minerals Tests were conducted on the main mineral constituents in the ore classes in order to determine the importance of these minerals to the rheology of the ores. In addition to the three minerals representing the three ore types — magnetite was also tested to determine the effect of an additional iron mineral. For consistency, the yield stress is reported using the Bingham equation due to a better fit for the majority of the samples. Figure 24 shows the results from the talc rheology tests. It can be seen that the yield stress for all three pH values is high (greater than 40 Pa, when fitted using the Bingham equation) and have a shear-thinning properties. 180 160  ^H 7.56 ^  _pH 9.06  140 Ts' 120  pH 5.75  100  t  80  N 60 40 20  ^  -  ^  0^ 0^100^200^300^400^500^600^700^800^900^1000  Shear rate [s-1] pH 5.75 — — — — pH 7.56 — - -- pH 9.06  Figure 24: Rheology of talc suspensions (33% solids)  41  ^ ^  Figure 25 shows the results of the quartz rheology tests. It can be seen that the samples are Newtonian and although there is a decrease in stress with increasing pH, all the yield stress values are extremely low (below 0.2 Pa). It should be noted that the slope of the flow curves of quartz increased after 150 s -1 . This could be explained by turbulent behaviour above this point or dilatant flow properties. 2.5  2  iv"  CI'^1.5  .. ..b  i  ti s ^r 1 1A 0.5  i 14 Wig rrw ' '^.1ti  ,..^  ,•t^Y 1^ ii„^lip „id„ ^I Ur(' i l)ri'  _ rvlitAit ^t /1"/^, ^0^1 'I ' int itisr \k/  5.0 ..■^,,n,^ PH^  -„---\i 111 ^f '^A /Ait fylpti\^ ----/^,,-^,^-^ ^v ^,./.1,7\iv k^ ^/ ^V\4'''h^1 o no 0  /14A.i  'I^  ' 7^•^) 1'.1 I \.1 q-t i) PO1  ',4,-4,1 J ,T v1: 50  Ii\I V \,-"/Ij kl / V^"/^ 1 pH CiA'tt^t^t^I t^tr^t^'  7.62  ^r^t^t  100^150^200  1114,141  250  300  Shear rate [s 1] -  pH^ 3.06 - - - - pH 5.0 -^- - - pH 7.62  Figure 25: Rheology of quartz suspensions (45% solids)  Figure 26 shows the results of the magnetite rheology tests. It can be seen that the yield stress increases with increasing pH. The yield stress (fitted using the Bingham equation) ranges from 15 to 25 Pa and is higher at higher pH.  42  40  r-  35 ^ 30 ^ _  en  pH 5.39  25  pH 3.45  N lz 20 N sea w 15 10  0  50  100  150  200  250^300  Shear rate [s 1] -  pH 3.45 — — — — pH 5.39 — — - — pH 7.34  Figure 26: Rheology of magnetite suspensions (45% solids) 160 140  pH 7.35  120  Ts  '  0-^100  .,.„,...--- ---  (0  pH 5.34  .  v,  i  —  ___—_-----  80  as w^60 .c cf) 40 20  pH 3.30 0  — 0  I  I^f  50  I  II^I^I^I  4^■^I  100^150^200  Shear rate [s 1] -  pH^ 3.30 — — — — pH 5.34 — - — - — pH 7.35j  Figure 27: Rheology of goethite suspensions (25% solids)  43  250  300  ^  Figure 27 shows the results of the goethite rheology tests. It can be seen that a significant increase in yield stress with increasing pH. The yield stress (fitted using the Bingham equation) ranges from 5 (pH 3.3) to 94 (pH 7.35). Table 15 shows the rheological characteristics (pH, % solids, apparent viscosity (fl  app ),  Bingham  plastic viscosity (go) and the Bingham yield stress (T B ) of the three minerals. From the rheology tests on the talc sample, several potential problems were discovered working with high talc concentrations due to talc's natural hydrophobicity. The main concern was trying to mix the samples. The samples were extremely hard to disperse. This problem was also observed by Schader and Yariv (1990) - "talc, with lower surface energy, is difficult to disperse in water and considered to be hydrophobic" and Zbik and Smart (2002). - "trapping of air nano-bubbles between detached sheets of micronised talc contributes to poor dispersion." To try to eliminate this problem, the samples were mixed for approximately two hours and the test work was conducted in triplicate. Table 15: Rheological characteristics of individual minerals Mineral^pH^% solids^fl app *^fipi^TB [Pa-s]^[Pa-s] [Pa] Talc^5.75^33.0^0.135^0.186 50.9 7.56^33.0^0.165^0.246 41.9 9.06^33.0^0.170^0.286 46.4 Fine quartz^3.06^45.0^0.006^0.005 0.36 5.0^45.0^0.003^0.003 0 7.62^45.0^0.002^0.003 0 Magnetite^3.45^45.0^0.093^0.035 17.7 5.39^45.0^0.115^0.039 23.4 7.34^45.0^0.124^0.037 26.4 Goethite^3.30^25.1^0.023^0.070 4.7 5.34^25.3^0.320^0.129 61.0 7.35^24.9^0.448^0.148 94.3  * The apparent viscosity (ri app ) was found at the point where the shear rate versus apparent viscosity curve approached a plateau. For the talc this was at 1000 s -1 , for the quartz it was at 150 s -1 and for the goethite it was 300 s -1 .  44  ^  100.0 90.0 1^ 80.0 1 ^ 70.0 ^ 60.0 ^ 50.0 I^ 40.0 ^ 30.0 ^ 20.0 =^ 10.0 -_-_ 0.0 ^ 2.0  I^l^l^+ 8.0^10.0  4.0^6.0 pH ♦ Talc ■ Fine Quartz x Magnetite  A  Goethite  Figure 28: Yield stress of pure minerals at three pH values From Figure 28, it can be seen that talc has a relatively high uniform yield stress (T B ) over the entire pH range. The fine quartz has no significant yield stress at all pH values. The magnetite has a medium value yield stress that increase slightly with pH. Lastly, the goethite has an increasing yield stress with pH.  6.2. Vermelho samples Table 16 is a review o the test % solids and pH (as received) used for the rheological tests on the Vermelho ore samples.  Table 16: Vermelho Characterization Id # Category 1 2 3 4 5 6 7 8  SAP SAP SAPSIL SAPSIL SAPSIL SAPSIL SAPFE SAPFE  Test % solids 45.5 27.7 46.0 45.2 42.6 44.8 46.2 46.0  45  As received _pH 6.9 8.1 7.0 8.1 8.1 8.4 6.7 6.1  Figure 29 shows the flow curves for the saprolite (SAPSIL) samples and shows that all four samples have a relatively low yield stress. Figure 30 shows the flow curves for the saprolite-iron (SAPFE) samples and shows that the yield stresses are in the intermediate to high range. The rheological properties of Sample #7 can be characterized as yield shear thinning. Sample #8 has yield shear thickening properties at low shear rates, but shear thinning properties at high shear rates. Lastly, Figure 31 shows the flow curves of the saprolite (SAP) samples and shows the yield stress can be characterized in the high range. The rheological properties of Sample #2 can be characterized as yield shear thinning. As with Sample #8, Sample #1 has yield shear thickening properties at low shear rates, but shear thinning properties at high shear rates.  18 16 14 12 - e  10  1 I-.  8 6 4 2  .  . • ' g.^....  ^40  ...  r ••r*-- • - - `  0 0  ^  i^ ;  1^ ; ^ ^ 50^100^150^200 250 300 Shear rate N-11  Sample #3 — — Sample #4 - - - - Sample #5 - - - - - Sample #6  Figure 29: Effect of shear rate on shear stress for the saprolite-silica (SAPSIL) samples  46  120 ■ or * . ' . .  100 ^ ic7^ _^\ N a 80 -I \^  w-  e' —  —  60  i^ 40 16 1-3 = u) 20 0  0^50^100^150^200^250^300 Shear rate [s-1]  Sample #7 — — Sample #8  Figure 30: Effect of shear rate on shear stress for the saprolite-iron (SAPFE) samples 140 120 1:1- 100 0  2 80 ta. 60 cu 0 40 s 0 20 0 0  ^  50^100^150^200  ^  250  ^  300  Shear rate [s-1]  Sample #1 — — Sample #2  Figure 31: Effect of shear rate on shear stress for the saprolite (SAP) samples  The main results of rheological tests are summarized in Table 17 which shows the high shear rate apparent viscosity at a shear stress of 300 s -1 (riap,3oo), the Bingham yield stress (TB), and the plastic viscosity values (rim). As can be seen in Table 17 and in Figure 32 and Figure 33, the rheological property that changed most with mineralogical composition (characterized by iron 47  and magnesium mineral content) was the yield stress. The table and figures also show that each ore class has a characteristic yield stress range. The SAPSIL samples has a yield stress of >6.5Pa (low), the SAPFE samples had yield stresses of 21.1 and 57.9Pa (intermediate to high) and lastly the SAP samples had high yield stress at 51.2 and 85.2Pa. Table 17: Rheological properties for Vermelho samples Id ii  1 2 3 4 5 6 7 8  Category ilapp5300 [Pa-s] SAP 0.195 SAP SAPSIL 0.025 SAPSIL 0.018 SAPSIL SAPSIL 0.025 SAPFE 0.092 0.193 SAPFE  110 [Pa-s] 0.110 0.123 0.014 0.022 0.039 0.013 0.041 0.174  90.0  60.0  4  50.0  70.0  a, 40.0 s = 30.0  #2 - SAP  #8 - SAPFE  (2Kozoscilids)  a  g 4  [Pa] 84.2 51.2 6.5 2.8 4.8 2.3 21.1 57.9  * #1 - SAP  80.0  aa w F.  TB  20.0 10.0  #7 - SAPF #6 - SAPSIL  #5 - SAPSIL •^#4 - SAPSI^♦ #3 -SA" SIL IfIlIllifIllIfIfl f^Illillilihillfilill 0.0 30.0^40.0^50.0^60.0^70.0^80.0^90.0 100.0 20.0 % Iron minerals  Figure 32: Effect of total iron minerals versus Bingham yield stress (natural pH)  48  90.0  •  80.0  #1  - SAP  0-4^70.0  E 60.0 .0 50.0  #8 SAPFE  #2 - SAP  40.0 ea^30.0  _26% solids)• —  #7 SAPFE  le 20.0 di-43/4-SAPSIL -  10.0  •/  #5 - SAPSIL  0.0 • ^ 0.0^10.0^20.0^30.0^40.0^50.0 #6 - SAPSIL^% Mg minerals  ^  60.0  Figure 33: Effect of total magnesium minerals versus Bingham yield stress (natural pH)  The rheological properties of the suspensions can be characterized as yield shear thinning. In other words, all suspensions exhibited a yield stress and the apparent viscosity decreased with shear rate. The suspensions also exhibited varying time dependant properties. Charts for each of the individual rheological tests conducted can be found in Appendix H. The main results are summarized in Table 17 which shows the high shear rate (300 s -1 ) apparent viscosity for both the step up and down tests, the yield stress (calculated by both the Bingham and Casson equations), the Bingham viscosity values, the Casson viscosity values and the R 2 for both equations. The fitted yield stresses were calculated for the first ramp-up of the instantaneous flow curve tests. As can be seen in Table 18, the rheological properties of the ores changed with mineralogical composition and that each ore zone demonstrates a yield stress range. •  SAPSIL — characterized by low yield stress values  •  SAPFE — characterized by intermediate to high yield stress values  •  SAP — characterized by high yield stress values  49  ^  Table 18: Rheological properties (including thixotropic and Bingham and Casson results) Lithology Thixotropic Test Or % solids Rheopectic Thixotropic/ 45.5 1^SAP rheopectic 2^SAP Rheopectic 27.7 3 SAPSIL Thixotropic 46.0 4 SAPSIL Thixotropic 45.2 Thixotropic/ 42.6 5 SAPSIL rheopectic 6 SAPSIL Thixotropic 44.8 Thixotropic/ 46.2 7 SAPFE neither 46.0 8 SAPFE Rheopectic  Thixotropic Viscosity^Bingham Casson Or^(11app,300)^TIB^Tb R2 R2 lic^tc Rheopectic up [Pa-s] [mPa-s] [Pa] [mPa-s] [Pa] Thixotropic/ 0.195 110 84.2 75.9 10 78.2 58.4 rheopectic Rheopectic 123 51.2 99.4 24 42.3 98.0 14 6.5 93.8 3 5.5 89.8 Thixotropic 0.025 Thixotropic 0.018 22 2.8 98.7 10 1.6 99.1 Thixotropic/ 39 4.8 98.8 18 2.7 99.7 rheopectic Thixotropic 0.025 13 2.3 92.9 4 1.5 96.0 Thixotropic/ 0.092 41 21.1 95.1 6 18.3 87.5 neither Rheopectic  0.193  174  57.9 85.2  37  47.6 74.1  As discussed in the following section, the IEP relates to the yield stress of the sample, specifically for SAPFE and SAPSIL. For SAPFE samples the testing pH was close to the IEP of the samples and for the SAPSIL samples the testing pH was relatively far from the IEP of the samples. On the basis of mineralogy, the higher the iron mineral content the higher the yield stress at natural pH values. Also, the higher the silicate content is, the lower the yield stress values are at natural pH. Table 18 categorizes each sample as thixotropic, rheopectic, neither or a combination. A thixotropic sample indicates that shearing induces dispersions of particles. A rheopectic sample indicates that shearing induces aggregation of particles in the slurry; however some of the Vermelho samples did not exhibit solely thixotropic or rheopectic properties. For Sample #1, the sample was initially thixotropic but above 60 s -I exhibited rheopectic properties. For Sample #5, the sample was initially rheopectic but above 200 was thixotropic. Lastly for Sample #7, the sample exhibited thixotropic properties but above 100 s -1 no time dependent properties were seen.  50  7.0 DISCUSSION This section investigates possible correlations between the yield stress and several physical properties —D80, percentage under 10 microns, pH of apparent IEP, percentage quartz, percentage iron-bearing minerals, and percentage clay minerals. The yield stress used for all the figures in section 7.0 is the Bingham yield stress value. This was chosen for the eight samples as it had a higher average coefficient of determination, R 2 , value (0.92 vs. 0.88 with Casson) based on Table 18 (in section 6.0). The number beside the points indicates the sample number and classification. The first relationships investigated were particle size, D80, and percentage passing 10 microns, as shown in Figure 34 and Figure 35, respectively. From these figures it can be seen that there is a relationship between D80 and yield stress, as well as between percent passing 10 microns and yield stress. As D80 of the samples decreased the yield stress increased; however since not all the points follow this pattern it cannot be the only factor contributing to the higher yield stress. For the percentage under 10 microns a similar relationship was found. With increasing percentage of the particles finer than 10 microns, the yield stress of the sample increases. This relationship is clearer than for the D80; however, there are still samples that do not fit the trend.  90.0  . #1 - SAP  80.0 ni a-  70.0  #8 - SAPFE • #2 - SAP •  60.0  E 50.0  (26 % s clidS) --  in 40.0  -a 15 30.0  20.0  #7  -  SAPFE #3 - SAPSIL^#5- SAPSIL #6 - SAPSIL #4- SAPS!  10.0 0.0  0^20^40^60^80^100^120 D80 [microns]  Figure 34: Bingham Yield Stress vs. D80  51  ^  140  ^^  • 90.0 ^  #1 - SAP  80.0^I=^ 70.0 ^ ^0-  #8 - SAPFE  60.0^I^  #2 - SAP  50.0^I^  •  (26 % solids)  ^co 40.0 ^  -0 TD 30.0 ^ 20.0 .•_ ;  - SAPFE ^ • #3 APSIL  #5- SAPSIL^#4 - SAPSIL  10.0 ^  - SAPSIL  0.0 ^ 0  I^I{^I  10^20^30^40^50 Percentage under 10 microns  Figure 35: Bingham Yield Stress vs. Percentage under 10 microns Table 19: Vermelho apparent IEP pH vs. test pH results Id #  Category  1 2 3 4 5 6 7 8  SAP SAP SAPSIL SAPSIL SAPSIL SAPSIL SAPFE SAPFE  pH at apparent  IEP 6.5 3.3 5.6 3.0 3.1 2.9 7.1 7.3  As received (test) pH 6.9 8.1 7.0 8.1 8.1 8.4 6.7 6.1  The next relationship investigated was between the yield stress and the iso-electric point of the samples. Figure 36 shows the results from the tests. Table 19 shows a comparison of the apparent IEP pH vs. testing pH. Theoretically, close to the iso-electric point the particles in the sample coagulate and cause the yield stress of the sample to increase. For Samples #1, #7 and #8, the slurry pH was close to the respective IEP. As expected these slurries exhibited a high yield stress. With the exception of Sample #2 (high chlorite), all the other slurries exhibited a low yield stress. For these slurries the IEP was much lower than the slurry pH. For Sample #2, the yield stress was high despite that the solid content was only 27.7%. This sample differed from others by its high chlorite and lizardite content.  52  ^  90.0 80.0 70.0 €71' a- 60.0 1  #2 - SAP  50.0  •^II  40.0  7) 30.0 20.0  ^10.0  #5- SAPSII ^ #6 - SAPSIL 0.0^ttTht11^1112^a  1'il4tfftf^tiltli  0.0^1.0^2.0^3.0^4.0^5.0  6.0^7.0^8.0  pH of Apparent IEP  Figure 36: Bingham Yield Stress vs. pH of Apparent IEP  Lastly, the relationships between mineralogical content and yield stress were investigated. The mineralogical contents investigated were quartz content, iron-bearing minerals content and clay content, presented in Figure 37, Figure 38 and Figure 39, respectively. From Figure 37 it appears that with increasing quartz content there is a decrease in yield stress; however like with the relationship between particle size and yield stress there are points that do not fit that relationship and therefore there may be other factors influencing the yield stress.  53  90.0  - SAP  80.0 70.0 0-  60.0  0, 4  50.0  -^#8 - SAPFE ♦ #2 - SAP ^426% snlids)__  vi  40.0 -a To 30.0  #7 - SAPFE  20.0  #3 - SAPSIL^#5- SAPSIL .....__,..^ #6 - SAPSIL^•.m___.sges.u _  10.0 0.0 0.0  5.0^10.0^15.0^20.0^25.0^30.0  35.0^40.0  Percentage Quartz  Figure 37: Bingham Yield Stress vs. Quartz content  Figure 38 shows the relationship between the goethite, hematite and magnetite contents and yield stress. Since the amounts of hematite and magnetite are low and relatively constant, it does not appear that they play a part in influencing the yield stress. There does appear to be relationship between yield stress and goethite content as the goethite contain in the samples increases the yield stress also increases. Samples #1 and #2 do not follow the trend due to their high magnesium content.  54  ^  90.0  .4—#1 - SAPy  80.0 7 70.0  #8 - APF E  12-- 60.0  co^ S 50.0 ^ Cl, 40.0 -a)a 30.0 20.0  •  #2 - SAP  (26-% solid§)#7 - SAPF  #4 - SAPSIL  10.0^ #6 - SAPSIL ^ 0.0 ^•• 0.0^20.0  #5- SAPSIL  40.0  60.0  80.0^100.0  %Mineral ♦ Goethite Total Iron Bearing Minerals  Figure 38: Bingham Yield Stress vs. Iron-bearing Minerals  Figure 39 shows the relationship between the clay minerals and yield stress. There appears to be no clear relationship between any of the minerals and the yield stress. A relationship between high total clay content and yield stress is seen for Samples #1 and #2; however the other samples do not seem to follow a clear trend. Additionally, kaolinite and talc have little effect on the yield stress; however, chlorite and lizardite appear to have a large effect.  55  ^  90.0 80.0 73 . 70.0  F L 60.0 .  r  SI 50.0 + Cl)  #2  #2^#2  •  40.0  ^#1 and #2 SAP (26% solids) #3, #4, #5 and #6 SAPSIL 5• 20.0 _^ #7 and #8 SAPFE _-#3 10.0 ot4 #6^#5^ -7, 30.0  0.0  #7  l' 1^f^f  illit^f f^Mil^i^ihif^i  0.0^10.0^20.0^30.0^40.0  i.^111I8  50.0^60.0  % Clay  j* Total E Chlorite Kaolinite Talc^Lizardite l ^ 1  Figure 39: Bingham Yield Stress vs. Clay Minerals  In conclusion, there is no one factor that has the defining effect on the yield stress of the samples. There appears to be a number of factors that influence the yield stress of laterite suspensions the most significant ones identified in this study are particle size, percentage under 10 microns, IEP and quartz content. To a lesser extent, the clay minerals and goethite content appear to have a role in influencing the yield stress. Based on the results of this study it is evident that the rheology of the Vermelho ore slurries can be related to the surface properties and rheology of the main constituent minerals found in these ores. From the work conducted on the individual minerals, several properties of each were found. •  Quartz — no significant yield stress over the range of tested pH values  •  Goethite (iron oxide) — increasing yield stress values from low to high pH  •  Talc (magnesium silicate) — a uniformly high yield stress over the pH values  The saprolite-silica (SAPSIL) samples were rheologically simple. The results of the tests can be found in Table 20. All the samples had a high quartz content (above 12%) and a relatively low 56  yield stress (<6.5Pa). Two of the four samples (Samples #3 and #4) were composed of only quartz and iron oxides. The third sample (Sample #5) was composed of mainly quartz and iron oxides with approximately 10% magnesium silicate. The fourth (Sample #6) sample was mainly quartz and iron oxides with approximately 4% magnesium silicate and 5% magnesite. The IEP of the SAPSIL samples was approximately 2.9-3.1 with Sample #3 being an outlier at 5.6. Based on the results from the individual minerals, the results of the saprolite-silica samples can be interpreted. At this neutral pH, quartz has no significant yield stress and goethite has a relatively high yield stress. The yield stress of all of the samples was relatively low; however the lower the quartz content the higher the yield stress. Sample #3 had significantly lower quartz content and correspondingly had a higher yield stress. The influence of quartz was also present in the IEPs of the samples. Sample #3 with the lowest quartz had the highest IEP. Table 20: Saprolite-silica results* Id # Test % solids  Test pH  Quartz [%]  3^46.0 4^45.2 5^42.6 6*^44.8  7.0 8.1 8.1 8.4  12.2 35.0 31.3 31.0  Fe Oxides [%] 87.8 65.0 58.4 59.6  Mg silicates [Vo] 0.0 0.0 10.3 4.2  Other Minerals [%] 0.0 0.0 0.0 5.2  Apparent T-b IEP pH [Pa] 5.6 3.0 3.1 2.9  6.5 2.8 4.8 2.3  *Other mineral for Sample #6 is magnesite The saprolite-iron (SAPFE) samples were rheologically more complex. The results of the tests can be found in Table 21. Both samples (#7 and #8) contained mainly iron oxides (>93.6%) and had a relatively low quartz content (<5.0%). Sample #7 also contained a small amount of kaolinite. The IEP of the samples was approximately 7.1-7.3. The yield stress of the two samples was significantly different from one another. Sample #7 (goethite 72.3%) had a yield stress of 21.1 Pa and Sample #8 (goethite 87.6%) a yield stress of 57.9 Pa. Based on the results from the individual minerals, the results of the saprolite-iron samples can be interpreted based on the surface properties of iron oxides. At neutral pH, goethite has a relatively high yield stress; therefore all the samples should have a relatively high yield stress. The yield stress of both the samples is significantly higher than those of the saprolite-silica; however, Sample #7 with the higher quartz content (5%) has significantly lower yield stress than Sample #8 (1.5% quartz). This suggests that with increasing quartz (or decreasing the goethite) content 57  the yield stress will be lower. The IEPs of the samples is mainly influenced by the iron oxides at neutral pH; however it appears that the quartz has lowered it slightly. Table 21: Saprolite-iron results* Id # Test % solids  Test pH  Quartz [%]  7 8  6.7 6.1  5.0 1.5  46.2 46.0  Mg silicates [%J 0.0 0.0  Fe Oxides Other [%]^Minerals [Vo] 93.6 1.5 98.5 0.0  Apparent tb IEP pH^[Pa] 7.1^21.1 7.3^57.9  *Other mineral for Sample #7 is kaolinite The saprolite (SAP) samples were the most rheologically complex. The results of the tests can be found in. Table 22. These samples contained all three main mineral classes - quartz, iron oxides and clay (mainly as magnesium silicates but Sample #1 also contains 11.4% kaolinite). Sample #2 has high magnesium-silicate content and the tested percent solids was significantly lower than the other seven samples. Based on the results for the individual minerals, the results of the saprolite samples can be interpreted. At neutral pH, quartz has no significant yield stress, goethite has a relatively high yield stress and talc has a moderate yield stress. Although the samples contain significant quartz content the presence of magnesium silicates seems to have a greater influence on the yield stress. The IEPs of the samples appears to be influenced by the quartz (IEP -2.0) and magnesium silicates (IEP <3.0). Sample #2 with 62.2% quartz and magnesium silicates has a significantly lower IEP. Table 22: Saprolite results Id # Test % solids  Test pH  Quartz [%]  1 2  6.9 8.1  9.3 12.1  45.5 27.7  Mg silicates [%] 14.0 50.1  Fe Oxides Other [%]^Minerals [%] 11.4 65.3 0.0 37.8  *Other mineral for Sample #1 is kaolinite  58  Apparent cb IEP pH^[Pa] 6.5 3.3  84.2 51.2  8.0 CONCLUSIONS AND RECOMMENDATIONS 8.1.^Conclusions From the test work conducted several conclusions can be drawn. •  It was shown for the first time that the electro-acoustic signal of mixed mineral suspensions can quite successfully be modeled using the existing electro-acoustic theory.  •  The Bruinsma equation predicts the ESA curve (and iso-electric point) of mixed mineral systems reasonably well where the particles in the system are of equal size, density, and shape. However, for systems containing particles of significantly different sizes, the measured ESA values cannot be so accurately predicted due to possible blinding.  •  The factor 7 (the ratio of the zeta potential of the mineral in the mixture to the zea potential of the mineral alone) equal 1 suggests that the mixed system is dispersed, and deviation from unity suggests that hetero-coagulation (the formation of groups of particles that contain both particles in the mixture) takes place. The data therefore shows that the electro-acoustic behavior of dispersed mixed systems is easier to predict than that of aggregated suspensions. The agreement between experiment and model is very good when all the components of the mixture have the same sign of the surface charge and electrostatic repulsion keeps the particles dispersed. The most significant deviations were observed when the minerals in a mixture were oppositely charged, creating favorable conditions for inter-particle attraction and aggregation.  •  Quartz suspensions have no significant yield stress at all pH values, and the presence of even small amounts of quartz may have a beneficial effect on the rheology of mixed mineral systems by lowering the yield stress.  59  •  The yield stress of goethite slurries increases with increasing pH in the tested pH range; therefore in nickel laterite processing decreasing the pH would cause the yield stress of the slurry to decrease.  •  Talc has a relatively high uniform yield stress over the tested pH range; therefore the presence of the mineral in laterites will contribute to an elevated yield stress value of the slurry. As such, the presence of talc can be expected to have a negative impact on the rheology of talc-rich laterite slurries.  •  No single factor was found to have the defining effect on the yield stress of the Vermelho samples. There appears to be a number of equally-important factors that influence the yield stress - the most significant ones identified it this study are particle size, percentage under 10 microns, IEP and quartz content. To a lesser extent the clay and goethite content appear to have a role in influencing the yield stress.  •  For the Vermelho samples, ■ SAPSIL — characterized by low yield stress values ■ SAPFE — characterized by intermediate to high yield stress values ■ SAP — characterized by high yield stress values  •  In the case of SAPSIL (saprolite-silica) the observed low yield stresses are most likely related to the presence of significant quantities of silica — as predicted from the tests on model quartz slurries. For the high-iron SAPFE laterites their rheological response again correlates well with the rheology of model iron oxide slurries. SAPFE slurries produce high yield stresses under the same conditions (pH) as model iron oxides. The origins of the behavior of SAP samples is not so clear but the presence of fines (sizes finer than 10 microns) and a significant content of magnesium silicates are probably the main contributing factors.  •  From the operations point of view - determining the iron, magnesium and quartz contents should provide a guide for classifying a given laterite ore using the above  60  classification, and for gaining a preliminary estimate of the ease or difficulty of handling the laterite as dense slurry. •  When magnesium silicates and kaolin clays were present, the apparent IEP and therefore, the surface properties were dominated by the presence of these minerals.  8.2. Recommendations •  Future work should be completed to further investigate the predictability of ESA values for mixed systems — specifically systems containing more than two mineral components of different densities, and of significantly different particle sizes. Presently, it is still impossible to determine the extent of aggregation, and no information can be extracted from the ESA data about the distribution of surface charges on individual mixture components.  •  Further studies should be carried out to determine the exact influence that individual minerals have over a wider range of physicochemical conditions (pH, presence of ions, and role of soluble organics) on the overall rheological behavior of laterite slurries. Such studies should also include theological investigations under high pressure and temperature conditions as often applied in the processing of nickel laterites.  •  Detailed Mineral Liberation Analysis (MLA) should be completed on the samples to determine the mineralogy by size fraction. This type of data would demonstrate the actual distribution of minerals within different size fractions, especially in the fraction finer than 10 microns. Such results would also show the potential presence of slime coatings on coarser fractions (e.g., fine quartz on coarser hematite) so that not only the bulk but also the surface compositions were taken into account when analyzing the electro-acoustic and rheological data for complex systems, such as laterite slurries.  •  Mixing lateritic ores of high quartz (SAPSIL) or pure quartz with high iron ores (SAPFE) to see the effect 61  9.0 BIBLIOGRAPHY Avranidis, K.S., and Turian, R.M. "Yield Stress of Laterite Suspensions" Journal of Colloid and Interface Science 143.1. 1991. 54-68. Avotins P.V., and Ahschlager, S.S. and. Wicker, G.R. "The Rheology and Handling of Laterite Slurries" International Laterite Symposium, New Orleans, SME, 1979, 610-635. Beauchamp, R., Choung, J. and Xu, Z. "Mineral Particle Interactions in Gypsum-supersaturated Process Water" Interface Phenomena in Fine Particle Technology — 6 th UBC-McGill-UA International Symposium on Fundamentals of Mineral Processing, Montreal, 2006, 101-116. Bergman, R.A. "Nickel Production for Low-Iron Laterite Ores: Process descriptions" CIM Bulletin, 96.1072.2003, 127-138. Bhattacharya, I. N., Panda, D. and. Bandopadhyay, P. "Rheological Behaviour of Nickel Laterite Suspensions" International Journal of Mineral Processing 53.4. 1998. 251-63. Blakey, B. "The Viscous Behaviour of Aqueous Goethite-containing Suspensions", PhD thesis, 2002. Blakey, B.C., James, D.F., Kawaji, M., and Krause, E. "Viscous Behavior of Aqueous Slurries of Goethite and Limonititic Laterite." EPD Congress 2000. Ed. P.R. Taylor: The Minerals, Metals and Materials Society, 2000. Blakey, B.C., and James, D.F. "Characterizing the rheology of laterite slurries" International Journal of Mineral Processing 70.1-4. 2003. 1-17. Blakey, B.C., and James, D.F. "Characterizing the Rheology of Laterite Slurries" International Journal of Mineral Processing 70.1-4. 2003, 23-39. Bruinsma, P.J., Smith, P.A. and Bunker, B.C. "Dynamic Mobility Spectra of Multicomponent Colloidal Suspensions" Journal of Physical Chemistry, 101. 1997, 8410-8417. Burdukova, E., and Laskowski, J.S. and Bradshaw, D.J. "Rheological Behaviour of Talc Suspensions as a Function of pH and Polymer Dosage" Conference paper at IMPC 2006. Istanbul, Turkey.  Carlson, E.T., and Simon, C.S. "Pressure Leaching of Nickeliferous Laterites with Sulfuric Acid", in Extractive Metallurgy of Copper, Nickel and Cobalt, Queneau, P., ed., Interscience, New York, NY. 1961, 363-397. Cerpa, A., et al. "Relationship between the Colloidal and Rheological Properties of Mineral Suspensions" Canadian Journal of Chemical Engineering 79.4 2001, 608-611. Chalkey, M and Toirca, I. 'The Acid Pressure Leach Process for Nickel and Cobalt Laterite, Part I: Review of Operations at Moa" Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 341-354.  62  Dalvi, A.D. Bacon W.G and Osborne R.C. "Past and the Future of Nickel Laterites' PDAC International Convention, Toronto, Ontario, 2004, 1-27. burove, M, and Kme, S. "Ure'enie izoelektrickeho bodu magnezitu a mastenca s vyu2itim ELS techniky" Acta Montanistica Slovaca, 3.4. 1998, 482-484. Eggleton, R.A., ed. The Regolith Glossary CRC for Landscape Evolution and Mineral Exploration: Floreat Park, Western Australia, 2001, 144. Elias, M. "New Western Australian Nickel Sulphide Industry in World Perspective", Conference presentation at 6th Annual World Nickel Congress, Sydney, Australia, 2003. Elias, M. "Nickel Laterite Deposits — Geological Overview, Resources and Exploitation." CODES Special Publication 4 — Giant Ore Deposits: Characterization, genesis and exploration. 2002, 205-220. Gleeson, S.A., Butt, C.R.M. and Elias, M. 'Nickel laterites: A Review. SEG Newsletter" No. 54, 2003. Golightly, J.P. "Nickeliferous laterites: a general description" International laterite symposium, New Orleans Society of Mining Engineers American Institute of Mining and Metallurgical, and Petroleum Engineers, Incorporated. 1979, 24-37. Hallbom, D.J. and Klein, B. "Flow Array for Nickel Laterite Slurry" in International Nickel Laterite Symposium, 2004, 415-428. Hussain, S.A., Demirci, S., and Ozbayoglu, G. "Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation" Journal of Colloid and Interface Science, 184.2.1996, 535-541. Johnson, S.B., Franks, G.V., Scales, P.J., Boger, D.V. and Healy, T.W. "Surface ChemistryRheology Relationships in Concentrated Mineral Suspensions' International Journal of Mineral Processing 58.1. 2000, 267-304. Kemp, D.J and Wiseman, M. "The Implications of Sustainability in Developing a Nickel Laterite Project'. International Laterite Nickel Symposium 2004, 45-53. Klein, B. "Observations on the Rheopectic Properties of Nickel Laterite Suspensions" Conference paper at CIM Conference of Metallurgists. Toronto, Ont.. 2001. Klein, B., and D. J. Hallbom. "Modifying the Rheology of Nickel Laterite Suspensions" Minerals Engineering 15.10. 2002, 745-49. Kosmulski, M., Maczka, E., Jartych, E. and Rosenholm, J. B. "Synthesis and Characterization of Goethite and Goethite-Hematite Composite: Experimental Study and Literature Survey" Advances in Colloid and Interface Science 103.1. 2003, 57-76.  63  Kosmulski, M, Saneluta, C., and Maczka, E. "Electrokinetic Study of Specific Adsorption of Cations on Synthetic Goethite" Colloids and Surfaces A: Physicochemical and Engineering Aspects 222.1-3. 2003, 119-24. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge" Journal of Colloid and Interface Science, 253. 2002, 77-87. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge II - Update", Journal of Colloid and Interface Science, 275. 2004, 214-224. Kosmulski, M. "pH-Dependent Surface Charging and the Points of Zero Charge III — Update" Journal of Colloid and Interface Science, 298. 2006, 730-741. Kosmulski, M. "Literature Survey of the Differences between the Reported Isoelectric Points and their Discussion," Colloids and Surfaces A: Physicochem. Eng Aspects, 222. 2003, 113-118. Kyle J.H and Furfaro, D. "The Cawse Nickel/Cobalt Laterite Project Metallurgical Process Development", Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 379-390. Li, Chunzhong, Shiyin Cai, and Tunan Fang. "Rheological Behavior of Ultrafine &Alpha;-Feooh Particle Synthesis Process." Huagong Xuebao/Journal of Chemical Industry and Engineering (China) 49.2 1998, 148-54. Lui, J., Zhou, Z., Xu, Z., and Masliyah, J. "Bitumen-Clay Interactions in Aqueous Media Studies by Zeta Potential Distribution Measurement" Journal of Colloid and Interface Science, 252.2. 2002, 409-418. Liu, J., Xu, Z., and Masliyah, J. "Role of Fine Clays in Bitumen Extraction from Oil Sands" AIChE Journal, 50.8. 2004, 1917-1927. Megias-Alguacil, D., Duran, J.D.G., and Delgado, A.V. "Yield Stress of Concentrated Zironia Suspensions: Correlation with Particle Interactions" Journal of Colloid and Interface Science, 231, 2002, 74-83. Moskalyk, R.R. and Alfantazi, A.M. " Nickel Laterite Processing and Electrowinning Practice" Minerals Engineering, 15. 2002, 593-605. Motteram, G., Ryan, M., and Weizenbach, R. "Application of the Pressure Acid Leach Process to Western Australian Nickel/Cobalt Laterites" Nickel-Cobalt 97 International Symposiums, Sudbury, Ontario, 1997, 391-408. Nguyen, D.Q. and Boger, D.V. "Yield stress measurements for concentrated suspensions". Journal of Rheology. 27.4. 1983, 321-349. Rand, B. and Melton, I.E. "Particle Interactions in Aqueous Kaolinite Suspensions" Journal of Colloid and Interface Science, 60.2. 1976, 308-320. Riberio, E., Albuquerque, M.A.C., Costa, R.S., Cordeiro, R.A.C. and Torres, V.M. "CVRD'S Nickel Laterite Project — PAL Process Investigation" Conference paper at ALTA 2001 Nickel/Cobalt, Scarborough, Ontario, 2001. 64  Roorda, H.J., and Hermans, J.M.A. "Energy Constraints in the Extraction of Nickel from Oxide Ores (I)" Erzmetall, 34. 1981, 82-88. Roorda, H.J., and Hermans, J.M.A. "Energy Constraints in the Extraction of Nickel from Oxide Ores (II)" Erzmetall, 34.1981, 186-190. Schrader, M., and Yariv, S. "Wettability of Clay Minerals" Journal of Colloid and Interface Science, 136.1. 1990, 85-94. Schofield, R.K. and Samson, H.R. "Flocculation of Kaolinite due to the Attraction of Oppositely Charged Crystal Faces" Discussions of Faraday Society. 18, 1954, 135-145. Street, N., and Buchanan, A.S. "The Zeta-Potential of Kaolinite Particles" Australian Journal of Chemistry 9, 1954, 450-466. Tartaj, P., Garcia-Gonzalez, M.T., and Serna C.J. "Influence of Silicate- and MagnesiumSpecific Adsorption and Particle Shape on the Rheological Behavior of Mixed SerpentineGoethite" Clays and Clay Minerals 50.3, 2002, 342-347. Turian, R.M., Ma, T.W., Hsu, F.L.G. and Sung, D.J. "Characterization, settling, and rheology of concentrated fine particle mineral slurries" Powder Technology, 93. 1997, 219-233. "Mineral-Content and Particle-Size Effects on the Colloidal Properties of Concentrated Lateritic Suspensions." Clays and Clay Minerals 47.4. 1999. 515-521. Van Olphen, H. "Rheological Phenomena of Clay Sols in Connection with the Charge Distribution of the Micelles' Discussion of the Faraday Society 11, 1951, 83-96. Vergouw, J.M., DiFeo, A., Xu, Z. and Finch, J.A. "An Agglomeration Study of Sulphide Minerals using Zeta Potential and Settling Rate. Part II: Sphalerite/Pyrite and Sphalerite/Galena" Minerals Engineering, 11. 7. 1998, 605-614. Whittington, B.I. and Muir, D. "Pressure Acid Leaching of Nickel Laterites: a Review" Mineral Processing and Extractive Metallurgy Review. 21. 2000, 527-600. Xu, Z., Liu, J., Choung, J. and Zhou, Z. "Electrokinetic Study of Clay Interactions with Coal in Flotation" International Journal of Mineral Processing, 68. 1-4. 2003, 83-196. Zbik M and Smart, R.St.C. "Dispersion of Kaolinite and Talc in Aqueous Solution — Nanomorphology and Nano-bubble Entrapment" Minerals Engineering, Vol. 15. 2002, 277-286.  65  Appendix A: X-ray diffraction of individual samples  66  X-RAY POWDER DIFFRACTION ANALYSIS OF FOUR SAMPLES  Marjorie Colebrook Mining Engineering - UBC.  Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. Earth and Ocean Sciences The University of British Columbia 6339 Stores Road Vancouver, BC V6T 1Z4  June 16, 2005  67  EXPERIMENTAL METHOD  The samples "White", "Yellow", "Red" and "Black" were ground into fine powder and smeared on to a glass slide with ethanol. Step-scan X-ray powder-diffraction data were collected over a range 3-70°29 with CuKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with a diffracted-beam graphite monochromator crystal, 2 mm (1°) divergence and antiscatter slits, 0.6 mm receiving slit and incident-beam Soller slit. The long fine-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6°.  RESULTS  The X-ray diffractograms were analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). The diffractograms are shown in Figures 1-4. Sample "White" consists of quartz, SiO2. Sample "Yellow" consists of goethite, a — Fe 3+ 0(OH). Sample "Red" consists of hematite, a — Fe2O3. Sample "Black" is mainly magnetite, Fe 2+Fe2 3+ 04, with trace of hematite, a — Fe2O3  68  ;  40 00 0  30 00 0 —  10 00 —  0 4  10  20  30  40  50  60  2-Theta - Scale OcADIFFDATMRD  User14Maijorie White.RAW - File: 4Marjorie White.RAW - Type: 2Th/Th locked - Start 3.137 ° - End: 70.112 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 25 003-065-0466 (C) - Quartz low, syn - SiO2 - Y: 75.34 % - d x by: 1. - WL: 1.54056 - Hexagonal - a 4.91410 - b 4.91410 - c 5.40600 - alpha 90.000 - beta 90.000 - gamma 120.0  Figure 1. X-ray diffractogram of sample "White".  70  30 00  U)  C 0 2000 0 C :3  1000  0 4  ^  10  ^  20  ^  30  ^  40  ^  50  ^  60  ^  2-Theta - Scale ga:\DIFFDAT11XRD Usen3Maijorie Yelbw.RAW - Fie: 3Maijorie Yelbw.RAW - Type: 2Th/Th locked - Start: 3.143 ° - End: 70,117 ° - Step: 0.040 ° - Step time: 1. s - Te 001-081-0464 (C) - Goethite, syn - FeO(OH) - Y: 65.33 % - d x by: 1.- WL: 1.54056 - Orthorhombic a 4.60480 - b 9.95950 - c 3.02300 - alpha 90.000 - beta 90.000 - g  Figure 2. X-ray diffractogram of sample "Yellow"  70  40 00 —  30 00  rn O  0 20 00 1-3  1 000 —  0  4^10^  20  ^  30  ^  40  ^  50  ^  60  ^  2-Theta - Scale \DIFFDAT1VRD U seed Marjorie Red.RAW - File: 1M arjorie Red.RAW - Type: 2T h/Th locked- Start: 3.137 °- End: 70.112 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 001-089-0598 (C) - Hematite, syn - Fe2O3 - Y: 73.29 % - d x by: 1.- WL: 1.54056 - Rhombo.H.axes - a 5.03800 - b 5.03800 - c 13.77600 - alpha 90.000 - beta 90.000 -  Figure 3. X-ray diffractogram of sample "Red".  70  5000 —  40 00 —  C/)  30 00  C  O  0 C  :3  20 00  10 00 —  •  • 0  "r-1 T r  '7"  -  3^ 10^  20^  30^  ^ 40  17 t 1 -  ^  -t^?16r  -  50  ^  (  I f "I^ r  60^  2-Theta - Scale S&c: \DI FFDAT1V RD UseA2Maijorie Black. RAW - File: 2Marjorie Black. RAW - Type: 2Th/Th locked - Start: 3.000 ° - End: 70.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 25 ° E00-019-0629 (*) - Magnetite, syn - Fe+2Fe2+304 - Y: 77.79 % - d x by: 1.0021 - WL: 1.54056 - Cubic - a 8.39600 - b 8.39600 - c 8.39600 - alpha 90.000 - beta 90.000 - gam [C01-089-0598 (C) - Hematite, syn - Fe203 - Y: 1.25 % - d x by: 1.0042 - WL: 1.54056 - Rhombo.H.axes - a 5.03800 - b 5.03800 - c 13.77600 - alpha 90.000 - beta 90.000 - ga  Figure 4. X-ray diffractogram of sample "Black".  i  70  QUANTITATIVE PHASE ANALYSIS OF ONE POWDER SAMPLE USING THE RIETVELD METHOD AND X-RAY POWDER DIFFRACTION DATA.  Marjorie Colebrook Mining Engineering Dept. UBC 5th Floor, 6350 Stores Road Vancouver, BC V6T 1Z4  Mat! Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. of Earth & Ocean Sciences 6339 Stores Road The University of British Columbia Vancouver, BC V6T 1Z4  March 30, 2007  73  EXPERIMENTAL METHOD The sample "M. Colebrook - Talc" was reduced into fine powder to the optimum grain-size range for X-ray analysis (<10p,m) grinding under ethanol in a vibratory McCrone Micronising Mill for 7 minutes. Step-scan X-ray powder-diffraction data were collected over a range 3-80°20 with CoKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with an Fe monochromator foil, 0.6 mm (0.3°) divergence slit, incident- and diffracted-beam Sollers slits and a Vantec-1 strip detector. The long fine-focus Co X-ray tube was operated at 35 kV and 40 mA, using a take-off angle of 6°.  RESULTS AND DISCUSSION The X-ray diffractogram was analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). X-ray powderdiffraction data were refined with Rietveld software Topas 3 (Bruker AXS).The results of quantitative phase analysis by Rietveld refinement are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plot is shown in Figure 1.  74  Table 1. Results of quantitative phase analysis (wt. %) Mineral  Ideal formula  Talc  Mg3Si401o(OH)2  Quartz  Si02  0.4  Clinochlore  (Mg,Fe2+)5A1(Si3A1)010(OH)8  2.7  Dolomite  CaMg(CO3)2  0.4  Total  M. Colebrook - Talc 96.5  100.0  Talc 'IA Clinochlore II Quartz low Corundum Dolomite  1^  I^ t  15  I^it^it ^it^11^I I^1.^11^II 11 I I^NH^111111^I^11^11^1^N^11^o^11^III '  20^25^30  35  91150 % 2.53 % 0.40 6.22 % 0.35 %  I"^i ih i"'hrl I i 0 i ii" u illifiilli pli'lliifi!" ll"lidll'fil i'l'ililm i Niiii114 1 1101101'difiVi di '1i 11 1141 "^'1 liI IiIi iii lh ti^' Ili' I'll 'iii^i" viiliiii iit' iii lfii "i ii1:1 t 1 ^1 1^1 1 1 i^t J^I^I^I^I^ 1 ^.^II^1^1 1 ^..1^ 'I ,^I .^I^.^,1 i ^' t^.^1 ^.^  40^45^50^55^60  ^65^70^75  2Th Degrees  Figure 1. Rietveld refinement plot of sample M. Colebrook Talc (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. Corundum is contamination from grinding. -  (  Appendix B: X-ray diffraction of Vermelho samples  77  Quantitative Phase Analysis of 8 powder samples using the Rietveld Method and X-ray Powder Diffraction Data.  Attention: Bern Klein/Marjorie Colebrook Department of Mining Engineering The University of British Columbia  Mati Raudsepp, Ph.D. Elisabetta Pani, Ph.D. Dept. of Earth & Ocean Sciences 6339 Stores Road The University of British Columbia Vancouver, BC V6T 1Z4 May 14, 2004  78  EXPERIMENTAL METHODS The particle size of the samples was reduced to the optimum grain-size range for Xray analysis (<10 i_tm) by grinding under ethanol in a vibratory McCrone Micronising Mill (McCrone Scientific Ltd., London, UK) for 6 minutes. Fine grain-size is an important factor in reducing micro-absorption contrast between phases. Samples were pressed from the bottom of an aluminum sample holder against a ground glass slide; the cavity in the holder measures 43 x 24 x 1.5 mm. The textured surface of the glass minimizes preferred orientation of anisotropic grains in the part of the powder that is pressed against the glass. The surface was also serrated with a razor blade to break up residual preferred orientation. Step-scan X-ray powder-diffraction data were collected over a range 3-70°20 with CuKa radiation on a standard Siemens (Bruker) D5000 Bragg-Brentano diffractometer equipped with a diffracted-beam graphite monochromator crystal, 2 mm (1°) divergence and antiscatter slits, 0.6 mm receiving slit and incident-beam Soller slit. The long sample holder used (43 mm) ensured that the area irradiated by the X-ray beam under these conditions was completely contained within the sample. The long fine-focus Cu X-ray tube was operated at 40 kV and 40 mA, using a take-off angle of 6.  RESULTS AND DISCUSSION The X-ray diffractograms were analyzed using the International Centre for Diffraction Database PDF-4 using Search-Match software by Siemens (Bruker). X-ray powderdiffraction data were refined with Rietveld Topas 2.1 (Bruker AXS). The results of quantitative phase analysis by Rietveld refinement are given in Table 1. These amounts represent the relative amounts of crystalline phases normalized to 100%. The Rietveld refinement plots are given in Figures 1 - 8. Note the missing peaks for sample #5, possibly a clay phase that cannot be fitted.  79  Table 1. Results of quantitative phase analysis (wt.%) Ideal Formula  1  2  3  4  5  6  7  8  FM049AM41  FM019AM21  FM054AM16  FM066AM52  FM071AM10  FM072AM21  FM090AM10  FM093AMO3  35.0  31.4  31.1  5.0  Quartz  Si02  Chlorite  (Mg,Fe2+)5A1(Si3A1)010(01-1)8  Kaolinite  Al2Si205(OH)4  11.4  Talc  Mg3Si4010(01-1)2  14.0  Lizardite  Mg3S i2 05 PM  Goethite  a-Fe3+0(OH)  38.9  32.1  74.9  Hematite  a-Fe203  13.1  1.2  Magnetite  Fe304  13.3  4.5  Magnesite  MgCO3  Total  9.3  12.1  12.2  1.5  43.6 1.5  10.3  4.2  29.8  39.0  27.5  72.4  87.6  8.6  21.8  1.2  14.1  11.8  4.2  4.3  13.4  18.2  18.0  9.4  6.7  100.0  100.0  6.5  5.2 100.0  100.0  100.0  100.0  100.0  100.0  Quartz^9.33 % Goethite^38.91 % Hematite.^13.11 % Magnetite^13.28 % Talc 1A^14.02% Kaoiinite 1A 11.35 %  1,000  J  0 500  o-  1  11  ^ ^I^I I^It l^II^,^I1 III ,I^II^I^I^I^H^I^1  1I  , 1 I -=----,-r-----L -=---j------ ^ ri --4----,,-----J---L-,-+-4 . ^"  4  6  6  10 12 .  .  14  1 6 18 20 22 .  24 26 28 36  32  34 36 36 40 2Th Degrees  42 4 4 .  45 48 80  f^I II ^II, ^I^I^I I^ it^I:1^I,^I I I M 11111 1  52 .  1[ L1-11-----L---L-lik-'n-LL- 1------J 1---  84 55 58 56 52 64 .  