- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Fabrication and modelling of an all-printed PEDOT:PSS...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Fabrication and modelling of an all-printed PEDOT:PSS supercapacitor on a commercial paper Yoo, Dan Sik
Abstract
Supercapacitors demonstrate substantial improvement in charge storage capability compared to the conventional capacitors. With the emergence of printed electron- ics such as RFID tags, smart cards, electronic paper, and wearable electronics, printed energy storage devices are desirable. Therefore, a flexible and printable supercapacitor with a PEDOT:PSS electrode is fabricated with inkjet micropatterning technology. Electroanalytical measurement techniques are employed to characterize the performance of the printed supercapacitor. It has been found that addition of the surfactant (Triton X-100) increases the porosity of the PE- DOT:PSS electrode. A volume capacitance of 9.36 F/cm₃ (adding surfactant) and 9.09 F/cm₃ (without adding surfactant) are measured with cyclic voltammetry. The two devices have different capacitor charging times, e.g., 50.46 s for electrode added surfactant and 112.9 s for the electrode without adding surfactant. In order to investigate the rate limiting factors of capacitor charging, electro- chemical impedance measurements and equivalent circuit modelling is utilized. Instead of using a constant phase element (CPE), a multiple time constant model is proposed in order to explain the physical origin of the distributed time constant behaviour. Thickness variation of the PEDOT:PSS electrode is assumed as a primary reason for the distributed time constants and thus actual thickness variation is incorporated in the modelling. Data fitting with the measured impedance are consistent with this assumption. However. it also has been found that there are more factors distributing capacitances than just variations in thickness. A lognormal distribution function (LNDF) is utilized in order to further investigate the relationship between the distributed capacitance and the capacitor charging. It is found that the capacitance distribution likely influence the charging. Previous experimental results demonstrate that the distributed capacitance is the physical cause of the distributed time constant behaviour in electrochemical impedance measurement. However, this is the first analytical report proving the relationship between the distributed time constant behaviour and a thickness de- pendent capacitance distribution.
Item Metadata
Title |
Fabrication and modelling of an all-printed PEDOT:PSS supercapacitor on a commercial paper
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2010
|
Description |
Supercapacitors demonstrate substantial improvement in charge storage capability compared to the conventional capacitors. With the emergence of printed electron- ics such as RFID tags, smart cards, electronic paper, and wearable electronics, printed energy storage devices are desirable. Therefore, a flexible and printable supercapacitor with a PEDOT:PSS electrode is fabricated with inkjet micropatterning technology. Electroanalytical measurement techniques are employed to characterize the performance of the printed supercapacitor. It has been found that addition of the surfactant (Triton X-100) increases the porosity of the PE- DOT:PSS electrode. A volume capacitance of 9.36 F/cm₃ (adding surfactant) and 9.09 F/cm₃ (without adding surfactant) are measured with cyclic voltammetry. The two devices have different capacitor charging times, e.g., 50.46 s for electrode added surfactant and 112.9 s for the electrode without adding surfactant.
In order to investigate the rate limiting factors of capacitor charging, electro- chemical impedance measurements and equivalent circuit modelling is utilized. Instead of using a constant phase element (CPE), a multiple time constant model is proposed in order to explain the physical origin of the distributed time constant behaviour. Thickness variation of the PEDOT:PSS electrode is assumed as a primary reason for the distributed time constants and thus actual thickness variation is incorporated in the modelling. Data fitting with the measured impedance are consistent with this assumption. However. it also has been found that there are more factors distributing capacitances than just variations in thickness. A lognormal distribution function (LNDF) is utilized in order to further investigate the relationship between the distributed capacitance and the capacitor charging. It is found that the capacitance distribution likely influence the charging.
Previous experimental results demonstrate that the distributed capacitance is the physical cause of the distributed time constant behaviour in electrochemical impedance measurement. However, this is the first analytical report proving the relationship between the distributed time constant behaviour and a thickness de- pendent capacitance distribution.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-06-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0065066
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2010-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International