66  66  70  Figure 1. Rietveld refinement plot for sample 1 (FM049 AM41) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. -  Quartz^12.13 % Goethte^32.09 % Magnetite^4.45 % Clinochiore II 43.57 % Lizardite 1T 6.53 % Hematite 1.21  1,000-  500-  0  1 ^1  1^  I^I^1^1^y 1^I'll'^1'^1^i^'^11^l'II^1^1^1^1 1 1^11^II^1^II^I 1 1 1 1^I I^Iel II II y11111111111111111^1^1^ill^Ell in 111' 1 1111 1 1111111II 1111 1 11 1 11111h^IN I 1 11 1 14 111 II 1^1111^91M111111i1111 IF II 1111 I III 11111111111111111111m li pi , p la il' I a 3 .,,^. ,^,  4  .  ^. ,^!, . , . „!^! . , „^.,-. ,^: . .  ^, .  6 8 10 12 14 16 18 20 22 24 ... 28 30 32 34 36 38 40 42 '44 46 48 50 52 54 56 58 60 62 64 66 68 70 .  '  2Th Degrees  Figure 2. Rietveld refinement plot for sample 2 (FM019 AM21) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. -  Quartz^1221 % Goethite 74.85 Hematite 8.63% Magnetite 421 %  1,000-  rn C  O 500  4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70  2Th Degrees  Figure 3. Rietveld refinement plot for sample 3 (FM054-AM16) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.  Quartz 35.02 % Goethite 29.84 % Heantite 21.79 % Magnetite 13.35 %  1,500-  1,000-  cr) C  0  500-  I^II^1,1 11 1 .1^1^1^1^1^11^.I I I^1  ^  1^1^III ^11^1 1 1^  11^If H 11 )  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 6 2 64 66 68 70 '  —  '  2Th Degrees  Figure 4. Rietveld refinement plot for sample 4 (FM066 AM52) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are -  individual diffraction patterns of all phases.  Quartz^31.36 % Goethite^39.00 % Herretite^1.17 % Magnetite^18.20 % Lizardite IT 10.26 %  1,500  1,000  0  500  it,1 A 4  I 4  6  8^  I^ I^I II I^I^I^1^I^I 1  I^I^I I I^1^II^III^111 1 1.^I I  '1^,1 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70  2Th Degrees Figure 5. Rietveld refinement plot for sample 5 (FM071-AM10) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.  Quartz^31.05 % Goethite^27.52 % Hematite^14.06 % Magnetite^17.06 % Lizardite IT 4.24 % Magnesite 5.17 %  1,000  co C  0  500  ii 1^ ^  1 ^1  111: ^1 1 ^II^1^111^1 1^t 1 1^1 1 ^11 PI 11 1 1^: i ^ 1 1 1^1^1^I^'I^1^l i^i^11^I^i^I^1^1.1^i^i^I^li^1^i^ u 1^i 1^ 1^, 1^1.1^1 1 11 1^, 1^1^1^1^1^1^1^1 1 1^1^1^.1^ t^  :.  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 ' 42 44 46 48 50 52 54 56 58 60 62 64 66 ' 68 70  2Th Degrees  Figure 6. Rietveld refinement plot for sample 6 (FM072-AM21) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.  ^  Quartz^4.99 % Goethite^72.39 %  1,500  Hematite^11,76 helagnetite^9.39 %  Kaofinite. 1A 1,47 %  1,000  co C  0  50  ^1  ^ 1 ^I^1^1 ^I^1 1 ,1^ I^ II^HI^11^1 „ I^1^I I I I 11 11 I^1, I I I^1.1 If^I^I ,^1^I^I I I^I^.i 1^1^1 :^■^, ) ^il 1 I^.: I^l^)^L^!^I^If^.^,^,^I ! j^i .^1 :1i , 1 1 li , 11 , (1):1 I^1^I (! 1,, I^!, !1, il^ 1) .^, . 11411111 . 1 iIII i l!1 11 ;1 ) AO) ii tq 1,14 ti 19^: li^41 . 1!! t I i!ifi1111  1^ I^  i  ^  I^  10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70  2Th Degrees  Figure 7. Rietveld refinement plot for sample 7 (FM090-AM10) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases. —  Quartz^1.481 Goethite 87.63 % Hematite 4.21 Magnetite 6.68 %  I^1^I^I(^I II^,^III  10 12 14 16 1'8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 66 58 60 62 64 66 68 70 .  2Th Degrees  Figure 8. Rietveld refinement plot for sample 8 (FM093-AM03) (blue line - observed intensity at each step; red line - calculated pattern; solid grey line below — difference between observed and calculated intensities; vertical bars, positions of all Bragg reflections). Coloured lines are individual diffraction patterns of all phases.  Appendix C: Water analysis for Vermelho  •^txso : • : •?  #. Al  As  Au  B  Ba  Be^Bi^Br  Ca  Cd^Ce^Cl  pPb PPb  PPb  PPb  PPb  PPb  PPb^ppb^ppb  ppb  ppb ppb^ppm  Ag  A4018 . 40  C 0 L 60rbok  .^• '.....••••^.  SAMPLE►  5.;  (51).:4  ..........  91)0.2  .06 <.01  Co ppb  Cr^Cs ppb^ppb  Cu  Dy^Er^Eu^Fe^Ga^Gd  ppb PPb^ppb^ppb^ppb^ppb^PPb  Ge  Hf  PPb PPb  Hg  Ho  In  Ir  PPb PPb PPb PPb  Lu  Mg  Mn  Mo  Ppb PPb  PPb PPb  PPb  ppb  ppb  K  La  Li  Na  Nb  ppb ppb  FM093-AH03-8  <.05  6  <.5 <.05  29  14.87  .06 <.05  68  22096  14  .25  5033.4  .58  1.6 <.01 <.01 <.01  179 <.05 <.01  <.05 <.02  .3 <.01 <.01  .69 3718 <.01  28.7 <.01  3164  2.87  .3  26402  .01  FM066-AM52-4  <.05  91  <.5 <.05  <20  10.70  <.05 <.05  57  22274  <.05  .02  13  1.01  526.4  .25  3.9 <.01 <.01 <.01  316 <.05 <.01  <.05 <.02  .2 <.01 <.01  .38  2782  .04  15.9 <.01  9027  5.24  .5  27936  Al  FM019-AM21-2  <.05  5  <.5 <.05  28  13.18  <.05 <.05  62  17225  <.05 <.01  11  2.28  14.9  .33  .2 <.01 <.01 <.01 145 <.05 <.01 <.05 <.02  .1 <.01 <.01  .17  2642 <.01  16.1 <.01  17281  5.52  .4  20869 <.01  665 382.3 <.05  360  686.46 57.25 <.05  13  <50  51.94 <.01  1  671.42  19.6 <.01 <.01 <.05  143 <.01  <.1 <.01  <50  201.73  196.8  STANDARD WASTWATRB4  146.04  367.7 <.01  342.8 <.01 <.01 <.01  485 <.05 <.01  1.94 <.02  <50  .01  GROUP 2C - WATER SAMPLES ANALYZED BY ICP-MS, AS RECEIVED FOR EXPLORATION PURPOSES ONLY. SOLUTION SAMPLES DILUTED TO BELOW 0.1% TOTAL DISSOLVED SOLID BEFORE ANALYSIS. DETECTION LIMITS ELEVATED ACCORDINGLY. - SAMPLE TYPE: WATER  Data  -  FA  ^DATE RECEIVED:  MAY 5  2004 DATE REPORT MAILED::  rn  All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.  AtME'ANALYTIC4L LABOTORXES -- LTD... ( 1S 6 ' .--91102 AOCraditad:CO , )  The  ::^ti9i;neeititiO:4)40.;  Nd^Ni Os P  ppb ppb ppb ppb  Pb Pd Pr Pt ppb ppb ppb ppb  FM093-AM03-8^<.01^3.6<.05 <20 FM066-A1152-4^.02 25.4<.05 <20 FM019-AM21-2^<.01 181.8<.05 <20 STANDARD WASTWATRB4 <.01 208.7<.05 <20  <.1 <.2<.01<.01 .1 <.2 .01<.01 .1 <.2<.01<.01 281.6 <.2<.01<.01  SAMPLE#  qgpcg!  Rb Re Rh Ru S ppb ppb ppb ppb ppm  ^ ^ Sb Sc^Se Si Sm Sn Sr Ta Tb Te Th Ti ppb ppb^ppb^ppb ppb ppb^ppb ppb ppb ppb ppb ppb  Ti Tm U ppb ppb ppb  10.67<.01 .05<.05 12^<.05^1^.8^3060<.02<.05 110.87<.02<.01<.05<.05 <10 ^<.01<.01<.02^<.2 4.83<.01 .03<.05^3^<.05 <1^.5 10525<.02 .16^94.30<.02<.01<.05<.05 <10 ^<.01<.01 .08^<.2 5.58<.01 .01<.05^3^<.05 <1^<.5^8845<.02<.05^83.55<.02<.01<.05<.05 <10^<.01<.01 .04^<.2 .06<.01<.01<.05 <1 338.97^1 502.6^151<.02<.05^49.65<.02<.01<.05<.05 <10 210.33<.01<.02 235.6  GROUP 2C - WATER SAMPLES ANALYZED BY ICP-MS, AS RECEIVED FOR EXPLORATION PURPOSES ONLY. SOLUTION SAMPLES DILUTED TO BELOW 0.1% TOTAL DISSOLVED SOLID BEFORE ANALYSIS. DETECTION LIMITS ELEVATED ACCORDINGLY. - SAMPLE TYPE: WATER  Data  4  ./  FA  ^DATE RECEIVED:  V W Y Yb^Zn Zr ppb ppb ppb ppb^ppb ppb  MAY 5 2004  DATE REPORT MAILED-  All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.  .10<.01<.01  .80^.02<.01 .15^.01<.01 .08<.01<.01  2.8<.02 2.0^.02 .7<.02 372.9 .04  Appendix D: Size analysis for individual samples  MANIttiSILE11 Result Analysis Report ^ Sample Name: ^ Silica -u/s - Average ^ Sample Source & type: ^ Factory = Minusil  ^ SOP Name: ^ Silica ^ Measured by: ^ contract  Analysed: Monday, February 07, 2005 12:40:23 PM  Particle Name: silicasand  Accessory Name: Hydro 2000S (A)  Analysis model: General purpose  Sensitivity: Enhanced  Particle RI: 1.500 Dispersant Name: Water  Absorption: 0 Dispersant RI: 1.330  Size range: 0.020^to 2000.000 um Weighted Residual: 0.294  Obscuration: 16.72^% Result Emulation: Off  Concentration: ^0.0194^%Vol  Span : 2.612  Uniformity: 0.816  Result units: Volume  Specific Surface Area: ^0.83^rog  Surface Weighted Mean D[3,2]: 7.226^UM  d(0.1):^3.392^UM  Measured: Monday, February 07, 2005 12:40:22 PM  Vol. Weighted Mean D[4,3]: 22.007^urn  d(0.5):^17.095^UM  d(0.9):^48.037^UM  Particle Size Distribution  ^ 110 100 90 - 80 - 70 - 60 - 50 40 - 30 - 20 - 10  0.1^1^10  ^  100  1000^3008  Particle Size (pm) Silica -u/s - Average, Monday, February 07, 2005 12:40:22 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.089 0.00  Size (pm) Vol Under % 7.049 23.64  Size (pm) Vol Under % 0.792 1.28  Size (pm) Vol Under % 62.729 95.96  Size (pm) Vol Under % 558.262 100.00  0.012  0.00  0.105  0.00  0.937  1.46  8.339  27.59  74.216  98.21  660.491  100.00  0.014  0.00  0.125  0.00  1.109  1.66  9.866  31.96  87.807  99.47  781.439  100.00  0.017  0.00  0.147  0.00  1.312  1.98  11.673  36.83  103.886  99.92  924.535  100.00  0.020  0.00  0.174  0.00  1.552  2.50  13.811  42.27  122.909  100.00  1093.834  100.00  0.023  0.00  0.206  0.00  1.836  3.35  16.340  48.29  145.416  100.00  1294.136  100.00  0.027  0.00  0.244  0.01  2.172  4.61  19.332  54.83  172.044  100.00  1531.116  100.00  0.032  0.00  0.289  0.09  2.570  6.30  22.872  61.78  203.549  100.00  1811.492  100.00  0.038  0.00  0.342  0.24  3.041  8.42  27.060  68.88  240.822  100.00  2143.210  100.00  0.045  0.00  0.404  0.44  3.597  10.90  32.015  75.84  284.922  100.00  2535.671  100.00  0.054  0.00  0.478  0.66  4.256  13.68  37.878  82.31  337.096  100.00  3000.000  100.00  0.064  0.00  0.566  0.88  5.036  16.73  44.814  87.96  398.825  100.00  0.075  0.00  0.669  1.09  5.958  20.04  53.020  92.56  471.857  100.00  Malvern Instruments Ltd.^ ^ Malvern, UK Tel := +144j (0) 1684-892456 Fax 41441(0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  Serial Number 34403-197  93  ^  File name: Marjorie 2005 Record Number 14 27 Mar 2008 1:46:08 PM  IVIASIEFISILER Result Analysis Report Sample Name:  ^  Silica small - Average  ^  Sample Source & type:  Factory = Minusil 5  ^  ^  SOP Name:  Silica  ^  Measured:  ^  Measured by:  contract  Thursday, March 31, 2005 10:38:42 AM  ^  Analysed:  ^  Thursday, March 31, 2005 10:38:43 AM  Particle Name:  Accessory Name:  Analysis model:  Sensitivity:  silicasand  Hydro 2000S (A)  General purpose  Enhanced  Particle RI:  Absorption:  Size range:  Obscuration:  1.500  0  0.020^to 2000.000 urn  14.22^%  Dispersant Name: Water  Dispersant RI:  Weighted Residual:  Result Emulation:  1.330  0.489  Off  Concentration:  Span :  Uniformity:  Result units:  0.0052^%Vol  2.522  0.793  Volume  Specific Surface Area:  Surface Weighted Mean D[3,2]:  Vol. Weighted Mean D[4,3]:  0.631^urn  2.685^urn  9.52^reg  d(0.1):^0.230^Urn  d(0.5):^2.224^urn  d(0.9):^5.839^urn  Particle Size Distribution  110 100 90  6  80  5  70  a) E z  4  60 50  0  3  40 30 20 10 0.1^1^10  100  1000 3008  Particle Size (pm) -Silica small - Average, Thursday, March 31, 2005 10:38:42 AM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.089 2.01  Size (pm) Vol Under % 0.792 25.63  Size (pm) Vol Under % 94.46 7.049  Size (pm) Vol Under % 62.729 100.00  Size (pm) Vol Under % 100.00 558.262  0.012  0.00  0.105  2.94  0.937  27.86  8.339  97.16  74.216  100.00  660.491  100.00  0.014  0.00  0.125  4.08  1.109  30.42  9.866  98.82  87.807  100.00  781.439  100.00  0.017  0.00  0.147  5.44  1.312  33.56  11.673  99.69  103.886  100.00  924.535  100.00  0.020  0.00  0.174  7.01  1.552  37.58  13.811  100.00  122.909  100.00  1093.834  100.00  0.023  0.00  0.206  8.77  1.836  42.72  16.340  100.00  145.416  100.00  1294.136  100.00  0.027  0.00  0.244  10.70  2.172  49.03  19.332  100.00  172.044  100.00  1531.116  100.00  0.032  0.03  0.289  12.76  2.570  56.30  22.872  100.00  203.549  100.00  1811.492  100.00  0.038  0.11  0.342  14.90  3.041  64.09  27.060  100.00  240.822  100.00  2143.210  100.00  0.045  0.25  0.404  17.08  3.597  71.86  32.015  100.00  284.922  100.00  2535.671  100.00  0.054  0.47  0.478  19.26  4.256  79.09  37.878  100.00  337.096  100.00  3000.000  100.00  0.064  0.80  0.566  21.40  5.036  85.40  44.814  100.00  398.825  100.00  0.075  1.31  0.669  23.51  5.958  90.55  53.020  100.00  471.857  100.00  Malvern Instruments Ltd.^ ^  Malvem, UK  Mastersizer 2000 Ver. 5.1  ^  Serial Number : 34403-197  ^  ^  Tel := -11441 (0) 1684-892456 Fax +[44] (0) 1684-892789 ^  94  File name: Marjorie 2005 Record Number: 95 27 Mar 2008 12:53:33 PM  MASTERSIZER Result Analysis Report ^ ^ Sample Name: SOP Name: ^ ^ Magnetite - Average Magnetite ^ ^ Sample Source & type: Measured by: ^ ^ Factory = Elementis Pigments contract  Analysed: Friday, December 15, 2006 2:22:56 PM  Particle Name: Iron Oxide 2.42  Accessory Name: Hydro 2000S (A)  Analysis model: General purpose  Particle RI: 2.420 Dispersant Name: Water  Absorption: 1 Dispersant RI: 1.330  Size range: 0.020^to 2000.000 Weighted Residual: 1.968  ^ Concentration: ^ 0.0041^%Vol  ^ Span : ^ 1.740  ^ Uniformity: ^ 0.531  Measured: Friday, December 15, 2006 2:22:54 PM  Sensitivity: Enhanced  ^Vol. Weighted Mean D[4,3]: Surface Weighted Mean D[3,2]: ^ 2.410^um 4.581^urn ^ ^ ^ d(0.1):^1.320^Urn d(0.5):^4.108 Urn  Obscuration: um^13.60^% Result Emulation: Off Result units: Volume  ^ Specific Surface Area: ^ 2.49^m2/g  d(0.9):^8.468  Particle Size Distribution  ^  UM  ^ 110  10  100 90  9 8  - 80  7  4  - 70 - 60 - 50 - 40  3  - 30  2  - 20 - 10  6 5  0.1^1^10  100  1000 3008  Particle Size (pm) -Magnetite - Average, Friday, December 15, 2006 2:22:54 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.089 0.00  Size (pm) Vol Under % 0.792 5.92  Size (pm) Vol Under % 82.14 7.049  Size (pm) Vol Under % 62.729 100.00  Size (pm) Vol Under % 558.262 100.00  0.012  0.00  0.105  0.00  0.937  7.05  8.339  89.44  74.216  100.00  660.491  100.00  0.014  0.00  0.125  0.00  1.109  8.34  9.866  94.72  87.807  100.00  781.439  100.00 100.00  0.017  0.00  0.147  0.00  1.312  9.93  11.673  98.03  103.886  100.00  924.535  0.020  0.00  0.174  0.01  1.552  12.08  13.811  99.64  122.909  100.00  1093.834  100.00  0.023  0.00  0.206  0.13  1.836  15.12  16.340  100.00  145.416  100.00  1294.136  100.00  0.027  0.00  0.244  0.41  2.172  19.42  19.332  100.00  172.044  100.00  1531.116  100..00  0.032  0.00  0.289  0.84  2.570  25.28  22.872  100.00  203.549  100.00  1811.492  100.00  0.038  0.00  0.342  1.42  3.041  32.84  27.060  100.00  240.822  100.00  2143.210  100.00  0.045  0.00  0.404  2.13  3.597  41.97  32.015  100.00  284.922  100.00  2535.671  100.00  0.054  0.00  0.478  2.96  4.256  52.21  37.878  100.00  337.096  100.00  3000.000  100.00  0.064  0.00  0.566  3.88  5.036  62.86  44.814  100.00  398.825  100.00  0.075  0.00  0.669  4.87  5.958  73.10  53.020  100.00  471.857  100.00  Malvem Instruments Ltd.^ ^ Malvem, UK Tel := +(441 (0) 1684-892456 Fax +144) (0) 1684-892789 ^  Mastersizer 2000 Ver. 5.1  ^  Serial Number : 34403-197  95  ^  ^  File name: Marjorie 2005 Record Number: 119 27 Mar 2008 12:54:34 PM  MASTERSIZER Result Analysis Report Sample Name:  Hematite  ^  SOP Name:  ^  Sample Source & type:  Hematite  ^  Factory = Elementis Pigments  ^  ^  Measured by:  contract  Measured:  ^  Friday, December 15, 2006 11:33:17 AM  ^  Analysed:  ^  Friday, December 15, 2006 11:33:18 AM  Particle Name:  Accessory Name:  Analysis model:  Sensitivity:  Hematite  Hydro 2000S (A)  General purpose  Enhanced  Particle RI:  Absorption:  Size range:  Obscuration:  2.900 Dispersant Name: Water  0.05  0.020^to 2000.000 um  17.70^%  Dispersant RI:  Weighted Residual:  Result Emulation:  1.330  2.162  Off  Concentration:  ^  0.0024^%Vol  Specific Surface Area:  4.87^Wig  Span :  ^  3.054  ^  ^  d(0.1):^0.507^um  ^  Uniformity:  ^  0.981  Surface Weighted Mean D[3,2]:  1.232^um  ^  ^  ^  Result units:  Volume  ^Vol. Weighted Mean D[4,3]:  ^  d(0.5):^2.093  3.027^um ^  um  ^  d(0.9):^6.900  Particle Size Distribution  110  6 5.5 5 4.5 4 3.5 3 2.5 2 1.5  0 (1)  100 90 80 70 60 50 40 30 20 10  0.5 B.01  0.1^1^10  100  1000 3008  Particle Size (pm) -Hematite, Friday, December 15, 2006 11:33:17 AM Size (pm) Vol Under °% 0.010 0.00  Size (pm) Vol Under % 0.089 0.00  Size (pm) Vol Under % 0.792 22.11  Size (pm) Vol Under % 7.049 90.57  Size (pm) Vol Under % 62.729 100.00  Size (pm) Vol Under % 558.262 100.00  0.012  0.00  0.105  0.00  0.937  27.13  8.339  94.40  74.216  100.00  660.491  100.00  0.014  0.00  0.125  0.00  1.109  32.12  9.866  97.08  87.807  100.00  781.439  100.00  0.017  0.00  0.147  0.00  1.312  36.97  11.673  98.73  103.886  100.00  924.535  100.00  0.020  0.00  0.174  0.00  1.552  41.67  13.811  99.59  122.909  100.00  1093.834  100.00  0.023  0.00  0.206  0.05  1.836  46.32  16.340  99.92  145.416  100.00  1294.136  100.00  0.027  0.00  0.244  0.40  2.172  51.07  19.332  100.00  172.044  100.00  1531.116  100.00  0.032  0.00  0.289  1.35  2.570  56.10  22.872  100.00  203.549  100.00  1811.492  100.00  0.038  0.00  0.342  3.00  3.041  61.55  27.060  100.00  240.822  100.00  2143.210  100.00  0.045  0.00  0.404  5.46  3.597  67.45  32.015  100.00  284.922  100.00  2535.671  100.00  0.054  0.00  0.478  8.72  4.256  73.66  37.878  100.00  337.096  100.00  3000.000  100.00  0.064  0.00  0.566  12.69  5.036  79.86  44.814  100.00  398.825  100.00  0.075  0.00  0.669  17.22  5.958  85.63  53.020  100.00  471.857  100.00  Malvern Instruments Ltd.^ ^ Malvern, UK Tel := +[4it] (0) 1684-892456 Fax +[44] (0) 1684-892789 ^  Mastersizer 2000 Ver. 5.1  ^  Serial Number : 34403-197  96  ^  ^  File name: Marjorie 2005 Record Number 103 27 Mar 2008 1:44:54 PM  MASTERSIZER Result Analysis Report ^ ^ Sample Name: SOP Name: ^ ^ Goethite Iron hydroxide ^ ^ Sample Source & type: Measured by: ^ ^ Factory = Elementis Pigments contract  Analysed: Friday, December 15, 2006 3:58:03 PM  Particle Name: Iron hydroxide  Accessory Name: Hydro 2000S (A)  Analysis model: General purpose  Sensitivity: Enhanced  Particle RI: 2.400 Dispersant Name: Water  Absorption: 0.1 Dispersant RI: 1.330  Size range: 0.020^to 2000.000 urn Weighted Residual: 1.782  Obscuration: 11.21^% Result Emulation: Off  Concentration: 0.0027^%Vol  Span : 2.589  Uniformity: 0.809  Result units: Volume  Specific Surface Area: 0.689^m2/g  Surface Weighted Mean D[3,2]: 2.178^um  d(0.1):^0.839^u m  Measured: Friday, December 15, 2006 3:36:22 PM  Vol. Weighted Mean D[4,3]: 5.543^um  d(0.5):^4.361^um  d(0.9):^12.133^urn  Particle Size Distribution  110 100 90 80 - 70  a)  - 60 50 - 40  E  - 30 - 20 - 10 8.01  0.1^1^10  100  1000^3008  Particle Size (pm) -Goethite, Friday, December 15, 2006 3:36:22 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.089 0.00  Size (pm) Vol Under % 0.792 9.06  Size (pm) Vol Under % 7.049 69.42  Size (pm) Vol Under %o 62.729 100.00  Size (pm) Vol Under % 558.262 100.00  0.012  0.00  0.105  0.00  0.937  11.90  8.339  76.45  74.216  100.00  660.491  100.00  0.014  0.00  0.125  0.00  1.109  14.99  9.866  83.03  87.807  100.00  781.439  100.00  0.017  0.00  0.147  0.00  1.312  18.27  11.673  88.82  103.886  100.00  924.535  100.00  0.020  0.00  0.174  0.00  1.552  21.71  13.811  93.49  122.909  100.00  1093.834  100.00  0.023  0.00  0.206  0.00  1.836  25.34  16.340  96.88  145.416  100.00  1294.136  100.00  0.027  0.00  0.244  0.00  2.172  29.22  19.332  98.97  172.044  100.00  1531.116  100.00  0.032  0.00  0.289  0.09  2.570  33.44  22.872  99.89  203.549  100.00  1811.492  100.00  0.038  0.00  0.342  0.54  3.041  38.10  27.060  100.00  240.822  100.00  2143.210  100.00  0.045  0.00  0.404  1.37  3.597  43.31  32.015  100.00  284.922  100.00  2535.671  100.00  0.054  0.00  0.478  2.64  4.256  49.11  37.878  100.00  337.096  100.00  3000.000  100.00  0.064  0.00  0.566  4.37  5.036  55.49  44.814  100.00  398.825  100.00  0.075  0.00  0.669  6.53  5.958  62.33  53.020  100.00  471.857  100.00  Malvern Instruments Ltd. ^ ^ Malvem, UK Tel := +[44] (0) 1684-892456 Fax +[44] (0) 1684-892789 ^  Mastersizer 2000 Ver. 5.1  ^  Serial Number : 34403-197  97  ^  ^  File name: Marjorie 2005 Record Number 125 27 Mar 2008 1:44:21 PM  ^  ILIISILE11 Result Analysis Report  ^ SOP Name: ^ Talc ^ Sample Source & type:^ Measured by: ^ contract Factory^ Sample Name:^ MP 10-52^  Measured: Monday, July 14, 2003 9:55:55 AM Analysed: Monday, July 14, 2003 9:55:56 AM  Particle Name:^ Talc^  Accessory Name:^  Analysis model:^ Sensitivity: General purpose^ Enhanced  Particle RI:^ 1.589^ Dispersant Name:^ Water^  Absorption:^ 0.1^ Dispersant RI:^ 1.330^  Size range:^ Obscuration: 0.020^to 2000.000^urn^12.47^% Weighted Residual:^Result Emulation: 1.418^%^ Off  Concentration: 0.0050^%Vol  Span : 1.778  Uniformity:^ 0.553^  Specific Surface Area: 2.01^nfig  Surface Weighted Mean D[3,2]: 2.980^um  Vol. Weighted Mean D[4,3]: 4.576^urn  d(0.5):^3.888^urn  d(0.1):^1.602^Urn  Result units: Volume  d(0.9):^8.517^Urn  Particle Size Distribution  10  100  9  90  8  80  7  70  6  E  5  0  4  60 50 40  3  30  2  20  1  10 0.1^1^10  100^1000 3008  Particle Size (pm) -MP 10-52, Monday, July 14, 2003 9:55:55 AM Size (pm) Vol Under % 0.00 0.010  Size (pm) Vol Under % 0.063  0.00  Size (pm) Vol Under % 0.396 0.00  Size (pm) Vol Under % 2.492 25.17  Size (pm) Vol Under % 15.678 99.59  Size (pm) Vol Under % 98.656 100.00  0.011  0.00  0.070  0.00  0.441  0.04  2.776  30.51  17.470  99.89  109.929  100.00  0.012  0.00  0.078  0.00  0.492  0.16  3.094  36.39  19.466  99.98  122.491  100.00  0.00  0.087  0.00  0.548  0.40  3.447  42.69  21.690  100.00  136.488  100.00  0.00  0.097  0.00  0.610  0.72  3.841  49.25  24.169  100.00  152.084  100.00  0.014 0.015  •  0.017  0.00  0.108  0.00  0.680  1.13  4.280  55.90  26.931  100.00  169.462  100.00  0.019  0.00  0.120  0.00  0.758  1.62  4..769  62.46  30,008  100.00  188.826  100.00  0.021  0.00  0.134  0.00  0.844  2.21  5.314  68.77  33.437  100.00  210.403  100.00  0.024  0.00  0.150  0.00  0.941  2.92  5.921  74.65  37.258  100.00  234.446  100.00  0.026  0.00  0.167  0.00  1.048  3.79  6.598  80.00  41.515  100.00  261.235  100.00  0.030  0.00  0.186  0.00  1.168  4.87  7.351  84.71  46.259  100.00  291.086  100.00  0.033  0.00  0.207  0.00  1.302  6.23  8.191  88.73  51.545  100.00  324.348  100.00  0.037  0.00  0.231  0.00  1.451  7.98  9.127  92.04  57.435  100.00  361.411  100.00  0.041  0.00  0.257  0.00  1.616  10.20  10.170  94.67  63.998  100.00  402.708  100.00  0.045  0.00  0.286  0.00  1.801  12.97  11.333  96.67  71.311  100.00  448.725  100.00  500.000  100.00  0.051  0.00  0.319  0.00  2.007  16.38  12.628  98.09  79.459  100.00  0.056  0.00  0.355  0.00  2.236  20.44  14.071  99.03  88.539  100.00  Malvem Instruments Ltd. ^ ^ Malvern, UK ^ Tel^+f441 (0) 1684-892456 Fax -1-(441 (0) 1684-892789  ^ lvtastersizer 2000 Ver. Version 4.00 ^ Serial Number : 34403-197  98  File name: Contract Record Number: 159 14 Jul 2003 10:06:1C  Appendix E: Size analysis for Vermelho samples  99  MASTERSIZER Result Analysis Report ^ Sample Name: ^ CVRD-1 ^ Sample Source & type: ^ Vermelho  SOP Name:^ CVRD^  Measured: Wednesday June 02 2004 2:20:38 PM  Measured by:^ contract^  Analysed: Wednesday, June 02, 2004 2:20:39 PM  Particle Name: Iron III Oxide 0.03  Accessory Name:^ Hydro 2000S (A)^  Analysis model:^ Sensitivity: General purpose^ Enhanced  Particle RI:^ 2.420^  Absorption: 0.1  Size range:^ Obscuration: 0.020^to 2000.000 urn^19.56^%  Dispersant Name:^ Water^  Dispersant RI: 1.330  Weighted Residual:^Result Emulation: 0.245^ Off  Concentration: 0.0117^%Vol  Span : 5.863  Uniformity: 1.81  Specific Sulface Area: 1.25^reg  Suilace Weighted Mean D[3,2]: 4.815^1.1111  d(0.1):^1.854^UM  Result units: Volume  Vol. Weighted Mean 0[4,3]: 34.293^urn  d(0.5):^15.858^UM  d(0.9): 94.831^UM  Particle Size Distribution  100 - 90  3.5 3  - 80  2.5  - 70  2  - 60 - 50  1.5  - 40  1  - 30  0.5  - 20 - 10  00.01  0.1^1^10  100  1000 3008  Particle Size (pm) -CVRD-1, Wednesday, June 02, 2004 2:20:38 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.105 0.00  Size (pm) Vol Under % 1.096 4.85  Size (pm) Vol Under % 11.482 43.46  Size (pm) Vol Under %  size (pm) Vol Under %  120.226  94.20  1258.925  100.00  0.011  0.00  0.120  0.00  1259  5.94  13.183  46.22  138.038  96.12  1445.440  100.00  0.013  0.00  0.138  0.00  1.445  7.20  15.136  49.04  158.489  97.62  1659.587  100.00  0.015  0.00  0.158  0.00  1.660  8.67  17.378  51.90  181.970  98.71  1905.461  100.00  0.017  0.00  0.182  0.00  1.905  10.35  19.953  54.82  208.930  99.42  2187.762  100.00  0.020  0.00  0.209  0.00  2.188  12.26  22.909  57.80  239.883  99.83  2511.886  100.00  0.023  0.00  0.240  0.00  2.512  14.39  26.303  60.83  275.423  99.99  2884.032  100.00  0.026  0.00  0.275  0.01  2.884  16.72  30.200  63.92  316.228  100.00  3311.311  100.00 100.00  0.030  0.00  0.316  0.10  3.311  19.23  34.674  67.05  363.078  100.00  3801. 894  0.035  0.00  0.363  0.27  3.802  21.85  39.811  70.24  416.869  100.00  4365.158  100.00  0.040  0.00  0.417  0.53  4.365  24.55  45.709  73.47  478.630  100.00  5011.872  100.00  0.046  0.00  0.479  0.87  5.012  27.28  52.481  76.72  549.541  100.00  5754.399  100.00  0.052  0.00  0.550  1.30  5.754  30.00  60.256  79.97  630.957  100.00  6606.934  100.00  0.060  0.00  0.631  1.81  6.607  32.69  69.183  83.19  724.436  100.00  7585.776  100.00  0.069  0.00  0.724  2.41  7.586  35.37  79.433  86.29  831.764  100.00  8709.636  100.00  0.079  0.00  0.832  3.11  8.710  38.04  91.201  89.22  954.993  100.00  10000.000  100.00  0.091  0.00  0.955  3.92  10.000  40.73  104.713  91.88  1096.478  100.00  VIalvern Instruments Ltd.^ ialvern,^  ret := +1441 (0) 1684-892456 Fax +04] (0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  Serial Number : 34403-197  100  ^  ^  File name: CVRD Record Number: r? ,. 02 Jun 2004 02:39:29 PM  MASTERSIZER  X71.4011116,.  Result Analysis Report ^ SOP Name: ^ CVRD ^ Sample Source & type:^Measured by: ^ Vermelho^ contract  Analysed: Monday, July 05, 2004 1:24:05 PM  Particle Name:^ Iron III Oxide 0.03^  Accessory Name:^ Hydro 2000S (A)^  Analysis model:^Sensitivity: General purpose^ Enhanced  Particle RI:^ 2.420^ Dispersant Name:^ Water^  Absorption: 0.1 Dispersant RI: 1.330  Size range:^ Obscuration: 0.020^to 2000.000 urn^13.99^% Weighted Residual:^Result Emulation: 0.195^ Off  Concentration: 0.0142^%Vol  Span : 4.167  Uniformity:^ 1.3^  Specific Surface Area: 0.76^rn2/g  Surface Weighted Mean D[3,2]: 7.899^urn  Sample Name:^ CVRD-2^  d(0.1):^3.208^UM  Measured: Monday, July 05, 2004 1:24:03 PM  Result units: Volume  Vol. Weighted Mean D(4,3]: 39.377^urn  d(0.5):^23.170^WTI  d(0.9): 99.760^UM  Particle Size Distribution  4.5  100 - 90 - 80 - 70 - 60 - 50 ▪ 40 30 - 20 - 10  4 3.5 3 2.5  E z 0  2 1.5 1  0.5  9) . 01  0.1^1^10  100  1000  30 06  )  Particle Size (pm) -CVRD-2, Monday, July 05, 2004 1:24:03 PM Size (pm) Vol Under % 0.020 0.00  Size (pm) Vol Under % 0.126 0.00  Size (pm) Vol Under % 0.792  Size (pm) Vol Under % 4.983 16.50  1.06  Size (pm) Vol Under % 31.357 58.36  Size (pm) Vol Under % 99.06 197.312  0.022  0.00  0.140  0.00  0.882  1.31  5.553  18.33  34.940  61.44  219.859  0.025  0.00  0.156  0.00  0.983  1.60  6.187  20.24  38.932  64.56  244.982  99.83  0.028  0.00  0.174  0.00  1.096  1.94  6.894  22.23  43.381  67.70  272.975  99.99  0.031  0.00  0.194  0.00  1.221  2.33  7.682  24.29  48.338  70.84  304.168  100.00  0.034  0.00  0.216  0.00  1.360  2.78  8.560  26.44  53.861  73.96  338.925  100.00  99.53  0.038  0.00  0.241  0.00  1.516  3.32  9.538  28.67  60.016  77.05  377.653  100.00  0.043  0.00  0.268  0.00  1.689  3.94  10.628  30.98  66.874  80.07  420.806  100.00  0.048  0.00  0.299  0.00  1.882  4.67  11.842  33.38  74.516  82.98  468.891  100.00  0.053  0.00  0.333  0.00  2.097  5.51  13.195  35.86  83.030  85.75  522.471  100.00  0.059  0.00  0.371  0.02  2.337  6.47  14.703  38.42  92.518  88.33  582.172  100.00  0.066  0.00  0.414  0.09  2.604  7.56  16.383  41.06  103.090  90.69  648.696  100.00  0.073  0.00  0.461  0.19  2.901  8.77  18.255  43.77  114.870  92.80  722.821  100.00  0.082  0.00  0.514  0.31  3.233  10.10  20.341  46.55  127.996  94.63  805.417  100.00  0.091  0.00  0.572  0.46  3.602  11.54  22.665  49.41  142.622  96.16  897.450  100.00  0.101  0.00  0.638  0.64  4.014  13.10  25.255  52.33  158.919  97.40  1000.000  100.00  0.113  0.00  0.711  0.83  4.472  14.75  28.141  55.32  177.078  98.36  Malvern Instruments Ltd.^ ^ Malvern, UK Tel := 1[44] (0) 1684-892458 Fax +[44] (0) 1684-892789  ^  ^ Mastersizer 2000 Ver. 5.1 ^ Serial Number : ^ 34403-197 101  File name: CVRD Record Number: 51 05 Jul 2004 01:28:39 PM  ^  AfarAINIIM,  MASTERSIZER Result Analysis Report  ^ SOP Name: ^ CVRD ^ Sample Source & type:^Measured by: ^ Vermelho^ contract Sample Name:^ CVRD^  Particle Name:^ Iron III Oxide 0.03^  Measured:  Monday, May 17, 2004 11:25:25 AM Analysed:  Monday, May 17, 2004 11:25:27 AM  Particle RI:^ 2.420^ Dispersant Name:^ Water^  Accessory Name:^ Hydro 2000S (A)^ ^ Absorption: ^ 0.1 ^ Dispersant RI: ^ 1.330  Weighted Residual:^Result Emulation: 0.204^ Off  Concentration: 0.0133^%Vol  Span : 5.436  Uniformity:^ 1.65^  Specific Surface Area: 0.813^m2ig  Surface Weighted Mean 0[3,2]:  General purpose^Enhanced Size range:^  Obscuration:  0.020^to 2000 000 urn^14.58^%  Result units:  Volume  Vol. Weighted Mean 13[4,3]: 33.846^urn  7.378^urn  d(0.1):^3.481^Urn  Analysis model:^Sensitivity:  d(0.5):^16.138^urn  d(0.9): 91.205^Urn  Particle Size Distribution 4.5  100  4  90  3.5  80  3  - 70  2  - 60 - 50  0 a)^2.5  - 40  1.5  - 30  1  20  0.5  10  9).01  0.1^1^10  100  ^  1000  3008  Particle Size (pm) -CVRD, Monday May 17, 2004 11:25:25 AM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.105 0.00  Size (pm) Vol Under % 1.096 1.38  Size (pm) Vol Under % 11.482  41.13  Size (pm) Vol Under % 94.45 120.226  Size (pm) Vol Under % 1258.925 100.00  0.011  0.00  0.120  0.00  1.259  1.48  13.183  44.78  138.038  96.20  1445.440  100.00  0.013  0.00  0.138  0.00  1.445  1.69  15.136  48.36  158.489  97.60  1859.587  100.00  0.015  0.00  0.158  0.00  1.660  2.07  17.378  51.88  181.970  98.64  1905.461  100.00  0.017  0.00  0.182  0.00  1.905  2.70  19.953  55.36  208.930  99.35  2187.762  100.00  0.020  0.00  0.209  0.00  2.188  3.85  22.909  58.80  239.883  99.78  2511.888  100.00  0.023  0.00  0.240  0.00  2.512  5.01  26.303  62.22  275.423  99.99  2884.032  100.00  0.026  0.00  0.275  0.02  2.884  6.80  30.200  65.60  316.228  100.00  3311.311  100.00  0.030  0.00  0.316  0.13  3.311  9.07  34.674  68.95  363.078.  100.00  3801.894  100.00  0.035  0.00  0.363  0.29  3.802  11.79  39.811  72.23  418.869  100.00  4385.158  100.00  0.040  0.00  0.417  0.49  4.365  14.91  45.709  75.45  478.630  100.00  5011.872  100.00 100.00  0.046  0.00  0.479  0.69  5.012  18.36  52.481  78.59  549.541  100.00  5754.399  0.052  0.00  0.550  0.89  5.754  22.05  60.256  81.65  630.957  100.00  6806.934  100.00  0.060  0.00  0.631  1.05  6.607  25.87 .  69.183  84.59  724.436  100.00  7585.776  100.00  0.069  0.00  0.724  1.18  7.586  29.74  79.433  87.39  831.784  100.00  8709.636  100.00  0.079  0.00  0.832  1.26  8.710  33.60  91.201  90.00  954.993  100.00  10000.000  100.00  0.091  0.00  0.955  1.32  10.000  37.40  104.713  92.37  1096.478  100.00  Malvern Instruments Ltd. ^ ^ Malvern, UK Tel := +[441(0) 1684-892456 Fax +(44) (0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  102  ^  ^  Serial Number : 34403-197  File name: CVRD 3 Record Number: 6 17 May 2004 11:36:41 AM  MASTERSIZER Result Analysis Report Sample Name:  SOP Name:  Measured:  CVRD-4  CVRD  Monday, July 05, 2004 1:55:02 PM  Sample Source & type:  Measured by:  Analysed:  Vermelho  contract  Monday, July 05, 2004 1:55:03 PM  Particle Name:  Accessory Name:  Analysis model:  Sensitivity:  Iron Ill Oxide 0.03  Hydro 20008 (A)  General purpose  Enhanced Obscuration:  Particle RI:  Absorption:  Size range:  2.420  0.1  0.020^to^2000.000^urn  13.45^%  Dispersant Name:  Dispersant RI:  Weighted Residual:  Result Emulation:  Water  1.330  0.381  Off  Concentration: 0. 0193^%Vol  Span :  Uniformity:  Result units:  2.539  0.826  Volume  Specific Surface Area:  Surface Weighted Mean D(3,2]:  Vol. Weighted Mean D[4,3]:  11.533^urn  0.52^m2/g d(0.1):^4.787^urn  ^  75.686^urn d(0.5):^64.528^urn  ^  d(0.9): 168.617^UM  Particle Size Distribution  100 - 90 6 <CR-  E 0  - 80  5  - 70  4  - 60 - 50  3  - 40  2  ▪ 30 20 - 10 0.1^1^10  6.01  (  100  1000  3006.41  Particle Size (pm) -CVRD-4, Monday, July 05, 2004 1:55:02 PM Size (pm) Vol Under % 0.020 0.00 0.022  Size (pm) Vol Under % 0.126 0.00  0.00  0.140  0.00  0.882  1.04  11441  Size (pm) Vol Under % 4.983 10.41 5.553  11.54  Size (pm) Vol Under % 31.357 34.94 34.940  Size (pm) Vol Under % 197.312  94.54  36.53  219.859  96.82  0.025  0.00  0.156  0.00  0.983  1.23  6.187  12.73  38.932  38.24  244.982  98.41  0.028  0.00  0.174  0.00  1.096  1.44  6.894  13.98  43.381  40.14  272.975  99.40  0.031  0.00  0.194  0.00  1.221  1.69  7.682  15.28  48.338  42.32  304.168  99.90  0.034  0.00  0.216  0.00  1.360  1.97  8.560  16.64  53.861  44.84  338.925  100.00 100.00  0.038  0.00  0.241  0.00  1.516  2.31  9.538  18.06  60.016  47.77  377.653  0.043  0.00  0.268  0.00  1.689  2.70  10.628  19.52  66.874  51.18  420.806  100.00  0.048  0.00  0.299  0.00  1.882  3.15  11.842  21.04  74.516  55.06  468.891  100.00  0.053  0.00  0.333  0.03  2.097  3.67  13.195  22.58  83.030  59.38  522.471  100.00  0.059  0.00  0.371  0.09  2.337  4.26  14.703  24.15  92.518  64.08  582.172  100.00  0.066  0.00  0.414  0.16  2.604  4.92  16.383  25.73  103.090  69.03  648.696  100.00  0.073  0.00  0.461  0.25  2.901  5.66  18.255  27.30  114.870  74.07  722.821  100.00  0.082  0.00  0.514  0.35  3.233  6.47  20.341  28.85  127.996  79.02  805.417  100.00  0.091  0.00  0.572  0.47  3.602  7.36  22.665  30.39  142.622  83.69  897.450  100.00  0.101  0.00  0.638  0.59  4.014  8.31  25.255  31.90  158.919  87.92  1000.000  100.00  0.113  0.00  0.711  0.73  4.472  9.33  28.141  33.41  177.078  91.57  Malvern Instruments Ltd. ^ ^ Malvem, UK rel  Size (pm) Vol Under % 0.792 0.88  (0) 1684-892456 Fax +(44] (0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  Serial Number : 34403-197  103  ^  ^  File name: CVRD Record Number 58 05 Jul 2004 02:07:14 PM  MASTERSIZER Result Analysis Report ^ Sample Name: ^ CVRD-5  SOP Name:^ CVRD^  Measured: Monday, July 05, 2004 1:35:29 PM  Sample Source & type:^Measured by:^ Vermelho^ contract^  Analysed: Monday, July 05, 2004 1:35:30 PM  Particle Name: Iron III Oxide 0.03  Accessory Name:^ Hydro 2000S (A)^  Analysis model:^Sensitivity: General purpose^ Enhanced  Particle RI:^ 2.420^ Dispersant Name:^ Water^  Absorption: 0.1 Dispersant RI: 1.330  Size range:^ Obscuration: 0.020^to 2000.000 urn^14.00^% Weighted Residual:^Result Emulation: 0.186^ Off  Concentration: 0.0320^%Vol  Span : 2.656  Uniformity:^ 0.834^  Specific Surface Area: 0.35^m2Ig  Surface Weighted Mean D[3,2]: 17.147^urn  d(0.1):^8.842^UM  Result units: Volume  Vol. Weighted Mean D[4,3]: 65.938^urn  d(0.5):^51.296^UM  d(0.9): 145.077^urn  Particle Size Distribution  100 90 80 70 60 50  a)  E  0  40 30 20 10  %.01  0.1^1^10  100  1000 300N  Particle Size (pm) -CVRD-5, Monday, July 05, 2004 1:35:29 PM Size (pm) Vol Under % 0.020 0.00  Size (pm) Vol Under % 0.126 0.00  Size (pm) Vol Under % 0.792 0.44  Size (pm) Vol Under % 4.983 5.12  Size (pm) Vol Under % 31.357 34.36  Size (pm) Vol Under % 197.312 96.79  0.022  0.00  0.140  0.00  0.882  0.54  5.553  5.82  34.940  37.44  219.859  0.025  0.00  0.156  0.00  0.983  0.65  6.187  6.62  38.932  40.72  244.982  99.11  0.028  0.00  0.174  0.00  1.096  0.76  6.894  7.51  43.381  44.19  272.975  99.67  98.18  0.031  0.00  0.194  0.00  1.221  0.89  7.682  8.51  48.338  47.88  304.168  99.95  0.034  0.00  0.216  0.00  1.360  1.02  8.560  9.64  53.861  51.79  338.925  100.00 100.00  0.038  0.00  0.241  0.00  1.516  1.18  9.538  10.89  60.016  55.90  377.653  0.043  0.00  0.268  0.00  1.689  1.35  10.628  12.29  66.874  60.20  420.806  100.00  0.048  0.00  0.299  0.00  1.882  1.55  11.842  13.82  74.516  64.63  468.891  100.00 100.00  0.053  0.00  0.333  0.00  2.097  1.77  13.195  15.50  83.030  69.14  522.471  0.059  0.00  0.371  0.00  2.337  2.02  14.703  17.33  92.518  73.64  582.172  100.00  0.066  0.00  0.414  0.00  2.604  2.32  16.383  19.31  103.090  78.03  648.696  100.00  0.073  0.00  0.461  0.05  2.901  2.65  18.255  21.43  114.870  82.20  722.821  100.00  0.082  0.00  0.514  0.11  3.233  3.03  20.341  23.71  127.996  86.06  805.417  100.00  0.091  0.00  0.572  0.18  3.602  3.46  22.665  26.14  142.622  89.50  897.450  100.00  0.101  0.00  0.638  0.26  4.014  3.94  25.255  28.72  158.919  92.45  1000.000  100.00  0.113  0.00  0.711  0.35  4.472  4.50  28.141  31.45  177.078  94.89  Malvern Instruments Ltd.^ ^  Malvem, UK  Tel := +[44] (0) 1684-892456 Fax +[441(0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  Serial Number : 34403-197  104  ^  ^  Pile name: CVRD Record Number: 54 05 Jul 2004 02:07:33 PM  ^  MASTERSIZER Result Analysis Report ^ Sample Name: ^ CVRD-6 ^ Sample Source & type: ^ Vermelho  SOP Name:^ CVRD^  Measured: Wednesday, June 02, 2004 2:11:03 PM  Measured by:^ contract^  Analysed: Wednesday, June 02, 2004 2:11:04 PM Analysis model:^ Sensitivity: General purpose^ Enhanced  Dispersant Name:^ Water^  Accessory Name:^ Hydro 2000S (A)^ ^ Absorption: ^ 0.1 ^ Dispersant RI: ^ 1.330  Weighted Residual:^Result Emulation: 0.226^ Off  Concentration: 0.0201^%Vol  Span : 3.551  Uniformity: 1.11  Specific Surface Area: 0.648^m2ig  Surface Weighted Mean D[3,2]; 9.255^urn  ^ Particle Name: ^ Iron III Oxide 0.03 Particle RI:^ 2.420^  d(0.1):^4.215^UM  Obscuration: Size range:^ 0.020^to 2000.000 urn^16.99^%  Result units: Volume  Vol. Weighted Mean D[4,33: 43.653^urn d(0.9):^105.766^urn  d(0.5):^28.599^UM  Particle Size Distribution 5  100 - 90  4.5 4  - 80  3.5 at^3  - 70  2.5  60 - 50  2  - 40  1.5 1  - 30 20 - 10  0.5  %.0 1  0.1^1^10  100  ^  1000  3000  Particle Size (pm) -CVRD-6, Wednesday, June 02, 2004 2:11:03 PM Size (pm) Vol Under % 0.00 0.010  Size (pm) Vol Under % 0.105 0.00  Size (pm) Vol Under % 1.096 1.78  Size (pm) Vol Under % 11.482 26.70  1258.925  100.00  138.038  95.45  1445.440  100.00  15.136  33.10  158.489  97.37  1659.587  100.00  17.378  36.53  181.970  98.70  1905.461  100.00  3.72  19.953  40.09  208.930  99.50  2187.762  1 00. 00  4.46  22.909  43.79  239.883  99.90  2511.886  100.00  2.512  5.33  26.303  47.61  275.423  99.99  2884.032  100.00  2.884  6.34  30.200  51.58  316.228  100.00  3311.311  100.00  3.311  7.52  34.674  55.68  363.078  100.00  3801.894  100.00  39.811  59.92  416.869  100.00  4365.158  100.00  45.709  64.28  478.630  100.00  5011.872  100.00  52.481  68.74  549.541  100.00  5754.399  100.00  14.04  60.256  73.25  630.957  100.00  6606.934  100.00  16.16  69.183  77.72  724.436  100.00  7585.776  100.00  79.433  82.04  831.764  100.00  8709.636  100.00  21.02  91.201  86.10  954.993  100.00  10000.000  100.00  23.76  104.713  89.76  1096.478  100.00  0.00  0.120  0.00  1.259  2.15  13.183  0.013  0.00  0.138  0.00  1.445  2.58  0.015  0.00  0.158  0.00  1.660  3.10  0.017  0.00  0.182  0.00  1.905  0.020  0.00  0.209  0.00  2.188  0.023  0.00  0.240  0.00  0.026  0.00  0.275  0.00  0.030  0.00  0.316  0.01  0.035  0.00  0.363  0.09  3.802  8.87  0.040  0.00  0.417  0.19  4.365  10.41  0.046  0.00  0.479  0.34  5.012  12.13  0.052  0.00  0.550  0.51  5.754  0.060  0.00  0.631  0.71  6.607  0.069  0.00  0.724  0.93  7.586  18.48  0.079  0.00  0.832  1.17  8.710  0.091  0.00  0.955  1.46  10.000  Tel := +[44) (0) 1684-892456 Fax +[44) (0) 1684-892789  Mastersizer 2000 Ver 5.1 ^  Size (pm) Vol Under %  29.82  0.011  Malvern Instruments Ltd.^ ^ Malvern, UK  Size (pm) Vol Under % 120.226 92.90  ^  Serial Number: 34403 - 197  105  ^  ^  File name: CVRD Record Number: 29 02 Jun 2004 02:15:04 PM  ^  MASTERSIZER Result Analysis Report ^ ^ Sample Name: SOP Name: ^ ^ CVRD-7 CVRD ^ ^ Sample Source & type: Measured by: ^ ^ Vermelho contract  Analysed: Wednesday, June 02, 2004 1:40:16 PM  Measured: Wednesday, June 02, 2004 1:40:14 PM  Particle Name:^  Accessory Name:^  Analysis model:^Sensitivity:  Iron Ill Oxide 0.03^  Hydro 2000S (A)^  General purpose^ Enhanced  Particle RI:^ 2.420^ Dispersant Name:^ Water^  ^ Absorption: ^ 0. 1 ^ Dispersant RI: ^ 1.330  Size range:^ Obscuration: 0.020^to 2000.000 urn^17.73^% Weighted Residual:^Result Emulation: 0.286^ Off  Concentration: 0.0100^%Vol  Span : 4.053  Uniformity: 1.28  Specific Surface Area: 1.3^wig  Surface Weighted Mean D[3,2]: 4.611^urn  d(0.1):^1.859^GM  Result units: Volume  Vol. Weighted Mean D[4,3]: 22.381^urn  d(0.5):^13.376^um  d(0.9): 56.075^um  Particle Size Distribution  5  100 90  4.5 4  80  3.5  70  3  E  2.5  0  2  60 50 40  1.5  30  1  20 10  0.5 7101  ^  0.1  ^^ ^ ^ 1 10 100 1000^3000 Particle Size (pm)  -CVRD-7, Wednesday, June 02, 2004 1:40:14 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.105 0.00  1+44]  Size (pm) Vol Under % 11.482 46.07  Sire (pm) Vol Under % 120.226 99.39  Size (pm) Vol Under % 1258.925 100.00  0.011  0.00  0.120  0.00  1.259  6.11  13.183  49.62  138.038  99.79  1445.440  100.00  0.013  0.00  0.138  0.00  1.445  7.32  15.136  53.30  158.489  99.96  1659.587  100.00  0.015  0.00  0.158  0.00  1.660  8.70  17.378  57.11  181.970  100.00  1905.461  100.00  0.017  0.00  0.182  0.00  1.905  10.30  19.953  61.05  208.930  100.00  2187.762  100.00  0.020  0.00  0.209  0.00  2.188  12.13  22.909  65.10  239.883  100.00  2511.886  100.00  0.023  0.00  0.240  0.00  2.512  14.18  26.303  69.22  275.423  100.00  2884.032  100.00  0.026  0.00  0.275  0.02  2.884  16.45  30.200  73.36  316.228  100.00  3311.311  100.00  0.030  0.00  0.316  0.12  3.311  18.92  34.674  77.46  363.078  100.00  3801.894  100.00  0.035  0.00  0.363  0.32  3.802  21.55  39.811  81.41  416.869  100.00  4365.158  100.00  0.040  0.00  0.417  0.61  4.365  24.31  45.709  85.13  478.630  100.00  5011.872  100.00  0.046  0.00  0.479  0.99  5.012  27.18  52.481  88.52  549.541  100.00  5754,399  100.00 100.00  0.052  0.00  0.550  1.46  5.754  30.11  60.256  91.50  630.957  100.00  6606.934  0.060  0.00  0.631  2.01  6.607  33.12  69.183  94.02  724.436  100.00  7585.776  100.00  0.069  0.00  0.724  2.63  7.586  36.20  79.433  96.04  831.764  100.00  8709.636  100.00  10000.000  100.00  0.079  0.00  0.832  3.34  8.710  39.37  91.201  97.59  954.993  100.00  0.091  0.00  0.955  4.15  10.000  42.66  104.713  98.68  1096.478  100.00  Malvern Instruments Ltd. ^ ^ ma/ vem, UK Tel  Size (pm) Vol Under % 5.06 1.096  (0) 1684-892456 Fax +[44j (0) 1684-892789  Mastersizer 2000 Ver. 5.1 ^  ^  Serial Number 34403-197  106  ^  ^  File name: CVRD Record Number 22 02 Jun 2004 01:44:15 PM  MASTERSIZER  A-777;z7,15,4,..  Result Analysis Report ^ SOP Name: ^ CVRD ^ Sample Source & type:^Measured by: ^ Vermelho^ contract Sample Name:^ CVRD^  Measured: Monday, May 17, 2004 12:13:15 PM Analysed:  Monday, May 17, 2004 12:13:16 PM  Particle Name: Iron III Oxide 0.03  Accessory Name:^ Hydro 20008 (A)^  Analysis model:^Sensitivity:  Particle RI:^ 2.420^ Dispersant Name:^ Water^  Absorption: 0.1 Dispersant RI: 1.330  Size range:^  Concentration: 0.0082^%Vol  Span : 5.709  Specific Surface Area: 1.13^m2/g  Surface Weighted Mean 0[3,2]:  Vol. Weighted Mean 0[4,3]:  5.302^UM  28.908^urn  d(0.1):^2.244^urn  General purpose^Enhanced Obscuration:  0.020^to 2000.000 urn^12.71^% Weighted Residual:^Result Emulation:  0.298^  Off  Uniformity:  Result units:  1.73  Volume  d(0.5):^13.489^urn  d(0.9): 79.245^UM  Particle Size Distribution  4  100  3.5  - 90  3  80 70  2.5 2  60 50  1.5  40  0  - 30  1  - 20 10  0.5 0.1^1^10  9101  100  1000  3008  Particle Size (pm) -CVRD, Monday, May 17, 2004 12:13:15 PM Size (pm) Vol Under % 0.010 0.00  Size (pm) Vol Under % 0.105 0.00  Size (pm) Vol Under %  Size (pm) Vol Under %  1.096  3.35  11.482  45.93  Size (pm) Vol Under % 120.226 95.99  Size (pm) Vol Under % 1258.925  100.00  0.011  0.00  0.120  0.00  1.259  4.13  13.183  49.42  138.038  97.39  1445.440  100.00  0.013  0.00  0.138  0.00  1.445  5.10  15.136  52.93  158.489  98.46  1659.587  100.00  0.015  0.00  0.158  0.00  1.660  6.32  17.378  56.46  181.970  99.21  1905.461  100.00  0.017  0.00  0.182  0.00  1.905  7.82  19.953  59.96  208.930  99.69  2187.762  100.00 100.00  0.020  0.00  0.209  0.00  2.188  9.63  22.909  63.42  239.883  99.93  2511.886  0.023  0.00  0.240  0.00  2.512  11.76  26.303  66.81  275.423  100.00  2884.032  100.00  0.026  0.00  0.275  0.01  2.884  14.19  30.200  70.11  316.228  100.00  3311.311  100.00  0.030  0.00  0.316  0.09  3.311  16.88  34.674  73.31  363.078  100.00  3801.894  100.00  0.035  0.00  0.363  0.25  3.802  19.80  39.811  76.40  416.869  100.00  4365.158  100.00  0.040  0.00  0.417  0.47  4.365  22.86  45.709  79.38  478.830  100.00  5011.872  100.00  0.046  0.00  0.479  0.75  5.012  26.03  52.481  82.24  549.541  100.00  5754.399  100.00 100.00  0.052  0.00  0.550  1.06  5.754  29.26  60.256  84.98  630.957  100.00  6606.934  0.060  0.00  0.631  1.40  6.607  32.51  69.183  87.59  724.436  100.00  7585.778  100.00  0.069  0.00  0.724  1.79  7.586  35.80  79.433  90.04  831.764  100.00  8709.636  100.00  10000.000  100.00  0.079  0.00  0.832  2.22  8.710  39.12  91.201  92.28  954.993  100.00  0.091  0.00  0.955  2.73  10.000  42.50  104.713  94.28  1096.478  100.00  Malvern Instruments Ltd. ^ ^ Malvern, UK Tel := +[44] (0) 1684-892456 Fax +(44j (0) 1684-892789  ^  ^ Maslersizer 2000 Ver. 5.1 ^ Serial Number : 34403-197  107  ^  File name: CVRD Record Number 15 17 May 2004 12:17:13 PM  Appendix F: Electro-acoustic results for individual and mixed mineral samples  108  ^  File: Large Silica  ^  Date printed: 3/27/2008  Colloidal Dynamics m^L  '^  Analysis Date Standard Calibraticid D. ,  ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT Measurement Date.^Thursday, 3 February 2005^Min Fred 0.30 MHz^[Speed: normal] Measurement Time,^15 22 01^  Version:^2.00 ,r;  Thu, 3 February 2005 1523:00  No background file used  Thu, 3 February 2005 0938:00  no comment entered  ConcentratIon: Density: Tifrant VoluMe Added'  0.863  Suspension Properties: Sample Volume (initialy. . Particle Concentrationfippat  225.963  :  10.98 Conductivity (initial):^  0.000  mS/cm  0.866  -^-,^  1.000  -r.......--  --  -  2 00 _^4.00 ^ 690 _^8 DO^ 10 00^ 12,00 ? ^-o.i ocP_00 ^ u 0.800 in  ^-0200^  5- 0.600 -1---  P^1  a.^  ^a-0.300^-^  i 0.400 -4 =  I t^1:: g 0.200 (..) 0.000 -,--- ----^..__. 0.00^2.00^4.00^6.00^8.00^10.00^12.00  ^w o -0.400^  -0.500 -0.600^  pH  pH^  Page: 1  File: Large Silica  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  No. Measurement Speed [hh:mm:ss] [Mins] [mSlc m] [rpm] [mPaN] [nm-1] [C] ^ ^ ^ ^ ^ ^ ^ ^ 1434:54 1 Inf 0.00 23.5 3.09 0.389 130 -0.396 B ^ ^ ^ ^ ^ ^ ^ ^ 2 1437:25 23.3 -0.404 2.52 3.52 0.248 130 7.19 B ^ ^ ^ ^ ^ ^ ^ ^ 4.72 1439:37 23.3 3 4.00 0.218 130 -0.416 6.08 B ^ ^ ^ ^ ^ ^ ^ ^ 4 1442:08 7.23 23.2 4.45 0.211 130 -0.425 5.76 B ^ ^ ^ ^ ^ ^ ^ ^ 5 1444:19 9.42 23.2 4.96 0.211 130 -0.430 5.63 B ^ ^ ^ ^ ^ ^ ^ ^ 1447:10 12.27 23.1 6 5.47 0.215 130 -0.439 5.52 B ^ ^ ^ ^ ^ ^ ^ ^ 1450:21 15.45 23.1 7 5.95 0.220 130 -0.446 5.42 B ^ ^ ^ ^ ^ ^ ^ ^ 1454:54 23.0 130 -0.452 20.00 6.48 0.226 5.33 B 8 ^ ^ ^ ^ ^ ^ ^ ^ 9 1457:25 22.52 23.0 6.94 0.229 130 -0.453 5.29 B ^ ^ ^ ^ ^ ^ ^ ^ -0.457 B 10 1459:57 25.05 23.0 7.49 0.231 130 5.24 ^ ^ ^ ^ ^ ^ ^ ^ B 1502:49 23.0 8.02 0.234 130 -0.457 5.18 27.92 11 ^ ^ ^ ^ ^ ^ ^ ^ 130 -0.457 B 1504:59 30.08 23.0 8.51 0.238 5.12 12 ^ ^ ^ ^ ^ ^ ^ ^ -0.459 B 130 5.03 13 1508:11 33.28 23.0 8.96 0.246 ^ ^ ^ ^ ^ ^ ^ ^ -0.467 4.91 B 1511:43 9.47 0.274 130 14 36.82 23.0 ^ ^ ^ ^ ^ ^ ^ ^ -0.484 B 9.98 0.342 130 4.84 1515:14 40.33 23.0 15 ^ ^ ^ ^ ^ ^ ^ ^ B 130 4.88 43.87 10.48 0.506 -0.507 1518:46 23.0 16 ^ ^ ^ ^ ^ ^ ^ ^ B 10.98 0.866 130 -0.516 4.96 47.12 22.9 17 1522:01  Page: 2  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background Added^Volume Concentration Filename [m l] [ml] Nut%] ^ ^ ^ 0.00 225.10 NaN No background correction ^ ^ ^ 0.12 225.22 0.000 No background correction ^ ^ ^ 0.14 225.24 0.000 No background correction ^ ^ ^ 0.15 225.26 0.000 No background correction ^ ^ ^ 0.16 225.26 0.000 No background correction ^ ^ ^ 0.17 225.27 0.000 No background correction ^ ^ ^ 0.18 225.28 0.000 No background correction ^ ^ ^ 0.19 225.29 0.000 No background correction ^ ^ ^ 0.20 225.30 0.000 No background correction ^ ^ ^ 225.31 0.21 0.000 No background correction ^ ^ ^ 225.31 0.000 No background correction 0.21 ^ ^ ^ 0.000 No background correction 0.22 225.32 ^ ^ ^ 0.24 225.34 0.000 No background correction ^ ^ ^ 0.28 225.38 0.000 No background correction ^ ^ ^ 0.36 225.46 0.000 No background correction ^ ^ ^ 225.62 0.000 No background correction 0.52 ^ ^ ^ 0.000 No background correction 0.86 225.96  File: Small Silica  ^  C olloidal  ^M  Date printed: 3/27/2008  ZetaProbe Potennometric Series Titration Report - Summary^ESA MEASUREMENT Dvna^cs^Measurement Date:^Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] r,t  e  Measurement Time^12:09:30^  2.00  Version:  GeneraPeat Analysis Date.  Tue. 29 March 2005 1210:30  Standard Calibration Date.  Tue 29 March 2005 1033:31  Bacjcground File:,  No background file used  -  no comment entered  Comment; Titrant Data [Right]:  Titrant Data [Left]:  Titrant ID. Concentration:  KOH (10%)  Concentration:  0 giml  Density:  Density,  Titrant Volume Added:  Titrant Volume Added:  7.295 m  Suspension Properties: Sample Volume (initial):  Sample Volume (current):  Particle Concentration (initial):  Particle Concentration (current):  pH (initial):  pH (current), Conductivity (current):  Conductivity (initial): ESA vs. pH  Coluctivity vs.H  0.000 -; 0. 0^2 00^4.00^6.00^8.00^10.00^1") nn -0.500 E -1.000 ct -1.500  0.800 0.700 in 0.600 E 0.500 0.400 t 0.300 2 0.200  E  8 0.100 0.000 0.00^2.00  -2.000 pH  ^  4.00  ^  6.00 pH  ^  8.00  ^  10.00^12.00  File: Small Silica  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor No. Measurement^ [Mins] [hh:mm:ss] [C]  [ mS/c m ]  Speed [rpm]  ESA [mPaN]  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle [nm-1]  Added^Volume Concentration [ml] [ml] [wt %]  Background Filename  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1114:23 0.00 20.3 3.08 0.097 140 Inf -0.877 B 0.00 220.06 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1117:39 3.27 20.4 3.63 0.069 140 221.03 2 -0.910 1.30 B 0.97 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6.20 140 1.21 1120:35 20.4 3.98 0.067 -0.952 B 1.09 221.16 3 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1123:46 9.38 4.41 0.068 140 -0.992 1.16 B 1.20 20.5 221.26 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.91 0.071 5 1126:58 12.58 20.6 140 -1.029 1.15 B 1.30 221.36 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1130:30 20.7 5.47 0.075 B 1.40 16.12 140 -1.067 1.13 221.46 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.48 No background correction 1133:21 18.97 20.8 5.98 0.079 140 -1.092 1.13 221.54 0.000 7 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.55 221.61 1136:32 20.8 6.44 0.082 140 -1.115 1.13 0.000 8 22.15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.62 221.68 0.000 No background correction 25.70 20.9 7.05 0.085 140 -1.140 1.12 9 1140:05 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ -1.164 1.12 221.75 21.0 7.47 0.088 140 B 1.68 0.000 No background correction 1143:16 28.88 10 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.77 221.83 -1.199 1.11 0.000 No background correction 21.0 7.94 0.091 140 1146:29 32.10 11 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.91 221.97 0.000 8.46 0.097 140 -1.253 1.10 1150:02 35.65 21.1 12 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 222.22 140 -1.322 1.10 B 2.15 8.95 0.109 40.27 21.2 13 1154:39 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 222.66 0.000 No background correction 140 -1.395 1.12 B 2.59 9.45 0.135 44.12 21.2 14 1158:30 ^ ^ ^ ^ ^ ^-1.476^1.32^B 3.34^223.41^0.000^No background correction 140 9.97 0.241 1202:07 47.73 21.3 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 1.40 B 4.68 224.74 140 -1.554 10.47 0.381 51.37 21.4 1205:45 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 227.36 0.000 -1.583 1.52 B 7.29 140 21.4 10.98 0.689 55.12 17 1209:30  Page: 2  File: Magnetite  ^  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dynamics ea h ers  Measurement Date:^Thursday, 3 February 2005^Min Freq 0.30 MHz^[Speed: normal]  L'^EP t'^t-  Measurement Time:^10:52:17^  Version:^2.00  General Data: • Analysis Date:  Thu. 3 February 2005 1053:17  Background File  No background file used  Standard Calibration Date  Thu. 3 February 2005 0938:00  Coniment  no comment entered  Titrant Data [Left]:  Titrant Data [Right]:  Titrant ID.  Titrant  Concentration:  CMol/L  Density:  C g/ml  Titrant Volume Added:  0 ml  KOH (10,0  Concentration: . Density: Titrant Volume Added:  1.519 rp  Suspension Properties: Sample Volume (initial).  255.6 ml  Particle Concentration (current):  pH (initial):  3.39  Conductivity (initial):  0.342 mS/cm  pH (current):  10.96  Conductivity (current):  0.835  C2ncu cti*ty vs.  ESA vs. pH -_0.600  1.000 ^  0.400 -  0.800  0.200  0.600  o_ 0.000 -0.400  4E1 0.400 -! z g 0.200  -0.600  0.000  -0.20CP-P 0 Ili  257.122  Sample Volume (current):  Particle Concentration (initial):  10.00^1200  _ 2 DO_  0.00  -0.800 -  2.00^4.00^6.00^8.00^10.00^12.00 pH  pH  e  Page: 1  File: Magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potenfometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background No. Measurement Speed Added^Volume Concentration Filename [hh:mm:ss] [rpm] [Mins] [C] [m5/cm] [mPa/V]^[nm-1] [ml] [ml] [wt%] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 3.39 0.342 1000:38 0.00 19.9 145 0.419 Inf A 0.00 255.60 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1006:36 5.97 3.45 0.331 145 B 0.23 0.427 19.9 6.31 255.83 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 B 0.51 1008:48 256.11 8.17 20.0 4.01 0.293 145 0.334 4.00 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 4.44 0.293 256.17 1011:39 140 B 0.56 11.02 0.290 3.79 0.000 20.1 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 5 1015:10 14.53 20.1 4.99 0.307 0.243 3.69 B 0.63 256.23 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1018:21 17.72 20.1 5.46 0.321 140 0.199 3.64 B 0.67 0.000 256.27 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 5.96 0.336 140 3.61 1021:13 20.58 20.2 0.138 B 0.72 256.32 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1024:04 20.3 6.45 0.350 140 3.57 B 0.77 256.37 0.000 8 No background correction 23.43 0.062 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 7.05 0.362 3.50 B 0.82 256.42 0.000 No background correction 9 1026:34 25.93 20.3 -0.028 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7.54 0.370 140 3.46 B 0.86 256.46 0.000 No background correction 1029:06 28.47 20.3 -0.065 10 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 7.96 0.378 -0.096 3.43 B 0.89 256.49 0.000 No background correction 11 1031:38 31.00 20.4 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3.40 B 0.94 256.54 0.000 No background correction 8.47 0.389 140 -0.136 1035:11 20.4 12 34.55 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 256.58 0.000 140 3.38 No background correction B 0.98 1038:22 37.73 20.5 8.97 0.402 -0.183 13 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 3.38 B 1.03 256.63 20.5 9.45 0.422 140 -0.249 14 1041:39 41.02 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.10 256.70 0.000 9.98 0.469 140 -0.348 3.45 1045:32 44.90 20.6 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 256.84 0.000 No background correction 140 -0.458 B 1.24 20.6 10.48 0.573 3.59 16 1049:05 48.45 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 257.12 0.000 No background correction B 1.52 140 -0.593 20.7 10.96 0.835 3.91 51.65 17 1052:17  Page: 2  File: Hematite  ^  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dynamics^Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed: normal] ea fer^in^C. t. lit I(^rn^; •^_■ frt  Measurement Time^10:58:31^  Version  2.00  :^  General Data: Analysis Date:  Thu. 21 April 2005 1059'39  Background File  No background file used  Standard Calibration Date  Thu, 21 April 2005 0945:56  Comment  no comment entered  Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  Titrant ID:  Concentration  Concentration:  Density  Density.  Titrant Volume Added.  Titrant VOlume Added:  1.91Mol/L 0 girni 6.613 rn1  Suspension Properties: Sample Volume (initial).  220.48  Particle Concentration (initial)  Sample Volume (current):^  pH (initial)  pH (current):^ 0.128 mS/cm  Conductivity (initial).  .  Particle Concentration (current):  ESA vs. pH  10.98  Conductivity (current)^l^0.792 mS/crn' Conductivitvs. pH .^_  .  1.500 1.000 0.500 a. E 0.000 -0 50& DIC)  2.  ^4 00^6 00^8 DO^10.00^121 00  -1.000 -  ^ —r-0.000 0.00^2.00^4.00^6.00^8.00^10.00^12.00  -1.500  pH  Page: 1  File: Hematite  ^  Date printed: 3/27/2008  ZetaP robe Potentiometric Series Titration Report - Measurement Data ^  ESA MEASUREMENT ^ ESA^Kappa^Total Volume^Sample^Particle Background ^ ^ No. Measurement^ Speed Added^Volume Concentration Filename ^ ^ ^ ^ ^ ^ ^ ^ [hh:mm:ss] [Mins] [rpm] [mS/cm] [mPa/V]^[nm-1] [ml] [ml] [C] [wt%] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1004:44 0.00 22.5 3.07 0.128 135 1.173 Inf A 0.00 220.48 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1007:41 2.95 22.5 3.46 0.101 135 1.73 1.065 B 0.81 221.29 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1010:37 3 5.88 22.5 1.51 3.97 0.096 135 0.892 B 1.01 221.49 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 135 1013:48 9.07 22.6 4.46 0.101 1.44 0.769 B 1.18 221.65 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1017:00 12.27 22.6 4.96 0.110 135 0.690 1.40 221.82 B 1.34 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1020:33 6 15.82 22.7 5.49 0.120 135 0.628 1.38 B 1.51 222.00 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1023:45 19.02 22.7 5.97 0.129 135 1.37 0.585 B 1.65 222.13 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8 1026:17 21.55 22.7 6.52 0.137 135 0.519 1.36 B 1.79 222.27 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 1029:30 24.77 22.8 6.99 0.144 135 0.464 1.36 222.37 B 1.89 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1032:46 10 28.03 22.8 7.48 0.150 135 0.372 No background correction 1.34 B 2.00 222.49 0.000 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 11 1035:58 31.23 22.9 7.94 0.156 135 222.61 0.234 1.33 B 2.12 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1039:10 22.9 135 12 34.43 8.45 0.205 0.024 1.48 B 2.25 222.74 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 13 1042:42 37.97 23.0 135 222.89 0.000 No background correction 8.97 0.218 -0.282 1.48 B 2.41 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1047:14 23.0 9.49 0.248 135 B 2.67 223.15 0.000 No background correction 14 42.50 -0.614 1.50 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 135 9.99 0.315 B 3.18 223.66 0.000 No background correction 46.47 1051:12 23.1 -0.908 1.55 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 224.76 No background correction 135 -1.163 1.61 B 4.28 0.000 50.07 10.49 0.458 16 1054:48 23.1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 227.09 0.000 No background correction 135 -1.357 1.71 B 6.61 10.98 0.792 17 1058:31 53.78 23.2 Meas.^Time of^Elapsed Time Temperature pH Conductivity^Motor  ^  Page: 2  File: Goethite  ^  Date printed: 3/27/2008  Co oidai Dynamics e a ita  I.- 1 1 tr. 1^m^men t  ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT ^  Measurement Date:  Thursday, 3 February 2005  Measurement Time:  13:20:32^  Min Freq 0.30 MHz^[Speed: normal] Version:^2.00  General Data Analysis Date:  Thu 3 February 2[105 1321 31  Background File:  Standard Calibration Date:  Thu. 3 February 2005 0938:00  Comment Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  KOH (10%)  Titrant ID:  Concentration.  Mol/L  Concentration:  Density:  g/ml  Density.  0 ml  Titrant Volume Added.  19 MoUL 0 gimi  Titrant Volume Added:  0 9'6 ml  Suspension Properties: 256.117_ ml  Sample Volume (initial).  Sample Volume (current):  Particle Concentration (initial):  Particle Concentration (current)  pH (initial)  H (current)  10.96  Conductivity (initial):  Conductivity (current'  0.834 mS/cm  uctivity vs. pH  ESA vs. pH 3.000 --  1.000 0 0.800  2.000  F  0 Ve  5-• 0.600 P c.  t000  t 0.400  a 0.000 0.00 -1.000  6.00  "I  r  cs 0.200  12:00  -  0.000^.0.00^2.00^4.00  -2.000  6.00^8.00^10.00^12 00 pH  pH  Page: 1  File: Goethite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  Kappa^Total Volume^Sample^Particle  No. Measurement Speed [hh:mm:ss] [Mins] [C] [mS/cm] [rpm] [mPa/V]^[nm-1] ^ ^ ^ ^ ^ ^ ^ ^ 1 1233:31 20.8 3.41 0.190 145 Inf 0.00 2.483 B ^ ^ ^ ^ ^ ^ ^ ^ 2 1236:03 2.53 20.8 3.97 0.168 145 2.355 7.83 B ^ ^ ^ ^ ^ ^ ^ ^ 1238:55 5.40 20.8 4.46 0.174 145 3 2.336 6.52 B ^ ^ ^ ^ ^ ^ ^ ^ 4 1241:47 8.27 20.9 4.94 0.183 145 2.261 5.99 B ^ ^ ^ ^ ^ ^ ^ ^ 5 1245:18 11.78 5.46 0.193 145 2.056 5.66 B 20.9 ^ ^ ^ ^ ^ ^ ^ ^ 1248:09 6 14.63 21.0 5.94 0.206 145 1.746 5.48 B ^ ^ ^ ^ ^ ^ ^ ^ 7 1251:20 17.82 6.45 0.279 145 1.480 5.88 B 21.0 ^ ^ ^ ^ ^ ^ ^ ^ 8 1254:32 21.02 21.0 6.96 0.295 145 1.261 5.61 B ^ ^ ^ ^ ^ ^ ^ ^ 1257:23 23.87 21.1 145 5.39 B 7.46 0.309 1.037 9 ^ ^ ^ ^ ^ ^ ^ ^ 10 1300:35 27.07 145 0.810 5.20 B 21.1 7.93 0.321 ^ ^ ^ ^ ^ ^ ^ ^ 145 5.02 B 11 1304:07 30.60 21.1 8.47 0.334 0.520 ^ ^ ^ ^ ^ ^ ^ ^ 145 0.234 4.87 B 12 1307:21 33.83 21.2 8.96 0.348 ^ ^ ^ ^ ^ ^ ^ ^ B 145 4.75 9.45 0.371 -0.076 13 1310:32 37.02 21.2 ^ ^ ^ ^ ^ ^ ^ ^ 4.69 B 145 -0.448 14 1314:04 40.55 21.3 9.98 0.425 ^ ^ ^ ^ ^ ^ ^ ^ B -0.874 4.73 145 10.47 0.546 15 1317:20 43.82 21.3 ^ ^ ^ ^ ^ ^ ^ ^ B 145 -1.318 4.87 47.02 21.3 10.96 0.834 16 1320:32  Page: 2  ESA MEASUREMENT  Background Added^Volume Concentration Filename [ml] [ml] [wtVo] ^ ^ ^ 0.00 255.14 NaN No background correction ^ ^ ^ 0.08 255.22 0.000 No background correction ^ ^ ^ 0.11 255.25 0.000 No background correction ^ ^ ^ 0.14 255.28 0.000 No background correction ^ ^ ^ 0.17 255.31 0.000 No background correction ^ ^ ^ 0.19 255.33 0.000 No background correction ^ ^ ^ 0.22 255.36 0.000 No background correction ^ ^ ^ 0.26 255.40 0.000 No background correction ^ ^ ^ 0.30 255.44 0.000 No background correction ^ ^ ^ 255.47 0.33 0.000 No background correction ^ ^ ^ 0.37 255.51 0.000 No background correction ^ ^ ^ 255.55 0.000 No background correction 0.41 ^ ^ ^ 0.000 No background correction 0.46 255.60 ^ ^ ^ 0.53 255.68 0.000 No background correction ^ ^ ^ 255.82 No background correction 0.68 0.000 ^ ^ ^ No background correction 256.12 0.000 0.98  File: 25silica75magnetite  Date printed: 3/27/2008  Colloidal Dynamics  e^e rs gar • cDif c id 111 aaa^s me nt.  ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT Measurement Date:^Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] Version:^2.00  Measurement Time:^15:57:45^  General Data: Analysis Date.  Tue. 29 March 2005 1550:45  Background File .  No background file used  Standard Calibration Date.  Tue. 29 March 2005 1033:51  Comment:  no comment entered  Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  Titrant ID:  Concentration.  Concentration.  Density  Density:  Titrant Volume Added:  Titrant Volume Added:  Suspension Properties: Sample Volume (current):  Sample Volume (initial) . Particle Concentration (initial)  Particle Concentration (current):  .  pH (initial)  pH (current):  Conductivity (initial):  Conductivity (current)'  ConductLyity vs. pH  ESA vs. pH  0.800 ? 0.700 6 0.600 0.500 f, 0.400 t) 0.300 eg 0.200 8 0.100 0.000 0.00 2.00  0.400 0.200 i  -  F 0.000 0.. -0.20d)  E  < -0.400 LLI  .  -  -0.600 -0.800 -1.000 -  4.00  6.00 pH  pH  Page: 1  8.00  10.00  12.00  File: 25silica75magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor^ESA  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background  Speed [rpm]  Added^Volume Concentration Filename [mS/cm] [mPa/V]^[nm-1] [Mins] [ml] [ml] [wt%] [C] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1507:25 21.5 3.09 0.303 140 Inf 0.00 0.300 B 0.00 220.20 NaN No background correction No. Measurement [hh:mm ss]  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1510:00 3.48 0.232 140 2 2.58 21.5 0.225 3.09 B 0.58 220.78 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3.96 0.218 140 1512:51 5.43 21.5 0.176 2.42 B 0.90 3 221.09 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1516:07 4.46 0.221 140 4 8.70 21.6 0.143 2.18 B 1.12 221.32 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.97 0.229 1519:18 11.88 21.6 140 -0.113 2.05 B 1.31 5 221.51 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1522:52 15.45 21.6 5.47 0.240 140 -0.086 1.97 B 1.49 221.69 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.65 7 21.7 5.97 0.248 140 -0.100 1.90 221.85 0.000 1526:03 18.63 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 21.7 6.49 0.257 140 -0.175 1.83 B 1.83 222.04 0.000 No background correction 21.50 1528:55 8 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ -0.244 1.78 21.8 7.03 0.264 140 B 2.02 222.22 0.000 1532:06 24.68 No background correction 9 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7.62 0.270 140 -0.295 1.72 B 2.20 222.40 0.000 26.95 21.8 No background correction 10 1534:22 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.68 222.54 0.000 7.95 0.275 140 -0.322 B 2.33 No background correction 1536:53 29.47 21.8 11 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 222.75 0.000 No background correction 1.63 B 2.55 21.9 8.46 0.283 140 -0.368 1540:05 32.67 12 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 222.98 0.000 No background correction 1.60 B 2.78 140 -0.424 21.9 8.94 0.294 13 1543:17 35.87 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 223.28 0.000 No background correction 140 B 3.08 9.47 0.314 -0.502 1.57 22.0 1546:55 39.50 14 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.56 B 3.54 223.74 0.000 No background correction 140 -0.585 22.0 9.96 0.356 1550:28 43.05 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 224.66 0.000 1.58 B 4.46 10.46 0.456 140 -0.680 22.1 1554:24 46.98 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction B 6.31 226.51 1.64 10.96 0.694 140 -0.781 22.2 1557:45 50.33 17  Page: 2  File: 50silica50magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dynamics l eader;^  Measurement Date:  t; I^vm^n t  Measurement Time  Tuesday, 29 March 2005^Min Freq 0.30 MHz^[Speed: normal] :  13:16:30^  Version:^2.00  Genera ata:  Analysis Date:  Tue, 29 March 2005 1317.29  Background Fife:  No background file used  Standard Calibration Date  Tue. 29 March 2005 1033::31  Comment.  no comment entered  Titrant Data [Right]:  Titrant Data [Left]:  Titrant 1D:  Titrant ID: Concentration: Density :  ^ g/ml  1 Mol/L 0 /ml' -,  Density:  6.669  Titrant Volume Added:  0 rn  Titrant Volume Added:  NaOH  Concentration:  ^iMol/L  Suspension Properties:  220 16(ml  Sample Volume (initial).  Particle ConcentratiOn (current):  3.11  pH (initial).  Conductivity (current):  mS/cna  Conctectivity vH  ESA vs. pH  0.800  0.000 -0.20d1 P C)  ,  pH (current):  0.251 mS/cm  Conductivity (,initial):  m^ wt%  Sample Volume (current):  vitY,  Particle Concentration (initial)  ^2.00  6. 00  -0.400 EE -0.600 -0.800 -  8. 00  10.00  12  00  7 0.700 0.600 0.500 0.400 0.300 -2 0.200 0.100 0.000  -1.000  0.00  -1.200  - -  2.00  4.00  6.00 pH  pH  Page: 1  8.00  10.00  1  -  12.00  File: 50silica50magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  ESA MEASUREMENT  Motor Kappa^Total Volume^Sample^Particle ESA Background No. Measurement Speed Added^Volume Concentration Filename [hh:mm ss] [Mins] [C] 0)S/cm]^[rpm]^[mPa/V]^Inm-11 [ml] [ml] [wt%] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1226:35 21.0 3.11 0.251 0.00 140 -0.141 Inf B 0.00 220.16 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1229:11 2.60 21.1 3.47 0.199 -0.163 3.28 140 B 0.44 220.60 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 1232:02 5.45 3.95 0.185 140 21.1 -0.197 2.47 B 0.73 220.89 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1235:13 8.63 4.45 0.187 140 21.2 -0.226 2.20 B 0.93 221.09 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1238:25 11.83 21.3 4.95 0.193 140 -0.254 2.06 B 1.09 221.25 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1241:17 14.70 21.3 5.84 0.205 140 -0.329 1.94 B 1.30 221.47 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1245:13 5.94 0.209 18.63 21.4 140 1.92 B 1.37 221.53 0.000 -0.350 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1248:24 21.82 21.4 6.45 0.216 1.85 B 1.51 221.67 8 140 -0.421 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 1251:16 24.68 7.02 0.222 140 1.79 B 1.66 221.82 No background correction 21.5 -0.485 0.000 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 10 1253:47 27.20 21.5 7.51 0.227 140 1.75 B 1.79 221.95 No background correction -0.525 0.000 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 222.17 0.000 No background correction 11 1255:58 29.38 21.6 8.29 0.235 140 -0.582 1.68 B 2.01 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 1258:08 21.6 140 1.65 B 2.12 8.50 0.239 -0.609 222.28 0.000 12 31.55 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 222.51 21.7 8.95 0.251 140 -0.672 1.60 B 2.35 13 1301:44 35.15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 9.45 0.272 140 -0.752 1.57 B 2.67 222.83 21.7 14 1305:16 38.68 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.55 B 3.24 223.40 0.000 No background correction 21.8 9.97 0.323 140 -0.841 15 1309:08 42.55 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 224.50 0.000 No background correction 1.57 B 4.34 21.8 10.48 0.441 140 -0.933 16 1312:49 46.23 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 6.67 226.83 0.000 -1.024 1.64 21.9 10.99 0.734 140 49.92 17 1316:30  Page: 2  File: 75silica25magnetite  ^  Colloidal Dynamics e^1^m e 5jr anent  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT Measurement Date:  Tuesday, 29 March 2005  Min Freq 0.30 MHz^[Speed: normal]  Measurement Time:  14:55:43  Version:^2.00  Background File:  No background file used  Comment;  10 comment entered  General Data. Analysis Date'  Tue. 29 March 2005 1456.42  Standard Calibration Date:  Tue. 29 March 2005 1033:21  Titrant Data [Right):  Titrant Data [Left]:  Titrant ID:  Titrant ID: Concentration  .  Density Titrant Volume Added;  Suspension Pro  Mol/L  Concentration .  1  g/mf  Density:  0 g%r1 1,'. ,_  0 ml  Sample Volume {current):  Particle Concentration (initial):  Particle Concentration (current):  pH {initial):  pH (current) .  10.97  Conductivity (current):  Conductivity (initial):  Conductrvity vs. pH  ESA vs. pH  0.800  0.000 2 00 _  6 Da^3.00_^10.00^17H00  7 0.700 as 0.600 -r E. 0.500 -I 0.400 0.300 0.200 8 0.100 -f 0.000 . 0.00^2.00^4.00  -0.400 a. -0.600 E  < -0.800 W  } .  6.478  es:  Sample Volume (initial):  -0.20CP-b 0 -- -  -  Titrant Volume Added;  -1.000 -1.200 -1.400 -  6.00  8.00  10.00  pH  pH  :07,..V.Zriga=417417.X4WallfiNiaM,  Page: 1  12 00  File: 75silica25magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm.ss]^[Minn]  Motor  ESA  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Speed [rpm]^[mPa/V]^[nm-1]  Added^Volume Concentration [ml] [ml] [wt%]  Background Filename  [C] [mS/cm] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Inf 1 1402:24 0.00 21.4 3.08 0.238 140 225.12 -0.499 B 0.00 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1405:00 2.60 21.4 3.48 0.174 140 2.89 -0.528 B 0.51 225.63 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1407:50 3.97 0.160 3 5.43 21.5 140 2.27 B 0.76 -0.577 225.88 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1411:01 8.62 21.6 4.46 0.160 140 2.06 -0.614 B 0.92 226.04 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1414:13 11.82 4.94 0.165 140 1.97 21.7 -0.644 B 1.05 226.16 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1417:26 15.03 21.7 5.43 0.171 140 1.91 B 1.15 -0.674 226.27 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1420:42 18.30 21.8 5.93 0.176 140 -0.709 1.86 B 1.25 226.37 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1423:53 140 8 21.48 6.45 0.181 1.81 0.000 21.8 -0.752 B 1.36 226.48 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1426:25 24.02 21.9 7.00 0.185 140 1.77 9 -0.791 B 1.45 226.57 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.73 10 1429:37 27.22 21.9 7.45 0.190 140 B 1.56 226.67 0.000 No background correction -0.825 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.69 B 1.68 226.80 0.000 11 1432:49 30.42 No background correction 21.9 7.93 0.195 140 -0.863 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.86 No background correction 226.98 0.000 12 1436:22 33.97 22.0 8.45 0.202 140 -0.920 1.64 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 2.12 227.24 No background correction 13 1441:55 39.52 8.96 0.216 140 -0.997 1.58 0.000 22.1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9.45 0.241 -1.078 1.55 B 2.48 227.60 No background correction 1445:10 42.77 22.1 140 0.000 14 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.53 228.24 9.96 0.296 140 -1.161 B 3.12 0.000 No background correction 15 1448:42 46.30 22.1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 4.26 229.38 0.000 -1.245 1.55 No background correction 16 1452:23 49.98 22.2 10.46 0.415 140 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^-1.314 231.60 0.000 No background correction 1.62 B 6.48 10.97 0.685 140 1455:43 53.32 17 22.2  Page: 2  • File: 25silica75hematite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dynamics^Measurement Date:^Thursday, 21 April2005^Min Freq 0.30 MHz^[Speed: normal] leede^  ige.1^^,  -  tment  Measurement Time ^14-14:16^  Version^2.00  General Data:  Analysis Date:  Thu.^  Standard Calibration Date:  Thu 21 April2005 0945:56  April2005 1415:15  Titrant Data [Left]:  Background File:  No background file used  Comment:  no comment entered  Titrant Data [Right]:  Titrant ID:  Titrant ID:^  KOH  Concentration:  Mon_  Concentration^  Density:  giml  Density.^  Titrant Volume Added'  ml  Titrant Volume Added.^  1.8 Mol/L..., 0 giml  5.864 rr4.  ,^._.  Suspension Properties:  Sample Volume (initial):  Sample Volume (current):  Particle Concentration (initial):  Particle Concentration (current): pH (current):  pH (initial). Conductivity (initial). ESA vs. pH  mS/cm  Conductivity (current): Conductiyity vs. pH  1.000 0.500  0.000 -o.5ocP• 2,  0  -1.000 -r -1.500 -2.000  0.800 •  0.700  r o 0.600  -  ▪  0.500 0.400 tl) 0.300 = 2 0.200  -  8 0.100 0.000 0.00  2.00^4.00  6.00 pH  Page: 1  8.00^10.00^12.00  ^  File: 25silica75hematite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm:ss]  [Mins]  ^  [CI  ^ ^ ^ 1 22.7 3.09 ^0.00 1322:43 ^ ^ ^ 2 1325:18 22.8 3.52 2.58 ^ ^ ^ 1328:09 5.43 22.9 3.98 3 ^ ^ ^ 4 8.62 22.9 4.44 1331:20 ^ ^ ^ 5 1334:32 11.82 23.0 4.93 ^ ^ ^ 6 1337:44 15.02 23.0 5.45 ^ ^ ^ 7 1340:56 18.22 23.1 5.98 ^ ^ ^ 8 1344:13 21.50 23.1 6.47 ^ ^ ^ 23.1 7.00 1347:24 24.68 9 ^ ^ ^ 10 1349:36 26.88 23.1 7.56 ^ ^ ^ 1352:47 23.1 7.93 11 30.07 ^ ^ ^ 8.45 1355:58 33.25 23.1 12 ^ ^ ^ 8.98 13 1359:30 36.78 23.2 ^ ^ ^ 9.45 14 1403:02 40.32 23.1 ^ ^ ^ 15 1406:58 44.25 23.2 9.99 ^ ^ ^ 10.49 1410:34 47.85 16 23.2 ^ ^ ^ 23.2 10.98 17 1414:16 51.55  Motor  Speed [rpm]^[mPa/V]^[nm-1]  [mS/cm]  0.210 0.151 0.110 0.113 0.120 0.129 0.137 0.145 0.152 0.157 0.204 0.211 0.223 0.247 0.307 0.438 0.727  135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135  ESA MEASUREMENT  ESA^Kappa^Total Volume^Sample^Particle  ^ 0.750 Inf ^ 0.706 2.83 ^ 0.617 2.04 ^ 0.516 1.87 ^ 0.432 1.77 ^ 0.365 1.70 ^ 0.309 1.65 ^ 0.253 1.62 ^ 0.181 1.59 ^ 0.076 1.56 ^ -0.038 1.72 ^ 1.68 -0.239 ^ 1.64 -0.512 ^ 1.63 -0.774 ^ -1.049 1.64 ^ -1.284 1.67 ^ -1.449 1.74  Page: 2  Added^Volume Concentration [ml] [ml] [wt%]  B B B B B B B B B B B B B B B B B  0.00 0.45 0.63 0.78 0.92 1.07 1.21 1.32 1.43 1.54 1.65 1.80 1.98 2.23 2.74 3.79 5.86  220.12 220.57 220.75 220.90 221.04 221.19 221.33 221.45 221.56 221.67 221.78 221.92 222.11 222.35 222.87 223.91 225.99  NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  Background Filename  No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction  File: 50silica50hematite  ^  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Co °Ida! Dyna^cs^ UHL^  s ri  Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed normal] Measurement Time^12:07:15^  Version:^2.00  General Data: Analysis Date:  Thu 21 April 2005 1208.15  Background File'  No background file used  Standard Calibration Date;  Thu 21 April 2005 0945 56  Comment:.  no comment entered  Titrant Data [Left]:  Titrant Data [Right]:  Titrant ID:  Titrant ID:  Concentration.  Concentration.  Density:  Density.  Titrant Volume Added;  0 ml  Titrant Volume Added:  6.177  Suspension Properties: Sample Volume (initial);  220.12  Sample Volume (current):  226.208  Particle Concentration (initial):  Particle . Concentration (current),  pH (initial)  pH (current):  10.98  Conductivity (initial):  Conductivity (durrent)'  0.738  Conductivity vs. pH  ESA vs. pH  0.800 • 0.700 0.600 E. 0.500 P 0.400 0.300 , 10 0.200 -L 10 3 0.100 0.000 -r -  0.500 0.000 7 0 -0.500 0 5000 :P C) E a -1.000 en w -1.500 ^0.00 -2.000  ^2.00  4.00^6.00^8.00^10.00^12 00 pH  PH  Page: 1  File: 50silica50hematite  ^  Date printed: 3/27/2008  ZetaProbe Potenlometric Series Titration Report - Measurement Data ^  ESA MEASUREMENT ^ ESA^Kappa^Total Volume^Sample^Particle Background ^ ^ Added^Volume Concentration No. Measurement^ Speed Filename ^ ^ ^ ^ ^ ^ ^ [C] [rpm]^[mPa/V]^[nm-1] [hh:mm.ss] [Min s] [mSlcm] [ml] [ml] [wt%]  Meas,^Time of^Elapsed Time Temperature pH Conductivity^Motor  ^ ^ ^ 1 1113:17 0.00 22.5 ^ ^ ^ 1115:52 22.6 2 2.58 ^ ^ ^ 3 1118:43 5.43 22.6 ^ ^ ^ 4 1121:54 8.62 22.6 ^ ^ ^ 1125:06 11.82 5 22.6 ^ ^ ^ 6 1128:38 15.35 22.7 ^ ^ ^ 7 1131:49 18.53 22.7 ^ ^ ^ 21.40 8 1134:41 22.7 ^ ^ ^ 9 24.58 22.7 1137:52 ^ ^ ^ 10 1140:44 27.45 22.7 ^ ^ ^ 11 1144:00 30.72 22.7 ^ ^ ^ 22.7 12 1147:11 33.90 ^ ^ ^ 1150:43 37.43 22.8 13 ^ ^ ^ 43.00 14 1156:17 22.8 ^ ^ ^ 46.60 22.8 15 1159:53 ^ ^ ^ 22.8 16 1203:32 50.25 ^ ^ ^ 53.97 22.9 17 1207:15  3.09 3.51 3.97 4.44 4.93 5.46 5.93 6.47 6.96 7.49 7.94 8.43 8.96 9.47 9.97 10.48 10.98  0.140 0.100 0.093 0.096 0.101 0.108 0.114 0.119 0.124 0.129 0.133 0.138 0.149 0.219 0.286 0.423 0.738  135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135  ^  0.127 0.090 0.025 -0.046 -0.090 -0.126 -0.157 -0.200 -0.255 -0.343 -0.457 -0.612 -0.810 -1.008 -1.176 -1.334 -1.447  Page: 2  I of 2.52 2.03 1.86 1.75 1.68 1.65 1.61 1.59 1.56 1.52 1.48 1.44 1.59 1.60 1.64 1.71  B B B B B B B B B B B B B B B B B  0.00 0.38 0.54 0.67 0.79 0.92 1.01 1.10 1.19 1.28 1.39 1.52 1.73 2.09 2.68 3.83 6.18  220.12 220.50 220.66 220.79 220.91 221.03 221.13 221.22 221.30 221.40 221.50 221.64 221.85 222.21 222.80 223.95 226.30  NaN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction No background correction  File: 75silica25hematite  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dyna^ics^Measurement Date:^Thursday, 21 April 2005^Min Freq 0.30 MHz^[Speed: normal] ieduur: ^i^ L n 1 1^3^III  Measurement Time^13:12:16^  Version:^2.00  General Data: Background File:  Analysis Date:  Comment:  Standard Calibration Date. Titrant Data [Left]  Titrant Data [Right]:  .  Titrant ID:  Titrant ID:  Concentration:  Concentration:  Density  Density:  -  KOH 1.9 Mof/L g/mf 6.032 mi '  Titrant Volume Added:,Suspension Properties: Sample Volume (initial): --  Sample Volume(current)  220.08  Particle Concentration (initial):  Particle Concentration (current):  pH (initial):  pH (current)  .  10.96  Conductivity (ctirrent)  0.122 mS/cm  Conductivity (initial):  226.162  ConductivityNs. pH  ESA vs. pH 0.000 0.00^2 OD^4.00^6.00 -0.500 j E -1.000  00  0.800 0.700 c7)- 0.600 g, 0.500 f: 0.400 -[ 0.300 0.200;  7  =  cn uJ  1  0.100^0.000  ^0.00  7  ^2.00  4.00^6.00^8.00^10.00^12 00 pH  pH  Page: 1  File: 75silica25hematite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement  Motor  ESA  Speed [rpm]^[rnPa/V]^[nm-1] [mS /cm ] ^ ^ ^ ^ 0.122 -0.492 Inf B 135 ^ ^ ^ ^ 135 -0.526 2.72 B 0.089 ^ ^ ^ ^ 2.11 B 0.082 135 -0.580 ^ ^ ^ ^ B 0.083 -0.613 1.87 135  [C] [hh:mm ss] [Mins] ^ ^ ^ ^ 22.5 3.11 1 1220:50 0.00 ^ ^ ^ ^ 2 1223:27 22.6 3.49 2.62 ^ ^ ^ ^ 1225:57 5.12 22.6 3.93 3 ^ ^ ^ ^ 22.7 4.42 4 1229:10 8.33 ^ ^ ^ ^ ^ ^ ^ ^ 22.7 4.95 0.088 1.76 5 1232:43 11.88 135 -0.641 B ^ ^ ^ ^ ^ ^ ^ ^ 1235:55 15.08 22.7 5.57 0.094 135 -0.669 1.68 B 6 ^ ^ ^ ^ ^ ^ ^ ^ 22.7 5.94 0.098 135 -0.684 1.65 B 1239:08 18.30 7 ^ ^ ^ ^ ^ ^ ^ ^ 6.45 0.102 135 -0.708 1.61 B 1242:20 21.50 22.8 8 ^ ^ ^ ^ ^ ^ ^ ^ 6.94 0.105 135 -0.740 1.58 B 9 24.72 22.8 1245:33 ^ ^ ^ ^ ^ ^ ^ ^ 135 7.44 0.109 -0.795 1.55 B 22.8 10 1248:45 27.92 ^ ^ ^ ^ ^ ^ ^ ^ 1.51 B 7.91 0.113 135 -0.870 31.12 22.8 11 1251:57 ^ ^ ^ ^ ^ ^ ^ ^ B 8.45 0.119 135 -0.990 1.45 34.75 22.9 12 1255:35 ^ ^ ^ ^ ^ ^ ^ ^ 1.41 B 8.97 0.132 135 -1.118 22.9 13 1259:06 38.27 ^ ^ ^ ^ ^ ^ ^ ^ B 9.48 0.200 -1.245 1.55 22.9 135 42.13 14 1302:58 ^ ^ ^ ^ ^ ^ ^ ^ 1.57 -1.364 B 9.98 0.269 135 22.9 15 44.38 1305:13 ^ ^ ^ ^ ^ ^ ^-1.480^ B 1.60 22.9 10.48 0.408 135 48.05 16 1308:53 ^ ^ ^ ^ ^ ^ ^ ^ B -1.554 1.66 10.96 0.689 51.43 23.0 135 1312:16 17  Page: 2  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background  Added^Volume Concentration Filename [ml] [ml] [wt%] ^ ^ ^ 0.00 220.08 NaN No background correction ^ ^ ^ 0.29 220.37 0.000 No background correction ^ ^ ^ 0.44 220.52 0.000 No background correction ^ ^ ^ 0.57 220.65 0.000 No background correction ^ ^ ^ 0.69 220.76 0.000 No background correction ^ ^ ^ 0.80 220.87 0.000 No background correction ^ ^ ^ 0.87 220.95 0.000 No background correction ^ ^ ^ 0.94 221.02 0.000 No background correction ^ ^ ^ 1.01 221.09 0.000 No background correction ^ ^ ^ 221.17 0.000 No background correction 1.09 ^ ^ ^ 1.20 221.27 0.000 No background correction ^ ^ ^ 1.35 221.43 No background correction 0.000 ^ ^ ^ 1.59 No background correction 221.67 0.000 ^ ^ ^ No background correction 1.99 222.07 0.000 ^ ^ ^ No background correction 2.63 222.71 0.000 ^ ^ ^ No background correction 223.95 0.000 3.87 ^ ^ ^ No background correction 226.16 6.08 0.000  File: 25silica75goethite  ^  Date printed: 3/27/2008  Colloidal Dynamics r-1^  tri^l3 t  ZetaProbe Potentiometric Series Titration Report - Summary  ESA MEASUREMENT  Measurement Date:  [Speed: normal]  ^ Wednesday, 30 March 2005 Min Freq 0.30 MHz ^ ^ Measurement Time: 14:16:32 Version: ^  ',-AnalysisDate;  Wed, 30 March 2005 1417:31  No background file used  .r,Stanctar i Calibration'  Wed, 30 March 2005 1048:03  no comment entered  2.00  Titrant  .^ . Titrant JD: Cobcehtration.:.  Moi/L g/mI  Titrant VolurrieAdde  nil  Suspension Properties*.':` Sample Volume (i.nitia);,,'  rrerit):  Particle Concentratioil  P8rticle:Concentration, (ourent  pH  • pFl-Kourrent)J bond^ (cur:rnt)  Conductivity (initial): -  226.693 10.98 0.739  pH  2.500 ^0.800 ^ 7 0.700 2.000 -F — 0.600 1.500 i- E. 0.500 1.000 + 0.400 -' 0- 0.500 -I E 0.300 0.000 4 2 0.200 t -0.50Q1-00 0.100 -1.000 ^0.000 ^ -1.500 -I 0.00 -2.000 L ^  2.00^4.00^6.00^8.00^10.00^12.00 PH  Page: 1  File: 25silica75goethite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm ss] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  1325:13 1327:49 1330:40 1333:32 1336:43 1339:40 1342:52 1346:04 1349:16 1351:48 1355:00 1358:37 1402:08 1406:00 1409:38 1412:53 1416:32  [Mins] 0.00 2.60 5.45 8.32 11.50 14.45 17.65 20.85 24.05 26.58 29.78 33.40 36.92 40.78 44.42 47.67 51.32  [CI 21.3 21.4 21.4 21.5 21.5 21.5 21.6 21.6 21.6 21.7 21.7 21.7 21.8 21.8 21.8 21.9 21.9  Motor Speed [rpm]  [mS /cm ] 3.08 3.49 3.98 4.46 4.98 5.46 5.97 6.49 6.95 7.42 7.94 8.46 8.96 9.49 9.95 10.46 10.98  0.256 0.190 0.181 0.185 0.192 0.199 0.207 0.218 0.226 0.234 0.242 0.250 0.261 0.284 0.332 0.443 0.739  140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140  ESA [mPa/V] 1.883 1.664 1.618 1.598 1.526 1.381 1.185 0.972 0.811 0.636 0.423 0.183 -0.081 -0.407 -0.744 -1.074 -1.367  Page: 2  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle 1nm-11 Inf 2.79 2.23 2.06 1.97 1.92 1.87 1.82 1.77 1.74 1.69 1.64 1.60 1.57 1.56 1.58 1.66  B B B B B B B B B B B B B B B B B  Background Added^Volume Concentration Filename [ml] [ml] [uvt%] 0.00 220.15 NaN No background correction 0.58 220.73 0.000 No background correction 0.87 221.02 0.000 No background correction 1.04 221.19 0.000 No background correction 221.34 1.19 0.000 No background correction 1.30 221.45 0.000 No background correction 1.43 221.58 0.000 No background correction 221.74 1.59 0.000 No background correction 1.73 221.88 0.000 No background correction 1.87 222.02 0.000 No background correction 2.04 222.19 0.000 No background correction 2.24 222.39 0.000 No background correction 2.46 222.61 0.000 No background correction 2.79 0.000 222.94 No background correction 3.31 223.45 0.000 No background correction 4.29 224.44 0.000 No background correction 0.000 6.54 226.69 No background correction  File: 50silica5Ogoethite  ^  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary  Colloidal Dynamics 1e .a i^r^1^I^ill^uF,zinen  Measurement Date:  k  Measurement Time  :  ESA MEASUREMENT  Wednesday, 30 March 2005  Min Freq 0.30 MHz^[Speed: normal]  12:10:39  Version:^2.00  General Data: Analysis Date.  Wed, 30 March 2005 1211:38  Background File:  No background file used  Standard Calibration Date:  Wed 30 March 2005 1048 03  Comment  no comment entered  Titrant Data [Left]:  Titrant Data [Right]:  Titrant ID.  Titrant fD:  Concentration:  ^  0 ol/L  Density .^0 g/m1 ^ Titrant Volume Added: 0 ml  KOH  Concentration:  1  Density:  0  Titrant Volume Added:  7.255  Suspension Properties: Sample Volume (initial):  220  Sample Volume (current):  Particle Concentration (initial) .  Particle Concentration (current):  pH (initial):  pH (current)  Conductivity (initial):  Conductivity (current):  ESA vs. pH_ ^0.800 2.000 -1 1.500  1  1.000 - I F. 0.500 E 0.000 1 < co -0.5001 00 ^1 w^i  2.00^- 6 00^8.00 -^--  -1.000  2 ,00  l  ^ 0.700 (7) 0.600 1 E 0.500 0.400 0.300 2 0.200^_  F  `g  0.100  -1.500  0.000  ^0.00 -2.000 -I  ^2.00  4.00^6.00^8.00^10.00^12.00 pH  pH Amaamms■■■■■■•  Page: 1  File: 50silica50goethite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm:ss] 1 1116:28 2 1118:53 3 1121:50 1124:46 4 5 1128:03 6 1131:23 7 1134:40 8 1137:58 9 1141:36 10 1144:52 11 1148:10 12 1152:07 13 1155:29 14 1159:26 1203:09 15 16 1206:50 17 1210:39  [Mins] 0.00 2.42 5.37 8.30 11.58 14.92 18.20 21.50 25.13 28.40 31.70 35.65 39.02 42.97 46.68 50.37 54.18  [Cl 20.4 20.5 20.6 20.7 20.8 20.8 20.8 20.9 20.9 20.9 21.0 21.0 21.0 21.1 21.1 21.1 21.2  2.83 3.47 3.98 4.45 4.96 5.44 5.96 6.51 6.97 7.44 7.94 8.44 8.95 9.47 9.96 10.47 10.98  [mS/cm] 0.365 0.226 0.218 0.221 0.226 0.232 0.239 0.247 0.254 0.259 0.265 0.271 0.281 0.304 0.354 0.464 0.755  Motor Speed [rprnj 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135  ESA  Kappa^Total Volume^Sample^Particle  [mPa/V]^[nm-1] 1.464 Inf 1.196 2.10 1.87 1.154 1.124 1.79 1.74 1.056 1.71 0.928 1.69 0.768 1.66 0.595 0.450 1.64 0.290 1.62 0.107 1.59 1.56 -0.131 -0.365 1.52 1.49 -0.655 -0.945 1.49 -1.206 1.51 -1.421 1.59  Page: 2  ESA MEASUREMENT  A B B B B B B B B B B B B B B B B  Background Added^Volume Concentration Filename [ml] [ml] [wt %.1 0.00 220.00 NaN No background correction 1.23 221.23 0.000 No background correction 1.50 221.50 0.000 No background correction 1.66 221.66 0.000 No background correction 1.79 221.79 0.000 No background correction 1.90 221.90 0.000 No background correction 2.02 222.02 No background correction 0.000 2.16 0.000 No background correction 222.15 2.27 222.26 No background correction 0.000 2.38 No background correction 222.38 0.000 2.52 No background correction 222.52 0.000 2.70 222.69 0.000 No background correction 2.93 222.93 0.000 No background correction 3.29 223.29 0.000 No background correction 223.87 0.000 No background correction 3.87 0.000 No background correction 4.94 224.94 227.25 No background correction 7.25 0.000  File: 75silica25goethite  Date printed: 3/27/2008  ZetaProbe Potentiomeiiic Series Titration Report - Summary^ESA MEASUREMENT  Colloidal Dvna e^s t rn^f c„ ^meo ,  w;  ICS^Measurement Date:^Wednesday, 30 March 2005^Min Freq 0.30 MHz^[Speed: normal] me n  P  Measurement Time:^13:13:23^  Version:^2.00  General Data: Analysis Date  VVed. 30 March 2005 1314:22  Background File:  No background file used  Standard CalibrationiData,  Wed, 30 March 2005 1043:03  Comment'  no comment entered  Titrant Data [Left]:  Titrant Data [Right]:  Titrant 1D:  Titrant ID.  Concentration:  Concentration:  Density:  Density:  Titrant Volume Added:  Titrant Volume Added'  6.624 m  Suspension Properties: Sample Volume (iniiial):  220.1_ ml  SaMple Volume (currenti•  226.727  -  Particle Concentration (initial) -  Particle Concentration (current).  pH (initial).  pl3(current):  10.98  Gond uCtivity (current):  0.718  mS/cm  Conductivity (initial):  C9Rductixity vs. pH  ESA vs. pH 1.000  0.800 "E" 0.700 — cr) 0.600 E 0.500 0.400 .0.300!, 3 72 0.200  0.500 0.000 -1  °E.  -0.50CP P °  csiu) -1.000 - -  3 0.100  -1.500  0.000 -1 0.00  -2.000  2.00  4.00  6.00 pH  pH  Page: 1  8.00  10.00^12 00  File: 75silica25goethite  ^  Date printed: 3/27/2008  ZetaProbe Potenbometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  Speed No. Measurement [hh:mm:ss] [Mins] [C] [mSlcm] [rpm] mPafV]^[nm-1] ^ ^ ^ ^ ^ ^ ^ ^ 1 1219:50 0.00 20.8 3.01 0.220 140 0.475 I of B ^ ^ ^ ^ ^ ^ ^ ^ 2.67 20.9 3.50 0.151 140 0.347 2.56 B 2 1222:30 ^ ^ ^ ^ ^ ^ ^ ^ 5.60 3.96 0.109 140 B 3 1225:26 21.0 0.303 1.88 ^ ^ ^ ^ ^ ^ ^ ^ 21.1 1.76 4 1228:22 4.43 0.110 140 0.267 8.53 B ^ ^ ^ ^ ^ ^ ^ ^ 5 1231:39 11.82 21.1 4.97 0.112 140 0.205 1.68 B ^ ^ ^ ^ ^ ^ ^ ^ 1.64 B 1235:15 15.42 21.2 5.46 0.116 140 0.130 6 ^ ^ ^ ^ ^ ^ ^ ^ 140 1.60 B 1238:52 21.2 5.96 0.120 0.081 19.03 7 ^ ^ ^ ^ ^ ^ ^ ^ 140 1.57 6.48 0.125 -0.091 B 21.95 21.3 8 1241:47 ^ ^ ^ ^ ^ ^ ^ ^ 1.54 7.02 0.128 140 -0.164 B 9 24.63 21.3 1244:28 ^ ^ ^ ^ ^ ^ ^ ^ 27.90 21.3 7.45 0.132 140 -0.252 1.52 B 10 1247:44 ^ ^ ^ ^ ^ ^ ^ ^ 7.93 0.135 140 1.48 B 21.3 -0.380 1251:00 31.17 11 ^ ^ ^ ^ ^ ^ ^ ^ 1.43 B 12 34.77 8.44 0.140 140 -0.551 1254:36 21.4 ^ ^ ^ ^ ^ ^ ^ ^ 1.39 B 140 13 1259:34 39.73 21.4 8.96 0.152 -0.766 ^ ^ ^ ^ ^ ^ ^ ^ 1.52 B 140 -0.961 1302:55 43.08 21.4 9.45 0.219 14 ^ ^ ^ ^ ^ ^ ^ ^ B 140 -1.151 1.52 21.5 9.96 0.283 15 1306:11 46.35 ^ ^ ^ ^ ^ ^ ^ ^ B 1.55 10.45 0.404 140 -1.315 21.5 1309:33 49.72 16 ^ ^ ^ ^ ^ ^ ^ ^ B 1.63 140 -1.449 21.6 10.98 0.718 53.55 17 1313:23  Page: 2  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background  Added^Volume Concentration Filename [ml] [ml] [wt%] ^ ^ ^ 0.00 220.10 NaN No background correction ^ ^ ^ 0.55 220.65 No background correction 0.000 ^ ^ ^ 0.74 220.84 0.000 No background correction ^ ^ ^ 220.95 0.85 0.000 No background correction ^ ^ ^ 0.95 221.05 0.000 No background correction ^ ^ ^ 1.03 221.14 0.000 No background correction ^ ^ ^ 1.12 221.22 0.000 No background correction ^ ^ ^ No background correction 1.21 221.31 0.000 ^ ^ ^ 1.29 221.39 0.000 No background correction ^ ^ ^ 1.37 221.47 No background correction 0.000 ^ ^ ^ 1.48 221.58 0.000 No background correction ^ ^ ^ 1.64 221.74 0.000 No background correction ^ ^ ^ No background correction 1.89 222.00 0.000 ^ ^ ^ No background correction 0.000 2.27 222.38 ^ ^ ^ No background correction 0.000 2.95 223.05 ^ ^ ^ No background correction 224.19 0.000 4.08 ^ ^ ^ No background correction 226.73 0.000 6.62  ^  File: 25lgsilica75magnetite  ^  Colloidal Dynamics Hi  d^r^;sr cco1I0id m E.,^s^-  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT Measurement Date:  Friday, 4 February 2005  Min Freq 0.30 MHz^[Speed: normal]  Measurement Time:  13:51:40  Version:^2.00  General Data:  ,11 111.  Analysis Date:  Fri, 4 February 2005 1352:39  BaOl.cgroun:f File  No background file used  Standard Caltration Date:  Fri 4 February 2005 0904:33  Comment  no comment entered  Titrant Data [Left]:  Titrant Data [Iiightj:  Titrant ID:  Titrant ID.  Concentration:  ^rMoVL  Density.  mi 0 ml  Titrant Volume Added:.  i KOH (10%)  Concentration:  1 9 MoU  Density:- ---  0 im  TItrant Volume Added:.  1.15,  Suspension Properties: Sample Volume (initial):  Sample yolune.(current):  Particle Concentration (initial):  Particle Concentratien (cuirent);  pH (initial):  pH'(curr'ent):  226.455 10.98  (current)'  Conductivity (initial).  0.989 m S lc  ConoWtilvity vs pH  ESA vs. pH 0.800 ^  1.200  0.600  1.000 fi - -  0.400  r  "E' 0.800 h-  0.200  a. E 0.000 -  i 0.600 g 0.400 - 1 — -00^-a 0.200^-  -0.2000700 -0.400  0.000 4214—  -0.600  0.00^2.00  -0.800 pH  ^  4.00  6.00  8.00  10.00^12.00  pH .10 ffi.tfi===  Page: 1  File: 25lgsilica75magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle  Background Speed No. Measurement Added^Volume Concentration Filename [rpm]^[mPa/V] [hh:mm:ss] [Mins] [mS/cm] [nm-1] [ml] [ml] [wt%] [C] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 0.701 Inf 1302:28 0.00 21.6 2.92 0.716 B 0.00 NaN 1 225.30 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1304:19 1.85 21.6 3.51 0.463 140 0.450 6.45 B 0.27 225.57 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 21.7 3 1306:51 4.38 3.96 0.434 140 0.377 5.69 B 0.33 225.63 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1309:43 7.25 21.8 4.45 0.432 140 0.322 5.37 B 0.37 225.67 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 10.43 5 1312:54 21.8 4.97 0.441 140 0.262 B 0.40 5.20 225.70 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 5.47 0.451 B 0.43 6 1316:07 13.65 21.8 0.191 225.73 0.000 5.07 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1319:19 16.85 21.9 140 7 5.94 0.460 0.103 4.96 B 0.46 0.000 225.76 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 -0.039 8 1322:31 20.05 21.9 6.46 0.471 4.86 B 0.49 0.000 225.79 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1325:22 22.0 -0.116 0.000 9 22.90 6.98 0.479 140 4.77 B 0.52 225.82 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 -0.182 4.66 225.85 0.000 No background correction 10 1328:54 26.43 22.0 7.51 0.486 B 0.55 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 0.000 4.58 B 0.58 140 -0.225 225.88 11 1331:24 28.93 22.0 8.00 0.493 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 0.000 225.91 12 32.15 8.45 0.500 140 -0.262 4.49 B 0.61 1334:37 22.1 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 0.000 B 0.64 225.95 -0.307 13 1337:49 35.35 22.1 8.98 0.512 140 4.41 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 225.99 0.000 No background correction 4.35 B 0.69 1341:21 38.88 22.2 9.49 0.533 140 -0.369 14 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 0.75 226.05 No background correction 140 -0.455 4.33 0.000 42.42 22.2 9.97 0.576 1344:53 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 0.87 226.17 0.000 -0.562 4.39 10.46 0.683 140 1348:09 45.68 22.2 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.16 226.46 0.000 140 -0.701 4.58 10.98 0.989 1351:40 22.3 49.20 17  Page: 2  File: 50Igsilica50magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Summary  Colloidal Dyna  lei^ r^ccllid m e. a s^m e n  ESA MEASUREMENT  Measurement Date:  Friday, 4 February 2005  Min Freq 0.30 MHz  [Speed normal]  Measurement Time:  11:39:21  Version  2.00  Comment:  no comment entered  :  Genera Data: Analysis Date. Standard Calibration Date:  IFfi, 4 February 2005 1140:20 Fri, 4 February 2005 0904.03  Titrar)t Data [Right]:  Titrant Data [Left]: Titrant ID.  No background file used  Titrant ID.'  HCI  KOH (10%)  Concentration  Concentration. Density:  Density.  Titrant Volume Added:  Titrant Volume Added: .  Suspension Properties: Sample Volume (initial).  SampleVolume (Ourrent) -  Particle Concentration (initial)  Particle Concentration (currdnt)  pH (initial)  pH (current):  :  Conductivity'(current):  Conductivity (initial): ESA vs. pH 0.600  1.000  0.400 1  0.800  0.200 - -  0.600 -  a 0.000 — E < -0.204-0 0  T, 0.400 r  U)  0.200)-  W -0.400 -0.600  -  0.000 0.00  -0.800 -  2.00 ^4.00  6.00 pH  pH Atifdra.  mormigmam,  Page: 1  8.00  10.00^12.00  File: 50Igsilica50magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potenlometric Series Titration Report - Measurement Data^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh.mm ss]  Motor  ESA  ESA MEASUREMENT  Kappa^Total Volume^Sample^Particle Added^Volume Concentration [ml] [ml] [wt%]  Speed [rpm]  Background Filename  [Mins] [mPaN]^[nm-1] [C] [m S /cm ] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1048:45 0.00 20.2 3.01 0.611 140 0.356 Inf A 0.00 225.40 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1051:01 2.27 140 20.2 3.49 0.378 0.201 6.67 B 0.21 225.61 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 1053:32 4.78 20.3 3.96 0.340 140 0.150 5.70 B 0.26 225.66 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1056:24 7.65 20.3 4.46 0.334 140 0.121 5.35 B 0.28 225.69 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 10.83 225.71 1059:35 20.3 4.95 0.338 -0.098 B 0.31 5.18 0.000 No background correction 140 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1102:47 B 0.33 14.03 20.4 5.46 0.344 140 -0.086 5.07 225.73 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 0.35 7 20.4 5.98 0.351 140 -0.128 4.97 225.75 0.000 No background correction 1105:59 17.23 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 140 8 1109:11 20.43 20.5 6.48 0.357 -0.204 4.86 B 0.37 225.77 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 0.39 1112:03 23.30 20.5 6.97 0.361 140 -0.263 4.76 225.79 0.000 No background correction 9 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7.49 0.365 No background correction -0.301 225.81 0.000 10 1115:14 26.48 4.66 B 0.41 20.6 140 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7.95 0.369 140 4.58 225.83 0.000 No background correction -0.328 11 1118:47 30.03 20.7 B 0.43 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 1121:37 140 4.49 B 0.45 225.85 0.000 12 32.87 20.7 8.43 0.373 -0.350 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.39 B 0.48 225.89 0.000 No background correction 20.8 8.96 0.382 140 -0.375 13 1125:09 36.40 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 4.32 225.92 No background correction 140 -0.408 B 0.52 14 1129:01 40.27 20.8 9.45 0.398 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.000 No background correction 140 4.30 B 0.58 225.99 9.97 0.444 -0.463 43.80 1132:33 20.9 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 0.000 140 -0.547 4.37 B 0.71 226.12 10.47 0.558 1135:44 46.98 21.0 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.04 226.45 0.000 -0.645 4.57 11.00 0.890 140 1139:21 50.60 21.0 17  Page: 2  File: 75lgsilica25magnetite  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Summary^ESA MEASUREMENT  C olloidal^'Hanks^Measurement Date:^Friday, 4 February 2005 ^Min Freq 0 30 MHz^[Speed normal] le<ILitr5  Measurement Time ^12:35:07^  Version:^2.00  .  General Data: Analysis Date:  En 4 February 2005 1236:06  Backijround File  Standard Calibre  Fri 4 February 2005 0904:33  Comment Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  Titra6t ID,  Concentration:  Mol/L  Concentration:  Density:  g/ml  Density:  Titrant Volume Added;  ml  Titrant Volume Added  Suspension Properties: Sample Volume (initial):  225.3 ml  Particle Concentration (initial) .  Sample Voldrre'{current):  wrk  pH (initial).  2.87  Conductivity (initial):  0.816} mS/cm  pH (current):  10.97  Conductivity (current):  0.908  Conductivity vs. pH  ESA +. pH _ _ _  1.000 --  0.000 -0.10CP- 00  2.00^4.00^6 00^_ &DO^_ _10.00^12  cio  -6 0.800  -0.200 a -0.300 E  U)  226.357  Particle.Concentiation (current):  0.600 -  :6 0.400  -0.400  -0 g  w -0.500 -0.600  0.200 0.000 0.00  -0.700  2.00  4.00  6.00 pH  pH  Page: 1  8.00  10.00  12 00  File: 75lgsilica25magnetite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm:ss1  Motor  ESA  Kappa^Total Volume^Sample^Particle  Speed  [mS/cmj [mPa/Vj^[pm-1] [Mins] [C3 ^ ^ ^ ^ ^ ^ ^ ^ 1 Inf 1149:57 0.00 20.6 2.87 0.816 140 B -0.108 ^ ^ ^ ^ ^ ^ ^ ^ 2 1151:47 20.6 3.60 0.425 140 -0.129 5.36 B 1.83 ^ ^ ^ ^ ^ ^ ^ ^ 1154:19 4.37 3 20.6 3.95 0.407 140 -0.152 5.04 B ^ ^ ^ ^ ^ ^ ^ ^ 4 1157:11 7.23 140 20.6 4.52 0.400 -0.183 B 4.85 ^ ^ ^ ^ ^ ^ ^ ^ 5 1200:02 10.08 4.79 B 20.7 4.95 0.403 140 -0.214 ^ ^ ^ ^ ^ ^ ^ ^ 1203:13 13.27 5.48 0.408 140 6 20.7 -0.265 4.73 B ^ ^ ^ ^ ^ ^ ^ ^ 5.98 0.415 140 B 7 1205:45 15.80 20.8 -0.314 4.69 ^ ^ ^ ^ ^ ^ ^ ^ 140 B 19.00 1208:57 20.8 6.47 0.421 -0.370 4.64 8 ^ ^ ^ ^ ^ ^ ^ ^ 140 B 1211:28 21.52 20.9 6.95 0.426 -0.406 4.60 9 ^ ^ ^ ^ ^ ^ ^ ^ 1214:41 24.73 140 -0.432 B 10 20.9 7.47 0.431 4.57 ^ ^ ^ ^ ^ ^ ^ ^ 7.95 0.434 140 -0.450 4.53 B 11 1216:31 26.57 21.0 ^ ^ ^ ^ ^ ^ ^ ^ -0.465 4.47 B 1219:04 29.12 8.54 0.439 140 12 21.0 ^ ^ ^ ^ ^ ^ ^ ^ 4.43 B 1221:56 31.98 21.1 9.00 0.447 140 -0.478 13 ^ ^ ^ ^ ^ ^ ^ ^ 9.45 0.463 140 -0.491 14 1225:07 35.17 21.1 4.38 B ^ ^ ^ ^ ^ ^ ^ ^ 1228:39 38.70 9.98 0.508 140 -0.518 4.36 B 15 21.2 ^ ^ ^ ^ ^ ^ ^ ^ 1231:50 10.45 0.610 140 -0.559 4.41 B 16 41.88 21.2 ^ ^ ^ ^ ^ ^ ^ ^ 10.97 0.908 140 -0.614 4.59 B 17 1235:07 45.17 21.3  Page: 2  ESA MEASUREMENT Background  Added^Volume Concentration Filename [m 11 [wt %) ^ ^ ^ 0.00 225.30 NaN No background correction ^ ^ ^ 0.36 225.66 0.000 No background correction ^ ^ ^ 0.39 225.69 0.000 No background correction ^ ^ ^ 0.42 0.000 225.72 No background correction ^ ^ ^ 0.43 225.73 0.000 No background correction ^ ^ ^ 0.45 225.75 0.000 No background correction ^ ^ ^ 0.46 0.000 225.76 No background correction ^ ^ ^ 0.48 225.78 0.000 No background correction ^ ^ ^ 0.49 225.79 0.000 No background correction ^ ^ ^ 0.51 225.81 0.000 No background correction ^ ^ ^ 0.52 225.82 0.000 No background correction ^ ^ ^ 0.54 225.84 0.000 No background correction ^ ^ ^ 0.56 225.86 0.000 No background correction ^ ^ ^ 0.59 225.89 0.000 No background correction ^ ^ ^ No background correction 0.66 225.96 0.000 ^ ^ ^ 0.77 226.07 0.000 No background correction ^ ^ ^ 1.06 226.36 0.000 No background correction  ^ ^  File: 50magnetite5Ogoethite  l oidal  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Reboil:SimM16 ^ESA MEASUREMENT Dynamics^Measurement Date:^Wednesday, 30 March 2005^Min Freq 0.30 MHz^[Speed: normal]  f ^i^i^c L^f11^-^;' (1  General  Measurement Time^15:26:13^  a:  Version:  2.00  Analysis Date)  Wed 30 March 2005 1527:12  , Backgrounci Pile:  No background file used  Standard Calibration Date:  Wed 30 March 2005 1048:03  Comment, -  no comment entered  Titrant Data [Right]:  Titrant Data [Left]. Titrant 1D:  Titrant Mol/L  Concentration.  /ml  Density: Titrant Volume Added  ml  KOH ,1 Motif.-  Concentration:  0 9/M 1 ,,  Denstty. Titrant Volume Added.  6.633 ml  Suspension Properties: Sample Volume (initial):  220.19  pH (initial}: Conductivity (initial):  0.318 mS/cm  1.000 a. 0.500 E • 0.000 r ILI  pH (current):-  10.98  Conductivity (current) -  0.742  0.800 -^ • 0.700 ill 0.600 E 0.500 0.400 0.300 2 0.200 -  7  1.500  cn  226.824  ConActivity v. pH  ESA vs. pH 2.000  Sample Volume (current)) Particle Concentration (current):  Particle Concentration (initial):  —0.50CP • DC)  0.100 -^_ 0.000 ---  —1.000 "(  0.00  -1.500 -  2.00  4.00  6.00 pH  pH  Page: 1  8.00  10.00  12.00  File: 50magnetite5Ogoethite  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data ^  ESA MEASUREMENT ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity Motor ESA^Kappa^Total Volume^Sample^Particle Background ^ ^ ^ No. Measurement Speed Added^Volume Concentration Filename ^ ^ ^ ^ ^ ^ ^ [hh:mm ss] [Mins] [mS/cm] [C] [mPa/V]^[nm-1] [mIJ [ml] [wt°70] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1432:29 0.00 20.9 3.04 0.318 140 1.622 B 0.00 Inf 220.19 NaN No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1435:09 2.67 21.0 140 1.427 2.93 3.51 0.242 B 0.68 220.87 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1438:05 140 1.327 3 5.60 21.0 3.98 0.231 2.45 B 0.92 221.11 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1441:25 8.93 21.1 4.47 0.234 140 1.200 2.27 B 1.09 221.28 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1.061 5 1444:43 12.23 21.2 4.94 0.242 140 2.14 B 1.26 0.000 221.45 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1448:23 15.90 140 0.929 5.46 0.254 6 21.2 2.02 B 1.50 0.000 221.69 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1451:39 19.17 21.3 0.825 B 1.73 140 5.96 0.265 1.92 221.92 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1454:56 21.3 8 22.45 6.46 0.278 140 0.717 B 1.97 1.84 222.16 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 1457:38 25.15 21.4 6.97 0.287 140 0.613 1.78 B 2.18 222.37 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.494 B 2.40 1501:15 28.77 21.4 140 1.73 7.49 0.297 222.59 10 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1504:32 21.4 7.97 0.304 140 0.364 1.68 B 2.61 222.80 11 32.05 0.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 2.82 12 1508:10 21.5 8.44 0.313 140 0.214 1.63 223.02 0.000 No background correction 35.68 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 3.06 223.25 No background correction 1511:31 21.5 0.041 39.03 8.94 0.321 140 1.59 0.000 13 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 3.37 0.000 No background correction 1.57 -0.213 223.56 1515:08 21.6 9.48 0.342 140 14 42.65 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ -0.475 1.56 No background correction B 3.81 224.00 0.000 21.6 9.97 0.384 140 1518:45 46.27 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 140 -0.747 1.58 B 4.63 224.82 0.000 1522:24 49.92 21.7 10.45 0.476 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 226.82 0.000 -1.016 1.65 B 6.63 10.98 0.742 140 17 1526:13 53.73 21.7 ^  ^  Page: 2  Appendix G: Electro-acoustic results for Vermelho samples  145  File: CVRDl_ESA  Date printed: 3/27/2008  ZetaProbe^  Colloidal Dynamics le^e  ss^ro^f.•_^  etS umma ry^ESA MEASUREMENT  Measurement Date:^Monday, 19 July 2004 ^Min Freq 0.30 MHz^[Speed: normal]  en  Measurement Time:^7:50:50^  Version.^2.14b Polar  General Data: Analysis Date  Tue. 25 March 2008 1052:37  Standard Calibration Date: ^Mon, 19 July 2004 0744 21 Titrant Data [Left]:  Comment:  no comment entered  Titrant Data [Right]:  Titrant ID: Concentration:  =s ee " Titration Leg" sheets  Background File:  Titrant ID. 0 ol/L  NaOH 10'  Concentration  Density  0 g/ml  Density.  Titrant Volume Added.  0 ml  Titrant Volume Added:  Suspension Properties: Sample Volume (initial).  ml  Particle Concentration (initial): pH (initial): Conductivity (initial):  0.061  Sample Volume (current):  259.518 ml  Particle Concentration (current):  4.916 wt%  pH (current).  11.97  Conductivity (current):  5.36 mStcrn  ESA vs. pH 1.500 -  6.000 75 5.000  1.000 0.500 a 0.000 _0 00^2 00^4 00^6.00 W -0.50u  —+—Run 1 —111— Run 2 0 00^12,00^14;00  -1.000  E 4.000 3.000 2.000 -0 0 1.000 (..) 0.000 0.00^5.00  -1.500^-  Page: 1  10.00^15 00  File: CVRD1ESA  ^  Date printed: 3/27/2008  ZetaP obe Potentiometric Series Titration Report - Measurement Data (Leg 1) ^npswtch off^ESA MEASUREMENT ESA Kappa Total Volume^Sample^Particle Background Motor Meas.^Time of^Elapsed Time Temperature pH Conductivity Added^Volume Concentration Speed Filename No. Measurement [mS/cm] [rpm]^[mPa/(V/m)]^[nm-1] [ml] [hh:mm:ss] [Mins] [C] [ml] [wt%] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6.86 0.061 115 1 0750:50 0.00 25.8 -0.092 0.07 0.00 255.00 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 0757:30 115 No background correction 6.67 25.8 6.98 0.064 -0.092 0.07 B 0.18 255.18 4.997 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 9.53 4.988 No background correction 0800:22 25.9 7.90 0.104 115 -0.234 0.09 B 0.64 255.63 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 115 0807:57 17.12 4.987 26.0 7.97 0.115 -0.253 0.09 B 0.67 255.67 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 20.63 8.46 0.136 115 0.10 B 0.72 255.72 4.986 No background correction 0811:28 26.0 -0.336 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 255.78 0815:00 24.17 26.0 8.96 0.155 115 -0.407 0.11 B 0.78 4.985 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 0.12 255.85 0818:31 27.68 26.0 9.47 0.180 -0.473 B 0.85 4.984 No background correction 115 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8 9.97 0.291 -0.534 0.15 B 0.96 255.96 4.982 No background correction 0822:02 31.20 26.0 115 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 0825:38 26.1 No background correction 10.48 0.442 115 -0.616 B 1.14 256.14 4.979 34.80 0.18 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 10.96 0.787 115 -0.719 0.24 B 1.45 256.45 4.973 No background correction 0828:49 37.98 26.1 10 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.959 No background correction 26.1 11.46 1.870 115 -0.852 0.37 B 2.20 257.20 11 0832:06 41.27 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 4.52 259.52 4.916 No background correction 115 -1.048 0.63 26.2 11.97 5.360 44.60 12 0835:26  Page: 2  ^  File: CVRD1_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) Meas.^Time of^Elapsed Time Temperature ph Conductivity No. Measurement [hh:mm:ss]  1 2 3 4 5 6 7  0907:14 0910:35 0914:52 0918:28 0922:25 0926:23 0929:41  [Mins]  0.00 3.35 7.63 11.23 15.18 19.15 22.45  [mS/cm] [C] 25.9^9.31 0.446^125 26.0^8.53 0.485^125 26.0^7.49 0.534^125 26.0^6.57 0.567^125 26.1^5.55 0.597^125 26.1^4.55 0.633^125 26.1^3.18 0.964^125  Motor  ESA  ESA MEASUREMENT Kappa  Speed [rpm]^[mPa/(V/m)]^[nm-1]  -0.387^0.18 -0.292^0.19 -0.169^0.20 -0.051^0.21 0.165^0.21 0.304^0.22 0.396^0.27  IEPS:^6.33  Page: 3  Total Volume^Sample^Particle Added^Volume Concentration [ml]^[ml] [wt%]  0.00 A 0.05 A 0.12 A 0.17 A 0.22 A 0.27 A 0.43  255.00 255.05 255.12 255.17 255.22 255.27 255.43  5.000 4.999 4.998 4.997 4.996 4.995 4.992  Background Filename  No background correction No background correction No background correction No background correction No background correction No background correction No background correction  File: CVRD2ESA  ^  Date printed: 3/27/2008  Colloidal Dynamics tt^  MrdS^ line riffs  ZetaProbe Potentiometric Series Titration Report - Summary  ESA MEASUREMENT  Measurement Date  :  Measurement Time:  Monday, 19 July 2004  Min Freq 0.30 MHz  [Speed: normal]  13:45:23  Version:  2.14b Polar  SIN  General ata' .  Analysis Date  Tue. 25 March 2008 105339  Background File:  see "Titration Leg" sheets  Standard Calibration Date.  Mon. 19 July 2004 0744:21  Comment;  no comment entered  Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  NaOH 10%  Titrant ID:  HCI  Concentration.  Concentration:  Density:  Density:  Titrant Volume Added:  Titrant Volume Added:  19 0  4.982  Suspension Properties: ml^  Sample Volume (initial):  Sample Volume (current) ^-^ 260.332 ml .  Particle Concentration (initial):  Particle Concentration (current).  pH (initial);  pH (current)'  Conductivity (initial):  Conductivity (current)  .  Conductivity vs (pH  ESA vs. pH  10.000  1.000  8.000  0.500 -, Run 1  0.000 ,  Run 2  14 00  0.00^2.00^4.00  E. -0.500 1  E C3 7 0  -1.000  6.000 4.000 2.000 0.000 0.00  -1.500  10.00  5.00 pH  pH  Page: 1  15 00  File: CVRD2_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potent' °metric Series Titration Report - Measurement Data (Leg 1)  ^  npswtch off^ESA MEASUREMENT ^ ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity Motor ESA Kappa^Total Volume^Sample^Particle Background ^ ^ ^ No. Measurement Speed Added^Volume Concentration Filename [hh:mm.ss1 [Mind [C) imS/cm1^[rpm]^[mPa/(V/m)]^inm-11 [ml) [ml) twt%) ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1345:23 0.00 26.2 4.40 0.540 125 0.20 -0.148 0.00 255.35 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1346:39 1.27 26.2 4.54 0.538 125 0.20 2 -0.151 B 0.00 255.35 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.20 3 1349:55 4.53 26.2 4.98 0.546 125 -0.169 B 0.04 255.39 4.999 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.20 4 1353:11 7.80 26.2 5.46 0.557 125 -0.195 B 0.10 255.45 4.998 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 0.21 255.52 4.997 11.07 No background correction 1356:27 26.3 5.95 0.572 -0.218 B 0.17 5 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 No background correction 0.21 255.59 4.995 14.37 26.4 6.45 0.588 -0.243 B 0.24 6 1359:45 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 0.21 B 0.31 255.66 No background correction 4.994 17.75 26.4 6.95 0.603 -0.265 7 1403:08 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.21 255.72 4.993 No background correction 125 -0.290 B 0.37 1406:25 21.03 26.4 7.42 0.615 8 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 255.79 4.992 No background correction 7.93 0.627 125 -0.315 0.22 B 0.44 1410:04 24.68 26.5 9 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ -0.350 0.22 B 0.53 255.88 4.990 No background correction 27.95 26.6 8.46 0.642 125 10 1413:20 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.988 No background correction 125 -0.395 0.22 B 0.64 255.99 26.6 8.95 0.660 11 1416:58 31.58 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.985 No background correction -0.455 0.23 B 0.81 256.16 26.7 9.48 0.692 125 35.52 12 1420:54 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.02 No background correction 125 -0.510 0.24 256.37 4.981 13 9.98 0.749 1424:31 39.13 26.7 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 1.32 256.67 4.975 125 -0.565 0.25 42.47 26.8 10.46 0.870 14 1427:51 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 257.12 4.967 No background correction -0.639 0.30 B 1.77 26.8 10.98 1.190 125 15 1431:07 45.73 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction B 2.61 257.96 4.951 125 -0.778 0.40 49.08 26.9 11.47 2.170 16 1434:28 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 4.98 No background correction 4.908 125 -0.989 0.64 260.33 27.0 11.97 5.460 17 1437:56 52.55 ^  ^  Page: 2  ^  File: CVRD2_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm ss]  1 2 3 4 5 6  1447:09 1450:45 1453:41 1456:57 1500:20 1503:44  [Mins]  0.00 3.60 6.53 9.80 13.18 16.58  [C]  [m S /cm]  26.3^4.61 0.559^125 26.2^4.08 0.679^125 26.3^3.59 0.831^125 26.3^3.05 1.270^125 26.4^2.52 2.900^125 26.4^2.01 8.720^125  Motor  ESA  ESA MEASUREMENT Kappa  Speed [rpm]^[mPa/(V/m)]^[nm-1]  -0.160^0.20 -0.132^0.22 -0.119^0.25 -0.132^0.31 0.225^0.46 0.527^0.80  IEPS:^2.85  Page: 3  Total Volume^Sample^Particle Added^Volume Concentration [ml]^[ml] [wtrYo]  0.00 A 0.11 A 0.21 A 0.41 A 0.95 A 2.86  255.45 255.56 255.66 255.85 256.39 258.31  5.000 4.998 4.996 4.992 4.982 4.947  Background Filename  No background correction No background correction No background correction No background correction No background correction No background correction  File: CVRD3ESA  ^  Date printed: 3/27/2008  Co °RIM Dynamics e ats  ZetaProbe Potentiometric Series Titration Report - Summary Measurement Date: Measurement Time  :  ^ESA MEASUREMENT  Wednesday, 19 May 2004  Min Freq 0.30 MHz^[Speed normal]  12:18:21  Version:^2.14b Polar  General. Dpta: Analysis Date: Standard Calibration Date:  Beakground Fite: Wed. 19 May 2004 1155 52  Titrant Data [Left]:  Comment:. Titrant Data [Right]:  Titrant ID:  HCI  Titrant ID.  Concentration:  ^  Concentration:  Mol/L  Density:  g/ml  Titrant Volume Added.  0 ml  NaOH (10%)  Density. Titrant Volume Added.  Suspension Properties: Sample Volume (initial):  Sample Volume (current)  Particle Concentration (initial):  Particle Concentration (current).  pi-I (initial):  pH (current):  Conductivity (initial):  0.259 mS/cm  ESA vs. pH  11.97  Conductivity (current) Conductivity vs. pH  0.400  6.000  0.200 - 1  5.000  0.000  E 4.000  10.00^12.00 - 1400  "5". -0.2000.p0 sie a -0.400 1  3.000  E  `g 2.000  < -0.600  c§ 1.000  ILI -0.800 - 1 -1.000  0.000 . 0.00  -1.200  2.00^4.00^6.00^8.00^10.00^12.00^14 00 pH  pH  Page: 1  File: CVRD3_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) ^npswtch off^ESA MEASUREMENT ^ ^ ^ ^ Motor ESA Kappa^Total Volume^Sample^Particle Meas.^Time of^Elapsed Time Temperature pH Conductivity Background ^ ^ ^ Added^Volume Concentration Speed Filename No. Measurement ^ ^ ^ ^ ^ ^ ^ [ml] [rpm]^[mPa/(V/m)]^[nm-1] [mSlcm] [ml] [hh:mm:ss] [Mins] [C] [wtY0] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3.79 0.259 115 0.279 0.14 0.00 255.00 1 1218:21 0.00 23.9 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 115 0.14 B 0.37 2 1220:56 2.58 23.9 4.51 0.254 0.194 255.37 4.993 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 115 1224:07 24.0 4.96 0.266 0.133 0.14 B 0.39 255.39 No background correction 5.77 4.993 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1228:00 5.47 0.280 115 9.65 24.0 0.042 0.14 B 0.45 255.45 4.991 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1231:12 12.85 24.0 6.00 0.298 115 0.15 B 0.48 255.48 -0.070 4.991 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1234:04 15.72 B 0.51 24.1 6.46 0.315 115 -0.139 0.15 255.51 4.990 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1237:15 18.90 115 0.16 B 0.54 24.1 6.96 0.334 -0.204 255.54 4.990 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8 1240:27 7.48 0.355 115 0.16 B 0.58 255.58 4.989 No background correction 22.10 24.2 -0.266 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 1243:39 25.30 24.2 7.95 0.373 115 0.17 B 0.61 255.61 4.988 -0.321 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1246:51 115 B 0.66 10 28.50 24.2 8.43 0.390 -0.387 0.17 255.66 4.988 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 115 B 0.71 255.71 4.987 No background correction 11 1250:03 31.70 24.3 8.97 0.414 -0.452 0.18 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1253:36 9.47 0.456 115 0.18 B 0.77 No background correction 255.77 4.985 12 35.25 24.3 -0.501 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.983 1256:47 38.43 24.3 9.95 0.552 115 0.20 B 0.88 255.88 No background correction 13 -0.555 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.08 256.09 4.980 No background correction 14 1300:24 42.05 24.4 10.48 0.824 115 -0.630 0.25 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.46 No background correction 10.97 1.460 115 -0.724 0.33 256.46 4.972 15 1303:35 45.23 24.4 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 115 0.46 B 2.25 257.25 4.958 24.5 11.49 2.900 -0.837 16 1306:51 48.50 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 3.76 258.77 No background correction 115 -0.940 0.64 4.930 51.48 24.5 11.97 5.590 17 1309:50 IEPS:  ^  5.67  Page: 2  File: CVRD4_ESA  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT  Colloidal Dynamics  Measurement Date:^Monday, 19 July 2004^Min Freq 0.30 MHz^[Speed: normal]  I e^e r rrr^G^in^e rn^n  Measurement Time^9:57:08^  Version:^2.14b Polar  General Data: Analysis Date:  Tue. 25 March 2008 1054:38  background-File  see "Titration Leg" sheets  Standard Calibration Date,  Mon, 19 July 2004 0744:21  Comment:  no comment entered  Titrant Data [Left]:  Titrant Data [Right];  Titrant ID:  Titrant ID:  Concentration:  2 Mol/L  NaOH 10%  Concentration:  Density .  Density:  Titrant Volume Added  Titrant Volume Added:  4.164 ml  Suspension Properties: Sample Volume (initial):  255 16  Particle Concentration (initial):  Sample Volume . (current): wt 33  pH (initial) : 0.312 mS/cm  Conductivity (initial):  Particle Concentration (current):  4.923  pH (current) -  11.99  ConduVity vs. pH  ESA vs. pH  10.000 -  0.600 0.400 7-7  'E cl:  U)  0.200 0.000 -  ;2 -0.2003-60 E  mS/cm  Conductivity (current):  8.000  Run 1  !. 6.000  —111-- Run 2  E, 4.000 = c 2.000 0  -  -0.400  ifu) -0.600  0.000 -  -0.800 -I  0.00  -1.000 pH  10.00  5.00 pH  Page: 1  15 00  File: CVRD4_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) Meas.^Time of^Elapsed Time Temperature pH Conductivity  Motor  ESA  npswtch off^ESA MEASUREMENT Kappa^Total Volume  Sample^Particle  Background  Added Volume Concentration Filename [ml] [mS/cm] [ml] [wt%] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 26.3 4.84 0.313 -0.148 0.15 0.00 255.16 1 0957:08 0.00 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 B 0.03 1000:30 26.4 5.45 0.319 -0.171 0.15 255.19 2 4.999 No background correction 3.37 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5.95 0.327 125 3 B 0.06 4.999 1003:46 6.63 26.4 -0.188 0.16 255.22 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6.47 0.338 4 1007:04 9.93 26.4 125 0.16 B 0.10 255.26 -0.206 4.998 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1010:21 26.4 6.97 0.348 125 -0.221 0.16 255.30 13.22 B 0.14 4.997 No background correction 5 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1013:19 7.45 0.354 125 -0.236 0.16 B 0.17 255.33 4.997 No background correction 6 16.18 26.5 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 7.98 0.362 125 -0.255 0.16 B 0.22 255.38 4.996 7 1016:55 19.78 26.5 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8.45 0.369 125 -0.281 0.17 B 0.27 255.43 4.995 No background correction 8 23.05 26.5 1020:11 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8.97 0.380 125 -0.314 0.17 B 0.34 255.50 4.994 No background correction 9 26.6 1023:48 26.67 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9.45 0.401 125 -0.349 0.17 B 0.42 255.58 4.992 No background correction 29.93 10 1027:04 26.6 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.18 255.70 4.990 No background correction 9.95 0.451 125 -0.392 B 0.53 11 26.6 1030:20 33.20 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 255.87 4.987 10.45 0.567 125 -0.448 B 0.71 0.21 1033:36 36.47 26.6 12 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.05 256.21 4.980 No background correction 10.98 0.917 125 -0.535 0.26 39.82 26.6 13 1036:57 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ -0.663 0.38 B 1.82 256.98 4.966 No background correction 11.48 1.980 125 1040:13 43.08 26.7 14 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.64 259.33 4.923 No background correction 11.99 5.460 125 -0.842 B 4.16 1043:40 26.7 15 46.53 No. Measurement [hh:mm:ss]^[Mins]^  Speed (rpm]^[mPa/(V/m)]^(nm-1]  Page: 2  ^  File: CVRD4_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) Meas.^Time of^Elapsed Time Temperature pH Conductivity No. Measurement [hh:mm ss]^[Mins]  1 2 3 4 5 6  1058:40 1100:35 1103:31 1106:31 1109:27 1112:51  0.00 1.92 4.85 7.85 10.78 14.18  [C]  28.8^4.50 28.6^4.03 28.3^3.54 28.1^3.05 28.0^2.54 27.9^2.01  [ mS /cm]  0.372^120 0.429^120 0.558^120 0.955^120 2.340^120 8.460^120  Motor  ESA  ESA MEASUREMENT Kappa^Total Volume^Sample^Particle  Speed [rpm]^[mPa/(V/m)]^[nm-1]  -0.161^0.17 -0.137^0.18 -0.110^0.20 -0.112^0.27 0.201^0.42 0.522^0.79  IEPS:^2.87  Page: 3  Added^Volume Concentration [m l]^[m l] w°%0]  Background Filename  [  0.00 A 0.04 A 0.10 A 0.23 A 0.63 A 2.45  255.20 255.23 255.30 255.43 255.83 257.65  5.000 4.999 4.998 4.996 4.988 4.954  No background correction No background correction No background correction No background correction No background correction No background correction  ^^  File: CVRD5_ESA  Date printed: 3/27/2008  Co °Ida! Dynamics lead  c^rueJ^k: 111 t: fi t  ZetaProbe Potentiometric Series Titration Report - Summary ^ESA MEASUREMENT Measurement Date:  Monday, 19 July 2004^Min Freq 0.30 MHz^[Speed: normal]  Measurement Time:  11:24:08^  Version:^2.14b Polar S/N  General Data: Analysis Date:  Tue, 25 March 2008 1056 04  Standard Calibration Date.  Mon, 19 July 2004 0744:21  Background File. Comment. Titranf Data [Right]: "  Titrant Data [Left]: Titrant ID:  Titrant ID:  Concentration  Concentration:  Density'  Density.  Titrant Volume Added  Titrant Volume Added:  NaOH 10%  Suspension Properties: Sample Volume (initial):  Sample Volume (current):  Particle Concentration (initial):  Particle Concentration (current).  pH (initial)  pH (current):  Conductivity (initial):  Conductivity (current): Conducti vity /s. pH  ESA vs. pH  6.000 - -  0.000 -0.1000.00^2 tiCi^4 00 -^6 00 --^8 00- -^10 00^.12.00.^141 00  F, 5.000 4- -  -0.200  11 4.000  —4—Leg 1  . ' -0.300 5  —AS-- Leg 2  o_ -0.400 E < -0.500 - -  Leg 3  11u) -0.600  3.000  4  g 2.000 -; -0 o 1.000 41— -T1 0.000  -0.700 -^-  0.00  -0.800  5.00  ^ pH  pH  Page: 1  10.00  ^  15.00  File: CVRD5_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) ^npswtch off^ESA MEASUREMENT ^ ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity Motor ESA Kappa Total Volume Sample Particle Background ^ No. Measurement Speed Added Volume Concentration Filename ^ [hh:mm:ss]^[Mins]^[C] [mPa/(V/m)]^[nm-1] [mS/cm]^[rpm] [ml] [ml] [wtVo] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1124:08 0.00 26.3 3.93 0.445 125 -0.141 0.18 0.00 255.24 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1127:06 2.97 26.3 4.46 0.425 125 -0.150 0.18 B 0.04 255.27 4.999 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1130:22 6.23 26.3 4.97 0.425 125 3 -0.162 0.18 B 0.07 255.31 4.999 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1133:38 9.50 26.2 5.49 0.432 125 -0.174 0.18 B 0.11 255.35 4.998 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1136:59 12.85 26.2 5.99 0.443 125 -0.186 B 0.15 0.18 255.39 4.997 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1140:15 16.12 26.3 6.45 0.455 125 -0.197 0.18 B 0.19 255.42 4.996 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1143:31 19.38 6.97 0.467 125 26.3 -0.209 0.19 B 0.22 255.46 4.996 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8 1146:47 22.65 7.42 0.474 26.3 125 -0.217 0.19 255.49 4.995 B 0.26 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 26.27 9 1150:24 26.3 7.94 0.480 125 -0.223 0.19 B 0.29 255.53 4.994 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1154:00 29.87 B 0.34 10 26.4 8.44 0.488 125 -0.237 0.19 255.57 4.994 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 11 1157:37 33.48 26.5 8.95 0.499 125 -0.255 0.19 B 0.40 255.63 4.992 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 0.48 255.71 4.991 No background correction 12 1201:13 37.08 26.5 9.47 0.521 125 -0.282 0.20 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 0.58 255.82 4.989 No background correction 1204:29 40.35 26.5 9.95 0.563 125 -0.313 0.20 13 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ No background correction 43.62 10.46 0.671 125 -0.357 0.22 B 0.75 255.99 4.986 14 1207:45 26.5 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.06 256.30 4.980 No background correction 46.88 10.97 0.984 125 -0.421 0.27 15 1211:01 26.6 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 257.00 No background correction B 1.76 4.967 50.23 11.47 1.960 125 -0.529 0.38 1214:22 26.7 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.926 No background correction B 3.98 259.22 125 -0.697 0.63 53.68 26.7 11.98 5.290 17 1217:49  Page: 2  File: CVRD6_ESA  Date printed: 3/27/2008  Colloidal Dynamics I e^c-c lkcis^111 F.•^L.: 7^Fll^n t  ZetaProbe Potentiometric Series Titration Report :Siiiimary Measurement Date:^Tuesday, 13 July 2004^Min Freq 0.30 MHz Measurement Time:^10:42:05^  Version  :  General Data: Analysis Date;  Tue. 25 March 2008 1056:27  Background File  Standard Calibration Date:  Tue. 13 July 2004 1025:01  Comment  Titrant Data [Left]:  Titrant Data [Right]:  Titrant ID.  Titrant  Concentration:  Concentration:-  Density;  Density;  Titrant Volume Added:  Titrant Volume Added:  NaOH 10 %  Suspension Properties: Sample Volume (initial);  Sample Volume (current):  Particle Concentration (initial) .  Particle Concentration (current):  pH (initial):  pH (current): Conductivity (current):  Conductivity (initial):  Conductivity vs. pH  ESA vs. pH 0.600  10.000  0.400  E  r-z1 0.200  co  "5 0.000 -13 c  —4-- Run 1  a. -0.20001)0  -  -0.400  Run 2  6.000  U  4.000  0 0 0  2.000  -  co u.a - 0.600 1  8.000 -  E  0.000 - —  -0.800  0.00  -1.000^pH  ^  5.00  10.00 pH  Page: 1  15.00  File: CVRD6_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) ^npswtch off^ESA MEASUREMENT ^ ^ ^ ^ ESA Kappa^Total Volume^Sample^Particle Motor Meas.^Time of^Elapsed Time Temperature pH Conductivity Background ^ ^ ^ Speed No. Measurement Added^Volume Concentration Filename ^ ^ ^ ^ ^ ^ ^ [rpm]^[mPai(V/m)]^[nm-1] [hh:mm:ss] [Mins] [mSlcm] [ml] [ml] [wt%] [C] ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 24.6 3.24 0.697 140 0.23 1 1042:05 0.00 -0.098 0.00 255.00 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 1044:20 2.25 24.6 3.84 0.610 130 -0.121 0.21 B 0.48 255.48 4.991 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1046:30 4.42 24.7 3.97 0.608 130 3 -0.127 0.21 B 0.50 255.50 4.991 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1049:42 7.62 24.7 4.46 0.605 130 0.21 -0.151 B 0.58 255.58 4.989 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1052:53 10.80 4.97 0.613 24.8 130 -0.174 0.21 B 0.65 255.65 4.988 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 14.02 B 0.71 6 1056:06 24.8 5.45 0.625 130 -0.191 0.22 255.71 4.987 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 17.22 24.9 5.98 0.642 130 -0.211 0.22 B 0.78 255.78 4.985 1059:18 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6.49 0.660 130 -0.230 0.22 B 0.84 20.42 8 1102:30 24.9 255.84 4.984 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 23.28 7.01 0.674 130 -0.244 0.22 B 0.90 255.91 4.983 No background correction 1105:22 24.9 9 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.23 B 0.95 No background correction 26.13 7.48 0.683 130 -0.253 255.95 4.982 1108:13 10 25.0 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.23 7.95 0.692 130 -0.264 B 1.00 256.00 4.981 No background correction 29.38 25.0 11 1111:28 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 1.07 4.980 130 -0.282 0.23 256.07 No background correction 25.1 8.47 0.704 1114:40 32.58 12 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.23 B 1.16 4.978 No background correction 25.1 8.98 0.720 130 -0.300 256.16 13 1118:12 36.12 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.23 B 1.26 256.26 4.976 No background correction 39.65 25.2 9.45 0.743 130 -0.327 14 1121:44 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.24 B 1.39 4.974 No background correction 9.96 0.794 130 -0.364 256.39 1124:55 42.83 25.2 15 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 0.26 B 1.57 4.970 No background correction 130 -0.407 256.57 10.46 0.904 1128:07 46.03 25.2 16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.965 No background correction 0.30 B 1.87 256.87 10.97 1.200 130 -0.467 25.3 1131:19 49.23 17 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B 2.54 257.54 4.952 No background correction -0.568 0.39 25.4 11.47 2.100 130 1134:36 52.52 18 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.916 B 4.55 No background correction 0.62 130 -0.768 259.55 25.4 11.98 5.110 1137:55 19 55.83  Page: 2  ^  File: CVRDS_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 2) Motor  Meas.^Time of^Elapsed Time Temperature pH Conductivity  1 2 3 4  1327:05 1330:16 1333:33 1336:52  28.55 31.73 35.02 38.33  tel 25.2 25.3 25.4 25.4  Kappa^Total Volume^Sample^Particle  Speed [mS/cm]^[rpm]^[mPa/(V/m)]^[nm-1]  No. Measurement [Mins]  ESA  ESA MEASUREMENT  3.56 3.00 2.52 2.01  0.630 1.050 2.430 8.570  125 125 125 125  -0.100^0.22 -0.111^0.28 0.193^0.42 0.529^0.80  Page: 3  Added^Volume Concentration [ml]^[m1] [wt%]  A 0.40 A 0.56 A 0.98 A 2.87  255.40 255.56 255.98 257.88  4.992 4.989 4.982 4.946  Background Filename  No background correction No background correction No background correction No background correction  File: CVRD7_ESA  ^  Date printed: 3/27/2008  Colloidal Dynamics 1e  atie  rr^r^t L'^  rn^ri t  ZetaProbe Potentiometric Series Titration Reporl- Summary ^ESA MEASUREMENT Measurement Date:^Thursday, 15 July 2004^Min Freq 0.30 MHz^[Speed normal] Measurement Time:^19:49:00^  General Data:  Version:^2.14b Polar -S/N:  Analysis Date:  Tue. 25 March 2003 1056:46  Standard Calibration Date,  Tue. 13 July 2004 1025:01  Babkgrodnd rile: Comment. Titrant Data [Right]:  Titrant Data [Left]: Titrant ID:  TitrantID:  HCI  NaOH 10%  Conbentration:  1.9 Mol/L  Concentration:  Mol/L  Density:  glml  DenSity: '  0 g/m1  Titrant Volume Added.  ml  Titrant Volume Added:  ci ml  Suspension Properties: Sample Volume (current)'  Sample Volume (initial): Particle Concentration (initial)  Particle ConcOntration (current):  .  pH (current):  pH (initial)  Conductivity (current):  Conductivity (initial):  Conductiyy vs. pH  ESA vs. pH  7.000 —  0.200  ? 6.000  0.000 7-7  -0.20W 50  2.00 -  -- 6,00^8. 0^10.00  5 -0.400 a a_ -0.600  1 4 100  u) 5.000 -  E  11  11  z  5  2.000 -  -0.800 - 1  8 1.000  w -1.000 -1.200 -  4.000 3.000  0.000  1  0.00^2.00  -1.400 .1  4.00^6.00^8.00^10.00^12.00^14.00 pH  pH  Page: 1  File: CVRD7ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1)  ^  npswtch off^ESA MEASUREMENT ^ ^ ^ Meas.^Time of^Elapsed Time Temperature pH Conductivity ESA Kappa^Total Volume^Sample^Particle Background ^ ^ ^ No. Measurement Speed Added^Volume Concentration Filename [rpm]^(mPa/(V/m)]^[nm-1] [hh:mm:ss]^[Mins]^[C]^[mS/cm] [ml] ml] [wt%) ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 1949:00 26.8 6.83 0.086 0.051 0.08 0.00 255.00 1 0.00 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 10.05 7.14 0.103 0.012 2 1959:03 26.8 0.09 B 0.45 255.45 4.992 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2009:40 20.67 7.48 0.127 125 26.9 -0.062 0.10 B 0.58 255.57 4.989 3 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 24.53 8.01 0.156 125 4 2013:32 26.9 -0.196 0.11 B 0.67 255.67 4.987 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 27.73 125 5 2016:44 27.0 8.46 0.184 -0.328 0.12 B 0.73 255.72 4.986 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2020:17 31.28 125 0.12 6 27.0 8.96 0.210 -0.454 B 0.79 255.79 4.985 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 2023:48 34.80 27.1 9.47 0.310 -0.558 B 0.87 4.984 No background correction 7 0.15 255.87 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 125 8 37.98 27.1 9.95 0.387 0.17 B 0.99 255.99 4.981 No background correction 2026:59 -0.638 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 9 2030:16 41.27 27.1 10.47 0.552 125 -0.730 0.20 B 1.20 256.19 4.977 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2033:27 44.45 27.2 10.96 0.932 125 -0.831 0.26 B 1.54 256.54 4.971 No background correction 10 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 11.49 2.210 -0.967 0.41 B 2.45 257.45 4.954 No background correction 11 2037:04 48.07 27.2 125 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4.910 125 No background correction -1.148 0.66 B 4.88 259.88 2040:28 51.47 27.3 11.99 5.810 12 ^  Motor  [  IEPS:  ^  7.20  Page: 2  File: CVRD8_ESA  ^  Date printed: 3/27/2008 ZetaProbe Potentiometric Series Titration Report7Surrimary  ,SA11/1 MEASUREMENT  ^Colloidal Dvn trims^Measurement Date:^Wednesday, 19 May 2004^Min Freq 0.30 MHz^[Speed: normal] LLIi(^.rnerir  Measurement Time^13:26:32^  Genera l ata:  Version:^2.14b Polar S/N:  rGy  Analysis Date:  Tue, 25 March 2008 1057:07  Background-File:  see "Titration Leg" sheets  Standard Calibration Date.  Wed. 19 May 2004 1155:52  Comment: -  no comment entered  'Titrant Data [Left]:  Titrant Data [Right]:  Titrant ID:  Titrant ID.  Conce ntration:  Concentration:  NaOH (10%)  1.9 Mol/L  Density -  Density._  Titrant Volume Added:  Titrant Volume Added:  /rnl 3.02 ml  Suspension Properties: Sample Volume (initial).*  Sample Volume (current):  Particle Concentration (initial):  Particle Concentration (current):  4.944  pH (initial)  pH (current):  11.97  :  0.174 mSicm  Conductivity (initial).  258.023  Conductivity (current)  mSlcrn  Conductivity vs. pH  ESA vs. pH  6.000 -  1.000  F, 5.000 -  0.500  u.d 4.000  :"?:- 0.000 ^0.00^2.00 E -0.500 co -1.000  -  . 3.000 i  10.00^12.00^14i00  2.000 g 1.000 0.000 0.00  -1.500 -  2.00^4.00^6.00^8.00^10.00^12.00^14.00 pH  pH  Page: 1  File: CVRD8_ESA  ^  Date printed: 3/27/2008  ZetaProbe Potentiometric Series Titration Report - Measurement Data (Leg 1) Meas^Time of^Elapsed Time Temperature pH Conductivity ^ No. Measurement [hh:mm:ss] [Mins] [mS/cm] [C]  ^  npswtch off^ESA MEASUREMENT ^ Motor ESA Kappa^Total Volume^Sample^Particle Background ^ ^ Speed Added^Volume Concentration Filename [rpm]^[mPa/(V/m)]^[nm-1] [ml] [ml] [wt%]  ^  ^  ^  ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 1326:32 0.00 155 24.0 3.82 0.154 0.467 0.11 0.00 255.00 5.000 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1329:23 2 2.85 24.1 4.47 0.177 155 0.477 0.11 255.03 4.999 B 0.03 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3 4.99 0.194 155 1332:34 6.03 24.1 0.450 0.12 B 0.06 255.06 4.999 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 4 1335:46 9.23 24.1 5.47 0.263 155 0.389 0.14 B 0.08 255.08 4.999 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 5 1338:57 12.42 24.2 155 6.13 0.292 0.244 0.15 B 0.12 255.12 4.998 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6 1341:49 15.28 24.2 155 0.175 6.45 0.310 0.15 B 0.14 255.14 4.997 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 7 1345:00 18.47 24.3 6.95 0.339 155 0.067 B 0.18 255.18 4.997 No background correction 0.16 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 8 1348:12 7.46 0.374 21.67 24.3 155 -0.057 0.17 B 0.23 255.22 4.996 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1351:24 24.87 24.3 7.98 0.412 155 0.17 B 0.28 9 -0.179 255.28 4.995 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1354:36 28.07 24.4 155 10 8.44 0.446 -0.304 0.18 B 0.33 255.33 4.994 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1357:48 11 31.27 24.4 8.95 0.485 155 255.38 4.993 -0.435 B 0.38 No background correction 0.19 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1401:21 34.82 24.5 9.48 0.546 155 12 -0.548 0.20 B 0.45 255.45 4.991 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 13 1404:52 38.33 24.5 9.97 0.664 155 -0.639 0.22 B 0.56 255.56 4.989 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1408:03 41.52 155 B 0.74 255.75 No background correction 14 24.6 10.48 0.926 -0.724 0.26 4.986 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 45.13 15 1411:40 24.6 10.98 1.510 155 -0.823 0.33 B 1.08 256.08 4.980 No background correction ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 48.32 256.73 No background correction 16 1414:51 24.7 11.48 2.720 155 -0.933 0.45 B 1.73 4.968 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^-1.063^ No background correction 258.02 4.944 17 1417:51 51.32 24.7 11.97 5.070 155 0.61 B 3.02 IEPS:  ^  7.23  Page: 2  Appendix H: Rheology results for individual samples  166  ^^ ^ ^  Ramp Tests Sample #1 140 ^ 130 ^ Tcs ' '120 ^ ciL 110 100 90^--._^ 80 ^ w 70 co 60 50 40 ^ 0  in  )  ^#1 Run1 #1 Run2 #2 Run1 #2 Run2  50^100^150^200^250^300 Shear rate [s-1]  Sample #1 Bingham  y= 0.11x + 84.208 R20.7585  140 120  .  100 --A0 .  80 60 40 20 0 0^50  1 100 • Series1  1^1 150^200 Linear (Series1)  1 250  300  Sample #1 - Casson ^y = 0.102x + 8.8432 R 2 0.5837 = 12.000 10.000 8.000 6.000 4.000 2.000 0.000 0.000  5.000  ^  10.000  ^  15.000  • Series1^Linear (Series1)  ^  20.000  Ramp Test Sample #2  140 120  ca LI 100  a)  80 60  ^#1 Run1 -#1 Run2 #2 Run1 #2 Run2  w 40 20 0 0^50^100^150^200  Shear rate [s-1]  250^300  Sam le #2-^ Bingham  y = 0.1227x + 51.158 R20.9934 =  100 90 80 70 60 50 40 30 20 10 0  I 0^50  I 100 • Series1  I^ , 150^200 Linear (Series1)  I 250  300  ^^ ^  y = 0.1572x + 6.5 R2 0.9801 =  Sample #2- Casson 10.000 9.000 8.000 7.000 6.000 ^ 5.000 ^ 4.000 ^ 3.000 ^ 2.000 ^ 1.000 0.000 ^ 0.000  1  ^  5.000  ^  1  ^  10.000  ^  1  15.000^20.000  • Series1^Linear (Series1)  14  Ramp Tests Sample #3  12  7311 0- 10  0 0^50^100^150^200 Shear rate [s-1]  ^#1 Run1 #1 Run2 #2 Run1 - #2 Run2  300  Sample #3- Bingham y = 0.0137x + 6.4503 R 2 0.9383 14 12  •  •  10 •  8 • 4. :  0 16  ••  6 • 4 2 0  0  50  i^ 1 100^150^200  • Series1 — Linear (Series1)  250  300  Sample #3- Casson^y^0.0495x + 2.3376 R 2 0.8977 = 4.000 3.500  •  3.000  •  •  . ••••• ..  2.500 2.000  .  1.500 1.000 0.500 0.000 0.000  5.000  , 1 10.000^15.000  • Series1 — Linear (Series1)  20.000  Ramp Tests Sample #4  10 9 8 7 Cl) 6 a) 5 Cl) 4 3 (i) 2 0  ^#1 Run1 —#1 Run2 —#2 Run1 —#2 Run2  o ff  0^50^100^150^200^250^300  Shear rate [s-1]  Sample #4-  y ^0.0222x + 2.7828 Bingham ^ 2  R 0.9874 =  10 9  ...^,  8 ..  7 6  ,,,_  5 4  .•  3  . ,•  •••• 8... #  °  2 1 0 0  I 50  I 100 • Series1  i^I 150^200 Linear (Series1)  , 250  300  Sample #4- Casson^y = 0.1009x + 1.2719 R2 0.9911 =  3.500 3.000 2.500 2.000 1.500  • • •• 4, • •• • ••  1.000 0.500 0.000 0.000  1 5.000 • Series1  I i 10.000^15.000 Linear (Series1)  20.000  ^ #1 Run1 –#1 Run2 #2 Run1 — —#2 Run2  100^150^200^250 Shear rate [s-1]  Sam le #5-^ Bingham  y = 0.0389x + 4.7614 R20.9877 =  18 16  .  14  •  12 10  •  8 6 0.* • 4 4A0.*  4.  2 0 0  I  Y  50  100 • Series1  I^  I  150^200 Linear (Series1)  I  250  300  Sample #5-Casson^y = 0.1356x + 1.6427 R 2 0.9966 = 4.500 4.000 3.500  •  3.000 2.500 2.000 1.500 1.000 0.500 0.000 0.000  I 5.000 • Series1  , I 10.000^15.000 Linear (Series1)  20.000  50^100^150^200^250 Shear rate [s-1]  Sample #6-Bingham y = 0.0125x + 2.3107 R 2 0.9291 = 8 •  7 6  •  ^• ^•  -^ •  •••••••••4  ....-  5  • •••••  4  ^.  _I  ....----  3 • • 2 ^• :• 40• . 1  •  0  , 50  0  , 100 • Series1  , 150^200 Linear (Series1)  250  300  Sample #6-Casson  y = 0.0695x + 1.2228  R 2 0.9602 =  3.000 • 2.500 2.000 1.500  • • • • • ,  •  1.000 0.500 0.000 0.000  1 5.000 • Series 1  1 10.000^15.000 Linear^1) (Series  20.000  ^ ^  Ramp Tests Sample #7 40 ^ 35 ^ 76 a. 30 ^ 1  ^(n o  25 ^  1(/)2 20  ^#1 Run1 #1 Run2 #2 Run1 #2 Run2  osi 15  s 10 cn 5 0^ 0  50^100^150^200^250^300 Shear rate [s-1]  Y = 0.041 Ix + 21.087 2  Sample #7-Bingham^  R 0.9513 =  40 35  •  30 25  • •  20 15 10 5 0 0  f  I  I^I  50  100  150^200  • Series1  Linear (Series1)  i 250  300  Sample #7-Casson^y = 0.0808x + 4.2759 R2 0.8754 =  7.000 6.000 5.000 4.000  • •• ....• •  3.000 2.000 1.000 0.000 0.000  1 5.000 • Series1  I ' 10.000^15.000 Linear (Series1)  20.000  Ramp Tests Sample #8 120 100 80  ► ^  60  ,...,  .,..,........---•  #1 Run1 #1 Run2  40 20 I  I^1^1^I^1^I^I^I^I^i^i^I^I^I^1^!^I^I^I^I^I^i^I^I^I  0^50^100^150^200^250^300 Shear rate [s-1]  Y = 0.1743x + 5T869 82 0.852 =  Sample #8-Bingham^ 120 100 . 80 -;  •  60 40 20  o 0  ,  ,  50  100 • Series1  ,^, 150^200 Linear (Series1)  , 250  300  Sample #8-Casson y = 0.1924x + 6.8996 R 2 0.741 = 12.000 10.000 8.000 6.000 4.000 2.000 0.000 0.000  5.000  ^  10.000  ^  15.000  • Series1^Linear (Series1)  ^  20.000  

Cite

Citation Scheme:

        

Citations by CSL (citeproc-js)

Usage Statistics

Share

Embed

Customize your widget with the following options, then copy and paste the code below into the HTML of your page to embed this item in your website.
                        
                            <div id="ubcOpenCollectionsWidgetDisplay">
                            <script id="ubcOpenCollectionsWidget"
                            src="{[{embed.src}]}"
                            data-item="{[{embed.item}]}"
                            data-collection="{[{embed.collection}]}"
                            data-metadata="{[{embed.showMetadata}]}"
                            data-width="{[{embed.width}]}"
                            async >
                            </script>
                            </div>
                        
                    
IIIF logo Our image viewer uses the IIIF 2.0 standard. To load this item in other compatible viewers, use this url:
http://iiif.library.ubc.ca/presentation/dsp.24.1-0066670/manifest

Comment

Related Items